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Introduction
Eltrombopag (EP) is a small molecule that binds to 
the transmembrane region of the thrombopoietin 
(TPO) receptor c-MPL, activating downstream 
signaling in hematopoietic stem cells (HSCs) and 
megakaryoblasts. These include the JAK/STAT, PI3 
K/AKT and Ras/MAPK pathways.1,2 It does not 
compete directly in its binding to c-MPL with TPO, 
so TPO and EP signaling effects are both synergic.3 
In addition, it has a potent ability to bind iron ions, 
stimulating hematopoiesis through molecular repro-
gramming4 and expanding the most immature pop-
ulations during hematopoiesis.5

Based on these properties, EP is approved for 
chronic immune thrombocytopenia (ITP) 

patients who are refractory to other treatments, 
thrombocytopenia in patients with chronic hepa-
titis C and in those with acquired severe aplastic 
anemia.6–8

EP significantly affects HSCs that are intimately 
related to the hematopoietic microenvironment 
that acts as a key regulator of hematopoiesis. 
Mesenchymal stem/stromal cells (MSCs) regulate 
the self-renewal, survival, migration, and differen-
tiation of HSCs through cytokine release, the pro-
duction of growth factors, cell contact interactions 
and the formation of extracellular matrix.9 Some 
data suggest that MSCs from patients with bone 
marrow (BM) disorders may be altered, and, in a 
previous study by our group, we observed that 
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MSCs from patients with ITP are functionally 
abnormal, with reduced proliferation and immu-
nomodulation ability.10 Other changes have also 
been described in MSCs from these subjects.11–13 
In addition, MSCs may be altered in severe aplas-
tic anemia patients, although the results are con-
troversial.14–16 These suggested alterations in 
MSCs from patients with ITP or AA make it even 
more worthwhile to evaluate the effects of EP on 
healthy-donor-derived MSCs.

The effects of EP on HSCs are well documented, 
but its potential action on the microenvironment, 
especially on MSCs, has not so far been addressed 
in depth. A recent report has analyzed the effects of 
EP on BM-derived MSCs from ITP patients, 
showing that EP can reduce MSC apoptosis and 
increase their proliferation, interfering with intra-
cellular iron signaling in cells from these patients, 
whereas the changes observed in control cells in 
that particular report were minimal.17 Nevertheless, 
neither the effects of EP on the hematopoietic sup-
porting ability of MSC, nor the genomic changes 
induced by the drug has been assessed. These are 
therefore the main objectives of the current work.

Methods

Reagents
Eltrombopag was provided by Novartis Pharma
ceuticals. The drug was dissolved in sterile water 
at a concentration of 10 mM. MSCs were cul-
tured with EP in a final concentration of (10–50 
μM). Control cells were incubated in the same 
medium without the drug for the same periods.

Patient samples
MSCs were isolated from bone marrow (BM) 
from 12 healthy donors (8 female/4 male) with a 
median age of 43.5 years (range: 18–60 years). 
All healthy donors were selected following the 
same criteria and evaluations as used with our 
allogeneic hematopoietic stem cell transplant 
donors. These followed international standards 
(FACT-JACIE) and consisted of a clinical and 
biological evaluation to confirm the absence of 
comorbidities. The donors signed a specific 
informed consent form approved by the Ethics 
Committee of the University Hospital of 
Salamanca. Finally, at the time of BM aspiration, 
normal BM cytomorphology was confirmed by an 
experienced hematologist.

BM was aspirated from the iliac crest in sterile 
conditions under propofol sedation. Mononuclear 
cells (MNCs) were obtained after Ficoll-Paque 
density-gradient centrifugation (1.077 g/ml; GE 
Health-care BioSciences, AB, Uppsala, Sweden), 
and seeded at 1 × 106 MNC/cm2 on culture 
flasks with Dulbecco’s Modified Eagle Medium 
(DMEM) + 10% SBF + 1% penicillin/strepto-
mycin according to previously described meth-
ods standardized in our laboratory.18 MSCs were 
expanded and sub-cultured until the third pas-
sage (MSC-BMp3), and then used for the exper-
imental procedures described below.

Cell viability assays
Cell viability of MSCs was evaluated in triplicate 
by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-
2H-tetrazolium bromide (MTT) method.19 
Briefly, MSCs were seeded into 96-well culture 
dishes (8000 cells/well) in the absence (control) 
or presence of EP at different concentrations 
(ranging from 10 to 50 µM) for 24 h. Cells  
were then incubated for 4 h with 3-(4,5-dimethyl-
thiazol-2-yl)-2,5-diphenyltetrazolium bromide 
(MTT, Bio-Techne R&D Systems), following 
the manufacturer’s instructions. Results are 
expressed as percentages of live cells.

All the subsequent experiments were performed 
at the selected doses of 15 µM and 50 µM for 24 
h, using untreated MSCs as controls.

MSC differentiation ability
Standard multilineage differentiation assays in 
adipocytic and osteoblastic lineages were per-
formed after culturing MSCs with EP, following 
the established protocols described in detail20 and 
summarized below.

Adipocytic differentiation.  In all, 2 × 105 MSCs 
were seeded and treated with or without EP. After 
24 h, the drug was removed, the culture was 
washed twice with phosphate buffered saline 
(PBS) and the adipocyte induction medium 
(MesenCultTM MSC Basal Medium, StemcellTM 
Technologies) was added for 21 days, changing 
the medium twice a week. Oil Red staining was 
performed to assess the extent of adipocytic 
differentiation.

The number of adipocytes per field formed in 
each condition was scored weekly (10 fields per 

Luis Corchete  
Institute of Biomedical 
Research of Salamanca 
(IBSAL), Cancer Research 
Center (CiC-IBMCC, 
CSIC/USAL), Center for 
Biomedical Research 
in Network of Cancer 
(CIBERONC), Hematology 
Department, University 
Hospital of Salamanca, 
Salamanca, Spain

María Díez-Campelo 
RICORS TERAV, ISCIII, 
Madrid, Spain

Center for Biomedical 
Research in Network 
of Cancer (CIBERONC), 
Department of 
Hematology, University 
Hospital of Salamanca 
(IBSAL-HUS), Salamanca, 
Spain

Department of Medicine, 
University of Salamanca 
(USAL), Salamanca, Spain

Lika Osugui  
Gerardo-Javier  
Martí-Chillón  
Cell Therapy Area, 
Department of 
Hematology, Institute 
of Biomedical Research 
of Salamanca-Hospital 
Universitario de 
Salamanca (IBSAL-HUS), 
Salamanca, Spain

Centro en Red de Medicina 
Regenerativa y Terapia 
Celular de Castilla y León, 
Valladolid, Spain

María-Belén Vidriales 
Center for Biomedical 
Research in Network 
of Cancer (CIBERONC), 
Department of Hematology, 
University Hospital of 
Salamanca (IBSAL-HUS), 
Salamanca, Spain

Fermín Sánchez-Guijo  
Cell Therapy Area, 
Department of 
Hematology, Institute 
of Biomedical Research 
of Salamanca-Hospital 
Universitario de 
Salamanca (IBSAL-HUS), 
Salamanca, Spain

RICORS TERAV, ISCIII, 
Madrid, Spain

Centro en Red de Medicina 
Regenerativa y Terapia 
Celular de Castilla y León, 
Valladolid, Spain

Center for Biomedical 
Research in Network 
of Cancer (CIBERONC), 
Department of 
Hematology, University 
Hospital of Salamanca 
(IBSAL-HUS), Salamanca, 
Spain

Department of Medicine, 
University of Salamanca 
(USAL), Salamanca, Spain

https://journals.sagepub.com/home/tah


S Muntión, S Preciado et al.

journals.sagepub.com/home/tah	 3

sample). The mean of each sample was calcu-
lated, the results being summarized as medians.

Osteogenic differentiation.  In the same way, 3 × 104 
MSCs were stimulated with osteogenic differenti-
ation medium (StemMACS Osteodiff Media, 
Millenyi Biotec) supplemented with 1% penicil-
lin/streptomycin 1000 U/ml, Gibco) for 10 days. 
The medium was changed every 3 days. As con-
trols, drug-free MSCs were cultured with differen-
tiation medium, and EP-treated or untreated 
MSCs were cultured without specific induction 
medium.

Osteoblasts were stained with alkaline phos-
phatase, for which purpose NBT (4-nitro blue 
tetrazolium chloride) and BCIT (5-bromo-4-
chloro-3-indolyl phosphate) (Roche) were mixed. 
Subsequently, the cells were counterstained with 
1 ml of hematoxylin (Sigma-Aldrich) for 1 min at 
RT. Images of adipocytes and osteoblasts were 
captured under an Olympus BX41 inverted 
microscope connected to a Canon EOS 650D 
digital camera.

Mineralized bone quantification.  Alizarin red 
staining was performed to evaluate calcium 
deposits in MSCs after culture with EP and osteo-
genic differentiation.21 After 21 days, the super-
natant was removed, and cells were fixed with 
formaldehyde and stained with alizarin red (40 
mM, pH 4.2). Cells were detached with 10% gla-
cial acetic acid and transferred to an Eppendorf 
tube. Cells were then heated to 85ºC for 10  
min and the supernatant was subjected to a 

colorimetric assay and absorbance was measured 
in a spectrophotometer at 405 nm.

Reverse transcription real-time PCR analyses of 
genes involved in MSC differentiation.  Total RNA 
was obtained from MSCs after treatment with EP 
and differentiated (n = 4) as indicated before 
using TriPure isolation reagent (Roche Diagnos-
tics; Mainheim, Germany). Reverse transcription 
was performed using the High-Capacity cDNA 
Reverse Transcription Kit (Applied Biosystems, 
Foster City, CA, USA), according to the manu-
facturer’s instructions. The genes were quantified 
using the Step One Plus Real-Time PCR System 
and TaqMan® Gene Expression Assays (Applied 
Biosystems, Foster City, CA, USA). Gene expres-
sion was normalized as values of 2-ΔCt, where 
ΔCt = Ctgene–CtGADPH. The genes analyzed are 
shown in Table 1.

Gene expression array
Total RNA of MSCs from four donors treated 
with 0 µM (control), 15 µM or 50 µM of EP were 
isolated and purified using RNeasy Kit (Qiagen, 
Valencia, CA, USA). RNA integrity was con-
firmed by Agilent 2100 Bioanalyzer (Agilent, Palo 
Alto, CA, USA). In all, 100 ng of total RNA were 
amplified, labeled using the WT Plus reagent kit 
(Affymetrix) and then hybridized to Clariom S 
human Array (Affymetrix). Washing and scan-
ning were carried out using the Affymetrix 
GeneChip System (GeneChip Hybridization 
Oven 645, GeneChip Fluidics Station 450, and 
GeneChip Scanner 7G).

Table 1.  Genes studied to confirm adipogenic and osteogenic differentiation.

Cat.# Description Name

Hs00371239_m1 AEBP1 Adipocyte enhancer binding protein 1

Hs01547870_m1 HSD11B1 11 beta 1 hydroxysteroide dehydrogenase 1

Hs01115512_m1 PPARg Peroxisome proliferative activated receptor

Hs00758162-m1 ALPL Alkaline phosphatase

Hs00231692-m1 RUNX2 RUNX Family Transcription Factor 2

Hs01055564-m1 BMP2 Bone Morphogenetic Protein 2

Hs01587814-g1 BGLAP Bone Gamma-Carboxyglutamate Protein

Hs002777762-m1 SPARC Osteonectin

Hs00959010-m1 SPP1 Osteopontin

https://journals.sagepub.com/home/tah
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Array analysis compared untreated MSCs versus 
MSCs treated with 15 µM and 50 µM of EP, 
respectively. Differential expression analysis was 
performed with Limma, a package in R, available 
in Bioconductor software.

To explore the functions and pathways in which 
these genes are involved, a search in GeneCards22 
and a functional enrichment analysis with the bio-
informatics tool WebGestalt were performed.

Gene expression analysis by RT-PCR.  To confirm 
the results obtained from the gene expression 
array, total RNA was extracted from treated and 
control MSCs (n = 7) using Trizol. Gene expres-
sion of BNIP-3 (Hs00969291-m1), VEFGa 
(Hs00900054-m1), HIF1-α (Hs00153153-m1), 
BDH-2 (Hs00560373-g1), and GADPH 
(Hs99999905-m1) as a control gene, was ana-
lyzed in the same way as previously described.

Functional assays
To evaluate the functional implications of some of 
the findings observed in the functional enrichment 
analysis, the following assays were performed.

Intracellular reactive oxygen species (ROS) lev-
els.  MSCs treated with EP and control MSCs 
were trypsinized, washed, and resuspended in 250 
µL of DPBS and 5 µL of 2’-7’-dichlorodihydro-
fluorescein diacetate 10 µM (H2DCF-DA) 
(Sigma-Aldrich) for 30 min at 37°C, in the dark 
and under hypoxic conditions.23 The fluorescence 
intensity of 2’,7’-dichlorofluorescein (DCF) was 
measured in a BD FACS CantoIITM flow cytom-
eter. Median DCF fluorescence intensity values, 
directly related to intracellular levels of ROS, were 
analyzed with InfinicytTM Software (Cytognos).

DNA damage analysis.  MSCs from both experi-
mental groups were incubated with the MuseTM 
Multi-Color DNA Damage Kit (EDM Millipore 
Corporation) according to the manufacturer’s 
protocol. Briefly, 1X assay buffer was added to 
the cells, which were fixed and permeabilized 
with fixation buffer and permeabilization buffer, 
respectively. After washing, they were labeled with 
two antibodies (20X anti-phospho-histone 
H2A.X-PECy5, 20X anti-phospho-ATM-PE) 
which measures the phosphorylation status of the 
histone pH2A.X and the ATM kinase. Cells  
were acquired with a BD FACS CantoIITM flow 

cytometer and results were obtained using the 
FlowJoTM 10 software (BD Biosciences).

Clonogenic capacity.  Mobilized CD34+ progeni-
tor cells were isolated from leukapheresis samples 
from 5 HD (male/female ratio: 3/2; median age: 
34 years, range: 18–54 years) as previously 
described.18 CD34+ progenitor cells were labeled 
using the human CD34 MicroBead Kit (Miltenyi 
Biotec GmbH, Bergisch Gladbach, Germany) 
and purified in an AUTOMACs device. The 
purity and viability of immunomagnetically sorted 
CD34+ cells were determined by flow cytometry 
using fluorescein isothiocyanate (FITC)-conju-
gated CD34 (11-0349-42, eBioscience Inc., San 
Diego, CA, USA) and 7AAD.

These cells were then co-cultured with MSCs 
pretreated or not with EP. After 24 h of co- 
culture, 2 × 103CD34+ were seeded in methylcel-
lulose semisolid MACS medium supplemented 
with stem cell factor (SCF), granulocyte- 
macrophage colony-stimulating factor (GM-CSF), 
granulocyte colony-stimulating factor (G-CSF), 
IL-3, and IL-6 (Miltenyi Biotec GmbH, Germany) 
and maintained for 14 days in a humidified atmos-
phere at 37ºC with 5% CO2. CFU-GM colonies 
were then scored with an inverted microscope, as 
previously described.24

Statistical tests
Statistical analyses were performed with IBM 
SPSS Statistics v.26 for Windows (IBM Corp., 
Armonk, NY, USA) using the non-parametric 
Wilcoxon test to compare the differences between 
paired results. Graphs were generated with 
GraphPad Prism 8.4.2 (GraphPad Software Inc., 
San Diego, CA, USA). Differences were consid-
ered statistically significant for values of p < 0.05 
(*p < 0.05; **p < 0.01).

Results

Eltrombopag increases the viability of MSCs
The dose–response curves obtained with the 
MTT assays revealed that EP is not cytotoxic for 
MSCs obtained from healthy donors. Moreover, 
EP significantly increased MSC viability at higher 
concentrations [Figure 1(a)]. The final concen-
trations selected for all subsequent assays in our 
study were 15 µM and 50 µM [Figure 1(b)].

https://journals.sagepub.com/home/tah
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Eltrombopag inhibits the adipogenic 
differentiation of MSCs
After appropriate expansion in the specific differ-
entiation media, all MSC samples from both 
experimental groups were differentiated into 
either adipocytes or osteoblasts [Figure 2(a)].

As shown in Figure 2(b), when MSCs were 
treated with EP, their adipogenic differentiation 
capacity significantly decreased, this reduction 
being significantly greater with EP at 50 µM. 
There were no significant differences in the 
expression of the main genes involved in adipo-
genic and osteogenic differentiation.

Eltrombopag modifies the expression of genes 
involved in hypoxia, metabolism and other 
functions
The differential expression analysis of MSCs 
treated at 15 µM, 50 µM of EP and untreated 
MSC concentration is shown in Figure 3(a). 
Most of the differentiated genes did not vary as a 
function of EP concentration (FDR < 0.05) so 
the concentration at 15 µM was chosen for this 
analysis, in which 71 and 25 genes, respectively, 
were overexpressed and underexpressed relative 
to the control. Table 2 shows the top 10 most 
overexpressed genes, which were also found at 50 
µM. The GEO accession number for the tran-
scriptome data reported in this paper is 
GSE202127.

Some of these genes are involved in the cellular 
response to hypoxia and negative regulation in 
apoptosis processes (VEGFA, BNIP3 L, BNIP3), 
in oxidation and reduction processes (KDM3A), 
in metabolism and antibiotic biosynthesis path-
ways (AK4, PGK1), in AMPK signaling path-
ways (GYS1), as well as in the HIF-1 signaling 
pathway (PDK1, VEGFA, SLC2A1) and in glyco-
genesis. Focusing on the top-two underex-
pressed genes, they were also involved in some of 
the previous pathways: apoptosis (BDH2) and 
HIF1α.

Functional enrichment analysis was done using 
the WebGestalt bioinformatic server (http://www.
webgestalt.org/), searching two functional anno-
tation databases (Gene Ontology GO-BP and 
KEGG pathways) with the list of the top 200 
genes that were upregulated when MSCs were 
treated with EP. The top 30 biological-functional 
terms obtained in this enrichment were selected 
(all having an adjusted FDR value p < 0.05) 
[Figure 3(a)]. The most significant altered func-
tions corresponded to glycolysis, glucose catabo-
lism and the generation of ATP and NADH, 
suggesting a strong upregulation of cellular energy 
and respiration metabolism. Moreover, the pres-
ence of several biological terms indicating 
response to oxygen and response to hypoxia con-
firms that respiration and cellular oxygen homeo-
stasis are affected in these cells by their treatment 
with EP [Figure 3(b)].
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Figure 1.  Viability of MSCs after exposure to increasing concentrations of Eltrombopag over 24 h. The average 
absorbance values of control untreated samples were taken as 100%. Data are summarized as medians. (a) In 
vitro MTT assays of MSCs from HD (n = 7). (b) In vitro MTT assays with selected concentrations for subsequent 
experiments (n = 17).
HD, healthy donor.
*p < 0.05.
**p < 0.01.
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The expression of most of these genes was con-
firmed by RT-PCR [Figure 3(c)], as was as the 
underexpression of BDH2 involved in cellular 
cycle, differentiation, and apoptosis. HIF1α 

underexpression activates many genes associated 
with energy metabolism, angiogenesis, apoptosis 
and other genes involved in increasing oxygen 
release and facilitating adaptation to hypoxia.
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Figure 2.  Differentiation ability of MSC treated with Eltrombopag. (a) Adipogenic and osteogenic differentiation, 
control and differentiated MSCs treated with 15 µM and 50 µM EP, untreated. 10X objective (n = 7). (b) Weekly 
number of adipocytes per field. Data are summarized as medians (n = 7). (c) RT-PCR genes involved in 
differentiation. MSCs treated with EP and untreated, differentiated for 21 days with specific media (n = 4).
EP, eltrombopag.
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Figure 3.  Differential gene expression profiles of MSCs obtained after treatment with Eltrombopag (EP). (a) 
Heatmap showing the expression profiles of the genes that presented a significant change in MSCs treated 
with EP 15 µM, EP 50 µM or vehicle control (CTL, 0 µM) (n = 4 donors). The heatmap was constructed after 
supervised hierarchical clustering of expression profiles of the MSCs and includes 974 genes differentially 
expressed under the three conditions. A color bar indicates the normalized expression signal (from 1 to 
20) over a log2 scale, with blue and red indicating low and high levels of expression, respectively, and white 
representing values around the median. (b) Functional enrichment analysis was done using the list of the top 
200 genes that were upregulated when MSCs were treated with 15 µM of EP. The bar plot includes the main 
upregulated functions ordered by their enrichment ratio. All these functions correspond to GO-BP terms 
and KEGG pathways; all of them were significant (FDR < 0.05). (c) Quantitative real-time polymerase chain 
reaction (qRT-PCR) in independent samples of MSCs isolated from bone marrow: without treatment (0 µM), or 
treated with 15 µM and 50 µM EP. Results are summarized as medians (7 samples tested).
EP, eltrombopag.
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Eltrombopag does not increase intercellular 
ROS level or affect DNA damage
Analysis showed that the drug did not increase the 
intracellular levels of ROS, although ROS levels 
were lower at higher doses [Figure 4(a)]. Likewise, 
the results of DNA double-strand breaks analyses 
do not support the presence of cell damage in 
MSCs treated with the EP [Figure 4(b)].

Eltrombopag increases in vitro hematopoietic 
supporting ability of MSCs
More granulo-monocytic colonies (CFU-GMs) 
were induced from healthy CD34+ cells that had 
been previously co-cultured with MSCs treated 
with EP than from those that had been co-cul-
tured with MSCs in the absence of the drug 
[Figure 4(c)].

Discussion
The originality of the present work lies in it 
addressing, for the first time, the effects of EP on 
the hematopoietic supporting ability of healthy 
MSCs, which are key cells in the regulation of 
hematopoiesis. The role of EP in stimulating 
hematopoiesis in bone marrow failure has been 
clinically validated.1,4,5,11,25,26 Nevertheless, 
besides the well-known direct actions of this drug 
on hematopoietic progenitor cells, our study helps 
show how EP exerts some interesting effects on 
the stromal compartment that can also favor the 
hematopoietic process.2

We have shown here for the first time how EP can 
act on MSCs, increasing their proliferation and 
osteogenic differentiation capacity while decreasing 
their adipogenic differentiation ability. In addition, 
expression arrays revealed the overexpression of 
genes involved in pathways related to hypoxia, inhi-
bition of apoptosis, energy metabolism and hemat-
opoiesis. These were confirmed by RT-PCR. 
Functional assays also identified a decrease in oxi-
dative stress in MSCs treated with high doses of the 
drug. Furthermore, the drug did not induce any 
significant DNA damage within the cell. Finally, 
clonogenic assays confirmed that MSCs treated 
with EP were better able to support hematopoiesis 
in vitro. Although some of these observations are 
based on small sample sizes, there were enough 
cases to enable significant statistical differences to 
be detected, and to validate the genetic profile study 
by RT-PCR. An interesting finding of our work is 
that EP at a concentration of 50 µM increases the 
viability of MSCs measured by the MTT assay, 
whereas at 15 µM the viability is similar to that of 
untreated MSCs. The selection of the concentra-
tions to be used in our experiments requires further 
comment. Most analyses of the role of EP in mega-
karyopoiesis and hematopoiesis in vitro use 

Table 2.  Top-ten genes overexpressed in Eltrombopag-treated MSC (15 
µM).

Gene symbol ID Fold change p FDR p

 BNIP3L TC0800007080.hg.1   4.67 4.08E-08 0.0003

KDM3A TC0200008291.hg.1   4.89 2.24E-08 0.0003

BNIP3 TC1000012329.hg.1   7.56 3.47E-08 0.0003

TMEM45A TC0300008148.hg.1   5.87 7.31E-08 0.0004

AK4 TC0100008618.hg.1 10.18 0.000000168 0.0005

GYS1 TC0800007080.hg.1 10.22 0.000000126 0.0005

PGK1 TC0X00007709.hg.1   7.91 0.000000149 0.0005

SLC2A1 TC0100013908.hg.1   9.23 0.000000184 0.0005

PDK1 TC0200009978.hg.1   9.42 0.000000242 0.0006

VEGFA TC0600008109.hg.1   5.31 0.000000736 0.0016
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Figure 4.  Functional assays: (a) median fluorescence intensity of the intracytoplasmic ROS levels (n = 7), (b) 
percentage of cells with DNA damage (n = 5), and (c) absolute number of granulo-monocyte colonies (n = 11).
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concentrations ranging from 0.1 to 30 µg/ml in 
samples from healthy donors or patients.27 In the 
current study, we initially tested concentrations 
from 10 to 50 µM. In subsequent studies, we 
decided to focus primarily on the 15-µM concen-
tration, since it is widely used and is similar to the 
peak concentration of the drug in plasma of healthy 
subjects.28 However, we also wanted to evaluate the 
effects of EP at 50 µM, since, as we have just men-
tioned, this concentration significantly increased 
the viability of MSCs. In a recent study, Di Paola 
et al.17 have assessed the effects of 6 µM of EP on 
MSCs of ITP pediatric patients, showing that the 
drug is able to increase viability and proliferation, 
while decreasing the release of IFN-gamma and 
IL-6 in MSCs from these subjects. The effects of 
the drug on healthy-donor-derived MSCs (also of 
pediatric age) were minimal or absent at the evalu-
ated concentration.

The recent description that EP may exert its 
effects on MSCs from ITP patients by interfering 
with intracellular iron signaling is evidence of the 
existence of alternative mechanisms of action of 
this drug on different cell types.17 Kurokawa 
et  al.29 described that EP has the capacity to 
inhibit the proliferation of non-myeloid tumor 
cell lines through other mechanisms that do not 
involve the TPO receptor. Other authors have 
reported that EP does not increase the growth of 
bone marrow cells from patients with MDS/
AML.27 This selective finding about proliferation 
depending on the cell type is very intriguing and 
warrants further study.

When assessing one of the functional hallmarks of 
human MSCs, such as proliferation and multiline-
age differentiation, our studies revealed that EP 
increased MSC proliferation and differentiation 
with other bone marrow niche cells. The intimate 
interaction between HSCs and the BM microenvi-
ronment is essential for maintaining and regulating 
the behavior and properties of HSCs throughout 
an individual’s lifetime.30–32 Among the minimal 
criteria for defining ISTC, MSCs should be capa-
ble of differentiating in vitro into adipocytes and 
osteoblasts.33 In our study, MSCs treated with EP 
differentiated to osteocytes and adipocytes, 
although we observed an imbalance in the osteo-
genic/adipogenic differentiation ability compared 
with untreated cells. There were significantly fewer 
adipocytes in the EP-cultured cells. In addition, a 
tendency toward the stronger expression of genes 
involved in mineralization and osteogenesis, such 

as SPARC, SPP1 and RUNX2, as well as a decrease 
in the level of expression of AEBP1. It has been 
widely described that the number of adipocytes is 
inversely related to hematopoietic activity.34 
Autophagy or the liposomal degradation pathway 
regulates cellular homeostasis. This process has 
been linked to various age-associated diseases, 
including cancer. There is evidence that autophagy 
may also play an important role during cell differ-
entiation and in the maintenance of hematopoietic 
stem progenitor cells (HSPCs) and in decreasing 
cellular stress.35,36 Data confirmed overexpression 
of genes such as BNIP3 that may stimulate 
autophagy in the stroma and prevent MSCs aging. 
Its overexpression could be related to the reduc-
tion in ROS. Osteogenic differentiation in MSCs 
from bone marrow is favored by autophagy.37 In 
addition, Lee and Joe38 have demonstrated that 
hypoxic conditions can enhance the therapeutic 
efficacy of MSCs by increasing the level of secre-
tion cytokines and autophagy.

Several genes overexpressed in our study, such as 
BNIP3, PGK1, TMEM45A and VEGFa, are 
known to be involved in response to hypoxia. 
Under hypoxic conditions, the maintenance of 
hematopoietic stem cells becomes stricter, so that 
the clonogenic capacity, proliferation and differ-
entiation of these cells and MSCs increases.39 
Moreover, under these same conditions there is 
an increase in the level of expression of the 
VEGF-a in BM-MSCs.40 Hematopoiesis and 
osteogenesis are both increased, and adipogenic 
differentiation is reduced, under hypoxic condi-
tions.2,41 Our results have shown that EP induces 
hypoxic conditions in MSCs, and that these facil-
itate the development of new therapeutic targets.

Chemically, EP has a central metal group that 
allows it to bind intracellular iron, thereby modi-
fying iron homeostasis.42 This drug causes molec-
ular changes in HSCs that are capable of restoring 
intracellular iron concentrations and reducing 
oxidative stress levels.4 Although further studies 
are needed to understand the effects of EP on 
reactive oxygen species, we have observed a drop 
in oxidative stress levels in treated MSCs. Iron 
plays an important role in hematopoiesis. 
However, its accumulation in certain diseases 
such as myelodysplastic syndromes or in patients 
undergoing transplantation increases the levels of 
intracellular ROS, thereby increasing oxidative 
stress and decreasing the hematopoietic capacity 
of the microenvironment and the degree of 
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differentiation of the CD34+ HSCs.43 Several 
authors2,44 have studied ROS levels in malignant 
hematopoietic cells and revealed the depletion of 
these hematopoietic progenitors in patients. The 
use of EP in preclinical trials reduces the extent of 
intracellular ROS accumulation, intracellular free 
iron levels, and the level of oxidative stress in sev-
eral cell types.4,10,45 Hernández-Sánchez et  al.46 
showed that ITP patients who did not respond to 
EP treatment presented several genes involved in 
activating the heme pathway. This could be 
related to an increase in the levels of intracellular 
iron, oxidative stress (ROS) and ineffective 
hematopoiesis. These effects were not present in 
drug-responsive patients. The latter findings are 
all consistent with our results, even though the 
cell type assessed is different.

Previous studies in MSCs have shown that exces-
sive ROS can alter self-renewal, favor adipogene-
sis, and inhibit osteogenesis, proliferation and 
immunomodulatory properties.47,48 Our results 
suggest that EP can reverse all these effects. In the 
process of differentiating hematopoietic progeni-
tor cells toward megakaryocytic lineage, MSCs 
are involved and are able to secrete several fac-
tors, such as thrombopoietin, which is import for 
forming megakaryocytes.12,49,50

In our study, EP did not produce DNA damage 
in MSC. EP inhibited DNA replication in cells 
from Ewing’s sarcoma.26 However, several arti-
cles conclude that it would be worthwhile to 
explore further the drug’s ability to stimulate 
DNA damage repair in abnormal cells.

Finally, the role of MSCs in supporting hemat-
opoiesis is essential for regulating this process.9,51 
Our observation that EP-treated MSCs can 
increase the clonogenic capacity of CD34+ HSCs 
is probably the most important finding of this 
study. It provides evidence in favor of using the 
drug in cases where hematopoiesis is defective, 
besides their well-known direct effects on hemat-
opoietic cells, and implies that further studies on 
the effects of EP on MSC from patients with 
aplastic anemia are warranted.
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