
Fast simulation of pharmacokinetics

Ylva Wahlquist ∗ Fredrik Bagge Carlson ∗∗ Kristian Soltesz ∗

∗ Lund University, Dept. Automatic Control, Sweden
(e-mail: {first.last}@control.lth.se)

∗∗ JuliaHub
(e-mail: fredrik.carlson@juliacomputing.com)

Abstract: Fast simulation of linear time-invariant (LTI) pharmacokinetic (PK) models is
crucial to mixed-effect modeling techniques, used extensively in pharmacological research
and development. The by far most common LTI PK models are particularly structured
compartmental systems with one, two or three compartments. Here we develop and demonstrate
very efficient, and down to machine precision exact, simulators for those structures. Our
proposed method is benchmarked against state-of-the art software for simulation of linear
systems, using a clinically relevant data set.

Keywords: Pharmacokinetics and drug delivery, physiological modeling, biomedical system
simulation

1. INTRODUCTION

Simulation of linear pharmacological (PK) models lies at
the core of modern pharmacometric methods, widely used
in pharmacological research and response prediction. In
particular, pharmacometric mixed-effect modeling relies
on a large number (thousands or more) of such simulations,
to approximate integrals through sampling from patient-
individual parameter distributions. These simulations are
normally conducted within custom software.

In concurrent work, we are developing neural-network-
based symbolic regression for modeling the relation be-
tween known patient covariates such as age or gender,
and parameters of the PK model, as outlined in Wahlquist
et al. (2022). Training these networks requires a several-
fold increase in PK model simulations. Even with modern
computing power at hand, the large number of simulations
constitutes a bottle neck.

The most widely known tool/software that provides simu-
lation of such systems is NONMEM introduced by Sheiner
and Beal (1980) in the 1980s. Lately, the software Pumas
AI has received attention as a faster alternative to NON-
MEM, as described in Rackauckas et al. (2020). Much of
the speedup is attributed to Pumas AI being implemented
in the the Julia language, with native support for differ-
ential programming, see Bezanson et al. (2017).

There are also numerous softwares that can simulate
linear PK models through numeric integration of ODEs.
Such methods are accessible through for example the
lsim function in Matlab and DifferentialEquations.jl (
Rackauckas and Nie (2017)) in Julia. Such numeric ODE

⋆ This work was partially funded by the Swedish government
through the Swedish Research Council (grant 2017-04989), The
Royal Physiographic Society in Lund, the Hans-Gabriel and Alice
Trolle-Wachtmeister foundation and by the Swedish foundation for
Strategic Research. The authors are members of the Excellence
Center at Linköping-Lund in Information Technology (ELLIIT).

V1V2 V3

k12

k21

k31

k13

u k10

Fig. 1. Mammillary three-compartment PK model. The
drug is administered to the central compartment at
infusion rate u, from where the drug is also elimi-
nated with elimination rate k10. Two peripheral com-
partments are connected to the central compartment
where transfer rates constants kij governs the drug
transfer from compartment i to j. The compartmental
volumes are V1, V2 and V3, respectively.

integration methods approximate the solution using either
fixed or adaptive time step lengths. They do not exploit
the fact that the dynamics are LTI, and they do not
exploit the fact that the considered input is a sequence
of steady infusion levels (steps) and boluses (impulses),
administered at known, but typically unevenly spaced,
time instances.

Since the dynamics are LTI, a faster alternative is to
compute the exact solution of the ODE only at the dose
change instances, and observation instances (that may
differ from them). Doing so naively involved the evaluation
of an exponential matrix.

We tailor a method for exactly solving the ODE at in-
stances of interest. By exploiting the structure of one, two,
and three compartment LTI PK models, we avoid the need
of evaluating exponential matrices, without introducing
the need of solving a linear equation system in each time
step, otherwise associated with diagonalizing the system
matrix.

The efficiency of the proposed method is demonstrated
through benchmarking it against commonly used solvers,
using a large model set for the anesthetic drug propofol.



2. PHARMACOKINETIC MODELING

Pharmacokinetics describe the absorption and distribu-
tion of a drug within the body. To be able to simulate
pharmacokinetics and predict physiological parameters,
such as the compartment volumes, it is common to use a
compartment model. The idea of the compartment model
is to collect organs or tissue of similar properties together
in compartments and model the drug transfer between
them.

Commonly used compartment models are structures of
one, two, and three compartments. A one-compartment
model approximates the body as a single compartment
where the drug concentration is assumed to be uniformly
distributed and eliminated through a first-order process.
Extending this model results in the two- and three-
compartment models, where the different compartments
relate to different types of tissue.

The compartment models can have different topologies,
due to how the compartments are arranged, and where
sources and sinks enters and exits the system. For example,
a mammillary model consists of a central compartment
with peripheral compartments connected to it, with no in-
terconnections among other compartments. In the context
of intravenously administered drugs, the central compart-
ment models the blood plasma.

Figure 1 provides a schematic illustration of the three-
compartment mammillary model, used, for example, to
model the PK of the anesthetic drug propofol, as explained
in Sahinovic et al. (2018). We can also note from the figure
that as long as addition and elimination are associated
with the central compartment, as is the case for most intra-
venously administered drugs, the two models of two or one
compartment are special cases of the three compartment
model.

Diffusion processes transferring drug between communi-
cating compartments are governed by non-negative trans-
fer rate constants kij , as shown in Figure 1.

A state-space representation of the one-compartment
model relating drug infusion rate u(t) to drug concentra-
tion x(t) is given by the first-order LTI model

ẋ = −k10x+
1

V1
u, (1)

where k10 is the elimination-rate constant (1/time), and
V1 is the volume of distribution of the single compartment.
We have left out the time dependence on the state variables
x(t) and input u(t) for readability.

Similarly, the second-order compartment model is given
by

ẋ1 = −(k10 + k12)x1 + k21x2 +
1

V1
u, (2a)

ẋ2 = k12x1 − k21x2, (2b)

where x1 denotes drug concentration within the central
compartment, while x2 is the peripheral compartment
concentration.

The third-order mammillary compartment model, shown
in Figure 1, corresponds to

ẋ1 = −(k10 + k12 + k13)x1 + k21x2 + k31x3 +
1

V1
u, (3a)

ẋ2 = k12x1 − k21x2 (3b)

ẋ3 = k13x1 − k31x3, (3c)

where xk ∀ k ∈ {1, 2, 3}, is the drug concentration within
compartment k.

3. SIMULATION OF LTI SYSTEMS

For a pharmacological relevant scenario, the input u
changes only at discrete time instances during a treatment.
At these instances, there is either a step change in the
infusion rate, a drug bolus (modeled by an impulse), or
both.

The peripheral compartment concentrations are most com-
monly not directly measurable, as the peripheral com-
partments are modeling constructs, rather than actual
tissues. However, the central compartment concentration
can be measured by drawing blood samples at discrete
time instances.

Motivated by the circumstances detailed above, we con-
sider methods for simulation of LTI systems when the
input is a linear combination of time-shifted impulses and
steps. This means that we are dealing with events from the
list below, occurring in a sequence of known time instances:

• An impulse of fixed magnitude added to the central
compartment;

• Addition of drug mass at a constant rate to the
central compartment;

• Observation of the central compartment concentra-
tion.

3.1 General solution of LTI systems

Let x be a state vector where xk represents the drug
concentration of compartment k = 1, ..., n. The state
dynamics of a scalar-input LTI system can be written as

ẋ(t) = Ax(t) +Bu(t) (4)

where A is an n× n matrix, B is an n× 1 column vector
and u is the input. For the PK models introduced in
Section 2, A and B are uniquely determined by transfer-
rate constants and the central compartment volume V1.

The exact solution of (4), derived in for example Åström
and Wittenmark (2011), is

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)Bu(τ)dτ, (5)

We assign t = 0 to the instance where drug is first ad-
ministered, corresponding to an initial drug concentration
x(0) = 0. If that is not the case, the zero time can be
shifted so that x(0) = 0 holds.

The solution (5) can be evaluated through numerical ap-
proximation of the integral, and there exist numerous nu-
merical integration methods to this end. Examples include
ode45 and other related methods accessible from the lsim
wrapper in Matlab or DifferentialEquations.jl in Julia.

If the input changes only at discrete time instances tk, a
more efficient alternative to fixed (or adaptively variable)



step-length numeric integration is to perform a exact zero-
order-hold (ZOH) discretization of (5):

x(tk+1) = eA(tk+1−tk)x(tk) +

∫ tk+1

tk

eA(tk+1−τ)dτBu(tk),

(6)
which can be rewritten on the compact form

xk+1 = Φkxk + Γkuk, (7a)

so that
Φk = eAhk ,

Γk =

∫ hk

0

eAτdτB,
(7b)

where the sampling period is

hk = tk+1 − tk, (7c)

and subscript k denotes time dependence so that for
example xk = x(tk).

3.2 Simulation with impulses and piece-wise constant
inputs

If we consider the input being an impulse (bolus) of
magnitude vk, administered at time tk, we have

uk = δkvk, (8)

where δk = δ(tk) is the Dirac distribution (unit impulse)
centered at t = tk. For this case the state update of (7a)
becomes

xk+1 = eAhkxk +

∫ hk

0

eAτBvkδ0(τ)dτ

= eAhkxk + eAhkBvk = Φk(xk +Bvk).

(9)

If we instead consider a piece-wise constant input uk = wk,
then (5) takes on the form

xk+1 = eAhkxk +

∫ hk

0

eAτdτBwk

= Φkxk + Γkwk.

(10)

Combining (9) and (10), we get the updated state vector
under both an impulse and a piece-wise constant input

xk+1 = Φk (xk +Bvk) + Γkwk. (11)

As a consequence of the identity

[
Φk Γk

0 I

]
︸ ︷︷ ︸

M

= exp


[
A B

0 0

]
︸ ︷︷ ︸

E

hk

 , (12)

which can be easily verified through dM/dhk = ME, it
is possible to evaluate Φk and ΓK in (7b) by computing
an exponential matrix of dimension n + 1. This makes
the approach less computationally expensive than numeric
integration schemes for small tolerances.

4. FAST SIMULATION OF PK MODELS

Computing the matrix exponential needed to evaluate Ad

at each dosing instance is the most time-consuming task
associated with simulating the system using the exact
solution for piece-wise constant inputs. We next show how
we can get rid of this step.

Using the Laplace transform, the state dynamics (4) can
be written

X(s) = (sI −A)
−1

BU(s). (13)

For the considered PK models, this is equivalent to

X(s)

U(s)
=

adj(sI −A)B

det(sI −A)
=

1

V1

adj(sI −A)e1
det(sI −A)

, (14)

where the last equivalence comes from the fact that B =
(1/V1)e1, where e1 is the first unit vector in Euclidean
Rn. The numerator adj(sI −A) is completely determined
by the rate constants. For the i th state in the state vector
X(s), with i = 1, . . . , n, we can evaluate (14) so that for
each state Xi(s)

Xi(s)

U(s)
=

1

V1

∑n
j=1 pjis

n−j

(s− λ1)...(s− λn)
, (15)

where pij are the numerator polynomial coefficients and λk

is the kth eigenvalue of the A-matrix. For the considered
models, all eigenvalues are unique, real and strictly nega-
tive. Each of these eigenvalues can be explicitly expressed
as a function of the rate constants of the system. We used
a computer algebra system to solve the eigenvalue problem
A− λI = 0 for the three compartment case, to obtain the
form

λ =


−c1 − c7

−c9 − c10

c9 − c10

 (16a)

where
b1 = k10 + k12 + k13 + k21 + k31
b2 = k21(k10 + k13 + k31) + k31(k10 + k12)

b3 = k10k21k31
c1 = b1/3

c2 = c31
c3 = b2/3

c4 = c3 − c21
c5 = (b1c3 − b3)/2

c6 = 2

(
c5 +

√
c34 + (c2 − c5)2 − c2

)1/3

c7 = −Re(c6)

c8 = Im(c6)

c9 = c8
√
3/2

c10 = c1 − c7/2.

(16b)

was obtained by manual substitutions within the corre-
sponding expression tree.

Performing a partial-fraction decomposition of (15), we
obtain

Xi(s)

U(s)
=

1

V1

n∑
j=1

rji
s− λj

. (17)

In the case of the three-compartment model and for state
x1—corresponding to the measurable central compart-
ment concentration—the partial fraction decomposition is
given by

p11s
2 + p21s+ p31

(s− λ1)(s− λ2)(s− λ3)
=

r11
s− λ1

+
r21

s− λ2
+

r31
s− λ3

.

(18)



By multiplying both sides to get a common denominator,
we obtain

p11s
2 + p21s+ p31 = r31(s− λ2)(s− λ3)+

r21(s− λ1)(s− λ3) + r31(s− λ1)(s− λ2).
(19)

Matching powers of s results in the linear system
1 1 1

−(λ2 + λ3) −(λ1 + λ3) −(λ1 + λ2)

λ2λ3 λ1λ3 λ1λ2


︸ ︷︷ ︸

Q


r11

r21

r31


︸ ︷︷ ︸

r1

=


p11

p21

p31


︸ ︷︷ ︸

p1

,

(20)
where the elements of P are completely determined by the
transfer-rate constants.

Performing partial-fraction expansions of (15) also for
k = 1 and k = 3, we have that

QR = P, (21a)

where

P =
[
p1 p2 p3

]
=


1 0 0

k21 + k31 k12 k13

k21k31 k12k31 k13k21

 , (21b)

R =
[
r1 r2 r3

]
=


r11 r12 r13

r21 r22 r23

r31 r32 r33

 , (21c)

where P is expressed in terms of the rate constants of
the mammillary three compartment model (3). (Note that
despite the variable naming, Q and R are in general not
the QR factors of P .)

Solving (20) for r1, or more generally (21a) for R, can be
done by first explicitly computing the inverse of Q, since
R = Q−1P . For the three-compartment case, the inverse
of Q can be expressed in terms of the eigenvalues as

Q−1 =


λ2
1/d1 λ1/d1 1/d1

λ2
2/d2 λ2/d2 1/d2

λ2
3/d3 λ3/d3 1/d3

 , (22a)

where
d1 = (λ1 − λ3)(λ1 − λ2),

d2 = (λ2 − λ3)(λ2 − λ1),

d3 = (λ3 − λ2)(λ3 − λ1).

(22b)

The two-compartment model is a special case, obtained
by removing the third row and column of the involved
matrices, and equating any entry coefficient with subscript
3 to zero.

For a one-compartment model, there will be no need for
a partial-fraction decomposition as the model is already
of first order, resulting in Q = 1. Therefore, the one-
compartment model can be simulated directly as explained
below, with R = 1.

The same methodology can be used also for models of n >
3 compartments. However, for such models, the matrices P
and Q do generally not have closed-form entries. However,
they can still be numerically pre-computed. Doing so, and
performing a LU factorization, enables replacement of the

exponential matrix associated with each time step with
one forward and one backward substitution needed to
obtain R from P and the factors of Q.

Having computed R, we have access to the right-hand
side of (17). For each eigenvalue j = 1, . . . , n, and state
i = 1, . . . , n, the right-hand side comprises of a parallel
interconnection of n first-order systems, as a result of the
partial-fraction expansion (17). Each of these are on the
form

rij
V1

1

s− λj
. (23)

A possible state-space realization of (23) is

żj = λjzj + u,

xj =
rij
V1

zj .
(24)

Zero-order-hold sampling of (24) with sampling period hk

results in
zk+1 = φjzk + γjuk,

xk =
rij
V1

zk,
(25a)

where
φj = eλjhk ,

γj =
1

λj
(φj − 1) .

(25b)

We will now return to study the full system. For all
eigenvalues j = 1, . . . , n, we put the corresponding φj ,
γj and zj from (25) into arrays of length j. This allows us
to perform parallel computations of each subsystem and
therefore speeding up the simulation of the full system.
The resulting updating scheme is

zk+1 = φk ⊙ zk ⊕ γkuk, (26a)

xk =
1

V1
R⊤zk, (26b)

where

z =
[
z1 . . . zn

]⊤
, (27a)

φ =
[
φ1 . . . φn

]⊤
, (27b)

γ =
[
γ1 . . . γn

]⊤
, (27c)

and ⊙ denotes the element-wise product (sometimes also
called the Hadamard or Schur product) and ⊕ denotes the
vector addition so that .⊕ u = .+ 1u.

We have now demonstrated how an n-compartment model
can be simulated as a system of n first-order sys-
tems, which increases the computational efficiency com-
pared to traditional methods. Specifically, for the case
of n ≤ 3 compartment models with unique eigenvalues,
the approximation-free simulation of the state evolution
between consecutive (bolus or infusion change) dosing
events comes down to computing R of (17). The inverse
Q−1 is pre-computed using the closed-form expression
(22), relying on the also pre-computed eigenvalues of the
system matrix A. Due to the structure of the system, the
eigenvalues can be evaluated using the algorithm presented
in (16), that is computationally much cheaper than solving
a general eigenvalue problem of dimension n = 3. Finally,



the simulation only results in the computation of three
scalar exponentials and simple arithmetic operations.

4.1 Simulation algorithm

Instead of simulating the system with x as a state, we can
simulate the system in (26) with z as a state and convert
back to x once we are interested in the physiological
state. The simulation can now be divided into two parts,
pre-processing and simulation between events. The pre-
processing part includes a computation of R and the
n eigenvalues of A. Once this has been done, cheap
simulation between events can be performed in parallel.

If we use the state update for impulses and piece-wise
constant inputs in Section 3 and (11) together with the
state update in (27), we get

zk+1 = φk ⊙ (zk ⊕ vk)⊕ γkwk, (28)

where z0 is some initial state.

The simulation between events now only has two vector-
vector additions and two element-wise product evalua-
tions, each involving n elements.

At those time instances when we are interested in the
physiological state xi, the output can be computed from
(26b), with the state update given in (28).

5. SIMULATION EXAMPLE

In this paper, we consider simulation of a model set for
the anesthetic drug propofol. It has been published in
full in in a supplement to Eleveld et al. (2018) and is a
data collection from 30 previously published studies. The
model set includes identified individual model parameters
of the three-compartment model, input infusion data and
blood plasma concentrations of 1033 patients as well as
observation times.

One simulated example is shown in Figure 2 where the
upper figure shows the simulated blood plasma concen-
tration in black, and where the observation instances are
marked in red. Note that we are typically only interested
in the state at these instances. The lower part of Figure 2
illustrates the infusion rate.

The simulations algorithms compared in this paper are
implemented in either Matlab or Julia. In Matlab, lsim
has been used for simulation. Due to the fact that the
time between events is not constant, lsim has to be called
at each time instance. In Julia, the proposed simulation
algorithm in Section 4.1, available through the package
FastPKsim.jl Wahlquist (2022b) is compared to direct
computation of the exact solution in (11) and simula-
tion using DifferentialEquations.jl with callbacks. For the
direct method in (11), computation of the exponential
matrix is performed using Padé approximation.

6. RESULTS

Table 1 shows the wall-clock time for simulation of the
full model set (1033 patients) published in Eleveld et al.
(2018), with the simulations in Matlab and Julia, as ex-
plained in Section 5. Even though all simulations in Table 1

0 50 100 150 200 250 300 350 400 450
0

2

4

6

C
o
n
ce
n
tr
a
ti
o
n
(µ

g
/
m
l)

(a) Simulation output, blood plasma concentration

0 50 100 150 200 250 300 350 400 450
0

2

4

Time (min)

In
fu
si
o
n
ra
te

(m
g
/
m
in
)

(b) Input, infusion rate

Fig. 2. Simulation of one patient in the model set published
in Eleveld et al. (2018). The upper figure shows the
simulation output, the blood plasma concentration of
the central compartment. Red circles shows times for
observation. The lower figure shows the infusion rate,
administered to the central compartment.

are on the millisecond scale, faster simulations are of out-
most importance if thousands (or more) simulations needs
to be performed. All simulations were performed single-
threaded. For each simulation method, we performed 10
simulations and in the table, we present the median sim-
ulation time of these simulations. Simulations in Julia
also includes the total memory allocation, which is not
available for the Matlab simulation.

The proposed simulator can be found in the Julia package
FastPKSim.jl, see Wahlquist (2022b). Code and data used
to generate the results in Table 1 are available in a
GitHub repo, see Wahlquist (2022a). All computations
were performed on a standard Linux PC (Intel i5-8265U,
8-core processor) in Julia 1.8.2 and Matlab 2022b.

Table 1. Wall-clock time for simulation of the
model set (1033 patients) published in Eleveld
et al. (2018). The simulations has been per-
formed in Matlab and Julia, using the simula-
tion methods described in Section 5. Memory
allocation count is not accessible for the Mat-

lab simulation.

Software Method Time (ms) Allocations

Matlab lsim 64585 -

Julia xk+1 = Φkxk + Γkuk 548 2.03 · 106

Julia DifferentialEquations.jl 230 2.79 · 107

Julia FastPKSim.jl 1.58 0



7. DISCUSSION

In this paper, we have demonstrated a fast simulator
for LTI PK compartment models of n = 1, 2 or 3
compartments. Instead of simulating an n-compartment
model, we simulate n first-order models, resulting in a
significant speedup compared to traditional methods. By
exploiting model structure, we circumvent the need to
solve a linear equation system at each time step to obtain a
diagonalizing transform needed to achieve this. For models
with n > 3 compartments (being far less common in
pharmacological applications), we would additionally rely
on one forward and one backward substitution using pre-
computed LU factors of Q to solve the equation system
associated with diagonalization.

Taking care to avoid dynamic memory allocation further
contributes to high efficiency of our implementation in
FastPKSim.jl.

In comparison to existing ODE-solvers where the solution
is approximate to some degree, the proposed simulator
is exact down to the precision of the scalar exponential
function evaluation.

When using the simulator as part of an inference engine
or to train a symbolic regression network as in Wahlquist
et al. (2022), differentiation through the simulator (with
respect to model parameters) is necessary. Since Julia has
native support for automatic differentiation, this can be
performed very cheaply with O(1) complexity, and with
exactness limited only by machine precision. In contrast,
ODE solvers called through the lsim wrapper in Matlab
would need to rely on finite-difference approximations to
compute gradients.

In near-future work, we aim to setup FastPKSim.jl to run
fully parallelized on a cloud architecture, and use auto-
matic differentiation to train symbolic regression networks,
to demonstrate viability of the methodology introduced in
Wahlquist et al. (2022) in realistic data-driven modeling
scenarios—something that would require far too long com-
putational times using conventional ODE solvers.

REFERENCES

Åström, K. and Wittenmark, B. (2011). Computer-

Controlled Systems: Theory and Design, Third Edition.
Dover Books on Electrical Engineering. Dover Publica-
tions.

Bezanson, J., Edelman, A., Karpinski, S., and Shah, V.B.
(2017). Julia: A fresh approach to numerical computing.
SIAM review, 59(1), 65–98. doi:10.1137/141000671.

Eleveld, D.J., Colin, P., Absalom, A.R., and Struys,
M.M.R.F. (2018). Pharmacokinetic–pharmacodynamic
model for propofol for broad application in anaesthesia
and sedation. British Journal of Anaesthesia, 120(5),
942–959. doi:10.1016/j.bja.2018.01.018.

Rackauckas, C., Ma, Y., Noack, A., Dixit, V., Mogensen,
P.K., Byrne, S., Maddhashiya, S., Santiago Calderón,
J.B., Nyberg, J., Gobburu, J.V., et al. (2020). Acceler-
ated predictive healthcare analytics with pumas, a high
performance pharmaceutical modeling and simulation
platform. bioRxiv. doi:10.1101/2020.11.28.402297.

Rackauckas, C. and Nie, Q. (2017). DifferentialEqua-
tions.jl – a performant and feature-rich ecosystem for
solving differential equations in Julia. Journal of Open
Research Software, 5(1).

Sahinovic, M.M., Struys, M.M.R.F., and Absalom, A.R.
(2018). Clinical Pharmacokinetics and Pharmacody-
namics of Propofol. Clinical Pharmacokinetics, 57(12),
1539–1558. doi:10.1007/s40262-018-0672-3.

Sheiner, L.B. and Beal, S.L. (1980). Evaluation of methods
for estimating population pharmacokinetics parameters.
I. Michaelis-Menten model: routine clinical pharmacoki-
netic data. Journal of Pharmacokinetics and Pharma-
codynamics, 8, 553–571. doi:10.1007/BF01060053.

Wahlquist, Y. (2022a). Fast simulation of pharma-
cokinetics. URL https://github.com/wahlquisty/
fast-simulation-of-pharmacokinetics. Commit:
5246112.

Wahlquist, Y. (2022b). FastPKSim.jl. URL https:
//github.com/wahlquisty/FastPKSim.jl. Commit:
55e878d.

Wahlquist, Y., Morin, M., and Soltesz, K. (2022). Pharma-
cometric covariate modeling using symbolic regression
networks.

https://github.com/wahlquisty/fast-simulation-of-pharmacokinetics
https://github.com/wahlquisty/fast-simulation-of-pharmacokinetics
https://github.com/wahlquisty/FastPKSim.jl
https://github.com/wahlquisty/FastPKSim.jl

	Introduction
	Pharmacokinetic modeling
	Simulation of LTI systems
	General solution of LTI systems
	Simulation with impulses and piece-wise constant inputs

	Fast simulation of PK models
	Simulation algorithm

	Simulation example
	Results
	Discussion

