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ABSTRACT 
 
The purpose of this work is to present some recent results 
in an ongoing research project between Ghent University 
and Chess Medical Technology Company Belgium. 
 
The overall aim of the project is to provide a fast method 
for identification of the human respiratory system in order 
to allow for an instantaneously diagnosis of the patient by 
the medical staff. 
 
A novel parametric model of the human respiratory 
system as well as the obtained experimental results are 
presented in this paper. A prototype apparatus developed 
by the company, based on the forced oscillation technique 
is used to record experimental data from 4 patients in this 
paper. Signal processing is based on spectral analysis and 
is followed by the parametric identification of a non-linear 
mechanistic model.  
The parametric model is equivalent to the structure of a 
simple electrical RLC-circuit, containing a non-linear 
capacitor. These parameters have a useful and easy-to-
interprete physical meaning for the medical staff 
members.  
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1. Introduction 
 
During the last decennium the field of biomedical 
engineering has been characterized by important progress 
thanks to the new technologies of information processing 
and new methods of analysis, diagnosis and simulation of 
the human body.  
Previous work has applied intelligent control systems, 
artificial neural networks, recursive methods for on-line 
estimation of respiratory parameters of lung mechanics 
[1], as well as mathematical analysis and computer 
simulation. An on-line investigation of inspiratory 

pressure-volume curves is mentioned in [2] and also the 
sensitivity analysis and an optimal experiment design has 
been performed for estimating mechanical parameters [3]. 
Some basic knowledge about respiratory system is 
presented in detail in [4], and medical applications of 
computer modelling of the respiratory system are 
presented in [5]. Clinical applications and modelling of 
the respiratory system by use of oscillation mechanics can 
be studied in [6]. 
 
Since the very first description of the forced oscillation 
technique in [7], its applicability has been developed over 
decades. The forced oscillation technique has its 
advantages and disadvantages [4], but it is mainly used in 
characterization of the respiratory function, assessment of 
bronchial challenge, mechanical ventilation and sleep 
studies [4,8]. It has proven to be of great use in 
investigating the respiratory oscillation mechanics in 
infants and preschool children [9]. An improved forced 
oscillatory estimation of respiratory impedance is 
mentioned in [10], pointing out a solution to avoid the 
systematic error due to interference between normal 
respiratory signal components and the forced oscillatory 
signals.  
 
The paper is organized as follows: in the second section 
the apparatus used and the forced oscillation technique are 
described, the third section presents the signal processing 
based on spectral analysis. The identification of the non-
linear parametric model is presented in section 4. As an 
illustration of the developed method in the fifth section 
the experimental data for 4 subjects are processed and the 
results are presented. Finally a conclusion section 
summarizes the main outcome of this investigation and 
formulates some ideas concerning the future work. 
 
 
2. Apparatus and Test 
 
The mechanical properties of the respiratory system may 
be obtained by applying the forced oscillation technique 
(FOT), measuring thus the air-flow and trans-respiratory 
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pressure. As the application of this non-invasive technique 
does not require the patient’s cooperation, it is suitable for 
routine evaluation of respiratory function, described in 
detail in [6,7,8]. However, it should be pointed out that 
with FOT respiratory mechanics is assessed at a 
frequency-range (4:48 Hz), which is higher than the 
spontaneous breathing frequency.  
 
The conventional FOT set-up is based on superimposing a 
low-amplitude pressure oscillation at the mouth while the 
patient is breathing spontaneously as illustrated in Fig.1: 

 
Figure 1: Conventional FOT set-up 

 
with the corresponding notations: MC - microcomputer; 
LS - loudspeaker; BT – bias-tube; BF – bias-flow; PN - 
pneumotachograph; MP - mouth-piece; PT - pressure 
transducer; Q – flow and P - pressure. 
 
The oscillation pressure is generated by a loudspeaker 
connected to a chamber, driven by a power amplifier fed 
with the oscillating signal generated by a computer. The 
movement of the loudspeaker cone generates a pressure 
oscillation inside the chamber, which is applied to the 
patient’s respiratory system by means of a tube 
connecting the loudspeaker chamber and the mouthpiece. 
As the patient breathes spontaneously through a bias tube 
- ideally presenting low impedance to the breathing 
frequency and high impedance to the forced oscillation 
frequency - a constant bias flow avoids re-breathing. It is 
advisory that during the measurements, the patient should 
wear a noseclip and keep the cheeks firmly supported.  
 
Pressure and flow are measured at the mouthpiece by 
means of 1) a pressure transducer and 2) a 
pneumotachograph plus a differential pressure transducer, 
respectively. These signals are then analogically low-pass 
filtered, sampled and stored in a microcomputer. Before 
starting the measurements, in order to get accurate data, 
the frequency response of the transducers and of the 
pneumotachograph should be calibrated. Anyway, some 
technical requirements specified in [11] should be 
provided before using the apparatus. 
 
Oscillatory mechanics may be obtained by using different 
types of forcing signals. The simplest signal is sinusoidal 

oscillation since it provides a direct interpretation of the 
mechanical load of the respiratory system. Moreover, this 
signal has the advantage of providing the highest signal-
to-noise ratio (SNR). Nevertheless, a drawback of 
sinusoidal oscillation is that the assessment of the 
frequency dependence of respiratory impedance over a 
wide frequency band requires several measurements at 
different frequencies. That is only one of the reasons why 
in collecting the experimental data to analyse it was used 
a pseudorandom (multi-sine) signal, also the most 
commonly used test signal. More advantages are detailed 
in [8]. 
 
Both the oscillatory pressure P(t) and flow Q(t) are 
periodic with the same period T. The modulus of 
oscillatory impedance ( rZ ) is defined as the quotient 
between the amplitude of oscillatory pressure and the 
amplitude of oscillatory flow. The higher the rZ , the 
greater the pressure amplitude required to induce a given 
flow. Thus, rZ  is a measure of the total mechanical load 
of the respiratory system at the oscillation frequency. The 
phase of respiratory impedance ( rΦ ) is defined as the 
phase lag between P(t) and Q(t) and it is computed as the 
ratio between the time lag and the oscillation period 
( rΦ = 360° x ∆t/T). The frequency where 0rΦ =  is 
called the «resonance frequency» and it depends on the 
balance between the different kind of mechanical 
properties (resistive, elastic, inertial) determining thus the 
mechanics of the respiratory system.  
 
 
3. Signal Processing (Spectral Analysis) 
 
The global experimental set-up can be modelled by the 
electrical analogy of Fig. 2, where: 

gU  = generator test signal (known) 

rU  = effect of spontaneous breathing (respiratory system 
/ unknown) 

rZ  = impedance of interest (to be estimated): the 
impedance of the total respiratory system (including the 
airways, lung tissues and chest wall) 

1Z  = impedance (unknown) describing the transformation 

of driving voltage ( gU ) to chamber pressure 

2Z  = impedance (unknown) of both bias tubes and loud-
speaker chamber 

3Z  = impedance (unknown) of tube segment between 
bias tube and mouth piece (effect of pneumotachograph 
essentially) 
P = (measured) pressure 
Q = (measured) flow 
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Figure 2: Electrical Scheme Analogy 

 
Using the basic laws for analysing electrical networks, the 
following relationships can be derived: 
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with 2 ‘inputs’ gU  and rU , 2 ‘outputs’ P and Q and 
transfer matrix: 
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(all impedances *Z being also a function of ‘s’; the 
symbol ‘s’ denotes Laplace-operator). 
 
Define now the vectors: 
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containing cross-power-spectra Syu(jω) between 2 signals 

y(t) and u(t) and auto-power-spectra Suu(ω) of a signal 

u(t). 

From well-known [12] identification and signal-
processing theory it then follows that: 

 

( ) ( ) ( )YU UUS j H j S jω ω ω=               (7) 

In case of ‘absence of breathing’ ( 0rU = ) the expression 
(7) reduces to: 
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and it would be ‘exact’ to estimate the ‘impedance of 
interest’ ( )rZ jω  from: 
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However, it is supposed that the test is done in ‘normal 
breathing conditions’, which may result in an interference 
between the (unknown) breathing signal rU  and the test 

signal gU , making the identification exercise more 
difficult. From the point of view of the forced oscillatory 
experiment, the signal components of respiratory origin, 
( rU ) have to be regarded as pure noise for the 
identification task! 
 
Nevertheless, if the test signal gU  is designed to be 
uncorrelated with the normal respiratory breathing signal 

rU , then 0
r gU US ≡ , and the approach (9) is still valid, 

based on (7) with 0
r gU US ≡ , (ref. also [10]). 

 
 
4. Identification of a Non-Linear Mechanistic 
Model 
 
The main topic of this paper can be described briefly as 
following: derive a parametric model for the impedance 

( )rZ s  of the human respiratory system, starting from 
given frequency response data of this impedance, as 
obtained in section 3. 
 
The impedance is defined as the transfer function “air 
pressure/air flow” in the lungs of a patient, as mentioned 
in section 2. The parametric model should have the 
structure of a simple electrical RLC-circuit (resistor, 
inductor, capacitor), but the most important “detail” of 
this particular model is that the capacitor is non-linear 
(because a linear RLC cannot explain the “observed” 
frequency response). 
 
Having a linear RLC circuit, the impedance is given by 

 1( )Z s R Ls
Cs

= + +                          (10), 

where s is the Laplace operator. 
Here, the structure should be (based on input from Chess 
mT Company):   

 1( ) ,  with 0< 1DZ s R Ls R Ls
Cs sα α α= + + = + + ≤      (11). 
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The frequency response can then be written as:  
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Given the 2 vectors { }( ) and ( ) for 1n n n N=R I , 
containing the data of the frequency response Zr(jω)  
(R=real part and I=imaginary part), measured in N 
frequency points nω , the solution is thus obtained by 

minimizing the error function V( , , , )R L D α  by 
choosing the best values for the parameters 
{ }, , ,R L D α : 
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To be of any practical diagnostic value, it has been also 
specified that the results should be obtained very fast (a 
FOT measurement of the frequency response of a patient 
takes 8 seconds and the parameters { }, , ,R L C α  should be 
available to the medical doctor ‘immediately afterwards’).  
 
If above problem is solved ‘blindly’, it leads to a non-
linear minimization task, with special difficulty because 
of the presence of constraints for the parameter α 
(0<α≤1). It has to be solved then with “a constrained non-
linear programming” software, which is complex, time-
consuming and does not necessarily converge to the 
global minimum. 
 
For that reason, the following simpler - but correct - 
procedure is suggested. It is based on the observation that 
the impedance is linear in the parameters R, L, D but non-
linear only in the parameter α. For a given value of α, 
being a priory specified, the variables na  and nb  become 
constants (different for each n) and the values of R, L, D 
can then be obtained in a straightforward and very fast 
manner. A more elegant solution can thus be obtained by 
'pre-specifying' the parameter α instead of 'estimating' it. 
Thus reducing the problem to a simple Least Squares 
Parameter Estimation problem [12].  
 
Starting from equation (12), the real and respectively 
imaginary part, measured in N frequency points (n=1..N), 
can be described as following in matrix notation: 
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where { },i iδ ε are the “closing terms” (residual errors). 
The description in a compact form (LS-method) results in: 

1 1 2 2   and   = + = +R Φ θ δ I Φ θ ε               (15). 
The error function to be minimized can be written as (16): 
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and thus the error function to be minimized becomes (19): 
 

[ ] [ ]

[ ] [ ]

1 1 1 1 1 1 1

2 2 2 2 2 2 2

2

2

R R
V a b c d R e D e R f D

D D

L L
a b c d L e D e L f D

D D

   
= − + + + +   

   
   

− + + +   
   

 

 
From equation (19), if it is expanded, follows: 
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Minimizing ( , , )V R L D with respect to the 3 variables, 
leads to: 
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Now it is straightforward to obtain the simplified matrix 
form: 
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If this simple linear regression is done for several pre-
specified values of α - equally distributed in the range 
0 1 - and if the resulting minimum cost V for each α is 
calculated, it is then sufficient to select that α-value which 
leads to the overall smallest cost V. Thus resulting in the 
global optimal parameter values for { }, , ( 1/ ),R L C D α= . 
 
 
5. Experimental Results 
 
As described in sections 2 and 3, the FOT was used to 
obtain data from 4 patients, and then the model described 
in section 4 calculates the required values for R, L, D and 
α. The frequency points where the frequency response has 
been calculated are between 4Hz and 48Hz, in steps of 
2Hz. Thus there are N=23 frequency points.  

 
Figure 3: R, L, D values and Cost Function for patient 1 

 
It is easy to observe that the α-value leading to the overall 
smallest cost is assumed to be 0.3<α<0.4.  
 
In Fig. 3 are presented the values of R, L and D computed 
from different values of α respectively, using 
experimental data from patient 1 (as a typical example). 
Also, in the last plot can be observed the cost function and 
its evolution with respect to different α-values. 
 
In Fig. 4 are presented the experimental (bold) vs. 
estimated (dotted) real and imaginary part of the 
frequency response of impedance of the first patient for an 
α-value corresponding to the linear RLC circuit, 
respectively α= 1 (see section 4, equation 11).  
In the following figures (Figs. 4-7), 1 Volt corresponds to 
approximately 0.5 cm H2O*L-1*s. 
 
 
 
 

 
 

 
Figure 4: Estimation for α=1 

 
In Figs. 5, 6 and 7 are presented the estimation (dotted) of 
real and imaginary part with respect to α-values (α → 0.8 
/ 0.6 / 0.4).  
It can be seen that the approximations are strongly 
depending on the α-values and thus the main reason of 
using such a non-linear RLC-circuit as a good  
approximation for the respiratory model. 

 
Figure 5: Estimation for α=0.8 

 

 
Figure 6: Estimation for α=0.6 
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Figure 7: Estimation for α=0.4 

 
Taking into account the “flat-surface” of the cost function 
between 0.1<α<0.6 (Fig. 3), and taking into account that 
only R>0 has a physical meaning, this exercise for patient 
#1 would result in R≈0; L=0.015; C=0.0118 (C=1/D) and 
α=0.45. Thus, from a realistic standpoint, Fig.7 depicts 
the estimation of the respiratory impedance (real & 
imaginary part) leading to the overall smallest cost for 
patient 1.  
The pictures for the other 3 patients are more or less the 
same as the one presented for the first patient, and only 
the final results for all patients will be mentioned in the 
table below. 
 

Patient R L C α  
1 0.31 0.015 0.0118 0.45 
2 0.78 0.010 0.0366 0.22 
3 1.27 0.172 0.0115 0.45 
4 0.39 0.012 0.0887 0.30 

 
 
6. Conclusions 
 
This paper deals with the modelling of the human 
respiratory impedance as a function of air flow and 
pressure, measured with the pseudo-random noise forced 
oscillation technique between 4 and 48Hz.  
 
The forced oscillation technique is, despite its simplicity, 
a promising method to investigate respiratory mechanics 
as a function of frequency and suited for use in clinical 
medicine. Its application in assessing and interpreting 
abnormalities in disease is still in a developmental stage, 
but nevertheless step-by-step more accepted. 
 
The main contribution in this paper was a new (non-
linear) parametric representation of the FOT frequency 
response data (equivalent to an electrical RLC-circuit, 
with a non-linear capacitor). The parameters in this model 
have – according to the involved company specialized in 
this field – a useful meaning to the medical staff. 
A next step will be to try collecting experimental data 
consisting of flow and pressure at lower frequencies; more 

specifically, between 0.5 and 10Hz. This is rather 
complicated due to interference with the frequency of 
‘normal’ breathing of the patient. 
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