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Populärvetenskaplig sammanfattning på svenska

Många modeller inom naturvetenskap kan utryckas som någon form av partiell dif-
ferentialekvation. En partiell differentialekvation är en ekvation vars lösning är en
funktion i en eller flera rumsdimensioner och möjligen en tidsdimension. De kan be-
skriva, till exempel, värmefördelning i ett rum vid jämviktsläge eller en vätska som
flyter genom ett rör. Dessa ekvationer är svåra att lösa och därför har mycket forsk-
ning ägnats åt detta, och mer specifikt, att göra detta på ett effektivt sätt. Komplexa
modeller ger vanligtvis differentialekvationer som inte kan lösas analytiskt, det går
alltså inte att skriva ner lösningen exakt. Vi vänder oss därför till numeriska metoder,
d.v.s., vi approximerar lösningarna med beräkningar utförda på datorer.

Numeriska metoder för partiella differentialekvationer kräver en enormmängdminne
bara för att lagra problemen och snabba processorer för att lösa dem. Utvecklingen
av processorhastighet och minne per processor har saktats ned de senaste åren och vi
har i stället sett en ökning av distribuerade system. Dessa är stora kluster bestående
av flera datorer som arbetar tillsammans. För att utnyttja denna teknologi behöver vi
konstruera metoder som kan användas parallellt: Problemet måste kunna delas upp i
flera mindre beståndsdelar så att varje del kan lösas oberoende av de andra. Ett sätt att
göra detta på är med områdesuppdelande metoder.

Områdesuppdelande metoder fungerar genom att dela upp rumsområdet, d.v.s. rum-
met och röret i exemplen ovan, i flera mindre områden, eller delar. Varje del ger upp-
hov till ett mindre problem, men problemen är inte oberoende: Temperaturen längst
in i rummet beror på temperaturen längs ut, och samma princip gäller röret. Det-
ta beroende löses genom att introducera en iterativ process som överför information
mellan delarna.

För numeriska metoder är det inte bara viktigt att de är effektiva, men de måste också
vara pålitliga. Helst vill vi veta på förhand hur bra approximation vi kommer att få.
En stor del av området numerisk analys är därför att studera konvergens av numeris-
ka metoder. Med konvergens av en metod menar vi att ju mer arbete vi utför, desto
närmre kommer approximationen den verkliga lösningen. Trots att områdesuppde-
lande metoder har använts länge så saknas det fortfarande konergensbevis i många
fall.

Målet med denna avhandling är därför att först konstruera ett nytt ramverk för att
analysera konvergens av områdesuppdelande metoder i två fall som inte har studerats
ordentligt tidigare. Mer specifikt studerar vi fallet då ekvationen är ickelinjär och det
tidsberoende fallet. Det andra målet med avhandlingen är att bevisa konvergens av en
specifik metod, Robin-Robin metoden, som överför en kombination av randvärden
och derivata mellan delarna.
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All analys utförs genom att endast undersöka vad som händer på randen mellan de-
larna. På randen kan områdesuppdelande metoder uttryckas genom Steklov-Poincaré
operatorn, som beskriver relationen mellan randvärdena och derivatan. Därför är det
nödvändigt att studera egenskaperna hos denna operator. I båda det ickelinjära och
det tidsberoende fallet visar vi att operatorn har de egenskaper som krävs för att bevisa
konvergens för Robin-Robin metoden.

vi



Chapter 1

Introduction

Approximating solutions to partial differential equations requires a significant amount
of computational power, which is typically found on distributed hardware. In order to
take advantage of these hardware structures, one requires methods that can be used in
parallel. Domain decomposition methods are methods for approximating solutions
to partial differential equations that allow such parallel computations.

Despite their long history and the vast amount of methods available, there is no gen-
eral convergence theory for nonlinear elliptic equations, or for parabolic equations.
The purpose of this thesis is therefore to generalize the theory of nonoverlapping
domain decomposition methods to nonlinear elliptic equations and linear parabolic
equations. In the linear elliptic case, the existing convergence proofs typically exploit
symmetry of the partial differential operator, which is not possible for these cases.
We will discuss three basic domain decomposition methods, but keep the main fo-
cus on the Robin–Robin method since this convergence proof does not require any
symmetry assumptions on the differential operator.

The goal of this thesis is thus: First, to construct a general framework for analyzing
nonoverlapping domain decomposition methods, for both nonlinear elliptic equa-
tions and linear parabolic equations. Second, to prove convergence of the Robin–
Robin method in both of these contexts using these new frameworks.

All analysis is performed in the continuous setting, that is, not considering any space
or time discretizations of the partial differential equation. This is done in order to
study the convergence of the domain decomposition method without the effect of
the discretization. Since the continuous case is, in the sense of the Banach spaces
involved, more complex than the discrete case, it is also likely that this captures the
essential parts of the analysis for the discrete equations. In fact, for the nonlinear
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elliptic case it is straightforward to apply the analysis to a finite element discretization,
although no convergence order is available. For the parabolic case, the effect of the
discretization is not as straightforward and needs to be studied further.

The thesis is structured as follows: In Chapter 2 we introduce the geometrical and
analytical tools as well as the notation used in the rest of the thesis. In Chapter 3
we give a review of the theory of domain decomposition methods applied to linear
elliptic equations, starting with the theory of Steklov–Poincaré operators and then
showing how these operators can be used to prove convergence of some common
domain decomposition methods. In Chapter 4 we show how to generalize this theory
to nonlinear elliptic equations, which is the subject matter of Paper I. In Chapter 5 we
first show how the analysis of Paper I can be applied to a discretized equation and then
give some new unpublished numerical results, which verifies our convergence results.
In Chapter 6 we generalize the analysis of domain decomposition methods for linear
elliptic equations to linear parabolic equations, which is the topic of Paper II. We then
provide new numerical results for parabolic equations in Chapter 7. Finally, we give
some ideas on future work in Chapter 8.
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Chapter 2

Preliminaries

2.1 Geometry

In all applications we consider a nonoverlapping domain decomposition of the spatial
domain Ω ⊂ Rd, for some d = 2, 3, . . . . For simplicity we only cover the case of
two subdomains Ω1,Ω2 with the interface Γ, i.e.,

Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ∅ and Γ = (∂Ω1 ∩ ∂Ω2) \ ∂Ω,

see Figures 2.1a and 2.1b. This setting also includes decompositions as in Figure 2.1c
since we can write

Ωi =

Ni⋃
ℓ=1

Ωiℓ, Ni ∈ N, i = 1, 2.

Decompositions of this form allow our methods to be used in parallel, since the dif-
ferential equation on the domain Ωi can be divided into Ni independent problems
on Ωiℓ, ℓ = 1, . . . , Ni. Although important for parallelization, we do not consider
decompositions of the form Figure 2.1d since they contain crosspoints. That is, points
where two parts of the interface intersect. These typically lead to variational formula-
tions with different trial and test spaces, see, e.g., [Paper I, Remark 6.5].

We assume no further regularity of our domains other than that they are Lipschitz,
see [38, Section 6.2] for a definition. See also [58] for the definition of a Lipschitz
manifold.

Assumption 1. The domains Ω,Ωi, i = 1, 2, are bounded and Lipschitz. Furthermore
the sets Γ, ∂Ωi, i = 1, 2, are (d− 1)-dimensional Lipschitz manifolds.

3



(a) (b)

(c) (d)

Figure 2.1: Examples of decompositions of Ω: (a) two subdomains with two intersec-
tion points; (b) two subdomains without intersection points; (c) multiple subdomains
without crosspoints; (d) multiple subdomains with crosspoints.

For some equations we need a further assumption, which is related to whether the
equation is naturally coercive only in seminorm or in the full norm. In the former
case, we must apply Poincaré’s inequality, which requires the following assumption.

Assumption 2. The sets ∂Ω \ ∂Ωi, i = 1, 2, are (non-empty) (d − 1)-dimensional
Lipschitz manifolds.

Note that this excludes decompositions of the form Figure 2.1b, since in this case,
∂Ω \ ∂Ω1 is not d− 1-dimensional.

Assumption 1 implies that we can define the integrals over Γ, ∂Ωi, ∂Ω \ Γ, and
∂Ω \ ∂Ωi respectively, and thus also the corresponding Lp spaces, see [58]. See
also [38] for a comprehensive overview of integrals and functions spaces on Lipschitz
boundaries.

Remark 1. Note the abuse of notation ∂Ωi \ Γ, which is not necessarily an open subset
of ∂Ωi, for example in Figure 2.1a. Therefore when writing ∂Ωi \ Γ we always mean the
interior of this set in ∂Ωi.
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2.2 Function spaces

All analysis is performed in Banach and Hilbert spaces. For a proper introduction we
refer to [41]. For a real Banach space X we will denote the dual of X by X∗ and
the dual pairing by 〈·, ·〉X∗×X or by 〈·, ·〉 if the spaces are obvious from the context.
Moreover, for two Banach spaces X and Y we define the intersection space X ∩ Y
with the natural norm

‖x‖2X∩Y = ‖x‖2X + ‖x‖2Y ,

which induces a Banach space structure onX ∩ Y . We introduce the parameter 1 <
p < ∞, which depends on the context. In particular for the linear cases in Chapters 3,
6 and 7 we are only interested in p = 2. We define the Banach spaces

V = W 1,p
0 (Ω), V 0

i = W 1,p
0 (Ωi), and

Vi = {v ∈ W 1,p(Ωi) : (T∂Ωi
v)|∂Ωi\Γ = 0},

whereW 1,p andW 1,p
0 denotes the standard Sobolev spaces, see [38, Chapter 5]. More-

over we introduce the Lions–Magenes space

Λ = {µ ∈ Lp(Γ) : Eiµ ∈ W 1−1/p,p(∂Ωi)}, with
‖µ‖Λ = ‖Eiµ‖W 1−1/p,p(∂Ωi)

.

Here, Ei : L
p(Γ) → Lp(∂Ωi) denotes the extension by 0 and T∂Ωi

: W 1,p(Ωi) →
W 1−1/p,p(∂Ωi) denotes the trace operator with the bounded linear right inverse
R∂Ωi

, see [38, Theorems 6.8.13 and 6.9.2]. Note that R∂Ωi
is not unique, i.e., there

exists many linear extensions fromW 1−1/p,p(∂Ωi) toW 1,p(Ωi). For a proper defini-
tion of the fractional Sobolev spaceW 1−1/p,p(∂Ωi) and its properties we refer to [38,
Chapter 6.8]. For our purposes it is important to note that this is a reflexive Banach
space and a Hilbert space for p = 2.

Remark 2. The Lions–Magenes space satisfiesΛ ⊂ W 1−1/p,p(Γ). At least for p = 2, the
inclusion is strict and the norm of Λ is stronger than the norm of W 1−1/p,p(Γ), see [60,
Chapter 1.2].

Remark 3. Note that it is not obvious from the definition that Λ is independent of i =
1, 2. For p = 2 we can use [68, Lemma A.8] to identify Λ with the interpolation space
[H

1/2
0 (Γ), L2(Γ)]1/2. Note that this reference is without proof, but there is a proof for the

case of a smooth domain, see [45, Theorem 11.7]. We conjecture that a similar identification
can be made for any 1 < p < ∞ and for the remainder of the thesis we will assume that
Λ is independent of i = 1, 2 for p 6= 2 as well. This is done for the sake of presentation,
but it is not a necessary assumption for any of the convergence results stated here, see Paper I
for the analysis with i-dependent Λ.
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The standard seminorm and norm on V is denoted by

|v|V = ‖∇v‖Lp(Ω)d , ‖v‖V = ‖v‖Lp(Ω) + |v|V ,

respectively, and similarly for Vi. It follows from the above definitions that the inter-
face trace operator

Ti : Vi → Λ : v 7→ (T∂Ωi
v)|Γ

is bounded with the bounded linear right inverse Ri = R∂Ωi
Ei.

To analyze parabolic equations, we require Sobolev–Bochner spaces, see [37, Chapter
2.5.d]. We note that these are equivalent to Hilbert tensor spaces and refer to [69,
Chapter 3.4] for a general introduction. Since we are only interested in linear equa-
tions, we restrict ourselves to the case p = 2 and define the Sobolev–Bochner spaces

W = H1/2
(
R, L2(Ω)

)
∩ L2

(
R, V

)
,

W 0
i = H1/2

(
R, L2(Ωi)

)
∩ L2

(
R, V 0

i

)
,

Wi = H1/2
(
R, L2(Ωi)

)
∩ L2

(
R, Vi

)
,

Z = H1/4
(
R, L2(Γ)

)
∩ L2

(
R,Λ

)
.

The trace operator has an extension to the Sobolev–Bochner space of the form

T∂Ωi
: H1/2

(
R, L2(Ωi)

)
∩ L2

(
R,H1(Ωi)

)
→

H1/4
(
R, L2(∂Ωi)

)
∩ L2

(
R,H1/2(∂Ωi)

)
,

which we refer to as the spatial trace operator. We also formally introduce the temporal
Hilbert transform as

Hv(t) = lim
ϵ→0+

1

π

∫
|s|≥ϵ

1

s
v(t− s)ds

and note that it extends to an isomorphism on the Sobolev–Bochner spaces in the
following ways

Hi : Wi → Wi and HΓ : Z → Z.

Moreover, the spatial interface trace operator of the form

Ti : Wi → Z

is bounded, see Paper II for more details.

Remark 4. The loss of time regularity when applying the spatial trace operator is somewhat
surprising. Note that the trace operator is also bounded as an operator

T∂Ωi
: L2

(
R,H1(Ωi)

)
→ L2

(
R,H1/2(∂Ωi)

)
,

but it is not well defined on the space H1/2
(
R, L2(Ωi)

)
alone.

Finally, we will denote by c, ci, C and Ci generic positive constants.
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Chapter 3

Domain decomposition for linear
elliptic equations

3.1 Introduction to the analysis of domain decompositionmeth-
ods

For an introduction to linear elliptic equations see [20, 32, 45]. For a general in-
troduction to domain decomposition methods for linear elliptic equations we refer
to [60, 68]. See also [17] for a more implementation oriented introduction and the re-
view article [70] for an introduction to the theory of nonoverlapping domain decom-
position methods. The first domain decomposition method was introduced in [62]
to prove existence of solutions to the Poisson problem for nonrectangular and non-
circular domains. This became known as the alternating Schwarz method and was
later proposed as a numerical method in [57]. It was analyzed and generalized in the
context of numerical methods in [47, 48, 49]. Since then, a large amount of different
methods have been introduced and analyzed, see [60, 68] for examples.

Domain decomposition methods are typically divided into overlapping and nonover-
lapping methods. The overlapping methods, which are based on overlapping de-
compositions, transfer information on the interior of one domain to the boundary
of another. In contrast, nonoverlapping methods use an information transfer that
only considers the boundary information, thus requiring minimal knowledge of the
transmitting domain. In this thesis, we only consider nonoverlapping methods, also
known as iterative substructuring methods. Furthermore, we limit ourselves to three
basic methods which are often used as building blocks for more complex methods:
TheDirichlet–Neumannmethod, the Neumann–Neumannmethod, and the Robin–

7



Robin method. The remainder of this chapter is heavily inspired by [60].

We first explain the idea of the analysis in more detail, but formally, using the strong
formulations. To keep the notation simple we only consider the Poisson equation
with homogeneous Dirichlet boundary conditions. The strong formulation of the
Poisson problem is {

−∆u = f in Ω,

u = 0 on ∂Ω.
(3.1)

Given a decomposition Ω1,Ω2 of Ω, the problem can then be rewritten as a trans-
mission problem

−∆ui = fi in Ωi,

ui = 0 on ∂Ωi \ Γ, for i = 1, 2,

u1 = u2 on Γ,

∇u1 · ν1 = −∇u2 · ν2 on Γ,

(3.2)

where fi = f |Ωi
and νi is the unit outward normal vector of Ωi. Note, in particular,

that ν1 = −ν2 on Γ. The last two equations here are referred to as the first and
second transmission condition, respectively. For some function η on the interface Γ
we denote the solution to the nonhomogeneous boundary value problem

−∆ui = fi in Ωi,

ui = 0 on ∂Ωi \ Γ,
ui = η on Γ,

(3.3)

by ui = Fiη + Gifi for i = 1, 2. Here Fiη and Gifi are the solutions to (3.3)
with fi = 0 and η = 0, respectively. With this notation we can rewrite the entire
transmission problem as a problem only on the interface Γ, i.e.,

∇(F1η +G1f1) · ν1 = −∇(F2η +G2f2) · ν2 on Γ.

This is known as the Steklov–Poincaré equation and the operator

Si : η 7→ ∇Fiη · νi

is called the Steklov–Poincaré operator or the Dirichlet-to-Neumann operator. Sim-
ilarly, we introduce the notation

χi = −∇Gifi · νi.

Finally, introducing S = S1 + S2 and χ = χ1 + χ2, the Steklov–Poincaré equation
can be written as

Sη = χ on Γ. (3.4)

8



Ω Ωi Γ

DE ⇐⇒ TP ⇐⇒ SP
approx. ↓ ↓ approx.

DD ⇐⇒ II

Figure 3.1: The basic idea for the analysis of a nonoverlapping domain decomposition
method. The graph shows the connection between the differential equation (DE),
the transmission problem (TP), the Steklov–Poincaré equation (SP), the domain de-
composition method (DD), and the interface iteration (II).

The basic idea is summarized in the first row in Figure 3.1: We reduce the differential
equation to a problem on the interface Γ by showing equivalence of the differential
equation, the transmission problem, and the Steklov–Poincaré equation.

The aim is now to approximate the solution to the transmission problem using a do-
main decomposition method. TheDirichlet–Neumannmethod is one of the simplest
domain decomposition method for nonoverlapping decompositions and has been
studied extensively for linear elliptic equations [7, 9, 22, 54, 55]. The idea is to approx-
imate (u1, u2), the solution to the transmission problem (3.2), by iterating between
a Dirichlet problem and a Neumann problem. The method is to find (un1 , u

n
2 ) for

n = 1, 2, . . . , such that

−∆un+1
1 = f1 in Ω1,

un+1
1 = 0 on ∂Ω1 \ Γ,

un+1
1 = ηn on Γ,

−∆un+1
2 = f2 in Ω2,

un+1
2 = 0 on ∂Ω2 \ Γ,

∇un+1
2 · ν2 = ∇un+1

1 · ν2 on Γ,

(3.5)

with ηn+1 = s0 u
n+1
2

∣∣
Γ
+ (1− s0)η

n. Here s0 > 0 is a method parameter and η0

an initial guess.

A similar method is the the Neumann–Neumann method, which was first introduced
and analyzed in [8]. It consists of finding (un1 , un2 , wn

1 , w
n
2 ) for n = 1, 2, . . ., such

9



that 

−∆un+1
i = fi in Ωi,

un+1
i = 0 on ∂Ωi \ Γ,

un+1
i = ηn on Γ, for i = 1, 2,

−∆wn+1
i = 0 in Ωi,

wn+1
i = 0 on ∂Ωi \ Γ,

∇wn+1
i · ν1 = ∇un+1

1 · ν1 −∇un+1
2 · ν1 on Γ, for i = 1, 2,

(3.6)

with ηn+1 = ηn − (s1 w
n+1
1

∣∣
Γ
− s2 w

n+1
2

∣∣
Γ
). Here s1, s2 > 0 are method param-

eters and η0 an initial guess.

Finally, we have the Robin–Robin method, which was first introduced in [49]. The
method is to find (un1 , u

n
2 ), for n = 1, 2, . . . , such that

−∆un+1
1 = f1 in Ω1,

un+1
1 = 0 on ∂Ω1 \ Γ,

∇un+1
1 · ν1 + sun+1

1 = ∇un2 · ν1 + sun2 on Γ,

−∆un+1
2 = f2 in Ω2,

un+1
2 = 0 on ∂Ω2 \ Γ,

∇un+1
2 · ν2 + sun+1

2 = ∇un+1
1 · ν2 + sun+1

1 on Γ.

(3.7)

Here s > 0 is a method parameter and u02 an initial guess. Various modifications,
accelerations and generalizations of the Robin–Robin method have been studied in,
e.g., [5, 10, 33]. Note, in particular, that the Robin–Robin method is the zeroth order
optimized Schwarz method [23, 26]. See also [52, 53, 72] for a modified optimized
Schwarz method on arbitrary domains. Although not discussed further here, the
Robin–Robin method has independently been introduced to solve the Helmholtz
equation [14, 29].

Analogous to the equivalence between the transmission problem and the Steklov–
Poincaré equation, the Dirichlet–Neumann and Neumann–Neumann methods are
equivalent to the interface iterations

ηn+1 = ηn + s0S
−1
2 (χ− Sηn)

and
ηn+1 = ηn + (s1S

−1
1 + s2S

−1
2 )(χ− Sηn),

respectively. These iterations, in turn, approximate the solution to the Steklov–Poincaré
equation (3.4). This idea is summarized in Figure 3.1. The Robin–Robin method can
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also be interpreted as an interface iteration, but this is nonstandard for the linear
elliptic theory and we therefore introduce it in Chapter 4.

3.2 Steklov–Poincaré theory for the Poisson equation

Themain ingredient for the analysis of nonoverlapping domain decomposition meth-
ods for linear elliptic equations is the corresponding Steklov–Poincaré theory. Here
we present the core ideas of the analysis applied to the Poisson equation, which can
be found in [60, Chapter 4]. Note that the theory applies more generally to equa-
tions with symmetric elliptic operators and, with some conditions on the size of the
skew-symmetric part, to equations with non-symmetric linear elliptic operators [60,
Chapter 5.1]. The key idea is to consider the weak formulations of (3.1), (3.2) and (3.4)
and show that these are equivalent. Then we derive the fundamental properties of
the Steklov–Poincaré operators, which are required to study domain decomposition
methods.

For the remainder of this chapter we consider the spaces from Section 2.2 with p = 2,
in which case we have the Hilbert spaces

V = H1
0 (Ω), V 0

i = H1
0 (Ωi), Vi = {v ∈ H1(Ωi) : (T∂Ωi

v)|∂Ωi\Γ = 0},

and Λ = {µ ∈ L2(Γ) : Eiµ ∈ H1/2(∂Ωi)}.

Let a : V × V → R and ai : Vi × Vi → R be the bilinear forms given by

a(u, v) =

∫
Ω
∇u · ∇v dx and ai(u, v) =

∫
Ωi

∇u · ∇v dx,

respectively. It is easy to verify the bounds

a(u, v) ≤ C‖u‖V ‖v‖V for all u, v ∈ V and

a(u, u) ≥ c‖u‖2V for all u ∈ V,

with similar estimates for ai, i = 1, 2. Note that the second estimate, known as the
coercivity estimate, requires an application of Poincaré’s inequality, which holds for
any decomposition such that Assumption 2 is satisfied. Note also that this assumption
is redundant if one replaces the Laplace operator∆ by∆+λI for some λ > 0, since
then the bilinear forms can be proven to be coercive without having to apply Poincaré’s
inequality.

We assume that the source term f ∈ L2(Ω), which implies that the decomposed
sources fi = f |Ωi

satisfy fi ∈ L2(Ωi). Now we can introduce the weak formulation
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of the Poisson problem (3.1), which is to find u ∈ V such that

a(u, v) = (f, v)L2(Ω) for all v ∈ V. (3.8)

The bounds above imply that the weak problem (3.8) is uniquely solvable by the Lax–
Milgram lemma [41, Chapter 6, Theorem 6].

Recall the operator Ri : Λ → Vi, defined in Section 2.2. The weak formulation of
the transmission problem (3.2) is to find (u1, u2) ∈ V1 × V2 such that

ai(ui, vi) = (fi, vi)L2(Ωi) for all vi ∈ V 0
i , i = 1, 2,

T1u1 = T2u2,∑2
i=1 ai(ui, Riµ)− (fi, Riµ)L2(Ωi) = 0 for all µ ∈ Λ.

(3.9)

The first two equations are straightforward to derive from the strong formulation of
the transmission problem (3.2). The third equation can be derived by multiplying the
second transmission condition with µ ∈ Λ, integrating, and applying Green’s formula
as follows

0 =
2∑

i=1

∫
∂Ωi

∇ui · νi µ dS =

2∑
i=1

a(ui, Riµ) +

∫
Ωi

∆uiRiµ dx

=
2∑

i=1

a(ui, Riµ)− (fi, Riµ)L2(Ωi).

The weak problem (3.8) and the weak transmission problem are equivalent, see [60,
Lemma 1.2.1]. As in Section 3.1, let Fi : Λ → Vi denote the harmonic extension
operator, i.e., mapping η to ui = Fiη solving{

ai(ui, v) = 0 for all v ∈ V 0
i ,

Tiui = η

and Gi : (V
0
i )

∗ → V 0
i be the operator mapping fi to ui = Gifi solving

ai(ui, v) = (fi, v)L2(Ωi) for all v ∈ V 0
i . (3.10)

Note that TiFiη = η and therefore Fi is another right inverse to Ti. Moreover, Fi

andGi are bounded operators. With these operators, the weak forms of the Steklov–
Poincaré operators Si : Λ → Λ∗ and the functionals χi ∈ Λ∗ can be defined as

〈Siη, µ〉 = ai(Fiη,Riµ) and 〈χi, µ〉 = (fi, Riµ)L2(Ωi) − ai(Gifi, Riµ),
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respectively. Introducing also S = S1 + S2 and χ = χ1 + χ2 we have the weak
Steklov–Poincaré equation, which is to find η ∈ Λ such that Sη = χ, or equivalently,

2∑
i=1

〈Siη, µ〉 =
2∑

i=1

〈χi, µ〉 for all µ ∈ Λ. (3.11)

The weak Steklov–Poincaré equation is equivalent to the weak transmission problem,
see [60, Remark 1.2.2].

Remark 5. Some authors define the Steklov–Poincaré operators as

〈Siη, µ〉 = ai(Fiη, Fiµ).

We note that this definition is equivalent since Ti(Fiµ−Riµ) = 0 implies that Fiµ−
Riµ ∈ V 0

i . By definition of Fi this gives that

ai(Fiη, Fiµ) = ai(Fiη, Fiµ−Riµ) + ai(Fiη,Riµ) = ai(Fiη,Riµ).

This also applies to the weak formulation of the transmission problem, which means that
we can replace Ri by Fi in (3.9).

For the Poisson equation, we have the following properties of the Steklov–Poincaré
operators.

Theorem 1. Suppose that Assumptions 1 and 2 hold. The Steklov–Poincaré operators
Si, S : Λ → Λ∗ are well defined and bounded, i.e.,

〈Siη, µ〉 ≤ C‖η‖Λ‖µ‖Λ, 〈Sη, µ〉 ≤ C‖η‖Λ‖µ‖Λ for all η, µ ∈ Λ, i = 1, 2.

Moreover, they are coercive, i.e.,

〈Siη, η〉 ≥ c‖η‖2Λ, 〈Sη, η〉 ≥ c‖η‖2Λ for all η ∈ Λ, i = 1, 2.

Finally, they are symmetric, i.e.,

〈Siη, µ〉 = 〈Siµ, η〉, 〈Sη, µ〉 = 〈Sµ, η〉 for all η, µ ∈ Λ, i = 1, 2.

For a proof of Theorem 1, see [60, Chapter 1.2]. Note that Theorem 1 together with
the Lax–Milgram lemma implies that the Steklov–Poincaré equation (3.11) is uniquely
solvable, although this can also be seen as a consequence of the equivalence to the weak
problem (3.8).
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3.3 Convergence of the Dirichlet–Neumann and
Neumann–Neumann methods

The goal of this section is to show that the Dirichlet–Neumann and Neumann–
Neumann methods converge. For reference, we introduce the weak formulations of
the Dirichlet–Neumann and Neumann–Neumann methods. The weak form of the
Dirichlet–Neumann method is to find (un1 , u

n
2 ) ∈ V1 × V2 for n = 1, 2, . . . , such

that

a1(u
n+1
1 , v1) = (f1, v1)L2(Ω1) for all v1 ∈ V 0

1 ,

T1u
n+1
1 = ηn,

a2(u
n+1
2 , v2) = (f2, v2)L2(Ω2) for all v2 ∈ V 0

2 ,

a2(u
n+1
2 , R2µ)− (f2, R2µ)L2(Ω2) + a1(u

n+1
1 , R1µ)

− (f1, R1µ)L2(Ω1) = 0 for all µ ∈ Λ,

(3.12)

with ηn+1 = s0T2u
n+1
2 + (1 − s0)η

n. Similarly the weak form of the Neumann–
Neumannmethod is to find (un1 , un2 , wn

1 , w
n
2 ) ∈ V1×V2×V1×V2 for n = 1, 2, . . . ,

such that

ai(u
n+1
i , vi) = (fi, vi)L2(Ωi) for all vi ∈ V 0

i ,

Tiu
n+1
i = ηn for i = 1, 2,

a1(w
n+1
1 , v1) = 0 for all v1 ∈ V 0

1 ,

a1(w
n+1
1 , R1µ) = a1(u

n+1
1 , R1µ)− (f1, R1µ)L2(Ω1)

+ a2(u
n+1
2 , R2µ)− (f2, R2µ)L2(Ω2) for all µ ∈ Λ

a2(w
n+1
2 , v2) = 0 for all v2 ∈ V 0

2 ,

a2(w
n+1
2 , R2µ) = −a1(u

n+1
1 , R1µ)

+ (f1, R1µ)L2(Ω1)

− a2(u
n+1
2 , R2µ) + (f2, R2µ)L2(Ω2) for all µ ∈ Λ,

(3.13)

with ηn+1 = ηn − (s1T1w
n+1
1 − s2T2w

n+1
2 ). It can be shown that the weak form

of the Dirichlet–Neumann method is equivalent to the interface iteration given by
finding ηn ∈ Λ, for n = 1, 2, . . . , such that

〈S2η
n+1, µ〉 = 〈S2η

n, µ〉+ s0〈−Sηn + χ, µ〉 for all µ ∈ Λ. (3.14)
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Similarly, the weak form of the Neumann–Neumann method is equivalent to the
iteration given by finding (λn

1 , λ
n
2 , η

n) ∈ Λ× Λ× Λ, for n = 1, 2, . . . , such that{
〈Siλ

n+1
i , µ〉 = 〈−Sηn + χ, µ〉 for all µ ∈ Λ, i = 1, 2,

ηn+1 = ηn + s1λ
n+1
1 + s2λ

n+1
2 ,

(3.15)

see [60, Chapter 1.3]. It follows immediately from Theorem 1 and the Lax–Milgram
lemma that both of these iterations are well defined, i.e., that each step in the iteration
is uniquely solvable. Moreover, we have the following geometric convergence result
for the Dirichlet–Neumannmethod, which is a consequence of the abstract result [60,
Theorem 4.2.2] together with the properties in Theorem 1. We include a proof for
comparison with the techniques used in Section 3.4, Paper I and Paper II.

Theorem2. Suppose that Assumptions 1 and 2 hold. Letuni be the iterates of the Dirichlet–
Neumann method (3.12) with initial guess η0 ∈ Λ and some parameter s0 > 0 small
enough. Moreover, let (u1, u2) denote the solution to (3.9) and η the solution to (3.11).
Then there exists constants L < 1 and C > 0 such that

‖uni − ui‖Vi ≤ CLn‖η0 − η‖Λ, i = 1, 2.

Proof. We can write the error iteration on Λ as

ηn+1 − η = ηn − η + s0S
−1
2 (χ− Sηn)

= ηn − η + s0S
−1
2

(
χ− Sη − S(ηn − η)

)
= ηn − η − s0S

−1
2 S(ηn − η).

By Theorem 1 we have that

(µ, λ)S2 = 〈S2µ, λ〉

defines an inner product, which induces a norm ‖ · ‖S2 that is equivalent to ‖ · ‖Λ.
The properties of Theorem 1 now yield

‖ηn+1 − η‖2S2
= 〈S2(η

n+1 − η), ηn+1 − η〉
=

〈
S2

(
ηn − η − s0S

−1
2 S(ηn − η)

)
, ηn − η − s0S

−1
2 S(ηn − η)

〉
=

〈
S2(η

n − η), ηn − η
〉
+ s20

〈
S(ηn − η), S−1

2 S(ηn − η)
〉

− s0
(
〈S(ηn − η), ηn − η〉+ 〈S2(η

n − η), S−1
2 S(ηn − η)〉

)
= 〈S2(η

n − η), ηn − η〉+ s20〈S(ηn − η), S−1
2 S(ηn − η)〉

− 2s0〈S(ηn − η), ηn − η〉
≤ (1 + Cs20 − cs0)‖ηn − η‖2S2

.
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If s0 > 0 is small enough then 1 + Cs20 − cs0 < 1. By using the norm equivalence
again we have the convergence

‖ηn − η‖Λ ≤ CLn‖η0 − η‖Λ.

with L = 1 + Cs20 − cs0. The result for i = 1 now follows from the fact that

‖un+1
1 − u1‖V1 = ‖(F1η

n +G1f1)− (F1η +G1f1)‖V1 = ‖F1(η
n − η)‖V1

≤ C‖ηn − η‖Λ ≤ CLn‖η0 − η‖Λ.

A similar computation together with the observation

un+1
2 =

1

s0

(
F2η

n+1 − (1− s0)F2η
n
)

gives the convergence result for i = 2.

Remark 6. For convenience the convergence result of the Dirichlet–Neumann method, as
well as all other methods in this thesis, is stated in the norms of Vi, i = 1, 2. This can
be reformulated as convergence in the norm of V1 × V2. This norm is in general weaker
than the norm of V , but is equivalent for functions v ∈ V . If we introduce the element
vn = (F1η

n, F2η
n) ∈ V , we have convergence of vn in the norm of V . Note however,

that the function F2η
n is not present as an iterate in the Dirichlet–Neumann method.

The constant L can be completely characterized by the boundedness and coercivity
constants inTheorem 1, see [60, Remark 4.2.3]. In fact, we have thatTheorem 2 holds
with

L = 1 + s20
(c1 + c2)

2

C2
2

− 2s0
C1 + C2

c2
,

whereCi, ci denote the boundedness and coercivity constants of Si, respectively. The
proof also holds for some elliptic equations with non-symmetric operators, if the non-
symmetric part is small enough, see [60, Chapter 5.1]. Moreover, a similar proof shows
that the same result holds for the Neumann–Neumann method, see [60, Theorem
4.2.5].

Theorem 3. Suppose that Assumptions 1 and 2 hold. Letuni be the iterates of the Neumann–
Neumann method (3.13) with initial guess η0 ∈ Λ and some parameters s1, s2 > 0 small
enough. Moreover, let (u1, u2) denote the solution to (3.9) and η the solution to (3.11).
Then there exists constants L < 1 and C > 0 such that

‖uni − ui‖Vi ≤ CLn‖η0 − η‖Λ, i = 1, 2.
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3.4 Convergence of the Robin–Robin method

The Robin–Robin method was first introduced and analyzed in [49] with a conver-
gence proof showing weak convergence. Furthermore, the method has been shown to
converge (strongly) in V1×V2 as well [60], although this proof is missing a regularity
requirement which is not obvious for Lipschitz domains. Geometric convergence rate
has since been derived in various contexts for the discretized version in [51, 71]. We
then get a geometric convergence rate with an error reduction constant of the form
L = 1−O(

√
h) where h denotes the mesh width, showing that the convergence rate

deteriorates to one as h tends to zero. In the continuous case, geometric convergence
rate is typically not achieved, note that [71] even gives a counterexample showing that
geometric convergence is impossible for the continuous Robin–Robin method.

However, there are several advantages of the Robin–Robinmethod over the Dirichlet–
Neumann and Neumann–Neumann methods. First, it will converge regardless of the
choice of parameter. Second, the method can be implemented without calculating
a derivative, see [17, Chapter 2.3.1]. Third, as shown in Paper I and Paper II , it is
possible to prove convergence of the Robin–Robin method without relying on the
symmetry of the differential operator, which is a necessary assumption to prove con-
vergence for both the Dirichlet–Neumann and Neumann–Neumann methods using
the standard analysis presented in Section 3.3.

The analysis of [49] differs from that of the Dirichlet–Neumann and Neumann–
Neumann methods since no Steklov–Poincaré theory is employed. For reference, we
include a result showing strong convergence in V1×V2. This proof closely follows [60,
Chapter 4.5], but it is unclear if this is the original reference. Since the proof does not
use the weak formulation of the Robin–Robin method we leave this for Chapter 4.

Theorem 4. Suppose that Assumptions 1 and 2 hold. Let uni be the iterates of the Robin–
Robin method (3.7) for some s > 0 and let (u1, u2) denote the solution to (3.2). Moreover,
assume that

∇(uni − ui) · νi ∈ L2(Γ) for n = 1, 2, . . . . (3.16)

Then
‖uni − ui‖Vi → 0, i = 1, 2,

as n tends to infinity.

Proof. Note first that by (3.16) we have

〈∇(un+1
i − ui) · νi, un+1

i − ui〉Λ∗×Λ =

∫
Γ
(un+1

i − ui)∇(un+1
i − ui) · νi dS.
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Thus using the H(div,Ωi)-version of Green’s formula [31, Chapter 1, Corollary 2.1]
yields

|un+1
i − ui|2Vi

=

∫
Ωi

|∇(un+1
i − ui)|2 dx = 〈∇(un+1

i − ui) · νi, un+1
i − ui〉Λ∗×Λ

=

∫
Γ
(un+1

i − ui)∇(un+1
i − ui) · νi dS.

We write eni = uni − ui and use the identity

en+1
i ∇en+1

i · νi =
1

4s

(
(∇en+1

i · νi + sen+1
i )2 − (∇en+1

i · νi − sen+1
i )2

)
to get

|en+1
i |2Vi

=
1

4s

∫
Γ
(∇en+1

i · νi + sen+1
i )2 dS − 1

4s

∫
Γ
(∇en+1

i · νi − sen+1
i )2 dS.

From the transmission conditions

∇en+1
2 · ν2 + sen+1

2 = −∇en+1
1 · ν1 + sen+1

1 and

∇en+1
1 · ν1 + sen+1

1 = −∇en2 · ν2 + sen2

on L2(Γ) we have

|en+1
1 |2V1

+ |en+1
2 |2V2

=
1

4s

∫
Γ
(∇en2 · ν2 − sen2 )

2 dS

− 1

4s

∫
Γ
(∇en+1

1 · ν1 − sen+1
1 )2 dS

+
1

4s

∫
Γ
(∇en+1

1 · ν1 − sen+1
1 )2 dS

− 1

4s

∫
Γ
(∇en+1

2 · ν2 − sen+1
2 )2 dS

=
1

4s

∫
Γ
(∇en2 · ν2 − sen2 )

2 dS

− 1

4s

∫
Γ
(∇en+1

2 · ν2 − sen+1
2 )2 dS.

Summing up yields

N∑
n=0

(
|en+1

1 |2V1
+ |en+1

2 |2V2

)
=

1

4s

∫
Γ
(∇e02 · ν2 − se02)

2 dS

− 1

4s

∫
Γ
(∇eN+1

2 · ν2 − seN+1
2 )2 dS,
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which shows that the sum is bounded. Therefore

|en+1
1 |2V1

+ |en+1
2 |2V2

→ 0,

as n tends to infinity.

It is still possible to formulate the Robin–Robin method as an interface iteration and
prove convergence this way, but we leave this for Chapter 4.

3.5 Domain decomposition for discretized linear elliptic equa-
tions

Since our results are based on the variational formulation of the equation we re-
strict ourselves to finite element methods. For the theory of finite element meth-
ods applied to linear elliptic equations we refer to [12, 65]. One can formulate the
Dirichlet–Neumann, Neumann–Neumann, and Robin–Robin methods on finite el-
ement spaces and show that these also converges. For the Dirichlet–Neumann and
Neumann–Neumann methods the convergence results hold with the same constant
L when considering a finite element approximation, see [60, Chapters 4.3-4.4]. For
the Robin–Robin method, see Section 5.1.
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Chapter 4

Domain decomposition for
nonlinear elliptic equations
(Paper I)

In this chapter we study domain decomposition applied to nonlinear elliptic equa-
tions. For the theory of nonlinear elliptic equations that is employed here we refer
to [61, 73]. While the theory of domain decomposition methods for linear elliptic
equations is well understood, the corresponding theory for nonlinear equations is by
no means fully developed. For overlapping domain decomposition methods there are
convergence results, see for example [18, 48, 66, 67], but for nonoverlapping methods
the results are very few. Some such results for a specific equation in one dimension can
be found in [5, 6], but this approach does not fit the equations considered here. The
aim of Paper I is therefore to generalize parts of the theory from Chapter 3 to non-
linear elliptic equations. In particular, we introduce new nonlinear Steklov–Poincaré
operators and prove convergence of the Robin–Robin method for a large class of non-
linear equations. Note that we do not attempt to prove convergence of the Dirichlet–
Neumann and Neumann–Neumann methods, since the theories for both of these
methods require the partial differential operator to be linear and symmetric.

The equations under consideration are of the form{
−∇ · α(∇u) + g(u) = f in Ω,

u = 0 on ∂Ω,
(4.1)

for some functions α : Rd → Rd and g : R → R. As in the linear case we consider
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the transmission problem of (4.1), which is
−∇ · α(∇ui) + g(ui) = fi in Ωi,

ui = 0 on ∂Ωi \ Γ, for i = 1, 2,

u1 = u2 on Γ,

α(∇u1) · ν1 = −α(∇u2) · ν2 on Γ.

(4.2)

Note that the second transmission condition is a nonlinear generalization of the Neu-
mann condition from (3.2). It is the natural condition in the sense that it appears
when deriving the weak formulation from the strong formulation. The transmission
problem can then be approximated by the nonlinear Robin–Robin method, which is
to find (un1 , u

n
2 ) for n = 1, 2, . . . , such that

−∇ · α(∇un+1
1 ) + g(un+1

1 ) = f1 in Ω1,

un+1
1 = 0 on ∂Ω1 \ Γ,

α(∇un+1
1 ) · ν1 + sun+1

1 = α(∇un2 ) · ν1 + sun2 on Γ,

−∇ · α(∇un+1
2 ) + g(un+1

2 ) = f2 in Ω2,

un+1
2 = 0 on ∂Ω2 \ Γ,

α(∇un+1
2 ) · ν2 + sun+1

2 = α(∇un+1
1 ) · ν2 + sun+1

1 on Γ.

(4.3)

The idea is to mimic the analysis of Chapter 3, but with added complexities. The first
obvious issue is that we need an interface interpretation of the Robin–Robin method.
This turns out to be the Peaceman–Rachford iteration,

ηn+1
2 = (sI + S2)

−1(sI − S1)(sI + S1)
−1(sI − S2)η

n
2 ,

first introduced in [59] to approximate solutions to elliptic and parabolic differential
equations. In the linear case the connection between the Robin–Robin method and
Peaceman–Rachford iteration has been studied in, for example [1, 16], and has been
utilized to prove convergence of the Robin–Robin method applied to a discretized
equation in [51, 71]. The second problem is that the equation, and in extension the
Steklov–Poincaré operators, are nonlinear. This means that it is not possible to ap-
ply the Lax–Milgram lemma. Instead, we will use the nonlinear generalization, the
Browder–Minty theorem, see [73, Theorem 26.A]. After establishing the proper defi-
nitions, which differ slightly from the linear elliptic case, the difficulty lies in proving
the properties required to apply the Browder–Minty theorem. The third issue is that
we are not aware of a variational proof of the convergence of the Peaceman–Rachford
iteration. To remedy this, we will restrict our operators to unbounded operators
on L2(Γ) and then apply the abstract result on the convergence of the Peaceman–
Rachford iteration given in [50].

We first make the following assumptions on the structure of the equation.
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Assumption 3. The functions α : Rd → Rd, g : R → R and the parameters (p, r)
satisfy

• The parameters p and r satisfy p ∈ [2,∞) and r ∈ (1,∞). If p < d then
r ≤ dp/

(
2(d− p)

)
+ 1.

• The functions α and g are continuous and satisfy the growth conditions

|α(z)| ≤ C|z|p−1 and |g(x)| ≤ C|x|r−1 for all z ∈ Rd, x ∈ R.

• The function α is strictly monotone, i.e.,(
α(z)− α(z̃)

)
· (z − z̃) ≥ c|z − z̃|p for all z, z̃ ∈ Rd.

• The function α is coercive, i.e.,

α(z) · z ≥ c|z|p for all z ∈ Rd.

• The function g is strictly monotone and coercive, i.e.,(
g(x)−g(x̃)

)
(x− x̃) ≥ c|x− x̃|r and g(x)x ≥ c|x|r for all x, x̃ ∈ R.

Recall the spacesV, Vi, V
0
i ,Λ defined in Section 2.2. We let p ∈ [2,∞) and introduce

the nonlinear forms a : V × V → R and ai : Vi × Vi → R by

a(u, v) =

∫
Ω
α(∇u) · ∇v + g(u)v dx and

ai(u, v) =

∫
Ωi

α(∇u) · ∇v + g(u)v dx,

respectively. Note that the forms are nonlinear in the first argument, but linear in the
second argument, which is fundamental for the analysis. Consider the weak formu-
lation of (4.1), given by finding u ∈ V such that

a(u, v) = (f, v)L2(Ω) for all v ∈ V. (4.4)

Moreover, as in the linear case, we consider the weak formulation of the transmission
problem, which is to find (u1, u2) ∈ V1 × V2 such that

ai(ui, vi) = (fi, vi)L2(Ωi) for all vi ∈ V 0
i , i = 1, 2,

T1u1 = T2u2,∑2
i=1 ai(ui, Riµ)− (fi, Riµ)L2(Ωi) = 0 for all µ ∈ Λ.

(4.5)
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The weak formulations of the equation (4.4) and the transmission problem (4.5) are
equivalent, see [Paper I, Theorem 5.2]. We also introduce the weak formulation of
the Robin–Robin method, which is to find (un1 , u

n
2 ) ∈ V1 × V2 for n = 1, 2, . . . ,

such that

a1(u
n+1
1 , v1) = (f1, v1)L2(Ω1), for all v1 ∈ V 0

1 ,

a1(u
n+1
1 , R1µ)− (f1, R1µ)L2(Ω1) + a2(u

n
2 , R2µ)

− (f2, R2µ)L2(Ω2) = s(T2u
n
2 − T1u

n+1
1 , µ)L2(Γ), for all µ ∈ Λ,

a2(u
n+1
2 , v2) = (f2, v2)L2(Ω2), for all v2 ∈ V 0

2 ,

a2(u
n+1
2 , R2µ)− (f2, R2µ)L2(Ω2) + a1(u

n+1
1 , R1µ)

− (f1, R1µ)L2(Ω1) = s(T1u
n+1
1 − T2u

n+1
2 , µ)L2(Γ), for all µ ∈ Λ.

(4.6)

We introduce the nonlinear solution operators Fi : Λ → Vi as the solution to{
ai(ui, v) = (fi, v)L2(Ωi) for all v ∈ V 0

i ,

Tiui = η.

Note that Fi is now a nonlinear right inverse to the linear operator Ti. The nonlinear
Steklov–Poincaré operators can then be defined as

〈Siη, µ〉 = ai(Fiη,Riµ)− (fi, Riµ)L2(Ωi) and

〈Sη, µ〉 =
2∑

i=1

(
ai(Fiη,Riµ)− (fi, Riµ)L2(Ωi)

)
.

Note that the definitions differ slightly from the standard definitions of the Steklov–
Poincaré operators in Chapter 3. In particular, we include the influence of fi, both
by the term (fi, Riµ)L2(Ωi) and by using the full extension Fi instead of the solution
operator corresponding to the homogeneous problem. This makes the notation sim-
pler, but introduces nonlinearity to the Steklov–Poincaré operators. However, this is
not an issue since the operators are already nonlinear.

We nowwish to apply the nonlinear generalization of the Lax–Milgram lemma, namely
the Browder–Minty theorem, see [73, Theorem 26.A]. For reference we include the
statement here. We say that an operator A : X → X∗ on a Banach space X is
monotone if

〈Ax−Ay, x− y〉 ≥ 0

for all x, y ∈ X and coercive if

lim
∥x∥X→∞

〈Ax, x〉
‖x‖X

= ∞.
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Finally, the operator A is said to be demicontinuous if

〈Axk −Ax, y〉 → 0

as xk → x in X for all y ∈ X .

Theorem 5. LetX be a reflexive Banach space and letA : X → X∗ be an operator that
is monotone, coercive and demicontinuous. Then for any y ∈ X∗ there exists a unique
solution x ∈ X to the equation

Ax = y.

Demicontinuity is actually a stronger assumption than the standard Browder–Minty
theorem, but it is sufficient for our purposes. It is clear that a coercive and bounded
linear operator A : X → X∗ satisfies the assumptions of Theorem 5 and there-
fore, the Browder–Minty theorem is a generalization of the Lax–Milgram lemma.
We summarize the main results on the Steklov–Poincaré operators from Paper I that
are necessary to apply the Browder–Minty theorem. In fact, we even have a slightly
stronger monotonicity condition.

Theorem 6. Suppose that Assumptions 1 and 3 hold. Then Si, S : Λ → Λ∗ are well
defined and satisfy the monotonicity condition

〈Siη − Siµ, η − µ〉 ≥ ci
(
‖∇(Fiη − Fiµ)‖pLp(Ωi)d

+ ‖Fiη − Fiµ‖rLr(Ωi)

)
,

〈Sη − Sµ, η − µ〉 ≥ c
2∑

i=1

(
‖∇(Fiη − Fiµ)‖pLp(Ωi)d

+ ‖Fiη − Fiµ‖rLr(Ωi)

)
for all η, µ ∈ Λ and i = 1, 2. Moreover, Si, S are coercive and demicontinuous.

For the proof, see [Paper I, Chapter 7].

Using the Steklov–Poincaré operators we can express the Robin–Robin method as the
interface iteration to find ηn ∈ Λ for n = 1, 2, . . . , such that{

〈(sJ + S1)η
n+1
1 , µ〉 = 〈(sJ − S2)η

n
2 , µ〉 for all µ ∈ Λ,

〈(sJ + S2)η
n+1
2 , µ〉 = 〈(sJ − S1)η

n+1
1 , µ〉 for all µ ∈ Λ.

(4.7)

As already observed, this iteration is known as the Peaceman–Rachford iteration.
Here,

J : L2(Γ) → L2(Γ)∗ : η 7→ (η, ·)L2(Γ)

denotes the Riesz isomorphism. A more detailed explanation with a proof can be
found in [Paper I, Lemma 6.3]. As observed before, the remaining issue is that even
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with the properties of Theorem 6 there is no variational convergence proof of the
Peaceman–Rachford iteration. We must therefore restrict the Steklov–Poincaré oper-
ators to unbounded operators on L2(Γ) before we can apply the abstract result [50]
on the convergence of the Peaceman–Rachford iteration. A detailed proof can be
found in [Paper I, Theorem 8.9]. Note that we require the same type of regularity
assumption as in the linear case, see Theorem 4.

Assumption 4. Let u ∈ V denote the solution to (4.4). Then the functionals

µ 7→ ai(u|Ωi
, Riµ), i = 1, 2,

are elements in L2(Γ)∗.

For examples that satisfy both Assumptions 3 and 4, see [Paper I, Example 2.7].

Theorem 7. Suppose that Assumptions 1, 3 and 4 hold. Let uni be the iterates of the
nonlinear Robin–Robin method (4.6) for some s > 0 and let (u1, u2) ∈ V1×V2 denote
the solution to the weak transmission problem (4.4). Then

‖uni − ui‖Vi → 0, i = 1, 2,

as n tends to infinity.
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Chapter 5

Numerical results for nonlinear
elliptic equations

5.1 Discretization of nonlinear elliptic domain decomposition
methods

For convergence of finite element methods for nonlinear equations, see for example [3,
4, 11, 15, 19]. In this section we consider some Galerkin approximation of (4.4). That
is, a finite dimensional subspace Vh ⊂ V and the weak discrete equation to find
uh ∈ Vh such that

a(uh, vh) = 〈f, vh〉 for all vh ∈ Vh. (5.1)

Notice that we do not assume that Vh arises from a finite element approximation,
although the notation suggests it, with h denoting the mesh width. We introduce
the decomposed finite dimensional spaces V 1

h , V
2
h and assume that Vh ⊂ V 1

h × V 2
h .

Furthermore, we assume that there is a common finite dimensional trace space, which
we denote by

Λh = T1(V
1
h ) = T2(V

2
h ).

Note that all of these assumptions hold for a finite element discretization where the
interface is contained in the edges of the mesh, see for example Figure 5.1. Moreover,
let F h

i : Λh → V h
i be the discrete solution operator. Then we can introduce the

discrete Steklov–Poincaré operators Sh
i : Λh → Λ∗

h as

〈Sh
i η

h, µh〉 = ai(F
h
i η

h, Rh
i µ

h)− (fi, R
h
i µ

h)L2(Ωi),
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Figure 5.1: The natural extension uhi = Rh
i µ

h on Ωi of the discrete function µh on
Γ. The function µh is shown in red and the extension uhi in red and blue.

and Sh = Sh
1 + Sh

2 . Here, Rh
i : Λh → V h

i can be taken to be any linear extension
operator, but in an implementation it is convenient to use the extension such that
Rh

i µ
h = 0 on the interior degrees of freedom, see Figure 5.1.

The operators Sh
i have similar properties to the continuous Steklov–Poincaré opera-

tors.

Theorem 8. Suppose that Assumptions 1 and 3 hold. Then the operators Sh
i , S

h : Λh →
Λ∗
h are well defined and satisfy the same monotonicity condition, coercivity condition and

continuity condition as Si, S in Theorem 6.

Although not specified here, the discrete nonlinear Robin–Robin method can be de-
fined by replacing the test and trial spaces in (4.6) with the discrete variants. The same
argument as in Paper I now gives the following convergence result.

Theorem 9. Suppose that Assumptions 1 and 3 hold and that Assumption 4 holds with
u replaced by uh ∈ V h, the solution to the discrete weak equation (5.1). Moreover, let
uhi = uh

∣∣
Ωi

∈ V h
i , i = 1, 2, and uh,ni be the iterates of the discrete nonlinear Robin–

Robin method. Then (uh,n1 , uh,n2 ) converges to (uh1 , u
h
2) in V h

1 × V h
2 , i.e.,

‖uh,ni − uhi ‖Vi → 0, i = 1, 2,

as n tends to infinity.

Remark 7. It is evident that if one chooses a piecewise linear finite element discretiza-
tion and the function g in (4.1) is continuous, then the generalized normal derivative is
piecewise continuous and therefore Assumption 4 is satisfied.
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Figure 5.2: Domain decomposition applied to a uniform spatial finite element grid.

5.2 Numerical results

In order to illustrate the convergence results of Chapter 4 and Section 5.1, we test the
Robin–Robin method applied to the problem{

−∇ · (|∇u|p−2∇u) + u = f in Ω,

u = 0 on ∂Ω,
(5.2)

where f is chosen such that

u(x, y) = (x− x2)(y − y2)

solves (5.2). We use the domain Ω = (0, 1)2 and the decomposition

Ω1 = (0, 1/2)× (0, 1), Ω2 = (1/2, 1)× (0, 1), and Γ = {1/2} × (0, 1).

We discretize using piecewise linear finite elements using a uniform mesh of the form
in Figure 5.2, with mesh size hx = hy = 1/512. We use three different values of p =
2, 3, 6 with the parameters s = 4.84, 1.12, 0.006, respectively. The parameters have
been chosen by trial and error to achieve near optimal convergence rates. In Figure 5.3
we plot the first two iterations of the Robin–Robin method for p = 3. We also plot
the relative error

erel =
‖un1 − u‖W 1,p(Ω1) + ‖un2 − u‖W 1,p(Ω2)

‖u‖W 1,p(Ω1) + ‖u‖W 1,p(Ω2)
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at each iteration in Figure 5.4. In Figure 5.4a we plot the relative error with u being the
solution to the discrete problem (5.1) and in Figure 5.4b we plot the relative error with
u being the exact solution interpolated to a finer mesh with hx = hy = 1/2048. For
reference we also plot three horizontal lines corresponding to the errors of the finite
element solutions on the whole of Ω.

From Figure 5.4a we see that the discrete Robin–Robin method seems to converge to
the solution to (5.1). From Figure 5.4b we see that after a certain amount of iterations
the error is dominated by the error of the spatial discretization and therefore we do
not see any error reduction after that point. Moreover, we find from both Figures 5.4a
and 5.4b that the speed of convergence degrades as the nonlinearity becomes stronger,
i.e., as the parameter p increases.
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(a)

(b)

Figure 5.3: The first (a) and second (b) iterations of the nonlinear Robin–Robin
method with p = 3.

31



10 20 30 40
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e 

er
ro

r
p=2
p=3
p=6

(a)

5 10 15 20
Iterations

10 2

10 1

Re
la

tiv
e 

er
ro

r

p=2
p=3
p=6

(b)

Figure 5.4: The relative errors of the nonlinear Robin–Robin method compared to:
(a) the finite element solution; (b) the exact solution. The dotted lines in (b) indicates
the spatial discretization errors.

32



Chapter 6

Domain decomposition for linear
parabolic equations (Paper II)

Domain decomposition methods have a long history of being applied to parabolic
equation. These space-time decomposition methods have been studied both in the
context of parallel time integrators, see [24, Chapter 3] for an overview, and for
domains with different material properties in the different subdomains, see [2, 35].
However, there has hardly been any general convergence results. Instead, the stan-
dard proofs rely on the Fourier transform, but this method has only been applied
in rectangular domains [25, 27, 28, 30, 43, 44]. One exception is [34], which uses a
method-specific analysis similar to [49], see also Section 3.4. Notice that if an im-
plicit Euler time-stepping scheme is used for the parabolic equation then one attains
an elliptic equation at each time-step and the convergence results of Chapter 3 apply.
However, this only gives pointwise convergence in time. The aim of this chapter,
which is a summary of Paper II is therefore to provide a Steklov–Poincaré theory for
the heat equation and prove convergence of the Robin–Robin method in this context.

Remark 8. The space-time decomposition methods are related to the waveform relaxation
methods originating in circuit simulations, see [24, 42]. These are methods to solve ordi-
nary differential equations, but when applied to a spatially discretized partial differential
equation they can be interpreted as space-time decomposition methods. Note that many
authors still use the term waveform relaxation synonymously to space-time decomposition.

We consider a decomposition of the spatial domain Ω as in Section 2.1. This induces
a space-time decomposition of the form

Ω× R = (Ω1 × R) ∪ (Ω2 × R).
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(a)

(b)

Figure 6.1: Examples of space-time decompositions of Ω × R with: (a) two subdo-
mains; (b) multiple subdomains without crosspoints.

In Figure 6.1 we see two examples of such space-time decompositions. For notational
purposes, we focus on decompositions of the form in Figure 6.1a, but as for the elliptic
case, the analysis applies to decompositions of the form in Figure 6.1b as well, com-
pare with Section 2.1. In the same way as for elliptic equations, this enables parallel
implementations of the space-time domain decomposition methods.

For a general introduction to analysis of parabolic equations, see [20, 40]. In this
thesis we consider variational space-time methods for parabolic equations, see [46]
for an overview. The theory developed in [13] is also applied heavily in Paper II.

We restrict our analysis to the heat equation with homogeneous Dirichlet boundary
conditions {

(∂t −∆)u = f in Ω× R,
u = 0 on ∂Ω× R.

(6.1)

Note that we consider the equation on the entire space-time cylinderΩ×R. However,
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if one chooses a source term f that is zero for times t < 0, then this corresponds to a
homogeneous initial condition at t = 0. As for elliptic equations we can rewrite this
as a transmission problem

(∂t −∆)ui = fi in Ωi × R for i = 1, 2,

ui = 0 on (∂Ωi \ Γ)× R for i = 1, 2,

u1 = u2 on Γ× R,
∇u1 · ν1 = −∇u2 · ν2 on Γ× R,

(6.2)

and use this as a basis for constructing domain decomposition methods. In order to
approximate the solution to (6.2) we consider the same three domain decomposition
methods as for the elliptic equations in Chapter 3. Since the space-time methods
differ in the equation being solved they are described here. The space-time Dirichlet–
Neumann method is to find (un1 , u

n
2 ) for n = 1, 2, . . . , such that

(∂t −∆)un+1
1 = f1 in Ω1 × R,

un+1
1 = 0 on (∂Ω1 \ Γ)× R,

un+1
1 = ηn on Γ× R,

(∂t −∆)un+1
2 = f2 in Ω2 × R,

un+1
2 = 0 on (∂Ω2 \ Γ)× R,

∇un+1
2 · ν2 = −∇un+1

1 · ν1 on Γ× R,

(6.3)

with ηn+1 = s0 u
n+1
2

∣∣
Γ×R + (1− s0)η

n. Here s0 > 0 is a method parameter and
η0 an initial guess. Similarly, the space-time Neumann–Neumann method is to find
(un1 , u

n
2 , w

n
1 , w

n
2 ) for n = 1, 2, . . ., such that

(∂t −∆)un+1
i = fi in Ωi × R,

un+1
i = 0 on (∂Ωi \ Γ)× R,

un+1
i = ηn on Γ× R, for i = 1, 2,

(∂t −∆)wn+1
i = fi in Ωi × R,

wn+1
i = 0 on (∂Ωi \ Γ)× R,

∇wn+1
i · ν1 = ∇un+1

1 · ν1 −∇un+1
2 · ν1 on Γ× R,

(6.4)

with ηn+1 = ηn − (s1 w
n+1
1

∣∣
Γ×R − s2 w

n+1
2

∣∣
Γ×R). Here s1, s2 > 0 are method

parameters and η0 an initial guess. Finally we have the space-time Robin–Robin
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method, which is to find (un1 , u
n
2 ) for n = 1, 2, . . . , such that such that

(∂t −∆)un+1
1 = f1 in Ω1 × R,

un+1
1 = 0 on (∂Ω1 \ Γ)× R,

∇un+1
1 · ν1 + sun+1

1 = ∇un2 · ν1 + sun2 on Γ× R,

(∂t −∆)un+1
2 = f2 in Ω2 × R,

un+1
2 = 0 on (∂Ω2 \ Γ)× R,

∇un+1
2 · ν2 + sun+1

2 = ∇un+1
1 · ν2 + sun+1

1 on Γ× R.

(6.5)

In Paper II we show that these three methods are well defined, i.e., that each step
in the iteration is uniquely solvable. We also show that the Robin–Robin method
converges to the solution to the transmission problem (6.2) and therefore also to the
solution to the heat equation (6.1). Here we state the main results and give a brief
overview of the analysis. The basic idea is the same as in the linear elliptic case, but
there are a few difficulties. First, we must have a variational formulation of the heat
equation (6.1). The standard approach for variational methods is to use the solution
space

H1(R,H−1(Ω)) ∩ L2(R,H1(Ω)),

but this space is problematic since it is not possible to “glue” such functions together,
see [13, Example 2.14]. This is solved by instead employing the framework with solu-
tions in

H1/2(R, L2(Ω)) ∩ L2(R,H1(Ω)),

which is weaker than the standard framework, see [13, Equation (2.3)]. This set-
ting was, e.g., introduced in [46] and has been applied for both boundary element
methods [13] and space-time finite elements [21, 39, 64]. The second problem that
arises is that the bilinear forms are not coercive in the full norm, but only in the
L2(R,H1(Ω))-norm. By extension, the Steklov–Poincaré operators are only coer-
cive in L2(R,Λ). To solve this, we use an idea that originates from [21], which is to
apply a transformation on the test space that turns the bilinear forms coercive. We
apply this idea not only on the bilinear form, but also on the Steklov–Poincaré op-
erators, which has not been done before. Note that the space-time Steklov–Poincaré
operators have been introduced without analysis in [34] and formore general parabolic
problems in [36]. The third problem is that the Steklov–Poincaré operators are not
symmetric due to the skew-symmetry of ∂t. Therefore, we put the emphasis on the
Robin–Robin method, since we have seen that this convergence theory does not re-
quire any symmetry assumptions. However, note that even without symmetry we
can show that the Dirichlet–Neumann and the Neumann–Neumann methods are
well defined.
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Recall the spacesW,Wi,W
0
i and Z defined in Section 2.2. For the analysis we intro-

duce the bilinear forms a : W ×W → R and ai : Wi ×Wi → R as

a(u, v) =

∫
R

∫
Ω
∂tuv +∇u · ∇v dx dt and

ai(ui, vi) =

∫
R

∫
Ωi

∂tuivi +∇ui · ∇vi dx dt,

respectively. Note that the above definition for a is only valid for

u ∈ H1
(
R, L2(Ω)

)
∩ L2

(
R,H1(Ω)

)
and similarly for ai, but these bilinear forms can be extended to u ∈ W and ui ∈ Wi

respectively [13, Lemma 2.6]. Alternatively, they can be defined equivalently using
fractional derivatives as in [Paper II, Section 4]. The bilinear forms ai satisfy the
following bounds

ai(ui, vi) ≤ C‖ui‖Wi‖vi‖Wi for all ui, vi ∈ Wi, and

a(ui, ui) ≥ c‖ui‖2L2(R,H1(Ωi))
for all ui ∈ Wi,

see [Paper II, Lemma 8] for the proof. Notice that the coercivity bound is in a weaker
norm and therefore it is not possible to apply the Lax–Milgram lemma as in Chapter 3.
This can be resolved by applying a Hilbert transform, see [21]. We leave out this step
here since we will demonstrate this technique for the Steklov–Poincaré operator later.
Let f ∈ L2(Ω × R) and define fi = f |Ωi×R ∈ L2(Ωi × R), i = 1, 2. The weak
formulation of the heat equation (6.1) is to find u ∈ W such that

a(u, v) = (f, v)L2(Ω×R) for all v ∈ W (6.6)

and the weak formulation of the transmission problem is to find (u1, u2) ∈ W1×W2

such that
ai(ui, vi) = (fi, vi)L2(Ωi×R) for all vi ∈ W 0

i , i = 1, 2,

T1u1 = T2u2,∑2
i=1 ai(ui, Fiµ)− (fi, Fiµ)L2(Ωi×R) = 0 for all µ ∈ Z.

(6.7)

Here Fi : Z → Wi is the solution operator of the homogeneous equation, i.e.,
ui = Fiη solves {

ai(ui, v) = 0 for all v ∈ W 0
i ,

Tiui = η.

Similarly, let Gi : (W
0
i )

∗ → W 0
i be the operator mapping fi to ui = Gifi solving

ai(ui, v) = (fi, v)L2(Ωi×R) for all v ∈ W 0
i . (6.8)

As in the linear case the weak formulations of the heat equation (6.6) and the trans-
mission problem (6.7) are equivalent, see [Paper II, Lemma 11].
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Remark 9. In the weak formulation of the transmission problem, and the following weak
formulations, we use the extension Fi in the second argument of the bilinear form ai
instead of the extension Ri, which was used in Chapters 3 and 4. We remark that the def-
initions do not depend on the extension, see [Paper II, Remark 3]. Also, compare with Re-
mark 5.

The weak form of the space-time Dirichlet–Neumann method is to find (un1 , u
n
2 ) ∈

W1 ×W2 for n = 1, 2, . . . , such that

a1(u
n+1
1 , v1) = (f1, v1)L2(Ω1×R) for all v1 ∈ W 0

1 ,

T1u
n+1
1 = ηn,

a2(u
n+1
2 , v2) = (f2, v2)L2(Ω2×R) for all v2 ∈ W 0

2 ,

a2(u
n+1
2 , F2µ)− (f2, F2µ)L2(Ω2×R)

+ a1(u
n+1
1 , F1µ)− (f1, F1µ)L2(Ω1×R) = 0 for all µ ∈ Z,

(6.9)

with ηn+1 = s0T2u
n+1
2 + (1 − s0)η

n. Similarly, the weak form of the space-time
Neumann–Neumann method is to find (un1 , un2 , wn

1 , w
n
2 ) ∈ W1 ×W2 ×W1 ×W2

for n = 1, 2, . . . , such that

ai(u
n+1
i , vi) = (fi, vi)L2(Ωi×R) for all vi ∈ W 0

i ,

Tiu
n+1
i = ηn for i = 1, 2,

a1(w
n+1
1 , v1) = 0 for all v1 ∈ W 0

1 ,

a1(w
n+1
1 , F1µ) = a1(u

n+1
1 , F1µ)

− (f1, F1µ)L2(Ω1×R)

+ a2(u
n+1
2 , F2µ)− (f2, F2µ)L2(Ω2×R) for all µ ∈ Z

a2(w
n+1
2 , v2) = 0 for all v2 ∈ W 0

2 ,

a2(w
n+1
2 , F2µ) = −a1(u

n+1
1 , F1µ)

+ (f1, F1µ)L2(Ω1×R)

− a2(u
n+1
2 , F2µ) + (f2, F2µ)L2(Ω2×R) for all µ ∈ Z,

(6.10)

with ηn+1 = ηn − (s1T1w
n+1
1 − s2T2w

n+1
2 ). Finally, the weak form of the space-

time Robin–Robin method is to find (un1 , u
n
2 ) ∈ W1 ×W2 for n = 1, 2, . . . , such
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that 

a1(u
n+1
1 , v1) = (f1, v1)L2(Ω1×R) for all v1 ∈ W 0

1 ,

a1(u
n+1
1 , F1µ)− (f1, F1µ)L2(Ω1×R)

+ a2(u
n
2 , F2µ)− (f2, F2µ)L2(Ω2×R)

= s(T2u
n
2 − T1u

n+1
1 , µ)L2(Γ×R) for all µ ∈ Z,

a2(u
n+1
2 , v2) = (f2, v2)L2(Ω2×R) for all v2 ∈ W 0

2 ,

a2(u
n+1
2 , F2µ)− (f2, F2µ)L2(Ω2×R)

+ a1(u
n+1
1 , F1µ)− (f1, F1µ)L2(Ω1×R)

= s(T1u
n+1
1 − T2u

n+1
2 , µ)L2(Γ×R) for all µ ∈ Z.

(6.11)

We now define the space-time Steklov–Poincaré operators Si : Z → Z∗ and the
functionals χi ∈ Z∗ as

〈Siη, µ〉 = ai(Fiη, Fiµ) and 〈χi, µ〉 = (fi, Fiµ)L2(Ωi×R) − ai(Gifi, Fiµ).

Moreover we introduce S = S1 + S2 and χ = χ1 + χ2. The space-time Steklov–
Poincaré equations is then to find η ∈ Z such that

〈Sη, µ〉 = 〈χ, µ〉 for all µ ∈ Z, (6.12)

compare with (3.11). As in the elliptic case, the weak formulation of the transmission
problem (6.7) and the Steklov–Poincaré equation (6.12) are equivalent, see [Paper II,
Lemma 13]. Moreover, the space-time domain decomposition methods can also be
reformulated entirely on the space-time interface Γ × R. The Dirichlet–Neumann
method becomes the preconditioned iteration to find ηn ∈ Z, for n = 1, 2, . . . ,
such that

〈S2η
n+1, µ〉 = 〈S2η

n, µ〉+ s0〈−Sηn + χ, µ〉 for all µ ∈ Z. (6.13)

Similarly, the Neumann–Neumann method is equivalent to the iteration given by
finding (λn

1 , λ
n
2 , η

n) ∈ Z × Z × Z, for n = 1, 2, . . . , such that{
〈Siλ

n+1
i , µ〉 = 〈−Sηn + χ, µ〉 for all µ ∈ Z, i = 1, 2,

ηn+1 = ηn + s1λ
n+1
1 + s2λ

n+1
2 .

(6.14)

The Dirichlet–Neumann and Neumann–Neumann methods should be compared
with the linear elliptic case in Section 3.3. Finally, the Robin–Robin method becomes
the Peaceman–Rachford iteration, compare with (4.7). That is, to find (ηn1 , η

n
2 ) ∈

Z × Z, for n = 1, 2, . . . , such that{
〈(sJ + S1)η

n+1
1 − χ1, µ〉 = 〈(sJ − S2)η

n
2 + χ2, µ〉 for all µ ∈ Z,

〈(sJ + S2)η
n+1
2 − χ2, µ〉 = 〈(sJ − S1)η

n+1
1 + χ1, µ〉 for all µ ∈ Z,

(6.15)
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with J : L2(Γ × R) → L2(Γ × R)∗ denoting the Riesz isomorphism. We now
state the main result on the properties of the space-time Steklov–Poincaré operators.
Note that they are coercive only in the norm L2(R,Λ), which does not allow the
usage of the Lax–Milgram lemma. Recall, however, that theHilbert transform defined
in Section 2.2 is an isomorphism HΓ : Z → Z. By defining

Hφ
Γ = cos (φ)I − sin (φ)HΓ,

we get a new bilinear form

(η, µ) 7→ 〈Siη,Hφ
Γµ〉

that is coercive in Z. This is one of the key ideas of Paper II, as it allows the usage of
the Lax–Milgram lemma.

Theorem 10. Suppose that Assumptions 1 and 2 hold. The Steklov–Poincaré operators
Si, S : Z → Z∗ are well defined and bounded, i.e.,

〈Siη, µ〉 ≤ C‖η‖Z‖µ‖Z , 〈Sη, µ〉 ≤ C‖η‖Z‖µ‖Z for all η, µ ∈ Z, i = 1, 2.

Moreover, they are coercive in the norm L2(R,Λ), i.e.,

〈Siη, η〉 ≥ c‖η‖2L2(R,Λ), 〈Sη, η〉 ≥ c‖η‖2L2(R,Λ) for all η ∈ Z, i = 1, 2.

Finally, they are coercive-equivalent in Z, i.e.,

〈Siη,Hφ
Γη〉 ≥ c‖η‖2Z , 〈Sη,Hφ

Γη〉 ≥ c‖η‖2Z for all η ∈ Z, i = 1, 2

for φ > 0 small enough.

The proof can be found in [Paper II, Lemma 12]. The next result follows directly
fromTheorem 10, see [Paper II, Corollary 2].

Theorem 11. The Dirichlet–Neumann, Neumann–Neumann, and Robin–Robin meth-
ods are well defined, in the sense that for each n = 1, 2, . . ., the iterations (6.9) to (6.11)
have unique solutions.

To prove convergence of the Robin–Robin method we restrict the Steklov–Poincaré
operators to unbounded operators on L2(Γ × R). Then we can apply the abstract
theorem of [50] on the convergence of the Peaceman–Rachford iteration to get the
following result, see [Paper II, Theorem 2] for the full proof. As in the linear and
nonlinear elliptic cases we require the following assumption to be able to perform the
analysis in L2(Γ× R).
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Assumption 5. Let u ∈ W denote the solution to (6.6). Then the functionals

µ 7→ ai(u|Ωi×R , Fiµ)− (fi, Fiµ)L2(Ωi×R), i = 1, 2,

are elements in L2(Γ× R)∗.

Theorem 12. Suppose that Assumptions 1, 2 and 5 hold. Let uni be the iterates of the
Robin–Robin method (6.11) for some s > 0 and let ui denote the solution to (6.7). Then

‖uni − ui‖L2(R,H1(Ωi)) → 0, i = 1, 2,

as n tends to infinity.
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Chapter 7

Numerical results for linear
parabolic equations

There is a vast amount of methods for discretizing (6.1). One standard approach is
to use a finite element method in space and a time-stepping scheme, for an overview
see [40]. We illustrateTheorem 12 by considering the space-timeRobin–Robinmethod
applied to the heat equation (6.1) with d = 2 and f chosen such that

u(t, x, y) = 0 for t ≤ 0,

u(t, x, y) = sin(πt/2) sin(πx) sin(πy) for 0 < t < 1,

u(t, x, y) = e2(1−t)π2
sin(πx) sin(πy) for 1 ≤ t

(7.1)

is the solution. Since u is smooth in space and exponentially decreasing in time, it is
clear that u satisfies Assumption 5. We use the spatial domain Ω = (0, 1)2 and the
decomposition

Ω1 = (0, 1/2)× (0, 1), Ω2 = (1/2, 1)× (0, 1), and Γ = {1/2} × (0, 1).

We discretize using a piecewise linear finite elements in space and the implicit Eu-
ler method in time with final time T = 1. The spatial mesh is of the form given
in Figure 5.2 with mesh size hx = hy = 1/128 and the time step size is ht = 1/128.
We compare the Robin–Robin method with the Dirichlet–Neumann andNeumann–
Neumann methods. The parameters are chosen as s0 = 0.5, s1 = 0.25, s2 = 0.25.
For the Robin–Robin method we use s = 0.25 and s = 0.03 depending on the test
case explained below. All parameters have been found to be near optimal. For all
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three methods we compute the relative errors

eH1 =
‖un1 − u‖L2((0,1),H1(Ω1)) + ‖un2 − u‖L2((0,1),H1(Ω2))

‖u‖L2((0,1),H1(Ω1)) + ‖u‖L2((0,1),H1(Ω2))

eL2 =
‖un1 − u‖L2((0,1),L2(Ω1)) + ‖un2 − u‖L2((0,1),L2(Ω2))

‖u‖L2((0,1),L2(Ω1)) + ‖u‖L2((0,1),L2(Ω2))

at each iteration. In Figure 7.1a we plot the relative error eH1 with u being the exact
solution interpolated to a finermesh with hx = hy = 1/512 together with a reference
line corresponding to the error of the space-time discretization on the whole ofΩ×R.
In Figure 7.1b we plot the same for the relative error eL2 . Finally, we plot the relative
error eH1 with u being the solution to the discrete problem on the whole of Ω × R
in Figure 7.2

Remark 10. Note that the theoretical result gives convergence inL2
(
R,H1(Ωi)

)
, but we

are measuring in the weaker norms L2
(
(0, 1),H1(Ωi)

)
and L2

(
(0, 1), L2(Ωi)

)
since

we are only interested in the solution on a finite time interval.

From Figure 7.1 we see that the three methods all perform similarly. Note that after
a certain amount of iterations the error is dominated by the error of the space-time
discretization, which is why we see that the methods stall. After reaching this barrier
there is really no practical reason to continue the iteration, but it is still interesting
when studying convergence. From Figure 7.2 we see that the discrete Robin–Robin
method converges to the solution to the discrete problem, but not nearly as fast as
the Dirichlet–Neumann and Neumann–Neumann methods. Still, the convergence
of the Robin–Robin method appears to be geometric, which would agree with the
discrete linear elliptic case [71].
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Figure 7.1: The relative errors of the space-time domain decomposition methods com-
pared to the solution to the discrete problem measured in the space-time norm with
spatial H1-norm (a) and L2-norm (b). Note that the Dirichlet–Neumann behaves
very similar to the Neumann–Neumann method and is therefore difficult to see.
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Figure 7.2: The relative errors of the space-time domain decompositionmethods com-
pared to the exact solution interpolated to a fine grid.
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Chapter 8

Outlook

8.1 Domain decomposition methods for nonlinear parabolic
equations

Themost obvious next step is to combine the theories of Papers I and II.The difficulty
here is not with the Steklov–Poincaré theory, but rather that there is a lack of theoret-
ical results for nonlinear parabolic equations on Lipschitz domains and with tempo-
ral H1/2-regularity. Such a variational framework for analyzing nonlinear parabolic
equations has been developed in [21], but to our knowledge, there is no correspond-
ing trace theory for Lipschitz domains. Another difficulty is that it is not possible to
perform the analysis in Hilbert spaces and therefore we cannot rely on the identifi-
cation between Sobolev–Bochner spaces and Hilbert tensor spaces, which was used
in Paper II.

8.2 Convergence of the space-timeDirichlet–Neumannmethod

Waveform relaxation methods are known to converge for systems of ordinary differ-
ential equations [24, 56]. However, to our knowledge there is no convergence result
for the space-time Dirichlet–Neumann method applied to partial differential equa-
tions without discretization. Although the framework developed in Paper II results
in Steklov–Poincaré operators that are not symmetric, there is still cause to study
the convergence of Dirichlet–Neumann in the parabolic context. Either by adapt-
ing the analytical methods used for ordinary differential equations, or modifying the
Dirichlet–Neumann method to get a symmetric preconditioner, i.e., study methods
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of the form
ηn+1 = ηn + s0B

−1(χ− Sηn)

with B chosen to be a coercive and symmetric operator.

8.3 Domain decomposition for discretized parabolic equations

While the nonlinear elliptic result can be applied directly to the discretized equation,
it is unclear how to do this for the space-time decomposition methods since standard
Galerkin methods require different test and trial spaces, see [63]. This is due to the
fact that in order to get a well posed initial value problem we must replace H1/2(R)
in the trial space by the Lions–Magenes space

H
1/2
00 (R+) = {u ∈ H1/2(R+) : Eu ∈ H1/2(R)},

where Eu denotes the extension by 0 to R. A promising alternative discretization
that fits our framework better can be found in [64].
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