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1 Introduction and goals 

Although fluorine is the most abundant halogen atom in the earth’s crust, only 13 natural products 

incorporating fluorine have been discovered so far.1 The first fluorinated natural product to be discovered 

was fluoroacetate 1, isolated from Dichapetalum cymosum, also known as Gifblaar or Poison leaf  

(Figure 1). The name of this South African shrub indicates its toxicity, which is due to the high levels of 

fluoroacetate 1 in its leafs. The only amino acid among the 13 fluorinated natural products is 

4-fluorothreonine 2 which is produced in the actinomycete Streptomyces cattleya (Figure 1).2 

 

Figure 1 

The introduction of fluorine in organic compounds is very popular in medicinal chemistry. This can be 

attributed to its unique chemical, biological and physical properties.3 The high electronegativity of fluorine 

(χpauling = 4) and the excellent overlap between the 2s and 2p orbitals of fluorine with the corresponding 

orbitals of carbon lead to a highly polarized, very strong and short carbon-fluorine bond. In addition, this 

bond has a low polarizability, which often leads to an increase in lipophilicity of fluorinated compounds, 

especially in the case of aromatic fluorination and fluorination adjacent to atoms with π-bonds. Since the 

lipophilicity of a compound has a profound effect on its passive transport in the body, this is a very 

important property of orally administered drugs. Another result of the electron-withdrawing character of 

fluorine is the pronounced effect of fluorine substitution on the acidity of adjacent functional groups. This 

in turn is an important feature in the solubility and bioavailability of pharmaceuticals. Furthermore, the 

introduction of fluorine in molecules can enhance their metabolic stability. As such, metabolically labile 

sites can be blocked by the introduction of fluorine. Another important feature of fluorine substitution is 

its effect on the conformation of molecules. Because of the fact that the van der Waals radius of fluorine 

(1.47 Å) is situated in between that of hydrogen (1.20 Å) and oxygen (1.57 Å), the replacement of one of 

these two elements by fluorine does not have a pronounced effect on steric grounds. However, the 

electronic properties of fluorine can lead to a conformational change in fluorinated molecules. For 

example, 1,2-difluoroethane 3 adopts a gauche conformation due to the stabilizing effect of 

hyperconjugative (σ -> σ*) interactions. 
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Figure 2 

These unique properties of fluorine have led to an increasing number of fluorinated pharmaceuticals, with 

2% of fluorine-containing drugs in 1970 and about 25% of fluorinated drugs nowadays.4 In 2013, seven of 

the 30 best-selling drugs incorporated at least one fluorine atom in their structure. The cholesterol-

lowering drug Crestor® (rosuvastatin) 4 occupied the fourth place in this list and Advair Diskus®  

(a combination drug of fluticasone propionate 5 and salmeterol), which is used for the treatment of 

asthma, was the sixth best-selling drug in 2013 (Figure 3). In 2011, the cholesterol lowering drug Lipitor® 

(atorvastatin) 6 was the best-selling drug worldwide. Another important example of a fluorinated drug is 

the well-known antidepressant Prozac® (fluoxetine) 7. 

 

 

Figure 3 

The above-mentioned drugs are members of the class of ‘small molecule’ drugs, with a molecular weight 

generally less than 500 Da. The biggest advantage of these drugs is that they can be administered orally. 
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However, some disadvantages are associated with this class of drugs, for example a reduced target 

selectivity, which can lead to the occurrence of side-effects. Another class of drugs comprises the 

biopharmaceuticals, such as proteins. The biggest advantage of this class is their high site-specificity due 

to the higher amount of interactions with the appropriate receptors. However, due to the high molecular 

weight of these compounds, oral administration is not possible and these drugs need to be administered 

by injection, which is probably the major drawback of this type of drugs. Another disadvantage is their low 

metabolic stability. Nevertheless, biopharmaceuticals are also represented in the list of top-selling 

blockbuster drugs in 2013, with four protein drugs in the top 10. For example, adalimumab (Humira®), an 

anti-inflammatory drug, is a monoclonal antibody consisting of 1330 amino acids and was listed as the 

third best-selling drug in 2013. 

Peptides can be mentioned as a third class of pharmaceuticals, with a molecular weight situated between 

that of ‘small molecule’ drugs and biopharmaceuticals.5 An example of a synthetic therapeutic peptide is 

exenatide (Byetta®), which is used for the treatment of diabetes mellitus type 2. The biggest drawback of 

peptides is their limited metabolic stability since they are readily degraded by proteolytic enzymes. In 

order to reduce the biodegradation of peptides, different strategies have been developed. For example, 

since the β-peptide bond is stable toward proteases,6 it is useful to consider β-amino acids as building 

blocks for more stable peptides.7 Furthermore, the use of conformationally restricted β-amino acids 

increases the conformational stability and rigidity of peptides.8 Thus, less β-amino acid residues are 

required for the formation of secondary structures, as compared to α-amino acids.9 The use of fluorine in 

peptide chemistry is also an emerging area10 and the influence of fluorine substitution on the formation 

of secondary structures has been described.11 One of the main limitations for the synthesis of fluorinated 

peptides is now the accessibility of the appropriate building blocks, namely fluorinated amino acids. 

The first part of this PhD thesis will focus on the synthesis of carbocyclic β-amino acid analogues, as new 

building blocks for β-peptides. In previous research at our department, the synthesis of various analogues 

of β-aminocyclopropanecarboxylic acid has already been developed.12 The synthesis of one enantiomer of 

trans-2-(diphenylmethylideneamino)cyclopropanecarboxylate (1R,2R)-8 starting from (S)-β-benzyl N-

(tert-butoxycarbonyl)aspartate has already been developed in a previous Master thesis.13 In this work, this 

synthesis will be optimized and the synthesis of the other enantiomer (1S,2S)-8 is envisaged, as well as the 

saponification of both enantiomers 8 toward the corresponding carboxylic acids 9. Furthermore, coupling 

of these cyclopropanecarboxylic acids 9 with amino acids should lead to dipeptides 10 (Scheme 1). 
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Scheme 1 

2-Aminocyclobutanecarboxylates are another class of conformationally restricted β-amino acids. In a 

previous Master thesis,13 the synthesis of dialkyl β-aminocyclobutane-1,1-dicarboxylates 13 was described 

via a Michael Induced Ring Closure (MIRC) reaction. In that reaction, Michael-type addition of 

diphenylmethylideneamine 12 across halogenated propylidenemalonates 11 is followed by intramolecular 

substitution of the leaving group X, leading to ring closure. However, this reaction suffered from low yields 

(28-38%) and therefore, in this PhD thesis, it will be tried to optimize the synthesis of 

β-aminocyclobutanecarboxylates 13 (Scheme 2). 

 

Scheme 2 

In the second part of this PhD thesis, the focus will lie on the synthesis of fluorinated conformationally 

restricted amino acids. As a first example, the synthesis of fluorinated 2-aminocyclopropanecarboxylates 

17 will be attempted. This would be the first example of the synthesis of ring fluorinated 

β-aminocyclopropanecarboxylates. In analogy with the synthesis of cyclobutanes 13, the synthesis of 

cyclopropanes 17 is envisaged via the MIRC reaction starting from the appropriate fluorinated Michael 

acceptors 16 and various nitrogen nucleophiles. The synthesis of ethylidenemalonates 16 should proceed 

starting from ethyl bromodifluoroacetate 14 via reduction toward the corresponding aldehyde and 
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subsequent Knoevenagel condensation with malonates 15 (Scheme 3). Having fluorinated β-ACC 

derivatives 17 hopefully in hand, their reactivity will be studied. 

 

Scheme 3 

As a second class of fluorinated conformationally restricted amino acids, the synthesis of mono- and 

difluorinated azetidine-2-carboxylates 22 will be attempted. Based on the work of Couty, which describes 

the synthesis of azetidine-2-carboxylates,14 the synthesis of azetidines 22 is envisaged via the base-induced 

ring closure of fluorinated N-protected amino esters 21. Precursors 21 should be accessible via the 

condensation of amino esters 19 with fluorinated building blocks 18 leading to amides 20, followed by 

selective reduction of the amide bond and protection of the amine function. In case of the 

monofluorinated azetidines, the stereoselectivity of the ring closure will also be evaluated (Scheme 4). 

 

Scheme 4 

The third part of this PhD thesis will be devoted to the synthesis of fluorinated heterocycles, because there 

is a profound interest from medicinal chemistry in this type of compounds. The use of fluorinated building 

blocks in the synthesis of fluorinated heterocyclic compounds avoids the need for a late-stage fluorination 

step, which often has a low functional group compatibility. In this work, the synthesis of a new building 
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block 25 is envisaged, followed by its application in the synthesis of fluorinated heterocycles. 

Transformation of ethyl bromodifluoroacetate 14 into amines 23 has already been described in the 

literature.15 Protection of the amine could give compounds 24, which should be transformed into 

enamides 25 (PG = acyl, sulfonyl) upon treatment with base (Scheme 5). 

 

Scheme 5 

The presence of two fluorine atoms at the β-carbon atom of enamides 25, in combination with an electron-

withdrawing acyl or sulfonyl group (PG) at nitrogen, could lead to a highly polarized double bond and an 

electron-deficient difluorinated carbon atom. If this effect could predominate the electron-donating effect 

of the enamide nitrogen atom, enamides 25 would be an example of electrophilic enamides readily 

reacting with nucleophiles. Thus, when having enamides 25 in hand, their reactivity toward nucleophiles 

will be investigated, possibly leading to the formation of fluorinated enamides 26. By incorporating the 

nucleophile in the same molecule as the enamide moiety, this method should give rise to the formation of 

fluorinated heterocycles 27 (Scheme 6). 

 

Scheme 6 

In the last part of this PhD thesis, the synthesis of fluorinated 8,9,10,11-tetrahydro-8,11-methanobenzo[j]-

phenanthridine-7,12-diones 31 is envisioned (Scheme 7). Non-fluorinated derivatives of 31 have already 

been synthesized in our research group and they have been tested for activity against Mycobacterium 

tuberculosis. However, these compounds showed a low specificity since they are also active against gram 

positive bacteria. Therefore, the synthesis of fluorinated derivatives 31 will be attempted starting from 

aldehyde 28, via sequential reductive amination, mesylation, ring closure and oxidation steps. These 
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fluorinated 8,9,10,11-tetrahydro-8,11-methanobenzo[j]phenanthridine-7,12-diones 31 will also be tested 

for activity against M. tuberculosis. 

 

Scheme 7
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2 Literature overview 

In recent decades, much attention has been devoted to the synthesis of fluorinated amino acids, as can 

be seen in a number of reviews that have been published in this area.16 However, there has been no 

general representation on the synthesis of small-membered ring-containing fluorinated amino acids. So, 

the objective of this literature overview is to give a short summary of the synthetic routes toward amino 

acid derivatives with a cyclopropane, cyclobutane, aziridine or azetidine core, containing one or more 

fluorine atoms directly attached to the carbo- or heterocyclic ring. Carbo- or heterocyclic amino acids 

incorporating the fluorine atoms in a trifluoromethyl group or on a side chain will not be discussed here, 

just like the higher homologues, i.e. amino acids containing a five- or six-membered ring as a core structure 

and oxa- and thiaheterocyclic compounds. 

2.1 Synthesis of ring fluorinated 1-amino- and 2-aminocyclopropanecarboxylic 

acid derivatives 

1-Aminocyclopropanecarboxylic acid (α-ACC), the precursor of the plant hormone ethylene, and 

2-aminocyclopropanecarboxylic acid (β-ACC) are the two carbocyclic amino acids possessing the most 

severe ring strain. In the first part of this literature overview, the synthesis of ring fluorinated analogues 

of α-ACC 32 and β-ACC 33 will be discussed (Figure 4). 

 

Figure 4 

The first synthesis of a ring fluorinated 1-aminocyclopropanecarboxylic acid was reported in 1997  

(Scheme 8).17 In the first step of this reaction sequence, treatment of acrylate 3418 with diazomethane 

(CH2N2) afforded the corresponding pyrazoline, which underwent photochemical expulsion of dinitrogen, 

leading to the formation of cyclopropanes 35 (trans/cis 3/1). Subsequently, this diastereomeric mixture 

35 was converted into hydrazides 36 in excellent yield by treatment with hydrazine monohydrate in 

ethanol. Curtius rearrangement of hydrazines 36 toward carbamates 37 was performed by addition of 

NaNO2 in the presence of HCl, followed by heating at reflux temperature using the corresponding alcohol 
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as solvent. In the next step, the oxidation of the aromatic moiety of cyclopropanes 37 was studied. A first 

method (method A) comprised the oxidation by means of RuO4, prepared in situ from RuCl3, in the 

presence of NaIO4 as a co-oxidant. However, ozonolysis followed by an oxidative work-up in H2O2 proved 

to be a more suitable route toward acids 38b (R = Et, method B). For the synthesis of tert-butyl esters 38a, 

ozonolysis over dry silica gel gave the best results (method C). No yields were reported for this oxidation 

step. In a last step, removal of the Boc-protecting group of carbamates 38a proceeded smoothly in the 

presence of 3M HCl in EtOAc to afford fluorinated ACC derivatives 41, as a mixture of two isomers. In case 

of derivatives 38b, the carboxylic acids were first converted into the corresponding methyl esters 39 by 

treatment with CH2N2. Hydrolysis of carbamates 39 was achieved in a solution of HBr in HOAc under reflux 

conditions, affording the corresponding hydrobromic acids which were subjected to ion exchange 

chromatography over Dowex® using 1M HCl as the eluent, leading to hydrochloric acids 41, or using NH4OH 

as the eluent, which led to the formation of the free amino acids 40. No yields were reported for this last 

step. The trans-isomer trans-41 was obtained in pure form applying the same reaction sequence on 

hydrazide trans-36, which precipitated upon concentration of the solution after conversion of esters 35 

into hydrazides 36. 1-Aminocyclopropanecarboxylic acid (α-ACC) is a potent glycine agonist on the 

N-methyl-D-aspartate (NMDA) receptor ion chanel,19 a very important receptor involved in the process of 

learning and memory.20 The activity of 1-amino-2-fluorocyclopropanecarboxylic acid 40 was also tested in 

this regard, and it proved to be comparable to α-ACC itself. 
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Scheme 817 

An enantioselective synthetic pathway toward gem-difluorinated 1-aminocyclopropanecarboxylic acids 

(S)-46 and (R)-46 has also been developed, starting from diacetoxy alkene 42 (Scheme 9, Scheme 10).21 

Cyclopropanation of alkene 42 by addition of difluorocarbene, derived from sodium chlorodifluoroacetate, 

led to the formation of fluorinated cyclopropane 43, which was hydrolyzed toward diol 44 using potassium 

carbonate in a methanol/water mixture (1/1). A lipase-catalysed (Amano PS from Pseudomonas cepacia) 

desymmetrization of prochiral precursors 43 and 44 led to the formation of monoacetates (S)-45 and  

(R)-45, respectively, which were converted into 2,2-difluoro-1-aminocyclopropanecarboxylic acids (S)-46 

and (R)-46 in five steps (Scheme 9).  
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Scheme 921 

The synthesis of carboxylic acid (R)-46 from monoacetate (R)-45 is presented in detail in Scheme 10. Jones 

oxidation of alcohol (R)-45 toward carboxylic acid (R)-47, followed by Curtius rearrangement using 

diphenylphosphoryl azide (DPPA) in the presence of benzyl alcohol or tert-butanol afforded carbamates 

(R)-48a and (R)-48b. Removal of the acetate protecting group was achieved by stirring carbamates (R)-48 

in MeOH in the presence of K2CO3 for 30 minutes at room temperature and subsequent Jones oxidation 

afforded carboxylic acids (R)-50a and (R)-50b. While the Cbz-protecting group in compound (R)-50a could 

not be removed under various reaction conditions, deprotection of compound (R)-50b could be achieved 

upon stirring in an aqueous solution of HCl, leading to cleavage of the Boc group and the formation of the 

envisaged hydrochloric salt (R)-46. Carboxylic acid (R)-50a were converted into the corresponding methyl 

ester (R)-51 by treatment with an excess of diazomethane. 
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Scheme 1021 

Besides the synthesis of the above-mentioned mono- and difluorinated 1-aminocyclopropanecarboxylic 

acids, some examples of fluorinated derivatives of α-ACC containing extra functional groups have also 

been described. In the diastereoselective synthesis of novel fluorinated glutamic acid analogues 56-61, 

cyclopropane-1,2-dicarboxylates cis-55 and trans-55 were obtained as intermediates (Scheme 11, Scheme 

12).22 A Michael Induced Ring Closure (MIRC) reaction using N-Boc-protected methyl 2-aminoacrylate 52a 

and the Reformatsky reagent derived from ethyl dibromofluoroacetate 53, prepared using Et2Zn  

(Method A), led to the formation of cyclopropanes 54a as a mixture of two diastereomers (cis/trans 2/1). 

Alternatively, cyclopropanes 54a could also be prepared using Zn in the precense of LiCl in a total yield of 

80%, but with a lower diastereoselectivity (cis/trans 3/2).23 In the preparation of the corresponding tert-

butyl esters 54b, a higher diastereomeric ratio (cis/trans 8/2) was observed, due to presence of the bulky 

tert-butyl group. The two diastereomers cis-54b and trans-54b were isolated in 63% and 10% yield, 

respectively. Subsequently, using the mixture of diesters 54a (cis/trans 2/1), a regio- and 

diastereoselective saponification of the ethyl ester of diester cis-54a using LiOH at 0 °C afforded a mixture 
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of carboxylic acid cis-55 and ethyl ester trans-54a, which could be separated via acid/base extraction. In a 

next step, the regioselective saponification of diester trans-54a toward carboxylic acid trans-55 was 

achieved with LiOH at room temperature. 

 

Scheme 1122 

Cyclopropanecarboxylates cis-55 and trans-55 were then converted into a variety of fluorinated 

cyclopropyl-containing glutamic acid analogues 56-61 (Scheme 12). Phosphonic acid cis-56 was prepared 

via a sequential reduction, mesylation, iodination and Arbuzov condensation, followed by a complete 

deprotection in the last step. This reaction sequence could not be applied for the synthesis of the 

corresponding trans-56. Reduction of cis-55 and trans-55 toward the corresponding alcohol, followed by 

a Mitsunobu reaction with 2-hydroxy-2-methylpropanenitrile and hydrolysis furnished dicarboxylates cis-

57 and trans-57. Furthermore, the homologated derivatives cis-58, trans-58 and cis-59 were prepared by 

transformation of the carboxylic acid of cis-55 or trans-55 into the corresponding aldehydes, followed by 

a Horner-Wadsworth-Emmons condensation, hydrogenation of the alkenes and a subsequent 

deprotection/hydrolysis step. Sulfonic acids cis-60 and trans-60 were also prepared via the corresponding 

alcohols of compounds cis-55 and trans-55, followed by a Mitsunobu reaction using thioacetic acid as the 

nucleophile and a subsequent one pot oxidation and hydrolysis step. Finally, branched phosphonic acids 

cis-61 and trans-61 were prepared by the addition of diethyl phosphite across the corresponding 

aldehydes of compounds cis-55 and trans-55, followed by hydrolysis of the protecting groups. 
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Subsequently, these compounds were tested as agonists of metabotropic glutamate receptor subtype 4 

(mGluR4), revealing a potency of phosphonic acid cis-56 which is ten times higher than that of glutamate. 

Furthermore, phosphonic acid cis-56 proved to be seven times more potent than the non-fluorinated 

analogue. 

 

Scheme 1222 

Furthermore, cyclopropanecarboxylates cis-55 and trans-55 were used as building blocks for the synthesis 

of various fluorinated cyclopropyl amino acid analogues, more specifically methionine 62, leucine 63, 

lysine 64 and arginine cis-65 analogues (Figure 5).24 
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Figure 524 

Additionally, the incorporation of fluorinated ACC derivative cis-63 in a tripeptide was reported. This was 

the first example of a tripeptide incorporating a fluorinated cyclopropane amino acid analogue (Scheme 

13).24 To this end, protected amino acid derivative cis-63 was converted into the mono N-Boc protected 

carboxylic acid cis-67 in two steps, by a selective monodeprotection of the amine using Yb(OTf)3 followed 

by hydrolysis of the ester to give the corresponding carboxylic acid. In the next step, a standard peptide-

coupling reaction was employed for the synthesis of dipeptide cis-68 which was obtained as a mixture of 

diastereomers in 57% yield. Removal of the resulting Boc group in dipeptide cis-68 was achieved by 

treatment with HCl in dioxane and MeOH, leading to hydrochloric salt cis-69 in quantitative yield. In a last 

step, coupling of this dipeptide cis-69 with Cbz-Ala-OH 70 was achieved, again using a standard peptide-

coupling technique, leading to the unprecedented fluorinated cyclopropyl-containing tripeptide cis-71 in 

76% yield, as a mixture of diastereomers. 
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Scheme 1324 

Monofluorinated ACC derivatives 73 were also synthesized in a diastereoselective way using quaternary 

ammonium salt 72 in a MIRC reaction with Michael acceptors 52 (Scheme 14).25 This reaction, which 

probably proceeds via a two-step mechanism, afforded a mixture of two isomers cis-73 and trans-73 with 

good diastereoselectivity. In case of the methyl ester 73a, the two isomers were separated and were 

obtained in a total yield of 87% (separate yields were not mentioned), while the tert-butyl derivatives 73b 

were inseparable and a combined yield of 77% was reported. The cyclopropanation of methyl acrylate 52a 

could also be effectuated in a one-pot reaction, by treatment of acrylate 52a with DABCO and 2-bromo-2-

fluoro-1-morpholinoethan-1-one in the presence of Cs2CO3. The two isomers cis-73a and trans-73a were 

obtained with a similar diastereoselectivity (cis/trans 12/88) and were isolated in 8% and 59% yield, 

respectively. Selective removal of one of the Boc protecting groups of cyclopropane trans-73a was 
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effectuated using Yb(OTf)3.H2O in dry acetonitrile leading to the formation of ACC derivative trans-74a 

which was isolated in an excellent yield of 97%.25 

 

Scheme 1425 a Sum of the yields of the isolated isomers cis-73a and trans-73a.  
b Combined yield, the isomers cis-73b and trans-73b could not be separated via column chromatography. 

Furthermore, the enantioselective version of the synthetic route toward 1-amino-2-

fluorocyclopropanecarboxylates was developed, again via a Reformatsky reaction using the combination 

of Zn and LiCl as metalating reagents for the cyclopropanation (Scheme 15).26 As a chiral auxiliary, 

dibromofluoroacetylated oxazolidinone (S)-75 was employed. The reaction proceeded smoothly, leading 

to a mixture of two diastereomers cis-76 and trans-76 with a good cis/trans ratio of 73/27 and a good 

combined yield of 78%. The major isomer cis-76 was isolated in 56% yield and showed a diastereomeric 

excess of 80%. 

 

Scheme 1526 
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Additionally, some examples of trifluoromethylated 1- or 2-aminocyclopropanecarboxylic acid derivatives 

have been reported.27 But as mentioned before, these examples will not be discussed in detail since this 

exceeds the scope of this literature overview. 

In conclusion, various mono- and difluorinated derivatives of 1-aminocyclopropanecarboxylic acid have 

been reported, while the synthesis of ring fluorinated 2-aminocyclopropanecarboxylic acid derivatives has 

been limited to cyclopropanes 55, which can be seen as α-ACC-derivatives with an extra carboxylic acid 

functionality at C2. This is probably due to the inherent instability of β-ACC caused by its 1,2-donor-

acceptor substituted cyclopropane structure. Therefore, a suitable protecting group at nitrogen is essential 

to avoid spontaneous ring opening of the cyclopropane core, which complicates the synthesis of β-ACC 

derivatives.  

2.2 Synthesis of ring fluorinated 1-amino- and 2-aminocyclobutanecarboxylic 

acid derivatives 

In the second part of this literature overview, the synthesis of the higher carbocyclic homologues, 

cyclobutanes incorporating an amino acid functionality, will be discussed. This section is divided in two 

different parts, more specifically the synthesis of ring fluorinated 1-aminocyclobutanecarboxylic acid 

analogues 77 and ring fluorinated 2-aminocyclobutanecarboxylic acids analogues 78 (Figure 6). Since no 

relevant references were found concerning the synthesis of fluorinated 3-aminocyclobutanecarboxylic 

acid derivatives 79, these will not be discussed in this section. 

 

Figure 6 

2.2.1 Ring fluorinated 1-aminocyclobutanecarboxylic acid derivatives 

An important example of a ring fluorinated cyclobutane-containing amino acid is trans-1-amino-3-

[18F]cyclobutane-1-carboxylic acid (trans-[18F]FACBC) trans-85 or [18F]fluciclovine. This unnatural 

18F-labelled amino acid is used as a tracer in Positron Emission Tomography (PET), an imaging technique.28 

PET-tracers are molecules that are labelled with a radioactive isotope, for example 18F. When this 
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radioactive isotope emits a positron from its nucleus, this positron will come in contact with an electron 

and annihilation will occur, a process in which two gamma-rays are produced. These gamma-rays can be 

detected, and as such the place of annihilation can be determined. 2-18F-Fluoro-2-deoxy-D-glucose 

([18F]FDG) is a commonly used PET tracer. When this compound is administered to a patient, it accumulates 

more in tumors than in normal cells, since tumors have a higher rate of glucose metabolism. As such, 

Positron Emission Tomography is a technique to detect tumors. In many tumors there is also an increased 

amino acid transport as compared to normal tissues and therefore, the use of amino acids for tumor 

imaging is also well established. Since the use of natural amino acids in which a radioisotope is 

incorporated can lead to the formation of numerous radiolabelled metabolites, research has been devoted 

to the synthesis of 18F-labelled unnatural amino acids, such as (trans-[18F]FACBC) trans-85. This PET tracer 

is currently undergoing human clinical trials phase 2 for its validation as an imaging agent for the diagnosis 

and management of cancer treatment.29 

The first synthesis of 1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC) labelled with fluorine-18 was 

reported in 1999 and comprised ten steps.30 In this synthetic procedure, epichlorohydrine was converted 

into hydantoin 81 in four steps. A drawback of this synthesis was the low diastereoselectivity of the 

hydantoin-synthesis and the difficult scale-up. Therefore, in 2003 an improved synthesis was reported 

(Scheme 16).31 In this pathway, hydantoin cis-81 was obtained as the major diastereomer after a modified 

Strecker synthesis (cis/trans ratio after reaction: 5/1). Hydrolysis of the hydantoin ring toward the 

corresponding α-amino acid was achieved by heating in 3M aq. NaOH. Double protection of the amino 

acid furnished methyl 3-benzyloxy-1-(tert-butoxycarbonylamino)cyclobutanecarboxylate cis-82. The 

3-benzyloxy substituent was transformed into a good leaving group by hydrogenolysis followed by 

treatment with trifluoromethanesulfonic anhydride, yielding triflate cis-83, a suitable precursor for the 

introduction of fluorine-18. In an automated radiosynthesis, triflate cis-83 was reacted with K18F which led 

to the formation of fluorinated cyclobutane trans-84. In a last step, treatment with HCl furnished the 

deprotected [18F]-1-amino-3-fluorocyclobutanecarboxylic acid trans-85. The corresponding ‘cold’ FACBC 

trans-88 was synthesized by reacting alcohol cis-86 with DAST, followed by hydrolysis using 2M aq. HCl 

(Scheme 17).30 
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Scheme 1631 

 

 

Scheme 1731 

Next to trans-1-amino-3-fluorocyclobutanecarboxylic acid trans-85, the other isomer cis-85 has also been 

synthesized and tested as a potential brain tumor imaging agent (Scheme 18).32 In this synthetic pathway, 

the two isomers cis-81 and trans-81, obtained after hydantion formation (Scheme 16) were not separated, 

but used as a diastereomeric mixture in the next steps. Thus, hydantoins 81 were converted into methyl 

cyclobutanecarboxylates 89 in three steps. After debenzylation using 10% Pd/C and oxidation of the 

resulting secondary alcohol toward cyclobutanone 90, a diastereoselective reduction of the ketone was 

established, using L-selectride in combination with zinc chloride as a chelating Lewis acid. The introduction 

of fluorine was achieved using DAST in the case of the ‘cold’ amino acid cis-88 and via triflation followed 

by treatment with K18F in case of the radiolabelled amino acid cis-85. In the last step, removal of the 

phthalimido protecting group was effectuated using hydrazine monohydrate. The biological evaluation of 
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cis-[18F]FACBC cis-85 in rodent 9L gliosarcoma brain tumor model showed comparable results as its isomer 

trans-[18F]FACBC trans-85, rendering it also a promising PET brain tumor imaging agent. 

 

Scheme 1832 

Furthermore, to test the potency of structural isomer trans-1-amino-2-[18F]cyclobutane-1-carboxylic acid 

trans-97 as a PET brain tumor imaging agent, a synthetic route toward this compound was also developed 

(Scheme 19).33 Starting from 1,2-di(trimethylsilyloxy)cyclobutene, the intermediate tert-butyl 1-amino-2-

hydroxycyclobutanecarboxylate 93 was prepared in six steps. The key step in the reaction sequence 

toward amino acid trans-97 was the formation of the cyclic sulfamidite cis-94 by reaction of amino alcohol 

93 with thionyl chloride, exclusively yielding the cis derivative cis-94. This sulfamidite cis-94 was oxidized 

toward sulfamidate cis-95, which was subsequently converted into 18F-labelled tert-butyl 

cyclobutanecarboxylate trans-96 by treatment with K18F. Hydrolysis by treatment with trifluoroacetic acid 
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in CH2Cl2 afforded the desired trans-1-amino-2-[18F]cyclobutane-1-carboxylic acid trans-97. Biological 

evaluation of this compound supported its candidacy as a promising PET brain tumor imaging agent. 

 

Scheme 1933 

The synthesis of a difluorinated cyclobutane-containing α-amino acid, more specifically 1-amino-3,3-

difluorocyclobutanecarboxylic acid 102 is depicted in Scheme 20.34 Precursor 99 was synthesized from 

acetone 98 in three steps in 32% yield. Fluorination of cyclobutanone 99 was effectuated using 

morphDAST, leading to diisopropyl 3,3-difluorocyclopropane-1,1-dicarboxylate 100 in quantitative yield. 

The first step in the conversion of dicarboxylate 100 toward the corresponding amino acid comprised a 

monosaponification toward carboxylic acid 101. Subsequently, transformation of the carboxyl group into 

an amino group was achieved by means of a Curtius reaction. In a last step, hydrolysis of the remaining 

isopropyl ester was established using 3M aq. HCl under reflux conditions, furnishing amino acid 102 in 42% 

yield after ion-exchange chromatography. 
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Scheme 2034 

As a last example of a fluorinated α-amino acid containing a cyclobutane core, the synthesis of 4-fluoro-

2,4-methanoproline 109 is described (Scheme 21).35 Methyl 2-fluoroacrylate 103 was reduced toward allyl 

alcohol 104 using AlH3, generated in situ from LiAlH4 and AlCl3, which was subsequently transformed into 

mesylate 105. Coupling of this mesylate 105 with amino ester 106 afforded diene 107, the key 

intermediate of this synthetic pathway. A photochemical intramolecular [2+2]-cycloaddition of diene 107 

led to the formation of bicyclic compound 108 which was hydrolyzed toward 4-fluoro-2,4-methanoproline 

109 in 94% yield. 

 

Scheme 2135 
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2.2.2 Ring fluorinated 2-aminocyclobutanecarboxylic acid derivatives 

An important synthetic methodology for the synthesis of cyclobutanes is a [2+2]-cycloaddition reaction. 

Also for the synthesis of ring fluorinated 2-aminocyclobutanecarboxylic acid derivatives, the [2+2]-

cycloaddition strategy has been applied. In that respect, the photocycloaddition between fluorinated 

nucleic bases and various olefins has been studied extensively, often leading to the formation of polycyclic 

compounds containing a fluorinated cyclobutane moiety.36 Since this exceeds the scope of this literature 

overview, these examples will not be discussed in detail. In one case however, the [2+2]-cycloaddition 

between 5-fluorouracil 110 and ethylene was used for the synthesis of the bicyclic compound 111, which 

was transformed into trans-2-amino-1-fluorocyclobutanecarboxylic acid trans-112 (Scheme 22).37 

 

Scheme 2237 

N-Boc-2-amino-1-fluorocyclobutanecarboxylic acid trans-113 was prepared via the same methodology as 

described above (Scheme 22), starting from 1-Boc-5-fluorouracil (Scheme 23).38 Chiral derivatisation of 

this compound trans-113 by coupling with lithiated oxazolidinone (4S,5R)-114 furnished diastereomers 

115 which were isolated in 47% and 45% yield. Removal of the oxazolidinone moiety was established by 

treatment with LiOOH furnishing enantiopure 1-fluorocyclobutanecarboxylic acids (1R,2R)-113 and 

(1S,2S)-113 in 90% and 75% yield, respectively. 
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Scheme 2338 

The incorporation of the enantiopure fluorinated β-aminocyclobutanecarboxylic acid (1R,2R)-113 in 

homo-oligomers was achieved by using standard peptide coupling techniques.38 The formation of dimer 

(1R,2R,1’R,2’R)-117 is depicted in Scheme 24. The conversion of carboxylic acid (1R,2R)-113 into the 

corresponding benzyl ester (1R,2R)-116 was achieved by reaction with benzyl alcohol in the presence of 

DCC in dichloromethane. In the next step, the Boc-protecting group of cyclobutane (1R,2R)-116 was 

removed and the corresponding amine was coupled with carboxylic acid (1R,2R)-113 to give dipeptide 

(1R,2R,1’R,2’R)-117 in excellent yield. The synthesis of four- and six-membered oligomers proceeded via 

the same methodology. After investigation of their conformational preference, it was concluded that these 

homo-oligomers adopt a strand-like secondary structure. 

 

Scheme 2438 
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Another example of a [2+2]-cycloaddition reaction leading to fluorinated 2-aminocyclobutanecarboxylic 

acid derivatives is presented in Scheme 25.39 The reaction between difluoroketene aminal 118 with 

acrylates 119 in hexane at room temperature or 90 °C, depending on the substrate, afforded methyl 

3,3-difluorocyclobutanecarboxylates 120 as sole end products, which were isolated in very good yields. 

 

Scheme 2539 

Furthermore, an intramolecular [2+2]-photocycloaddition of the trifluorovinyl-containing scaffold 121, 

initiated by radiation at 254 nm, led to the formation of a tricyclic compound 122 as a single diastereomer 

(Scheme 26).40 

 

Scheme 2640 

2.3 Synthesis of ring fluorinated aziridine-2-carboxylates 

Aziridine-2-carboxylates are attractive substrates in synthetic chemistry since they comprise two 

electrophilic centres, the strained aziridine ring and the carboxylate functionality.41 Because they are also 

a member of the class of small-membered ring-containing amino acid derivatives, the synthesis of ring 

fluorinated aziridine-2-carboxylates 123 will be discussed in this section (Figure 7). 

 

Figure 7 
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The first synthesis of a 2-fluoroaziridine-2-carboxylate was reported in 1973 and involves the addition of a 

carbenoid compound onto a C=N double bond (Scheme 27).42 Organomercury compound 124, prepared 

from ethyl bromofluoroacetate and phenylmercuric chloride in the presence of KOtBu, was used as a 

CFCOOEt transfer reagent which added to the C=N bond of N-phenyliminophosgene 125. This reaction led 

to the formation of ethyl N-phenyl-3,3-dichloro-2-fluoroaziridine-2-carboxylate 126 in 50% yield next to 

36% recovery of the starting organomercury compound 124. This reaction could either proceed via the 

intermediate α-fluoro-α-ethoxycarbonylcarbene or via a direct transfer process, but the mechanism was 

not elucidated. 

 

Scheme 2742 

In the second example, depicted in Scheme 28, the fluorinated aziridine was formed by the addition of a 

nitrene across an α-fluoro-α,β-unsaturated ester 127, using the Evans aziridination procedure with 

TsN=IPh as the nitrene source.43 This reaction proceeded sluggishly, affording the aziridines cis-128 and 

trans-128 as a diastereomeric mixture in a varying ratio and with low isolated yields (4-32%). 

 

Scheme 2843 

Additionally, two other nitrene sources were used in the reaction with ethyl 2-fluoro-3-phenylacrylate 127 

(R = Ph), more specifically ethyl N-[(p-nitrobenzenesulfonyl)oxy]carbamate and 3-amino-2-

trifluoromethylquinazolin-4(3H)-one, leading to the corresponding aziridines in similar low yields 

(27-32%). Furthermore, ethyl N-[(p-nitrobenzenesulfonyl)oxy]carbamate was also used as a nitrene source 

in the reaction with methyl 3,3-difluoro-2-trifluoromethylacrylate leading to the formation of the 

corresponding fluorinated aziridine-2-carboxylate in 88% yield.44 
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As a last example, the Reformatsky-type aza-Darzens reaction between ethyl dibromofluoroacetate 53 and 

various aromatic imines 129 was optimized and directed toward the synthesis of fluorinated ethyl 

aziridine-2-carboxylates 130 (Scheme 29).45 In a previous report, 2-fluoroaziridine-2-carboxylates were 

described as side products in a Reformatsky-type synthesis of α-bromo-α-fluoro-β-lactams, starting from 

ethyl dibromofluoroacetate 53 and various imines.46 By changing the solvent from Et2O to CH3CN and using 

unactivated Zn metal in the Reformatsky reaction, the selective formation of aziridines 130 was achieved, 

which were isolated in 60-100% yield with a varying diastereomeric ratio, depending on the substituents 

R1 and R2. 

 

Scheme 2945 

Methyl 1-fluoroaziridine-2-carboxylates 132 have also been synthesized, via fluorination of methyl 

aziridine-2-carboxylate 131 (Scheme 30).47 This fluorination reaction was performed in a 

diastereoselective way, since the selective formation of trans-132 was achieved when the reaction was 

performed in the presence of KF, while a mixture of trans-132 and cis-132 was formed upon reaction in 

the presence of triethylamine. This can be explained by the presence of an intramolecular hydrogen bond 

in aziridine 131, which is broken by triethylamine and subsequent attack of F2 at the nitrogen atom occurs 

cis or trans relative to the ester function. However, in the presence of KF there is retention of the hydrogen 

bond, leading to exclusive trans-attack of F2. No yields were reported for these reactions. Other derivatives 

of 1-fluoroaziridine-2-carboxylates have also been synthesized using the same methodology.48 The 

compounds are of interest since it was shown that aziridines 132 have an extraordinary high barrier to 

nitrogen inversion. Furthermore, alkyl 1-fluoroaziridine-2,2-dicarboxylates react in a stereoselective way 

with nucleophiles since only the acyl group in trans configuration to the fluorine substituent reacts with 

the nucleophile. 
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Scheme 3047 

2.4 Synthesis of ring fluorinated azetidine-2-carboxylates and azetidine-3-

carboxylates 

In this section, the synthesis of fluorinated azetidine-2-carboxylates 133 and azetidine-3-carboxylates 134 

will be described (Figure 8). Since azetidin-2-ones (or β-lactams) can be seen as a separate class of 

compounds, the synthesis of their ring fluorinated analogues will not be discussed in this literature 

overview. 

 

Figure 8 

In a first example, 3-fluoroazetidine-2-carboxylic acid (S)-136 was prepared via a substitutive fluorination 

of L-azetidine-2-carboxylic acid (S)-135 using fluorooxytrifluoromethane gas in liquid HF (Scheme 31).49 

 

Scheme 3149 

Very recently, the synthesis of functionalized optically pure derivatives of 3-fluoroazetidine-2-carboxylic 

acid was reported, as novel peptide building blocks.50 In Scheme 32, only the synthesis of (2S,3R,4R)-3-

fluoro-4-hydroxymethylazetidine-2-carboxylic acid (2S,3R,4R)-144 is presented, the synthesis of the other 
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enantiomer proceeding analogously. First, the diacetonide of 3-fluoroglucose 137 was transformed into 

pyranose ditriflate (2R,3R,4S,5S,6R)-138 in five steps. Subsequently, azetidine-formation was achieved by 

treatment of ditriflate (2R,3R,4S,5S,6R)-138 with an excess of benzylamine. Treatment of bicyclic azetidine 

(1S,2S,4R,5R,7S)-139 with boron(III) fluoride etherate in acetic anhydride gave azetidine (1’S,2S,3S,4R)-140 

in quantitative yield, which was reduced in two steps toward triol (1’S,2S,3R,4R)-141. Next, oxidative 

cleavage of the diol moiety in compound (1’S,2S,3R,4R)-141 followed by treatment with iodine in MeOH 

gave rise to the formation of methyl ester (2S,3R,4R)-142. Hydrolysis of the ester toward carboxylic acid 

(2S,3R,4R)-143 was achieved by treatment with K2CO3, and subsequent removal of the benzyl group via 

hydrogenolysis led to the formation of the unprotected (2S,3S,4R)-3-fluoro-4-hydroxymethylazetidine-2-

carboxylic acid (2S,3R,4R)-144. Both enantiomers were tested as potential inhibitors of glycosidases, but 

no activity was observed. 

 

Scheme 3250 

Furthermore, the formation of the stable dipeptide, consisting of two units of (2R,3S,4S)-3-fluoro-4-

hydroxymethylazetidine-2-carboxylic acid (2R,3S,4S)-144 was described. First, protection of the 
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hydroxymethyl moiety was achieved by treatment of azetidine (2R,3S,4S)-142 with TBDMSCl in DMF, 

leading to tert-butyldimethylsilylether (2R,3S,4S)-145 (Scheme 33). Subsequently, hydrolysis of the methyl 

ester of azetidine (2R,3S,4S)-145 using K2CO3 in aqueous dioxane furnished azetidine-2-carboxylic acid 

(2R,3S,4S)-146. Upon treatment of methyl ester (2R,3S,4S)-145 with methylamine, amide (2R,3S,4S)-147 

was formed, which was subsequently debenzylated to give free amine (2R,3S,4S)-148. Finally, dipeptide 

(2’R,3’S,4’S,2R,3S,4S)-149 was formed by stirring a mixture of azetidine-2-carboxylic acid (2R,3S,4S)-146 

and azetidine (2R,3S,4S)-148 in the presence of HBTU and Et3N in DMF (Scheme 34). 

 

Scheme 33 

 

 

Scheme 3450 

A third example of a ring fluorinated amino acid with an azetidine core comprises the synthesis of N-Boc 

protected β-amino acid 158 (Scheme 35).51 Allylamine 152 was prepared from dichlorinated isobutene 150 
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in two steps via a sequential nucleophilic substitution of the two chlorine atoms. In the next step, 

transimination with diphenylmethylideneamine afforded imine 153, which was used as the substrate for 

a bromofluorination reaction toward imine 154 using Et3N.HF in the presence of NBS. Reduction of imine 

154 and subsequent ring closure was achieved by treatment with NaCNBH3 in MeOH at reflux temperature 

after which hydrogenolysis in the presence of Boc anhydride yielded N-Boc azetidine 156. Subsequently, 

oxidative cleavage of the p-methoxyphenyl ether was achieved by treatment of azetidine 156 with CAN, 

yielding 3-hydroxymethylazetidine 157, which was converted into carboxylic acid 158 in the last step, by 

treatment with NaIO4 in the presence of RuCl3.3H2O. 

 

Scheme 3551 

2.5 Conclusion 

Although fluorinated amino acids can be seen as interesting scaffolds in synthetic and medicinal chemistry, 

the number of synthetic routes toward the small-membered ring analogues remains rather limited.  

In this regard, the class of ring fluorinated cyclopropyl-containing amino acids has been explored the most. 

As can be seen in this literature overview, various examples of mono- and difluorinated α-ACC derivatives 
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have been described in the literature, including diastereoselective and enantioselective synthetic 

pathways. In contrast, only one example of a fluorinated β-ACC derivative has been reported. This is 

probably due to the inherent instability of β-ACC due to its donor-acceptor substituted cyclopropane 

structure. Therefore, the synthesis of fluorinated β-ACC derivatives remains a challenge which should be 

encountered to gain insight in the reactivity of these strained compounds. 

The chemistry of cyclobutyl-containing amino acids has also been explored relatively well. As a member of 

this class of constrained amino acids, the PET tracer trans-1-amino-3-[18F]cyclobutane-1-carboxylic acid is 

a nice example of the application of a non-proteinogenic fluorinated amino acid. Furthermore, the 

stereoselective synthesis of a fluorinated β-ACBC derivative was reported, as well as its incorporation in 

homo-oligomers. 

In contrast, as can be seen in this literature overview, fluorinated amino acids containing an aziridine or 

an azetidine ring have been studied to a very limited extent. However, given the broad applicability of 

aziridines52 and azetidines53 as versatile building blocks, the development of novel synthetic routes toward 

ring fluorinated aziridine- and azetidine-containing amino acids remains a challenge which is of great 

interest. 
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3 Results and discussion 

3.1 Stereoselective synthesis of both enantiomers of trans-2-

(diphenylmethylideneamino)cyclopropanecarboxylic acid using a chiral pool 

approach and their incorporation in dipeptides54 

3.1.1 Introduction 

As described in the introduction, the interest in cyclic β-amino acids has increased significantly in the past 

decades,9e,55 which is due to the ability of β-amino acids to improve the metabolic stability of β-peptides 

in which they are incorporated. Moreover, β-peptides represent an important class of foldamers,7,56 as 

they can adopt various secondary structures including helices, sheets and turns.56,9a,9d,57 The smallest 

carbocyclic β-amino acid is β-aminocyclopropanecarboxylic acid (β-ACC) 159, a carbocyclic analogue of 

β-alanine. β-ACC 159 itself has never been synthesized due to the inherent instability of this small-

membered ring caused by its 1,2-donor-acceptor substituted cyclopropane structure.58 Therefore, a 

suitable stabilizing group at nitrogen is essential to avoid spontaneous ring opening of the cyclopropane 

core, which complicates the synthesis of β-ACC derivatives and their incorporation in peptides.12,59 

Moreover, due to the presence of two stereogenic centres in the cyclopropane ring, 

β-aminocyclopropanecarboxylic acid 159 exists as four stereoisomers (Figure 9). This entails an extra 

challenge in the development of a strategy for the synthesis of enantiopure β-ACC derivatives.  

 

Figure 9 

Although different asymmetric synthetic approaches toward 2-aminocyclopropanecarboxylates have been 

reported,60 the elaboration of synthetic pathways toward β-ACC derivatives with no extra functionalization 

of the cyclopropane core remains rather scarce. An enantiomerically enriched 

cis-2-aminocyclopropanecarboxylic acid derivative (63% ee) was synthesized using a chemoselective 

hydrolysis of a cyclopropane meso-diester with Pig Liver Esterase (PLE) followed by appropriate functional 
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group transformation.61 Enamides have proved to serve as valuable precursors in the synthesis of 

unsubstituted N-stabilized β-ACC derivatives via a cyclopropanation reaction using ethyl diazoacetate as a 

carbene source in the presence of a catalyst.62 An asymmetric cyclopropanation reaction of styrene with 

ethyl diazoacetate afforded an unsubstituted trans-β-ACC derivative (90% ee) in five steps using a chiral 

(salen)Ru(II) cyclopropanation catalyst.63 Noteworthy, only one synthetic route toward an unsubstituted 

chiral β-aminocyclopropanecarboxylic acid using a chiral pool approach has been described in the 

literature, more specifically starting from the expensive chiral building block benzyl (S)-(+)-glycidyl ether.64 

The only other synthesis starting from a chiral building block, D-glyceraldehyde, leads to an 

enantiomerically pure substituted trans-1-methyl-β-ACC derivative in 9 steps.61 

Next to their synthesis, also the incorporation of cis-,60a,9b,65 and to a lesser extent 

trans-β-aminocyclopropanecarboxylates60a in peptides, allowing to influence their structural 

conformation, has received a lot of attention in recent years. The synthesis of a cis-β-ACC-containing 

pseudopeptide, starting from a meso-anhydride and (S)-prolinate is the only example that can be 

mentioned regarding the incorporation of an unsubstituted β-ACC building block in peptides.66 

In view of these important gaps in the chemistry of chiral β-ACCs, in a first part of this PhD thesis, the 

synthesis of a new enantiopure unsubstituted (-)-trans-β-aminocyclopropanecarboxylic acid via a 

stereoselective base-induced ring closure is described, starting from an (S)-aspartic acid derivative as chiral 

building block. The (+)-trans-β-ACC enantiomer was synthesized via the same pathway starting from the 

(R)-aspartic acid derivative. Surprisingly, (S)-aspartic acid, one of the twenty proteinogenic amino acids 

and a naturally occurring β-amino acid, has never been used as a chiral building block in the synthesis of 

enantiopure β-aminocyclopropanecarboxylic acids. Moreover, the incorporation of these new trans-β-

aminocyclopropanecarboxylic acids in dipeptides was studied as well. 

3.1.2 Synthesis of trans-2-(diphenylmethylideneamino)cyclopropanecarboxylic acids 

By using acyclic aspartic acid derivatives 162 as chiral building blocks for the synthesis of β-ACCs 160, the 

introduction of the cyclopropane core was envisaged to proceed via a 1,3-cyclization reaction (Scheme 

36). Therefore, the synthesis of an eligible precursor 161, bearing a leaving group in γ-position and a 

suitably stabilized amino group in β-position, starting from these aspartic acid derivatives 162 had to be 

developed.  
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Scheme 36 

In a previous Master thesis,13 (S)-benzyl 3-diphenylmethylideneamino-4-iodobutanoate (S)-164 was 

synthesized in four steps starting from (S)-β-benzyl N-(tert-butoxycarbonyl)aspartate (S)-163, in 29% total 

yield (Scheme 37). 

 

Scheme 3713 

In this PhD thesis, the same synthetic pathway, presented in detail in Scheme 38, was applied for the 

synthesis of the other enantiomer (R)-benzyl 3-diphenylmethylideneamino-4-iodobutanoate (R)-164. The 

carboxylic acid moiety of aspartate (R)-163 was converted into the corresponding alcohol (R)-165 in 70% 

yield by reduction using NaBH4 after activation with isobutyl chloroformate.67 In a next step, a modified 

Appel reaction using a PPh3/I2 complex was applied for the conversion of β-amino alcohol (R)-165 into 

iodide (R)-166, which was isolated in 86% yield.68 In theory, this N-Boc protected iodide (R)-166 could serve 

as a direct precursor in the synthesis of β-ACCs, although competition with formation of the corresponding 

aziridines could be expected.69 However, it has been demonstrated that the presence of only one electron-

withdrawing group at nitrogen in such type of precursors is not sufficient to allow cyclization to 1,2-donor-

acceptor substituted cyclopropanes.70 Therefore, another group at nitrogen was introduced, more 

specifically a diphenylmethylidene group, which has already been used previously as a stabilizing group in 

the synthesis of donor-acceptor substituted cyclopropanes.12a,70a Therefore, Boc-deprotection of the 

amino group of β-amino ester (R)-166 was achieved under acidic conditions affording β-iodoammonium 

salt (R)-167 in 76% yield. Subsequent transimination of (R)-167 with diphenylmethylideneamine 12 yielded 

enantiopure (R)-benzyl 3-diphenylmethylideneamino-4-iodobutanoate (R)-164, as a direct precursor for 

the synthesis of novel chiral unsubstituted β-aminocyclopropanecarboxylates. 
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Scheme 38 

With γ-iodo β-amino esters (S)-164 and (R)-164 in hand, the base-induced ring closure of these precursors 

toward the envisaged chiral benzyl cyclopropanecarboxylates was investigated and optimized (Table 1). In 

previous research, KOtBu was already evaluated as a base to initiate the ring closure of γ-iodo β-amino 

ester (S)-164. Although treatment of ester (S)-164 with KOtBu gave rise to the formation of the envisaged 

β-aminocyclopropanecarboxylates 8, this reaction proceeded with a low diastereoselectivity (dr trans : cis 

79-61 : 21-39) and also led to the formation of a side product, probably due to a transesterification 

reaction. Following these moderate results, the use of another base, more specifically the stronger 

nitrogen base potassium hexamethyldisilazide (KHMDS), was evaluated in the ring closure reaction. When 

(S)-benzyl 4-iodobutanoate (S)-164 reacted with 1.1 equiv KHMDS in THF for five minutes at -78 °C, 92% 

of the starting product was converted toward cyclopropanes 8, with no formation of side products. 

Moreover, an improvement of the diastereomeric ratio of cyclopropanes 8 was observed (dr trans : cis 88 

: 12) (Table 1, entry 1). Prolongation of the reaction time to ten minutes led to a full conversion of the 

starting material toward cyclopropanes 8 in a good diastereomeric ratio (dr trans : cis 91 : 9) (Table 1, entry 

2). In an attempt to improve the diastereomeric ratio, the reaction time was prolonged toward one and 

two hours, with some improvement of the diastereomeric ratio (up to 99 : 1), but no improvement of the 

yield of cyclopropanecarboxylate (1R,2R)-8 (Table 1, entries 3-4). From these attempts, (1R,2R)-trans-

benzyl cyclopropanecarboxylate (1R,2R)-8 was isolated in a good yield of 81% (resp. 80%) (dr > 99 : 1). 

When (S)-benzyl 4-iodobutanoate (S)-164 reacted with KHMDS at a higher temperature, a similar variable 

diastereomeric ratio was observed (dr trans : cis up to 99 : 1) and (1R,2R)-trans-benzyl 

2-(diphenylmethylideneamino)cyclopropanecarboxylate (1R,2R)-8 was isolated in 74% yield (dr > 99 : 1) 
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after recrystallization (Table 1, entry 5). The use of more equivalents of base was also evaluated but did 

not lead to an improvement of the diastereomeric ratio or the yield (Table 1, entry 6). Noteworthy, 

treatment of pure trans-(1R,2R)-benzyl 2-(diphenylmethylideneamino)cyclopropanecarboxylate (1R,2R)-8 

with KHMDS under similar reaction conditions (THF, -78 °C, 1 h), in an attempt to see whether trans/cis 

isomerisation took place, only led to degradation of this cyclopropane derivative.  

Table 1: Synthesis of 2-(diphenylmethylidenamino)cyclopropanecarboxylate (1R,2R)-8 

 

Entry Reaction conditions dr trans : cisa Yield (1R,2R)-8b 

1 1.1 equiv KHMDS, THF, -78 °C, 5 min 88 : 12c 70% 

2 1.1 equiv KHMDS, THF, -78 °C, 10 min 91 : 9 79% 

3 1.1 equiv KHMDS, THF, -78 °C, 1 h 95 : 5 81% 

4 1.1 equiv KHMDS, THF, -78 °C, 2 h 99 : 1 80% 

5 1.1 equiv KHMDS, THF, 0 °C, 5 min 99 : 1 74% 

6 1.5 equiv KHMDS, THF, -78 °C, 1 h 93 : 7 65% 

a Determined via 1H NMR analysis of the crude reaction mixture. b dr trans : cis > 99 : 1. c 92% conversion. 

 

The relative configuration of cyclopropane (1R,2R)-8 was assigned based on comparison of the coupling 

constants in the 1H NMR signal corresponding to HA with literature values. The literature values of the 

vicinal coupling constants trans-3JHA,HB (= 2.5 Hz), trans-3JHA,HC (= 4.7 Hz) and cis-3JHA,HD (= 7.4 Hz) are 

comparable to the values of the observed vicinal coupling constants trans-3JHA,HB (= 3.0-3.2 Hz), trans-3JHA,H 

(= 4.7-4.9 Hz) and cis-3JHA,HD (= 7.5-7.7 Hz) of the similar racemic trans-β-ACC derivatives 16812a and 169.71 
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Figure 10 

The reaction of the enantiomeric (R)-benzyl 3-(diphenylmethylideneamino)-4-iodobutanoate (R)-164 with 

KHMDS, performed under similar reaction conditions (1.1 equiv KHMDS, -78 °C, 1 h), afforded 

cyclopropanes 8 in a good diastereomeric ratio (dr trans : cis 97 : 3) from which (1S,2S)-benzyl 

2-(diphenylmethylideneamino)cyclopropanecarboxylate (1S,2S)-8 was isolated in 75% yield after 

recrystallization (dr > 99 : 1) (Table 2, entry 1). Enantiomer (R)-164 was also treated with KHMDS at room 

temperature for one hour, but this resulted in a lower diastereomeric ratio (dr trans : cis 87 : 13) and yield 

(Table 2, entry 2). 

Table 2: Synthesis of 2-(diphenylmethylidenamino)cyclopropanecarboxylate (1S,2S)-8. 

 

Entry Reaction conditions dr trans : cisa Yield (1S,2S)-8b 

1 1.1 equiv KHMDS, THF, -78 °C, 1 h 97 : 3 75% 

2 1.1 equiv KHMDS, THF, r.t., 1 h 87 : 13 56% 

a Determined via 1H NMR analysis of the crude reaction mixture. b dr trans : cis > 99 : 1. 

 

As can be seen in Table 1, the diastereomeric outcome of the ring closure of compound (S)-164 is 

influenced by the reaction time. More specifically, the use of a longer reaction time leads preferably to the 

formation of trans derivative (1R,2R)-8 which is clear from the increasing diastereomeric ratio (dr trans : 

cis up to 99 : 1). Interpretation of these results can lead to the conclusion that trans cyclopropane (1R,2R)-

8 is formed under thermodynamic control. Possibly, cis derivative (1S,2R)-8 is converted into trans 
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derivative (1R,2R)-8 via deprotonation followed by a diastereoselective reprotonation step. However, the 

diastereoselective outcome of this reaction was not completely reproducible since varying diastereomeric 

ratios (dr trans : cis 95 : 5 - 99 : 1) were obtained when the reaction was repeated at -78 °C for two hours. 

Furthermore, the ring closure of the other enantiomer (R)-164 gave a lower diastereomeric ratio (dr trans 

: cis 87 : 13) when this reaction was performed at room temperature (Table 2, entry 2), while these reaction 

conditions should lead to thermodynamic control. In order to elucidate the mechanism of the ring closure 

reaction further, it would be usefull to isolate cis derivatives (1S,2R)-8 and (1R,2S)-8 and investigate 

whether these compounds can be converted into the corresponding trans derivatives via isomerisation. 

In an attempt to isolate (1S,2R)-cis-benzyl 2-(diphenylmethylideneamino)cyclopropanecarboxylate 

(1S,2R)-8, other reaction conditions were evaluated in order to invert the diastereomeric ratio of 

cyclopropanes 8. Addition of 1 equiv of KCl or 1.1 equiv of ZnCl2 to the reaction of (S)-benzyl butanoate 

(S)-164 with KHMDS in THF at -78 °C or 0 °C did not increase the amount of cis-isomer (1S,2R)-8 and 

resulted in a sluggish reaction with the formation of unidentified side products. Also the addition of 

18-crown-6 to the cyclization reaction did not lead to an inversion of the diastereomeric ratio and only 

lowered the conversion of the reaction. By adding these additives to the reaction, it was attempted to 

create a more ‘naked’ anion in the intermediate, so that internal solvation by the 

diphenylmethylideneamine function might take place which could lead to preferential formation of the 

cis-cyclopropane.72 

3.1.3 Saponification and peptide formation 

In a last step toward the synthesis of the unprotected C-terminal β-aminocyclopropanecarboxylic acids, a 

saponification reaction of cyclopropanecarboxylic esters 8 was performed by treatment with aqueous 

NaOH (in methanol). This reaction proceeded smoothly and afforded cyclopropanecarboxylic acids 9 in 

61-77% yield without observation of trans/cis isomerisation (based on detailed analysis of the well-

resolved signals in the 1H NMR spectrum) (Scheme 39 and Scheme 40). Subsequently, the stability of 

cyclopropanecarboxylic acids 9 toward a peptide coupling reaction with methyl glycinate 

hydrochloride 170a was evaluated. In a first attempt, (1R,2R)-cyclopropanecarboxylic acid (1R,2R)-9 was 

reacted with methyl glycinate 170a in the presence of 1.05 equivalents dicyclohexylcarbodiimide (DCC) 

and Et3N in EtOAc. After detailed analysis of the reaction mixture, it was concluded that carboxylic acid 

(1R,2R)-9 had reacted with DCC but the subsequent coupling of the activated acid with methyl glycinate 

failed, and peptide (1R,2R)-171 was not detected. The use of another coupling reagent, more specifically 

1-ethyl-3-(3-N,N-dimethylaminopropyl)carbodiimide (HCl salt) (EDC.HCl), proved to be more successful. 
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Reaction of cyclopropanecarboxylic acid (1R,2R)-9 with 1 equivalent of methyl glycinate (HCl salt) 170a in 

CH2Cl2 for three hours at room temperature in the presence of EDC.HCl and N-methylmorpholine afforded 

dipeptide (1R,2R)-171 which was isolated in 58% yield after column chromatography (Scheme 39). Peptide 

(1S,2S)-171 was formed under similar reaction conditions and was isolated in 68% yield (Scheme 40).  

 

Scheme 39 

 

Scheme 40 

The enantiomeric purity of peptides (1R,2R)-171 and (1S,2S)-171 was confirmed using 1H NMR analysis 

using (R)-Pirkle’s alcohol (R)-172 (Figure 11). When two equivalents of (R)-1-(9-anthryl)-2,2,2-

trifluoroethanol (R)-172 were added to a prepared mixture (1:1) of peptides (1R,2R)-171 and (1S,2S)-171, 

spectral nonequivalences of the signals from the NH-proton and NCH2-protons appeared in the 1H NMR 

spectrum (300 MHz, CDCl3). When two equivalents of (R)-Pirkle’s alcohol (R)-172 were added to peptide 

(1R,2R)-171 or peptide (1S,2S)-171, no chemical shift nonequivalences could be observed in the 1H NMR 

spectrum, confirming the enantiomeric purity of peptides 171. 

 

Figure 11 
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3.1.4 Conclusion 

In conclusion, a stereoselective synthesis of novel trans-β-aminocyclopropanecarboxylic acids 9 was 

developed, using a chiral pool approach. The key step in the reaction sequence, more specifically the base-

induced ring closure was optimized and afforded (1R,2R)- and (1S,2S)-trans-benzyl 

2-(diphenylmethylideneamino)cyclopropanecarboxylates 8 in very good diastereoselectivity and high 

yield. These new unsubstituted N-stabilized β-ACC derivatives were converted into the C-terminal 

unprotected β-ACCs 9 and were incorporated in dipeptides 171 using standard peptide coupling reaction 

conditions. This procedure opens challenges for the synthesis of novel peptides incorporating 

unsubstituted β-ACCs, with possible interesting biological properties. 

 



Results and discussion  Chapter 3 

44 
 

3.2 Synthesis of novel -aminocyclobutanecarboxylic acid derivatives by a 

solvent-free aza-Michael addition and subsequent ring closure73 

3.2.1 Introduction 

2-Aminocyclobutanecarboxylates (β-ACBCs) comprise a second class of β-amino acids with a small-

membered carbocyclic ring as their core structure. The most common way to synthesize -ACBC 

derivatives uses a [2+2]-cycloaddition strategy, for example between an enamine and an acrylate,74 or 

between ethylene and an uracil derivative followed by opening of the heterocyclic ring.37,75 Using the latter 

method, the four enantiomers of -aminocyclobutanecarboxylic acid 173 have been synthesized, each in 

enantiomerically pure form (Figure 12).76 Another approach uses ethylene and maleic anhydride as starting 

compounds for the [2+2]-cycloaddition, followed by an enzymatic desymmetrization of the resulting meso 

diester and Curtius rearrangement.61 

 

Figure 12 

A poorly studied subclass of β-ACBC derivatives are β-aminocyclobutanedicarboxylic acids, which are 

1,2-donor-acceptor (DA) substituted cyclobutanes which are prone to ring opening77 and [4+2]-annulation 

reactions,78 due to the presence of an extra electron-withdrawing ester function. In this part of this PhD 

thesis, the synthesis of new -aminocyclobutanedicarboxylic acid derivatives via an aza-Michael Induced 

Ring Closure (MIRC) reaction was investigated, using 3-halopropylidenemalonate derivatives as substrates. 

This approach was based on previous research, where dialkyl 2-bromoethylidenemalonates and dialkyl 

3-chloropropylidenemalonates proved to be suitable substrates for the MIRC reaction toward a range of 

functionalised cyclopropanes and some cyclobutanes.12c,12d,79 

3.2.2 Synthesis of 3,3-dimethyl-2-aminocyclobutane-1,1-dicarboxylates 

In a previous Master thesis, β-ACBC derivatives 13a and 13b were synthesized in one step via the MIRC 

reaction, by treatment of malonates 11a-d with diphenylmethylideneamine in DMF at 55-65 °C in the 
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presence of K2CO3 as a mild base, albeit in rather low yields after recrystallization from MeOH (Scheme 

41).13 

 

Scheme 4113 

In an attempt to improve the yield of this transformation, other reaction conditions were explored (Table 

3). When tert-butanol was used as solvent in the presence of triethylamine as a base, the Michael addition 

of diphenylmethylideneamine across malonate 11b was observed, but the intramolecular substitution of 

the leaving group in -position did not occur. Thus, acyclic β-amino ester 174b was isolated in 57% yield 

after recrystallization from Et2O (Table 3, entry 1). The use of the solvent mixture t-BuOH/Et2O in a ratio 

of 4/1 increased the yield of the Michael addition of diphenylmethylideneamine across 

alkylidenemalonate 11b to 67% and shortened the reaction time (Table 3, entry 2). The low solubility of 

adduct 174b in Et2O led to a better conversion of the starting product 11b, disfavouring the reverse retro-

Michael reaction. 3-Bromoalkylidenemalonate 11a was treated with diphenylmethylideneamine under 

similar reaction conditions to obtain pure β-amino ester 174a in 56% yield (Table 3, entry 3). 

Unfortunately, the Michael addition of diphenylmethylideneamine leading to dimethyl malonates 174a 

and 174b proved to be poorly reproducible under these conditions. Furthermore, the addition of 

diphenylmethylideneamine across diethyl alkylidenemalonates 11c-d appeared to be even more 

problematic, which is probably due to the steric hindrance caused by the presence of the two geminal 

ethyl esters on the double bond. When diethyl 2-(3-chloro-2,2-dimethylpropylidene)malonate 11d was 

treated with three equivalents of diphenylmethylideneamine, only 66% conversion of the starting product 

to the corresponding β-amino ester 174d was observed after six days of reaction (Table 3, entry 4). In 

addition, the presence of an excess of diphenylmethylideneamine in the crude reaction mixture made 

isolation of the Michael adduct 174d very difficult to virtually impossible. 

Therefore, other conditions for the Michael addition of diphenylmethylideneamine across 3-halo-

alkylidenemalonates 11 had to be explored. Neither altering the solvent (t-BuOH/THF 4/1, Et2O, THF, 
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CH2Cl2, CH3CN) did lead to better results, nor did the use of other bases (NaH, KOtBu) or addition of a Lewis 

acid (MgBr2). The reaction was also conducted under microwave irradiation and in a pressure vial, but 

again no good conversion of substrates 11 to the corresponding acyclic β-amino esters 174 was observed. 

After many attempts, it was found that the Michael-type addition of diphenylmethylideneamine 12 across 

alkylidenemalonates 11, using triethylamine as a base, could be achieved in the absence of a solvent (neat 

conditions). Treatment of alkylidenemalonates 11a,b,d with 1.05 equivalents diphenylmethylideneamine 

in the presence of triethylamine at 60 °C for 4-48 hours led to a full conversion to the corresponding 

Michael adducts 174a,b,d, which were isolated in 67-79% yield after recrystallization from Et2O (Table 3, 

entries 5-7). The reaction of diethyl 2-(3-bromo-2,2-dimethylpropylidene)malonate 11c and 

diphenylmethylideneamine 12, however, gave rise to the formation of an alternative product, more 

specifically diethyl 2-[2,2-dimethyl-3-(diphenylmethylideneamino)propylidene]malonate 175b (Table 3, 

entry 8). The steric hindrance caused by the presence of the two geminal ethyl esters hampered the 

Michael-type addition of the nucleophile across the activated double bond, and in combination with the 

presence of a good leaving group (in this case bromide), a direct substitution of the leaving group by the 

nucleophile was more favorable. Detailed spectroscopic follow-up of the reactions showed that this 

substitution reaction did not occur when malonates 11a, 11b and 11d were used as substrates. The 

reaction of malonate 11c and diphenylmethylideneamine proceeded more selective toward the Michael 

adduct 174c at room temperature but in this case, a longer reaction time was required (Table 3, entry 9). 

In this manner, a very simple, practical and more sustainable method for the Michael-type addition of 

diphenylmethylideneamine across alkylidenemalonates 11a-d, without the use of hazardous and volatile 

solvents, was developed. In the recent literature, other examples of solvent free aza-Michael additions 

across unsaturated substrates have been reported.80 
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Table 3: Michael-type addition of diphenylmethylideneamine 12 across 3-halopropylidenemalonates 11 

 

Entry Substrate Reaction conditions Compound (Yield)a 

1 11b t-BuOH, , 72 h 174b (57%) 

2 11b t-BuOH/Et2O 4/1, , 55 h 174b (67%) 

3 11a t-BuOH/Et2O 4/1, , 24 h 174a (56%) 

4 11d t-BuOH/Et2O 4/1, , 6 db 174d (-)c 

5 11a neat, 60 °C, 4 h 174a (79%) 

6 11b neat, 60 °C, 24 h 174b (78%) 

7 11d neat, 60 °C, 48 h 174d (67%) 

8 11c neat, 60 °C, 20 h 175b (38%) 

9 11c neat, r.t., 119 h 174c (76%) 

a Isolated yield after recrystallization from Et2O. b Reaction was conducted with 3 equiv diphenyl-
methylideneamine and 3 equiv Et3N. c 66% conversion after 6 days, compound 174d was not isolated. 

 

In order to convert β-amino esters 174a-d into the targeted β-aminocyclobutanecarboxylic acid derivatives 

13a and 13b, they were treated with a base to enable ring closure. Reaction of 2-[3-bromo-2,2-dimethyl-

1-(diphenylmethylideneamino)propyl]malonates 174a and 174c with 1.2 equivalents of KOtBu in THF for 

three hours at reflux temperature afforded β-aminocyclobutanecarboxylic acid derivatives 13a and 13b in 

good to excellent yields (Scheme 42). 
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Scheme 42 

The cyclization of dimethyl 2-[3-chloro-2,2-dimethyl-1-(diphenylmethylideneamino)propyl]malonate 

174b to the corresponding cyclobutane 13a was less straightforward. When KOtBu in tert-butanol under 

reflux or KHMDS or LiHMDS in THF at room temperature were used as basic conditions, the cyclization of 

malonate 174b to cyclobutane 13a was sluggish (0-66% conversion) and suffered from competitive 

retro-Michael addition giving rise to dimethyl alkylidenemalonate 11b (up to 50%). The presence of 

chloride as leaving group and the sterically impeding geminal methyl groups prevented a smooth 

cyclobutanation of diester 174b. Fortunately, the addition of a catalytic amount of NaI to achieve an in situ 

substitution of chloride by iodide, to the reaction of malonates 174b and 174d with KOtBu in THF under 

reflux conditions, led to the desired clean cyclization to β-ACBC derivatives 13a and 13b which were 

isolated in 52-62% yield (Scheme 43). 

 

Scheme 43 

3.2.3 Attempted synthesis of 2-aminocyclobutane-1,1-dicarboxylates 

In analogy with 3,3-gem-dimethyl-β-ACBC derivatives 13, the synthesis of the corresponding 3,3-nor-

dimethylderivatives was also attempted. To this end, precursor 179 was synthesized in three steps starting 

from 1,3-propanediol 176. First, diol 176 was converted into tert-butyldimethylsilylether 177 by treatment 

with TBDMSCl in the presence of NaH81 and subsequent oxidation toward aldehyde 178 was achieved 

using Swern oxidation conditions.82 In the next step, the Knoevenagel condensation of aldehyde 178 with 

dimethyl malonate in the presence of titanium(IV) chloride and pyridine afforded propylidenemalonate 

179 in 60% yield (Scheme 44). 
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Scheme 44 

The next step in this synthetic route was the conversion of the tert-butyldimethylsilyloxy group into a good 

leaving group. Therefore, silyl ether 179 was treated with 1.05 equivalents of tetrabutylammonium 

fluoride (TBAF) in THF at 0 °C for 30 minutes, but unfortunately, this reaction led to the formation of a 

complex reaction mixture. Also upon use of tetramethylammonium fluoride (TMAF) as the fluoride source, 

a complex reaction mixture was obtained. It was concluded that the envisioned alcohol 180, comprising 

both nucleophilic and electrophilic sites, is probably an unstable compound. Therefore, it was decided to 

use propylidenemalonate 179 as the Michael acceptor in the next step. While treatment of 

propylidenemalonate 179 with diphenylmethylideneamine 12 in tert-butanol in the presence of Et3N only 

led to a partial conversion, the use of dichloromethane as a solvent gave better results and adduct 181 

was isolated in 64% yield after recrystallization from Et2O (Scheme 45). 

 

Scheme 45 

In the next step, the removal of the tert-butyldimethylsilyl protecting group in compound 181 was 

evaluated. Unfortunately, while treatment of adduct 181 with TBAF or TMAF at 0 °C in THF only led to 

recovery of the starting material, the formation of a complex reaction mixture was observed when the 
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reaction was performed at room temperature. Since the removal of the TBDMS protecting group of 

compounds 179 and 181 could not be achieved, this reaction pathway toward 2-aminocyclobutane-1,1-

dicarboxylates was not further explored.  

3.2.4 Conclusion 

In conclusion, a novel method to synthesize highly substituted β-ACBC derivatives starting from 

3-halopropylidenemalonates was developed, using diphenylmethylideneamine in a solvent-free aza-

Michael addition followed by a base-induced ring closure. The synthesis of the corresponding 3,3-nor-

dimethyl derivatives could not be effectuated due to the troublesome removal of the tert-

butyldimethylsilyl protecting group of the precursors. 
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3.3 Synthesis of dialkyl 2-amino-3,3-difluorocyclopropane-1,1-dicarboxylates 

3.3.1 Introduction 

As is shown in the literature overview, synthetic pathways toward ring fluorinated α-ACC derivatives have 

been relatively well studied.17,21-26 In contrast, the chemistry of the corresponding ring fluorinated β-ACC 

derivatives comprises a very scarcely investigated field.22 This can be attributed to the inherent instability 

of β-ACC caused by the 1,2-donor-acceptor substituted cyclopropane structure.83 Furthermore, 

fluorinated cyclopropanes in general show an enhanced reactivity, resulting in a decreased stability.84 

Since the synthesis of 2-amino-3,3-difluorocyclopropanecarboxylates has never been described in the 

literature, in the third part of this PhD thesis, a synthetic route toward these elusive compounds was 

developed. 

3.3.2 Synthesis of dialkyl 2-amino-3,3-difluorocyclopropane-1,1-dicarboxylates 

Analogously to the synthesis of β-ACBC derivatives 13, which was achieved via the addition of a nitrogen 

nucleophile to a Michael acceptor followed by a base-induced ring closure, the synthesis of fluorinated 

β-ACC derivatives was envisioned using dialkyl 2-(2-bromo-2,2-difluoroethylidene)malonates 16 as 

substrates. This work is also based on previous research in our group, in which the synthesis of dialkyl 3,3-

dialkyl-2-aminocyclopropane-1,1-dicarboxylates was developed, via a Michael Induced Ring Closure 

(MIRC) reaction starting from dialkyl 2-(2-bromo-2,2-dialkylethylidene)malonates.12c,12d 

Dialkyl 2-(2-bromo-2,2-difluoroethylidene)malonates 16 were synthesized using ethyl 

bromodifluoroacetate 14 as a building block (Scheme 46). Treatment of ester 14 with DIBAL led to the 

formation of an intermediate aluminium hemiacetal, which was used without work-up in the reaction with 

the sodium enolates derived from malonates 15,85 affording alcohols 182. In the next step, alcohols 182 

were treated with acetyl chloride in the presence of Et3N, resulting in acetylation of the alcohol and 

subsequent elimination to give dialkyl 2-(2-bromo-2,2-difluoroethylidene)malonates 16. 
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Scheme 46 

3.3.2.1 Aza-Michael addition of diphenylmethylideneamine 

In a first part, the aza-Michael addition of diphenylmethylideneamine 12 across ethylidenemalonates 16 

was evaluated. Based on the results in the previous section,73 compound 16a (R = Me) was treated with 

1.05 equivalents of diphenylmethylideneamine 12 in the presence of 1.05 equivalents Et3N, under neat 

reaction conditions at room temperature. This led to the formation of adduct 183a, which was isolated in 

75% yield after column chromatography and recrystallization from MeOH to remove residual 

benzophenone. The aza-Michael addition of diphenylmethylideneamine across ethylidenemalonates 16 

also proceeded smoothly in absence of Et3N and adducts 183 were isolated in excellent yields after 

recrystallization (Scheme 47). Dialkyl 2-(2-bromo-2,2-difluoroethylidene)malonates 16 are excellent 

Michael acceptors due to the activation by the two electron-withdrawing ester groups and the two fluorine 

atoms. 

 

Scheme 47 

Having adducts 183 in hand, their base-induced ring closure toward the corresponding cyclopropanes was 

evaluated (Table 4). In a first attempt, adduct 183a was treated with NaOMe (2M in MeOH) at 0 °C, but 

after work-up only starting material was recovered (Table 4, entry 1). In contrast, when this reaction was 

conducted at room temperature, degradation of the starting compound was observed, affording a mixture 

in which only benzophenone and diphenylmethylideneamine were detected (Table 4, entry 2). 
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Subsequently, compound 183a reacted with 1.2 equivalents KOtBu in THF for one hour at room 

temperature, but no reaction was observed (Table 4, entry 3). By increasing the reaction temperature to 

reflux temperature, a full conversion of the starting compound was observed after two hours. LC-MS 

analysis of the reaction mixture revealed the presence of two products with the same molecular weight, 

corresponding to the molecular weight of the envisioned cyclopropanedicarboxylate 184a. After detailed 

analysis of the 1H NMR spectrum of the reaction mixture, the two compounds in the reaction mixture were 

identified as cyclopropane 184a and pyrroline 185a, in a ratio of 13 : 87 (Table 4, entry 4). The latter 

compound is formed as the result of a rearrangement of cyclopropane 184a. In previous research, 

rearrangement of the related dimethyl 3,3-dimethyl-2-(diphenylmethylideneamino)cyclopropane-1,1-

dicarboxylate, in which the cyclopropane ring is substituted by two methyl groups instead of two fluorine 

atoms, toward the corresponding pyrroline was also observed. In that case however, prolonged heating in 

DMF at reflux temperature86 or treatment with NaCl in a DMSO/H2O mixture at reflux temperature for 23 

hours12c were necessary to initiate this rearrangement. Apparently, due to the presence of the two fluorine 

atoms, difluorinated cyclopropane 184a is more prone to ring expansion than its dimethylated analogue. 

In an attempt to obtain cyclopropane 184a in a higher amount, the reaction of adduct 183a with KOtBu at 

reflux temperature was repeated and after 45 minutes a sample was taken and analysed via 1H NMR. At 

that moment, a reaction conversion of 62% was observed and cyclopropane 184a and pyrroline 185a were 

present in almost equal amounts (Table 4, entry 5). The reaction was stopped after an additional 15 

minutes and 1H NMR analysis of the reaction mixture revealed no further progress of the reaction, but a 

change in the ratio cyclopropane 184a : pyrroline 185a, with pyrroline 185a being the major product (Table 

4, entry 6). It was found that a small change in the reaction conditions had a large effect on the ring 

transformation of cyclopropane 184a toward pyrroline 185a. For example, when the reaction was 

conducted using 1.1 equivalents of KOtBu instead of 1.2 equivalents, leaving the other reaction conditions 

unaltered, a different ratio of reaction products was obtained, with a higher reaction conversion and a 

higher amount of pyrroline in the case of 1.2 equivalents (Table 4, entries 6,7). In a next attempt, two 

equivalents of base were used at reflux temperature in an attempt to achieve a high conversion of the 

starting material in a shorter reaction time, possibly reducing the amount of pyrroline 185a. Indeed, under 

these reaction conditions cyclopropane 184a was found to be the major reaction product (Table 4, entry 

8). However, a large amount of benzophenone was present, indicating degradation of the starting material 

or the reaction products under these reaction conditions. An extra increase of the number of equivalents 

of base gave no better results since treatment of adduct 183a with three equivalents of KOtBu in THF for 

15 minutes at reflux temperature led to the formation of a complex reaction mixture (Table 4, entry 9). 
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Other reaction conditions, for example adding the base portionwise or using Et2O as the solvent, also did 

not lead to better results. It was concluded that the reaction of adduct 183a with 1.1 equivalents of KOtBu 

in THF under reflux conditions for one hour were the best reaction conditions to obtain cyclopropane 184a, 

albeit in a low yield of 20% (Table 4, entry 7). The selective formation of pyrroline 185a was effectuated 

by reacting adduct 183a with 1.1 equivalents of KOtBu in THF under reflux conditions for four hours, and 

pyrroline 185a was isolated in 73% yield (Table 4, entry 10). In all cases, a fourth reaction product was 

present after work-up, based on analysis of the 19F NMR spectrum, in which a small singlet was present at 

-152.12 ppm. Unfortunately, this compound could not be isolated and thus not identified. 

Table 4: Ring closure of dimethyl 2-[(2-bromo-2,2-difluoro-1-diphenylmethylideneamino)ethyl]malonate 183a 

 

Entry Reaction conditions 
Ratioa  

183a : 184a : 185a 
Compound  

(Yield)b 

1 1.05 equiv NaOMe,c MeOH, 0 °C, 1 h 100 : 0 : 0 - 

2 1.05 equiv NaOMe,c MeOH, r.t., 2 h -d - 

3 1.2 equiv KOtBu,e THF, r.t., 1 h 100 : 0 : 0 - 

4 1.2 equiv KOtBu,e THF , Δ, 2 h 0 : 13 : 87 185a (45%) 

5 1.2 equiv KOtBu,e THF, Δ, 45 min 38 : 27 : 34 - 

6 1.2 equiv KOtBu,e THF, Δ, 1 h 37 : 10 : 53 - 

7 1.1 equiv KOtBu,e THF, Δ, 1 h 45 : 24 : 31 184a (20%) 

8 2 equiv KOtBu,e THF, Δ, 15 min 21 : 56 : 23f - 

9 3 equiv KOtBu,e THF, Δ, 15 min -g - 

10 1.1 equiv KOtBu,e THF, Δ, 4 h 9 : 4 : 87 185a (73%) 

a Determined via 1H NMR analysis of the crude reaction mixture. b Isolated yield. c 2M in MeOH. d Only 
benzophenone and diphenylmethylideneamine were distinguished in the reaction mixture.e 1M in THF. f 
A large amount of benzophenone was present in the reaction mixture. g Complex reaction mixture. 
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Subsequently, the base-induced ring closure of diethyl 2-[2-bromo-2,2-difluoro-1-(diphenylmethylidene-

amino)]malonate 183b was evaluated. Applying the reaction conditions which gave the best conversion 

toward cyclopropane 184a (1.1 equiv KOtBu, THF, Δ, 1 h) led to the formation of cyclopropane 184b as the 

major reaction product, with a reaction conversion of 94% (Table 5, entry 1). However, next to 

cyclopropane 184b and pyrroline 185b, a third reaction product was present in the reaction mixture. After 

purification of the reaction mixture, this compound was identified as fluorinated diethyl 

cyclopropenedicarboxylate 186b, which was isolated in 10% yield.  

Fluorinated aminocyclopropenes and fluorinated alkyl cyclopropenecarboxylates have never been 

described in the literature before. The synthesis of fluorinated cyclopropenes has been reported and also 

a lot of attention has been devoted to calculation studies regarding the structure of these small-membered 

strained rings.84,87 However, the majority of attention has been devoted to the synthesis of cyclopropenes 

which are substituted by fluorine at the C3 carbon, while less examples are known of cyclopropenes in 

which the fluorine atom is attached to the double bond.88 While cyclopropane 184b was not stable and 

rearranged readily toward pyrroline 185b upon storage at room temperature, diethyl 

cyclopropenedicarboxylate 186b was more stable and could be stored at room temperature for several 

days. Possibly, this higher stability is due to the reduced Pitzer strain in this more planar cyclopropene. In 

diethyl cyclopropanedicarboxylate 184b, the two fluorine atoms are eclipsed with the two ester functions, 

leading to a substantial electronic repulsion, while this interaction is not present in diethyl 

cyclopropenedicarboxylate 186b. 

The 19F NMR spectrum of cyclopropene 186b showed a singlet at -151.97 ppm, and thus it was concluded 

that the unknown compound which was formed upon reaction of dimethyl ethylidenemalonate 183a with 

KOtBu (see discussion Table 4) was the corresponding dimethyl cyclopropenedicarboxylate. But as 

mentioned before, this compound was never isolated. Furthermore, from this first attempt (Table 5, 

entry 1), cyclopropane 184b was isolated in 15% yield. Prolonging the reaction time to two hours led to a 

higher conversion of the starting material and also a higher amount of pyrroline 185b, which was isolated 

in 26% yield (Table 5, entry 2). In this case, cyclopropene 186b was again present in a trace amount and 

was isolated in 1% yield. To achieve the highest conversion of adduct 183b toward pyrroline 185b, the 

reaction time was prolonged to five hours and pyrroline 185b was isolated in 39% yield (Table 5, entry 3). 

In a last attempt, adduct 183b was treated with 1.5 equivalents of KOtBu for 30 minutes, leading to a 

mixture with cyclopropane 184b being the major compound which was isolated in 22% yield (Table 5,  

entry 4).  
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Table 5: Ring closure of diethyl 2-[(2-bromo-2,2-difluoro-1-diphenylmethylideneamino)ethyl]malonate 183b 

 

Entry Reaction conditions 
Ratioa  

183b : 184b : 186b : 185b 
Compound  

(Yield)b 

1 1.1 equiv KOtBu,c THF, Δ, 1 h 6 : 51 : 18 : 25 184b (15%) + 186b (10%) 

2 1.1 equiv KOtBu,c THF, Δ, 2 h 0 : 41 : trace: 59 186b (1%) + 185b (26%)  

3 1.2 equiv KOtBu,c THF, Δ, 5 h 0 : 0 : 17 : 83 185b (39%) 

4 1.5 equiv KOtBu,c THF, Δ, 30 min 0 : 66 : 3 : 31 184b (22%) + 185b (11%) 

a Determined via 1H NMR analysis of the crude reaction mixture. b Isolated yield. c 1M in THF. 

 

As a last substrate, the base-induced ring closure of diisopropyl malonate 183c was investigated (Table 6). 

In a first attempt, adduct 183c reacted with 1.5 equivalents of KOtBu for 30 minutes at reflux temperature 

in THF (Table 6, entry 1), since under these reaction conditions the best conversion toward diethyl 

cyclopropanedicarboxylate 184b was obtained (Table 5, entry 4). Satisfyingly, full conversion of the 

starting material was observed, with cyclopropane 184c being the major reaction product which was 

isolated in a good yield of 56% (Table 6, entry 1). Next, the synthesis of pyrroline 185c was envisioned. 

Therefore, the reaction time was prolonged to three hours. After work-up, cyclopropane 184c was again 

the major reaction product, despite the long reaction time of three hours. Also, a larger amount of 

cyclopropene 186c was present, which was isolated in 10% yield after purification of the reaction mixture 

(Table 6, entry 2). In a next attempt, adduct 183c reacted with 1.2 equivalents of KOtBu in THF at reflux 

temperature for three hours (Table 6, entry 3). In an attempt to convert cyclopropane 184c, which was 

the major reaction product, into pyrroline 185c, the reaction mixture was redissolved in THF and stirred 

at reflux temperature for four hours. After evaporation of the solvent, a change in the ratio 184c : 185c 

was observed and both products were present in almost equal amounts (Table 6, entry 4). To obtain a full 

conversion toward pyrroline 185c, this reaction mixture was stirred in CH3CN for two hours at reflux 

temperature, leading to an almost full conversion toward pyrroline 185c (Table 6, entry 4). Unfortunately, 

pyrroline 185c could not be isolated in pure form, since this compound could not be separated from 
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benzophenone. Although the rearrangement of cyclopropane 184c toward pyrroline 185c was effectuated 

by heating in THF or CH3CN, this was also accompanied by degradation of the reaction products since the 

amount of benzophenone in the reaction mixture increased after each step. 

Table 6: Ring closure of diisopropyl 2-[(2-bromo-2,2-difluoro-1-diphenylmethylideneamino)ethyl]malonate 183c 

 

Entry Reaction conditions 
Ratioa 

183c : 184c : 186c : 185c 
Compound 

(Yield)b 

1 1.5 equiv KOtBu,c THF, Δ, 30 min 0 : 80 : 6: 14 184c (56%) 

2 1.5 equiv KOtBu,c THF, Δ, 3 h 0 : 74 : 14 : 13 186c (10%) 

3 1.2 equiv KOtBu,c THF, Δ, 3 h 0 : 69 : 4 : 27 - 

4 Reaction mixture entry 3, THF, Δ, 4 h 0 : 52 : 2 : 46 - 

5 Reaction mixture entry 4, CH3CN, Δ, 2 h 0 : 0 : 7 : 93  185c (45%)d 

a Determined via 1H NMR analysis of the crude reaction mixture. b Isolated yield. c 1M in THF. d 66% 
purity, mixture with benzophenone. 

 

The low yields of cyclopropanes 184, cyclopropenes 186 and pyrrolines 185 are due to their instability 

during their synthesis, work-up, purification and storage. Cyclopropane 184a for example, already 

converts into pyrroline 185a upon storage at -18 °C. Therefore, the temperature of the water bath during 

evaporation was always kept as low as possible and purification using flash chromatography was always 

performed by applying pressure to the column, keeping the contact time with SiO2 as short as possible. 

In the next step, the reduction of pyrrolines 185 toward the corresponding fluorinated pyrrolidines was 

attempted. Fluorinated pyrrolidines belong to a class of fluorinated azaheterocycles that has been studied 

previously in our research group.89 This reduction would give an entry toward fluorinated β-proline 

derivatives, a class of fluorinated β-amino acids that has received only limited attention.90 

In a first attempt, pyrroline 185a was treated with 2.5 equivalents of NaCNBH3 in the presence of acetic 

acid (1.2 equiv) in methanol at room temperature for 15 hours. However, after work-up, a complex 
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reaction mixture was obtained. Next, pyrroline 185a was reacted with NaCNBH3 in the presence of a 

catalytic amount of p-toluenesulfonic acid in THF for 22 hours, which led to a full conversion of the starting 

material.91 After analysis of the crude reaction mixture, it was concluded that instead of the envisaged 

pyrrolidine, a mixture of acyclic amino esters 187a and 188a (ratio 187a : 188a = 3: 1) was formed (Table 

7, entry 1). The formation of amino ester 187a can be rationalized as follows (Scheme 48). Initial reduction 

of the imine function in pyrroline 185a leads to the formation of pyrrolidine 189a, which appears to be 

unstable under the reaction conditions and undergoes ring opening to give acyclic imine 190a. 

Subsequently, under these reductive reaction conditions, imine 190a is converted into amino ester 187a. 

Upon basic work-up, amino ester 187a is converted into amino ester 188a via an E1cb-type elimination 

reaction. Unfortunately, when the purification of the reaction mixture was attempted, compounds 187a 

and 188a were not recovered. Furthermore, the formation of amino esters 187a and 188a under these 

reaction conditions was not reproducible, since repeating this reaction (2 equiv NaCNBH3, 0.1 equiv 

p-TsOH, THF, r.t., 22 h) only led to the formation of a complex reaction mixture. In a next attempt, pyrroline 

185a was treated with NaCNBH3 in the presence of acetic acid in acetonitrile for 30 minutes at 0 °C.92 After 

work-up, a mixture of amino esters 187a and 188a was obtained, in a ratio 187a : 188a = 68 : 32 but again, 

the purification of this mixture failed (Table 7, entry 2). In an attempt to trap pyrrolidine 189a, pyrroline 

185a was first stirred in acetonitrile in the presence of acetyl chloride to effectuate N-acetylation, before 

three equivalents of NaCNBH3 were added. Then, the reaction mixture was stirred for three hours at room 

temperature but this resulted in the formation of a complex reaction mixture in which the N-acetyl 

derivatives of amino esters 187a and 188a were not present (Table 7, entry 3). Next, the effect of the 

addition of both acetic acid and acetyl chloride to the reaction mixture was investigated in the reaction of 

pyrroline 185a with NaCNBH3 (Table 7, entry 4). Again a mixture of amino esters 187a and 188a was 

obtained. Purification of this mixture via flash column chromatography afforded amino ester 188a in pure 

form (29% yield) but this compound appeared to be unstable and no full characterization could be 

performed. The instability of compounds 187a and 188a explains why a complex reaction mixture was 

obtained when pyrroline 185a was reacted with NaCNBH3 under the standard reaction conditions using 

acetic acid in methanol and why the reaction using NaCNBH3 in the presence of p-toluenesulfonic acid was 

not reproducible. Compounds 187a and 188a already degrade upon storage at room temperature for one 

hour or when a temperature of 37 °C was applied for the evaporation of the solvent after work-up. Thus, 

the formation of the complex reaction mixture under these reaction conditions was due to the instability 

of compounds 187a and 188a.  
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Table 7: Reduction of pyrroline 185a 

 

Entry Reaction conditions Result 

1 2 equiv NaCNBH3, 0.1 equiv p-TsOH, THF, r.t., 22 h 187a : 188a = 75 : 25a 

2 2 equiv NaCNBH3, 2 equiv AcOH, CH3CN, 0 °C, 30 min 187a : 188a = 68 : 32a 

3 1) 5 equiv AcCl, CH3CN, r.t., 1 h 30 min 

2) 3 equiv NaCNBH3, MeOH, r.t., 3 h 

Complex reaction mixture 

4 2 equiv NaCNBH3, 2 equiv AcOH, 2 equiv AcCl, 

CH3CN, 0 °C, 20 min 

187a : 188a = 65 : 35a 

(29% 188a)b 

a Determined via 1H NMR analysis of the crude reaction mixture. b Isolated yield. 

 

 

Scheme 48 

The transformation of pyrroline 185a was also attempted via a nucleophilic addition across the C=N double 

bond by NaOMe or 4-methoxyphenol, but this only led to the formation of a complex reaction mixture.  

Reduction of pyrroline 185c using NaCNBH3 in the presence of acetic acid and acetyl chloride afforded 

difluorinated amino ester 187c, while only a trace amount of the corresponding monofluorinated diester 

was present in the reaction mixture. Apparently, due to the steric hindrance caused by the two isopropyl 

esters, the elimination of fluoride is more difficult. Amino ester 187c was isolated in 18% yield but again, 

this compound proved to be unstable and could not be fully characterized. 
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Scheme 49 

Next to the reduction using NaCNBH3, other reducing agents were also evaluated. However, while the use 

of NaBH4, NaBH(OAc)3 or LiAlH(OtBu)3 gave no reaction, reaction with LiAlH4 or H2 in the presence of Pt/C 

led to the formation of a complex reaction mixture.  

3.3.2.2 Aza-Michael addition of imidazole 

In the next part, imidazole 191 was evaluated as another nitrogen nucleophile, and was reacted with 

ethylidenemalonates 16a,c in the presence of Et3N in tert-butanol (Scheme 50). Although this reaction was 

carried out at reflux temperature for several hours, only adducts 192 was isolated from the reaction 

mixture and no subsequent ring closure was observed. 

 

Scheme 50 

In order to convert adduct 192a into the envisioned cyclopropane 193a, this compound was treated with 

1.5 equivalents of KOtBu in THF at reflux temperature for one hour, after which extra KOtBu was added 

(1.5 equiv) and the stirring was continued for another two hours. According to LC-MS analysis of the 
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reaction mixture, one major product was formed, with a molecular weight corresponding to that of 

cyclopropane 193a. However, after purification of this compound via preparative TLC and detailed analysis 

of the 1H NMR, 13C NMR and HSQC spectra, it was concluded that the product of this reaction was not 

cyclopropane 193a but enamine 194a. In the 1H NMR spectrum a doublet (4JH,F = 1.8 Hz) was present at 

4.54 ppm, corresponding to HA (Figure 13). Indeed, the size of this coupling constant indicates an allylic 

coupling between proton and fluorine, which is in accordance with some examples found in literature.93 

Furthermore, via analysis of the HSQC spectrum it can be seen that the carbon atom attached to HA also 

shows a very small allylic coupling with fluorine (3JC,F = 2.4 Hz). In both cases, the coupling with the other 

fluorine atom was not resolved in the spectrum. 

 

Figure 13 

Furthermore, diisopropyl diester 192c was also converted into enamine 194c, which was isolated in 49% 

yield (Scheme 50).The low yields are due to loss of the product during purification via preparative TLC. 

3.3.2.3 Aza-Michael addition of potassium phthalimide 

In a next part, ethylidenemalonates 16b,c reacted with potassium phthalimide 195 in the presence of 

tetramethylammonium bromide in tert-butanol at reflux temperature, affording adducts 196b,c in low 

yields (28-33%) (Scheme 51). When these adducts were treated with base in THF in the next step, at room 

temperature for 196c or at reflux temperature for 196b, this only led to the formation of a complex 

reaction mixture. 
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Scheme 51 

3.3.3 Conclusion 

In conclusion, three different nucleophiles were evaluated for the synthesis of fluorinated β-ACC 

derivatives via a MIRC reaction starting from ethylidenemalonates 16. The use of 

diphenylmethylideneamine gave the best results and led to the formation of unprecedented fluorinated 

β-ACC derivatives 184. However, these compounds were unstable and rearranged toward fluorinated 

pyrrolines 185. Pyrrolines 185 were in turn converted into unstable acyclic γ-amino esters 187 via 

reduction. When imidazole was reacted with ethylidenemalonates 16, Michael adducts 192 were formed, 

but these could not be converted into the corresponding cyclopropanes 193. Instead, formation of 

enamines 194 was observed. Finally, the use of potassium phthalimide 195 only led to complex reaction 

mixtures when cyclization was attempted.  
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3.4 Attempted synthesis of 3-fluoro- and 3,3-difluoroazetidine-2-carboxylates 

3.4.1 Introduction 

As mentioned in the literature overview, only two examples on the synthesis of 3-fluoroazetidine-2-

carboxylic acid derivatives have been reported before. The first method comprises the fluorination of 

azetidine-2-carboxylic acid using the highly toxic trifluoromethyl hypofluorite gas in liquid HF.49 The second 

method was reported only very recently and describes the formation of 4-hydroxymethylated derivatives 

of 3-fluoroazetidine-2-carboxylic acid.50 In this part of this PhD thesis, it was attempted to develop a 

general synthetic route toward these strained fluorinated amino acid derivatives, without the presence of 

an extra substituent at the 4-position. 

3.4.2 Synthesis of amino esters 

Inspired by the work of Couty,14a,14b the synthesis of difluorinated azetidine-2-carboxylates 197 was 

envisioned via cyclisation of bromodifluorinated precursors 198 (Scheme 52). It was believed that these 

precursors could be synthesized starting from ethyl bromodifluoroacetate 14, via sequential amidation by 

reaction with glycine esters 19, selective reduction of the resulting amide moiety of compounds 200 and 

protection of the amine to give precursors 198. 

 

Scheme 52 

In a first step, ethyl bromodifluoroacetate 14 was brought into reaction with the hydrochloric salt of ethyl 

glycinate 170b in dichloromethane in the presence of Et3N, leading to the formation of amide 200a in good 

yield. The next step in this reaction sequence was the selective reduction of the amide moiety toward 

amino ester 199a. Unfortunately, this reduction proved to be not straightforward. First, the use of borane 
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dimethylsulfide complex (BH3.Me2S) in CH2Cl2 was evaluated in the reaction with amide 200a. Independent 

of the number of equivalents (3 - 12 equiv), the reaction temperature (r.t. - Δ) or the reaction time (1.5 - 

20 h), no conversion toward the envisioned amino ester 199a was observed and only the starting 

compound 200a was recovered (Table 8, entries 1-5). Only when the reaction of amide 200a with six 

equivalents of BH3.Me2S was carried out for a prolonged reaction time of 76 h, a reduction was observed, 

but the compound that was obtained was amino alcohol 201, formed by a reduction of all carbonyls in 

compound 200a (Table 8, entry 6). When borane was used as the THF-complex at room temperature, again 

no reaction occurred (Table 8, entry 7) or a complex mixture was obtained when the reaction was 

conducted at reflux temperature using 10 equivalents of BH3.THF (Table 8, entry 8). In a next attempt, the 

use of monochloroalane, prepared in situ from AlCl3 and LiAlH4, was evaluated, but under these reaction 

conditions, amino alcohol 201 was again formed as the end product (Table 8, entry 9). In an attempt to 

avoid the reduction of the ester moiety, the bulkier tert-butyl ester 200b was also prepared and subjected 

to reductive reaction conditions. In this case, treatment of amide 200b with three equivalents of BH3.Me2S 

in dichloromethane under reflux conditions also led to the undesired formation of amino alcohol 201 

(Table 8, entry 10). 

 

Scheme 53 
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Table 8: Attempted selective reduction of amido esters 200 

Entry Substrate Reaction conditions Result 

1 200a 3 equiv BH3.Me2S, CH2Cl2, r.t., 17 h No reaction 

2 200a 10 equiv BH3.Me2S, CH2Cl2, r.t., 2 h No reaction 

3 200a 3 equiv BH3.Me2S, CH2Cl2, Δ, 20 h No reaction 

4 200a 10 equiv BH3.Me2S, CH2Cl2, Δ, 3 h No reaction 

5 200a 12 equiv BH3.Me2S,a CH2Cl2, Δ, 1.5 h No reaction 

6 200a 6 equiv BH3.Me2S, CH2Cl2, Δ, 76 h 201 (31%)b 

7 200a 1 equiv BH3.THF, THF, r.t., 3 h No reaction 

8 200a 10 equiv BH3.THF, THF, r.t., 3 h Complex reaction mixture 

9 200a 1 equiv AlCl3, 3 equiv LiAlH4, Et2O, 0 °C, 2 h 201 (50% crude) 

10 200b 3 equiv BH3.Me2S, CH2Cl2, Δ, 24 h 201 (60% crude) 

a Added in portions of 2 equiv every 10 minutes. b Isolated yield. 

 

Since the selective reduction of the amide moiety of compounds 200 proved to be difficult, another 

strategy was employed. Since the reduction of thioamides in the presence of ester functions has been 

reported, amide 200a was converted into thioamide 202. While treatment of amide 200a with Lawesson’s 

reagent in benzene at reflux temperature for 3.5 hours resulted only in partial conversion toward 

thioamide 202, the use of toluene as the solvent led to full conversion and thioamide 202 was isolated in 

70% yield (Scheme 54). Subsequently, the selective reduction of the thioamide moiety of compound 202 

was investigated. In a first attempt, thioamide 202 was treated with NiCl2.6H2O in the presence of NaBH4, 

in order to form nickel boride in situ,94 but these reaction conditions only led to the formation of a complex 

reaction mixture (Table 9, entry 1). In contrast, treatment of amide 202 with Raney Nickel in a solvent 

mixture containing EtOH, THF and water at room temperature for one hour only led to recovery of the 

starting material (Table 9, entry 2).95 Another attempt for desulfurization comprised the alkylation of the 

thioamide with methyl iodide, followed by reduction. Unfortunately, upon treatment of thioamide 202 

with MeI in the absence or in the presence of a base, no reaction was observed (Table 9, entries 3-4).96 A 

last attempt comprised the addition of BH3.Me2S, but in this case, either no reaction was observed at room 
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temperature, or a complex reaction mixture was obtained when reflux temperature was applied (Table 9, 

entries 5-6). 

 

Scheme 54 

Table 9: Attempted reduction of thioamide 202 

Entry Reaction conditions Result 

1 8 equiv NiCl2.6H2O, 2.4 equiv NaBH4, THF/MeOH 1/1, r.t., 3 h Complex reaction mixture 

2 RaNi (in H2O), THF/EtOH 1/1, r.t., 1 h No reaction 

3 5 equiv MeI, THF, r.t., 17 h No reaction 

4 1.2 equiv NaH, 5 equiv MeI, THF, r.t., 20 h No reaction 

5 3 equiv BH3.Me2S, CH2Cl2, r.t., 1 h No reaction 

6 3 equiv BH3.Me2S, CH2Cl2, Δ, 2 h Complex reaction mixture 

 

Since all attempts to achieve a selective reduction of the amide moiety in the presence of the ester 

functionality failed, this pathway was abandoned and an alternative approach was sought, which 

comprised the synthesis of aldimines 203 starting from hemiacetal 204 and glycine esters 19 (Scheme 55). 

The reduction of aldimines 203 in the presence of an ester function was believed to be more 

straightforward. 
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Scheme 55 

Unfortunately, the synthesis of aldimines 203 could not be effectuated. Treatment of hemiacetal 204, 

prepared via reduction of ethyl bromodifluoroacetate 14,97 with glycine esters 170b and 170a under Dean-

Stark conditions in the presence of triethylamine in toluene led to the formation of a complex reaction 

mixture. Also the use of milder reaction conditions, by using triethylamine and MgSO4 in dichloromethane, 

afforded a complex reaction mixture (Table 10). 

Table 10: Attempted synthesis of aldimines 203 

 

Entry Substrate 170 Reaction conditions Result 

1 170b (R = Et) 1 equiv 170b, 1 equiv Et3N, toluene, 
Dean-Stark, 3 h 

Complex reaction mixture 

2 170a (R = Me) 1 equiv 170a, 1 equiv Et3N, toluene,  
Dean-Stark, 3 h 

Complex reaction mixture 

3 170a (R = Me) 1 equiv 170a, 1 equiv Et3N,  

2 equiv MgSO4, CH2Cl2, r.t., 1 h 

Complex reaction mixture 

 

Because both of the above-mentioned routes toward precursors 198 failed, an alternative pathway was 

evaluated (Scheme 56). It was decided to introduce the ester function of amino esters 198 after reduction 

of amides 205 toward amines 23, thus avoiding the need for a selective reduction. 
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Scheme 56 

To this end, secondary fluorinated amines 23 were synthesized by reacting ethyl bromodifluoroacetate 14 

with different amines leading to amides 205, which in turn were reduced using borane dimethylsulfide 

complex in dichloromethane under reflux (Scheme 57).15 

 

Scheme 57 

To achieve the coupling between amines 23 with methyl bromoacetate 207a, various reaction conditions 

were applied (Table 11). In a first attempt, amine 23a was treated with 1.2 equivalents of methyl 

bromoacetate 207a in the presence of triethylamine, but this reaction gave no conversion, neither at room 

temperature nor at 70 °C (Table 11, entries 1-2). Subsequently, amine 23a was treated with sodium 

hydroxide in dichloromethane using tetrabutylammonium iodide (TBAI) as phase transfer catalyst (Table 

11, entry 3). Unfortunately, also in this case no reaction was observed. The use of NaH as a base either 

gave no conversion when the reaction was performed at 0 °C for one hour (Table 11, entry 4) or led to the 

formation of a complex reaction mixture upon reaction at room temperature for 20 h (Table 11, entry 5). 

Using N-propyl-2-bromo-2,2-difluoroethylamine 23b as substrate, the use of triethylamine in the presence 

of a catalytic amount of DMAP in dichloromethane was evaluated, with or without the addition of sodium 

iodide, but again no conversion toward the corresponding amino ester 198b was observed (Table 11, 

entries 6-7). The use of neat reaction conditions by stirring amine 23b and bromoacetate 207a in the 

presence of triethylamine was also ineffective (Table 11, entry 8). Although the alkylation of secondary 

amines with bromoacetates 207 normally proceeds under mild reaction conditions,98 the reaction with 
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amines 23 proved to be less straightforward. The lower reactivity of amines 23 is due to the decreased 

nucleophilicity of the amine nitrogen, caused by the electron-withdrawing effect of the two fluorine 

atoms. 

Table 11: Attempted synthesis of amino esters 198 starting from amines 23 

 

Entry Substrate Reaction conditions Result 

1 23a 1.2 equiv 207a, 2 equiv Et3N, DMSO, r.t., 4 h No reaction 

2 23a 1.2 equiv 207a, 2 equiv Et3N, DMSO, 70 °C, 24 h No reaction 

3 23a 1.2 equiv 207a, 3.5 equiv NaOHa, 0.2 equiv 

TBAI, CH2Cl2, r.t., 17 h 

No reaction 

4 23a 1.2 equiv 207a, 1 equiv NaH, DMF, 0 °C, 1 h No reaction 

5 23a 1.2 equiv 207a, 1 equiv NaH, DMF, r.t., 20 h Complex reaction mixture 

6 23b 1 equiv 207a, 1 equiv Et3N, 0.1 equiv DMAP, 

CH2Cl2, Δ, 17 h 

No reaction 

7 23b 1.2 equiv 207a, 1.2 equiv Et3N, 0.1 equiv DMAP, 

1 equiv NaI, CH2Cl2, Δ, 24 h 

No reaction 

8 23b 1.2 equiv 207a, 1.2 equiv Et3N, r.t., 18 h No reaction 

a 2M in H2O. 

 

Bearing in mind the disadvantageous effect of fluorine atoms on the nucleophilicity of the amine nitrogen 

atom, amine 208a was prepared, containing only one fluorine substituent at the β-position.15 At the same 

time, more stringent reaction conditions were applied, by the use of LiHMDS as the base (Table 12). In a 

first attempt, amine 208a was treated with 1.1 equivalents LiHMDS and 1.1 equivalents of methyl 

bromoacetate 207a in THF at -78 °C (Table 12, entry 1). Upon analysis of the reaction mixture, the presence 

of aziridine 210 was observed, next to a trace amount of the desired amino ester 209a. The formation of 

aziridine 210 under these reaction conditions is not surprising, since treatment of amine 208a with 1.5 
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equivalents of LiHMDS in THF at -10 °C for three hours has been used as a preparation method for 

2-fluoroaziridine 210.15 The presence of a trace amount of amino ester 209a in the reaction mixture was 

encouraging and the reaction conditions were adapted in an attempt to direct the reaction toward the 

selective formation of amino ester 209a. Increasing the number of equivalents of methyl bromoacetate 

207a led to a higher conversion toward amino ester 209a, but still a significant amount of aziridine 210 

was present in the reaction mixture (Table 12, entries 2-3). Finally, the use of seven equivalents of methyl 

bromoacetate 207a and no addition of extra solvent led to a selective conversion of amine 208a toward 

amino ester 209a, which was isolated in 79% yield (Table 12, entry 4). 

Table 12: Synthesis of amino ester 209a from amine 208a 

 

Entry Reaction conditions 
Ratioa  

208 : 209a : 210 
Yield 209a 

1 1.1 equiv 207a, 1.1 equiv LiHMDS,b THF, -78 °C, 1 h 55 : trace : 45 - 

2 3 equiv 207a, 1.1 equiv LiHMDS,b THF, -78 °C – r.t., 19 h 29 : 20 : 51 - 

3 5 equiv 207a, 1.1 equiv LiHMDS,b THF, -78 °C - r.t., 20 h 14 : 31 : 55 25% 

4 7 equiv 207a, 1.1 equiv LiHMDS,b 0 °C – r.t., 23 h 0 : 100 : 0 79% 

a Determined via 1H NMR analysis of the crude reaction mixture. b 1M in THF. 

 

Subsequently, these optimized reaction conditions were applied to bromodifluorinated amines 23. Due to 

the lower nucleophilicity of these amines, a higher reaction temperature of 70 °C had to be applied, 

achieving a selective conversion of amines 23 toward amino esters 198a,c,d which were isolated in 

moderate to good yields (Scheme 58). 
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Scheme 58 

3.4.3 Attempted ring closure toward 3-fluoro- and 3,3-difluoroazetidine-2-

carboxylates 

Having precursors 198 and 209 in hand, their ring closure toward the envisioned fluorinated azetidines 

was evaluated. In a first attempt, monofluorinated amino ester 209a was treated with 1.1 equivalents of 

KOtBu for two hours at room temperature. After analysis of the reaction mixture, it was concluded that 

KOtBu had reacted as a nucleophile leading to transesterification toward the corresponding tert-butyl 

ester 212 (Scheme 59). This compound 212 was tentatively identified from the crude reaction mixture via 

1H NMR and LC-MS analysis, but was not isolated. 

 

Scheme 59 

To avoid this transesterification reaction, the use of NaOMe was evaluated next. While reaction of amino 

ester 209a with NaOMe in THF at 0 °C or at room temperature for three hours only led to recovery of the 

starting material, increasing the temperature to reflux temperature led to the formation of a complex 

reaction mixture after three hours of reaction.  

Next, the use of the stronger base LiHMDS was assessed, which was a suitable base for the synthesis of 

azetidine-2-carboxylates starting from very similar non-fluorinated amino esters.14b First, precursor 209a 

was treated with 1.2 equivalents of LiHMDS in THF at -78 °C for two hours (Table 13, entry 1). However, 



Results and discussion  Chapter 3 

72 
 

no reaction was observed. Surprisingly, after stirring amino ester 209a in the presence of 1.1 equivalents 

of LiHMDS at 0 °C for one hour, 64% conversion toward amine 208a was observed (Table 13, entry 2). 

Apparently, these reaction conditions lead to removal of the methoxycarbonylmethyl group of amino ester 

209a. This conversion is very peculiar and has not been observed in the literature upon treatment of 

alkoxycarbonylmethylamines with LiHMDS. However, the reductive removal of an alkoxycarbonylmethyl 

group has been reported by photoactivated electron transfer from a neutral organic donor or in the 

presence of lithium.99 The addition of 0.2 equivalents KI to the reaction mixture also did not lead to ring 

closure toward the envisioned azetidine 211 and again 60% conversion toward secondary amine 208a was 

observed (Table 13, entry 3). When the reaction of precursor 209a with LiHDMS was performed in a 

THF/HMPA 10/1 mixture,14a no reaction was observed after two hours at 0 °C (Table 13, entry 4). Increasing 

the reaction temperature to room temperature gave no conversion after one hour of reaction, but led to 

the formation of a complex reaction mixture, in which amine 208a was not detected, when the reaction 

time was prolonged to 17 hours (Table 13, entry 5). Apparently, the lithium ion plays a role in the removal 

of the methoxycarbonylmethyl group leading to the formation of amine 208a. To test the influence of the 

cation in this reaction, precursor 209a was reacted with 1.1 equivalents of KHMDS in THF at 0 °C for one 

hour (Table 13, entry 6). After this time, no reaction conversion was observed, neither toward the 

envisioned azetidine 211, nor toward secondary amine 208a. It can be concluded that the lithium cation 

of LiHMDS is essential for the removal of the methoxycarbonylmethyl group from nitrogen, but its specific 

role remains unclear. Since the reaction of precursor 209a with KHMDS at 0 °C gave no conversion at all, 

this reaction was repeated at room temperature for two hours. Follow-up of this reaction also indicated 

no conversion, so to test if deprotonation at the α-position of the ester took place, the mixture was 

quenched with D2O and stirred for 30 minutes at room temperature. After analysis of the reaction mixture, 

it was concluded that no deuterium atom was present in the end product and thus amino ester was not 

deprotonated by KHMDS. This is in contrast to an example in the literature, were very similar glycinates, 

containing a -CH2CF3 substituent at nitrogen, were alkylated at the α-position of the ester function by 

treatment with KHMDS and a suitable alkyl halide. Thus, in that case, deprotonation did occur, although 

the alkylation only proceeded with activated alkyl halides like allyl bromide, while no alkylation occurred 

using allyl chloride or butyl bromide as the electrophile.100 Also when NaHMDS was used, no reaction was 

observed after one hour at 0 °C (Table 13, entry 8), and no deprotonation occurred after stirring the 

reaction mixture at room temperature for 2.5 hours (Table 13, entry 9). As another example of a nitrogen 

base with a litium cation, precursor 209a was treated with LiTMP, freshly prepared from 

tetramethylpiperidine and BuLi, at -78 °C (Table 13, entry 10). This mixture was stirred at the same 
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temperature for one hour and was then allowed to warm to room temperature and stirred for another 17 

hours. However, after work-up, starting compound 209a was present in the reaction mixture, next to some 

unidentified side products. 

Table 13: Attempted ring closure of amino ester 209a 

 

Entry Reaction conditions Result 

1 1.2 equiv LiHMDS, THF, -78 °C, 2 h No reaction 

2 1.1 equiv LiHMDS, THF, 0 °C, 1 h 64% conversiona 

3 1.1 equiv LiHMDS, 0.2 equiv KI, THF, 0 °C, 1 h 60% conversiona 

4 1.2 equiv LiHMDS, THF/HMPA 10/1, 0 °C, 2 h No reaction 

5 1.2 equiv LiHMDS, THF/HMPA 10/1, r.t., 17 h Complex reaction mixture 

6 1.1 equiv KHMDS, THF, 0 °C, 1 h No reaction 

7 1) 1.1 equiv KHMDS, THF, r.t., 2 h 

2) D2O, r.t., 30 min 

No reaction 

8 1.1 equiv NaHMDS, THF, 0 °C, 1 h No reaction 

9 1) 1.1 equiv NaHMDS, THF, r.t., 2.5 h 

2) D2O, r.t., 30 min 

No reaction 

10 1.1 equiv LiTMP, THF, -78 °C, 1 h, then r.t., 17 h 209a + side products 

11 1.1 equiv LDA, 2 equiv TMSCl, THF, -78 °C, 20 min, then r.t., 1 h No reaction  

a Determined via 1H NMR analysis of the crude reaction mixture. 

 

A possible reaction mechanism for the removal of the methoxycarbonylmethyl group could include 

silylation of compound 209a, followed by degradation towards amine 208a. To test this hypothesis, it was 

attempted to silylate amino ester 209a by treatment with LDA, followed by the addition of TMSCl.101 

However, after stirring this reaction mixture at -78 °C for 20 minutes, followed by one hour at room 

temperature, no reaction could be observed (Table 13, entry 11).  
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Alternatively, the formation of amine 208a could be the result of the nucleophilic attack of the base 

LiHMDS at the α-carbon of the amino ester, followed by expulsion of amine 208a as leaving group. In that 

case, methyl bis(trimethylsilyl)glycinate should be formed as a byproduct. The reaction of amino ester 

209a with LiHMDS was repeated using the reaction conditions mentioned in Table 13, entry 2 (1.1 equiv 

LiHMDS, THF, 0 °C, 1 h). The reaction mixture was analysed using GC-MS without work-up, but methyl 

bis(trimethylsilyl)glycinate could not be detected, while amine 208a was again present in the reaction 

mixture. 

Upon treatment of precursor 209a with butyllithium the envisaged azetidine was also not formed. Instead, 

addition of butyllithium across the carbonyl led to formation of ketone 213 and tertiary alcohol 214 in a 

mixture with starting compound 209a (Scheme 60). The purification of this mixture was attempted via 

column chromatography, but this failed since reaction products 209a, 213 and 214 could not be separated. 

 

Scheme 60 

Next, precursor 209a was reacted with 1.2 equivalents of NaH in THF. However, no reaction was observed 

after two hours at 0 °C or at room temperature. To test if deprotonation had occurred, the reaction of 

precursor 209a with NaH at room temperature was repeated and quenched with D2O after two hours. 

Again no incorporation of deuterium was observed, and it was concluded that NaH did not deprotonate 

precursor 209a. 

Next, the reactivity of the difluorinated analogues 198 toward bases was evaluated, to see if similar results 

could be observed (Table 14). Thus, benzyl ester 198c reacted with 1.1 equivalents of LiHMDS in THF at 

0 °C and after one hour, 25% conversion toward secondary amine 23a was observed, without any 

conversion toward the envisaged azetidine. Again, removal of the alkoxycarbonylmethyl group at nitrogen 
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occurred and it was concluded that this reaction was independent of the alcohol part of the ester. Also the 

reaction of methyl ester 198a with 1.1 equivalents of LiHMDS led to the formation of amine 23a (40% 

conversion after one hour). 

Table 14: Attempted ring closure of amino esters 198 

 

Entry Substrate Reaction conditions Resulta 

1 198c (R = Bn) 1.1 equiv LiHMDS, THF, 0 °C, 1 h 25% conversion 

2 198a (R = Me) 1.1 equiv LiHMDS, THF, 0 °C, 1 h 40% conversion 

a Determined via 1H NMR analysis of the crude reaction mixture. 

 

To test the influence of the substituent at nitrogen, the ring closure of N-propyl amino ester 198d was also 

evaluated. Thus, amino ester 198d was treated with 1.1 equivalents of LiHMDS at 0 °C for two hours (Table 

15, entry 1). However, in this case, no formation of the corresponding secondary amine 23b was observed. 

Instead, after work-up a complex mixture was obtained, in which only amino ester 198d was detected. It 

was concluded that the substituent at nitrogen has an influence on the removal of the 

alkoxycarbonylmethyl group leading to the corresponding secondary amines, but the nature of this 

influence remains unclear. Amino ester 198d was also treated with LiHMDS under other reaction 

conditions (1 equiv Ag2CO3, toluene, r.t., 2 h), but again a complex mixture was obtained in which only 

starting compound 198d was detected (Table 15, entry 2). 
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Table 15: Attempted ring closure of amino ester 198d 

 

Entry Reaction conditions Result 

1 1.1 equiv LiHMDS, THF, 0 °C, 2 h 198d in a complex mixture 

2 1.05 equiv LiHMDS, 1 equiv Ag2CO3, toluene, r.t., 2 h 198d in a complex mixture 

 

The removal of the alkoxycarbonylmethyl substituent on nitrogen upon treatment of amino esters 209 

and 198a,c with LiHMDS is interesting and should be investigated more thoroughly. However, in the 

timeframe of this PhD thesis, this was not possible. 

3.4.4 Conclusion 

In this part of this PhD thesis, the synthesis of fluorinated azetidine-2-carboxylates was attempted. The 

synthesis of amino esters 209 and 198 was not straightforward, but after many attempts, a pathway 

toward these precursors 209 and 198 was developed and optimized. However, the ring closure toward the 

envisioned azetidines could not be effectuated. While the use of LiHMDS led to conversion of precursors 

209 and 198a,c to the corresponding secondary amines by removal of the alkoxycarbonylmethyl group, no 

deprotonation of the amino esters was observed upon use of KHMDS, NaHMDS or NaH. Finally, the use of 

KOtBu and BuLi led to a nucleophilic addition across the carbonyl moiety of the ester function. It is clear 

that the presence of the fluorine atoms has an influence on the behavior of these amino esters, since the 

corresponding non-fluorinated analogues are suitable substrates for the synthesis of azetidine-2-

carboxylates. 
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3.5 Synthesis of fluorinated heterocycles by exploring the nucleophilic vinylic 

substitution (SNV) reaction of gem-difluoroenamides 

3.5.1 Introduction 

The class of enamides represents an interesting group of compounds, since they demonstrate an enhanced 

stability as compared to enamines, but still exhibit a rather nucleophilic reactivity.102 A significant amount 

of research has already been devoted to the class of β,β-dihaloenamines and β,β-dihalogenated 

enamides.103 In contrast, while some β,β-difluorinated enamines have been used as building blocks, for 

example, in the synthesis of difluorocysteine and -serine derivatives,104 dipeptides,105 difluoroimines106 and 

various α,α-difluoro-β-hydroxycarbonyl compounds,107 the chemistry of difluoroenamides has received 

only very limited attention. To our knowledge, this reactivity was exploited only twice toward the synthesis 

of fluorinated heterocycles, more specifically toward isoxazolidines and dihydropyrans108 or oxazoles.109 

Furthermore, one example was found in which the intermediacy of a difluoroenamide was postulated in 

the synthesis of morpholino-fused diketopiperazines.110 Also, while gem-difluoroalkenes have been used 

in a nucleophilic vinylic substitution reaction (SNV) for the synthesis of a variety of fluorinated 

heterocycles,111 their nitrogen-substituted analogues have received less attention. This is remarkable since 

the presence of two fluorine atoms at the β-carbon atom of enamide 25 in combination with an electron-

withdrawing acyl or sulfonyl group (R2) at nitrogen, will lead to a highly polarized double bond and an 

electron-deficient difluorinated carbon atom (Figure 14). If this effect could predominate the electron-

donating effect of the enamide nitrogen atom, enamide 25 would be an example of an electrophilic 

enamide readily reacting with nucleophiles. In this way, the introduction of two fluorine atoms at the 

β-position could be seen as an efficient way to induce umpolung of the enamide functionality.112 The 

potential to use this chemistry in a way that fundamentally deviates from the reactivity of Stork enamines 

and enamides 215113 is the basis of this part of this PhD thesis (Figure 14). 
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Figure 14 

3.5.2 Synthesis of β,β-difluorinated enamides 

In the first part of this work, the synthesis of novel β,β-difluoroenamides 218 and 220 was developed 

(Scheme 61). N-Propyl-2-bromo-2,2-difluoroethylamine 23b was used as the starting compound for this 

synthesis while protection of the secondary amine was necessary in order to avoid aziridine formation 

upon treatment of amine 23b with base.15 Therefore, amine 23b was protected as benzamide 217 or 

tosylamide 219 in good yield by treatment with benzoyl chloride or p-toluenesulfonyl chloride, 

respectively, in dichloromethane in the presence of base. In a final step, benzamide 217 and tosylamide 

219 were treated with LiHMDS in THF at 0 °C to room temperature for three hours in order to achieve 

dehydrobromination, smoothly leading to the formation of new difluorinated enamides 218 and 220 

(82-85% yield). 
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Scheme 61 

3.5.3 Reactivity of β,β-difluorinated enamides 218 and 220 toward nucleophiles 

To test the potential electrophilic reactivity of enamides 218 and 220, a reactivity study with different 

nucleophiles was performed. First, tosylated enamide 220 was treated with benzylamine under various 

reaction conditions (in the presence of K2CO3 or LiHMDS, in CH2Cl2, CH3CN or THF, at 0 °C or reflux 

conditions), but no conversion of products was observed. Next, enamide 220 was reacted with thiophenol 

in the presence of Et3N in acetonitrile at reflux temperature, but again only the starting compound 220 

was recovered (Table 16, entry 1). However, when the reaction with thiophenol was conducted using KOH 

as a base, a mixture of the isomeric fluorinated enamides 221a and 222a (ratio 221a : 222a = 8 : 2) was 

obtained, from which enamide 221a was isolated in 69% yield (Table 16, entry 2). β-Fluoroenamides 221a 

and 222a are the products of a nucleophilic substitution at the vinylic CF2 carbon atom of enamide 220, 

most probably via a non-concerted two-step process (SNV reaction),111a,114 i.e. addition of the nucleophile 

across the double bond is followed by elimination of fluoride (Scheme 62, path a). When enamide 220 was 

treated with 1.2 equivalents of phenol in the presence of KOH, four different products were detected in 

the reaction mixture after work-up, i.e. the isomeric enamides 221b and 222b, addition product 223b 

(formed by protonation of intermediate 225 (Scheme 62, path b)) and amino ester 224b, in a ratio of 221b 

: 222b : 223b : 224b = 4 : 2 : 1 : 3. After purification of this mixture (column chromatography, SiO2), only 

two compounds were isolated, more specifically adduct 223b (10%) and amino ester 224b (85%) (Table 

16, entry 3). Apparently, enamides 221b and 222b were not stable upon prolonged exposure to SiO2 and 

hydrolyzed toward amino ester 224b. When the reaction of enamide 220 with phenol was repeated and 

the reaction mixture was purified via flash column chromatography (SiO2), a mixture of isomers 221b and 

222b was isolated in 32% total yield (ratio 221b : 222b = 8 : 2) (Table 16, entry 4). Finally, two additional 
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nucleophiles were evaluated in this addition-elimination reaction (Table 16, entries 5-6). The reaction of 

enamide 220 with both sodium methoxide (in MeOH/THF) and potassium tert-butoxide (in THF) gave a 

smooth conversion toward a mixture of isomers 221 and 222. In the case of NaOMe, compounds 221c and 

222c were separated by column chromatography, whereas only addition product 221d of KOtBu was 

isolated in 46% yield.  

Table 16: Reactivity of enamide 220 toward nucleophiles 

 

Entry 
Nucleophile 
(equiv) 

Reaction conditions 
Ratioa 

221:222:223:224 
Compound (%)b 

1 thiophenol (1) 1 equiv Et3N, CH3CN, 0 °C - Δ, 24 h 1 : 0 : 0 : 0 - 

2 thiophenol (1.2) 1.2 equiv KOH, CH3CN, Δ, 20 h 8 : 2 : 0 : 0 221a (69) 

3 phenol (1.2) 1.2 equiv KOH, CH3CN, Δ, 20 h 4 : 2 : 1 : 3 223b (10) +  

224b (85)c 

4 phenol (1.2) 1.2 equiv KOH, CH3CN, Δ, 20 h 4 : 2 : 1 : 3 221b/222b (32)d 

5 NaOMe (1.1)e THF, r.t., 3 h 8 : 2 : 0 : 0 221c (57) +  

222c (15) 

6 KOtBu (1.1) THF, 0 °C - r.t., 2 h 8 : 2 : 0 : 0 221d (46) 

a Determined via 1H NMR analysis of the crude reaction mixture. b Isolated yield. c Formed due to hydrolysis 
of 221b/222b upon prolonged exposure to silica. d Ratio 221b : 222b = 8 : 2; the isomers could not be 
separated. e 1M in MeOH. 
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Scheme 62 

The reaction of β,β-difluorinated enamide 218 with phenol under similar reaction conditions (1.2 equiv 

phenol, 1.2 equiv KOH, CH3CN, reflux), also led to the formation of a mixture of (E)-β-fluoro-β-

phenoxyenamide 226 and (Z)-β-fluoro-β-phenoxyenamide 227, which could not be separated via column 

chromatography, in 80% yield (Scheme 63). 

 

Scheme 63 

The differentiation between the isomeric β-fluoroenamides 221 and 222 was made based on comparison 

of the value of the vicinal coupling constant 3JH,F of the signal of the hydrogen atom at the α-position of 

the vinylic double bond. More specifically, in case of the oxygen-substituted monofluorinated enamides 

221b-d and 222b-d, Z-3JH,F (H and F in a Z configuration) has a value of 0.7-1.7 Hz, while E-3JH,F (H and F in 

an E configuration) results in a much larger value of 19-22 Hz. For the sulfur analogues 221a and 222a 

larger coupling constants were observed, with a value of 5.5 Hz for Z-3JH,F and a larger value of 25.0 Hz for 

E-3JH,F. In case of fluoroenamides 226 and 227, a less resolved 1H NMR was obtained due to hindered 

rotation of the amide bond. However, the differentiation between the isomers could still be made since 

the signal of the hydrogen at the α-position of the vinylic double bond appeared as a broad singlet in case 

of isomer 226 and as a doublet with a coupling constant E-3JH,F of 19.7 Hz in case of isomer 227. 

A possible explanation for the moderate stereoselectivity of this addition-elimination reaction toward 

enamides 221 and 226 (H and F in a Z configuration) can be found by evaluating the conformation of the 
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intermediate carbanions after addition of the nucleophile (Figure 15). To allow fluoride elimination, the 

lone pair of the intermediate carbanion and the fluorine atom must adopt antiperiplanar positions, which 

is the case in two possible transition state models TS-A and TS-B. In TS-B, the substituted nitrogen atom is 

situated in a gauche conformation between the two fluorine atoms, generating an important electronic 

repulsion. In TS-A, only one repulsive interaction between the nitrogen atom and fluorine is possible, 

rendering this conformer energetically more favoured. On the other hand, in TS-A a mild steric hindrance 

is present between the nitrogen atom and the nucleophile. The combination of these two factors, more 

specifically electronic repulsion (which is the main factor) and steric hindrance, leads to the moderate 

stereoselectivity.115 

 

Figure 15  

An alternative pathway for the formation of the substituted enamides 221, 222, 226 and 227 comprises 

initial formation of the corresponding ynamide 228 due to a base-promoted elimination of HF from 

enamides 218 and 220, followed by the addition of the nucleophile (Scheme 64). In this case however, 

formation of the ynamide moiety of compound 228 by dehydrofluorination would result in protonation of 

the nucleophile and formation of the conjugated acid. For example, if treatment of enamide 220 with 

NaOMe (Table 16, entry 5), would lead to the corresponding ynamide, MeOH should be a good nucleophile 

to add across the triple bond. However, upon stirring ynamide 266a (vide infra) in MeOH for a prolonged 

time, no addition of MeOH was observed. Therefore, it is believed that these transformations operate 

through an initial addition of the nucleophile, followed by elimination of fluoride. 

 

Scheme 64  

In a next part, the addition-elimination reaction of carbon nucleophiles across enamide 220 was also 

evaluated. As a first nucleophile, KCN was reacted with difluoroenamide 220 in the presence of NaHCO3 in 
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DMSO at room temperature for 45 hours. After work-up, a mixture of three compounds was obtained, 

more specifically the isomeric substituted fluoroenamides 229 and 230 and N-propyl-p-

toluenesulfonamide 231 (Table 17, entry 1).116 Also in this case, a nucleophilic vinylic substitution reaction 

was observed, leading to the formation of two isomers 229 and 230, with a moderate stereoselectivity 

toward monofluoroenamide 229 (ratio 229 : 230 = 2 : 1). Additionally, a significant amount of N-propyl-p-

toluenesulfonamide 231 was present in the reaction mixture, a compound which was never formed upon 

reaction of difluoroenamide 220 with sulfur and oxygen nucleophiles (Table 16). A possible mechanism for 

the formation of compound 231 is presented in Scheme 65. Compounds 229 and 230 could display the 

reactivity of Michael acceptors due to the presence of the electron withdrawing nitrile substituent. Thus, 

Michael-type addition of cyanide across the double bond of 229 or 230 leads to the formation of 

compound 232 after elimination of amide 233. Upon extractive work-up, unsaturated dinitrile 232 is 

probably discarded with the water phase, since this compound was never detected, and potassium salt 

233 is protonated to give N-propyl-p-toluenesulfonamide 231. The use of ten equivalents of NaHCO3 led 

to a similar reaction outcome (Table 17, entry 2). Changing the base to triethylamine and using dry DMF 

as the solvent also did not lead to better results and again a significant amount of tosylated amine 231 

was present in the reaction mixture, albeit in a slightly lower amount (Table 17, entry 3). However, a higher 

selectivity toward enamide 229 was observed (ratio 229 : 230 = 3 : 1). Upon use of NaCN as the cyanide 

source again a higher amount of amine 231 was present in the reaction mixture, with a ratio of 229 : 230 

= 2.5 : 1. After purification, a mixture of isomeric fluoroenamides 229 and 230 was obtained, in a ratio 229 

: 230 = 3 : 1. Performing the reaction at a higher temperature of 40 °C led to the formation of a higher 

amount of sulfonamide 231 while still a long reaction time was needed to achieve a full conversion of the 

starting material. However, a mixture of enamides 229 and 230 was isolated in 30% yield (ratio 229 : 230 

= 3 : 2) (Table 17, entry 5). Changing the solvent to acetone did not lead to better results since no 

conversion was observed after 17 hours of reaction at reflux temperature (Table 17, entry 6). 

 

 

 

 

 

 



Results and discussion  Chapter 3 

84 
 

Table 17: Reactivity of enamide 220 toward cyanide nucleophiles 

 

Entry Reaction conditions Ratioa 220 : 229 : 230 : 231 Yield 229+230 

1 2 equiv KCN, 2 equiv NaHCO3, DMSO, r.t., 45 h 0 : 39 : 19 : 42 - 

2 2 equiv KCN, 10 equiv NaHCO3, DMSO, r.t., 24 h  4 : 36 : 17 : 43 - 

3 2 equiv KCN, 2 equiv Et3N, DMF (dry), r.t., 24 h 8 : 43 : 16 : 34 - 

4 2 equiv NaCN, 2 equiv Et3N, DMF (dry), r.t., 7 h 5 : 37 : 14 : 44 40%b 

5 2 equiv KCN, 2 equiv Et3N, DMF, 40 °C, 23 h 0 : 24 : 14 : 64 30%c 

6 1.05 equiv KCN, 2 equiv Et3N, acetone, Δ, 17 h 100 : 0 : 0 : 0 - 

a Determined via 1H NMR analysis of the crude reaction mixture. b Ratio 229 : 230 = 3 : 1. c Ratio 229 : 230 
= 3 : 2. 

 

 

Scheme 65 

 

The reactivity of β,β-difluoroenamide 220 toward dimethyl malonate was also investigated, but no 

reaction was observed under various reaction conditions (Table 18). Also the reaction of enamide 220 with 

the Grignard reagent ethylmagnesium bromide only led to recovery of the starting material. 
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Table 18: Reactivity of enamide 220 toward dimethyl malonate 

 

Entry Reaction conditions Result 

1 1 equiv dimethyl malonate, 1 equiv pyridine, THF, 0 °C - r.t., 21 h No reaction 

2 1 equiv dimethyl malonate, 1.2 equiv K2CO3, acetone, ∆, 18 h No reaction 

3 1.05 equiv dimethyl malonate, 1.05 equiv NaH, THF, ∆, 20 h No reaction 

 

3.5.4 Synthesis of 6-fluoro-3,4-dihydro-2H-1,4-oxazines 

In the next part, the reactivity of β,β-difluorinated enamides 218 and 220 toward oxygen nucleophiles 

(Table 16, Scheme 63) was expanded to the synthesis of novel heterocyclic monofluorinated compounds 

by incorporating the oxygen nucleophile and the electrophilic β,β-difluoroenamide unit in the same 

precursor, thus enabling an intramolecular vinylic nucleophilic substitution. As such, the synthesis of 

precursors 236 was envisioned, with a two-atom containing linker between the nitrogen atom and the 

oxygen nucleophile, which should lead to the formation of fluorinated 2H-3,4-dihydro-1,4-oxazines 235 

after ring closure (Scheme 66). N-Functionalized oxazines have been reported in the literature,117 and 

these compounds exhibit interesting biological activities, for examples as transthyretin amyloid fibril 

inhibitors,118 and they have been described as intermediates for the synthesis of bridged morpholines.119 

However, 6-fluoro-2H-3,4-dihydro-1,4-oxazines 235 have not been reported in the literature up to date. 

 

Scheme 66 

The first step in the synthetic sequence toward fluorinated enamides 236, should be the coupling of ethyl 

bromodifluoroacetate with an amine containing a protected alcohol function, which could then in the last 

step be used as the oxygen nucleophile to achieve ring closure. As such, 2-aminoethanol 237 was protected 
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as trimethylsilylether 238, by reaction with TMSCl in the presence of triethylamine, in 55% yield (Scheme 

67).120 

 

Scheme 67 

Next, amine 238 reacted with ethyl bromodifluoroacetate 14 resulting in the formation of amide 239, 

which was isolated in an excellent yield of 96% (Scheme 68). In the next step, the reduction of amide 239 

toward amine 240 was investigated using borane dimethylsulfide complex as the reducing agent. 

However, despite the use of different reaction times and temperatures (4 - 24 h, r.t. or Δ), removal of the 

trimethylsilyl protecting group toward alcohol 201 was always observed, leading to mixtures of reaction 

products 201 and 240 and starting compound 239, in varying ratios (Scheme 68). Therefore, the use of 

another protecting group had to be evaluated. 

 

Scheme 68 

Thus, 2-aminoethanol 237 was treated with TBDMSCl in the presence of imidazole in dichloromethane for 

two hours at room temperature, giving a smooth conversion toward tert-butyldimethylsilylether 241 

(Scheme 69).121 

 

Scheme 69 

Subsequently, compound 241 reacted with ethyl bromodifluoroacetate 14 to obtain amide 242 in 65% 

yield. The reduction of amide 242 was effectuated by reaction with BH3.Me2S, without concomitant 
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removal of the TBDMS protecting group, affording amine 243 in 89% yield. Next, a tosyl group was 

introduced at the amine nitrogen atom, by reaction with tosyl chloride in dichloromethane in the presence 

of triethylamine and DMAP. However, this reaction proceeded very slowly and after a prolonged reaction 

time of 14 days tosylamide 244 was isolated in a low yield of 25%. This tosylation reaction was also 

attempted in the presence of Ag2O and KI,122 but no better results were obtained. The dehydrobromination 

of tosylamide 244 proceeded smoothly and resulted in the formation of β,β-difluoroenamide 245 in 70% 

yield (Scheme 70). Next, the deprotection of the tert-butyldimethylsilyl ether of compound 245 was 

attempted. However, upon reaction of TBDMS ether 245 with TMAF or TBAF, either no reaction was 

observed at 0 °C, or a complex mixture was obtained when the reaction was performed at higher 

temperature, in which the envisioned oxazine 246 was present based on LC-MS analysis of the reaction 

mixture, but this compound could not be isolated. 

 

Scheme 70 

Based on these moderate results, the introduction of other protecting groups at nitrogen was evaluated. 

In a first attempt, the reaction of amine 243 with para-nitrobenzenesulfonylchloride (p-NsCl) gave no 

conversion toward the corresponding sulfonamide 247 (Table 19, entry 1). The reaction of amine 243 with 

triflic anhydride gave better results and trifluoromethanesulfonamide 248 was isolated in 75% yield after 

reaction in dichloromethane for 17 hours at room temperature (Table 19, entry 2). Also the reaction with 

benzoyl chloride proceeded smoothly toward benzamide 249, which was isolated in a good yield of 71% 

(Table 19, entry 3). 

 



Results and discussion  Chapter 3 

88 
 

Table 19: Protection of amine 243 

 

Entry PG Reaction conditions Result 

1 p-Ns 1 equiv p-NsCl, 3 equiv Et3N, CH2Cl2, r.t. – Δ, 48 h No reaction 

2 Tf 1.1 equiv Tf2O, 1.2 equiv Et3N, CH2Cl2, r.t., 17 h 75% 248a 

3 Bz 1 equiv benzoyl chloride, 1.1 equiv Et3N, CH2Cl2, Δ, 4 h 71% 249a 

a Isolated yield. 

 

In the next step, dehydrobromination of amines 248 and 249 by treatment with LiHMDS in THF led to the 

formation of β,β-difluoroenamides 250 and 251 in low to good yields (Scheme 71). 

 

Scheme 71 

Since the formation of enamide 250 was achieved in the highest overall yield, the TBDMS deprotection of 

this compound was studied in more detail (Table 20). In a first attempt, trifluoromethanesulfonamide 250 

was treated with 1.05 equivalents of TMAF (tetramethylammonium fluoride) in THF at room temperature. 

After stirring this mixture at the same temperature for 20 hours, a reaction conversion of 30% was 

observed (Table 20, entry 1). Encouraged by this result, the reaction time was prolonged to 40 hours, but 

after work-up a complex reaction mixture was obtained and although oxazine 252 was present in this 

mixture, this compound could not be isolated (Table 20, entry 2). Also the reaction of 250 with TMAF at 

reflux conditions led to the formation of a complex reaction mixture (Table 20, entry 3). The reaction of 

enamide 250 with TBAF (tetrabutylammonium fluoride) gave better results since 100% conversion toward 

oxazine 252 was obtained after 30 minutes of reaction at 0 °C and compound 252 was isolated, albeit in a 

very low yield of 4% (Table 20, entry 4). The deprotection of compound 250 was also effectuated using a 
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catalytic amount of TBAF since upon ring closure toward oxazine 252, fluoride is expelled as the leaving 

group. In this case, oxazine 252 was isolated in a slightly higher yield of 10% (Table 20, entry 5). 

Table 20: Synthesis of 6-fluoro-4-(trifluoromethanesulfonyl)-3,4-dihydro-2H-1,4-oxazine 252 

 

Entry Reaction conditions Result 

1 1.05 equiv TMAF, THF, r.t., 20 h 30% conversiona 

2 1.05 equiv TMAF, THF, r.t., 40 h 252 in complex reaction mixtureb 

3 1.1 equiv TMAF, THF, Δ, 17 h Complex reaction mixture 

4 1.1 equiv TBAF, THF, 0 °C, 30 min 4% 252c 

5 0.2 equiv TBAF, THF, r.t., 17 h 10% 252c 

a Determined via 1H NMR analysis of the crude reaction mixture. b Compound 252 could not be isolated.  
c Isolated yield. 

 

The removal of the TBDMS protecting group of benzamide 251 was also attempted using TBAF at room 

temperature, but led to a mixture of compounds. However, LC-MS indicated the presence of the 

envisioned 1,4-oxazine and further optimization of this reaction is necessary. 

3.5.5 Synthesis of 2-fluoro-1,4-benzoxazines123 

Since the synthesis of oxazine 252 proceeded sluggishly, it was decided to change the two atom linker in 

an attempt to improve the stability of the reaction compounds. Thus, the synthesis of benzofused oxazines 

253 was envisaged, with enamides 254 as suitable precursors (Scheme 72). 

 

Scheme 72 
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The class of dihydro-1,4-benzoxazines 255 has been studied extensively during the last decades, because 

compounds containing this scaffold are known to possess a broad range of interesting biological activities 

such as antidiabetic, antibacterial, anti-inflammatory and neuroprotective activity.124 Recently, derivatives 

of 3,4-dihydro-2H-1,4-benzoxazine 255 were also identified as multi-isoform PI3K,125 diacylglycerol 

acyltransferase126 and angiogenesis inhibitors127 and as potential dual antithrombotic compounds.128 On 

the other hand, less research has been devoted to the synthesis of their unsaturated analogues, 

1,4-benzoxazines 256.124a,129 Nevertheless, some of these compounds have also been shown to possess 

interesting biological activities. An example of a natural product containing the 1,4-benzoxazine core is 

cappamensin A 257, isolated from the roots of Capparis sikkimensis (Figure 16). This substituted 

benzoxazine derivative shows a promising antitumor activity.130 The development of analogues of 

cappamensin A, as potential antitumor agents, is therefore of great interest. Although benzoxazines 

containing a CF3-group have already been synthesized,131 examples of compounds carrying the fluorine 

substituent directly attached to the heterocyclic ring are barely known132 and only one example of a 

2-fluoro-1,4-benzoxazine derivative was found in literature.133 

 

Figure 16 

For the synthesis of the precursor enamides 254, 2-aminophenol 258a was chosen as the building block 

(Scheme 73). First, alcohol 258a was protected as its TBDMS ether, by reaction with TBDMSCl in the 

presence of imidazole in dichloromethane, affording compound 259a in quantitative yield.134 Next, the 

condensation of tert-butyldimethylsilyl ether 259a with ethyl bromodifluoroacetate 14 was attempted. 

First, aniline 259a was stirred in dichloromethane in the presence of ethyl bromodifluoroacetate 14 for 16 

hours at room temperature, but no reaction was observed (Table 21, entry 1). Next, aniline 259a was 

reacted with ester 14 in ethyl acetate at reflux temperature for 17 hours, but again only the starting 

compounds were recovered (Table 21, entry 2).135 When aniline 259a was treated with ester 14 under 

solvent-free reaction conditions at 80 °C, 65% conversion of the starting compounds was observed after 

24 hours (Table 21, entry 3). However, upon purification of amide 260a (SiO2), removal of the TBDMS 

protecting group was observed and compound 260a could not be recovered. 
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Scheme 73 

Table 21: Synthesis of amide 260a from aniline 259a and ethyl bromodifluoroacetate 14 

Entry Reaction conditions Result 

1 1 equiv 259a, 1 equiv 14, CH2Cl2, r.t., 16 h No reaction 

2 1 equiv 259a, 1 equiv 14, 1 equiv Et3N, EtOAc, Δ, 17 h No reaction 

3 1 equiv 259a, 1 equiv 14, neat, 80 °C, 24 h 65% conversiona,b 

a Determined via 1H NMR analysis of the crude reaction mixture. b Purification failed. 

 

Because the amide formation by reaction of aniline 259a with ethyl bromodifluoroacetate 14 was not 

straightforward, probably due to steric hindrance caused by the TBDMS protecting group, it was decided 

to change the reaction order. Thus, 2-aminophenol 258a was reacted in the first step with ethyl 

bromodifluoroacetate 14, leading to the selective formation of amide 261a (Scheme 74). In the second 

step, protection of the phenolic oxygen atom was effectuated by treatment of benzamide 261a with 

TBDMSCl in the presence of imidazole, which gave a clean conversion toward compound 260a without the 

need of purification. The same reaction sequence was applied to substituted 2-aminophenol 258b, leading 

to benzamide 260b. Amides 260 were in turn reduced toward the secondary amines 262 using an excess 

of borane dimethylsulfide complex in CH2Cl2. The next step involved the protection of the nitrogen atom 

of amines 262. Because the introduction of a tosyl group proceeded very slowly while the attempt to 

introduce a mesyl group gave no conversion at all, the use of a benzoyl protecting group was evaluated 

instead. Treatment of β-bromo-β,β-difluoroamines 262 with different benzoyl chlorides 263 in the 

presence of Et3N led to the formation of N-(2-bromo-2,2-difluoroethyl)benzamides 264 as suitable 

precursors for the synthesis of fluorinated 1,4-benzoxazines (Scheme 74). 
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Scheme 74 

The key step in the reaction sequence concerned the conversion of precursors 264 toward the envisioned 

1,4-benzoxazines (Table 22). Therefore, benzamide 264a was treated with LiHMDS, which led to the 

formation of a mixture of difluoroenamide 265a and fluorinated ynamide 266a, resulting from the 

LiHMDS-induced elimination of HF from enamide 265a (Table 22, entry 1). Increasing the number of 

equivalents of LiHMDS led to a full conversion of amide 264a toward ynamide 266a, which was isolated in 

an excellent yield of 97% (Table 22, entry 2). The formation of ynamide 266a can be explained by C-F bond 

activation by coordination of fluorine to the silicon atom in the tert-butyldimethylsilyl protecting group, 

enhancing the leaving group capacity of fluoride (Scheme 75).136 This could also explain why amides 218 

and 220 were not converted into the corresponding ynamides upon treatment with LiHMDS. Next, 

benzamide 264a was treated with one equivalent of KOtBu, leading to a selective conversion toward the 

envisioned benzoxazine 267a, which was isolated in 80% yield (Table 22, entry 3). Since the use of LiHMDS 

or KOtBu led to a different reaction outcome, other bases were evaluated in order to investigate the 
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possible reaction pathway. It was remarkable that the cleavage of the silyl ether did not occur upon 

treatment of benzamide 264a with 2.2 equivalents of LiHMDS, even though under these conditions 

fluoride is expelled from the substrate (Table 22, entry 2). To test the influence of the cation, the reaction 

was repeated with NaHMDS and KHMDS (Table 22, entries 4-5). Thus, benzamide 264a was treated with 

one equivalent of NaHMDS. LC-MS analysis of the reaction mixture after 15 minutes indicated the presence 

of four compounds, i.e. benzamide 264a, enamide 265a, ynamide 266a and benzoxazine 267a. Follow-up 

via LC-MS indicated no further progress of the reaction, so an extra equivalent of NaHMDS was added 

after three hours. After stirring for an additional three hours, the reaction was stopped and a mixture of 

enamide 265a and benzoxazine 267a was obtained in a ratio of 4 : 6, which could not be separated via 

column chromatography (Table 22, entry 4). Subsequently, benzamide 264a was treated with one 

equivalent of KHMDS, which also led to the formation of a mixture of compounds 264a, 265a, 266a and 

267a after 15 minutes of reaction at room temperature. Also in this case, an extra equivalent of base was 

added after three hours, and the reaction was stopped after an additional three hours. After work-up, only 

benzoxazine 267a was detected, so it was assumed that both enamide 265a and ynamide 266a were 

intermediates in the formation of benzoxazine 267a. It was concluded that the cation of the base plays an 

important role in the reaction outcome due to the different properties of the corresponding fluoride salts. 

Upon use of LiHMDS as the base, the reaction terminates at the stage of ynamide 266a in which the silyl 

ether is not deprotected, so apparently the fluoride anion in LiF is not available for this reaction. When 

KHMDS is used, KF is formed, in which the fluoride anion is available for the deprotection reaction, since 

this reaction leads to the formation of benzoxazine 267a after ring closure. This reactivity of alkali-metal 

fluorides may be explained by the higher lattice energy of LiF in comparison with NaF and KF.137 Following 

these results, the use of LiOtBu should also lead to the formation of a TBDMS-protected end product. 

Indeed, the reaction of benzamide 264a with one equivalent of LiOtBu afforded enamide 265a as the sole 

end product, which was isolated in 73% yield (Table 22, entry 6). 
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Table 22: Reactivity of benzamide 264a toward different bases 

 

Entry Reaction conditions 
Ratioa 

264a : 265a : 266a : 267a 
Compound (yield)b 

1 1.1 equiv LiHMDS, THF, 0 °C, 3 h 3 : 3 : 4 : 0 - 

2 2.2 equiv LiHMDS, THF, r.t., 2.5 h 0 : 0 : 1 : 0 266a (97%) 

3 1 equiv KOtBu, THF, r.t., 2 h 0 : 0 : 0 : 1 267a (80%) 

4 2 equiv NaHMDSc, THF, r.t., 6 h 0 : 4 : 0 : 6 - 

5 2 equiv KHMDSc, THF, r.t., 6 h 0 : 0 : 0 : 1 267a (54%) 

6 1 equiv LiOtBu, THF, Δ, 1.5 h 0 : 1 : 0 : 0 265a (73%) 

a Determined via 1H NMR analysis of the crude reaction mixture. b Isolated yield. c 2nd equivalent was added 
after 3 h. 

 

Scheme 75 

Subsequently, the optimized reaction conditions were used to convert benzamides 264a-d toward 

benzoxazines 267 and fluorinated ynamides 266 in good to excellent yields (Scheme 76). In an attempt to 

prove the intermediacy of ynamides 266 in the formation of benzoxazines 267, compounds 266 were 

treated with TBAF in THF in order to remove the TBDMS-protecting group, which led directly to the 

formation of benzoxazines 267. The triple bond in ynamides 266 has an electrophilic reactivity which is 

prone to nucleophilic attack by the phenolic oxygen atom, leading to a smooth conversion toward 

benzoxazines 267 (Scheme 76). 
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Scheme 76 

The chemistry of halogenated ynamides has only been explored to a limited extent. While 2-iodoynamides 

have been used in for example cycloaddition138 and benzannulation139 reactions, the synthesis and 

reactivity of fluorinated ynamides is a totally unexplored field in organic chemistry. Only one report has 

been published in which the formation of a fluorinated ynamine was described, albeit in a very low yield 

of 5%.140 Over the last years, the chemistry of ynamides has received much attention.141 Due to the 

polarization of the triple bond, α-addition of nucleophiles across the triple bond is more common than 

β-addition, although a few examples of β-addition have been described.142 Umpolung of the ynamide 

functionality, leading to addition of nucleophiles at the β-position, is usually achieved via a metal-catalyzed 

reaction. In this work, umpolung is achieved by the presence of a fluorine substituent at the β-position of 

the ynamide in combination with the electron-withdrawing group at nitrogen, leading to selective addition 

of the oxygen nucleophile at the β-position without the need of a metal catalyst. 

To further verify the influence of the tert-butyldimethylsilyl ether on the formation of ynamides 266, it 

was attempted to synthesize an ynamide without this silicon-containing substituent on the phenyl ring 

(Scheme 77). To this end, aniline 268 was reacted with ethyl bromodifluoroacetate 14, giving amide 269 

in 65% yield, which was subsequently converted into amine 270 by reduction using borane dimethylsulfide 
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complex in THF. Introduction of the benzoyl protecting group was effectuated by reacting amine 270 with 

benzoyl chloride in the presence of triethylamine, yielding benzamide 271. In the next step, benzamide 

271 was treated with LiHMDS in THF at 0 °C and the reaction was stirred at room temperature. After three 

hours, LC-MS analysis of the reaction mixture revealed the presence of enamide 272 and a trace of the 

starting compound 271, while the corresponding ynamide was not detected. After an additional hour, an 

extra 2.2 equivalents LiHMDS were added to the reaction mixture and the stirring was continued for 

another 68 hours, while it was followed-up using LC-MS analysis. However, the ynamide was never 

observed in the reaction mixture and after work-up, enamide 272 was isolated in a low yield of 31%, 

probably due to the prolonged reaction time. This result is an extra indication of the influence of the tert-

butyldimethylsilyloxy group on the formation of ynamides 266, which most probably proceeds via a silicon-

induced C-F activation. Enamide 272 was synthesized in a higher yield of 63% upon reaction of benzamide 

271 with 2.2 equiv LiHMDS for three hours at room temperature. 

 

Scheme 77 

3.5.6 Synthesis of 2-fluoro-1,4-benzoxazepin-5-ones123 

Another interesting class of benzo-fused heterocyclic compounds comprises 1,4-benzoxazepin-5-ones 

273. An important example of this type of compounds is the chlorinated analogue piclozotan 274, a 

selective 5-HT1A receptor partial agonist, which has shown in vivo neuroprotective effects.143 Recently, it 

http://en.wikipedia.org/wiki/Binding_selectivity
http://en.wikipedia.org/wiki/5-HT1A_receptor
http://en.wikipedia.org/wiki/Partial_agonist
http://en.wikipedia.org/wiki/Neuroprotective
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has been reported that piclozotan 274 also has the potency to improve motor complications (for example 

spasms or involuntary movements of muscles) which are associated with levodopa therapy, administered 

to patients suffering from Parkinson’s disease.144 While trifluoromethylated derivatives have been 

described,145 no reports were found in the literature concerning the synthesis of 2-fluoro- or 3-fluoro-1,4-

benzoxazepin-5-ones. 

 

Figure 17 

Therefore, in the next part of this work the synthesis of novel fluorinated benzo-fused seven-membered 

rings was developed. In the precursor, a three-carbon atom-containing linker had to be positioned 

between the enamide nitrogen atom and the oxygen nucleophile, in order to be able to form a seven-

membered ring via the vinylic nucleophilic substitution reaction. In the synthetic route toward 

benzoxazines 267, the oxygen nucleophile was already incorporated in the fluorinated secondary amines 

262, after which a benzoyl protecting group was introduced at nitrogen (Scheme 74). In the synthetic route 

toward the seven-membered ring analogues, it was chosen to incorporate the oxygen nucleophile in the 

aroyl group attached to nitrogen (Scheme 78). Therefore, a variety of secondary fluorinated amines was 

synthesized by reacting ethyl bromodifluoroacetate 14 with different amines leading to amides 205, which 

in turn were reduced using borane dimethylsulfide complex in dichloromethane or THF under reflux. 

Subsequently, a functionalized benzoyl group was introduced at the nitrogen atom by treatment with  

O-acetylsalicyloyl chloride 275a, leading to the formation of benzamides 276a-c. Benzamides 276 are 

suitable precursors for the synthesis of fluorinated seven-membered rings, since there is a three carbon 

linker in between the nitrogen and oxygen atom. An advantage of this synthetic route is the possibility of 

a late stage functionalization, since various derivatives of 2-acetylsalicylic acid can be used for the 

introduction of the group at nitrogen. For example, acetylsalicyloyl chlorides 275b-c, which were prepared 

from the corresponding carboxylic acids by reaction with thionyl chloride, were reacted with amine 23c, 

leading to the formation of benzamides 276d-e (Scheme 78). 
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Scheme 78 

The final step in the synthesis of the fluorinated seven-membered heterocycles 279 comprised the ring 

closure of precursors 276a-e, which should proceed via the conversion of benzamides 276a-e in the 

corresponding difluorinated enamides, followed by ring closure. In a first attempt, benzamide 276b (R1 = 

Pr, R2 = H) was treated with two equivalents of LiHMDS, which led to the formation of a mixture of three 

reaction products, i.e. deacetylated benzamide 277b, β,β-difluoroenamide 278b and benzoxazepinone 

279b (Scheme 79). The composition of this crude reaction mixture supports the intermediacy of 

β,β-difluoroenamide 278b in the formation of benzoxazepinone 279b. Moreover, it seems that the 

deacetylation of the phenolic oxygen occurs before the formation of the difluoroenamide moiety, since 

the brominated amide 277b was also formed as an intermediate. This deacetylation reaction proceeds 

easily due to the good leaving group properties of the phenolic oxygen atom. This cleavage was also 

observed upon storage of benzamide 276b at room temperature. 
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Scheme 79 

The presence of the envisioned 2-fluoro-1,4-benzoxazepin-5-one 279b in the crude reaction mixture was 

a promising result. Subsequently, the use of potassium tert-butoxide was evaluated for the conversion of 

benzamides 276 into benzoxazepinones 279. In that regard, benzamides 276a-e were stirred in THF under 

reflux in the presence of 2-3 equivalents of KOtBu, which gave a clean conversion toward the envisioned 

2-fluoro-1,4-benzoxazepin-5-ones 279a-e, which were isolated in good yields (Scheme 80). In case of 

2,5-diacetoxybenzamide 276d, three equivalents of KOtBu had to be added to achieve a full conversion 

toward the double deacetylated compound 279d. In a last step, the deprotection of the 4-methoxybenzyl-

substituted benzoxazines 279c,e was attempted. Initially, benzoxazepinone 279c was treated with cerium 

ammonium nitrate in aqueous acetonitrile, but under these reaction conditions either no conversion was 

observed or a complex reaction mixture was formed, depending on the reaction temperature. Finally, the 

removal of the PMB protecting group was achieved by heating benzoxazepine 279c in the presence of five 

equivalents of boron(III) fluoride etherate resulting in 4H-2-fluoro-1,4-benzoxazin-5-one 280a in 51% yield. 

The same procedure was applied to benzoxazepinone 279e, leading to the formation of 

4H-benzoxazepinone 280b. The deprotection of these fluorinated benzoxazepinones enables further 

functionalization of this scaffold. 

 

Scheme 80 
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3.5.7 Reactivity of N-tosyl-β,β-difluoroenamide 220 toward electrophiles 

To test whether N-tosyl-β,β-difluoroenamide 220 displays any nucleophilic reactivity, despite the presence 

of the electron-withdrawing group at nitrogen and the two fluorine atoms at the β-position of the 

enamide, the reaction of this compound with a variety of electrophiles was investigated. 

In a first attempt, the reaction of enamide 220 with isobutyraldehyde in dichloromethane under reflux 

only resulted in recovery of the starting compound 220 (Table 23, entry 1). The reaction of enamide 220 

with allyl bromide under similar reaction conditions gave the same result (Table 23, entry 2). When the 

reaction with allyl bromide was repeated in the presence of aluminium(III) chloride, no reaction took place 

when the reaction was conducted at room temperature, while the formation of degradation compounds 

was observed when this reaction was performed at reflux temperature (Table 23, entries 3-4). In a next 

attempt, difluorinated enamide 220 was first treated with one equivalent n-butyllithium at -78 °C for 30 

minutes, after which allyl bromide was added and the reaction was stirred for another three hours at 0 °C. 

However, this led to the formation of a complex reaction mixture (Table 23, entry 5). To test the stability 

of enamide 220 with respect to n-butyllithium, enamide 220 was stirred in the presence of one equivalent 

of n-BuLi for five hours at 0 °C (Table 23, entry 6). However, this also resulted in the formation of a complex 

reaction mixture. In a next attempt, enamide 220 reacted with LDA in THF at -78 °C for 30 minutes, after 

which allyl bromide was added and the reaction was continued for 30 minutes at 0 °C (Table 23, entry 7). 

Again, a complex reaction mixture was formed. Also upon reaction of enamide 220 with LDA, followed by 

the addition of one equivalent of methyl iodide, a complex reaction mixture was formed (Table 23, entry 

8). Also the gold-catalyzed reaction of enamide 220 with phenylacetylene failed (Table 23, entry 9) since 

no reaction was observed. 
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Table 23: Reactivity of N-tosyl-β,β-difluoroenamide 220 toward electrophiles 

 

Entry Reaction conditions Result 

1 1 equiv isobutyraldehyde, CH2Cl2, Δ, 4 h No reaction 

2 1 equiv allyl bromide, CH2Cl2, Δ, 4 h No reaction 

3 1 equiv allyl bromide, 1 equiv AlCl3, THF, r.t., 15 h No reaction 

4 1 equiv allyl bromide, 1 equiv AlCl3, THF, Δ, 15 h 220 + degradation 

5 1) 1 equiv n-BuLi, THF, -78 °C, 30 min 

2) 1 equiv allyl bromide, THF, 0 °C, 3 h 

Complex reaction 

mixture 

6 1 equiv BuLi, THF, 0 °C, 5 h Complex mixture 

7 1) 1.2 equiv LDA, THF, -78 °C, 30 min 

2) 1 equiv allyl bromide, THF, 0 °C, 30 min 

Complex reaction 

mixture 

8 1) 1.2 equiv LDA, THF, -78 °C, 30 min 

2) 1 equiv MeI, THF, 0 °C, 2 h 

Complex reaction 

mixture 

9 1 equiv PhC≡CH, 5 mol% AuCl3, CH3CN, r.t., 6 h No reaction 

 

Upon treatment of difluoroenamide 220 with one equivalent of N-bromosuccinimide (NBS) in methanol 

at room temperature, the formation of compound 281 was observed, which was isolated in a good yield 

of 60% (Scheme 81). Compound 281 was in turn converted into β,β-difluorinated enamide 282 by 

treatment with LiHMDS in THF at reflux temperature, and enamide 282 was isolated in a low yield of 35%.  

Thus, enamide 220 also shows nucleophilic character since an electrophilic addition reaction across the 

double bond was achieved. However, since all other attempts to react difluoroenamide 220 with 

electrophiles failed (Table 23), it was concluded that the nucleophilic character of difluoroenamide 220 is 

very limited. 
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Scheme 81 

3.5.8 Conclusion 

In conclusion, β,β-difluoroenamides 218 and 220 were synthesized as enamides with an electrophilic 

character. These compounds reacted readily with oxygen and sulfur nucleophiles in an SNV reaction giving 

rise to the formation of substituted monofluorinated enamides. This reactivity was exploited toward the 

synthesis of novel six- and seven-membered heterocycles. While the formation of 6-fluoro-2H-3,4-

dihydro-1,4-oxazines proceeded sluggishly, a straightforward synthesis toward novel 2-fluoro-1,4-

benzoxazines and 2-fluoro-1,4-benzoxazepin-5-ones was developed. In the synthetic pathway toward the 

fluorinated benzoxazines, the formation of fluorinated ynamides was observed, as the first example of an 

efficient route toward this unexplored class of fluorinated compounds. Upon reaction of difluoroenamide 

220 with electrophiles, it was concluded that this enamide shows very limited nucleophilic character since 

it only reacted with NBS in MeOH. 
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3.6 Synthesis of fluorinated 8,9,10,11-tetrahydro-8,11-methanobenzo[j]-

phenanthridine-7,12-diones 

3.6.1 Introduction 

Mycobacterium tuberculosis is a pathogenic bacillus which causes the disease tuberculosis (TB), still one 

of the most deadly diseases worldwide, with an estimated number of 9.0 million new cases and 1.5 million 

deaths in 2013.146 Due to the prevalence of multidrug resistant and extensively drug resistant TB, there is 

still a need for the development of new drugs.147 In view of the ongoing interest of our research group in 

the synthesis of annulated phenanthridine-7,12-diones as antimycobacterial compounds,148 and the often 

beneficial effects of the introduction of fluorine in biologically active compounds,3c,149 it was decided to 

synthesize fluorinated derivatives of benzo[j]phenanthridine-7,12-diones. The synthesis of fluorinated 

phenanthridine-7,12-diones, benzo[j]phenanthridine-7,12-diones or 8,9,10,11-tetrahydro-8,11-

methanobenzo[j]phenanthridine-7,12-diones has not been reported in the literature so far. In previous 

research at our department, it was found that 2,3,4-trimethyl-8,9,10,11-tetrahydro-8,11-

methanobenzo[j]phenanthridine-7,12-dione 283a possesses a good antimycobacterial activity with a 

MIC50 lower than 0.1 µg/mL (Figure 18).148a,150 However, this compound showed a low specificity since it 

also showed activity toward other gram-positive and gram-negative bacteria as well as activity toward C-

3A, J-774 and MRC-5 human cell lines.151 In an attempt to improve the specificity, it was decided to 

synthesize fluorinated derivatives of annulated phenanthridine-7,12-dione 283a. 

 

Figure 18 
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3.6.2 Synthesis of fluorinated 8,9,10,11-tetrahydro-8,11-methanobenzo[j]-

phenanthridine-7,12-diones 

In previous research at our department, the synthesis of substituted benzo[j]phenanthridine-7,12-diones 

285 was developed, with the palladium-catalyzed intramolecular cyclization of methanesulfonamides 284 

as the key step in the reaction sequence (Scheme 82).148b N-Methanesulfonyl-3-bromo-2-

(arylamino)methyl-1,4-naphthoquinones 284 were synthesized starting from 2-bromomethyl-3-bromo-

1,4-naphtoquinone via a nucleophilic substitution with various anilines followed by mesylation. 

 

Scheme 82148b 

Furthermore, the synthesis of 8,9,10,11-tetrahydro-8,11-methanobenzo[j]phenanthridine-7,12-diones 

283, as ‘out of plane derivatives’ was also developed, via the palladium-catalyzed intramolecular 

cyclization of amides 286 toward cyclic amides 287 as the key step (Scheme 83).150 

 

Scheme 83150 

In this PhD thesis, the synthesis of fluorinated 8,9,10,11-tetrahydro-8,11-methanobenzo[j]-

phenanthridine-7,12-diones 31 was envisioned, using a combination of the above-mentioned synthetic 

procedures. More specifically, in analogy with the synthetic pathway toward phenanthridines 285, 

methanesulfonamides 30 were believed to be suitable substrates for the palladium-catalyzed ring closure 

toward phenanthridines 288. For the synthesis of precursors 30, aldehyde 28, which was also the starting 
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compound for the synthesis of MOM-protected amides 286, will be transformed into amines 289 via a 

reductive amination with various fluorinated 2-bromoanilines 29. Mesylation of the amines 289 should 

lead to the formation of methanesulfonamides 30 (Scheme 84). 

 

Scheme 84 

3.6.2.1 Synthesis of anilines 289 via reductive amination 

The reductive amination toward amines 289 was believed to be straightforward (Table 24). In a first 

attempt, aldehyde 28 reacted with 2-bromo-5-fluoroaniline 29b in MeOH for one hour at room 

temperature, followed by the addition of one equivalent of NaBH4 at 0 °C and stirring for another 30 

minutes at room temperature.152 However, after work-up, four compounds were present in the reaction 

mixture, more specifically aniline 29b, acetal 290, aldimine 291b and the envisioned amine 289b, which 

was only present in a very small amount (Table 24, entry 1). Since significant amounts of acetal 290 and 

unreduced aldimine 291b were present in the reaction mixture, other reaction conditions were explored. 

In the second attempt, one equivalent of acetic acid was added to the reaction mixture and NaCNBH3 was 

used as the reducing agent (Table 24, entry 2). Although amine 289b was present in a larger amount while 

imine 291b could not be observed, acetal 290 was again formed as a side product in a significant amount.  
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Table 24: Synthesis of aniline 289b starting from aldehyde 28 and aniline 29b 

 

Entry Reaction conditions Ratioa 28 : 290 : 291b : 289b 

1 1) 1 equiv 29b, MeOH, r.t., 1 h 

2) 1 equiv NaBH4, 0 °C - r.t., 30 min 

0 : 47 :47 : 6 

2 1) 1 equiv 29b, 1 equiv AcOH, MeOH, r.t., 7 h 

2) 1 equiv NaCNBH3, MeOH, r.t., 18 h 

0 : 54 : 0 : 46 

a Determined via 1H NMR analysis of the crude reaction mixture. 

 

Since performing the imination reaction in MeOH led to the formation of acetal 290 as a side product, the 

use of isopropanol as a less-nucleophilic solvent was evaluated. Thus, aldehyde 28 was dissolved in iPrOH 

and reacted in a one-pot fashion with aniline 29c in the presence of acetic acid and NaCNBH3. After 

work-up, a mixture of aniline 29c, amine 289c and a compound which was tentatively identified as the 

alcohol resulting from aldehyde reduction, was obtained from which amine 289c was isolated in a low 

yield of 20% (Scheme 85). 

 

Scheme 85 

Since this one-pot reductive amination in iPrOH gave no satisfying results, it was decided to optimize the 

imination step using other non-nucleophilic solvents. Upon treatment of aldehyde 28 with one equivalent 
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of aniline 29c in the presence of two equivalents of MgSO4 in THF at reflux temperature for 17 hours, only 

50% conversion to the imine was achieved. Also the use of Ti(OEt)4 in THF did not lead to better results, 

since an aqueous work-up was needed to remove the titanium salts, resulting in hydrolysis of the imine 

and irreproducible results. 

Subsequently, the imination of aldehyde 28 in 2-methyltetrahydrofuran (2-Me-THF) under microwave 

irradiation was evaluated and the results are presented in Table 25. The conversion of aldehyde 28 toward 

imines 291 was determined based on 1H NMR analysis of the crude reaction mixture. When an acceptable 

conversion was obtained, the reaction mixture was subjected to reductive reaction conditions by 

treatment with NaCNBH3 in the presence of acetic acid in MeOH. In a first attempt, aldehyde 28 reacted 

with one equivalent of 2-bromo-4-fluoroaniline 29a in 2-Me-THF in the presence of two equivalents MgSO4 

for two hours at 60 °C, leading to 50% conversion toward imine 291a (Table 25, entry 1). Increasing the 

number of equivalents of aniline 29a to two or three equivalents led to a higher conversion of 75% and 

97%, respectively (Table 25, entries 2-3). The crude reaction mixture of this last attempt was subjected to 

reductive reaction conditions and amine 289a was isolated in 67% yield starting from aldehyde 28 (Table 

25, entry 3). Unfortunately, when these optimized reaction conditions were applied to the reaction of 

aldehyde 28 with anilines 29b,c,d,e, the conversion toward the corresponding imines was only moderate. 

When aldehyde 28 reacted with 2-bromo-6-fluoroaniline 29c for one hour at 60 °C, a conversion of 60% 

toward the corresponding imine was observed (Table 25, entry 4), while a longer reaction time of three 

hours led to an even lower conversion of 27% (Table 25, entry 5). The reaction of aniline 29b with 

aldehyde 28 gave a higher conversion of 86% after one hour at 60 °C, but amine 289b could only be isolated 

in moderate variable yields (23-53%) (Table 25, entry 6). Also the reaction of aldehyde 28 with 

trifluoromethylated anilines 29d and 29e gave a moderate conversion toward the corresponding imines 

291d,e (Table 25, entries 7-10). 

 

 

 

 

 

 



Results and discussion  Chapter 3 

108 
 

Table 25: Synthesis of fluorinated anilines 289 via sequential imination and reduction 

 

Entry Reaction conditions microwave 
Conversion of 28 

toward imine 291a 
Yieldb amine 289 

(from aldehyde 28) 

1 1 equiv 29a (4-F), 2 equiv MgSO4, 60 °C, 2 h 50% - 

2 2 equiv 29a (4-F), 2 equiv MgSO4, 60 °C, 2 h 75% - 

3 3 equiv 29a (4-F), 3 equiv MgSO4, 60 °C, 45 min 97% 289a (67%) 

4 3 equiv 29c (6-F), 3 equiv MgSO4, 60 °C, 1 h 60% - 

5 3 equiv 29c (6-F), 3 equiv MgSO4, 60 °C, 3 h 27% - 

6 3 equiv 29b (5-F), 3 equiv MgSO4, 60 °C, 1 h 86% 289b (23-53%)c 

7 3 equiv 29e (5-CF3), 3 equiv MgSO4, 60 °C, 1 h 70% 289e (13-32%)c 

8 3 equiv 29e (5-CF3), 3 equiv MgSO4, 100 °C, 40 min 56% - 

9 3 equiv 29d (4-CF3), 3 equiv MgSO4, 60 °C, 75 min 79% - 

10 3 equiv 29d (4-CF3), 3 equiv MgSO4, 100 °C, 40 min 38% - 

a Determined via 1H NMR analysis fo the crude reaction mixture. b Isolated yield. c Variable yields were 
obtained from different attempts. 

 

Following these moderate results, dichloromethane was evaluated next as the solvent for the imination 

reaction. Aldehyde 28 was treated with trifluoromethylated anilines 29d-e in the presence of MgSO4 under 

reflux conditions in CH2Cl2. Although a relatively long reaction time was needed (19-48 h), the conversion 

of aldehyde 28 into the corresponding imines 291d,e was very good (96-97%). Eventually, amines 289d,e 

were obtained in good yields (66-71% in two steps) after reduction using NaCNBH3. 
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Table 26: Synthesis of trifluoromethylated anilines 289 via sequential imination and reduction 

 

Entry Reaction conditions  
Conversion of 28 

toward imine 291a 
Yieldb amine 289 

(from aldehyde 28) 

1 3 equiv 29e (5-CF3), 3 equiv MgSO4, Δ, 48 h 96% 289e (71%) 

2 3 equiv 29d (4-CF3), 3 equiv MgSO4, Δ, 19 h 97% 289d (66%) 

a Determined via 1H NMR analysis fo the crude reaction mixture. b Isolated yield. 

 

Additionally, it should be mentioned that the purification of amines 289a-e was not straightforward. Due 

to the low nucleophilicity of anilines 29, caused by the electron-withdrawing fluorine substituents, three 

equivalents of anilines 29 were needed to obtain an acceptable conversion toward the corresponding 

imines. After the reduction step, this excess of anilines 29 needed to be separated from amines 289. 

However, all attempts to separate this mixture via column chromatography (SiO2) using a PE/EtOAc 

mixture as the eluent failed since compounds 29 and 289 eluted simultaneously. Only via preparative TLC 

the separation could be achieved after several runs of the TLC plate. However, preparative TLC can only 

be used on a small scale. Fortunately, the automated flash system (Reveleris Flash Forward), resulted in a 

very good separation when reversed phase conditions were applied using a CH3CN/H2O mixture as the 

eluent. 

3.6.2.2 Protection of anilines 289 

Having anilines 289 in hand, different reaction conditions for their conversion into methanesulfonamides 

30 were evaluated (Table 27). However, reaction of aniline 289b with one or two equivalents 

methanesulfonyl chloride in pyridine at 0 °C or reflux temperature did not lead to the formation of the 

corresponding methanesulfonamide 30b (Table 27, entry 1). Also, upon use of the solvent mixture 

pyridine/CH2Cl2 1/1 at reflux temperature for three hours, no conversion of aniline 289b was observed 

(Table 27, entry 2).148b Similar reaction conditions were also applied to aniline 289e, but again no reaction 
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was observed. (Table 27, entry 3). In a next attempt, aniline 289b first reacted with NaH in THF for 15 

minutes, after which MsCl was added and the reaction mixture was stirred at reflux temperature for 17 h 

(Table 27, entry 4).153 But again, no conversion of the starting material was observed. Following these bad 

results, it was decided to try to protect the amino function as a trifluoromethanesulfonamide group. As 

such, aniline 289b reacted with two equivalents N-phenyl-bis(trifluoromethanesulfinimide) in 

dichloromethane, but again no reaction was observed (Table 27, entry 5).154 Finally, treatment of aniline 

289b with two equivalents of triflic anhydride in the presence of NaH in dichloromethane did lead to the 

formation of trifluoromethanesulfonamide 292b, which was isolated in a low yield of 24% (Table 27, entry 

6).155 Applying these reaction conditions to amines 289c and 289a also gave rise to the formation of the 

corresponding trifluoromethanesulfonamides 292c,a which were isolated in slightly higher yields (50-52%) 

(Table 27, entries 7-8). 

Table 27: Protection of anilines 289 

 

Entry Substrate Reaction conditions Result 

1 289b (5-F) 1-2 equiv MsCl, pyridine, 0 °C - Δ, 17 h No reaction 

2 289b (5-F) 1.3 equiv MsCl, pyridine/CH2Cl2 1/1, Δ, 3 h No reaction 

3 289e (5-CF3) 2 equiv MsCl, pyridine/CH2Cl2 1/1, Δ, 17 h No reaction 

4 289b (5-F) 1) 1.2 equiv NaH, THF, r.t., 15 min  

2) 1.2 equiv MsCl, Δ, 17 h 

No reaction 

5 289b (5-F) 2 equiv N-phenyl-bis(trifluoromethanesulfinimide),  

2 equiv Et3N, CH2Cl2, r.t. - Δ, 3 h 

No reaction 

6 289b (5-F) 2.5 equiv NaH, 2 equiv Tf2O, CH2Cl2, 0 °C - r.t., 3 h 24% 292ba 

7 289c (6-F) 2.5 equiv NaH, 2 equiv Tf2O, CH2Cl2, 0 °C - r.t., 3 h 50% 292ca 

8 289a (4-F) 2.5 equiv NaH, 2 equiv Tf2O, CH2Cl2, 0 °C - r.t., 3 h 52% 292aa 

a Isolated yield. 
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In an attempt to synthesize N-triflyl amides 292 in a higher yield, anilines 289 reacted with triflic anhydride 

in CH2Cl2 instead of using pure triflic anhydride. Satisfyingly, under these reaction conditions, 

trifluoromethanesulfonamides 292a-e were formed and isolated in 60-71% yield (Scheme 86).  

 

Scheme 86 

3.6.2.3 Palladium-catalyzed ring closure towards phenanthridines 288 

The next step in the reaction sequence toward fluorinated 8,9,10,11-tetrahydro-8,11-methanobenzo[j]-

phenanthridine-7,12-diones was the palladium-catalyzed ring closure of trifluoromethanesulfonamides 

292. To this end, trifluoromethanesulfonamide 292a was reacted with 12 mol% Pd(OAc)2 using 36 mol% 

triphenylphosphine as the ligand and two equivalents potassium carbonate in toluene at 100 °C under 

nitrogen atmosphere. Follow-up using 1H NMR showed a slow progress of the reaction with only 53% 

conversion of the starting material after 46 hours. Thus, extra Pd(OAc)2 (12 mol%) and PPh3 (36 mol%) 

were added and stirring was continued for another nine hours, after which a conversion of 74% was 

achieved. Again extra Pd(OAc)2 (6 mol%) and PPh3 (18 mol%) were added and the stirring was continued 

for another four days, leading to a conversion of 88%. At this point, the reaction was stopped, leading to 

compound 293a as the end product. Apparently, the aromatization toward phenanthridine 288a did not 

occur under these reaction conditions. In the next step, compound 293a was used without purification 

and treated with KOtBu, leading to the desired aromatization toward phenanthridine 288a, which was 

isolated in 42% yield (Table 28, entry 1). The reaction time and the amount of catalyst used in the first step 

could be strongly reduced by performing the Heck coupling under microwave irradiation, although this 

only led to a slight improvement of the yield (51% over two steps) (Table 28, entry 2). Upon use of 

trifluoromethanesulfonamide 292c as the substrate, again a big catalyst load (24 mol% PdOAc2) and 

extended reaction time in the microwave of 46 hours were necessary to achieve a full conversion (Table 

28, entry 3). After aromatization, phenanthridine 288c was isolated in 43% yield. Finally, the Heck coupling 

of substrate 292b gave no conversion when it was performed under microwave irradiation (Table 28, entry 
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4), but full conversion was achieved in batch (Table 28, entry 5), and eventually phenanthridine 288b was 

isolated in 39% yield. It can be concluded that the conversion of monofluorinated 

trifluoromethanesulfonamides 292a-c into phenanthridines 288a-c proceeds sluggishly and needs further 

optimization. 

Table 28: Synthesis of phenanthridines 288 

 

Entry Substrate 
Reaction conditions 
Step 1 

Reaction conditions 
Step 2 

Yielda 

1 292a (4-F) 0.3 equiv Pd(OAc)2, 0.9 equiv PPh3, 

2 equiv K2CO3, toluene, 100 °C, 7 d 

2 equiv KOtBub, Δ, 2 h 42% 288a 

2 292a (4-F) 0.06 equiv Pd(OAc)2, 0.18 equiv PPh3, 

2 equiv K2CO3, toluene, MW, 125 °C, 3 h 

2 equiv KOtBub, Δ, 2 h 51% 288a 

3 292c (6-F) 0.24 equiv Pd(OAc)2, 0.72 equiv PPh3, 

2 equiv K2CO3, toluene, MW, 125 °C, 46 h 

2 equiv KOtBub, Δ, 3.5 h 43% 288c 

4 292b (5-F) 0.06 equiv Pd(OAc)2, 0.18 equiv PPh3, 

2 equiv K2CO3, toluene, MW, 125 °C, 2 h 

-c -c 

5 292b (5-F) 0.12 equiv Pd(OAc)2, 0.36 equiv PPh3, 

4 equiv K2CO3, toluene, Δ, 38 h 

3 equiv KOtBub, Δ, 3 h 39% 288b 

a Yield over two steps, starting from substrate trifluoromethanesulfonamides 292. b 1M in THF. c No 
reaction in step 1. 

 

In an attempt to achieve a higher yield over the two steps, it was decided to isolate intermediates 293d-e, 

synthesized via the Heck coupling of compounds 292d-e, before performing the aromatization step. Thus, 

trifluoromethanesulfonamide 292d was treated with 6 mol% Pd(OAc)2 in the presence of 18 mol% PPh3 

and 2 equiv K2CO3. After 63 hours of stirring in toluene at reflux temperature, no further progress of the 
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reaction could be noticed and extra Pd(OAc)2 (6 mol%), PPh3 (18 mol%) and K2CO3 (2 equiv) were added. 

After stirring this mixture for another 24 hours, full consumption of the starting compound was achieved 

and tetracyclic compound 293d was isolated in 78% yield. Analogously, intramolecular Heck coupling of 

trifluoromethanesulfonamide 292e led to the formation of compound 293e, in 81% yield. In the next step, 

aromatization by reaction with KOtBu in THF under reflux conditions, led to phenanthridines 288d,e in 

quantitative yield (Scheme 87). 

 

Scheme 87 

3.6.2.4 CAN-mediated oxidation toward compounds 31 

The last step in the reaction sequence comprised the oxidative demethylation of compounds 288a-e, 

which was achieved by treatment with 2.3 equivalents CAN in an acetonitrile/water mixture (1/1) for 45 

minutes at 0 °C. Finally, fluorinated 8,9,10,11-tetrahydro-8,11-methanobenzo[j]phenanthridine-7,12-

diones 31a-e were isolated in moderate to good yields (37-76%). 

 

Scheme 88 

3.6.3 Conclusion 

In conclusion, the synthesis of five fluorinated 8,9,10,11-tetrahydro-8,11-methanobenzo[j]-

phenanthridine-7,12-diones 31 was developed using 5,8-dimethoxy-1,2,3,4-tetrahydro-1,4-
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methanonaphthalene-6-carboxaldehyde and various fluorinated 2-bromoanilines as building blocks. Due 

to the low nucleophilicity of these fluorinated anilines, optimization of the reductive amination was 

necessary. After triflation of the resulting amines, Pd-catalyzed ring closure and aromatization, oxidative 

demethylation using CAN led to the formation of the envisaged 8,9,10,11-tetrahydro-8,11-

methanobenzo[j]phenanthridine-7,12-diones. These compounds will be tested for their activity against 

M. tuberculosis in collaboration with the University of Antwerp.
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4 Perspectives 

In the literature overview it was shown that only a few examples of ring fluorinated β-ACC derivatives or 

fluorinated azetidine-2-carboxylates were reported to date. Therefore, in this PhD thesis, the (attempted) 

synthesis of fluorinated analogues of these compounds is described. However, this proved to be not 

straightforward and further research concerning the chemistry of these strained fluorinated amino acids 

derivatives is necessary. 

The synthesis of difluorinated β-ACC derivatives 184 demonstrated the negative impact of the two fluorine 

atoms on the stability of these compounds. Therefore, it is useful to evaluate the synthesis of 

monofluorinated derivatives 295, via the MIRC reaction of dialkyl 2-(2-chloro-2-

fluoroethylidene)malonates 294 (Scheme 89). In this reaction, the diastereoselective outcome should also 

be evaluated. 

 

Scheme 89 

Furthermore, the incorporation of fluorinated β-ACC derivatives in peptides is of importance to get insight 

on the influence of these amino acids on the secondary conformation of peptides. However, due to the 

instability of β-ACC derivatives 184, their incorporation in peptides will be a major challenge. A possible 

pathway toward dipeptides incorporating the β-ACC unit is the use of amino acid derivatives 297 as 

nucleophiles in the MIRC reaction. Michael addition of nitrogen nucleophiles 297 across dialkyl 2-(2-

haloethylidene)malonates 296 could lead to the formation of dipeptides 298 after ring closure (Scheme 

90). 
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Scheme 90 

In this PhD thesis it was also shown that the reduction of pyrrolines 185 resulted in the formation of acyclic 

amino esters 187, which proved to be unstable. It should be useful to try to convert acyclic amino esters 

187 into 2-pyrrolidinones 299 via ring closure, which are possibly more stable (Scheme 91). Further 

aromatization156 could lead to the formation of fluorinated pyrroles 300, which have only been studied to 

a very limited extent.157 

 

Scheme 91 

In the fourth chapter of this PhD thesis, the synthesis of fluorinated azetidine-2-carboxylates was 

attempted. Unfortunately, this goal could not be achieved. However, there are still some options to be 

explored which could lead to the formation of these constrained fluorinated amino acid derivatives. For 

example, the condensation of amines 23 with bromoacetonitrile 301 should lead to amino nitriles 302 

(Scheme 92). The deprotonation of these compounds 302 should be easier than the deprotonation of the 

corresponding esters, and could possibly be followed by ring closure to give azetidines 303. Subsequent 

hydrolysis of the nitrile moiety could lead to azetidine-2-carboxylic acids 304. 

 

Scheme 92 
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In another part of this PhD thesis, the efficient synthesis of various 2-fluoro-1,4-benzoxazines 267 and 

elusive β-fluoroynamides 266 was developed starting from 2-aminophenols 258. These fluorinated 

compounds are interesting scaffolds with potential applications in medicinal chemistry. As an expansion 

of this work, it should be useful to synthesize analogues of 2-fluoro-1,4-benzoxazines 267 incorporating 

an extra nitrogen atom in the aromatic ring. Thus, applying the same reaction sequence to for example 

2-amino-3-hydroxypyridine 305 should give rise to β-fluoroynamides 307 and 2-fluoropyrido[3,2-b][1,4]-

oxazines 308 (Scheme 93). Although these pyrido[3,2-b][1,4]oxazines are interesting scaffolds, they have 

only been studied to a limited extent,129e,158 while fluorinated analogues have not been described to date. 

 

Scheme 93 

In addition, the synthesis of 2-fluoro-1,4-benzoxazepin-5-ones 279 could also be expanded to the synthesis 

of derivatives incorporating an extra nitrogen atom in the aromatic ring. For example, treatment of 

2-acetoxypyridine-3-carboxylic acid 309 with thionyl chloride should lead to the formation of the 

corresponding acid chloride, which could be coupled with fluorinated amines 23 resulting in the formation 

of amides 310. Subsequent treatment with KOtBu should give rise to the formation of unprecedented 

2-fluoropyrido[3,2-f]-1,4-oxazepin-5-ones 311 (Scheme 94). Pyrido[3,2-f]-1,4-oxazepin-5-ones, which are 

not annelated to another aromatic ring, have never been described in the literature before. 
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Scheme 94 

In the final part of this PhD thesis, 8,9,10,11-tetrahydro-8,11-methanobenzo[j]phenanthridine-7,12-

diones 31 were synthesized as potential anti-mycobacterial compounds. However, these methano-bridged 

benzo[j]phenanthridines are chiral compounds and they were synthesized as a racemic mixture. In 

addition of this research, the synthesis of the non-chiral ethano-bridged derivatives should be evaluated, 

which should proceed via the beforementioned methodology, starting from ethano-bridged aldehyde 312 

(Scheme 95). Reductive amination with fluorinated 2-bromoanilines 29, followed by triflation of the amine 

nitrogen atom should afford trifluoromethanesulfonamides 134. Palladium-catalyzed ring closure and 

subsequent aromatization should give compounds 315, which should be converted into fluorinated 

8,9,10,11-tetrahydro-8,11-ethanobenzo[j]phenanthridine-7,12-diones 316 by CAN-mediated oxidation. 

 

Scheme 95 
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5 Experimental section 

5.1 General methods 

Solvents 

Dry dichloromethane was obtained via distillation over calcium hydride. Dry tetrahydrofuran, dry diethyl 

ether and dry toluene were freshly distilled over sodium/benzophenone ketyl before use. Other solvents 

were used as received from the supplier, unless specified otherwise. 

Microwave irradiation 

All microwave reactions were performed in a CEM Focused MicrowaveTM Synthesis System, Model Discover 

with a continuous power output from 0 to 300 W and a self-adjusting, single mode microwave cavity. 

Reactions were performed in 10 mL thick-walled Pyrex reaction vials, closed with a snap-cap and equipped 

with a small magnetic stirring bar. The temperature was increased from room temperature to the desired 

temperature using a ramp time of maximum 5 minutes. The desired temperature was maintained during 

the course of the reaction. The temperature control system used an external infrared sensor to measure 

the temperature on the bottom of the vessel and was used in a feedback loop with the on-board computer 

to regulate the temperature from 25 to 250 °C by adjusting the power output (1 W increments). The 

pressure control, IntelliVentTM Pressure Control System, used an indirect measurement of the pressure by 

sensing changes in the external deflection of the septa on the top of the sealed pressure vessel. Stirring 

was performed by a rotating magnetic plate located below the bottom of the microwave cavity. After the 

desired reaction time, the vial was cooled down by a stream of air which decreased the temperature of 

the vial from approximately 150 °C to 40 °C in less than 120 s. 

Column chromatography 

The purification of reaction mixtures was performed by column chromatography using a glass column filled 

with silica gel (Acros, particle size 35-70 µm, pore diameter ca. 6 nm). Solvent systems were determined 

via initial TLC analysis on glass plates, coated with silica gel (Merck, Kieselgel 60 F254, precoated 0.25 mm) 

using UV light (254 nm and 366 nm), iodine vapor or KMnO4 oxidation as detection methods. Automated 

flash chromatography was performed on a Reveleris® X2 Flash Chromatography System. 
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Liquid chromatography 

LC and LC-MS analyses were performed on an Agilent 1200 Series liquid chromatograph using a reversed 

phase column (Eclipse plus C18 column, 50 x 4.6 mm, particle size 3.5 µm, or a Supelco Ascentis Express 

C18 column, 30 x 4.6 mm, particle size 2.7 µm) with an UV-VIS detector and an Agilent 1100 series LC/MSD 

type SL mass spectrometer (ESI, 70 eV) using a mass selective single quadrupole detector. Gradient elution 

was used (30% acetonitrile in water to 100% acetonitrile over 6 minutes). 

NMR spectroscopy 

1H NMR spectra were recorded at 300 MHz (JEOL ECLIPSE+) or 400 MHz (Bruker Avance III) with CDCl3 as 

solvent and tetramethylsilane as internal standard. 13C NMR spectra were recorded at 75 MHz (JEOL 

ECLIPSE+) or 100.6 MHz (Bruker Advance III) with CDCl3 as solvent and tetramethylsilane as internal 

standard. 19F NMR spectra were recorded at 282 MHz (JEOL ECLIPSE+) or 376.5 MHz (Bruker Advance III) 

with CDCl3 as solvent and CFCl3 as internal standard. Peak assignments were obtained with the aid of HSQC 

and/or HMBC spectra. 

Infrared spectroscopy 

Infrared spectra were recorded on a Perkin Elmer Spectrum BX FT-IR Spectrometer. All compounds were 

analyzed in neat form with an ATR (Attenuated Total Reflectance) accessory. Only selected absorbances 

(νmax, cm-1) were reported. 

Mass spectrometry 

Low resolution mass spectra were recorded via direct injection on an Agilent 1100 Series LC/MSD type SL 

mass spectrometer with Electron Spray Ionisation Geometry (ESI 70 eV) and using a Mass Selective 

Detector (quadrupole). High resolution mass spectra were obtained with an Agilent Technologies 6210 

Time-of-Flight Mass Spectrometer (TOFMS), equipped with ESI/APCI-multimode source. 

Elementary analysis 

Elementary analyses were obtained by means of a Perkin Elmer series II CHNS/O elementary analyzer 

2400. 

Melting point 

Melting points of crystalline compounds were determined using a Büchi B-540 apparatus or a Kofler bench, 

type WME Heizbank of Wagner & Munz. 
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Optical rotation 

Optical rotations were determined using a JASCO P-2000 Series Polarimeter at a wavelength of 589 nm. 

5.2 Safety 

General safety aspects 

The work in the laboratory of the SynBioC Research group (Department of Sustainable Organic Chemistry 

and Technology) was conducted in full compliance with the ‘Internal Safety Guidelines’. Furthermore, 

upon use of chemicals, the internal safety document ‘Safety instructions: how to work with chemicals’, 

was consulted. 

Specific safety aspects 

A list of the risks associated with each chemical is available in the corresponding material safety data sheet 

(MSDS), which can be found on the website of the supplier. Therein, a classification of the hazards was 

made according to the European Regulation (EC) No 1272/2008 [EU-GHS/CLP], which combines the 

Globally Harmonized System of Classification and Labeling of Chemicals (GHS) and Classification, Labelling 

and Packaging regulations (CLP). A brief overview of the chemicals employed in this work classified as 

category 1, the most severe category, of the respective hazard class will be given below, along with the 

GHS hazards and precautions. 

Acid chlorides (acetyl chloride, 4-methoxybenzoyl chloride, 4-chlorobenzoyl chloride, 2-acetylsalicyloyl 

chloride, oxalyl chloride): Causes severe skin burns and eye damage. Wear protective gloves/ eye 

protection/ face protection. Benzoyl chloride: Causes severe skin burns and eye damage. May cause an 

allergic skin reaction. Wear protective gloves/ eye protection/ face protection. 

AlCl3: Causes severe skin burns and eye damage. Causes damage to organs through prolonged or repeated 

exposure if inhaled. Wear protective gloves/ protective clothing/ eye protection/ face protection. 

Allyl bromide: Causes severe skin burns and eye damage. May cause genetic defects. May cause cancer. 

Very toxic to aquatic life. Obtain special instructions before use. Avoid release to the environment. Wear 

protective gloves/ protective clothing/ eye protection/ face protection. 

Amines (propylamine, benzylamine, 4-methoxybenzylamine, ethanolamine): Causes severe skin burns 

and eye damage. Wear protective gloves/ eye protection/ face protection. 
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Fluorinated 2-bromoanilines, aniline: May cause an allergic skin reaction. Causes serious eye damage. 

Causes damage to organs (blood) through prolonged or repeated exposure. Very toxic to aquatic life with 

long lasting effects. Avoid release to the environment. Wear protective gloves/eye protection/face 

protection. 3-Amino-4-bromobenzotrifluoride: Causes severe skin burns and eye damage. Wear 

protective gloves/eye protection/face protection. 

BF3.Et2O: Causes severe skin burns and eye damage. Causes damage to organs through prolonged or 

repeated exposure if inhaled. Wear protective gloves/protective clothing/eye protection/face protection. 

Borane dimethylsulfide complex: Causes serious eye damage. Wear protective gloves/eye 

protection/face protection. 

Bromoacetates: Causes severe skin burns and eye damage. Wear protective gloves/eye protection/face 

protection. 

Butyllithium: Catches fire spontaneously if exposed to air. May be fatal if swallowed and enters airways. 

Causes severe skin burns and eye damage. Do not allow contact with air. Handle under inert gas. Protect 

from moisture. 

Cyanides (KCN, NaCN): May be corrosive to metals. Fatal if swallowed, in contact with skin or if inhaled. 

Causes damage to organs (heart, testes, brain) if swallowed. Causes damage to organs (thyroid) through 

prolonged or repeated exposure. Very toxic to aquatic life with long lasting effects. Do not breathe 

dust/fume/gas/mist/vapours/spray. Avoid release to the environment. Wear protective gloves/protective 

clothing. 

Diisobutylaluminium hydride: Highly flammable liquid and vapour. Catches fire spontaneously if exposed 

to air. Causes severe skin burns and eye damage. Keep away from heat/sparks/open flames/hot surfaces. 

No smoking. Do not allow contact with air. Wear protective gloves/ protective clothing/eye 

protection/face protection. 

EDC.HCl: Causes serious eye damage. Wear protective gloves/eye protection/face protection. 

Ethyl bromodifluoroacetate, ethyl chlorofluoroacetate: Causes severe skin burns and eye damage. Wear 

protective gloves/eye protection/face protection. 

HMPA: May cause genetic defects. May cause cancer. Obtain special instructions before use. 
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Imidazole: Causes severe skin burns and eye damage. May damage the unborn child. Wear protective 

gloves/eye protection/face protection. 

Inorganic acids (HCl): May be corrosive to metals. Causes severe skin burns and eye damage. Avoid 

breathing vapours. Wear protective gloves/eye protection/face protection. 

Inorganic bases (NaOH, KOH): May be corrosive to metals. Causes severe skin burns and eye damage. 

Wear protective gloves/protective clothing/eye protection/face protection. Sodium hydride: In contact 

with water releases flammable gases which may ignite spontaneously. Do not allow contact with water. 

Iodine: Causes damage to organs (thyroid) through prolonged or repeated exposure if swallowed. Very 

toxic to aquatic life. Avoid breathing dust. Avoid release to the environment 

Isobutyl chloroformate: Causes severe skin burns and eye damage. Wear protective gloves/protective 

clothing/eye protection/face protection. 

NaBH4: In contact with water releases flammable gases which may ignite spontaneously. Causes severe 

skin burns and eye damage. Wear protective gloves/protective clothing/eye protection/face protection. 

Do not allow contact with water. 

NaCNBH3: Flammable solid. Causes severe skin burns and eye damage. Very toxic to aquatic life with long 

lasting effects. Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No 

smoking. Avoid release to the environment. Wear protective gloves/protective clothing/eye 

protection/face protection. 

N-Bromosuccinimide: Causes severe skin burns and eye damage. Wear protective gloves/protective 

clothing/eye protection/face protection. 

N-methylmorpholine: Causes severe skin burns and eye damage. Wear protective gloves/protective 

clothing/eye protection/face protection. 

Organic acids (HOAc): Causes severe skin burns and eye damage. Wear protective gloves/protective 

clothing/eye protection/face protection. 

Organic bases (KHMDS, LiHMDS, KOtBu, LiOtBu): Causes severe skin burns and eye damage. Wear 

protective gloves/protective clothing/eye protection/face protection. NaOMe: Self-heating: may catch 

fire. Causes severe skin burns and eye damage. Keep cool. Protect from sunlight. Wear protective 

gloves/protective clothing/eye protection/face protection. 
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Pd(OAc)2: Causes serious eye damage. Wear protective gloves/eye protection/face protection. 

Phenol: Causes severe skin burns and eye damage. Wear protective gloves/protective clothing/eye 

protection/face protection. 

Phenylacetylene: May be fatal if swallowed and enters airways. 

p-Toluenesulfonyl chloride, p-nitrobenzenesulfonyl chloride, methanesulfonyl chloride: Causes severe 

skin burns and eye damage. Wear protective gloves/protective clothing/eye protection/face protection. 

Tetrachloromethane: May cause an allergic skin reaction. Causes damage to organs through prolonged or 

repeated exposure. Harms public health and the environment by destroying ozone in the upper 

atmosphere. Avoid release to the environment. Wear protective gloves/protective clothing/eye 

protection/face protection. 

TiCl4: Causes severe skin burns and eye damage. Causes damage to organs through prolonged or repeated 

exposure. Do not breathe dust/fume/gas/mist/vapours/spray. Wear protective gloves/protective 

clothing/eye protection/face protection. 

TMSCl, TBDMSCl: Causes severe skin burns and eye damage. Wear protective gloves/protective 

clothing/eye protection/face protection. 

Thiophenol: Fatal if swallowed, in contact with skin or if inhaled. Causes serious eye damage. Do not 

breathe dust/fume/gas/mist/vapours/spray. Wear protective gloves/eye protection/face protection. 

Thionyl chloride: Causes severe skin burns and eye damage. Wear protective gloves/protective 

clothing/eye protection/face protection. 

Triethylamine: Causes severe skin burns and eye damage. Wear protective gloves/protective clothing/eye 

protection/face protection. 

Triflic anhydride: Causes severe skin burns and eye damage. Wear protective gloves/protective 

clothing/eye protection/face protection.  

Triphenylphosphine: May cause an allergic skin reaction. Wear protective gloves. 
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5.3 Stereoselective synthesis of both enantiomers of trans-

2-(diphenylmethylideneamino)cyclopropanecarboxylic acid using a chiral pool 

approach and their incorporation in dipeptides 

5.3.1 Synthesis of (R)-benzyl 4-iodo-3-N-(tert-butoxycarbonyl)butanoate (R)-166 

(R)-4-Iodobutanoate (R)-166 was synthesized in two steps following a slightly modified literature 

procedure starting from (R)-β-benzyl N-(tert-butoxycarbonyl)aspartate using PPh3 instead of polymer 

bound triphenylphosphine.67-68 

5.3.2 Synthesis of (R)-benzyl 3-amino-4-iodobutanoate hydrochloride (R)-167 

(R)-Benzyl 4-iodo-3-N-(tert-butoxycarbonyl)butanoate (R)-166 (0.89 g, 2.12 mmol) was dissolved in 10 mL 

of a saturated solution of HCl in Et2O at 0 °C and stirred for 6 hours at 0 °C. After stirring the reaction 

mixture for another 16 hours at room temperature, the solvent was evaporated in vacuo. Subsequently, 

dry Et2O (20 mL) was added and the solution was filtered. After washing the filter cake with dry Et2O (20 

mL), (R)-benzyl 3-amino-4-iodobutanoate hydrochloride (R)-167 (0.39 g, 1.42 mmol) was obtained as white 

crystals in 76% yield. 

(R)-Benzyl 3-amino-4-iodobutanoate hydrochloride (R)-167 

White crystals. Melting point: 129-130 °C. Yield: 76%. 1H NMR (300 MHz, DMSO-d6):  

2.77-2.92 (2H, m, CH2C=O), 3.46-3.61 (3H, m, CH2I and CH), 5.15 (2H, s, CH2O), 7.32-

7.43 (5H, m, CHarom), 8.51 (3H, br s, NH3). 13C NMR (75 MHz, DMSO-d6):  6.3 (CH2I), 37.3 (CH2C=O), 47.6 

(CH), 66.2 (CH2O), 128.0, 128.1 and 128.4 (5x CHarom), 135.5 (Carom,quat), 169.0 (C=O). IR (ATR, cm−1): νNH3 = 

3028, νC=O = 1731, νmax = 1402, 1173, 1154, 1133, 748, 696. MS (ES+): m/z (%): 320 (M + H+ - HCl, 100), 192 

(M + H+ - HCl - HI, 46). 

Optical rotation could not be determined due to instability of the HCl salt in MeOH. 

5.3.3 Synthesis of (R)-benzyl 3-(diphenylmethylideneamino)-4-iodobutanoate (R)-164 

To a solution of (R)-benzyl 3-amino-4-iodobutanoate hydrochloride (R)-167 (0.53 g, 1.5 mmol) in CH2Cl2 

(20 mL) was added diphenylmethylideneamine 12 (1 equiv, 0.27 g, 1.5 mmol). After stirring the reaction 

mixture for 20 hours at room temperature, the solvent was evaporated in vacuo and the residue was 
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redissolved in dry Et2O (20 mL). Filtration of the solids and subsequent removal of the solvent in vacuo 

afforded (R)-benzyl 3-(diphenylmethylideneamino)-4-iodobutanoate (R)-164 in 85% yield (0.61 g, 1.27 

mmol). 

(R)-Benzyl 3-(diphenylmethylideneamino)-4-iodobutanoate (R)-164 

Yellow crystals. Melting point: 82-83 °C. [α]D -40 ± 1 (c 0.8, CH2Cl2). Yield: 85%. 1H NMR 

(300 MHz, CDCl3):  2.76 (1H, dd, J = 15.2 Hz, 7.2 Hz, CH(H)C=O), 2.81 (1H, dd, J = 15.2 

Hz, 5.5 Hz, CH(H)C=O), 3.26 (1H, dd, J = 9.9 Hz, 6.1 Hz, CH(H)I), 3.32 (1H, dd, J = 9.6 Hz, 

6.1 Hz, CH(H)I), 3.84-3.92 (1H, m, CH), 5.06 (1H, d, J = 12.4 Hz, CH(H)O), 5.10 (1H, d, J = 12.4 Hz, CH(H)O), 

7.15-7.20 (2H, m, 2x CHarom), 7.25-7.51 (11H, m, 11x CHarom), 7.57-7.62 (2H, m, 2x CHarom). 13C NMR (75 

MHz, CDCl3):  10.9 (CH2I), 41.2 (CH2C=O), 58.5 (CH), 66.1 (CH2O), 127.5, 127.9, 128.0, 128.3, 128.5, 128.7 

and 130.3 (15x CHarom), 135.6, 136.0 and 139.3 (3x Carom,quat), 169.6 and 170.6 (C=N and C=O). IR (ATR, cm−1): 

νC=O = 1737, νC=N = 1616, νmax = 1292, 1173, 1155, 1131, 695. MS (ES+): m/z (%): 484 (M + H+, 100). HRMS 

(ES+): calcd for C24H23INO2
+: 484.0768, found 484.0764. 

5.3.4 Synthesis of (1S,2S)-benzyl 2-(diphenylmethylideneamino)cyclopropane-

carboxylate (1S,2S)-8 

A solution of (R)-benzyl 3-(diphenylmethylideneamino)-4-iodobutanoate (R)-164 (0.15 g, 0.3 mmol, 1 

equiv) in THF (3 mL) was cooled to -78 °C and KHMDS (1M in THF) (1.1 equiv, 0.33 mmol, 0.33 mL) was 

added dropwise. Subsequently, the reaction mixture was stirred for one hour at -78 °C, after which it was 

quenched with 1 mL NH4Cl(aq, sat). The mixture was poured in 10 mL NaOH (2M in H2O), extracted with Et2O 

(3x 10 mL) and the organic layers were dried with MgSO4. After removal of the drying agent and 

evaporation of the solvent in vacuo, a mixture of trans- and cis-benzyl 2-(diphenylmethylideneamino)-

cyclopropanecarboxylate (1S,2S)-8 and (1R,2S)-8 was obtained (dr 97:3) from which (1S,2S)-benzyl 

2-(diphenylmethylideneamino)cyclopropanecarboxylate (1S,2S)-8 was isolated in 75% yield (0.080 g, 0.23 

mmol) (dr > 99:1) after recrystallization from hexane. 

The diastereomeric ratio was determined based on the well-resolved signal of the benzylic protons in the 

1H NMR spectrum. 
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(1S,2S)-Benzyl 2-(diphenylmethylideneamino)cyclopropanecarboxylate (1S,2S)-8 

White crystals. Melting point: 102-103 °C. [α]D 206 (c 1.6, CH2Cl2). Yield: 75%. 1H NMR (300 

MHz, CDCl3):  1.52-1.63 (2H, m, CH2), 2.29 (1H, ddd, J = 8.6 Hz, 6.1 Hz, 2.5 Hz, CHC=O), 3.37 

(1H, ddd, J = 7.4 Hz, 4.8 Hz, 2.5 Hz, CHN), 5.08 (2H, s, CH2O), 7.20-7.55 (15H, m, 15x CHarom). 

13C NMR (75 MHz, CDCl3):  18.6 (CH2), 25.2 (CHC=O), 45.7 (CHN), 66.4 (CH2O), 128.2, 128.3, 128.40, 

128.43, 128.7, 128.9 and 130.1 (10x CHarom), 136.1, 136.4 and 139.6 (3x Carom,quat), 169.2 and 172.8 (C=N 

and C=O). IR (ATR, cm-1): νC=O = 1714, νC=N 1612, νmax = 1400, 1164, 618. MS (ES+): m/z (%): 356 (M + H+, 

100). HRMS (ES+): calcd for C24H22NO2
+: 356.1645, found 356.1644. 

5.3.5 Synthesis of (1R,2R)-2-(diphenylmethylideneamino)cyclopropanecarboxylic acid 

(1R,2R)-9 

To an ice-cooled solution of (1R,2R)-benzyl 2-(diphenylmethylideneamino)cyclopropanecarboxylate 

(1R,2R)-8 (0.21 g, 0.6 mmol, 1 equiv) in MeOH/H2O 5/1 (6 mL), aqueous 2M NaOH (5 equiv, 3 mmol, 1.5 

ml) was added. The reaction mixture was stirred at room temperature for 20 hours. The organic solvent 

was evaporated under reduced pressure and the residual aqueous phase was washed with Et2O (2x 10 

mL). Subsequently, the aqueous layer was carefully acidified with a solution of 2M HCl in H2O to pH 6, 

followed by an extraction with CH2Cl2 (3x 10 mL). After drying (MgSO4), filtration and evaporation, the pure 

carboxylic acid (1R,2R)-9 was obtained in 61% yield and dr > 99:1 (0.097 g, 0.37 mmol). 

(1R,2R)-2-(Diphenylmethylideneamino)cyclopropanecarboxylic acid (1R,2R)-9 

White crystals. Melting point: 194-195 °C. [α]D -256 (c 0.5, MeOH). Yield 61%. 1H NMR (300 

MHz, CDCl3):  1.55 (1H, ddd, J = 7.4 Hz, 5.8 Hz, 4.4 Hz, CH(H)), 1.63 (1H, ddd, J = 8.8 Hz, 4.5 

Hz, 4.4 Hz, CH(H)), 2.23 (1H, ddd, J = 8.5 Hz, 6.1 Hz, 2.5 Hz, CHC=O), 3.38 (1H, ddd, J = 7.3 Hz, 

4.8 Hz, 2.3 Hz, CHN), 7.24-7.55 (10H, m, 10x CHarom). OH: not visible 13C NMR (75 MHz, CD3OD): 

 17.7 (CH2), 24.6 (CHC=O), 45.4 (CHN), 128.3, 128.5, 128.6, 129.0 and 130.5 (10x CHarom), 136.9 and 139.8 

(2x Carom,quat), 170.7 and 175.6 (C=N and C=O). IR (ATR, cm-1): νOH = 2850, νC=O = 1698, νC=N = 1613, νmax = 

1209, 1186, 936, 698. MS (ES+): m/z (%): 266 (M + H+, 100). HRMS (ES+): calcd for C17H16NO2
+: 266.1176, 

found 266.1176. 

(1S,2S)-2-(Diphenylmethylideneamino)cyclopropanecarboxylic acid (1S,2S)-9 

[α]D 247 (c 0.4, MeOH). 
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5.3.6 Synthesis of (1’R,2’R)-methyl [(2’-diphenylmethylideneaminocyclopropane)-

carbonyl]aminoacetate (1’R,2’R)-171 

To a stirred solution of (1R,2R)-2-(diphenylmethylideneamino)cyclopropanecarboxylic acid (1R,2R)-9 

(0.053 g, 0.2 mmol) and methyl glycinate hydrochloride 170a (1 equiv, 0.025 g, 0.2 mmol) in dry CH2Cl2 (5 

mL) were added 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC.HCl) (1 equiv, 0.038 

g, 0.2 mmol) and N-methylmorpholine (3 equiv, 0.061 g, 0.6 mmol), and the reaction mixture was stirred 

at room temperature for three hours. The reaction mixture was poured into water (10 mL) and extracted 

with CH2Cl2 (3x 5 mL). The combined organic layers were dried with MgSO4. The drying agent was removed 

by filtration and the filtrate was concentrated in vacuo to afford pure (1’R,2’R)-methyl [(2’-

diphenylmethylideneaminocyclopropane)carbonyl]aminoacetate (1’R,2’R)-171 (58% yield, 0.039 g, 0.12 

mmol) after column chromatography on silica gel (petroleum ether/EtOAc 1/1). 

(1’R,2’R)-Methyl [(2’-diphenylmethylideneaminocyclopropane)carbonyl]aminoacetate (1’R,2’R)-171 

Viscous oil. [α]D -168 ± 3 (c 0.1, CH2Cl2). Yield: 58%. 1H NMR (300 MHz, CDCl3):  1.49 

(1H, ddd, J = 8.8 Hz, 4.4 Hz, 4.4 Hz, CH(H)), 1.56 (1H, ddd, J = 7.4 Hz, 5.8 Hz, 4.4 Hz, 

CH(H)), 2.11 (1H, ddd, J = 8.5 Hz, 5.9 Hz, 3.0 Hz, CHC=O), 3.36 (1H, ddd, J = 7.2 Hz, 4.8 

Hz, 2.2 Hz, CHN), 3.75 (3H, s, CH3), 4.03 (2H, d, J = 5.0 Hz, CH2NH), 6.28 (1H, t, J = 5.0 

Hz, NH), 7.23-7.55 (10H, m, 10x CHarom). 13C NMR (75 MHz, CDCl3):  17.5 (CH2CHN), 26.9 (CHC=O), 41.3 

(CH2N), 44.8 (CHN), 52.4 (CH3), 128.1, 128.3, 128.4, 128.6, 128.8 and 129.9 (10x CHarom), 136.3 and 139.7 

(2x Carom,quat), 168.7, 170.5 and 171.6 (C=N and 2x C=O). IR (ATR, cm−1): νNH = 3299, νC=O = 1752, νC=O = 1648, 

νmax = 1542, 1207, 1180, 695. MS (ES+): m/z (%): 337 (M + H+, 100). HRMS (ES+): calcd for C20H21N2O3
+: 

337.1547, found 337.1548. 

(1’S,2’S)-Methyl [(2’-diphenylmethylideneaminocyclopropane)carbonyl]aminoacetate (1’S,2’S)-171 

[α]D 151 ± 1 (c 0.3, CH2Cl2). 
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5.4 Synthesis of novel -aminocyclobutanecarboxylic acid derivatives by a 

solvent-free aza-Michael addition and subsequent ring closure 

5.4.1 Synthesis of dialkyl 2-[3-halo-2,2-dimethyl-1-(diphenylmethylideneamino)-

propyl]malonates 174 

As a representative example, the synthesis of dimethyl 2-[3-bromo-2,2-dimethyl-1-

(diphenylmethylideneamino)propyl]malonate 174a is described here. In a flame-dried flask, triethylamine 

(1.05 equiv, 0.180 g, 1.86 mmol) was added to a mixture of dimethyl 2-(3-bromo-2,2-

dimethylpropylidene)malonate 11a (1 equiv, 0.520 g, 1.86 mmol) and diphenylmethylideneamine 12 (1.05 

equiv, 0.350 g, 1.96 mmol). This mixture was stirred at 60 °C under solvent-free conditions for four hours. 

Subsequently, dry diethyl ether was added, the solution was filtered and the filtrate was concentrated in 

vacuo. Pure dimethyl 2-[3-bromo-2,2-dimethyl-1-(diphenylmethylideneamino)propyl]malonate 174a was 

obtained after recrystallization from diethyl ether in 79% yield. 

Dimethyl 2-[3-bromo-2,2-dimethyl-1-(diphenylmethylideneamino)propyl]malonate 174a 

White crystals. Melting point: 140.6-142.1 °C. Yield: 79%. 1H NMR (300 MHz, CDCl3): 

 0.94 (3H, s, CH3), 1.05 (3H, s, CH3), 3.30 (1H, d, J = 9.9 Hz, CH(H)Br), 3.42 (1H, d, J 

= 9.9 Hz, CH(H)Br), 3.52 (3H, s, OCH3), 3.70 (3H, s, OCH3), 4.02 (1H, d, J = 6.1 Hz, 

CH(COOMe)2), 4.36 (1H, d, J = 6.1 Hz, CHN), 7.27-7.60 (10H, m, 10x CHarom). 13C NMR 

(75 MHz, CDCl3):  22.1 (CCH3(CH3)), 23.4 (CCH3(CH3)), 40.7 (C(CH3)2), 44.2 (BrCH2), 52.4 (OCH3), 52.7 

(OCH3), 53.9 (CH(COOMe)2), 66.0 (CHN), 128.0, 128.1, 128.6, 128.7 and 130.3 (10x CHarom), 135.5 (Carom,quat), 

139.6 (Carom,quat), 168.4, 168.6 and 169.5 (2x C=O and C=N). IR (ATR, cm-1): νC=O = 1732, νC=N = 1626, νmax = 

1224, 1204, 1170, 705, 697. MS (ES+): m/z (%): 460/62 (M + H+, 100). El. Anal. Calcd for C23H26BrNO4: C 

60.01, H 5.69, N 3.04, found C 59.83, H 5.58, N 3.27. 

Diethyl 2-[3-bromo-2,2-dimethyl-1-(diphenylmethylideneamino)propyl]malonate 174c 

Prepared at room temperature instead of 60 °C. 

White crystals. Melting point: 96.9-97.4 °C. Yield: 76%. 1H NMR (300 MHz, CDCl3):  

0.93 (3H, s, CH3), 1.04 (3H, t, J = 7.2 Hz, CH2CH3), 1.05 (3H, s, CH3), 1.23 (3H, t, J = 7.2 

Hz, CH2CH3), 3.31 (1H, d, J = 10.2 Hz, CH(H)Br), 3.43 (1H, d, J = 10.2 Hz, CH(H)Br), 3.88-

4.04 (2H, m, OCH2), 3.98 (1H, d, J = 6.6 Hz, CH(COOEt)2), 4.16 (2H, q, J = 7.2 Hz, OCH2), 
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4.38 (1H, d, J = 6.6 Hz, CHN), 7.26-7.60 (10H, m, 10x CHarom). 13C NMR (75 MHz, CDCl3):  13.9 (CH2CH3), 

14.0 (CH2CH3), 22.0 (CCH3(CH3)), 23.4 (CCH3(CH3)), 40.8 (C(CH3)2), 44.3 (CH2Br), 54.3 (CH(COOEt)2), 61.4 

(OCH2), 61.6 (OCH2), 65.9 (CHN), 127.9, 128.1, 128.6, 128.76, 128.82 and 130.2 (10x CHarom), 135.6 

(Carom,quat), 139.7 (Carom,quat), 167.9, 168.2 and 169.3 (2x C=O and C=N). IR (ATR, cm-1): νc=o = 1727, νC=N = 

1626, νmax = 1290, 1222, 1178, 1030, 699. MS (ES+): m/z (%): 488/90 (M + H+, 100). El. Anal. Calcd for 

C25H30BrNO4: C 61.48, H 6.19, N 2.87, found C 61.39, H 6.06, N 2.88. 

Diethyl 2-[3-chloro-2,2-dimethyl-1-(diphenylmethylideneamino)propyl]malonate 174d 

White crystals. Melting point: 83.9-84.1 °C. Yield: 67%. 1H NMR (300 MHz, CDCl3):  

0.91 (3H, s, CH3), 1.04 (3H, t, J = 6.9 Hz, CH2CH3), 1.04 (3H, s, CH3), 1.23 (3H, t, J = 6.9 

Hz, CH2CH3), 3.36 (1H, d, J = 11.0 Hz, CH(H)Cl), 3.47 (1H, d, J = 11.0 Hz, CH(H)Cl), 3.94 

(2H, q, J = 6.9 Hz, OCH2), 3.99 (1H, d, J = 6.3 Hz, CH(COOEt)2), 4.16 (2H, q, J = 6.9 Hz, 

OCH2), 4.36 (1H, d, J = 6.3 Hz, CHN), 7.26-7.59 (10H, m, 10x CHarom). 13C NMR (75 MHz, CDCl3):  13.9 

(CH2CH3), 14.0 (CH2CH3), 21.0 (CCH3(CH3)), 22.3 (CCH3(CH3)), 41.4 (C(CH3)2), 53.4 (CH2Cl), 54.2 (CH(COOEt)2), 

61.4 (OCH2), 61.6 (OCH2), 65.8 (CHN), 127.9, 128.0, 128.6, 128.77, 128.85 and 130.2 (10x CHarom), 135.6 

(Carom,quat), 139.8 (Carom,quat), 168.0, 168.2 and 169.3 (2x C=O and C=N). IR (ATR, cm-1): νC=O = 1723, νC=N = 

1627, νmax = 1282, 1221, 1180, 1030, 700. MS (ES+): m/z (%): 444/46 (M + H+, 100). El. Anal. Calcd for 

C25H30ClNO4: C 67.63, H 6.81, N 3.15, found C 67.59, H 6.85, N 3.17. 

The spectral data of dimethyl 2-[3-chloro-2,2-dimethyl-1-(diphenylmethylideneamino)propyl]malonate 

174b were in accordance with the data reported in a previous Master thesis.13 

5.4.2 Synthesis of diethyl 2-[2,2-dimethyl-3-(diphenylmethylideneamino)-

propylidene]malonate 175b 

In a flame-dried flask, triethylamine (1.05 equiv, 0.17 g, 1.7 mmol) was added to a mixture of diethyl 2-(3-

bromo-2,2-dimethylpropylidene)malonate 11c (1 equiv, 0.50 g, 1.63 mmol) and 

diphenylmethylideneamine (1.05 equiv, 0.31 g, 1.71 mmol). The reaction mixture was stirred at 60 °C 

under solvent-free conditions for 20 hours. Subsequently, dry diethyl ether was added, the solution was 

filtered and the solvent was removed in vacuo. Pure diethyl 2-[2,2-dimethyl-3-

(diphenylmethylideneamino)propylidene]malonate 175b was obtained after recrystallization from diethyl 

ether in a yield of 38%. 
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Diethyl 2-[2,2-dimethyl-3-(diphenylmethylideneamino)propylidene]malonate 175b 

White crystals. Melting point: 75.6-77.0 °C. Yield: 38%. 1H NMR (300 MHz, 

CDCl3):  1.18 (6H, s, C(CH3)2), 1.28 (3H, t, J = 7.2 Hz, CH2CH3), 1.31 (3H, t, J = 7.2 

Hz, CH2CH3), 3.31 (2H, s, NCH2), 4.22 (2H, q, J = 7.2 Hz, OCH2), 4.24 (2H, q, J = 7.2 

Hz, OCH2), 7.07 (1H, s, CH=C), 7.11-7.15 (2H, m, 2x CHarom), 7.29-7.50 (6H, m, 6x CHarom), 7.61-7.65 (2H, m, 

2x CHarom). 13C NMR (75 MHz, CDCl3):  14.0 (CH2CH3), 14.1 (CH2CH3), 24.7 (C(CH3)2), 39.4 (C(CH3)2), 61.26 

(OCH2), 61.35 (OCH2), 64.2 (NCH2), 126.4 (C=CH), 127.8, 128.0, 128.4, 128.5, 128.6 and 130.0 (10x CHarom), 

136.8 (Carom,quat), 139.8 (Carom,quat), 153.7 (C=CH), 164.5, 167.0 and 168.7 (2x C=O and C=N). IR (ATR, cm-1): 

νC=O = 1725, νC=C = 1646, νC=N = 1626, νmax = 1226, 1204, 1027, 707, 700. MS (ES+): m/z (%): 408 (M + H+, 

100). El. Anal. Calcd for C25H29NO4: C 73.69, H 7.17, N 3.44, found C 73.28, H 7.17, N 3.41. 

5.4.3 Synthesis of dimethyl 2-{[(3-tert-butyldimethylsilyl)oxy]-propylidene}malonate 

179 

Dimethyl 2-{[(3-tert-butyldimethylsilyl)oxy]propylidene}malonate 179 was synthesized following a 

literature procedure.79a 

Dimethyl 2-[(3-tert-butyldimethylsilyl)oxy]propylidenemalonate 179 

Colorless oil. Rf 0.13 (petroleum ether/EtOAc 10/1). Yield: 60%. 1H NMR (300 

MHz, CDCl3):  0.05 (6H, s, 2x SiCH3), 0.89 (9H, s, SiC(CH3)3), 2.54 (2H, dt, J = 

7.6 Hz, 6.3 Hz, OCH2CH2), 3.74 (2H, t, J = 6.3 Hz, OCH2), 3.79 (3H, s, OCH3), 3.83 (3H, s, OCH3), 7.14 (1H, t, J 

= 7.6 Hz, CH=C). 13C NMR (75 MHz, ref = CDCl3):  -5.3 (2x SiCH3), 18.3 (SiC(CH3)3), 25.9 (SiC(CH3)3), 33.4 

(OCH2CH2), 52.3 (OCH3), 52.4 (OCH3), 61.3 (OCH2), 129.1 (CH=C), 147.7 (CH=C), 164.3 (C=O), 165.8 (C=O). 

IR (ATR, cm-1): νC=O = 1728, νC=C = 1649, νmax = 1250, 1212, 1096, 832, 775. MS (ES+): m/z (%): 303 (M + H+, 

100). HRMS (ES+): calcd. for C14H27O5Si+ (M + H+): 303.1622, found 303.1610.  

5.4.4 Synthesis of dimethyl 2-{1-(diphenylmethylideneamino)-3-[(tert-

butyldimethylsilyl)oxy]propyl}malonate 181 

To a solution of dimethyl 2-{[(3-tert-butyldimethylsilyl)oxy]propylidene}malonate 179 (1.00 g, 3.3 mmol) 

in CH2Cl2 (30 mL), diphenylmethylideneamine (2 equiv, 1.20 g, 6.6 mmol) and Et3N (2 equiv, 0.67 g, 6.6 

mmol) were added and this mixture was stirred at reflux temperature for 30 hours. The solvent was 

removed in vacuo and 30 mL of dry Et2O was added. After filtration of the solids, the solvent was 
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evaporated, affording crude malonate 181 as yellow crystals. After recrystallisation from hexane, pure 

malonate 181 (1.01 g, 2.1 mmol) was obtained as white crystals. 

Dimethyl 2-{1-(diphenylmethylideneamino)-3-[(tert-butyldimethylsilyl)oxy]propyl}malonate 181 

White crystals. Yield: 64%. 1H NMR (300 MHz, CDCl3):  0.01 (3H, s, SiCH3), 

0.02 (3H, s, SiCH3), 0.85 (9H, s, SiC(CH3)3), 1.86-1.93 (2H, m, OCH2CH2), 3.49-

3.57 (2H, m, OCH2), 3.69 (3H, s, OCH3), 3.71 (3H, s, OCH3), 3.94 (1H, d, J = 7.7 

Hz, CH(COOMe)2), 4.22-4.29 (1H, m, CHN), 7.28-7.59 (10H, m, 10x CHarom). 13C 

NMR (75 MHz, CDCl3):  -5.4 (2x SiCH3), 18.2 (SiC(CH3)3), 25.9 (SiC(CH3)3), 37.1 (OCH2CH2), 52.3 (2x OCH3), 

56.8 (CH(COOMe)2), 58.4 (CHN), 59.8 (OCH2), 127.9, 128.1 and 128.3 (6x CHarom), 128.5 (CHarom), 128.6 (2x 

CHarom), 130.0 (CHarom), 136.2 (Carom,quat), 140.1 (Carom,quat), 168.4, 168.5 and 168.7 (2x C=O and C=N). IR (ATR, 

cm-1): νC=O = 1742, νC=O = 1721, νC=N = 1627, νmax = 1264, 1253, 1156, 1083, 839, 780, 694. MS (ES+): m/z (%): 

484 (M + H+, 100). 

5.5 Synthesis of 2-amino-3,3-difluorocyclopropane-1,1-dicarboxylates 

5.5.1 Synthesis of 2-(2-bromo-2,2-difluoro-1-hydroxyethyl)malonates 182 

The synthesis of dimethyl 2-(2-bromo-2,2-difluoro-1-hydroxyethyl)malonate 182a is described as 

representative. To a solution of ethyl bromodifluoroacetate (3.00 g, 14.8 mmol) in dry dichloromethane 

(50 mL), was added a solution of DIBAL (1.2M in toluene, 1.1 equiv, 13.6 mL, 16.3 mmol) at -78 °C under 

nitrogen atmosphere and this mixture was stirred for two hours at the same temperature. In another flask, 

dimethyl malonate (3 equiv, 5.85 g, 44.3 mmol) was dissolved in dry THF (50 mL) and NaH (3.3 equiv, 1.17 

g, 48.8 mmol) was added at 0 °C. This mixture was stirred at 0 °C for 30 minutes and was then transferred 

into the former reaction mixture. Stirring was continued for one hour while the mixture was allowed to 

warm to room temperature, after which HCl (2M in H2O) was added until pH 6 was reached. After filtration 

over Celite® and extraction with EtOAc (3x 40 mL), the combined organic phases were washed with brine 

(40 mL). After drying (MgSO4), filtration and evaporation of the organic phase in vacuo, crude malonate 

182a was purified by means of column chromatography (petroleum ether/EtOAc 9/1) affording pure 

dimethyl 2-(2-bromo-2,2-difluoro-1-hydroxyethyl)malonate 182a (2.63 g, 9.03 mmol). 
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Dimethyl 2-(2-bromo-2,2-difluoro-1-hydroxyethyl)malonate 182a 

Pale yellow oil. Rf 0.03 (petroleum ether/EtOAc 9/1). Yield: 61%. 1H NMR (300 MHz, 

CDCl3):  3.82 (3H, s, OCH3), 3.84 (3H, s, OCH3), 3.90 (1H, d, J = 3.3 Hz, CH(COOMe)2), 

4.62-4.70 (2H, m, CHOH). 13C NMR (75 MHz, ref = CDCl3):  51.6 (CH(COOMe)2), 53.3 

(OCH3), 53.4 (OCH3), 75.3 (t, J = 26.0 Hz, CHOH), 122.9 (t, J = 309.8 Hz, CF2Br), 160.1 and 167.9 (2x C=O). 

19F NMR (282 MHz, CDCl3, ref = CFCl3):  -57.01 (1F, dd, J = 166.7 Hz, JH,F = 7.2 Hz, CF(F)Br), -59.75 (1F, dd, 

J = 166.7 Hz, JH,F = 10.5 Hz, CF(F)Br). IR (ATR, cm-1): νOH = 3458, νC=O = 1736, νmax = 1197, 1159, 1100, 1023, 

925. MS (ES+): m/z (%): 308/10 (M + NH4
+, 100). HRMS (ES-): calcd. for C7H8BrF2O5

- (M - H+): 288.9529, 

found 288.9528.  

Diethyl 2-(2-bromo-2,2-difluoro-1-hydroxyethyl)malonate 182b 

Pale yellow oil. Rf 0.14 (petroleum ether/EtOAc 9/1). Yield: 62%. 1H NMR (400 MHz, 

CDCl3):  1.30 (3H, t, J = 7.0 Hz, CH2CH3), 1.31 (3H, t, J = 7.0 Hz, CH2CH3), 3.85 (1H, d, J = 

3.9 Hz, CH(COOEt)2), 4.28 (2H, q, J = 7.0 Hz, OCH2CH3), 4.30 (2H, q, J = 7.2 Hz, OCH2CH3), 

4.66 (1H, dddd, JH,F = 11.1 Hz, J = 9.1 Hz, JH,F = 7.9 Hz, J = 3.9 Hz, CHOH), 4.78 (1H, d, J = 9.1 Hz, OH). 13C 

NMR (100.6 MHz, CDCl3):  13.88 and 13.93 (2x CH3), 51.0 (CH(COOEt)2), 62.7 and 62.8 (2x OCH2), 75.9 (dd, 

J = 26.0 Hz, 24.7 Hz, CHOH), 122.8 (t, J = 310.6 Hz, CF2Br), 165.6 and 168.1 (2x C=O). 19F NMR (376.5 MHz, 

CDCl3, ref = CFCl3):  -57.15 (1F, dd, J = 166.5 Hz, JH,F = 7.9 Hz, CF(F)Br), -59.57 (1F, dd, J = 166.5 Hz, JH,F = 

11.1 Hz, CF(F)Br). IR (ATR, cm-1): νOH = 3456, νC=O = 1736, νmax = 1301, 1177, 1096, 1024, 927. MS (ES+): m/z 

(%): 319/21 (M + H+, 40). HRMS (ES+): calcd for C9H14BrF2O5
+: 318.9987, found 318.9988. 

Diisopropyl 2-(2-bromo-2,2-difluoro-1-hydroxyethyl)malonate 182c 

Pale yellow oil. Rf 0.12 (petroleum ether/EtOAc 9/1). Yield: 59%. 1H NMR (300 MHz, 

CDCl3):  1.27 (6H, d, J = 6.1 Hz, CH(CH3)2), 1.30 (6H, d, J = 6.1 Hz, CH(CH3)2), 3.85 (1H, 

d, J = 3.9 Hz, CH(COOiPr)2), 4.64 (1H, dddd, JH,F = 11.3 Hz, J = 8.7 Hz, JH,F = 8.1 Hz, J = 3.9 

Hz, CHOH), 4.92 (1H, d, J = 8.7 Hz, OH), 5.15 (2H, septet, J = 6.4 Hz, 2x CH(CH3)2). 13C NMR (75 MHz, ref = 

CDCl3):  21.4, 21.48, 21.51 and 21.7 (4x CH3), 51.5 (CH(COOiPr)2), 70.6 and 70.7 (2x CH(CH3)2), 75.8 (t, J = 

25.4 Hz, CHOH), 123.1 (t, J = 310.4 Hz, CF2Br), 165.2 and 167.7 (2x C=O). 19F NMR (282 MHz, CDCl3, ref = 

CFCl3):  -57.02 (1F, dd, J = 166.1 Hz, JH,F = 8.1 Hz, CF(F)Br), -59.75 (1F, dd, J = 166.1 Hz, JH,F = 11.3 Hz, 

CF(F)Br). IR (ATR, cm-1): νOH = 3458, νC=O = 1737, νmax = 1288, 1179, 1095, 1021, 904. MS (ES+): m/z (%): 

347/49 (M + H+, 40), 364/66 (M + NH4
+, 100). HRMS (ES-): calcd for C11H16BrF2O5

- (M - H+): 345.0155, found 

345. 
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5.5.2 Synthesis of 2-(2-bromo-2,2-difluoroethylidene)malonates 16 

The synthesis of dimethyl 2-(2-bromo-2,2-difluoroethylidene)malonate 16a is described as representative. 

Dimethyl 2-(2-bromo-2,2-difluoro-1-hydroxyethyl)malonate 182a (2.91 g, 10 mmol) was dissolved in dry 

CH2Cl2 (50 mL) and acetyl chloride (2.2 equiv, 1.73 g, 22.0 mmol) and Et3N (4.5 equiv, 4.55 g, 45.0 mmol) 

were added dropwise at 0 °C. After stirring at 0 °C for an additional five minutes, the reaction mixture was 

stirred at reflux temperature for 2.5 hours. A saturated aqueous solution of NH4Cl (40 mL) was added, the 

mixture was extracted with CH2Cl2 (3x 30 mL) and the combined organic phases were dried over MgSO4. 

After removal of the drying agent through filtration, the solvent was evaporated under reduced pressure 

affording crude ethylidenemalonate 16a. After column chromatography, pure dimethyl 2-(2-bromo-2,2-

difluoroethylidene)malonate 16a (2.20 g, 8.1 mmol) was obtained as a colorless oil. 

Dimethyl 2-(2-bromo-2,2-difluoroethylidene)malonate 16a 

Colorless oil. Rf 0.29 (petroleum ether/EtOAc 9/1). Yield: 81%. 1H NMR (300 MHz, 

CDCl3):  3.87 (3H, s, OCH3), 3.89 (3H, s, OCH3), 7.00 (1H, t, JH,F = 11.6 Hz, CH). 13C NMR 

(75 MHz, ref = CDCl3):  53.2 (OCH3), 53.6 (OCH3), 113.8 (t, J = 302.3 Hz, CBrF2), 129.3 (C(COOMe)2), 134.9 

(t, J = 26.5 Hz, CH), 162.2 and 163.2 (2x C=O). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3): δ -49.50 (2F, d, JH,F 

= 11.3 Hz, CF2Br). IR (ATR, cm-1): νC=O = 1737, νC=C = 1665, νmax = 1259, 1220, 1114, 946, 932. MS (ES+): m/z 

(%): 290/92 (M + NH4
+, 100). HRMS: the mother ion (M + H+) could not be detected. 

Diethyl 2-(2-bromo-2,2-difluoroethylidene)malonate 16b 

Colorless oil. Rf 0.20 (petroleum ether/EtOAc 8/2). Yield: 76%. 1H NMR (300 MHz, 

CDCl3):  1.33 (3H, t, J = 7.2 Hz, OCH2CH3), 1.35 (3H, t, J = 7.2 Hz, OCH2CH3), 4.32 (2H, q, 

J = 7.2 Hz, OCH2CH3), 4.36 (2H, q, J = 7.2 Hz, OCH2CH3), 6.97 (1H, t, JH,F = 11.8 Hz, CH). 13C NMR (75 MHz, 

ref = CDCl3):  11.5 (2x OCH2CH3), 59.9 (OCH2CH3), 60.5 (OCH2CH3), 111.8 (t, J = 302.3 Hz, CF2Br), 128.0 

(C(COOEt)2), 131.6 (t, J = 26.5 Hz, CH), 159.2 and 160.2 (2x C=O). 19F NMR (282 MHz, CDCl3, ref = CFCl3): δ 

-48.85 (2F, d, JH,F = 11.8 Hz, CF2Br). IR (ATR, cm-1): νC=O = 1736, νC=C = 1666, νmax = 1251, 1218, 1111, 947. 

MS (ES+): m/z (%) = 301/3 (M + H+, 10), 318/20 (M + NH4
+, 15). HRMS (ES+) calcd for C9H15BrF2NO4

+ 318.0147 

(M + NH4
+), found 318.0144. 

Diisopropyl 2-(2-bromo-2,2-difluoroethylidene)malonate 16c 

Colorless oil. Rf 0.34 (petroleum ether/EtOAc 95/5). Yield: 71%. 1H NMR (300 MHz, 

CDCl3):  1.30 (6H, d, J = 6.1 Hz, CH(CH3)2), 1.33 (6H, d, J = 6.1 Hz, CH(CH3)2), 5.13 (1H, 
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septet, J = 6.1 Hz, CH(CH3)2), 5.23 (1H, septet, J = 6.1 Hz, CH(CH3)2), 6.92 (1H, t, JH,F = 11.8 Hz, CH). 13C NMR 

(75 MHz, CDCl3):  21.5 (CH(CH3)2), 21.6 (CH(CH3)2), 70.3 (CH(CH3)2), 70.9 (CH(CH3)2), 114.1 (t, J = 302.3 Hz, 

CF2Br), 130.8 (t, J = 4.6 Hz, C(COOiPr)2), 133.6 (t, J = 12.6 Hz, CH), 161.3 and 162.3 (2x C=O). 19F NMR (376.5 

MHz, CDCl3, ref = CFCl3):  -48.36 (2F, d, JH,F = 11.9 Hz, CF2Br). IR (ATR, cm-1): νC=O = 1730, νC=C = 1666, νmax 

= 1257, 1225, 1096, 952. MS (ES+): m/z (%): 329/31 (M + H+, 40). HRMS (ES+): calcd for C11H16BrF2O4
+: 

329.0195, found 329.0194. 

5.5.3 Synthesis of 2-[2-bromo-2,2-difluoro-1-(diphenylmethylideneamino)ethyl]-

malonates 183 

The synthesis of dimethyl 2-[2-bromo-2,2-difluoro-1-(diphenylmethylideneamino)ethyl]malonate 183a is 

described as representative. Diphenylmethylideneamine (1.05 equiv, 0.14 g, 0.77 mmol) was added to 

dimethyl 2-(2-bromo-2,2-difluoroethylidene)malonate 16a (0.20 g, 0.73 mmol) and this mixture was 

stirred for one hour at room temperature. After recrystallization from MeOH, pure dimethyl 2-[2-bromo-

2,2-difluoro-1-(diphenylmethylideneamino)ethyl]malonate 183a (0.30 g, 0.66 mmol) was obtained as 

white crystals. 

Dimethyl 2-[2-bromo-2,2-difluoro-1-(diphenylmethylideneamino)ethyl]malonate 183a 

White crystals. Melting point: 69.7-70.7 °C. Yield: 90%. 1H NMR (300 MHz, CDCl3):  

3.67 (3H, s, OCH3), 3.72 (3H, s, OCH3), 4.27 (1H, d, J = 8.3 Hz, CH(COOMe)2), 4.77 (1H, 

ddd, J = 8.3 Hz, JH,F = 7.9 Hz, 5.9 Hz, CHN), 7.31-7.65 (10H, m, 10x CHarom). 13C NMR (75 

MHz, CDCl3):  52.9 (OCH3), 53.0 (OCH3), 54.4 (d, J = 3.5 Hz, CH(COOMe)2), 67.6 (t, J = 

23.1 Hz, CHN), 123.4 (t, J = 309.2 Hz, CF2Br), 128.1 (2x CHarom), 128.3 (2x CHarom), 128.4 (2x CHarom), 129.1 

(CHarom), 129.3 (2x CHarom), 131.1 (CHarom), 135.2 (Carom,quat), 139.2 (Carom,quat), 166.3 and 166.5 (2x C=O), 

175.0 (C=N). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3): δ -50.63 (1F, dd, J = 164.9 Hz, JH,F = 7.9 Hz, CF(F)Br), 

-53.01 (1F, dd, J = 164.9 Hz, JH,F = 5.9 Hz, CF(F)Br). IR (ATR, cm-1): νC=O = 1736, νC=N = 1626, νmax = 1284, 1160, 

707, 700. MS (ES+): m/z (%): 454/56 (M + H+, 100). HRMS (ES+): calcd for C20H19BrF2NO4
+: 454.0460, found 

454.0442. 
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Diethyl 2-[2-bromo-2,2-difluoro-1-(diphenylmethylideneamino)ethyl]malonate 183b 

White crystals. Melting point: 62-63 °C. Rf 0.30 (petroleum ether/EtOAc 9/1). Yield: 

92%. 1H NMR (400 MHz, CDCl3):  1.16 (3H, t, J = 7.1 Hz, OCH2CH3), 1.23 (3H, t, J = 7.1 

Hz, OCH2CH3), 4.04-4.21 (4H, m, 2x OCH2CH3), 4.22 (1H, d, J = 8.6 Hz, CH(COOEt)2), 4.79 

(1H, ddd, J = 8.6 Hz, JH,F = 8.1 Hz, 6.4 Hz, CHN), 7.31-7.37 (4H, m, 4x CHarom), 7.39-7.44 

(1H, m, CHarom), 7.46-7.52 (3H, m, 3x CHarom), 7.63-7.65 (2H, m, 2x CHarom). 13C NMR (100.6 MHz, CDCl3):  

13.9 (CH3), 14.0 (CH3), 54.7 (d, J = 3.2 Hz, CH(COOEt)2), 61.9 (OCH2), 62.1 (OCH2), 67.6 (t, J = 23.0 Hz, CHN), 

123.5 (t, J = 309.1 Hz, CF2Br), 128.0 (2x CHarom), 128.28 (2x CHarom), 128.32 (2x CHarom), 129.0 (CHarom), 129.3 

(2x CHarom), 131.0 (CHarom), 135.2 (Carom,quat), 139.2 (Carom,quat), 165.9 and 166.1 (2x C=O), 174.7 (C=N). 19F 

NMR (376.5 MHz, CDCl3, ref = CFCl3):  -50.60 (1F, dd, J = 164.4 Hz, JH,F = 8.1 Hz, CF(F)Br), -52.97 (1F, dd, J 

= 164.4 Hz, JH,F = 6.4 Hz, CF(F)Br). IR (ATR, cm-1): νC=O = 1759, νC=N = 1625, νmax = 1299, 1270, 1030, 1016, 

697. MS (ES+): m/z (%): 482/84 (M + H+, 100). HRMS (ES+): calcd for C22H23BrF2NO4
+: 482.0773, found 

482.0789. El. Anal. Calcd for C22H22BrF2NO4: C 54.79, H 4.60, N 2.90, found C 55.11, H 4.57, N 2.60. 

Diisopropyl 2-[2-bromo-2,2-difluoro-1-(diphenylmethylideneamino)ethyl]malonate 183c 

White crystals. Melting point: 87-88 °C. Yield: 86%. 1H NMR (300 MHz, CDCl3):  1.13 

(6H, d, J = 6.6 Hz, CH(CH3)2), 1.20 (3H, d, J = 6.6 Hz, CH(CH3)(CH3)), 1.23 (3H, d, J = 6.6 

Hz, CH(CH3)(CH3)), 4.15 (1H, d, J = 8.3 Hz, CH(COOiPr)2), 4.81 (1H, ddd, J = 8.3 Hz, JH,F = 

8.1 Hz, 6.3 Hz, CHN). 13C NMR (75 MHz, ref = CDCl3): 21.55 (CH3), 21.63 (2x CH3), 21.8 

(CH3), 55.2 (CH(COOiPr)2), 67.6 (t, J = 23.1 Hz, CHN), 69.7 (CH(CH3)2), 69.8 (CH(CH3)2), 123.7 (t, J = 309.2 Hz, 

CF2Br), 128.1 (2x CHarom), 128.4 (2x CHarom), 128.5 (2x CHarom), 129.1 (CHarom), 129.5 (2x CHarom), 131.1 

(CHarom), 135.4 (Carom,quat), 139.4 (Carom,quat), 165.7 and 165.9 (2x C=O), 174.6 (C=N). 19F NMR (282 MHz, 

CDCl3, ref = CFCl3 ):  -50.69 (1F, dd, J = 163.8 Hz, JH,F = 8.1 Hz, CF(F)Br), -53.06 (1F, dd, J = 163.8 Hz, JH,F = 

6.3 Hz, CF(F)Br). IR (ATR, cm-1): νC=O = 1754, νC=N = 1626, νmax = 1286, 1269, 1094, 1033, 692. MS (ES+): m/z 

(%) = 510/12 (M + H+, 100). HRMS (ES+) calcd for C24H27BrF2NO4
+: 510.1086, found 510.1085. El. Anal. Calcd 

for C24H26BrF2NO4: C 56.48, H 5.14, N 2.74, found C 56.58, H 4.96, N 2.69. 

5.5.4 Synthesis of 2,2-difluoro-3-(diphenylmethylideneamino)cyclopropane-1,1-

dicarboxylates 184 

The synthesis of dimethyl 2,2-difluoro-3-(diphenylmethylideneamino)cyclopropane-1,1-dicarboxylate 

184a is described as representative. Dimethyl 2-[2-bromo-2,2-difluoro-1-(diphenylmethylideneamino)-
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ethyl]malonate 183a (0.28 g, 1.03 mmol) was dissolved in dry THF (5 mL) and KOtBu (1M in THF, 1.1 equiv, 

1.13 mmol, 1.13 mL) was added. This mixture was stirred at reflux temperature for one hour after which 

it was poured in H2O (5 mL) and extracted with EtOAc (3x 5 mL). The organic fractions were dried (MgSO4), 

filtered and evaporated in vacuo. After flash column chromatography, pure dimethyl 2,2-difluoro-

3-(diphenylmethylideneamino)cyclopropane-1,1-dicarboxylate 184a (0.077 g, 0.22 mmol) was obtained.  

Due to the instability of cyclopropanes 184, no full characterization could be obtained. 

Dimethyl 2,2-difluoro-3-(diphenylmethylideneamino)cyclopropane-1,1-dicarboxylate 184a 

Yellow oil. Rf 0.14 (petroleum ether/EtOAc 8/2). Yield: 20%. 1H NMR (400 MHz, CDCl3):  

3.75 (3H, s, OCH3), 4.09 (3H, s, OCH3), 5.64 (1H, dd, JH,F = 15.1 Hz, 2.7 Hz, CHN), 7.28-7.31 

(2H, m, 2x CHarom), 7.36-7.40 (2H, m, 2x CHarom), 7.46-7.48 (1H, m, 1x CHarom), 7.49-7.52 

(3H, m, 3x CHarom), 7.70-7.72 (2H, m, 2x CHarom). 13C NMR (100.6 MHz, CDCl3):  50.9 

(OCH3), 57.2 (OCH3), 95.7 (dd, J = 41.4 Hz, 22.6 Hz, CHN), 125.0 (dd, J = 248.8 Hz, 240.8 Hz, CF2), 129.9 (2x 

CHarom), 128.3 (2x CHarom), 128.7 (2x CHarom), 129.6 (2x CHarom), 129.8 (CHarom), 131.8 (CHarom), 135.1 

(Carom,quat), 138.0 (Carom,quat), 162.7 (t, J = 3.6 Hz, C=O), 170.6 (dd, J = 9.0 Hz, 6.2 Hz, C=O), 175.1 (C=N). 

C(COOMe)2: not visible. 19F NMR (376.5 MHz, CDCl3, ref = CFCl3):  -81.57 (1F, dd, J = 237.0 Hz, JH,F = 15.1 

Hz, CF(F)), -95.55 (1F, dd, J = 237.0 Hz, JH,F = 2.7 Hz, CF(F)). LC-MS (ES+): m/z (%) = 374 (M + H+, 100). 

Diethyl 2,2-difluoro-3-(diphenylmethylideneamino)cyclopropane-1,1-dicarboxylate 184b 

Yellow oil. Rf 0.36 (petroleum ether/EtOAc 7/3). Yield: 22%. 1H NMR (300 MHz, CDCl3):  

1.27 (3H, t, J = 7.2 Hz, CH3), 1.46 (3H, t, J = 7.2 Hz, CH3), 4.19-4.26 (2H, m, OCH2), 4.41-4.54 

(2H, m, OCH2), 5.61 (1H, dd, JH,F = 15.3 Hz, 2.2 Hz, CHN), 7.26-7.51 (8H, m, 8x CHarom), 7.69-

7.71 (2H, m, 2x CHarom). 13C NMR (75 MHz, CDCl3):  14.5 (CH3), 14.8 (CH3), 59.5 (OCH2), 

67.1 (OCH2), 95.5 (dd, J = 41.5 Hz, 23.1 Hz, CHN), 125.1 (dd, J = 246.9 Hz, 240.0 Hz, CF2), 128.0 (2x CHarom), 

128.3 (2x CHarom), 128.7 (2x CHarom), 129.6 (2x CHarom), 129.8 (CHarom), 131.7 (CHarom), 135.2 (Carom,quat), 138.2 

(Carom,quat), 162.5 (C=O), 170.4 (dd, J = 8.7 Hz, 6.3 Hz, C=O), 174.9 (C=N). C(COOEt)2: not visible. 19F NMR 

(282 MHz, CDCl3, ref = CFCl3):  -80.83 (1F, dd, J = 238.1 Hz, JH,F = 15.3 Hz, CF(F)), -95.42 (1F, d, J = 238.1 Hz, 

CF(F)). LC-MS (ES+): m/z (%) = 402 (M + H+, 100). 
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Diisopropyl 2,2-difluoro-3-(diphenylmethylideneamino)cyclopropane-1,1-dicarboxylate 184c 

Yellow oil. Rf 0.15 (petroleum ether/EtOAc 93/7). Yield: 56%. 1H NMR (400 MHz, CDCl3): 

 1.25 (3H, d, J = 6.2 Hz, CH(CH3)(CH3)), 1.26 (3H, d, J = 6.2 Hz, CH(CH3)(CH3)), 1.41 (3H, d, 

J = 6.2 Hz, CH(CH3)(CH3)), 1.49 (3H, d, J = 6.2 Hz, CH(CH3)(CH3)), 5.05-5.16 (2H, m, 2x 

CH(CH3)2), 5.58 (1H, dd, JH,F = 15.0 Hz, 2.2 Hz, CHN), 7.29-7.32 (2H, m, 2x CHarom), 7.34-

7.39 (2H, m, 2x CHarom), 7.45-7.46 (1H, m, CHarom), 7.50-7.51 (3H, m, 3x CHarom), 7.68-7.71 (2H, m, 2x CHarom). 

13C NMR (100.6 MHz, ref = CDCl3):  22.00, 22.04, 22.3 and 22.4 (4x CH3), 66.6 (OCH), 76.0 (OCH), 95.3 (dd, 

J = 41.3 Hz, 22.5 Hz, CHN), 125.2 (dd, J = 249.8 Hz, 242.5 Hz, CF2), 128.1 (2x CHarom), 128.3 (2x CHarom), 128.7 

(2x CHarom), 129.6 (2x CHarom), 129.8 (CHarom), 131.6 (CHarom), 135.1 (Carom,quat), 138.2 (Carom,quat), 162.2 (t, J = 

3.4 Hz, C=O), 170.0 (dd, J = 8.9 Hz, 6.0 Hz, C=O), 174.6 (C=N). C(COOiPr)2: not visible. 19F NMR (376.5 MHz, 

CDCl3, ref = CFCl3):  -81.41 (1F, dd, J = 238.4 Hz, 15.0 Hz, CF(F)), -96.58 (1F, d, J = 238.4 Hz, CF(F)). IR (ATR, 

cm-1): νC=O = 1709, νC=N = 1617, νmax = 1430, 1321, 1069, 983, 697. LC-MS (ES+): m/z (%) = 430 (M + H+, 100). 

5.5.5 Synthesis of 3,3-difluoro-5,5-diphenyl-1-pyrroline-4,4-dicarboxylates 185 

The synthesis of dimethyl 3,3-difluoro-5,5-diphenyl-1-pyrroline-4,4-dicarboxylate 185a is described as 

representative. Dimethyl 2-[2-bromo-2,2-difluoro-1-(diphenylmethylideneamino)ethyl]malonate 183a 

(0.50 g, 1.85 mmol) was dissolved in dry THF (20 mL) and KOtBu (1M in THF, 1.1 equiv, 2.04 mmol, 2.04 

mL) was added. This mixture was stirred at reflux temperature for five hours after which it was poured in 

H2O (20 mL) and extracted with EtOAc (3x 20 mL). The organic fractions were dried (MgSO4), filtered and 

evaporated in vacuo. After flash column chromatography, pure dimethyl 3,3-difluoro-5,5-diphenyl-1-

pyrroline-4,4-dicarboxylate 185a (0.49 g, 1.18 mmol) was obtained. 

Dimethyl 3,3-difluoro-5,5-diphenyl-1-pyrroline-4,4-dicarboxylate 185a 

Pale yellow crystals. Melting point: 93-94 °C. Rf 0.27 (petroleum ether/EtOAc 95/5). 

Yield: 73%. 1H NMR (400 MHz, CDCl3):  3.47 (6H, s, 2x OCH3), 7.22-7.32 (6H, m, 6x 

CHarom), 7.42-7.44 (4H, m, 4x CHarom), 8.01 (1H, t, JH,F = 1.8 Hz, HC=N). 13C NMR (100.6 

MHz, ref = CDCl3):  53.1 (2x OCH3), 73.1 (t, J = 18.6 Hz, C(COOMe)2), 88.7 (C(Ph)2), 126.0 (t, J = 261.8 Hz, 

CF2), 128.0 (2x CHarom), 128.1 (4x CHarom), 128.5 (4x CHarom), 140.4 (2x Carom,quat), 156.2 (t, J = 27.3 Hz, HC=N), 

165.1 (2x C=O). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3): not visible. IR (ATR, cm-1): νC=O = 1754, νC=O = 1732, 

νmax = 1255, 1175, 1100, 1068, 759, 694. MS (ES+): m/z (%): 374 (M + H+, 100). HRMS (ES+): calcd. for 

C20H18F2NO4
+: 374.1198, found 374.1199. 
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Diethyl 3,3-difluoro-5,5-diphenyl-1-pyrroline-4,4-dicarboxylate 185b 

Pale yellow crystals. Melting point: 63-64 °C. Rf 0.42 (petroleum ether/EtOAc 7/3). Yield: 

39%. 1H NMR (300 MHz, CDCl3): 1.00 (6H, t, J = 7.2 Hz, 2x CH3), 3.82-4.01 (4H, m, 2x 

OCH2), 7.23-7.46 (10H, m, 10x CHarom), 8.01 (1H, t, JH,F = 1.9 Hz, HC=N). 13C NMR (75 MHz, 

CDCl3):  13.4 (2x CH3), 62.4 (2x OCH2), 72.9 (t, J = 18.5 Hz, C(COOEt)2), 88.4 (C(Ph)2), 126.0 (t, J = 261.9 Hz, 

CF2), 127.8 (2x CHarom), 127.9 (4x CHarom), 128.5 (4x CHarom), 140.5 (2x Carom,quat), 156.2 (t, J = 28.3 Hz, HC=N), 

164.4 (2x C=O). 19F NMR (282 MHz, CDCl3). not visible. IR (ATR, cm-1): νC=O = 1734, νmax = 1244, 761, 698. 

MS (ES+): m/z (%): 402 (M + H+, 100). HRMS (ES+): calcd. for C22H22F2NO4
+: 402.1511, found 402.1510. 

Diisopropyl 3,3-difluoro-5,5-diphenyl-1-pyrroline-4,4-dicarboxylate 185c 

This compound was obtained in 66% purity (mixture with benzophenone) 

Yellow oil. Rf 0.35 (petroleum ether/EtOAc 9/1). Crude yield: 45% (66% purity). 1H NMR 

(400 MHz, CDCl3): 0.90 (6H, br s, CH(CH3)2), 1.04 (2H, d, J = 6.3 Hz, CH(CH3)2), 4.74-4.83 

(2H, m, 2x CH(CH3)2), 7.24-7.29 (6H, m, 6x CHarom), 7.41-7.48 (4H, m, 4x CHarom), 8.00 (1H, 

br s, HC=N). 13C NMR (100.6 MHz, CDCl3):  20.9 (CH(CH3)2), 21.0 (CH(CH3)2), 70.5 (2x CH(CH3)2), 72.7 (t, J = 

17.8 Hz, C(COOiPr)2), 88.2 (C(Ph)2), 126.0 (t, J = 261.4 Hz, CF2), 127.7 (2x CHarom), 127.9 (4x CHarom), 128.5 

(4x CHarom), 140.7 (2x Carom,quat), 156.3 (t, J = 28.2 Hz, HC=N), 163.8 (2x C=O). 19F NMR (376.5 MHz, CDCl3). 

not visible. 

5.5.6 Synthesis of 2-fluoro-3-(diphenylmethylideneamino)cycloprop-2-ene-1,1-

dicarboxylates 186 

The synthesis of diethyl 2-fluoro-3-(diphenylmethylideneamino)cycloprop-2-ene-1,1-dicarboxylate 186b 

is described as representative. To a solution of diethyl 2-[2-bromo-2,2-difluoro-1-

(diphenylmethylideneamino)ethyl]malonate 183b (0.67 g, 1.38 mmol) in dry THF (30 mL), was added 

KOtBu (1M in THF, 1.1 equiv, 1.52 mmol, 1.52 mL). This mixture was stirred at reflux temperature for one 

hour after which it was poured in H2O (20 mL) and extracted with EtOAc (3x 20 mL). The organic fractions 

were dried (MgSO4), filtered and evaporated in vacuo. After flash column chromatography, pure dimethyl 

2-(diphenylmethylideneamino)-3-fluorocycloprop-2-ene-1,1-dicarboxylate 186b (53 mg, 0.14 mmol) was 

obtained. 
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Diethyl 2-fluoro-3-(diphenylmethylideneamino)cycloprop-2-ene-1,1-dicarboxylate 186b 

White crystals. Rf 0.25 (petroleum ether/EtOAc 9/1). Yield: 10%. 1H NMR (400 MHz, 

CDCl3):  1.09 (3H, t, J = 7.1 Hz, CH3), 1.31 (3H, t, J = 7.1 Hz, CH3), 3.66 (2H, q, J = 7.1 Hz, 

OCH2), 4.27 (2H, q, J = 7.1 Hz, OCH2), 7.28-7.48 (8H, m, 8x CHarom), 7.65-7.72 (2H, m, 2x 

CHarom). 13C NMR (100.6 MHz, CDCl3):  14.3 (CH3), 14.8 (CH3), 60.1 (OCH2), 66.4 (OCH2), 

86.4 (d, J = 15.8 Hz, C(COOEt)2) 128.2, 128.4 and 130.0 (10x CHarom), 129.6 (d, J = 18.3 Hz, C=CF), 139.5 (2x 

Carom,quat), 143.5 (d, J = 269.2 Hz, CF), 154.5 (d, J = 5.9 Hz, C=N), 156.9 (d, J = 10.2 Hz, C=O), 161.1 (d, J = 4.2 

Hz, C=O). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3):  -151.97 (1F, s, CF). IR (ATR, cm-1) νC=O = 1698, νC=N = 

1637, νmax = 1489, 1463, 1109, 1067, 776, 694. MS (ES+): m/z (%): 382 (M + H+, 100). HRMS (ES+): calcd. for 

C22H21FNO4
+: 382.1449, found 382.1453. 

Diisopropyl 2-fluoro-3-(diphenylmethylideneamino)cycloprop-2-ene-1,1-dicarboxylate 186c 

White crystals. Rf 0.32 (petroleum ether/EtOAc 93/7). Yield: 10%. 1H NMR (400 MHz, 

CDCl3):  1.06 (6H, d, J = 6.2 Hz, CH(CH3)2), 1.29 (6H, d, J = 6.2 Hz, CH(CH3)2), 3.96 (1H, 

septet, J = 6.2 Hz, CH), 5.13 (1H, septet, J = 6.2 Hz, CH), 7.28-7.47 (8H, m, 8x CHarom), 7.65-

7.71 (2H, m, 2x CHarom). 13C NMR (100.6 MHz, CDCl3):  21.9 (C(CH3)2), 22.3 (C(CH3)2), 67.5 

(CH(CH3)2), 75.5 (CH(CH3)2), 87.5 (d, J = 15.3 Hz, C(COOEt)2) 128.2, 128.4 and 139.9 (10x CHarom), 129.5 (d, 

J = 17.9 Hz, C=CF), 139.6 (2x Carom,quat), 143.7 (d, J = 269.1 Hz, CF), 154.1 (d, J = 5.9 Hz, C=N), 156.5 (d, J = 

10.3 Hz, C=O), 160.7 (d, J = 4.1 Hz, C=O). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3):  -152.00 (1F, s, CF). IR 

(ATR, cm-1) νC=O = 1708, νC=N = 1633, νmax = 1450, 1276, 1229, 1100, 1063, 694. MS (ES+): m/z (%): 410 (M + 

H+, 100). HRMS (ES+): calcd. for C24H25FNO4
+: 410.1762, found 410.1774. 

5.5.7 Synthesis of dimethyl 2-[2-(diphenylmethyleneamino)-1-fluoroethylidene]-

malonate 188a and diisopropyl 2-[2-(diphenylmethyleneamino)-1,1-difluoroethyl]-

malonate 187c 

The synthesis of dimethyl 2-[2-(diphenylmethyleneamino)-1-fluoroethylidene]malonate 188a is described 

as representative. To a mixture of pyrroline 185a (69 mg, 0.19 mmol) in acetonitrile (5 mL) was added 

NaCNBH3 (2 equiv, 23 mg, 0.37 mmol), acetic acid (2 equiv, 24 mg, 0.37 mmol) and acetyl chloride (2 equiv, 

29 mg, 0.37 mmol), and this mixture was stirred at 0 °C for 20 minutes. Subsequently, it was quenched 

with Na2CO3 (5 mL), extracted with EtOAc (3x 5 mL) and the combined organic layers were dried (MgSO4), 

filtered and evaporated under reduced pressure. After column chromatography (SiO2, PE/EtOAc 9/1), pure 
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dimethyl 2-[2-(diphenylmethyleneamino)-1-fluoroethylidene]malonate 188a (19 mg, 0.055 mmol) was 

obtained. 

Dimethyl 2-[2-(diphenylmethyleneamino)-1-fluoroethylidene]malonate 188a 

Yellow oil. Rf 0.21 (petroleum ether/EtOAc 9/1). Yield: 29%. 1H NMR (400 MHz, 

CDCl3):  2.20 (1H, br s, NH), 3.61 (3H, s, CH3), 3.77 (2H, d, JH,F = 21.4 Hz, CH2), 3.84 

(3H, s, CH3), 4.89 (1H, s, CH), 7.19-7.24 (2H, m, 2x CHarom), 7.26-7.31 (4H, m, 4x 

CHarom), 7.39-7.41 (4H, m, 4x CHarom). 13C NMR (100.6 MHz, CDCl3):  45.6 (d, J = 23.3 Hz, CH2CF), 52.5 (CH3), 

52.8 (CH3), 66.0 (CH), 112.3 (d, J = 19.1 Hz, CF=C), 127.3, 127.4 and 128.6 (10x CHarom), 142.9 (2x Carom,quat), 

162.9 (d, J = 2.2 Hz, C=O), 163.3 (C=O), 172.3 (d, J = 286.5 Hz, CF). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3): 

 -81.66 (1F, t, JH,F = 21.4 Hz, CF). IR, MS and HRMS data could not be obtained due to instability of 

compound 184. 

Diisopropyl 2-[2-(diphenylmethyleneamino)-1,1-difluoroethyl]malonate 187c 

Yellow oil. Rf 0.12 (petroleum ether/EtOAc 95/5). Yield: 18%. 1H NMR (300 MHz, 

CDCl3):  1.21 (6H, d, J = 6.6 Hz, 2x CHCH3(CH3)), 1.23 (6H, d, J = 6.6 Hz, 2x 

CHCH3(CH3)), 1.92 (1H, s, NH), 3.23 (2H, t, JH,F = 14.6 Hz, CH2), 4.28 (1H, t, JH,F = 

13.2 Hz, CHCF2), 4.88 (1H, s, CHPh2), 5.06 (2H, septet, J = 6.3 Hz, 2x CH(CH3)2), 7.16-7.36 (10H, m, 10x 

CHarom). 19F NMR (282 MHz, CDCl3):  -102.15 (2F, q, JH,F = 14.0 Hz, CF2). IR, MS and HRMS data could not 

be obtained due to instability of compound 187c. 

5.5.8 Synthesis of 2-[2-bromo-2,2-difluoro-1-(1H-imidazol-1-yl)ethyl]malonates 192 

The synthesis of dimethyl 2-[2-bromo-2,2-difluoro-1-(1H-imidazol-1-yl)ethyl]malonate 192a is described 

as representative. To a solution of dimethyl 2-bromo-2,2-difluoroethylidenemalonate 16a (0.48 g, 1.76 

mmol) in tert-butanol (25 mL) were added imidazole (1 equiv, 0.12 g, 1.76 mmol) and triethylamine (1 

equiv, 0.18 g, 1.76 mmol), and this mixture was stirred at reflux temperature for three hours. After removal 

of the solvent in vacuo, dichloromethane (20 mL) was added and this mixture was washed with brine (20 

mL). The organic layer was dried with MgSO4, filtered and evaporated under reduced pressure. The crude 

product was recrystallized from Et2O, affording pure dimethyl 2-[2-bromo-2,2-difluoro-1-(1H-imidazol-1-

yl)ethyl]malonate 192a (0.40 g, 1.18 mmol). 
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Dimethyl 2-[2-bromo-2,2-difluoro-1-(1H-imidazol-1-yl)ethyl]malonate 192a 

Pale yellow crystals. Melting point: 88-89 °C. Yield: 67%. 1H NMR (300 MHz, CDCl3):  

3.56 (3H, s, OCH3), 3.84 (3H, s, OCH3), 4.24 (1H, d, J = 10.5 Hz, CH(COOMe)2), 5.49 (1H, 

ddd, JH,F = 15.9 Hz, J = 10.5 Hz, JH,F = 3.6 Hz, CHN), 7.01 (1H, d, J = 1.1 Hz, CHarom), 7.10 

(1H, s, CHarom), 7.63 (1H, s, CHarom). 13C NMR (75 MHz, ref = CDCl3):  52.5 (C(COOMe)2), 

53.7 (OCH3), 54.0 (OCH3), 64.3 (dd, J = 28.3 Hz, 23.7 Hz, CHCF2Br), 118.6 (CHarom), 120.4 (t, J = 310.4 Hz, 

CF2Br), 130.4 (CHarom), 138.7 (CHarom), 164.4 (C=O), 165.2 (C=O). 19F NMR (282 MHz, CDCl3):  -52.30 (1F, 

dd, J = 173.6 Hz, JH,F = 3.6 Hz, CF(F)Br), -56.33 (1F, dd, J = 173.6 Hz, JH,F = 15.9 Hz, CF(F)Br). IR (ATR, cm-1): 

νC=O = 1743, νmax = 1285, 1251, 1230. MS (ES+): m/z (%): 341/43 (M + H+, 100). HRMS (ES+): calcd. for 

C10H12BrF2N2O4
+: 340.9943, found 340.9933. El. Anal. Calcd for C10H11BrF2N2O4: C 35.21, H 3.25, N 8.21, 

found C 35.19, H 3.10, N 8.12. 

Diisopropyl 2-[2-bromo-2,2-difluoro-1-(1H-imidazol-1-yl)ethyl]malonate 192b 

White crystals. Melting point: 76-77 °C. Yield: 57%. 1H NMR (300 MHz, CDCl3):  1.05 

(3H, d, J = 6.3 Hz, CHCH3(CH3)), 1.08 (3H, d, J = 6.3 Hz, CHCH3(CH3)), 1.28 (3H, d, J = 6.3 

Hz, CHCH3(CH3)), 1.30 (3H, d, J = 6.3 Hz, CHCH3(CH3)), 4.14 (1H, d, J = 10.5 Hz, 

CH(COOiPr)2), 4.83 (1H, septet, J = 6.3 Hz, CH(CH3)2), 5.12 (1H, septet, J = 6.3 Hz, 

CH(CH3)2), 5.46 (1H, ddd, JH,F = 15.8 Hz, J = 10.5 Hz, JH,F = 3.2 Hz, CHN), 7.02 (1H, s, CHarom), 7.09 (1H, s, 

CHarom), 7.63 (1H, s, CHarom). 13C NMR (100.6 MHz, ref = CDCl3):  21.1 (CHCH3(CH3)), 21.2 (CHCH3(CH3)), 

21.39 (CHCH3(CH3)), 21.43 (CHCH3(CH3)), 53.3 (CH(COOiPr)2), 64.0 (dd, J = 27.9 Hz, 24.2 Hz, CHN), 70.9 

(CH(CH3)2), 71.1 (CH(CH3)2), 118.6 (d, J = 1.5 Hz, CHarom), 120.6 (dd, J = 311.1 Hz, 309.8 Hz, CF2Br), 130.1 

(CHarom), 138.6 (CHarom), 163.3 (C=O), 164.1 (C=O). 19F NMR (282 MHz, CDCl3):  -51.75 (1F, dd, J = 172.7 Hz, 

JH,F = 3.2 Hz, CF(F)Br), -56.02 (1F, dd, J = 172.7 Hz, JH,F = 15.8 Hz, CF(F)Br). IR (ATR, cm-1): νC=O = 1723, νmax = 

1228, 1182, 936, 787, 644. MS (ES+): m/z (%): 397/99 (M + H+, 100). HRMS (ES+): calcd. for C14H20BrF2N2O4
+: 

397.0569, found 397.0563. El. Anal. Calcd for C14H19BrF2N2O4: C 42.33, H 4.82, N 7.05, found C 42.43, H 

4.77, N 7.23. 

5.5.9 Synthesis of 2-[2,2-difluoro-1-(1H-imidazol-1-yl)vinyl]malonates 194 

The synthesis of dimethyl 2-[2,2-difluoro-1-(1H-imidazol-1-yl)vinyl]malonate 194a is described as 

representative. To a solution of dimethyl 2-[2-bromo-2,2-difluoro-1-(1H-imidazol-1-yl)ethyl]malonate 

192a (0.138 g, 0.41 mmol) in dry THF (5 mL) was added KOtBu (1M in THF, 1.5 equiv, 0.61 mmol, 0.61 mL). 

This mixture was stirred at reflux temperature for one hour, after which extra KOtBu (1M in THF, 1.5 equiv, 
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0.61 mmol, 0.61 mL) was added and the stirring was continued for another two hours. The reaction 

mixture was poured in a saturated aqueous solution of NH4Cl (10 mL) and extracted with EtOAc (3x 10 mL). 

After drying of the combined organic layers with MgSO4, the drying agent was filtered off and the solvent 

was removed in vacuo. Purification using preparative TLC afforded dimethyl 2-[2,2-difluoro-1-(1H-

imidazol-1-yl)vinyl]malonate 194a (30 mg, 0. 12 mmol) as a colorless oil. 

Dimethyl 2-[2,2-difluoro-1-(1H-imidazol-1-yl)vinyl]malonate 194a 

Colorless oil. Rf 0.35 (petroleum ether/EtOAc 1/1). Yield: 29%. 1H NMR (400 MHz, 

CDCl3):  3.76 (6H, s, 2x OCH3), 4.54 (1H, d, JH,F = 1.8 Hz, CH(COOMe)2), 7.03 (1H, s, 

CHarom), 7.10 (1H, s, CHarom), 7.57 (1H, s, CHarom). 13C NMR (100.6 MHz, CDCl3):  51.2 (d, 

J = 2.4 Hz, CH(COOMe)2), 53.5 (2x OCH3), 91.3 (dd, J = 38.8 Hz, 19.9 Hz, CCF2), 120.7 (CHarom), 129.8 (CHarom), 

138.7 (CHarom), 156.6 (dd, J = 298.0 Hz, 294.0 Hz, CF2), 165.7 (t, J = 2.8 Hz, 2x C=O). 19F NMR (376.5 MHz, 

CDCl3, ref = CFCl3):  -85.54 (1F, d, J = 23.2 Hz, CF(F)), -90.33 (1F, dd, J = 23.2 Hz, JH,F = 1.8 Hz, CF(F)). IR (ATR, 

cm-1): νC=O = 1737, νmax = 1233, 1155, 1078. 

Diisopropyl 2-[2,2-difluoro-1-(1H-imidazol-1-yl)vinyl]malonate 194c 

Colorless oil. Rf 0.15 (petroleum ether/EtOAc 8/2). Yield: 49%. 1H NMR (400 MHz, 

CDCl3):  1.18 (6H, d, J = 6.3 Hz, 2x CHCH3(CH3)), 1.22 (6H, d, J = 6.3 Hz, 2x CHCH3(CH3)), 

4.45 (1H, d, JH,F = 2.1 Hz, CH(COOiPr)2), 5.04 (2H, septet, J = 6.3 Hz, 2x CH(CH3)2), 7.09 

(2H, s, 2x CHarom), 7.60 (1H, s, CHarom). 13C NMR (100.6 MHz, CDCl3):  21.4 (2x 

CHCH3(CH3)), 21.5 (2x CHCH3(CH3)), 52.0 (d, J = 2.2 Hz, CH(COOiPr)2), 70.8 (2x CH(CH3)2), 91.6 (dd, J = 39.0 

Hz, 19.1 Hz, CCF2), 120.9 (CHarom), 129.5 (CHarom), 138.8 (CHarom), 156.4 (dd, J = 297.5 Hz, 293.3 Hz, CF2), 

164.9 (t, J = 2.9 Hz, 2x C=O). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3):  -86.32 (1F, d, J = 23.1 Hz, CF(F)), -

91.04 (1F, d, J = 23.1 Hz, CF(F)). IR (ATR, cm-1): νC=O = 1728, νmax = 1296, 1240, 1096, 960. MS (ES+): m/z (%): 

317 (M + H+, 100). HRMS (ES+): calcd. for C14H19F2N2O4
+: 317.1307, found 317.1317. 

5.5.10 Synthesis of 2-[(2-bromo-2,2-difluoro-1-phthalimido)ethyl]malonates 196 

The synthesis of diisopropyl 2-[(2-bromo-2,2-difluoro-1-phthalimido)ethyl]malonate 196c is described as 

representative. To a solution of diisopropyl 2-bromo-2,2-difluoroethylidenemalonate 16c (0.25 g, 0.76 

mmol) in tert-butanol (20 mL) were added potassium phthalimide (1.1 equiv, 0.16 g, 0.84 mmol) and 

tetramethylammonium bromide (0.05 equiv, 5.8 mg, 0.038 mmol) and this mixture was stirred at reflux 

temperature for three hours. After evaporation of the solvent under reduced pressure, EtOAc (20 mL) was 
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added and this mixture was washed with H2O (3x 20 mL). The organic layer was dried with MgSO4 and after 

filtration, evaporation of the solvent in vacuo afforded crude malonate 196c. Purification via column 

chromatography afforded pure diisopropyl 2-[(2-bromo-2,2-difluoro-1-phthalimido)ethyl]malonate 196c 

(0.25 mmol, 0.12 g). 

Diethyl 2-(2-bromo-2,2-difluoro-1-phthalimidoethyl)malonate 196b 

Colorless oil. Rf 0.38 (petroleum ether/EtOAc 9/1). Yield: 28%. 1H NMR (400 MHz, 

CDCl3):  1.10 (3H, t, J = 7.1 Hz, CH3), 1.33 (3H, t, J = 7.1 Hz, CH3), 3.99-4.13 (2H, m, 

OCH2), 4.25-4.36 (2H, m, OCH2), 4.92 (1H, d, J = 11.4 Hz, CH(COOEt)2), 5.62 (1H, ddd, JH,F 

= 15.9 Hz, J = 11.4 Hz, JH,F = 4.2 Hz, CHN), 7.78-7.80 (2H, m, 2x CHarom), 7.86-7.98 (2H, 

m, 2x CHarom).13C NMR (100.6 MHz, CDCl3):  13.7 (CH3), 13.9 (CH3), 49.4 (CH(COOEt)2), 

57.7 (dd, J = 28.2 Hz, 24.9 Hz, CHN), 62.4 (OCH2), 62.7 (OCH2), 121.0 (dd, J = 315.6 Hz, 310.2 Hz, CF2Br), 

123.9 (CHarom), 124.2 (2x CHarom), 131.1 (Carom,quat), 131.4 (Carom,quat), 134.7 (2x CHarom), 165.0 and 165.6 (2x 

OC=O), 166.5 and 166.8 (2x NC=O) 19F NMR (376.5 MHz, CDCl3):  -49.01 (1F, dd, J = 167.8 Hz, JH,F = 4.2 Hz, 

CF(F)), -50.27 (1F, dd, J = 167.8 Hz, JH,F = 15.9 Hz CF(F)). IR (ATR, cm-1): νC=O = 1726, νmax = 1371, 1281, 1214, 

1072, 1020, 718. MS (ES+): m/z (%): 465/67 (M + NH4
+, 100). HRMS (ES+): calcd. for C17H20BrF2N2O6

+ (M + 

NH4
+): 465.0467, found 465.0465. 

Diisopropyl 2-[(2-bromo-2,2-difluoro-1-phthalimido)ethyl]malonate 196c 

Yellow oil. Rf 0.05 (petroleum ether/EtOAc 9/1). Yield: 33%. 1H NMR (300 MHz, CDCl3): 

 1.05 (3H, d, J = 6.3 Hz, CHCH3(CH3)), 1.10 (3H, d, J = 6.3 Hz, CHCH3(CH3)), 1.30 (6H, d, 

J = 6.3 Hz, CH(CH3)2), 4.85 (1H, d, J = 11.6 Hz, CH(COOiPr)2), 4.86 (1H, septet, J = 6.3 Hz, 

CH(CH3)2), 5.13 (1H, septet, J = 6.3 Hz, CH(CH3)2), 5.60 (1H, ddd, JH,F = 15.6 Hz, J = 11.6 

Hz, JH,F = 4.3 Hz, CHN), 7.76-7.81 (2H, m, 2x CHarom), 7.86-7.97 (2H, m, 2x CHarom).13C 

NMR (100.6 MHz, ref = CDCl3):  21.3 (CHCH3(CH3)), 21.4 (CHCH3(CH3)), 23.5 (CH(CH3)2), 50.0 (CH(COOiPr)2), 

57.7 (dd, J = 28.6 Hz, 25.3 Hz, CHN), 70.2 (CH(CH3)2), 70.6 (CH(CH3)2), 121.2 (dd, J = 315.2 Hz, 310.1 Hz, 

CF2Br), 123.9 and 124.2 (2x CHarom), 131.2 (Carom,quat), 131.6 (Carom,quat), 134.8 (2x CHarom), 164.6 and 165.2 

(2x OC=O), 166.6 and 167.0 (2x NC=O). 19F NMR (282 MHz, CDCl3):  -48.69 (1F, dd, J = 167.1 Hz, JH,F = 4.3 

Hz, CF(F)), -50.07 (1F, dd, J = 167.1 Hz, JH,F = 15.6 Hz, CF(F)). IR (ATR, cm-1): νC=O = 1726, νmax = 1375, 1285, 

1097, 717. MS (ES+): m/z (%): 493/95 (M + NH4
+, 100), 476/78 (M + H+, 20). HRMS (ES+): calcd. for 

C19H24BrF2N2O6
+ (M + NH4

+): 493.0780, found 493.0761. 
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5.6 Attempted synthesis of 3-fluoro- and 3,3-difluoroazetidine-2-carboxylates 

5.6.1 Synthesis of N-(2-bromo-2,2-difluoroacetyl)glycinates 200 

The synthesis of ethyl N-(2-bromo-2,2-difluoroacetyl)glycinate 200a is described as representative. To a 

solution of ethyl bromodifluoroacetate (2.00 g, 9.9 mmol) in CH2Cl2 (50 mL), the hydrochloric acid salt of 

ethyl glycinate (1 equiv, 1.38 g, 9.9 mmol) and Et3N (1 equiv, 1.00 g, 9.9 mmol) were added. This mixture 

was stirred for 17 hours at room temperature after which the solvent was evaporated. Subsequently, Et2O 

(50 mL) was added and the solids were filtered off. After removal of the solvent in vacuo, the crude 

reaction product was purified via column chromatography affording 1.96 g (7.52 mmol) glycinate 200a. 

Ethyl N-(2-bromo-2,2-difluoroacetyl)glycinate 200a 

Yellow oil. Rf 0.30 (petroleum ether/EtOAc 6/4). Yield: 76%. 1H NMR (400 MHz, 

CDCl3):  1.32 (3H, t, J = 7.1 Hz, CH3), 4.12 (2H, d, J = 5.0 Hz, NCH2), 4.12 (2H, q, J = 7.1 

Hz, OCH2), 6.78 (1H, br s, NH). 13C NMR (75 MHz, CDCl3):  14.1 (CH3), 41.6 (NCH2), 

62.2 (OCH2), 111.3 (t, J = 315.0 Hz, CF2Br), 160.3 (t, J = 28.3 Hz, CF2BrC=O), 168.5 (C=O). 19F NMR (376.5 

MHz, CDCl3, ref = CFCl3):  -61.29 (2F, s, CF2Br). IR (ATR, cm-1): νNH = 3333, νC=O = 1747, νC=O = 1709, νmax = 

1543, 1213, 1175, 1137, 1018, 918. MS (ES+): m/z (%): 277/79 (M + NH4
+, 30). HRMS (ES-): calcd. for 

C6H7BrF2NO3
-: 257.9583, found 257.9586. 

Tert-butyl N-(2-bromo-2,2-difluoroacetyl)glycinate 200b 

Yellow oil. Rf 0.15 (petroleum ether/EtOAc 9/1). Yield: 88%. 1H NMR (400 MHz, 

CDCl3):  1.50 (9H, s, C(CH3)3), 4.07 (2H, d, J = 4.9 Hz, NCH2), 6.74 (1H, br s, NH). 13C 

NMR (100.6 MHz, ref = CDCl3):  28.0 (C(CH3)3), 42.3 (CH2), 83.2 (C(CH3)3), 111.6 (t, 

J = 315.5 Hz, CF2Br), 160.3 (t, J = 27.9 Hz, CF2BrC=O), 167.6 (C=O). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3): 

 -61.10 (2F, s, CF2Br). IR (ATR, cm-1): νNH = 3323, νC=O = 1708, νmax = 1369, 1231, 1137, 1018, 914. MS (ES+): 

305/7 (M + NH4
+, 100). 

5.6.2 Synthesis of 2-(2-bromo-2,2-difluoroethyl)amino-1-ethanol 201 

To a solution of ethyl N-(2-bromo-2,2-difluoroacetyl)glycinate 200a (0.50 g, 1.9 mmol) in dry CH2Cl2 (10 

mL) BH3.Me2S (6 equiv, 0.88 g, 11.2 mmol) was added and this mixture was stirred at reflux temperature 

for 76 hours. Subsequently, it was slowly quenched with a mixture of H2O and MeOH (1/1, 15 mL) and 

extracted with CH2Cl2 (3x 10 mL). The combined organic layers were dried (MgSO4), filtered and 
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evaporated in vacuo. The crude reaction product was purified using column chromatography affording 

0.12 g (0.59 mmol) 2-(2-bromo-2,2-difluoroethyl)amino-1-ethanol 201. 

2-(2-Bromo-2,2-difluoroethyl)amino-1-ethanol 201 

Yellow oil. Rf 0.03 (petroleum ether/EtOAc 9/2). Yield: 31%. 1H NMR (400 MHz, CDCl3): 

 2.08 (2H, br s, OH and NH), 2.96 (2H, t, J = 5.1 Hz, CH2CH2NH), 3.43 (2H, t, JH,F = 12.5 

Hz, CH2CF2Br), 3.67 (2H, t, J = 5.1 Hz, CH2OH). 13C NMR (100.6 MHz, ref = CDCl3):  50.7 (CH2CH2NH), 59.06 

(t, J = 23.7 Hz, CH2CF2Br), 61.2 (OCH2), 123.4 (t, J = 308.8 Hz, CF2Br). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3): 

 -51.98 (2F, t, JH,F = 12.5 Hz, CF2Br). IR (ATR, cm-1): νNH and νOH = 3347, νmax = 1200, 1131, 1079, 913. MS 

(ES+): m/z (%): 204/6 (M + H+, 100). HRMS (ES+): calcd. for C4H9BrF2NO+: 203.9830, found 203.9829. 

5.6.3 Synthesis of ethyl (2-bromo-2,2-difluorothioacetyl)glycinate 202 

To a solution of ethyl N-(2-bromo-2,2-difluoroacetyl)glycinate 200a (3.00 g, 1.15 mmol) in dry toluene (50 

mL) was added Lawesson’s reagent (1.2 equiv, 5.60 g, 13.8 mmol) and this mixture was stirred at reflux 

temperature for two hours. Subsequently, the solvent was removed under reduced pressure and the 

residue was purified using column chromatography (PE/EtOAc 9/1), affording pure ethyl (2-bromo-2,2-

difluorothioacetyl)glycinate 202 (2.22 g, 8.1 mmol). 

Ethyl (2-bromo-2,2-difluorothioacetyl)glycinate 202 

Yellow oil. Rf 0.08 (petroleum ether/EtOAc 9/1). Yield: 70%. 1H NMR (400 MHz, 

CDCl3):  1.34 (3H, t, J = 7.1 Hz, CH3), 4.32 (2H, q, J = 7.1 Hz, OCH2), 4.35 (d, J = 4.3 Hz, 

CH2N), 8.38 (1H, s, NH). 13C NMR (100.6 MHz, ref = CDCl3):  14.1 (CH3), 47.2 (OCH2), 

62.6 (CH2N), 113.2 (t, J = 309.6 Hz, CF2Br), 167.8 (C=O), 188.1 (t, J = 27.6 Hz, C=S). 19F NMR (376.5 MHz, 

CDCl3, ref = CFCl3):  -52.59 (2F, s, CF2Br). IR (ATR, cm-1): νNH = 3303, νC=O = 1732, νC=S = 1201, νmax = 1092, 

1007, 977, 846. MS, HRMS: M+ could not be detected. 

5.6.4 Synthesis of 2-bromo-2,2-difluoroacetamides 205 

The synthesis of N-propyl-2-bromo-2,2-difluoroacetamide 205b is described as representative. To an ice-

cooled solution of ethyl bromodifluoroacetate 14 (5.07 g, 25 mmol) in CH2Cl2 (40 mL), was added a solution 

of propylamine (1.77 g, 30 mmol, 1.2 equiv) in CH2Cl2 (20 mL). This mixture was allowed to warm to room 

temperature and after stirring for 15 hours at this temperature, the solvent and excess propylamine were 
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removed in vacuo, affording N-propyl-2-bromo-2,2-difluoroacetamide 205b (5.39 g, 24.8 mmol) in 99% 

yield. 

N-Propyl-2-bromo-2,2-difluoroacetamide 205b 

Colorless oil. Yield: 99%. 1H NMR (300 MHz, CDCl3):  0.97 (3H, t, J = 7.2 Hz, CH3), 1.63 

(2H, sextet, J = 7.2 Hz, CH2CH2CH3), 3.34 (2H, q, J = 6.8 Hz, NCH2), 6.31 (1H, br s, NH). 13C 

NMR (75 MHz, CDCl3):  11.1 (CH3), 22.3 (CH2CH3), 41.9 (NCH2), 111.9 (t, J = 316.1 Hz, 

CF2Br), 160.3 (t, J = 27.1 Hz, C=O). 19F NMR (282 MHz, CDCl3):  -60.40 (2F, s, CF2Br). IR (ATR, cm-1): νNH = 

3304, νC=O = 1698, νmax = 1542, 1130. MS (ES-): m/z (%): 214/16 (M - H+, 100). 

The spectral data of N-benzyl-2-bromo-2,2-difluoroacetamide 205a were in accordance with those 

reported in the literature.159 

5.6.5 Synthesis of amines 23 

2-Bromo-2,2-difluoroethylamines 23 were synthesized following a literature procedure.15 

N-Benzyl-2-bromo-2,2-difluoroethylamine 23a 

Yellow oil. Rf 0.42 (petroleum ether/EtOAc 9/1). Yield: 85%. 1H NMR (400 MHz, CDCl3): 

 1.86 (1H, br s, NH), 3.36 (2H, t, JH,F = 12.5 Hz, CH2CF2Br), 3.95 (2H, s, Carom,quatCH2), 

7.27-7.37 (5H, m, 5x CHarom). 13C NMR (100.6 MHz, ref = CDCl3):  52.8 (Carom,quatCH2), 58.3 (t, J = 23.5 Hz, 

CH2CF2Br), 123.7 (t, J = 308.9 Hz, CF2Br), 127.4 (CHarom), 128.1 and 128.6 (4x CHarom), 139.3 (Carom,quat). 19F 

NMR (376.5 MHz, CDCl3, ref = CFCl3):  -51.34 (2F, t, JH,F = 12.5 Hz, CF2Br). IR (ATR, cm-1): νNH = 3360, νmax = 

1117, 909, 889, 697. MS (ES+): m/z (%): 250/52 (M + H+, 20), 150 (100). HRMS (ES+): calcd. for C9H11BrF2N+: 

250.0037, found 250.0036. 

N-Propyl-2-bromo-2,2-difluoroethylamine 23b 

Colorless oil. Yield: 89%. 1H NMR (400 MHz, CDCl3):  0.93 (3H, t, J = 7.3 Hz, CH3), 1.47 

(1H, br s, NH), 1.50 (2H, sextet, J = 7.3 Hz, CH2CH2CH3), 2.72 (2H, t, J = 7.3 Hz, NCH2CH2), 

3.36 (2H, t, JH,F = 12.6 Hz, CH2CF2Br). 13C NMR (100.6 MHz, CDCl3):  11.5 (CH3), 23.4 (CH2CH3), 51.2 

(NCH2CH2), 59.4 (t, J = 23.3 Hz, CH2CF2Br), 123.9 (t, J = 309.1 Hz, CF2Br). 19F NMR (376.5 MHz, CDCl3): 

 -51.15 (2F, t, JH,F = 12.6 Hz, CF2Br). IR (ATR, cm-1): νNH = 3216, νmax = 1462, 1195, 1094, 904. MS (ES+): m/z 

(%): 202/4 (M + H+, 100). HRMS (ES+): calcd. for C5H11BrF2N+: 202.0037, found 202.0033. 
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5.6.6 Synthesis of amino esters 209 and 198 

The synthesis of methyl N-benzyl-N-(2-chloro-2-fluoroethyl)glycinate 209a is described as representative. 

To a mixture of N-(2-chloro-2-fluoroethyl)benzylamine 208a (5.00 g, 26.6 mmol) and methyl bromoacetate 

207a (7 equiv, 28.5 g, 187 mmol), was added LiHMDS (1M in THF, 1.1 equiv, 29.3 mL, 29.3 mmol) at 0 °C. 

This mixture was stirred at room temperature for 23 hours, after which dichloromethane (50 mL) and H2O 

(50 mL) were added. After extraction with dichloromethane (2x 30 mL), drying (MgSO4), filtration and 

evaporation of the solvent under reduced pressure, a mixture of methyl N-benzyl-N-(2-chloro-2-

fluoroethyl)glycinate 209a and methyl bromoacetate 207a was obtained. After separation of this mixture 

(Reveleris Flash Forward, reversed phase chromatography, CH3CN/H2O. Gradient: during 2 CV: 20% CH3CN, 

during 3 CV: 20 -> 50% CH3CN, during 8 CV: 50 -> 70% CH3CN, during 1 CV: 70 -> 100% CH3CN, during 2 CV: 

100% CH3CN), pure methyl N-benzyl-N-(2-chloro-2-fluoroethyl)glycinate 209a (5.46 g, 21.0 mmol) was 

obtained as a yellow oil. 

Methyl N-benzyl-N-(2-chloro-2-fluoroethyl)glycinate 209a 

Yellow oil. Yield: 79%. 1H NMR (400 MHz, CDCl3):  3.21 (1H, ddd, JH,F = 26.2 Hz, J = 

15.0 Hz, 3.4 Hz, CH(H)CHClF), 3.37 (1H, ddd, J = 15.0 Hz, JH,F = 14.3 Hz, J = 7.1 Hz, 

CH(H)CHClF), 3.50 (2H, s, CH2C=O), 3.71 (3H, s, OCH3), 3.95 (2H, s, CH2Carom,quat), 6.09 

(1H, ddd, JH,F = 51.6 Hz, J = 7.1 Hz, 3.4 Hz, CHClF), 7.27-7.33 (5H, m, 5x CHarom). 13C NMR (100.6 MHz, ref = 

CDCl3):  51.6 (OCH3), 54.9 (CH2C=O), 59.2 (CH2Carom,quat), 61.0 (d, J = 21.4 Hz, CH2CHClF), 101.6 (d, J = 244.3 

Hz, CHClF), 127.7 (CHarom), 128.7 (2x CHarom), 128.9 (2x CHarom), 138.5 (Carom,quat), 171.9 (C=O). 19F NMR 

(376.5 MHz, CDCl3, ref = CFCl3):  -137.31 (1F, ddd, JH,F = 51.6 Hz, 26.2 Hz, 14.3 Hz, CHClF). IR (ATR, cm-1): 

νC=O = 1739, νmax = 1202, 1164, 1037, 699. MS (ES+): m/z (%): 260 (M + H+, 100). HRMS (ES+): calcd. for 

C12H16ClFNO2
+: 260.0848, found 260.0848. 

Methyl N-benzyl-N-(2-bromo-2,2-difluoroethyl)glycinate 198a 

Yellow oil. Rf 0.27 (petroleum ether/EtOAc 95/5). Yield: 70%. 1H NMR (400 MHz, 

CDCl3):  3.47 (2H, s, CH2C=O), 3.59 (2H, t, JH,F = 12.6 Hz, CH2CBrF2), 3.69 (3H, s, OCH3), 

4.03 (2H, s, CH2Carom,quat), 7.23-7.35 (5H, m, 5x CHarom). 13C NMR (100.6 MHz, ref = 

CDCl3):  51.7 (OCH3), 53.4 (CH2C=O), 59.1 (CH2Carom,quat), 64.0 (t, J = 23.1 Hz, CH2CBrF2), 123.8 (t, J = 309.2 

Hz, CBrF2), 127.7 (CHarom), 128.7 (2x CHarom), 128.9 (2x CHarom), 138.2 (Carom,quat), 171.8 (C=O). 19F NMR (376.5 

MHz, CDCl3, ref = CFCl3):  -52.47 (2F, t, JH,F = 12.6 Hz, CBrF2). IR (ATR, cm-1): νC=O = 1737, νmax = 1202, 1165, 
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1084, 1022, 924, 698. MS (ES+): m/z (%): 322/24 (M + H+, 20), 117 (100). HRMS (ES+): calcd. for 

C12H15BrF2NO2
+: 322.0249, found 322.0261. 

Benzyl N-benzyl-N-(2-bromo-2,2-difluoroethyl)glycinate 198c 

Yellow oil. Rf 0.48 (petroleum ether/EtOAc 9/1). Yield: 40%. 1H NMR (400 MHz, CDCl3): 

 3.52 (2H, s, CH2C=O), 3.61 (2H, t, JH,F = 12.6 Hz, CH2CBrF2), 4.04 (2H, s, NCH2Carom,quat), 

5.15 (2H, s, C=OCH2Carom,quat), 7.30-7.40 (10H, m, 10x CHarom). 13C NMR (100.6 MHz, ref 

= CDCl3):  53.4 (CH2C=O), 58.7 (NCH2Carom,quat), 63.6 (t, J = 23.1 Hz, CH2CBrF2), 66.2 (C=OCH2Carom,quat), 123.6 

(t, J = 309.1 Hz, CBrF2), 128.2, 128.4, 128.5, 128.7 (8x CHarom), 128.9 (CHarom), 129.6 (CHarom), 134.3 

(Carom,quat), 135.5 (Carom,quat), 137.8 (Carom,quat), 170.8 (C=O). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3):  -52.38 

(2F, t, JH,F = 12.6 Hz, CBrF2). IR (ATR, cm-1): νC=O = 1738, νmax = 1194, 1088, 1023, 697. MS (ES+): m/z (%): 

398/400 (M + H+, 100). HRMS (ES+): calcd. for C18H19BrF2NO2
+: 398.0562, found 398.0549. 

Ethyl N-propyl-N-(2-bromo-2,2-difluoroethyl)glycinate 198d 

Yellow oil. Rf 0.38 (petroleum ether/EtOAc 9/1). Yield: 64%. 1H NMR (400 MHz, CDCl3): 

 0.89 (3H, t, J = 7.4 Hz, CH2CH2CH3), 1.28 (3H, t, J = 7.1 Hz, OCH2CH3), 1.48 (2H, sextet, 

J = 7.4 Hz, CH2CH2CH3), 2.76 (2H, t, J = 7.4 Hz, CH2CH2CH3), 3.50 (2H, t, JH,F = 13.1 Hz, 

CH2CF2Br), 3.56 (2H, s, CH2C=O), 4.17 (2H, q, J = 7.1 Hz, OCH2CH3). 13C NMR (100.6 MHz, ref = CDCl3):  

11.4 (CH2CH2CH3), 14.4 (OCH2CH3), 21.7 (CH2CH2CH3), 55.0 (CH2C=O), 57.4 (CH2CH2CH3), 60.6 (OCH2), 64.5 

(t, J = 22.7 Hz, CH2CF2Br), 123.9 (t, J = 309.1 Hz, CF2Br), 171.5 (C=O). 19F NMR (376.5 MHz, CDCl3, ref = 

CFCl3):  -52.76 (2F, t, JH,F = 13.1 Hz, CBrF2). IR (ATR, cm-1): νC=O = 1736, νmax = 1188, 1088, 1016, 926, 903. 

MS (ES+): m/z (%): 288/90 (M + H+, 100). 

5.7 Synthesis of fluorinated heterocycles by exploring the nucleophilic vinylic 

substitution (SNV) reaction of gem-difluoroenamides 

5.7.1 Synthesis of silyl ethers 260 

The synthesis of silyl ether 260a is given as representative. To a mixture of amide 261a (2.00 g, 7.5 mmol) 

and imidazole (1.02 g, 15.0 mmol, 2 equiv) in anhydrous CH2Cl2 (40 mL) under N2 atmosphere, TBDMSCl 

(1.19 g, 7.9 mmol, 1.05 equiv) was added at room temperature. This mixture was stirred for 17 hours at 

room temperature. Subsequently, H2O (40 mL) was added and an extraction was performed with CH2Cl2 
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(3x 30 mL). After drying of the combined organic phases (MgSO4), filtration and evaporation of the solvent 

under reduced pressure, acetamide 260a was obtained as orange crystals in 95% yield (2.71 g, 7.1 mmol).  

N-{2-[(Tert-butyldimethylsilyl)oxy]phenyl}-2-bromo-2,2-difluoroacetamide 260a 

Orange crystals. Melting point: 56-57 °C. Yield: 95%. 1H NMR (300 MHz, CDCl3):  0.30 

(6H, s, 2x SiCH3), 1.03 (9H, s, SiC(CH3)3), 6.88 (1H, dd, J = 7.7 Hz, 1.7 Hz, CHarom), 7.01 (1H, 

ddd, J = 7.7 Hz, 7.7 Hz, 1.7 Hz, CHarom), 7.71 (1H, ddd, J = 7.7 Hz, 7.7 Hz, 2.2 Hz, CHarom), 

8.30 (1H, dd, J = 7.7 Hz, 2.2 Hz, CHarom), 8.55 (1H, br s, NH). 13C NMR (75 MHz, CDCl3):  -4.4 (2x SiCH3), 18.1 

(SiC(CH3)3), 25.6 (SiC(CH3)3), 111.6 (t, J = 316.1 Hz, CF2Br), 117.5, 120.2, 121.9 and 125.7 (4x CHarom), 127.3 

and 144.7 (2x Carom,quat), 156.8 (t, J = 27.7 Hz, C=O). 19F NMR (282 MHz, CDCl3, ref = CFCl3):  -60.87 (2F, s, 

CF2Br). IR (ATR, cm-1): νNH = 3398, νC=O = 1717, νmax = 1458, 1100, 783, 752. MS (ES+): m/z (%): 380/82 (M + 

H+, 100). HRMS (ES+): calcd. for C14H21BrF2NO2Si+: 380.0488, found 380.0478. 

N-{4-Methoxy-2-[(tert-butyldimethylsilyl)oxy]phenyl}-2-bromo-2,2-difluoroacetamide 260b 

Brown crystals. Melting point: 69-70 °C. Rf 0.36 (petroleum ether/EtOAc 9/1). 

Yield: 74%. 1H NMR (400 MHz, CDCl3):  0.30 (6H, s, 2x SiCH3), 1.03 (9H, s, 

SiC(CH3)3), 3.79 (3H, s, OCH3), 6.45 (1H, d, J = 2.7 Hz, CHarom), 6.55 (1H, dd, J = 9.0 

Hz, 2.7 Hz, CHarom), 8.30 (1H, d, J = 9.0 Hz, CHarom), 8.36 (1H, br s, NH). 13C NMR (100.6 MHz, CDCl3):  -4.4 

(2x SiCH3), 18.1 (SiC(CH3)3), 25.6 (SiC(CH3)3), 55.5 (OCH3), 105.1 and 105.5 (2x CHarom), 111.7 (t, J = 316.8 Hz, 

CF2Br), 120.8 (Carom,quat), 120.9 (CHarom), 145.9 (Carom,quat), 156.5 (t, J = 27.2 Hz, C=O), 157.4 (Carom,quat). 19F 

NMR (376.5 MHz, CDCl3, ref = CFCl3):  -60.61 (2F, s, CF2Br). IR (ATR, cm-1): νNH = 3404, νC=O = 1717, νmax = 

1530, 1109, 834. MS (ES+): m/z (%): 410/12 (M + H+, 100). El. Anal. Calcd for C15H22BrF2NO3Si: C 43.91, H 

5.40, N 3.41, found C 44.02, H 5.74, N 3.35. 

5.7.2 Synthesis of amides 239 and 242 

The synthesis of N-{2-[(trimethylsilyl)oxy]ethyl}-2-bromo-2,2-difluoroacetamide 239 is described as 

representative. To a solution of ethyl bromodifluoroacetate 14 (6.92 g, 34.1 mmol) in dry CH2Cl2 (170 mL) 

was added a solution of 2-[(trimethylsilyl)oxy]ethylamine 238 (1.1 equiv, 5.00 g, 37.5 mmol) in dry CH2Cl2 

(20 mL) at 0 °C. After stirring this reaction mixture at room temperature for 16 hours, the solvent was 

removed under reduced pressure, affording N-{2-[(trimethylsilyl)oxy]ethyl}-2-bromo-2,2-

difluoroacetamide 239 (9.51 g, 32.7 mmol). 
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N-{2-[(Trimethylsilyl)oxy]ethyl}-2-bromo-2,2-difluoroacetamide 239 

Yellow oil. Yield: 96%. 1H NMR (300 MHz, CDCl3):  0. 14 (9H, s, Si(CH3)3), 3.49 (2H, 

q, J = 5.3 Hz, CH2NH), 3.71 (2H, t, J = 5.3 Hz, CH2O), 6.62 (1H, br s, NH). 13C NMR 

(100.6 MHz, ref = CDCl3):  -0.6 (SiCH3)3), 42.2 (CH2NH), 60.3 (CH2O), 111.9 (t, J = 

315.9 Hz, CF2Br), 160.7 (t, J = 27.1 Hz, C=O). 19F NMR (282 MHz, CDCl3):  -60.37 (2F, s, CF2Br). IR (ATR, 

cm-1): νNH = 3307, νC=O = 1702, νmax = 1542, 1252, 1135, 1099, 933, 838. MS (ES+): m/z (%): 290/92 (M + H+, 

10), 102 (100). 

N-{2-[(Tert-butyldimethylsilyl)oxy]ethyl}-2-bromo-2,2-difluoroacetamide 242 

Colorless oil. Yield: 65%. 1H NMR (300 MHz, CDCl3):  0.08 (6H, s, 2x SiCH3), 0.90 

(9H, s, SiC(CH3)3), 3.49 (2H, q, J = 5.3 Hz, CH2NH), 3.75 (2H, t, J = 5.3 Hz, CH2O), 

6.63 (1H, br s, NH). 13C NMR (75 MHz, CDCl3):  -5.5 (2x SiCH3), 18.2 (SiC(CH3)3), 

25.8 (SiC(CH3)3), 42.2 (CH2NH), 60.8 (CH2O), 111.9 (t, J = 315.6 Hz, CF2Br), 160.1 (t, J = 27.7 Hz, C=O).19F 

NMR (282 MHz, CDCl3):  -60.34 (2F, s, CF2Br). IR (ATR, cm-1): νNH = 3313, νC=O = 1703, νmax = 1104, 935, 831, 

776. 

5.7.3 Synthesis of amides 205c, 261 and 269 

The synthesis of N-(4-methoxybenzyl)-2-bromo-2,2-difluoroacetamide 205c is given as a representative 

example. To a solution of ethyl bromodifluoroacetate 14 (2.23 g, 11 mmol) in EtOAc (50 mL), 

4-methoxybenzylamine (1.51 g, 11 mmol, 1 equiv) and Et3N (1.11 g, 11 mmol, 1 equiv) were added, after 

which the mixture was stirred at reflux temperature for four hours. Subsequently, H2O (30 mL) was added 

and an extraction with EtOAc (3 x 30 mL) was performed. After drying of the organic layer (MgSO4), 

filtration and evaporation of the solvent, yellow crystals were obtained, which were recrystallized from 

Et2O affording pure amide 205c as white crystals in 75% yield. 

N-(4-Methoxybenzyl)-2-bromo-2,2-difluoroacetamide 205c 

White crystals. Melting point: 89-90 °C. Rf 0.05 (petroleum ether/EtOAc 9/1). 

Yield: 75%. 1H NMR (400 MHz, CDCl3):  3.78 (3H, s, OCH3), 4.42 (2H, d, J = 5.8 

Hz, CH2), 6.79 (1H, br s, NH), 6.87 (2H, d, J = 8.7 Hz, 2x CHarom), 7.21 (2H, d, J = 

8.7 Hz, 2x CHarom). 13C NMR (100.6 MHz, ref = CDCl3):  43.7 (CH2NH), 55.4 (OCH3), 111.9 (t, J = 316.1 Hz, 

CF2Br), 114.4 (2x CHarom), 128.3 (Carom,quat), 129.4 (2x CHarom), 159.6 (Carom,quat), 160.0 (t, J = 27.5 Hz, C=O). 19F 

NMR (376.5 MHz, CDCl3, ref = CFCl3):  -60.99 (2F, s, CF2Br). IR (ATR, cm-1): νNH = 3233, νC=O = 1695, νmax = 
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1514, 1169, 1125, 820. MS (ES+): m/z (%): 311/13 (M + NH4
+, 20), 221 (100). HRMS (ES-): calcd. for 

C10H9BrF2NO2
-: 291.9790, found 291.9790. 

N-(2-Hydroxy-4-methoxyphenyl)-2-bromo-2,2-difluoroacetamide 261b 

Brown crystals. Melting point: 159-160 °C. Yield: 40%. 1H NMR (400 MHz, CD3CN): 

 3.79 (3H, s, OCH3), 6.53 (1H, dd, J = 8.6 Hz, 2.6 Hz, CHarom), 6.56 (1H, d, J = 2.6 Hz, 

CHarom), 7.52 (1H, d, J = 8.6 Hz, CHarom), 7.60 (1H, br s, NH or OH), 8.62 (1H, br s, NH 

or OH). 13C NMR (100.6 MHz, acetone-d6):  55.6 (OCH3), 102.8 and 105.6 (2x CHarom), 112.9 (t, J = 315.5 

Hz, CF2Br), 117.6 (Carom,quat), 124.9 (CHarom), 150.9 (Carom,quat), 158.5 (t, J = 27.1 Hz, C=O), 159.7 (Carom,quat). 19F 

NMR (376.5 MHz, CDCl3, ref = CFCl3):  -60.53 (2F, s, CF2Br). IR (ATR, cm-1): νNH = 3386, νOH = 3244, νC=O = 

1685, νmax = 1547, 1151, 1110. MS (ES+): m/z (%): 296/98 (M + H+, 30), 313/15 (M + NH4
+, 20). HRMS (ES-): 

calcd. for C9H7BrF2NO3
-: 293.9583, found 293.9572. El. Anal. Calcd for C9H8BrF2NO3: C 36.51, H 2.72, N 4.73, 

found C 36.86, H 2.68, N 4.57. 

The spectral data of N-(2-hydroxyphenyl)-2-bromo-2,2-difluoroacetamide 261a160 and N-phenyl-2-bromo-

2,2-difluoroacetamide 269135 were in accordance with those reported in the literature. 

5.7.4 Synthesis of amines 23c, 243, 262 and 270 

The synthesis of amine 23c is given as a representative example. To a solution of N-(4-methoxybenzyl)-2-

bromo-2,2-difluoroacetamide 205c (1.94 g, 6.9 mmol) in anhydrous THF (40 mL), borane dimethylsulfide 

complex (1.58 g, 21 mmol, 3 equiv) was added with a syringe. Subsequently, this mixture was stirred at 

reflux temperature for 17 hours after which it was slowly quenched with a mixture of water and methanol 

(H2O/MeOH : 1/1, 50 mL). After extraction with EtOAc (3x 50 mL), drying (MgSO4), filtration and 

evaporation of the solvent, the residue was redissolved in MeOH and stirred in the presence of Pd/C (0.05 

equiv, 0.35 mmol) at room temperature for two hours. After filtration, the crude amine 23c was purified 

by column chromatography (SiO2, PE/EtOAc 92/8) and obtained in 73% yield (1.41 g, 5.0 mmol). 

N-(4-Methoxybenzyl)-2-bromo-2,2-difluoroethylamine 23c 

Colorless oil. Rf 0.12 (petroleum ether/EtOAc 92/8). Yield: 73%. 1H NMR (400 

MHz, CDCl3):  1.78 (1H, br s, NH), 3.34 (2H, t, JH,F = 12.6 Hz, CH2CF2Br), 3.81 (3H, 

s, OCH3), 3.88 (2H, s, Carom,quatCH2), 6.88 (2H, d, J = 8.8 Hz, 2x CHarom), 7.25 (2H, d, J = 8.8 Hz, 2x CHarom). 13C 

NMR (100.6 MHz, ref = CDCl3):  52.2 (Carom,quatCH2), 55.2 (OCH3), 58.1 (t, J = 23.5 Hz, CH2CF2Br), 113.9 (2x 

CHarom), 123.8 (t, J = 308.8 Hz, CF2Br), 129.3 (2x CHarom), 131.3 and 158.9 (2x Carom,quat). 19F NMR (376.5 MHz, 
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CDCl3, ref = CFCl3):  -51.23 (2F, t, JH,F = 12.7 Hz, CF2Br). IR (ATR, cm-1): νNH = 3362, νmax = 1512, 1246, 1033. 

MS (ES+): m/z (%): 121 (100). 

N-{2-[(Tert-butyldimethylsilyl)oxy]ethyl}-2-bromo-2,2-difluoroethylamine 243 

This compound was synthesized using 6 equivalents BH3.Me2S (2nd portion of three equivalents was added 

after 24 hours) in CH2Cl2 for 44 hours. 

Colorless oil. Yield: 89%. 1H NMR (400 MHz, CDCl3):  0.07 (6H, s, 2x SiCH3), 0.90 

(9H, s, SiC(CH3)3), 1.90 (1H, br s, NH), 2.86 (2H, t, J = 5.2 Hz, CH2NH), 3.39 (2H, t, 

JH,F = 12.6 Hz, CH2CF2), 3.70 (2H, t, J = 5.2 Hz, CH2O). 13C NMR (100.6 MHz, ref = CDCl3):  -5.3 (2x SiCH3), 

18.3 (SiC(CH3)3), 25.9 (SiC(CH3)3), 51.1 (CH2NH), 59.4 (t, J = 23.5 Hz, CH2CF2), 62.6 (CH2O), 123.8 (t, J = 308.8 

Hz, CF2Br). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3):  -51.59 (2F, t, JH,F = 12.6 Hz, CF2Br). IR (ATR, cm-1): νNH 

= 3365, νmax = 1088, 906, 830, 773. MS (ES+): m/z (%): 318/20 (M + H+, 100). HRMS (ES+): calcd. for 

C10H23BrF2NOSi+ (M + H+): 318.0695, found 318.0683.  

N-{2-[(Tert-butyldimethylsilyl)oxy]phenyl}-2-bromo-2,2-difluoroethylamine 262a 

Yellow oil. Rf 0.14 (petroleum ether/EtOAc 99/1). Yield: 90%. 1H NMR (300 MHz, CDCl3): 

 0.25 (6H, s, 2x SiCH3), 1.02 (9H, s, SiC(CH3)3), 3.95 (2H, td, JH,F = 11.8 Hz, J = 3.4 Hz, CH2), 

4.65 (1H, br s, NH), 6.65 (1H, ddd, J = 7.8 Hz, 7.4 Hz, 1.5 Hz, CHarom), 6.70 (1H, d, J = 7.9 

Hz, CHarom), 6.77 (1H, dd, J = 7.8 Hz, 1.4 Hz, CHarom), 6.87 (1H, ddd, J = 7.9 Hz, 7.4 Hz, 1.4 Hz, CHarom). 13C 

NMR (75 MHz, ref = CDCl3):  -4.2 (2x SiCH3), 18.3 (SiC(CH3)3), 25.9 (SiC(CH3)3), 54.3 (t, J = 25.4 Hz, CH2CF2Br), 

110.9, 118.0, 118.3 and 122.0 (4x CHarom), 122.6 (t, J = 309.2 Hz, CF2Br), 138.0 and 142.7 (2x Carom,quat). 19F 

NMR (282 MHz, CDCl3, ref = CFCl3):  -53.30 (t, JH,F = 11.8 Hz, CF2Br). IR (ATR, cm-1): νNH = 3446, νmax = 1514, 

1254, 916, 781. MS (ES+): m/z (%): 366/68 (M + H+, 100). HRMS (ES+): calcd. for C14H23BrF2NOSi+: 366.0695, 

found 366.0702. 

N-{4-Methoxy-2-[(tert-butyldimethylsilyl)oxy]phenyl}-2-bromo-2,2-difluoroethylamine 262b 

Yellow oil. Rf 0.57 (petroleum ether/EtOAc 9/1). Yield: 95%. 1H NMR (400 MHz, 

CDCl3):  0.26 (6H, s, 2x SiCH3), 1.02 (9H, s, SiC(CH3)3), 3.73 (3H, s, OCH3), 3.89 (2H, 

td, JH,F = 12.1 Hz, J = 7.2 Hz, CH2), 4.33 (1H, t, J = 7.2 Hz, NH), 6.42 (1H, d, J = 2.8 Hz, 

CHarom), 6.44 (1H, dd, J = 8.4 Hz, 2.8 Hz, CHarom), 6.62 (1H, d, J = 8.4 Hz, CHarom). 13C NMR (100.6 MHz, CDCl3): 

 -4.3 (2x SiCH3), 18.2 (SiC(CH3)3), 25.8 (SiC(CH3)3), 55.1 (t, J = 24.9 Hz, CH2CF2Br), 55.6 (OCH3), 105.5, 106.2 

and 111.5 (3x CHarom), 122.6 (t, J = 309.2 Hz, CF2Br), 132.1, 143.6 and 152.5 (3x Carom,quat). 19F NMR (376.5 
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MHz, CDCl3, ref = CFCl3):  -53.13 (2F, t, JH,F = 12.1 Hz, CF2Br). IR (ATR, cm-1): νNH = 3442, νmax = 1518, 1163, 

837, 780. MS (ES+): m/z (%): 396/98 (M + H+, 100). HRMS (ES+): calcd. for C15H25BrF2NO2Si+: 396.0801, found 

396.0813. 

N-(2-Bromo-2,2-difluoroethyl)aniline 270 

Colorless oil. Rf 0.35 (petroleum ether/EtOAc 95/5). Yield: 46%. 1H NMR (400 MHz, 

CDCl3):  3.91-3.99 (2H, m, CH2), 4.10 (1H, s, NH), 6.71 (2H, d, J = 7.7 Hz, 2x CHarom), 6.80 

(1H, tt, J = 7.4 Hz, 1.0 Hz, CHarom), 7.19-7.24 (2H, m, 2x CHarom). 13C NMR (100.6 MHz, ref 

= CDCl3):  54.5 (t, J = 25.1 Hz, CH2), 113.2 (2x CHarom), 119.1 (CHarom), 122.6 (t, J = 309.4 Hz, CF2Br), 129.5 

(2x CHarom), 146.1 (Carom,quat). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3):  -53.33 (2F, t, JH,F = 11.9 Hz, CF2Br). 

IR (ATR, cm-1): νNH = 3416, νmax = 1602, 1511, 1100, 909, 747, 690. 

5.7.5 Synthesis of N-(2-bromo-2,2-difluoroethyl)benzamides 217, 249, 264 and 271 

The synthesis of N-(2-bromo-2,2-difluoroethyl)-N-propylbenzamide 217 is described as representative. To 

a mixture of N-propyl-2-bromo-2,2-difluoroethylamine 23b (0.33 g, 1.7 mmol) and Et3N (0.84 g, 8.3 mmol, 

5 equiv) in anhydrous CH2Cl2 (20 mL), a solution of benzoyl chloride (0.23 g, 1.7 mmol, 1 equiv) in 

anhydrous CH2Cl2 (5 mL) was added slowly at 0 °C. After stirring at room temperature for 20 hours, the 

reaction mixture was washed with an aqueous solution of HCl (5%, 10 mL) and NaHCO3 (aq, sat). After 

drying (MgSO4) and filtration, the solvent was evaporated in vacuo. Column chromatography (SiO2, 

PE/EtOAc 8/2) afforded pure benzamide 217 in 90% yield (0.41 g, 1.5 mmol). 

N-(2-Bromo-2,2-difluoroethyl)-N-propylbenzamide 217 

Yellow oil. Rf 0.34 (petroleum ether/EtOAc 8/2). Yield: 90%. 1H NMR (400 MHz, CDCl3, 

50 °C):  0.79 (3H, t, J = 7.2 Hz, CH2CH3), 1.52-1.58 (2H, m, CH2CH2CH3), 3.45 (2H, t, J = 

6.8 Hz, NCH2CH2), 4.33 (2H, t, JH,F = 11.2 Hz, CF2BrCH2), 7.39-7.46 (5H, m, 5x CHarom). 13C 

NMR (100.6 MHz, ref = CDCl3):  10.8 (CH2CH3), 21.1 (CH2CH3), 51.3 (NCH2CH2), 52.1 (CH2CF2Br), 121.2 (t, J 

= 308.8 Hz, CF2Br), 126.8 (2x CHarom), 128.6 (2x CHarom), 129.9 (CHarom), 135.6 (Carom, quat), 172.8 (C=O). 19F 

NMR (376.5 MHz, CDCl3):  -50.02 (2F, br s, CF2Br). IR (ATR, cm-1): νC=O = 1647, νmax = 1407, 1089, 1021, 

935, 699. MS (ES+): m/z (%): 306/8 (M + H+, 100). HRMS (ES+): calcd. for C12H15BrF2NO+: 306.0300, found 

306.0295. 

 



Experimental section  Chapter 5 

155 
 

N-(2-Bromo-2,2-difluoroethyl)-N-{2-[(tert-butyldimethylsilyl)oxy]ethyl}benzamine 249 

Colorless oil. Rf 0.07 (petroleum ether/EtOAc 97/3). Yield: 71%. 1H NMR (300 

MHz, CDCl3):  0.01 (3H, s, SiCH3), 0.32 (3H, s, SiCH3), 0.87 (9H, s, SiC(CH3)3), 3.44-

3.90 (4H, m, CH2CH2), 4.24-4.66 (2H, m, CH2CF2), 7.35-7.40 (5H, m, 5x CHarom). 13C 

NMR (75 MHz, CDCl3):  -5.5 (2x SiCH3), 18.1 (SiC(CH3)3), 25.8 (SiC(CH3)3), 51.4 (CH2N), 53.2 (m, CH2CF2), 

61.5 (CH2O), 121.2 (t, J = 309.9 Hz, CF2Br), 127.0 (2x CHarom), 128.6 (2x CHarom), 129.9 (CHarom), 135.5 

(Carom,quat), 172.8 (C=O). 19F NMR (282 MHz, CDCl3, ref = CFCl3):  -50.56 (2F, br s, CF2Br). IR (ATR, cm-1): νC=O 

= 1655, νmax = 1090, 1071, 930, 834, 777. MS (ES+): m/z (%): 422/24 (M + H+, 100). HRMS (ES+): calcd. for 

C17H27BrF2NO2Si+: 422.0957, found 422.0965. 

N-(2-Bromo-2,2-difluoroethyl)-N-{2-[(tert-butyldimethylsilyl)oxy]phenyl}benzamide 264a 

White crystals. Melting point: 89-90 °C. Rf 0.23 (petroleum ether/EtOAc 9/1). Yield: 98%. 

1H NMR (400 MHz, CDCl3):  0.26 (3H, s, SiCH3), 0.32 (3H, s, SiCH3), 1.02 (9H, s, SiC(CH3)3), 

4.00 (1H, ddd, JH,F = 18.5 Hz, J = 14.9 Hz, JH,F = 4.2 Hz, CH(H)CF2Br), 5.44 (1H, ddd, JH,F = 

18.9 Hz, J = 14.9 Hz, JH,F = 10.3 Hz, CH(H)CF2Br), 6.74-6.77 (2H, m, 2x CHarom), 7.06-7.15 

(4H, m, 4x CHarom), 7.21-7.22 (1H, m, CHarom), 7.28-7.30 (2H, m, 2x CHarom). 13C NMR (100.6 MHz, CDCl3): 

 -4.4 (SiCH3), -3.9 (SiCH3), 18.2 (SiC(CH3)3), 25.7 (SiC(CH3)3), 56.4 (dd, J = 25.0 Hz, 22.4 Hz, CH2CF2Br), 118.6 

(CHarom), 120.7 (dd, J = 311.4 Hz, 308.4 Hz, CF2Br), 121.0 (CHarom), 127.5 (2x CHarom), 128.0 (2x CHarom), 129.3, 

129.9 and 131.7 (3x CHarom), 132.9, 134.9 and 150.7 (3x Carom,quat), 171.3 (C=O). 19F NMR (376.5 MHz, CDCl3, 

ref = CFCl3):  -49.08 (1F, ddd, J = 154.5 Hz, JH,F = 18.9 Hz, 4.2 Hz, CF(F)Br), -50.75 (1F, ddd, J = 154.5, JH,F = 

18.5 Hz, 10.3 Hz, CF(F)Br). IR (ATR, cm-1): νC=O = 1658, νmax = 1285, 909, 783. MS (ES+): m/z (%): 470/72 (M 

+ H+, 100). HRMS (ES+): calcd. for C21H27BrF2NO2Si+: 470.0957, found 470.0957. El. Anal. Calcd for 

C21H26BrF2NO2Si: C 53.62, H 5.57, N 2.98, found C 53.53, H 5.90, N 2.91. 

N-(2-Bromo-2,2-difluoroethyl)-N-{4-methoxy-2-[(tert-butyldimethylsilyl)oxy]phenyl}benzamide 264b 

White crystals. Melting point: 119-120 °C. Rf 0.13 (petroleum ether/EtOAc 9/1). 

Yield: 52%. 1H NMR (400 MHz, CDCl3):  0.26 (3H, s, SiCH3), 0.31 (3H, s, SiCH3), 1.02 

(9H, s, SiC(CH3)3), 3.70 (3H, s, OCH3), 4.91 (1H, ddd, JH,F = 18.4 Hz, J = 14.9 Hz, JH,F = 

4.3 Hz, CH(H)CF2Br), 5.43 (1H, ddd, JH,F = 18.7 Hz, J = 14.9 Hz, JH,F = 10.5 Hz, 

CH(H)CF2Br), 6.28-6.31 (2H, m, 2x CHarom), 6.99-7.01 (1H, m, CHarom), 7.13-7.17 (2H, m, 2x CHarom), 7.21-7.24 

(1H, m, CHarom), 7.29-7.31 (2H, m, 2x CHarom). 13C NMR (100.6 MHz, CDCl3):  -4.4 (SiCH3), -3.9 (SiCH3), 18.2 

(SiC(CH3)3), 25.7 (SiC(CH3)3), 55.3 (OCH3), 56.6 (dd, J = 24.9 Hz, 22.4 Hz, CH2CF2Br), 105.1 and 105.3 (2x 
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CHarom), 120.9 (dd, J = 311.3 Hz, 308.3 Hz, CF2Br), 126.2 (Carom,quat), 127.5 (2x CHarom), 127.9 (2x CHarom), 129.8 

and 132.0 (2x CHarom), 135.1, 151.6 and 160.0 (3x Carom,quat), 171.6 (C=O). 19F NMR (376.5 MHz, CDCl3, ref = 

CFCl3):  -49.12 (1F, ddd, J = 154.5 Hz, JH,F = 18.7 Hz, 4.3 Hz, CF(F)Br), -50.71 (1F, ddd, J = 154.5, JH,F = 18.4 

Hz, 10.5 Hz, CF(F)Br). IR (ATR, cm-1): νC=O = 1652, νmax = 1509, 1171, 833. MS (ES+): m/z (%): 500/2 (M + H+, 

100). HRMS (ES+): calcd. for C22H29BrF2NO3Si+: 500.1063, found 500.1067. 

N-(2-Bromo-2,2-difluoroethyl)-N-{2-[(tert-butyldimethylsilyl)oxy]phenyl}-4-methoxybenzamide 264c 

Colorless oil. Rf 0.29 (petroleum ether/EtOAc 95/5). Yield: 76%. 1H NMR (400 MHz, 

CDCl3):  0.19 (3H, s, SiCH3), 0.27 (3H, s, SiCH3), 0.97 (9H, s, SiC(CH3)3), 3.60 (3H, s, 

OCH3), 4.00 (1H, ddd, JH,F = 19.0 Hz, J = 15.0 Hz, JH,F = 3.8 Hz, CH(H)CF2Br), 5.40 (1H, 

ddd, JH,F = 19.3 Hz, J = 15.0 Hz, JH,F = 9.6 Hz, CH(H)CF2Br), 6.58 (2H, d, J = 8.7 Hz, 2x 

CHarom), 6.72-6.76 (1H, m, CHarom), 6.76 (1H, d, J = 8.2 Hz, CHarom), 7.05 (1H, ddd, J = 8.2 Hz, 7.6 Hz, 1.6 Hz, 

CHarom), 7.11 (1H, d, J = 7.6 Hz, CHarom), 7.26 (2H, d, J = 8.7 Hz, 2x CHarom). 13C NMR (100.6 MHz, ref = CDCl3): 

 -4.6 (SiCH3), -4.1 (SiCH3), 18.0 (SiC(CH3)3), 25.5 (SiC(CH3)3), 54.9 (OCH3), 56.6 (dd, J = 23.7 Hz, 23.1 Hz, 

CH2CF2Br), 112.6 (2x CHarom), 118.7 (CHarom), 120.8 (dd, J = 311.1 Hz, 308.9 Hz, CF2Br), 121.1 (CHarom), 126.6 

(Carom,quat), 129.1 (CHarom), 130.3 (2x CHarom), 131.2 (CHarom), 133.3, 150.5 and 160.8 (3x Carom,quat), 170.4 

(C=O). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3):  -48.91 (1F, ddd, J = 153.2 Hz, JH,F = 19.3 Hz, 3.8 Hz, CF(F)Br), 

-50.74 (1F, ddd, J = 153.2 Hz, JH,F = 19.0 Hz, 9.6 Hz, CF(F)Br). IR (ATR, cm-1): νC=O = 1657, νmax = 1497, 1253, 

909, 782. MS (ES+): m/z (%): 500/2 (M + H+, 100). HRMS (ES+): calcd. for C22H29BrF2NO3Si+: 500.1063, found 

500.1070. 

N-(2-Bromo-2,2-difluoroethyl)-N-{2-[(tert-butyldimethylsilyl)oxy]phenyl}-4-bromobenzamide 264d 

White crystals. Melting point: 83-84 °C. Rf 0.57 (petroleum ether/EtOAc 9/1). Yield: 

75%. 1H NMR (400 MHz, CDCl3):  0.24 (3H, s, SiCH3), 0.31 (3H, s, SiCH3), 1.01 (9H, s, 

SiC(CH3)3), 4.00 (1H, ddd, JH,F = 18.7 Hz, J = 15.0 Hz, JH,F = 4.2 Hz, CH(H)CF2Br), 5.43 

(1H, ddd, JH,F = 19.0 Hz, J = 15.0 Hz, JH,F = 10.1 Hz, CH(H)CF2Br), 6.75-6.79 (2H, m, 2x 

CHarom), 7.07-7.14 (2H, m, 2x CHarom), 7.20 (2H, d, J = 8.5 Hz, 2x CHarom), 7.26 (2H, d, J = 8.5 Hz, 2x CHarom). 

13C NMR (100.6 MHz, ref = CDCl3):  -4.4 (SiCH3), -4.0 (SiCH3), 18.0 (SiC(CH3)3), 25.6 (SiC(CH3)3), 56.5 (dd, J 

= 24.8 Hz, 22.6 Hz, CH2CF2Br), 118.7 (CHarom), 120.5 (dd, J = 311.2 Hz, 308.4 Hz, CF2Br), 121.2 (CHarom), 124.4 

(Carom,quat), 129.5 (CHarom), 129.7 (2x CHarom), 130.6 (2x CHarom), 131.3 (CHarom), 132.6, 133.6 and 150.6 (3x 

Carom,quat), 171.1 (C=O). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3):  -49.27 (1F, ddd, J = 154.4 Hz, 19.0 Hz, 4.2 

Hz, CF(F)Br), -50.85 (1F, ddd, J = 154.4 Hz, 18.7 Hz, 10.1 Hz, CF(F)Br). IR (ATR, cm-1): νC=O = 1664, νmax = 1479, 
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1282, 1100, 908, 732. MS (ES+): m/z (%): 548/50/52 (M + H+, 100). HRMS (ES+): calcd. for C21H26Br2F2NO2Si+: 

548.0062, found 548.0063. 

N-(2-Bromo-2,2-difluoro)-N-phenylbenzamide 271 

Colorless oil. Rf 0.10 (petroleum ether/EtOAc 9/1). Yield: 63%. 1H NMR (400 MHz, 

CDCl3):  4.81 (2H, t, JH,F = 12.8 Hz, CH2), 7.08-7.11 (2H, m, 2x CHarom), 7.14-7.20 (3H, m, 

3x CHarom), 7.21-7.25 (3H, m, 3x CHarom), 7.29-3.31 (2H, m, 2x CHarom). 13C NMR (100.6 

MHz, ref = CDCl3):  57.9 (t, J = 24.0 Hz, CH2), 120.4 (t, J = 310.1 Hz, CF2), 127.5 (CHarom), 

127.77 and 127.79 (4x CHarom), 128.6 (2x CHarom), 129.3 (2x CHarom), 130.1 (CHarom), 134.7 (Carom,quat), 142.8 

(Carom,quat), 171.0 (C=O). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3):  -49.97 (2F, t, JH,F = 12.9 Hz, CF2Br). IR 

(ATR, cm-1): νC=O = 1659, νmax = 1370, 1302, 1107, 926, 695. MS (ES+): m/z (%): 340/42 (M + H+, 100). HRMS 

(ES+): calcd. for C15H13BrF2NO+: 340.0143, found 340.0133. 

5.7.6 Synthesis of N-(2-bromo-2,2-difluoroethyl)-4-methylbenzenesulfonamides 219 

and 244 

The synthesis of N-(2-bromo-2,2-difluoroethyl)-N-propyl-4-methylbenzenesulfonamide 219 is described 

as representative. To a mixture of N-propyl-2-bromo-2,2-difluoroethylamine 23b (5.00 g, 25 mmol), Et3N 

(4.00 g, 21 mmol, 0.8 equiv) and DMAP (0.26 g, 2.1 mmol, 0.08 equiv) in anhydrous CH2Cl2 (100 mL), a 

solution of p-toluenesulfonyl chloride (2.12 g, 21 mmol, 0.8 equiv) in anhydrous CH2Cl2 (25 mL) was added 

at 0 °C. The reaction mixture was stirred at reflux temperature for 47 h, poured in 1M HCl (50 mL) and 

extracted with CH2Cl2 (3x 50 mL). After drying of the organic fase (MgSO4), filtration of the drying agent, 

and evaporation of the solvent in vacuo, N-(2-bromo-2,2-difluoroethyl)-N-propyl-4-

methylbenzenesulfonamide 219 was obtained in 78% yield (5.81 g, 19.5 mmol). 

N-(2-Bromo-2,2-difluoroethyl)-N-propyl-4-methylbenzenesulfonamide 219 

White crystals. Melting point: 56-57 °C. Yield: 78%. 1H NMR (400 MHz, CDCl3):  0.82 

(3H, t, J = 7.4 Hz, CH2CH3), 1.58 (2H, sextet, J = 7.6 Hz, CH2CH2CH3), 2.43 (3H, s, 

CH3Carom,quat), 3.18-3.22 (2H, m, NCH2CH2), 4.10 (2H, t, JH,F = 13.3 Hz, CF2BrCH2), 7.31 (2H, d, J = 8.1 Hz, 2x 

CHarom), 7.71 (2H, d, J = 8.1 Hz, 2x CHarom). 13C NMR (100.6 MHz, CDCl3):  10.9 (CH2CH3), 20.8 (CH2CH3), 21.5 

(CH3Carom,quat), 50.9 (NCH2CH2), 56.0 (t, J = 24.2 Hz, CH2CF2Br), 120.6 (t, J = 309.5 Hz, CF2Br), 127.3 (2x CHarom), 

129.8 (2x CHarom), 136.6 (Carom, quat), 143.9 (Carom,quat). 19F NMR (376.5 MHz, CDCl3):  -51.47 (2F, t, JH,F = 13.3 
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Hz, CF2Br). IR (ATR, cm-1): νmax = 1345, 1154, 942, 732. MS (ES+): m/z (%): 373/75 (M + NH4
+, 100), 356/58 

(M + H+, 80). HRMS (ES+): calcd. for C12H17BrF2NO2S+: 356.0126, found 356.0125. 

N-(2-Bromo-2,2-difluoroethyl)-N-{2-[(tert-butyldimethylsilyl)oxy]ethyl}-4-methylbenzenesulfonamide 

244 

Yellow oil. Rf 0.17 (petroleum ether/EtOAc 17/0.6). Yield: 25%. 1H NMR (300 

MHz, CDCl3):  0.01 (6H, s, 2x SiCH3), 0.85 (9H, s, SiC(CH3)3), 2.39 (3H, s, 

CH3Carom,quat), 3.40 (2H, t, J = 5.5 Hz, NCH2), 3.73 (2H, t, J = 5.5 Hz, OCH2), 4.36 (2H, t, JH,F = 14.0 Hz, CH2CF2), 

7.28 (2H, d, J = 8.0 Hz, 2x CHarom), 7.66 (2H, d, J = 8.0 Hz, 2x CHarom). 13C NMR (75 MHz, CDCl3):  -5.2 (2x 

SiCH3), 18.3 (SiC(CH3)3), 21.5 (CH3Carom,quat), 25.9 (SiC(CH3)3), 50.6 (NCH2), 57.2 (t, J = 23.5 Hz, CH2CF2), 62.4 

(CH2O), 120.9 (t, J = 307.5 Hz, CF2Br), 127.4 (2x CHarom), 129.8 (2x CHarom), 137.0 (Carom,quat), 143.9 (Carom,quat). 

19F NMR (282 MHz, CDCl3):  -51.89 (2F, t, JH,F = 14.0 Hz, CF2Br). IR (ATR, cm-1): νmax = 1158, 1091, 994, 938, 

840, 813, 775, 731. MS (ES+): m/z (%): 472/74 (M + H+, 100). HRMS (ES+): calcd. for C17H29BrF2NO3SSi+: 

472.0783, found 472.0781. 

5.7.7 Synthesis of N-(2-bromo-2,2-difluoroethyl)-N-{2-[(tert-butyldimethylsilyl)oxy]-

ethyl}-1,1,1-trifluoromethanesulfonamide 248 

To a solution of N-{2-[(tert-butyldimethylsilyl)oxy]ethyl}-2-bromo-2,2-difluoroethylamine 243 (1.50 g, 4.72 

mmol) and triethylamine (1.2 equiv, 0.57 g, 5.66 mmol) in dry CH2Cl2 (40 mL) was added triflic anhydride 

(1.1 equiv, 0.87 mL, 2.19 mmol) at 0 °C. Subsequently, this reaction mixture was stirred at room 

temperature for 17 hours, after which the mixture was washed with aqueous HCl (1M) and the organic 

phase was dried (MgSO4), filtered and evaporated under reduced pressure. After purification using column 

chromatography, pure N-(2-bromo-2,2-difluoroethyl)-N-{2-[(tert-butyldimethylsilyl)oxy]ethyl}-1,1,1-

trifluoromethanesulfonamide 248 was obtained (1.59 g, 3.54 mmol). 

N-(2-Bromo-2,2-difluoroethyl)-N-{2-[(tert-butyldimethylsilyl)oxy]ethyl}-1,1,1-trifluoromethane-

sulfonamide 248 

Colorless oil. Rf 0.47 (petroleum ether/EtOAc 20/1). Yield: 75%. 1H NMR (300 

MHz, CDCl3):  0.09 (6H, s, 2x SiCH3), 0.91 (9H, s, SiC(CH3)3), 3.68 (2H, t, J = 5.0 Hz, 

NCH2), 3.88 (2H, t, J = 5.0 Hz, OCH2), 4.46 (2H, t, JH,F = 13.2 Hz, CH2CF2). 13C NMR (75 MHz, CDCl3):  -2.7 

(SiCH3), 2.9 (SiCH3), 21.0 (SiC(CH3)3), 28.7 (SiC(CH3)3), 53.3 (CH2N), 59.8 (t, J = 23.7 Hz, CH2CF2), 65.0 (CH2O), 

122.1 (t, J = 308.6 Hz, CF2Br), 122.6 (q, J = 322.7 Hz, CF3). 19F NMR (282 MHz, CDCl3):  -52.76 (2F, m, CF2Br), 
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-74.87 (3F, t, J = 5.3 Hz, CF3). IR (ATR, cm-1): νmax = 1192, 1126, 1014, 936, 778. MS (ES+): m/z (%): 450/52 

(M + H+, 100). 

5.7.8 Synthesis of β,β-difluorinated enamides 218, 220, 245, 250, 251 and 272 

The synthesis of benzamide 218 is given as a representative example. To a solution of N-2-bromo-2,2-

difluoroethyl-N-propylbenzamide 217 (1.29 g, 4.2 mmol) in anhydrous THF (40 mL), a solution of LiHMDS 

in THF (1M, 4.4 mL, 1.05 equiv) was added at 0 °C. The reaction mixture was stirred at room temperature 

for three hours, after which it was quenched with NaHCO3 (aq, sat) and extracted with EtOAc (3x 50 mL). 

After drying of the combined organic phases (MgSO4), filtration and evaporation of the solvent, crude 

benzamide 218 was obtained, which was purified via column chromatography (SiO2, PE/EtOAc 9/1) 

affording pure amide 218 in 85% yield (0.80 g, 3.6 mmol). 

N-(2,2-Difluorovinyl)-N-propylbenzamide 218 

Yellow oil. Rf 0.23 (petroleum ether/EtOAc 9/1). Yield: 85%. 1H NMR (400 MHz, CDCl3):  

0.94 (3H, br s, CH2CH3), 1.62-1.68 (2H, m, CH2CH2CH3), 3.57 (2H, br s, NCH2CH2), 5.42 (1H, 

br s, CH=CF2), 7.36-7.46 (5H, m, 5x CHarom). 13C NMR (100.6 MHz, ref = CDCl3):  11.2 (CH2CH3), 20.9 

(CH2CH3), 49.4 (NCH2CH2), 89.0-89.5 (m, CH=CF2), 127.5 (2x CHarom), 128.3 (2x CHarom), 130.3 (CHarom), 135.7 

(Carom, quat), 155.5 (t, J = 289.9 Hz, CH=CF2), 171.1 (C=O). 19F NMR (376.5 MHz, CDCl3):  -87.75 (1F, dd, J = 

38.9 Hz, JH,F = 18.2 Hz, CF(F)), -100.56 (1F, d, J = 38.9 Hz, CF(F)). IR (ATR, cm-1): νC=O = 1647, νmax = 1407, 

1089, 1021, 935, 699. MS (ES+): m/z (%): 226 (M + H+, 100). HRMS (ES+): calcd. for C12H14F2NO+: 226.1038, 

found 226.1038. 

N-(2,2-Difluorovinyl)-N-propyl-4-methylbenzenesulfonamide 220 

Yellow crystals. Melting point: 51-52 °C. Rf 0.30 (petroleum ether/EtOAc 10/1). Yield: 

82%. 1H NMR (300 MHz, CDCl3):  0.92 (3H, t, J = 7.2 Hz, CH2CH3), 1.54 (2H, sextet, J = 7.2 

Hz, CH2CH2CH3), 2.44 (3H, s, CH3Carom,quat), 3.10 (2H, t, J = 7.2 Hz, NCH2CH2), 4.87 (1H, dd, JH,F = 18.3 Hz, 2.8 

Hz, CH=CF2), 7.33 (2H, d, J = 8.3 Hz, 2x CHarom), 7.68 (2H, d, J = 8.3 Hz, 2x CHarom). 13C NMR (75 MHz, CDCl3): 

 10.9 (CH2CH3), 21.4 (CH2CH3), 21.6 (CH3Carom,quat), 51.6 (NCH2CH2), 84.9 (dd, J = 49.6 Hz, 13.9 Hz, CH=CF2), 

127.4 (2x CHarom), 129.8 (2x CHarom), 134.8 (Carom,quat), 143.9 (Carom,quat), 159.5 (dd, J = 300.0 Hz, 289.6 Hz, 

CH=CF2). 19F NMR (282 MHz, CDCl3):  -83.20 (1F, dd, J = 28.3 Hz, JH,F = 18.3 Hz, CF(F)), -93.38 (1F, d, J = 

28.3 Hz, CF(F)). IR (ATR, cm-1): νmax = 1749, 1341, 1240, 1164. MS (ES+): m/z (%): 276 (M + H+, 100), 293 (M 

+ NH4
+, 33). HRMS (ES+): calcd. for C12H16F2NO2S+: 276.0864, found 276.0863. 
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N-{2-[(Tert-butyldimethylsilyl)oxy]ethyl}-N-(2,2-difluorovinyl)-4-methylbenzenesulfonamine 245 

Colorless oil. Rf 0.37 (petroleum ether/EtOAc 9/1). Yield: 70%. 1H NMR (400 MHz, 

CDCl3):  0.01 (6H, s, 2x SiCH3), 0.84 (9H, s, SiC(CH3)3), 2.41 (3H, s, CH3), 3.29 (2H, 

t, J = 6.0 Hz, CH2N), 3.72 (2H, t, J = 6.0 Hz, CH2O), 5.04 (1H, dd, JH,F = 18.3 Hz, 2.7 Hz, CH=CF2), 7.29 (2H, d, J 

= 8.2 Hz, 2x CHarom), 7.67 (2H, d, J = 8.2 Hz, 2x CHarom). 13C NMR (100.6 MHz, ref = CDCl3):  -5.5 (2x SiCH3), 

18.3 (SiC(CH3)3), 21.6 (CH3Carom,quat), 25.9 (SiC(CH3)3), 52.3 (CH2N), 61.7 (CH2O), 86.3 (dd, J = 50.0 Hz, 13.8 

Hz, CH=CF2), 127.5 (2x CHarom), 129.9 (2x CHarom), 135.3 (Carom,quat), 144.1 (Carom,quat), 159.1 (dd, J = 299.6 Hz, 

289.1 Hz, CF2). 19F NMR (376.5 MHz, CDCl3):  -83.40 (1F, dd, J = 29.0 Hz, JH,F = 18.3 Hz, CF(F)), -94.60 (1F, 

d, J = 29.0 Hz, CF(F)). IR (ATR, cm-1): νmax = 1165, 1090, 883, 812, 776, 659. MS (ES+): m/z (%): 392 (M + H+, 

100). 

N-{2-[(Tert-butyldimethylsilyl)oxy]ethyl}-N-(2,2-difluorovinyl)-1,1,1-trifluoromethanesulfonamide 250 

Yellow oil. Rf 0.20 (petroleum ether/EtOAc 9/1). Yield: 65%. 1H NMR (400 MHz, 

CDCl3):  0.07 (6H, s, 2x SiCH3), 0.89 (9H, s, SiC(CH3)3), 3.60 (2H, t, J = 5.3 Hz, CH2N), 

3.79 (2H, t, J = 5.3 Hz, CH2O), 5.39 (1H, dd, JH,F = 17.9 Hz, 3.3 Hz, CH=CF2). 13C NMR (75 MHz, CDCl3):  -5.6 

(2x SiCH3), 18.2 (SiC(CH3)3), 25.7 (SiC(CH3)3), 54.0 (CH2N), 60.8 (CH2O), 85.2 (dd, J = 51.9 Hz, 15.0 Hz, 

CH=CF2), 119.9 (q, J = 323.8 Hz, CF3), 159.4 (dd, J = 300.0 Hz, 293.1 Hz, CF2). 19F NMR (376.5 MHz, CDCl3):  

-75.06 (3F, s, CF3), -80.75 to -80.87 (1F, m, CF(F)), -92.43 to -92.50 (1F, m, CF(F)). IR (ATR, cm-1): νmax = 1226, 

1191, 1116, 836, 777. MS (ES+): m/z (%): 370 (M + H+, 55), 361 (100). HRMS: M + H+ could not be detected. 

N-(2,2-Difluorovinyl)-N-{2-[(tert-butyldimethylsilyl)oxy]ethyl}benzamide 251 

Yellow oil. Rf 0.20 (petroleum ether/EtOAc 9/1). Yield: 35%. 1H NMR (300 MHz, 

CDCl3):  0.08 (6H, s, SiCH3), 0.91 (9H, s, 2x SiC(CH3)3), 3.62-3.87 (4H, m, CH2CH2), 

5.52-5.56 (1H, m, CH=CF2), 7.39-7.50 (5H, m, 5x CHarom). 13C NMR (75 MHz, CDCl3): 

 -5.4 (2x SiCH3), 18.2 (SiC(CH3)3), 25.9 (SiC(CH3)3), 50.5 (CH2N), 60.7 (CH2O), 90.3-91.2 (m, CH=CF2), 127.6 

(2x CHarom), 128.2 (2x CHarom), 130.3 (CHarom), 135.6 (Carom,quat), 159.4 (t, J = 298.6 Hz, CF2), 171.2 (C=O). 19F 

NMR (282 MHz, CDCl3, ref = CFCl3):  -85.59 (1F, br s, CF(F)), -101.06 (1F, d, J = 42.1 Hz, CF(F)).  

N-(2,2-Difluorovinyl)-N-phenylbenzamide 272 

Yellow oil. Rf 0.28 (petroleum ether/EtOAc 85/15). Yield: 63%. 1H NMR (400 MHz, CDCl3): 

 6.02 (1H, d, JH,F = 19.5 Hz, CH=CF2), 7.12 (2H, d, J = 7.7 Hz, 2x CHarom), 7.17-7.33 (6H, m, 

6x CHarom), 7.38 (2H, d, J = 7.5 Hz, 2x CHarom). 13C NMR (100.6 MHz, CDCl3):  89.9 (dd, J = 
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49.9 Hz, 11.6 Hz, CH=CF2), 126.7 (2x CHarom), 127.1 (CHarom), 128.0 (2x CHarom), 128.8 (2x CHarom), 129.2 (2x 

CHarom), 130.5 (CHarom), 134.7 (Carom,quat), 141.6 (Carom,quat), 155.7 (dd, J = 296.3 Hz, 285.0 Hz, CF2), 169.9 

(C=O). 19F NMR (282 MHz, CDCl3):  -86.01 (1F, dd, J = 41.6 Hz, JH,F = 19.5 Hz, CF(F)), -99.89 (1F, d, J = 41.6 

Hz, CF(F)). IR (ATR, cm-1): νC=O = 1660, νmax = 1333, 1305, 1282, 1228, 693. MS (ES+): m/z (%): 260 (M + H+, 

100). HRMS (ES+): calcd. for C15H12F2NO+: 260.0881, found 260.0878. 

5.7.9 Synthesis of enamides 221a, 221b and 222b, amine 223b and glycinate 224b 

The synthesis of enamide 221a is described as a representative example. N-(2,2-Difluorovinyl)-N-propyl-

4-methylbenzenesulfonamide 220 (0.21 g, 0.78 mmol) was dissolved in acetonitrile (5 mL) and 

subsequently, thiophenol (0.103 g, 0.93 mmol, 1.2 equiv) and KOH (0.052 g, 0.93 mmol, 1.2 equiv) were 

added. After stirring the reaction mixture for 20 hours at reflux temperature, an aqueous solution of HCl 

(1N, 10 mL) was added and an extraction with EtOAc (3x 10 mL) was performed. The combined organic 

layers were dried (MgSO4), filtered and the solvent was removed in vacuo. After column chromatography 

(SiO2, PE/EtOAc 24/1), enamide 221a was isolated in 69% yield (0.20 g, 0.54 mmol). 

(Z)-N-[2-Fluoro-2-(phenylthio)vinyl]-N-propyl-4-methylbenzenesulfonamide 221a 

White crystals. Melting point: 85-86 °C. Rf 0.13 (petroleum ether/EtOAc 24/1). Yield: 

69%. 1H NMR (400 MHz, CDCl3):  0.96 (3H, t, J = 7.4 Hz, CH2CH3), 1.58 (2H, sextet, J = 7.2 

Hz, CH2CH2CH3), 2.43 (3H, s, CH3Carom,quat), 3.19 (2H, t, J = 7.2 Hz, NCH2), 5.89 (1H, d, JH,F = 5.5 Hz, CH=CFS), 

7.30-7.33 (5H, m, 5x CHarom), 7.38-7.40 (2H, m, 2x CHarom), 7.69 (2H, d, J = 8.3 Hz, 2x CHarom). 13C NMR (100.6 

MHz, CDCl3):  11.2 (CH2CH3), 21.6 (CH2CH3 and CH3Carom,quat), 52.0 (NCH2CH2), 115.1 (d, J = 52.2 Hz, 

CH=CFS), 127.5 (2x CHarom), 128.2 (CHarom), 129.2 (2x CHarom), 129.77 (2x CHarom), 129.85 (Carom,quat), 131.5 

(2x CHarom), 134.8 (Carom,quat), 143.9 (Carom,quat), 158.9 (d, J = 297.3 Hz, CH=CFS). 19F NMR (282 MHz, CDCl3):  

-98.83 (1F, d, JH,F = 5.5 Hz, CH=CFS). IR (ATR, cm-1): νmax = 1344, 1161, 1145, 672. MS (ES+): m/z (%): 366 (M 

+ H+, 100). HRMS (ES+): calcd. for C18H21FNO2S2
+: 366.0992, found 366.0989. El. Anal. Calcd for 

C18H20FNO2S2: C 59.15, H 5.52, N 3.83, found C 59.35, H 5.72, N 3.73. 
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Enamides 221b (major) and 222b (minor) were obtained as an inseparable mixture (ratio 221b : 222b = 8 

: 2). 

(E)-N-(2-Fluoro-2-phenoxyvinyl)-N-propyl-4-methylbenzenesulfonamide 221b and (Z)-N-(2-fluoro-2-

phenoxyvinyl)-N-propyl-4-methylbenzenesulfonamide 222b 

Yellow oil. Rf 0.13 (petroleum ether/EtOAc 95/5). Yield: 32%. 1H NMR (400 MHz, 

CDCl3):  0.87 (2.4H, t, J = 7.4 Hz, CH2CH3 (major)), 0.94 (0.6H, t, J = 7.4 Hz, CH2CH3 

(minor)), 1.56 (2H, sextet, J = 7.3 Hz, CH2CH2CH3), 2.36 (2.4H, s, CH3Carom,quat (major)), 

2.39 (0.6H, s, CH3Carom,quat (minor)), 3.15 (0.4H, t, J = 7.1 Hz, NCH2CH2 (minor)), 3.21 

(1.6H, t, J = 7.0 Hz, NCH2CH2 (major)), 4.88 (0.2H, d, JH,F = 19.3 Hz, CH=CFO (minor)), 5.33 (0.8H, d, JH,F = 1.0 

Hz, CH=CFO (major)), 6.91-6.93 (1.6H, m, 2x CHarom (major)), 7.07-7.37 (4H, m, 5x CHarom (major)), 7.07-7.37 

(1.4H, m, 7x CHarom (minor)), 7.64-7.67 (1.6H, m, 2x CHarom (major)), 7.69 (0.4H, d, J = 8.4 Hz, 2x CHarom 

(minor)). 13C NMR (100.6 MHz, ref = CDCl3):  11.0 (CH2CH3), 21.48 (CH3Carom,quat (major)), 21.50 

(CH3Carom,quat (minor)), 21.53 (CH2CH3 (major)), 21.6 (CH2CH3 (minor)), 51.5 (NCH2), 91.9 (d, J = 20.7 Hz, 

CH=CFO (minor)), 92.8 (d, J = 60.3 Hz, CH=CFO (major)), 116.8 (2x CHarom (minor)), 116.9 (2x CHarom (major)), 

124.5 (CHarom (major)), 124.8 (CHarom (minor)), 127.4 (2x CHarom (major) and 2x CHarom (minor)), 129.60 (2x 

CHarom (major)), 129.62 (2x CHarom (major)), 129.7 (2x CHarom (minor)), 130.0 (2x CHarom (minor)), 135.1 

(Carom,quat (minor)), 135.4 (Carom,quat (major)), 143.6 (Carom,quat (major)), 143.7 (Carom,quat (minor)), 153.5 (d, J = 

1.2 Hz, OCarom,quat (major)), 154.6 (d, J = 1.5 Hz, OCarom,quat (minor)), 156.5 (d, J = 283.9 Hz, CH=CFO (major)), 

157.5 (d, J = 290.0 Hz, CH=CFO (minor)). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3):  -84.57 (0.2F, d, JH,F = 

19.3 Hz, CH=CFO (minor)), -95.80 (0.8F, s, CH=CFO (major)). IR (ATR, cm-1): νmax = 1341, 1190, 1163, 748, 

658. MS (ES+): m/z (%): 350 (M + H+, 100). HRMS (ES+): calcd. for C18H21FNO3S+: 350.1221, found 350.1224. 

N-(2,2-Difluoro-2-phenoxyethyl)-N-propyl-4-methylbenzenesulfonamide 223b 

White crystals. Melting point: 77-78 °C. Rf 0.08 (petroleum ether/EtOAc 95/5). Yield: 

10%. 1H NMR (400 MHz, CDCl3):  0.86 (3H, t, J = 7.4 Hz, CH2CH3), 1.67 (2H, sextet, J = 

7.5 Hz, CH2CH2CH3), 2.41 (3H, s, CH3Carom,quat), 3.27-3.31 (2H, m, NCH2CH2), 3.96 (2H, t, JH,F = 9.3 Hz, 

CH2CF2O), 7.03-7.06 (2H, m, 2x CHarom), 7.18-7.22 (1H, m, CHarom), 7.27-7.33 (4H, m, 4x CHarom), 7.76 (2H, d, 

J = 8.3 Hz, 2x CHarom). 13C NMR (100.6 MHz, CDCl3):  11.0 (CH2CH3), 20.9 (CH2CH3), 21.5 (CH3Carom,quat), 49.5 

(t, J = 34.5 Hz, CH2CF2), 50.4 (NCH2), 121.7 (2x CHarom), 122.2 (t, J = 270.2 Hz, CH2CF2), 125.8 (CHarom), 127.4 

(2x CHarom), 129.4 (2x CHarom), 129.6 (2x CHarom), 137.3, 143.4 and 149.7 (3x Carom,quat). 19F NMR (376.5 MHz, 

CDCl3, ref = CFCl3):  -73.49 (2F, t, JH,F = 9.3 Hz, CF2). IR (ATR, cm-1): νmax = 1336, 1264, 1146, 994. MS (ES+): 
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m/z (%): 370 (M + H+, 100), 387 (M + NH4
+, 12). HRMS (ES+): calcd. for C18H22F2NO3S+: 370.1283, found 

370.1279. El. Anal. Calcd for C18H21F2NO3S: C 58.52, H 5.73, N 3.79, found C 58.53, H 5.32, N 3.66. 

Phenyl N-propyl-N-tosylglycinate 224b 

White crystals. Melting point: 88-89 °C. Rf 0.03 (petroleum ether/EtOAc 95/5). Yield: 

85%. 1H NMR (400 MHz, CDCl3):  0.89 (3H, t, J = 7.4 Hz, CH2CH3), 1.61 (2H, sextet, J = 

7.4 Hz, CH2CH2CH3), 2.38 (3H, s, CH3Carom,quat), 3.24-3.28 (2H, m, NCH2CH2), 4.27 (2H, s, NCH2CO), 6.98-7.01 

(2H, m, 2x CHarom), 7.18-7.22 (1H, m, CHarom), 7.27 (2H, d, J = 8.1 Hz, 2x CHarom), 7.31-7.36 (2H, m, 2x CHarom), 

7.77 (2H, d, J = 8.3 Hz, 2x CHarom). 13C NMR (100.6 MHz, CDCl3):  11.1 (CH2CH3), 21.3 (CH2CH3), 21.5 

(CH3Carom,quat), 48.1 (NCH2CO), 50.2 (NCH2CH2), 121.2 (2x CHarom), 126.1 (CHarom), 127.4 (2x CHarom), 129.4 

(2x CHarom) and 129.6 (2x CHarom), 136.6, 143.5 and 150.2 (3x Carom,quat), 167.7 (C=O). IR (ATR, cm-1): νC=O = 

1769, νmax = 1334, 1148, 656. MS (ES+): m/z (%): 348 (M + H+, 100), 365 (M + NH4
+, 58). HRMS (ES+): calcd. 

for C18H22NO4S+: 348.1264, found 348.1273. 

5.7.10 Synthesis of enamides 221c and 222c. 

To a solution of enamide 220 (0.15 g, 0.55 mmol) in anhydrous THF (10 mL), a solution of NaOMe in MeOH 

(1M, 0.55 mL, 1 equiv) was added. This mixture was stirred for three hours at room temperature. 

Subsequently, aqueous NH4Cl (10 mL) was added, followed by an extraction with EtOAc (3x 10 mL). After 

drying of the combined organic phases (MgSO4), filtration and evaporation of the solvent under reduced 

pressure, a mixture of two isomers 221c and 222c was obtained. After column chromatography (SiO2, 

PE/EtOAc 9/1), enamides 221c and 222c were isolated in 57% (0.090 g, 0.31 mmol) and 15% (0.024 g, 0.08 

mmol) yield, respectively. 

(E)-N-(2-Fluoro-2-methoxyvinyl)-N-propyl-4-methylbenzenesulfonamide 221c 

Yellow oil. Rf 0.31 (petroleum ether/EtOAc 9/1). Yield: 57%. 1H NMR (400 MHz, CDCl3):  

0.91 (3H, t, J = 7.4 Hz, CH2CH3), 1.53 (2H, sextet, J = 7.3 Hz, CH2CH2CH3), 2.42 (3H, s, 

CH3Carom,quat), 3.10 (2H, td, J = 7.2 Hz, 0.8 Hz, NCH2CH2), 3.71 (3H, d, J = 1.0 Hz, OCH3), 4.63 (1H, d, JH,F = 0.7 

Hz, CH=CFO), 7.30 (2H, d, J = 8.1 Hz, 2x CHarom), 7.68 (2H, d, J = 8.1 Hz, 2x CHarom). 13C NMR (100.6 MHz, ref 

= CDCl3):  10.9 (CH2CH3), 21.3 and 21.4 (CH2CH3 and CH3Carom,quat), 51.9 (d, J = 1.2 Hz, NCH2CH2), 57.4 (d, J 

= 6.0 Hz, OCH3), 86.5 (d, J = 64.1 Hz, CH=CFO), 127.4 (2x CHarom), 129.4 (2x CHarom), 135.1 and 143.4 (2x 

Carom,quat), 161.7 (d, J = 280.1 Hz, CH=CFO). 19F NMR (282 MHz, CDCl3):  -97.22 (1F, s, CH=CFO). IR (ATR, 



Experimental section  Chapter 5 

164 
 

cm-1): νmax = 1339, 1161, 732. MS (ES+): m/z (%): 288 (M + H+, 25). HRMS (ES+): calcd. for C13H19FNO3S+: 

288.1064, found 288.1068. 

(Z)-N-(2-Fluoro-2-methoxyvinyl)-N-propyl-4-methylbenzenesulfonamide 222c 

Yellow oil. Rf 0.12 (petroleum ether/EtOAc 9/1). Yield: 15%. 1H NMR (400 MHz, CDCl3): 

 0.92 (3H, t, J = 7.4 Hz, CH2CH3), 1.54 (2H, sextet, J = 7.4 Hz, CH2CH2CH3), 2.42 (3H, s, 

CH3Carom,quat), 3.14 (2H, t, J = 7.2 Hz, NCH2CH2), 3.69 (3H, s, OCH3), 4.39 (1H, d, JH,F = 21.6 Hz, CH=CFO), 7.29 

(2H, d, J = 8.3 Hz, 2x CHarom), 7.69 (2H, d, J = 8.3 Hz, 2x CHarom). 13C NMR (100.6 MHz, ref = CDCl3):  11.0 

(CH2CH3), 21.4 and 21.5 (CH2CH3 and CH3Carom,quat), 52.1 (d, J = 1.8 Hz, NCH2CH2), 57.0 (d, J = 3.6 Hz, OCH3), 

81.6 (d, J = 20.4 Hz, CH=CFO), 127.4 (2x CHarom), 129.5 (2x CHarom), 135.4 (Carom,quat), 143.4 (Carom,quat) 162.5 

(d, J = 268.9 Hz, CH=CFOCH3). 19F NMR (282 MHz, CDCl3):  -85.13 (1F, d, JH,F = 21.6 Hz, CH=CFO). IR (ATR, 

cm-1): νmax = 1348, 1166, 998, 665. MS (ES+): m/z (%): 288 (M + H+, 25). HRMS (ES+): calcd. for C13H19FNO3S+: 

288.1064, found 288.1059. 

5.7.11 Synthesis of enamide 221d 

To a solution of enamide 220 (0.36 g, 1.3 mmol) in anhydrous THF (20 mL), a solution of KOtBu in THF (1M, 

1.44 mL, 1.1 equiv) was added at 0 °C. After stirring this reaction mixture for two hours at room 

temperature, a saturated solution of NH4Cl in H2O (20 mL) was added. Upon subsequent extraction with 

EtOAc (3x 20 mL), drying of the organic layers (MgSO4), filtration and evaporation of the solvent in vacuo, 

a mixture of enamides 221d and 222d was obtained (221d : 222d = 8 : 2), from which enamide 221d was 

isolated in 46% (0.20 g, 0.60 mmol) yield via column chromatography (SiO2, PE/EtOAc 97/3). 

(E)-N-[2-Fluoro-2-(tert-butoxy)vinyl]-N-propyl-4-methylbenzenesulfonamide 221d 

White crystals. Melting point: 91-92 °C. Rf 0.24 (petroleum ether/EtOAc 97/3). Yield: 

46%. 1H NMR (400 MHz, CDCl3):  0.89 (3H, t, J = 7.4 Hz, CH2CH3), 1.34 (9H, d, J = 0.8 Hz, 

C(CH3)3), 1.52 (2H, sextet, J = 7.3 Hz, CH2CH2CH3), 2.42 (3H, s, CH3Carom,quat), 3.14 (2H, td, J = 7.2 Hz, JH,F = 0.8 

Hz, NCH2CH2), 4.88 (1H, d, JH,F = 1.2 Hz, CH=CFO), 7.29 (2H, d, J = 8.1 Hz, 2x CHarom), 7.69 (2H, d, J = 8.1 Hz, 

2x CHarom). 13C NMR (100.6 MHz, ref = CDCl3)  11.2 (CH2CH3), 21.3 and 21.5 (CH2CH3 and CH3Carom,quat), 28.6 

(C(CH3)3), 51.8 (NCH2CH2), 84.7 (OC(CH3)3), 90.2 (d, J = 69.9 Hz, CH=CFO), 127.5 (2x CHarom), 129.5 (2x 

CHarom), 135.8 and 143.3 (2x Carom,quat), 159.3 (d, J = 284.9 Hz, CH=CFO). 19F NMR (282 MHz, CDCl3):  -85.62 

(1F, s, CH=CFO). IR (ATR, cm-1): νmax = 1343, 1165, 1151, 1137, 660. MS (ES+): m/z (%): 352 (M + Na+, 10). 

HRMS (ES+): calcd for C16H25FNO3S+: 330.1534, found 330.1542. 
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5.7.12 Synthesis of enamides 226 and 227 

To a solution of enamide 218 (0.045 g, 0.20 mmol) in acetonitrile (5 mL) were added phenol (0.023 g, 0.24 

mmol, 1.2 equiv) and KOH (0.013 g, 0.24 mmol, 1.2 equiv). After stirring this reaction mixture for four 

hours at reflux temperature, a saturated solution of NH4Cl in H2O (5 mL) was added. Upon subsequent 

extraction with EtOAc (3x 10 mL), drying of the organic layers (MgSO4), filtration and evaporation of the 

solvent in vacuo, enamides 226 and 227 were isolated as a mixture (ratio 226 : 227 = 4 : 1) in 80% yield 

(0.048 g, 0.16 mmol) after preparative TLC (SiO2, PE/EtOAc 9/1). 

(E)-N-(2-Fluoro-2-phenoxyvinyl)-N-propylbenzamide 226 and (Z)-(2-fluoro-2-phenoxyvinyl)-N-

propylbenzamide 227 

Yellow oil. Rf 0.18 (petroleum ether/EtOAc 9/1). Yield: 80%. 1H NMR (400 MHz, CDCl3): 

 0.94 (3H, br s, CH2CH3), 1.70 (2H, br s, CH2CH2CH3), 3.63 (2H, br s, NCH2), 5.43 (0.2H, 

d, JH,F = 19.9 Hz, CH=CFO (minor)), 5.76 (0.8H, br s, CH=CFO (major)), 6.81-6.91 (3H, m, 

3x CHarom), 7.13-7.56 (7H, m, 7x CHarom). 13C NMR (100.6 MHz, ref = CDCl3):  11.2 

(CH2CH3), 20.8 (CH2CH3), 49.4 (NCH2CH2), 96.8 (CH=CFO (minor)), 97.4 (d, J = 57.0 Hz, 

CH=CFO (major)), 115.4, 116.4, 120.0, 124.4, 127.6, 127.9, 128.1, 128.3, 129.4, 129.8, 130.2 and 130.3 (10x 

CHarom (major + minor)), 135.8 (Carom,quat), 152.8 (d, J = 281.0 Hz, CH=CFO (minor)), 154.7 (d, J = 323.4 Hz, 

CH=CFO (major)), 171.3 (C=O). 19F NMR (282 MHz, CDCl3):  -87.11 (1F, d, JH,F = 19.9 Hz, CH=CFO (minor)), 

-100.96 (1F, s, CHCFO (major)). IR (ATR, cm-1): νmax = 1627, 1191, 1164, 751, 691. MS (ES+): m/z (%): 300 (M 

+ H+, 100). HRMS (ES+): calcd for C18H19FNO2
+: 300.1394, found 300.1408. 

5.7.13 Synthesis of enamides 229 and 230 

To a solution of enamide 220 (0.152 g, 0.55 mmol) and triethylamine (2 equiv, 0.112 g, 1.10 mmol) in DMF 

(10 mL) was added KCN (2 equiv, 0.072 g, 1.10 mmol) and this mixture was stirred for 23 hours at 40 °C. 

After adding EtOAc (10 mL), the mixture was washed with brine (3x 10 mL). Drying of the organic phase 

(MgSO4), filtration and evaporation of the solvent afforded the crude reaction mixture from which a 

mixture of enamides 229 and 230 was isolated in a ratio of 229 : 230 = 3 : 2 (0.048 g, 0.17 mmol). 
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Enamides 229 (major) and 230 (minor) were obtained as an inseparable mixture (ratio 229 : 230 = 3 : 2). 

(E)-N-(2-Cyano-2-fluorovinyl)-N-propyl-4-methylbenzenesulfonamide 229 and (Z)-(2-cyano-2-

fluorovinyl)-N-propyl-4-methylbenzenesulfonamide 230 

Yellow oil. Rf 0.26 (petroleum ether/EtOAc 10/1). Yield: 30%. 1H NMR (400 MHz, CDCl3): 

 0.87 (1.1H, t, J = 7.4 Hz, CH2CH3 (minor)), 0.92 (1.9H, t, J = 7.4 Hz, CH2CH3 (major)), 

1.56 (0.7H, sextet, J = 7.8 Hz, CH2CH2CH3 (minor)), 1.65 (1.3H, sextet, J = 7.6 Hz, 

CH2CH2CH3 (major)), 2.46 (3H, s, CH3Carom,quat), 3.45-3.49 (2H, m, CH2N), 6.92 (0.4H, d, 

JH,F = 26.6 Hz, CH=CFCN (minor)), 7.38 (2H, d, J = 8.1 Hz, 2x CHarom), 7.66-7.72 (2.6H, m, CH=CFCN (major) 

and 2x CHarom). 13C NMR (100.6 MHz, ref = CDCl3):  10.0 (CH2CH3 (major)), 10.8 (CH2CH3 (minor)), 21.4 

(CH2CH3 (major)), 21.8 (CH3Carom,quat), 22.4 (d, J = 4.0 Hz, CH2CH3 (minor)), 48.1 (CH2N (major)), 49.3 (d, J = 

6.9 Hz, CH2N (minor)), 112.2 (d, J = 42.2 Hz, CN (major)), 113.6 (d, J = 41.4 Hz, CN (minor)), 118.1 (d, J = 

237.1 Hz, CF (minor)), 121.0 (d, J = 213.3 Hz, CF (major)), 121.5 (CH=CFCN (minor)), 127.3 (2x CHarom), 128.1 

(d, J = 48.8 Hz, CH=CFCN (major)), 129.9 (d, J = 13.3 Hz, Carom,quat (major or minor)), 130.5 (2x CHarom), 134.9 

(d, J = 20.6 Hz, Carom,quat (major or minor)), 145.5 (Carom,quat). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3):  -

153.87 (0.4F, d, JH,F = 26.6 Hz, CH=CFCN (minor)), -159.87 (0.6F, d, JH,F = 13.9 Hz, CH=CFCN (major)). IR (ATR, 

cm-1): νCN = 2217, νmax = 1346, 1166, 1137, 990, 813, 662. MS (ES+): m/z (%): 300 (M + NH4
+, 100). 

5.7.14 Synthesis of 6-fluoro-4-(trifluoromethanesulfonyl)-3,4-dihydro-2H-1,4-oxazine 

252 

To a solution of N-{2-[(tert-butyldimethylsilyl)oxy]ethyl}-N-(2,2-difluorovinyl)-1,1,1-trifluoromethane-

sulfonamine 250 (0.144 g, 0.39 mmol) in dry THF (5 mL) was added TBAF (1M in THF, 0.2 equiv, 0.08 mmol) 

at 0 °C. After stirring the reaction mixture at room temperature for 17 hours, it was quenched with H2O (5 

mL) and extracted with EtOAc (3x 5 mL). The combined organic phases were dried (MgSO4), filtered and 

evaporated in vacuo. After purification using column chromatography, pure 6-fluoro-4-

(trifluoromethanesulfonyl)-3,4-dihydro-2H-1,4-oxazine 252 (9 mg, 0.039 mmol) was obtained. 

6-Fluoro-4-(trifluoromethanesulfonyl)-3,4-dihydro-2H-1,4-oxazine 252 

Colorless oil. Rf 0.20 (petroleum ether/EtOAc 9/1). Yield: 10%. 1H NMR (300 MHz, CDCl3):  3.77 

(2H, t, J = 4.4 Hz, CH2N), 4.36 (2H, t, J = 4.4 Hz, CH2O), 5.88 (1H, s, CH=CF). 13C NMR (75 MHz, 

CDCl3):  43.5 (CH2N), 65.9 (CH2O), 83.4 (d, J = 51.9 Hz, CH=CF), 119.9 (q, J = 325.0 Hz, CF3), 153.6 
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(d, J = 248.1 Hz, CH=CF). 19F NMR (282 MHz, CDCl3):  -73.71 (3F, s, CF3), -107.43 (1F, s, CH=CF). IR (ATR, 

cm-1): νmax = 1396, 1304, 1186, 1148, 1088, 1017, 629. 

5.7.15 Synthesis of enamide 265a 

To a solution of benzamide 264a (0.11 g, 0.24 mmol) in anhydrous THF (10 mL), a solution of LiOtBu in THF 

(1M, 0.24 mL, 1 equiv) was added. After stirring this reaction mixture at room temperature for 1.5 hours, 

a saturated solution of NH4Cl in H2O (10 mL) was added. After extraction with EtOAc (3x 10 mL), drying 

(MgSO4), filtration and evaporation of the solvent in vacuo, crude enamide 265a was obtained. Purification 

via preparative TLC (SiO2, PE/EtOAc 95/5) afforded pure enamide 265a in 73% yield (0.067 g, 0.18 mmol). 

N-{2-[(Tert-butyldimethylsilyl)oxy]phenyl}-N-(2,2-difluorovinyl)benzamide 265a 

Colorless oil. Rf 0.43 (petroleum ether/EtOAc 9/1). Yield: 73%. 1H NMR (400 MHz, CDCl3, 

50 °C):  0.23 (6H, s, 2x SiCH3), 0.99 (9H, s, SiC(CH3)3), 6.22 (1H, br s, CH=CF2), 6.75 (1H, 

d, J = 7.4 Hz, CHarom), 6.83 (1H, t, J = 7.5 Hz, CHarom), 7.08-7.18 (4H, m, 4x CHarom), 7.24-

7.28 (1H, m, CHarom), 7.34-7.42 (2H, m, 2x CHarom). 13C NMR (100.6 MHz, CDCl3):  -4.3 (2x 

SiCH3), 18.2 (SiC(CH3)3), 25.7 (SiC(CH3)3), 89.3 (d, J = 53.8 Hz, CH=CF2), 119.1 and 121.2 (2x CHarom), 127.5 

(2x CHarom), 128.3 (2x CHarom), 129.2, 130.0 and 130.2 (3x CHarom), 132.0, 134.7 and 151.2 (3x Carom,quat), 

154.6 (dd, J = 297.3 Hz, 280.2 Hz, CH=CF2), 169.9 (C=O). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3):  -89.07 

(1F, dd, J = 52.2 Hz, JH,F = 18.2 Hz, CF(F)), -103.03 (1F, d, J = 52.2 Hz, CF(F)). IR (ATR, cm-1): νC=O = 1663, νmax 

= 1327, 1284, 913, 781, 714, 695. MS (ES+): m/z (%): 390 (M + H+, 100). HRMS (ES+): calcd. for 

C21H26F2NO2Si+: 390.1695, found 390.1693.  

5.7.16 Synthesis of ynamides 266a,c,d 

The synthesis of N-{2-[(tert-butyldimethylsilyl)oxy]phenyl}-N-(2-fluoroethynyl)benzamide 266a is given as 

representative. To a solution of benzamide 264a (0.30 g, 0.64 mmol) in anhydrous THF (30 mL), a solution 

of LiHMDS in THF (1M, 1.40 mL, 2.2 equiv) was added at 0 °C. The reaction mixture was allowed to warm 

to room temperature and was stirred at that temperature for 2.5 hours. Subsequently, aqueous NH4Cl (30 

mL) was added and this mixture was extracted with EtOAc (3x 20 mL). Drying of the combined organic 

layers (MgSO4), filtration and evaporation of the solvent under reduced pressure, afforded ynamide 266a 

(0.23 g, 0.62 mmol), which was purified via column chromatography (SiO2, PE/EtOAc 95/5). 
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N-{2-[(Tert-butyldimethylsilyl)oxy]phenyl}-N-(2-fluoroethynyl)benzamide 266a 

Pale yellow crystals. Melting point: 72-73 °C. Rf 0.21 (petroleum ether/EtOAc 95/5). Yield: 

97%. 1H NMR (300 MHz, CDCl3):  0.18 (6H, s, 2x SiCH3), 0.94 (9H, s, SiC(CH3)3), 6.68-6.80 

(1H, m, CHarom), 6.83-6.92 (1H, m, CHarom), 7.11-7.13 (2H, m, 2x CHarom), 7.24-7.41 (5H, m, 

5x CHarom). 13C NMR (75 MHz, ref = CDCl3):  -4.6 (2x SiCH3), 18.4 (SiC(CH3)3), 27.5 

(SiC(CH3)3), 98.5 (d, J = 55.4 Hz, C≡CF), 116.4, 124.5, 125.0 and 126.6 (4x CHarom), 128.1 (2x CHarom), 128.4 

(2x CHarom), 129.8 (Carom,quat), 130.3 (CHarom), 135.3 and 150.8 (2x Carom,quat), 162.5 (d, J = 274.6 Hz, C≡CF), 

169.5 (C=O). 19F NMR (282 MHz, CDCl3, ref = CFCl3):  -89.78 (1F, s, C≡CF). IR (ATR, cm-1): νC=O = 1657, νmax 

= 1491, 1347, 1244. νC≡C : not visible. MS (ES+): m/z (%): 370 (M + H+, 100). HRMS (ES+): calcd. for 

C21H25FNO2Si+: 370.1633, found 370.1643. 

N-{2-[(Tert-butyldimethylsilyl)oxy]phenyl}-N-(2-fluoroethynyl)-4-methoxybenzamide 266c 

Yellow oil. Rf 0.63 (petroleum ether/EtOAc 9/1). Yield: 94%. 1H NMR (400 MHz, 

CDCl3):  0.14 (6H, s, 2x SiCH3), 0.92 (9H, s, SiC(CH3)3), 3.77 (3H, s, OCH3), 6.77 (2H, 

d, J = 8.5 Hz, 2x CHarom), 6.90-6.94 (2H, m, 2x CHarom), 7.09-7.12 (2H, m, 2x CHarom), 

7.32 (2H, d, J = 8.5 Hz, 2x CHarom). 13C NMR (100.6 MHz, ref = CDCl3):  -4.70 (SiCH3), 

-4.67 (SiCH3), 18.3 (SiC(CH3)3), 27.3 (SiC(CH3)3), 55.2 (OCH3), 98.7 (d, J = 54.3 Hz, C≡CF), 113.2 (2x CHarom), 

116.2, 124.5, 125.0 and 126.3 (4x CHarom), 127.4 and 130.2 (2x Carom,quat), 130.6 (2x CHarom), 150.8 and 161.1 

(2x Carom,quat), 162.4 (d, J = 274.3 Hz, C≡CF), 168.7 (C=O). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3):  -89.92 

(1F, s, C≡CF). IR (ATR, cm-1): νC≡C = 2244, νC=O = 1649, νmax = 1245, 732. MS (ES+): m/z (%): 400 (M + H+, 100). 

HRMS (ES+): calcd. for C22H27FNO3Si+: 400.1739, found 400.1748. 

N-{2-[(Tert-butyldimethylsilyl)oxy]phenyl}-N-(2-fluoroethynyl)-4-bromobenzamide 266d 

Yellow crystals. Melting point: 87-88 °C. Rf 0.63 (petroleum ether/EtOAc 9/1). Yield: 

83%. 1H NMR (400 MHz, CDCl3):  0.18 (6H, s, 2x SiCH3), 0.93 (9H, s, SiC(CH3)3), 6.73 

(1H, br s, CHarom), 6.91 (1H, ddd, J = 8.0 Hz, 6.5 Hz, 2.1 Hz, CHarom), 7.11-7.17 (4H, m, 

4x CHarom), 7.41 (2H, d, J = 8.5 Hz, 2x CHarom). 13C NMR (100.6 MHz, ref = CDCl3):  -4.6 

(SiCH3), -4.5 (SiCH3), 18.4 (SiC(CH3)3), 27.4 (SiC(CH3)3), 89.5 (d, J = 54.9 Hz, C≡CF), 116.6 and 124.7 (2x 

CHarom), 124.8 (Carom,quat), 124.9 and 126.8 (2x CHarom), 129.5 (Carom,quat), 130.1 (2x CHarom), 131.3 (2x CHarom), 

134.1 and 150.7 (2x Carom,quat), 162.5 (d, J = 274.1 Hz, C≡CF), 168.2 (C=O). 19F NMR (376.5 MHz, CDCl3, ref = 

CFCl3):  -89.49 (1F, s, C≡CF). IR (ATR, cm-1): νC≡C = 2247, νC=O = 1651, νmax = 1247, 730. MS (ES+): m/z (%): 
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448/50 (M + H+, 100). HRMS (ES+): calcd. for C21H24BrFNO2Si+: 448.0738, found 448.0734. El. Anal. Calcd 

for C21H23BrFNO2Si: C 56.25, H 5.17, N 3.12, found C 56.30, H 4.73, N 3.02. 

5.7.17 Synthesis of benzoxazines 267a-c 

The synthesis of benzoxazine 267a is described as a representative example. To a solution of benzamide 

264a (0.10 g, 0.21 mmol) in anhydrous THF (10 mL), a solution of KOtBu in THF (1M, 0.21 mL, 1 equiv) was 

added. After stirring this reaction mixture at room temperature for two hours, saturated aqueous NH4Cl 

(10 mL) was added. After extraction with EtOAc (3x 10 mL), drying (MgSO4), filtration and evaporation of 

the solvent in vacuo, crude benzoxazine 267a was obtained. Purification via preparative TLC (SiO2, 

PE/EtOAc 95/5) afforded pure benzoxazine 267a in 80% yield (0.043 g, 0.17 mmol). 

4-Benzoyl-2-fluorobenzo[b][1,4]oxazine 267a 

Yellow oil. Rf 0.33 (petroleum ether/EtOAc 9/1). Yield: 80%. 1H NMR (300 MHz, CDCl3):  

6.16 (1H, br s, CH=CFO), 6.98-7.14 (3H, m, 3x CHarom), 7.40-7.56 (6H, m, 6x CHarom). 13C NMR 

(75 MHz, CDCl3):  89.4 (d, J = 48.5 Hz, CH=CF), 117.1, 123.2, 125.0 and 126.7 (4x CHarom), 

127.7 (Carom,quat), 128.1 (2x CHarom), 128.8 (2x CHarom), 131.1 (CHarom), 134.7 and 147.2 (2x 

Carom,quat), 153.1 (d, J = 259.6 Hz, CH=CF), 167.5 (C=O). 19F NMR (282 MHz, CDCl3, ref = CFCl3):  -112.33 (1F, 

br s, CH=CF). IR (ATR, cm-1): νC=O = 1657, νmax = 1490, 1340, 1243, 748, 697. MS (ES+): m/z (%): 256 (M + H+, 

30). HRMS (ES+): calcd. for C15H11FNO2
+: 256.0768, found 256.0780. 

4-Benzoyl-2-fluoro-7-methoxybenzo[b][1,4]oxazine 267b 

Yellow oil. Rf 0.22 (petroleum ether/EtOAc 9/1). Yield: 82%. 1H NMR (400 MHz, CDCl3): 

 3.78 (3H, s, OCH3), 6.12 (1H, br s, CH=CF), 6.57-6.58 (2H, m, 2x CHarom), 7.40-7.54 

(6H, m, 6x CHarom). 13C NMR (100.6 MHz, CDCl3):  55.8 (OCH3), 89.5 (d, J = 47.2 Hz, 

CH=CF), 103.0 and 110.1 (2x CHarom), 120.7 (Carom,quat), 123.7 (CHarom), 128.0 (2x CHarom), 

128.7 (2x CHarom), 130.8 (CHarom), 135.1 and 147.9 (2x Carom,quat), 152.8 (d, J = 258.7 Hz, CH=CF), 158.2 

(Carom,quat), 167.2 (C=O). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3):  -113.34 (1F, br s, CH=CF). IR (ATR, cm-1): 

νC=O = 1651, νmax = 1503, 1307, 1246, 699. MS (ES+): m/z (%): 286 (M + H+, 100). HRMS (ES+): calcd. for 

C16H13FNO3
+: 286.0874, found 286.0879. 
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4-(4-Methoxybenzoyl)-2-fluorobenzo[b][1,4]oxazine 267c 

Yellow crystals. Melting point: 68-69 °C. Rf 0.06 (petroleum ether/EtOAc 9/1). Yield: 

70%. 1H NMR (400 MHz, CDCl3):  3.84 (3H, s, OCH3), 6.22 (1H, d, JH,F = 2.7 Hz, CH=CF), 

6.90 (2H, d, J = 8.9 Hz, 2x CHarom), 6.98 (1H, ddd, J = 9.6 Hz, 7.1 Hz, 1.6 Hz, CHarom), 

6.98-7.00 (1H, m, CHarom), 7.08 (1H, ddd, J = 8.4 Hz, 7.1 Hz, 1.4 Hz, CHarom), 7.51-7.55 

(3H, m, 3x CHarom). 13C NMR (100.6 MHz, CDCl3):  55.4 (OCH3), 89.5 (d, J = 47.6 Hz, CH=CF), 113.8 (2x 

CHarom), 117.0, 123.0, 124.8 and 126.3 (4x CHarom), 126.5 and 128.1 (2x Carom,quat), 130.3 (2x CHarom), 147.1 

(Carom,quat), 153.0 (d, J = 261.6 Hz, CH=CF), 161.8 (Carom,quat), 169.9 (C=O). 19F NMR (376.5 MHz, CDCl3, ref = 

CFCl3):  -113.01 (1F, d, JH,F = 2.7 Hz, CH=CF). IR (ATR, cm-1): νC=O = 1652, νmax = 1605, 1238, 1180, 756. MS 

(ES+): m/z (%): 286 (M + H+, 100). HRMS (ES+): calcd. for C16H13FNO3
+: 286.0874, found 286.0880. 

Synthesis of benzoxazine 267d 

N-{2-[(Tert-butyldimethylsilyl)oxy]phenyl}-N-(2-fluoroethynyl)-4-bromobenzamide 266d (0.11 g, 0.23 

mmol) was dissolved in anhydrous THF (10 mL) at 0 °C and a solution of TBAF in THF (1M, 0.23 mL, 1 equiv) 

was added. Stirring was continued for one hour at the same temperature. Subsequently, the reaction 

mixture was quenched with H2O (10 mL) and extracted with EtOAc (3x 10 mL). After drying of the organic 

layers (MgSO4), filtration and evaporation of the solvent, crude benzoxazine 267d was obtained. 

Purification by means of preparative TLC (SiO2, PE/EtOAc 9/1) afforded benzoxazine 267d in 86% yield 

(0.067 g, 0.20 mmol). 

4-(4-Bromobenzoyl)-2-fluorobenzo[b][1,4]oxazine 267d 

Yellow oil. Rf 0.40 (petroleum ether/EtOAc 9/1). Yield: 86%. 1H NMR (400 MHz, CDCl3): 

 6.14 (1H, br s, CH=CF), 7.00-7.03 (2H, m, 2x CHarom), 7.13 (1H, ddd, J = 8.1 Hz, 7.4 Hz, 

1.4 Hz, CHarom), 7.41-7.58 (5H, m, 5x CHarom). 13C NMR (100.6 MHz, CDCl3):  89.1 (d, J = 

47.7 Hz, CH=CF), 117.1, 123.0 and 124.9 (3x CHarom), 125.6 (Carom,quat), 126.8 (CHarom), 

127.4 (Carom,quat), 129.7 (2x CHarom), 131.9 (2x CHarom), 133.4 and 147.1 (2x Carom,quat), 153.2 (d, J = 263.2 Hz, 

CH=CF), 166.1 (C=O). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3):  -111.80 (1F, d, JH,F = 2.6 Hz, CH=CF). IR 

(ATR, cm-1): νC=O = 1654, νmax = 1489, 1345, 1242, 750. MS (ES+): m/z (%): 334/36 (M + H+, 100). HRMS (ES+): 

calcd. for C15H10BrFNO2
+: 333.9873, found 333.9875. 
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5.7.18 Synthesis of benzamides 276a-c 

The synthesis of benzamide 276b is described as representative example. To a mixture of N-propyl-2-

bromo-2,2-difluoroethylamine 23b (0.54 g, 2.7 mmol) and O-acetylsalicyloyl chloride 275a (0.53 g, 2.7 

mmol, 1 equiv) in THF (30 mL), triethylamine (1.35 g, 13 mmol, 5 equiv) was slowly added at room 

temperature. After stirring this reaction mixture at the same temperature for two hours, aqueous HCl (1M, 

30 mL) was added and an extraction with Et2O (3x 20 mL) was performed. After drying (MgSO4), filtration 

and evaporation of the solvent, benzamide 276b was purified via column chromatography (SiO2, PE/EtOAc 

85/15) and obtained in 55% yield (0.53 g, 1.49 mmol). 

2-Acetoxy-N-(2-bromo-2,2-difluoroethyl)-N-(benzyl)benzamide 276a 

Yellow oil. Rf 0.15 (petroleum ether/EtOAc 85/15). Yield: 95%. 1H NMR (400 MHz, 

CDCl3):  2.03 (0.7H, s, CH3C=O (minor)), 2.32 (2.3H, s, CH3C=O (major)), 3.57-4.43 (2H, 

br s, CH2CF2), 4.57 (2H, s, CH2N), 7.12 (2H, d, J = 6.8 Hz, 2x CHarom), 7.21-7.46 (7H, m, 7x 

CHarom). 13C NMR (100.6 MHz, ref = CDCl3):  20.6 (CH3C=O (minor)), 20.8 (CH3C=O 

(major)), 47.9 (CH2Carom,quat (minor)), 51.5 (t, J = 23.6 Hz, CH2CF2Br (major)), 53.0 

(CH2Carom,quat (major)), 56.0 (t, J = 23.9 Hz, CH2CF2Br (minor)), 120.4 (t, J = 309.5 Hz, CF2Br), 123.0 (CHarom 

(minor)), 123.3 (CHarom (major)), 126.2 (CHarom), 127.3 (2x CHarom), 127.5 and 128.2 (2x CHarom), 128.4 

(Carom,quat (minor)), 128.5 (Carom,quat (major)), 128.9 (2x CHarom (minor)), 129.1 (2x CHarom (major)), 130.8 

(CHarom), 135.2 and 147.0 (2x Carom,quat (major)), 135.8 and 146.5 (2x Carom,quat (minor)), 168.81, 168.85, 168.9 

and 169.1 (NC=O (major and minor) and OC=O (major and minor)). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3): 

 -49.11 to -52.76 (2F, m, CF2Br). IR (ATR, cm-1): νC=O = 1767, νC=O = 1656, νmax = 1190, 1076, 910, 730. MS 

(ES+): m/z (%): 412/14 (M + H+, 100). HRMS (ES+): calcd. for C18H17BrF2NO3
+: 412.0354, found 412.0361. 

2-Acetoxy-N-(2-bromo-2,2-difluoroethyl)-N-(propyl)benzamide 276b 

Colorless oil. Rf 0.29 (petroleum ether/EtOAc 85/15). Yield: 55%. 1H NMR (400 MHz, 

CDCl3):  0.74 (2.3H, t, J = 7.4 Hz, CH2CH3 (major)), 0.98 (0.7H, t, J = 7.3 Hz, CH2CH3 

(minor)), 1.50 (1.5H, sextet, J = 7.4 Hz, CH2CH3 (major)), 1.68 (0.5H, sextet, J = 7.3 Hz, 

CH2CH3 (minor)), 2.26 (3H, s, CH3C=O), 3.28 (2H, t, J = 7.6 Hz, NCH2CH2), 3.83-4.62 (2H, m, CH2CF2Br), 7.20 

(1H, d, J = 8.2 Hz, CHarom), 7.30 (1H, d, J = 7.0 Hz, CHarom), 7.33 (1H, ddd, J = 7.3 Hz, 7.0 Hz, 1.8 Hz, CHarom), 

7.45 (1H, ddd, J = 8.2 Hz, 7.3 Hz, 1.8 Hz, CHarom).13C NMR (100.6 MHz, ref = CDCl3, 50 °C):  10.6 (CH2CH3 

(major)), 11.2 (CH2CH3 (minor)), 19.8 (CH2CH3 (minor)), 20.7 (CH3C=O), 20.9 (CH2CH3 (major)), 47.7 

(NCH2CH2 (minor)), 50.6 (NCH2CH2 (major)), 51.8 (t, J = 23.7 Hz, CH2CF2Br (major)), 57.7 (t, J = 23.3 Hz, 
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CH2CF2Br (minor)), 120.5 (t, J = 309.6 Hz, CF2Br), 123.1, 125.9, 127.4 and 130.4 (4x CHarom (major)), 122.9, 

126.0, 128.0 and 130.6 (4x CHarom (minor)), 128.7 (Carom,quat (minor)), 128.8 (Carom,quat (major)), 146.6 

(Carom,quat), 168.6, 168.7 and 168.9 (NC=O (major and minor) and OC=O). 19F NMR (376.5 MHz, CDCl3, ref = 

CFCl3):  -50.86 (2F, br s, CF2Br). IR (ATR, cm-1): νC=O = 1767, νC=O = 1651, νmax = 1192, 1177, 1078. MS (ES+): 

m/z (%): 364/66 (M + H+, 100). HRMS (ES+): calcd. for C14H17BrF2NO3
+: 364.0354, found 364.0355. 

2-Acetoxy-N-(2-bromo-2,2-difluoroethyl)-N-(4-methoxybenzyl)benzamide 276c 

White crystals. Melting point: 109-110 °C. Rf 0.11 (petroleum ether/EtOAc 9/2). Yield: 

78%. 1H NMR (400 MHz, CDCl3, 50 °C):  2.04 (0.6H, s, CH3C=O (minor)), 2.30 (2.4H, s, 

CH3C=O (major)), 3.80 (3H, s, OCH3), 3.89 (0.4H, br s, CH2CF2 (minor)), 4.30 (1.6H, br s, 

CH2CF2 (major)), 4.49 (2H, s, CH2Carom,quat), 6.86-6.88 (2H, m, 2x CHarom), 7.02-7.04 (2H, 

m, 2x CHarom), 7.20-7.27 (2H, m, 2x CHarom), 7.38-7.45 (2H, m, 2x CHarom). 13C NMR (100.6 

MHz, ref = CDCl3):  20.6 (CH3C=O (minor)), 20.8 (CH3C=O (major)), 47.2 (CH2Carom,quat 

(minor)), 51.0 (t, J = 23.7 Hz, CH2CF2Br (major)), 52.4 (CH2Carom,quat (major)), 55.2 (OCH3), 55.8 (t, J = 23.5 

Hz, CH2CF2Br (minor)), 114.2 (2x CHarom (minor)), 114.4 (2x CHarom (major)), 120.5 (t, J = 309.5 Hz, CF2Br), 

123.0 (CHarom (minor)), 123.2 (CHarom (major)), 126.2 (CHarom), 126.8 (Carom,quat), 127.6 (CHarom (major)), 127.8 

(CHarom (minor)), 128.26 (Carom,quat (minor)), 128.33 (2x CHarom (minor)), 128.5 (Carom,quat (major)), 128.8 (2x 

CHarom (major)), 130.4 (CHarom (minor)), 130.8 (CHarom (major)), 146.4 (Carom,quat (minor)), 146.9 (Carom,quat 

(major)), 159.5 (Carom,quat), 168.7, 168.8 and 168.9 (NC=O (major and minor) and OC=O). 19F NMR (376.5 

MHz, CDCl3, ref = CFCl3):  -48.54 to -52.33 (2F, m, CF2Br). IR (ATR, cm-1): νC=O = 1765, νC=O = 1654, νmax = 

1188, 1080, 925, 790. MS (ES+): m/z (%): 442/44 (M + H+, 100). HRMS (ES+): calcd. for C19H19BrF2NO4
+: 

442.0460, found 442.0458. 

5.7.19 Synthesis of benzamides 276d-e 

The synthesis of benzamide 276d is described as representative example. 2,5-Diacetoxybenzoic acid (0.22 

g, 0.94 mmol) was dissolved in SOCl2 (distilled, 1 mL) and stirred at reflux temperature for 15 minutes. 

Subsequently, the residual SOCl2 was evaporated under reduced pressure. The resulting acid chloride 275b 

was used without purification and redissolved in anhydrous THF (20 mL) and N-(4-methoxybenzyl)-2-

bromo-2,2-difluoroethylamine 23c (0.26 g, 1 equiv) and Et3N (0.19 g, 2 equiv) were added at 0 °C. 

Subsequently, the reaction mixture was stirred at room temperature for 22 hours, after which H2O (20 mL) 

was added and an extraction was performed with EtOAc (3x 20 mL). The combined organic layers were 
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dried (MgSO4), filtered and the solvent was removed in vacuo. Purification via flash chromatography (SiO2, 

PE/EtOAc 7/3) afforded benzamide 276d in 72% yield (0.34 g, 0.68 mmol). 

2,5-Diacetoxy-N-(2-bromo-2,2-difluoroethyl)-N-(4-methoxybenzyl)benzamide 276d 

Yellow oil. Rf 0.17 (petroleum ether/EtOAc 7/3). Yield: 72%. 1H NMR (400 MHz, 

CDCl3, 50 °C):  2.03 (0.9H, br s, CH3C=O (minor)), 2.27 (3H, s, CH3C=O), 2.29 (2.1H, 

br s, CH3C=O (major)), 3.80 (3H, s, OCH3), 3.89 (0.6H, br s, CH2CF2 (minor)), 4.27 

(1.4H, br s, CH2CF2 (major)), 4.50 (2H, br s, CH2Carom,quat), 6.86-6.88 (2H, m, 2x 

CHarom), 7.03-7.05 (2H, m, 2x CHarom), 7.15-7.25 (3H, m, 3x CHarom). 13C NMR (100.6 

MHz, CDCl3):  20.6 (CH3C=O (minor)), 20.8 (CH3C=O (major)), 21.0 (CH3C=O), 47.4 

(CH2Carom,quat (minor)), 51.0 (t, J = 23.6 Hz, CH2CF2Br (major)), 52.6 (CH2Carom,quat (major)), 55.3 (OCH3), 55.8 

(t, J = 24.0 Hz, CH2CF2Br (minor)), 114.3 (2x CHarom (minor)), 114.5 (2x CHarom (major)), 120.5 (t, J = 309.3 

Hz, CF2Br), 120.9 (CHarom (major)), 121.6 (CHarom (minor)), 123.9 (CHarom), 124.0 (CHarom (minor)), 124.2 

(CHarom (major)), 126.6 (Carom,quat), 129.17 (2x CHarom (major)), 129.24 (2x CHarom (minor)), 130.5 (Carom,quat), 

143.8 (Carom,quat (minor)), 144.2 (Carom,quat (major)), 148.0 (Carom,quat), 159.5 (Carom,quat (minor)), 159.6 (Carom,quat 

(major)), 167.6 (NC=O (minor)), 167.8 (NC=O (major)), 168.8 (2x OC=O)). 19F NMR (376.5 MHz, CDCl3, ref = 

CFCl3):  -48.49 to -51.32 (2F, m, CF2Br). IR (ATR, cm-1): νC=O = 1763, νC=O = 1655, νmax = 1201, 1163. MS (ES+): 

m/z (%): 517/19 (M + NH4
+, 100), 500/2 (M + H+, 98). HRMS (ES+): calcd. for C21H21BrF2NO6

+: 500.0515, 

found 500.0496. 

2-Acetoxy-5-methoxy-N-(2-bromo-2,2-difluoroethyl)-N-(4-methoxybenzyl)benzamide 276e 

White crystals. Melting point: 94-95 °C. Rf 0.12 (petroleum ether/EtOAc 9/2). Yield: 

67%. 1H NMR (400 MHz, CDCl3):  2.02 (0.7H, s, CH3C=O (minor)), 2.29 (2.3H, s, 

CH3C=O (major)), 3.75 (3H, s, OCH3), 3.80 (3H, s, OCH3), 3.81 (2H, br s, CH2CF2), 4.51 

(2H, br s, CH2Carom,quat), 6.86-6.88 (3H, m, 3x CHarom), 6.95 (1H, dd, J = 9.0 Hz, 2.9 Hz, 

CHarom), 7.04 (2H, d, J = 8.6 Hz, 2x CHarom), 7.12 (1H, d, J = 9.0 Hz, CHarom). 13C NMR 

(100.6 MHz, CDCl3):  18.8 (CH3C=O (minor)), 19.0 (CH3C=O (major)), 49.4 (t, J = 

23.1 Hz, CH2CF2Br), 50.7 (CH2Carom,quat), 53.5 (OCH3), 53.9 (OCH3), 110.5 (CHarom (major)), 110.9 (CHarom 

(minor)), 112.4 (2x CHarom (minor)), 112.6 (2x CHarom (major)), 114.4 (CHarom (major)), 114.8 (CHarom (minor)), 

118.6 (t, J = 309.6 Hz, CF2Br), 122.2 (CHarom (minor)), 122.4 (CHarom (major)), 125.1 (Carom,quat (major)), 125.9 

(Carom,quat (minor)), 127.0 (2x CHarom (major)), 127.4 (2x CHarom (minor)), 128.7 (Carom,quat), 137.9 (Carom,quat 

(minor)), 138.4 (Carom,quat (major)), 155.4 and 157.7 (2x Carom,quat), 166.7 (NC=O (minor)), 166.9 (NC=O 
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(major)), 167.4 (OC=O (minor)), 167.5 (OC=O (major)). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3):  -48.56 to 

-52.09 (2F, m, CF2Br). IR (ATR, cm-1): νC=O = 1762, νC=O = 1650, νmax = 1188, 1110, 1029. MS (ES+): m/z (%): 

472/74 (M + H+, 100). HRMS (ES+): calcd. for C20H21BrF2NO5
+: 472.0566, found 472.0557. El. Anal. Calcd for 

C20H20BrF2NO5: C 50.86, H 4.27, N 2.97, found C 50.73, H 4.21, N 2.92. 

5.7.20 Synthesis of benzamide 277b, enamide 278b and 2-fluoro-1,4-benzoxazepin-5-

one 279b 

To an ice-cooled solution of benzamide 276b (0.086 g, 0.24 mmol) in anhydrous THF (5 mL), a solution of 

LiHMDS in THF (1M, 0.52 mL, 2.2 equiv) was added, and the resulting mixture was stirred at room 

temperature for 5 hours. Subsequently, the reaction mixture was poured into saturated aqueous NH4Cl 

(5 mL) and extracted with EtOAc (3x 10 mL). Drying (MgSO4), filtration of the drying agent and removal of 

the solvent afforded benzamide 277b, enamide 278b and 2-fluoro-1,4-benzoxazepin-5-one 279b, which 

were further purified in 30% (0.024 g, 0.072 mmol), 17% (0.010 g, 0.041 mmol,) and 31% (0.0.16 g, 0.074 

mmol) yield, respectively, by preparative TLC (PE/EtOAc 9/1). 

N-2-Bromo-2,2-difluoroethyl-N-propyl-(2-hydroxy)benzamide 277b 

Yellow oil. Rf 0.04 (petroleum ether/EtOAc 9/1). Yield: 30%. 1H NMR (400 MHz, CDCl3): 

 0.82 (3H, t, J = 7.4 Hz, CH3), 1.60 (2H, sextet, J = 7.4 Hz, CH2CH3), 3.64 (2H, t, J = 7.4 Hz, 

NCH2CH2), 4.40 (2H, t, JH,F = 12.3 Hz, CH2CF2Br), 6.91 (1H, ddd, J = 7.8 Hz, 7.3 Hz, 0.9 Hz, 

CHarom), 7.03 (1H, dd, J = 8.3 Hz, 0.9 Hz, CHarom), 7.33 (1H, dd, J = 7.8 Hz, 1.6 Hz, CHarom), 7.37 (1H, ddd, J = 

8.3 Hz, 7.3 Hz, 1.6 Hz, CHarom), 8.76 (1H, br s, OH). 13C NMR (100.6 MHz, ref = CDCl3):  10.9 (CH3), 21.1 

(CH2CH3), 51.6 (CH2CF2Br), 53.9 (CH2N), 117.8 (CHarom), 118.7 (Carom,quat), 119.4 (CHarom), 120.9 (t, J = 309.5 

Hz, CF2Br), 128.1 and 132.6 (2x CHarom), 157.0 (Carom,quat), 173.4 (C=O). 19F NMR (376.5 MHz, CDCl3, ref = 

CFCl3):  -50.47 (2H, t, JH,F = 12.3 Hz, CF2Br). IR (ATR, cm-1): νOH = 3174, νC=O = 1620, νmax = 1595, 1083, 751. 

MS (ES+): m/z (%): 322/24 (M + H+, 100). HRMS (ES+): calcd. for C12H15BrF2NO2
+: 322.0249, found 322.0247. 

N-2,2-Difluorovinyl-N-propyl-(2-hydroxy)benzamide 278b 

White powder. Melting point: 59-60 °C. Rf 0.11 (petroleum ether/EtOAc 9/1). Yield: 17%. 

1H NMR (400 MHz, CDCl3):  0.96 (3H, t, J = 7.5 Hz, CH3), 1.69 (2H, sextet, J = 7.5 Hz, 

CH2CH3), 3.60 (2H, t, J = 7.5 Hz, NCH2), 5.61 (1H, dd, JH,F = 19.3 Hz, 2.1 Hz, CH=CF2), 6.83 

(1H, ddd, J = 7.9 Hz, 7.3 Hz, 1.0 Hz, CHarom), 7.00 (1H, dd, J = 8.3 Hz, 1.0 Hz, CHarom), 7.35 (1H, ddd, J = 8.3 

Hz, 7.3 Hz, 1.5 Hz, CHarom), 7.43 (1H, dd, J = 7.9 Hz, 1.5 Hz, CHarom), 9.95 (1H, br s, OH). 13C NMR (100.6 MHz, 
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CDCl3):  11.2 (CH3), 20.6 (CH2CH3), 50.3 (NCH2), 89.6 (dd, J = 49.4 Hz, 13.3 Hz, CHCF2), 116.3 (Carom,quat), 

118.1, 118.3, 128.7 and 133.5 (4x CHarom), 155.4 (dd, J = 295.9 Hz, 287.7 Hz, CHCF2), 159.8 (Carom,quat), 171.6 

(C=O). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3):  -87.33 (1F, dd, J = 40.8 Hz, JH,F = 19.3 Hz, CH=CF(F), -99.90 

(1F, d, J = 40.8 Hz, CH=CF(F)). IR (ATR, cm-1): νOH = 3159, νC=O = 1616, νmax = 1233, 760. MS (ES+): m/z (%): 

242 (M + H+, 100). HRMS (ES+): calcd. for C12H14F2NO2
+: 242.0987, found 242.0987. 

2-Fluoro-4-propylbenzo[f][1,4]oxazepin-5-one 279b 

Pale yellow oil. Rf 0.17 (petroleum ether/EtOAc 9/1). Yield: 31% (67% yield was obtained 

following the procedure described below). 1H NMR (400 MHz, CDCl3):  0.97 (3H, t, J = 7.4 

Hz, CH2CH3), 1.70 (2H, sextet, J = 7.4 Hz, CH2CH3), 3.57-3.61 (2H, m, CH2N), 5.50 (1H, d, JH,F 

= 3.7 Hz, CH=CF), 7.11 (1H, dd, J = 8.2 Hz, 1.1 Hz, CHarom), 7.29 (1H, ddd, J = 7.8 Hz, 7.4 Hz, 

1.1 Hz, CHarom), 7.48 (1H, ddd, J = 8.2 Hz, 7.4 Hz, 1.8 Hz, CHarom), 7.92 (1H, dd, J = 7.8 Hz, 1.8 Hz, CHarom). 13C 

NMR (100.6 MHz, CDCl3):  11.1 (CH3), 21.1 (CH2CH3), 49.9 (NCH2), 95.8 (d, J = 57.7 Hz, CH=CF), 119.4 

(CHarom), 125.98 (Carom,quat), 126.02, 132.6 and 133.3 (3x CHarom), 156.8 (d, J = 279.7 Hz, CH=CF), 159.7 (d, J 

= 4.3 Hz, Carom,quat), 165.1 (C=O). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3):  -99.24 (1F, d, JH,F = 3.7 Hz, CF). 

IR (ATR, cm-1): νC=O = 1639, νmax = 1453, 1411, 1192, 759. MS (ES+): m/z (%): 222 (M + H+, 100). HRMS (ES+): 

calcd. for C12H13FNO2
+: 222.0925, found 222.0930. 

5.7.21 Synthesis of benzo[f][1,4]oxazepin-5-ones 279a-e 

As a representative example, the synthesis of 2-fluoro-4-(4-methoxybenzyl)benzo[f][1,4]oxazepin-5-one 

279c is described here. To a solution of benzamide 276c (1.15 g, 2.6 mmol) in anhydrous THF (30 mL), a 

solution of KOtBu in THF (1M, 5.2 mL, 2 equiv) was added at room temperature. After stirring the reaction 

mixture at reflux temperature for three hours, saturated aqueous NH4Cl (30 mL) was added. After 

extraction (3x 30 mL EtOAc), drying with MgSO4, filtration of the drying agent and evaporation of the 

solvent, crude oxazepin-5-one 279c was obtained. Purification by means of column chromatography (SiO2, 

PE/EtOAc 9/1) afforded pure oxazepin-5-one 279c in 77% yield (0.60 g, 2.0 mmol). 

4-Benzyl-2-fluorobenzo[f][1,4]oxazepin-5-one 279a 

White crystals. Melting point: 65-66 °C. Rf 0.19 (petroleum ether/EtOAc 9/1). Yield: 

62%. 1H NMR (400 MHz, CDCl3):  4.85 (2H, s, CH2N), 5.49 (1H, d, JH,F = 3.7 Hz, CH=CF), 

7.11 (1H, dd, J = 8.2 Hz, 1.1 Hz, CHarom), 7.28-7.38 (5H, m, 5x CHarom), 7.49 (1H, ddd, 

J = 8.2 Hz, 7.4 Hz, 1.8 Hz, CHarom), 7.99 (1H, dd, J = 7.8 Hz, 1.8 Hz, CHarom). 13C NMR 
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(100.6 MHz, CDCl3):  51.5 (NCH2), 95.3 (d, J = 58.1 Hz, CH=CF), 119.5 (CHarom), 125.6 (d, J = 2.1 Hz, Carom,quat), 

126.1 and 127.8 (2x CHarom), 128.0 (2x CHarom), 128.8 (2x CHarom), 132.8 and 133.6 (2x CHarom), 136.0 

(Carom,quat), 156.9 (d, J = 280.1 Hz, CH=CF), 159.7 (d, J = 4.4 Hz, Carom,quat), 165.3 (C=O). 19F NMR (376.5 MHz, 

CDCl3, ref = CFCl3):  -98.64 (1F, d, JH,F = 3.7 Hz, CF). IR (ATR, cm-1): νC=O = 1627, νmax = 1451, 1420, 1196, 

692. MS (ES+): m/z (%): 270 (M + H+, 100). HRMS (ES+): calcd. for C16H13FNO2
+: 270.0925, found 270.0921. 

2-Fluoro-4-(4-methoxybenzyl)benzo[f][1,4]oxazepin-5-one 279c 

Yellow oil. Rf 0.12 (petroleum ether/EtOAc 9/1). Yield: 77%. 1H NMR (400 

MHz, CDCl3):  3.80 (3H, s, OCH3), 4.78 (2H, s, NCH2), 5.48 (1H, d, JH,F = 3.7 Hz, 

CH=CF), 6.88 (2H, d, J = 8.6 Hz, 2x CHarom), 7.11 (1H, dd, J = 8.2 Hz, 1.0 Hz, 

CHarom), 7.27 (2H, d, J = 8.6 Hz, 2x CHarom), 7.31 (1H, ddd, J = 7.8 Hz, 7.4 Hz, 1.0 

Hz, CHarom), 7.49 (1H, ddd, J = 8.2 Hz, 7.4 Hz, 1.8 Hz, CHarom), 7.98 (1H, dd, J = 7.8 Hz, 1.8 Hz, CHarom). 13C 

NMR (100.6 MHz, ref = CDCl3):  50.8 (NCH2), 55.0 (OCH3), 95.2 (d, J = 58.1 Hz, CH=CF), 114.0 (2x CHarom), 

119.3 (CHarom), 125.5 (d, J = 2.1 Hz, Carom,quat), 125.9 (CHarom), 128.0 (Carom,quat), 129.3 (2x CHarom), 132.6 and 

133.4 (2x CHarom), 156.6 (d, J = 279.9 Hz, CH=CF), 159.2 (Carom,quat), 159.5 (d, J = 4.3 Hz, Carom,quat), 165.0 

(C=O). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3):  -98.67 (1F, d, JH,F = 3.7 Hz, CF). IR (ATR, cm-1): νC=O = 1640, 

νmax = 1246, 1218, 1200, 1137, 760. MS (ES+): m/z (%): 300 (M + H+, 100). HRMS (ES+): calcd. for C17H15FNO3
+: 

300.1030, found 300.1023. 

2-Fluoro-7-hydroxy-4-(4-methoxybenzyl)benzo[f][1,4]oxazepin-5-one 279d 

Brown crystals. Melting point: 108-109 °C. Yield: 86%. 1H NMR (400 MHz, 

CDCl3):  3.80 (3H, s, OCH3), 4.77 (2H, s, NCH2), 5.39 (1H, br s, OH), 5.44 

(1H, d, JH,F = 3.8 Hz, CH=CF), 6.88 (2H, d, J = 8.7 Hz, 2x CHarom), 6.94-7.00 

(2H, m, 2x CHarom), 7.24-7.26 (2H, m, 2x CHarom), 7.44 (1H, d, J = 2.9 Hz, 

CHarom). 13C NMR (100.6 MHz, ref = CDCl3):  51.5 (NCH2), 55.4 (OCH3), 94.9 (d, J = 60.2 Hz, CH=CF), 114.3 

(2x CHarom), 118.2, 120.7 and 121.4 (3x CHarom), 125.5 and 127.6 (2x Carom,quat), 129.5 (2x CHarom), 153.1 (d, J 

= 4.4 Hz, Carom,quat), 154.8 (Carom,quat), 157.4 (d, J = 282.4 Hz, CH=CF), 159.4 (Carom,quat), 166.1 (C=O). 19F NMR 

(376.5 MHz, CDCl3, ref = CFCl3):  -97.96 (1F, s, CF). IR (ATR, cm-1): νOH = 3336, νC=O = 1634, νmax = 1454, 

1219, 1174, 813. MS (ES+): m/z (%): 316 (M + H+, 100). HRMS (ES+): calcd. for C17H15FNO4
+: 316.0980, found 

316.0975. 
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2-Fluoro-7-methoxy-4-(4-methoxybenzyl)benzo[f][1,4]oxazepin-5-one 279e 

Yellow oil. Rf 0.17 (petroleum ether/EtOAc 8/2). Yield: 88%. 1H NMR 

(400 MHz, CDCl3):  3.80 (3H, s, OCH3), 3.83 (3H, s, OCH3), 4.78 (2H, s, 

NCH2), 5.44 (1H, d, JH,F = 3.8 Hz, CH=CF), 6.88 (2H, d, J = 8.8 Hz, 2x CHarom), 

7.00-7.01 (2H, m, 2x CHarom), 7.27 (2H, d, J = 8.8 Hz, 2x CHarom), 7.44 (1H, 

dd, J = 2.4 Hz, 1.0 Hz, CHarom). 13C NMR (100.6 MHz, ref = CDCl3):  51.2 (NCH2), 55.3 (OCH3), 55.9 (OCH3), 

95.0 (d, J = 58.5 Hz, CH=CF), 114.3 (2x CHarom), 115.4, 120.3 and 120.5 (3x CHarom), 126.2 (d, J = 2.2 Hz, 

Carom,quat), 128.1 (Carom,quat), 129.5 (2x CHarom), 153.6 (d, J = 4.4 Hz, Carom,quat), 157.26 (Carom,quat), 157.28 (d, J = 

281.1 Hz, CH=CF), 159.4 (Carom,quat), 165.2 (C=O). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3):  -98.49 (1F, d, 

JH,F = 3.8 Hz, CF). IR (ATR, cm-1): νC=O = 1640, νmax = 1429, 1244, 1214, 1174, 1032. MS (ES+): m/z (%): 330 

(M + H+, 100). HRMS (ES+): calcd. for C18H17FNO4
+: 330.1136, found 330.1137. 

5.7.22 Synthesis of benzo[f][1,4]oxazepin-5-ones 280a-b 

The synthesis of 2-fluorobenzo[f][1,4]oxazepin-5-one 280a is described as representative example. 

2-Fluoro-4-(4-methoxybenzyl)benzo[f][1,4]oxazepin-5-one 279c (0.12 g, 0.38 mmol) was dissolved in 

BF3.OEt2 (0.27 g, 5 equiv, 0.24 mL) and this mixture was stirred at 128 °C for 6 hours. Subsequently, Et2O 

(10 mL) and NaHCO3 (10 mL) were added and an extraction was performed with EtOAc (3x 10 mL). After 

drying (MgSO4), filtration and evaporation of the organic phase in vacuo, Et2O (10 mL) was added and the 

precipitate was filtered off. After evaporation, crude benzoxazepinone 280a was obtained and 

recrystallized from Et2O, affording pure benzoxazepinone 280a in 51% yield (0.035 g, 0.19 mmol). 

2-Fluorobenzo[f][1,4]oxazepin-5-one 280a 

White crystals. Yield: 51%. 1H NMR (400 MHz, CDCl3):  5.60 (1H, t, JH,F = 4.0 Hz, CH=CF), 

6.46 (1H, br s, NH), 7.15 (1H, d, J = 8.1 Hz, CHarom), 7.32 (1H, ddd, J = 7.8 Hz, 7.4 Hz, 0.7 Hz, 

CHarom), 7.55 (1H, ddd, J = 8.1 Hz, 7.4 Hz, 1.7 Hz, CHarom), 7.95 (1H, dd, J = 7.8 Hz, 1.7 Hz, 

CHarom). 13C NMR (100.6 MHz, CDCl3):  90.6 (d, J = 58.9 Hz, CH=CF), 120.2 (CHarom), 124.6 (d, J = 2.2 Hz, 

Carom,quat), 126.1, 132.4 and 134.4 (3x CHarom), 156.0 (d, J = 275.8 Hz, CH=CF), 158.7 (Carom,quat), 166.3 (C=O). 

19F NMR (376.5 MHz, CDCl3, ref = CFCl3): -100.91 (1F, br s, CH=CF). IR (ATR, cm-1): νC=O = 1675, νmax = 1223, 

1180, 786, 752. MS (ES+): m/z (%): 180 (M + H+, 100). HRMS (ES+): calcd. for C9H7FNO2
+: 180.0455, found 

180.0454. 
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2-Fluoro-7-methoxybenzo[f][1,4]oxazepin-5-one 280b 

White crystals. Yield: 54%. 1H NMR (400 MHz, CDCl3):  3.83 (3H, s, OCH3), 5.56 (1H, t, 

JH,F = 4.1 Hz, CH=CF), 6.50 (1H, br s, NH), 7.05-7.06 (2H, m, 2x CHarom), 7.39-7.40 (1H, 

m, CHarom). 13C NMR (100.6 MHz, ref = CDCl3):  56.0 (OCH3), 90.6 (d, J = 58.9 Hz, 

CH=CF), 115.0, 121.2 and 121.3 (3x CHarom), 125.3 (d, J = 2.3 Hz, Carom,quat), 152.7 (d, J = 3.7 Hz, Carom,quat), 

156.4 (d, J = 277.7 Hz, CH=CF), 157.3 (Carom,quat), 167.1 (C=O). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3): 

 -100.65 (1F, d, JH,F = 4.1 Hz, CF). IR (ATR, cm-1): νC=O = 1673, νmax = 1487, 1432, 1216, 1186, 768. MS (ES+): 

m/z (%): 210 (M + H+, 100). HRMS (ES+): calcd. for C10H9FNO3
+: 210.0561, found 210.0558. 

5.7.23 Reactivity of β,β-difluoroenamide 220 toward electrophiles 

Synthesis of N-(2-bromo-2,2-difluoro-1-methoxyethyl)-N-propyl-4-methyl-benzenesulfonamide 281 

To a solution of enamide 220 (0.250 g, 0.91 mmol) in methanol (5 mL) was added NBS (1 equiv, 0.160 g, 

0.97 mmol) and this mixture was stirred at room temperature for four hours. The solvent was evaporated 

under reduced pressure after which CCl4 was added and the solids were filtered off. This affored pure N-(2-

bromo-2,2-difluoro-1-methoxyethyl)-N-propyl-4-methylbenzenesulfonamide 281 (0.210 g, 0.545 mmol). 

N-(2-Bromo-2,2-difluoro-1-methoxyethyl)-N-propyl-4-methylbenzenesulfonamide 281 

Yellow oil. Yield: 60%. 1H NMR (400 MHz, CDCl3):  0.78 (2H, t, J = 7.4 Hz, CH2CH3), 1.49-

1.65 (2H, m, CH2CH3), 2.44 (3H, s, CH3Carom,quat), 3.17 (2H, t, J = 8.3 Hz, NCH2), 3.46 (3H, 

s, OCH3), 5.47 (1H, dd, JH,F = 11.5 Hz, 4.5 Hz, CH), 7.31 (2H, d, J = 8.2 Hz, 2x CHarom), 7.75 

(2H, d, J = 8.2 Hz, 2x CHarom). 13C NMR (100.6 MHz, ref = CDCl3):  11.4 (CH2CH3), 21.6 (CH3Carom,quat), 22.6 

(CH2CH3), 45.0 (NCH2), 57.4 (OCH3), 89.9 (dd, J = 28.8 Hz, 23.4 Hz, CH), 119.6 (dd, J = 316.2 Hz, 309.4 Hz, 

CF2Br), 127.7 (2x CHarom), 129.7 (2x CHarom), 137.0 (Carom,quat), 144.2 (Carom,quat). 19F NMR (376.5 MHz, CDCl3, 

ref = CFCl3):  -56.84 (1F, dd, J = 164.9 Hz, JH,F = 4.5 Hz, CF(F)Br), -61.10 (1F, dd, J = 164.9 Hz, JH,F = 11.5 Hz, 

CF(F)Br). IR (ATR, cm-1): νmax = 1164, 1135, 1095, 946, 659. MS (ES+): m/z (%): 403/5 (M + NH4
+, 80), 386/88 

(M + H+, 100). 

Synthesis of N-(2,2-difluoro-1-methoxyvinyl)-N-propyl-4-methylbenzenesulfonamide 282 

To a solution of N-(2-bromo-2,2-difluoro-1-methoxyethyl)-N-propyl-4-methylbenzenesulfonamide 281 

(0.050 g, 0.129 mmol) in dry THF (2 mL) was added LiHMDS (1M in THF, 2 equiv, 0.259 mL, 0.259 mmol) at 

0 °C. Subsequently, this mixture was stirred at reflux temperature for one hour, after which another 
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equivalent of LiHMDS (1M in THF, 0.129 mL, 0.129 mmol) was added and the stirring was continued for 

another two hours. The reaction mixture was poured into aqueous NH4Cl (5 mL) and extracted with EtOAc 

(3x 5 mL). After drying (MgSO4), filtration, evaporation and purification using preparative TLC, pure N-(2,2-

difluoro-1-methoxyvinyl)-N-propyl-4-methylbenzenesulfonamide 282 (0.014 g, 0.0453 mmol) was 

obtained. 

N-(2,2-Difluoro-1-methoxyvinyl)-N-propyl-4-methylbenzenesulfonamide 282 

Colorless oil. Rf 0.30 (petroleum ether/EtOAc 9/1). Yield: 35%. 1H NMR (400 MHz, CDCl3): 

 0.79 (2H, t, J = 7.4 Hz, CH2CH3), 1.48 (2H, sextet, J = 7.4 Hz, CH2CH3), 2.44 (3H, s, 

CH3Carom,quat), 3.18 (2H, t, J = 7.4 Hz, NCH2), 3.66 (3H, s, OCH3), 7.31 (2H, d, J = 8.1 Hz, 2x 

CHarom), 7.77 (2H, d, J = 8.1 Hz, 2x CHarom). 13C NMR (100.6 MHz, ref = CDCl3):  10.9 (CH2CH3), 21.2 (CH2CH3), 

21.6 (CH3Carom,quat), 49.2 (NCH2), 59.0 (dd, J = 3.9 Hz, 2.5 Hz, OCH3), 115.7 (dd, J = 35.5 Hz, 34.1 Hz, 

CF2=COMe), 127.8 (2x CHarom), 129.6 (2x CHarom), 136.3 (Carom,quat), 144.1 (Carom,quat), 153.9 (dd, J = 289.8 Hz, 

285.4 Hz, CF2). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3):  -102.17 (1F, d, J = 55.3 Hz, CF(F)), -107.63 (1F, d, 

J = 55.3 Hz, CF(F)). IR (ATR, cm-1): νmax = 1351, 1289, 1236, 1171, 1154, 669. MS (ES+): m/z (%): 323 (M + 

NH4
+, 100), 306 (M + H+, 40). 

5.8 Synthesis of fluorinated 8,9,10,11-tetrahydro-8,11-methanobenzo-

[j]phenanthridine-7,12-diones 

5.8.1 Synthesis of amines 289 

Synthesis of 2-bromo-N-[(5,8-dimethoxy-1,2,3,4-tetrahydro-1,4-methanonaphthalen-6-yl)methyl]-

anilines 289a and 289b 

The synthesis of 2-bromo-N-[(5,8-dimethoxy-1,2,3,4-tetrahydro-1,4-methanonaphthalen-6-yl)methyl]-4-

fluoroaniline 289a is described as representative. A solution of 5,8-dimethoxy-1,2,3,4-tetrahydro-1,4-

methanonaphthalene-6-carbaldehyde 28 (0.22 g, 0.93 mmol), 2-bromo-4-fluoroaniline 29a (3 equiv, 0.53 

g, 2.78 mmol) and MgSO4 (3 equiv, 0.33 g, 2.78 mmol) in 2-methyltetrahydrofuran (4 mL) was stirred under 

microwave irradiation at 60 °C for 45 minutes. Subsequently, the drying agent was filtered off and the 

solvent was removed in vacuo, affording the corresponding imine, which was used without further 

purification in the next step. The imine was dissolved in MeOH (10 mL), and NaCNBH3 (2.5 equiv, 0.15 g, 

2.32 mmol) and acetic acid (1.2 equiv, 0.069 g, 1.11 mmol) were added. After stirring the reaction mixture 
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for 17 hours at room temperature, saturated aqueous Na2CO3 (15 mL) was added and an extraction with 

EtOAc was performed (3x 10 mL). After drying of the combined organic phases (MgSO4), filtration and 

evaporation, crude aniline 289a was obtained, which was purified by reverse phase automated flash 

chromatography (0.26 g, 0.62 mmol).  

2-Bromo-N-[(5,8-dimethoxy-1,2,3,4-tetrahydro-1,4-methanonaphthalen-6-yl)methyl]-4-fluoroaniline 

289a 

Pale yellow crystals. Melting point: 93-94 °C. Rf 0.03 (petroleum ether/EtOAc 

9/1). Gradient used for purification: during 3 CV: 40% CH3CN, during 30 CV: 40 

-> 100% CH3CN, during 3 CV: 100% CH3CN. Yield: 67%. 1H NMR (400 MHz, 

CDCl3):  1.28-1.36 (2H, m, 2x CHXHN), 1.56 (1H, d, J = 8.7 Hz, CHAHS), 1.80 (1H, 

d, J = 8.7 Hz, CHAHS), 1.94-2.07 (2H, m, 2x CHXHN), 3.66 (1H, br s, CH-1 or CH-4), 3.71 (1H, br s, CH-1 or CH-

4), 3.82 (3H, s, OCH3), 3.91 (3H, s, OCH3), 4.37 (2H, br s, CH2NH), 4.60 (1H, br s, NH), 6.69 (1H, s, CHarom), 

6.72 (1H, dd, J = 9.0 Hz, JH,F = 5.2 Hz, CHarom), 6.97 (1H, ddd, J = 9.0 Hz, JH,F = 8.1 Hz, J = 2.9 Hz, CHarom), 7.27 

(1H, dd, JH,F = 8.0 Hz, J = 2.9 Hz, CHarom). 13C NMR (100.6 MHz, CDCl3):  26.5 and 27.0 (CH2CH2), 39.7 (CH-1 

or CH-4), 41.3 (CH-1 or CH-4), 44.1 (CH2NH), 49.1 (CH2), 55.9 (OCH3), 61.4 (OCH3), 108.9 (d, J = 9.8 Hz, 

Carom,quat), 109.6 (CHarom), 111.7 (d, J = 7.5 Hz, CHarom), 115.0 (d, J = 11.6 Hz, CHaromCF), 119.3 (d, J = 25.5 Hz, 

CHaromCF), 128.3, 136.5 and 140.5 (3x Carom,quat), 142.0 (d, J = 2.1 Hz, Carom,quat), 146.1 and 149.1 (2x Carom,quat), 

154.5 (d, J = 238.8 Hz, CFarom). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3):  -127.76 (1F, ddd, JH,F = 8.1 Hz, 8.0 

Hz, 5.2 Hz, CFarom). IR (ATR, cm-1): νmax = 1506, 1490, 1315, 1023, 848, 796. MS (ES+): m/z (%): 217 (100). 

HRMS (ES+): calcd. for C14H17O2
+ (M - C6H4BrFN-): 217.1223, found 217.1224. 

2-Bromo-N-[(5,8-dimethoxy-1,2,3,4-tetrahydro-1,4-methanonaphthalen-6-yl)methyl]-5-fluoroaniline 

289b 

Pale yellow crystals. Melting point: 80-81 °C. Gradient used for purification: during 

3 CV: 40% CH3CN, during 30 CV: 40 -> 100% CH3CN, during 3 CV: 100% CH3CN. 

Yield: 53%. 1H NMR (400 MHz, CDCl3):  1.20-1.28 (2H, m, 2x CHXHN), 1.49 (1H, d, 

J = 8.8 Hz, CHAHS), 1.70-1.73 (1H, m, CHAHS), 1.87-1.99 (2H, m, 2x CHXHN), 3.56-

3.59 (1H, m, CH-1 or CH-4), 3.62-3.64 (1H, m, CH-1 or CH-4), 3.76 (3H, s, OCH3), 

3.83 (3H, s, OCH3), 4.29 (2H, br s, CH2NH), 4.78 (1H, br s, NH), 6.28 (1H, ddd, J = 8.5 Hz, JH,F = 8.2 Hz, J = 2.8 

Hz, CHarom), 6.44 (1H, dd, JH,F = 11.3 Hz, J = 2.8 Hz, CHarom), 7.32 (1H, dd, J = 8.5 Hz, JH,F = 6.0 Hz, CHarom). 13C 

NMR (100.6 MHz, ref = CDCl3):  26.5 and 27.1 (CH2CH2), 39.8 (CH-1 or CH-4), 41.4 (CH-1 or CH-4), 43.7 
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(CH2NH), 49.2 (CH2), 56.1 (OCH3), 61.6 (OCH3), 99.1 (d, J = 27.8 Hz, CHaromCF), 103.7 (d, J = 2.5 Hz, Carom,quat), 

104.3 (1H, d, J = 23.1 Hz, CHaromCF), 109.8 (CHarom), 127.8 (Carom,quat), 132.9 (d, J = 9.9 Hz, CHarom), 136.8, 

140.7 and 146.3 (3x Carom,quat), 146.5 (d, J = 11.3 Hz, Carom,quat), 149.2 (Carom,quat), 163.5 (d, J = 243.0 Hz, CFarom). 

19F NMR (376.5 MHz, CDCl3, ref = CFCl3):  -113.62 (1F, ddd, JH,F = 11.3 Hz, 8.2 Hz, 6.0 Hz, CFarom). IR (ATR, 

cm-1): νmax = 1613, 1486, 1308, 1170, 1021, 824. MS (ES+): m/z (%): 217 (100). HRMS (ES+): calcd. for 

C14H17O2
+ (M - C6H4BrFN-): 217.1223, found 217.1227. 

Synthesis of 2-bromo-N-[(5,8-dimethoxy-1,2,3,4-tetrahydro-1,4-methanonaphthalen-6-yl)methyl]-6-

fluoroaniline 289c 

A mixture of 5,8-dimethoxy-1,2,3,4-tetrahydro-1,4-methanonaphthalene-6-carbaldehyde 28 (0.23 g, 0.97 

mmol), 2-bromo-6-fluoroaniline 29c (1 equiv, 0.18 g, 0.97 mmol), NaCNBH3 (2.5 equiv, 0.15 g, 2.4 mmol) 

and acetic acid (2 equiv, 0.12 g, 1.9 mmol) in iso-propanol (20 mL) was stirred at room temperature for 

seven days. After this time, a saturated aqueous solution of Na2CO3 (15 mL) was added and an extraction 

with EtOAc was performed (3x 15 mL). After drying of the combined organic phases (MgSO4), filtration and 

evaporation, crude aniline 289c was obtained, which was purified by reverse phase automated flash 

chromatography (0.080 g, 0.19 mmol). 

2-Bromo-N-[(5,8-dimethoxy-1,2,3,4-tetrahydro-1,4-methanonaphthalen-6-yl)methyl]-6-fluoroaniline 

289c 

Pale yellow oil. Gradient used for purification: during 3 CV: 40% CH3CN, during 30 

CV: 40 -> 100% CH3CN, during 3 CV: 100% CH3CN. Yield: 20%. 1H NMR (400 MHz, 

CDCl3):  1.17-1.28 (2H, m, 2x CHXHN), 1.48 (1H, ddd, J = 8.7 Hz, 1.4 Hz, 1.4 Hz, 

CHAHS), 1.69-1.72 (1H, m, CHAHS), 1.86-1.98 (2H, m, 2x CHXHN), 3.55-3.57 (1H, m, 

CH-1 or CH-4), 3.62-3.64 (1H, m, CH-1 or CH-4), 3.76 (3H, s, OCH3), 3.86 (3H, s, OCH3), 4.38 (1H, br s, NH), 

4.47 (2H, d, J = 4.4 Hz, CH2NH), 6.61 (1H, ddd, J = 8.2 Hz, 8.1 Hz, JH,F = 4.9 Hz, CHarom), 6.95 (1H, ddd, JH,F = 

12.4 Hz, J = 8.2 Hz, 1.4 Hz, CHarom), 7.22 (1H, ddd, J = 8.1 Hz, 1.4 Hz, 1.3 Hz, CHarom). 13C NMR (100.6 MHz, 

ref = CDCl3):  26.6 and 27.1 (CH2CH2), 39.7 (CH-1 or CH-4), 41.5 (CH-1 or CH-4), 46.7 (d, J = 9.6 Hz, CH2NH), 

49.1 (CH2), 56.0 (OCH3), 61.5 (OCH3), 110.2 (CHarom), 113.9 (d, J = 5.5 Hz, Carom,quat), 116.0 (d, J = 21.3 Hz, 

CHaromCF), 119.6 (d, J = 8.5 Hz, CHarom), 128.2 (d, J = 3.1 Hz, CHarom), 129.5 (Carom,quat), 135.4 (d, J = 12.0 Hz, 

Carom,quat), 136.5, 140.3, 146.3 and 148.9 (4x Carom,quat), 153.4 (d, J = 245.0 Hz, CFarom). 19F NMR (376.5 MHz, 

CDCl3, ref = CFCl3):  -124.10 (1F, dd, JH,F = 12.4 Hz, 4.9 Hz, CFarom). MS (ES+): m/z (%): 217 (100).  
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Synthesis of 2-bromo-N-[(5,8-dimethoxy-1,2,3,4-tetrahydro-1,4-methanonaphthalen-6-yl)methyl]-

anilines 289d and 289e 

The synthesis of 2-bromo-N-[(5,8-dimethoxy-1,2,3,4-tetrahydro-1,4-methanonaphthalen-6-yl)methyl]-5-

(trifluoromethyl)aniline 289e is described as representative. A mixture of 5,8-dimethoxy-1,2,3,4-

tetrahydro-1,4-methanonaphthalene-6-carboxaldehyde 28 (0.67 g, 2.88 mmol), 2-bromo-5-

trifluoromethylaniline 29e (3 equiv, 2.07 g, 8.63 mmol) and MgSO4 (3 equiv, 1.04 g, 8.63 mmol) in dry 

dichloromethane (40 mL) was stirred at reflux temperature for 19 hours. After this time, the drying agent 

was filtered off and the solvent was removed in vacuo, affording the corresponding imine which was used 

without further purification in the next step. The imine was dissolved in MeOH (30 mL) and NaCNBH3 (2.5 

equiv, 0.45 g, 7.2 mmol) and acetic acid (1.2 equiv, 0.21 g, 3.46 mmol) were added. After stirring the 

reaction mixture for 17 hours at room temperature, saturated aqueous Na2CO3 (30 mL) was added and an 

extraction with EtOAc was performed (3x 20 mL). After drying of the combined organic phases (MgSO4), 

filtration and evaporation, crude aniline 289e was obtained, which was purified by reverse phase 

automated flash chromatography (0.86 g, 1.90 mmol). 

2-Bromo-N-[(5,8-dimethoxy-1,2,3,4-tetrahydro-1,4-methanonaphthalen-6-yl)methyl]-4-

(trifluoromethyl)aniline 289d 

Pale yellow oil. Gradient used for purification: during 3 CV: 40% CH3CN, 

during 30 CV: 40 -> 100% CH3CN, during 3 CV: 100% CH3CN. Yield: 71%. 1H 

NMR (400 MHz, CDCl3):  1.19-1.29 (2H, m, 2x CHXHN), 1.50 (1H, d, J = 8.8 Hz, 

CHAHS), 1.72 (1H, d, J = 8.8 Hz, CHAHS), 1.88-2.00 (2H, m, 2x CHXHN), 3.58 (1H, 

br s, CH-1 or CH-4), 3.64 (1H, br s, CH-1 or CH-4), 3.76 (3H, s, OCH3), 3.84 (3H, s, OCH3), 4.36 (2H, d, J = 5.5 

Hz, CH2NH), 5.03 (1H, t, J = 5.5 Hz, NH), 6.58 (1H, s, CHarom), 6.73 (1H, d, J = 8.5 Hz, CHarom), 7.41 (1H, dd, J 

= 8.5 Hz, 1.2 Hz, CHarom), 7.67 (1H, d, J = 1.2 Hz, CHarom). 13C NMR (100.6 MHz, ref = CDCl3):  26.5 and 27.0 

(CH2CH2), 39.8 (CH-1 or CH-4), 41.5 (CH-1 or CH-4), 43.5 (CH2NH), 49.2 (CH2), 56.1 (OCH3), 61.5 (OCH3), 

108.7 (Carom,quat), 109.8 and 110.6 (2x CHarom), 119.2 (q, J = 33.3 Hz, CCF3), 124.2 (q, J = 270.7 Hz, CF3), 125.9 

(q, J = 3.6 Hz, CHaromCCF3), 127.5 (Carom,quat), 129.6 (q, J = 3.8 Hz, CHaromCCF3), 137.0, 140.7, 146.3, 147.5 and 

149.2 (5x Carom,quat). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3):  -61.48 (1F, s, CF3). IR (ATR, cm-1): νNH = 3408, 

νmax = 1610, 1319, 1107, 1076, 1056. MS (ES+): m/z (%): 217 (100). HRMS (ES+): calcd. for C14H17O2
+ (M - 

C7H4BrF3N-): 217.1223, found 217.1222.  
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2-Bromo-N-[(5,8-dimethoxy-1,2,3,4-tetrahydro-1,4-methanonaphthalen-6-yl)methyl]-5-

(trifluoromethyl)aniline 289e 

Pale yellow oil. Gradient used for purification: during 3 CV: 40% CH3CN, during 30 

CV: 40 -> 100% CH3CN, during 3 CV: 100% CH3CN. Yield: 66%. 1H NMR (400 MHz, 

CDCl3):  1.19-1.28 (2H, m, 2x CHXHN), 1.50 (1H, d, J = 8.8 Hz, CHAHS), 1.71-1.74 

(1H, m, CHAHS), 1.88-2.00 (2H, m, 2x CHXHN), 3.58 (1H, br s, CH-1 or CH-4), 3.64 

(1H, br s, CH-1 or CH-4), 3.77 (3H, s, OCH3), 3.85 (3H, s, OCH3), 4.34 (2H, d, J = 5.3 

Hz, CH2NH), 4.89 (1H, t, J = 5.3 Hz, NH), 6.61 (1H, s, CHarom), 6.80 (1H, dd, J = 8.2 Hz, 1.5 Hz, CHarom), 6.94 

(1H, d, J = 1.5 Hz, CHarom), 7.51 (1H, d, J = 8.2 Hz, CHarom). 13C NMR (100.6 MHz, ref = CDCl3):  26.5 and 27.1 

(CH2CH2), 39.8 (CH-1 or CH-4), 41.5 (CH-1 or CH-4), 43.8 (CH2NH), 49.2 (CH2), 56.1 (OCH3), 61.6 (OCH3), 

107.9 (q, J = 3.9 Hz, CHaromCCF3), 110.2 (CHarom), 113.0 (Carom,quat), 114.0 (q, J = 3.9 Hz, CHaromCCF3), 124.3 (q, 

J = 272.4 Hz, CF3), 127.6 (Carom,quat), 131.0 (q, J = 32.1 Hz, CCF3), 132.8 (CHarom), 137.1, 140.7, 145.4, 146.5 

and 149.1 (5x Carom,quat). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3):  -63.36 (1F, s, CF3). IR (ATR, cm-1): νmax = 

1165, 1119, 1080, 1054, 1019. MS (ES+): m/z (%): 217 (100). HRMS (ES+): calcd. for C14H17O2
+ (M – 

C7H4BrF3N-): 217.1223, found 217.1227.  

5.8.2 Synthesis of trifluoromethanesulfonamides 292 

The synthesis of N-(2-bromo-5-fluorophenyl)-N-[(5,8-dimethoxy-1,2,3,4-tetrahydro-1,4-methano-

naphthalen-6-yl)methyl]-1,1,1-trifluoromethanesulfonamide 292b is described as representative. To a 

solution of aniline 289b (0.158 g, 0.39 mmol) in dry CH2Cl2 (10 mL), were added NaH (2.5 equiv, 23 mg, 

0.97 mmol) and Tf2O (1M in CH2Cl2, 2.5 equiv, 0.97 mL, 0.97 mmol) at 0 °C under N2 atmosphere. This 

mixture was stirred at room temperature for seven hours, after which it was quenched with saturated 

aqueous NH4Cl (10 mL) and extracted with EtOAc (3x 10 mL). The combined organic phases were dried 

(MgSO4), filtered and evaporated in vacuo. After purification via column chromatography, pure 

trifluoromethanesulfonamide 292b was obtained in 71% yield (0.149 g, 0.28 mmol). 

 

 

 

 



Experimental section  Chapter 5 

184 
 

N-(2-Bromo-4-fluorophenyl)-N-[(5,8-dimethoxy-1,2,3,4-tetrahydro-1,4-methanonaphthalen-6-

yl)methyl]-1,1,1-trifluoromethanesulfonamide 292a 

This compound exists as two rotamers in a ratio R1/R2 1/1, due to hindered rotation of the sulfonamide 

bond. 

Viscous oil. Rf 0.27 (petroleum ether/EtOAc 95/5). Yield: 61%. 1H NMR (400 

MHz, CDCl3):  1.01-1.14 (2H, m, 2x CHXHN (R1 and R2)), 1.42-1.45 (1H, m, CHAHS 

(R1 and R2)), 1.58-1.62 (1H, m, CHAHS (R1 and R2)), 1.84-1.93 (2H, m, 2x CHXHN 

(R1 and R2)), 3.52 (2H, br s, CH-1 and CH-4 (R1 and R2)), 3.571 and 3.574 (2x 

1.5H, 2x s, OCH3 (R1 and R2)), 3.71 and 3.73 (2x 1.5H, 2x s, OCH3 (R1 and R2)), 4.88-4.99 (2H, m, CH2N (R1 

and R2)), 6.51 and 6.59 (2x 0.5H, 2x s, CHarom (R1 and R2)), 6.79 and 6.81 (2x 0.5H, 2x ddd, 2x J = 8.8 Hz, 7.2 

Hz, 2.8 Hz, CHarom (R1 and R2)), 6.93 and 6.96 (2x 0.5H, 2x dd, 2x J = 8.8 Hz, 5.5 Hz, CHarom (R1 and R2)), 7.31 

and 7.32 (2x 0.5H, 2x dd, 2x J = 7.8 Hz, 2.8 Hz, CHarom (R1 and R2)). 13C NMR (100.6 MHz, ref = CDCl3):  

26.36, 26.41, 26.9 and 27.0 (CH2CH2 (R1 and R2)), 39.7, 39.8, 41.58 and 41.62 (CH-1 and CH-4 (R1 and R2)), 

48.8 and 49.0 (CH2 (R1 and R2)), 51.0 and 51.2 (CH2N (R1 and R2)), 55.9 (OCH3 (R1 and R2)), 60.9 and 61.1 

(OCH3 (R1 and R2)), 111.77 and 111.84 (CHarom (R1 and R2)), 114.7 and 114.8 (2x d, 2x J = 22.2 Hz, CHarom 

(R1 and R2)), 120.2 (q, J = 323.0 Hz, CF3 (R1 and R2)), 120.8 (d, J = 25.5 Hz, CHarom (R1 and R2)), 122.7 (d, J 

= 16.5 Hz, Carom,quat (R1 and R2)), 126.0-126.4 (m, Carom,quat (R1 and R2)), 131.8 and 131.9 (2x d, 2x J = 11.9 

Hz, Carom,quat (R1 and R2)), 134.15 (d, J = 7.5 Hz, CHarom (R1 and R2)), 138.89 and 138.96 (Carom,quat (R1 and 

R2)), 139.6 and 139.7 (Carom,quat (R1 and R2)), 147.0 and 147.1 (Carom,quat (R1 and R2)), 148.7 and 148.9 

(Carom,quat (R1 and R2)), 162.2 (d, J = 254.5 Hz, CFarom (R1 and R2)). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3): 

 -75.23 (3F, s, CF3), -109.55 to -109.67 (1F, m, CFarom). IR (ATR, cm-1): νmax = 1485, 1392, 1223, 1185, 1142, 

1040, 1024, 731. MS (ES+): m/z (%): 217 (100). HRMS (ES+): calcd. for C14H17O2
+ (M - C7H3BrF4NO2S-): 

217.1223, found 217.1216. 
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N-(2-Bromo-5-fluorophenyl)-N-[(5,8-dimethoxy-1,2,3,4-tetrahydro-1,4-methanonaphthalen-6-

yl)methyl]-1,1,1-trifluoromethanesulfonamide 292b 

This compound exists as two rotamers in a ratio R1/R2 1/1, due to hindered rotation of the sulfonamide 

bond. 

Viscous oil. Rf 0.28 (petroleum ether/EtOAc 9/1). Yield: 71%. 1H NMR (400 MHz, 

CDCl3):  1.00-1.18 (2H, m, 2x CHXHN (R1 and R2)), 1.43 (1H, d, J = 8.6 Hz, CHAHS 

(R1 and R2)), 1.58-1.65 (1H, m, CHAHS (R1 and R2)), 1.85-1.91 (2H, m, 2x CHXHN (R1 

and R2)), 3.52 (2H, br s, CH-1 and CH-4 (R1 and R2)), 3.59 and 3.62 (2x 1.5H, 2x s, 

OCH3 (R1 and R2)), 3.708 and 3.711 (2x 1.5H, 2x s, OCH3 (R1 and R2)), 4.95 (2H, s, 

CH2N (R1 and R2)), 6.51 and 6.54 (2x 0.5H, 2x s, CHarom (R1 and R2)), 6.70 and 6.75 (2x 0.5H, 2x dd, 2x J = 

8.9 Hz, 2.9 Hz, CHarom (R1 and R2)), 6.87-6.92 (1H, m, CHarom (R1 and R2)), 7.52 and 7.53 (2x 0.5H, 2x dd, 2x 

J = 8.9 Hz, 5.7 Hz, CHarom (R1 and R2)). 13C NMR (100.6 MHz, ref = CDCl3):  26.3, 26.4, 26.9 and 27.0 (CH2CH2 

(R1 and R2)), 39.7, 39.8, 41.66 and 41.67 (CH-1 and CH-4 (R1 and R2)), 48.8 and 49.0 (CH2 (R1 and R2)), 

51.0 and 51.3 (CH2N (R1 and R2)), 56.0 (OCH3 (R1 and R2)), 60.9 and 61.1 (OCH3 (R1 and R2)), 111.8 and 

112.0 (CHarom (R1 and R2)), 117.99 and 118.04 (2x d, 2x J = 22.1 Hz, CHarom (R1 and R2)), 120.1 (Carom,quat (R1 

and R2)), 120.1 (q, J = 313.1 Hz, CF3 (R1 and R2)), 120.6 (d, J = 21.1 Hz, CHarom (R1 and R2)), 122.5 and 122.6 

(Carom,quat (R1 and R2)), 134.1 (d, J = 8.5 Hz, CHarom (R1 and R2)), 136.6 (d, J = 10.6 Hz, CHarom (R1 or R2)), 

136.8 (d, J = 11.4 Hz, CHarom (R1 or R2)), 139.06 and 139.11 (Carom,quat (R1 and R2)), 139.6 and 139.7 (Carom,quat 

(R1 and R2)), 146.99 and 147.00 (Carom,quat (R1 and R2)), 148.7 and 148.8 (Carom,quat (R1 and R2)), 161.1 and 

161.2 (2x d, 2x J = 249.7 Hz, CFarom (R1 and R2)). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3):  -75.35 (3F, s, 

CF3), -113.71 to -113.87 (1F, m, CFarom). MS (ES+) m/z (%): 555/57 (M + NH4
+, 25), 217 (100). HRMS (ES+): 

calcd. for C14H17O2
+ (M - C7H3BrF4NO2S-): 217.1223, found 217.1218.  

N-(2-Bromo-6-fluorophenyl)-N-[(5,8-dimethoxy-1,2,3,4-tetrahydro-1,4-methanonaphthalen-6-

yl)methyl]-1,1,1-trifluoromethanesulfonamide 292c 

This compound exists as two rotamers in a ratio major/minor 0.56/0.44, due to hindered rotation of the 

sulfonamide bond. 

Viscous oil. Rf 0.35 (petroleum ether/EtOAc 9/1). Yield: 61%. 1H NMR (400 MHz, 

CDCl3):  1.01-1.13 (2H, m, 2x CHXHN), 1.41-1.43 (1H, m, CHAHS), 1.60-1.64 (1H, m, 

CHAHS), 1.82-1.90 (2H, m, 2x CHXHN), 3.50 (1H, br s, CH-1 or CH-4), 3.52 (1H, br s, 

CH-1 or CH-4), 3.54 (1.8H, OCH3 (major)), 3.57 (1.2H, OCH3 (minor)), 3.68 (1.2H, 
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OCH3 (minor)), 3.70 (1.8H, OCH3 (major)), 4.82 (0.4H, d, J = 13.3 Hz, CH(H)N (minor)), 4.85 (0.6H, d, J = 13.4 

Hz, CH(H)N (major)), 5.03 (0.6H, d, J = 13.4 Hz, CH(H)N (major)), 5.07 (0.4H, d, J = 13.3 Hz, CH(H)N (minor)), 

6.55 (0.4H, s, CHarom (minor)), 6.61 (0.6H, s, CHarom (major)), 6.97-7.03 (1H, m, CHarom), 7.17 (1H, ddd, J = 8.2 

Hz, 8.2 Hz, 5.5 Hz, CHarom), 7.34-7.37 (1H, m, CHarom). 13C NMR (100.6 MHz, ref = CDCl3):  26.4 and 26.9 

(CH2CH2 (minor)), 26.5 and 27.0 (CH2CH2 (major)), 39.7 (CH-1 or CH-4), 41.68 and 41.71 (CH-1 or CH-4 

(minor+major)), 48.8 (CH2 (major)), 48.9 (CH2 (minor)), 50.4 (CH2N (minor)), 50.5 (CH2N (major)), 55.9 

(OCH3 (minor)), 56.0 (OCH3 (major)), 61.0 (OCH3 (major)), 61.1 (OCH3 (minor)), 112.6 (CHarom (minor)), 112.7 

(CHarom (major)), 115.5 (d, J = 21.6 Hz, CHarom (minor)), 115.6 (d, J = 21.6 Hz, CHarom (major)), 120.0 (q, J = 

323.3 Hz, CF3), 122.3 (Carom,quat (minor)), 122.4 (Carom,quat (major)), 124.7 (d, J = 15.1 Hz, Carom,quat (minor)), 

124.9 (d, J = 14.7 Hz, Carom,quat (major)), 127.5 (Carom,quat), 129.1 (d, J = 3.8 Hz, CHarom (major)), 129.2 (d, J = 

4.3 Hz, CHarom (minor)), 131.6 (d, J = 9.4 Hz, CHarom), 139.0 (Carom,quat), 139.1 (Carom,quat (major)), 139.2 

(Carom,quat (minor)), 147.2 (Carom,quat), 148.5 (Carom,quat (minor)), 148.6 (Carom,quat (major)), 160.79 (d, J = 256.1 

Hz, CFarom (minor)), 160.83 (d, J = 256.3 Hz, CFarom (major)). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3):  -75.51 

(d, J = 11.4 Hz, CF3 (major or minor)), -75.54 (d, J = 15.5 Hz, CF3 (major or minor), -112.18 (1F, br s, CFarom). 

IR (ATR, cm-1): νmax = 1394, 1187, 1138, 1024, 869, 782. MS (ES+): m/z (%): 217 (100). HRMS (ES+): calcd. 

for C14H17O2
+ (M - C7H3BrF4NO2S-): 217.1223, found 217.1210.  

N-[2-Bromo-4-(trifluoromethyl)phenyl]-N-[(5,8-dimethoxy-1,2,3,4-tetrahydro-1,4-

methanonaphthalen-6-yl)methyl]-1,1,1-trifluoromethanesulfonamide 292d 

This compound exists as two rotamers in a ratio R1/R2 1/1, due to hindered rotation of the sulfonamide 

bond. 

Yellow oil. Rf 0.53 (petroleum ether/EtOAc 9/1). Yield: 62%. 1H NMR (400 

MHz, CDCl3):  0.97-1.06 (2H, m, 2x CHXHN (R1 and R2)), 1.41-1.44 (1H, m, 

CHAHS (R1 and R2)), 1.57-1.61 (1H, m, CHAHS (R1 and R2)), 1.81-1.92 (2H, m, 

2x CHXHN (R1 and R2)), 3.49 and 3.50 (2H, 2x br s, CH-1 and CH-4 (R1 and R2)), 

3.55 and 3.57 (2x 1.5H, 2x s, OCH3 (R1 and R2)), 3.70 and 3.72 (2x 1.5H, 2x s, OCH3 (R1 and R2)), 4.95 (1H, 

d, J = 13.5 Hz, CH(H)N (R1 and R2)), 5.01 (1H, d, J = 13.5 Hz, CH(H)N (R1 and R2)), 6.52 and 6.57 (2x 0.5H, 

2x s, CHarom (R1 and R2)), 7.08 and 7.12 (2x 0.5H, 2x d, 2x J = 8.3 Hz, CHarom (R1 and R2)), 7.33-7.37 (1H, m, 

CHarom (R1 and R2)), 7.83-7.85 (1H, m, CHarom (R1 and R2)). 13C NMR (100.6 MHz, ref = CDCl3):  26.3, 26.8 

and 26.9 (CH2CH2 (R1 and R2)), 39.67, 39.73, 41.6 and 41.7 (CH-1 and CH-4 (R1 and R2)), 48.7 and 48.9 (CH2 

(R1 and R2)), 51.0 and 51.3 (CH2N (R1 and R2)), 55.9 (OCH3 (R1 and R2)), 60.7 and 60.9 (OCH3 (R1 and R2)), 

111.8 and 112.0 (CHarom (R1 and R2)), 120.1 (q, J = 322.9 Hz, SCF3 (R1 and R2)), 122.2 and 122.4 (2x Carom,quat 



Experimental section  Chapter 5 

187 
 

(R1 and R2)), 122.7 (q, J = 273.1 Hz, CaromCF3 (R1 and R2)), 124.4-124.6 (m, CHarom (R1 and R2)), 125.9-126.3 

(m, Carom,quat (R1 and R2)), 130.5-130.7 (m, CHarom (R1 and R2)), 132.5 and 132.6 (2x d, 2x J = 33.5 Hz, 2x 

CaromCF3), 133.7 (m, CHarom (R1 and R2)), 139.0, 139.1, 139.2, 139.3, 139.4 and 139.4 (3x Carom,quat (R1 and 

R2)), 147.0 (Carom,quat (R1 and R2)), 148.7 and 148.8 (Carom,quat (R1 and R2)). 19F NMR (376.5 MHz, CDCl3, ref 

= CFCl3):  -63.50 and -63.53 (2x 1.5F, 2x s, 2x SCF3 (R1 and R2), -75.29 and -75.32 (2x 1.5F, 2x s, 2x CaromCF3 

(R1 and R2)). IR (ATR, cm-1): νmax = 1394, 1319, 1175, 1134, 1025. MS (ES+): m/z (%): 217 (100). HRMS (ES+): 

calcd. for C14H17O2
+ (M - C8H3BrF6NO2S-): 217.1223, found 217.1214.  

N-[2-Bromo-5-(trifluoromethyl)phenyl]-N-[(5,8-dimethoxy-1,2,3,4-tetrahydro-1,4-

methanonaphthalen-6-yl)methyl]-1,1,1-trifluoromethanesulfonamide 292e 

This compound exists as two rotamers in a ratio R1/R2 1/1, due to hindered rotation of the sulfonamide 

bond. 

Viscous oil. Rf 0.24 (petroleum ether/EtOAc 9/1). Yield: 60%. 1H NMR (400 MHz, 

CDCl3):  1.00-1.12 (2H, m, 2x CHXHN (R1 and R2)), 1.40-1.42 (1H, m, CHAHS (R1 

and R2)), 1.55-1.60 (1H, m , CHAHS (R1 and R2)), 1.81-1.90 (2H, m, 2x CHXHN (R1 

and R2)), 3.47-3.52 (2H, m, CH-1 and CH-4 (R1 and R2)), 3.577 and 3.580 (2x 1.5H, 

2x s, OCH3 (R1 and R2)), 3.708 and 3.715 (2x 1.5H, 2x s, OCH3 (R1 and R2)), 4.91-

5.01 (2H, m, CH2N (R1 and R2)), 6.51 and 6.54 (2x 0.5H, 2x s, CHarom (R1 and R2)), 7.12 and 7.18 (2x 0.5H, 

2x d, 2x J = 1.7 Hz, CHarom (R1 and R2)), 7.36 and 7.40 (2x 0.5H, 2x dd, 2x J = 8.6 Hz, 1.7 Hz, CHarom (R1 and 

R2)), 7.70 and 7.72 (2x 0.5H, 2x d, 2x J = 8.6 Hz, CHarom (R1 and R2)). 13C NMR (100.6 MHz, ref = CDCl3):  

26.2, 26.3, 26.8 and 26.9 (CH2CH2 (R1 and R2)), 39.65, 39.70, 41.68 and 41.70 (CH-1 and CH-4 (R1 and R2)), 

48.8 and 48.9 (CH2 (R1 and R2)), 51.2 and 51.4 (CH2N (R1 and R2)), 56.01 and 56.03 (OCH3 (R1 and R2)), 

60.7 and 60.8 (OCH3 (R1 and R2)), 111.8 and 112.0 (CHarom (R1 and R2)), 120.1 (q, J = 322.8 Hz, SCF3 (R1 

and R2)), 122.08 and 122.11 (2x Carom,quat (R1 and R2)), 123.0 (q, J = 270.2 Hz, CaromCF3 (R1 and R2)), 127.0-

127.2 (m, CHarom (R1 and R2)), 129.8-130.5 (CHarom and Carom,quat (R1 and R2)), 130.3 and 130.4 (2x d, 2x J = 

33.6 Hz, 2x CaromCF3 (R1 and R2)), 134.1 and 134.2 (CHarom (R1 and R2)), 136.3 and 136.8 (Carom,quat (R1 and 

R2)), 139.3, 139.4, 139.5 and 139.6 (2x Carom,quat (R1 and R2)), 146.8 and 147.0 (Carom,quat (R1 and R2)), 148.7 

and 148.8 (Carom,quat (R1 and R2)). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3):  -63.43 and -63.48 (2x 1.5F, 2x 

s, 2x SCF3 (R1 and R2)), -75.42 and -75.45 (2x 1.5F, 2x s, 2x CaromCF3 (R1 and R2)). IR (ATR, cm-1): νmax = 1395, 

1325, 1225, 1189, 1173, 1133. MS (ES+): m/z (%): 217 (100). 
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5.8.3 Synthesis of 7,12-dimethoxy-8,9,10,11-tetrahydro-8,11-methanobenzo[j]-

phenanthridines 288a-c 

The synthesis of 7,12-dimethoxy-2-fluoro-8,9,10,11-tetrahydro-8,11-methanobenzo[j]phenanthridine 

288a is described as representative. To a mixture of N-(2-bromo-4-fluorophenyl)-N-[(5,8-dimethoxy-

1,2,3,4-tetrahydro-1,4-methanonaphthalen-6-yl)methyl]-1,1,1-trifluoromethanesulfonamide 292a (0.250 

g, 0.46 mmol) in dry toluene (4 mL) in a pressure vial under N2-atmosphere, Pd(OAc)2 (0.06 equiv, 6 mg, 

0.027 mmol), triphenylphosphine (0.18 equiv, 22 mg, 0.084 mmol) and K2CO3 (2 equiv, 128 mg, 0.93 mmol) 

were added. This mixture was stirred under microwave irradiation at 125 °C for 3 hours, after which it was 

quenched with H2O (4 mL). Subsequently, this mixture was filtered over Celite® and extracted with EtOAc 

(3x 6 mL). This organic phase was dried (MgSO4), filtered and evaporated in vacuo, affording crude 7,12-

dimethoxy-2-fluoro-5-(trifluoromethanesulfonyl)-5,6,8,9,10,11-hexahydro-8,11-methanobenzo[j]-

phenanthridine 293a, which was not purified but used as such in the following reaction. Therefore, crude 

293a was dissolved in dry THF (10 mL) and two equivalents of KOtBu (1M in THF, 0.92 mL) were added and 

this mixture was stirred at reflux temperature for two hours. After the addition of a saturated aqueous 

solution of NH4Cl (10 mL), an extraction with EtOAc was performed (3x 5 mL) and the combined organic 

phases were dried (MgSO4), filtered and evaporated under reduced pressure. Purification using 

preparative TLC afforded pure 7,12-dimethoxy-2-fluoro-8,9,10,11-tetrahydro-8,11-

methanobenzo[j]phenanthridine 288a (0.077 g, 0.24 mmol). 

7,12-Dimethoxy-2-fluoro-8,9,10,11-tetrahydro-8,11-methanobenzo[j]phenanthridine 288a 

Yellow oil. Rf 0.06 (petroleum ether/EtOAc 9/1). Yield: 51%. 1H NMR (400 MHz, CDCl3): 

 1.42-1.44 (2H, m, 2x CHXHN), 1.71 (1H, d, J = 9.1 Hz, CHAHS), 1.87-1.90 (1H, m, CHAHS), 

2.11-2.16 (2H, m, 2x CHXHN), 3.89 (2H, br s, CH-8 and CH-11), 3.96 (3H, s, OCH3), 4.10 

(3H, s, OCH3), 7.45 (1H, ddd, J = 9.0 Hz, 7.7 Hz, 2.8 Hz, CHarom), 8.14 (1H, dd, J = 9.0 Hz, 

6.1 Hz, CHarom), 9.07 (1H, dd, J = 12.3 Hz, 2.8 Hz, CHarom), 9.54 (1H, s, CHarom). 13C NMR 

(100.6 MHz, ref = CDCl3):  27.21 and 27.23 (CH2CH2), 41.0 (CH-8 or CH-11), 41.3 (CH-8 or CH-11), 48.8 

(CH2), 61.0 (OCH3), 62.2 (OCH3), 111.6 (d, J = 25.6 Hz, CHarom), 116.9 (d, J = 24.7 Hz, CHarom), 120.6 (Carom,quat), 

124.9 (d, J = 10.7 Hz, Carom,quat), 125.1 (d, J = 4.2 Hz, Carom,quat), 131.6 (d, J = 9.4 Hz, CHarom), 138.0, 142.0, 

145.7, 146.7 and 147.0 (5x Carom,quat), 147.8 (CHarom), 161.0 (d, J = 243.6 Hz, CFarom). 19F NMR (376.5 MHz, 

CDCl3, ref = CFCl3):  -112.89 to -112.96 (1F, m, CFarom). MS (ES+): m/z (%): 324 (M + H+, 100). HRMS (ES+): 

calcd. for C20H19FNO2
+: 324.1394, found 324.1408. 
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7,12-Dimethoxy-3-fluoro-8,9,10,11-tetrahydro-8,11-methanobenzo[j]phenanthridine 288b 

Yellow oil. Rf 0.07 (petroleum ether/EtOAc 9/1). Yield: 39%. 1H NMR (400 MHz, 

CDCl3):  1.40-1.44 (2H, m, 2x CHXHN), 1.69 (1H, d, J = 9.1 Hz, CHAHS), 1.88 (1H, d, J = 

9.1 Hz, CHAHS), 2.10-2.15 (2H, m, 2x CHXHN), 3.89 (2H, br s, CH-8 and CH-11), 3.92 

(3H, s, OCH3), 4.10 (3H, s, OCH3), 7.38 (1H, ddd, J = 9.4 Hz, 8.0 Hz, 2.8 Hz, CHarom), 

7.79 (1H, dd, J = 9.8 Hz, 2.8 Hz, CHarom), 9.41 (1H, dd, J = 9.4 Hz, 6.3 Hz, CHarom), 9.59 (1H, s, CHarom). 13C NMR 

(100.6 MHz, ref = CDCl3):  27.1 and 27.2 (CH2CH2), 40.9 (CH-8 or CH-11), 41.2 (CH-8 or CH-11), 48.6 (CH2), 

60.8 (OCH3), 62.0 (OCH3), 113.9 (d, J = 20.3 Hz, CHarom), 115.7 (d, J = 22.7 Hz, CHarom), 120.1 (Carom,quat), 120.5 

(d, J = 2.1 Hz, Carom,quat), 125.4 (Carom,quat), 128.7 (d, J = 8.8 Hz, CHarom), 136.7, 146.0 and 146.3 (3x Carom,quat), 

146.4 (d, J = 11.3 Hz, Carom,quat), 147.0 (Carom,quat), 149.6 (CHarom), 161.8 (d, J = 248.1 Hz, CFarom). 19F NMR 

(376.5 MHz, CDCl3, ref = CFCl3):  -113.31 to -113.38 (1F, m, CFarom). IR (ATR, cm-1): νmax = 1450, 1314, 1208, 

1049. MS (ES+): m/z (%): 324 (M + H+, 100). HRMS (ES+): calcd. for C20H19FNO2
+: 324.1394, found 324.1399. 

7,12-Dimethoxy-4-fluoro-8,9,10,11-tetrahydro-8,11-methanobenzo[j]phenanthridine 288c 

Yellow oil. Rf 0.07 (petroleum ether/EtOAc 9/1). Yield: 43%. 1H NMR (400 MHz, 

CDCl3):  1.41-1.45 (2H, m, 2x CHXHN), 1.71 (1H, d, J = 9.1 Hz, CHAHS), 1.88-1.91 (1H, 

m, CHAHS), 2.12-2.16 (2H, m, 2x CHXHN), 3.90 (1H, br s, CH-8 or CH-11), 3.91 (1H, br 

s, CH-8 or CH-11), 3.93 (3H, s, OCH3), 4.10 (3H, s, OCH3), 7.42 (1H, ddd, JH,F = 10.0 Hz, 

J = 8.1 Hz, 1.2 Hz, CHarom), 7.56 (1H, ddd, J = 8.4 Hz, 8.1 Hz, JH,F = 5.8 Hz, CHarom), 9.18 (1H, d, J = 8.4 Hz, 

CHarom), 9.63 (1H, s, CHarom). 13C NMR (100.6 MHz, ref = CDCl3):  27.06 and 27.10 (CH2CH2), 40.9 (CH-8 or 

CH-11), 41.3 (CH-8 or CH-11), 48.6 (CH2), 60.9 (OCH3), 62.1 (OCH3), 112.9 (d, J = 19.3 Hz, CHarom), 120.7 

(Carom,quat), 122.2 (d, J = 4.5 Hz, CHarom), 124.9 (d, J = 2.6 Hz, Carom,quat), 125.6 (Carom,quat), 126.5 (d, J = 8.6 Hz, 

CHarom), 134.8 (d, J = 10.3 Hz, Carom,quat), 137.7, 146.3, 146.5 and 147.1 (4x Carom,quat), 148.7 (d, J = 1.3 Hz, 

CHarom), 158.4 (d, J = 252.4 Hz, CFarom). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3):  -125.22 (1F, dd, JH,F = 10.0 

Hz, 5.8 Hz, CFarom). IR (ATR, cm-1): νmax = 1316, 1033, 963, 762. MS (ES+): m/z (%): 324 (M + H+, 100). HRMS 

(ES+): calcd. for C20H19FNO2
+: 324.1394, found 324.1406. 

5.8.4 Synthesis of 7,12-dimethoxy-5-(trifluoromethanesulfonyl)-5,6,8,9,10,11-

hexahydro-8,11-methanobenzo[j]phenanthridines 293d-e 

The synthesis of 7,12-dimethoxy-2-trifluoromethyl-5-(trifluoromethanesulfonyl)-5,6,8,9,10,11-

hexahydro-8,11-methanobenzo[j]phenanthridine 293d is described as representative. To a solution of N-
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(2-bromo-4-(trifluoromethyl)phenyl)-N-(5,8-dimethoxy-1,2,3,4-tetrahydro-1,4-methanonaphthalen-6-

yl)methyl)-1,1,1-trifluoromethanesulfonamide 292d (0.32 g, 0.55 mmol) in THF (10 mL) under nitrogen 

atmosphere, were added Pd(OAc)2 (0.06 equiv, 7.4 mg, 0.033 mmol), triphenylphosphine (0.18 equiv, 26 

mg, 0.099 mmol) and K2CO3 (2 equiv, 0.152 g, 1.10 mmol) and this mixture was stirred at reflux 

temperature for 61 hours. After this time, extra Pd(OAc)2 (0.06 equiv, 7.4 mg, 0.033 mmol), 

triphenylphosphine (0.18 equiv, 26 mg, 0.099 mmol) and K2CO3 (2 equiv, 0.152 g, 1.10 mmol) were added 

and stirring was continued for another 25 hours. After the addition of H2O (10 mL), the reaction mixture 

was filtered over Celite® and extracted with EtOAc (3x 10 mL). After drying of the combined organic phases 

(MgSO4), filtration and evaporation in vacuo, the crude product was purified via column chromatography 

yielding 7,12-dimethoxy-2-trifluoromethyl-5-(trifluoromethanesulfonyl)-5,6,8,9,10,11-hexahydro-8,11-

methanobenzo-[j]phenanthridine 293d (0.217 g, 0.43 mmol). 

7,12-Dimethoxy-2-trifluoromethyl-5-(trifluoromethanesulfonyl)-5,6,8,9,10,11-hexahydro-8,11-

methanobenzo[j]phenanthridine 293d 

Pale yellow crystals. Melting point: 118-119 °C. Rf 0.38 (petroleum ether/EtOAc 9/1). 

Yield: 78%. 1H NMR (400 MHz, CDCl3):  1.29-1.34 (2H, m, 2x CHXHN), 1.59 (1H, d, J = 

9.0 Hz, CHAHS), 1.79 (1H, J = 9.0 Hz, CHAHS), 2.02-2.07 (2H, m, 2x CHXHN), 3.63 (3H, s, 

OCH3), 3.70 (2H, br s, CH-8 and CH-11), 3.90 (3H, s, OCH3), 4.66 (1H, br s, CH(H)N), 

4.97 (1H, br s, CH(H)N), 7.57 (1H, dd, J = 8.5 Hz, 1.6 Hz, CHarom), 7.72 (1H, d, J = 8.5 Hz, 

CHarom), 8.77 (1H, d, J = 1.6 Hz, CHarom). 13C NMR (100.6 MHz, ref = CDCl3):  27.0 (CH2CH2), 40.7 (CH-8 or 

CH-11), 41.7 (CH-8 or CH-11), 45.6 (CH2NH), 48.9 (CH2), 60.9 (OCH3), 61.2 (OCH3), 120.0 (q, J = 324.5 Hz, 

SCF3), 120.8 (Carom,quat), 124.0 (q, J = 272.4 Hz, CaromCF3), 124.5 (q, J = 3.5 Hz, CHarom), 125.3 (Carom,quat), 125.55 

(CHarom), 125.61 (q, J = 4.0 Hz, CHarom), 129.7 (q, J = 32.5 Hz, CaromCF3), 130.2, 137.0, 141.2, 142.8, 145.6 and 

147.5 (6x Carom,quat). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3):  -63.19 (3F, s, SCF3), -75.78 (3F, s, CaromCF3). 

IR (ATR, cm-1): νmax = 1400, 1332, 1195, 1137, 1086. MS (ES+): m/z (%): 374 (M - CHF3SO3
 + H+, 100). HRMS 

(ES+): calcd. for C21H19F3NO2
+ (M - CHF3SO3 + H+): 374.1362, found 374.1378. 
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7,12-Dimethoxy-3-trifluoromethyl-5-(trifluoromethanesulfonyl)-5,6,8,9,10,11-hexahydro-8,11-

methanobenzo[j]phenanthridine 293e 

Pale yellow crystals. Melting point: 143-144 °C. Rf 0.42 (petroleum ether/EtOAc 

9/1). Yield: 81%. 1H NMR (400 MHz, CDCl3):  1.28-1.35 (2H, m, 2x CHXHN), 1.59 

(1H, d, J = 9.0 Hz, CHAHS), 1.79 (1H, d, J = 9.0 Hz, CHAHS), 2.03-2.07 (2H, m, 2x 

CHXHN), 3.62 (3H, s, OCH3), 3.70 (2H, br s, CH-8 and CH-11), 3.90 (3H, s, OCH3), 4.64 

(1H, br s, CH(H)N), 4.99 (1H, br s, CH(H)N), 7.61 (1H, d, J = 8.5 Hz, CHarom), 7.83 (1H, s, CHarom), 8.55 (1H, d, 

J = 8.5 Hz, CHarom). 13C NMR (100.6 MHz, ref = CDCl3):  27.0 (CH2CH2), 40.7 (CH-8 or CH-11), 41.7 (CH-8 or 

CH-11), 45.6 (CH2NH), 48.8 (CH2), 61.0 (OCH3), 61.1 (OCH3), 120.0 (q, J = 324.7 Hz, SCF3), 120.9 (Carom,quat), 

122.5 (q, J = 3.7 Hz, CHarom), 123.7 (q, J = 272.3 Hz, CaromCF3), 124.3 (q, J = 3.5 Hz, CHarom), 125.7 (Carom,quat), 

128.8 (CHarom), 129.6 (q, J = 33.2 Hz, CaromCF3), 133.1, 134.5, 141.5, 142.8, 145.7 and 147.7 (6x Carom,quat). 19F 

NMR (376.5 MHz, CDCl3, ref = CFCl3):  -63.20 (3F, s, SCF3), -75.70 (3F, s, CaromCF3). IR (ATR, cm-1): νmax = 

1398, 1327, 1311, 1193, 1121, 1075. MS (ES+): m/z (%): 374 (M - CHF3SO3
 + H+, 100). HRMS (ES+): calcd. for 

C21H19F3NO2
+ (M - CHF3SO3 + H+): 374.1362, found 374.1368. 

5.8.5 Synthesis of 7,12-dimethoxy-8,9,10,11-tetrahydro-8,11-methanobenzo[j]-

phenanthridines 288d,e 

The synthesis of 7,12-dimethoxy-2-trifluoromethyl-8,9,10,11-tetrahydro-8,11-methanobenzo[j]-

phenanthridine 288d is described as representative. To a solution of 7,12-dimethoxy-2-trifluoromethyl-5-

(trifluoromethanesulfonyl)-5,6,8,9,10,11-hexahydro-8,11-methanobenzo[j]phenanthridine 293d (0.155 g, 

0.31 mmol) in THF (10 mL), was added KOtBu (1M in THF, 1.2 equiv, 0.37 mmol) and this mixture was 

stirred at reflux temperature for three hours. After the addition of saturated aqueous NH4Cl, the reaction 

mixture was extracted with EtOAc (3x 10 mL), dried (MgSO4), filtered and evaporated under reduced 

pressure. Without the need for purification, 7,12-dimethoxy-2-trifluoromethyl-8,9,10,11-tetrahydro-8,11-

methanobenzo[j]phenanthridine 288d was obtained in quantitative yield (0.113 g, 0.31 mmol). 

7,12-Dimethoxy-2-trifluoromethyl-8,9,10,11-tetrahydro-8,11-methanobenzo[j]phenanthridine 288d 

Yellow oil. Yield: quant. 1H NMR (400 MHz, CDCl3):  1.39-1.44 (2H, m, 2x CHXHN), 1.70 

(1H, d, J = 9.2 Hz, CHAHS), 1.87-1.90 (1H, m, CHAHS), 2.11-2.16 (2H, m, 2x CHXHN), 3.90 

(2H, br s, CH-8 and CH-11), 3.95 (3H, s, OCH3), 4.11 (3H, s, OCH3), 7.89 (1H, dd, J = 8.5 

Hz, 1.8 Hz, CHarom), 8.24 (1H, d, J = 8.5 Hz, CHarom), 9.67 (1H, s, CHarom), 9.79 (1H, br s, 
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CHarom). 13C NMR (100.6 MHz, ref = CDCl3):  27.0 and 27.1 (CH2CH2), 41.0 (CH-8 or CH-11), 41.4 (CH-8 or 

CH-11), 48.7 (CH2), 60.8 (OCH3), 62.0 (OCH3), 120.6 and 123.4 (2x Carom,quat), 123.9 (q, J = 3.1 Hz, CHarom), 

124.6 (q, J = 271.2 Hz, CF3), 124.7 (q, J = 4.6 Hz, CHarom), 125.0 (Carom,quat), 128.2 (q, J = 31.9 Hz, CCF3), 130.4 

(CHarom), 137.9, 146.2, 146.8 and 147.2 (4x Carom,quat), 150.6 (CHarom). 19F NMR (376.5 MHz, CDCl3, ref = 

CFCl3):  -62.20 (3F, s, CF3). IR (ATR, cm-1): νmax = 1334, 1320, 1161, 1118, 1087. MS (ES+): m/z (%): 374 (M 

+ H+, 100). HRMS (ES+): calcd. for C21H19F3NO2
+: 374.1362, found 374.1378. 

7,12-Dimethoxy-3-trifluoromethyl-8,9,10,11-tetrahydro-8,11-methanobenzo[j]phenanthridine 288e 

Yellow oil. Yield: quant. 1H NMR (400 MHz, CDCl3):  1.41-1.46 (2H, m, 2x CHXHN), 

1.72 (1H, d, J = 9.1 Hz, CHAHS), 1.88-1.92 (1H, m, CHAHS), 2.13-2.18 (2H, m, 2x 

CHXHN), 3.92 (2H, br s, CH-8 and CH-11), 3.95 (3H, s, OCH3), 4.12 (3H, s, OCH3), 7.82 

(1H, dd, J = 8.9 Hz, 1.9 Hz, CHarom), 8.44 (1H, br s, CHarom), 9.52 (1H, d, J = 8.9 Hz, 

CHarom), 9.66 (1H, s, CHarom). 13C NMR (100.6 MHz, ref = CDCl3):  26.9 and 27.0 (CH2CH2), 40.9 (CH-8 or CH-

11), 41.4 (CH-8 or CH-11), 48.6 (CH2), 60.7 (OCH3), 61.8 (OCH3), 120.8 (Carom,quat), 122.3 (q, J = 3.1 Hz, CHarom), 

124.2 (q, J = 272.2 Hz, CF3), 125.5 and 126.2 (2x Carom,quat), 127.0 (q, J = 4.1 Hz, CHarom), 127.7 (CHarom), 129.3 

(q, J = 32.6 Hz, CCF3), 138.2, 144.2, 146.4, 146.6 and 146.9 (5x Carom,quat), 149.8 (CHarom). 19F NMR (376.5 

MHz, CDCl3, ref = CFCl3):  -62.82 (3F, s, CF3). IR (ATR, cm-1): νmax = 1332, 1312, 1174, 1116, 1070, 1050. MS 

(ES+): m/z (%): 374 (M + H+, 100). HRMS (ES+): calcd. for C21H19F3NO2
+: 374.1362, found 374.1379. 

5.8.6 Synthesis of 8,9,10,11-tetrahydro-8,11-methanobenzo[j]phenanthridine-7,12-

diones 31 

The synthesis of 2-fluoro-8,9,10,11-tetrahydro-8,11-methanobenzo[j]phenanthridine-7,12-dione 31a is 

described as representative. To a solution of 7,12-dimethoxy-2-fluoro-8,9,10,11-tetrahydro-8,11-

methanobenzo[j]phenanthridine 288a (0.030 g, 0.093 mmol) in CH3CN (2 mL), was added a solution of CAN 

(2.3 equiv, 0.12 g, 0.21 mmol) in H2O (2 mL) at 0 °C. This mixture was stirred at this temperature for 45 

minutes, after which H2O (4 mL) was added and an extraction was performed with EtOAc (3x 5 mL). The 

combined organic layers were dried (MgSO4), filtered and evaporated under reduced pressure affording 

crude 2-fluoro-8,9,10,11-tetrahydro-8,11-methanobenzo[j]phenanthridine-7,12-dione 31a, which was 

purified via preparative TLC (0.015 g, 0.034 mmol). 
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2-Fluoro-8,9,10,11-tetrahydro-8,11-methanobenzo[j]phenanthridine-7,12-dione 31a 

Orange crystals. Melting point: 198-199 °C. Rf 0.13 (petroleum ether/EtOAc 9/1). Yield: 

37%. 1H NMR (400 MHz, CDCl3):  1.27-1.34 (2H, m, 2x CHXHN), 1.52 (1H, d, J = 9.2 Hz, 

CHAHS), 1.74-1.77 (1H, m, CHAHS), 2.00-2.08 (2H, m, 2x CHXHN), 3.69 (1H, br s, CH-8 or 

CH-11), 3.70 (1H, br s, CH-8 or CH-11), 7.62 (1H, ddd, J = 9.3 Hz, JH,F = 7.5 Hz, J = 2.8 Hz, 

CHarom), 8.17 (1H, dd, J = 9.3 Hz, JH,F = 5.7 Hz, CHarom), 9.15 (1H, dd, JH,F = 11.4 Hz, J = 2.8 

Hz, CHarom), 9.55 (1H, s, CHarom). 13C NMR (100.6 MHz, CDCl3):  25.2 and 25.3 (CH2CH2), 40.9 (CH-8 or CH-

11), 41.4 (CH-8 or CH-11), 47.3 (CH2), 111.3 (d, J = 25.8 Hz, CHarom), 122.1 (d, J = 26.4 Hz, CHarom), 123.7 (d, 

J = 11.8 Hz, Carom,quat), 124.1 (Carom,quat), 132.3 (d, J = 6.7 Hz, Carom,quat), 132.5 (d, J = 9.5 Hz, CHarom), 146.7 (d, 

J = 2.8 Hz, CHarom), 149.4, 152.0 and 155.3 (3x Carom,quat), 163.1 (d, J = 251.1 Hz, CFarom), 182.1 and 185.0 (2x 

C=O). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3):  -107.83 (1F, ddd, JH,F = 11.4 Hz, 7.5 Hz, 5.7 Hz, CFarom). IR 

(ATR, cm-1): νC=O = 1645, νmax = 1320, 1271, 1196, 1006. MS (ES+): m/z (%): 294 (M + H+, 100). HRMS (ES+): 

calcd. for C18H13FNO2
+: 294.0925, found 294.0931. 

3-Fluoro-8,9,10,11-tetrahydro-8,11-methanobenzo[j]phenanthridine-7,12-dione 31b 

Orange crystals. Melting point: 154-155 °C. Rf 0.29 (petroleum ether/EtOAc 9/1). 

Yield: 50%. 1H NMR (400 MHz, CDCl3):  1.27-1.34 (2H, m, 2x CHXHN), 1.52 (1H, d, J 

= 9.2 Hz, CHAHS), 1.73-1.77 (1H, m, CHAHS), 2.02-2.08 (2H, m, 2x CHXHN), 3.69 (2H, br 

s, CH-8 and CH-11), 7.54 (1H, ddd, J = 9.6 Hz, 8.0 Hz, 2.6 Hz, CHarom), 7.89 (1H, dd, J 

= 9.4 Hz, 2.6 Hz, CHarom), 9.48 (1H, dd, J = 9.6 Hz, 6.2 Hz, CHarom), 9.60 (1H, s, CHarom). 13C NMR (100.6 MHz, 

CDCl3):  25.3 and 25.4 (CH2CH2), 40.9 (CH-8 or CH-11), 41.4 (CH-8 or CH-11), 47.2 (CH2), 113.8 (d, J = 20.2 

Hz, CHarom), 119.6 (Carom,quat), 120.5 (d, J = 24.5 Hz, CHarom), 123.3 (d, J = 2.7 Hz, Carom,quat), 130.3 (d, J = 9.6 

Hz, CHarom), 133.0 (d, J = 1.8 Hz, Carom,quat), 148.7 (CHarom), 152.0 (Carom,quat), 153.6 (d, J = 12.7 Hz, Carom,quat), 

155.1 (Carom,quat), 164.1 (d, J = 256.5 Hz, CFarom), 182.0 and 185.2 (2x C=O). 19F NMR (376.5 MHz, CDCl3, ref 

= CFCl3):  -105.86 (1F, ddd, J = 9.4 Hz, 8.0 Hz, 6.2 Hz, CFarom). IR (ATR, cm-1): νC=O = 1655, νmax = 1620, 1314, 

1287. MS (ES+): m/z (%): 294 (M + H+, 100). HRMS (ES+): calcd. for C18H13FNO2
+ (M + H+): 294.0925, found 

294.0927. 
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4-Fluoro-8,9,10,11-tetrahydro-8,11-methanobenzo[j]phenanthridine-7,12-dione 31c 

Orange crystals. Melting point: 171-172 °C. Yield: 62%. 1H NMR (400 MHz, CDCl3):  

1.30-1.34 (2H, m, 2x CHXHN), 1.53 (1H, d, J = 9.2 Hz, CHAHS), 1.75-1.78 (1H, m, CHAHS), 

2.04-2.08 (2H, m, 2x CHXHN), 3.70 (2H, br s, CH-8 and CH-11), 7.54 (1H, ddd, JH,F = 9.9 

Hz, J = 7.8 Hz, 1.2 Hz, CHarom), 7.69 (1H, ddd, J = 8.8 Hz, 7.8 Hz, JH,F = 5.4 Hz, CHarom), 

9.20 (1H, d, J = 8.8 Hz, CHarom), 9.62 (1H, s, CHarom). 13C NMR (100.6 MHz, CDCl3):  25.3 and 25.4 (CH2CH2), 

41.0 (CH-8 or CH-11), 41.5 (CH-8 or CH-11), 47.2 (CH2), 115.7 (d, J = 18.5 Hz, CHarom), 123.5 (d, J = 5.3 Hz, 

CHarom), 124.2 and 124.4 (2x Carom,quat), 129.9 (d, J = 8.1 Hz, CHarom), 132.8 (d, J = 2.5 Hz, Carom,quat), 142.1 (d, 

J = 11.3 Hz, Carom,quat), 147.6 (CHarom), 151.9 and 155.4 (2x Carom,quat), 157.8 (d, J = 257.9 Hz, CFarom), 181.9 

and 184.9 (2x C=O). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3):  -123.53 (1F, dd, JH,F = 9.9 Hz, 5.4 Hz, CFarom). 

IR (ATR, cm-1): νC=O = 1655, νmax = 1326, 1287, 1274, 765. MS (ES+): m/z (%): 294 (M + H+, 100). HRMS (ES+): 

calcd. for C18H13FNO2
+: 294.0925, found 294.0931. 

2-Trifluoromethyl-8,9,10,11-tetrahydro-8,11-methanobenzo[j]phenanthridine-7,12-dione 31d 

Orange crystals. Melting point: 151-152 °C. Rf 0.17 (petroleum ether/EtOAc 9/1). Yield: 

76%. 1H NMR (400 MHz, CDCl3):  1.27-1.35 (2H, m, 2x CHXHN), 1.54 (1H, d, J = 9.2 Hz, 

CHAHS), 1.75-1.79 (1H, m, CHAHS), 2.03-2.10 (2H, m, 2x CHXHN), 3.70 (1H, br s, CH-8 or 

CH-11), 3.71 (1H, br s, CH-8 or CH-11), 8.01 (1H, dd, J = 8.9 Hz, 2.0 Hz, CHarom), 8.29 (1H, 

d, J = 8.9 Hz, CHarom), 9.70 (1H, s, CHarom), 9.83 (1H, s, CHarom). 13C NMR (100.6 MHz, ref 

= CDCl3):  25.3 and 25.5 (CH2CH2), 41.1 (CH-8 or CH-11), 41.6 (CH-8 or CH-11), 47.4 (CH2), 121.9 (Carom,quat), 

123.9 (q, J = 272.9 Hz, CF3), 124.4 (Carom,quat), 126.0 (q, J = 4.6 Hz, CHarom), 127.3 (q, J = 3.2 Hz, CHarom), 131.4 

(CHarom), 131.7 (q, J = 32.7 Hz, CCF3), 133.4 (Carom,quat), 149.7 (CHarom), 152.2, 152.6 and 155.4 (3x Carom,quat), 

181.8 and 184.9 (2x C=O). 19F NMR (376.5 MHz, CDCl3, ref = CFCl3):  -63.16 (3F, s, CF3). IR (ATR, cm-1): νC=O 

= 1657, νmax = 1303, 1287, 1273, 1130. MS (ES+): m/z (%): 344 (M + H+, 100). HRMS (ES+): calcd. for 

C19H13F3NO2
+: 344.0893, found 344.0897. 

3-Trifluoromethyl-8,9,10,11-tetrahydro-8,11-methanobenzo[j]phenanthridine-7,12-dione 31e 

Orange crystals. Melting point: 158-159 °C. Yield: 45%. 1H NMR (400 MHz, CDCl3): 

 1.28-1.35 (2H, m, 2x CHXHN), 1.54 (1H, d, J = 9.2 Hz, CHAHS), 1.76-1.78 (1H, m, 

CHAHS), 2.03-2.10 (2H, m, 2x CHXHN), 3.70 (1H, br s, CH-8 or CH-11), 3.71 (1H, br s, 

CH-8 or CH-11), 7.92 (1H, dd, J = 9.1 Hz, 1.7 Hz, CHarom), 8.47 (1H, s, CHarom), 9.58 

(1H, d, J = 9.1 Hz, CHarom), 9.69 (1H, s, CHarom). 13C NMR (100.6 MHz, ref = CDCl3):  25.2 and 25.3 (CH2CH2), 
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41.0 (CH-8 or CH-11), 41.5 (CH-8 or CH-11), 47.3 (CH2), 123.4 (q, J = 272.9 Hz, CF3), 124.3 and 124.7 (2x 

Carom,quat), 125.3 (q, J = 2.9 Hz, CHarom), 127.6 (q, J = 4.4 Hz, CHarom), 129.1 (CHarom), 132.6 (Carom,quat), 132.9 

(q, J = 33.2 Hz, CCF3), 148.8 (CHarom), 150.9, 152.0 and 155.4 (3x Carom,quat), 181.7 and 184.8 (2x C=O). 19F 

NMR (376.5 MHz, CDCl3, ref = CFCl3):  -63.80 (3F, s, CF3). IR (ATR, cm-1): νC=O = 1655, νmax = 1332, 1286, 

1163, 1131. MS (ES+): m/z (%): 344 (M + H+, 100). HRMS (ES+): calcd. for C19H13F3NO2
+: 344.0893, found 

344.0901. 
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6 Summary 

Strained cyclic amino acids, with a small-membered ring as core structure, are of importance as building 

blocks for novel peptidomimetics. More specifically, strained β-amino acid derivatives increase the 

conformational stability and rigidity of peptides, and less units are necessary to obtain peptides which 

adopt a well-defined secondary structure. Therefore, in the first part of this PhD thesis, novel cyclic 

β-amino acid derivatives were synthesized, containing a cyclopropane or a cyclobutane ring as their core 

structure. 

As such, the synthesis of benzyl 2-(diphenylmethylideneamino)cyclopropanecarboxylate (1S,2S)-iii is 

described, employing (R)-β-benzyl N-(tert-butoxycarbonyl)aspartate (R)-i as a chiral building block. To this 

end, aspartate (R)-i was converted into γ-iodo-β-amino ester (R)-ii in four steps in 39% overall yield. The 

diastereoselective ring closure of precursor (R)-ii was effectuated by treatment with KHMDS in THF 

at -78 °C for one hour, leading to a diastereomeric mixture with a diastereomeric ratio trans:cis = 97:3. 

After purification, 2-(diphenylmethylideneamino)cyclopropanecarboxylate (1S,2S)-iii was obtained as a 

single diastereomer in 75% yield (dr > 99:1). 

 

Subsequently, the saponification of both enantiomers of benzyl cyclopropanecarboxylate iii was 

performed by treatment with five equivalents of NaOH in a MeOH/H2O mixture for 20 hours at room 

temperature, leading to the formation of cyclopropanecarboxylic acids (1R,2R)-iv and (1S,2S)-iv in 61% 

and 77% yield, respectively. The coupling of amino acids iv with the hydrochloric salt of methyl glycinate 

v was achieved under standard peptide formation reaction conditions, leading to dipeptides (1R,2R)-vi and 

(1S,2S)-vi in good yields. 
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In the second part of this PhD thesis, the synthesis of dialkyl cyclobutane-1,1-dicarboxylates x starting from 

3-halopropylidenemalonates vii was optimized. After screening various reaction conditions, it was found 

that the addition of diphenylmethylideneamine viii across alkylidenemalonates vii occured under neat 

reaction conditions, giving adducts ix in good yields after recrystallization. The ring closure of adducts ix 

toward the corresponding cyclobutanes x was effectuated by treatment with KOtBu in case of the 

brominated adducts ixa, while a catalytic amount of NaI had to be added to the reaction mixture to achieve 

ring closure of the chlorinated derivatives ixb. 

 

The following parts of this PhD thesis focused on the synthesis of fluorinated compounds. Due to fluorine’s 

unique properties (strong electronegativity, small van der Waals radius), its introduction in organic 

compounds can induce significant changes in their chemical and pharmacological properties. Therefore, 

in the pharmaceutical industry, there is a great interest in the synthesis of fluorinated compounds. 
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The synthesis of fluorinated β-aminocyclopropane-1,1-dicarboxylates xiii was envisaged via the same 

methodology as described above for the synthesis of cyclobutane-,1,-dicarboxylates x, using 

bromodifluorinated ethylidenemalonates xi as Michael acceptors. Michael-type addition of 

diphenylmethylideneamine viii was achieved under neat reaction conditions and afforded adducts xii in 

very good yields. Subsequently, the ring closure of Michael adducts xii toward the envisaged fluorinated 

β-aminocyclopropane-1,1-dicarboxylates xiii was investigated. However, treatment of adducts xii with 

base led to the formation of reaction mixtures containing starting material xii, cyclopropanes xiii, 

pyrrolines xiv, which are the result of a ring transformation of cyclopropanes xiii, and fluorinated 

cyclopropenes xv in varying ratios depending on the reaction conditions. Furthermore, this ring closure 

proved to be sluggish and poorly reproducible due to the instability of the reaction products. 

Cyclopropanes xiii were formed as the major reaction products upon treatment of adducts xii with 1.1-1.5 

equivalents of KOtBu for a short reaction time of 30 minutes to one hour. The synthesis of pyrrolines xiv 

was achieved using a longer reaction time of 4-5 hours, to enable the ring transformation of cyclopropanes 

xiii toward pyrrolines xiv. Under all reaction conditions which were evaluated, fluorinated 

cyclopropenedicarboxylates xv were formed as side products and were isolated in low yields. 

 

The reduction of pyrrolines xiv was evaluated by treatment with NaCNBH3 and led to the formation of 

acyclic amino esters, which proved to be unstable and could not be fully characterized. 
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Furthermore, the synthesis of another class of constrained fluorinated amino acids was envisaged, more 

specifically fluorinated azetidine-2-carboxylates xix and xxii. To this end, several routes toward precursors 

xviii and xxi were evaluated and finally these compounds were synthesized by reacting amines xvi and xx 

with an excess of bromoacetates xvii in the presence of LiHMDS (1M in THF) for 17-23 hours at room 

temperature or 70 °C. However, all attempts to convert amino esters xviii and xxi into the corresponding 

azetidines failed. While treatment with KOtBu and BuLi led to a nucleophilic addition across the ester 

moiety, the use of NaH and KMHDS gave no reaction and only resulted in recovery of the starting material. 

Finally, when amino esters xviii and xxi were treated with LiHMDS, a peculiar reaction was observed, i.e. 

removal of the methoxycarbonylmethyl group, leading to the formation of amines xvi and xx, respectively. 

 

In the next part of this PhD thesis, the synthesis of β,β-difluoroenamides xxv and xxvii was described, as 

new building blocks for the synthesis of azaheterocyclic compounds. Protection of secondary amine xxiiia 

by reaction with benzoyl chloride followed by treatment with LiHMDS led to the formation of enamide 

xxv, while the protection of amine xxiiia as tosylamide xxvi resulted in the formation of enamide xxvii 

after treatment with base. 
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Due to the presence of the electron-withdrawing group at nitrogen in combination with the two fluorine 

atoms on the β-carbon of the enamide functionality, enamides xxv and xxvii showed electrophilic 

reactivity. Indeed, upon treatment of enamides xxv and xxvii with nucleophiles, an SNV reaction was 

observed: addition of the nucleophile across the double bond is followed by elimination of fluoride. This 

reaction led to the formation of two isomers xxviii and xxix, with isomer xxviii being the major reaction 

product in all cases. The selectivity toward isomers xxviii was explained by evaluating the preferred 

conformation of the intermediate carbanions after addition of the nucleophile. 

 

The electrophilic reactivity of enamides xxv and xxvii was exploited toward the synthesis of fluorinated 

heterocycles by incorporating the nucleophile and the electrophilic enamide moiety in the same precursor. 

Whereas the synthesis of 6-fluoro-1,4-oxazines gave poor results, the synthesis of 2-fluoro-1,4-

benzoxazines xxxvi was optimized. Amides xxx, which were synthesized via condensation of the 

corresponding 2-aminophenols with ethyl bromodifluoroacetate, were protected as tert-

butyldimethylsilyl ethers xxxi. Reduction with borane dimethylsulfide complex afforded amines xxxii 

which were converted into amides xxxiv by reaction with different benzoyl chlorides xxxiii. Next, amides 

xxxiv were evaluated as precursors for the synthesis of 2-fluoro-1,4-benzoxazines, by treatment with 

different bases. Treatment of amides xxxiv with 2.2 equivalents LiHMDS led to the formation of ynamides 

xxxv as sole end products, which were isolated in excellent yields. However, upon use of KOtBu, amides 

xxxiv were converted into 2-fluorobenzoxazines xxxvi. After screening different other bases (NaHMDS, 
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KHMDS and LiOtBu), it was concluded that the cation of the base plays an important role in the reaction 

outcome. The use of lithium bases led to the formation of end products in which the tert-butyldimethylsilyl 

ether was still present, while upon use of sodium or potassium bases deprotection was observed. It was 

also demonstrated that ynamides xxxv, a group of compounds which were synthesized in excellent yields 

for the first time, showed electrophilic reactivity since deprotection of the tert-butyldimethylsilyl ether of 

compounds xxxv also resulted in the formation of 2-fluoro-1,4-benzoxazines xxxvi, via addition of the 

phenolic oxygen atom across the triple bond. 

 

The synthesis of fluorinated benzo-fused seven-membered rings could also be achieved, by using amides 

xxxviii as precursors, which were synthesized via condensation of amines xxiii with acid chlorides xxxvii. 

Upon treatment of amides xxxviii with KOtBu, an efficient conversion toward 2-fluoro-1,4-benzoxazepin-

5-ones xxxix was achieved, which were isolated in good yields. Finally, removal of the para-methoxybenzyl 
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group was achieved by reaction of N-PMB substituted benzoxazepinones xxxix with BF3.Et2O, resulting in 

4H-2-fluoro-1,4-benzoxazepin-5-ones xl. 

 

In the last part of this PhD thesis, the synthesis of 8,9,10,11-tetrahydro-8,11-methanobenzo[j]-

phenanthridine-7,12-diones xlvi was developed, as potential antimycobacterial compounds. The synthetic 

route started from aldehyde xli which was converted into different amines xliii via reductive amination 

with various fluorinated 2-bromoanilines xlii. In the next step, amines xliii were treated with triflic 

anhydride resulting in trifluoromethanesulfonamides xliv. Palladium-catalyzed ring closure followed by 

treatment with KOtBu afforded phenanthridines xlv, which were subsequently oxidized toward 8,9,10,11-

tetrahydro-8,11-methanobenzo[j]phenanthridine-7,12-diones xlvi. 
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It can be concluded that this PhD thesis resulted in the optimized synthesis of derivatives of two classes of 

carbocyclic amino acids. However, the synthesis of the fluorinated small-membered ring containing amino 

acids proved to be difficult, resulting in the formation of unstable fluorinated β-ACC derivatives, while the 

ring closure toward fluorinated azetidine-2-carboxylates could not be effectuated. The synthesis of novel 

β,β-difluoroenamides as novel building blocks was successful and was exploited toward the synthesis of 

novel fluorinated heterocycles and elusive fluorinated ynamides. Finally, the synthesis of fluorinated 

8,9,10,11-tetrahydro-8,11-methanobenzo[j]phenanthridine-7,12-diones was achieved, as potential 

antimycobacterial compounds. 
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7 Samenvatting 

Cyclische aminozuren bestaande uit een drie- of vierring als basisstructuur zijn belangrijke bouwstenen 

voor de synthese van nieuwe peptidomimetica. Meer specifiek verhogen conformationeel beperkte 

β-aminozuren de conformationele stabiliteit en rigiditeit van peptiden en zijn er minder bouwstenen nodig 

om peptiden te bekomen met een goed gedefinieerde secundaire structuur. In het eerste deel van deze 

doctoraatsthesis werden nieuwe cyclische β-aminozuurderivaten, die een cyclopropaan- of een 

cyclobutaanring bevatten als hun basisstructuur, gesynthetiseerd. 

Zo werd in het eerste deel de synthese van benzyl-2-(difenylmethylideenamino)cyclopropaancarboxylaat 

(1S,2S)-iii beschreven, waarbij (R)-β-benzyl-N-(tert-butoxycarbonyl)aspartaat (R)-i gebruikt werd als 

chirale bouwsteen. Aspartaat (R)-i werd hierbij eerst omgezet in γ-iood-β-amino ester (R)-ii in vier stappen, 

in een totaalrendement van 39%. De diastereoselective ringsluiting van deze precursor (R)-i werd 

bewerkstelligd door reactie met KHMDS in THF bij -78 °C gedurende één uur, waarbij een diastereomeer 

mengsel werd bekomen met een diastereomere ratio trans:cis = 97:3. Na opzuivering werd diastereomeer 

zuiver benzyl-2-(difenylmethylideenamino)cyclopropaancarboxylaat (1S,2S)-iii bekomen in een 

rendement van 75% (dr > 99:1). 

 

Vervolgens werd de verzeping van de beide enantiomeren van cyclopropaancarboxylaat iii bewerkstelligd 

door reactie met vijf equivalenten NaOH in een MeOH/H2O mengsel gedurende 20 uur bij 

kamertemperatuur, waarna cyclopropaancarbonzuren (1R,2R)-iv en (1S,2S)-iv geïsoleerd werden in 

respectievelijk 61% en 77% rendement. De koppeling van aminozuren iv met het hydrochloride zout van 

methylglycinaat v werd bewerkstelligd onder standaard reactieomstandigheden voor peptidevorming, 

waarbij dipeptiden (1R,2R)-vi en (1S,2S)-vi bekomen werden in goede rendementen. 
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In het tweede deel van deze doctoraatsthesis werd de synthese van dialkylcyclobutaan-1,1-dicarboxylaten 

x geoptimaliseerd, waarbij vertrokken werd van 3-halogeenpropylideenmalonaten vii. Nadat verschillende 

reactieomstandigheden geëvalueerd werden, bleek dat de additie van difenylmethylideenamine viii aan 

alkylideenmalonaten vii gerealiseerd werd onder solvent-vrije reactieomstandigheden, waarbij adducten 

ix bekomen werden in goede rendementen na omkristallisatie. De ringsluiting van adducten ix naar de 

overeenkomstige cyclobutanen x werd tenslotte verwezenlijkt door behandeling met KOtBu in het geval 

van de gebromeerde adducten ixa, terwijl de additie van een katalytische hoeveelheid NaI aan het 

reactiemengsel nodig was om ringsluiting van de gechloreerde derivaten ixb te bewerkstelligen. 

 

In de volgende hoofdstukken van deze doctoraatsthesis lag de focus op de synthese van gefluoreerde 

verbindingen. Door zijn unieke eigenschappen (hoge elektronegativiteit, kleine van der Waals straal) leidt 

de introductie van fluor in verbindingen tot een verandering in de chemische en farmacologische 

eigenschappen van deze verbindingen. Hierdoor bestaat er vanuit de farmaceutische industrie een grote 

interesse in de synthese van gefluoreerde verbindingen. 
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De synthese van gefluoreerde dialkyl-β-aminocyclopropaan-1,1-dicarboxylaten xiii werd beoogd via 

dezelfde methodologie als diegene die hierboven beschreven werd voor de synthese van 

dialkylcyclobutaan-1,1-dicarboxylaten x, waarbij gefluoreerde ethylideenmalonaten xi gebruikt werden 

als Michaël acceptoren. De Michaël-type additie van difenylmethylideenamine viii werd bewerkstelligd 

onder solvent-vrije reactieomstandigheden en leverde adducten xii in goede rendementen. Vervolgens 

werd de ringsluiting van deze Michaël adducten naar de beoogde β-aminocyclopropaan-1,1-

dicarboxylaten xiii onderzocht. Wanneer adducten xii in reactie gebracht werden met een base, werden 

reactiemengsels bekomen waarin zowel beginproduct xii, cyclopropanen xiii, pyrrolinen xiv (gevormd 

door ring-transformatie van cyclopropanen xiii) en gefluoreerde cyclopropenen xv werden 

teruggevonden, in wisselende verhoudingen afhankelijk van de reactieomstandigheden. Deze 

ringsluitingsreactie bleek moeilijk te verlopen en weinig reproduceerbaar te zijn door de onstabiliteit van 

de reactieproducten. Wanneer adducten xii werden behandeld met 1,1 tot 1,5 equivalenten KOtBu 

gedurende een korte reactietijd van 30 minuten tot één uur, werden cyclopropanen xiii bekomen als de 

hoofdproducten. Door een langere reactietijd (4 - 5 uur) toe te passen, werden pyrrolinen xiv bekomen 

als hoofdproduct door de ringtransformatie van cyclopropanen xiii naar pyrrolinen xiv onder deze 

omstandigheden. Onder alle reactieomstandigheden werden ook gefluoreerde 

cyclopropeendicarboxylaten xv gevormd als bijproducten, die konden geïsoleerd worden in lage 

rendementen. 
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Vervolgens werd de reductie van pyrrolinen xiv geëvalueerd door reactie met NaCNBH3, maar dit leidde 

tot de vorming van acyclische amino esters die onstabiel waren en dus niet volledig gekarakteriseerd 

konden worden. 

Verder werd ook de synthese van een andere klasse conformationeel beperkte gefluoreerde aminozuren 

beoogd, meer specifiek de gefluoreerde azetidine-2-carboxylaten xix en xxii. Hiervoor werden 

verschillende routes geëvalueerd naar precursoren xviii en xxi en uiteindelijk werden deze verbindingen 

gesynthetiseerd door reactie van aminen xvi en xx met een overmaat broomacetaten xvii in de 

aanwezigheid van LiHMDS (1M in THF) gedurende 17-23 uur bij kamertemperatuur of 70 °C. Jammer 

genoeg faalden alle pogingen om amino esters xviii en xxi om te zetten in de overeenkomstige azetidinen. 

Terwijl reactie met KOtBu en BuLi aanleiding gaf tot een nucleofiele additie aan de ester functie, trad geen 

reactie op wanneer NaH en KHMDS gebruikt werden als base. Wanneer amino esters xviii en xxi behandeld 

werden met LiHMDS tenslotte, werd een eigenaardige reactie waargenomen, namelijk de afsplitsing van 

de alkoxycarbonylmethyl groep, waarbij aminen xvi en xx gevormd werden. 

 

In het volgende deel van deze doctoraatsthesis werd de synthese van β,β-gedifluoreerde enamiden xxv 

en xxviia beschreven, als bouwstenen voor de synthese van azaheterocyclische verbindingen. 

Bescherming van het secundaire amine xxiiia door reactie met benzoylchloride, gevolgd door behandeling 

met LiHMDS leverde enamide xxv, terwijl bescherming van amine xxiiia als tosylamide xxvi, gevolgd door 

behandeling met base resulteerde in de vorming van enamide xxxvii. 
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Door de aanwezigheid van de elektronenzuigende groep op het stikstofatoom, in combinatie met de twee 

fluoratomen op het β-koolstofatoom van de enamide eenheid, vertonen enamiden xxv en xxvii een 

elektrofiele reactiviteit. Inderdaad, wanneer enamiden xxv en xxvii behandeld werden met nucleofielen 

werd een SNV reactie waargenomen: additie van het nucleofiel aan de dubbele binding werd gevolgd door 

eliminatie van fluor. Deze reactie resulteerde in de vorming van twee isomeren xxviii en xxix, waarbij 

isomeer xxviii in alle gevallen bekomen werd als het hoofdisomeer. Deze selectiviteit voor isomeer xxviii 

werd verklaard door evaluatie van de conformatie van de intermediaire carbanionen, bekomen na additie 

van het nucleofiel aan de dubbele binding. 

 

De elektrofiele reactiviteit van enamiden xxv en xxvii werd vervolgens uitgewerkt tot de synthese van 

gefluoreerde heterocyclische verbindingen, door het nucleofiel en de elektrofiele enamide-eenheid te 

incorporeren in één precursor. Terwijl de synthese van 6-fluor-1,4-oxazinen enkel slechte resultaten gaf, 

kon de synthese van 2-fluor-1,4-benzoxazinen xxxvi geoptimaliseerd worden. Amiden xxx, die 

gesynthetiseerd werden via de condensatie van de overeenkomstige 2-aminofenolen met 

ethylbroomdifluoracetaat, werden vervolgens beschermd als tert-butyldimethylsilyl ethers xxxi. Reductie 

van deze verbindingen door behandeling met boraan dimethylsulfide complex resulteerde in aminen xxxii, 

die vervolgens werden omgezet in amiden xxxiv door reactie met verschillende benzoylchloriden xxxiii. 

Vervolgens werden amiden xxxiv geëvalueerd als precursoren voor de synthese van 2-fluor-1,4-

benzoxazinen door behandeling met verschillende basen. De reactie van amiden xxxiv met 2,2 
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equivalenten LiHMDS resulteerde in de selectieve vorming van ynamiden xxxv, die geïsoleerd werden in 

excellente rendementen. Wanneer KOtBu werd gebruikt als base werden amiden xxxiv omgezet in 

2-fluorbenzoxazinen xxxvi. Nadat nog verschillende andere basen (NaHMDS, KHMDS en LiOtBu) getest 

werden, werd geconcludeerd dat het kation van de base een zeer belangrijke rol speelde in het resultaat 

van de reactie. Met lithium basen werden eindproducten bekomen waarin het tert-butyldimethylsilylether 

nog aanwezig was, terwijl bij het gebruik van natrium of kalium basen de ontscherming van deze groep 

werd vastgesteld. Verder kon ook aangetoond worden dat ynamiden xxxv, die in dit onderzoek voor het 

eerst werden gesynthetiseerd in uitstekende rendementen, een elektrofiele reactiviteit vertonen 

aangezien ontscherming van de tert-butyldimethylsilyl groep van deze verbindingen aanleiding gaf tot de 

vorming van 2-fluor-1,4-benzoxazinen xxxvi, via additie van de fenolische zuurstof aan de drievoudige 

binding. 
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De synthese van gefluoreerde benzo-gefuseerde zevenringen kon gerealiseerd worden met het gebruik 

van amiden xxxviii als precursoren. Deze amiden werden bekomen via condensatie van aminen xxiii met 

zuurchloriden xxxvii. Wanneer amiden xxxviii behandeld werden met KOtBu werd een efficiënte conversie 

naar 2-fluor-1,4-benzoxazepin-5-onen xxxix waargenomen, die geïsoleerd werden in goede rendementen. 

De verwijdering van de para-methoxybenzyl groep werd tenslotte bewerkstelligd door reactie van de 

N-PMB gesubstitueerde benzoxazepinonen met BF3.Et2O, waarbij 4H-2-fluor-1,4-benzoxazepin-5-onen xl 

gevormd werden. 

 

In het laatste deel van deze doctoraatsthesis werd de synthese van 8,9,10,11-tetrahydro-8,11-

methanobenzo[j]fenantridine-7,12-dionen xlvi ontwikkeld, als potentieel antimycobacteriële 

verbindingen. De synthetische route vertrok van aldehyde xli, dat omgezet werd in aminen xliii via een 

reductieve aminering met gefluoreerde 2-broomanilinen xlii. In de volgende stap werden aminen xliii 

behandeld met trifluormethaansulfonzuuranhydride, wat resulteerde in de vorming van 

trifluormethaansulfonamiden xliv. Na de palladium-gekatalyseerde ringsluiting, gevolgd door behandeling 

met KOtBu, werden fenantridinen xlv bekomen, die vervolgens geoxideerd werden tot 8,9,10,11-

tetrahydro-8,11-methanobenzo[j]fenantridine-7,12-dionen xlvi. 
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Als algemeen besluit kan gesteld worden dat deze doctoraatsthesis resulteerde in de geoptimaliseerde 

synthese van derivaten uit twee klassen van carbocyclische aminozuren. Echter, de synthese van 

gefluoreerde aminozuren met een drie- of een vierring als basisstructuur bleek moeilijker te verlopen. De 

synthese van gefluoreerde β-ACC derivaten leverde onstabiele eindproducten, terwijl de ringsluiting tot 

gefluoreerde azetidine-2-carboxylaten niet kon gerealiseerd worden. De synthese van nieuwe 

β,β-difluorenamiden was wel succesvol en werd uitgewerkt tot de synthese van nieuwe gefluoreerde 

heterocyclische verbindingen en tot nu toe onbekende gefluoreerde ynamiden. Tenslotte kon de synthese 

van gefluoreerde 8,9,10,11-tetrahydro-8,11-methanobenzo[j]fenantridine-7,12-dionen, als potentieel 

antimycobacteriële verbindingen, met succes verwezenlijkt worden.



References  Chapter 8 

213 
 

8 References 

(1) a) O’Hagan, D.; Harper, D. B. J. Fluorine Chem. 1999, 100, 127; b) O’Hagan, D.; Deng, H. Chem. Rev. 

2015, 115, 634. 

(2) a) Sanada, M.; Miyano, T.; Iwadare, S.; Williamson, J. M.; Arison, B. H.; Smith, J. L.; Douglas, A. W.; 

Liesch, J. M.; Inamine, E. J. Antibiot. 1986, 39, 259; b) Murphy, C. D.; O'Hagan, D.; Schaffrath, C. 

Angew. Chem. Int. Ed. 2001, 40, 4479. 

(3) a) O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308; b) Smart, B. E. J. Fluorine Chem. 2001, 109, 3; c) 

Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320. 

(4) a) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; 

Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432; b) O'Hagan, D. J. Fluorine Chem. 2010, 131, 

1071. 

(5) a) Kaspar, A. A.; Reichert, J. M. Drug. Discov. Today 2013, 18, 807; b) Vlieghe, P.; Lisowski, V.; 

Martinez, J.; Khrestchatisky, M. Drug. Discov. Today 2010, 15, 40; c) Uhlig, T.; Kyprianou, T.; 

Martinelli, F. G.; Oppici, C. A.; Heiligers, D.; Hills, D.; Calvo, X. R.; Verhaert, P. EuPa Open Proteom. 

2014, 4, 58; d) Craik, D. J.; Fairlie, D. P.; Liras, S.; Price, D. Chem. Biol. Drug Des. 2013, 81, 136. 

(6) Hintermann, T.; Seebach, D. Chimia 1997, 51, 244. 

(7) Frackenpohl, J.; Arvidsson, P. I.; Schreiber, J. V.; Seebach, D. ChemBioChem 2001, 2, 445. 

(8) Cabrele, C.; Martinek, T. A.; Reiser, O.; Berlicki, Ł. J. Med. Chem. 2014, 57, 9718. 

(9) a) Seebach, D.; Beck, A. K.; Bierbaum, D. J. Chem. Biodivers. 2004, 1, 1111; b) Pilsl, L. K. A.; Reiser, 

O. Amino Acids 2011, 41, 709; c) Vasudev, P. G.; Chatterjee, S.; Shamala, N.; Balaram, P. Chem. 

Rev. 2011, 111, 657; d) Gellman, S. H. Acc. Chem. Res. 1998, 31, 173; e) Fülöp, F.; Martinek, T. A.; 

Tóth, G. K. Chem. Soc. Rev. 2006, 35, 323. 

(10) a) Buer, B. C.; Levin, B. J.; Marsh, E. N. G. J. Am. Chem. Soc. 2012, 134, 13027; b) Jäckel, C.; Koksch, 

B. Eur. J. Org. Chem. 2005, 4483; c) Buer, B. C.; Marsh, E. N. G. Protein Sci. 2012, 21, 453. 

(11) a) Mathad, R. I.; Jaun, B.; Flögel, O.; Gardiner, J.; Löweneck, M.; Codée, J. D. C.; Seeberger, P. H.; 

Seebach, D.; Edmonds, M. K.; Graichen, F. H. M.; Abell, A. D. Helv. Chim. Acta 2007, 90, 2251; b) 

Mathad, R. I.; Gessier, F.; Seebach, D.; Jaun, B. Helv. Chim. Acta 2005, 88, 266; c) Salwiczek, M.; 

Nyakatura, E. K.; Gerling, U. I. M.; Ye, S.; Koksch, B. Chem. Soc. Rev. 2012, 41, 2135. 



References  Chapter 8 

214 
 

(12) a) Mangelinckx, S.; D'hooghe, M.; Peeters, S.; De Kimpe, N. Synthesis 2009, 1105; b) Mangelinckx, 

S.; De Kimpe, N. Tetrahedron Lett. 2003, 44, 1771; c) Mangelinckx, S.; De Kimpe, N. Synlett 2005, 

1521; d) Mangelinckx, S.; De Kimpe, N. Synlett 2006, 369. 

(13) Meiresonne, T., Synthese van nieuwe carbocyclische beta-aminozuurderivaten en studie van hun 

reactiviteit. Master Thesis, Ghent University 2009. 

(14) a) Sivaprakasam, M.; Couty, F.; Evano, G.; Srinivas, B.; Sridhar, R.; Rao, K. R. Synlett 2006, 781; b) 

Couty, F.; Evano, G.; Vargas-Sanchez, M.; Bouzas, G. J. Org. Chem. 2005, 70, 9028; c) 

Sivaprakasham, M.; Couty, F.; Evano, G.; Srinivas, B.; Sridhar, R.; Rao, K. R. Arkivoc 2007, 71. 

(15) Verniest, G.; Colpaert, F.; Van Hende, E.; De Kimpe, N. J. Org. Chem. 2007, 72, 8569. 

(16) a) Sutherland, A.; Willis, C. L. Nat. Prod. Rep. 2000, 17, 621; b) Qiu, X.-L.; Qing, F.-L. Eur. J. Org. 

Chem. 2011, 2011, 3261; c) Qiu, X.-L.; Meng, W.-D.; Qing, F.-L. Tetrahedron 2004, 60, 6711; d) 

March, T. L.; Johnston, M. R.; Duggan, P. J.; Gardiner, J. Chem. Biodivers. 2012, 9, 2410. 

(17) Sloan, M. J.; Kirk, K. L. Tetrahedron Lett. 1997, 38, 1677. 

(18) Bey, P.; Fozard, J.; Lacoste, J. M.; McDonald, I. A.; Zreika, M.; Palfreyman, M. G. J. Med. Chem. 

1984, 27, 9. 

(19) a) Skolnick, P.; Marvizon, J. C. G.; Jackson, B. W.; Monn, J. A.; Rice, K. C.; Lewin, A. H. Life Sci. 1989, 

45, 1647; b) Von Lubitz, D.; Lin, R. C. S.; McKenzie, R. J.; Devlin, T. M.; McCabe, R. T.; Skolnick, P. 

Eur. J. Pharmacol. 1992, 219, 153. 

(20) Riedel, G.; Platt, B.; Micheau, J. Behav. Brain Res. 2003, 140, 1. 

(21) a) Kirihara, M.; Takuwa, T.; Kawasaki, M.; Kakuda, H.; Hirokami, S.; Takahata, H. Chem. Lett. 1999, 

28, 405; b) Kirihara, M.; Kawasaki, M.; Takuwa, T.; Kakuda, H.; Wakikawa, T.; Takeuchi, Y.; Kirk, K. 

L. Tetrahedron: Asymmetr. 2003, 14, 1753. 

(22) Lemonnier, G.; Lion, C.; Quirion, J. C.; Pin, J. P.; Goudet, C.; Jubault, P. Bioorg. Med. Chem. 2012, 

20, 4716. 

(23) Ivashkin, P.; Couve-Bonnaire, S.; Jubault, P.; Pannecoucke, X. Org. Lett. 2012, 14, 2270. 

(24) Milanole, G.; Couve-Bonnaire, S.; Bonfanti, J. F.; Jubault, P.; Pannecoucke, X. J. Org. Chem. 2013, 

78, 212. 

(25) Ferrary, T.; David, E.; Milanole, G.; Besset, T.; Jubault, P.; Pannecoucke, X. Org. Lett. 2013, 15, 5598. 

(26) Ivashkin, P.; Couve-Bonnaire, S.; Jubault, P.; Pannecoucke, X. Org. Lett. 2012, 14, 5130. 

(27) a) Artamonov, O. S.; Mykhailiuk, P. K.; Voievoda, N. M.; Volochnyuk, D. M.; Komarov, I. V. Synthesis 

2010, 443; b) Keita, M.; De Bona, R.; Santos, M. D.; Lequin, O.; Ongeri, S.; Milcent, T.; Crousse, B. 



References  Chapter 8 

215 
 

Tetrahedron 2013, 69, 3308; c) Mykhailiuk, P. K.; Afonin, S.; Ulrich, A. S.; Komarov, I. V. Synthesis 

2008, 1757. 

(28) Gambhir, S. S. Nat. Rev. Cancer 2002, 2, 683. 

(29) a) Schuster, D. M.; Nye, J. A.; Nieh, P. T.; Votaw, J. R.; Halkar, R. K.; Issa, M. M.; Yu, W.; Sepulveda, 

J.; Zeng, W.; Young, A.; Goodman, M. M. Mol. Imaging Biol. 2009, 11, 434; b) McParland, B. J.; 

Wall, A.; Johansson, S.; Sorensen, J. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 1256; c) Kanagawa, 

M.; Doi, Y.; Oka, S.; Kobayashi, R.; Nakata, N.; Toyama, M.; Shirakami, Y. Nucl. Med. Biol. 2014, 41, 

545. 

(30) Shoup, T. M.; Goodman, M. M. J. Labelled Compd. Rad. 1999, 42, 215. 

(31) McConathy, J.; Voll, R. J.; Yu, W.; Crowe, R. J.; Goodman, M. M. Appl. Radiat. Isot. 2003, 58, 657. 

(32) Yu, W.; Williams, L.; Camp, V. M.; Malveaux, E.; Olson, J. J.; Goodman, M. M. Bioorg. Med. Chem. 

2009, 17, 1982. 

(33) Yu, W.; Williams, L.; Camp, V. M.; Olson, J. J.; Goodman, M. M. Bioorg. Med. Chem. Lett. 2010, 20, 

2140. 

(34) Mykhailiuk, P. K.; Radchenko, D. S.; Komarov, I. V. J. Fluorine Chem. 2010, 131, 221. 

(35) Tkachenko, A. N.; Radchenko, D. S.; Mykhailiuk, P. K.; Grygorenko, O. O.; Komarov, I. V. Org. Lett. 

2009, 11, 5674. 

(36) a) Liu, X.-L.; Wang, J.-B.; Tong, Y.; Song, Q.-H. Chem. - Eur. J. 2013, 19, 13216; b) Behrendt, P. J.; 

Kim, H.-C.; Hampp, N. J. Photochem. Photobiol., A 2013, 264, 67; c) Ohkura, K.; Aizawa, K.; 

Mukaida, R.; Akizawa, H.; Seki, K.-i. Heterocycles 2012, 86, 1465; d) Liese, J.; Hampp, N. A. J. 

Photochem. Photobiol., A 2011, 219, 228; e) Sinkel, C.; Greiner, A.; Agarwal, S. Macromolecules 

2008, 41, 3460; f) Ohkura, K.; Ishihara, T.; Nishijima, K.-i.; Diakur, J. M.; Seki, K.-i. Chem. Pharm. 

Bull. 2005, 53, 258; g) Ohkura, K.; Nakamura, H.; Sugaol, T.; Sakushima, A.; Takahashi, H.; Seiki, K.-

I. Heterocycles 2002, 57, 665; h) Sun, X.-L.; Haga, N.; Ogura, H.; Takayanagi, H. Chem. Pharm. Bull. 

1994, 42, 2352; i) Alderfer, J. L.; Soni, S. D.; Arakali, A. V.; Wallace, J. C. Photochem. Photobiol. 

1993, 57, 770. 

(37) Gauzy, C.; Saby, B.; Pereira, E.; Faure, S.; Aitken, D. J. Synlett 2006, 1394. 

(38) Hassoun, A.; Grison, C. M.; Guillot, R.; Boddaert, T.; Aitken, D. J. New J. Chem. 2015, 39, 3270. 

(39) Xu, Y.; Dolbier Jr., W. R. J. Org. Chem. 1997, 62, 6503. 

(40) Fort, D. A.; Woltering, T. J.; Nettekoven, M.; Knust, H.; Bach, T. Angew. Chem. Int. Ed. 2012, 51, 

10169. 

(41) Ishikawa, T. Heterocycles 2012, 85, 2837. 



References  Chapter 8 

216 
 

(42) Seyferth, D.; Woodruff, R. A. J. Org. Chem. 1973, 38, 4031. 

(43) Usuki, Y.; Fukuda, Y.; Iio, H. ITE Lett. Batteries New Technol. Med. 2001, 2, 237. 

(44) Ciganek, E. Organic Reactions (Hoboken, NJ, United States) 2008, 72, 1. 

(45) Tarui, A.; Kawashima, N.; Sato, K.; Omote, M.; Ando, A. Tetrahedron Lett. 2010, 51, 4246. 

(46) Tarui, A.; Kawashima, N.; Sato, K.; Omote, M.; Miwa, Y.; Minami, H.; Ando, A. Tetrahedron Lett. 

2010, 51, 2000. 

(47) Kostyanovsky, R. G.; Korepin, A. G.; Galkin, P. V.; El’natanov, Y. I.; Kadorkina, G. K.; Chervin, I. I.; 

Kostyanovsky, V. R. Mendeleev Commun. 1995, 5, 216. 

(48) a) Kostyanovsky, R. G.; Chervin, I. I.; Kadorkina, G. K.; Makarov, K. N.; Lantzeva, L. T.; Rozhkov, V. 

V.; Prosyanik, A. V. Mendeleev Commun. 1997, 7, 54; b) Prati, F.; Forni, A.; Moretti, I.; Torre, G.; 

Rozhkov, V. V.; Makarov, K. N.; Chervin, I. I.; Kostyanovsky, R. G. J. Fluorine Chem. 1998, 89, 177. 

(49) Kollonitsch, J.; Barash, L.; Doldouras, G. A. J. Am. Chem. Soc. 1970, 92, 7494. 

(50) Liu, Z.; Jenkinson, S. F.; Vermaas, T.; Adachi, I.; Wormald, M. R.; Hata, Y.; Kurashima, Y.; Kaji, A.; 

Yu, C.-Y.; Kato, A.; Fleet, G. W. J. J. Org. Chem. 2015, 80, 4244. 

(51) Van Hende, E.; Verniest, G.; Deroose, F.; Thuring, J.-W.; Macdonald, G.; De Kimpe, N. J. Org. Chem. 

2009, 74, 2250. 

(52) a) Hu, X. E. Tetrahedron 2004, 60, 2701; b) Stankovic, S.; D'hooghe, M.; Catak, S.; Eum, H.; 

Waroquier, M.; Van Speybroeck, V.; De Kimpe, N.; Ha, H.-J. Chem. Soc. Rev. 2012, 41, 643; c) 

Callebaut, G.; Meiresonne, T.; De Kimpe, N.; Mangelinckx, S. Chem. Rev. 2014, 114, 7954; d) Singh, 

G. S.; D'hooghe, M.; De Kimpe, N. Chem. Rev. 2007, 107, 2080. 

(53) a) Bott, T. M.; West, F. G. Heterocycles 2012, 84, 223; b) Brandi, A.; Cicchi, S.; Cordero, F. M. Chem. 

Rev. 2008, 108, 3988; c) Couty, F.; Evano, G. Org. Prep. Proced. Int. 2006, 38, 427. 

(54) Meiresonne, T.; Mangelinckx, S.; De Kimpe, N. Tetrahedron 2012, 68, 9566. 

(55) a) Fülöp, F. Chem. Rev. 2001, 101, 2181; b) Kiss, L.; Fülöp, F. Synlett 2010, 1302; c) Palko, M.; Kiss, 

L.; Fülöp, F. Curr. Med. Chem. 2005, 12, 3063. 

(56) Gademann, K.; Hintermann, T.; Schreiber, J. V. Curr. Med. Chem. 1999, 6, 905. 

(57) Foldamers: Structure, Properties, and Applications, S. Hecht, I. Huc. Wiley-VCH, Weinheim, 2007, 

p. 456. 

(58) a) Reissig, H. U.; Zimmer, R. Chem. Rev. 2003, 103, 1151; b) Yu, M.; Pagenkopf, B. L. Tetrahedron 

2005, 61, 321. 



References  Chapter 8 

217 
 

(59) a) D'hooghe, M.; Vervisch, K.; De Kimpe, N. J. Org. Chem. 2007, 72, 7329; b) Mangelinckx, S.; 

Courtheyn, D.; Verhé, R.; Van Speybroeck, V.; Waroquier, M.; De Kimpe, N. Synthesis 2006, 2260; 

c) Paulini, K.; Reissig, H. U. Liebigs Ann. Chem. 1994, 549. 

(60) a) Gnad, F.; Reiser, O. Chem. Rev. 2003, 103, 1603; b) Gu, P.; Su, Y.; Wu, X.-P.; Sun, J.; Liu, W.; Xue, 

P.; Li, R. Org. Lett. 2012, 14, 2246; c) Gharpure, S. J.; Vijayasree, U.; Reddy, S. R. Org. Biomol. Chem. 

2012, 10, 1735; d) De Simone, F.; Gertsch, J.; Waser, J. Angew. Chem. Int. Ed. 2010, 49, 5767; e) 

Voigt, J.; Noltemeyer, M.; Reiser, O. Synlett 1997, 202; f) Bubert, C.; Cabrele, C.; Reiser, O. Synlett 

1997, 827; g) Beumer, R.; Bubert, C.; Cabrele, C.; Vielhauer, O.; Pietzsch, M.; Reiser, O. J. Org. 

Chem. 2000, 65, 8960. 

(61) Martín-Vilà, M.; Muray, E.; Aguado, G. P.; Alvarez-Larena, A.; Branchadell, V.; Minguillón, C.; Giralt, 

E.; Ortuño, R. M. Tetrahedron: Asymmetr. 2000, 11, 3569. 

(62) a) Lu, T.; Song, Z.; Hsung, R. P. Org. Lett. 2008, 10, 541; b) Abu-Elfotoh, A.-M.; Phomkeona, K.; 

Shibatomi, K.; Iwasa, S. Angew. Chem. Int. Ed. 2010, 49, 8439. 

(63) Miller, J. A.; Hennessy, E. J.; Marshall, W. J.; Scialdone, M. A.; Nguyen, S. T. J. Org. Chem. 2003, 68, 

7884. 

(64) a) Armstrong, A.; Scutt, J. N. Org. Lett. 2003, 5, 2331; b) Jain, R. P.; Vederas, J. C. Org. Lett. 2003, 

5, 4669. 

(65) a) De Pol, S.; Zorn, C.; Klein, C. D.; Zerbe, O.; Reiser, O. Angew. Chem. Int. Ed. 2004, 43, 511; b) 

Koglin, N.; Zorn, C.; Beumer, R.; Cabrele, C.; Bubert, C.; Sewald, N.; Reiser, O.; Beck-Sickinger, A. G. 

Angew. Chem. Int. Ed. 2003, 42, 202; c) Zorn, C.; Gnad, F.; Salmen, S.; Herpin, T.; Reiser, O. 

Tetrahedron Lett. 2001, 42, 7049; d) Godier-Marc, E.; Aitken, D. J.; Husson, H.-P. Tetrahedron Lett. 

1997, 38, 4065. 

(66) a) Hibbs, E. D.; Hursthouse, M. B.; Jones, I. G.; Jones, W.; Abdul Malik, K. M.; North, M. Tetrahedron 

1997, 53, 17417; b) Jones, I. G.; Jones, W.; North, M.; Teijeira, M.; Uriarte, E. Tetrahedron Lett. 

1997, 38, 889. 

(67) Rodriguez, M.; Llinares, M.; Doulut, S.; Heitz, A.; Martinez, J. Tetrahedron Lett. 1991, 32, 923. 

(68) a) Caputo, R.; Cassano, E.; Longobardo, L.; Palumbo, G. Tetrahedron 1995, 51, 12337; b) Caputo, 

R.; Cassano, E.; Longobardo, L.; Palumbo, G. Tetrahedron Lett. 1995, 36, 167. 

(69) Kwak, W. Y.; Kim, H. J.; Min, J. P.; Yoon, T. H.; Shim, H. J.; Yoo, M., US20120016126 A1, 2012, 

CAN153:481038  



References  Chapter 8 

218 
 

(70) a) Díez, D.; García, P.; Fernández, P.; Marcos, I. S.; Garrido, N. M.; Basabe, P.; Broughton, H. B.; 

Urones, J. G. Synlett 2005, 158; b) Henniges, H.; Gussetti, C.; Militzer, H. C.; Baird, M. S.; de Meijere, 

A. Synthesis 1994, 1471. 

(71) Prosser, A. R.; Banning, J. E.; Rubina, M.; Rubin, M. Org. Lett. 2010, 12, 3968. 

(72) McCoy, L. L. J. Am. Chem. Soc. 1962, 84, 2246. 

(73) Meiresonne, T.; Mangelinckx, S.; De Kimpe, N. Org. Biomol. Chem. 2011, 9, 7085. 

(74) Brannock, K. C.; Kelly, C. A.; Burpitt, R. D.; Bell, A. J. Org. Chem. 1964, 29, 801. 

(75) a) Aitken, D. J.; Gauzy, C.; Pereira, E. Tetrahedron Lett. 2002, 43, 6177; b) Gauzy, C.; Pereira, E.; 

Faure, S.; Aitken, D. J. Tetrahedron Lett. 2004, 45, 7095. 

(76) a) Fernandes, C.; Pereira, E.; Faure, S.; Aitken, D. J. J. Org. Chem. 2009, 74, 3217; b) Declerck, V.; 

Aitken, D. J. Amino Acids 2011, 41, 587. 

(77) a) Hall, H. K.; Ykman, P. J. Am. Chem. Soc. 1975, 97, 800; b) White, J. D.; He, D. C. Org. Lett. 2006, 

8, 1081. 

(78) Perrotta, D.; Racine, S.; Vuilleumier, J.; de Nanteuil, F.; Waser, J. Org. Lett. 2015, 17, 1030. 

(79) a) Mangelinckx, S.; Vermaut, B.; Verhé, R.; De Kimpe, N. Synlett 2008, 2697; b) Caine, D. 

Tetrahedron 2001, 57, 2643. 

(80) a) Liu, X.-L.; Xue, D.; Zhang, Z.-T. J. Heterocycl. Chem. 2011, 48, 489; b) Choudhary, G.; Peddinti, R. 

K. Green Chemistry 2011, 13, 276; c) Imanzadeh, G.; Ahmadi, F.; Zamanloo, M.; Mansoori, Y. 

Molecules 2010, 15, 7353; d) Imanzadeh, G.; Rezaee-Gatar, S. Arkivoc 2015, 121; e) Huang, C.; Yin, 

Y. Q.; Guo, J. H.; Wang, J.; Fan, B. M.; Yang, L. J. RSC Adv. 2014, 4, 10188. 

(81) McDougal, P. G.; Rico, J. G.; Oh, Y. I.; Condon, B. D. J. Org. Chem. 1986, 51, 3388. 

(82) a) Pearson, W. H.; Kropf, J. E.; Choy, A. L.; Lee, I. Y.; Kampf, J. W. J. Org. Chem. 2007, 72, 4135; b) 

Mollet, K.; Catak, S.; Waroquier, M.; Van Speybroeck, V.; D’hooghe, M.; De Kimpe, N. J. Org. Chem. 

2011, 76, 8364. 

(83) Cavitt, M. A.; Phun, L. H.; France, S. Chem. Soc. Rev. 2014, 43, 804. 

(84) Dolbier, W. R.; Battiste, M. A. Chem. Rev. 2003, 103, 1071. 

(85) Aoki, S.; Kawasaki-Takasuka, T.; Yamazaki, T. Tetrahedron 2011, 67, 4845. 

(86) Mangelinckx, S., New syntheses of beta-aminocyclopropanecarboxylic acid derivatives and study 

of their reactivity. PhD Thesis, Ghent University 2006. 

(87) Li, L.; Wang, F.; Ni, C.; Hu, J. Angew. Chem. Int. Ed. 2013, 52, 12390. 



References  Chapter 8 

219 
 

(88) a) Dolbier, W. R.; Shelton, G. R.; Battiste, M. A.; Stanton, J. F.; Price, D. R. Org. Lett. 2002, 4, 233; 

b) Liu, C.; Ma, H.; Nie, J.; Ma, J. Chin. J. Chem. 2012, 30, 47; c) Sato, T.; Niino, H.; Yabe, A. J. Am. 

Chem. Soc. 2003, 125, 11936; d) Enyo, T.; Nicolaides, A.; Tomioka, H. J. Org. Chem. 2002, 67, 5578. 

(89) a) Verniest, G.; Piron, K.; Van Hende, E.; Thuring, J. W.; Macdonald, G.; Deroose, F.; De Kimpe, N. 

Org. Biomol. Chem. 2010, 8, 2509; b) Piron, K.; Verniest, G.; Van Hende, E.; De Kimpe, N. Arkivoc 

2012, 6. 

(90) a) Yarmolchuk, V. S.; Mykhailiuk, P. K.; Komarov, I. V. Tetrahedron Lett. 2011, 52, 1300; b) Patrick, 

T. B.; Shadmehr, M.; Khan, A. H.; Singh, R. K.; Asmelash, B. J. Fluorine Chem. 2012, 143, 109; c) 

Bonini, B. F.; Boschi, F.; Franchini, M. C.; Fochi, M. A.; Fini, F.; Mazzanti, A.; Ricci, A. Synlett 2006, 

543. 

(91) Buil, M. L.; Esteruelas, M. A.; López, A. M.; Mateo, A. C. Organometallics 2006, 25, 4079. 

(92) Wei, W.-T.; Chen, C.-X.; Lu, R.-J.; Wang, J.-J.; Zhang, X.-J.; Yan, M. Org. Biomol. Chem. 2012, 10, 

5245. 

(93) a) Peng, W.; Zhao, J.; Zhu, S. J. Fluorine Chem. 2006, 127, 360; b) Yokota, M.; Fuchibe, K.; Ueda, 

M.; Mayumi, Y.; Ichikawa, J. Org. Lett. 2009, 11, 3994. 

(94) a) Washburn, D. G., US 20080039517, 2008, CAN148:239027 ; b) Guziec, F. S.; Wasmund, L. M. 

Tetrahedron Lett. 1990, 31, 23. 

(95) Koini, E. N.; Papazafiri, P.; Vassilopoulos, A.; Koufaki, M.; Horvath, Z.; Koncz, I.; Virag, L.; Papp, G. 

J.; Varro, A.; Calogeropoulou, T. J. Med. Chem. 2009, 52, 2328. 

(96) Stapon, A.; Li, R. F.; Townsend, C. A. J. Am. Chem. Soc. 2003, 125, 8486. 

(97) Lin, J.-H.; Xiao, J.-C. Eur. J. Org. Chem. 2011, 4536. 

(98) a) Chang, L. L.; Yang, G. X.; McCauley, E.; Mumford, R. A.; Schmidt, J. A.; Hagmann, W. K. Bioorg. 

Med. Chem. Lett. 2008, 18, 1688; b) Bechara, G.; Leygue, N.; Galaup, C.; Mestre, B.; Picard, C. 

Tetrahedron Lett. 2009, 50, 6522; c) Hockova, D.; Keough, D. T.; Janeba, Z.; Wang, T.-H.; de Jersey, 

J.; Guddat, L. W. J. Med. Chem. 2012, 55, 6209. 

(99) a) Alonso, E.; Ramón, D. J.; Yus, M. Tetrahedron 1997, 53, 14355; b) O'Sullivan, S.; Doni, E.; Tuttle, 

T.; Murphy, J. A. Angew. Chem. Int. Ed. 2014, 53, 474. 

(100) Yamazaki, T.; Kawashita, S.; Kitazume, T.; Kubota, T. Chem.-Eur. J. 2009, 15, 11461. 

(101) Aspin, S.; López-Suárez, L.; Larini, P.; Goutierre, A.-S.; Jazzar, R.; Baudoin, O. Org. Lett. 2013, 15, 

5056. 

(102) Carbery, D. R. Org. Biomol. Chem. 2008, 6, 3455. 



References  Chapter 8 

220 
 

(103) a) De Kimpe, N.; Schamp, N. Org. Prep. Proced. Int. 1983, 15, 71; b) De Kimpe, N.; Schamp, N. Org. 

Prep. Proced. Int. 1981, 13, 241; c) Mangelinckx, S.; Boeykens, M.; De Kimpe, N. Synlett 2008, 1394; 

d) Chai, D. I.; Hoffmeister, L.; Lautens, M. Org. Lett. 2011, 13, 106; e) Couty, S.; Barbazanges, M.; 

Meyer, C.; Cossy, J. Synlett 2005, 905; f) Nubbemeyer, U. Science of Synthesis 2008, 32, 235; g) 

Schantl, J. G. Science of Synthesis 2005, 24, 223; h) Petko, K. I.; Sokolenko, T. M.; Yu Kot, S.; 

Kasyanchuk, T. A.; Yagupol'skii, L. M. Russ. J. Org. Chem. 2011, 47, 563; i) Brückner, D. Synlett 2000, 

1402; j) Brückner, D. Tetrahedron 2006, 62, 3809. 

(104) Mae, M.; Amii, H.; Uneyama, K. Tetrahedron Lett. 2000, 41, 7893. 

(105) a) Guo, Y.; Fujiwara, K.; Uneyama, K. Org. Lett. 2006, 8, 827; b) Guo, Y.; Fujiwara, K.; Amii, H.; 

Uneyama, K. J. Org. Chem. 2007, 72, 8523. 

(106) Kobayashi, T.; Nakagawa, T.; Amii, H.; Uneyama, K. Org. Lett. 2003, 5, 4297. 

(107) Blond, G.; Billard, T.; Langlois, B. R. Chem.-Eur. J. 2002, 8, 2917. 

(108) Nguyen, B. T.; Martel, A.; Dhal, R.; Dujardin, G. Synlett 2009, 2492. 

(109) a) Burger, K.; Geith, K.; Sewald, N. J. Fluorine Chem. 1990, 46, 105; b) DesMarteau, D. D.; Lu, C.; 

Vanderveer, D. Tetrahedron Lett. 2009, 50, 3741. 

(110) Burger, K.; Geith, K.; Huebl, D. Synthesis 1988, 189. 

(111) a) Amii, H.; Uneyama, K. Chem. Rev. 2009, 109, 2119; b) Sakoda, K.; Mihara, J.; Ichikawa, J. Chem. 

Commun. 2005, 4684; c) Fujita, T.; Sakoda, K.; Ikeda, M.; Hattori, M.; Ichikawa, J. Synlett 2013, 24, 

57; d) Ichikawa, J.; Wada, Y.; Miyazaki, H.; Mori, T.; Kuroki, H. Org. Lett. 2003, 5, 1455. 

(112) a) Seebach, D. Angew. Chem. Int. Ed. 1979, 18, 239; b) Miyata, O.; Miyoshi, T.; Ueda, M. Arkivoc 

2013, 60. 

(113) Stork, G.; Dowd, S. R. J. Am. Chem. Soc. 1963, 85, 2178. 

(114) a) Rappoport, Z. Acc. Chem. Res. 1981, 14, 7; b) Ichikawa, J., in Fluorine-Containing Synthons, Vol. 

911 (Ed.: V. Soloshonok), ASC  Symposium Series, ACS, Washington, DC, 2005, pp. 262. 

(115) a) Marciniak, B.; Bilska-Markowska, M.; Grzeszczuk, M.; Rapp, M.; Koroniak, H. J. Fluorine Chem. 

2014, 167, 143; b) Tellier, F.; Audouin, M.; Baudry, M.; Sauvêtre, R. Eur. J. Org. Chem. 2000, 1933; 

c) Funabiki, K.; Ohtsuki, T.; Ishihara, T.; Yamanaka, H. J. Chem. Soc., Perkin Trans. 1 1998, 2413. 

(116) Gibson, S. E.; Kaufmann, K. A. C.; Loch, J. A.; Steed, J. W.; White, A. J. P. Chem.-Eur. J. 2005, 11, 

2566. 

(117) a) Ma, X.; Pan, S.; Wang, H.; Chen, W. Org. Lett. 2014, 16, 4554; b) Mollet, K.; Goossens, H.; Piens, 

N.; Catak, S.; Waroquier, M.; Törnroos, K. W.; Van Speybroeck, V.; D'hooghe, M.; De Kimpe, N. 



References  Chapter 8 

221 
 

Chem.-Eur. J. 2013, 19, 3383; c) Maheswara, M.; Lee, Y. Y.; Kang, E. J. Synlett 2012, 2481; d) Kim, 

S. H.; Lee, S.; Kim, S. H.; Lim, J. W.; Kim, J. N. Tetrahedron Lett. 2012, 53, 4979. 

(118) Li, W.; Duan, X. W.; Yan, H.; Xin, H. X. Org. Biomol. Chem. 2013, 11, 4546. 

(119) Bogacki, R.; Gill, D. M.; Kerr, W. J.; Lamont, S.; Parkinson, J. A.; Paterson, L. C. Chem. Commun. 

2013, 49, 8931. 

(120) Dekeukeleire, S.; D’hooghe, M.; De Kimpe, N. J. Org. Chem. 2009, 74, 1644. 

(121) Inman, M.; Moody, C. J. J. Org. Chem. 2010, 75, 6023. 

(122) Bouzide, A.; LeBerre, N.; Sauvé, G. Tetrahedron Lett. 2001, 42, 8781. 

(123) Meiresonne, T.; Verniest, G.; De Kimpe, N.; Mangelinckx, S. The Journal of Organic Chemistry 2015. 

(124) a) Achari, B.; Mandal, S. B.; Dutta, P. K.; Chowdhury, C. Synlett 2004, 2449; b) Ilas, J.; Anderluh, P. 

S.; Dolenc, M. S.; Kikelj, D. Tetrahedron 2005, 61, 7325. 

(125) Perry, B.; Alexander, R.; Bennett, G.; Buckley, G.; Ceska, T.; Crabbe, T.; Dale, V.; Gowers, L.; Horsley, 

H.; James, L.; Jenkins, K.; Crépy, K.; Kulisa, C.; Lightfoot, H.; Lock, C.; Mack, S.; Morgan, T.; Nicolas, 

A.-L.; Pitt, W.; Sabin, V.; Wright, S. Bioorg. Med. Chem. Lett. 2008, 18, 4700. 

(126) Zhou, G.; Zorn, N.; Ting, P.; Aslanian, R.; Lin, M.; Cook, J.; Lachowicz, J.; Lin, A.; Smith, M.; Hwa, J.; 

van Heek, M.; Walker, S. ACS Med. Chem. Lett. 2014, 5, 544. 

(127) Ilic, M.; Ilas, J.; Dunkel, P.; Mátyus, P.; Bohác, A.; Liekens, S.; Kikelj, D. Eur. J. Med. Chem. 2012, 58, 

160. 

(128) Ilic, M.; Kikelj, D.; Ilas, J. Eur. J. Med. Chem. 2012, 50, 255. 

(129) a) Melkonyan, F.; Topolyan, A.; Karchava, A.; Yurovskaya, M. Tetrahedron 2011, 67, 6826; b) Buon, 

C.; Chacun-Lefèvre, L.; Rabot, R.; Bouyssou, P.; Coudert, G. Tetrahedron 2000, 56, 605; c) Buon, C.; 

Bouyssou, P.; Coudert, G. Tetrahedron Lett. 1999, 40, 701; d) Chacun-Lefèvre, L.; Buon, C.; 

Bouyssou, P.; Coudert, G. Tetrahedron Lett. 1998, 39, 5763; e) Lepifre, F.; Buon, C.; Roger, P.-Y.; 

Bouyssou, P.; Coudert, G. Tetrahedron Lett. 2004, 45, 8257; f) Morgans, G. L.; Ngidi, E. L.; Madeley, 

L. G.; Khanye, S. D.; Michael, J. P.; de Koning, C. B.; van Otterlo, W. A. L. Tetrahedron 2009, 65, 

10650. 

(130) Wu, J.-H.; Chang, F.-R.; Hayashi, K.-i.; Shiraki, H.; Liaw, C.-C.; Nakanishi, Y.; Bastow, K. F.; Yu, D.; 

Chen, I.-S.; Lee, K.-H. Bioorg. Med. Chem. Lett. 2003, 13, 2223. 

(131) a) Bodipati, N.; Peddinti, R. K. Org. Biomol. Chem. 2012, 10, 1958; b) Kenis, S.; D'hooghe, M.; 

Verniest, G.; Reybroeck, M.; Dang Thi, T. A.; The, C. P.; Pham, T. T.; Törnroos, K. W.; Van Tuyen, N.; 

De Kimpe, N. Chem.-Eur. J. 2013, 19, 5966. 



References  Chapter 8 

222 
 

(132) Nosova, E. V.; Lipunova, G. N.; Charushin, V. N.; Chupakhin, O. N. J. Fluorine Chem. 2010, 131, 

1267. 

(133) Kubota, T.; Yamamoto, K.; Tanaka, T. Chem. Lett. 1983, 167. 

(134) Delorme, D.; Vaisburg, A.; Moradei, O.; Leit, S.; Raeppel, S.; Frechette, S.; Bouchain, G.; Zhou, Z.; 

Paquin, I.; Gaudette, F.; Isakovic, L., WO 2005092899, 2005, CAN143:367317. 

(135) Mao, S.; Fang, X.; Ba, L.; Wu, F. J. Fluorine Chem. 2007, 128, 5. 

(136) Uneyama, K., in Organofluorine Chemistry, Blackwell Publishing, 2007, pp. 139. 

(137) a) Lide, D. R., CRC Handbook of Chemistry and Physics, Internet Version, 

http://www.hbcpnetbase.com, CRC Press, Boca Raton, FL, 2005; b) Morris, D. F. C. Acta Cryst. 

1956, 9, 197. 

(138) Wang, Y.-P.; Danheiser, R. L. Tetrahedron Lett. 2011, 52, 2111. 

(139) Lam, T. Y.; Wang, Y.-P.; Danheiser, R. L. J. Org. Chem. 2013, 78, 9396. 

(140) Rüger, A. J.; Nieger, M.; Bräse, S. Tetrahedron 2012, 68, 8823. 

(141) a) Wang, X.-N.; Yeom, H.-S.; Fang, L.-C.; He, S.; Ma, Z.-X.; Kedrowski, B. L.; Hsung, R. P. Acc. Chem. 

Res. 2014, 47, 560; b) Zificsak, C. A.; Mulder, J. A.; Hsung, R. P.; Rameshkumar, C.; Wei, L.-L. 

Tetrahedron 2001, 57, 7575; c) DeKorver, K. A.; Li, H.; Lohse, A. G.; Hayashi, R.; Lu, Z.; Zhang, Y.; 

Hsung, R. P. Chem. Rev. 2010, 110, 5064. 

(142) a) Evano, G.; Coste, A.; Jouvin, K. Angew. Chem. Int. Ed. 2010, 49, 2840; b) DeKorver, K. A.; North, 

T. D.; Hsung, R. P. Synlett 2010, 2397. 

(143) a) Kamei, K.; Maeda, N.; Nomura, K.; Shibata, M.; Katsuragi-Ogino, R.; Koyama, M.; Nakajima, M.; 

Inoue, T.; Ohno, T.; Tatsuoka, T. Bioorg. Med. Chem. 2006, 14, 1978; b) Kamei, K.; Maeda, N.; 

Katsuragi-Ogino, R.; Koyama, M.; Nakajima, M.; Tatsuoka, T.; Ohno, T.; Inoue, T. Bioorg. Med. 

Chem. Lett. 2005, 15, 2990; c) Kamei, K.; Maeda, N.; Ogino, R.; Koyama, M.; Nakajima, M.; 

Tatsuoka, T.; Ohno, T.; Inoue, T. Bioorg. Med. Chem. Lett. 2001, 11, 595. 

(144) Tani, Y.; Ogata, A.; Koyama, M.; Inoue, T. Eur. J. Pharmacol. 2010, 649, 218. 

(145) Cocuzza, A. J.; Chidester, D. R.; Cordova, B. C.; Klabe, R. M.; Jeffrey, S.; Diamond, S.; Weigelt, C. A.; 

Ko, S. S.; Bacheler, L. T.; Erickson-Viitanen, S. K.; Rodgers, J. D. Bioorg. Med. Chem. Lett. 2001, 11, 

1389. 

(146) WHO Global Tuberculosis report 2014. 

(147) a) Zumla, A.; Nahid, P.; Cole, S. T. Nat. Rev. Drug. Discov. 2013, 12, 388; b) Kwon, Y.-S.; Jeong, B.-

H.; Koh, W.-J. Curr. Opin. Pulm. Med. 2014, 20, 280; c) Parida, S. K.; Axelsson-Robertson, R.; Rao, 

http://www.hbcpnetbase.com/


References  Chapter 8 

223 
 

M. V.; Singh, N.; Master, I.; Lutckii, A.; Keshavjee, S.; Andersson, J.; Zumla, A.; Maeurer, M. J. Intern. 

Med. 2015, 277, 388. 

(148) a) Claes, P.; Cappoen, D.; Uythethofken, C.; Jacobs, J.; Mertens, B.; Mathys, V.; Verschaeve, L.; 

Huygen, K.; De Kimpe, N. Eur. J. Med. Chem. 2014, 77, 409; b) Cappoen, D.; Jacobs, J.; Nguyen Van, 

T.; Claessens, S.; Diels, G.; Anthonissen, R.; Einarsdottir, T.; Fauville, M.; Verschaeve, L.; Huygen, 

K.; De Kimpe, N. Eur. J. Med. Chem. 2012, 48, 57; c) Cappoen, D.; Claes, P.; Jacobs, J.; Anthonissen, 

R.; Mathys, V.; Verschaeve, L.; Huygen, K.; De Kimpe, N. J. Med. Chem. 2014, 57, 2895. 

(149) Bégué, J.-P.; Bonnet-Delpon, D., Bioorganic and medicinal chemistry of fluorine, John Wiley & Sons, 

Hoboken New Jersey, 2008, p. 365. 

(150) Claes, P., Synthesis of heterocyclic annulated quinones and quinoid compounds. PhD Thesis, Ghent 

Univeristy 2013. 

(151) Cappoen, D., Unpublished results. 

(152) Claes, P.; Jacobs, J.; Kesteleyn, B.; Nguyen Van, T.; De Kimpe, N. J. Org. Chem. 2013, 78, 8330. 

(153) a) Van Baelen, G.; Meyers, C.; Lemière, G. L. F.; Hostyn, S.; Dommisse, R.; Maes, L.; Augustyns, K.; 

Haemers, A.; Pieters, L.; Maes, B. U. W. Tetrahedron 2008, 64, 11802; b) Iwaki, T.; Yasuhara, A.; 

Sakamoto, T. J. Chem. Soc., Perkin Trans. 1 1999, 1505. 

(154) Goto, T.; Shiina, A.; Murata, T.; Tomii, M.; Yamazaki, T.; Yoshida, K.-i.; Yoshino, T.; Suzuki, O.; 

Sogawa, Y.; Mizukami, K.; Takagi, N.; Yoshitomi, T.; Etori, M.; Tsuchida, H.; Mikkaichi, T.; Nakao, 

N.; Takahashi, M.; Takahashi, H.; Sasaki, S. Bioorg. Med. Chem. Lett. 2014, 24, 893. 

(155) Saget, T.; Cramer, N. Angew. Chem. Int. Ed. 2012, 51, 12842. 

(156) Verniest, G.; De Kimpe, N. Synlett 2003, 2013. 

(157) a) Wallace, M. B.; Adams, M. E.; Kanouni, T.; Mol, C. D.; Dougan, D. R.; Feher, V. A.; O’Connell, S. 

M.; Shi, L.; Halkowycz, P.; Dong, Q. Bioorg. Med. Chem. Lett. 2010, 20, 4156; b) Xu, T.; Mu, X.; Peng, 

H.; Liu, G. Angew. Chem. Int. Ed. 2011, 50, 8176. 

(158) a) Henry, N.; Sánchez, I.; Sabatié, A.; Bénéteau, V.; Guillaumet, G.; Pujol, M. D. Tetrahedron 2006, 

62, 2405; b) Arrault, A.; Touzeau, F.; Guillaumet, G.; Léger, J.-M.; Jarry, C.; Mérour, J.-Y. 

Tetrahedron 2002, 58, 8145. 

(159) Annedi, S. C.; Li, W.; Samson, S.; Kotra, L. P. J. Org. Chem. 2003, 68, 1043. 

(160) Dolbier Jr., W. R.; Burkholder, C. R.; Médebielle, M. J. Fluorine Chem. 1999, 95, 127. 





Curriculum Vitae  Chapter 9 

225 
 

9 Curriculum Vitae 

Personalia 

Tamara Meiresonne             °Eeklo, 06.01.1986 

Klaverdries 49 bus 202 

9031 Drongen 

0497/83 35 11 

tamara.meiresonne@hotmail.com 

 

Education 

High school 

1998-2004  College-Onze Lieve Vrouw Ten Doorn, Eeklo 

Science-Mathematics (8) 

University 

2004-2009  Ghent University 

Master of science in bioscience engineering: chemistry and bioprocess technology  

Masterthesis: “Synthesis of novel carbocyclic β-amino acid derivatives and study of 

                             their reactivity“. 

Promoter: Prof. Dr. Ir. Norbert De Kimpe 

2009- 2015 Ghent University, Department of Sustainable Organic Chemistry and Technology  

Doctor of applied biological sciences: chemistry and bioprocess technology  

PhD Thesis: “Synthesis of strained cyclic amino acid derivatives and fluorinated 

                                          heterocyclic compounds”. 

Promoters: Prof. Dr. Ir. Norbert De Kimpe and Prof. Dr. Ir. Sven Mangelinckx 

 

 

mailto:tamara.meiresonne@hotmail.com


Curriculum Vitae  Chapter 9 

226 
 

Scientific publications in international journals with peer-review 

Meiresonne, T.; Mangelinckx, S.; De Kimpe, N. ‘Synthesis of novel β-aminocyclobutanecarboxylic acid 

derivatives by a solvent-free aza-Michael addition and subsequent ring closure’, Org. Biomol. Chem. 2011, 

9, 7085-7091. 

Meiresonne, T.; Mangelinckx, S.; De Kimpe, N. ‘Stereoselective synthesis of both enantiomers of trans-2-

(diphenylmethylideneamino)cyclopropanecarboxylic acid using a chiral pool approach and their 

incorporation in dipeptides’, Tetrahedron 2012, 68, 9566-9571. 

Callebaut, G.; Meiresonne, T.; De Kimpe, N.; Mangelinckx, S. ‘Synthesis and reactivity of 2-(carboxymethyl)-

aziridine derivatives’, Chem. Rev. 2014, 114, 7954-8015. 

Meiresonne, T.; Verniest, G.; De Kimpe, N.; Mangelinckx, S. ‘Synthesis of 2-fluoro-1,4-benzoxazines and 

2-fluoro-1,4-benzoxazepin-5-ones by exploring the nucleophilic vinylic substitution (SNV) reaction of 

gem-difluoroenamides’, J. Org. Chem. 2015, 80, 5111-5124. 

Highlighted in Synfacts 2015, 11, 0703. 

Highlighted in Org. Process Res. Dev. 2015, 19, 950-956. 

 

Active participation at conferences 

Meiresonne, T.; Mangelinckx, S.; De Kimpe, N. ‘Synthesis of new β-aminocyclobutanecarboxylic acid 

derivatives via the MIRC reaction’, (poster presentation) 14th Sigma-Aldrich Organic Synthesis Meeting. 

Spa, Belgium (December 2-3, 2010). 

Meiresonne, T.; Mangelinckx, S.; De Kimpe, N. ‘Synthesis of novel β-aminocyclobutanedicarboxylic acid 

derivatives by a solvent-free aza-Michael addition across homoallylic halides and subsequent ring closure’, 

(oral presentation) COST Action CM803, Foldamers: From synthesis and folding, to function. Leeds, 

England (September 7-9, 2011). 

Meiresonne, T.; Mangelinckx, S.; De Kimpe, N. ‘Synthesis of novel β-aminocyclobutanedicarboxylic acid 

derivatives by a solvent-free aza-Michael addition and subsequent ring closure’, (poster presentation) 15th 

Sigma-Aldrich Organic Synthesis Meeting. Spa, Belgium (December 1-2, 2011). 

Meiresonne, T.; Mangelinckx, S.; De Kimpe, N. ‘Stereoselective synthesis of both enantiomers of trans-2-

(diphenylmethylideneamino)cyclopropanecarboxylic acid using a chiral pool approach and their 



Curriculum Vitae  Chapter 9 

227 
 

incorporation in dipeptides’, (poster presentation) 16th Sigma-Aldrich Organic Synthesis Meeting. Spa, 

Belgium (December 6-7, 2012). 

Meiresonne, T.; Mangelinckx, S.; De Kimpe, N. ‘Synthesis of both enantiomers of a novel unsubstituted 

trans-β-aminocyclopropanecarboxylic acid derivative using a chiral pool approach and their incorporation 

in dipeptides’, (poster presentation) COST Action CM803, Foldamers: From synthesis and folding, to 

function. Paris, France (April 10-12, 2013). 

Meiresonne, T.; Verniest, G.; De Kimpe, N. Mangelinckx, S. ‘Synthesis of novel fluorinated 1,4-benzoxazines 

and 1,4-benzoxazepin-5-ones’, (poster presentation) 14th Belgian Organic Synthesis Symposium. Louvain-

La-Neuve, Belgium (July 13-18, 2014). 

Meiresonne, T.; Verniest, G.; De Kimpe, N. Mangelinckx, S. ‘Exploitation of the fluorine-induced umpolung 

of enamides and ynamides leading to the synthesis of 2-fluoro-1,4-benzoxazines and 2-fluoro-1,4-

benzoxazepin-5-ones’, (poster presentation) 18th Sigma-Aldrich Organic Synthesis Meeting. Blankenberge, 

Belgium (December 4-5, 2014). 


	voorbald
	PhD thesis_finaal

