
Metabolism 137 (2022) 155335

Available online 19 October 2022
0026-0495/© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Modulation of hypothalamic AMPK phosphorylation by olanzapine controls 
energy balance and body weight 

Vitor Ferreira a,b, Cintia Folgueira c, Maria Guillén a, Pablo Zubiaur d,e, Marcos Navares e, 
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A B S T R A C T   

Background: Second-generation antipsychotics (SGAs) are a mainstay therapy for schizophrenia. SGA-treated 
patients present higher risk for weight gain, dyslipidemia and hyperglycemia. Herein, we evaluated the effects 
of olanzapine (OLA), widely prescribed SGA, in mice focusing on changes in body weight and energy balance. We 
further explored OLA effects in protein tyrosine phosphatase-1B deficient (PTP1B-KO) mice, a preclinical model 
of leptin hypersensitivity protected against obesity. 
Methods: Wild-type (WT) and PTP1B-KO mice were fed an OLA-supplemented diet (5 mg/kg/day, 7 months) or 
treated with OLA via intraperitoneal (i.p.) injection or by oral gavage (10 mg/kg/day, 8 weeks). Readouts of the 
crosstalk between hypothalamus and brown or subcutaneous white adipose tissue (BAT and iWAT, respectively) 
were assessed. The effects of intrahypothalamic administration of OLA with adenoviruses expressing constitutive 
active AMPKα1 in mice were also analyzed. 
Results: Both WT and PTP1B-KO mice receiving OLA-supplemented diet presented hyperphagia, but weight gain 
was enhanced only in WT mice. Unexpectedly, all mice receiving OLA via i.p. lost weight without changes in food 
intake, but with increased energy expenditure (EE). In these mice, reduced hypothalamic AMPK phosphorylation 
concurred with elevations in UCP-1 and temperature in BAT. These effects were also found by intrahypothalamic 
OLA injection and were abolished by constitutive activation of AMPK in the hypothalamus. Additionally, OLA i. 
p. treatment was associated with enhanced Tyrosine Hydroxylase (TH)-positive innervation and less sympathetic 
neuron-associated macrophages in iWAT. Both central and i.p. OLA injections increased UCP-1 and TH in iWAT, 
an effect also prevented by hypothalamic AMPK activation. By contrast, in mice fed an OLA-supplemented diet, 
BAT thermogenesis was only enhanced in those lacking PTP1B. Our results shed light for the first time that a 
threshold of OLA levels reaching the hypothalamus is required to activate the hypothalamus BAT/iWAT axis and, 
therefore, avoid weight gain. 
Conclusion: Our results have unraveled an unexpected metabolic rewiring controlled by hypothalamic AMPK that 
avoids weight gain in male mice treated i.p. with OLA by activating BAT thermogenesis and iWAT browning and 
a potential benefit of PTP1B inhibition against OLA-induced weight gain upon oral treatment.  

Abbreviations: SGA, second-generation antipsychotic; FGA, first-generation antipsychotic;; OLA, olanzapine; T2D, type 2 diabetes mellitus; EE, energy expen-
diture; BAT, brown adipose tissue; UCP-1, uncoupling protein-1; WT, wild-type; PTP1B, protein tyrosine phosphatase-1B; i.p., intraperitoneal; VMH, ventromedial 
nucleus of the hypothalamus; AMPK, adenine monophosphate (AMP)-activated protein kinase; GFP, green fluorescent protein; VO2, volume of consumed O2; VCO2, 
volume of eliminated CO2; RER, respiratory exchange rate; LC-MS/MS, liquid chromatography-tandem mass spectrometry; WAT, white adipose tissue; iWAT, 
subcutaneous inguinal white adipose tissue; DIO2, type 2 deiodinase; TH, tyrosine hydroxylase; SAMs, sympathetic neuron-associated macrophages.. 
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1. Introduction 

Schizophrenia is a chronic severe psychiatric disorder that appears in 
late adolescence/early adulthood [1]. According to current clinical 
guidelines, the second-generation (atypical) antipsychotic (SGA) drugs 
constitute the mainstay treatment for schizophrenia and other psychi-
atric disorders [2]. Due to the exponential risk of relapse when the 
treatments are discontinued, patients undergo life-long treatments with 
the SGA initially prescribed in the acute phase for as long as it is effective 
and well-tolerated. Compared to first-generation antipsychotics (FGAs), 
SGAs have superior therapeutic effects and lower probability of causing 
extrapyramidal symptoms. However, clinical observations revealed 
several metabolic alterations in patients under SGA treatment, such as 
body weight gain, hyperglycemia, and dyslipidemia [3,4]. In fact, pa-
tients with schizophrenia have a three-fold higher risk of developing 
obesity and two to four-fold higher risk of type 2 diabetes mellitus (T2D) 
[5]. The role of SGAs in the development of metabolic complications was 
supported by a meta-analysis review of 11 clinical trials with healthy 
volunteers showing that they directly and independently cause weight 
gain and insulin resistance [6]. Moreover, another meta-analysis eval-
uating both FGAs and SGAs efficacy and tolerability found that olan-
zapine (OLA), zotepine and clozapine, were the SGAs associated with 
higher weight gain [7]. These alterations from the beginning of the 
treatments may lead to complications such as T2D and cardiovascular 
disorders that might decrease patients’ compliance and increase health 
costs [8]. 

Hyperphagia is believed to be the main cause of weight gain induced 
by short-term treatment with SGAs [9,10]. However, upon long-term 
administration, when food intake is normalized, reduction in energy 
expenditure (EE) due to defective brown adipose tissue (BAT) thermo-
genesis seems to be responsible for body weight gain [11]. BAT is 
abundant in mitochondria that are enriched in uncoupling protein-1 
(UCP-1) in the inner membrane, which allows dissipation of chemical 
energy in the form of heat by uncoupling fuel oxidation from ATP syn-
thesis [12]. Thermogenic function is considered an important regulator 
of whole-body energetic balance, since defects in this process result in 
weight gain and obesity in several mouse models [9,13]. In humans, 
BAT has been identified in several locations, mainly in the lower neck 
area, where its functionality is currently under extensive study [14]. 
Moreover, the possibility to recruit beige cells with high thermogenic 
potential within white adipose tissue (WAT) depots has opened the field 
for new strategies to combat obesity and its associated comorbidities 
[15]. 

Protein tyrosine phosphatase-1B (PTP1B) is a critical negative 
modulator of leptin and insulin signaling and a therapeutic target for 
obesity and T2D. This has been evidenced in preclinical studies in mice 
deficient in the Ptpn1 gene (encoding PTP1B) that were protected 
against obesity [16–18]. Importantly, alterations in leptin levels have 
been reported in humans and rodents after acute or chronic treatment 
with OLA [19–21]. In this line, herein we hypothesize a potential 
beneficial effect of PTP1B inhibition in the context of OLA-induced 
weight gain. To address this issue, energy balance modulated by an 
inter-organ crosstalk between the hypothalamus and BAT/subcutaneous 
WAT (iWAT) was analyzed in WT and PTP1B-KO male mice receiving 
treatment with OLA either orally or intraperitoneally (i.p.), the main 
administration routes reported in previous studies [5,9]. 

2. Material and methods 

Antibodies for Western blot and immunohistochemistry/immuno-
fluorescence and primers used for qRT-PCR are listed in Supplementary 
Tables 1, 2 and 3 respectively. Additional details regarding methods can 
be found in Supplementary information. 

2.1. Animals and treatments 

Three-months-old wild-type (WT) and PTP1B-KO male mice on the 
C57BL/6 J x 129Sv/J genetic background [22] and age-matched C57BL/ 
6 J male mice were used. Animal studies were approved by the Ethics 
Committee of CSIC and conducted in accordance with the guidelines for 
animal care of Comunidad de Madrid and Directive 2010/63/EU. Ani-
mals were maintained at 22–24 ◦C and 55 % humidity on 12 h light/dark 
cycles (starting at 8 am) and fed a regular rodent chow diet (A04, 
Panlab, Barcelona, Spain) and tap water ad libitum. 

2.1.1. OLA-supplemented diet treatment 
WT and PTP1B-KO mice were fed the same chow diet supplemented 

with OLA (GP8311, Glentham Life Sciences, Corsham, UK) for 7 months. 
OLA dosage in the diet was calculated taking into account an average 
mice weight of 30–35 g and food intake of 4 g/day, corresponding to 5 
mg/kg/day. This dose was chosen based on previous studies in rodents 
treated orally with 5–10 mg/kg/day OLA showing hyperphagia and 
weight gain [10,23–25]. Body weight was monitored monthly and food 
intake was measured at month 5 of the treatment. 

2.1.2. OLA intraperitoneal (i.p.) treatment 
Mice received vehicle (VEH) (2 % v/v DMSO in 0.9 % NaCl) or 10 

mg/kg/day OLA via i.p. injection (10–12 am) for 8 weeks as reported for 
injectable treatments [26–30]. Another cohort of mice was treated with 
OLA at 5 mg/kg/day. Body weight was monitored weekly. Food intake 
was measured manually at week 5 of treatment. OLA levels in plasma 
and hypothalamus were measured in mice receiving a single i.p. injec-
tion (5 or 10 mg/kg), after which they were sacrificed at 2, 4, 8 and 24 h. 

2.1.3. OLA treatment by oral gavage 
Mice received a daily (10–12 am) oral gavage of OLA at 10 mg/kg, 

dose previously reported for oral treatment [24,25,31–34] or vehicle (4 
% v/v DMSO in 0.9 % NaCl) for 8 weeks. The animals were monitored 
for body weight and food intake. For the analysis of OLA levels in plasma 
and hypothalamus, mice received a single oral gavage of OLA (10 mg/ 
kg) and sacrificed at 2, 4, 8 and 24 h. 

2.1.4. OLA intrahypothalamic injections 
During the light phase of the diurnal cycle (8 am-1 pm), mice were 

anesthetized with isoflurane for ~5 min prior to the intrahypothalamic 
injection and placed in the stereotaxic apparatus. Then, mice received 
bilaterally a single injection of OLA (15 nmol, dose used in a previous 
study [35]) or DMSO in the ventromedial nucleus of the hypothalamus 
(VMH) at the coordinates 1.46 mm posterior, ± 0.5 mm lateral and 5.5 
mm depth to Bregma [36]. During the injection, mice remained anes-
thetized with isoflurane. To minimize backflow up the needle track, the 
needle remained inserted for approximately 3–5 min after injection. In 
another experiments, C57BL/6 J male mice were injected adenoviral 
vectors encoding for AMPKα1-CA and GFP (Viraquest, North Liberty, IA, 
USA) in the VMH using the same coordinates (1 μl/injection site) as 
previously reported [37–39], prior to the OLA central injection. 

2.2. Brown adipocyte differentiation 

Brown preadipocytes from lactating mice were immortalized and 
fully differentiated to mature brown adipocytes as previously described 
[40] and detailed in the Supplementary material. 

2.3. GT1-7 culture 

GT1-7 transformed hypothalamic neurosecretory cell line was kindly 
provided by Prof. P. Mellon (University of California San Diego, CA, 
USA) [41]. Cells were grown in DMEM supplemented with 10 % FBS, 2 
mM glutamine (25030-024, Gibco, Waltham, MA, USA), 20 mM HEPES 
and antibiotics (100 U/ml penicillin, 100 μg/ml streptomycin (15140- 
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122, Gibco)). For experiments, cells were seeded at 7.5 × 104 cells/ml in 
6-well plates and grown until confluence. Cells were then treated with 
OLA (12.5 μM) for different time periods ranging from 5 min to 24 h in 
serum-free medium. 

2.4. Preparation of iWAT explants from mice and humans 

iWAT pads from untreated mice were collected under sterile condi-
tions and placed in a 6-well plate with pre-warmed (37 ◦C) serum-free 
DMEM supplemented with 0.2 % (w/v) BSA, 2 mM glutamine, 100 U/ 
ml penicillin and 100 μg/ml streptomycin. Connective tissue and blood 
vessels were removed by dissection before finely mince the tissue. Ex-
plants were cultured with or without OLA at 0.2, 2 and 12.5 μM for 48 h. 
As a positive control of the browning capacity of the tissue, explants 
were treated overnight with a β3-adrenergic agonist (CL, CL326,243, 
Sigma-Aldrich) at 2 μM concentration. 

Abdominal subcutaneous WAT biopsies were collected from 8 
healthy individuals (6 women and 2 men; age: 21–74 years old; BMI: 
22.9–35.0 kg/m2), treated with OLA ex vivo and processed as described 
in [42]. 

2.5. Data analysis 

Statistical analysis was performed with GraphPad Prism version-7.0 
(GraphPad, Inc., San Diego, CA, USA). Data are reported as mean and 
standard error of the mean (SEM). Comparisons between groups were 
made using Student’s t-test if 2 groups were considered. If >2 groups 
were studied with one variable taken into consideration (i.e treatment or 
genotype) One Way-ANOVA (α = 0.05) was used, with Bonferroni’s test 
carried for multiple comparisons between the groups. When more than 
one variable was compared (i.e treatment and genotype) data were 
analyzed with Two Way-ANOVA (α = 0.05) with multiple comparisons 
by Bonferroni’s post-hoc test. To ensure that changes in EE were inde-
pendent of the weight of the mice, EE (Kcal/h) was also analyzed via 
ANCOVA [43] as reported [44]. If not indicated in the figure legend, 
Two Way-ANOVA with Bonferroni’s post-hoc test was used for the sta-
tistical analysis. 

3. Results 

3.1. Differential effects of OLA i.p. and dietary treatment in body weight 
and EE in WT and PTP1B-KO male mice 

We first evaluated food intake and body weight progression in WT 
and PTP1B-KO male mice fed a regular or OLA-supplemented diet (5 
mg/kg/day) for 7 months. As shown in Fig. 1A, dietary administration of 
OLA increased food intake in both genotypes of mice. Therefore, 
considering OLA-induced hyperphagia, mice on dietary treatment 
received approximately 8–10 mg/kg/day. Taking this into account, 
another cohort of mice from both genotypes received daily i.p. injections 
of OLA at 10 mg/kg or VEH for 8 weeks and no alterations in food intake 
were found (Fig. 1B). WT mice fed an OLA-supplemented diet presented 
higher body weight gain than their controls, whereas mice lacking 
PTP1B were protected against weight gain (Fig. 1C, Supplementary 
Fig. 1A). Unexpectedly, male mice from both genotypes treated with 
OLA via i.p. showed a significant body weight loss (Fig. 1D, Supple-
mentary Fig. 1B). 

Body weight loss in OLA-treated male mice via i.p. was associated 
with a marked increase in whole-body EE, a mass-independent effect 
according to ANCOVA regression analysis (Fig. 1E, F), without changes 
in spontaneous locomotor activity (Fig. 1G), pointing the modulation of 
EE as a possible mechanism by which OLA administration via i.p. re-
duces body weight. Regarding the respiratory exchange rate (RER) 
(Supplementary Fig. 1C), only a slight, but significant, increase during 
the dark phase was found in OLA-treated PTP1B-deficient mice, sug-
gesting a higher use of carbohydrates for energy production. On the 

other hand, WT mice fed an OLA-supplemented diet presented reduced 
EE in both light and dark phases; being this effect also mass-independent 
(Fig. 1H, I), and less movement during the dark phase compared to their 
controls (Fig. 1J). Additionally, in WT mice RER was not affected by 
OLA (Supplementary Fig. 1D), suggesting that reduction of locomotor 
activity is not secondary to sedation. By contrast, PTP1B-KO mice did 
not show changes in locomotor activity, but presented a trend to 
elevated EE, reinforcing the relevance of EE in body weight control upon 
OLA treatment (Fig. 1H-J). 

To substantiate the differential effects on body weight depending on 
the administration route, another cohort of mice was treated with OLA 
(10 mg/kg/day) by oral gavage for 8 weeks. As observed in the dietary 
treatment, OLA did not reduce body weight when administered via oral 
gavage (Supplementary Fig. 1E). Notably, in the first 2 weeks of treat-
ment, neither i.p. nor oral gavage administration resulted in changes in 
food intake (Supplementary Fig. 1F). Nevertheless, and opposite to the 
observations in the i.p. treatment, administration of OLA by oral gavage 
increased cumulative food intake after 7 weeks (Supplementary 
Fig. 1G). Altogether, these results led us to propose that the i.p. treat-
ment might be beneficial in preventing body weight gain associated with 
OLA and even predispose mice to lose weight. 

3.2. Differential effects of OLA i.p. and dietary treatment in BAT 
thermogenesis in WT and PTP1B-KO male mice 

Since mice treated with OLA via i.p., independently of the genotype, 
presented body weight loss and increased EE, we analyzed BAT ther-
mogenesis. Increased UCP-1 protein levels were detected in BAT from 
WT and PTP1B-KO OLA-treated mice (Fig. 2A). This was associated with 
elevated BAT temperature in both genotypes, although this effect was 
significant only in WT mice probably due to the higher basal BAT 
temperature of PTP1B-KO mice (Fig. 2B). Tail temperature was also 
elevated in PTP1B-KO mice receiving OLA via i.p. (Fig. 2B), an effect 
that has been associated with heat dissipation and whole-body ther-
moregulation [45]. Moreover, type 2 deiodinase (DIO2), a positive UCP- 
1 modulator, was increased in BAT from WT and PTP1B-KO mice 
receiving i.p. treatment with OLA (Fig. 2C). However, no differences 
were found in Tyrosine Hydroxylase (TH) protein levels. BAT sections 
from those mice evidenced activation features manifested by reduced 
lipid droplet size (Fig. 2D, Supplementary Fig. 2A, B) in parallel with 
increased UCP-1 immunostaining (Fig. 2D). 

On the other hand, in WT mice fed an OLA-supplemented diet, BAT 
UCP-1 levels were comparable to those of the control group, while 
PTP1B-KO mice showed a marked increase in line with enhanced EE 
(Figs. 2E, 1G). Also, BAT temperature showed a tendency to increase in 
PTP1B-KO animals treated orally with OLA, together with a significant 
increase in tail temperature (Fig. 2F). Importantly, EE (Supplementary 
Fig. 3A), BAT and tail temperature (Supplementary Fig. 3B and C) and 
BAT UCP-1 protein levels (Supplementary Fig. 3D) were unchanged in 
mice receiving OLA by oral gavage. Overall, these results suggest that 
changes in body weight are associated with EE and BAT thermogenesis 
in OLA-treated mice. 

3.3. Hypothalamic AMPK phosphorylation controls BAT thermogenesis in 
mice treated with OLA via i.p. 

Of interest, the elevation of UCP-1 protein levels was not observed in 
differentiated brown adipocytes treated in vitro with OLA at concen-
trations that preserved cell viability (Supplementary Fig. 4A, B), point-
ing to an inter-organ crosstalk in the modulation of body weight and EE 
by OLA in mice. 

Based on the previously reported relevance of hypothalamic AMPK 
in controlling BAT thermogenesis in the context of the central effects of 
thyroid hormones [37,39], we determined AMPK phosphorylation in the 
hypothalamus of mice receiving OLA i.p. treatment that presented a 
marked increase in BAT UCP-1 levels in both genotypes (Fig. 2A). 
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Fig. 1. Differential effects of OLA i.p. and dietary treatment in body weight and energy expenditure in WT and PTP1B-KO male mice. WT and PTP1B-KO male mice 
received a daily i.p. injection of OLA (10 mg/kg) during 8 weeks or OLA-supplemented diet (5 mg/kg) for 7 months. A. Daily food intake for one week at month 5 of 
OLA dietary treatment (WT Chow diet: n = 32; WT OLA sup. diet: n = 21; PTP1B-KO Chow diet: n = 33; PTP1B-KO OLA sup. diet: n = 19). B. Daily Food intake 
measured manually for one week at week 5 of OLA i.p. treatment (WT VEH: n = 21; WT OLA: n = 21; PTP1B-KO VEH: n = 20; PTP1B-KO OLA: n = 23). C. Monthly 
body weight variance in mice receiving OLA-supplemented diet (WT Chow diet: n = 10; WT OLA sup. diet: n = 10; PTP1B-KO Chow diet: n = 9; PTP1B-KO OLA sup. 
diet: n = 10). D. Weekly body weight variance throughout OLA i.p. treatment (WT VEH: n = 6; WT OLA: n = 6; PTP1B-KO VEH: n = 9; PTP1B-KO OLA: n = 11) E. 
Energy expenditure (EE) of the experimental groups under i.p. treatment measured by indirect calorimetry (WT VEH: n = 4; WT OLA: n = 6; PTP1B-KO VEH: n = 6; 
PTP1B-KO OLA: n = 6). F. ANCOVA regression analysis of the EE of the groups treated via i.p. injection versus body weight (WT VEH: n = 4; WT OLA: n = 6; PTP1B- 
KO VEH: n = 6; PTP1B-KO OLA: n = 6). G. Spontaneous locomotor activity of the experimental groups under i.p. treatment (WT VEH: n = 4; WT OLA: n = 6; PTP1B- 
KO VEH: n = 6; PTP1B-KO OLA: n = 6). H. EE of the experimental groups receiving OLA-supplemented diet (WT Chow diet: n = 11; WT OLA sup. diet: n = 8; PTP1B- 
KO Chow diet: n = 9; PTP1B-KO OLA sup. diet: n = 8). I. ANCOVA regression analysis of the EE of the groups receiving OLA-supplemented diet versus body weight 
(WT Chow diet: n = 11; WT OLA sup. diet: n = 8; PTP1B-KO Chow diet: n = 9; PTP1B-KO OLA sup. diet: n = 8). J. Spontaneous locomotor activity of the experimental 
groups receiving OLA-supplemented d diet (WT Chow diet: n = 13; WT OLA sup. diet: n = 8; PTP1B-KO Chow diet: n = 11; PTP1B-KO OLA sup. diet: n = 8). Each 
point/bar corresponds to mean ± SEM; Each point/bar corresponds to mean ± SEM; comparisons between groups: * p < 0.05; ** p < 0.01; *** p < 0.001. 
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Fig. 3A shows diminished hypothalamic phospho-AMPK in WT and 
PTP1B-KO mice upon OLA i.p. administration. Notably, this effect was 
absent in the hypothalamus of mice fed an OLA-supplemented diet 
(Fig. 3B) or mice treated by oral gavage (Supplementary Fig. 4C). To 
substantiate these results, we tested the direct effect of OLA in the hy-
pothalamic neuron cell line GT1-7 and a reduction of phospho-AMPK 
was found (Fig. 3C) without compromising cell viability (Supplemen-
tary Fig. 4D). 

To further investigate the direct effect of OLA in modulating AMPK 
phosphorylation in the hypothalamus and, hence, BAT UCP-1 levels, WT 
mice received an intrahypothalamic injection of OLA and the hypo-
thalami were collected after 30 min or 8 h. As shown in Fig. 3D and 
Supplementary Fig. 4E, hypothalamic phospho-AMPK was reduced in 
parallel to an increase in BAT UCP-1 levels in the absence of TH mod-
ulation. Notably, no changes in food intake were found up to 48 h post- 
intrahypothalamic OLA injection (Supplementary Fig. 4F). In another 
cohort of mice, a constitutively active version of AMPKα1 (AMPKα1-CA) 
was overexpressed in the hypothalamus by adenoviral central injection 
5 days prior to OLA intrahypothalamic administration [37,39,46]. As 
shown in Fig. 3E, GFP signal was visualized 5 days after adenoviral 
delivery. Importantly, AMPKα1-CA prevented OLA-induced increase in 
BAT UCP-1 protein levels. These data support the relevance of AMPK 
activation status in the hypothalamic control of UCP-1 levels in BAT in 
response to OLA. 

Next, we interrogated whether the different effects of the i.p. and 
oral treatment in AMPK-driven hypothalamic-BAT axis were related to 
OLA levels reaching the hypothalamus. To achieve this, we measured 
hypothalamic OLA levels upon a single dose (10 mg/kg) administered 
via i.p. or oral gavage by liquid chromatography-tandem mass spec-
trometry (LC-MS/MS) in extracts from this brain region, as detailed in 
the Supplementary material. As shown in Fig. 3F, hypothalamic OLA 
levels peaked at 2 h; being almost 2.5-fold higher when OLA was 
administered via i.p. These results suggest that the levels of OLA 
required to modulate hypothalamic AMPK are likely not achieved in the 
oral treatment. As expected, OLA levels in plasma paralleled those 
reached in the hypothalamus (Fig. 3F). Moreover, mRNA levels of 
Cyp1a2, encoding the main enzyme that metabolizes OLA in the liver 
[47], remained unchanged (Supplementary Fig. 5A). To ensure that the 
modulation of AMPK phosphorylation relays in hypothalamic OLA 
levels, mice were treated with OLA via i.p. injection at 5 mg/kg/day. Of 
note, under this lower dose, the peaks of OLA levels in plasma and hy-
pothalamus were ~2.5-fold lower than those of the 10 mg/kg i.p. in-
jection and, importantly, both peaks were similar to those reached by 
the oral gavage (Supplementary Fig. 5B). Moreover, mice receiving the 
chronic treatment with OLA via i.p. at 5 mg/kg/day did not show re-
ductions in body weight or hypothalamic phospho-AMPK and also did 
not present increased BAT UCP-1 levels (Supplementary Fig. 5C-E). 
These results support that the levels of OLA reaching the hypothalamus 
might be crucial for decreasing AMPK phosphorylation in this brain 
region which activates BAT thermogenesis. 

3.4. Activation of iWAT browning by increased sympathetic innervation 
and decreased sympathetic neuron-associated macrophages (SAMs) upon 
OLA treatment via i.p. in male mice 

In addition to BAT, browning of iWAT contributes to whole-body 
energy balance [48]. The analysis of iWAT revealed an up-regulation 
of UCP-1 protein levels in WT and PTP1B-KO mice receiving OLA 
treatment via i.p. that paralleled with an increase in TH levels (Fig. 4A), 
suggesting enhanced sympathetic innervation in this fat depot. This was 
confirmed by the analysis of TH positive nervous fibers (Fig. 4B). 
Additionally, changes in iWAT morphology manifested by reduced lipid 
droplet size were induced by OLA in either WT or PTP1B-KO mice 
(Fig. 4B, Supplementary Fig. 4A), thereby reflecting thermogenic acti-
vation of this fat depot. Moreover, double TH-F4/80 immunostaining of 
iWAT tissue (Fig. 4C, Supplementary Videos 1–4) revealed reduced 
presence of SAMs in mice from both genotypes receiving OLA via i.p. 
Again, iWAT browning was not found in mice fed an OLA-supplemented 
diet (Fig. 4D). These results highlight the synergism between central and 
intra-tissue signals in the activation and browning of iWAT by OLA. 

To understand whether OLA directly induces browning, iWAT ex-
plants from WT mice were treated with different concentrations of OLA 
(Fig. 5A). As a positive control, iWAT explants from WT mice were 
treated with the β3-adrenergic agonist CL316,243 (2 μM) and, as ex-
pected, UCP-1 and TH levels were increased (Fig. 5A). However, UCP-1 
levels did not increase by OLA. Similar results were found in human 
explants of subcutaneous fat (Fig. 5B). Since it has been previously re-
ported that hypothalamic AMPK also modulates WAT browning [49], 
we investigated a possible role of the hypothalamus in OLA-mediated 
effects in iWAT. For this goal, WT mice received OLA via intra-
hypothalamic injection and, as shown in Fig. 5C, elevations in UCP-1 
and TH were observed at 48 h post-injection. A step further, in 
another cohort of mice AMPKα1-CA was overexpressed in the hypo-
thalamus by adenoviral central injection as described above (Fig. 5D) 
[37,39]. Importantly, AMPKα1-CA prevented OLA-induced elevation of 
iWAT UCP-1 protein levels (Fig. 5D). These data support the relevance of 
AMPK activation status in the hypothalamic control of iWAT browning 
in response to OLA. 

4. Discussion 

Preclinical studies have been conducted to unravel the metabolic 
side-effects associated with SGAs [5,9]; being OLA the focus of many of 
them due to body weight gain and insulin resistance found in patients 
under treatment [50]. Herein, we report unexpected differences in body 
weight by administering OLA orally by diet supplementation/oral 
gavage or via i.p. injections. Both routes have been used in studies in 
rodents at similar doses [10,23–34,51]. At the molecular level, we found 
firstly that PTP1B inhibition prevented weight gain in male mice during 
long-term oral treatment with OLA. Secondly, we unraveled PTP1B- 
independent effects of OLA i.p. administration in BAT activation and 
iWAT browning through a central-peripheral inter-organ crosstalk 
governed by hypothalamic AMPK and leading to weight loss. 

Fig. 2. Differential effects of OLA i.p. and dietary treatment in BAT thermogenesis in WT and PTP1B-KO male mice. A. Representative Western blot of BAT UCP-1 
and densitometric quantification normalized for Vinculin levels in mice treated with OLA via i.p. (WT VEH: n = 5; WT OLA: n = 5; PTP1B-KO VEH: n = 6; PTP1B-KO 
OLA: n = 6). B. Thermographic pictures and quantification of BAT (upper panel) and tail (lower panel) maximal temperature of VEH- and OLA- treated male mice via i. 
p. (WT VEH: n = 10; WT OLA: n = 17; PTP1B-KO VEH: n = 7; PTP1B-KO OLA: n = 7). C. Representative Western blots of DIO2 and TH in BAT of WT (upper panel) and 
PTP1B-KO (middle panel) mice treated with OLA via i.p. Densitometric quantification normalized for Vinculin levels (lower panel) (WT VEH: n = 3; WT OLA: n = 4; 
PTP1B-KO VEH: n = 5; PTP1B-KO OLA: n = 6). D. Representative H&E images of BAT (20×, scale bars-100 μm, upper images), PLIN1 immunofluorescence analyzed 
by confocal microscopy (63×, scale bars-100 μm, middle images) and UCP-1 immunohistochemistry (20×, scale bars-100 μm, lower images) of mice treated with OLA 
via i.p. (WT VEH: n = 3; WT OLA: n = 3; PTP1B-KO VEH: n = 3; PTP1B-KO OLA: n = 3). E. Representative Western blot of BAT UCP-1 and densitometric quan-
tification normalized for Vinculin levels in mice receiving OLA supplemented in the diet (WT Chow diet: n = 6; WT OLA sup. diet: n = 9; PTP1B-KO Chow diet: n = 6; 
PTP1B-KO OLA sup. diet: n = 7). F. Thermographic pictures (upper panel) and quantification of BAT and tail (lower panel) maximal temperature in mice receiving OLA 
supplemented in the diet (BAT: WT Chow diet: n = 19; WT OLA sup. diet: n = 10; PTP1B-KO Chow diet: n = 9; PTP1B-KO OLA sup. diet: n = 8; Tail: WT Chow diet: n 
= 19; WT OLA sup. diet: n = 10; PTP1B-KO Chow diet: n = 9; PTP1B-KO OLA sup. diet: n = 6). Each point/bar corresponds to mean ± SEM; comparisons between 
groups: * p < 0.05; ** p < 0.01; *** p < 0.001. 
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Fig. 3. Hypothalamic phosphorylation status of AMPK controls BAT thermogenesis in male mice treated with OLA via i.p. A. Representative Western blots of hy-
pothalamic AMPK phosphorylation in OLA-treated mice via i.p. and densitometric quantification normalized for Vinculin levels (WT VEH: n = 8; WT OLA: n = 9; 
PTP1B-KO VEH: n = 8; PTP1B-KO OLA: n = 13). B. Representative Western blots of AMPK phosphorylation in the hypothalamus of WT and PTP1B-KO mice receiving 
OLA-supplemented diet for 7 months (WT Chow diet: n = 6; WT OLA sup. diet: n = 6; PTP1B-KO Chow diet: n = 4; PTP1B-KO OLA sup diet: n = 6). C. Representative 
Western blot of AMPK phosphorylation in GT1–7 hypothalamic neurons treated with OLA (12.5 μM) for 30 min and densitometric quantification normalized for 
Vinculin levels (DMSO: n = 3; OLA 12.5 μM: n = 3, groups were compared using Student’s t-test). D. Experimental design (left panel). Representative Western blots of 
hypothalamic AMPK phosphorylation and total AMPK in WT male mice 8 h after receiving an intrahypothalamic injection with OLA (15 nmol) (middle panel) and 
densitometric quantification normalized for Vinculin levels (WT VEH: n = 3; WT OLA: n = 3, groups were compared using Student’s t-test). Representative Western 
blot of BAT UCP-1 in WT male mice under conditions described in D with respective densitometric quantification normalized for Vinculin levels (right panel) (WT 
VEH: n = 3; WT OLA: n = 3, groups were compared using Student’s t-test). E. Experimental design of the adenoviral intrahypothalamic injection of constitutively 
activated AMPKα1 in male mice 5 days prior to a single OLA (15 nmol) intrahypothalamic injection and BAT collection after 8 h (left panel). Representative confocal 
microscopy GFP immunofluorescence (25×, scale bars-100 μm) showing exogenous AMPK (middle panel). Representative Western blot of BAT UCP-1 in male mice 
injected AMPKα1-CA or GFP adenoviruses 5 days prior to OLA or DMSO intrahypothalamic injection and respective densitometric quantification normalized for 
Vinculin levels (right panel) (GFP VEH: n = 7; GFP OLA: n = 6; AMPKα1-CA VEH: n = 6; AMPKα1-CA OLA: n = 7). F. OLA levels in extracts from hypothalamus of WT 
male mice treated with a single dose of OLA via i.p. injection or receiving a single oral gavage (i.p.: 2 h n = 4; 4 h n = 4; 8 h n = 4; 24 h n = 3; oral gavage: 2 h n = 4; 
4 h n = 4; 8 h n = 3; 24 h n = 4). OLA plasma levels in WT male mice treated with a single dose of OLA via i.p. injection or receiving a single oral gavage (i.p.: 2 h n =
5; 4 h n = 5; 8 h n = 4; 24 h n = 4; oral gavage: 2 h n = 4; 4 h n = 4; 8 h n = 3; 24 h n = 3). Each point/bar corresponds to mean ± SEM; comparisons between groups: 
* p < 0.05; ** p < 0.01; *** p < 0.001. 
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Fig. 4. Activation of iWAT browning through increased sympathetic innervation and decreased sympathetic neuron-associated macrophages (SAMs) in male mice 
treated with OLA via i.p. A. Representative Western blots of UCP-1 and TH in iWAT and densitometric quantification normalized for Vinculin levels in WT and 
PTP1B-KO mice receiving OLA via i.p. (WT VEH: n = 12; WT OLA: n = 14; PTP1B-KO VEH: n = 11; PTP1B-KO OLA: n = 11). B. Representative H&E images of iWAT 
(20×, scale bars-100 μm, left images); UCP-1 immunohistochemistry (20×, scale bars-100 μm, middle left images); PLIN1 immunofluorescence (20×, scale bars-50 μm, 
middle right images) (WT VEH: n = 3; WT OLA: n = 3; PTP1B-KO VEH: n = 3; PTP1B-KO OLA: n = 3) and immunofluorescence of TH positive fibers analyzed by 
confocal microscopy (25×, scale bars-100 μm, right images) of OLA-treated mice via i.p. (WT VEH: n = 5; WT OLA: n = 5; PTP1B-KO VEH: n = 4; PTP1B-KO OLA: n =
4). C. Representative immunofluorescence of TH positive fibers and F4/80 positive cells in iWAT analyzed by confocal microscopy (25×, scale bars-100 μm, upper 
images) and respective zoom (lower panel) and quantification (WT VEH: n = 7; WT OLA: n = 6; PTP1B-KO VEH: n = 5; PTP1B-KO OLA: n = 4). D. Representative 
Western blots of UCP-1 in iWAT and densitometric quantification normalized for Vinculin levels in mice receiving OLA supplemented diet (WT Chow diet: n = 6; WT 
OLA sup. diet: n = 9; PTP1B-KO Chow diet: n = 6; PTP1B-KO OLA sup diet: n = 7). Each point/bar corresponds to mean ± SEM; comparisons between groups: * p <
0.05; ** p < 0.01; *** p < 0.001. 
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To understand the molecular basis behind the weight loss induced by 
OLA i.p. administration and considering previous studies that point 
signals emerging from the hypothalamus as key modulators of systemic 
energy balance and weight control [39,52–56], we focused our research 
in the hypothalamic AMPK-BAT axis [57]. It has been demonstrated that 
a reduction of hypothalamic phospho-AMPK by T3, estradiol, bone 
morphogenetic protein 8b (BMP8b) or nicotine led to an increase in BAT 
UCP-1 [37–39,49]. Therefore, this hypothalamic AMPK-BAT UCP-1 axis 
could also explain the effect of OLA administered via i.p. in male mice. 
Of interest, this molecular signature was associated with an increase in 
DIO2 protein levels, a well-known UCP-1 positive modulator [58], but 
not TH. In addition, BAT activation by OLA injections was histologically 
evidenced by smaller lipid droplets. Of relevance, OLA failed to increase 
UCP-1 in differentiated brown adipocytes. This evidence, together with 
the elevation of BAT UCP-1 concomitant with a reduction of hypotha-
lamic phospho-AMPK in mice receiving an OLA intrahypothalamic in-
jection, strongly supports the hypothalamus-BAT crosstalk as 
responsible for the increased BAT temperature and EE during the OLA i. 
p. treatment in male mice, leading to weight loss. 

Of relevance, OLA downregulated phospho-AMPK in GT1–7 hypo-
thalamic neurons, suggesting a direct effect in this cell population in 
triggering the central-peripheral interactome. Chen et al. reported an 
increase in phospho-AMPK in NPY-GFP hypothalamic neurons treated 

with OLA [59]. However, they used a higher concentration (25 μM) for 
longer time (3 h) compared to our experimental setting (12.5 μM for 30 
min). Additionally, NPY neurons are mainly found in the arcuate nu-
cleus (ARC) [60], while GT1–7 cells are gonadotropin-releasing hor-
mone-expressing and -secreting neurons that are enriched in the VMH 
[61]. It is noteworthy to highlight that the VMH is the main hypotha-
lamic region regulating whole body energy balance. In fact, we found 
that constitutive activation of AMPKα1, previously reported to control 
VMH-induced thermogenesis specifically in this hypothalamic region 
[38,39,49,62], prevented OLA-induced UCP-1 elevation in BAT, 
evidencing AMPK as a key controller of BAT thermogenesis in the OLA i. 
p. treatment. In this line, the work of Skrede et al. suggests a striking 
importance of OLA effects in the different hypothalamic nuclei [63]. In 
particular, a single intramuscular injection (70 mg/kg) in female rats 
after adenoviral inhibition of AMPK specifically in the ARC reduced 
hyperphagia and weight gain compared to the controls, as also sup-
ported by another study [64]. Interestingly, hyperphagia and weight 
gain upon OLA intramuscular injection at 100 mg/kg was not altered by 
AMPK inhibition in the VMH [63]. Of note, these results are not 
discordant with ours, since we found inhibition of OLA-induced UCP-1 
in BAT upon constitutive AMPKα1 activation in the VMH. Importantly, 
hyperphagia was not found by OLA administration via i.p. neither at the 
beginning nor at week 5 of the treatment, suggesting the absence of OLA 

Fig. 5. Hypothalamic AMPK controls iWAT browning in i.p. OLA-treated mice. A. Representative UCP-1 and TH Western blots in iWAT explants stimulated with the 
β3-adrenergic agonist CL316,243 (2 μM) or treated with OLA (0.2, 2 and 12.5 μM) for 48 h and densitometric quantification normalized for Vinculin levels (n = 3 per 
condition). B. UCP1 mRNA levels in human explants of subcutaneous adipose tissue stimulated with OLA (0.2 and 2 μM) for 24 and 72 h. GAPDH was used as 
housekeeping gene (n = 8 per condition). C. Experimental design (left panel). Representative Western blots of UCP-1 (WT VEH: n = 13; WT OLA: n = 16; groups were 
compared using Student’s t-test) and TH (WT VEH: n = 5; WT OLA: n = 6; groups were compared using Student’s t-test) in iWAT from WT male mice 48 h after an 
intrahypothalamic OLA injection normalized for Vinculin levels (right panel). D. Experimental design of the adenoviral intrahypothalamic injection of constitutively 
active AMPKα1 in male mice 4 days prior to OLA (15 nmol) intrahypothalamic injection and iWAT collection at 48 h. Representative BAT UCP-1 Western blot of and 
densitometric quantification normalized for Vinculin levels (AMPKα1-CA VEH: n = 10; AMPKα1-CA OLA: n = 10). Each point/bar corresponds to mean ± SEM; 
comparisons between groups: * p < 0.05; ** p < 0.01; *** p < 0.001. 
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orexigenic effects through activation of ARC signals under our experi-
mental conditions. Thus, these studies support the specific control of 
feeding behavior by the ARC whereas the VMH is mainly responsible for 
controlling energy balance, as reviewed [62]. Furthermore, He et al. 
showed that hyperphagia was induced in female rats receiving OLA in 
cookie dough (3 mg/kg/day) at early stages of the treatment which 
correlated with increased phospho-AMPK in hypothalamic extracts and 
body weight gain [65]. Nonetheless, the work of Ferno et al. in female 
rats shows that hyperphagia induced by OLA oral administration is 
mediated through changes in hypothalamic neuropeptides in an AMPK- 
independent manner [64] in agreement with our results in male mice 
receiving OLA orally. Notably, our data show that a single OLA i.p. in-
jection in the VMH negative modulates hypothalamic AMPK phos-
phorylation which, as mentioned above, activates BAT thermogenesis. 
Importantly, the above-mentioned studies were conducted in female 
rodents and OLA orexigenic effects were lost when this SGA was 
administered to ovariectomized rats [66] indicating that estradiol could 
play a role in OLA-induced hyperphagia and strongly suggesting that 
these effects might be gender dependent. In this regard, OLA effects in 
female mice receiving treatment via i.p., as well as the potential impact 
of estrogens in the activation of hypothalamus-BAT/iWAT axis, are 
currently under investigation. Related with gender dimorphism, our 
results contrast with the study of Ferno et al. [67] in male rats in which 
intramuscular OLA injections did not activate BAT, but led to less weight 
gain compared to vehicle-treated rats. These discrepancies can be due to 
the treatment duration (16 days in the study of Ferno et al. versus 8 
weeks in our study), and/or differences in drug metabolism between 
species or formulation since they used a long-acting version of OLA. 

Another issue addressed herein for the first time is the relation be-
tween activation of the hypothalamic AMPK-BAT UCP-1 axis and OLA 
levels reaching the hypothalamus. Male mice under oral treatment show 
hyperphagia, even at long time-periods, which favors weight gain; this 
effect being correlated with lower hypothalamic OLA levels and absence 
of BAT activation. By contrast, this dose (10 mg/kg) administered via i. 
p. resulted in higher OLA levels in the hypothalamus and activated the 
hypothalamus-BAT crosstalk resulting in weight loss. The need to 
overcome a threshold of OLA levels for activating this molecular 
pathway was also supported by an i.p. treatment with a lower dose (5 
mg/kg/day) which failed to induce weight loss. Notably, and related 
with feeding activating mechanisms, in male mice treated with OLA by 
either i.p. injection or oral gavage we did not observe the increase in 
food intake found in female rats [63–65] even in the early stage of the 
treatment, suggesting that the molecular mechanisms linked to hyper-
phagia might be delayed in male mice. Moreover, since hyperphagia was 
exclusively found in mice treated orally with OLA, it is tempting to as-
sume that the lower dose reaching the hypothalamus under this exper-
imental setting can activate, due to anatomical proximity [68,69], the 
feeding-related molecular mechanisms of the ARC. However, in the i. 
p. treatment at 10 mg/kg, a higher dose of OLA reaches the hypothal-
amus and, under these conditions, the ARC signals might be suppressed 
by activation of the VMH, as reported [70,71], arising VMH also as a 
central satiety center. Very recently, Sternson et al. found excitatory 
projections of the VMH neurons to anorexigenic POMC neurons, 
strongly supporting that VMH reduces food intake by activating POMC 
neurons in the ARC and not by inhibiting orexigenic NPY neurons [72]. 
Taking all these into consideration, we suggest that OLA administered 
by i.p. might be beneficial to avoid weight gain associated with the oral 
administration. 

It is noteworthy to highlight that, in humans, metformin, a well- 
known AMPK activator, has been used as an adjuvant for ameliorating 
OLA-induced weight gain and metabolic dysfunction [73]. However, the 
central effects of metformin were not clearly associated with modulation 
of AMPK activity. Metformin blocked AMPK activation and inhibited 
NPY expression in rat hypothalamic neurons under low glucose condi-
tions [74]. Moreover, when centrally administered to rodents, metfor-
min prevented ghrelin-induced stimulation of NPY and AgRP via 

blockade of AMPK activation [75], supporting its ability to reduce food 
intake by decreasing the orexigenic peptides in the hypothalamus. 
However, another in vivo study in rats receiving metformin via central 
administration showed anorexigenic effects in an AMPK-independent 
manner, an effect possibly related to STAT3-mediated signaling [76]. 
Thus, metformin might regulate the feeding behavior by modulation of 
several appetite regulatory pathways. Additionally, oral metformin 
administration increases BAT UCP-1 levels in obese mice, as we recently 
reported [77]. Overall, our results point that OLA administration via i.p. 
could be an alternative to replace metformin or other combinatorial 
treatments in order to avoid additional adverse side-effects. 

Interestingly, our results reveal that PTP1B inhibition, which impacts 
on central and peripheral metabolic control [22,78–80], does not in-
fluence the hypothalamus-BAT axis in response to OLA i.p. administra-
tion. In agreement with previous data [81], BAT sections from PTP1B- 
KO mice contained more UCP-1 positive areas which likely contribute 
to their inherent protection against obesity. However, differences in 
basal UCP-1 levels were not observed in aged mice (control mice at the 
end of the dietary treatment). BAT temperature was also elevated in 
young PTP1B-KO mice under basal conditions when compared to age- 
matched WT animals, but both genotypes reached similar BAT tem-
perature upon OLA i.p. treatment. The augmented basal BAT UCP-1 of 
global PTP1B-deficient mice seems not to be mediated by deletion of this 
phosphatase in the hypothalamus since Tsou et al. reported no differ-
ences in basal Ucp1 expression in BAT from mice with hypothalamic 
PTP1B deficiency [82]. In fact, PTP1B re-expression in PTP1B-KO brown 
adipocytes reduces UCP-1 [83], reinforcing a direct effect of this phos-
phatase in BAT. It is also relevant to mention that PTP1B-KO mice 
presented higher tail temperature upon OLA administration, either oral 
or i.p., reflecting a better heat dissipation capacity through vasodilata-
tion. On the other hand, PTP1B-KO mice under the OLA dietary treat-
ment did not present abnormal weight gain. Although hyperphagia was 
comparable with that of WT mice, animals lacking PTP1B had higher EE, 
an effect likely due to BAT thermogenesis. Since we did not find a 
decrease in hypothalamic phospho-AMPK levels, BAT activation in those 
mice likely rely on mechanisms different to those in the i.p. treatment, 
for instance, exacerbated diet-induced thermogenesis. Future experi-
ments will elucidate whether BAT activation in PTP1B-deficient mice is 
induced by OLA-mediated hyperphagia. So far, although clinical trials 
are being conducted with PTP1B inhibitors such as trodusquemine (i.e., 
NCT00606112), none of them are currently approved for clinical use. 
Interestingly, it has been reported that schizophrenia-like symptoms 
induced in mice via administration of subanesthetic doses of ketamine 
are alleviated by trodusquemine [84]. Mechanistically, PTP1B ablation 
in glutamatergic neurons seems to mediate ketamine-induced deficits in 
endocannabinoid mobilization, memory and sensorimotor gating. This 
study and our results herein emphasize the potential benefit of targeting 
PTP1B to prevent metabolic comorbidities in patients under OLA 
treatment, as well as to ameliorate schizophrenia-like symptoms. 

Browning of iWAT has arisen as a contributor to whole-body energy 
balance [85]. Our results revealed that, in both WT and PTP1B-deficient 
male mice, i.p. OLA administration reduced lipid droplet size and 
elevated UCP-1 in iWAT, histological features of browning. This effect 
was associated with an increase in TH positive sympathetic innervation, 
which controls adipose tissue function [86,87], as well as less number of 
SAMs. These macrophages were recently proposed as responsible for 
clearing the excess of noradrenaline upon stimulation of the sympathetic 
fibers [87]. These results, together with increased iWAT UCP-1 and TH 
levels in mice receiving an intrahypothalamic OLA injection, and the 
failure of OLA in inducing these changes in explants from mice and 
humans, strongly support hypothalamic signals via sympathetic nervous 
system as mediators of OLA actions in iWAT upon i.p. administration. 
These results are reinforced by our previous ex vivo studies in human 
WAT explants describing the inability of SGAs to alter the expression of 
adipokines or genes involved in energy regulation [42,88]. Moreover, 
the hypothalamic-iWAT connection by OLA leading to browning 
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paralleled with a reduction of hypothalamic phospho-AMPK in agree-
ment with the work of Martins et al. on the effect of BMP8b on energy 
balance [49]. Furthermore, the prevention of OLA-mediated UCP-1 
elevation by AMPKα1 activation in the hypothalamus reinforces the 
negative modulation of AMPK in this brain region as inducer of iWAT 
browning by this SGA. In this line, the effect of leptin in increasing WAT 
lipolysis has been recently attributed to the actions of sympathetic 
neuronal efferents to adipose tissue [86], supporting the neuro-adipose 
junction in WAT. Interestingly, neither WT nor PTP1B-KO mice treated 
orally with OLA presented changes in iWAT UCP-1 levels, emphasizing 
the potential therapeutic advantage of an injectable treatment when 
compared to the oral administration. 

The translational value of our results is supported by the recent 
findings on the relevance of activation of BAT and/or browning of WAT 
in humans by cold exposure or drug interventions to target obesity, as 
reviewed [89,90]. Also of clinical relevance, a recent study has reported 
safety of intravenous OLA administration in patients even after multiple 
doses [91]. In another study, individuals with schizophrenia were 
followed-up during 24 weeks of treatment with OLA either orally (10, 
15, or 20 mg/day) or by injections of a long-acting formulation (150 mg 
every 2 weeks, 405 mg every 4 weeks, or 300 mg every 2 weeks) [92]. 
Despite both groups presented a significantly increase in the mean body 
weight, the group under long-acting OLA injection gained less weight, 
although not significantly differences were found. Importantly, patients 
who were obese at the beginning of the treatment showed a significant 
lower weight gain when treated with long-acting OLA injection than the 
obese patients receiving oral OLA treatment. Moreover, a 6-year clinical 
study of the efficacy and safety of the OLA long-acting injection in pa-
tients with schizophrenia showed that these patients had a mean in-
crease of their body weight of 2.1–2.2 kg after the treatment period 
[93,94]. Although this study was not conducted in parallel in patients 
under oral treatment, a meta-analysis of 78 studies showed a weight gain 
of 4.15 kg during 10 weeks of OLA oral treatment [95]. These promising 
studies support the potential therapeutic value of our preclinical study 
based on implementation of an OLA i.p. treatment. 

Finally, the impact of gut microbiota in the oral treatment with OLA 
must also be taken into account since contradictory results have been 
reported. For instance, rats treated orally with OLA reshape their gut 
microbiota in a very similar way that high fat-diet does [25,96], 
resulting in a worse prognosis of weight gain. On the other hand, a 10- 
day study in healthy men showed that OLA does not alter the plasma 
concentration of gut hormones [97]. Other study reported that patients 
treated with OLA for 6 months have increased ghrelin and leptin plasma 
levels, as well as adiposity [98]. Moreover, plasma ghrelin was the only 
gut hormone found elevated in male rats orally treated with OLA [99], 
supporting the underlie impairment in satiation by OLA administered 
orally. Altogether, these studies point dysbiosis and/or changes in 
ghrelin secretion as possible additional factors by which oral treatments 
with OLA can lead to weight gain. Moreover, gut microbiota, which is 
modulated by many factors, can also influence plasma and, hence, hy-
pothalamic OLA availability in oral treatments. 

Overall, our results suggest that, based on the administration route, 
OLA modulates energy balance in AMPK dependent- or independent 
manner. Whereas reduction of hypothalamic phospho-AMPK increases 
EE, as proven by OLA administration via i.p, the decrease of EE in the 
dietary treatment occurs in a hypothalamic-AMPK independent-manner. 
Taking into account the substantial differences in OLA levels reaching 
this brain region in mice receiving a single i.p. injection compared to a 
single oral administration, our data strongly suggest that to avoid weight 
gain through the activation of the hypothalamus-BAT/iWAT axis a 
threshold of OLA level in the hypothalamus is required which is ach-
ieved by the i.p. administration and not by the oral treatment in which 

drug absorption is influenced by multiple factors. 

5. Conclusion 

This study has revealed an interactome between the hypothalamus 
and BAT/iWAT in response to an OLA i.p treatment, pointing this hy-
pothalamic AMPK-driven crosstalk as responsible for BAT and iWAT 
activation. This complex metabolic rewiring was associated with higher 
hypothalamic OLA levels and body weight loss when male mice were 
treated with OLA via i.p. These results, together with the protection 
against OLA-induced weight gain conferred by PTP1B deficiency in the 
oral treatment, might have translational implications to avoid obesity 
and other associated metabolic side effects of OLA. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.metabol.2022.155335. 
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