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CHAPTER 1

Introduction

1.1 The Fermi gas as a model for strongly interacting

Fermi systems

The simplest quantum many-body systems that one can imagine are the free Bose and

Fermi gas. Their thermodynamic quantities can easily be calculated within the framework

of statistical physics. If the particles of the many-body system are weakly interacting one

typically relies on perturbation theory to calculate the properties. In many realistic systems,

however, the interaction between the particles is far from weak and perturbation-theory

calculations mostly fail. This failure can be illustrated by considering the perturbation series

for the energy of an electron gas in a metal. Consider the following Hamiltonian:

Ĥ =

N∑

i=1

p̂2
i

2m
+

e2

4πε0

1

2

N∑

i,j=1
(i 6=j)

1

‖r̂i − r̂j‖
, (1.1)

with ε0 the vacuum permittivity, e the electron charge, m the electron mass, r̂i the position

operator and p̂i the momentum operator for the i-th electron. We neglect three-particle

interactions and assume that there are no external forces present. Upon calculating the

ground-state energy E0 of this system with the Coulomb interaction as a perturbation, we

get:

E0 = E
(0)
0 + E

(1)
0 +∞+∞+ . . . . (1.2)

Calculating higher orders in perturbation theory gives divergences and perturbation theory

seems to fail in this case [1].

Some strongly interacting systems can be described by Landau Fermi liquid theory [2].

The theory constructs a model for the energies of the weakly excited states of the system.
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2 1.1. The Fermi gas as a model for strongly interacting Fermi systems

Landau argued that numerous many-body systems of strongly interacting particles can be

mapped onto a system of weakly interacting elementary excitations above the ground state

[3](for example particle-hole excitations). Consider a Hamiltonian which is the sum of a

one-body operator T̂ and a two-body interaction operator V̂ . In standard second quantisation

notation, the Hamiltonian is written as (see, e.g., Ref. [4])

Ĥ = T̂ + V̂

=
∑

α,β

〈α|T |β〉ĉ†αĉβ +
1

2

∑

αβρν

〈αβ|V |νρ〉ĉ†αĉ†β ĉρĉν .
(1.3)

The operators ĉ†α and ĉα denote the creation and annihilation of a fermion in the quantum

single-particle state |α〉 characterised by the quantum number(s) α. The Hamiltonian Ĥ in

Eq. (1.3) describes a system of strongly ’real’ interacting particles, that usually cannot be

solved by perturbation theory. In most many-body systems it turns out that a canonical

transformation (with canonical we mean that the commutation relations are preserved) can

be used to transform Ĥ into a Hamiltonian of the following form:

Ĥ = E0 +
∑

γ

ε′γ â
†
γ âγ + f(. . . âγ . . . â

†
γ . . .) , (1.4)

now written in terms of weakly interacting ’fictitious’ particles or elementary excitations

[1]. The operators â†γ and âγ denote the creation and annihilation for these elementary

excitations characterised by the quantum number γ above a ground-state energy E0. The term

f(. . . âγ . . . â
†
γ . . .) describes the interactions between elementary excitations and is assumed

to be small. The dispersion of the elementary excitations is given by ε′γ . These excitations

are the result of collective interactions in the system and give important information about

the macroscopic behavior of the system. The residual interaction term f(. . . âγ . . . â
†
γ . . .) will

give rise to a broadening ∆ε′γ of the energy levels ε′γ . By the uncertainty principle we know

that the elementary excitations will have a lifetime τγ ∼ ~(∆ε′γ)−1. In the Landau Fermi

liquid theory the decay rate of these excitations should be much less than their energy, or

∆ε′γ � ε′γ . For f(. . . âγ . . . â
†
γ . . .)→ 0 the elementary excitations have a well-defined energy

and correspondingly an infinite lifetime. It should be noticed that the properties of these

elementary excitations can be totally different from those of the ’real’ particles.

We illustrate the ideas of Landau Fermi liquid theory with two examples. The first example

deals with electrons in a metal at a temperature T � TF , with TF the Fermi temperature.

For a large class of metals the elementary excitations are particle-hole excitations. The

question arises whether the particle-hole excitations will be long-lived and have a narrow

width in energy. Landau realized that there is only a small phase space for scattering of

an electron just above the Fermi sea (FS) with an electron in the sea. This is a direct

consequence of the Pauli exclusion principle and leads to long-lived particle-hole excitations

if we consider scattering close to the Fermi surface. An electron above the Fermi sea can thus

be described as a free electron dressed with particle-hole excitations. These ideas show that

electrons in a metal often can be seen as freely moving particles. This free electron model

has also been verified experimentally in metals. The average distance between conduction
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electrons in metals is about 2Å. The mean free paths are however longer than 104 Å at

room temperature and longer than 10 cm at 1K [5].

As a second example of a Landau Fermi liquid we consider an interacting Fermi gas at

T = 0 composed out of spin-up fermions and spin-down fermions. An attractive interaction

is considered, acting only between spin-up and spin-down fermions. The concentration of ↓
atoms is assumed to be small, so that the ratio of densities x = n↓/n↑ � 1, with n↓ (n↑) the

density of spin-down (spin-up) particles. A Fermi liquid model can be constructed and the

energy of the system becomes approximately [6, 7]:

E(x)

N↑
=

3

5
εF

(
1−Ax+

m

m∗
x5/3

)
, (1.5)

with εF the Fermi energy of the spin-up Fermi sea. The parameter A is related to the binding

energy of one spin-down atom to the Fermi gas of spin-up atoms and m∗ is the effective mass

of one spin-down impurity (quasiparticle). To find the parameters A and m∗ we need to

solve the problem of one spin-down fermion interacting with a spin-up sea. We will discuss

the Hamiltonian of this impurity system in more detail in Sec. 1.3.2.

1.2 The polaron: an impurity moving through a medium

In the last section we mentioned the problem of a single spin-down particle in a spin-up

Fermi sea. The problem of an impurity moving through a medium of identical particles has

been studied for decades. One of the first examples of the impurity system was studied by

Landau in 1933: an electron in an ionic lattice. Landau realized that an electron, by its

Coulomb interaction with the ions of the lattice, produces a polarization. The electron could

be seen as a rigid charge moving through the lattice carrying its polarization potential with

it, and hence Landau called it a polaron. In the case the lattice-deformation size (caused by

the electron) is larger than the lattice parameter, the lattice can be treated as a continuum.

In 1952, Fröhlich derived a Hamiltonian Ĥpol for such a system [8]:

Ĥpol =
∑

k

~2k2

2m
ĉ†kĉk

︸ ︷︷ ︸
ĤIpol

+
∑

q

~ω(q)b̂†qb̂q

︸ ︷︷ ︸
ĤBpol

+
∑

k,q

V (q)ĉ†k+qĉk

(
b̂†−q + b̂q

)

︸ ︷︷ ︸
ĤIBpol

. (1.6)

Here, the ĉ†k (ĉk) are the creation (annihilation) operators of the electron with mass m and

wave vector k. The kinetic energy of the electron is represented by the term ĤI
pol and ĤB

pol

gives the energy of the phonons which carry the polarization. Thereby, the operator b̂†q (b̂q)

creates (annihilates) a phonon with wave vector q and energy ~ω(q). The term ĤIB
pol denotes

the interaction between the charge carrier and the phonons with interaction strength V (q).

In the remainder of this work we take ~ = 1. A plethora of physical phenomena can be

described by the above Fröhlich type of Hamiltonian by varying the dispersion ω(q) and

the interaction strength V (q), see for example [9]. Despite the importance of polarons in

semiconductor physics and in other branches of physics, studying polarons in solids has some
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limitations. For example, the interaction strength will depend on the type of material and

exploring strongly interacting regimes can be difficult. The realization of a crystal at T = 0

poses also difficulties and the transformation of such a crystal to a gas of non-interacting

phonons is also an idealization of reality. One could include an interaction term for the

phonons, yet the price we pay is a more complicated model that is difficult to solve. In the

next section, a more controllable and clean medium will be presented which will allow us to

make a better mapping for this experimental system on a theoretical polaron model.

1.3 Polarons in ultracold gases

Since the first experimental realization of Bose Einstein condensation (BEC) in 1995 [10–12],

ultracold gases have become very important in the study of quantum many-body physics.

Within the last decade, fundamental phenomena like coherence, superfluidity, quantum phase

transitions, . . . were studied in these systems. It was soon realized that ultracold gases offer

a unique test system that could be used as a quantum simulator of strongly interacting

many-body physics [13]. For example, an impurity immersed in a BEC (the BEC polaron)

can be represented, under certain conditions ( see Sec. 1.3.3), by a Hamiltonian which has

the same structure as Ĥpol.

In ultracold gases we have the ability to tune the s-wave scattering length to arbitrary

values by means of Feshbach resonances [14], which offers the possibility to study weakly and

strongly interacting systems. Consider for example the case of a two-component Fermi gas

(with spin-down and spin-up fermions). If we start from a weakly interacting Fermi gas and

increase the attraction between the fermions we will end up with a gas of bosonic molecules

that form a BEC at sufficiently low temperature. What happens is the so-called BEC-BCS

crossover [15], which smoothly converts a gas of fermions into a gas of bosons. The extremely

imbalanced case with one spin-down fermion and N spin-up fermions is called the Fermi

polaron [16].

Before we start discussing polaron systems in ultracold gases, we will first take a brief

look at two-body scattering at low energy in Sec. 1.3.1. In Sec. 1.3.2 the Fermi polaron

Hamiltonian in three dimensions (3D) will be introduced and in Sec. 1.3.3 we will set up a

Hamiltonian for the 3D BEC polaron.

1.3.1 Two-body scattering at low energies

Since we are dealing with dilute gases, the following relation between the interaction range

R of the potential and the density ρ is valid:

Rρ1/3 � 1 . (1.7)

This means that the average distance between two particles is much larger than the range of

the interaction, which allows us to restrict ourselves to binary scattering.

We consider an ultracold collision that involves two distinguishable particles in the

center-of-mass (c.m.) frame. The relative wave function in 3D at a distance r far beyond the
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interatomic potential is given by:

ψ = eikz + f(k, θ)
eikr

r
, (1.8)

where eikz represents the incoming plane wave with wave vector k along the z-axis. We

assume the interaction between the atoms to be spherically symmetric. The scattering

amplitude can be written as an expansion in partial waves:

f(k, θ) =

∞∑

l=0

fl(k, θ) =
1

2ik

∞∑

l=0

(2l + 1)(ei2δl − 1)Pl(cos θ) , (1.9)

with δl the phase shift of the scattered wave and Pl(cos θ) the Legendre polynomials. Since

we are interested in scattering at low momenta, s-wave (l = 0) scattering will be dominant

over all other partial waves. So, the scattering amplitude becomes [17]:

f(k, θ) ≈ f0(k, θ) =
1

2ik
(e2iδs − 1) =

1

k cot δs − ik
. (1.10)

In this expression k cot δs can be further expanded:

k cot δs ≈ −
1

as
+
reff

2
k2 + . . . , (1.11)

where as is the s-wave scattering length and reff the effective range of the interaction potential.

The “. . .” represent higher order terms in k2. Since we consider low-energy scattering in a

dilute gas, we can write that R� λ, with λ the de Broglie wavelength. This means that the

fine details of the potential are not required and any potential that reproduces the desired

set of scattering parameters (a, reff, . . .) is a good one. This ’fictitious’ potential is also called

an effective potential. Of course we want to choose a potential that makes our calculations

as simple as possible. An obvious candidate is given by V (r) = g0δ(r), with g0 the coupling

constant. We regularise the Dirac-delta interaction potential by putting the particles on a

lattice. The following relation between g0 and as can be obtained [18]:

1

g0
=

m

4πas
− 1

(2π)3

∫

B
dq
m

q2
, (1.12)

where the integral is over the first Brillouin zone B =]− π/b, π/b]3 of the reciprocal lattice,

with b the lattice spacing. In Sec. 2.3 the continuum limit will be taken (b→ 0 and g0 → 0−).

In two dimensions (2D) we wish to write a relation between the bare coupling constant

g0 and the two-body binding energy εB in vacuum. Such a bound state always exists in two

dimensions, as long as the interaction potential is attractive. The relation between εB and

g0 can be established by considering the bound state |ψp〉 :

|ψp〉 =
∑

q

φq|p− q,q〉 , (1.13)

with p−q and q the momenta of the non-identical particles and φq the Fourier representation

of the wave function for the relative motion of the two bound particles. Let us denote the
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two particles by spin-↑ and spin-↓. The Hamiltonian reads:

Ĥ =
∑

q∈B,σ=↑↓
εqσ ĉ

†
qσ ĉqσ +

g0

V
∑

p,q,q′∈B
ĉ†p−q↑ĉ

†
q′+q↓ĉq′↓ĉp↑ , (1.14)

with the dispersion εqσ = q2

2mσ
and mσ the mass of the spin-σ fermion, and V the area of

the system. (In Sec. 3.1 the thermodynamic limit, V → ∞ will be taken). Wave vectors are

summed over the first Brillouin zone B =]− π/b, π/b]2 in two dimensions. The operators ĉ†qσ
(ĉqσ) create (annihilate) particles with momentum q and spin σ. The energy of the state

|ψp〉 is given by

〈ψp|Ĥ|ψp〉 =
∑

q∈B
|φq|2(εq↓ + εp−q↑) +

g0

V
∑

q,q′∈B
φqφ

∗
q′ , (1.15)

To minimize 〈ψp|Ĥ|ψp〉 with the constraint 〈ψp|ψp〉 = 1 we consider the function Λ:

Λ = 〈ψp|Ĥ|ψp〉 − εB


∑

q∈B
|φq|2 − 1


 , (1.16)

where εB can also be interpreted as the Lagrange multiplier associated to the normalization

of |ψp〉. The minimization of Λ with respect to φq gives:

∂Λ

∂φq
= 0 ,

(εq↓ + εp−q↑)φq +
g0

V
∑

q′∈B
φq′ = εBφq ,

(1.17)

φq = −g0

V

∑
q′∈B

φq′

εp−q↑ + εq↓ − εB
. (1.18)

From Eq. (1.18) if follows that for large |q| the following relation holds

φq ∝
1

q2
. (1.19)

By applying the summation
∑

q on both sides of Eq. (1.18) and taking the c.m. momentum

p = 0, we get a relation between g0 and εB :

−1

g0
=

1

V
∑

q∈B

1

εq↑ + εq↓ − εB
. (1.20)

1.3.2 The Fermi polaron Hamiltonian

Before we set up a Hamiltonian for the Fermi polaron we first take at look at the interac-

tions among the spin-up fermions and the interaction between the spin-down fermion (the

impurity) and the spin-up sea. The scattering of two indentical spin-up fermions in the

c.m. frame at distances larger than the range of the interatomic potential is determined
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by the antisymmetrized form of the wave function of Eq. (1.8). The interchange of two

particle coordinates corresponds to changing the sign of the relative coordinate r → −r,
or, in spherical coordinates, r → r, φ → φ + π, θ → π − θ and the antisymmetrized wave

function is [19]:

ψ = eikz − e−ikz + [f(θ)− f(π − θ)] e
ikr

r
. (1.21)

The differential cross section is given by

dσ

dΩ
= |f(θ)− f(π − θ)|2 , (1.22)

with σ the cross section and Ω the solid angle. For s-wave scattering there is no θ dependence

in f(θ) (see Eq. (1.10)) and consequently the cross section vanishes for fermions in the same

state. As shown in Ref. [20] p-wave scattering is strongly suppressed if we consider low-energy

scattering and therefore scattering between identical fermions will be neglected. The matrix

element of the interaction between the impurity and a spin-up fermion in position space is

denoted by V↓↑(r− r′).
The Hamiltonian ĤFP of the Fermi polaron is

ĤFP = Ĥ0 + Ĥ↓↑ , (1.23)

with

Ĥ0 =
∑

k,σ=↑↓
εkσ ĉ

†
kσ ĉkσ , (1.24)

Ĥ↓↑ =
1

V
∑

k,k′,q

V↓↑(q)ĉ†k+q↑ĉ
†
k′−q↓ĉk′↓ĉk↑ . (1.25)

The operators ĉ†kσ (ĉkσ) create (annihilate) fermions with momentum k and spin σ. The

volume is denoted by V. The spin-σ fermions have mass mσ and dispersion εkσ = k2/2mσ.

For the interaction between the spin-down impurity and a spin-up fermion we adopt a Dirac

delta potential, V↓↑(r− r′) = g0δ(r− r′) with g0 the coupling constant, and in momentum

space V↓↑(k) = g0. To regularise the ultraviolet divergences that appear because of this

choice, we will put the fermions again on the lattice, which naturally truncates the momentum

integration.

1.3.3 The BEC polaron Hamiltonian

The following Hamiltonian can be used to describe an impurity in a bath of interacting

bosonic particles:

Ĥ =
∑

p

p2

2mI
ĉ†pĉp +

∑

k

εkâ
†
kâk +

1

2V
∑

k,k′,q

VBB(q)â†k′−qâ
†
k+qâkâk′

+
1

V
∑

k,k′,q

VIB(q)ĉ†k+qĉkâ
†
k′−qâk′ ,

(1.26)
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with the dispersion given by εk = k2/2mB , and V the volume of the system. The operators

â†k(âk) create (annihilate) bosons with momentum k and mass mB. The operators ĉ†p(ĉp)

create (annihilate) the impurity with momentum p and mass mI . The interaction potential

in momentum space between bosons of the bath is given by VBB(q), and VIB(q) represents

the interaction potential of the impurity with a boson of the bath. At sufficiently low

temperatures the bosons will form a Bose-Einstein condensate. If N − N0 � N0 is valid,

with N0 the number of bosons in the condensate and N = 〈N̂〉 the average total particle

number, the Bogoliubov approximation can be applied [4, 21]:

â†0 ≈ â0 ≈
√
N0 , (1.27)

and the operators can be treated as real numbers. As a consequence the Hamiltonian Ĥ will

no longer conserve particle number. The number operator N̂ is given by:

N̂ = N0 +
∑

|k|6=0

â†kâk . (1.28)

By applying the Bogoliubov approximation on Eq. (1.26), we get :

Ĥ ≈
∑

p

p2

2mI
ĉ†pĉp +

N0

V VIB(0) +
1

2VN
2
0VBB(0) +

∑

|k|6=0

εkâ
†
kâk

+
N0

2V
∑

|k|6=0

VBB(k)(â†kâ
†
−k + âkâ−k) + 2

N0

V
∑

|k|6=0

VBB(k)â†kâk

+

√
N0

V
∑

|k|6=0,p

VIB(k)ĉ†p+kĉp(â†−k + âk)

:=ĤBP .

(1.29)

We ignore terms with more than three non-condensate operators, which is a good approxi-

mation if N −N0 � N0.

We replace the actual interaction potentials with pseudo-potentials, VIB(k) = gIB and

VBB(k) = gBB. The momentum independent matrix elements gIB and gBB can again be

chosen such that the two-body scattering properties in vacuum are correctly reproduced.

Like in Sec. 1.3.1, we have a relation between gBB and the boson-boson scattering length

aBB (and a similar relation for gIB and the impurity-boson scattering length aIB):

4πaBB
mB

= gBB −mBg
2
BB

∫
dq

(2π)3

1

q2
+ . . . . (1.30)

We keep only the first-order Born result:

gBB =
4πaBB
mB

. (1.31)

Similarly, we have

gIB =
2πaIB
mr

, (1.32)
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with the reduced mass mr = mImB
mI+mB

. The second order contribution in Eq. (1.30) diverges

for high momenta. This divergence stems from our particular choice with regard to the

momentum dependence of the pseudo-potential. To regularise this ultraviolet divergence we

introduce a global momentum cut-off in the sums (or integrals) over momenta. We will see in

Sec. 4.3 that the divergence of the second order Born term cancels with another divergence

which appears in the ground-state energy of the interacting Bose gas.

A canonical transformation can be applied to Eq. (1.29) (see appendix A for the derivation),

which leads to a Fröhlich type of Hamiltonian:

ĤBP =E0 + n0gIB +
∑

p

p2

2mI
ĉ†pĉp +

∑

|k|6=0

ω(k)b̂†kb̂k

+
∑

|k|6=0,p

VBP (k) ĉ†p+kĉp
(
b̂†−k + b̂k

)
.

(1.33)

The creation (annihilation) operator b̂†k (b̂k) represent now the creation (annihilation) of a

Bogoliubov excitation. The quasiparticle vacuum energy is

E0 =
V
2
n2gBB +

1

2

∑

k

(ω(k)− εk − n0gBB) , (1.34)

with the dispersion relation ω(k) given by

ω(k) = ck

√
1 +

(ξk)2

2
, (1.35)

the healing length of the condensate ξ = 1√
8πn0aBB

, the speed of sound in the condensate

c =
√

4πn0aBB
mB

and the density of the condensed bosons n0 = N0/V and the average total

density n = 〈N̂〉/V . The interaction matrix element VBP (k) between a Bogoliubov excitation

and the impurity is given by

VBP (k) =

√
N0gIB
V

(
(ξk)2

(ξk)2 + 2

)1/4

. (1.36)
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CHAPTER 2

The Fermi polaron and its Green’s function

To calculate the properties of the Fermi polaron, we will use the Green’s function formalism

(see for example [3, 4, 21]). From the knowledge of the Green’s function all relevant properties

can be extracted. We will calculate the Green’s function of the Fermi polaron by means

of a Feynman-Dyson series expansion. The terms in this series can be identified with

Feynman diagrams. We will argue that the diagrammatic Monte Carlo (DiagMC) method, an

importance sampling Monte Carlo (MC) method, is a very powerful method to sample over

a large number of diagrams. This technique will allow us to evaluate the Green’s function to

a high precision.

2.1 The Green’s function and the Feynman-Dyson per-

turbation series

The polaron’s quasiparticle properties can be extracted from the impurity’s Green’s function

defined as

G↓(p, τ) = −θ(τ)〈ΦN↑0 |ĉp↓(τ)ĉ†p↓(0) |ΦN↑0 〉 , (2.1)

with ĉp↓(τ) the annihilation operator of the ‘spin-↓’ impurity in the Heisenberg picture,

ĉp↓(τ) = e(ĤFP−µN̂↓−µ↑N̂↑)τ ĉp↓e
−(ĤFP−µN̂↓−µ↑N̂↑)τ , (2.2)

and θ the Heaviside function. The propagator G↓(p, τ) is written in the momentum imaginary-

time representation, µ is a free parameter, N̂σ is the number operator for spin-σ particles,

and µ↑ is the chemical potential of the spin-up sea. The state

|ΦN↑0 〉 = |〉↓|FS(N↑)〉 , (2.3)

11
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consists of the spin-down vacuum and the non-interacting spin-up Fermi sea. Since we

are dealing with an impurity spin-down atom, G↓ is only non-zero for times τ > 0. The

ground-state energy and Z-factor can be extracted from the Green’s function of Eq. (2.1).

Inserting a complete set of eigenstates |ΨN↑
n 〉 of the full Hamiltonian ĤFP for one spin-down

particle and N↑ spin-up particles into Eq. (2.1) gives

G↓(p, τ) = −θ(τ)
∑

n

|〈ΨN↑
n |ĉ†p↓|Φ

N↑
0 〉|2e−(En(N↑)−EFS−µ)τ

τ→+∞
= − Zpol(p) e−(Epol(p)−µ)τ ,

(2.4)

with Epol(p) the energy of the polaron at momentum p for the impurity and En(N↑) the

energy eigenvalues of the Hamiltonian ĤFP of Eq. (1.23). The energy of the ideal spin-up

Fermi gas is EFS = 3 εFN↑/5, with εF = k2
F /(2m↑) the Fermi energy and kF the Fermi

momentum. This asymptotic behavior implies a pole singularity for the Green’s function in

imaginary-frequency representation

G↓(p, ω) =

∫ +∞

0

dτ eiωτG↓(p, τ)

=
Zpol(p)

iω + µ− Epol(p)
+ regular part .

(2.5)

The Feynman-Dyson perturbation series for the one-particle Green’s function in imaginary

time τ and momentum p is given by

G↓(p, τ) =−
∞∑

n=0

(−1)n
1

n!

∫ ∞

0

dτ1 . . .

∫ ∞

0

dτn

〈ΦN↑0 |T
[
Ĥ↓↑I(τ1) . . . Ĥ↓↑I(τi+1) . . . Ĥ↓↑I(τn)ĉp↓I(τ)ĉ†p↓I(0)

]
|ΦN↑0 〉connected ,

(2.6)

with T the time-ordered product and the operators with subscript I are given in the interaction

picture. Each term in this series can be visualized by Feynman diagrams, whereby only the

connected diagrams have to be taken into account. The operator ĉpσI(τ) in the interaction

picture is defined as:

ĉpσI(τ) ≡ eK̂0τ ĉpσe
−K̂0τ , (2.7)

with

K̂0 =
∑

kσ

(εkσ − µσ)ĉ†kσ ĉkσ ≡ Ĥ0 −
∑

σ

µσN̂σ , (2.8)

where we introduce the notation µ↓ = µ for convenience. The time dependence of the creation

(annihilation) operators ĉ†pσI(τ) (ĉpσI(τ)) in the interaction picture is the solution of the

differential equation [4]:

−∂ĉpσI(τ)

∂τ
=
[
ĉpσI(τ), K̂0

]

= eK̂0τ (εpσ − µσ)
[
ĉpσ, ĉ

†
pσ ĉpσ

]
e−K̂0τ

= (εpσ − µσ)ĉpσI(τ) .

(2.9)
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Thus,

ĉpσI(τ) = ĉpσe
−(εpσ−µσ)τ , (2.10)

ĉ†pσI(τ) = ĉ†pσe
(εpσ−µσ)τ . (2.11)

For an operator ÔS in the Schrödinger picture the time-dependence of the operator ÔI(τ) in

the interaction picture is given by

ÔI(τ) = eK̂0τ ÔSe
−K̂0τ . (2.12)

2.2 Feynman diagrams for the Fermi polaron

To calculate G↓(p, τ) with the use of Eq. (2.6) we need to evaluate the matrix elements in

this expression. In this section we will calculate some low order contributions (n = 1 and

n = 2). In the end of this section, we will show how to create higher order diagrams for the

Fermi polaron. First we give the expressions of the free Green’s function. The free Green’s

function for the impurity with momentum p is given by

G0
↓(p, τ) = −θ(τ)〈ΦN↑0 |T

[
ĉp↓I(τ)ĉ†p↓I(0)

]
|ΦN↑0 〉 = −θ(τ)e−(εp↓−µ)τ , (2.13)

with εp↓ = p2

2m↓
the impurity dispersion. From now on, we drop the subscript I, since in

the following all time-dependent operators will be in the interaction picture, unless stated

otherwise. The free Green’s function for the spin-up particles in the Fermi sea with momentum

k is given by

G0
↑(k, τ) = −〈ΦN↑0 |T

[
ĉk↑(τ)ĉ†k↑(0)

]
|ΦN↑0 〉

= −θ(k − kF )e−(εk↑−εF )τθ(τ) + θ(kF − k)e−(εk↑−εF )τθ(−τ) ,
(2.14)

with the dispersion given by εk↑ = k2

2m↑
. The contribution D1 in Eq. (2.6) for n = 1 is

D1 =

∫ ∞

0

dτ1〈ΦN↑0 |T
[
Ĥ↓↑(τ1)ĉp↓(τ)ĉ†p↓(0)

]
|ΦN↑0 〉

=
g0

(2π)3

∫ ∞

0

dτ1

∫

B,|qh|<kF
dqh〈ΦN↑0 |T

[
ĉ†p↓(τ1)ĉp↓(τ1)ĉ†qh↑(τ1)ĉqh↑(τ1)ĉp↓(τ)ĉ†p↓(0)

]
|ΦN↑0 〉

=
g0

(2π)3

∫ τ

0

dτ1

∫

B,|qh|<kF
dqh

∑

n,n′

〈ΦN↑0 |ĉp↓(τ)ĉ†p↓(τ1)|ΦN↑n 〉〈ΦN↑n |ĉ†qh↑(τ1)ĉqh↑(τ1)|ΦN↑n′ 〉

〈ΦN↑n′ |ĉp↓(τ1)ĉ†p↓(0)|ΦN↑0 〉

= g0

∫ τ

0

dτ1G
0
↓(p, τ − τ1)G0

↓(p, τ1) n↑ ,

(2.15)

with |ΦN↑
n 〉 a complete set of eigenstates of the Hamiltonian Ĥ0. Note that we have taken

the thermodynamic limit, and n↑ is the density of spin-↑ fermions. The contribution D2 for
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p p p p p

0τ1τ2τ0τ1τ 0τ1τ2τ

pp

q1 q2

q1
q1 q2

p+ q1 − q2

Figure 2.1 – First and second order diagrams. Imaginary times run from right to left. The straight

line represents the propagation of the impurity. The forward oriented arc represents a particle of the

Fermi sea, a backward propagating arc a hole in the Fermi sea. The interaction vertices are denoted

by dots.

n = 2 in Eq. (2.6) is

D2 = −
∫ ∞

0

dτ2

∫ τ2

0

dτ1〈ΦN↑0 |T
[
Ĥ↓↑(τ1)Ĥ↓↑(τ2)ĉp↓(τ)ĉ†p↓(0)

]
|ΦN↑0 〉

=
−g2

0

(2π)6

∫ τ

0

dτ2

∫ τ2

0

dτ1

(∫

B,|q1|<kF ,|q2|>kF
dq1dq2 ĉ†p+q1−q2↓(τ1)Êĉp↓(τ1)Î

× ĉ†q2↑(τ1)
Ì
ĉq1↑(τ1)Íĉ†p↓(τ2)Ëĉp+q1−q2↓(τ2)Êĉ†q1↑(τ2)Íĉq2↑(τ2)Ìĉp↓(τ)Ëĉ†p↓(0)Î

+

∫

B,|q1|<kF ,|q2|<kF
dq1dq2 ĉ†p↓(τ1)Êĉp↓(τ1)Îĉ†q1↑(τ1)

Ì
ĉq1↑(τ1)Ìĉ†p↓(τ2)Ë

× ĉp↓(τ2) Ê ĉ†q2↑(τ2)Íĉq2↑(τ2)Íĉp↓(τ)Ëĉ†p↓(0)Î
)
.

(2.16)

We use Wick’s theorem in the last line, with the contraction between a creation and an

annihilation operator given by:

ĉ†pσ(τ1)Êĉp′σ′(τ2)Ê = T
(
ĉ†pσ(τ1)ĉp′σ′(τ2)

)
−N

(
ĉ†pσ(τ1)ĉp′σ′(τ2)

)

= G0
σ(p, τ2 − τ1)δσ,σ′δ(p− p′) .

(2.17)

with T (. . .) the time ordered product and N(. . .) the normal ordered product. The contribu-

tion D2 can now be written in terms of Green’s functions:

D2 =
−g2

0

(2π)6

∫ τ

0

dτ2

∫ τ2

0

dτ1

( ∫

B,|q1|<kF ,|q2|>kF
dq1dq2 G0

↓(p + q1 − q2, τ2 − τ1)

×G0
↓(p, τ1)G0

↑(q2, τ2 − τ1)G0
↑(q1, τ1 − τ2)G0

↓(p, τ − τ2)

−
∫

B,|q1|<kF ,|q2|<kF
dq1dq2 G0

↓(p, τ2 − τ1)G0
↓(p, τ − τ2)G0

↓(p, τ1)

× G0
↑(q1, 0

−) G0
↑(q2, 0

−)

)
.

(2.18)
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Γ0

Figure 2.2 – Graphical representation of ladder diagrams. Imaginary times runs from right to left.

From the previous examples we can already deduce some characteristics of the diagrams.

Since we only have one spin-down particle, there is only one possibility for the contractions

of the operators of the spin-down particle. To construct a diagram, the propagation in

(imaginary) time of the impurity can be depicted with a straight line, which we will call the

backbone line (BBL) of the diagram. Another property that can be seen from the examples

is that no time can become larger than τ . So, the upper limits +∞ in Eq. (2.6) can be

replaced by τ . A third property is that only the impurity can create particles and holes in

the Fermi sea, and as a consequence we have no disonnected diagrams.

In Fig. 2.1 we show the diagrams which correspond to the first and second order con-

tributions. Creating higher order diagrams can be done easily in the following way. First,

draw a BBL which goes from 0 to τ . Then, add vertices on the BBL that represent the

bare interaction matrix element g0, and the number of vertices equals the order n. Next,

draw particles and hole lines onto the BBL in a way that each vertex has two incoming lines

and two outgoing lines. Since the impurity is propagating forward and the particle number

should be conserved at each time, the number of the particles and holes in the Fermi sea

should always be equal at each time. Each diagram acquires a sign (−1)n+L, with n the

order and L the number of loops. Each hole line acquires a momentum |q| < kF , a particle

line will have a momentum |q| > kF . The momentum of the impurity is then fixed by the

conservation of momentum at each vertex.

2.3 Renormalization of the contact interaction

As explained in Sec. 1.3.1, we have the freedom to choose any effective potential V↓↑(k) as

long as it reproduces the desired scattering length as. Because we have set V↓↑(k) = g0,

however, ultraviolet divergences arise. Those were regularised by considering fermions that

move on a lattice. The continuum limit cannot be taken directly. For example: Eq. (2.18) will

diverge if the lattice spacing l→ 0 (and keeping g0 fixed). To overcome this problem we will

show in this section that the continuum limit can be taken after a suitable renormalization

of the bare contact interaction. To this end we evaluate an infinite series of so-called ladder

diagrams (see Fig. 2.2) Γ0(p, τ) given by:

Γ0(p, τ) = g0 − g0

∫ τ

0

dτ1
1

(2π)3

∫

B,|q|>kF

dq G0
↓(p− q, τ1)G0

↑(q, τ1)Γ0(p, τ − τ1) . (2.19)

Beside the time, Γ0(p, τ) only depends on the total incoming momentum p. This is a

consequence of the fact that the interaction potential V↓↑(k) is a Dirac delta-function, so

that V↓↑(k) does not depend on the momentum transfer. This can be written in imaginary
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frequency domain,

1

Γ0(p,Ω)
=

1

g0
+

1

(2π)4

∫ +∞

−∞
dω

∫

B,|q|>kF

dq G0
↓(p− q,Ω− ω)G0

↑(q, ω) , (2.20)

with Ω and ω imaginary frequencies. The free propagators G0
↓(p− q,Ω− ω) and G0

↑(q, ω) in

imaginary frequency domain are given by




G0
↓(p− q,Ω− ω) = 1

i(Ω−ω)− (p−q)2

2m↓
+µ

;

G0
↑(q, ω) = 1

iω− q2

2m↑
+εF

.
(2.21)

By making use of the residue theorem the integral over frequencies can be calculated.

Identifying the poles ω1 and ω2 gives



ω1 = Ω + i

(
(p−q)2

2m↓
− µ

)
;

ω2 = −i( q2

2m↑
− εF ) .

(2.22)

By closing the contour in the lower half of the complex plane, and choosing µ < 0, one gets:

1

Γ0(p,Ω)
=

1

g0
− 1

(2π)3

∫

B,|q|>kF
dq

1

iΩ− (p−q)2

2m↓
+ µ− q2

2m↑
+ εF

. (2.23)

With the use of Eq. (1.12) the interaction strength parameter g0 can be removed in favour of

the scattering length as in Eq. (2.23),

1

Γ0(p,Ω)
=

mr

2πas
− 1

(2π)3

∫

B,|q|>kF
dq

1

iΩ− (p−q)2

2m↓
+ µ− q2

2m↑
+ εF

− 1

(2π)3

∫

B
dq

2mr

q2
.

(2.24)

By grouping the two integrands together, this expression is well-defined in the zero-range

limit. We can take the continuum limit l→ 0 and g0 → 0− such that as is fixed. To evaluate

Eq. (2.24) we write Γ0−1
(p,Ω) as

Γ0−1
(p,Ω) = Γ̃0−1

(p,Ω)− Π̄(p,Ω) , (2.25)

with

1

Γ̃0(p,Ω)
=

mr

2πas
−
∫

dq

(2π)3


 1

iΩ− (p−q)2

2m↓
+ µ− q2

2m↑
+ εF

+
2mr

q2


 , (2.26)

and Π̄(p,Ω):

Π̄(p,Ω) = −
∫

dq

(2π)3

θ(kF − |q|)
iΩ− q2

2m↑
− (p−q)2

2m↓
+ µ+ εF

. (2.27)

The function Γ̃0−1

(p,Ω) can be calculated analytically, for Ω 6= 0 or µ < −εF :

1

Γ̃0(p,Ω)
=

mr

2πas
− 1√

2π
m3/2
r

√
−iΩ− µ+

p2

2(m↑ +m↓)
− εF , (2.28)
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with mr =
m↑m↓
m↑+m↓

. To construct Feynman diagrams (see Sec. 2.6) we will use Γ0(p, τ)

in the momentum-imaginary-time representation as a renormalized interaction or dressed

interaction. We get Γ0(p, τ) by calculating the following Fourier transform:

Γ0(p, τ) =
1

2π

∫ +∞

−∞
dΩ Γ0(p,Ω)e−iτΩ . (2.29)

We obtain for Γ̃0(p, τ), if µ < −εF − 1
2mra2

s
(see appendix B):

Γ̃0(p, τ) = − 4π

(2mr)3/2
e

(µ+εF− p2

2(m↓+m↑)
)τ
(

1√
πτ

+
1

as
√

2mr
e

τ
2mra2

s erfc

(
−
√

τ

2mr

1

as

))
,

(2.30)

with erfc the complementary error function. Consider now the function (Γ0 − Γ̃0)(p, τ):

Γ0(p, τ)− Γ̃0(p, τ) =
1

2π

∫ +∞

−∞
dΩ
(

Γ0(p,Ω)− Γ̃0(p,Ω)
)
e−iτΩ . (2.31)

The function
(

Γ0(p, τ)− Γ̃0(p, τ)
)

can be computed numerically and is a well-behaved

and bounded function, and therefore it can be tabulated very accurately in a (|p|, τ) grid.

Whenever Γ0(p, τ) is needed, we calculate it as a sum of the analytically obtained function

Γ̃0(p, τ) and the tabulated function
(

Γ0(p, τ)− Γ̃0(p, τ)
)

.

2.4 The one-body self-energy Σ(p,Ω)

In this section we introduce the one-body self-energy Σ(p,Ω), with p the momentum of the

impurity and Ω the imaginary frequency, and show its relation with the polaron ground-state

energy Epol(p) and the Z-factor Zpol(p). The one-body self-energy Σ(p,Ω) is related to the

Green’s function G↓(p,Ω) by means of the Dyson equation:

G↓(p,Ω) = G0
↓(p,Ω) +G0

↓(p,Ω)Σ(p,Ω)G↓(p,Ω) . (2.32)

To emphasise the dependence of G↓(p, τ) and Σ(p, τ) on the free parameter µ, we use the

notation:

G↓(p, τ) ≡ G↓(p, τ, µ) = G↓(p, τ, 0) eµτ ,

Σ(p, τ) ≡ Σ(p, τ, µ) = Σ(p, τ, 0) eµτ . (2.33)

The simple exponential dependence on µ follows from the fact that there is a backbone line.

To obtain a relation between the one-body self-energy and Epol(p) [22], consider the poles

for G↓(p, τ) given in Eqs. (2.32) and (2.5):

iΩ + µ− Epol(p)

Zpol(p)
= G0

↓
−1

(p,Ω, µ)− Σ(p,Ω, µ)

= iΩ− p2

2m↓
+ µ− Σ(p,Ω, µ) .

(2.34)
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For small values of Ω we can use the following Taylor expansion:

Σ(p,Ω, µ) = Σ(p,Ω = 0, µ) + Ω
∂Σ(p,Ω, µ)

∂Ω

∣∣∣∣
Ω=0

+ . . . . (2.35)

By differentiating Eq. (2.33) with respect to µ and integrating over τ we obtain that
∂Σ(p,Ω,µ)

∂Ω

∣∣∣
Ω=0

= i ∂Σ(p,Ω=0,µ)
∂µ . Since µ is a free parameter it is allowed to set it equal to

Epol(p). With the aid of Eq. (2.35), we can rewrite Eq. (2.34) for small values of Ω as

iΩ

Zpol(p)
= iΩ− p2

2m↓
+Epol(p)−Σ(p,Ω = 0, µ = Epol(p))− iΩ ∂Σ(p,Ω = 0, µ)

∂µ

∣∣∣∣
µ=Epol(p)

.

(2.36)

Identifying the real and imaginary parts in Eq. (2.36) gives the following relations for Epol(p)

and Zpol(p):

Epol(p) =
p2

2m↓
+ Σ (p,Ω = 0, µ = Epol(p)) , (2.37)

Zpol(p) =
1

1− ∂Σ(p,Ω=0,µ)
∂µ

∣∣∣
µ=Epol(p)

. (2.38)

In the previous section we have summed an infinite subclass of diagrams, which resulted

in a renormalized or dressed interaction Γ0. We are now able to draw Feynman diagrams that

are well-defined in the continuum limit. Let us evaluate the one-body self-energy Σ(1)(p,Ω)

built from one renormalized interaction Γ0 and one spin-↑ hole propagator G0
↑, as shown in

Fig. 2.3. In the next section we will see that Σ(1)(p,Ω) includes all the 1 p-h excitations

of the polaron system. By making use of the Feynman rules (see for example [4, 21]) the

self-energy Σ(1)(p,Ω) is given by:

Σ(1)(p,Ω) =

∫

|q|<kF

dq

(2π)3

∫
dω

2π
Γ0(p + q,Ω + ω)G0

↑(q, ω) , (2.39)

with ω the imaginary frequency and q the momentum of the spin-up propagator. In Sec. 2.6

the diagram of Fig. 2.3 will be called the first order diagram.

2.5 A variational calculation with 1 p-h excitations

In this section we calculate the ground-state energy of the Fermi polaron by using a variational

method with a related wave function that includes 1p-h excitations [23].

One proposes a state |ψ〉

|ψ〉 = φ0|0, FS〉+
∑

k,q∈B
φk,q|k,q〉 . (2.40)

The state |0, FS〉 is the spin-up FS with the spin-down impurity with momentum 0 and

|k,q〉 represents the FS with a particle-hole excitation where the particle has momentum k
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q, ω

p+ q,Ω + ω

Figure 2.3 – Graphical presentation of a diagram with one hole propagator for the one-body

self-energy. The grey box is the renormalized interaction Γ0(p + q,Ω + ω) and the arc represents

the hole propagator G0
↑(q, ω), with |q| < kF .

(k = |k| > kF ) and the hole has momentum q (q = |q| < kF ). The state |k,q〉 also includes

the impurity with momentum q− k. The energy of this state is given by 〈ψ|ĤFP|ψ〉:

〈ψ|ĤFP|ψ〉 =


|φ0|2EFS +

∑

k,q∈B
|φk,q|2 EFS




+
∑

k,q∈B
|φk,q|2(εk↑ + εq−k↓ − εq↑) +

g0

V


∑

q∈B
|φ0|2 +

∑

k,k′,q∈B
φk′,qφ

∗
k,q

+
∑

k,q,q′∈B
φk,qφ

∗
k,q′ +

∑

k,q∈B
(φ∗0φk,q + φ0φ

∗
k,q)


 ,

(2.41)

with EFS the energy of the ideal spin-up Fermi gas. The sums on q and k are implicitly

limited to q < kF and k > kF . Since |ψ〉 should be normalized, it is valid that

|φ0|2EFS +

∑

k,q∈B
|φk,q|2EFS


 = EFS . (2.42)

In the following we will drop this term and consider the energy with respect to EFS . We

will see in Eq. (2.46) that for large momenta k the following relation is valid: φk,q ∼ 1/k2.

Most of the sums over momenta in Eq. (2.41) will diverge in the continuum limit for large

momenta. This singular behavior is regularized by the fact that g0 → 0− if l→ 0. The term∑

k,q,q′∈B
φk,qφ

∗
k,q′ , however, is convergent and gives a zero contribution when multiplied by

g0.

We have to minimize the function 〈ψ|ĤFP|ψ〉 under the constraint that 〈ψ|ψ〉 = 1,

therefore we introduce the function Λ:

Λ = 〈ψ|ĤFP|ψ〉 − E


|φ0|2 +

∑

k,q∈B
|φk,q|2 − 1


 , (2.43)
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where E is a Langrange multiplier. Differentiating Λ with respect to φ∗0 and φ∗k,q gives

∂Λ

∂φ∗0
=
g0

V
∑

q∈B
φ0 +

g0

V
∑

k,q∈B
φk,q − Eφ0 = 0 , (2.44)

∂Λ

∂φ∗k,q
= (εk↑ + εq−k↓ − εq↑)φk,q +

g0

V
∑

k′∈B
φk′,q +

g0

V φ0 − Eφk,q = 0 . (2.45)

From Eq. (2.45) we can write

φk,q = −g0

V

φ0 +
∑

k′∈B
φk′,q

εk↑ + εq−k↓ − εq↑ − E
, (2.46)

and we observe that lim
k→∞

φk,q ∼ 1
k2 . By applying the summation

∑
k∈B

on both sides of

Eq. (2.46), one can rewrite the previous equation as follows:

φ0 +
∑

k∈B
φk,q =

φ0/g0

1
g0

+ 1
V
∑

k∈B

1

εk↑ + εq−k↓ − εq↑ − E
. (2.47)

With the use of Eq. (2.44) we can write

E =
1

V
∑

q∈B

1

1
g0

+ 1
V
∑

k∈B

1

εk↑ + εq−k↓ − εq↑ − E
. (2.48)

With Eq. (1.12) the coupling constant g0 can be substituted in favour of the scattering length

as and Eq. (2.48) becomes

E =
1

V
∑

q∈B

1

mr
2πas

+ 1
V
∑

k∈B

1

εk↑ + εq−k↓ − εq↑ − E
− 1

V
∑

k∈B

2mr

k2

. (2.49)

This last expression is well-defined in the continuum limit (l → 0 and g0 → 0− with as
fixed) and thermodynamic limit. With the use of Eqs. (2.37) and (2.39) we observed that

the energy E obtained within the variational approach is identical to the energy Epol(0)

obtained from the one-body self-energy Σ(1)(p,Ω). It is also pointed out in [24] that for the

Fermi polaron, the energy obtained from the first order of the one-body self-energy in the

real-frequency representation equals the energy E. Moreover, we will see in Sec. 3.3 how

to construct a one-body self-energy that produces an energy that agrees with the energy

obtained with a n p-h variational treatment.

2.6 Constructing higher-order diagrams

We calculated in Sec. 2.4 the one-body self-energy that includes all 1 p-h excitations of the

Fermi sea. In this section we consider diagrams with more than one hole propagator. First we



Chapter 2. The Fermi polaron and its Green’s function 21

will discuss how the diagrams can be constructed graphically, and second, we will illustrate

how an algebraic expression is obtained for each diagram through the Feynman rules.

To construct a diagram for the one-body self-energy at order N , we draw a BBL, which

consists out of N grey boxes and N − 1 straight lines between the boxes (see upper figure

in Fig. 2.4). The imaginary time runs from right to left. The left end of each grey box is

connected with a directed (forward or backward in time) line which goes to the right end of

a grey box (see lower figure in Fig. 2.4). Each directed line covers a part of the BBL. In the

end the whole BBL must be covered by such lines. An uncovered piece of the BBL would

lead to a one-particle reducible diagram (i.e., a diagram that falls apart if one cuts a single

propagator), and we wish to consider only the irreducible diagrams. In the lower figure of

Fig. 2.4 we see three of these lines covering the BBL. We identify the different graphical

elements:

� The lines above the BBL running from a time τ1 to a time τ2 represent the propagators

G0
↑(q, τ) with τ = τ2 − τ1. Each line carries a momentum q. If the direction of the line

goes forward in time (τ > 0), then |q| > kF , if the line goes backward in time (τ < 0),

then |q| < kF .

� The grey boxes correspond to dressed interactions Γ0(k, τ), with momentum k:

k = p−
∑

i

qi +
∑

j

qj , (2.50)

with p the externally incoming momentum of the diagram. The index i runs over all

lines that lie above the BBL with momentum |q| > kF , the index j runs over all above

lying lines with momentum |q| < kF .

� The straight lines of the BBL correspond to a free spin-down propagator G0
↓(k, τ) with

momentum k given in Eq. (2.50) and τ the imaginary time during which it propagates.

Since we have one forward propagating impurity, each diagram will have just one BBL. Only

the impurity can create p-h excitations, and thus all the G0
↑-propagators will start and end

in a Γ0-interaction of the BBL.

The algebraic value of a particular diagram with fixed internal and external variables

corresponds to a product of each of these elements, i.e. a product of free G0
↑ and G0

↓-
propagators and dressed interactions Γ0. The diagram acquires an extra sign (−1)L(−1)N ,

with L the number of fermion loops and N the order of the diagram. As an example, we

give the algebraic contribution D(TA,p, τ, τ1, τ2, τ3, τ4,q1,q2,q3) for the diagram A with

topology TA (see Fig. 2.4):

D(TA,p, τ, τ1, τ2, τ3, τ4,q1,q2,q3) = (−1)N (−1)L
1

(2π)9
Γ0(p + q1, τ − τ4)

×G0
↓(p− q2 + q1, τ4 − τ3)Γ0(p− q2 + q1 + q3, τ3 − τ2)G0

↓(p− q2 + q3, τ2 − τ1)

×Γ0(p + q3, τ1)G0
↑(q1, τ2 − τ)G0

↑(q2, τ4 − τ1)G0
↑(q3,−τ3) ,

(2.51)
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with N = 3 and L = 1. Note that we also include a factor 1/(2π)3N into the definition of D.

The algebraic expression for diagram B in Fig. 2.4 reads:

D(TB ,p, τ, τ1, τ2, τ3, τ4,q1,q2,q3) = (−1)N (−1)L
1

(2π)9
Γ0(p + q1, τ − τ4)

×G0
↓(p− q2 + q1, τ4 − τ3)Γ0(p− q2 + q1 + q3, τ3 − τ2)G0

↓(p− q2 + q1, τ2 − τ1)

×Γ0(p + q1, τ1)G0
↑(q1,−τ)G0

↑(q2, τ4 − τ1)G0
↑(q3, τ2 − τ3) ,

(2.52)

with N = 3 and L = 2. It is clear that the diagrams A and B have an opposite sign due

to the different number of loops. These two diagrams are the only possible diagrams at

order 3. Diagrams that include ladders (a ladder arises if two subsequent grey boxes are

connected with a forward G0
↑-propagator) are not allowed, since all ladder diagrams are

already included in Γ0. According to the Feynman rules [4, 21], we still have to integrate

over all internal variables. These variables are the momenta of the G0
↑-propagators and all

the internal imaginary times. A schematic representation of the diagrammatic series for the

one-body self-energy Σ(p, τ) looks as follows:

Σ(p, τ) =

∞∑

N=1

∑

TN

∫
dq1 . . . dqi . . . dqN

∫
dτ1 . . . dτi . . . dτ2(N−1)

×D(TN ,p, τ, τ1, . . . , τi, . . . , τ2(N−1),q1, . . . ,qi, . . . ,qN) ,

(2.53)

with TN the topology of the diagram of order N . If N = 1 there are no internal times.

A similar series expansion can be written down for the two-body self-energy Π(p, τ). We

will see in Sec. 2.8 that this self-energy gives us information about possible bound states of

the impurity with a spin-up particle (this composite particle will be called a molecule). The

two third-order diagrams for Π(p, τ) are shown in Fig. 2.5. The diagram order N is here

defined as the number of dressed interactions plus one or the number of G0
↓-propagators.

To evaluate Σ(p, τ) or Π(p, τ) we need a numerical method that can deal with computing

the highly-dimensional integrals (the dimension depends on the diagram order) and summing

topologically different diagrams for large diagram orders. Such a method is presented in the

next section.

2.7 Summing diagrams with diagrammatic Monte Carlo

(DiagMC)

It is known that in many cases a stochastic evaluation of a high-dimensional integral is much

more efficient than more systematic methods [25]. Therefore we will evaluate Σ(p, τ) in a

stochastic way with the DiagMC algorithm[22, 26], a method which is designed to evaluate

and sum a large number of Feynman diagrams stochastically.

Let us start by introducing the Metropolis algorithm, an importance sampling method

[25, 27], which is used in the DiagMC algorithm. Assume one wishes to average a quantity

over a large number of configurations. The Monte Carlo method tries to select the most

relevant configurations. Typically this finite set of relevant configurations is generated in
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A B

Figure 2.4 – The upper figure shows the backbone of a one-body self-energy diagram at N = 3.

The imaginary times are ranked as follows: 0 < τ1 < τ2 < τ3 < τ4 < τ . The lower diagram shows the

two different topologies for this order. For both diagrams in the lower figure we have two backward

G0
↑-propagator (with momenta |q1| < kF and |q3| < kF ) and one forward G0

↑-propagator (with

momentum |q2| > kF ).

0τ1τ2τ3τ4τ

Figure 2.5 – The upper figure shows the backbone of a diagram for the two-body self-energy at

N = 3. The lower diagram shows the two different topologies for this order. The imaginary times

are ranked as follows: 0 < τ1 < τ2 < τ3 < τ4 < τ .

the form of a Markov chain, in which each new configuration is chosen with a probability

depending on the previous one. The detailed balance condition ensures that a certain target

distribution will be sampled in the Markov chain. The detailed balance equation for going

from a configuration A to a configuration B is written as [25]:

P(A)TA→B = TB→AP(B) , (2.54)

with TA→B (TB→A) the transition probability for going from state A to B (B to A). The

weight of configuration A (B) is given by P(A) (P(B)). For practical purposes we write the

transition probabilities as

TA→B = WA(B)PA→B (2.55)

TB→A = WB(A)PB→A , (2.56)

with WA(B) the proposal distribution that generates a new state B given a state A. The

acceptance probability PA→B in the Metropolis algorithm is given by:

PA→B = min

(
1,
P(B)WB(A)

P(A)WA(B)

)
. (2.57)
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The new state B, generated from WA(B), will thus be accepted with a probability PA→B
and rejected with probability 1− PA→B . For PB→A we get:

PB→A = min

(
1,
P(A)WA(B)

P(B)WB(A)

)
. (2.58)

In the case that WA(B) 6= WB(A) one speaks of the generalised Metropolis algorithm [25].

We will define the acceptance ratio qacc for the transition A→ B as

qacc =
P(B)WB(A)

P(A)WA(B)
. (2.59)

The efficiency of a particular algorithm depends on the choice of the proposal probability

distributions W , which can be chosen freely. However, it is clear that the efficiency will

depend on the overlap of W with P.

In the DiagMC method, the ‘configurations’ A and B represent the diagram variables of

the Feynman diagrams, with an algebraic expression given by D(A), respectively D(B) (see

Sec. 2.6). The function D is however not positive definite, since its sign depends, e.g., on the

number of fermion loops. Therefore, we choose the weight of ‘diagram’ A (by diagram we

mean a certain topology, order and fixed values of internal and external variables) to be given

by |D(A)|. The sign of the diagram is only taken into account when collecting the statistics.

The DiagMC method is designed to evaluate expressions as given in Eq. (2.53). This is

done by constructing a set of updates that allow one to sample over all diagram variables.

Each update changes one or more diagram variables by using the Metropolis algorithm. For

example, we will have updates that perform a change of an imaginary time, the order, the

topology, . . .. One has a lot of freedom to construct a set of updates, as long as each diagram

can be reached in a finite time.

To construct a set of updates that allow us to sample diagrams for Σ(p, τ) and Π(p, τ)

in an efficient way, we extend the space of diagrams with extra, non-physical diagrams. We

group different types of diagrams in sectors and in Sec. 2.7.1 it will become clear why these

sectors are useful. A schematic overview of the different sectors is given in Fig. 2.6 where we

give an example of a diagram for each sector. The G0
↓Σ-sector contains diagrams that appear

in the series for Σ(p, τ) with an extra G0
↓-propagator attached. The Γ0Π-sector contains

diagrams that appears in the series for Π(p, τ) with an extra Γ0-interaction attached. By

removing a G0
↑-propagator from a diagram in the G0

↓Σ or Γ0Π-sector we obtain a worm

diagram. The two ends of the missing G0
↑-propagators are called worm ends. The worm

end that is situated on the left side of a Γ0-interaction is called the outgoing worm end (O),

while the other worm end is called the incoming worm end (I). In the Σ and Π-sector we

collect statistics for the one and two-body self-energies. The order N of a diagram in the Σ

or Π-sector is defined in Sec. 2.6. In the worm, G0
↓Σ and Γ0Π-sector, a diagram of order N

has N G0
↓-propagators and N Γ0-interactions.

Within each sector we introduce artificial weighting factors ξ
(’order’)
(’sector’) that depend on

the order of the diagrams and on the relevant sectors. These extra factors are used in the

DiagMC simulation to control how much simulation time is spent sampling certain sectors or

specific orders. For example, good statistics for Σ(p, τ) and Π(p, τ) at each order can be

accomplished by tuning the weighting factors.
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Figure 2.6 – A scheme of the different sectors with an example of a diagram in each sector. The

arrows indicate which sectors are connected with each other by means of Monte Carlo updates.

In the following subsections we present the set of updates that we used in the DiagMC

simulation. All the updates together meet the requirement of detailed balance and ergodicity.

In the presented updates, we will use a cyclic representation for the diagrams. A cyclic

diagram can be imagined as a diagram that lies on a circle. This is possible because only

time differences are relevant. The total time of the diagram is used when collecting statistics

for Σ(p, τ) or Π(p, τ).

2.7.1 Updates of the DiagMC algorithm

In the updates we use the convention that imaginary times are always positive for both the

particle and the hole propagators. This will simplify our notation. This means that we adopt

the following definition of G0
↑(k, τ):

G̃0
↑(k, τ) = −θ(k − kF )e−(εk↑−εF )τ + θ(kF − k)e(εk↑−εF )τ , (2.60)

with always τ > 0. In the remainder of this section, we will denote G̃0
↑(k, τ) by G0

↑(k, τ).
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Time shift

In this update we change the time of a randomly chosen propagator or interaction on the

BBL, and the G0
↑-propagators that lie above the chosen line. Let us consider the case where

we change the time τA of a renormalized interaction Γ0(p, τA) with momentum p. The

acceptance ratio qacc is given by

qacc =
|D(τB)|
|D(τA)|

WΓ(τA)

WΓ(τB)

=

∣∣∣∣∣∣

Γ0(p, τB)
∏
i

G0
↑(qi, τi + (τB − τA))

Γ0(p, τA)
∏
i

G0
↑(qi, τi)

∣∣∣∣∣∣
WΓ(τA)

WΓ(τB)
,

(2.61)

where the index i runs over all the above lying G0
↑-propagators with time τi and momentum

qi. In the argument of D we only show the variables relevant for this update. The new time

τB is chosen according to the probability distribution WΓ(τ). We have the freedom to choose

WΓ(τ). We want a good overlap with D such that many proposed times are accepted. In

the MC-simulation we keep track of the number of accepted and rejected proposals. This

allows us to test the efficiency of different distibutions WΓ(τ). We found that the following

combination of distributions was very efficient: one that resembles Γ0 supplemented with

a uniform distibution. Therefore we write WΓ(τ) as a linear combination of two different

distributions W1(τ) and W2(τ):

WΓ(τ) = w1W1(τ) + w2W2(τ) , (2.62)

with w1 and w2 the probabilities that a value τ is sampled from W1(τ) or W2(τ). Our W1(τ)

and W2(τ) are normalized to 1, and w1 + w2 = 1. We observed that the tail of Γ0(p, τ)

has an exponential decay for large times: Γ0(p, τ)
τ→+∞∼ e−a(p)τ . The coefficients a(p) are

determined through a fit before we start the DiagMC simulation. For the probability density

W1(τ) we take

W1(τ) ∝ e−a(p)τ

√
τ

, (2.63)

For short times (τ → 0+) one has Γ0(p, τ) ∼ 1√
τ

, so W1(τ) will capture the short-time

behavior of D(τ). Times distributed according to W1(τ) are generated through

τB =

(
erf−1(r)

)2

a(p)
, (2.64)

with erf−1 the inverse error function and r a random number between 0 and 1. For the

probability density W2(τ) we choose :

W2(τ) =
1

|max(τA −∆, 0)− (τA + ∆)| , (2.65)

with ∆ a parameter that determines the range for τB : τB ∈ [max(τA −∆, 0), (τA + ∆)].
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The case where we want to change the time of a G0
↓-propagator can be handled in a

similar way with WG(τ) = w3W3(τ) + w2W2(τ), with w3 + w2 = 1. We choose

W3(τ) ∝ e−τ( p2

2m↓
−µ)

. (2.66)

Note that µ is a free parameter, which we have introduced in Sec. 2.1. This parameter is the

same for every Γ0-interaction or G0
↓-propagator on the BBL. Since µ < −εF − 1

2mra2
s

for the

renormalized interaction Γ0(p, τ) (see sec. Sec. 2.3) Eq. (2.66) is normalizable for all values

of p. A value for τB can be sampled from W3(τB) as follows:

τB = − ln(1− r)
p2

2m↓
− µ

. (2.67)

Changing the momentum

In this update we choose at random a propagator G0
↑(qA, τ) and propose to change the

momentum qA → qB, thereby respecting the forward or the backward direction in time.

The acceptance ratio qacc is given by

qacc =
|D(qB)|
|D(qA)|

W p,h(qA)

W p,h(qB)

=

∣∣∣∣∣∣∣

G0
↑(qB , τ)

∏
i

Γ0(pi ± qA ∓ qB , τi)
∏
j

G0
↓(pj ± qA ∓ qB , τj)

G0
↑(qA, τ)

∏
i

Γ0(pi, τi)
∏
j

G0
↓(pj , τj)

∣∣∣∣∣∣∣

× W p,h(qA)

W p,h(qB)
,

(2.68)

where the index i (j) runs over the interactions Γ0 (G0
↓-propagators), with momentum

qi (qj) and time τi (τj), covered by the G0
↑-propagator. The lower (upper) sign is used if

|qA| < kF (|qA| > kF ). For W p,h(q)dq we choose a distribution that resembles G0
↑(q, τ)dq. If

|qA| > kF , we choose a new momentum qB (with |qB | > kF ) with probability W p(qB)dqB =

W (θ, φ)W p(|qB | = q)dqdθdφ, with (q, θ, φ) a set of spherical coordinates and with

W (θ, φ) =
sin(θ)

4π
, (2.69)

W p(q) =
q2e
−τ q2

2m↑

∫∞
kF
dq q2e

−τ q2

2m↑

. (2.70)

Since we cannot sample from W p(q) directly, we instead sample from the distribution (which

can be handled more easily numerically):

W p(q) =
q2
i e
−τj

q2i
2m↑

Nq−1∑
k=0

q2
ke
−τj

q2
k

2m↑∆k

for q ∈ [qi, qi + ∆i] and i = 0, . . . , (Nq − 1) , (2.71)
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A B

Figure 2.7 – The close-update (A→ B) changes in this particular example a worm diagram into

a G0
↓Σ-diagram by connecting the worm ends with a G0

↑-propagator. The open-update (B → A)

removes a forward G0
↑-propagator, thereby changing a G0

↓Σ-diagram into a worm diagram.

with qi a finite number of discrete q-values:

qi = kF +

i−1∑

j=0

∆j for i = 0, . . . , (Nq − 1) , (2.72)

and with the ∆i a set of chosen mesh sizes and Nq the number of mesh points. This

distribution is tabulated for a finite number of imaginary time values τj , and we sample

from the tabulated distribution with τj closest to the τ from the chosen G0
↑-propagator. In

practice, we first choose a discrete qi from a tabulated distribution W p
dis(qi):

W p
dis(qi) =

q2
i e
−τj

q2i
2m↑∆i

Nq−1∑
k=0

q2
ke
−τj

q2
k

2m↑∆k

. (2.73)

A value for qB is then chosen uniformly in the range [qi, qi + ∆i].

In the case |qA| < kF , we choose qB(|qB | < kF ) with probability Wh(qB)dqB =

W (θ, φ)Wh(q = |qB |)dqdθdφ. We take Wh(q) ∝ qe
τ

2m↑
q2

, and use

q =

√√√√ ln(1 + re
τ

2m↑
k2
F − r)

τ
2m↑

, (2.74)

to generate a new value for q.

Open and Close

The close-update transforms a worm diagram into a G0
↓Σ-diagram or a Γ0Π-diagram by

connecting the worm ends with a G0
↑-propagator. The open-update removes a random G0

↑-
propagator and changes a G0

↓Σ-diagram or a Γ0Π-diagram into a worm diagram (see Fig. 2.7

for an example). For close, we choose with equal probability that the new G0
↑-propagator

goes forward in time or backward in time. The momentum q of the new G0
↑-propagator can

then be chosen with the same probability density W p,h(q) that was used in the previous
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update. The G0
↑-propagator to be removed in the open-update is chosen at random. The

acceptance ratio qacc for the close-update is given by:

qacc =
|D(B)|
|D(A)|

WN

W (q)

=
1

(2π)3

∣∣∣∣∣∣∣

G0
↑(q,

∑
i

τi +
∑
j

τj)
∏
i

Γ0(pi ∓ q, τi)
∏
j

G0
↓(pj ∓ q, τj)

∏
i

Γ0(pi, τi)
∏
j

G0
↓(pj , τj)

∣∣∣∣∣∣∣

× 1/N
1
2W

p,h(q)

ξ
(N)
S

ξ
(N)
worm

,

(2.75)

with the sector S equal to G0
↓Σ or Γ0Π, WN = 1/N ,W (q) = 1

2W
p,h(q) and the index i

(j) runs over the Γ0-interactions (G0
↓-propagators) for which the number of G0

↑-propagators

that lie above will change. The lower (upper) sign is used if the new G0
↑-propagator goes

backward (forward) in time. The 1
2 in front of W p,h(q) comes from the fact that we choose

with equal probability a direction in time. The newly created diagram should have exactly

one uncovered G0
↓-propagator (in this case we have a G0

↓Σ-diagram) or exactly one uncovered

Γ0-interaction (in this case we have a Γ0Π-diagram). All other cases will not lead to a

G0
↓Σ-diagram or a Γ0Π-diagram and the close-update should be rejected. The acceptance

ratio qacc for the open-update becomes:

qacc =
|D(A)|
|D(B)|

W (q)

WN

=

∣∣∣∣∣∣∣

(2π)3
∏
i

Γ0(pi ± q, τi)
∏
j

G0
↓(pj ± q, τj)

G0
↑(q,

∑
i

τi +
∑
j

τj)
∏
i

Γ0(pi, τi)
∏
j

G0
↓(pj , τj)

∣∣∣∣∣∣∣

× 1

2

W p,h(q)

1/N

ξ
(N)
worm

ξ
(N)
S

.

(2.76)

The lower (upper) sign is used if the G0
↑-propagator which is removed goes backward (forward)

in time.

The sign of the worm diagrams can be chosen arbitrary since these diagrams are unphysical.

We choose their sign to be the same as when the worm ends would be closed with a backward

moving G0
↑-propagator. It is important that, with this convention, the sign coming from the

number of loops is not changed by the open/close-updates

Reconnect

This update applies only to diagrams in the worm sector and allows one to change the

topology of the diagram while the diagram order remains the same. In Reconnect we swap

the outgoing worm end (O) with the outgoing end of a randomly chosen G0
↑-propagator

that carries momentum q. If the update proposes to change the time direction of the

G0
↑-propagator, the update is rejected. We distinguish between two situations. In the first
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O O

A B

qq

Figure 2.8 – Changing the topology of a diagram with the reconnect-update. The end of a backward

G0
↑-propagator with momentum q (|q| < kF ) is swapped with the outgoing worm end O.

q
q

O O

A B

Figure 2.9 – Changing the topology of a diagram with the reconnect-update. The end of a forward

G0
↑-propagator with momentum q (|q| > kF ) is swapped with the outgoing worm end O.

case, the outgoing worm end is not covered by the G0
↑-propagator. Diagrams A in Figs. 2.8

and 2.9 are examples of this. In the second case, the outgoing worm end is covered by the

G0
↑-propagator. This situation applies to diagrams B in Figs. 2.8 and 2.9. The acceptance

ratio qacc for the first case (for going from A to B in Figs. 2.8 and 2.9) is given by

qacc =
|D(B)|
|D(A)|

=

∣∣∣∣∣∣∣

G0
↑(q,

∑
j

τj +
∑
i

τi)
∏
i

Γ0(pi ∓ q, τi)
∏
j

G0
↓(pj ∓ q, τj)

∏
i

Γ0(pi, τi)
∏
j

G0
↓(pj , τj)

∣∣∣∣∣∣∣
.

(2.77)

The index i (j) runs over the renormalized interactions Γ0 (G0
↓-propagators) for which the

number of above lying G0
↑-propagators increases. The lower (upper) sign is used if |q| < kF

(|q| > kF ).

For the second case (going from B to A in Figs. 2.8 and 2.9) the acceptance ratio qacc
becomes:

qacc =
|D(A)|
|D(B)|

=

∣∣∣∣∣∣∣

∏
i

Γ0(pi ± q, τi)
∏
j

G0
↓(pj ± q, τj)

G0
↑(q,

∑
j

τj +
∑
i

τi)
∏
i

Γ0(pi, τi)
∏
j

G0
↓(pj , τj)

∣∣∣∣∣∣∣
.

(2.78)
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The index i (j) runs over the renormalized interactions Γ0 (G0
↓-propagators) for which the

number of G0
↑-propagators lying above decreases. The lower (upper) sign is used if |q| < kF

(|q| > kF ).

The update is always rejected if the new diagram is a fully closed diagram which is a

diagram with zero uncovered Γ0-interactions and G0
↓-propagators. We impose this additional

constraint to optimise the simulation. The fully closed diagrams have a large weight compared

to the other diagrams, and therefore we wish to avoid those diagrams which do not contribute

to the self-energy anyway. Note that even with the exclusion of these diagrams the simulation

stays ergodic.

In the reconnect-update the number of loops changes with one, which has to be taken

into account when keeping track of the sign of the diagram.

Add and delete

In the add-update a Γ0-interaction (with momentum p and time τ1) with worm ends and a

G0
↓-propagator (with momentum p and time τ2) are attached to the uncovered propagator

of a G0
↓Σ-diagram or to the uncovered Γ0-interaction of a Γ0Π-diagram (see Fig. 2.10).

The newly created diagram will be a worm diagram. The times τ1 and τ2 are chosen with

probability densities WΓ(τ1) and WG(τ2), respectively. The acceptance ratio qacc is given by

qacc =
|D(B)|
|D(A)|

1

WΓ(τ1)WG(τ2)

=

∣∣∣∣∣
Γ0(p, τ1)G0

↓(p, τ2)

WΓ(τ1)WG(τ2)

∣∣∣∣∣
ξ

(N+1)
worm

ξ
(N)
S

,

(2.79)

with S = G0
↓Σ or S = Γ0Π. We distinguish between two different cases where the delete-

update is applicable. In the first case we consider a diagram with exactly one uncovered

Γ0-interaction and two uncovered G0
↓-propagators. The worm ends should be on the Γ0-

interaction. By removing this Γ0-interaction and the G0
↓-propagator to the right of the

Γ0-interaction we arrive at a G0
↓Σ-diagram (see upper figure in Fig. 2.10). In the second

case we consider a diagram with exactly two uncovered Γ0-interactions and one uncovered

G0
↓-propagator. The incoming worm should be on the left Γ0-interaction with respect to

the uncovered G0
↓-propagator. The outgoing worm should be on the right Γ0-interaction

with respect to the uncovered G0
↓-propagator. By removing the uncovered G0

↓-propagator

and the Γ0-interaction on the right we get a Γ0Π-diagram (see lower figure Fig. 2.10). The

acceptance ratio qacc then reads

qacc =
|D(A)|
|D(B)|WΓ(τ1)WG(τ2)

=

∣∣∣∣∣
WΓ(τ1)WG(τ2)

Γ0(p, τ1)G0
↓(p, τ2)

∣∣∣∣∣
ξ

(N−1)
S
ξ

(N)
worm

.

(2.80)

If the new diagram is a G0
↓Σ-diagram we get an extra minus sign from the increase/decrease

in order and another minus sign is coming from the addition/removal of the fermion loop
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A B

A B

Figure 2.10 – The upper figure shows a G0
↓Σ-diagram (A) that is transformed into a worm diagram

(B) by attaching a G0
↓-propagator and a Γ0-interaction to the uncovered G0

↓-propagator. On the

lower figure a G0
↓-propagator and a Γ0-interaction are attached to the uncovered Γ0-interaction of a

Γ0Π-diagram (A) that is transformed into a worm diagram (B) .

(due to our convention of the sign of a worm diagram). In the case we are dealing with a

Γ0Π-diagram there is no change of loops in the add/delete-updates, so an extra minus due to

the change of order has to be considered when keeping track of the sign of the contribution.

G0
↓Σ to Σ and Σ to G0

↓Σ update

A G0
↓Σ-diagram (A) is transformed into a Σ-diagram (B) and vice versa. If we want to

calculate the ground-state properties of the polaron later, we will need Σ(p, τ, E) with E the

ground-state energy of the polaron, which is obtained as follows:

Σ(p, τ, E) = Σ(p, τ, µ)e−(µ−E)τ . (2.81)

If we collect statistics for Σ(p, τ, µ) and µ is for example much smaller than E, then it is

clear that the statistical noise for large times will be amplified by applying Eq. (2.81). Let us

denote the value of µ in the Σ-sector by µΣ. Although E is a priori unknown, its value can

be estimated at the beginning of the simulation, and we take µΣ ≈ E for the diagrams in

the Σ-sector. However, we cannot use this value for µ in all the sectors since some integrals

over the internal variables might diverge for this particular choice, µ = µΣ.

In the Σ-sector the uncovered G0
↓-propagator is removed. This allows us to directly

measure Σ(p, τ) (see also Sec. 2.7.2). In the Σ-sector we can change µ with µΣ, which has

the advantage that it will not amplify the statistical noise too much if we calculate Σ(p, τ, E)

with Eq. (2.81).
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The acceptance ratio qacc for A→ B is

qacc =
|D(B)|
|D(A)|

=
e(µΣ−µ)τ

|G0
↓(p0, τ0, µ)|

ξ
(N)
Σ

ξ
(N)

G0
↓Σ

,
(2.82)

with G0
↓(p0, τ0, µ) the uncovered propagator for the G0

↓Σ-diagram.

Γ0Π to Π and Π to Γ0Π update

A Γ0Π-diagram (A) is transformed into a Π-diagram (B) and vice versa. This update is very

similar to the previous one and is used to obtain good statistics for Π(p, τ, E) with E the

ground-state energy of the molecule. We change µ→ µΠ when we go to the Π-sector, with

µΠ a value close to E. The acceptance ratio qacc for A→ B is:

qacc =
|D(B)|
|D(A)|

=
e(µΠ−µ)τ

|Γ0(p0, τ0, µ)|
ξ

(N)
Π

ξ
(N)
Γ0Π

,

(2.83)

with Γ0(p0, τ0, µ) the uncovered Γ0-interaction of the Γ0Π-diagram. The number of loops

changes since a loop is removed by removing the Γ0-interaction.

2.7.2 Making a random walk in the configuration space of diagrams

We illustrate in this section how the updates generate a Markov chain of diagrams. For each

sector we have a set of possible updates, and we apply one at random. In Fig. 2.11 we show

an example of a random sequence of diagrams that could be generated with DiagMC. Note

that the external momentum p of the diagram is kept fixed during the simulation. For each

sampled Σ-diagram (Π-diagram) with total time τ we add a number s = 1

ξ
(N)
S

with S = Σ or

S = Π to the applicable time bin of a time-histogram ΣMC or ΠMC . After the simulation we

can calculate Σ(p, τ) and Π(p, τ). To normalize ΣMC (ΠMC) we use the first-order worm

diagram as a normalization diagram. The number n(1) of times the first-order worm diagram

is sampled corresponds to a value which can be easily computed. The properly normalized

self-energy Σ(p, τ) is given by:

Σ(p, τ) =
ΣMC(p, τi)

n(1)∆τi
ξ(1)
worm

∫ ∞

0

dτ

∫ τ

0

dτ1Γ0(p, τ − τ1)G0
↓(p, τ1) , (2.84)

with ∆τi the binsize of bin i with time τi.
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Figure 2.11 – Example of a random walk through the configuration space of diagrams. Starting

in the upper left corner and following the forward direction of the arrows, the walk goes through

the following sectors: Worm sector → G0
↓Σ-sector → worm sector → G0

↓Σ-sector → worm sector

→ G0
↓Σ-sector → Σ-sector. For the same direction the following updates are used: Close → add

→ close → add → close → G0
↓Σ to Σ. Note that we made use of the cyclic representation of the

diagrams.

In Fig. 2.12 and Fig. 2.13 we show the contribution of each order to the one-body self-

energy for kFas = 1. At an order Nmax the noise will dominate over the signal given a certain

simulation time. The factorial increase of diagrams will nearly limit Nmax. The different

signs of the diagrams, on the other hand, will have a big impact on Nmax. For example:

the two diagrams that contribute to the third-order self-energy have an opposite sign and

cancel each other almost (see Sec. 2.6). Even though there are only two diagrams, it requires

considerable computational effort to see this cancellation and to calculate ΣN=3(p = 0, τ)

accurately. We observe that ΣN (p = 0, τ) starts oscillating as function of the diagram order

and seems to diverge. For orders larger than 9, ΣN (p = 0, τ) has a bad signal-to-noise ratio,

due to our finite simulation time, and therefore we do not go beyond Nmax.
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Figure 2.12 – The one-body self-energy ΣN (p = 0, τ) as function of τ for different orders N for

kF as = 1 and µ = −1.22.

2.8 Quasiparticle properties of an impurity in a Fermi

gas

This section contains the published results of the 3D Fermi polaron [28]. First we will discuss

some relevant properties of the self-energies ΣN (p, τ) and ΠN (p, τ), which are calculated

with the DiagMC method. In the previous section we observed that ΣN (p, τ) oscillates and

diverges as a function of N . This scenario raises the question: how can one extract physically

relevant information from such an expansion for the one-body self-energy? We will show in

this section that a sign-alternating series, even if it is divergent, can be re-summed.

At first sight it might seem plausible that one gets more accurate results if more diagrams

are taken into account. This could be done by dressing some lines in the diagrams. Dressing

can be achieved by summing a subseries of diagrams. In fact, we already have summed

up such a subseries, namely the ladder diagrams in the renormalized interaction. This

summation was physically motivated, and it was necessary in our procedure to renormalize

the contact interaction. Let us give another example. Take the Green’s function defined by

G1
↓(p, τ) = G0

↓(p, τ)+G0
↓(p, τ)Σ(1)(p, τ)G1

↓(p, τ) (see Sec. 2.4 for the definition of Σ(1)(p, τ)).

Let us call G0
↓ and Γ0 the ‘bare propagators’. Propagators that include more diagrams will
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Figure 2.13 – The one-body self-energy ΣN (p = 0, τ) as function of τ for different orders N for

kF as = 1 and µ = −1.22.

Figure 2.14 – The upper diagram shows a fourth-order Σ-diagram which contains a first-order

subdiagram in the dashed circle. In the lower diagram the G0
↓-propagators are replaced by G1

↓-

propagators (bold lines) and the upper diagram is included implicitly.
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be called dressed or bold propagators. In the DiagMC simulation we could for example

replace all G0
↓ with the dressed G1

↓. From Fig. 2.14 it is clear that diagrams which contain a

first-order diagram as a subdiagram have to be excluded to avoid double counting. In this

way an infinite subset of diagrams is included in each diagram in an implicit way.

We will discuss more advanced schemes and see that taking into account more diagrams

does not always lead to better and more accurate results. We will look at different schemes to

calculate the ground-state properties for the polaron and the molecule to check the robustness

of the results.
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Abstract

We report on a study of a spin-down impurity strongly coupled to a spin-up Fermi
sea (a so-called Fermi polaron) with the diagrammatic Monte-Carlo (DiagMC) technique.
Conditions of zero temperature and three dimensions are considered for an ultracold
atomic gas with resonant interactions in the zero-range limit. A Feynman diagrammatic
series is developed for the one-body and two-body propagators providing information
about the polaron and molecule channel respectively. The DiagMC technique allows
us to reach diagram orders that are high enough for extrapolation to infinite order.
The robustness of the extracted results is examined by checking various resummation
techniques and by running the simulations with various choices for the propagators
and vertex functions. It turns out that dressing the lines in the diagrams as much as
possible is not always the optimal choice. We also identify classes of dominant diagrams
for the one-body and two-body self-energy in the region of strong interaction. These
dominant diagrams turn out to be the leading processes of the strong-coupling limit.
The quasiparticle energies and Z-factor are obtained as a function of the interaction
strength. We find that the DiagMC results for the molecule and polaron properties are
very similar to those obtained with a variational ansatz. Surprisingly, this variational
ansatz gives very good predictions for the quasiparticle residue even when this residue
is significantly smaller than one.

1 Introduction

The notion of a ‘bare’ particle loses its significance once it is strongly coupled to a medium.
Landau introduced the notion of a quasiparticle whose properties may be very different from
those of a bare particle [1]1. The most prominent example is an electron moving in a crystal:
the electron displaces the nearby ions and carries this distortion with it. The presence of
the phonon cloud changes the mass and energy of the electron, that is dubbed as ‘polaron’
[2]. More generally, a polaron arises whenever a quantum impurity is strongly coupled to an
environment. These quantum-mechanical quasiparticles play a key role in the low-energy
behavior of a macroscopic quantum liquid.

In recent years, the field of ultracold atoms has provided an exciting framework for studying
polaronic effects. A key idea is that models designed for describing the rich and non-trivial
structure of the solid state, can be emulated in a clean and controllable manner with ultracold
atoms. For example, so-called Fermi polarons [3, 4, 5], spin-down impurities that are strongly

1The references of the citations in this text are located at the end of this chapter
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coupled to a spin-up Fermi sea, can be created in a degenerate two-component atomic
Fermi gas when going to the limit of strong spin-imbalance close to a Feshbach resonance.
The impurity is coherently dressed with particle-hole excitations of the Fermi sea. The
properties of the Fermi polaron are important for the quantitative understanding of a strongly
imbalanced Fermi gas [6].

In this paper, we focus on the ‘attractive Fermi polaron’, with an attractive interaction
between the impurity and the fermions of the bath. A recent experiment using an ultracold
gas of 6Li atoms in three dimensions revealed the existence of Fermi polarons through a
narrow quasiparticle peak in the impurities’ radio-frequency (rf) spectrum [4]. At a critical
interaction strength, the disappearance of this peak was interpreted as a transition from
polaronic to molecular binding, when the impurity and an atom of the sea form a two-
body bound state. Such a transition had theoretically been predicted in three dimensions
(3D) by Prokof’ev and Svistunov [3]. To determine the transition point, they developed
a diagrammatic Monte Carlo technique (DiagMC) capable of solving the Fermi polaron
model[3, 8]. Calculations of the ground-state energy showed that for a sufficiently strong
attraction between the impurity atom and the atoms of the spin-up Fermi sea, a molecular
state becomes energetically favorable. The crossing point was found at an interaction strength
(kFa)c = 1.11(2), with kF the Fermi momentum of the spin-up sea and a the s-wave scattering
length. A variational treatment developed by Chevy based on an expansion up to single
particle-hole excitations on top of the unperturbed Fermi sea turned out to be remarkably
accurate [9]. A combination of Chevy’s ansatz with a variational wave function in the
molecular limit [10, 11, 12] also revealed the polaron-to-molecule transition, very close to the
DiagMC result.

In the present work, we study the quasiparticle properties of the Fermi polaron problem
in 3D with the DiagMC technique [3, 8]. This technique evaluates a series of Feynman
diagrams for the one-particle and two-particle proper self-energies. A full description of
the DiagMC algorithm was presented in Ref. [8]. Building on the work of Ref. [8] we have
implemented the DiagMC algorithm independently. We explore various DiagMC schemes
[13] and series resummation methods to check the robustness of the results against the
possible uncertainties of summing the series. First, we confirm the transition point. Next, we
calculate the quasiparticle residue which we compare to experimental data and variational
results. The quasiparticle residue, or Z-factor, gives the overlap of the non-interacting wave
function and the fully interacting one,

Zp = |〈ΨN↑
0 |0↓, FS(N↑)〉|2 , (1)

with |ΨN↑
0 〉 the fully interacting ground state and |0↓, FS(N↑)〉 a free spin-down atom carrying

momentum p = 0 in a non-interacting Fermi sea FS of N↑ spin-up atoms. The spin-up
atoms are non-interacting since p-wave scattering is negligible. The residue reflects the
impurity’s probability of free propagation.

The outline of the paper is as follows. In Section 2 we introduce the model and the structure
of the Feynman diagrammatic expansion. In Section 3 we discuss the results of the numerical
calculations. Thereby, we investigate on how the results depend on the choices made with
regard to the diagrammatic series, like the use of bare versus dressed propagators. Also
the resummation of the diagrammatic series is discussed in depth. The results for the
quasiparticle properties, like the residue, are the subject of Section 4.

Chapter 2. The Fermi polaron and its Green’s function 39



2 Model and Diagrammatic structure

We consider a dilute two-component gas of ultra-cold fermionic atoms interacting via the
van der Waals-potential. The Hamiltonian has a kinetic and interaction term

Ĥ =
∑

k,σ=↑↓
εkσ ĉ

†
kσ ĉkσ +

1

V
∑

k,k′,q

V (k− k′) ĉ†
k+ q

2 ↑
ĉ†−k+ q

2 ↓
ĉ−k′+ q

2 ↓
ĉ
k′+ q

2 ↑
.

The operators ĉ†kσ (ĉkσ) create (annihilate) fermions with momentum k and spin σ. The
spin-σ fermions have mass mσ and dispersion εkσ = k2/2mσ, and V is the volume of
the system. We take ~ = 1 throughout the paper, and consider the mass-balanced case
m↑ = m↓ = m. All the theoretical considerations are for zero temperature (or T � TF with
TF the Fermi temperature). The diluteness of the system ensures that the range b of the
potential is much smaller than the typical inter-particle distance 1/kF , or kF b � 1, with
kF the Fermi momentum of the spin-up sea, and therefore the details of the interaction
potential become irrelevant. Accordingly, without loss of generality, one can model the
short-ranged interaction as a contact interaction, V (r) = g0δ(r), in combination with the
standard ultra-violet divergence regularization procedure described below.

The one-body and two-body propagators provide access to information about the ‘polaron’
and ‘molecule’ channel respectively. The polaron and molecule are two distinct objects
belonging to different charge sectors. The one-body and two-body propagators are discussed
in Sections 2.1 and 2.3. The adopted regularization procedure for the renormalized interaction
is the subject of Section 2.2. The DiagMC method is introduced in Section 2.4.

2.1 One-body propagator

The polaron quasiparticle properties can be extracted from the impurity’s Green’s function
defined as

G↓(k, τ) = −θ(τ)〈ΦN↑
0 |ĉk↓(τ)ĉ†k↓(0) |ΦN↑

0 〉 , (2)

with ĉk↓(τ) the annihilation operator in the Heisenberg picture,

ĉk↓(τ) = e(Ĥ−µN̂↓−µ↑N̂↑)τ ĉk↓e
−(Ĥ−µN̂↓−µ↑N̂↑)τ . (3)

The propagator G↓(k, τ) is written in the momentum imaginary-time representation, µ is

a free parameter, N̂σ is the number operator for spin-σ particles, and µ↑ is the chemical
potential of the spin-up sea. The state

|ΦN↑
0 〉 = |〉↓|FS(N↑)〉 , (4)

consists of the spin-down vacuum and the non-interacting spin-up Fermi sea. Since we
are dealing with an impurity spin-down atom, G↓ is only non-zero for times τ > 0. The
ground-state energy and Z-factor can be extracted from the Green’s function of Eq. (2).

Inserting a complete set of eigenstates |ΨN↑
n 〉 of the full Hamiltonian (2) for one spin-down
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particle and N↑ spin-up particles into Eq. (2) yields for k = 0

G↓(0, τ) = −θ(τ)
∑

n

|〈ΨN↑
n |ĉ†0↓|Φ

N↑
0 〉|2e−(En(N↑)−EFS−µ)τ

τ→+∞
= −Zp e−(Ep−µ)τ ,

with Ep the energy of the polaron, En(N↑) the energy eigenvalues of the Hamiltonian (2)
and EFS = 3 εFN↑/5 the energy of the ideal spin-up Fermi gas, with εF = k2

F /(2m) the
Fermi energy.

The difference between the polaronic and molecular state is embedded in the factors

|〈ΨN↑
n |ĉ†0↓|Φ

N↑
0 〉|2 in Eq. (5). For situations where the polaron is a well-defined quasiparticle in

the ground state |ΨN↑
0 〉, we have Eq. (1) for the Z-factor and Ep = E0(N↑)−EFS . If, on the

other hand, the ground state |ΨN↑
0 〉 is a dressed molecule the overlap 〈ΨN↑

0 |ĉ†0↓|Φ
N↑
0 〉 is zero

[11]. This is clear from the expansion of the molecular state in the number of particle-hole
excitations,

|ΨN↑
0 〉 =

(∑′

k

ξkĉ
†
−k↓ĉ

†
k↑ +

∑′

k,k′,q

ξkk′qĉ
†
q−k−k′↓ĉ

†
k↑ĉ
†
k′↑ĉq↑ + . . .

)
|ΦN↑−1

0 〉 . (5)

The coefficients ξ are variational parameters, and the primes indicate that the sums on k,
k′ and q are restricted to |k|, |k′| > kF and |q| < kF . Even if a molecule is formed in the
ground state, the polaron can be a well-defined excited state (in the sense of a narrow peak
in the spectral function), and Zp can be non-zero.

For vanishing interactions V the impurity Green’s function of Eq. (2) becomes

G0
↓(k, τ) = −θ(τ)e−(εk↓−µ)τ . (6)

The one-body propagator for the spin-up sea is defined as

G↑(k, τ) = −〈ΨN↑
0 |Tτ

[
ĉk↑(τ)ĉ†k↑(0)

]
|ΨN↑

0 〉 , (7)

with Tτ the time-ordering operator. Without interactions, one obtains the free propagator

G0
↑(k, τ) =

{
−e−(εk↑−εF )τθ(|k| − kF ) if τ > 0 ,

e−(εk↑−εF )τθ(kF − |k|) if τ < 0 .

Our goal is to calculate the G↓ of Eq. (2) to extract Ep by means of Eq. (5). This is
achieved by summing all irreducible one-particle self-energy diagrams with the DiagMC
algorithm (which works in momentum-imaginary-time representation). The irreducible self-
energy Σ(k, ω) in imaginary-frequency representation is obtained after a numerical Fourier
transform, and inserted into Dyson’s equation to give G↓,

[
G↓(k, ω)

]−1
=
[
G0
↓(k, ω)

]−1 − Σ(k, ω) , (8)

with ω the imaginary frequency. A graphical representation of the Dyson equation is shown
in the top panel of Fig. 1. As was shown in Ref. [8], the polaron energy Ep and Z-factor Zp
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Figure 1 – Graphical representation of the Dyson equation and the Bethe-Salpeter equation. The
free (dressed) one-body impurity propagator is denoted by G0

↓ (G↓). The Σ and Π are the one-body
and two-body self-energies, respectively. The Γ is the fully dressed interaction, wheres Γ0 is the
partially dressed interaction obtained by summing all the bare ladders G0

↓G
0
↑ (see Eqs. (14) and

(15)).

can be extracted directly from the self-energy Σ(0, τ),

Ep =

∫ +∞

0

dτ Σ(0, τ) e(Ep−µ)τ , (9)

Zp =
1

1−
∫ +∞

0
dτ τ Σ(0, τ) e(Ep−µ)τ

. (10)

The effective mass m∗ of the polaron is evaluated with the estimator[8]

m∗ =
1/Zp

1/m+B0
, (11)

with

B0 =

∫ +∞

0

dτ e(Ep−µ)τ

[
1

3
∇2

kΣ(k, τ)|k=0

]
, (12)

which can conveniently be estimated by expanding Σ(k, τ) in Legendre polynomials. One
obtains

1

3
∇2

kΣ(k, τ)|k=0 =
15

2∆3

∫ ∆

0

dk Σ(k, τ)

(
3k2

∆2
− 1

)
, (13)

and the integral can be evaluated during the MC simulation. The upper limit of integration
(∆) is optimized to minimize the statistical noise while avoiding a systematic error at too
large ∆. We also used an alternative way by calculating the quasiparticle spectrum E(k)
and fitting m∗ via E(k) = Ep + k2/(2m∗).

2.2 Renormalized interaction

We introduce the s-wave scattering length a for collisions between spin-up and spin-down
particles. One of the advantages of working with Feynman diagrams is that one can work
directly in the zero-range limit kF b→ 0 (or, equivalently, Λ/kF → +∞ with Λ an ultraviolet
momentum cut-off) while keeping kFa constant. Thereby, the ultra-violet physics can be
taken into account by means of a summation over all Feynman ladder diagrams.
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In momentum-imaginary-frequency representation (p,Ω), one obtains for the partially dressed
interaction

Γ0(p,Ω) = g0 + g0 Π0(p,Ω) Γ0(p,Ω) , (14)

with Π0 the two-particle self-energy consisting of one ‘bare’ ladder

Π0(p,Ω) = − 1

2πV
∑

|q|<Λ

∫
dω G0

↑(
p

2
+ q, ω)G0

↓(
p

2
− q,Ω− ω)

=
1

V
∑

|q|<Λ

θ(|p/2 + q| − kF )

iΩ− p2/(4m)− q2/m+ µ+ εF
,

(15)

where the momentum cutoff Λ is required to keep the sum finite. The bare coupling constant
V (p) =

∫
dre−ip·rV (r) = g0 can be eliminated in favor of the physical scattering length a by

using standard scattering theory

1

g0
=

m

4πa
− 1

V
∑

|k|<Λ

1

2εk
. (16)

The Γ0(p,Ω) from Eq. (14) can be expressed in terms of the s-wave scattering length a, by
taking the limit Λ→ +∞ and g0 → 0− with a fixed. In this zero-range limit, one gets

[Γ0(p,Ω)]−1 = [Γ̃0(p,Ω)]−1 − Π̄(p,Ω) , (17)

with

Π̄(p,Ω) = −
∫

dq

(2π)3
θ(kF − q)

1

iΩ− q2

2m −
(p−q)2

2m + µ+ εF
. (18)

Here, we have taken the thermodynamic limit (V → +∞ and N↑/V fixed). The integral in
Eq. (18) can be evaluated analytically, and the dressed interaction in vacuum is given by

[Γ̃0(p,Ω)]−1 =
m

4πa
− m

8π

√
p2 − 4m(iΩ + µ+ εF ) , (19)

for Ω 6= 0 or µ < −εF , and assuming the principal branch. For µ < −[εF + 1/(ma2)], the
Fourier transform to imaginary time can be done analytically, producing

Γ̃0(p, τ) = − 4π

m3/2
e−( p

2

4m−µ−εF )τ

(
1√
πτ

+
1√
ma

e
τ

ma2 erfc
(
−
√
τ

m

1

a

))
, (20)

with erfc(x) the complementary error function. As in Ref. [8], we use Γ0(p, τ) as a partially
dressed interaction vertex in the diagrammatic series, instead of the bare interaction vertex
g0. This dressed vertex is calculated here in imaginary time representation by performing
the Fourier transform of Eq. (17) numerically.

In a next step, the interaction vertex will be fully dressed by calculating the two-particle
self-energy Π and plugging it into the Bethe-Salpeter equation,

[Γ(p,Ω)]−1 = [Γ0(p,Ω)]−1 −Π(p,Ω) . (21)

A graphical representation of this equation is shown in Fig. 1. The self-energy Π contains
all connected two-particle diagrams that are irreducible with respect to cutting a single Γ0

propagator. To avoid double counting, the diagrams for Π should not contain any ladders,
since those have been summed in Γ0 by means of the Eq. (14). This rule also holds when
summing diagrams for the one-body self-energy Σ, built from free propagators G0

σ and Γ0.
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2.3 Two-body propagator

Here, we consider the pair annihilation operator,

P̂k =
∑

q

ϕ(q) ĉk−q↑ĉq↓ , (22)

with ϕ(q) the momentum representation of the wave function ϕ(r) for relative motion of the
two fermions of opposite spin. The two-particle propagator is defined as

G2(k, τ) = −θ(τ)〈ΦN↑
0 |P̂k(τ)P̂ †k(0) |ΦN↑

0 〉 , (23)

where we included the fact that the impurity spin-↓ atom propagates forward in time.

Inserting the complete basis |ΨN↑+1
n 〉 for (N↑ + 1) spin-up particles and one spin-down

particle, gives

G2(0, τ) = −θ(τ)
∑

n

|〈ΨN↑+1
n |P̂ †0 |Φ

N↑
0 〉|2e−(En(N↑+1)−EFS(N↑)−µ↑−µ)τ

τ→+∞
= −Zmol e

−(Emol−µ)τ ,

(24)

with Emol the molecule energy and Zmol the molecule Z-factor. If the molecule is a well-
defined quasiparticle in the ground state, we have

Zmol = |〈ΨN↑+1
0 |P̂ †0 |Φ

N↑
0 〉|2 , (25)

and Emol = E0(N↑ + 1)− EFS(N↑)− µ↑. Note that the value of Zmol depends on the wave
function ϕ(q). The functional from of this pair wave function depends on the nature of
experiment used to probe the molecule.

In practice, it is easier to calculate the molecule energy from the fully dressed interaction Γ
(see Eq. (21)). This function is closely related to the pair correlation function, namely,

Γ(k, τ) = g0δ(τ) + g0 P(k, τ) g0 , (26)

with
P(r, τ) = −θ(τ)〈ΦN↑

0 |(Ψ̂↑Ψ̂↓)(r, τ)(Ψ̂†↓Ψ̂
†
↑)(0, 0)|ΦN↑

0 〉 , (27)

the pair correlation function. The field operators Ψ̂†σ(r) =
∑

k e
−ikrĉ†k,σ/

√
V create a spin-σ

fermion at position r. In Eq. (27) the pair of particles is created at the same position (which
corresponds to ϕ(q) = 1 in Eq. (22)). The structure of the fully dressed interaction Γ and
the two-particle propagator G2 now implies that both structures have the same poles (see
Eq. (26)). Therefore, the exponential tail of the function Γ(k = 0, τ) can conveniently be
used for estimating the molecule energy, rather than the tail of G2(0, τ). This is equivalent
with looking for this pole of the Bethe-Salpeter equation (21). The molecule’s energy Emol is
given by the parameter µ that satisfies the equation

[Γ0(p = 0,Ω = 0)]−1 = Π(p = 0,Ω = 0) , (28)

where the left-hand-side is known analytically, and the right-hand-side is evaluated with the
DiagMC algorithm in imaginary-time domain.
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2.4 Diagrammatic Monte Carlo

DiagMC evaluates the series of Feynman diagrams for the self-energy in a stochastic way.
We deal with both the one-body and two-body self-energies. In a first step, the self-energy is
built from the free propagators G0

σ and the partially dressed interaction Γ0 (obtained through
summation of G0

↓G
0
↑ ladders; as discussed in Section 2.2). We will refer to this series as the

‘bare series’. Fig. 2 shows the one-body and two-body self-energy diagrams up to order 3
in the bare scheme. The order of a diagram is N when there are N dressed interactions Γ
(i.e., N boxes) present in the Σ-diagram, and N − 1 boxes in the Π-diagram. Note that the
diagrams cannot contain ladders since these have been taken into the vertex function Γ0. To
illustrate the factorial growth with order, the number of one-body self-energy diagrams for
given order N ≤ 12 is given in the second column of Table 1 for the bare series.

In a second step, we will use dressed propagators or ‘bold lines’ in the diagrams. Such dressed
(skeleton) series are evaluated with the Bold DiagMC technique [13, 3]. We consider the case
with only dressed G↓ propagators while keeping Γ0 of Eqs. (17) and (18) as renormalized
interaction, and the case whereby both the one-body propagators and interactions are dressed.
We will refer to these skeleton series as ‘bold G’ and ‘bold G-Γ’, respectively. In the latter
case, the Bold DiagMC algorithm is constructed as follows: given approximate one-body and
two-body self-energies Σ and Π, the Dyson and Bethe-Salpeter equation are solved to deliver
the one-body propagator G↓ and the dressed interaction Γ (see Eqs. (8) and (21)). In a next
step, these are used to dress the series for Σ and Π, which are evaluated stochastically with
DiagMC up to order N∗. This self-consistent cycle is repeated until convergence is reached.
Fig. 3 shows the skeleton (bold G-Γ) series for the one- and two-body self-energies up to
order 4. Evidently, when dressing the lines in the self-energies, one has to keep track of
two-particle reducibility, and systematically avoid any double counting. This typically means
that at any order N the numbers in the second column of Table 1 (Bare) are an upper limit
of the number of diagrams in the third and fourth column. At N = 2 and N = 4, however,
the number of diagrams increases due to the fact that ladders should be included again once
G↓ is bold. All the diagrams of Table 1 are summed explicitly during the (Bold) DiagMC
simulation.

3 Resummation and boldification

When considering a diagrammatic series, it is natural to ask whether there are dominant
classes of diagrams. Identification of the dominant diagrams potentially allows one to make
good approximations. To address this issue, we constructed a histogram counting how many
times a certain topology is sampled. We consider first the bare series. It turns out that
for the one-body self-energy, roughly half of the simulation time is spent on sampling two
diagrams at each order. These two diagrams are shown in Figure 4 for diagram order six.
To understand why these two diagrams are dominant at a fixed N , we use an argument
first made by Hugenholtz[14]. For the dilute spin-up gas, momentum integration inside the
Fermi sea is heavily restricted in phase space (momentum integration runs up to the Fermi
momentum kF ∼ (N↑/V)1/3). This implies the presence of a backward (or hole) spin-up
propagator reducing the contribution of the diagram significantly, while the forward (particle)
propagator enhances the contribution roughly with a factor

∫
|k|>kF dk. As a consequence,
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N Bare Bold G Bold G-Γ
1 1 1 1
2 0 1 0
3 2 2 1
4 6 7 2
5 34 34 13
6 210 206 74
7 1,526 1,476 544
8 12,558 12,123 4,458
9 115,618 111,866 41,221
10 1,177,170 1,143,554 421,412
11 13,136,102 12,816,572 4,722,881
12 159,467,022 156,217,782 57,553,440

Table 1 – Factorial increase of the number of Feynman diagrams. At fixed order N , the number
of one-body self-energy diagrams is given for different types of series: the bare series, the skeleton
series with dressed G↓ (bold G), and the skeleton series with dressed G↓ and Γ lines (bold G-Γ).

+=

+ + ...

= +

+ + ...

Σ

Π

Figure 2 – Diagrammatic expansion for the one-body self-energy Σ and the two-body self-energy
Π. Here, the diagrams are built from the bare propagators G0

σ (thin lines), and the partially dressed
interaction Γ0 (light grey box). All diagrams have a ‘backbone’ structure, since we have a single
impurity propagating forward in time and interacting with a Fermi sea of free particles.
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Figure 3 – Skeleton diagrammatic expansion for the one-body and two-body self-energy: the
impurity propagator and interaction lines that appear in the diagram are fully dressed solutions of
the Dyson equation and the Bethe-Salpeter equation (see Fig. 1).

Figure 4 – The figure contains the two dominant one-body self-energy diagrams for N = 6.
Imaginary time runs from right to left.
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Figure 5 – The polaron energy in units of the Fermi energy as a function of the inverse maximum
diagram order 1/N∗ for irreducible self-energy diagrams at unitarity 1/(kF a) = 0. The red squares
show the polaron energy calculated via Eq. (9) with self-energy diagrams built from the free
propagators G0

σ and the partially dressed propagator Γ0. The blue circles show the results from the
bold-G approach.

diagrams with the smallest possible number of hole propagators will be dominant. For the
self-energy, we see that, at fixed order, the minimum number of hole propagators is two.
Since the number of fermion loops differs by one, these two diagrams have opposite sign.
Numerically we found that the two diagrams almost cancel each other. This can be seen in
Figure 5, where we show the polaron energy Ep as a function of the inverse diagram order
cut-off N∗ for the interaction strength 1/(kFa) = 0. For the ‘bare series’, we observe a fast
convergence due to cancellation of diagrams. This magic cancellation was referred to as
‘sign blessing’ [3]. At infinite scattering length, such near cancellation was also observed
by Combescot and Giraud [15]. They have found that the success of the Chevy ansatz at
strong coupling can be attributed to a nearly perfect destructive interference of the states
with more than one particle-hole excitation. Combescot and Giraud illustrated that an
expansion in powers of the hole wave vectors converges extremely rapidly at unitarity. In our
case, the series is organized differently, but at fixed order we have exactly the same type of
cancellation between diagrams with the same number of hole propagators[16]. Just like in the
Combescot-Giraud argument, the cancellation is exact when the momentum-dependence of
the hole propagators is neglected. Note that the dominant diagrams (see Figure 4) can also
be viewed as three-body T -matrix diagrams closed with two hole propagators [17]. This class
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Figure 6 – Same plot as Figure 5, but now considering the interaction strength parameter
1/(kF a) = 1.333. In the bare series, small oscillations prevent us from extrapolating to infinite
diagram order.

of diagrams, in which there are at most two particle-hole excitations, has been considered
previously for the polaron problem [12, 15]. It was shown that they exactly reproduce the
Skorniakov and Ter-Martirosian equation [18] in the BEC limit. In this strong-coupling
limit, the dominant process is scattering between a dimer and a spin-up fermion, which is
diagrammatically represented by the three-body T-matrix diagrams. Away from this limit,
the considered class of diagrams turns out to give a quantitatively good correction to the
lowest order result. We find that this is due to their dominance, even away from the BEC
limit.

When going towards the BEC side (1/a > 0), the cancellation between dominant diagrams
of the type shown in Figure 4 is no longer perfect. Figure 6 shows the polaron energy as a
function of 1/N∗ for 1/(kFa) = 1.333. For the bare series, the oscillations prevent one from
extracting Ep for 1/N∗ → 0.

To cure the bad convergence of the bare series for 1/(kFa) > 0 one can include more diagrams
by dressing the propagators. We start by dressing the spin-down propagator lines, while
keeping the partially dressed Γ0. Diagrams reducible with respect to cutting two spin-down
lines should no longer be sampled, since they are included implicitly. For 1/(kFa) = 0 the
self-energy Σ(k, τ) converges in this ‘bold G scheme’ for N∗ ≥ 7. Extrapolation to infinite N∗
gives the exact Σ and G↓. Figure 5 includes the polaron energy as function of diagram order
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cut-off when the one-body self-energy is built with the exact G↓. The bare and bold series
converge to the same energy. Remarkably, the dressed scheme gives worse results at low
N∗. This indicates that approximations based on a few low order diagrams are completely
uncontrolled, and including more diagrams by dressing the lines does not necessarily improve
the quality of the results.

For 1/(kFa) = 1.333, we see that dressing the impurity lines helps to get rid of the residual
oscillations in the bare scheme (see Figure 6). One might expect that dressing even more,
by using a fully dressed Γ instead of Γ0, might lead to even better convergence. Figure 7
shows however that, even for 1/(kFa) = 0, the fully bold series (bold G-Γ scheme) does
not seem to converge (N∗ is the diagram cut-off for both Σ and Π, and a Bold DiagMC
simulation is done for each N∗), in contrast to the results of Ref.[8]. The data for the fully
bold simulation of Ref.[8] was obtained by using the exact G and Γ (i.e. extrapolated to the
N∗ → ∞ limit with resummation factors). They were not obtained with a self-consistent
simulation, which explains the difference. Moreover, data is not shown above N∗ = 7, where
oscillations do occur. In order to understand why the series no longer converges, we introduce
an intermediate scheme (which we call bold G-Γ1): the self-energy is built from the fully
converged G↓ and a partially dressed interaction Γ1, built from summing the ladders G↓G0

↑.
The result is also shown in Figure 7, and we again observe convergence to the same answer
as in Figure 5. The key difference between both schemes is that in the bold G-Γ1 scheme,
both dominant diagrams shown in Fig. 4 still explicitly contribute to the self-energy, whereas
in the fully bold scheme the upper dominant diagram becomes reducible and is taken into
account self-consistently. This means that the balance of cancellation between diagrams is
broken, and a single dominant diagram keeps contributing at each order. So, it turns out
that dressing the diagrams as much as possible is not always a good idea. In this respect,
our findings disagree with Ref.[8].

A second method to cure the bad convergence of the bare series on the BEC side, is to
employ series resummation techniques. We will use the Abelian resummation techniques[19]
which have been used when calculating the equation of state of the unitary gas with Bold
DiagMC[20]. This resummation technique works as follows. One starts from a series
f(x) =

∑
n dnx

n that has a finite radius of convergence R > 0. The idea is to sum the series
at some point x0 outside of the radius R by analytically continuing the function f . This
provides a good procedure for summing the divergent series in the sense that it respects basic
operations (sum, multiplication and derivative) and that it preserves distinctness[19]. It is
well-known that with analytic continuation, one can encounter problems with the existence
and/or uniqueness of the solution[21]. However, one can formally define a domain called the
‘Mittag-Leffler star’ where the function can be analytically continued along straight lines
[0, x0]. Note that this star will always contain the disk of convergence. It can be shown[19]
that for each point x0 of the Mittag-Leffler star, the limit

lim
ε→0+

∑

n

dnx
n
0 e
−ελn , (29)

with λn = n log(n) for n > 0 and λ0 = 0, exists and is equal to the analytic continuation of
f to the point x0. Note that within the disk of convergence the procedure works equally well,
and can improve the rate of convergence. We apply the Abelian resummation technique to
the expansion of the self-energy Σ and Π. As the analytic structure of Σ and Π is unknown,
it is currently impossible to determine whether there is a finite radius of convergence and
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Figure 7 – The polaron energy in units of the Fermi energy as a function of the inverse maximum
diagram order 1/N∗ for irreducible self-energy diagrams at unitarity 1/(kF a) = 0. The blue circles
show results from a fully Bold DiagMC simulation: the self-energy diagrams are built from fully
dressed one-particle propagators G↓ and two-particle propagators Γ up to self-energy diagram order
N∗. The red squares show the polaron energy calculated with diagrams built with the exact G↓ and
a partially dressed interaction Γ1 containing the sum of all G↓G

0
↑ ladders.

whether we are in the Mittag-Leffler star. In practice, we apply different resummation
techniques (i.e., different functions λn), and test the uniqueness of the result.

We use following λn: (i) Lindelöf 1: λn = n log(n) for n > 0 and λ0 = 0; (ii) Lindelöf 2:
λn = (n − 1) log(n − 1) for n > 1 and λ0 = λ1 = 0; (iii) Gauss 1: λn = n2 for n ≥ 0; (iv)
Gauss 2: λn = (n − 1)2 for n ≥ 1 and λ0 = 0; (iv) Gauss 3: λn = (n − 2)2 for n ≥ 2 and
λ0 = λ1 = 0. Before applying these resummation techniques to our diagrammatic series,
we illustrate its power with an example for the geometric series. Figure 8 shows the sums
fε(x0 = −3) =

∑
n x

n
0 e
−ελn for a few choices of λn. At small ε, the computation of fε is no

longer feasible due to finite computer precision. By extrapolating to ε = 0, we indeed find
1/(1− x0) with high precision. The Lindelöf curve gives a slighly less accurate extrapolation
because it suppresses high order contributions in a much smoother fashion than the Gaussian
resummation. When applying these techniques to our diagrammatic series, it is the growth
of the statistical error bars (due to factorial complexity) that prevents us from going to
very small values of ε. Figure 9 shows the polaron energy calculated with the resummed
self-energy as a function of the control parameter ε for 1/(kFa) = 1.333. The polaron energy
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Figure 8 – Illustration of the Abelian resummation technique for the geometric series. We evaluate
fε(x0) =

∑
n x

n
0 e
−ελn for x0 = −3. and various choices of λn. The value of the analytically continued

function 1/(1− x0) is retrieved for ε→ 0+.

Ep can be extracted with high accuracy. The major source of error bar stems from the
uncertainty in the extrapolation.

Histogramming the different topologies of the two-body self-energies Π revealed a dominant
diagram at each order. This diagram is shown in Figure 10. Again it shows a three-body
T -matrix structure that is closed with a single spin-up hole propagator. Upon increasing
the diagram order up to 20, we observe a steady growth in the contribution of this diagram.
This is illustrated in Figure 11, where we plot the n-th order contribution Πn to the two-
body self-energy as a function of imaginary time τ for external momentum zero. Figure 12
illustrates that we can nonetheless get accurate values for the molecule energy Emol by using
different Abelian resummation techniques and extrapolating to ε = 0+. Again, the Gaussian
resummation methods allow one to reach very small values of ε. The quoted error bars are
rather conservative as we include the extrapolated results obtained with all choices for λn.

We also tested the resummability of the fully bold series (bold G - bold Γ scheme), since this
was used in the Bold DiagMC method for determining the equation of state of the unitary
gas[20]. When applying the Abelian resummation techniques and extrapolate to ε = 0+ at
1/(kFa) = 0, the correct polaron energy is retrieved. This constitutes an independent check
for the resummation of the skeleton series.
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Figure 9 – Abelian resummation of the bare series of one-body self-energy diagrams at 1/(kF a) =
1.333. The polaron energy Ep/εF is extracted in the limit ε = 0+ for different choices of λn.

Figure 10 – At fixed order, there is one dominant diagram for the two-body self-energy. Here, we
draw this diagram at order six.
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4 Quasiparticle properties

As an independent cross-check of Ref. [3], which uses alternate ways of resumming the
diagrammatic series, we calculate the ground-state energies of the polaron and molecule.
Figure 13 shows these energies shifted by the vacuum molecule energy Eb = −1/(ma2) in
units of the Fermi energy εF . A selection of the polaron and molecule energies is also given
in Table 2. We find the transition point at (kFa)c = 1.15(3), in agreement with Ref. [3].
Close to the transition point, we find polaron energies that differ about 1% with the polaron
energies of Ref.[3], which, we believe, is due to a small systematic error in the lowest order
diagram in Ref.[3]. The variational energies obtained from a wave-function ansatz for the
polaron[9] and the molecule[11] are very close to the Monte Carlo results. Note that Chevy’s
variational ansatz for the polaron state is completely equivalent with the non-self-consistent
T -matrix approximation [12] which is exactly our bare series at N∗ = 1. Fixed node-difussion
Monte Carlo (FN-DMC) results are also in good agreement with the DiagMC data. For
1/(kFa) = 2 it seems that systematic errors on the FN-DMC results were underestimated,
since FN-DMC should in principle give an upper bound to the true ground-state energy.

Figure 14 shows the effective mass of the polaron as calculated with DiagMC. We compare
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Figure 12 – Abelian resummation of the bare series of two-particle self-energy diagrams at kF a = 1.
The molecule energy Emol/εF is extracted in the limit ε = 0+ for different choices of λn.

with the ENS experiment [5] at unitarity, DiagMC calculations by Prokof’ev-Svistunov[3],
FN-DMC[6, 7], a variational calculation up to two particle-hole excitations[12], and the first
order (N∗ = 1) result in the bare scheme and the fully bold G-Γ scheme. The experimental
effective mass, which is in perfect agreement with DiagMC [3], was extracted from the low
frequency breathing modes, and in particular the Fermi polaron breathing mode. The lowest
order bare calculation, also known as T -matrix approximation, is equivalent to the Chevy
ansatz, while the lowest order bold calculation corresponds to the self-consistent T -matrix
approximation. These results show that including only single particle-hole pair excitions does
not lead to accurate results for the effective mass, while the variational calculation based
on diagrams taking into account at most two particle-hole pairs excitations agrees with the
DiagMC results[12].

Experimental and theoretical quasiparticle residues are shown in Fig. 15. To create and
probe polarons, the MIT experiment[4] starts from a cloud of 6Li atoms with most atoms
occupying the lowest hyperfine state |1〉 (spin-up), and about 2% of the atoms occyping the
hyperfine state |3〉 (spin-down) in the degenerate regime T ≈ 0.14 TF with TF the Fermi
temperature. A broad Feshbach resonance is used to enhance the scattering between atoms
in states |1〉 and |3〉. Radio-frequency (rf) spectra of the spin-up and spin-down components
are measured. The atoms are transferred to a third empty state with very weak final-state
interactions. Therefore, the measured transition rate I can be connected with the impurity’s
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spectral function ρ↓ in linear response theory[22, 23]

I(ωL) ∝
∑

k

nF (εk − µ− ωL) ρ↓(k, εk − µ− ωL) , (30)

with ωL the frequency of the rf photons and nF (x) = 1/(1+eβx) the Fermi distribution. Note
that the spectral function depends on the temperature. Density inhomogeneities are taken
care of through tomographic reconstruction [4]. At sufficiently weak attractions, the Fermi
polaron is observed as a narrow peak in the impurity spectrum that is not matched by the
broad environment spectrum. The peak position gives the polaron energy Ep, and was found
to be in perfect agreement with the DiagMC results of Ref. [3]. The polaron Z-factor was
measured by determining the ratio of the area under the impurity peak that is not matched
by the environment, and the total area under the impurity’s spectrum. The experimental
Z-factor from Ref. [4] is shown in Figure 15, together with the Z-factor calculated from
Chevy’s ansatz[11, 24], the fully self-consistent result in lowest order (N∗ = 1) and our
DiagMC simulation. DiagMC data for the Z-factor is also given in Table 2.

The results obtained via DiagMC simulation agree extremely well with Chevy’s variational
ansatz. This is very surprising in the strongly interacting regime where Zp is significantly
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Figure 14 – The effective mass m∗ of the polaron in units of the bare mass m as a function of the
interaction parameter 1/(kF a). Our DiagMC results (open circles) are shown together with DiagMC
results by Prokof’ev and Svistunov[3] (filled blue circles), FN-DMC results[6, 7] (black triangles),
ENS experiment[5] (red square) and a variational calculation up to two particle-hole excitations
[12] (solid black line). We also show m∗ calculated from the lowest order self-energy diagram (i.e.,
N∗ = 1) for the bare series (solid grey line) and for the fully bold G-Γ series (solid blue line), which
are equivalent to the non-self-consistent and the self-consistent T -matrix approximation, respectively.

smaller than one. Here, one would expect multiple particle-hole excitations to be important
since the overlap with the non-interacting wave-function is small. Remarkably, including just
single particle-hole excitations on top of the Fermi sea produces almost the exact Zp. When
the lowest order diagram is calculated in a fully self-consistent way, however, the agreement
with DiagMC is less good. This hints at the fact that the almost perfect agreement with
Chevy’s ansatz (i.e., the lowest order bare result) is rather accidental.

The Z-factors computed with Chevy’s ansatz and DiagMC both exceed the measured ones.
It was suggested in Ref.[11] that the disagreement between the experiment and the Chevy
ansatz is an artefact of Chevy’s expansion being restricted to one particle-one hole excitations.
As the DiagMC technique includes multiple particle-multiple hole excitations and agrees
very well with Chevy’s ansatz, we see that this is not the case. However, since the measured
Zp might only give a lower bound[4], theory and experiment might not be in disagreement.

The measured polaron Z-factor vanishes beyond a critical interaction strength. Ignoring
issues related to metastability, once the two-body bound state becomes energetically favorable,
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1/(kF a). DiagMC results (open circles) are compared with variational ansatz[11] (black solid line),
the fully bold G-Γ series at N∗ = 1 or self-consistent T -matrix approximation (solid blue line) and
the MIT experiment[4] (blue circles).

all polarons disappear and the polaron peak vanishes. In the experiment T/TF = 0.14(3),
and finite-temperature effects are thus expected to become important. Indeed, close to
(kFa)c = 1.15(3) the energy difference between the molecule and polaron state is of the order
of 0.1 TF (Fig. 13). Therefore, one expects that T = 0 calculations underestimate the critical
1/(kFa) measured at T ≈ 0.1 TF . Similarly, the measured 1/(kFa)c can be interpreted
as an upper bound for the T = 0 situation. On the other hand, due to depletion of the
experimental spectrum, the measured Z might only give a lower bound, which means that the
experimentally determined critical 1/(kFa) might be underestimated. These uncertainties
might explain why the critical 1/(kFa) in the experiment is lower than the value obtained
with DiagMC for a single impurity. Fixed-node Monte-Carlo simulations for a finite density
of impurities, on the other hand, predict phase separation before the systems even reaches
the polaron-to-molecule transition[6], and the vanishing Z-factor might be a manifestation of
this phase separation.
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1/(kFa) Ep/EF Emol/EF Zp
-1.8 -0.1793(1) 0.9727(4)
-1.6 -0.1961(1) 0.9665(5)
-1.4 -0.2159(2) 0.9590(3)
-1.2 -0.2393(2) 0.9502(3)
-1.0 -0.2687(2) 0.9376(4)
-0.8 -0.3052(2) 0.9209(5)
-0.6 -0.3526(2) 0.8978(8)
-0.4 -0.4141(2) 0.8670(10)
-0.2 -0.4976(2) 0.8237(15)
0.0 -0.615(1) 0.7586(27)
0.2 -0.782(1) 0.6720(42)
0.4 -1.028(2) 0.5672(28)
0.6 -1.385(2) -1.180(13) 0.4410(32)
0.8 -1.880(2) -1.830(8) 0.3258(58)
1.0 -2.540(3) -2.618(6) 0.2283(70)
1.2 -3.372(4) -3.554(6) 0.1559(69)
1.4 -4.373(5) -4.633(5) 0.1102(68)
1.6 -5.554(8) -5.867(6) 0.0771(58)
1.8 -6.889(12) -7.251(5) 0.0578(35)

Table 2 – Selection of DiagMC data for the polaron energy Ep, molecule energy Emol and polaron
residue Zp for several values of the interaction strength parameter 1/(kF a).

5 Conclusions

We have considered the Fermi-polaron system in three dimensions, in which a single spin-down
impurity is strongly coupled to a non-interacting Fermi sea of spin-up particles. Although this
system contains strongly interacting fermions, it can be solved with the Diagrammatic Monte-
Carlo method. This method is based on the stochastic evaluation of a series of Feynman
diagrams. To extract ground-state properties, one has to overcome a factorial complexity due
to the increase of the number of diagrams. Nonetheless, extrapolation to infinite diagram
order becomes possible when the diagrams cancel each other better than the factorial increase
in number. At interaction strength 1/(kFa) = 0, we find such perfect cancellation (within
our statistical errors). When considering the series built on bare propagators on the BEC
side, however, oscillations with diagram order remain and prevent a controlled extrapolation
to the infinite diagram order. We have followed two strategies around this problem: the
first is to consider skeleton series (built on dressed propagators), and the second the use
of resummation techniques. Though dressed series can be evaluated to higher orders, we
have found that in some cases dressing can destroy a favorable cancellation of diagrams. For
all interaction strengths we found that the (skeleton) series of the one-body and two-body
self-energy is resummable by means of Abelian resummation. Bare series, skeleton series and
resummed series give robust answers in their respective region of applicability (i.e. where
the infinite diagram order extrapolation is controlled).

We have identified classes of dominant diagrams for the one-body and two-body self-energy in
the crossover region of strong interaction. The dominant diagrams turn out to be the leading
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processes of the strong-coupling limit: scattering between a dimer and a spin-up fermion,
which is diagrammatically represented by the three-body T-matrix diagrams. Including just
these dominant diagrams gives a quantitatively good correction to the lowest order result,
even away from the strong-coupling limit.

We have shown that not only the polaron and molecule energies agree very well with a
variational ansatz from weak to strong attraction, but also the polaron residue or Z-factor.
Though this agreement must be due to strong cancellation of diagrams, we only observed
convergence for the bare series at 1/(kFa) = 0. A full explanation for the success of the
variational ansatz is still missing, and it is therefore unclear in which cases the ansatz is
appropriate.
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to thank C. Lobo, N. Prokof’ev, B. Svistunov, F. Werner and M. Zwierlein for the helpful
discussions and suggestions. We thank R. Combescot, S. Pilati, N. Prokof’ev, M. Punk, B.
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CHAPTER 3

The 2D Fermi polaron

In chapter 2 we discussed why ultracold gases provide a very good test system to study

strongly interacting many-body systems. With the use of optical potentials the degrees of

motion in one direction can be frozen out and it becomes possible to study low-dimensional

systems. It is generally known that the behavior of a quantum system can change drastically

by lowering the dimensionality. A dramatic example is the ideal, uniform Bose gas which

undergoes the BEC phase transition in 3D at a finite temperature, while in 2D no condensation

is possible at a finite temperature [19]. In this chapter we study the 2D Fermi polaron by

making use of a diagrammatic series for the Green’s function.

3.1 Renormalized interaction

For the 3D Fermi polaron we calculated a renormalized interaction which is well-defined in

the continuum limit. It turns out that for the 2D Fermi polaron we also encounter divergences

if we use the interaction V↓↑(r−r′) = g0δ(r−r′). For the 1D Fermi polaron these divergences

are absent and there is no regularization requirement[29, 30]. We calculate a renormalized

interaction for the 2D Fermi polaron, thereby following a similar approach as in the 3D case

(see Sec. 2.3).

Consider the expression given in Eq. (2.23), now in 2D:

1

Γ0(p,Ω)
=

1

g0
−
∫

B,|q|>kF

dq

(2π)2

1

iΩ− εp−q↓ + µ− εq↑ + εF
. (3.1)

with εp−q↓ = (p−q)2

2m↓
and εq↑ = q2

2m↑
. The integral is over the first Brillouin zone B =

]− π/b, π/b]2 of the reciprocal lattice, with b the lattice spacing. With the use of Eq. (1.20)

the interaction strength parameter g0 can be removed in favour of the two-body binding
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energy εB in Eq. (3.1),

1

Γ0(p,Ω)
= −

∫

B

dq

(2π)2

1

εq↓ + εq↑ + εB
−
∫

B,|q|>kF

dq

(2π)2

1

iΩ− εp−q↓ + µ− εq↑ + εF
. (3.2)

Note that we use the convention here that εB > 0 (hence the extra minus in front of εB).

By grouping the two integrands together, this expression is well-defined in the continuum

limit, l → 0 and g0 → 0− such that εB is fixed. We consider only the mass-balanced case

m↑ = m↓ = m, with εk↓,↑ = εk = k2

2m . To evaluate Eq. (3.2) we write Γ0−1
(p,Ω) as

Γ0−1
(p,Ω) = Γ̃0−1

(p,Ω)− Π̄(p,Ω) , (3.3)

with
1

Γ̃0(p,Ω)
= −

∫
dq

(2π)2

(
1

iΩ− εp−q + µ− εq + εF
+

1

εq + εq + εB

)
, (3.4)

and Π̄(p,Ω):

Π̄(p,Ω) = −
∫

dq

(2π)2

θ(kF − |q|)
iΩ− εq − εp−q + µ+ εF

. (3.5)

The function Γ̃0−1

(p,Ω) can be calculated analytically, for Ω 6= 0 or µ < −εF :

Γ̃0−1

(p,Ω) =
m

4π
ln

[
− εB
iΩ + µ+ εF − εp

2

]
, (3.6)

and

Π̄(p,Ω) =−
∫

dq

(2π)2

θ(kF − |q|)
iΩ− εp−q − εq + µ+ εF

=− m

4π

(
ln

[
− 2(z + 2εF ) + εp

]
− ln

[
− z +

√
(z − εp)2 − 4εF εp

])
,

(3.7)

with z = iΩ + µ − εF , and we have assumed µ < −εF to obtain this last equality. After

combining Eqs. (3.3), (3.6) and (3.7), one gets

Γ0−1

(p,Ω) =
m

4π
ln

[
− 2εB

z −
√

(z − εp)2 − 4εF εp

]
. (3.8)

We now take the Fourier transform of Eq. (3.6) to imaginary-time representation to obtain

Γ̃0(p, τ) (see appendix B):

Γ̃0(p, τ) =
1

2π

∫ +∞

−∞
dΩ e−iΩτ Γ̃0(p,Ω) ,

= −4πεB
m

e−(
εp
2 −εF−µ)τ

[∫ +∞

0

dx
e−xεBτ

π2 + ln2(x)
+ eεBτ

]
θ(τ) ,

(3.9)

for µ < −εF − εB. The integral in Eq. (3.9) can be computed numerically. For τ → 0+ we

make use of the following assymptotic behavior:
∫ +∞

0

dx
e−xεBτ

π2 + ln2(x)
=

1

εBτ

∫ +∞

0

dy
e−y

π2 + ln2( y
εBτ

)

∼
τ→0

1

εBτ

1

ln2(εBτ)
.

(3.10)
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Similar as in the 3D case, we consider the sum of
(

Γ0(p, τ)− Γ̃0(p, τ)
)

and Γ̃0(p, τ) to obtain

Γ0(p, τ). The function Γ̃0(p, τ) contains the sharp, divergent behavior if τ → 0+, which is

handled through the analytic expression Eq. (3.10). The difference
(

Γ0(p, τ)− Γ̃0(p, τ)
)

is

a bounded function and can easily be tabulated numerically.

3.2 DiagMC for the 2D Fermi polaron

In this section we highlight some differences for the DiagMC method for the 2D Fermi polaron

compared to the 3D Fermi polaron. We propose different probability distributions to sample

new imaginary times for Γ0-interactions and to sample new momenta for the G0
↑-propagators.

Since Γ0(p, τ) contains a strongly divergent behavior for τ → 0+, it is important to

choose a good proposal function W1(τ) that allows one to generate small times.

Let us first estimate a typical value of τ if Γ0(p, τ) is used as a renormalized interaction

in the Feynman diagrams. Consider therefore the following integral over the first order

expansion for τ → 0 of Γ0(p, τ), given in Eq. (3.10) with εB = 1:
∫ 0.1

0

dτ
1

τ

1

ln2(τ)
. (3.11)

From the following ratio R we can estimate the importance of short time contributions to

the integral in Eq. (3.11),

R =

∫ τmin
0

dτ 1
τ

1
ln2(τ)∫ 0.1

0
dτ 1

τ
1

ln2(τ)

, (3.12)

with the time τmin < 0.1. If we set τmin = 10−100, R = 0.01, which means that there is still

a significant contribution to the integral in Eq. (3.11) from such small times. To have no

loss of accuracy when storing these times on a computer, we sample and keep track of the

logarithm of the times. Choosing the probability density W1(τ) ∝ 1
τ

1
ln2(εBτ)

allows us to

sample the desired times. Sampling a new time τnew < τ0 from W1(τ) can be done via

r =

∫ τnew
0

dτW1(τ)∫ τ0
0
dτW1(τ)

, (3.13)

ln(τnew) =
ln(εB)(1− r) + ln(τ0)

r
, (3.14)

with r a random number between 0 and 1. The upper limit τ0 should be chosen in such a

way that τ0 <
1
εB

.

We observed that the tail for Γ0(p, τ) for large times has an exponential decay: Γ0(p, τ)
τ→∞∼

e−a(p)τ . The coefficients a(p) are determined before we start the similation. To include

sampling in the range [τ0,∞[ we add a second probability density W2(τ). We choose:

W2(τ) = a(p)e−a(p)τ for τ > 0 . (3.15)

To change the momentum of a forward spin-up propagator we use the following probability

density: W p(|q| = q, φ) = W p(q)/(2π), with (q, φ) polar coordinates, and

W p(q) ∝ qe− τ
2m q

2

. (3.16)
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Notice that W p(q, φ) ∝ G0
↑ for q > kF , and should therefore be a good proposal function. In

the case we want to change the momentum of a forward spin-up propagator, we sample a

new momentum qnew > kF :

r =

∫ qnew
kF

dqW p(q)
∫∞
kF
dqW p(q)

, (3.17)

qnew =

√
τ

2mk
2
F − ln(1− r)

τ
2m

, (3.18)

with r a random number in the range [0, 1]. If we have a backward spin-up propagator, we

propose to change the momentum via

Wh(q) ∝ qe τ
2m q

2

, (3.19)

which is ∝ G0
↑ for q < kF . Note that we again use the convention that τ > 0, even for a hole

propagator (see Eq. (2.60)). A new qnew < kF is given by:

r =

∫ qnew
0

dqWh(q)
∫ kF

0
dqWh(q)

, (3.20)

qnew =

√
ln(re

τ
2mk

2
F − r + 1)
τ

2m

. (3.21)

The angle φ is sampled uniformly between 0 and 2π.

3.3 Diagrammatic Monte Carlo Study of the Fermi po-

laron in two dimensions

This section contains the published results of the 2D Fermi polaron [31]. For the 3D Fermi

polaron, a favorable cancellation between the higher-order diagrams was observed. Therefore,

the lowest-order approximation already provides a good approximation to the ground-state

energy and the Z-factor. Here we will investigate whether this also holds in two dimensions.

We will discuss the cancellation of higher-order diagrams for the 2D Fermi polaron in detail

and we will point out the differences and similarities with the 3D case.

In Sec. 2.2 we noticed that disconnected diagrams in the Feynman-Dyson perturbation

series for the 3D Fermi polaron are absent. Since the topology of the diagrams will not

change if we lower the dimension for the Fermi-polaron system, this statement will also

hold for the 2D case. We will use this property to establish a direct link between a n-ph

variational approach and a DiagMC calculation with a selected class of diagrams. This will

enable us to investigate the accurateness of a n-ph variational treatment.
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Abstract

We study the properties of the two-dimensional Fermi polaron model in which an
impurity attractively interacts with a Fermi sea of particles in the zero-range limit.
We use a diagrammatic Monte Carlo (DiagMC) method which allows us to sample
a Feynman diagrammatic series to very high order. The convergence properties of
the series and the role of multiple particle-hole excitations are discussed. We study
the polaron and molecule energy as a function of the coupling strength, revealing a
transition from a polaron to a molecule in the ground state. We find a value for the
critical interaction strength which complies with the experimentally measured one
and predictions from variational methods. For all considered interaction strengths,
the polaron Z factor from the full diagrammatic series almost coincides with the one-
particle-hole result. We also formally link the DiagMC and the variational approaches
for the polaron problem at hand.

1 Introduction

Experiments with ultracold gases are a powerful tool to investigate the (thermo)-dynamics of
quantum many-body systems under controlled circumstances. With Feshbach resonances [1]1,
for example, one has the ability to tune the interaction strength. Optical potentials [2] can
be exploited to modify the dimensionality of the studied systems. The properties of a single
impurity that interacts strongly with a background gas, for example, can be addressed with
ultracold atoms.

The so-called Fermi polaron problem refers to a single spin-down impurity that is coupled to
a non-interacting spin-up Fermi sea (FS). This problem corresponds to the extreme limit
of spin imbalance in a two-component Fermi gas [3, 4, 5] and has implications on the
phase diagram of the strongly spin-polarized Fermi gas [6, 34, 8]. At weak attraction, one
expects a “polaron” state [9], in which the impurity is dressed with density fluctuations of
the spin-up Fermi gas. Recent experiments have observed indications of a transition from
this polaronic state to a molecular state (a two-body bound state of the impurity and an

1The references of the citations in this text are located at the end of this chapter
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atom of the sea) upon increasing the attraction strength in three dimensions (3D) [10] and
in two dimensions (2D) [11]. Experimentally, the 2D regime can be accomplished by means
of a transverse trapping potential V (z) = 1

2mω
2
zz

2 (here, ωz is the frequency and z is the
transverse direction) that fulfills the condition kBT � εF � ~ωz (T is the temperature
and εF is the Fermi energy of the FS). When excitations in the z dimension are possible,
one reaches the so-called quasi-2D regime [13, 12]. The purely 2D limit is reached for
εF /~ωz → 0 and will be the subject of this paper.

The existence of a polaron-molecule transition in 3D has been predicted with the aid of the
diagrammatic Monte Carlo (DiagMC) method [14, 15, 16] and of variational methods [9,
17, 18, 19]. For the latter, the maximum number of particle-hole (p-h) excitations of the FS
is limited to one or two [9, 17, 18, 19]. One might naively expect that the role of quantum
fluctuations increases in importance with decreasing dimensionality and that high-order
p-h excitations could become more important in one and two dimensions. For the one-
dimensional (1D) Fermi polaron the known analytical solution displays no polaron-molecule
transition [20]. Like for the 3D polaron, the approximate method in which the truncated
Hilbert space contains one p-h and two p-h excitations of the FS gives results for the 1D
polaron approaching the exact solution [21, 22]. In 2D, the Fermi polaron properties have
been studied with variational wave functions [23, 24, 25]. To observe a polaron-molecule
transition in 2D it is crucial to include particle-hole excitations in both the polaron and
molecule wave functions [24]. In the limit of weak interactions, the 1p-h and 2p-h variational
Ansätze for the polaron branch provide similar results. Surprisingly, this is also the situation
for strong correlations [25].

In this work we focus on the 2D Fermi polaron for attractive interactions and study the role
of multiple particle-hole (mp-h) excitations for the ground-state properties of the system.
The quasiparticle properties of the polaron are computed with the DiagMC method. This
technique evaluates stochastically to high order a series of Feynman diagrams for the one-
particle and two-particle self-energies. For the details of the DiagMC method and the
adopted method for determining the ground-state energies from the computed self-energies,
we refer to Refs. [16, 15]. In this work we present DiagMC predictions for the interaction-
strength dependence of the polaronic and molecular ground-state properties in 2D. We first
briefly discuss the model and the diagrammatic method. We then discuss the results of
the simulations, with particular emphasis on the role of the mp-h excitations. We also
discuss how variational results for the polaron problem can be obtained within the DiagMC
formalism.

2 Formalism

We consider a two-component Fermi gas confined to 2D at temperature T = 0. Even though
we will consider the zero-range interaction in continuous space, we start from a lattice model
to avoid ultraviolet divergences from the onset. The corresponding Hamiltonian reads

Ĥ =
∑

k∈B,σ=↑↓
εkσ ĉ

†
kσ ĉkσ + g0

∑

r

b2 Ψ̂†↑(r)Ψ̂†↓(r)Ψ̂↓(r)Ψ̂↑(r) , (1)
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with Ψ̂σ(r) and ĉk,σ being the operators for annihilating a spin-σ fermion with mass mσ and

dispersion εkσ = k2/2mσ in position and momentum space. The components of the position
vector r are integer multiples of the finite lattice spacing b. Further, g0 is the bare interaction
strength. The wave vectors k are in the first Brillouin zone B =]− π/b, π/b]. The continuum
limit is reached for b→ 0. We adopt the convention ~ = 1 and consider the mass-balanced
case m↑ = m↓ = m. We make use of the T matrix [26] for a single spin-↑ and spin-↓ fermion
in vacuum,

− 1

g0
=

1

V
∑

k∈B

1

εB + εk↑ + εk↓
, (2)

where V is the area of the system and εB is the two-body binding energy [which depends on
m, g0, and b and εB(m, g, b) > 0] of a weakly bound state. Such a state always exists for
an attractive interaction in 2D. With the above relation we eliminate the bare interaction
strength g0 in favor of the quantity εB . Moreover, the diagrammatic approach allows us to
take the continuum limit b→ 0 and g0 → 0− while keeping εB fixed. Summing all ladder
diagrams gives a partially dressed interaction vertex Γ0:

= + + +    ...

= +
�

P

�0

, (3)

where the dot represents the bare interaction vertex g0 and the lines represent bare-particle
propagators for the spin-down impurity (dashed lines) and the spin-up Fermi sea (solid lines).
In momentum-imaginary frequency this graphical representation corresponds to

[Γ0(p, iΩ)]−1 = g−1
0 −Π0(p, iΩ) , (4)

with

Π0(p, iΩ) =
1

V
∑

k∈B

θ(|p2 + k| − kF )

iΩ− εp
2−k↓ − εp

2 +k↑ + µ+ εF
, (5)

with θ(x) being the Heaviside step function and µ < 0 being a free parameter representing an

energy offset of the impurity dispersion. Further, kF and εF =
k2F
2m are the Fermi momentum

and the Fermi energy of the spin-up sea. The combination of Eqs. (2) and (4) gives

1

Γ0(p, iΩ)
= − 1

V
∑

k∈B

[
1

εB + εk↑ + εk↓
+

θ(|p2 + k| − kF )

iΩ− εp
2−k↓ − εp

2 +k↑ + µ+ εF

]
. (6)

The relevant parameter that characterizes the interaction in Eq. (6) is εB. Equation (6) is
well defined in the thermodynamic and b→ 0 limits. One finds

1

Γ0(p, iΩ)
=
m

4π
ln

[
2εB

−z +
√

(z − εp)2 − 4εF εp

]
, (7)
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with z ≡ iΩ + µ− εF . In deriving the above expression for Γ0(p, iΩ) we have taken µ < −εF .
Since Feynman diagrams for the self-energy will be evaluated in the momentum-imaginary-
time representation (p, τ), we need to evaluate the Fourier transform

Γ0(p, τ) =
1

2π

∫ +∞

−∞
dΩ e−iΩτ Γ0(p, iΩ) . (8)

In order to determine the leading behavior of Γ0(p, τ) for small τ , we introduce the vertex
function Γ̃0, which differs from Γ0 by ignoring the Fermi surface when integrating out the
internal momenta. This amounts to ignoring the Heaviside function in Eq. (5). We obtain

1

Γ̃0(p, iΩ)
=
m

4π
ln

[
− εB
iΩ + µ+ εF − εp

2

]
. (9)

In the (p, iΩ)-representation,

1

Γ0
− 1

Γ̃0
=
m

4π
ln

[ −2(z + 2εF ) + εp

−z +
√

(z − εp)2 − 4εF εp

]
. (10)

The (p, τ) representation of Γ̃0 is

Γ̃0(p, τ) = −4πεB
m

e−(
εp
2 −εF−µ)τ

[ ∫ +∞

0

dx
e−xεBτ

π2 + ln2(x)

+ eεBτθ(
εp
2
− εF − εB − µ)

]
θ(τ) (11)

for µ < −εF − εB, ensuring that only τ > 0 contributes for all momenta p. The integral
in Eq. (11) can be computed numerically, but converges poorly for τ → 0+. Under those
conditions we make use of the asymptotic behavior:

∫ +∞

0

dx
e−xεBτ

π2 + ln2(x)
∼
τ→0

1

εBτ

1

ln2(εBτ)
. (12)

To obtain Γ0(p, τ) we computed numerically the following Fourier transform:

Γ0(p, τ)− Γ̃0(p, τ) =
1

2π

∫ +∞

−∞
dΩ e−iΩτ

[
Γ0(p, iΩ)− Γ̃0(p, iΩ)

]
. (13)

The left-hand side of Eq. (13) can be computed more easily than Γ̃0(p, τ) as it contains

no singularities. Next, the function Γ0(p, τ) is obtained as Γ̃0(p, τ) +
[
Γ0(p, τ)− Γ̃0(p, τ)

]
.

Although the functions Γ̃0(p, τ) and Γ0(p, τ) are extremely sharp and divergent for τ → 0,
they are integrable. Special care should be taken when using these functions in the Monte
Carlo code. It is important to correctly sample very short times, and one needs to make sure
there is no loss of accuracy when keeping track of imaginary time differences of the Γ0 lines in
the diagrams. Just like for the 3D polaron problem [14, 15, 16], we consider a diagrammatic
series for the self-energy built from the free one-body propagators for the impurity and the
spin-up Fermi sea and from the renormalized interaction Γ0. We refer to this series as the
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Π
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Γ Γ0

G↓ G0
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+=

Figure 1 – Graphical representation of the Dyson equation. The free (dressed) one-body impurity
propagator is denoted by G0

↓ (G↓). Σ and Π are the one-body and two-body self-energies, respectively.
Γ is the fully dressed interaction, whereas Γ0 is the partially dressed interaction as shown in Eq. (3).

bare series, which we evaluate with the DiagMC method. The diagram topologies in 2D and
3D are exactly the same. The major differences between the diagrammatic-series evaluations
in 2D and 3D are the renormalized interaction Γ0(p, τ) and the phase-space volume elements.
The one and two-body self-energies are related to the one-particle propagator G and the fully
dressed interaction Γ by means of a Dyson equation, as illustrated schematically in Fig. 1.
From the poles of G and Γ we can extract the polaron and the molecule energy, respectively.
The fully dressed interaction is closely related to the two-particle propagator [16].

For the 3D Fermi polaron problem there are two dominant diagrams at each given order
that emerge next to many diagrams with a much smaller contribution [16]. These dominant
diagrams contribute almost equally but have opposite sign. In 2D, however, the numerical
calculations indicate that at a given order the very same two diagrams dominate, but to
a lesser extent; that is, the nondominant diagrams have a larger weight in the final 2D
result. By weight of a given diagram we mean the absolute value of its contribution to
the self-energy. We note that the sign of a single diagram at fixed internal and external
variables depends only on its topology and not on the values of the internal and external
variables. We stress that this is not true for a Fermi system with two interacting components
with finite density [27, 28]. In 2D the total weight of a given order (i.e., the sum of the
absolute values of the contributions of diagrams) is distributed over more diagrams than
in 3D. Because the sign alternation occurs over a broader distribution of the weights, we
get more statistical noise in sampling the self-energy in 2D compared to 3D. In 3D we can
evaluate the diagrammatic series for the one-body self-energy accurately up to order 12,
whereas in 2D we can reach order 8.

In principle, other choices for the propagators (“bare” versus “dressed” propagators) are
possible, and this was discussed in detail for the 3D Fermi polaron in our previous paper
[16]. Replacing the bare propagators by dressed ones reduces the number of diagrams at each
given order. One may expect that this replacement could allow one to reach higher orders.
For the 3D polaron, however, the most favorable conditions of cancellations between the
contributions from the various diagrams were met in the bare scheme [16]. In the DiagMC
framework a higher accuracy can be reached under conditions of strong cancellations between
the various contributions. From numerical investigations with various propagators for the
2D Fermi polaron we could draw similar conclusions as in the 3D studies. Accordingly, all
numerical results for the quasiparticle properties presented below are obtained for a series
expansion with bare propagators.

To characterize the magnitude of the interaction strength we use the dimensionless parameter
η ≡ ln[kFa2D] = ln[2εF /εB]/2. Here, a2D > 0 is the 2D scattering length, related to the
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Figure 2 – Dependence of the polaron energy ENp on the cutoff diagram order N . Ep is the value
obtained after extrapolation to N → +∞ (and resummation for η = −0.25). Results are shown for
η = −0.25, η = 0.5, η = 1.5. The lines represent an exponential fit.

dimer binding energy by εB = 1/(2mra
2
2D) with mr = m↑m↓/(m↑ +m↓) being the reduced

mass. The BCS regime corresponds to η � 1 while the Bose-Einstein condensate (BEC)
regime corresponds to η � −1. The system is perturbative in the regimes |η| � 1, while the
strongly correlated regime corresponds to |η| . 1. [29] In the weak-coupling regime [small
interaction strengths g0 in the Hamiltonian of Eq. (1) or large positive η in the zero-range
limit], we find that the one-body and the two-body self-energy Σ and Π converge absolutely
as a function of the maximum diagram order. This is demonstrated in Fig. 2 for η = 1.5,
where the polaron energy ENp converges exponentially as a function of the cutoff diagram
order N . Similar convergence is also found for the molecule energy. Under conditions of
convergence with diagram order, extrapolation to order infinity can be done in a trivial way.
Similar convergence is also seen for η = 0.5. In the strongly correlated regime the series starts
oscillating with order when η . 0, and the oscillations get stronger the deeper we go into
the BEC regime. The oscillations in the extracted polaron energy are illustrated in Fig. 2
for η = −0.25. To obtain meaningful results we rely on Abelian resummation techniques
[16, 27]. We evaluate the series σε =

∑
N σ

(N)e−ελN , with σN being the one-body self-energy
for diagram order N and λN being a function that depends on the diagram order N . For
each ε the polaron energy Ep is calculated from σε and an extrapolation is done by taking the
limit ε→ 0. The whole procedure is illustrated in Fig. 3. To estimate the systematic error
of the extrapolation procedure, different resummation functions λN are used. As becomes
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Figure 3 – Abelian resummation of the bare series for the one-body self-energy diagrams at
η = −0.25. We evaluate σε =

∑
N σ

(N)e−ελN , with σN being the one-body self-energy for diagram
order N . We use the following functions λN : (i) Gauss 1: λN = (N − 1)2 for N > 1 and λN = 0 for
N = 1, (ii) Lindelöf 1: λN = (N − 1) log(N − 1) for N > 2 and λN = 0 for N ≤ 2, and (iii) Gauss
2: λN = (N − 3)2 for N > 3 and λN = 0 for N ≤ 3. The polaron energy Ep/εF is extracted in the
limit ε = 0+ for various choices of λN .

clear from Fig. 3 the whole resummation procedure is a stable one and induces uncertainties
on the extracted energies of the order of a few percent. All the results of Fig. 4 are obtained
with the Abelian resummation technique. The stronger the coupling constant is the larger
the size of the error attributed to the resummation. An accurate extrapolation to infinite
diagram order could be achieved for all values of η.

3 Results and discussion

In Fig. 4, polaron and molecule energies are displayed for a wide range of the parameter η.
DiagMC results include all diagrams up to order 8 and extrapolation to the infinite diagram
order. In the region η . 0 a small discrepancy (of the order of 0.1% of the ground-state
energy) is found with the variational results [25] of Parish and Levinsen based on the wave-
function Ansatz up to 2p-h excitations. Clearly, a phase transition appears at the critical
value ηc = −0.95± 0.15. A variational result which includes 2p-h excitations for the polaron
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Figure 4 – Polaron and molecule ground-state energies E in units of the Fermi energy εF as a
function of η. The momentum of the impurity is equal to zero. Energies are shifted by the two-body
binding energy εB/εF = 2e−2η to magnify the details. The solid line is the DiagMC result for N = 1.
The symbols are the result of the full DiagMC calculations (including diagrams up to order 8).

and 1p-h excitations for the molecule, gives η = −0.97. [25] Both mentioned calculations are
in agreement with the experimental result η = −0.88(0.20) [11].

The DiagMC method allows one to include a large number of particle-hole excitations that
dress the impurity. Truncation of the Hilbert space to a maximum number of p-h pairs
can nonetheless be achieved within the DiagMC approach. This allows one to arrive at the
variational formulation. Previous variational studies using a wave function Ansatz up to
1p-h or 2p-h excitations showed that these truncations give remarkably accurate results [30].

To understand why the truncation is possible within a Feynman diagrammatic approach for
the self-energy, we first remark that a variational approach is easily established within a
path-integral formalism. Path integrals with continuous imaginary time, for example, are
based on an expansion of the evolution operator,

e−βK̂ = e−βK̂0
(
1−

∫ β

0

dτ1K1(τ1) +

∫ β

0

dτ1

∫ τ1

0

dτ2 K̂1(τ1)K̂1(τ2)− . . .
)
, (14)

where K̂ = Ĥ − µN̂ = K̂0 + K̂1 − µN̂ , with
[
K̂0, K̂1

]
6= 0. The operator K̂1(τ) =

eK̂0τ K̂1e
−K̂0τ , which defines the series expansion, is expressed in the interaction picture.
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Further, β = 1/kBT , with kB being Boltzmann’s constant and T being temperature, Ĥ is
the Hamiltonian, N̂ the number operator, and µ is the chemical potential. The imaginary-
time evolution operator in Eq. (14) can be used as a ground-state projection operator:
for sufficiently long imaginary time β the excited-state components of a trial state are
exponentially suppressed. One typically evaluates all the terms in the expansion equation (14)
in the eigenbasis of K̂0. This procedure forms the basis of path-integral Monte Carlo
simulation of lattice models, where K̂1 is usually the kinetic energy term [31]. A discretized
time version is used in path-integral Monte Carlo methods in continuous space [32, 33]. Either
way, the contributions to the path integral have the direct physical interpretation of a time
history of the many-particle system. At each instant of time, one can constrain the accessible
states of the Hilbert space, in line with what is done in a variational approach. Within the
standard Feynman diagrammatic formalism for Green’s functions, however, this truncation
of the Hilbert space is not easy to accomplish for an arbitrary system, as one expands in
powers of the two-body interaction term of the Hamiltonian. This will be explained in the
next paragraph.

It turns out to be formally easier to start from finite T and to take the β →∞ limit in the
end. For a many-fermion system, the finite-temperature Green’s function in position and
imaginary-time representation (x, τ) is defined as

Gασ(x, τ) = −Tr[e−βK̂Tτ ψ̂Hα(x, τ)ψ̂†Hσ(x, 0)]

Tr[e−βK̂ ]
, (15)

with α and σ denoting an appropriate set of quantum numbers (such as spin) and Tτ
being the time-ordering operator. The field operator in the Heisenberg picture ψ̂Hα(x, τ) =

eK̂τ ψ̂α(x)e−K̂τ annihilates a fermion in state α at position x and time τ . To arrive at the
Feynman diagrammatic expansion, one makes a perturbative expansion for the evolution

operator e−βK̂ in both the numerator and the denominator of Eq. (15) (the finite T ensures
that both exist). The expansion of the partition function Z in the denominator can be
represented graphically by the series of all fully closed diagrams (connected and disconnected).
When β approaches +∞, the denominator is proportional to 〈Ψ0|Ψ0〉 (|Ψ0〉 is the ground
state of the interacting many-body system), and the disconnected diagrams correspond to
all possible vacuum fluctuations of the system at hand. The expansion in the numerator
factorizes into an expansion of connected diagrams for Gασ and disconnected diagrams for
Z. So the sum of disconnected diagrams drops out, as expected for an intensive quantity
like Gασ(x, τ). It is exactly this factorization that prevents one from truncating the Hilbert
space at any instant of time in the evolution. In other words, variational calculations based
on Feynman diagrams for the self-energy are generally not feasible.

In the polaron problem vacuum fluctuations are absent since |Ψ0〉 corresponds to the spin-
down vacuum and a non-interacting spin-up Fermi sea. In other words, the vacuum cannot
be polarized in the absence of an impurity. As a consequence, we face a situation similar to
the path integral with a direct physical interpretation of the time history of the impurity.
This peculiar feature allows one to restrict the Hilbert space at each given time. If we allow
at most 1p-h excitations at each instant of time, only one diagram survives: the lowest-order
self-energy diagram built from Γ0 and the free spin-up single-particle propagator G0

↑. The
equivalence between this diagram and the 1p-h variational approach had already been pointed
out in Ref. [21]. An np-h variational approach is achieved by allowing at most n backward
spin-up lines at each step in the imaginary-time evolution.
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For large η it is obvious from Fig. 4 that the polaron energy from the full series expansion
becomes equal to the 1p-h result. Even for stronger interactions (smaller η) the first-order
results remain close to the full DiagMC one. Within the statistical accuracy of the numerical
calculations, convergence for the one-body self-energy is already reached after inclusion of
2p-h excitations. Indeed, for all values of η, we find agreement between our 2p-h variational
DiagMC approach and the full DiagMC approach within statistical error bars. For the
molecular branch, we retrieve the result for the two-body self-energy from the full series
expansion after including 1p-h excitations. For the 3D Fermi-polaron a similar conclusion
was drawn. Also in 3D, the first-order result is a very good approximation [16]. Going up to
2p-h pairs gives a perfect agreement with full DiagMC results. From the above considerations
it follows, however, that the diagrammatic truncations which provide good results for the
polaron problem may not be appropriate for the more complex many-body problem with
comparable densities for both components.

The quasiparticle residue or Z factor of the polaron gives the overlap of the noninteracting
wave function and the fully interacting one. This overlap is very small for a molecular
ground state of the fully interacting system [16]. The Z factor as a function of η is shown
in Fig. 5. Note that the polaron Z factor does not vanish in the region η . −1 where the
ground state is a molecule. The Z factor is, however, still meaningful since the polaron is a
well-defined (metastable) excited state of the 2D system. Again, the first-order result gives
a good approximation to the full result. The measured Z factor for the 3D situation has
been reported in Ref. [34, 10]. The 2D experimental data are reported in Ref. [11], and the
η dependence of the quasiparticle weight Z is presented in arbitrary units. We reproduce the
observation that Z strongly increases between ηc . η . 1 and saturates to a certain value
for η > 1.

4 Conclusion

Summarizing, we have developed a framework to study with the DiagMC method the ground-
state properties of the 2D Fermi polaron for attractive interactions. We have shown that the
framework allows one to select an arbitrary number of np-h excitations of the FS, thereby
making a connection with typical variational approaches which are confined to n=1 and
n=2. We have studied the quasiparticle properties of the ground state for a wide range
of interaction strengths. A phase transition between the polaron and molecule states is
found at interaction strengths compatible with experimental values and with variational
predictions. To a remarkable degree, it is observed that for all interaction strengths the full
DiagMC results (which include all np-h excitations) for the ground-state properties can be
reasonably approximated by n=1 truncations. In a n=2 truncation scheme the full result
is already reached within the error bars. This lends support for variational approaches to
the low-dimensional polaron problem, for which one could have naively expected a large
sensitivity to quantum fluctuations.
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the 1p-h result (N = 1 diagram).
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CHAPTER 4

Large Bose polarons

In Sec. 1.3.3 we introduced the BEC-polaron system and showed that it can be described by

a Fröhlich type of Hamiltonian if the Bogoliubov approximation is valid. A polaron system

which can be described by a Fröhlich type of Hamiltonian will be called a large polaron. To

calculate the properties of this system, we again make use of a Feynman diagrammatic series.

Before we start discussing the results of the BEC-polaron, we first present some properties

for the series of the Fröhlich Hamiltonian. In Sec. 4.1 we show how diagrams are constructed.

In Sec. 4.2 we give a short presentation of the DiagMC method to evaluate the diagrammatic

series.

4.1 Feynman diagrams for large polarons

In Sec. 2.2 we considered a series of Feynman diagrams for the Fermi polaron. A similar

strategy can be followed to set up a diagrammatic series for the Fröhlich Hamiltonian. Since

ĤIB
pol (see Eq. (1.6)) has a different structure than Ĥ↓↑ (see Eq. (1.25)), we expect here a

different type of diagrams than in the Fermi polaron case. The Feynman-Dyson perturbation

series for the one-particle Green’s function G(p, τ), with p the momentum of the impurity

and τ the imaginary time, is given by:

G(p, τ) =−
∞∑

n=0

(−1)n
1

n!

∫ ∞

0

dτ1 . . .

∫ ∞

0

dτn

〈Φ0|T
[
ĤIB
pol (τ1) . . . ĤIB

pol (τi+1) . . . ĤIB
pol (τn)ĉp(τ)ĉ†p(0)

]
|Φ0〉 ,

(4.1)
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with |Φ0〉 the phonon vacuum state without impurity and the operators are given in the

interaction picture. The free Green’s function for the impurity is

G0(p, τ) = −θ(τ)〈Φ0|ĉp(τ)ĉ†p(0)|Φ0〉
= −θ(τ)e−(εp−µ)τ ,

(4.2)

with εp = p2

2mI
the dispersion of the impurity with mass mI and µ a free parameter. The

free Green’s function for an elementary excitation (phonon) is given by:

D(q, τ) = −θ(τ)〈Φ0|b̂q(τ)b̂†q(0)|Φ0〉
= −θ(τ)e−ω(q)τ ,

(4.3)

with ω(q) the dispersion of the elementary excitations. The first non-zero contribution D1

(this happens when n = 2) in Eq. (4.1) gives:

D1 = −
∫ τ

0

dτ2

∫ τ2

0

dτ1〈Φ0|T
[
ĤIB
pol (τ1)ĤIB

pol (τ2)ĉp(τ)ĉ†p(0)
]
|Φ0〉

= −
∫ τ

0

dτ2

∫ τ2

0

dτ1

∫
dq

(2π)3
V 2(q)〈Φ0|T

[
ĉ†p−q(τ1)ĉp(τ1)

(
b̂†q(τ1) + b̂−q(τ1)

)

ĉ†p(τ2)ĉp−q(τ2)
(
b̂†−q(τ2) + b̂q(τ2)

)
ĉp(τ)ĉ†p(0)

]
|Φ0〉 .
(4.4)

The time-ordered product can be worked out with Wick’s theorem:

D1 = −
∫ τ

0

dτ2

∫ τ2

0

dτ1

∫
dq

(2π)3
V 2(q) ĉ†p−q(τ1)Êĉp(τ1) Ìb̂†q(τ1)Ëĉ†p(τ2)Í

ĉp−q(τ2)Êb̂q(τ2)Ëĉp(τ)Íĉ†p(0)Ì .

(4.5)

The contraction between the impurity operators is given by:

ĉ†p(τ1)Êĉp′(τ2)Ê = −G0(p, τ2 − τ1)δ(p− p′) , (4.6)

and the contraction for the elementary-excitations operators is

b̂†q(τ1)Êb̂q′(τ2)Ê = −D(q, τ2 − τ1)δ(q− q′) . (4.7)

The contribution D1 can now be written in terms of free Green’s functions:

D1 = −
∫ τ

0

dτ2

∫ τ2

0

dτ1

∫
dq

(2π)3
V 2(q)G0(p, τ1)G0(p−q, τ2− τ1)D(q, τ2− τ1)G0(p, τ − τ2) .

(4.8)

The Feynman diagram that represents D1 is shown in Fig. 4.1. It is clear that all the

higher-order diagrams have the same sign, since all non-zero contractions give positive

contributions. The matrix elements in Eq. (4.1) are non-zero only if n is even. We define the

diagram order N = n/2.
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D1

DA
2 DB

2 DC
3

Figure 4.1 – The upper figure represents the first-order diagram D1. The lower figure shows the

different topologies for the second-order diagrams. The diagrams D1, D2A and D2B are irreducible

diagrams. A solid line represents a free-impurity propagator and a dashed line stands for an

elementary excitation. The interaction vertices are denoted by dots. Imaginary time runs from left

to right.

We show now how all topologies of order N can be created. First, one draws a BBL from

0 to τ with 2N vertices. This BBL consists out of 2N + 1 G0-propagators. In the following

step, we draw N lines above the BBL, going from one vertex to another vertex, in a way

that each vertex has one incoming lines and two outgoing lines. In Fig. 4.1 the different

topologies for order 2 are shown. One can check that for each order there exist (2N − 1)!!

different topologies.

4.2 DiagMC for large polarons

In this section we give a short overview of the updates of the DiagMC method [32, 33] to

evaluate diagrams for Bose polaron systems. To reduce the configuration space of diagrams,

we prefer to consider only diagrams for the irreducible one-body self-energy Σ(p, τ). These

diagrams contain no uncovered G0-propagators. In the DiagMC simulation we sample G0Σ-

diagrams: these are irreducible Σ-diagrams with an (uncovered) G0-propagator attached.

We also use a cyclic representation of the diagrams.

To change the topology for a diagram at order N , we choose a nearest-neighbor pair of

vertices and swap the two D-propagators ending in these vertices, see Fig. 4.2. The update

is rejected if the new diagram is not a G0Σ-diagram.

To change the times, we propose to change the time of a randomly chosen G0-propagator

and the above lying D-propagators. This update also changes the total time of a diagram.

To sample over all possible momenta, we include an update that changes the momentum

of a randomly chosen D-propagator and the momentum of the piece of the BBL that lies

below such that momentum conservation is restored.

To change the diagram order, we propose to add a D-propagator with time τD and

momentum q. We choose uniformly a time τ1 on the BBL, which becomes the time of the

left end of the new D-propagator, see Fig. 4.3. Then we need a probability density W (q, τD)
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τA τB τA τB

Figure 4.2 – Two irreducible G0Σ-diagrams are shown. The ends of the two D-propagators at τA
and τB are swapped.

τ1

q, τD

Figure 4.3 – Two irreducible G0Σ-diagrams are shown. A D-propagator with momentum q and

time τD is added to the left diagram at time τ1 .

to propose a momentum and an imaginary time. A good choice for W (q, τD) depends on the

specific form of V (q) and ω(q). For the acoustic and the BEC polaron, we use the following

distribution for W (q, τD)dqdτD:

W (q, θ, φ, τD)q2 sin(θ)dqdθdφdτD ∝ q2 sin(θ)V 2(q)eω(q)τDdqdθdφdτD , (4.9)

where we used spherical coordinates (q, θ, φ) for q. We first sample a value for θ and φ.

Then we sample a value for q and τD from W ′(q, τD) ∝ q2V 2(q)eω(q)τDdqdτD. Since we

cannot sample from W ′(q, τD) directly, we tabulate the distribution first. The update is

rejected if the new diagram is not a G0Σ-diagram. In the delete-update we select at random

a D-propagator to remove.

Collecting statistics

For each MC-step in the simulation we can collect statistics for the self-energy, which is stored

in the histogram ΣMC(τi) with τi the time of bin i. In the DiagMC simulation we keep the

external momentum fixed. Since we are only interested in the Σ-part of a G0Σ-diagram, the

uncovered propagator can be seen as an extra weighting factor. If we sample a G0Σ-diagram,

where the Σ-part has time τ ′ and the uncovered G0-propagator has time τ0, we can update

the histogram ΣMC(τi) as follows:

ΣMC(τ ′i) = ΣMC(τ ′i) +
1

G0(p, τ0)
, (4.10)

with τ ′i the time of the bin that contains the time τ ′.
Since the diagrams have no alternating signs, we are able to obtain good statistics for

very large diagram orders(∼ 104). The normalization of the self-energy can be done in a

similar way as was done for the Fermi polaron. In Eq. (2.84) we used the first order worm
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diagram to normalize the collected statistics for the self-energy. Here, we can use the first

order G0Σ-diagram.

We will see in Sec. 4.3 that in some cases we need to reach very high diagram orders. In

that case, it can take a long time for the simulation to go from the first order to the largest

order and back. The reason is that the add/delete updates allow us to change only one order

at a time. To overcome this issue, we first do a DiagMC run for low orders, for example

from order 1 to order N1 and we collect statistics for the one-body self-energy ΣMC
1→N1

(τi).

The order N1 is chosen such that the simulation can go fast from order 1 to N1. From this

run we know the number n1 of times that a diagram at order N1 is sampled. In a second

step, we can do a new simulation from order N1 to N2 and collect statistics for the one-body

self-energy ΣMC
N1→N2

(τi). In this second run, we keep track of the number n′1 (n2) that order

N1 (N2) is sampled. In a third run we can collect statistics for ΣMC
N2→N3

(τi) and count the

number n′2 (n3) that a diagram of order N2 (N3) is sampled. If needed, we can continue

this way to reach the desired diagram orders. The final one-body self-energy ΣMC(τi) that

includes all diagram orders is now given by:

ΣMC(τi) = ΣMC
1→N1

(τi) +
n1

n′1
ΣMC
N1→N2

(τi) +
n1

n′1

n2

n′2
ΣMC
N2→N3

(τi) + . . . . (4.11)

By using the first-order G0Σ-diagram as the normalization diagram, we can obtain the

normalized self-energy Σ(τ):

Σ(τ) =
ΣMC(τi)

n0∆i

∫ ∞

0

dτ2

∫ τ2

0

dτ1

∫
dq

(2π)3
V (q)2G0(p, τ1)G0(p− q, τ2 − τ1)D(q, τ2 − τ1) ,

(4.12)

with n0 the number of times that the first-order diagram was sampled. The time τ is

contained in bin i with binsize ∆i and time τi.

4.3 DiagMC study of the acoustic and the BEC polaron

This section contains the results of two large polaron systems: the BEC polaron and the

acoustic polaron [34]. First, we show how to regularize the ultraviolet divergence for the

BEC polaron. Second, we calculate the ground-state energies of these systems and perform a

detailed comparison with a Feynman variational method. We also investigate whether some

class of dominant diagrams can be found.
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Abstract

We consider two large polaron systems that are described by a Fröhlich type of
Hamiltonian, namely the Bose-Einstein condensate (BEC) polaron in the continuum
and the acoustic polaron in a solid. We present ground-state energies of these two
systems calculated with the Diagrammatic Monte Carlo (DiagMC) method and with a
Feynman all-coupling approach. The DiagMC method evaluates up to very high order
a diagrammatic series for the polaron Green’s function. The Feynman all-coupling
approach is a variational method that has been used for a wide range of polaronic
problems. For the acoustic and BEC polaron both methods provide remarkably similar
non-renormalized ground-state energies that are obtained after introducing a finite
momentum cutoff. For the renormalized ground-state energies of the BEC polaron,
there are relatively large discrepancies between the DiagMC and the Feynman predictions.
These differences can be attributed to the renormalization procedure for the contact
interaction.

1 Introduction

By virtue of the Coulomb interaction the presence of a charge carrier in a charged lattice
induces a polarization. This effect is well-known from the description of an electron or a hole
in a polar or ionic semiconductor. The term polaron was coined by Landau in 1933 [1]1 to
denote the quasiparticle comprised of a charged particle coupled to a surrounding polarized
lattice. For lattice-deformation sizes of the order of the lattice parameter, one refers to the
system as a small or Holstein polaron [2, 3]. For lattice-deformation sizes that are large
compared to the lattice parameter, the lattice can be treated as a continuum. This system is

1The references of the citations in this text are located at the end of this chapter
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known as a large polaron for which Fröhlich proposed the model Hamiltonian [4]

Ĥpol =
∑

k

~2k2

2m
ĉ†kĉk +

∑

k

~ω(k)b̂†kb̂k +
∑

k,q

V (q) ĉ†k+qĉkb̂
†
−q + h.c. . (1)

Here, the ĉ†k (ĉk) are the creation (annihilation) operators of the charge carriers with band
mass m and momentum k. The second term in the above Hamiltonian gives the energy of
the phonons which carry the polarization. Thereby, the operator b̂†k (b̂k) creates (annihilates)
a phonon with wave vector k and energy ~ω(k). The last term in eq. (1) denotes the
interaction between the charge carrier and the phonons. A plethora of physical phenomena
can be described by the above Fröhlich type of Hamiltonian by varying the dispersion ω(k)
and the interaction strength V (q). Fröhlich considered the special situation of longitudinal
optical (LO) phonons which are dispersionless ω(k) = ωLO. In the LO limit, the interaction
amplitude V (q) in Eq. (1) adopts the form

VLO(q) = −i~ωLO
q

(
4παLO
V

)1/2( ~
2mωLO

)1/4

. (2)

Here, V is the volume of the crystal and αLO the dimensionless coupling parameter:

αLO =
e2

~

√
m

2~ωLO

(
1

ε∞
− 1

ε0

)
, (3)

with ε∞ (ε0) the electronic (static) dielectric constants of the crystal and e the charge of
the electron. The Fröhlich polaron which is defined by the Eqs. (1)-(2) and the dispersion
ω(k) = ωLO, has no analytical solution.

More generally, solutions to the Eq. (1) describe a quasiparticle interacting with a bath of
non-interacting bosons with energies ~ω(k) through the mediation of the interaction V (q).
One example is the acoustic polaron which corresponds to the interaction of a charge carrier
with acoustic phonons [5]. Another example is the BEC polaron consisting of an impurity
atom interacting with the Bogoliubov excitations of an atomic Bose-Einstein condensate
(BEC) [6, 7, 8]. Other examples are an electron on a helium film (“ripplopolaron”) [9, 10, 11]
and a charge carrier in a piezoelectric semiconductor (“piezopolaron”) [12].

Due to the relative simplicity of the model Hamiltonian of eq. (1) it is an ideal testing ground
for conducting comparative studies with various many-body techniques (see for example
Refs. [13, 14] for an overview). The weak coupling regime (small αLO) was described by
Fröhlich with second-order perturbation theory [4] which is equivalent to the Lee-Low-Pines
scheme using a canonical transformation [15]. For the strong coupling regime (large αLO)
Landau and Pekar developed a variational technique which predicts the formation of a bound
state of the charge carrier in his self-induced potential [16, 17]. Feynman developed a superior
all-coupling approach [18, 19] which captures all the coupling regimes.

A numerical solution of the Fröhlich Hamiltonian of Eq. (1) with the interaction of Eq. (2)
has been proposed in Refs. [20, 21]. Thereby, a series expansion for the polaron Green’s
function was evaluated with the aid of a Diagrammatic Monte Carlo (DiagMC) method. The
method is “exact” in the sense that the series expansion is convergent and sign-definite and
therefore it can be stochastically evaluated with a controllable error. The polaron’s energy is
extracted from the asymptotic behavior of its Green’s function.
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Figure 1 – Ground-state energies for the Fröhlich polaron are shown as a function of the coupling

strength αLO of Eq. (3). The inset shows the relative difference ∆E = EMC−EF

EMC
, with EF (EMC)

the computed energy from the Feynman (DiagMC) approach.

Polaron systems are ideal for comparative studies of many-body techniques. Examples of
such studies for the Fermi polaron are reported in Refs. [22, 23, 24]. For the Fermi polaron, a
comparison has been made between the DiagMC method and the variational technique which
includes a limited number of particle-hole excitations. It was demonstrated that a variational
one particle-hole calculation is already a good approximation, even for strong interactions
between the impurity and the particles in the Fermi sea [23, 24]. Recently a comparative
study of the neutron polaron has been conducted with quantum Monte Carlo and effective
field theories [25]. For the ground-state energy of the Fröhlich polaron of Eqs. (1) and (2) it
has been shown in Ref. [20] that Feynman’s approach reproduces the DiagMC results to a
remarkable accuracy. We have reproduced those numerical results. As can be appreciated
from fig. 1 the deviations between the variational Feynman and DiagMC predictions for the
ground-state energies of the Fröhlich polaron, are of the order of a few percent, even for
the large coupling strengths. It is not clear, however, how accurate the Feynman technique
is for polaron systems described by a Hamiltonian of the type of Eq. (1) with alternate
dispersions ω(k) and interaction amplitudes V (q). Indeed, Feynman’s approach is based
on a variational action functional that models the coupling to the phonons by a single
phononic degree of freedom with a variationally determined mass and harmonic coupling
to the electron. This is a rather natural choice for LO phonons, which are dispersionless.
However, it seems intuitively less suitable in situations that the phonons’ energies cover a
finite range of values. Thornber [26] has argued that in those situations, Feynman’s model is
unlikely to yield accurate results for the system’s dynamical properties, but that the system’s
ground-state energy can still be captured accurately. To our knowledge, this assertion has not
yet been sufficiently confirmed. In order to remedy this situation, in this work we compare
polaron ground-state energies calculated with the Feynman variational approach against
DiagMC results. This will allow us to test the robustness of the Feynman approach. The
two prototypical polaron problems considered in this work are the BEC polaron and the
acoustic polaron. These problems have been selected because they highlight complementary
aspects. The effect of broadening the range of phonon energies is captured by the acoustic
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polaron. The BEC polaron problem allows one to additionally cover the issues related to
renormalizing V (q).

The structure of this manuscript is as follows. In section 2 the Hamiltonians for the BEC
and acoustic polaron are introduced. In Sects. 3.1 and 3.2 the adopted many-body methods
for obtaining the ground-state energies of those Hamiltonians are sketched. Results of the
two techniques for the ground-state energies of the BEC and acoustic polaron are contained
in Sec. 4.

2 Large polaron models

2.1 BEC polaron

The Hamiltonian of an impurity immersed in a bath of interacting bosons [8] is given by a
sum of two terms Ĥ = ĤB + ĤI with,

ĤB =
∑

k

εk â
†
kâk +

1

2V
∑

k,k′,q

VBB(q) â†k′−qâ
†
k+qâkâk′ ,

ĤI =
∑

k

~2k2

2mI
ĉ†kĉk +

1

V
∑

k,k′,q

VIB(q) ĉ†k+qĉkâ
†
k′−qâk′ .

(4)

The operators â†k(âk) create (annihilate) bosons with momentum k, mass m and energy

εk = ~2k2/2m. Further, V is the volume of the system. The operators ĉ†k(ĉk) create
(annihilate) the impurity with momentum k and mass mI . The boson-boson and impurity-
boson interactions in momentum space are VBB(q) and VIB(q). These potentials are replaced
by the pseudopotentials gBB and gIB. These constants are chosen such that the two-body
scattering properties in vacuum are correctly reproduced. The sum of all vacuum ladder
diagrams, given by the T -matrix, represents all possible ways in which two particles can
scatter in vacuum. For zero momentum and frequency the T -matrix is given by T (0):

T (0) = gIB − gIB
∑

k

2mr

~2k2
T (0) , (5)

with mr = (1/mI + 1/m)−1 the reduced mass. For low-energy collisions the first-order Born
approximation can be applied to model the boson-boson and boson-impurity collisions. As a

result, gIB = 2πaIB~2

mr
, with aIB the boson-impurity scattering length and gBB = 4πaBB~2

m ,
with aBB the boson-boson scattering length.

In the Bogoliubov approximation [27], the Hamiltonian ĤB of eq. (4) is written in the
diagonal form

ĤB ≈ E0 +
∑

k6=0

~ω(k)b̂†kb̂k , (6)
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where the operators b̂†k(b̂k) create (annihilate) Bogoliubov quasi-particles. The quasi-particle
vacuum energy is

E0 =
V
2
n2gBB +

1

2

∑

k6=0

(
~ω(k)− εk − n0gBB

)
, (7)

with n = N/V the total density and n0 = N0/V the density of the condensed bosons. The
average total particle number N = 〈N̂〉 is fixed, with

N̂ = N0 +
∑

k6=0

â†kâk , (8)

and N0 the number of bosons in the condensate. The collective Bogoliubov excitations obey
the dispersion relation

~ω(k) =
√

(εk + n0gBB)2 − (n0gBB)2 . (9)

At long wavelengths, the spectrum becomes ω(k) = |k|c, which is characteristic of a sound
wave with velocity c =

√
n0gBB/m. The excitation spectrum is conveniently written in the

form

ω(k) = kc

√
1 +

(kξ)2

2
, (10)

with k = |k| and ξ = 1/
√

2mn0gBB the healing length of the Bose condensate.

Application of the Bogoliubov transformation to the impurity part ĤI of eq. (4) gives [6, 7, 8]

ĤI ≈
∑

k

~2k2

2mI
ĉ†kĉk + n0gIB +

∑

q6=0,k

VBP (q) ĉ†k+qĉk
(
b̂†−q + b̂q

)
, (11)

in which we have defined

VBP (q) =
gIB
V

√
N0εq
ω(q)

=
gIB
√
N0

V

(
(ξq)2

(ξq)2 + 2

)1/4

. (12)

For gIB = 2πaIB~2

mr
a dimensionless coupling constant αIB can be defined [8]

αIB =
a2IB
aBBξ

. (13)

The final expression for the Hamiltonian for the BEC polaron is given by

ĤBP = E0+n0gIB+
∑

k

~2k2

2mI
ĉ†kĉk+

∑

k 6=0

~ω(k)b̂†kb̂k+
∑

q6=0,k

VBP (q) ĉ†k+qĉk
(
b̂†−q+ b̂q

)
. (14)

Obviously, the ĤBP has the format of a Fröhlich-type of Hamiltonian defined in Eq. (1).
When presenting numerical results for the BEC polaron, lengths will be expressed in units of

ξ, energies in units of ~2

mξ2 and phonon wave vectors in units of 1/ξ. In this way, all quoted

variables are dimensionless. In the numerical calculations, we consider an 6Li impurity in a
Na condensate for which mI/mB = 0.263158 [8].
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2.2 Acoustic polaron

In a crystal with two or more atoms per primitive cell, the dispersion relation ω(k) for the
phonons develops acoustic as well as optical branches. The acoustic polaron comprises a
charge carrier interacting with the longitudinal acoustic phonons and can be described by
the Fröhlich type of Hamiltonian of Eq. (1) with the dispersion ω(k) = sk, with s the sound
velocity [5]. For the acoustic polaron, the interaction VAC(q) in the Fröhlich Hamilonian
adopts the form [5]:

VAC(q) =

(
4παAC
V

)1/2 ~2

m

√
q , (15)

with V the volume of the crystal and αAC a dimensionless coupling parameter. When
discussing results concerning the acoustic polaron, lengths will be expressed in units of
~/(ms), energies in units of ms2 and phonon wave vectors in units of ms/~. The summations
over the phonon momenta | k | have a natural cut-off at the boundary k0 of the first Brillouin
zone. At strong coupling, the Feynman approach to the acoustic polaron predicts the
emergence of a self-induced binding potential for the impurity (“self-trapped state”). For a
system with both Fröhlich and acoustic phonons, the Feynman approach predicts that the
dominant mechanism for this transition is the interaction with the acoustic phonons [28].
Only considering the acoustic phonons results in a transition of the first order for k0 > 18
and a critical point at k0 ≈ 18 and αAC ≈ 0.151 [5]. This transition was also predicted by
the path integral Monte Carlo method [29].

3 Numerical methods

3.1 Feynman variational path integral

The Feynman approach is based on the Jensen-Feynman inequality for the free energy F of
a system with action S [19]:

F ≤ F0 +
1

~β
〈S − S0〉S0 . (16)

Here, F0 is the free energy of a trial system with action S0, 〈...〉S0 denotes the expectation

value with respect to the trial system and β = (kBT )
−1

is the inverse temperature. Feynman
proposed a variational trial system of a charge carrier harmonically coupled with spring
frequency W to a fictitious particle with mass M . For T = 0 the Jensen-Feynman inequality
of eq. (16) applied to this system produces an upper bound EFp for the polaronic ground-state
energy [18, 19]:

Ep ≤
3~Ω

4

(√
(1 +M/mI)− 1

)2

1 +M/mI
+
∑

k

|Vk|2
~

∫ ∞

0

duD (k, u)M (k, u) , (17)

with Ω = W
√

1 +M/m . The function D (k, u) is the phonon Green’s function in momentum-
imaginary-time representation (k, τ)

D (k, τ) = −θ (τ) exp [−ω(k)τ ] , (18)
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where θ(τ) is the Heaviside function. The memory function M (k, u) is:

M (k, u) = exp

[
− ~k2

2 (mI +M)

(
u+

M

mI

1− exp [−Ωu]

Ω

)]
. (19)

The u-integral in eq. (17) is of the following form:

∫ ∞

0

du exp
[
−au+ be−u

]
= − (−b)−a Γ (a,−b, 0) , (20)

with Γ (a, z0, z1) =
∫ z1
z0
ta−1e−tdt the generalized incomplete gamma function. The parame-

ters M and Ω are used to minimize the upper bound for the ground state energy of eq. (17).
This approach captures the different coupling regimes.

3.2 One-body propagator and DiagMC

The Green’s function of the polaron in the (k, τ) representation is defined as:

G(k, τ) = −θ(τ)〈vac|ĉk(τ)ĉ†k(0)|vac〉, (21)

with
ĉk(τ) = eĤτ ĉke

−Ĥτ , (22)

the annihilation operator in the Heisenberg representation and |vac〉 the vacuum state. The
BEC polaron Hamiltonian ĤBP of Eq. (14) contains a vacuum energy E0 + n0gIB which
we choose as the zero of the energy scale. Accordingly, ĤBP |vac〉 = 0. We define {|ν(k)〉}
as those eigenfunctions of ĤBP with energy eigenvalue Eν(k) and with one impurity with
momentum k. Inserting a complete set of eigenstates in Eq. (21) gives

G(k, τ) = −θ(τ)
∑

ν

|〈ν(k)|ĉ†k|vac〉|2e−Eν(k)τ . (23)

Under the conditions that the polaron is a stable quasi-particle in the ground state (in the
sense that it appears as a δ-function peak in the spectral function), one can extract its
energy Ep(k) and Z-factor Z0 by studying the long imaginary time behavior of the polaron’s
Green’s function:

G(k, τ, µ) ≡ G(k, τ) eµτ
τ→+∞∼ −Z0(k) e−(Ep(k)−µ)τ , (24)

where
Z0(k) = |〈Ψ(k)|ĉ†k|vac〉|2, (25)

with Ψ(k) the fully interacting ground state. The unphysical parameter µ is introduced to
control the exponential tail of G in imaginary time, and to ensure that it is always descending.
The particular choice of µ has no impact on the final results. The asymptotic behavior of
eq. (24) is associated with a pole singularity for the Green’s function in imaginary-frequency
representation. For (Ep(k)− µ) > 0 one has

G(k, ω, µ) =

∫ +∞

0

dτ eiωτ G(k, τ, µ) =
Z0(k)

iω + µ− Ep(k)
+ regular part . (26)
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The one-body self-energy Σ(k, ω, µ) is related to the Green’s function by means of the Dyson
equation

G(k, ω, µ) =
1

1
G0(k,ω,µ) − Σ(k, ω, µ)

, (27)

with G0(k, ω, µ) the free impurity Green’s function (see Eq. (29)). Since the Eqs. (26) and
(27) possess the same pole structure, the following expression for the polaronic ground-state
energy Ep = Ep(k = 0) can be obtained [20]:

Ep = Σ(k = 0, ω = 0, µ = Ep)

=

∫ ∞

0

dτ Σ(τ, µ) e(Ep−µ)τ , (28)

with Σ(τ, µ) ≡ Σ(0, τ, µ). Calculating the Green’s function boils down to summing a series
of Feynman diagrams over all topologies and orders, thereby integrating over all internal
variables (like momentum and imaginary time). It is shown in [20] that DiagMC is very
suitable to accurately compute the Green’s function through a series expansion.

Figure 2 – Irreducible diagrams for the polaron’s self-energy Σ(k, τ, µ). Imaginary time runs from
left to right. A solid line represents a free-impurity propagator and a dashed line stands for an
elementary excitation. The interaction vertices are denoted by dots.

In fig. 2 some Feynman diagrams for Σ are shown. The algebraic expression for these
diagrams is given in terms of free propagators and interaction vertices:

(i) The free-impurity propagator in imaginary time is determined by

G0(k, τ, µ) = −θ(τ)e−(εk−µ)τ . (29)

(ii) The propagator for an elementary phonon excitation, either of the Bogoliubov type for
the BEC polaron, or acoustic phonons for the acoustic polaron is defined in Eq. (18).

(iii) A vertex factor V (q) whenever an elementary excitation carrying momentum q is
created or annihilated.

We consider irreducible diagrams and evaluate a large number of diagrams D in order to
numerically compute the Σ(k, τ, µ)

Σ(k, τ, µ) =
∞∑

n=1

∑

ξn

∑

qi=1,...,n

∫ ∫ ∫

0<τ1<...<τi<...<τ2n−2<τ

dτ1 . . . dτi . . . dτ2n−2

×D(ξn,k, τ, µ, τ1, . . . , τi, . . . , τ2n−2,q1, . . . ,qi, . . . ,qn) ,

(30)

where ξn represents the topology, n the diagram order, qi are the independent internal
momenta and τi is the internal imaginary times. We define the diagram order by counting
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the number of elementary excitations (the number of dashed propagators in Fig. (2)). The
DiagMC technique allows one to sample over all topologies, all orders and all values of the
internal variables, and thus to determine Σ.
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τ

0

4x104

8x105

0 4x10-4 8x10-4

Σ(
τ,
µ)

τ

Figure 3 – The one-body self-energy Σ(τ, µ) for µ = −790 for the BEC polaron plotted as a function
of imaginary time τ . Results are obtained for αIB = 5 and qc = 200 and exclude the first-order
contribution to Σ(τ, µ) which can be easily computed analytically. The inset shows Σ(τ, µ) for small
imaginary times.

4 Results and discussion

4.1 BEC polaron

For the Fröhlich polaron for which the ground-state energies are displayed in Fig. 1, the
one-body self-energy Σ(τ, µ) can be computed by means of the procedure sketched in Sec. 3.2.
For the BEC polaron, on the other hand, one encounters ultraviolet divergences when
evaluating Σ(τ, µ) and its energy cannot be extracted. Renormalization/regularization of
the impurity-boson pseudopotential is required to obtain physically relevant results for the
energies. As a first step in the renormalization procedure, we introduce a momentum cutoff
qc upon replacing the momentum summations in Eq. (14) by integrals:

∑

k

→ V
(2π)3

∫

|k|<qc
dk . (31)

This allows us to calculate Σ(τ, µ) and the accompanying ground-state energy EMC
p . From

now on we will make the distinction between the polaron energy calculated by DiagMC
(EMC

p ) and calculated by the Feynman approach (EFp ). Obviously, EMC,F
p depends on qc

and in order to stress this dependence we use the notation EMC,F
p (qc). In fig. 3 we show an
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example of the time dependence of the one-body self-energy Σ(τ, µ) for the BEC polaron for
qc = 200. As can be noticed, after introducing a momentum cutoff qc, the τ dependence is
well behaved and the asymptotic regime of Σ(τ, µ) can be identified. The

∑∞
n=0 in eq. (30)

implies a summation over an infinite number of diagram orders. In practice, we set a cutoff
Nmax for n in evaluating Σ(τ, µ). For each Nmax we can find a corresponding imaginary time
τmax for which we observe that ΣNmax

n=0 Σ(n)(τ < τmax, µ) = Σ∞n=0Σ(n)(τ < τmax, µ) within the
numerical noise. Hereby, Σ(n)(τ, µ) is the contribution from the n-th order diagrams to the
self-energy. Upon increasing Nmax the value of τmax increases accordingly. An optimal Nmax

is reached when we can find a τmax in the asymtotic regime that allows us to fit the tail
of Σ(τ, µ). In this way we make an extrapolation for τ → ∞ which determines the value
Nmax. Typical values of Nmax are of the order 104 for large values of αIB . With the aid of
the Eq. (28), EMC

p (qc) can be extracted from the computed Σ(τ, µ). The error on EMC
p (qc)

contains a statistical error and a systematic error stemming from the fitting procedure. As
can be appreciated from fig. 3, the grid in imaginary time has to be chosen carefully, since
the short-time behavior of Σ(τ, µ) is strongly peaked. The Σ(p, τ, µ) for these short times
delivers a large contribution to the energy.
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Figure 4 – The non-renormalized BEC-polaron energy Ep as a function of the coupling strength
αIB as computed with the DiagMC (symbols) and with the Feynman (lines) approaches. Results
are shown for four values of the cutoff momentum.

In fig. 4, results for the non-renormalized energies EFp (qc) and EMC
p (qc) are presented as a

function of the dimensionless coupling parameter αIB defined in eq. (13). The αIB and qc
dependence of the DiagMC energies is remarkably similar to those of the Feynman energies.
We observe that EMC

p (qc) lies a few percent below EFp (qc) for all combinations of αIB and
qc considered.

In Ref. [8] a renormalization procedure to eliminate the qc dependence of the computed
polaron energy is outlined. When determinig the T -matrix of Eq. (5) up to second order,
the following relation between the scattering length aIB and the coupling strength gIB is
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obtained:
2πaIB~2

mr
= gIB −

g2IB
(2π)3

∫

|q|<qc
dq

2mr

~2q2
. (32)

Using this expression, the n0gIB term in eq. (14) can be replaced by :

n0gIB →
2πaIBn0~2

mr
+ Eren(qc) , (33)

whereby we have defined Eren(qc) :

Eren(qc) =
n0g

2
IB

(2π)3

∫

|q|<qc
dq

2mr

~2q2
. (34)

This renormalization procedure was developed in the context of the Feynman approach [8].
The same procedure can also be applied in the DiagMC framework. In both frameworks, the
renormalized polaron ground-state energy can be found by evaluating the sum

EMC,F
p = EMC,F

p (qc →∞) + Eren(qc →∞) . (35)
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Figure 5 – The renormalized BEC-polaron energies [EMC
p (qc) +Eren(qc)] at αIB = 3 are given as a

function of the momentum cutoff qc. The inset figure shows [EF
p (qc) + Eren(qc)] as a function of qc.

In order to illustrate the convergence of the Eq. (35) in both approaches, in fig. 5 the
energies [EMC

p (qc) + Eren(qc)] and [EFp (qc) + Eren(qc)] are plotted as a function of qc for a
representative value αIB = 3 of the coupling strength. We notice that the DiagMC and
the Feynman approach display an analogous qc dependence. Convergence is reached for
qc & 3000. Fig. 6 shows that the Feynman path-integral predictions for the BEC-polaron
ground-state energies overshoot the DiagMC ones. The relative difference between the two
predictions increases with growing values of qc. The very good agreement between the two
methods that was found in fig. 4 for the non-renormalized energies, is no longer observed for
the renormalized energies. Indeed, the latter are obtained with eq. (35), which amounts to
substracting two numbers of almost equal magnitude. Accordingly, the final result for the
renormalized BEC-polaron ground-state energy is highly sensitive to the adopted many-body
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Figure 6 – The renormalized BEC-polaron energies [Ep(qc) + Eren(qc)] as a function of αIB for
different values of the momentum cutoff qc. Lines are the Feynman path-integral and symbols are
the DiagMC results.
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Figure 7 – The renormalized BEC-polaron energies [Ep(qc) + Eren(qc)] at small values of αIB at
qc = 2000. The dot-dashed line is the Feynman path-integral result, symbols represent the DiagMC
results, while the short dashed line is the prediction from second-order perturbation theory (PT).

technique and renormalization procedure. Fig. 7 illustrates that for small αIB both methods
reproduce the result from second-order perturbation theory.

The DiagMC method samples diagrams according to their weight and it can be recorded how
many times a specific diagram is sampled. In this way, one can identify those diagrams with
the largest weight in the self-energy Σ(τ, µ). At fixed diagram order, we have observed that
the number of first-order subdiagrams–the definition of which is explained in the caption of
fig. 8–plays a crucial role in the weight of the diagram. Our studies indicate that for qc > 50
the most important diagram is the one with the highest number of first-order subdiagrams.
We have considered many combinations of αIB and qc and could draw this conclusions in
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all those situations. The dominance of this diagram becomes more explicit with increasing
values of qc.

Figure 8 – A diagram of order five for the one-body self-energy. Line conventions as in Fig. 2.
Imaginary time runs from left to right. A first-order subdiagram occurs whenever a first-order
diagram drops out from the full diagram by cutting the solid line at two selected times. For example,
the considered diagram contains four first-order subdiagrams.

4.2 Acoustic polaron

We now discuss the numerical results for the ground-state energy of the acoustic polaron
introduced in Sec. 2.2. In Figs. 9 and 10 we show a selection of the predictions EFp from the

Feynman upper-bound method of Eq. (17) together with the DiagMC results EMC
p which

are computed with the aid of Eq. (28). For the cut-off k0 = 10 and k0 = 50 an excellent

agreement between EFp and EMC
p is found. From the relative difference ∆E =

EMCp −EFp
EMCp

, a

value αAC can be found where ∆E is largest in the considered region of αAC . For k0 = 10
we find αk0=10

AC = 0.28 ± 0.04 and for k0 = 50, αk0=50
AC = 0.052 ± 0.001. For α < αc, ∆E

increases with αAC and for α > αc ∆E decreases with increasing αAC . We remark that
αk0=10
c and αk0=50

c coincides with the coupling strength for the transition [28] as computed
with the Feynman approach.

From a detailed analysis of the DiagMC results for k0 = 50 we find that the class of diagrams
of the type sketched in fig. 8 plays a dominant role for αAC < αc. For αAC > αc we observe
a dramatic change in the importance of those diagrams, and we can no longer identify a class
of a diagrams that provides the major contribution to the self-energy Σ(τ, µ).

The knowledge of a certain class of dominant diagrams can be exploited to develop ap-
proximate schemes. Indeed, one can set up a self-consistent scheme thereby summing over
an important class of diagrams, including the observed dominant ones. In practice, the
procedure can be realized by introducing bold (or dressed) propagators

Σ(i−1)(p, ω, µ) =

∫
dω′

∫
dq

(2π)3
G(i−1)(p− q, ω − ω′, µ)D(q, ω′)

G(i)(p, ω, µ) =
1

G0−1(p, ω, µ)− Σ(i−1)(p, ω, µ)
,

with ω and ω′ the imaginary frequencies. The self-energy Σ(i−1) and the dressed Green’s
function G(i)(p, ω, µ) are calculated for subsequent values of i, starting from i = 1, until
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Figure 10 – As in Fig. 9 but for k0 = 50. The vertical dashed line denotes the coupling strength
αAC = 0.052 corresponding with the transition as computed in Ref. [5].

G(i)(p, ω, µ) is converged. In this way Σ(i)(p, ω, µ) will contain all diagrams for which the
lines of the phonon propagators do not cross.
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5 Conclusions

We have studied the ground-state energies of the BEC polaron and the acoustic polaron,
two large polaron systems that can be described by a Fröhlich type of Hamiltonian. When
calculating energies for the BEC polaron with the DiagMC and the Feynman variational
technique, we encounter similar ultraviolet divergences. For the acoustic polaron, the
ultraviolet regularization is achieved by a hard momentum cutoff which is naturally set at
the edge of the first Brillouin zone. In this case, the DiagMC and Feynman predictions for
the ground-state energies agree within a few percent. The largest deviation between the
predictions of both methods, was found at a coupling strength that marks the transition
between a quasifree and a self-trapped state. For the BEC polaron, a more involving two-step
renormalization procedure is required. The first step is the introduction of a hard momentum
cutoff. In line with the results for the acoustic polaron, the DiagMC and Feynman non-
renormalized ground-state energies of the BEC polaron which are produced in this step are
remarkably similar. Therefore, one can infer that the Feynman variational method reproduces
the “exact” DiagMC non-renormalized polaron ground-state energies at a finite momentum
cutoff.

In order to obtain the physical, or renormalized, BEC-polaron energies from the non-
renormalized ones, an additional procedure is required. Thereby, the contact interaction
is renormalized with the aid of the lowest-order correction obtained from the Lippmann-
Schwinger equation (34). Despite the fact that the absolute difference between the Feynman
and DiagMC BEC-polaron energies remains unaffected by this procedure, the final result for
the physical energies displays a large relative difference.
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CHAPTER 5

Summary

In recent years, the research field of ultracold atoms has provided an exciting framework for

studying polaronic effects. The key idea is that models designed for describing the rich and

non-trivial structure of the solid state, can be emulated in a clean and controllable manner

with ultracold atoms. The ongoing experimental developments have sparked off the search for

improved numerical methods to obtain a good quantitative understanding of polaronic effects.

In this work, we have performed a systematic study of three distinct polaronic systems:

the Fermi polaron in three dimensions, the Fermi polaron in two dimensions and the large

Bose polaron in three dimensions. In all three situations, we have used the Diagrammatic

Monte-Carlo (DiagMC) method to sample a very large number of diagrams and extract the

system’s “exact” ground-state properties as a function of the interaction strength between

the impurity and the bath in the system.

Fermi polaron in three dimensions

We have studied the Fermi-polaron system, in which a single spin-down impurity is strongly

coupled to a non-interacting Fermi sea of spin-up particles. To calculate its ground-state

properties we have used the Green’s function formalism and a series expansion for the physical

quantities in terms of Feynman diagrams. The effective interaction between the impurity and

spin-up particles has been modeled with a contact potential. This choice leads to ultraviolet

divergences when approaching the continuum limit. To overcome this difficulty, a sum over

an infinite number of Feynman ladder diagrams has been introduced. This procedure results

in a renormalized interaction for which a diagrammatic expansion can be performed in the

continuum limit. The first-order diagram of this series and the corresponding ground-state

energy can be computed with generally used numerical integration methods. A remarkable

property is that the first-order prediction for the energy is identical to the energy obtained
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with a one particle-hole (1 p-h) variational calculation.

The evaluation of higher-order contributions to the energy do not necessarily improve the

quality of the prediction of the system’s energy. The underlying reason for this observation

is that the diagrammatic series for a system of strongly interacting fermions does not

necessarily converge. In order to obtain reliable results for the system’s energy, one has to

numerically compute the contribution of high-order diagrams and check explicitly whether an

extrapolation to order infinity becomes possible. The evaluation of high-order diagrams can

be done with DiagMC. This method is based on the stochastic evaluation of a large series of

Feynman diagrams. In order to extract the ground-state properties from the simulations, one

has to overcome a factorial complexity connected with the increase of the number of diagrams

as one increases the order. Nonetheless, extrapolation to infinite diagram order becomes

possible when the diagrams cancel each other better than the factorial increase of the number

of diagrams. At the interaction strength 1/(kFa) = 0 (with a the scattering length and

kF the Fermi momentum), we observe a situation of perfect cancellations within statistical

errors. On the BEC side, the series built with bare propagators gives rise to oscillations

with diagram order. As a consequence, a controlled extrapolation to the infinite diagram

order is not directly feasible. We have followed two strategies to overcome this complication.

First, a reformulation of the problem based on a skeleton series with dressed propagators.

Second, the use of resummation techniques. The series expansion with dressed propagators

can sometimes be evaluated to higher orders. In some cases, however, the dressing of the

propagators destroys a favorable cancellation of diagrams. For all interaction strengths we

have observed that the series of the one-body and two-body self-energy is resummable by

means of Abelian resummation. We can conclude that the bare series, the skeleton series

and resummed series lead to the same result within the error bars.

We have identified classes of dominant diagrams for the one-body and two-body self-

energy in the crossover region of strong correlations. The dominant diagrams turn out to

be the leading processes of the strong-coupling limit: scattering between a dimer and a

spin-up fermion, which is diagrammatically represented by the three-body T-matrix diagrams.

Including just these dominant diagrams gives a quantitatively good correction to the lowest

order result, even away from the strong-coupling limit.

Our numerical results indicate that for weak to strong attractions, the “exact” polaron and

molecule energies agree very well with those from a variational ansatz. A similar observation

is made for the polaron’s residue or Z-factor. This agreement could be attributed to a strong

cancellation of diagrams. Explicit convergence for the bare series is only observed for the

1/(kFa) = 0 situation. A full explanation for the success of the variational ansatz is still

missing, and it is therefore unclear in which other cases the ansatz is appropriate.

Fermi polaron in two dimensions.

Since the behavior of a quantum system can change drastically by lowering the dimension,

we have investigated the properties of a 2D Fermi-polaron system with the DiagMC method.

Using a contact potential to model the interaction between the impurity and a spin-up

particle, we have faced divergences in the applied formalism. Those divergences can be



Chapter 5. Summary 105

removed by introducing a renormalized interaction. Thereby, the two-body binding energy is

the relevant parameter to characterize the interaction strength. From our studies it emerges

that in 2D the total weight of a given diagram order (i.e. the sum of the absolute values

of the contributions of diagrams) is distributed over more types of diagrams than in 3D.

Because the sign alternation occurs over a broader distribution of the weights, the statistical

noise in sampling the self-energy is significantly larger in 2D compared to 3D. Nevertheless,

we succeeded in performing a reliable and accurate extrapolation to infinite diagram order.

The DiagMC method allows one to include a large number of particle-hole excitations

that dress the impurity. Truncation of the Hilbert space to a maximum number n of p-h

pairs can nonetheless be achieved within the DiagMC approach. This allows us to make a

connection with typical variational approaches which are confined to n = 1 and n = 2.

The quasiparticle properties of the ground state can be studied for a wide range of

interaction strengths. A phase transition between the polaron and molecule states is found at

interaction strengths compatible with experimental values and with variational predictions.

To a remarkable degree, it is observed that for all interaction strengths the full DiagMC

results (which include all np-h excitations) for the ground-state properties can be reasonably

approximated by n = 1 truncations. For the 2D Fermi polaron, the “exact” results are almost

equal to the one obtained in a n = 2 truncation scheme, although one could have naively

expected a large sensitivity to quantum fluctuations.

Large Bose polaron

The BEC polaron and the acoustic polaron are two large polaron systems that can be

described by a Fröhlich type of Hamiltonian. The diagrammatic expansion of the Green’s

function for large polarons can also be evaluated with the DiagMC method. Since all the

diagrams have the same sign, we are able to reach a large diagram order (typically ∼ 104).

The evaluation of the diagrammatic series up to high orders facilitates the extrapolation to

order infinity.

Upon calculating the ground-state energies for the BEC polaron with the DiagMC and the

Feynman variational technique, one comes accross ultraviolet divergences. For the acoustic

polaron, the ultraviolet regularization is achieved by a hard momentum cutoff which is

naturally set at the edge of the first Brillouin zone. In this case, the DiagMC and Feynman

predictions for the ground-state energies agree within a few percent. The largest deviation

between the predictions of both methods, was found at a coupling strength that marks

the transition between a quasi-free and a self-trapped state. For the BEC polaron, a more

involving two-step renormalization procedure is required. The first step is the introduction of

a hard momentum cutoff. In line with the results for the acoustic polaron, the DiagMC and

Feynman non-renormalized ground-state energies of the BEC polaron which are produced

in this step are remarkably similar. Therefore, one can infer that the Feynman variational

method reproduces the “exact” DiagMC non-renormalized polaron ground-state energies at

a finite momentum cutoff.

In order to obtain the physical, or renormalized, BEC-polaron energies from the non-

renormalized ones, an additional procedure is required. Thereby, the contact interaction
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is renormalized with the aid of the lowest-order correction obtained from the Lippmann-

Schwinger equation. Despite the fact that the absolute difference between the Feynman and

DiagMC BEC-polaron energies remains unaffected by this procedure, the final result for the

physical energies displays a relatively large discrepancy.

Outlook

The first-order result of the bare series for the Fermi polaron is a good approximation for

the real ground-state energy. This was due to strong cancellations of higher-order diagrams.

Since we have considered equal masses for the impurity and the spin-up fermions, it is not

clear that this strong cancellation should also holds for the mass-imbalanced Fermi-polaron.

Therefore, further research is needed to inspect the accuracy of the first-order result for

mass-imbalanced systems.

We have identified a class of dominant diagrams for the Fermi polaron, the BEC and

the acoustic polaron. Taking into account only these diagrams gave in some cases already

very good results. The knowledge of dominant diagrams can thus be of great value in the

development of approximate schemes.



APPENDIX A

Canonical transformation

Consider the Hamiltonian given in Eq. (1.29):

ĤBP =
∑

p

p2

2mI
ĉ†pĉp + n0VIB(0) +

1

2
Vn2VBB(0) +

∑

k6=0

εkâ
†
kâk

+
n0

2

∑

k 6=0

VBB(k)(â†kâ
†
−k + âkâ−k) +

∑

k6=0

n0(2VBB(k)− VBB(0))â†kâk

+

√
N0

V
∑

k 6=0,p

VIB(k)ĉ†p+kĉp(â†−k + âk) ,

(A.1)

where we introduced the condensate density n0 = N0/V and the average total density

n = 〈N̂〉/V. We can diagonalize the bosonic part in Eq. (A.1) by performing the following

canonical Bogoliubov transformation:

âk = (uk b̂k − vk b̂†−k) (A.2)

â†k = (uk b̂
†
k − vk b̂−k) . (A.3)

The coefficients uk and vk can be chosen to be real and spherically symmetric. The new

operators b̂k and b̂†k fulfill the commutation relations:

[b̂k, b̂
†
k′ ] = δk,k′ and [b̂k, b̂k′ ] = [b̂†k, b̂

†
k′ ] = 0 , (A.4)

under the condition that

u2
k − v2

k = 1 . (A.5)
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Substituting the operators given in Eq. (A.2) and (A.3) into (A.1) gives:

ĤBP =
∑

p

p2

2mI
ĉ†pĉp +

V
2
n2gBB +

∑

k 6=0

(
(εk + n0gBB)v2

k − n0gBBukvk
)

+
∑

k 6=0

(
(εk + n0gBB)(u2

k + v2
k)− 2ukvkn0gBB

)
(b̂†kb̂k)

+
1

2

∑

k6=0

(
n0gBB(u2

k + v2
k)− (εk + n0gBB)2ukvk

)
(b̂†kb̂

†
−k + b̂kb̂−k)

+

√
N0gIB
V

∑

k6=0,p

ĉ†p+kĉp(uk − vk)(b̂†−k + b̂k) + n0gIB .

(A.6)

We use following pseudo-potentials: VBB(k) = gBB and VIB(k) = gIB . The bosonic part of

Eq. (A.6) is diagonal if

n0gBB(u2
k + v2

k)− (εk + n0gBB)2ukvk = 0 . (A.7)

To solve Eqs. (A.5) and (A.7) for uk and vk, we make use of hyperbolic functions,

uk = cosh(φk) (A.8)

vk = sinh(φk) . (A.9)

This implies that the following set of equations should be solved:

u2
k + v2

k = cosh(2φk) (A.10)

2ukvk = sinh(2φk) (A.11)

tanh 2φk =
a

b
. (A.12)

with a = n0gBB and b = εk + n0gBB . Solving Eq. (A.12) to φk gives:

φk =
1

2
arctanh(γ) , (A.13)

with γ = a/b. Substitute (A.13) in (A.10) and (A.11) and rewrite cosh(arctanh(γ)) as follows:

cosh (arctanh(γ)) =
1

2



√

1 + γ

1− γ +
1√
1+γ
1−γ




=

(
1 + γ

1− γ + 1

)√
1− γ
1 + γ

=

√
1

1− γ2

= cosh 2φk =
b√

b2 − a2
.

(A.14)
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The following relations for hyperbolic functions were used:

arctanh(γ) =
1

2
ln

(
1 + γ

1− γ

)
(A.15)

cosh(φk) =
eφk + e−φk

2
. (A.16)

In a similar way we can show that

sinh(2φk) = sinh(arctanh(a/b)) =
a√

b2 − a2
. (A.17)

So we get the following set of equations:

u2
k + v2

k =
b√

b2 − a2
(A.18)

2ukvk =
a√

b2 − a2
, (A.19)

which can now be solved for the coefficients uk and vk:

u2
k =

1

2

(
b√

b2 − a2 + 1

)
=

1

2

(
εk + n0gBB

ω(k)
+ 1

)
(A.20)

v2
k =

1

2

(
b√

b2 − a2 − 1

)
=

1

2

(
εk + n0gBB

ω(k)
− 1

)
, (A.21)

with ω(k) =
√

(εk + n0gBB)2 − (n0gBB)2. The coefficient of the operator part b̂†kb̂k of

Eq. (A.6) is

(εk + n0gBB)2

ω(k)
− (n0gBB)2

ω(k)
= ω(k) . (A.22)

The coefficient of the boson-impurity operator part becomes:

√
N0gIB
V (uk − vk) =

√
N0gIB

√
u2
k + v2

k − 2ukvk

=

√
N0gIB
V

√
b√

b2 − a2
− a√

b2 − a2

=

√
N0gIB
V

√
εk
ω(k)

.

(A.23)

With Eqs. (A.18), (A.19) and (A.23), we get for Eq. (A.6)

ĤBP =
∑

p

p2

2mI
ĉ†pĉp +

V
2
n2gBB +

1

2

∑

k6=0

(ω(k)− εk − n0gBB) +
∑

k6=0

ω(k)b̂†kb̂k

+

√
N0gIB
V

∑

k6=0,p

√
εk
ω(k)

ĉ†p+kĉp(b̂†−k + b̂k) + n0gIB .

(A.24)
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The dispersion ω(k) can be rewritten with the aid of Eq. (1.31)

ω(k) =
√
ε2k + 2n0gBBεk

=

√
k24πn0aBB

mB

√
k2

2(8πn0aBB)
+ 1 ,

(A.25)

with k = |k|. By introducing the healing length of the condensate ξ = 1√
8πn0aBB

and the

speed of sound in the condensate c =
√

4πn0aBB
mB

, we get:

ω(k) = ck
√

1 + (ξk)2/2 , (A.26)

and

√
εk
ω(k)

=

√√√√√√

k2

2mB√(
k2

2mB

)2

+ 2n04πaBBk2

2m2
B

=

√√√√
k2

2mB
k

2mBξ

√
(kξ)2 + 2

=

(
(ξk)2

(ξk)2 + 2

)1/4

.

(A.27)

The Hamiltonian ĤBP finally becomes

ĤBP =E0 + n0gIB +
∑

p

p2

2mI
ĉ†pĉp +

∑

k6=0

ck

√
1 +

(ξk)2

2
b̂†kb̂k

+
gIB
√
N0

V
∑

k6=0,p

(
(ξk)2

(ξk)2 + 2

)1/4

ĉ†p+kĉp(b̂†−k + b̂k) ,

(A.28)

with

E0 =
V
2
n2gBB +

1

2

∑

k 6=0

(ω(k)− εk − n0gBB) . (A.29)
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Fourier transform of Γ0(p,Ω)

�

∫ +∞
−∞

e−iΩτ

d−
√
−iΩ+a

dΩ, with a > 0 and τ > 0

We consider the integral
∮
C f(z)dz, with C the contour shown in Fig. B.1 with z0 = −ia, and

f(z) given by:

f(z) =
e−izτ

d−
√
−iz + a

. (B.1)

A B

C

DE

F

Figure B.1 – The contour C in the complex plane. The dot represents the point z0 (see text).
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According to the residue theorem, the following relation can be written:
∮

C
f(z)dz =

∫ B

A

f(z)dz +

∫ C

B

f(z)dz +

∫ D

C

f(z)dz +

∫ E

D

f(z)dz

+

∫ F

E

f(z)dz +

∫ A

F

f(z)dz

= −2πiRes {f, zp} ,

(B.2)

where Res {f, zp} denotes the residue of f at the pole zp = i(d2 − a). If d < 0 there is no

pole. The pole lies in the contour if d2 < a. With the Lemma of Jordan one can show that∫ C
B
f(z)dz =

∫ A
F
f(z)dz = 0. It can easily be shown that

∫ E
D
f(z)dz = 0. The expression in

Eq. (B.2) can be written as follows:

∮

C
f(z)dz =

∫ B

A

f(z)dz +

∫ D

C

f(z)dz +

∫ F

E

f(z)dz

=

∫ +∞

−∞
f(z)dz +

∫ −ia+η

−i∞+η

e−izτ

d−
√
−iz + a

dz +

∫ −i∞−η

−ia−η

e−izτ

d−
√
−iz + a

dz .

(B.3)

We substitute y = iz − iη − a (y = iz + iη − a) with η small, in the second (third) integral

on the right-hand side of Eq. (B.3),

∫ −ia+η

−i∞+η

e−izτ

d−
√
−iz + a

dz +

∫ −i∞−η

−ia−η

e−izτ

d−
√
−iz + a

dz

=
1

i

∫ 0

+∞

e(−y−iη−a)τ

d−√−y − iη dy +
1

i

∫ +∞

0

e(−y+iη−a)τ

d−√−y + iη
dy .

(B.4)

Replacing −y − iη = ue−iπ (−y + iη = ue+iπ) in the first (second) term on the right-hand

side of Eq. (B.4) yields:

1

i

∫ 0

+∞

e(−y−iη−a)τ

d−√−y − iη dy +
1

i

∫ +∞

0

e(−y+iη−a)τ

d−√−y + iη
dy = 2e−aτ

∫ +∞

0

√
ue−uτ

d2 + u
du . (B.5)

This integral can be found for example in [35]:

2e−aτ
∫ ∞

0

√
ue−uτ

d2 + u
du = 2πe−aτ

(
1√
πτ

+ ded
2τ
(
−1 + erf(d

√
τ)
))

, (B.6)

where erf is the error function. The residue Res {f, zp} is given by:

Res {f, zp} = lim
z→zp

(z − zp)f(z) =

{
2d
i e

d2τe−aτ if d2 < a and d > 0

0 elsewhere
. (B.7)

From Eqs. (B.2), (B.6) and (B.7) it follows that:
∫ +∞

−∞

e−iΩτ

d−
√
−iΩ + a

dΩ = −2πe−aτ
(

1√
πτ

+ ded
2τ (erfc(−d√τ))

)
, (B.8)

with erfc the complementary error function.
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�

∫ +∞
−∞

e−iΩτ

a−ln(−iΩ+b)dΩ, with b > 0 and τ > 0

We consider the integral
∮
C f(z)dz, with C the contour shown in Fig. B.1 with z0 = −ib, and

f(z) given by:

f(z) =
e−izτ

a− ln(−iz + b)
. (B.9)

According to the residue theorem, the following relation can be written:

∮

C
f(z)dz =

∫ B

A

f(z)dz +

∫ C

B

f(z)dz +

∫ D

C

f(z)dz +

∫ E

D

f(z)dz

+

∫ F

E

f(z)dz +

∫ A

F

f(z)dz

= −2πiRes {f, zp} ,

(B.10)

where Res {f, zp} denotes the residue at the pole zp = i(ea − b). The pole lies in the contour

if ea < b. With the Lemma of Jordan one can show that
∫ C
B
f(z)dz =

∫ A
F
f(z)dz = 0. It can

easily be shown that
∫ E
D
f(z)dz = 0. The expression in Eq. (B.10) can be written as follows:

∮

C
f(z)dz =

∫ B

A

f(z)dz +

∫ D

C

f(z)dz +

∫ F

E

f(z)dz

=

∫ +∞

−∞
f(z)dz +

∫ −ib+η

−i∞+η

e−izτ

a− ln(−iz + b)
dz +

∫ −i∞−η

−ib−η

e−izτ

a− ln(−iz + b)
dz .

(B.11)

We substitute y = iz− iη− b (y = iz+ iη− b) in the second (third) integral on the right-hand

side of Eq. (B.11),

∫ −ib+η

−i∞+η

e−izτ

a− ln(−iz + b)
dz +

∫ −i∞−η

−ib−η

e−izτ

a− ln(−iz + b)
dz

=
1

i

∫ 0

+∞

e(−y−iη−b)τ

a− ln(−y − iη)
dy +

1

i

∫ +∞

0

e(−y+iη−b)τ

a− ln(−y + iη)
dy .

(B.12)

Replacing −y − iη = ue−iπ (−y + iη = ue+iπ) in the first (second) term on the right-hand

side of Eq. (B.12) yields:

1

i

∫ 0

+∞

e(−y−iη−b)τ

a− ln(−y − iη)
dy +

1

i

∫ +∞

0

e(−y+iη−b)τ

a− ln(−y + iη)
dy = 2πe−bτ

∫ +∞

0

e−uτ

(a− lnu)2 + π2
du .

(B.13)

Res {f, zp} = lim
z→zp

(z − zp)f(z) =

{
−ieaeeaτe−bτ if ea < b

0 elsewhere
. (B.14)

From Eqs. (B.10), (B.13) and (B.14) it follows that

∫ +∞

−∞

e−iΩτ

a− ln(−iΩ + b)
dΩ = −2πe−bτ

(∫ +∞

0

e−uτ

(a− lnu)2 + π2
du+ eaee

aτθ(b− ea)

)
.

(B.15)
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Samenvatting

De laatste jaren is gebleken dat ultrakoude gassen uitermate geschikt zijn om polaron

systemen te bestuderen. Modellen die gebruikt worden om de complexe structuur van vaste

stoffen te beschrijven kunnen nu ook getest worden in ultrakoude gassen. Deze ultrakoude

systemen bieden het voordeel dat ze een hoge mate van flexibiliteit vertonen en ons toelaten

een theoretisch model in de meest ideale omstandigheden te testen. Dit stimuleerde de

ontwikkeling van steeds betere en nauwkeuriger numerieke methoden. In deze thesis hebben

we een systematische theoretische studie gedaan van 3 verschillende polaron systemen: het

Fermi polaron in 3 dimensies, het Fermi polaron in 2 dimensies en het grote Bose polaron

in drie dimensies. In elk van deze situaties hebben we de diagrammatische Monte Carlo

(DiagMC) techniek gebruikt. Deze numerieke techniek laat ons toe om een groot aantal

Feynman diagrammen op een stochastische manier te evalueren. Daaruit kunnen dan “exacte”

resultaten voor de grondtoestand verkregen worden.

Fermi polaron in drie dimensies

Het Fermi-polaron systeem bestaat uit een onzuiverheidsatoom met een neerwaartse spin

dat sterk gekoppeld is aan een Fermi zee van atomen met een opwaartse spin. Om de

grondtoestandseigenschappen te berekenen hebben we gebruik gemaakt van het Greense

functie formalisme en de bijhorende reeksontwikking van Feynman diagrammen. Om de

effectieve interactie te modelleren hebben we gebruik gemaakt van een contact potentiaal.

Deze keuze leidt echter tot ultraviolette (UV) divergenties wanneer we de continuümlimiet

nemen. Door een oneindige reeks van ladder diagrammen te sommeren kunnen we deze UV

divergentie elimineren. Dit leidt tot een gerenormaliseerde interactie en laat ons toe een

diagrammatische reeks in de continuümlimiet op te stellen. Het eerste orde diagram en de

bijhorende grondtoestandsenergie kan berekend worden met gebruikelijke integratiemethoden.

Een merkwaardige eigenschap is dat deze eerste-orde grondtoestandsenergie gelijk is aan de

energie komende van een variationele berekening met 1 deeltje-gat excitaties.

In tegenstelling tot wat men zou verwachten, gaan methodes die ook de bijdragen van

hogere ordes in rekening brengen niet noodzakelijk leiden tot een betere voorspelling van de

energie. De reden is dat de diagrammatische reeks van een systeem van sterk interagerende

fermionen niet noodzakelijk convergeert. Betrouwbare waarden voor de energie kunnen echter
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wel verkregen worden door deze hogere orde contributies te extrapoleren naar orde oneindig.

De DiagMC techniek laat toe om Feynman diagrammen tot op hoge orde uit te rekenen.

Een extrapolatie naar orde oneindig wordt mogelijk als diagrammen met een wisselend

teken elkaar in grote mate gaan opheffen, ondanks het feit dat het aantal diagrammen

stijgt als een faculteit. Voor de interactiesterkte 1/(kFa) = 0 (hier bij is kF het Fermi

momentum en a de verstrooiingslengte) nemen we binnen de ruis geen signaal meer waar als

we diagrammen met een wisselend teken sommeren bij hoge orde. Aan de BEC zijde nemen

we oscillaties met de orde waar in de reeks met niet-aangeklede propagatoren. Hierdoor

is een extrapolatie naar oneindige diagram ordes niet vanzelfsprekend. In eerste instantie

hebben we dit probleem opgelost door de propagatoren aan te kleden. Omdat dit niet

altijd leidde tot convergentie, hebben we aangetoond hoe hersommatie methodes aangewend

worden om de reeks te sommeren. De reeks met aangeklede propagatoren heeft het voordeel

dat we soms hogere ordes kunnen bereiken. Een nadeel van deze reeks is dat in sommige

gevallen diagrammen met een wisselend teken elkaar minder gaan opheffen. De reeks van

de één-deeltjes en de twee-deeltjes zelf-energie is hersommeerbaar met behulp van abelse

hersommatie methodes voor alle interactiesterktes. Waar de extrapolatie naar orde oneindig

controleerbaar is, hebben we aangetoond dat de niet-aangeklede reeks, de skelet reeks en de

gehersommeerde reeks allen betrouwbare resultaten geven.

Voor de één-deeltjes en twee-deeltjes zelf-energie hebben we voor sterke interacties een

klasse van dominante diagrammen gevonden. Deze dominante diagrammen maken deel uit

van de drie-deeltjes T-matrix. Hieruit leiden we af dat in het gebied van sterke koppeling

de verstrooiing van een molecule aan een fermion met opwaartse spin een belangrijk fysisch

proces is. Wanneer men enkel deze dominante diagrammen in rekening brengt, krijgt men al

een goede schatting van het eerste orde resultaat.

Onze numerieke resultaten voor de polaron en molecule energie, voor zwakke en sterke

interacties, vertonen een opvallende overeenkomst met resultaten die bekomen werden uit

variationele berekeningen. Voor het residue van het polaron vinden we eveneens een goede

overeenkomst. Mogelijks komt dit door het feit dat diagrammen met een wisselend teken

elkaar gaan opheffen. Volledige convergentie voor de niet-aangeklede reeks zien we enkel bij

1/(kFa) = 0. Een volledige verklaring voor het succes van deze variationele methode kan

voorlopig nog niet gegeven worden. Het is daardoor ook niet mogelijk om te voorspellen in

welke situaties deze variationele methode goede resultaten zal geven.

Fermi polaron in twee dimensies

Het gedrag van een kwantum systeem is sterk afhankelijk van de dimensie. Dit maakt

het interessant om het Fermi polaron in twee dimensies te bestuderen met de DiagMC

methode. Om de interactie tussen de onzuiverheid en een fermion met opwaartse spin te

modelleren hebben we gebruik gemaakt van een contact potentiaal. Deze keuze leidt echter

tot divergenties. Door het introduceren van een gerenormaliseerde interactie kunnen we deze

divergenties wegwerken. De twee-deeltjes bindingsenergie is nu de relevante parameter die de

interactiesterkte beschrijft. Uit onze studie blijkt dat in twee dimensies het totale gewicht

van alle diagrammen van een bepaalde orde (dus de som van de absolute bijdragen van de
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diagrammen) over meer verschillende types van diagrammen verdeeld is dan in drie dimensies.

Dit leidt ertoe dat we meer diagrammen die een bijna zelfde gewicht en een wisselend teken

hebben, gaan sommeren. Hierdoor zien we dat de statistische ruis in 2D groter is dan in 3D.

Desondanks, is het nog steeds mogelijk om een betrouwbare extrapolatie naar orde oneindig

te maken.

De DiagMC methode laat toe om een groot aantal deeltje-gat excitaties in rekening te

brengen. De Hilbert ruimte kan met DiagMC ook beperkt worden tot een maximum van

n deeltje-gat excitaties. Dit laat ons toe om een connectie te maken met een variationele

berekening voor n = 1 of n = 2 deeltje-gat excitaties.

We hebben de eigenschappen van de grondtoestand voor het Fermi polaron bestudeerd

voor verschillende interactiesterktes. We vinden dat de faseovergang plaatsvindt bij een inter-

actiesterkte die vergelijkbaar is met experimentele waarden en met variationele voorspellingen.

Een merkwaardige vaststelling is dat een n = 1 benadering voor alle interactiesterktes reeds

een goed resultaat geeft. Voor het 2D Fermi polaron liggen de “exacte” resultaten zeer dicht

bij de resultaten van een n = 2 benadering. Dit is merkwaardig, men kan verwachten dat

er in 2 dimensies door de toename van kwantum fluctuaties, een groter aantal deeltje-gat

excitaties in rekening moet gebracht worden.

Groot Bose polaron

Het BEC polaron en het akoestisch polaron zijn twee grote polaron systemen die door een

Fröhlich type van Hamiltoniaan kunnen beschreven worden. Voor grote polaronen kunnen we

ook een diagrammatische reeks voor de Greense functie opstellen. Doordat alle diagrammen

hetzelfde teken hebben kunnen we met de DiagMC techniek heel hoge ordes bereiken (typische

ordes zijn ∼ 104). Bij het berekenen van de energie van de grondtoestand van het BEC

polaron stoten we op UV divergenties. Voor het akoestisch polaron kunnen deze divergenties

geregulariseerd worden door een bovenlimiet voor de impuls in te voeren. Deze bovenlimiet

komt overeen met de rand van de eerste Brillouin zone. Voor dit systeem zien we dat

de DiagMC resultaten maar een paar procent verschillen van de Feynman resultaten. De

grootste afwijking was gevonden voor de koppeling sterkte waarbij het systeem een transitie

tussen een quasi-vrije toestand en een zelf-gevangen toestand ondergaat.

Onze renormalisatie procedure voor het BEC polaron gebeurt in twee stappen. De eerste

stap is het opleggen van een bovenlimiet voor de impulsen. De DiagMC resultaten die

hierna bekomen worden, vertonen eveneens een grote gelijkenis met de Feynman resultaten.

In deze fase kunnen we besluiten dat de Feynman variationele methode bijna de “exacte”

niet-gerenormaliseerde DiagMC energie van de grondtoestand produceert.

In de tweede stap berekenen we de fysische of gerenormaliseerde BEC polaron energieën

uit de niet-gerenormaliseerde. Hiertoe wordt de contact interactie gerenormaliseerd met

behulp van de laagste orde correctie uit de Lippmann-Schwinger vergelijking. Ondanks het

feit dat het absolute verschil tussen de Feynman en de DiagMC resultaten hierdoor niet

verandert, vertoont het finale resultaat van beide methoden een vrij groot vershil.
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