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ABSTRACT

We present clustering redshift measurements for Dark Energy Survey (DES) lens sample galaxies used in weak gravitational
lensing and galaxy clustering studies. To perform these measurements, we cross-correlate with spectroscopic galaxies from the
Baryon Acoustic Oscillation Survey (BOSS) and its extension, eBOSS. We validate our methodology in simulations, including a
new technique to calibrate systematic errors that result from the galaxy clustering bias, and we find that our method is generally
unbiased in calibrating the mean redshift. We apply our method to the data, and estimate the redshift distribution for 11 different
photometrically selected bins. We find general agreement between clustering redshift and photometric redshift estimates, with
differences on the inferred mean redshift found to be below |Az| = 0.01 in most of the bins. We also test a method to calibrate a
width parameter for redshift distributions, which we found necessary to use for some of our samples. Our typical uncertainties
on the mean redshift ranged from 0.003 to 0.008, while our uncertainties on the width ranged from 4 to 9 per cent. We discuss
how these results calibrate the photometric redshift distributions used in companion papers for DES Year 3 results.

Key words: surveys— galaxies: distances and redshifts —large-scale structure of Universe —cosmology: observations.

1 INTRODUCTION

Large galaxy imaging surveys have proven to be an effective tool for
understanding the cosmos. Optical surveys, such as the Dark Energy
Survey (DES; DES Collaboration 2005), the Kilo-Degree Survey
(KiDS; de Jong et al. 2013) and the Hyper Suprime-Cam (HSC;
Aihara et al. 2018), have shown the ability to catalogue millions of
galaxies and to extrapolate cosmological information out to redshift,
z ~ 1, probing the structure and dynamics of the Universe in the past
~ six billion years (DES Collaboration 2018; Asgari et al. 2021).
Accompanying this work, DES Collaboration et al. (2022) shows the
latest analysis of the structure of the Universe using galaxy clustering
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and weak lensing measurements of more than 100 million galaxies.
In the future, surveys such as the Vera Rubin Observatory Legacy
Survey of Space and Time (LSST; Ivezi¢ et al. 2019) and Euclid
(Laureijs et al. 2011) will extend such analyses to include billions of
galaxies further back in time.

A critical component of these imaging surveys is the estimation
of galaxy redshifts. Accurate redshift information is necessary for
precise cosmological measurements of the growth of structure across
time. However, large imaging surveys tend not to have spectroscopic
capabilities. Instead, spectral information tends to be limited to
magnitude estimates in a few colour bands. In the DES, imaging data
include the g, r, i, z and Y bands. There is a large body of literature
that deals with the estimation of photometric redshifts (photo-z); see,
for example, Hildebrandt et al. (2021) and Hoyle et al. (2018), and
references therein. In these methods, a redshift estimate is extracted
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from these few colour and magnitude measurements. These methods
all require some form of testing on galaxies where photometric
and spectroscopic measurements are taken. Despite much success
with these methodologies, the best photometric redshift estimates in
the DES for particularly suitable samples of galaxies are thought
to have uncertainties around o, ~ 0.02 for individual galaxies,
with many samples much more uncertain. These errors are orders
of magnitude larger than typical spectroscopic redshift errors. One
particular issue is that a systematic bias can emerge if the test samples
of galaxies are not fully representative of the galaxies being studied
(Rivera et al. 2018). This may happen, for example, because of a
difference in the depth of the samples. Extrapolating from a few
colour-band measurements to a precise redshift remains a difficult
problem.

In recent years, an alternative and complementary method of
estimating the redshifts of galaxies has developed. The approach,
called ‘clustering redshifts’ or ‘cross-correlation redshifts’, computes
an angular cross-correlation of the galaxy sample in question and
a galaxy sample with known (spectroscopic) redshifts. This cross-
correlation will contain a signal proportional to the redshift overlap
of the two samples. The method is completely independent of
photometry, not relying on the colour-magnitude information at
all (other than for initially binning the galaxies). Instead, it relies
on gravity. Because galaxies cluster, objects near each other in
angular coordinates are more likely to be near each other in radial
separation, and thus redshift. While this spatial information will not
be significantly informative on a galaxy by galaxy basis, it is very
useful probabilistic information when trying to estimate the redshift
distribution of thousands or millions of galaxies.

The use of angular clustering to infer proximity in distance
between two samples extends back to Seldner & Peebles (1979)
and Phillipps & Shanks (1987). The modern method of using that
information for a rigorous estimate of a redshift distribution traces
back to Newman (2008). It has since been developed theoretically and
implemented on data in a number of papers including Matthews &
Newman (2010), McQuinn & White (2013), Ménard et al. (2013),
Schmidt et al. (2013), Choi et al. (2016), Scottez et al. (2016),
Johnson et al. (2017) Krolewski et al. (2020), Hildebrandt et al.
(2021), and van den Busch et al. (2020). In the DES Year 1 cosmology
analysis (DES Collaboration 2018), clustering redshifts of both lens
and source galaxies were computed (Davis et al. 2017; Cawthon et al.
2018; Gatti et al. 2018).

In this work, we present the clustering redshift estimates for the
DES ‘lens’ galaxies used in the ‘Year 3’ cosmological analyses
(based on data from the first three years of DES observations). These
galaxies are used as lenses for galaxy—galaxy lensing measurements,
and for galaxy clustering measurements in the cosmology analysis
in DES Collaboration et al. (2022). The lens galaxies and those
measurements are analysed in more detail in several related DES Year
3 analyses (Pandey et al. 2021; Porredon et al. 2021a; Prat et al. 2021;
Rodriguez-Monroy et al. 2022; Elvin-Poole et al., in preparation).
There are two samples of DES lens galaxies presented in these works:
the red-sequence matched-filter galaxy catalogue (redMaGiC, for
short) and a magnitude-limited sample called MagLim. redMaGiC
(Rozo et al. 2016) is an algorithm that finds luminous red galaxies
(LRGs) by using the red sequence of galaxies (Gladders & Yee 2000;
Rykoff et al. 2014). This type of selection has been shown to give
fairly small photometric redshift errors for the sample. A similar
sample was used in the DES Year 1 analysis (Cawthon et al. 2018;
Elvin-Poole et al. 2018; DES Collaboration 2018). The MagLim
sample is a denser sample that goes to slightly higher redshifts, as
described in Porredon et al. (2021b), and it is expected to have more
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uncertainty in its photo-z estimates than redMaGiC. The redMaGiC
and MagLim samples are split into five and six tomographic redshift
bins respectively, selected by photo-z estimates.

To calibrate the redshift distributions of these two samples, in each
of their redshift bins, we cross-correlate them with spectroscopic
samples of galaxies. For these spectroscopic samples, we use galaxies
observed by the Sloan Digital Sky Survey (SDSS; Gunn et al. 2006;
Eisenstein et al. 2011; Smee et al. 2013; Blanton et al. 2017).
Specifically, we use galaxies from the Baryon Oscillation Spectro-
scopic Survey (BOSS; Dawson et al. 2013), as used by Cawthon
et al. (2018), as well as from the extended Baryon Oscillation
Spectroscopic Survey (eBOSS; Dawson et al. 2016). About 15 per
cent of the DES Year 3 samples overlap with BOSS and eBOSS.

Much of the methodology in this work is similar to that of
Cawthon et al. (2018). We briefly highlight the main differences
in this analysis.

(1) We use significantly larger data sets for the DES and spectro-
scopic reference galaxies. In addition to the larger area of coverage
for the DES, we calibrate two lens samples (redMaGiC and MagLim)
while DES Year 1 results only used redMaGiC. For spectroscopic
samples, we are able to use more of BOSS due to the wider area of the
DES in Year 3. We are also able to use the eBOSS galaxy catalogue,
which greatly improves the redshift coverage available, increasing
the maximum redshift of our study from roughly z =0.7to z = 1.15.
As a result of both area and redshift coverage, the overall number
of DES redMaGiC galaxies and spectroscopic galaxies used in this
work are each a factor of 10 larger than in Cawthon et al. (2018).
In addition, the MagLim sample is about 3.5 times larger than the
redMaGiC sample in the Year 3 studies.

(i1) While much of the methodology is the same, it is much more
extensively tested in simulations. These tests were possible because
the simulated spectroscopic samples are similar to the BOSS and
eBOSS catalogues. These tests give a more thorough estimate of the
errors and uncertainties in the method.

(iii) We introduce a novel step in correcting for the evolution of
the galaxy clustering bias. The galaxy bias describes the relationship
between the distribution of galaxies and of total matter. The change
in this parameter with redshift within a single tomographic bin is
known as a challenging systematic in the clustering redshifts method;
see van den Busch et al. (2020) for a recent review of attempts
to correct this effect. Autocorrelations of galaxies can in principle
be used both for the photometric and spectroscopic samples as an
estimate of the galaxy bias, which is then calibrated out of the
clustering redshift estimate. Because the DES samples do not have
spectroscopic redshifts, their autocorrelations are a function of not
only the galaxy bias (and cosmology) but also the scatter in their
true redshift distributions. In the DES Year 1 analysis in Cawthon
et al. (2018), this photo-z scatter effect on the autocorrelations was
calibrated from simulations. In our work, we calibrate this scatter
effect with cross-correlations of the DES and spectroscopic samples
on smaller redshift bins. The main advantage of this new step is that
it is empirically driven, no longer assuming any information from
simulations (although the step is tested along with all the others in
simulations).

(iv) We test a few different ‘two-parameter fits’, which effectively
constrain both the mean redshift and the width of a distribution. In
detail, the fits solve for a shift and a stretch of a photo-z distribution
to better match the clustering redshift data. This procedure is needed
when the shapes of the two distributions mismatch, and a single shift
parameter would not make them match well enough.
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We also note that a clustering redshift measurement of the weak
lensing ‘source’ galaxies in DES Collaboration et al. (2022) and
companion papers is performed in Gatti et al. (2022), which has sev-
eral similarities and differences in methodology compared with this
work. One example regards constraining the galaxy bias evolution.
For the lens sample, we have a generated random catalogue, which
samples the survey selection function. This gives us a greater ability
to measure the galaxy bias evolution effects with autocorrelations.

DES Y3: calibration of lens sample redshift distributions ~ 5519

Table 1. redMaGiC galaxies used in this work.

Redshift bin LIL, Ngal (arcmin~?2) Neal

1: zpn € [0.15, 0.35] 0.5 0.027 61586

2: zpn € [0.35,0.5] 0.5 0.049 110586
3: zpn €[0.5,0.65] 0.5 0.075 170 102
4: zpn € [0.65, 0.8] 1.0 0.038 86767

5: zpn € [0.8, 0.9] 1.0 0.032 72833

Because the source galaxies do not have such a catalogue, Gatti
et al. (2022) use a more agnostic model to account for galaxy bias
evolution.

The structure of our paper is as follows. In Section 2, we discuss
the data sets used in this work. In Section 3, we describe the
simulated data sets used for validating our methodology. In Section 4,
we present our methodology for performing a clustering redshift
measurement and calibrating it to find a best-fitting shift, or shift
and stretch parameters to be applied to a photometric estimate of the
redshift distribution. In Section 5, we validate our methodology in
simulations and derive systematic uncertainties for different parts of
the method, as well as testing different methods for performing a
two-parameter fit. In Section 6, we show our results, the clustering
redshift measurements of each of the redshift bins of the two DES
lens samples. In Section 7, we calculate a theory prediction for
magnification effects in our measurements, showing they are likely
to be insignificant. In Section 8, we summarize our work.

2 DATA SETS

In this section, we describe the data sets used for the spectroscopic
reference galaxies and the photometric DES galaxies that we wish to
calibrate. The redMaGiC and MagLim samples are derived from the
‘Y3 Gold catalogue’ (Sevilla-Noarbe et al. 2021), which contains
galaxies found in the first three years of DES data. The Gold
catalogue covers the full DES footprint of nearly 5000 deg?, and
contains around 388 million objects. The two samples are used for
cosmological analyses in DES Collaboration et al. (2022), and are
described in detail in Rodriguez-Monroy et al. (2022) and Porredon
et al. (2021b). We repeat some of the main information about each
sample here. This work only uses the part of the DES catalogues that
overlaps the sky area of BOSS or eBOSS galaxies, about 860 deg?,
with slightly less overlap at higher redshifts. Masks are also derived
from the Gold catalogue as well as random galaxy catalogues, which
reflect the survey selection efficiency at different points. After masks
are applied, the effective DES area in our study is 632deg?. In
Appendix E, we describe and analyse a third sample, called the
‘flux-limited’ sample, which is not used in the cosmology analyses.

2.1 DES redMaGiC sample

To create the redMaGiC sample, the cluster-finding algorithm
redMaPPer (Rykoff et al. 2014) is run on the Gold catalogue to
calibrate the red sequence of galaxies (Gladders & Yee 2000). The
redMaGiC algorithm (Rozo et al. 2016) then selects luminous red
galaxies with colours that fit with the red-sequence template. This
fitting also estimates a redshift probability distribution function
for each LRG. The redMaGiC algorithm further tunes the colour
selection threshold to produce a constant comoving density, which
is expected for passively evolving red galaxies (Rozo et al. 2016).
redMaGiC galaxy catalogues were similarly used for DES Year 1
analyses (Cawthon et al. 2018; DES Collaboration 2018; Elvin-Poole
et al. 2018).

The redMaGiC algorithm selects galaxies above a given luminos-
ity threshold. For the Year 3 lens samples, thresholds of either 0.5 L,
or 1.0 L, were used for the different redshift bins (see Table 1). The
reference luminosity, L,, comes from a model (Bruzual & Charlot
2003) for a single star-formation burst at z = 3, as described in
Rykoff et al. (2014). For the reference luminosities 0.5 L, and 1.0 L,,
the comoving densities produced by the redMaGiC algorithm are
=107 and 4 x 10~* galaxies (h~'Mpc)~> respectively, where
h is the reduced Hubble constant (Rodriguez-Monroy et al. 2022).
The redMaGiC galaxies are split into tomographic bins by the mean
redshift of each galaxy’s redshift probability distribution function
produced by the redMaGiC algorithm. We show the number of
galaxies used in this analysis (covering the 632 deg? of overlap with
BOSS) for each tomographic bin in Table 1.

We also apply weights to redMaGiC galaxies as described in
Rodriguez-Monroy et al. (2022). These weights are selected based on
survey properties, such as seeing and sky brightness, for each of the
observed galaxies. The weights are chosen to minimize the effects
of these survey properties on galaxy clustering measurements.

2.2 DES MagLim sample

The DES MagLim samples are described in Porredon et al. (2021b).
They are created using a redshift-dependent magnitude cut, with the
redshift estimate for each galaxy coming from the DNF (De Vicente,
Sanchez & Sevilla-Noarbe 2016) photometric redshift algorithm.
This redshift dependence tends to eliminate faint, low-redshift
galaxies from entering the sample (as verified in Appendix E).
The creation of this sample was motivated by a significantly larger
number density than redMaGiC. However, photo-z error estimates
were expected to be larger, making the calibration of photo-z biases
in this work essential.

In Porredon et al. (2021b), a Fisher forecast is run to find the best
magnitude cuts for the DES cosmology analyses, with different cuts
trading off number density and larger photo-z scatter. From that work,
the optimal redshift-dependent cut is selecting on i-band magnitude,
i < 42zpho + 18. Bright galaxies with i < 17.5 are also removed.
These MagLim galaxies are split into tomographic bins by the mean
redshift of the redshift probably distribution function given by DNF.
Notably, the MagLim sample extends to slightly higher redshifts
than redMaGiC. The numbers of galaxies used in this work for each
tomographic bin (again reflecting only the galaxies overlapping with
BOSS) are shown in Table 2. Again, we also apply survey property
weights as described in Rodriguez-Monroy et al. (2022).

2.3 BOSS galaxies (SDSS DR12)

Our first source of reference galaxies comes from catalogues created
by the BOSS from SDSS Data Release 12 (DR12; Alam et al. 2015).
We use their LOWZ and CMASS galaxy and random catalogues
described in Reid et al. (2016). For z > 0.6, we use a joint catalogue
of CMASS galaxies and eBOSS LRG galaxies created by eBOSS
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Table 2. MagLim galaxies used in this work.

Redshift bin Ngal (arcmin~2) Ngal

1: zpn € 0.2, 0.4] 0.154 349673
2: zph € [0.4, 0.55] 0.115 260671
3: zph €[0.55,0.7] 0.115 262468
4: zph €10.7, 0.85] 0.154 349996
5: zph € [0.85, 0.95] 0.117 266750
6: zph € [0.95, 1.05] 0.113 257139

to prevent double counting of galaxies (see Ross et al. 2020). Our
spectroscopic tracers at z < 0.6 are solely from the BOSS samples.
These samples were also used for clustering redshifts in DES Year 1
cosmology (Cawthon et al. 2018; DES Collaboration 2018). These
catalogues were optimized for clustering in order to measure the
baryon acoustic oscillation (BAO) signal (Alam et al. 2017), but
their wide, uniform coverage of the sky makes them one of the best
spectroscopic data sets for clustering redshifts.

2.4 eBOSS (SDSS DR16)

We also use spectroscopic galaxies from the eBOSS. The galaxies
are part of the SDSS Data Release 16 (DR16; Ahumada et al. 2020).
We use the large-scale structure (LSS) catalogues of emission-line
galaxies (ELGs), luminous red galaxies (LRGs) and quasi-stellar
objects (QSOs). The creation of the ELG catalogues is described
in Raichoor et al. (2021) and the LRG and QSO catalogues are
described in Ross et al. (2020). The catalogues were provided to DES
before being made public for clustering redshift usage by agreement
between DES and eBOSS.

The target selection for the eBOSS ELG sample is described in
Raichoor et al. (2017). The sample selection is based on observations
from the Dark Energy Camera Legacy Survey (DECaLS; Dey et al.
2019) with colour and magnitude cuts to yield strong [O 1I] emitters
in the redshift range of 0.6 < z < 1.1. The LRG sample selection
is described in Prakash et al. (2016). The LRGs were selected
using colour and magnitude cuts on objects found in SDSS and
the Wide-Field Infrared Survey Explorer (WISE; Wright et al. 2010)
photometry. The LRG sample primarily spans the range 0.6 < z
< 1.0. The LRGs are combined with the BOSS CMASS sample
because there are duplicate objects. The QSO sample selection is
described in Myers et al. (2015). The QSO sample spans from 0.9
< z < 2.2, although we only use up to z = 1.18 for clustering
redshift measurements because of the low density of objects at higher
redshifts for both DES and reference samples. The target selection
used photometric observations from the SDSS as well as WISE.

The details of creating LSS data sets from these samples are
described in Raichoor et al. (2021) and Ross et al. (2020). We use
the weights (given by wyy in Ross et al. 2020) and random points
associated with these catalogues to account for the survey selection
function. We also use the combined LRG catalogue using eBOSS
galaxies as well as z > 0.6 BOSS CMASS galaxies, as described in
Ross et al. (2020). We show the total number of reference galaxies
used in this work by their catalogue source in Fig. 1 and Table 3.
In our measurements, we combine all these catalogues into a single
sample.

3 SIMULATED DATA SETS

Along with many of the other accompanying papers related to DES
Collaboration et al. (2022), our paper makes use of the Buzzard sim-
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Figure 1. The BOSS/eBOSS n(z) used in this work as reference samples.
In shaded outline, we show the BOSS n(z) used in the Year 1 analysis of
Cawthon et al. (2018). This work uses about a factor of 10 more reference
galaxies overall. The numbers of galaxies from each BOSS/eBOSS catalogue
are shown in Table 3.

Table 3. Spectroscopic samples used as the reference galaxies for clustering
redshifts in this work. We show the approximate redshift range of the BOSS
samples used. In contrast, the eBOSS catalogues each have set redshift
boundaries.

Name Redshifts Ngal Area

LOWZ (BOSS) z ~[0.0, 0.5] 45671 ~860 deg?
CMASS (BOSS) z ~[0.35,0.8] 74186 ~860 deg”
LRG (eBOSS) z € [0.6, 1.0] 24 404 ~700 deg?
ELG (eBOSS) z €[0.6,1.1] 89967 ~620 deg®
QSO (eBOSS) z €[0.8, 1.18] 10502 ~700 deg?

ulations (DeRose et al. 2019, 2021). Buzzard simulates a Universe
of dark matter only, which is then populated with galaxies by the
ADDGALS algorithm (Wechsler et al., in preparation). ADDGALS
is calibrated by a series of algorithms, many of which are fit
empirically to galaxy distributions (in terms of luminosity, clustering,
abundance, etc.) of SDSS galaxies (e.g. subhalo abundance matching
fits from Lehmann et al. 2017). The resulting galaxy catalogues are
then sampled similarly to how DES creates its cosmological data sets.
For the samples used in this work, this specifically means running
the redMaPPer and redMaGiC algorithms on Buzzard to create a
simulated redMaGiC catalogue, and using the colour and magnitude
cuts from the MagLim sample to create a simulated version of it. The
Buzzard simulations used for DES Year 3 analyses are described
in more detail in DeRose et al. (2021), where the simulated DES
data sets are shown to replicate well the galaxy properties and
cosmological measurements from data.

3.1 Simulated DES redMaGiC

As described in DeRose et al. (2021), the redMaGiC algorithm is run
on Buzzard galaxies similar to the procedure on data. In particular,
colour-dependent clustering was improved for Year 3 Buzzard to
better match the redMaGiC-selected galaxies in data. The same
redshift and L, cuts applied on the data are applied to obtain the
simulated samples.
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3.2 Simulated DES MagLim sample

For MagLim galaxies in Buzzard, we use a similar redshift-dependent
magnitude cut as is done on data. For the tests in this work, a slightly
older version of the MagLim cuts was used to generate the sample.
This version selected galaxies with i-band magnitude, i <4.28 zypo +
18. It also cut out bright galaxies with i < 17.5. The slight differences
from the final MagLim cuts on data should not change the efficacy
of our clustering redshift method, which is what the simulations
are used to check. We do not use any information on, for example,
galaxy bias or photo-z scatter from these simulated samples in our
measurements. The redshift bins are selected in the same way as on
data.

3.3 Simulated BOSS (CMASS) sample

DES Y3: calibration of lens sample redshift distributions 5521
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To simulate the BOSS CMASS sample in Buzzard, we use the
DMASS algorithm described in Lee et al. (2019). The goal of the
DMASS algorithm was to create a CMASS-like sample of galaxies
from the DES samples of galaxies. Because the properties of CMASS
galaxies have been well characterized, a large CMASS-like sample
in DES would be useful for several studies.

In Lee et al. (2019), the DMASS algorithm is trained on the
overlapping area of DES and BOSS to derive a Bayesian model based
on galaxy colours and magnitudes for any DES galaxy to be CMASS-
like. For our work, this algorithm is used on the Buzzard-simulated
DES galaxies. Each galaxy is given a CMASS-like probability. We
then take one random draw based on these probabilities to define our
simulated CMASS sample.

3.4 Simulated eBOSS (ELG) sample

To simulate the eBOSS ELG sample in Buzzard, we use the
magnitude and colour cuts used for target selection in Raichoor et al.
(2017) for the South Galactic Cap (SGC) sample. Since these targets
were found by the Dark Energy Camera (DECam), the targeting
magnitudes are in the DECam filter bands.

We show comparisons of the simulated BOSS/eBOSS samples to
their real counterparts in Fig. 2. There is relative agreement in both
redshift distribution and amount of clustering. We note that perfect
agreement is not necessary, as the clustering and redshift distribution
of the BOSS/eBOSS samples are well measured on the data, and
there is no explicit reason why the method’s accuracy should depend
strongly on redshift or galaxy bias. The relative agreement should be
sufficient to validate the methodology. We investigate the method’s
dependence on the number of galaxies in Appendix D.

4 METHODS

We now lay out our methodology for the clustering redshift measure-
ment. A number of different redshift distributions, binning schemes
and correlation functions are mentioned in this section. To aid the
reader, a summary of various terms is shown in Table 4.

4.1 Unknown and reference correlation measurement

The clustering redshift methodology involves a cross-correlation of
two samples: an ‘unknown’ sample with undetermined redshifts,
and a ‘reference’ sample with known redshifts. For this work, the
unknown samples will be the DES samples (redMaGiC and MagLim)
and the reference sample will be the combined BOSS/eBOSS
spectroscopic data set.

Figure 2. Comparison of simulated and real spectroscopic data sets. We
show BOSS CMASS (South) and DMASS, an algorithm run on simulations,
and also eBOSS ELG (South Galactic Cap) and a simulated ELG sample. The
top row shows the redshift distributions. The bottom row shows the square
root of a weighted autocorrelation (equation 5). The simulated samples go
over the full DES 5000 deg?, so they are larger than the real data sets.

Table 4. Definitions for various redshift distributions, binning schemes and
correlation functions referred to in Section 4.

Redshift distributions
Ny, i(2) The true redshift distribution of an
unknown sample in photometric
redshift bin i

The true redshift distribution of a
sample binned by photometric
redshift in micro-bin j

The true redshift distribution of a
sample binned by spectroscopic
(true) redshift in micro-bin j

The photometric redshift distribution
of a photometric redshift bin i

nu,j(z)

Nspec, j (2)

npz,i(z)

Binning schemes

Photometric bins, i The main target bins used for
cosmology, with sizes in the range
dz =0.1-0.2

The reference sample bins of size
dz = 0.02; unknown and reference
samples use these bins for
autocorrelations

Bins of size dz = 0.005-0.01, which
are used for computing the width of
nj(z) in equation (10)

Micro-bins, j

Nano-bins

Correlation functions

Wyr Weighted cross-correlation between
an unknown (photometric) and
reference (spectroscopic) galaxy

samples

Wy Weighted autocorrelation of a
reference sample

Wuu,pz Weighted autocorrelation of an

unknown sample that is binned by
photometric redshift

Weighted autocorrelation of an
unknown sample that is binned by
spectroscopic redshift (typically not
possible with data)

l'Duu,spec
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We use a cross-correlation version of the Landy—Szalay estimator
(Landy & Szalay 1993) over physical scales r,

_ D Ds(r) — D1Ry(r) — DaR((r) + Ri Ry (r)

wir) R Ry(r)

)]

where w(r) is the excess probability of finding a pair of galaxies
a distance r away compared with a random sample, D signifies a
data set of galaxies, R signifies a random distribution of galaxies
and D, D,, for example, is the number of pairs between the two data
sets separated by comoving length-scale r. The length-scale is set by
r = 6 x(z), where 6 is the observed angle between the two galaxies
and x(z) is the comoving distance calculated using the Planck 2015
cosmology (Planck Collaboration XIII 2016). The redshifts are set by
the centre of the reference sample bins. For all of our measurements,
we use a weighted averaged estimate of w(r) over a range of r values,
wip:

Dy = / r~lw(r)dr. )

Unless otherwise stated, we use eight bins between ry;, =
0.5 Mpc and rpax = 1.5 Mpe. These parameters, as well as the
weighting by r~!, were first shown to be effective for clustering
redshifts by Schmidt et al. (2013) and were used in the DES Year 1
analyses (Davis et al. 2017; Cawthon et al. 2018; Gatti et al. 2018).
These comoving scales are smaller than the scales used for related
cosmological galaxy clustering studies in DES Collaboration et al.
(2022) and others to reduce covariance of the measurements. For
all of the following weighted cross-correlations and autocorrelations
given by equation (2), statistical errors are measured by 100 jackknife
resamplings.

Our weighted cross-correlation, w of the unknown (u) and refer-
ence (r) samples should be written as

Wy = / 1w (2)n(2)by(2)be(2)Wmm(2) dz, 3)
where n, and n, are the normalized redshift distributions of the
unknown and reference galaxy samples, b, and b, are the galaxy
biases of the two samples and Wy, is the weighted cross-correlation
of the total (primarily dark) matter distribution.

We now introduce two redshift binning schemes that are important
for our work. The goal is to derive correct mean redshifts for the
photometric redshift-binned DES samples to be used in the DES
cosmology analyses. There are five bins for redMaGiC, and six bins
for the MagLim sample. We call these the photometric bins and they
are signified by i. These bins are typically dz = 0.1—0.2 in size.
To obtain a measurement of n, ;(z) relevant for these photometric
bins, we need to measure using thinner bin widths. These thinner
bins will be of size dz = 0.02. We call these the micro-bins and they
are signified by j. Our spectroscopic reference samples will always
be binned in these smaller dz = 0.02 bins. We refer to the centres
of these micro-bins as z;. Our goal is to measure the photometric
redshift sample’s redshift distribution, n,_;, in each of the micro-bins
at z;. The characters u and r will always refer to samples, and the
characters i and j will always refer to bins. In one micro-bin, we
know the exact number of galaxies in the reference sample (as it has
spectroscopic redshifts). Going from equation (3), our estimate for
ny,; at a micro-bin centred at z; is

) 1 1 1
bu(Zj) br(Zj) LDmm(zj) '

where n, ;(z;) is the desired quantity of the number of galaxies in
unknown (photometric) sample i in the micro-bin centred at z;, and

“

My, (Zj) X wur(zj
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Wy (z;) is the weighted cross-correlation of the unknown sample in
photometric bin 7 and reference sample in micro-bin j. As seen in the
equation, we assume that within a micro-bin, the galaxy bias of each
sample is constant.

It is easiest to note here that the key issue with clustering redshifts
is not galaxy bias, but rather the galaxy bias evolution with redshift.
In equation (4), if the galaxy biases are the same for all z; (even
if unknown), they will effectively cancel out when all n, ;(z;) are
combined, because the total number of galaxies in the ith bin is
known. If the galaxy biases change with redshift within a single
photometric bin though, they will not cancel out and will distort the
estimated n(z).

4.2 Correcting for galaxy bias

We can get closer to solving for n, ;(z;) in equation (4) by using
autocorrelations of each sample binned by the micro-bin j. The
weighted autocorrelations for the samples, again assuming a single
galaxy bias value for the micro-bin, are

Wie(2)) = be(2))* D (z;) / ny,;(2)* dz, ®)

Wy, j (7)) = bu(zj)zwmm(Zj) /nu,j(Z)2 dz. (6)

We note that in equation (6) we have introduced new quantities,
Wy, j and i, ;. These are quantities related to an unknown sample (i.e.
a DES sample) binned in a micro-bin j. Our previous equations had
ny,;, which relates to the unknown sample binned by photometric
bin, i. These larger bins again correspond to the bins used by DES
cosmology analyses, and thus what we ultimately want to figure out.
However, as laid out in this section, we sometimes need to measure
properties of this sample in smaller redshift slices (i.e. ny;) to
ultimately work out n, ;. We also note that these n(z) refer to the
true (spectroscopic) redshift distribution. Thus, for example, 7, ;j(z)
is the true redshift distribution of galaxies binned into micro-bin j by
photometric redshift. So, for example, n, j(z) in micro-bin z,, € [0.2,
0.22] will extend beyond z = 0.2 and z = 0.22 in its true redshift
distribution.

If spectroscopic redshifts are obtained, in the limit of a large
number of galaxies, galaxy distributions tend to be fairly flat across
the small redshift range of the micro-bins (dz = 0.02). In this limit,
the normalized n? in the integrals of equations (5) and (6) is the same
for all distributions and can be dropped. For spectroscopic (true)
redshifts only, we can use equations (4)—(6) for an expression for
ny,i(z;) in terms of measurable correlation functions:

wur(zj)
II)‘T(Zj )wuu,spcc (Z_i)

However, the assumption that nﬁ ; 1s flat in equation (6) is
almost certainly wrong as the unknown sample only has photometric
redshifts. If the unknown sample is binned by photometric redshift
into micro-bin j, then nﬁ ; in equation (6) will span the entire true
redshift range of that sample, which will extend beyond dz = 0.02.

We can relate the theoretical autocorrelation of the unknown
sample at z; if it could be binned by spectroscopic redshift, to the
measurable autocorrelation of the unknown sample binned by z,,

(photometric redshift) in micro-bin j:
fnspec,j (Z)z dZ
[ (@?dz

Here, ngpec, j and Wy, spec are, respectively, the true redshift distribution
and the theoretical autocorrelation of the unknown sample if it could

ny,i(z;) (w/spec-z only). (7

®)

wuu.spec(zj) 08 wuu,pz(zj)
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be binned by spectroscopic redshift into micro-bin j. Similarly, n,
and Wy, are, respectively, the true redshift distribution and the
measurable autocorrelation of the unknown sample when binned by
photometric redshift into the micro-bin j.

This equation was used to solve for n, ;(z;) in determining DES
Year 1 clustering redshifts in Cawthon et al. (2018). Simulations were
used to estimate both integrals. Again, for spectroscopic samples,
n(z) over a micro-bin tends to be flat and the upper integral can be
dropped. The bottom integral, the true redshift distribution of the
galaxies binned in micro-bin j by photo-z, is the main unknown.
It essentially measures the photo-z scatter at redshift z;, with more
scatter producing a wider distribution, and smaller value of n?.

In a change from Cawthon et al. (2018), we attempt to evaluate the
photo-z scatter effect in equation (8) empirically by using clustering
redshift measurements on the photometric galaxies binned in each
micro-bin j by photometric redshift, as an estimate of n, ;j(z). We
assume in this narrower redshift range spanned by n, ;(z) that we
can approximate b,Wny, as constant. From that approximation and
equations (4) and (5), we have

Wyr(2)
VWi(2)

Measurements of n,_ ;(z) are noisier than evaluating n, ;(z) (equa-
tion 7). We are dividing up the DES photometric sample into smaller
micro-bins j than the main photometric bins, i. Furthermore, as n, ;(z)
is narrower than n, ;(z), we evaluate equation (9) on even smaller
bins than the dz = 0.02 micro-bins. These ‘nano-bins’ are either
dz = 0.01 or 0.005 depending on the signal-to-noise ratio. However,
these further subdivisions make each measurement noisier. In order
to reduce the computations and not propagate as many noisy data
points, we make the approximation that the integral of n%(z) can be
estimated by simply the inverse of the standard deviation of n(z),

Ny, j(z) (assume by Wy, = const.). )

) 1
nyj(z)"dz & —, 10)
gj
where o} is the standard deviation of the redshift distribution.
We note that photometric redshift scatter is often approximated as
a Gaussian function (LSST Science Collaboration 2009; Cawthon
2020). If n(z) is a Gaussian, that is,

e H (‘“)} |

where ¢ and o are the mean and standard deviation, respectively,
then the integral of n® directly evaluates to o< 1/o. Thus, the
approximation of equation (10), particularly in trying to estimate
photo-z scatter, seems appropriate. We also note that if there is linear
galaxy bias evolution across even the ‘micro-bin’ measurement (i.e.
by Wmm varies across the small redshift range, just as we expect it to
for the larger, main photometric bins), this would have far less impact
on the standard deviation, o, than it will on the mean redshift.

Using simulations, we validate the efficacy of the approximation
in equation (10). In Fig. 3, we show an example of measuring
o;, the standard deviation in one of the micro-bins, by carrying
out clustering redshift measurements in the smaller ‘nano-bins’. In
Fig. 4, we show comparisons of the o and 1/[n* correction terms
measured in different ways in simulations and in data. We quantify
the differences of each approximation (equations 7—10) in our tests
in Section 5.

n(z) ~

'Even in the case of a perfect Gaussian redshift distribution, equation (10)
would not be exact because of the finite width of the micro-bins.
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Figure 3. An example of clustering redshift measurements on a ‘micro-
bin’ of size dz = 0.02 in a simulation, showing the true redshift distribution
and the one measured from clustering redshifts, on simulated redMaGiC
galaxies with peak photo-z probability in the range z = 0.49—0.51. The
goal of this particular measurement is to measure the standard deviation,
o, of n(z). The standard deviation serves as a proxy for estimating how
much an autocorrelation of this same micro-bin of redMaGiC will be reduced
compared with the spectroscopic case — where the entire n(z) would be entirely
between 0.49 and 0.51. To perform this measurement, the spectroscopic
sample (DMASS) is divided up into smaller ‘nano-bins’ of size dz = 0.005
in order to obtain more data points for the measurement.
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Figure4. Various approximations of the ‘correction term’ needed to estimate
the autocorrelation of a sample micro-binned by true (spectroscopic) redshift
from the autocorrelation of the sample micro-binned by photometric redshift.
The correction term is either o, the standard deviation of an n(z) estimate, or
the ‘n* term’, 1/ [ "121, i from equation (8). The ‘n~ term’ curve is normalized
to the ‘o (true)’ data points. Specifically, these o estimates represent the
standard deviation of the true redshift distribution when binned by photo-z.
This value is either calculated exactly (simulations), measured by clustering
redshifts on smaller ‘nano-bins’ (on either simulations or data) or calculated
from the photometric redshift estimates (data). We quantify the agreement of
some of these approaches in Section 5. The o pz curve is the o estimated
from the photo-z algorithm itself, that is, from nP*(z). The sample shown is the
high-density redMaGiCsamples from zp, = 0.35—0.65 in both simulations
and data.

MNRAS 513, 5517-5539 (2022)

€20z Aieniga4 0z uo Jasn (D1SD) seounual) sauoioebnsaaul ap Jousdng ofesuo)) Aq 920¥659// L SS/v/E L S/8101e/SBIUW/WOo dNo"olWwapeoe//:sdny WwoJl) papeojumoq


art/stac1160_f3.eps
art/stac1160_f4.eps

5524  R. Cawthon et al.

Using equations (7)—(10), we find our estimate for n,(z;):

wur(zj)
\V wn‘(zj)wuu,pz(zj)aj
Because /Wy p,(2j)0; is a noisy approximation of /Wyyspec(z;),

we approximate it with a power law, as was done in Davis et al.
(2018) and Cawthon et al. (2018):

\/wuu,spec(zj) ~ \/wuu,pz(zj)aj X (1 + Z)y- (12)

We test the accuracy of our methodology in various steps in
Section 5. Specifically, we test the method when using spectroscopic
redshifts (equation 7), the power-law approximation when using
spectroscopic redshifts (equation 12), and the approximate solutions
when using photometric redshifts (equations 8 and 11).

an

ny(z;)

4.3 Estimating photometric redshift bias (one-parameter fit)

Thus far, we have focused on the clustering redshift measurements
themselves and their veracity. We now briefly discuss how specif-
ically these measurements are used to calibrate the photometric
redshift distributions used in DES Collaboration et al. (2022) and
related papers.

Our general strategy is to use a calibrated photo-z distribution
rather than clustering redshifts directly. This strategy is formed from
a belief that the clustering redshifts are more accurate overall than
the photometric estimate, but are not reliable in the tails due to
noise and magnification effects. The clustering redshifts can also give
unphysical, negative n(z) measurements in the tails. A prediction-
calibrated photo-z distribution, nP*(z) — where we now use an upper
index to distinguish from clustering or spectroscopic estimates of
n(z) — is thus preferable to using clustering redshifts directly.

For our fiducial plan, we assume that a single shift parameter,
Az, is enough to calibrate the photo-z distribution. This parameter
is essentially the photo-z bias. Our final clustering distribution,
ny(z), comes from equations (11) and (12), estimated for each ith
photometric bin, with data points in each micro-bin, j. Our final step
is thus to find the shifted nP*(z) that matches the mean of our n,(z)
from clustering redshifts. Specifically, we find the shift, Az, that
satisfies

S zn®(z — Agydz [T zny(2)dz

[z —Andz [ dz

As in Cawthon et al. (2018) and Gatti et al. (2018), we set 7, and
Zmax to be at 2.50 from the peak of the clustering redshift distribution.
This cuts the tails of n,(z) from being used in the calculation for the
correct shift. The tails of a clustering redshift estimate can be noisy,
with negative signals being difficult to calibrate. The tails can also be
affected by magnification, as we discuss in more detail in Section 7.

(13)

4.4 Estimating photometric redshift bias + stretch
(two-parameter fit)

In this work, we also use a two-parameter fit to calibrate the photo-z
distribution with the clustering redshift measurements. In general,
this fit will work in cases where a one-parameter shift of the photo-z
distribution is a poor fit to the clustering data (i.e. the shapes of the
distributions disagree).

For this fit, we use the Az shift parameter from the one-parameter
fit, as well as a ‘stretch’ parameter, s. The stretch parameter is
included by shifting the photo-z distribution, such that its mean is
centred at z = 0, then re-scaling the z-axis by a factor s, and finally
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shifting back to Zpean- The functional form of this is given by

n2-param(z) = %npz <szes$AZ + Zmean) ) (14)
where s is the new stretch parameter, equal to 1 if the width of
the photo-z and clustering-z are the same, and Az is the usual shift
parameter. We refer to this as the two-parameter model. We apply a
% least-squares fitting of s and Az to the clustering redshift results.
To account for the galaxy bias correction in a manner similar to our
fiducial methods of Section 4, we propagate y (equation 12) into the
clustering redshift n(z) and covariance when performing the y? fit.
In Section 5.7, we test in simulation the x> fitting method and two
other methods of fitting for Az and s.

5 TESTING METHODOLOGY WITH
SIMULATIONS

We validate various steps in our methodology, and estimate any
associated biases or systematic uncertainties with those steps, with
tests in simulations. As described in Section 2, we use the Buz-
zard simulations, and simulated samples of the DES redMaGiC
and MagLim galaxies, BOSS CMASS galaxies and eBOSS ELG
galaxies. We divide the simulated DES galaxies into six samples,
corresponding to bins 2, 3 and 4 for redMaGiC, and bins 2, 3 and 4
for the MagLim sample. These samples were chosen for their redshift
overlap with the two simulated BOSS/eBOSS samples.

We evaluate the different steps by testing our methodology on
each of the six samples. From the six results, we then fit for bias
and systematic uncertainty (on top of statistical uncertainties for the
correlation functions). We describe the evaluation step in more detail
at the end of this section.

5.1 Test 1: testing methodology with spectroscopic redshifts

Our first test evaluates the accuracy of equation (7), the solution for
n(z) when using all spectroscopic measurements. In this scenario,
autocorrelations of both the unknown and reference samples can be
used to calibrate the impact of galaxy bias evolution with redshift
across a photo-z bin. Because the DES samples are photometric, we
can only carry out this measurement on the simulations. This test is
still useful to isolate performance of the method, including galaxy
bias corrections from autocorrelations, before evaluating any of the
effects associated with photometric redshifts.

5.2 Test 2: approximating galaxy bias correction with a power
law

In equation (12), we approximate w,,(z) (or proxies of it) as a power
law: (1 +z)7.In Test 2, we test any biases in fitting the autocorrelation
to a power law. To isolate the effects of this approximation from the
effects of photometric redshifts, we do this test on the autocorrelation
of the simulated DES samples, when using spectroscopic redshifts.
‘We note that in the following three tests (Tests 3, 4 and 5), the proxies
for the autocorrelation, W,,(z), are also approximated as a power law.

5.3 Test 3: galaxy bias correction using photometric redshifts
and redshift scatter model

In Test 3, we test how well equation (8) corrects for effects of
photo-z scatter in the simulations. The integrals in equation (8),
which describe how the redshift distribution changes when binned
by photometric or spectroscopic redshift, can only be evaluated in
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Figure 5. Clustering redshift estimates on simulated DES galaxy samples. The first, third and fifth samples are simulated redMaGiC redshift bins, and the
others are simulated MagLim samples. The first four bins are cross-correlated with the simulated DMASS sample. The last two are correlated with the simulated
ELG sample. Shown are the true (spec-z) redshift distributions, the clustering measurements that could be derived if both samples had spectroscopic redshifts
(‘spec clustering, Test 1), and the clustering measurements described in “Test 5°, which is also the procedure done on the data. The simulated eBOSS sample

runs out of galaxies around z = 0.9, limiting the higher-z bins shown here.

simulations with true redshift information. In the Year 1 DES results,
Cawthon et al. (2018) used this calculation from simulations for
the final correction to the clustering redshift results. We also fit
equation (8) to a power law for this test.

5.4 Test 4: galaxy bias correction using standard deviation

In Test 4, we test the approximation of equations (10) and (11),
using the standard deviation of a redshift distribution, o;, as an
approximation in the photo-z correction of equation (8). In this test,
we calculate o ; for the DES samples exactly from their true redshifts
in the simulation. Our approximation of Wyygpec(z;) in this test is
then Wy p,(2;)0;. We again fit these new estimates of Wyy,spec(2;)s
for each micro-bin j within the photometric bin, i, to a power law.

5.5 Test 5: galaxy bias correction using standard deviation
inferred from clustering

In Test 5, we test the last step in calculating a proxy for Wyu(z;).
We again calculate o, but this time from estimating the redshift
distribution of the photo-z microbinned DES sample by using cross-
correlations with BOSS/eBOSS samples on even smaller ‘nano-
bins’ (Fig. 3). We estimate o; from these results and again test
equations (10) and (11). Unlike Tests 3 and 4, Test 5 describes a
measurement that can be done on the data, without true redshift
information.

5.6 Summary of tests on photo-z bias

For each test in the simulations, we compute the clustering redshift
measurements. We show in Fig. 5 for each of the six simulated
samples: the true redshift distribution, the clustering estimate in Test
1 (using autocorrelations of DES samples using true redshifts), and
the clustering estimate in Test 5, a procedure for calibrating the
galaxy bias effects that can be done on the data.

We calculate the mean redshift in each case for the clustering
redshifts. We summarize the accuracy of each test based on the
measured mean redshift in Fig. 6. For each of our six simulated
DES test samples, we plot the ‘bias’ of each step individually, each
represented by a different test. For Test 1, the method, if spectroscopic
redshifts are available for the unknown sample, the ‘bias’ is the true
mean redshift of the photometric bin (calculated in the range where

there are clustering estimates) minus the inferred mean redshift. For
Tests 2—5, we plot as ‘bias’ the inferred mean redshift of Test 1 minus
the inferred mean redshift of the test in question. We do this because
Tests 2-5 all involve replacing w,, in some way. Comparing these
with Test 1 thus isolates the bias of the specific approximations of
Wy, spec cOmpared with the case where wyy, spec s actually available.

The method when spectroscopic redshifts are available (Test 1,
‘Method’) is shown to be generally accurate. Five of the six samples
estimated mean redshifts that are consistent with the true mean
redshift (i.e. zero bias) within the statistical error bar. The power-
law approximation (Test 2) also shows little bias. Tests 3, 4 and 5,
which all evaluate methods of modifying wy, p, to estimate wyy, spec;
show a relatively small positive bias in all six samples, suggesting a
true bias of this approximation. A positive bias means the inferred
mean redshifts are too low. We also show the case of no correction,
where no estimate of w,, is used. We see that in each case, the
attempted correction of Test 3, 4 or 5 does reduce some of the bias.

We now quantify these tests to add any necessary biases or
systematic uncertainties of the method to our results later. A non-
zero systematic uncertainty indicates that the overall uncertainty of
the method is larger than the measured statistical uncertainty from
the jackknife resamplings. For each test, we model its bias, b, and
systematic uncertainty,  with a two-parameter fit to the six data
points in Fig. 6 and perform a chi-squared test to find the best-fitting
parameters. Specifically, for each test, we calculate

—b
/(dof = 4) (15)

.2 :i (d. —b)
red — /703+w

where 2, is the reduced chi-squared, x iterates over the six test
samples, d, is the measured bias on each sample for the given test,
o, is the measured statistical error on those biases, and dof signifies
our four degrees of freedom (six samples — two fit parameters). For
areduced chi-squared, a value of 1 represents a good fit, a value less
than 1 indicates too good a fit (errors are overestimated) and a value
greater than 1 indicates a poor fit (errors are underestimated).

We start by evaluating a large set of b parameters with v = 0. If
any of the resulting reduced chi-square values are less than 1, this
would indicate a good fit to a bias of the step, with no uncertainty
needed to be added on top of the statistical uncertainties. For each
of the five tests, no b values result in x2; < 1 when w = 0. This
indicates that each step tested has some systematic uncertainty
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Figure 6. Results of testing different steps of the methodology on six
different simulated samples. The tests are described throughout Section 5.
Top: tests comparing the measured Zmean With the true value. Test 1 compares
the method if spectroscopic redshifts were available for the photometric
sample autocorrelations. The full method is the method we can do on the
data. Bottom: Tests 2-5 focus on different correction steps or techniques for
simulating the true (spectroscopic) photometric sample autocorrelation. The
bias shown is with respect to the mean redshift from Test 1 in order to isolate
bias due to the correction alone. Test 5 represents the full method that can be
done on data. For each panel, the bias with ‘no corrections’ shows the results if
no attempt is made to use or measure the photometric sample autocorrelation.
The six test samples are in order of redshift. In order, they are simulated
versions of: (1) redMaGiC, Bin 2; (2) MagLim, Bin 2; (3) redMaGiC, Bin 3;
(4) MagLim, Bin 3; (5) redMaGiC, Bin 4; (6) MagLim, Bin 4. The simulated
samples are described in Section 3.

beyond the statistical uncertainties from the autocorrelation and
cross-correlation measurements. We then incrementally continue to
calculate x2, for a range of @ and b values. We choose as our best
fit the smallest value for w, and the corresponding b that results in
%24 < 1. Our results are shown in Table 5. As suggested by Fig. 6,
each of the biases are relatively small (|»| < 0.0037).

We choose to only use Tests 1 and 5 to estimate the bias and
uncertainty we should add to our measurements of the data. Test
1 (‘Method’) essentially estimates biases across the full method
presented in this work, modulo the complication of not having
spectroscopic redshifts to estimate wyy, spec. Tests 3, 4 and 5 all
measure the step of trying to estimate wyy, spec. Of these three, Test
5, which measures o}, the width of the true redshift distribution
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Table 5. Analysis of the tests shown in Fig. 6, by fitting parameters in
equation (15). The tests are described throughout Section 5. We note that the
uncertainties represent uncertainty to be added to a step in the method. For
example, Test 5 has more statistical uncertainty already in its step than Test
4, so the results do not imply Test 4 has more total uncertainty. As described
in the text, we choose to incorporate the biases and uncertainties of Tests 1
and 5 so as not to double count uncertainties in any step of our methodology
for solving for the redshift distribution, n,(z). ‘Combined errors’ adds the
counted biases and uncertainties (the latter in quadrature). The full method
check is the bias and uncertainty found when not breaking up the analysis in
different steps.

Name of test Bias Uncertainty In error budget?
Test 1: method w/Spec-z —0.0014 0.0013 Yes

Test 2: power-law approximation 0.0009 0.0015 No

Test 3: exact n* correction 0.0037 0.0030 No

Test 4: exact o;; correction 0.0032 0.0020 No

Test 5: clustering-z o; correction 0.0021 0.0021 Yes
Combined errors 0.007 0.0025 -

Full method check 0.007 0.0023 -

of photometric galaxies in micro-bin j from clustering redshift
measurements on ‘nano-bins’, is the only method that can be used
solely from data. It happens to be that this method in the simulations
(Test 5) is slightly more accurate than the other methods (Tests 3
and 4), which estimate the photometric correction either from an
exact calculation of [n(z)? or estimating o; exactly. Because Tests
3,4 and 5 all approximate wyy,spec, adding all of their uncertainties
would likely be redundant and overestimate our errors. Tests 3, 4
and 5 also involve a fit to a power law, so the small errors found
in Test 2 are likely incorporated into the results of Test 5. Thus,
deriving systematic biases and uncertainties from Tests 1 and 5 only
incorporates each element of the measurements a single time.

From Table 5, we take the results from Tests 1 and 5. We add the
biases linearly and the systematic uncertainties in quadrature. This
results in adding a bias of +0.0007 and a systematic uncertainty
of 0.0025 to each of our measurements. We see in Section 6 that
these systematic errors are generally similar to or smaller than our
inferred biases and statistical uncertainties on the mean redshift (or,
equivalently, the Az parameter).

We also show in Table 5 a calculation of a full method check.
This calculation is simply taking our fiducial estimate of clustering
redshifts (used in Test 5) and comparing with the true mean redshift,
rather than the results of Test 1, which is what Test 5 does. In this
case of the full method check, the intention is not to estimate a bias
of a single step, but to estimate the bias of the entire method, end to
end. We see in the table that the resulting bias and uncertainty are
very similar to ‘added’ bias and uncertainty values of +0.0007 and
0.0025. We can thus conclude that whether we broke up the method
into different steps or not would not have notably affected our derived
bias and uncertainty.

In Appendix C, we briefly discuss a few alternative ways of
evaluating these tests, as well as the assumption of the six samples
each being independent tests of the method. We find very minor
differences in bias and uncertainty in all cases explored.

5.7 Tests of two-parameter fits

In this section, we test the accuracy of the two-parameter fit
(equation 14). The second parameter, the stretch, changes the width of
the distribution. The galaxy bias correction, at least in the power-law
form (equation 12), has very little impact on the stretch parameter,
so our previous approach of breaking up the method into various
steps is less well motivated. Therefore, we estimate the accuracy of
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the two-parameter fit using just the ‘full method’ estimate, where
the final Az and s parameters from our fiducial clustering redshift
estimate (equations 11 and 12) are compared to the true values. As
seen in Table 5, this test produced nearly identical results for the
one-parameter fit as when we evaluated different steps separately.

We test a few different ways of fitting the two-parameter model,
each using the Az and s parameters from equation (14). The first,
as mentioned in Section 4.4, is a x? fit to the clustering redshift
data points, selecting Az and s to change the photo-z distribution so
as to be as close to the clustering redshifts as possible. The second
method is a more natural extension of the one-parameter fit. It selects
Az in the same way as the one-parameter fit. Then, it selects the s
parameter that makes the photo-z distribution have the same standard
deviation, o, as the clustering data. We call it the ‘shift then stretch’
(STS) method. This method fits to parameters, rather than fitting to
all the points, like the one-parameter fit. It will also give the same Az
constraints as the one-parameter fit, while the x> method may not.
We also try a third method, which we call ‘Mix’. This first computes
the one-parameter shift (so also gives same results on Az as STS).
Then, with a fixed Az, it does a x? fit for the stretch.

To test the three methods of fitting, we compute Az and s for
each of the six simulated samples, given their simulated photo-z
distributions. We also calculate the true Az and s parameters that
would make the photo-z distribution most closely match the true
distribution. Given these estimated and true Az and s parameters, we
compute biases on each parameter, for each method on each sample.
The results are shown in Fig. 7.

As for the one-parameter fit (photo-z bias only), we evaluate a
‘method error’ by comparing the estimated parameters with their
true values. We again use equation (15), though we decide to use
a more agnostic model of no bias, but just an added uncertainty (v
in equation 15). We chose this because, in Figs 5 and 7, there is
some evidence of a directional bias to the stretch parameter based on
the signal-to-noise ratio, with stretches (widths) being overestimated
with noisy data (samples 5 and 6). In the first four bins, with better
signal, there is a small preference for an opposite bias on the stretch,
with a preference for narrower distributions than truth. Without more
simulated samples to investigate these relationships, a no bias fit
seemed most conservative, likely resulting in larger uncertainty than
otherwise.

In Table 6, we show the estimated ‘method uncertainty’ of each
parameter for each two-parameter method. These uncertainties are
to be added to the statistical errors of a given method. As can also
be inferred from Fig. 7, the STS (shift then stretch) method does
better at finding the mean redshift, but is significantly less accurate
than x? in recovering the stretch parameter. The x? method is the
most accurate and has the smallest errors on the stretch parameter.
The Mix method gives similar results to x2, but is still notably less
accurate for the stretch parameter. It is more accurate than the STS
method for the stretch though.

We note that for sample 6 (simulated MagLim bin 4), for only the
two-parameter tests in Fig. 7, we used larger clustering scales, 0.5—4
Mpc, as we do for the noisier MagLim bins in the data. Without this,
the stretch for sample 6 is significantly more negatively biased for
each fit, and drives the method uncertainty for x2 to 0.07, which
deviates significantly from the uncertainty of 0.035 when fitting the
first five bins. This change in scales would affect all of the one-
parameter results by less than 0.001.

In principle, any of these methods with the extra uncertainties from
these tests should be unbiased. When we look at the overall error
budget that the three methods give on measurements of data, we find
that the STS and Mix methods have slightly smaller uncertainty on
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Figure 7. Results of testing the three different two-parameter fit methods
on the six simulated samples: x2, STS (shift then stretch) and Mix (shift,
then 2 fit for stretch). We show the biases in measured Az and s parameters
compared to the true values that make the photo-z distribution closest to the
truth. As seen, the STS method has smaller errors and is more accurate in
obtaining Az correct, but has larger errors and is more biased on the stretch
parameter, s. The XZ method is the most accurate and has the smallest errors
on the stretch parameter. Mix gives similar results to x2 for the stretches,
but is still slightly more inaccurate for that parameter. Mix has the same Az
estimate as STS. We fit for a ‘method uncertainty’ for each method, on each
parameter, based on these results in Table 6.

Table 6. Analysis of the two-parameter methodology test results shown
in Fig. 7. We compare the estimates of Az and s with the true values in
the simulation with equation (15) (setting b = 0 and just solving for an
uncertainty, ).

Method Parameter Uncertainty
x? Az 0.0044
x2 s 0.038
STS Az 0.0025
STS s 0.060
Mix s 0.052

Az, but notably larger uncertainty on the stretch (particularly STS).
Based on these results, we proceed with the x? method as our fiducial
two-parameter fit method. We reiterate that each method is just a
different way of fitting to the clustering redshift data, so the similar

MNRAS 513, 5517-5539 (2022)

€20z Aieniga4 0z uo Jasn (D1SD) seounual) sauoioebnsaaul ap Jousdng ofesuo)) Aq 920¥659// L SS/v/E L S/8101e/SBIUW/WOo dNo"olWwapeoe//:sdny WwoJl) papeojumoq


art/stac1160_f7.eps

5528  R. Cawthon et al.

led led led led
I photoz  RM 1| 1.6 4 — 1-paramfitRM 2 RM 4| 1.2+ RM 5
8000 4 ¢ clustering | | - 2-param [ffit
6000 - *
~
= 4000 .
2000 A
’
0 4 i
: T T - . T T T ! T T
0.2 0.4 0.5 0.6 07 08 09
Z ¥4 ¥4

Figure 8. The clustering redshift measurements for the five redMaGiC bins. The photo-z prediction comes from the redMaGiC algorithm itself. The dark blue
data points indicate the range where clustering and photo-z are compared in order to find the best-fitting shift, Az. The grey points are outside this range and not
used. Error bars only reflect statistical errors from the cross-correlation of DES and reference (BOSS/eBOSS) galaxies, and the autocorrelation of the reference

galaxies. Best-fitting parameters are given in Tables 7 and 8.
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Figure 9. The clustering redshift measurements for the MagLim sample. The photo-z prediction comes from the summation of the entire DNF PDF for each
galaxy. See Fig. 8 for more details about the data points. Best-fitting parameters are given in Tables 9 and 10.

biases in Fig. 7 are expected. We note that we also tried fitting for the
parameters in Tables 5 and6 using a maximum likelihood formalism,
and we found consistent results in each case.

In Appendix D, we describe tests to analyse possible density
dependence of the systematic uncertainties derived from this section.
We do find some indication of a density dependence that would result
in the uncertainties presented here being underestimated for the data
being used. We discuss these results and implications in Appendix D,
finding, even in a pessimistic case, that the impact on cosmological
results is minimal.

6 RESULTS

We show our clustering redshift estimates for the five redMaGiC and
six MagLim redshift bins in Figs 8 and 9, where we also show the
predicted redshift distributions from photometric redshift algorithms.
For redMaGiC, this is provided by the redMaGiC algorithm itself.
For MagLim, this is provided by the DNF photo-z algorithm, using
its full probability distribution function (PDF). In each figure, the
solid blue points indicate the 2.50 range of the clustering signal
which we use to calculate the mean redshift from clustering. The
faded grey points are shown, but not used. For each bin, we compute
the one-parameter fit, where we find Az, a shift parameter to make
the photometric and clustering distributions match in mean redshift
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Table 7. redMaGiC clustering redshift results for a one-parameter fit. Az
is the shift that makes the photo-z prediction from redMaGiC match the
mean of the clustering measurements. Statistical errors are from DES-
reference cross-correlation and reference autocorrelations. Systematic errors
are a combination of errors on the power-law fit to the DES autocorrelation
(equation 12) and a 0.0025 method error from Section 5. The bias of +0.0007
from that section is also applied.

Redshift bin Az x? (points)
1: zpn € [0.15, 0.35] 0.006 = 0.004 6.81 (13)
2: zpn € [0.35,0.5] 0.001 + 0.003 10.03 (11)
3: zpn € [0.5, 0.65] 0.004 £ 0.003 7.32 (13)
4: zpn € [0.65, 0.8] —0.002 = 0.005 19.92 (16)
5: zpn € [0.8, 0.9] 0.020 £ 0.010 69.35 (18)

(equation 13). We also compute the two-parameter fit, where a x>
fit to the data simultaneously fits for a Az and a stretch parameter, s.
This two-parameter fit is also done on the 2.5¢ range of the clustering
signal.

The best one- and two-parameter fits and uncertainties are listed in
Tables 7-10. Also shown is the x 2 value between the fit and the clus-
tering redshift data points. The listed uncertainties in the fits, as well
as the error bars in the figures, include contributions from statistical
and systematic uncertainties. The statistical uncertainties come from

€20z Aieniga4 0z uo Jasn (D1SD) seounual) sauoioebnsaaul ap Jousdng ofesuo)) Aq 920¥659// L SS/v/E L S/8101e/SBIUW/WOo dNo"olWwapeoe//:sdny WwoJl) papeojumoq


art/stac1160_f8.eps
art/stac1160_f9.eps

DES Y3: calibration of lens sample redshift distributions

Table 8. redMaGiC clustering redshift results for a two-parameter fit. Az
is the shift parameter and s is the stretch parameter. Each is fit by changing
the photo-z distribution to match the clustering data points with a x?2 fit.
Uncertainty comes from statistical uncertainty of the fit, which includes
contributions from the power-law fit uncertainty (equation 12), and the
‘method error’ in Section 5.6.

Redshift bin Az s x? (points)
1: zpn € [0.15, 0.35] 0.007 £ 0.005 0.975£0.043  5.90 (13)
2: zph € [0.35, 0.5] —0.002 +0.005 1.015£0.045 7.14(12)
3: zph € [0.5, 0.65] 0.003 £ 0.005 1.017 £0.048  6.99 (11)
4: zpn € 0.65, 0.8] —0.002 +0.006  1.051 £0.065 17.54 (16)
5:zpn € 0.8, 0.9] —0.007 £ 0.006  1.230 £ 0.066  16.74 (18)

Table 9. MagLim sample clustering redshift results for a one-parameter fit.
Az is the shift that makes the photo-z prediction from DNF match the mean of
the clustering measurements. See Table 7 for further comments on uncertainty
column sources.

Redshift bin Az %2 (points)
1: zph € [0.2, 0.4] —0.010 + 0.004 23.96 (18)
2: zph € [0.4, 0.55] —0.028 £ 0.006 91.91 (23)
3: zpn €10.55,0.7] —0.004 + 0.004 12.64 (11)
4: zpn € 0.7, 0.85] —0.010 £ 0.005 22.61 (19)
5: zpn € [0.85, 0.95] 0.013 = 0.007 44.34 (18)
6: zph € [0.95, 1.05] 0.009 + 0.016 36.61 (20)

Table 10. MagLim clustering redshift results for a two-parameter fit. Az is
the shift parameter, and s is the stretch parameter. See Table 8 for further
comments on the fit and uncertainties. A typo in bin 6 from the original
version of this paper has been corrected.

Redshift bin Az K x2 (points)
1: zph €10.2,0.4] —0.009 +0.007  0.975 £0.062 24.27 (18)
2: zph € [0.4, 0.55] —0.035+£0.011 1.306 £0.093  22.94 (23)
3: zph € [0.55,0.7] —0.005 £ 0.006 0.870 £0.054  6.55(11)

4: zph € (0.7, 0.85] —0.007 £ 0.006 0918 £0.051 21.96 (19)
5: zph € [0.85, 0.95] 0.002 £ 0.007 1.080 £ 0.067  25.79 (18)
6: zph € [0.95, 1.05] 0.009 £ 0.008 0.845 £0.073  36.59 (20)

the cross-correlation of unknown and reference samples (w,,) and
autocorrelations of the reference sample (w,,) in equation (11). For
the one-parameter fits, the systematic uncertainty is calculated on the
derived mean redshift specifically and has two sources. The ‘method
uncertainty’ of 0.0025 derived from Section 5, and uncertainty in the
calculations of the autocorrelations of the unknown (DES) sample
and the calculation of the standard deviation parameter (Wyyp,0;)-
This uncertainty is propagated into an uncertainty on y in fitting that
quantity to a power law (equation 12). The autocorrelations and the
power law fits are shown in Fig. 10. These two sources of systematic
uncertainty are added in quadrature. The total uncertainty comes
from adding the systematic and statistical uncertainty in quadrature.

For the two-parameter fit, the uncertainty from the power law
is propagated into the data points before the fit is performed,
so the statistical error incorporates the power-law fit. The only
remaining systematic uncertainty is the ‘method’ uncertainty from
Table 6, which is added in quadrature to each parameter’s statistical
uncertainties from the x? fit. The exact contributions of statistical and
systematic uncertainty to each fit in each redMaGiC and MagLim
bin are shown in Tables B1 and B2 in Appendix B.
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Figure 10. Autocorrelations of the DES lens samples, redMaGiC and
MagLim. We show the square root of the autocorrelation, «/Wuupz(Z;).
listed as uncorrected. The corrected data points are \/Wyypz(z;)0;, to undo
the influence of photo-z scatter on the autocorrelations. The 11 different
tomographic bins are differentiated by colour. The solid lines in colour are
the best power-law fit to the points in a given bin (equation 12). The grey
lines indicate the 1o range of the power-law fit. We note that, because of
the normalization of n(z), the amplitudes of these measurements are not
important, only the change across a single tomographic bin

6.1 redMaGiC results

Our clustering redshift estimates for the redMaGiC sample are shown
in Fig. 8 and in Tables 7 and 8. In the first four bins of Fig. 8, we
see a generally good agreement in the shapes and means of the
clustering and photometric redshift distributions. The first four bins
have relatively small biases (<0.006), and are within 1.5 standard
deviations of zero bias for the one-parameter fit. The fifth bin has a
more obvious difference in shape between the clustering and photo-z
distributions, with a high-z tail in the clustering redshift distribution.
Driven by this tail, a large shift parameter of 0.02 is needed to match
the means of the distributions in the one-parameter fit.

There are different possible metrics in selecting whether the one-
or two-parameter model should be used for the DES cosmology
analysis. In a cosmology analysis, every extra parameter allowed to
vary will typically reduce the constraining power of the experiment.
Thus, there is a benefit to having a simpler model if it is accurate
enough. One possible metric for deciding whether a one- or two-
parameter model is sufficient is whether the two-parameter model
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prefers s # 1. In Table 8, we see that the first four bins are all well
fit by s = 1, suggesting that a two-parameter fit may be unnecessary.
Bin 5, in contrast, prefers s # 1 at >3¢ confidence.

Another metric could be to use the goodness of fit, which can be
assessed with the x2 values listed in Tables 7 and 8. We see that the
redMaGiC one-parameter fits in the first four bins are all close to a
reduced x? of 1. As expected, the fifth bin exhibits a very poor fit.
We do see lower x? values in the two-parameter fits for the first four
bins, but at the cost of a second parameter (s), and increased errors
on Az. In the fifth bin though, the two-parameter fit is much better,
with a reduced x? near 1. We note that though the fit may not look
that good in Fig. 8, the off-diagonal terms of the covariance between
the n(z) data points have a strong effect on this particular fit.

For the cosmology analysis in DES Collaboration et al. (2022),
the general strategy is to add complexity to models only if it is
necessary not to bias the cosmological results. With this strategy in
mind, we show another test in assessing whether the one- or two-
parameter models are needed in Appendix A. There, we show Markov
chain Monte Carlo (MCMC) chains from a simulated cosmology
analysis approximating the analysis in DES Collaboration et al.
(2022). Chains are run with fixed cosmology but different redshift
inputs, to assess whether the redshift modelling is sufficient not to
bias cosmological results.

In Fig. Al in Appendix A, we show simulated results for Q,,,
og and the galaxy bias in each of the five redMaGiC bins for
four different redshift inputs. The different inputs are: the clustering
redshift results directly, a multi-Gaussian fit very closely matching
the clustering redshifts but smoother, and the one- and two-parameter
fits listed in Tables 7-10. We find in this test that the cosmological pa-
rameters are similar in all cases. However, the galaxy bias recovered
in the fifth redMaGiC bin is offset from the more direct clustering
fits. This suggests that the poor fit of the one-parameter model in the
fifth bin will give biased results for the galaxy bias if the clustering
redshift results are accurate.

Based on these two tests, the one-parameter fits for the first four
REDMAGIC bins and the two-parameter fit for the fifth bin were
chosen as the fiducial models for DES Collaboration et al. (2022).
In order to be conservative with the fifth bin, the uncertainty on Az
was increased from 0.007 to 0.010, to match the uncertainty from the
one-parameter fit. We investigate the fifth redMaGiC bin clustering
results in more detail in Section 7, specifically checking whether the
high-z tail could be explained by magnification. As shown there, we
conclude it cannot be. We also note that we measured redMaGiC
bin 5 at the larger clustering scale range, 0.5-4 Mpc, which we use
for two of the MagLim bins. With these scales, this high-z tail for
redMaGiC bin 5 remains, with marginally smaller error bars.

6.2 MagLim sample results

Our clustering redshift estimates for the MaglLim sample are shown
in Fig. 9 and in Tables 9 and 10. We can see that there are significantly
different shapes of the clustering and photo-z distributions in multiple
bins. It was expected that this larger sample of fainter galaxies would
have larger photo-z biases than redMaGiC.

Itis again important to analyse whether a one- or two-parameter fit
will be more appropriate for the cosmology analyses. For the metric
of checking whether the two-parameter fit is consistent with s = 1, we
find in Table 10 only one bin where this is clearly the case (bin 1). In
examining the x? fits for the one- and two-parameter fits in Tables 9
and 10, we see a very strong preference for the two-parameter fit
in bins 2 and 5, though it is less clear if the two-parameter fit is
necessary for the other bins by this metric.

MNRAS 513, 5517-5539 (2022)

The final decision on whether one or two parameters are needed
for the MagLim fits is determined by the procedures in DES
Collaboration et al. (2022) and Krause et al. (2021), which focus
on whether there will be biases in the cosmological analysis if
the simpler model is used. These tests for the MagLim redshifts,
analogous to the redMaGiC tests in Appendix A, are shown in
Porredon et al. (2021a, fig. 6). There it is shown that the galaxy bias
in MaglLim bins 2-6 using the one-parameter fits of (this paper’s)
Table 9 are offset from what the estimates would be when inputting
the clustering redshift measurements directly. This would mean that
the one-parameter fits may bias the galaxy bias measurements. Thus,
it was decided to use two-parameter fits for all of the MagLim bins.

‘We note that our initial measurements of the two highest redshift
bins for the MagLim sample were very noisy, mainly due to the
low number of eBOSS objects available to correlate with. Our final
analysis for bins 5 and 6, shown in Fig. 9, used the clustering redshift
method on scales 0.5-4.0 Mpc, while the rest of this work used
0.5-1.5 Mpc. At these noisier high redshifts, we found that the
inclusion of more scales improved the signal significantly, reducing
total uncertainty on Az by about 50 per cent and 80 per cent for bins
5 and 6, respectively (for the one-parameter fit). We tested other bins
at these scale ranges and found negligible differences in other cases.
As we weight the smallest scales most, where more information is
expected, this lack of change in most cases is unsurprising.

We also checked the z = 1.06—1.08 clustering data point, which
stands out clearly in bin 5 and slightly in bin 6. An isolated peak such
as this appears strange and perhaps anomalous. We tested several
things to try to find an issue with the clustering data, but could find
none. It was not found in redMaGiC when we extended the redshift
range. It was not found in autocorrelations, or cross-correlations of
the eBOSS ELG and QSO samples with each other. It was found in
cross-correlations of MagLim with either the ELG or QSO alone.
Changing the binning, changing the number of jackknife patches or
splitting up the data into different large regions did not remove the
signal. We also tried not using either MaglLim or eBOSS weights,
and also estimators that would not use one of the sample’s randoms.
In all cases, the signal persisted. The signal is also much too large for
magnification, which should not produce a sharp change in redshift
anyway. We conclude that the signal is real, either some statistical
fluctuation or some interloping population of galaxies that entered
the MagLim cuts.

6.3 Comments on redshift impacts to cosmological analysis

The redshift parameters and choices described in this section for
both redMaGiC and MaglLim were made before unblinding the
cosmological results shown in DES Collaboration et al. (2022). In
assessing those results post-unblinding, there were some redshift-
related tests worth noting.

One of the noteworthy issues discussed in DES Collaboration
et al. (2022) is the apparent disagreement of the redMaGiC galaxy
clustering plus galaxy—galaxy lensing results and the cosmic shear
results. This is discussed in detail in DES Collaboration et al. (2022).
One of the first tests done was to see if using the two-parameter
fits from Table 8 in all redMaGiC redshift bins could alleviate this
issue. It did not. The resulting chains with the two-parameter redshift
model had only slightly larger contours and there was still significant
inconsistency in the data.

Another significant test for understanding the redMaGiC incon-
sistency was dropping different redshift bins. Most notably for this
work, the fifth redMaGiC bin was shown to have little impact on the
cosmological results and the inconsistency. Therefore, though the
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fifth redMaGiC bin is clearly the one with the greatest redshift un-
certainties, it cannot be driving the inconsistencies in the redMaGiC
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for, in this case, the eBOSS sample,
a(m) = 2.5w, (19)

results.

For the MagLim sample, a similar issue of significant mismatch
between the galaxy—galaxy lensing + galaxy clustering amplitude
and cosmic shear amplitude was found in bins 5 and 6, as discussed
in Porredon et al. (2021a). The measurements in the first four bins
were internally consistent though and were used for the fiducial
results in DES Collaboration et al. (2022). It is unclear at this time
what the issue in these high-redshift bins is. In Porredon et al. (2021a,
appendix A), tests seemed to indicate that the problem is more with
galaxy—galaxy lensing than with galaxy clustering. Based on this, it
is unlikely errors in the lens redshifts are driving this tension. The
galaxy clustering measurements will depend much more on the lens
redshifts, particularly the width parameter.

7 MAGNIFICATION

In this section, we calculate whether magnification may be affecting
our results significantly. Clustering redshifts are known to be affected
by magnification effects (Choi et al. 2016; Gatti et al. 2018), which
become significant in the tails of the redshift distribution where the
normal clustering signal is small. Our cut of the tails at 2.50 from the
peak of the clustering n(z) should remove most of the redshift range
where magnification effects are significant in each bin. However,
some of our results do include a fairly large signal in the tails.
Notably, the high-z tail in redMaGiC bin 5 is large enough to be
within this cut and not removed.

We calculate a theory prediction for magnification in our clustering
redshift measurements. Specifically, we calculate the theoretical
signal in the redMaGiC bin 5 measurements to assess whether the
high-z tail is magnification-induced, or is real evidence for a photo-z
bias. We first calculate the strength of the galaxy clustering signal
between the two samples (Choi et al. 2016):

dz d
w(0)sE = bubr/n“[Z(X)]"r[Z(X)]ééd)(

x/iP[k,z(x)]Jo(ku)dk. (16)
21

Here, 6 = r/x(z), as described in Section 4, b is the galaxy bias
for the unknown (DES) and reference (eBOSS) samples, 7 is the
redshift distribution of each sample, x is the comoving distance, k
is the wavenumber, P(k) is the matter power spectrum and Jj is the
zeroth-order Bessel function.

We also calculate the strength of the magnification signal, specifi-
cally the signal from foreground redMaGiC galaxies lensing eBOSS
galaxies (the magnification effect that could be found on the high-z
end):

d
wmﬁ=mw—n/m&mu5§w
k
X/gP[k, 2001 Jo(x k0) dk. (17)
K(y) is the lensing kernel,

3H{Qm x [ dz x'—x .,
k() = 20 —/n@%— ax’, (18)
a Jy dy x

c2 ’

where H is the Hubble constant, £2,, is the matter density parameter,
c is the speed of light and a = 1/(1 + z) is the scalefactor of the
Universe. In equation (17), « is the slope of the magnitude counts

dm

where m is the limiting magnitude of the galaxy sample (Choi et al.
2016). For eBOSS ELG (the main tracer used for the redshift range
of redMaGiC bin 5), we calculate a value of @ = 2.71 at its limiting
g-band magnitude, m = 22.825 mag (Raichoor et al. 2017).

We ignore the terms where eBOSS galaxies could magnify
background redMaGiC galaxies. As the eBOSS galaxies have
spectroscopic redshifts, we know the galaxies being correlated in
the high-z tail are at z ~ 1. Thus, for eBOSS galaxies to be
magnifying redMaGiC galaxies, there would need to be a significant
number of very high redshift outliers in the redMaGiC population.
However, redMaGiC galaxies around z ~ 0.8 in this fifth bin could
plausibly magnify eBOSS galaxies at z = 1 where the excess is
seen. We also ignore the magnification—magnification term, which
should be negligible, particularly for two galaxy samples not widely
separated in redshift space (for example, see Duncan et al. 2014). To
do the calculations, we assume for n,(z), the photometric redshift
distribution estimate as an input, and we use Planck 2015 flat-
ACDM cosmological parameters including external data (Planck
Collaboration XIII 2016). These parameters include Hy = 67.74 km
s™! Mpc~! and @, = 0.3089. The power spectrum P(k) is calculated
using the Boltzmann code in CAMB (Lewis, Challinor & Lasenby
2000, Howlett et al. 2012) with HALOFIT (Smith et al. 2003) used to
calculate non-linear clustering effects. Minor deviations on the input
redshift distribution or cosmology do not change the results qual-
itatively. Because the galaxy-clustering and galaxy-magnification
equations both contain a factor of b, it effectively cancels in a
normalized clustering redshift calculation, so we set it to 1. We ignore
the galaxy bias evolution, which will only produce small changes.
We also set b, = 1, which is close to other studies of e BOSS ELGs
that indicate b, = 1.3 (Guo et al. 2019).

We show the results of our theory calculations for the clustering—
clustering and clustering—magnification terms for redMaGiC bin 5
as well as the measurements in Fig. 11. The results show that the
magnification signal is far too small to explain the measured high-z
excess in the bin. We show that the magnification term would need
roughly an increase of a factor of 10 to match the data, so small errors
in, for example, the « calculated in equation (19) could not explain
the excess.

We perform similar tests on other bins and consistently see a
theoretical magnification signal that is negligible to our results. This
is mainly due to two factors. The first is the relatively narrow redshift
bins used, reducing the amplitude of the lensing kernel (equation 18)
between the DES galaxies and eBOSS galaxies. For example, with
wider bins, one could have z ~ 0.6 DES galaxies lensing z = 1
eBOSS galaxies, which would have a larger lensing kernel than z =
0.8 DES galaxies. The second factor is our procedure of cutting the
tails where the signal is small, as described in Section 4.3. This cuts
out the regions with both highest magnification signal and lowest
clustering signal.

We note that there is also other evidence that the high-z excess in
redMaGiC bin 5 is a true photo-z bias. In the DES/eBOSS overlap
area (mostly overlapping the region known as Stripe 82), about
3 per cent of the redMaGiC bin 5 galaxies have spectroscopic red-
shifts. In this subsample, a similar high-z excess in the spectroscopic
n(z) is seen compared with the photometric estimate. We extrapolate
aprediction for n(z) based on this spectroscopic subsample in Fig. 12.
For this, we take the photometric n(z) for the whole Stripe 82 region,
and multiply that by a correction factor for each micro-bin (dz =
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Figure 11. Estimates of the n(z) signal for redMaGiC bin 5 (zpy € [0.8,0.9]).
For the purpose of comparison, the clustering data points are only from the
cross-correlation of redMaGiC and eBOSS, making them slightly different
from Fig. 8. The solid (orange, gg) line shows the theoretical prediction for
this cross-correlation due to clustering alone (equation 16). The dash-dotted
(green, gg+gu) line is the theoretical prediction from galaxy clustering and
correlations between redMaGiC galaxies and magnification effects on eBOSS
galaxies (equations 16 and 17). The dotted (red, gg+10+gu) line is a theory
prediction with galaxy clustering and a ten times larger amplitude prediction
from the galaxy-magnification signal. Each of the theory predictions uses the
photometric n(z) prediction for the bin as input. Effects of magnification do
not seem to be large enough in theory to account for the excess signal at high
redshifts in this bin. There is no theoretical motivation for a factor of 10 error
in magnification predictions.

led
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Figure 12. The solid (red) line shows the extrapolated n(z) from spectro-
scopic redshifts in redMaGiC bin 5. The extrapolation is based on the ratio
of galaxies in each dz = 0.02 bin by spec-z and by ‘ZMC’, a draw from the
redMaGiC redshift distribution function in the subset of galaxies with spec-z
measurements. This ratio is then applied to the full redMaGiC sample (the
portion overlapping eBOSS) to give this extrapolated prediction. We see it
matches the clustering results well, giving some evidence that the high-z tail
is physical, rather than a clustering systematic.

0.02 in size) where the correction factor is ngpec/ny, as measured in
the 3 per cent subsample with spectroscopic redshifts. We see that
there is good agreement with the clustering redshift signal.

We caution that a comparison of photo-z errors on a sample
with spectroscopic redshifts with a full sample is not generally
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reliable. Mismatches are seen when applying this procedure to other
bins. This is generally because the subsamples with spectroscopic
measurements tend to be brighter than the full samples, and will
typically have smaller photo-z errors. As this particular error is seen
in the brighter subsample of bin 5 though, it is more likely to be
present in the full sample than the opposite case (i.e. assuming that a
lack of error in the bright sample extrapolates well to the full sample).
Between this minor evidence and the magnification calculations, we
conclude that the high-z excess in the last redMaGiC bin is likely real.
We also note that in early versions of the Year 3 redMaGiC catalogue,
we saw more significant biases when the fifth bin extended to z =
0.95, also suggesting that the redMaGiC algorithm is encountering
issues at high redshift.

8§ SUMMARY

In this work, we present clustering redshift measurements of two
DES lens samples, redMaGiC and MagLim (Figs 8 and 9). These
measurements inform the redshift models for the analyses in DES
Collaboration et al. (2022) and related papers. Our results are
bolstered by the large number of spectroscopic galaxies available
for this measurement from the BOSS and eBOSS galaxy clustering
catalogues, and their several hundred deg? overlap with the DES. We
generally find small biases (JA| < 0.01) for the photometric redshift
predictions of these samples (Tables 7—-10). Our results suggest that
the shapes of the redMaGiC photo-z distributions in particular are
very accurate. The fainter, larger MagLim galaxy sample had more
significant differences in shape when comparing the photo-z and
clustering distributions, suggesting the need for a two-parameter fit
for calibration. We were able to constrain the mean redshifts, in the
form of the bias parameter Az, of the different bins to a precision
of typically around 0.005 when performing one-parameter fits. Our
uncertainties on the mean redshifts were only marginally larger when
performing two-parameter fits.

We tested our methodology in simulations (Section 5), including
a new method of calibrating the galaxy bias systematic of the
‘unknown’ sample, the DES galaxies. This new method, involving
cross-correlations on smaller redshift ranges, is made possible by the
large number of spectroscopic tracers we had compared with previous
work. We found the systematic errors on our method, beyond the
statistical errors we account for in all of the autocorrelations and
cross-correlations, to be small for calculating a single photo-z bias
(Fig. 6 and Table 5). We also tested our ability to constrain the width
of a redshift distribution. In this case, we found more significant
‘method’ errors not accounted for by the initial statistics. Despite
this, our results suggest we can constrain the width to around 4-7
per cent for most samples. In Appendix D, we show some tests that
suggest that the density dependence of the method may increase these
uncertainties up to around 11 per cent, but this would have negligible
impact on the DES cosmological results.

In one redMaGiC bin, we investigate specifically if a high-redshift
tail in our results can be explained by magnification, and we find that
it cannot. Our procedure of cutting the tails of the clustering redshift
distribution, and the relatively narrow redshift bins for the DES lens
samples in general, make magnification a negligible effect for our
work.

For that particular redMaGiC bin in Appendix A, we also show
that a two-parameter fit to the clustering data should not bias our
cosmological results (while a one-parameter fit could at least bias
the galaxy bias estimates). A similar analysis for MagLim is shown
in Porredon et al. (2021a), where it is found that most of the MagLim
bins need a two-parameter fit as well not biasing cosmological results.
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These tests show the importance of using a multiparameter fit in
calibrating photometric redshifts.

Our results provide important redshift constraints for our com-
panion DES Year 3 results papers using redMaGiC and MagLim
galaxies for galaxy clustering and galaxy—galaxy lensing (DES
Collaboration et al. 2022; Pandey et al. 2021; Porredon et al. 2021a;
Rodriguez-Monroy et al. 2022; Prat et al. 2021; Elvin-Poole et al.,
in preparation). This work also signifies some important steps in
the progression of clustering redshift measurements, particularly
in testing new methods to correct the galaxy bias systematic, and
to constrain a width parameter of a redshift distribution. Future
photometric and spectroscopic surveys will need to continue to
develop the clustering redshift technique as they push to higher
redshifts.
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APPENDIX A: VALIDATING THE
PHOTOMETRIC REDSHIFT MODEL

Here, we show a test used to determine which photometric redshift
model fits (one- or two-parameter) sufficiently match the clustering
redshift measurements such that it would not bias cosmological
results. We want a photo-z model that is flexible enough to agree
with the clustering redshift points directly. We represent ‘clustering
points directly’ in two ways, one with a multi-Gaussian fit to the
clustering data, and one with a spline. The spline will it more
exactly to the clustering data points, so we call it ‘clustering
direct’ in Fig. Al. The multi-Gaussian fit may be more realistic
as a result of the spline overfitting to noise in the clustering data
points. For the fiducial cosmology used in Krause et al. (2021), we
calculate a noiseless galaxy clustering and galaxy—galaxy lensing
data vector given the different redshift distributions. We ignore
cosmic shear (the third part of the ‘3 x 2’ measurement) as it
does not use the lens galaxies. We then run MCMC chains on
these measurements to infer cosmological and galaxy bias pa-
rameters. In these chains, all cosmology and intrinsic alignment
parameters are allowed to vary and other nuisance parameters
(such as the weak lensing source redshifts) are fixed. We follow
the model validation analysis choices outlined in Krause et al.
(2021).

We ran chains with an input ‘true redshift’ distribution matching
the unshifted, unstretched redMaGiC photo-z prediction. We then
ran chains with four different redshift models: a one-parameter
model using Az in all bins to shift the photo-z predictions to match
clustering, a two-parameter model that introduces a stretch parameter
s in the fifth redMaGiC bin, a multi-Gaussian fit to the clustering data
points, and a spline fit to the clustering data points. The results are
shown in Fig. A1. In the first four redMaGiC bins, we find significant
overlap for the constraints on og, 2, and the galaxy bias, b, with our
one-parameter model, and the redshift distributions that serve as a
proxy for the clustering results. This signifies a good match between
the clustering redshifts, and the one-parameter shifted photometric
redshifts.

We do see that for the fifth redMaGiC bin, the galaxy bias is
different when comparing the one-parameter model contours to the
multi-Gaussian and direct clustering fits. We can infer that this
means that a shifted redMaGiC photo- z distribution in this bin is
still different enough from the clustering redshift distribution that
they would produce statistically different amplitudes for galaxy
clustering predictions in a given cosmology. The two-parameter
contours show the constraints when the two-parameter fit is used
in just the fifth bin. The addition of the stretch parameter, s,
mitigates the discrepancy. With either the one- or two-parameter
models, the cosmological constraints are unbiased compared with
the clustering direct models. The specific o differences between
the two-parameter model and the multi-Gaussian fit for Q,, og
and b° are 0.26, 0.39 and 0.31, respectively. The o differences
between the two-parameter model and the ‘clustering direct’ spline
fit for Q. og and b° are 0.11, 0.24 and 0.95, respectively. Be-
cause the ‘clustering direct’ and multi-Gaussian fits ignore the
clustering uncertainties on shape, these values may effectively
overestimate how much our model disagrees with the clustering
data.
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Figure Al. Simulated cosmological constraints from galaxy clustering and galaxy—galaxy lensing with four different redshift distribution models for the
redMaGiC sample. The one-parameter contour uses the redMaGiC photometric redshift distribution with shift parameters in all redshift bins from the results in
this work (Table 7). The two-parameter contour uses a two-parameter shift and stretch model for the fifth redMaGiC bin (Table 8). The MG fit contour uses a
multi-Gaussian fit to the clustering redshift points. The clustering direct contour uses a spline fit to the clustering redshift points. The ‘true redshift’ data vector
for the simulation is the unshifted redMaGiC photo- z prediction. We can see that the two-parameter model gives a better fit for the galaxy bias in bin 5 when
compared with the predictions of the more exact fits to the clustering data, spline and multi-Gaussian.

APPENDIX B: BREAKDOWN OF UNCERTAINTY
CONTRIBUTIONS TO MAIN RESULTS

Here, we show the uncertainty contributions for our main results in
Tables 7—10. The calculations for overall uncertainty differ slightly
between the one- and two-parameter cases. In the one-parameter
case, there are three contributions of uncertainty. The first is the
statistical errors from the cross-correlations of the unknown and
reference samples and the autocorrelations of the reference samples.
These give an uncertainty on the mean redshift in equation (7) with
wy, set to 1. The second contribution is from the power-law fit to the
estimate of w,, in equation (12). The uncertainty in the exponent y

is translated to an uncertainty contribution on the mean redshift of
a photometric bin. Finally, the third contribution is the systematic
uncertainty derived in Table 5.

For the two-parameter fit, the x?2 fit for both Az and s is done
after the estimate and uncertainties of the power-law fit to wy,
(equation 12) are already applied. Thus, the uncertainties in this fit
encompass the first two contributions of the one-parameter fit. We call
this combination the statistical uncertainty. To this uncertainty, the
systematic uncertainties from Table 6 are added. In each case of the
one- and two-parameter uncertainty calculations, the contributions
are added in quadrature. The contribution for each redshift bin is
shown in Tables B1 and B2.
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Table B1. One-parameter fit uncertainty contributions for our main one-
parameter results in Tables 7 and 9.

Redshift bin Total Statistical Power law  Systematic
redMaGiC bin 1 0.004 0.0026 0.0011 0.0025
redMaGiC bin 2 0.003 0.0016 0.0006 0.0025
redMaGiC bin 3 0.003 0.0018 0.0011 0.0025
redMaGiC bin 4 0.005 0.0038 0.0015 0.0025
redMaGiC bin 5 0.010 0.0089 0.0040 0.0025
MagLim bin 1 0.004 0.0028 0.0015 0.0025
MagLim bin 2 0.006 0.0036 0.0035 0.0025
MagLim bin 3 0.004 0.0027 0.0018 0.0025
MagLim bin 4 0.005 0.0036 0.0019 0.0025
MagLim bin 5 0.011 0.0097 0.0044 0.0025
MagLim bin 6 0.015 0.0127 0.0067 0.0025

Table B2. Two-parameter fit uncertainty contributions for our main two-
parameter results in Tables 8 and 10.

Bin Tot (Az) Stat (AzSyst (Az) Tot (s) Stat (s) Syst (s)

redMaGiCbin 1  0.005 0.0025 0.0044 0.043  0.020 0.038
redMaGiCbin2 0.005 0.0017 0.0044 0.045 0.023  0.038
redMaGiCbin3 0.005 0.0029 0.0044 0.0025 0.029  0.038
redMaGiCbin4 0.006 0.0035 0.0044 0.048 0.053  0.038
redMaGiCbin 5 0.006 0.0041 0.0044 0.065 0.052  0.038
MagLim bin 1 0.007  0.0048 0.0044 0.062 0.049  0.038
MagLim bin 2 0.011  0.0097 0.0044 0.093 0.085  0.038
MagLim bin 3 0.006 0.0036 0.0044 0.054 0.039 0.038
MagLim bin 4 0.006 0.0033 0.0044 0.051 0.033 0.038
MagLim bin 5 0.007  0.0049 0.0044 0.067 0.056  0.038
MagLim bin 6 0.008 0.0064 0.0044 0.073 0.062  0.038

APPENDIX C: ALTERNATIVE ASSESSMENTS
OF SIMULATION TESTS

In this appendix, we describe a few variations on the evaluation of
the tests on simulations in Section 5, focusing on the one-parameter
fit results in Table 5. One alternative would be to remove a model
having ‘biased’ tests at all, and only fit for additional uncertainty
(i.e. fit for w in equation 15, and set b = 0). We do evaluate the
two-parameter fit in this manner in Section 5.6. In this case of no
bias allowed, we would find uncertainty for Test 1, @ = 0.0016,
and for Test 5, @ = 0.0029, for a combined uncertainty of 0.0033.
For these calculations, we modify the degrees of freedom to be 5
instead of 4 in equation (15). This test would result in a very small
increase in method systematic uncertainty from the fiducial choice,
0.0025.

We also address the question of whether it is appropriate that
the six samples are treated as independent tests. While the six DES
samples are different, there is significant redshift overlap between the
redMaGiC and MagLim samples, so the same simulated reference
BOSS/eBOSS galaxies are used for multiple samples. With only
six simulated samples, it is difficult to definitively prove correlation
or lack thereof. Ideally, a large set of simulated galaxy samples,
in different regions of the sky, could test this. Within our limited
samples, we can carry out a few tests though.

If there are correlations in the measured biases between samples,
we would expect them to be on the bins with the most overlap in
redshift space. The pairs of samples with significant redshift overlap
in Figs 5 and 6 are [1, 2], [3,4] and [5, 6]. Analysing only (mostly)
non-overlapping redshift bins would likely have no correlations.
We test this by performing again the calculations in Table 5 using
separately just the three redMaGiC bins (samples 1, 3 and 5) and
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Table C1. Re-analysis of the tests shown in Fig. 6 and Table 5. In this
case, we derive separate bias and uncertainty values when analysing the three
simulated redMaGiC and three simulated MagLimsamples separately.

Name of test Bias Uncertainty

redMaGiC alone

Test 1: Method w/Spec-z —0.0019 0.0033
Test 5: Clustering-z o correction 0.0026 0.0029
MagLim alone

Test 1: Method w/Spec-z —0.0007 0.0000
Test 5: Clustering-z o correction 0.0018 0.0034

MagLim bins (samples 2, 4 and 6). The results for Tests 1 and 5
are shown in Table C1. For redMaGiC alone, combining the Test
1 and Test 5 results results in an overall bias of b = 0.0007 and
systematic uncertainty w = 0.0044. For MagLim alone, the combined
results give b = 0.0011 and @ = 0.0034. These results are very
similar to our fiducial values of b = 0.0007 and w = 0.0025. In
the most pessimistic case of total correlation between overlapping
samples, using just the three MaglLim samples changes our bias and
uncertainty measurements by less than 0.001 each.

Although we have limited information in testing the hypothesis
that the pairs of overlapping samples give correlated results, we can
look at Fig. 6. If we naively looked for correlations in, for example,
the Test 1 and Test 5 results between samples, we might conclude that
Test 1 has correlations in samples 3 and 6, and Test 5 has correlations
in samples 1 and 6. These samples are very unlikely to be correlated
though, as they cover different redshift ranges. This provides a little
more evidence that the tests are likely to be uncorrelated.

A simple w(6) measurement of overlapping galaxy samples should
certainly be correlated. However, it is not clear that the many w(6)
measurements in the full clustering redshift methodology, including
the different angular bins in equation (2), and different redshift
bins in, for example, equation (7) should be correlated in their
measurements of mean redshift. We leave a more explicit test of
this for future work with a larger number of simulated samples.

We note that an evaluation of the two-parameter fits in Fig. 7
potentially indicates correlation in biases on the stretch parameter,
unlike the one-parameter results. This is seen in bins 5 and 6, which
do overlap in redshift, with each having a negative bias compared
with the true width. However, we believe that if there is a correlation
here, it is likely not a result of the covariance of the redshift bins,
but a general bias for noisier clustering redshift measurements to
predict too wide a redshift distribution (negative bias on Fig. 7).
We did see in tests that adding scales to the measurements, which
would decrease the uncertainties notably for higher redshift bins,
also reduced this bias on the stretch parameter. We leave further
study of this correlation of noise and bias in measured width to future
work.

APPENDIX D: TESTS OF METHODOLOGY’S
DEPENDENCE ON DENSITY

For any clustering statistics, uncertainty will depend significantly on
the number of objects. In the pair counting of w(r) in equation (1),
a lower density of objects will result in larger uncertainty, which in
this work we call the statistical uncertainty. We briefly investigate if
there is also density dependence for the systematic errors determined
in this section.

To do this, we take our six simulated samples shown in Fig. 5, as
well as the simulated spectroscopic samples, and cut their regions to
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Table D1. Results from recomputing the systematic uncertainty parameters
of Tables 5 and 6 when using simulated samples that are one-fourth of the
size of the original ones used in Section 4.

Method Parameter New value Previous value
One-parameter test 1 b —0.0014 —0.0014
One-parameter test 5 ® 0.0022 0.0013
One-parameter test 1 b 0.0014 0.0021
One-parameter test 5 ® 0.0038 0.0021
Two-parameter x> SAz 0.0044 0.0057
Two-parameter x> 8s 0.038 0.0067

approximately one-fourth of their original size. We then recompute
each step of our methodology: taking clustering-z measurements
with cross-correlations and autocorrelations of the sample. We repeat
‘Test 1’ by taking autocorrelations of the unknown (photometric)
samples using their true redshifts. We also repeat ‘Test 5°, the
method we will use on the data, where we take the photometrically
binned (micro-binned) unknown sample autocorrelations, and use
cross-correlations on nano-bins to calibrate those autocorrelations
(equations 10 and 11). We finally recompute the two-parameter tests
for the x2 method as well. In each case, we re-derive the systematic
uncertainty or bias and compare with the values from Tables 5 and
6.

The new fits for systematic uncertainty in this one-fourth simulated
data case are shown in Table D1. We see that the measures of bias in
Tests 1 and 5 of Section 5 are the same or reduced, giving evidence
that perhaps there is no overall bias of the method. We also see that the
systematic uncertainty in both one-parameter (w) and two-parameter
tests is increased.

From this result, it is of interest to extrapolate how systematic
uncertainties on the data may be underestimated. In the test described
here, both the reference and unknown sample were cut into one-
fourth of the size. The uncertainties measured in Table D1 increase
by a factor of 1.3-1.8. As a toy model, we will say the uncertainties
increased by roughly 43 = 1.587. This toy model would suggest
systematic uncertainty scales as «/N,Nu'/ 3. The data redshift bins
have a range of number density contrasts with the full simulated
samples. In this toy model, the systematic uncertainty in different
redshift bins for MagLim and redMaGiC would range from two to
three times the uncertainties derived in Section 5. As the systematic
uncertainty is added in quadrature with the statistical uncertainty, the
overall uncertainty would increase by less than a factor of 2 in most
bins.

There are many caveats to this extrapolation. Most notably, if
there is significant density dependence to the systematic uncertainty,
then averaging the results of different simulated samples of different
densities is likely not the optimal analysis. The cosmological analysis
in DES Collaboration et al. (2022) ended up using the four most
dense redshift bins (MagLim bins 1-4). It is likely that, in these bins,
any increase in systematic uncertainty is at the lower end of this
projection. If averaging different densities across the six simulated
samples has a large effect, then the increases for these bins may be
significantly overestimated here.

We tested the impact of having increased redshift uncertainty
on the cosmology analyses in DES Collaboration et al. (2022)
and Porredon et al. (2021a). We ran chains where the systematic
redshift uncertainties for the two-parameter x fit from Table 6 were
increased to Unc.(Az) = 0.01 and Unc.(s) = 0.1, which increased
the overall uncertainties in Table 10 by a factor of 2 or less. The main
cosmological results used MaglLim bins 1-4, so we did not need to
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consider the one-parameter fits, which were only used for redMaGiC.
We ran chains for the ‘3 x 2’ analysis of DES Collaboration et al.
(2022) and the ‘2 x 2’ analysis of Porredon et al. (2021a). In checking
the impact on cosmological parameters o, Sg and 2,, we found in
all cases parameter shifts of less than 0.17¢ and contour increases of
less than 9 per cent.

We note that in this appendix we are discussing systematic
uncertainties beyond the statistical uncertainties, which also change
with density. Interestingly, the statistical uncertainties have lower
dependence on density. They are within a factor of 1.5 in comparing
the simulated samples to data. This is less than the factor of 2—
3 from the extrapolation of the systematic uncertainty. This may
also suggest that more tests are needed to verify the magnitude of
systematic uncertainty dependence on density.

The test in this appendix suggests that the accuracy and precision
of clustering redshift methods may be dependent on density, beyond
the usual counting statistics. More precise work with a larger suite of
simulated samples at a range of densities will be needed to understand
these effects in detail. However, the upper bounds of the increase in
uncertainty from this section only increase the overall uncertainty by
up to a factor of 2, and this has minimal impact on the cosmological
results.

Several other parameters not explored here may also affect the
precision of the clustering redshift measurements, including the
exact shape of n(z), the shape of the photo-z estimate, the width
of the redshift distribution, the shape and strength of galaxy bias
evolution with redshift, and the number of objects. Of these, the
most likely correlation is with the number of objects, so this is where
we investigate further. Future studies will attempt to quantify to a
higher degree the dependence of the clustering redshift methodology
on these several factors, as well as choices such as bin size and scales
of measurement.

APPENDIX E: DES FLUX-LIMITED SAMPLE

In this section, we describe clustering redshift measurements for the
DES *flux-limited’ sample described in Porredon et al. (2021b). This
sample is not used in the DES Year 3 cosmology analyses (DES
Collaboration et al. 2022). In Porredon et al. (2021b), this sample’s
cosmological constraining power is compared to the redMaGiC and
MagLim samples.

We carry out the same full clustering redshift analysis as was done
for the redMaGiC and MagLim samples in Section 6. The results
are shown in Fig. E1 and Table E1. We see that this sample shows
considerable photo-z biases of several o, in sharp contrast to the
results for the other two DES lens samples. Most notable are large
excesses of low-z galaxies measured by the clustering redshifts in
the first three tomographic bins (z € [0.2, 0.65]) compared with the
photo-z predictions.

Table El. Clustering redshift results for the flux-limited sample (one-
parameter). This sample is not used in the DES Year 3 cosmology analyses.
The systematic uncertainties listed include the power-law uncertainty and the
0.0025 method uncertainty from Section 5.

Redshift bin Az 8Az(syst.) SAz(stat.)
1: zpn €[0.2,0.4] —0.041 £ 0.007 0.005 0.005
2: zph € [0.4,0.5] —0.058 + 0.007 0.006 0.004
3: zph € (0.5, 0.65] —0.056 + 0.007 0.005 0.005
4: zph €[0.65, 0.8] —0.026 % 0.006 0.005 0.003
5:zph € [0.8, 1.05] 0.008 £ 0.015 0.004 0.014

MNRAS 513, 5517-5539 (2022)

€20z Aieniga4 0z uo Jasn (D1SD) seounual) sauoioebnsaaul ap Jousdng ofesuo)) Aq 920¥659// L SS/v/E L S/8101e/SBIUW/WOo dNo"olWwapeoe//:sdny WwoJl) papeojumoq



5538  R. Cawthon et al.

le5 le5 le5

le5 le5

2.5 4 =0 photoz 1| 25 2| 2.5
¢ clustering

2.0 2.0 m; 2.0
1.5 1 ++f |

1.0 + 1.0 A +

n(z)

0.5 —} ﬂ 054" 4 051 4

it
0.0 Ll I 0.0 ‘:hlﬂd ! 0.0 ++ [

= T
—e—
— o
— e

2.0

0.5 4 ‘ 0.5 1

i ’ ++
: 0.0 Lt B 0.0 ﬂ':-*“tﬂﬂ

T
0.25 0.50 0.25 0.50 0.75 0.25
z z

T
0.50 0.75 0.4 0.6 0.8 1.0 0.6 0.8 1.0

z z V4

Figure E1. The clustering redshift measurements of the flux-limited DES sample. This sample is not used in DES Year 3 cosmology analyses, but has been

studied in Porredon et al. (2021b).
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