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GENERAL INTRODUCTION 
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Speciation – the origin of new species – is a complex and challenging topic in which 

subtle arguments sometimes make large differences. First, speciation is difficult to 

observe in natural populations and is mostly studied indirectly. Moreover, inferring past 

processes from present patterns necessitates caution as different evolutionary scenarios 

are often difficult to disentangle. Second, speciation is subject to the interaction of both 

ecological and genetic processes. These processes are diverse and individual study 

systems allow addressing only subsets of the ecological and genetic factors involved. 

Extracting empirical evidence from these study systems is pivotal to our understanding 

of the ecological and genetic mechanisms underlying adaptive divergence and speciation 

and their relative importance. Third, difficulty in the distinction between the 

geographical mode and the mechanism of speciation impedes a simple understanding of 

the roles of selection, genetic drift and external factors on speciation as well as their 

interactions. Finally, identifying the genes underlying ecologically important traits and 

traits that are involved in reproductive isolation seems a simple goal, but it has proven 

to be a challenging task. Identifying these traits usually involves measurable 

phenotypes, large numbers of genome wide markers and specific breeding designs. 

However, recent advances in sequencing technologies provide novel opportunities to 

study adaptation and speciation from a genomic perspective. In the following 

introduction I elaborate on several topics from the vast literature on speciation which are 

relevant to the work presented in this thesis. 



 

2 

SPECIATION 
 

“That mystery of mysteries” (Darwin 1959, p. 1) 

 

It is well known that the diversity of life at every level of biological organization, 

including species, individual organisms and molecules, arose by common descent 

through a branching pattern of evolution (Darwin 1859). Over successive generations, 

changes in inherited characteristics become either more or less frequent in a population 

through the differential effect of the inherited traits on the reproductive success of 

organisms interacting with their environment. Charles Darwin considered this so called 

process of natural selection as the direct cause for the origin of new species and made 

little distinction between speciation and adaptation (Coyne & Orr 2004). However, this 

view had two main unsolved problems. First, it was interpreted and argued to be 

inadequate that Darwin emphasized on the evolution of species within single 

interbreeding populations (i.e. sympatric speciation) (Sulloway 1979). Second, the idea that 

speciation was gradual and driven by natural selection left it difficult to understand how 

a continuous process could create discontinuous entities such as species (Bateson 1922). 

Reconciling Mendelism, biogeography and natural selection into the Modern 

Evolutionary Synthesis accounted for these issues. Mainly, within the advent of 

population genetics, Theodosius Dobzhansky described how gradual changes in allele 

frequencies could produce genetically and morphologically discrete entities 

(Dobzhansky 1935, 1937). Moreover, in his work, Dobzhansky recognized the 

importance of barriers to gene exchange for the coexistence of ecologically distinct 

forms. The study of the origin of these reproductive isolating mechanisms became 

essential for understanding the origin of species. Ernst Mayr elaborated on this work by 

defining the ‘biological species concept’ in which species are considered groups of 

interbreeding populations that are reproductively isolated from other groups (Mayr 

1942). Studying the biogeography of speciation, Mayr was a strong advocate of the 

importance of genetic drift and allopatry in speciation, in which species arise from 

populations that are geographically isolated. Although both Dobzhansky and Mayr 

recognized the importance of ecology and natural selection in evolution, little attention 

was given to studying the connection between adaptation and speciation (Coyne & Orr 

2004). Therefore, in the Modern Synthesis, a major emphasis was given to measuring 

and explaining genetic variation within species. Around the 1980s, protein gel 

electrophoresis and DNA sequencing further lead to advances in this field of empirical 

as well as theoretical population genetics. Molecular-genetic and phylogenetic advances 

have been essential in understanding the biogeography of speciation and the factors that 
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may promote the evolution of reproductive isolation. Eventually, these molecular 

techniques allowed tackling unresolved questions concerning the origin of species. The 

question how natural selection shapes reproductive isolation revived as geneticists 

attempted to identify the genes causing isolation, locate their positions on chromosomes, 

measure their relative effects and ultimately, identify their functions and the 

evolutionary forces that drove their divergence (Coyne & Orr 2004). 

 

Understanding the processes – mutation, natural selection, sexual selection, genetic drift, 

gene flow and isolation – that drive the evolution of new species is one of the major 

themes in evolutionary biology. The brief history of evolutionary thinking emphasizes 

that the concept of speciation, how species originate and evolve, is a complex and 

vigorously discussed topic. Despite decades of empirical and theoretical research, 

consensus on many of these factors has not been reached, especially when considering 

the likelihood of speciation in the face of gene flow. The dominant view of allopatric 

speciation has become debated when empirical and theoretical insights suggested that 

species could evolve without geographic isolation and, hence, in the face of limited or 

even strong gene flow (e.g. Rice and Hostert 1993; Rundle et al. 2000; Dhuyvetter et al. 

2007; Butlin et al. 2013). This debate has strongly stressed the interrelatedness of 

adaptation and speciation in recent years (i.e. ecological speciation; Nosil 2012). 

 

 

REPRODUCTIVE ISOLATION 

 

“We cannot study how species form until we determine what they are.” (Coyne and Orr 

2004, p. 25) 

 

To understand the nature of speciation, it is important to consider a useful concept of 

species. Coyne and Orr (2004) define species according to the biological species concept 

(Mayr 1942), but argue that ‚distinct species are characterized by substantial but not 

necessarily complete reproductive isolation‛. Hence, this definition allows limited gene 

flow. Resulting from this definition of species, the process of ‚the origin of species‛ 

requires the evolution of reproductive barriers which should maintain distinct groups 

even in the same area and if they occasionally hybridize. Therefore, speciation research 

largely focuses on the evolution of reproductive barriers. The point at which sympatric 

taxa should be called ‚species‛ is, however, arbitrary (Coyne & Orr 2004) and to some 

extent irrelevant as the goal of speciation research is to understand how coexisting 

populations evolve (McPhail 1994).  
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A wide range of reproductive isolating barriers have been discovered. These 

mechanisms include all ‚biological features of organisms that impede the exchange of 

genes with members of other populations‛ (Coyne & Orr 2004). Isolating mechanisms 

can take place pre- or postmating and can be classified as either extrinsic or intrinsic. 

Extrinsic barriers result from divergent selection and fitness reduction in hybrids is 

dependent on the environment. In case of intrinsic barriers, fitness reduction of hybrids 

is independent of the environment. In animals, important extrinsic postmating isolating 

barriers include immigrant inviability. Intrinsic postmating mechanisms often result 

from epistatic incompatibilities. Premating isolating mechanisms may evolve as a 

consequence of divergent sexual as well as natural selection. Premating mechanisms 

include mechanical (e.g. lack of mechanical fit), behavioral (e.g. mate choice) and 

ecological isolation. Ecological isolating barriers result from species’ ecology and are 

thus considered direct byproducts of ecological divergence. These include habitat 

isolation ( e.g. matching habitat choice; Edelaar et al. 2008) and temporal isolation ( e.g. 

different breeding times; Friesen et al. 2007).  

Divergence of a trait is only relevant to speciation if it contributes to reproductive 

isolation. The effects of genes that evolve differently among groups may be transmitted, 

as a by-product, pleiotropically to affect reproductive isolation (Coyne & Orr 2004, Rundle 

& Nosil 2005). For instance, adaptation to a new habitat may directly guarantee spatial 

isolation. Alternatively, diverged genes may be linked to genes involved in reproductive 

isolation (via linkage disequilibrium) yielding reproductive isolation as a by-product. 

Epistatic effects between genes may cause reproductive isolation when genes that 

evolved in one genetic background result in less fit hybrids in another genetic 

background. 

 

Determining which reproductive barriers were involved in the initial reduction of gene 

flow and which evolutionary forces produced these barriers is a formidable task (Coyne 

& Orr 2004). First, current isolating barriers may not have been the most import in the 

initial stages of restricting gene flow. Second, several isolating mechanisms may act 

successively at multiple stages in the life history and the proportional effect strongly 

depends on the life history stage in which the mechanism takes place. Even though later 

barriers may have strong absolute effects, earlier-acting reproductive barriers will reduce 

gene flow proportionally more than later-acting barriers (Ramsey et al. 2003). Therefore, 

prezygotic barriers are often considered the most important factor for restricting gene 

flow (Kirkpatrick & Ravigné 2002). However, in the initial speciation process, 

postzygotic barriers may still have been significant (Coyne & Orr 2004, Seehausen et al. 

2014). 

 



GENERAL INTRODUCTION 

  

5 

SYMPATRIC SPECIATION 
 

"One would think that it should no longer be necessary to devote much time to this 

topic, but past experience permits one to predict that the issue will be raised again at 

regular intervals." (Mayr 1963) 

 

DEFINITION 

The splitting of a homogeneous population in two or more adaptive lines in the absence 

of a physical barrier, remains a contentious issue in evolutionary biology (Via 2001, 

Coyne & Orr 2004, Bolnick & Fitzpatrick 2007, Mallet et al. 2009, Pinho & Hey 2010). 

‘Sympatry’ originally meant ‘‘in the same geographical area’’ (Poulton 1904). However, 

‘pure sympatric speciation’ may be precisely defined as ‚the origin of an isolating 

mechanism (i.e. the evolution of a barrier to gene flow) among the members of an 

interbreeding population‛ (Futuyma & Mayer 1980). This is interpreted as speciation 

between two populations that show free migration (m) or complete panmixia (m = 0.5). 

This definition allows focusing on the actual mechanisms such as gene flow and 

selection parameters, rather than being concerned about the geography of speciation 

(Kirkpatrick & Ravigné 2002, Dieckmann et al. 2004). However, it has been argued that 

for natural populations this demic definition is unsuitable, because it is a theoretical end 

point of a continuum (Fitzpatrick et al. 2008) and it omits consideration of space (Mallet 

et al. 2009). For instance, consider situations where populations may begin to specialize 

on different resources or habitat characteristics. If these resources are not perfectly 

mixed, such populations will not fall within the scope of pure sympatry. In contrast, 

resources and habitats are often distributed patchy, leading to situation with reduced 

migration and gene flow (m < 0.5). These situations are more feasible in nature and are 

often called sympatric mosaics (Fitzpatrick et al. 2008, Mallet et al. 2009). Alternatively, 

‘divergence-with-gene-flow’ may be considered as a spectrum of models with at its left 

extreme a single population with simultaneous selection for two opposing phenotypes 

(sympatry) and at its right extreme divergently selected geographically isolated 

subpopulations (Rice & Hostert 1993). 

 

 

THE PROBLEM  

A major stumbling block in the plausibility of sympatric speciation is the antagonism 

between natural selection and recombination (Felsenstein 1981). More precisely, in the 

absence of geographical isolation, interbreeding and recombination between differently 

selected populations will hamper the evolution of gene complexes that result in 
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reproductive isolation. For instance, when reproductive isolation results from habitat 

preference and habitat preference has a different genetic basis than the traits involved in 

performance (fitness) in those habitats, recombination will break down the association 

between alleles that increase performance in each habitat and alleles involved in the 

preference of those habitats. This would break down associations between alleles that 

contribute to the same trait (e.g. multiple loci involved in performance or habitat 

preference) as well as lead to allele combinations preferring habitats in which they have 

low performance. In contrast, in allopatric speciation scenarios, geographical isolation 

prevents recombination. 

A second problem that is often put forward is coexistence (Coyne & Orr 2004). 

Populations have to sufficiently diverge in their resource use to coexist during and after 

the speciation process. However, when speciation results from disruptive natural selection 

this issue is readily solved as disruptive selection will result in ecological divergence. In 

case of disruptive sexual selection, the problem is more complex because of the absence 

of ecological divergence (Coyne & Orr 2004), but solutions have been proposed 

(M’Gonigle et al. 2012). 

 

 

SOLUTIONS 

 

“When migration rates and gene exchange is high, the initial restriction to gene 

exchange has to be caused not by geography or distance, but by biological features of the 

organisms.” (Futuyma and Mayer 1980 in Coyne and Orr 2004) 

 

One often used example of sympatric speciation includes host race shifts in 

phytophagous insects in which genetic linkage between ecological specialization and 

reproductive isolation has been proposed (Hawthorne & Via 2001, Berlocher & Feder 

2002). However, most work on sympatric speciation involves theoretical models 

incorporating assumptions about selection and the genetic architecture of genes 

involved in performance (niche adaptation) and assortative mating (e.g. Rice 1987; Fry 

2003; Bolnick and Fitzpatrick 2007). Kirkpatrick & Ravigné (2002) dissected a set of 

important (and interacting) elements of speciation from these models (Figure 1).  

 

SOURCE OF DISRUPTIVE SELECTION First, sympatric speciation requires a form 

of disruptive selection that creates a force that causes the evolution of reproductive 

isolation. This selection can result from spatial variation in fitness, frequency dependent 

selection or sexual disruptive selection. In case of disruptive natural selection, this 
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should result in races that differ in their ability to survive in different niches (Coyne & 

Orr 2004).  

 

 
Figure 1. Elements involved in the evolution of sympatric speciation. Numbers refer to the 

discussion in the text. 

 

 

ISOLATING MECHANISM Second, a mechanism is needed that reduces gene exchange 

among individuals with different traits. In sympatric speciation, prezygotic isolation 

mechanisms are argued to be the most important factor keeping populations separate 

(Kirkpatrick & Ravigné 2002). These mechanisms can depend on mating preference (e.g. 

female preference for display traits in males) or assortative mating resulting from niche 

preference (Edelaar et al. 2008, Edelaar & Bolnick 2012) or result from an automatic by-

product of phenotypic variation in traits (e.g. differences in developmental timing or 

breeding time imposed by the environment; Friesen et al. 2007). In this sense, geography 

can be simply seen as another form of assortative mating (Kirkpatrick & Ravigné 2002).  

 

LINK BETWEEN DISRUPTIVE SELECTION AND ISOLATING MECHANISM           Third, there 

must exist a link between disruptive selection and the isolating mechanism for it to cause 

speciation. Using lab experiments, for instance, disruptive selection on habitat 

preference resulted in the evolution of reproductive isolation in Drosophila melanogaster 

(Rice 1985). Alternatively, body size is clearly under divergent selection between 

limnetic and benthic stickleback, and female stickleback prefer male stickleback closer to 

their own size (Nagel & Schluter 1998). In Darwin’s finches beak size is under divergent 
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selection and affects reproductive isolation by means of song differences (Huber et al. 

2007). Further, pleiotropy and linkage have been argued to provide a link between 

disruptive selection on color pattern and mate choice in mimetic Heliconius butterflies 

(Jiggins 2008) and between performance and habitat choice in phytophagous insects 

(Hawthorne & Via 2001). The effect of disruptive selection can be transmitted either 

directly or indirectly to an isolating mechanism. Direct selection may result in isolation if 

genes that affect fitness also directly influence mate preference or assortative mating (e.g. 

divergent selection on phenology or traits that produce isolation pleiotropically). As 

reproductive isolation evolves automatically as a result of selection from divergent 

environments, such traits are referred to as automatic magic traits (Servedio et al. 2011). 

Indirect selection includes scenarios in which genes that are affected by selection are in 

linkage disequilibrium with genes that cause isolation. Hence, in this latter case, 

selection is not directly on the genes that influence mate preference or assortative 

mating, but indirectly selects closely linked genes or against maladaptive gene 

combinations that lower the fitness of hybrids. These latter traits are generally referred 

to as classic magic traits (Servedio et al. 2011). Direct selection is more efficient than 

indirect selection in the evolution of isolating mechanisms as imperfect correlations 

between genes lowers the efficiency of linking selection and isolation.  

 

GENETIC BASIS Fourth, the genetic basis of the isolation mechanism has to be taken 

into consideration (Felsenstein 1981). In ‘multilocus’ models, changes in preference and 

assortative mating traits involves multiple genes (Johnson et al. 1996a). Models have 

shown that under strong selection, preference genes can become associated with 

unlinked performance genes resulting into reproductively isolated specialist populations 

(Dieckmann & Doebeli 1999, Fry 2003). However, in most multilocus models, close 

genetic linkage between the multiple loci is often opted for the evolution of reproductive 

barriers (Kondrashov & Mina 1986). In ‘one-locus, two-alleles’ models, different alleles at 

the same locus promote mate preference or assortative mating among populations 

(Felsenstein 1981). For instance, individuals with allele A at locus X prefer habitat A, 

whereas individuals with allele B at locus X prefer habitat B. In this latter model, the 

alleles, however, must become associated with performance genes (i.e. build up genetic 

differences between populations) to promote sympatric speciation. Hence, two-allele 

mechanisms may suffer from the selection-recombination antagonism. Therefore, when 

the isolating mechanism depends on genetic variation in habitat preference, a close 

genetic linkage might be expected between genes involved in habitat preference and 

genes involved in ecological adaptation to that habitat which would facilitate the 

coevolution of preference and performance traits. This linkage has, for instance, been 

found in pea aphids specializing on different host plants (Hawthorne & Via 2001). 
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Alternatively, the traits subject to divergent selection may also contribute to non-random 

mating, resulting in an ‘automatic’ link between selection and assortative mating 

(~automatic magic traits; Servedio et al. 2011). In ‘one-locus, one-allele’ models, the same 

allele increases isolation in both populations (e.g. an allele that causes animals of similar 

size to mate with each other, or philopatric behavior) solving the selection-

recombination antagonism (Felsenstein 1981). However, this model requires that there is 

already differentiation between the populations (e.g. genetic variation for size). Direct 

genetic evidence for a one-allele assortative mating locus has been provided for 

sympatric fruit fly species, Drosophila pseudoobscura and D. persimilis. For these sympatric 

species, serial backcrosses allowed the reciprocal introgression of the so called Coy-2 

chromosomal region between the two fruit fly species and demonstrated that the same 

allele at the Coy-2 chromosome region confers assortative mating in both a D. 

pseudoobscura and D. persimilis genetic background (Ortíz-Barrientos & Noor 2005). 

Another speciation mechanism that can be interpreted as one-allele mechanism includes 

learned habitat preferences (e.g. natal habitat experience), as alleles that strengthen  

learning necessarily have the same effect in both habitats (Davis & Stamps 2004, Beltman 

& Metz 2005). Finally, in ‘no-gene models’, there are no genes that directly affect mate 

preference or assortative mating, but isolation pleiotropically results from genes affected 

by selection (Rice 1987, Servedio et al. 2011). Imagine for instance disruptive selection for 

different flowering time imposed by a different environment.  

 

The distinction between the genetic models is orthogonal to the distinction between 

direct and indirect selection; all combinations of factors are possible and will have 

different effectiveness in producing sympatric speciation (see Kirkpatrick and Ravigné 

2002; Servedio et al. 2011) and, moreover, multiple mechanisms of non-random mating 

may interact (Thibert-Plante & Gavrilets 2013). Using these elements, the models indeed 

show the possibility of sympatric speciation and allow exploring the set of assumptions 

for which it is most likely. Moreover, modeling the selection-recombination antagonism 

results in some explicit predictions of the genomic architecture of adaptation, such as 

few and linked loci with large effects (Yeaman & Whitlock 2011) and even selection for 

chromosomal rearrangements during the process of local adaptation as genomic 

architectures that eliminate or decrease recombination are expected to facilitate coupling 

and hence adaptation in multiple loci and speciation (Yeaman 2013). 
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ECOLOGICAL SPECIATION 

A related concept that focuses explicitly on the mechanism of speciation concerns 

‘ecological speciation’, defined as ‚the process by which barriers to gene flow evolve 

between populations as a result of ecologically based divergent selection between 

habitats‛ (Nosil 2012). Ecological speciation differs from sympatric speciation in that it 

can occur under any mode of geographical isolation between populations as long as 

divergent selection drives the divergence process (Schluter 2001, Rundle & Nosil 2005). 

Hence, ecological speciation mainly excludes allopatric divergence scenarios in which 

the evolution of reproductive isolation largely results from genetic drift (Schluter 2001), 

mutation-order speciation (Schluter 2009) and cases in which selection is not necessarily 

ecologically based such as sexual conflict or runaway sexual selection (e.g. Sauer and 

Hausdorf 2009). However, in this concept the geography is still important to consider as 

it can affect the source of divergent selection and rates of gene flow (Nosil 2012). 

Furthermore, different geographical contexts might alternate and influence the course of 

ecological speciation (e.g. Feder et al. 2005). Like most models of sympatric speciation by 

disruptive selection, ecological speciation presumes the existence of a direct link 

between ecologically based divergent selection and reproductive isolation (Hendry 2009, 

Faria et al. 2014). Moreover, focusing on approaches that ask how these reproductive 

barriers evolve and are selected is of major interest to advance the understanding of the 

field of speciation (Faria et al. 2014). An interesting implication is that when ecological 

speciation occurs, habitat and temporal isolation as forms of reproductive isolation are 

expected because adaptation to different environments will itself generate selection 

favoring individuals with appropriate habitat preferences and developmental timing 

(Nosil 2012). 

 

 

THE SPECIATION CONTINUUM 

Although speciation can be fast and sudden such as in polyploidy speciation in plants 

(Rieseberg & Willis 2007), the speciation process is generally argued to be a continuous 

process with different stages (Darwin 1859, Wu 2001a, Hendry et al. 2009, Nosil 2012) 

and the frequency of hybridization gradually decreasing with genetic distance (Mallet et 

al. 2007). A central task of speciation studies is to reconstruct the sequence in which 

different barriers evolved in order to distinguish between causes and consequences of 

speciation. However, in natural populations the continuum is difficult to reconstruct 

from single study systems (Nosil 2012, Seehausen et al. 2014). At best, comparing 

different populations within a single species pair that vary in their degree of 

reproductive isolation can provide valuable insights about transitions along the 
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continuum (e.g. Peccoud et al. 2009; Seehausen 2009). In the light of ecological 

speciation, one might recognize several states along this continuum (Hendry 2009). 

These states range from (i) continuous adaptive variation without reproductive isolation, 

to (ii) discontinuous adaptive divergence with minor reproductive isolation, up to (iii) 

adaptive differences with strong but reversible reproductive isolation and, finally, (iv) 

irreversible reproductive isolation. When gene flow is ample, several ‘cluster-generating’ 

factors are thought to be involved in the transition between the initial stages of the 

evolution of reproductive isolation, such as strong disruptive selection and assortative 

mating. 

Further, if speciation progresses along a continuum, how far does it proceed and what 

factors determine the extent of progression? Partial reproductive isolation may represent 

a stable outcome maintained at a balance between selection and gene flow (Matessi et al. 

2001, Gavrilets 2003, Bolnick & Fitzpatrick 2007, Nosil 2012). Alternatively, speciation 

might be driven by ongoing feedback loops between selection and gene flow in which 

adaptive divergence reduces gene flow and lowered gene flow allows adaptive 

divergence and vice versa (Räsänen & Hendry 2008, Gourbière & Mallet 2010). This 

would lead to an increasingly higher degree of reproductive isolation. Moreover, Nosil 

(2012) argues that in essence partial reproductive isolation will never be completely 

stable, but results from the timescale examined. More precisely, reproductive isolation 

will appear partial if (i) speciation involves only a few genes of large effect and the 

waiting time for mutations causing increased reproductive isolation is long (Bolnick & 

Near 2005) and (ii) if the rate of increasing reproductive isolation slows down in the 

latter stages of speciation (Gourbière & Mallet 2010). The latter point may occur when 

initially reduced gene flow lowers the selection strength for premating isolation (i.e. 

reinforcement) at later stages. Finally, the temporal stability of divergent natural 

selection is an important factor to consider (Siepielski et al. 2009), because over long time 

scales, the direction and strength of selection may fluctuate and influence the evolution 

of adaptations and reproductive isolation. One example is selection for reduced 

dispersal and increased reproduction over short time scales, but selection for higher 

dispersal ability at longer time scales when the probability of habitat changes and 

extinction increases (Olivieri et al. 1995, Mathias et al. 2001, Roff & Fairbairn 2007). 

The strength of selection and the nature of ecological shifts affect how far speciation can 

proceed (Nosil et al. 2009b). However, how a finite amount of selection is distributed 

across a few versus many traits or genes may also be important. The effect of selection 

on few or multiple genes on speciation is subject to discussion, but Nosil (2012) 

summarizes that (i) strong selection on a few genes better allows adaptive divergence in 

the face of gene flow, but is expected to cause little correlated response (e.g. in linked 

genes or traits causing genetic incompatibilities) and will, therefore, result more often in 
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single trait polymorphisms rather than speciation. Alternatively, (ii) selection on 

multiple genes may be too weak to overcome gene flow, but the combined effect of 

reproductive mechanisms might be strong and correlated responses causing 

reproductive isolation as by-product may increase under widespread genomic 

divergence. Furthermore, it can be argued that initial strong selection on a single or few 

traits may provide the onset for divergence in multiple genes and traits, converting 

single trait polymorphisms to speciation (McKinnon & Pierotti 2010, Nosil 2012). 

The former issue relates to the major question about the genomic architecture of 

incipient speciation and how this architecture either facilitates or impedes further 

divergence (Feder et al. 2012b). First, as discussed above, several genetic factors such as 

pleiotropy and one-allele assortative mating mechanisms may promote speciation. 

Alternatively, indications of widespread genomic divergence in incipient diverging 

species in the face of gene flow (e.g. Lawniczak et al. 2010; Michel et al. 2010; Parchman 

et al. 2013) have triggered the hypothesis that describes a process by which physical 

linkage of gene regions and strong divergent selection can reduce gene exchange for 

large genomic regions (Feder & Nosil 2010, Via 2012). This so called ‘Divergence 

Hitchhiking’ process is suggested to allow new mutations, with even weak effect, to 

differentiate owing to locally reduced gene exchange at the few tightly linked already 

diverged genes. In later stages of the divergence process, genetic divergence across the 

entire genome, even for loci unlinked to those under selection, may become facilitated by 

global reductions in gene flow caused by genome-wide selection (i.e. Genomic 

Hitchhiking; Feder, Gejji, et al. 2012; Feder, Egan, et al. 2012). However, the detection of 

widespread genomic divergence may also be pronounced by other factors that lead to a 

high occurrence of false positives in genomic scans such as neutral mutations that arise 

in the front of a wave of expansion (Excoffier & Ray 2008) and correlated coancestry in 

highly structured populations (Bierne et al. 2013, Fourcade et al. 2013). Furthermore 

differences in recombination rates may strongly effect the heterogeneity of divergence 

along the genome (Roesti et al. 2012).  
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GENETICS OF ADAPTATION 

 

“Any locus under divergent natural selection between parental environments 

contributes to immigrant inviability and therefore may contribute to speciation.” 

(Schluter & Conte 2009) 

 

Satisfying the criteria to identify those genes whose divergence made a significant 

contribution to the evolution of reproductive isolation between populations (i.e. 

speciation genes) is a daunting task (Orr et al. 2004, Nosil & Schluter 2011). First, 

adaptation and ecological divergence are not a strict prerequisite for speciation (e.g. 

genetic drift and mutation-order speciation). Second, the persistence of species 

differences in geographical proximity typically requires the evolution of prezygotic 

barriers as divergent adaptation rarely causes sufficient reproductive isolation on its 

own (Seehausen et al. 2014). However, in many cases there will be considerable 

association between factors that prevent gene flow between sympatric species and traits 

that are involved in ecological divergence that allow coexistence between species (Coyne 

& Orr 2004). Therefore, as natural selection is widely considered a major force in 

speciation (see Wu 2001b; Nosil 2012), understanding the genetic architecture and 

ecological mechanisms involved in the evolution of adaptations is a prerequisite in the 

study of speciation.  

 

 

ECOLOGICALLY IMPORTANT GENES 

In contrast to the complex discussions of speciation, textbook examples of adaptation, 

such as melanism in the peppered moth (Saccheri et al. 2008, Van’t Hof et al. 2011), are 

often presented in a straightforward manner. Genes mutate and advantageous 

mutations spread in a population. As time since its origin progresses, nucleotide and 

protein sequence divergence will increase in agreement with neutral theory and 

hypothesis about the molecular clock (Kimura 1983). The expression of the dark and 

light color morphs in the peppered moth is controlled by a polymorphism at a single 

locus, evolved only once and carries a signature of recent strong selection (Grant 2004, 

Van’t Hof et al. 2011). Unraveling this genetic architecture of adaptations is crucial for 

understanding adaptation dynamics, but becomes far more complicated when 

adaptation involves complex evolutionary histories, multiple loci and epistatic 

interactions (e.g. Steiner et al. 2007; Linnen et al. 2013). 
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Identifying genes underlying ecologically important traits allows addressing a host of 

questions relevant to genetics, ecology and speciation that have long intrigued 

evolutionary biologists. These questions include: What ecological and evolutionary 

forces maintain variation at these loci (Mitchell-olds et al. 2007)? How many genes are 

involved in adaptation and speciation, what are their effect sizes and how does this 

affect the availability of suitable genetic variation for adaptation and speciation (Orr & 

Coyne 1992, Allen Orr 2001, Pritchard & Di Rienzo 2010, Yeaman & Whitlock 2011, 

Seehausen et al. 2014)? What is the importance and impact of  linkage and the genetic 

architecture of traits on adaptation (Yeaman & Whitlock 2011, Feder et al. 2012b, 

Flaxman et al. 2013)? Are the same genes involved repeatedly in independent adaptation 

and speciation events (Colosimo et al. 2005, Conte et al. 2012, Stern 2013)? Did mutations 

involved in adaptation and speciation arise de novo or from older preexisting variation 

(Barrett & Schluter 2008, Sousa & Hey 2013)? Are changes at regulatory sites or coding 

regions more likely to underlie adaptation (Hoekstra & Coyne 2007, Stern & Orgogozo 

2008)? Are structural variants such as inversions, duplications or chromosomal 

rearrangements important for speciation (Kirkpatrick & Barton 2006, Hoffmann & 

Rieseberg 2008, Yeaman 2013)? Several of these questions have been thoroughly 

investigated in a few unique ecological model systems. Some well-known examples 

include the genetic basis of repeated armor plate evolution in threespine sticklebacks 

(Colosimo et al. 2005, Jones et al. 2012), coat color variation in beach mice (Hoekstra et al. 

2006, Linnen et al. 2009, 2013), involvement of the optix gene in repeated convergent 

evolution of butterfly wing pattern mimicry (Reed et al. 2011), chromosomal 

rearrangements that result in tightly linked genetic loci that are inherited as a single unit 

or ‘supergenes’ and that provide integrated control of complex adaptive phenotypes in 

Heliconius butterflies (Joron et al. 2011), increased divergence in inverted regions in 

Drosophila genomes (Machado et al. 2002, Noor et al. 2007, Stevison et al. 2011), allopatric 

origins of inversions in sympatric races of the apple maggot fly Rhagoletis pomonella 

(Feder et al. 2003b, a) and parallel evolution of local adaptation and reproductive 

isolation in the face of gene flow in the rocky-shore gastropod Littorina saxatilis 

(Johannesson et al. 2010, Butlin et al. 2013). These study systems have proven to be 

pivotal in our understanding of adaptive evolution. However, to obtain a clear picture of 

the ecology and genetics of adaptation, these questions need to be addressed in a large 

number of taxa (Stinchcombe & Hoekstra 2008).  
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ENZYME POLYMORPHISMS 

Many population studies have used allozyme polymorphisms that involve soluble 

enzymes separated by size and charge on electrophoresis gels by methods that use the 

cofactor NAD+ or NADP+ either directly or in conjunction with enzymes that are coupled 

to them (Eanes 1999). Therefore, much information exists about polymorphisms in 

metabolic enzymes in the glycolytic pathway, the Krebs cycle and their branches 

(Marden 2013). In some organisms, associations between markers and ecologically 

relevant variation have been found when investigating a small number of these 

molecular markers in population studies. Interesting examples include polymorphism in 

the alcohol dehydrogenase (ADH) enzyme in Drosophila melanogaster (Johnson & Schaffer 

1973, Kreitman 1983), balanced polymorphisms in the phosphoglucose isomerase (Pgi) 

and succinate dehydrogenase d (Sdhd) loci associated to flight distance in Glanville 

fritillary butterflies (Watt et al. 2003, Wheat et al. 2006, Marden et al. 2012) and 

polymorphisms associated with local adaptation in the NADP+-dependent isocitrate 

dehydrogenase (IDH) enzyme in the ground beetle Pogonus chalceus (Dhuyvetter et al. 

2004, 2007) and the cricket species Allonemobius socius (Huestis & Marshall 2006, Huestis 

et al. 2009) and Gryllus firmus (Zhao & Zera 2006). Although it is difficult to infer whether 

these markers are the target of selection or closely linked to genes involved in 

adaptation, studying genetic variation associated with these genes has provided 

valuable insights into the evolutionary history of adaptive evolution (Kreitman 1983, 

McDonald & Kreitman 1991, Wheat et al. 2009). One of the reasons is that analyses of 

population structure and phylogenetic relationships based on these markers enable to 

reveal patterns of adaptive divergence that could be obscured by ongoing gene exchange 

at genomic regions unaffected by divergent selection (i.e. neutral markers). 

 

 

QUANTITATIVE GENETICS 

In most cases, unraveling the genetic architecture of ecologically important traits 

necessitates evaluating large amounts of variable genetic markers in multiple individuals 

and populations. Quantitative genetics, using techniques such as linkage disequilibrium 

(LD) mapping and mapping Quantitative Trait Loci (QTL mapping), has a rich history in its 

ability to identify functionally relevant genes in model organisms, such as for instance 

bristle number in Drosophila melanogaster (Mackay & Langley 1990, Mackay & Lyman 

2005, Mackay et al. 2009). Classical approaches using variation in restriction sites (e.g. 

amplified fragment length polymorphisms (AFLP’s)) for LD and QTL mapping have 

also allowed mapping genes involved in ecologically relevant variation, such as armor 

plate variation in threespine sticklebacks (Colosimo et al. 2004) and growth associated 
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loci in lake whitefish (Rogers & Bernatchez 2005, 2007). Alternatively, by focusing on 

markers in candidate genes identified in related model species associations can be 

identified, such as for melanism in pocket and beach mice (Nachman et al. 2003, 

Hoekstra et al. 2006). Unfortunately, thoroughly examining the association of markers 

and phenotypes by QTL mapping necessitates large amounts of variable markers and 

needs laborious crossbreeding, which is, however, unfeasible for many ecological model 

systems. Moreover, techniques such as QTL mapping often only allow identifying large 

genomic regions as the amount of variable genetic markers is often limited. 

Subsequently, these genomic regions have to be investigated and mapped on a finer 

scale to find the exact loci associated with adaptation (Colosimo et al. 2005, Mackay et al. 

2009). 

 

 

POPULATION GENOMICS 

More recently, technological advances allow scoring a massive number of molecular 

markers in multiple individuals from different environments. These advances largely 

involve high throughput sequencing techniques (Metzker 2010) which allow sequencing 

and comparing up to complete genomes for any kind of organism (Lawniczak et al. 2010, 

Jones et al. 2012, Dasmahapatra et al. 2012, Ellegren et al. 2012, Nadeau et al. 2013) or 

comparing many individuals from different populations by focusing on randomly 

distributed but consistent genomic regions (Hohenlohe et al. 2010a, Davey et al. 2010, 

2011, Nadeau et al. 2013, Keller et al. 2013). Applying these techniques for scoring 

massive amounts of genetic markers in ecological model systems allows unprecedented 

opportunities for detecting genomic regions and genes under selection and, hence, 

involved in adaptation and phenotypic differentiation (Feder & Micthell-Olds 2003, 

Luikart et al. 2003, Storz 2005, Stinchcombe & Hoekstra 2008, Stapley et al. 2010, Butlin 

2010, Hohenlohe et al. 2010b, Rice et al. 2011, Savolainen et al. 2013).  

 

In population genomics, population genetic analyses of a large number of markers 

distributed throughout the genome aims at identifying loci showing unusual patterns of 

variation, potentially due to selection at linked sites (Schlötterer 2003, Hohenlohe et al. 

2010b). When mutations are positively selected to high frequencies or fixation, closely 

linked neutral sites will show similar patterns of genetic variations because of genetic 

hitchhiking (Maynard Smith & Haigh 1974). According to this principle, studying 

genome wide patterns of variation allows separating locus-specific effects that affect one 

or a few loci at a time (e.g. recombination, selection and mutation) from genome-wide 

demographic effects (e.g. population size increase, genetic bottlenecks, founder events 

and inbreeding) (Luikart et al. 2003, Stinchcombe & Hoekstra 2008).  
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This approach allows identifying ecologically relevant loci and studying the genetics of 

adaptation from a genome wide perspective; it allows studying genome wide patterns of 

hard and soft selective sweeps (Messer & Petrov 2013) or balancing selection (Charlesworth 

2006) and like quantitative genetic approaches, allows studying the genetic architecture 

of adaptive traits (Savolainen et al. 2013). Moreover, complementary to artificial 

crossings, this approach can be used to study the genetic basis of (ecological) speciation 

when species divergence is recent and gene flow is ongoing so that outliers stand out 

from relatively low levels of background divergence (Gompert & Buerkle 2009, Malek et 

al. 2012). Finally, loci that contribute to phenotypic differences between ancestral 

populations can be identified by investigating genotype-phenotype correlations in a 

population of mixed ancestry (i.e. admixture mapping; Buerkle and Lexer 2008; Malek et 

al. 2012). 

However, population genomics also has its limitations (Stinchcombe & Hoekstra 2008). 

First, the loci showing unusual patterns of variation (i.e. outlier loci) are most likely not 

the causal loci but linked with the selected site(s). However, this can also be problematic 

in QTL mapping. Second, many factors may affect the extent of linkage disequilibrium 

and their effect may vary across the genome (e.g. recombination rate, strength of 

selection, population history and long term balancing selection). Third, without a linkage 

map or reference genome, the size and the position of the differentiated genomic regions 

will be unknown. Fourth, the phenotypic effect of differentiating loci remains largely 

unknown, limiting ecological investigation. Finally, loci involved in adaptation may be 

missed or, given the large amount of markers, falsely associated with adaptation by 

chance. If feasible, population genetic structure can be controlled using controlled 

crosses (i.e. QTL mapping). Furthermore, QTL mapping can be used for fine scale 

mapping of the large chromosomal regions identified by the population genomics 

approach (Stinchcombe & Hoekstra 2008). 

 

In sum, identifying and studying ecologically relevant genes is cumbersome, but an 

increasingly powerful set of approaches exists. The relative ease by which these 

techniques can be used on so called non-model organisms makes this a strongly 

developing research field answering long-standing evolutionary questions.   
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STUDY SYSTEM: POGONUS CHALCEUS 

BIOLOGY 

Pogonus chalceus (Marsham 1802) is a halobiontic ground beetle (Coleoptera, Carabidae) 

about 6-8 mm in length (Figure 2). The species mainly occurs in marine marshes with a 

salinity exceeding 0.1% and prefers partly vegetated zones on heavy sea clay(Desender 

& Maelfait 1999). These habitats include tidal marshes along the coast as well as inland 

salt marshes that are separated from the tidal influence of the sea. These latter inland 

habitats generally become flooded on an irregular base for several months during 

winter. P. chalceus individuals are mostly found hidden under washed up debris, 

vegetation, crevices and loose sand clods. Typically, individuals are found buried in the 

soil. In tidal habitats, specimens most likely reside in crevices during high tides. In the 

inland habitats, beetles are most easily found between shrinkage cracks and in heaps of 

sand which protrude above the more humid surroundings (personal observation). 

Rough density estimations of P. chalceus beetles among a wide set of populations ranges 

from 25 up to 57 individuals per 10 m2 (Desender et al. 1998). Habitat sizes along the 

Atlantic European coasts range from 0.1 ha (e.g. Oostende) up to 4,000 ha (e.g. Mont 

Saint Michel). 

P. chalceus most likely feeds on amphipods and other small invertebrates that are 

abundant in their habitat. Except for P. chalceus, which is wing-polymorphic, all species 

of the genus Pogonus are long-winged with functional flight musculature during the 

entire year. 

 

 
Figure 2. Pogonus chalceus (Marsham 1802). Photo adopted from www.eurocarabidae.de. 

 

GEOGRAPHIC DISTRIBUTION 

The geographical distribution of P. chalceus extends along the Atlantic coasts from 

Denmark down to the major part of the Mediterranean coasts, including North-Africa 

(Turin 2000). In Belgium, P. chalceus is classified as vulnerable in the Red data book 

(Desender et al. 1995). 
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REPRODUCTIVE BIOLOGY 
The development of beetles is holometabolous (indirect development or complete 

morphosis) with a dramatic pupal reorganization between juvenile and adult phases. P. 

chalceus has three larval stages (instar I-III) before developing into an adult through a 

pupal stage. Most adult P. chalceus beetles live for one year, however, some can survive 

and reproduce for more than one year (Desender 1985). P. chalceus is a univoltine (one 

generation per year) spring-reproducing ground beetle (Desender 1985). They hibernate 

as adult and have their reproductive activity mainly during spring. As the larvae of P. 

chalceus need high temperatures for their development, they develop during summer 

and the new beetle generation emerges during late summer and autumn. It is argued 

that in contrast to true spring breeders the maturation of the gonads only depends on the 

conditions of temperature and not on the photoperiod in P. chalceus (Paarmann 1976). No 

significant differences have been found in egg production between long -and short-

winged populations (Desender 1989a). Phenological differences have not been studied 

between different populations. However, Dhuyvetter et al. (2007) reported marked 

temperature and salinity differences between closely located sets of populations. As 

temperature has been found to have strong effects on larval development as well as on 

propagation rhythm by affecting dormancy of the gonads (Paarmann 1976), these 

environmental differences may possibly result in a slight offset of the emergence of the 

new generation of adult beetles as well as the reproductive period. 

 

 

DISPERSAL POLYMORPHISM 

Wing polymorphism and flight muscle dimorphism occurs in P. chalceus. Wing size is 

highly polymorphic in this species with a percentage ranging from approximately 15 % 

to 100 % of the maximum realizable wing size (MRWS; Desender and Serrano 1999). No 

differences are found in relative wing development for different months or years within 

one site (Desender et al. 2000). On the other hand, flight muscle development shows 

seasonal variation, with a higher percentage of individuals with functional flight 

muscles during seasons with high temperatures and long days (Desender 1985). 

Variation in wing and flight muscle development gives indirect measures for variation 

in dispersal by flight and give an idea of the maximal proportion of individuals in a 

population that are able to fly and disperse. It is noteworthy that, especially for Atlantic 

populations, flight observations are rare for P. chalceus and a main annual flight period is 

unknown (Desender 2000). When wing development values decrease below values of 

about 70 %, individuals with functional flight muscles become increasingly rare or 

completely absent and beetles lose their capability of flying completely (Desender, 1985).  
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Mediterranean populations all possess high dispersal ability with fully developed wing 

sizes as well as high frequencies of individuals with functional flight muscles (Desender 

et al. 2000). Atlantic populations, on the other hand, show a more varying degree of wing 

polymorphism and dispersal ability. Crossbreeding experiments between beetles from 

allopatric populations (i.e. Nieuwpoort, Zwin and Oostende) showed that variation in 

relative wing size has a high heritability of 0.819 (SE= 0.07) (Desender 1989a), meaning 

that a high fraction of the phenotypic variability between these populations in this trait 

can be attributed to genetic variation. Populations with large mean wing sizes also tend 

to have larger body sizes, however, this trait has lower heritability estimates (0.68, SE= 

0.21; Desender 1989). It has been suggested that body size might be related to the need to 

accommodate functional flight musculature (Desender 1989a, Dhuyvetter et al. 2004). 

 

 

HABITAT STABILITY AND WING SIZE 

Desender and colleagues identified two different habitat types that select differently for 

dispersal ability; stable and temporary habitats (Desender et al. 1998, Dhuyvetter et al. 

2004). They argued that small and unstable or temporary populations select for retention 

of a high dispersal morph despite the associated reproductive costs. In habitats with 

unpredictable dynamics it is advantages to invest in dispersal to be able to escape these 

changing environments when they become unsuitable and to colonize new locations. In 

stable habitats, on the other hand, individuals with reduced dispersal ability may invest 

more resources in reproduction. Hence, when there is a cost to dispersal, individuals 

with reduced dispersal ability are expected to increase in frequency in populations 

inhabiting stable and permanent habitats (Roff 1986, Roff & Fairbairn 2007). Moreover, 

higher emigration rates of the long-winged morph would lead to an increased frequency 

of the short-winged morph in this situation (Roff 1986). Indeed, in P. chalceus a clear 

association exists between habitat persistence (i.e. age of the salt marshes) and wing-size 

among populations along the Atlantic coast (Desender et al. 1998). Furthermore, 

Mediterranean populations all possess high dispersal ability in accordance with low 

permanence due to prolonged inundation of these habitats (Paarmann 1976, Desender et 

al. 2000, Dhuyvetter et al. 2004). 

In this dissertation we recognize two main habitats that strongly differ in hydrological 

regime and select differently for dispersal capacity; tidal salt marshes and seasonally 

inundated inland salt marshes. Tidal salt marshes are flooded year-round on a regular basis 

(i.e. tides), but for short periods of at maximum a few hours only. Seasonally flooded 

marshes are disconnected from the sea and are permanently inundated for long periods, 

forcing the beetles to escape these inundations. In accordance with these habitat 

dynamics, populations inhabiting tidal and seasonal salt marshes have a low and high 
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average wing size, respectively. These differences in dispersal ability most likely result 

from divergent selection forcing beetles to disperse to drier patches or habitats during 

long term flooding in the seasonal habitats. Conversely, in the tidal habitats it is most 

likely advantageous to stay submerged during quickly rising, but relatively short 

flooding as this decreases the risk of predation if beetles would repeatedly attempt to 

escape these frequent inundations. Hence, dispersal behavior is expected to be costly in 

the tidal habitats, whereas staying submerged for extensive periods in the seasonal 

habitats would result in mortality as beetles are expected to tolerate submergence for 

only short periods.  

The definition of the different habitats as tidal or seasonal is similar to the distinction of 

the stable and temporary habitats, but makes an important distinction in that it emphasis 

on adaptation to the different hydrological dynamics in the habitats (not only habitat 

persistence). Moreover, this has important implication for the understanding of the 

evolution and preservation of the dispersal ecotypes (see Chapter 6). 

 

 

MITOCHONDRIAL NADP+-DEPENDENT ISOCITRATE 

DEHYDROGENASE  

Population genetic studies of P. chalceus revealed that variation in allozyme frequencies of 

the mitochondrial NADP+-dependent isocitrate dehydrogenase (mtIDH) protein shows a 

similar pattern as variation in wing size differences among populations (Dhuyvetter et 

al. 2004). Populations with high frequencies of long-winged individuals, which mostly 

occupy seasonally flooded inland habitats, have high frequencies of the mtIDH-B 

allozyme. In contrast, populations from tidal habitats with high frequencies of short-

winged individuals have high frequencies of the mtIDH-D allozyme. The consistent 

association of wing length and mtIDH allozyme frequencies with habitat stability in 

independent populations strongly implies natural selection as the cause of 

differentiation, as random genetic drift is unlikely to produce such a pattern (Dhuyvetter 

et al. 2004). However, heritability of variation in wing size has not been determined 

among sympatric populations. Furthermore, how mtIDH allozyme variation is 

translated at the genomic level and whether the association between wing size and 

mtIDH allozymes results from close genetic linkage or similar selection pressures has 

not been investigated.   

Whether selection is acting on the mtIdh gene itself or on a tightly linked locus is unclear. 

NADP+-dependent isocitrate dehydrogenases (i.e. mitochondrial and cytoplasmic 

NADP+-IDH) catalyze the oxidative decarboxylation of isocitrate to α-oxogluterate with 

the concomitant reduction of NADP+ to NADPH. NADP+-specific IDH isozymes are not 
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directly involved in the Krebs cycle (i.e. NAD+-dependent isocitrate dehydrogenase) and 

the precise metabolic functions of the NADP+-specific IDH isozymes are unclear. Two 

NADP+-dependent isocitrate dehydrogenases have been reported in eukaryotes, one of 

which is located in the mitochondria (mtIDH) and the other predominantly in the 

cytoplasm (cytIDH) (Jenningss et al. 1994, Zhao & Mcalister-henns 1996). Both NADP+-

dependent enzymes are homodimers that are encoded in the nuclear genome (Ceccarelli 

et al. 2002, Xu et al. 2004). According to the allozyme protocol of Hebert and Beaton 

(1993), the IDH protein associated with wing size in P. chalceus is most likely the 

mitochondrial IDH isozyme.  

It has been demonstrated that flight muscles of beetles contain high activities of NADP+-

IDH, indicating a possible importance of NADP+-IDH for flight metabolism (Alp et al. 

1976). Further, it has been suggested that mtIDH provides NADPH for maintenance of 

proper oxidation-reduction balance and protection against oxidative damage (Jo et al. 

2001, Lee & Koh 2002, Kim et al. 2005). However, these functional associations are only 

suggestive for possible adaptive differences between the mtIDH allozymes. Examples of 

other allozyme polymorphism that are shown to be involved in flight metabolism are 

phosphoglucose isomerase (PGI) and succinate dehydrogenase (SDH) in Colias eurytheme 

and Melitaea cinxia butterflies (Wheat et al. 2006, 2009, Marden et al. 2012). Activity 

variation in cytoplasmic NADP+-dependent isocitrate dehydrogenase has been inferred 

to differ between dispersal morphs of the crickets Gryllus firmus (Zhao & Zera 2006). 

However, it has been demonstrated that this variation in enzyme activity is exclusively 

attributable to variation in enzyme concentration, which in turn stems from allelic 

differences in transcription rates (Schilder et al. 2011). Former enzymes are involved in 

energy metabolism pathways, which have been found to be frequent targets of selection 

(Marden 2013), as might be the case for the mtIDH enzyme. 

 

 

THE GUÉRANDE SALTERNS 

The Guérande salterns in France spread over more than 2,000 hectares and have been 

constructed and cultivated for over a millennium. A mosaic of two contrasting habitats 

can be found here at distances of only a few meters and in hundreds of replicates; canals 

and ponds (Figure 3). The ponds are used to evaporate water and concentrate salts. The 

canals bring Atlantic seawater into the ponds. These canals show similar hydrological 

dynamics as tidal marshes. The artificially constructed ponds are periodically completely 

flooded every few years when silt deposits prevent further cultivation. The hydrological 

dynamics of ponds resembles that of seasonally flooded inland marshes. 

In these salterns, short-winged populations with on average 2.2 times smaller wing size 

than long-winged populations and a high frequency of the mtIDH-D allozyme (0.96 ± 
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0.04) are found along the edge of the tidally flooded (stable) canals, while long-winged 

populations with a high frequency of the mtIDH-B allele (0.58 ± 0.02) are found in dry 

ponds or in dry edges of seasonally flooded (temporary) ponds (Dhuyvetter et al. 2007). 

Despite the strong divergence in both wing size and mtIDH alleles, microsatellite and 

allozyme data confirmed that genetic differentiation among these ecotypes in neutral 

markers is very low and smaller compared to allopatric populations from the same 

ecotype (Dhuyvetter et al. 2007). Hence, also at micro geographical scales with ample 

opportunity of gene flow, the mtIDH allozyme frequencies and wing size distribution 

show a strong correlation with habitat dynamics. 

 

 

 

 
Figure 3. The Guérande salterns. Above: satellite view of the Guérande salterns (Google earth). 

Down: Panoramic view showing a canal (left) and a flooded pond (right) separate by only few 

meters (June 2013).  
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DISPERSAL POLYMORPHISMS 
A large body of theoretical and empirical literature exists discussing the evolution of 

dispersal polymorphisms (e.g. Roff 1994a; Roff and Fairbairn 2007). These studies often 

consider the evolution of dispersal polymorphism as resulting from fitness trade-offs 

(Mole & Zera 1993, Roff & Fairbairn 2007, Stevens et al. 2012) or metapopulation 

dynamics with dispersal between patches that have different rates of extinction or 

fluctuations in carrying capacity (McPeek & Holt 1992, Holt & McPeek 1996, Mathias et 

al. 2001, Hendrickx et al. 2013). Theoretical models mostly discuss how these factors 

result in stable dimorphisms within populations. P. chalceus populations inhabit 

environments that can strongly differ in their dynamics (i.e. tidal and seasonal habitats). 

However, in contrast to most theoretical models discussing the evolution of dispersal 

polymorphisms, in P. chalceus differentiation in dispersal ability has resulted in spatial 

separation and local adaptation to these differing habitats. Nevertheless, to obtain a 

good understanding of the evolutionary processes leading to ecological divergence in 

the ground beetle P. chalceus it is interesting to discuss the ultimate causes (selective 

forces) that result in the evolution of dispersal polymorphisms. Furthermore, how 

ultimate causes affect the evolution of dispersal polymorphisms requires knowledge 

about the genetic architecture and physiology of the dispersal strategy and its 

developmental pathways (proximate causes).  

 

 
Figure 4. Selective forces that may result in dispersal polymorphisms and their genetic architecture. 
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Ultimately, flight polymorphisms result from different selective advantages and 

disadvantages of the normal and flightless morph (Harrison 1980). Dispersal may be 

advantageous for avoiding competition among kin (Bitume et al. 2013) and preventing 

inbreeding (Bengtsson 1978). Further, if populations go extinct, dispersal is favored 

because it allows the recolonization of empty patches (Olivieri et al. 1995). Disadvantages 

include increased mortality associated with dispersal and costs associated with the 

allocation of resources to morphological structures that facilitate flight but which 

decrease the amount of resources available for reproduction (Bonte et al. 2012). Here I 

discuss several aspects that select differently for dispersal ability and which may be 

involved in the evolution of flight polymorphisms (Figure 4). 

 

TEMPORAL AND SPATIAL HETEROGENEITY  ‚The world is heterogeneous in 

both time and space, and migration is an evolved response to this heterogeneity‛ (Roff & 

Fairbairn 2007). Oppositely, when dispersal ability is under direct genetic control, 

permanent habitats will have a higher proportion of flightless individuals. A simple 

explanation is that after a site is initially colonized by long-winged individuals, the 

fraction of long-winged morphs will decline because a greater fraction of the genes 

determining long-winged morphs will leave the population each generation which may 

result in short-winged populations in permanent habitats (Järvinen & Vepsäläinen 1976, 

Olivieri et al. 1995). 

 

ISOLATION  Dispersal involves risks. When dispersal becomes increasingly costly, 

the advantage of being able to find new suitable habitats becomes offset. Therefore, if 

habitat patches become increasingly isolated, the chances of finding new suitable habitat 

reduce and the mortality of dispersers will likely increase. Hence, it is predicted that 

species from isolated locations will have lower levels of dispersal (Harrison 1980). This 

could for instance explain the observed high percentage of flightless species on oceanic 

islands (Darwin 1859, Harrison 1980). 

 

FITNESS TRADE-OFF In numerous wing-polymorphic species, flight capability is 

negatively correlated with key life history traits such as fecundity and age at first 

reproduction (Mole & Zera 1993, Desender 2000, Oliveira et al. 2006, Stevens et al. 2012). 

From these findings it is argued that flight capability and reproduction are energetically 

expensive and compete for internal resources, resulting in a fitness trade-off between 

flight capability and reproduction called the ‘flight-oogenesis syndrome’ (Rankin et al. 

1986).  
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GENETIC ARCHITECTURE The evolution of dispersal requires that dispersal ability is 

under genetic control and, therefore, can be subjected to selection (Mathias et al. 2001). 

The vast majority of insects are descended from winged ancestors, and, hence, wing size 

reduction is considered the derived state (Roff & Fairbairn 2007). The presence or 

absence of wings may be controlled by a single locus with two alleles or a polygenic 

system. In most wing-dimorphic Coleoptera, wing dimorphism is under control of a 

single locus, with reduced wings being dominant (Roff & Fairbairn 2007). It is argued that 

dominance of the allele that reduces wing size has been repeatedly favored because 

dominant alleles are expressed in heterozygotes and are, hence, readily available for 

selection when they evolve and are less likely to be lost from the population by chance. 

On the other hand, it can be considered that dispersal syndromes are complex traits 

(Stevens et al. 2014) and likely involve many genes (polygenic). Indeed, wing size 

inheritance involving multiple loci has also been found in insects (Desender 1989a, 

Fairbairn & Roff 1991). This may result in continuous variation in dispersal ability or, 

alternatively, these polygenic traits may be threshold driven, resulting in distinct 

dispersal polymorphisms (Roff 1994b). According to this latter view, continuous genetic 

variation may result in distinct phenotypes; depending on whether individuals lie above 

a certain threshold they will develop in one or the other morph. This model is useful for 

understanding the development of different morphologies and can also be applied to 

other types of dichotomous traits, such as the decision to migrate or not. For instance, P. 

chalceus has a continuous wing size distribution, but effective dispersal may be discrete. 

Furthermore, within populations, genetic linkage becomes of less importance as 

selection works on the threshold value. Depending on the allele distributions within the 

population, a certain frequency of dispersive individuals will occur. Finally, morph 

determination can be environmentally induced. For instance wing dimorphism in both 

Calathus cinctus and Calathus melanocephalus is genetically determined by a single locus 

with short-wings dominant compared to long-wings (Aukema 1990, 1995). In C. 

melanocephalus, however, the expression of the long-winged genotype is modified by 

environmental factors such as temperature and food supply, whereas in C. cinctus wing-

length is independent of these factors. Further, in the cricket Gryllus firmus, variation in 

dispersal is under polygenic control and is also influenced by a variety of environmental 

factors such as density, photoperiod and nutrition (Zera & Larsen 2001, Zera & Zhao 

2003, Vellichirammal et al. 2014). Morph expression in crickets is best viewed as a 

polygenic threshold trait, the threshold level of which is determined by both multiple 

loci and environmental inputs (Roff 1994b). Finally, among aphids, some species 

alternate between environmentally sensitive and genetic control of wing morph 

determination in their life cycle or between males and females (Braendle et al. 2006, 

Brisson 2010). 
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DEVELOPMENT OF THE WING Insect limb and wing development has been 

intensively studied in Drosophila melanogaster by systematic screens of loss-of-function 

mutations (Nüsslein-volhard & Wieschaus 1980), gain-of -function phenotypes (Rørth et 

al. 1998), expression studies (Calleja et al. 1996) and employing reverse genetic 

approaches such as RNA-mediated interference (Kennerdell & Carthew 1998). Weihe et al. 

(2005) give a comprehensive overview of the pathways involved in wing development. 

The wing is derived from the wing imaginal disc, which is developed from outgrowths 

of the body wall (i.e. ectoderm). During development of the imaginal disc, three major 

axes are established, i.e. anterior-posterior, dorsal-ventral, and proximal-distal axes 

(Figure 5). The imaginal disc receives these patterning cues by diffusible signals called 

morphogens which provide cells with positional information. Hence, changes in 

expression of these genes affect cell identity and will, consequently, affect growth and 

development. The anterior-posterior axis is structured a.o. by the morphogens engrailed, 

invected, decapentaplegic and hedgehog. The dorsal-ventral axis is structured a.o. by the 

transcription factor wingless, apterous and vestigial. The proximal-distal axis is structured 

a.o. by the gene distal-less. For a complete list of genes involved in limb and wing 

development we refer to Weihe et al. (2005).  

 

 
Figure 5. Organization of the dorsal-ventral (DV) and anterior-posterior (AP) axes in the wing 

imaginal disc (A.) and in the adult wing (B.). Wing patterning genes or morphogens are expressed 

in different compartments (e.g. apterous in D compartment, engrailed in P compartments) and direct 

the development of the wings. 

 

Apart from studying how wings develop, few studies have investigated the genes 

directly involved in wing dimorphisms or polymorphisms. A large set of 34 candidate 

genes affecting wing development in Drosophila have also been studied in the red flour 

beetle Tribolium castaneum using RNA-mediated interference (Richards et al. 2008). 

Twenty two of these genes have been identified in the genome of the pea aphid 

Acyrthosiphon pisum (Brisson et al. 2010). To examine the effect of these wing 

development genes on wing polymorphisms in pea aphids, Brisson et al. (2010) 

examined the expression levels of eleven of these wing development genes via 

quantitative PCR at different developmental stages, for both winged and unwinged 
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parthenogenetic pea aphid females. One gene, apterous1, exhibited significantly different 

expression levels between winged and unwinged morphs, suggesting this gene is 

involved in polyphenic development in pea aphids. In ants, studying the expression of 

several wing development genes showed that expression of these genes is conserved in 

the winged castes of different ant species, whereas the wingless castes have evolved 

from different points of interruption in the wing development network (Abouheif & 

Wray 2002). Hence, wing polyphenism in different ant species results from interrupting 

or down regulating different genes in the wing development network. Finally, it has to 

be noted that alternative dispersal morphs most often exhibit systemic differences that 

go well beyond the presence or absence of wings and (pleiotropically) involve multiple 

key life history traits (Stevens et al. 2012). For instance, in the monarch butterfly, Danaeus 

plexippus, differences in dispersal behavior have been found to be associated with genes 

that are essential for flight muscle morphogenesis (i.e. collagen IV subunit α-1 and α-2 

and kettin; Zhan et al. 2014). 
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OBJECTIVES AND OUTLINE 
 

 

In this thesis we attempt to obtain a better understanding of the ecological mechanisms, 

the genetics and evolutionary history of adaptive divergence in the wing-polymorphic 

ground beetle Pogonus chalceus. Studying taxa in the process of splitting and with 

incipient reproductive isolation is of major interest for understanding how adaptation 

and speciation progresses (Via 2009). Moreover, mechanisms involved in reproductive 

isolation are best studied in a sympatric setting as geographic distance between P. 

chalceus populations in itself is unlikely to result in reduced gene flow. In P. chalceus, 

several factors allow addressing a wealth of evolutionary relevant questions discussed in 

the former section. These factors include (i) divergent selection among populations 

resulting in local adaptation, (ii) the environmental gradient being uncorrelated with 

geographical distance, (iii) the presence of multiple geographically separated replicates 

of the divergence process, and (iv) sufficient gene flow among populations subjected to 

divergent selection to distinguish neutral from non-neutral processes. The following 

questions are addressed in this thesis: 

 

 What is the evolutionary history of the mtIDH alleles which are selected to high 

frequencies in different allopatric as well as sympatric populations? 

 

 What are the ecological and genetic factors that maintain divergence in sympatry?  

 

 How might divergent selection result in reproductive isolation in sympatric P. 

chalceus populations? 

 

 How does the ecotypic divergence translate to the genomic level? Can we identify 

multiple loci associated with divergence, are they physically linked and what is 

their evolutionary history? 

 

In CHAPTER 1, we investigate heritability of wing size in the sympatric Guérande 

populations and combine all available population genetic data on wing size and mtIDH 

allozymes from P. chalceus to study the association between these two genetic traits. 

Although wing size divergence has shown to have a high heritability between the 

compared geographically isolated populations (Desender 1989a), plastic responses may 

increase when gene flow levels are increased (Sultan & Spencer 2002). Whether wing size 

differences in the Guérande result from a plastic response or are constitutively expressed 
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is of major importance to the interpretation of the ecological and evolutionary factors 

influencing these differences in sympatry. Further, the across population association 

between wing size and mtIDH allozymes suggests that the mtIdh locus and loci involved 

in wing development show low levels of recombination, which would strongly facilitate 

the persistence of both locally adapted ecotypes under high levels of gene flow. Whether 

these traits constitute physically linked variation or whether the association results from 

similar selection pressures working on different loci is investigated. 

 

Next, in CHAPTER 2, we identify the DNA sequence of the mtIdh gene and study its 

evolutionary history by comparing sequences from different mtIDH allozymes and 

populations. This allows us to determine the origin of the adaptation associated with the 

mtIdh locus; whether it evolved de novo in several populations separately or whether the 

observed patterns result from a single origin and subsequent spread into other 

populations. Further, comparing sequence variation in the mtIdh locus with coalescent 

simulations allows us to evaluate several evolutionary scenarios.  

 

In CHAPTER 3, we expand the available genetic resources for P. chalceus by sequencing, 

assembling and annotating the complete transcriptome. Subsequently, in CHAPTER 4, 

we present the de novo assembly and analysis of a draft genome sequence for P. chalceus. 

 

In CHAPTER 5, the genetic basis of population and ecotypic divergence between eight P. 

chalceus populations distributed across Europe is investigated using Restriction site 

Associated DNA markers (RAD tags). This technique allows comparing many individuals 

from different populations by focusing on randomly distributed genetic markers but at 

consistent genomic regions. 

 

In CHAPTER 6, we try to identify a link between disruptive selection and assortative 

mating that may promote the divergence and preservation of sympatric beetle 

populations by testing the response and adaptation to inundation of P. chalceus beetles 

from tidal versus seasonal habitats. If populations from tidal and seasonal habitats 

respond differently to inundation events in terms of dispersal or staying in a habitat, this 

may lead to spatial sorting and offer an explanation for the coexistence of distinct 

ecotypes in sympatric settings. 

 

Finally, in CHAPTER 7, we explore the possible effect of natal habitat experience on 

adult habitat preferences. Existence of natal habitat preferences may provide an easy 

explanation for the initial colonization of new habitats and may strongly affect the 

evolution of the distinct P. chalceus ecotypes in sympatric settings.  
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ABSTRACT 
Local adaptation likely involves selection on multiple, genetically unlinked traits to 

increase fitness in different habitats. Conversely, recombination is expected to counteract 

local adaptation under gene flow by breaking down adaptive gene combinations. 

Western European populations of the salt marsh beetle Pogonus chalceus are 

characterized by large interpopulation variation at various geographical ranges in two 

traits related to dispersal ability, i.e. wing size and different allozymes of the 

mitochondrial NADP+-dependent isocitrate dehydrogenase (mtIdh) gene. In this study, 

we tested whether variation in wing length was as strongly genetically determined in 

locally adapted populations in a sympatric mosaic compared to allopatric populations, 

and if variation in mtIDH and wing size was genetically unlinked. We demonstrate that 

variation in wing size is highly genetically determined (h² = 0.90) in sympatry and of 

comparable magnitude as geographically separated populations. Second, we show that, 

although frequencies of mtIDH allozymes are tightly associated with mean population 

wing size across Western European populations, the correlation is strongly reduced 

within some of the populations. These findings demonstrate that the divergence involves 

at least two traits under independent genetic control and that the genetically distinct 

ecotypes are retained at geographical distances with ample opportunity for gene flow. 

 

 

 

INTRODUCTION 

When multiple unlinked loci are involved in local adaptation, recombination between 

environment specific alleles counteracts their joint inheritance, hampering the 

independent evolution of these lineages (Felsenstein 1981, Lenormand 2002). 

Consequently, theory predicts that phenotypic differentiation resulting from genetic 

changes in multiple traits under sympatry is more likely to involve pleiotropy or strong 

linkage disequilibrium among the involved loci (Felsenstein 1981, Via 2001, Rundle & 

Nosil 2005). More recently, theoretical models even predict that when levels of migration 

between locally adapted populations is high, this will play an important role in shaping 

the genetic architecture of a trait wherein QTL’s will be clustered into fewer loci of large 

effect (Lenormand 2002, Griswold 2006, Yeaman & Whitlock 2011). Indeed, strong 

genetic linkage has been suggested to play an important role in maintaining contrasting 

ecotypes in hybridizing populations of, for instance, sticklebacks (Jones et al. 2012) and 

pea aphids (Hawthorne & Via 2001). 
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Despite a multitude of mathematical and simulation models (Dieckmann & Doebeli 

1999, Fry 2003, Gavrilets 2003, Bolnick & Fitzpatrick 2007), only a few well known 

examples of adaptive divergence under high levels of gene flow have been documented 

in recent decades (Nosil 2012). These examples include the genetic linkage of ecological 

specialization and reproductive isolation in pea aphids, Acyrthosiphon pisum pisum 

(Hawthorne & Via 2001), and genome wide divergence between sympatric races of the 

apple maggots, Rhagoletis pomonella (Michel et al. 2010). These systems proved to be 

pivotal to gain a better understanding of the first steps within ecological divergence and 

speciation processes (Nosil 2012). Unfortunately, few of these studies investigated to 

what extent multiple traits are involved in adaptation to these divergent habitats, and in 

particular how they are associated at the genetic level.   

 

The salt marsh beetle Pogonus chalceus (Marsham 1802) represents a case of pronounced 

genetic divergence in multiple traits related to dispersal ability. These differences in 

dispersal ability are associated with differences in habitat stability within a set of highly 

interconnected populations. P. chalceus is a halobiontic ground beetle (Carabidae), found 

along the Atlantic Western European coasts down to and including the major parts of 

the Mediterranean coasts (Turin 2000). Wing size is highly polymorphic in this species 

with a percentage ranging from approximately 15 % to 100 % of the maximum realizable 

wing size (Desender & Serrano 1999). Although it has not been directly shown for this 

species, the high energetic costs associated with flight capability is expected to result in 

lower fecundity for long-winged morphs favoring the short-winged morph if the habitat 

is permanent (Roff 1994a). The retention of a high dispersal morph is interpreted as an 

adaptation to survival in temporary, more unstable environments (Dhuyvetter et al. 

2004, but see Hendrickx et al. 2013). Stable habitats comprise coastal tidal marshes in 

which beetles are submerged during the regular short periods of flooding. The inland, 

unstable, salt marshes become inundated unpredictably for longer periods, most likely 

forcing the beetles to escape these unsuitable conditions. However, also age and size of 

the habitats have been shown to affect wing size distributions, with young and small salt 

marshes being occupied by individuals with on average high dispersal ability (Desender 

et al. 1998). 

Moreover, previous work demonstrated that the average population wing size is 

strongly associated with the population frequencies of mitochondrial NADP+-dependent 

isocitrate dehydrogenase allozymes (mtIDH; KEGG orthology (KO): k00031) across 

populations (Dhuyvetter et al. 2004), with long-winged populations having higher 

frequencies of the mtIDH-B allele. This divergence in both traits is apparently retained 

under high levels of interpopulation gene flow, as demonstrated for the Guérande 

salterns in France where both ecotypes coexist at distances of only a few meters in a 
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sympatric mosaic (Dhuyvetter et al. 2007). In these salterns, short-winged populations 

with on average 2.2 times smaller wing size than long-winged populations and a high 

frequency of the mtIDH-D allozyme (0.96 ±0.04) are found along the edge of tidally 

flooded (stable) canals that bring Atlantic seawater into ponds, while long-winged 

populations with a high frequency of the mtIDH-B allele (0.58 ±0.02) are found in the 

seasonally flooded (unstable) pond habitat. Despite the strong divergence in both wing 

size and mtIDH alleles, microsatellite and allozyme data confirmed that genetic 

differentiation among these ecotypes in these supposedly neutral markers is very low 

and smaller compared to allopatric populations from the same ecotype (Dhuyvetter et al. 

2007). Although a biochemical link between the mtIDH allozymes and flight metabolism 

has not been confirmed and selection may be acting on a tightly linked locus. The mtIDH 

enzyme is encoded by a nuclear gene and catalyzes the oxidative decarboxylation of 

isocitrate to α-oxogluterate with the concomitant reduction of NADP+ to NADPH. The 

enzyme is not directly involved in the Krebs cycle (i.e. NAD+-dependent isocitrate 

dehydrogenase) and the precise metabolic function of the mtIDH enzyme is unclear. It 

has been suggested that mtIDH provides NADPH for maintenance of proper oxidation-

reduction balance and protection against oxidative damage (Jo et al. 2001, Lee & Koh 

2002, Kim et al. 2005).  Further, it has been demonstrated that flight muscles of beetles 

have high activities of NADP+-IDH, indicating possible involvement of NADP+-IDH in 

flight metabolism (Alp et al. 1976). However, these functional associations are only 

suggestive for possible adaptive differences between the mtIDH allozymes. 

In this study, we further analyze the previously demonstrated tight association between 

mtIDH allozyme frequencies and wing size at the population level. This across 

population association suggested that the mtIdh locus and loci involved in wing 

development show low levels of recombination, which would strongly facilitate the 

persistence of both locally adapted ecotypes under high levels of gene flow. Whether 

these traits constitute physically linked variation or whether the association results from 

similar selection pressures working on different loci has not been previously tested. 

Further, variation in wing size, which has previously been shown to have strong genetic 

component in this species (Desender 1989a), could be expected to be less genetically 

determined in sympatric populations compared to geographically isolated populations 

that have been studied to date. Therefore, we subjected a long- and short winged 

sympatric population from the Guérande salterns to crossbreeding in order to estimate 

the additive genetic contributions of the divergence in wing size and body size in this 

sympatric mosaic and compare this with estimates from allopatric populations. Next, we 

analyzed the available population data for wing length and mtIDH allozyme frequencies 

from previous studies to test whether nearby populations were more similar in mtIDH 

frequencies (i.e. spatial autocorrelation), which would imply a role of gene flow in the 
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distribution of mtIDH allele frequencies. Finally, we tested whether variation at the 

mtIdh locus was physically linked with genes involved in wing size by studying the 

association of mtIDH allozyme frequencies and wing size within populations.  

 

 

 

MATERIALS & METHODS 

HERITABILITY ESTIMATES 

SAMPLING AND CROSSBREEDING 

Individuals of the halobiont carabid beetle P. chalceus were sampled in the salterns of the 

Guérande region in France from two contrasting habitats, a tidal canal and an 

unpredictably flooded pond, in both September 2010 and April 2011. These paired 

sampling sites were located only 30 m apart (Figure 6; Pond 3 and Canal 3). Beetles 

captured in September 2010 were not in the reproductive stage and were not used for the 

crossbreeding experiment. Females captured in April 2011 were in the egg laying stage 

and fertilized in the field. Eggs of this parental (P) generation were raised in the lab and 

the emerged adults constitute the F0 generation. Adult F0 beetles of the pond and canal 

population were kept randomly in pairs and used to produce a F1 generation. Breeding 

and crossbreeding were performed under identical laboratory conditions; constant long 

day conditions (16h light, 8h dark) at 20 °C in plastic jars 5 cm in diameter with plaster. 

The plaster was initially moisturized with salt water from the field and kept saturated 

with fresh water. Both adults and larvae were fed pieces of mealworm every two days. 

The beetles tend to burry small holes into the plaster in which they lay their eggs 

separately and encapsulate the hole with gnawed plaster. Adult beetles were exposed to 

winter conditions (5 °C for five weeks) after emergence from the pupae to stimulate the 

development of the gonads (Paarmann 1976).  

 

 

MEASUREMENTS AND DETERMINATION OF WING SIZE 

Wing and body size (elytral size) were measured by means of a calibrated ocular under a 

binocular microscope. Wing size is expressed as an index that corrects for the allometric 

relationship between wing length and body size (den Boer 1980, Desender et al. 1986). 

More precisely, the relative wing size corrected for allometry expresses the percentage of 

the maximal realizable wing size (%MRWS). The relative wing size is wing length × width 

divided by elytral length × width. Relative wing size was expressed as a percentage of 

the maximal relative wing size for a beetle of a given size. This maximal realizable wing 
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size was derived from a regression of wing length and body size from Carabid species 

with always fully developed wings and functional flight muscles allowing comparisons 

of relative wing sizes of beetles with different body sizes (Desender et al. 1986). 

 

 
Figure 6. MtIDH allozyme distribution (mtIDH-A in yellow, mtIDH-B in red, mtIDH-D in blue, 

mtIDH-E, in black) of P. chalceus populations along the European coasts. Blue dots indicate tidal 

habitat, red dots indicate seasonal habitat. Horizontal bars give the mean %MRWS of each 

population. Pond 3 and Canal 3 were sampled for the crossbreeding experiment. Adopted from 

Dhuyvetter et al. (2004) with addition of unpublished data from Montpellier (MON), Gata (GAT), 

Coto Doñana (COD) and Huelva (HUE). For more information on other enzymes tested see 

Desender et al. (1998). 
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STATISTICAL ANALYSIS 

Body size, absolute wing size and percentage of maximal realizable wing size (%MRWS) 

were first compared between the canal and pond populations by means of a general 

linear model including the factors population and sex (PROC GLM; SAS v9.1.2 Institute 

Inc). Heritability of wing and body size was determined by means of a parent-offspring 

analysis, wherein we regressed phenotypic traits of the F1 offspring against those of the 

F0 midparent and used the regression slope as an estimate of the narrow-sense 

heritability (h2) (Falconer & Mackay 1996)  

 

 

WING SIZE – mtIDH ASSOCIATION 

SAMPLING 

With the exception of the two samples from the Atlantic coast of Spain (Coto Doñana 

(COD) and Huelva (HUEL)) and two Mediterranean populations from France 

(Montpellier (MON) and Gata (GAT)), all population data on mtIDH allozyme 

frequencies and average wing size were published previously (Figure 6). The total 

dataset comprised 3,053 wing size measured and mtIDH genotyped individuals divided 

over 64 populations (see Appendix 1 for an overview of the original source of the data). 

Atlantic sample locations included ten sites from Belgium (including six seasonal 

populations), six sites from the United Kingdom, five sites from the Netherlands, 

twenty-one sites from France and two sites from Spain (one seasonal and one tidal 

populations). The sampled Mediterranean populations, which are all seasonally flooded 

(Paarmann 1976), included nine sites from southern France and eleven sites from Spain 

(including three populations from inland high elevation salt ponds near Albacete, at 600-

800 m). 

  

 

ASSOCIATION BETWEEN MTIDH AND WING SIZE ACROSS POPULATIONS 

The across population association between mtIDH allozyme frequencies and average 

wing size has previously been tested by Dhuyvetter et al. (2004) (r2 = 0.95; P < 0.0001). 

Here, we pooled all available data (Appendix 1) and included spatial autocorrelation in 

the model to test for the association between mtIDH allozyme frequencies and average 

wing size across populations. Frequencies of the mtIDH allozyme could also be spatially 

dependent due to higher levels of gene flow between more nearby populations. This 

could be particularly problematic if average wing size of the populations is also spatially 

structured across the region and could lead to a statistical association between mtIDH 

allele frequencies and wing size caused by neutral drift effects rather than resulting from 
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selection on mtIDH allozymes. We regressed the proportion of mtIDH-B alleles in a 

population against the average wing size by means of a generalized linear mixed model 

with a binomial distributed error and logit link. To account for spatial autocorrelation, 

we incorporated an exponential spatial variance structure based on the geographic 

coordinates of the populations. Interestingly, this model further allowed us to test if the 

geographic distance between populations significantly correlates with variation in 

mtIDH alleles given the average wing size. The model was constructed with the 

GLIMMIX procedure in SAS v9.3. using the proportion of mtIDH-B alleles to the total 

number of alleles (i.e. twice the number of individuals) as dependent variable, and 

population mean wing size as a fixed explanatory variable. To test for the significance of 

spatial autocorrelation, a model was run with the spatial correlation constrained to zero 

and the likelihood ratio of both models was tested against a χ² distribution. Individuals 

with the rare mtIDH-A, mtIDH-C and mtIDH-E allozymes, constituting 0.0020, 0.0016 

and 0.0016 % of all sampled alleles respectively, were excluded from the analysis. 

 

 

ASSOCIATION BETWEEN MTIDH AND WING SIZE WITHIN POPULATIONS  

To investigate the degree of linkage disequilibrium between mtIDH and wing size 

alleles, we tested whether wing size differed significantly between individuals with 

different mtIDH genotypes within populations. For this analysis, only populations were 

considered which had at least 27 genotyped individuals and 29% of each mtIDH 

allozyme (Appendix 1). These cut-offs were chosen arbitrarily to include enough 

populations with a high number of genotyped individuals and with both the mtIDH-B 

and mtIDH-D allozymes presented in large frequencies, as it is difficult to assess the 

association between wing size and mtIDH alleles in populations which are nearly fixed 

for one of the mtIDH alleles. We first tested for a significant association between the 

proportion of mtIDH-B alleles in each individual (mtIDH-DD: 0.0, mtIDH-BD: 0.5 or 

mtIDH-BB: 1.0) and its wing size (%MRWS effect), and if this association differed 

between the different populations (%MRWS x population effect) by means of a 

generalized linear model with a binomial distribution error and logit link (PROC 

GENMOD in SAS v9.3). Next, we estimated the slope of the mtIDH – wing size 

association within each population by reformulating the previous model as a cell means 

model to estimate the slope for each population separately.  
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RESULTS 

HERITABILITY ESTIMATES 

COMPARISON OF SAMPLED CANAL AND POND POPULATION 

To test the constancy of the distribution of the ecotypes and their differences found by 

Dhuyvetter et al. (2007), we first measured the wing and body size of the individuals 

used in this study. Body size (elytral length), absolute wing length and percentage of 

maximal realizable wing size (%MRWS) differed strongly between the two parental 

populations used in the study (Figure 7). Females were significantly larger than males in 

both canal and pond habitats (F1,121 = 177.31; P < 0.0001) and individuals from the pond 

population were significantly larger than the canal population (F1,121 = 317.82; P < 0.0001).  

Considering wing size, measured as both absolute wing length and %MRWS, differences 

were even more pronounced between the pond and canal population, with the canal 

population having much smaller wings compared to the pond population (Figure 7; F1,121 

= 1225.48; P < 0.0001 and F1,121 = 1058.04; P < 0.0001 respectively). This pattern appeared 

consistent over both sampling dates (F1,121 = 0.65; P = 0.42 and F1,121 = 3.02; P = 0.09 for 

absolute wing size and %MRWS, respectively). Using pooled data for both sampling 

dates, females had larger absolute wing size compared to males (F1,121 = 22.50; P < 0.0001), 

but this reflects differences in adult size of both sexes as the sex difference could not be 

detected when using the body size corrected %MRWS (F1,121 = 0.24; P = 0.63). 
 

 
Figure 7. Box plots for body size (mm) (a), absolute wing length (mm) (b), and percentage of the 

maximal realizable wing size (%MRWS) (c) for the canal and pond population from which the 

individuals were sampled for breeding. Numbers between brackets indicate the number of 

individuals measured and used in the analysis. Sep = September 2010, Apr = April 2011 
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HERITABILITY ESTIMATES 

In total, 16 parental pairs and their offspring (n = 223) were used to obtain heritability 

estimates. Absolute wing length and wing width showed a high heritability of h² = 0.73  

± 0.05 and h² = 0.65 ± 0.05, respectively (Table 1). Heritability of wing length was even 

closer to one when using the body size corrected %MRWS (Figure 8A; h² = 0.90 ± 0.05). 

Although significant, variation in body size (elytral length) showed a significantly lower 

heritability (Figure 8B; h² = 0.49 ± 0.08).  

 

 

Table 1. Heritability estimates (slope of linear regression) for different traits between parents and 

offspring data. Heritability estimates of sympatric Guérande populations are compared to those of 

allopatric populations (data adopted from Desender 1989). Slope values are given with standard 

errors between brackets. Heritability values that significantly differed from zero (P < 0.01) are 

underlined. 

 

Trait Mean offspring - 

 

 

Mean offspring –  

 Midparent (h2) Midparent (h2) 

  (Desender 1989) 

Elytral length 0.49 (0.08) 0.68 (0.21) 

Elytral width 0.19 (0.06) 0.12 (0.13) 

Wing length 0.73 (0.05) 0.71 (0.08) 

Wing width 0.65 (0.05) 0.65 (0.11) 

Relative wing length 0.94 (0.05) 0.85 (0.06) 

%MRWS 0.90 (0.05) 0.82 (0.07) 

 

 

 

 
Figure 8. Midparent-offspring regressions in P. chalceus for the body size corrected wing size 

(%MRWS) (A) and body size (elytral length (mm)) (B). Heritability estimates for male and female 

beetles did not differ significantly. 
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WING SIZE – MTIDH ASSOCIATION 

ASSOCIATION BETWEEN MTIDH AND WING SIZE ACROSS POPULATIONS 

The association between the population frequency of the mtIDH-B allele and %MRWS, corrected for 

spatial autocorrelation, was very strong (Figure 9A; F1,62 = 461; P < 0.0001). As previously shown by 

Dhuyvetter et al. (2004), unstable Mediterranean and Atlantic populations all show high dispersal 

ability as well as high frequencies of the mtIDH-B allele, Atlantic populations with intermediate 

wing sizes had intermediate frequencies of the mtIDH-B and mtIDH-D allozymes, and Atlantic 

tidal populations with strongly reduced wing size had low frequencies of the mtIDH-B allele and 

high frequencies of the mtIDH-D allele. Besides the strong effect of %MRWS on mtIDH frequencies, 

we observed that a significant part of the variation in mtIDH frequencies was caused by spatial 

autocorrelation (χ2 = 3.28; P = 0.035), demonstrating that for a certain wing size, populations in 

closer proximity were more similar in mtIDH frequencies.  

 

 

  

Figure 9. Comparison of the across and within population association of wing size (%MRWS) and 

mtIDH allozyme frequencies. (A.) Mean frequencies of the mtIDH-B allele for all studied 

populations compared to mean percentage of maximal realizable wing size (%MRWS) of the 

populations. The dashed line indicates the logistic regression of the data. (B.) Estimated logistic 

regression between individual mtIDH genotype and individual wing length within populations. 

The mtIDH – wing size association within each population was estimated by regressing the 

proportion of mtIDH-B alleles in each individual (mtIDH-DD: 0.0, mtIDH-BD: 0.5 or mtIDH-BB: 1.0) 

against its %MRWS. Logistic regression lines are plotted within the respective %MRWS range of 

each population. Solid black lines indicate populations in which the association is significant, 

dashed lines indicate non-significant associations. See Figure 6 and Appendix 1 for locations and 

sample sizes. 
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ASSOCIATION BETWEEN MTIDH AND WING SIZE WITHIN POPULATIONS  

The mtIDH – wing size association within each population was estimated by regressing 

the proportion of mtIDH-B alleles in each individual (mtIDH-DD: 0.0, mtIDH-BD: 0.5 or 

mtIDH-BB: 1.0) against its %MRWS. Populations differed significantly in their 

association between mtIDH genotype and wing size (%MRSW x population effect; χ2 = 

36.38; P = 0.0026). Moreover, several of the investigated populations showed a strongly 

reduced, non-significant or even inverted relation between mtIDH genotype and wing 

size compared to the across population association (Figure 9B). This strongly suggests 

within population recombination between the mtIDH locus and genes involved in wing 

size. 

 

 

 

DISCUSSION 
In this study, we present heritability estimates of a trait related to dispersal ability in a 

sympatric mosaic and argue that strong divergence exists in at least two genetically 

unlinked or weakly linked traits between both allopatric and sympatric populations. 

Previous work described the remarkable divergence of two ecotypes of the wing-

polymorphic ground beetle P. chalceus in a sympatric mosaic. However, the genetic 

relationship of the involved traits and its implications for sympatric divergence has not 

been considered.  

In the Guérande salterns in France, populations of the ground beetle P. chalceus are 

strongly diverged in wing size between tidally flooded (stable) canals and unpredictably 

flooded (temporary) pond habitats, despite the close proximity of these habitats and 

putatively high levels of gene flow. Our wing and body size measurements closely 

matched those from previous measurements of populations in the Guérande 

(Dhuyvetter et al. 2007) and showed that this distinction between the canal and pond 

populations has been maintained over several years and seasons. 

When different phenotypes are associated with differences in environmental conditions 

of patches in a metapopulation, functionally adaptive phenotypic differentiation may be 

expected to result from a plastic response rather than through constitutively expressed 

genetic differences (Sultan & Spencer 2002). However, results of our study showed that 

for diverged populations occurring in a sympatric mosaic, variation in wing size was 

strongly genetically determined and significant differences did not result from 

phenotypic plasticity. Our heritability estimates correspond reasonably well with those 

found by Desender (1989) for other allopatric populations (Table 1), indicating that 

increased gene flow does not appear to increase plasticity of expression of variation in 
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the trait. Previous studies have shown that wing size does not show any plastic response 

towards food regime and temperature (Desender 1989a) and, therefore, genotype x 

environment interaction, i.e. when individual genotypes show a different plastic 

response towards the environment  (Hoffmann & Merilä 1999), are expected to have 

minor effect on heritability estimates in this trait. Heritability of variation in body size 

was significant; however, environmental effects such as feeding conditions and 

temperature during larval development may have strong influences on variation in body 

size (Desender 1989a). Beetles with larger hind wings and functional flight muscles are 

found to be generally significantly larger (Desender 1985). However, the observation of 

lower heritability of body size compared to wing development suggests that the 

significant differences in body size between canal and pond populations may largely 

reflect the strongly different environmental conditions of these habitats as described in 

Dhuyvetter et al. (2007).  

Previous work demonstrated a significant relationship between population dispersal 

ability and mtIDH allozyme frequencies (Dhuyvetter et al. 2004). However, whether 

these traits constitute physically linked variation or whether the association results from 

similar selection pressures working on different loci was not investigated. By studying 

the association of mtIDH allozymes and wing size within populations, we found that 

this correlation was strongly reduced within several populations compared to across 

populations (Figure 9). Such reduced association within several populations implies 

high recombination and, therefore, an unlinked genetic control of at least two traits 

involved in adaptive divergence. 

However, several populations showed a significant relation between mtIDH genotype 

and wing size. Three factors may explain this marked association within these 

populations. First, population structure within the sampled populations and high gene 

flow between these alternatively selected patches can result in a significant association 

between wing size and mtIDH alleles within some of the populations. Theoretical 

models have shown that migration between genetically differentiated populations 

produces associations between alleles at different loci within populations, even when 

they are physically unlinked (Nei & Li 1973, Kirkpatrick et al. 2002). Moreover, these 

associations are expected to be proportional to the differences in allele frequencies 

between the contributing populations (Kirkpatrick et al. 2002). Accounting for spatial 

autocorrelation indeed showed that nearby populations were more similar in mtIDH 

allele frequencies, implying a role of gene flow and migration in the distribution of 

mtIDH frequencies, potentially resulting in slightly maladapted populations. The 

continuous distribution of wing sizes and mtIDH frequencies along the Atlantic coasts, 

may, therefore, result from migration and to a lesser extent from a gradient in selection 

pressures. Alternatively, natural selection might favor extremes and disfavor 
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intermediates. Hence, there might be selection for alternative combinations of traits 

within populations (e.g. long winged individuals with mtIDH-B and short winged 

individuals with mtIDH-D). Second, close genetic linkage may explain a tight association 

within populations. However, in this case we would not expect breakdown of this 

association in several other populations. Third, wing size is a polygenic trait and 

variation in different genes involved in wing development may result in variation in 

wing size in different populations. Hence, separate wing development genes may be 

selected to high frequency to obtain a certain wing size. If mtIDH was linked to one of 

these genes involved in wing development, this could explain a reduced association in 

some of the populations, but in this case we would also not expect to find the strong 

association across populations. The weak or nonexistent physical linkage of mtIDH and 

genes involved in wing size suggested by this study implies that similar selection 

pressures are affecting the mtIdh gene region and wing size. Whether selection is acting 

on the mtIdh gene itself or on a tightly linked locus is unclear.  

 

Although we are not focusing on speciation and the evolution of reproductive barriers, 

multilocus evolution in sympatry and in the face of gene flow has long been a 

contentious issue (Slatkin 1987, Coyne & Orr 2004). Classic theory and empirical 

examples predict genomic clustering of divergent loci to reduce the blending effect of 

gene flow and recombination (Felsenstein 1981, Hawthorne & Via 2001, Via 2001, Rundle 

& Nosil 2005, Via & West 2008, Yeaman & Whitlock 2011). However, recent work has 

shown the possibility of moderate or weak genomic clustering of loci that are involved 

in adaptation when taxa diverge in the face of gene flow (Nosil et al. 2009a, Michel et al. 

2010, Feder et al. 2012b, a). Altogether, only a few cases have been clearly identified in 

which genetic divergence has taken place in multiple characters despite the close 

proximity of differently selected environments (Nosil 2012). These study systems are 

extremely interesting as they allow study and identification of ecological and genetic 

mechanisms that drive divergence and ultimately speciation. From the allozyme level, 

we cannot infer the origin (i.e. single or multiple) of these alleles. Sequencing the mtIdh 

gene and further unraveling the genetic basis of wing development  and the 

identification of genetic divergence at a genome wide scale and their evolutionary 

history will allow analysis of the importance of these factors in the evolution of the 

dispersal ecotypes found in P. chalceus. 
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ABSTRACT 
Studying genetic variation at loci subjected to selection is necessary to understand the 

evolutionary mechanisms involved in adaptation. Here, we reconstruct the evolution of 

different alleles at the nuclear encoded mitochondrial NADP+-dependent isocitrate 

dehydrogenase (mtIdh) locus of the ground beetle Pogonus chalceus that are differentially 

and repeatedly selected in short- and long-winged populations at both allopatric and 

sympatric scales along the Atlantic European coasts. We sequenced 2,788 bp of the mtIdh 

locus spanning a ~7 kb genome region and compared its variation with that of two 

supposedly neutral genes. mtIdh sequences show (i) monophyletic clustering of the 

short-winged associated mtIDH-DE haplotypes within the long-winged associated 

mtIDH-AB haplotypes, (ii) a more than tenfold lower haplotype diversity associated 

with the mtIDH-DE alleles compared to the mtIDH-AB alleles, and (iii) a high number of 

fixed nucleotide differences between both mtIDH haplotype clusters and a divergence 

time estimated between 0.047 and 0.165 MY. Coalescent simulations further suggest that 

the observed sequencing variation in the mtIdh locus is most consistent with a relatively 

recent selective sweep and an origin in a large but partially isolated subpopulation. 

These results demonstrate that the adaptation associated with the mtIdh locus, which is 

found repeatedly in different populations, has evolved once and subsequently spread 

along the Atlantic coasts. Reuse of adaptive alleles, hence, plays an important role in the 

adaptive potential of populations when exposed to similar selection pressures and 

provides insights into the evolutionary history of ecologically important traits subjected 

to sympatric divergence.  

 

 

 

INTRODUCTION 
When organisms colonize new habitats or occupy new niches one fundamental question 

concerns the source of adaptive alleles, either as new or preexisting variation (Mitchell-

olds et al. 2007, Barrett & Schluter 2008, Stern 2013, Messer & Petrov 2013). However, 

genetic variation is thought to be transient due to fixation by natural selection or neutral 

drift and, therefore, the importance of standing genetic variation in local adaptation 

concerns the persistence of genetic variation, either through balancing selection or local 

adaptation (i.e. much of the variation is maintained by natural selection) (Charlesworth 

2006, Barrett & Schluter 2008) or through a mutation-selection balance (Kimura 1983, 

Turelli 1984). Hence, unraveling the link between DNA sequence variation and the 

evolutionary history of adaptive loci (including selection, migration, recombination and 
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demographic changes) is crucial to infer the dynamics and evolutionary processes of 

local adaptation (Barrett & Hoekstra 2011, Jones et al. 2012, Linnen et al. 2013, Savolainen 

et al. 2013). However, the multitude of studies inferring the ecological significance of 

adaptive traits still contrast strongly with the relatively few studies that thoroughly 

investigate patterns of variation in genes involved in local adaptation at different spatial 

scales. These studies have proven to be pivotal in our understanding of adaptive 

evolution and include a.o. nucleotide polymorphism at the alcohol dehydrogenase locus 

of Drosophila melanogaster (Hudson & Kaplan 1988, McDonald & Kreitman 1991) , spread 

of color-associated genes in deer mice Peromyscus maniculatus (Linnen et al. 2009, 2013) 

and moths (Van’t Hof et al. 2011)  and evolutionary history of the Ectodysplasin (Eda) 

gene related to lateral plate number in sticklebacks Gasterosteus aculeatus (Colosimo et al. 

2005). 

Finding and studying such genes can be a daunting task as it necessitates to clearly 

distinguish selective from demographic processes in generating genetic variation 

(Przeworski 2002, Li et al. 2012, Savolainen et al. 2013) . Therefore, when studying 

patterns of DNA sequence variation, promising study systems include those where (i) 

local adaptation along the same environmental gradient occurs recurrently, (ii) the 

geographical setting of the environmental gradient is spatially uncorrelated with the 

geographical distance among populations, (iii) there is a clear association between allele 

frequency and adaptive trait variation and (iv) sufficient gene flow exists among 

populations subjected to divergent selection to distinguish neutral from non-neutral 

processes. When these ecological and spatial settings are met, studying genetic variation 

at genes associated with locally adapted phenotypes enables to gain considerable insight 

into the process of local adaptation by distinguishing (i) a single evolution of the 

adaptive allele and subsequent colonization or introgression to similar pairs of habitats 

from, alternatively, repeated de novo divergence in multiple localities (Barrett & Schluter 

2008, Messer & Petrov 2013), (ii) a recent selective sweep from long term (spatially 

heterogeneous) balancing selection (Charlesworth 2006)  and (iii) sympatric (i.e. within 

population) versus an allopatric origin of the adaptive divergence . 

 

One gene for which strong evidence of divergent selection has been provided is the 

nuclear encoded mitochondrial NADP+-dependent isocitrate dehydrogenase (mtIdh) 

locus in the wing-polymorphic salt marsh beetle Pogonus chalceus (Marsham 1802; 

Carabidae). Populations of P. chalceus are strongly differentiated in wing size as an 

adaptation to differences in habitat dynamics (Desender et al. 1998, Dhuyvetter et al. 

2004). More precisely, two main habitats that select differently for dispersal ability are 

recognized; tidally inundated salt marshes being flooded regularly for short time periods 

(5-6 hours) and seasonally inundated inland salt marshes that are flooded unpredictably 
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for several months during winter, forcing the beetles to escape these inundations. In 

accordance with these habitat dynamics, populations inhabiting tidal and seasonal salt 

marshes have a low and high average wing size, respectively. Furthermore, across the 

European Atlantic and Mediterranean coast, mean population wing size in P. chalceus is 

tightly correlated with population frequencies of the mtIDH allozymes (Dhuyvetter et al. 

2004, Van Belleghem & Hendrickx 2014) . Long-winged populations have high 

frequencies of the mtIDH-B allozyme and short-winged populations have high 

frequencies of the mtIDH-D allozyme, with wing size variation explaining up to 94.5 % 

of variation in mtIDH allozyme frequencies among populations (Dhuyvetter et al. 2004). 

Recent analysis showed that this association most likely results from similar selection 

pressures affecting mtIDH alleles and loci involved in wing size determination and not 

from strong genetic linkage (Van Belleghem & Hendrickx 2014). Moreover, this 

differentiation in at least two unlinked loci is also maintained at remarkably small 

geographical distances of a few meters only and, consequently, under ample 

opportunity for gene flow (Dhuyvetter et al. 2007). In contrast, neutral microsatellite and 

allozyme marker variation does not show any association with habitat dynamics or 

mean population wing sizes, indicating considerable gene exchange between both 

environments.  

Although a biochemical link or causal association between the mtIDH allozymes and 

flight metabolism has not been confirmed and may be absent due to selection on a 

closely linked locus, the tight association of mtIDH allozymes with both dispersal ability 

and habitat dynamics at population level allows making inferences about the 

evolutionary history of the repeated evolution of populations differing strongly in 

dispersal capacity.  

 

Here we analyze nucleotide polymorphism at the mtIdh locus among P. chalceus 

populations across the Atlantic European and the Mediterranean region to infer the 

evolutionary history of this selected locus and its contribution to the repeated evolution 

of dispersal related phenotypes. First, we report on the pattern and differentiation of 

mtIdh genetic variation and compare this with two supposedly neutral genes 

(cytoplasmic NADP+-dependent isocitrate dehydrogenase (cytIdh) gene and part of the 

enolase gene). Next, using coalescent simulations we estimate the probability of 

observing the mtIdh sequence variation pattern given different scenarios of gene flow, 

time since the origin of the derived alleles and population size. Finally, we calibrate 

divergence times between the different mtIdh alleles by constructing the phylogenetic 

relations of closely related species of both the genus Pogonus and Pogonistes using 

mitochondrial gene fragments with estimated substitution rates in other Coleoptera 

species. 
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These results allow us to (i) reconstruct the ancestral relationship among the different 

alleles, (ii) assess whether the repeated divergence is based on a singular mutational 

origin that subsequently spread across Atlantic Europe or evolved multiple times, and 

(iii) investigate the most likely scenarios of gene flow, historic population structure and 

time since divergence (i.e. selective sweep versus balancing selection) given the observed 

sequence variation patterns. 

 

 

 

MATERIALS & METHOS 

STUDY SPECIES AND SAMPLING 

We selected P. chalceus samples from diverse geographical locations covering nearly the 

entire species range (Figure 10; Appendix 2). We used individuals from Atlantic 

populations from Belgium, England, France, the Netherlands, and Spain and 

Mediterranean populations from France and Spain, from which allozyme frequencies 

were previously obtained (Dhuyvetter et al. 2004, 2005b, 2007, Van Belleghem & 

Hendrickx 2014). Additionally, we used samples from two Portuguese populations. 

Samples used in previous studies were genotyped for both the mtIDH and cytIDH 

allozymes. Furthermore, we sequenced samples of related species belonging to the 

genera Pogonus (8, including P. chalceus) and Pogonistes (4) occurring in Europe to 

estimate the phylogenetic relations and age of divergence among these species 

(Appendix 2). This subsequently allowed calibrating the divergence time of the major 

branching events found within mtIdh locus. 
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Figure 10. Sampling sites and mtIDH allozyme frequencies. Pie charts give the mtIDH allozyme 

distribution (mtIDH-A in yellow (only in GIR), mtIDH-B in red, mtIDH-D in blue, mtIDH-E, in 

black) of P. chalceus populations along the European coasts (see Van Belleghem and Hendrickx 

(2014) for more mtIDH genotyped populations and wing size distributions). Population codes in 

red or blue indicate seasonal or tidal habitat, respectively. Numbers indicate the amount of mtIDH 

haplotypes sequenced. For the ALB population no P. chalceus mtIDH was sequenced. Open circles 

indicate sites where no P. chalceus, but other Pogonus or Pogonistes species were sampled. See 

Appendix 1 for explanation of the codes and the number of sequences screened. 

 

 

SEQUENCING 

Two NADP+-dependent isocitrate dehydrogenases have been reported in eukaryotes, 

one of which is mitochondrial (mtIDH) and the other predominantly cytosolic (cytIDH) 

(Jenningss et al. 1994, Zhao & Mcalister-henns 1996). Both NADP+-dependent enzymes 

are homodimers encoded in the nuclear genome (Ceccarelli et al. 2002, Xu et al. 2004). 

According to the allozyme protocol of Hebert and Beaton (1993), the IDH protein 

associated with wing size in P. chalceus is most likely the mitochondrial IDH isozyme. 

However, we sequenced both the mtIdh and cytIdh gene to investigate whether 

sequencing variation indeed corresponds to the previously obtained allozyme variation 

as well as to contrast sequence variation of mtIdh with that of a gene with a comparable 

nucleotide composition but whose alleles are not associated with average population 

wing size. To sequence both genes, degenerate PCR primer pairs were developed by 
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aligning homologous sequences of other insect species from GenBank (See Appendix 3 

for list of species and accession number). These primers allowed cloning and sequencing 

short fragments of the mtIdh and cytIdh gene. Based on the partial sequences, gene-

specific primers were designed for the identification of 5’ and 3’ ends of the mtIdh and 

cytIdh mRNA by a RACE protocol (Roche, Inc.) (See Appendix 3 for detailed methods of 

DNA and RNA extraction and sequencing and Appendix 4 for primers). 

We also sequenced part of the nuclear encoded enolase (633 bp) gene. Sequence variation 

analysis was performed on the genomic locus of selected mtIdh and the supposedly 

neutral cytIdh and enolase gene. A 673 bp mtIdh region (coding position 303 to 975 from 

start codon) and the complete coding sequence (1,224 bp) of the cytIdh gene were also 

sequenced for seven other Pogonus species and four species of the sister clade Pogonistes 

(Appendix 2). The primers did not amplify the mtIdh region for Pogonus meridionalis, 

probably due to sequence divergence. Subsequently, partial sequences were also 

obtained for the mitochondrial genes cytochrome oxidase subunit one (cox1; 1,130 bp), a 

mitochondrial region spanning the NADH subunit I (180 bp), the tRNA-Leu gene (64 bp) 

and the 16S rRNA gene (111 bp) (nad1; 355 bp) and cytochrome b (cob; 468 bp) for the 

seven other Pogonus species and four Pogonistes species (Appendix 2). These sequences 

were used to estimate divergence times as substitution rate estimations are available for 

mitochondrial genes in beetles (Pons et al. 2010) . Enolase was also used to compare 

several P. chalceus populations. All sequences were uploaded in GenBank (mtIdh: 

KJ371353 - KJ371522; cytIdh: KJ371166 - KJ371315; enolase: KJ371316 - KJ371352; cox1: 

KJ371146 - KJ371165; cob: KJ371126 - KJ371145; nad1: KJ371523 - KJ371542).  

 

 

SEQUENCE DATA ANALYSES 

For all genes, we calculated the average number of pairwise differences between 

sequences (k) as a measure for haplotype diversity. Next, we calculated the nucleotide 

diversity (π) by averaging the number of nucleotide differences per site between two 

sequences and Watterson’s θw as an estimate for the population mutation rate θ (= 4Neµ, 

where Ne is the effective population size, and µ the mutation rate per sequence and per 

generation (Watterson 1975)). To test if the observed sequence variation deviated from 

the expectations of a standard coalescent process in a Wright-Fisher population (Hein et 

al. 2004) , the standardized difference between the nucleotide diversity (π) and Watterson’s 

θW, known as Tajima’s D was calculated (Tajima 1989) in DNAsp v5.0 (Librado & Rozas 

2009). A negative Tajima's D signifies an excess of low frequency polymorphisms 

relative to the expectation under neutrality and is expected under population size 

expansion (e.g. after a bottleneck or a selective sweep) and/or purifying selection. A 

positive Tajima's D indicates low levels of both low and high frequency polymorphisms, 
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indicating a decrease in population size, population subdivision and/or balancing 

selection. For the mtIdh locus, sequences of the mtIDH-A and mtIDH-B allozymes 

(mtIDH-AB; associated with long-winged populations) as well as sequences from the 

mtIDH-D and mtIDH-E allozymes (mtIDH-DE; associated with short-winged 

populations) were pooled for calculating the nucleotide diversity both within and 

between these haplotype clusters and for counting fixed differences between these 

haplotype clusters. Indels occurring in the intron regions were not considered for the 

calculations of the sequencing statistics.  

We analyzed the genealogical relations between the different haplotypes by constructing 

Median Joining haplotype networks using the program Network v4.6.1.1 (Bandelt et al. 

1999) and Neighbor-Net networks using SplitsTree v4.13.1 (Huson & Bryant 2006) using 

default settings. Both methods allow incorporating reticulate events which indicate 

uncertainty of the genealogy (i.e. multiple plausible trees) and recombination. 

 

 

RECOMBINATION 

Recombination analyses were performed for the mtIdh locus on the complete dataset as 

well as for the mtIDH-AB allozymes to investigate differences in recombination and 

linkage disequilibrium (LD) within as well as among the differentially selected loci.  We 

calculated the recombination parameter R (= 4Ner, with r the recombination rate per 

generation between the most distant sites) per gene and the minimum number (Rm)  of 

recombination events based on the four gamete test (Hudson, 1987) in DNAsp v5.0 

(Librado & Rozas 2009). The significance of intragenic recombination was assessed using 

the ZZ test (Rozas et al. 2001), which compares the average LD between adjacent sites 

with the average LD over all sites. In the case of recombination, LD is expected to 

decrease with distance. Wall’s Q was used to test whether the observed LD deviates from 

neutral expectation, as excess linkage disequilibrium is expected under long-term 

balancing selection (Wall 1999, Charlesworth 2006). Significance of the ZZ test and 

Wall’s Q was determined using 10,000 coalescent simulations in DNAsp v5.0 with 

observed values of θw and recombination.  

 

 

COALESCENT SIMULATIONS 

To gain insight into the evolutionary scenario that could have generated the observed 

sequence variation at the mtIdh locus, we performed coalescent simulations using MSMS 

v1.3 (Ewing & Hermisson 2010), followed by an Approximate Bayesian Computation 

(ABC) framework to sample combinations of likely parameter values (Beaumont 2010, 
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Csilléry et al. 2010). Simulations were performed under a model in which an allele is 

oppositely selected in two populations that are allowed to differ in size. These two 

populations represent the two different habitats that are generally inhabited by P. 

chalceus along the Atlantic coasts. No additional population structure was modeled as 

population structure among Atlantic populations is generally inferred to be small (Fst = 0 

- 0.12; Dhuyvetter et al. 2004). Given the strong support that the two alleles are 

differentially selected in both habitats (Dhuyvetter et al. 2004, 2007, Van Belleghem & 

Hendrickx 2014), we did not include a neutral scenario in which only demographic 

parameters are varied. 

 

Coalescent simulations were implemented as follows (Figure 11). We assumed two 

populations, consisting of an arbitrary number of Ne = 105 diploid individuals each, that 

experience opposing selection at a locus of interest from a particular time St (scaled in 

4Ne generations) onwards, but are exchanging the allele at a rate M (= 4Nem, with m being 

the proportion of copies that are exchanged per generation). Mutation (θ = 13.2, with θ = 

4Neµ; µ = 3.3e-5) and recombination (ρ = 20.7, with ρ= 4Ner; r = 5.3e-5) rates were estimated 

from the sequencing data of the mtIDH-AB haplotypes (Table 2), as this was inferred to 

be the ancestral allele from phylogenetic reconstructions. For the population migration 

rates M, a uniform prior was assumed ranging between 0 and 1,000 (m = 0 - 0.0025). Very 

large migration rate values were avoided as under these conditions the polymorphism 

was frequently lost by gene swamping (Lenormand 2002). Selection strength was 

implemented as Ss (= 2Nes, with s the relative fitness of the derived allele) and discrete 

values of 1,000 (s = 1.005), 5,000 (s = 1.025), 10,000 (s = 1.05) and 50,000 (s = 1.25) were 

selected. For heterozygotes, selection strength was half compared to homozygotes. For 

selection time (St), i.e. start of selection past ward in time in units of 4Ne generations ago, 

a uniform prior was assumed between 0.01 and 2. Note that a selection time of 1 

corresponds to selection acting during the average time course needed for all sequences 

in the sample to coalesce to one common ancestor. The selected allele was introduced by 

mutation at a rate θS (4Neµ’) of 0.01 (µ’ = 2.5e-9). Finally, to investigate the effect of a 

different population size of the population experiencing positive selection on the 

sequencing variation for the derived allele, simulations were performed under relative 

sizes of the subpopulation experiencing positive selection for the derived allele (Ns) of 1, 

0.5, and 0.1. See Appendix 5 for the complete MSMS code to implement this model.  

We ran 12 million coalescent simulations (one million for each discrete parameter 

combination of Ss and Ns). From each simulation hundred sequences were sampled, 50 

samples from each subpopulation. Only simulations where at least 30 of the sequences 

were of the derived and 30 were of the ancestral allele type were counted to the 12 

million simulations and examined. Subsequently, the sequences with the derived allele 
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and the ancestral type were selected from these samples and the following statistics were 

calculated using a home-made Python script and DendroPy v3.12.0 (Sukumaran & 

Holder 2010): (i) average number of pairwise differences (k), Watterson’s θw and Tajima’s 

D among both the ancestral and derived allele sequences and (ii) and fixed differences 

between the derived and ancestral allele sequences. The number of fixed differences is 

defined as the number of sites at which all of the sequences in one sample are different 

from all of the sequences in a second sample. 

 

 

 
Figure 11. Demographic model used for coalescent simulations and Approximate Bayesian 

Computation (ABC). The parameters varied in the model are: m – proportion of gene exchange per 

generation, s – relative fitness of derived allele, St – Selection time and Ns – Subpopulation size. Blue 

shading indicates the population in which the derived allele is positively selected (s+). Red shading 

indicates the population in which the derived allele is selected against and the ancestral allele is 

preserved (s-). 

 

 

APPROXIMATE BAYESIAN COMPUTATION  

We first conducted exploratory coalescent simulations (100,000 for each discrete 

parameter combination of Ss and Ns) and used a principal component analysis (PCA) to 

test if the observed combination of summary statistics is within the range of the 

simulated combinations of summary statistics. This ensured that the evolutionary 

scenario’s under which simulations were run are likely to generate the observed 

sequence variation. These summary statistics included (observed values between 

parentheses): number of fixed differences (fixedDB = 11), average pairwise differences 

among ancestral haplotypes (kB = 15.58), average pairwise differences among the derived 

haplotypes (kD = 1.19), average pairwise differences between ancestral and derived 

haplotypes (kDxB = 25.83), average pairwise differences among all haplotypes (kD+B = 



CHAPTER 2 

 

57 

18.01), Tajima’s D among the ancestral haplotypes (0.61), Tajima’s D among the derived 

haplotypes (-1.72) and Tajima’s D among all haplotypes (0.51). 

We used the R package abc (Csilléry et al. 2012) for sampling the closest 1 % of the 

complete simulation dataset to the observed summary statistics based on Euclidean 

distance and using the rejection method described in Pritchard et al. (1999). The 

parameter values of retained simulations were plotted for visualizing the parameter 

space for which we might expect to observe our mtIdh sequence variation. 

 

 

DIVERGENCE TIME ESTIMATIONS 

To estimate the divergence times of the mtIdh alleles, we first obtained estimates of the 

divergence time between the different Pogonus and Pogonistes species based on the 

mitochondrial genes (Appendix 2). The partition homogeneity test, as implemented in 

PAUP* 4.0 (Swafford 2003), did not show significant topological incongruence among 

the different markers (no nad1: P = 0.45, no cob: P = 0.71, no cox1: P = 0.91). Therefore, we 

concatenated these three gene fragments into a single alignment. Node ages were 

estimated by applying a nucleotide substitution rate of 0.0563 ± 0.00196 nucleotide 

substitutions/site/MY on the concatenated dataset. This substitution rate was calculated 

from rate estimates for these genes across 15 Coleoptera species (Pons et al. 2010), 

weighted by their respective sequence length. Based on the Akaike Information Criterion 

as implemented in MrModeltest v2 (Nylander 2004), a General Time Reversible model 

with estimated base frequencies, invariant sites and gamma distributed rate variation 

among sites was used as substitution model (GTR+I+G). As we could not reject a 

molecular clock when comparing likelihood ratio scores of a clock and non-clock tree 

obtained in PAUP*4 (χ2 = 19.8, df = 14; P = 0.14) (Muse & Weir 1992), we used a strict 

clock as implemented in BEAST v1.7.5 (Bouckaert et al. 2014). The tree prior was set to 

the Yule process of speciation using standard priors. Two MCMC chains were run for 

100 million generations, sampling every 1000 generations. The two chains were 

combined using Logcombiner v1.7.5 (Bouckaert et al. 2014). Convergence of the chains, 

appropriate burn-in (4000) and effective sample sizes of the parameters were checked 

using Tracer v1.5 (Drummond & Rambaut 2008). The phylogenetic analysis of the 

concatenated mitochondrial gene set and mtIdh revealed several well supported clades.  

Next, the estimated divergence time between P. chalceus and its sister clade was used to 

calibrate the mtIdh tree and estimate the divergence time of the mtIdh alleles. Sequence 

data covering 673 bp (position 303 up to 975 from start codon) of the mtIdh gene for 

several species of the genus Pogonus and its sister genus Pogonistes (Appendix 2) were 

used to construct a phylogenetic tree of the mtIdh gene with BEAST v1.7.5. We calibrated 
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the mtIdh gene tree by using the divergence date of the most recent common ancestor 

between P. chalceus and its sister clade (including P. littoralis, P. gilvipes, P. luridipennis, P. 

olivaceus and P. riparius). This allowed calculating the substitution rate of the mtIdh gene 

and estimate the time of the most recent common ancestor (TMRCA) of the mtIDH-AB 

and mtIDH-DE alleles. As for the mitochondrial gene set, a strict molecular clock could 

not be rejected (χ2 =29.1, df =29; P=0.46). BEAST v1.7.5 was run with equal parameters as 

for the mitochondrial gene set (GTR+I+G substitution model, strict clock, two chains of 

100 million generations and burn-in of 4000). 

The obtained species tree topology of the concatenated mitochondrial and 673 bp mtIdh 

dataset were checked using MrBayes 3.2 (Ronquist et al. 2012) and by constructing 

MrBayes species trees using the enolase and cytIdh gene sequences. Four simultaneous 

chains were run for twenty million generations using a GTR+I+G substitution model. 

The first 1000 trees were discarded and trees were sampled every 1000 generations. 

 

 

 

RESULTS 

MITOCHONDRIAL NADP+-IDH (mtIDH) GENE STRUCTURE 

The mtIdh gene and its putative promoter sequence span a total genomic region of about 

7 kb (Figure 12A-B). cDNA cloning and genomic sequencing revealed 8 exons and 2 

splice variants, resulting in an additional 14 amino acid residues at the C-terminal end 

when intron 7 is spliced. The two resulting proteins contain respectively 451 and 465 

residues. Available RNAseq data (Van Belleghem et al. 2012) suggest low expression of 

the spliced variant in the larval (1%) and adult (2%) beetle stage and no expression in the 

pupal stage. Estimated from sequencing the spliced mRNA region from 14 samples (2 

mtIDH-BB, 3 mtIDH-BD, 9 mtIDH-DD), the two splice variants seem to be present both 

in individuals genotyped as mtIDH-BB as well as mtIDH-DD.  

Seventy bp and 251 bp of the 5’ and 3’ UTR, respectively, were obtained from mtIdh 

cDNA. The promoter sequence is estimated to be 572 bp in length and presumably also 

controls the expression of the upstream NADP+-transhydrogenase (Nnt) that is 

transcribed on the reverse strand (see Appendix 3). The first 162 bp of the coding mRNA 

or 54 amino acids at the N-terminus of the mtIDH protein show little homology with the 

protein sequence of mtIDH of other eukaryotes. Potentially, these amino acids form a 

transit peptide involved in the translocation of the protein product to the mitochondria, 

as is found in e.g. porcine (UniProtKB: P33198) and human (UniProtKB: P48735) mtIDH. 

The complete sequence of intron 1 was not determined by sequencing; its length, about 4 
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kb, was determined from gel electrophoresis of an amplified fragment containing the 

intron. 

 

 

mtIDH SEQUENCE VARIATION 

A total of 104 complete mtIdh sequences and 128 sequences of the coding region were 

obtained from 22 different populations (Figure 10). For the mtIdh coding region, we 

found 24 segregating sites, of which 10 were at non-synonymous sites (Table 2; see 

Appendix 6 for a description of amino acid variation). Considering the full sequence 

length (2,788 bp; 104 sequences), we found 80 segregating sites. The estimated θw per 

sequence and average number of pairwise differences (k) for the total mtIdh locus was 

15.39 and 18.01, respectively. The intron sequences were much more variable than exon 

sequences (Table 2). Variability in the promoter sequence was comparable to variability 

in the intron sequences.  

The nucleotide diversity of the sequences coding for the mtIDH-DE allozymes, which 

are associated with the short-winged populations, was considerably reduced and about 

ten times lower (θW = 2.75 and k = 1.19) compared to the nucleotide diversity of 

sequences associated with the mtIDH-AB allozymes (θW = 13.2 and k = 15.58; Figure 12C). 

The differentially selected mtIDH-B and mtIDH-D allele are distinguished by only a 

single charge-changing amino acid substitution (Lys - Asn) at amino acid position 447. 

However, the mtIDH-AB and mtIDH-DE haplotypes showed a fixed difference at 11 

sites. None of these fixed differences were located in the promoter region, 9 were located 

in the intron sequences and 2 in the exons (Figure 12B). Of the 55 haplotypes, 46 

belonged to the mtIDH-AB sample and 9 to the mtIDH-DE sample. To obtain a statistic 

for expressing demographic changes in the mtIDH-AB and mtIDH-DE haplotypes, 

Tajima’s D was calculated. Tajima’s D for the mtIdh locus was 0.51. Considering the 

mtIDH-AB and mtIDH-DE haplotypes separately, Tajima’s D was 0.61 and -1.72, 

respectively.  

 

Haplotypes of the mtIDH-DE allozyme cluster monophyletically, which supports a 

singular mutational origin (Figure 13). Haplotype associations indicate extensive mixing 

along the Atlantic and Mediterranean European coasts (Figure 13 and Appendix 7 for 

the coding mtIdh sequence). Within the mtIDH-AB haplotypes, there are two main 

haplotype clusters, one of which is restricted to the Iberian Peninsula and the 

Mediterranean part of France. However, these clusters are not differentiated by any fixed 

differences. Further investigation of these two clusters indicates that the lack of fixed 

differences between these two haplotype clusters likely results from recombination 

between diverged haplotypes.  
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Figure 12. Genomic structure and genetic variation of the P. chalceus mtIdh gene. (A.) Length (bp) of 

the exons, introns, promoter and transit peptide for the mtIdh gene. (B.) Scaled diagram of the P. 

chalceus mtIdh gene, showing exons, introns, promoter, transit peptide and alternative splice variant. 

Arrows mark the midpoint of detected intragenic recombination. Recombination and fixed 

mutations between the divergently selected mtIDH-B and mtIDH-D allozyme haplotypes are also 

indicated. (C.) Variation in the sequenced mtIdh region. Rows are sequenced individuals; black dots 

mark variable positions; the red arrow indicates a recombinant haplotype between a mtIDH-B and 

mtIDH-D haplotype. (D.) Positions of non-synonymous nucleotide substitutions along the cDNA 

within the mtIdh gene. Amino acid names are according the IUPAC code. Charge-changing amino 

acid variants defining the EM classes are indicated with an asterisk.  
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Table 2. Sequencing statistics. Indels were not considered. 

 

 

length  

(bp) 

Allozyme N S h π k F θw D R Rm 

mtIdh  1,395 A and B 72 18 30 0.0030 4.20 - 3.71 0.35 62.30 3 

coding 
 

D and E 56 4 5 0.0002 0.25 - 0.87 -1.59 - - 

  
ALL 128 24 35 0.0034 4.80 - 4.42 0.22 11.70 4 

  
Between - - - - 6.86 2 - - - 1 

mtIdh  820 A and B 72 29 35 0.0078 6.03 - 5.98 0.02 3.50 6 

intron 
 

D and E 56 5 5 0.0007 0.55 - 1.09 -1.16 - - 

  
ALL 128 40 40 0.0116 8.95 - 7.37 0.65 4.30 8 

  
Between - - - - 14.01 9 - - - 1 

mtIdh  573 A and B 58 16 14 0.0104 5.48 - 3.46 1.77 0.70 3 

promotor 
 

D and E 44 5 4 0.0009 0.48 - 1.15 -1.45 - - 

  
ALL 104 20 17 0.0084 4.38 - 3.85 0.24 0.001 2 

  
Between - - - - 5.11 0 - - - - 

mtIdh   2,788 A and B 58 61 46 0.0058 15.58 - 13.18 0.61 20.70 11 

(total) 
 

D and E 44 12 9 0.0004 1.19 - 2.76 -1.72 - - 

  
ALL 104 80 55 0.0067 18.01 - 15.39 0.51 8.30 13 

  
Between - - - - 25.83 11 - - - 1 

cytIdh 1,224 

 

120 41 56 0.0071 8.58 - 7.65 0.29 27.80 11 

Enolase  633 

 

34 17 15 0.0077 4.87 - 4.16 0.57 13.90 3 

 

N = Number sequenced    

θw = Mutation rate (4Neµ)  (per sequences, Watterson estimator) 

S = Segregating sites      

h = Haplotypes       

π= Nucleotide diversity     

D = Tajima’s D 

k = Average pairwise number of nucleotide differences  

R = Recombination rate (4Ner)  (Hudson 1987) 

F = Number of fixed differences    

Rm = Minimum number of recombination events 
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Figure 13 Median joining (A.) and Neighbor-Net (B.) network for 2,788 bp sequences of the mtIdh 

locus. The mtIDH-A and mtIDH-E haplotypes are not included in this figure as their promoter 

sequence was not obtained (see Appendix 7). Size of the pie charts indicates the relative frequency 

of the haplotypes. Colors in the network match with the shaded areas on the map of Europe. The 

dashed line indicates the split between two main haplotype clusters in the mtIDH-B allozyme.  
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cytIDH AND ENOLASE SEQUENCE VARIATION 

We sequenced two supposedly neutral loci to compare nucleotide variation with the 

selected mtIdh locus. In the 120 coding sequences of the cytIdh gene, we found 41 

segregating sites of which 7 were non-synonymous (Table 2; see Appendix 6 for a 

description of amino acid variation and gene structure; Appendix 8). The estimated θw 

per sequence and average number of pairwise differences (k) was 7.65 and 8.58, 

respectively. We found 56 haplotypes in the cytIdh sequence dataset. The Median Joining 

network indicates a high degree of haplotype interchange between the Atlantic and 

Mediterranean populations, however, one haplotype cluster is restricted to the Atlantic 

coasts (Appendix 9A). We found no clusters with a number of fixed differences larger 

than one and the Neighbor-Net network shows little indication of geographical 

structuring and relatively homogeneous recombination among haplotypes (Appendix 

9B). We found 17 (2 non-synonymous) segregating sites in the enolase gene fragment, 

resulting in 15 haplotypes (Appendix 10). θw per sequence and average number of 

pairwise differences (k) was 4.12 and 4.87 for the enolase gene sequence. In the enolase 

median joining haplotype network, we found one haplotype cluster which is 

differentiated by two fixed differences and is restricted to the Atlantic coasts. Tajima’s D 

for cytIdh and enolase was 0.29 and 0.57, respectively.  

 

 

RECOMBINATION 

The ZZ test statistic indicated a significant decay of linkage disequilibrium (LD) with 

physical distance due to recombination within the mtIdh locus spanning an 

approximately 7 kb genome region (ZZ = 0.20; P = 0.002). The estimate of the 

recombination rate (R = 4Ner) is 8.3 for the total mtIdh dataset and 13 recombination 

events were detected by the four-gamete test. However, R is estimated much higher 

among the mtIDH-AB haplotypes (R = 20.7) among which 11 recombination events are 

detected. Due to low variability, R could not be estimated among the mtIDH-DE 

haplotypes. We found one clear recombinant haplotype between a mtIDH-B and mtIDH-

D haplotype (GenBank Acc.: KJ371365). This recombination event included the promoter 

sequence and likely occurred near or in intron 1 which has a length of about 4 kb. In 

contrast, stronger breakdown of pairwise LD among the mtIDH-AB haplotypes 

compared to the total dataset including the mtIDH-DE haplotypes indicates reduced 

recombination between the mtIDH-AB and mtIDH-DE haplotypes (Figure 14). The 

estimated recombination rate for the cytIdh and enolase gene was 27.8 and 13.9 

respectively.  
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Excess LD is expected under long-term balancing selection or when an allele has recently 

undergone a selective sweep. Using the total dataset including the mtIDH-AB and 

mtIDH-DE haplotypes, the Wall’s Q statistic indicated that LD across the mtIdh locus is 

significantly higher than expected under the neutral model given the observed levels of 

polymorphism and recombination (Wall’s Q = 0.27, P = 0.016). Using only the mtIDH-AB 

haplotypes, the significance of the Wall’s Q statistic was reduced (Wall’s Q = 0.28, P = 

0.054). However, as a significant Wall’s Q statistic may also be expected to result from 

population subdivision and expansion, we compared these statistics also for the other 

nuclear gene fragments. For all these fragments, the ZZ and Wall’s Q statistic were both 

small and not significant for the cytIdh (ZZ = 0.04, P = 0.55; Wall’s Q = 0, P = 0.91) and 

enolase (ZZ = 0.05, P = 0.18; Wall’s Q = 0.24, P = 0.35) sequences.  

 

 
Figure 14. Linkage disequilibrium (LD) in the mtIdh locus. Each point represents pairwise LD (|D|) 

between two polymorphisms. The dashed line indicates the linear regression of LD and nucleotide 

distance. (A.) LD within the mtIDH-AB haplotypes. (B.) LD within all haplotypes (mtIDH-AB and 

mtIDH-DE). The stronger breakdown of LD among the mtIDH-AB haplotypes compared to the total 

dataset indicates reduced recombination between the mtIDH-AB and mtIDH-DE haplotypes.  
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COALESCENT SIMULATIONS 

DNA sequences from oppositely selected alleles in two populations were simulated to 

estimate the parameters that were most likely to result in the observed sequencing 

variation both within and between the differentially selected mtIDH allozymes under 

different evolutionary scenarios. More precisely, we inferred under which evolutionary 

scenarios of gene flow (M), selection time (St), selection strength (Ss) and relative 

subpopulation size (Ns) we can expect the observed number of fixed and average 

pairwise differences between the ancestral and derived haplotypes and the observed 

average number of pairwise differences, haplotype diversity and Tajima’s D within each 

haplotype cluster.  

When assuming an equal size of the populations experiencing opposing selection, 

(Figure 15, left panels), only recent evolution of the derived allele was supported (St ≈ 

0.2) (scenario 1). Under these conditions, a selective sweep can explain the low average 

pairwise differences (k) among the derived haplotypes as there has been little time for 

mutation and recombination to increase the nucleotide diversity among the derived 

haplotypes. However, the simulations indicate that in this scenario the derived allele 

must have evolved under low levels of gene flow between both subpopulations, except 

when selection is very strong (Figure 15). Only under these conditions of low gene flow, 

the observed large number of fixed differences can be expected as reduced migration 

rates or gene flow between the populations reduces recombination between haplotypes 

from the different populations, resulting in a deeper split and strongly distinct 

haplotypes in which the derived mutation could evolve. Further, selection strength (Ss) 

strongly affects the plausible migration rates (M) for which we can observe our data, 

with higher selection strength generally allowing higher migration rates. This is most 

likely because a higher selection strength reduces effective migration and recombination 

between the alleles from the different populations. 

Assuming a smaller size of the population experiencing positive selection for the derived 

allele (Figure 15, right panels), a more ancient evolution of the derived allele matched 

more closely with the observed sequence variation (St > 0.5) (scenario 2). Under these 

conditions, the longer selection times may explain the observed large number of fixed 

differences, as more mutations arise and build up in the haplotypes as time progresses. 

However, an increased selection time is also expected to result in a higher average 

number of pairwise differences (k) among the derived haplotypes. Therefore, in this 

scenario, a reduced subpopulation size (Ns), of the population in which the derived allele 

is selected, can explain the reduced average number of pairwise differences (k) among 

the derived haplotypes. Further, the selection time needed to observe our summary 

statistics is influenced by the migration rate, which, together with recombination 

counteracts the buildup of fixed differences. Additionally, this relation is affected by 
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selection strength (Ss). Again, selection strength (Ss) reduces effective migration and 

recombination and reduces the selection time needed to observe a large number of fixed 

differences. Hence, in contrast to the scenario of equal subpopulation sizes the small 

subpopulation size (Ns) of the population in which the derived allele is selected resulted 

in a low average number of pairwise differences (k) among the derived haplotypes. 

Subsequently, this allows longer selection times and, moreover, allows higher migration 

rates between the differently selected populations to explain the observed data.  

Both scenarios are expected to result in a different distribution of Tajima’s D values 

among the derived haplotypes. Negative Tajima’s D values signify an excess of low 

frequency polymorphisms relative to expectation, which generally indicate population 

size expansion after a bottleneck or a selective sweep. When selection is acting in a large 

population (i.e. first scenario), negative Tajima’s D values are only obtained when 

selection time is short as the derived allele is swept to high frequencies (Figure 16). In 

these simulations, the excess of low frequency polymorphisms disappears as selection 

time progresses and Tajima’s D consequently approaches zero. Under this scenario, a 

short selection time (0.1 < St < 0.3) was most supported to explain the sequence variation. 

These selection times are expected to result in Tajima’s D values that are within the 

range of the observed value (D = -1.72). In contrast, when the subpopulation size (Ns) of 

the population in which the derived allele is selected is small (i.e. second scenario), 

highly negative Tajima’s D values are only obtained for very low selection times (St < 

0.1), followed by a wide range of negative values when selection time progresses (Figure 

16). Given that the observed sequence variation under the second scenario matched 

more closely with longer selection times of 0.5 to more than 1.5 (Figure 15, right panels), 

the expected Tajima’s D values under these conditions are less likely to result in the 

observed Tajima’s D value of -1.72 (Figure 16).  
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Figure 15. Frequency plots of the coalescent simulation parameters with sequencing statistics close 

to the observed sequencing statistics found in the mtIdh gene using Approximate Bayesian 

Computation (ABC). The parameters varied in the model are: m – proportion of gene exchange per 

generation, s – relative fitness of derived allele, St – Selection time and Ns – Subpopulation size. 

Colors indicate the sampling frequency. See Materials and Methods for the summary statistics used 

in the ABC. 
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Figure 16. Comparison of Tajima’s D values among the derived haplotypes between simulations in 

which the subpopulation size (Ns) of the population in which the derived allele was selected is 1 

compared to 0.1. Data is shown for 1,000,000 simulations for which the relative fitness of the 

derived allele was s = 1.05. The proportion of gene exchange per generation (m) ranged between 

2.5e-6 and 2.5e-3. 

 

 

PHYLOGENY AND DIVERGENCE TIME ESTIMATIONS 

The reconstructed phylogeny of species of the Pogonus and Pogonistes genera based on 

the concatenated mitochondrial dataset (cox1, nad1, cob) suggests that the split between 

these two genera has occurred between 0.95 and 1.38 MY ago (Figure 17A). Sequenced 

species of the Pogonus genus share a common ancestor between 0.83 and 1.22 MY. The 

major phylogenetic relations among the Pogonus and Pogonistes species were confirmed 

by means of trees generated by MrBayes using the concatenated mitochondrial, the 673 

bp mtIdh, enolase and cytIdh gene sequence datasets (Appendix 11). 

P. chalceus clusters within a well-supported clade that also contains the species P. 

riparius, P. olivaceus, P. luridipennis, P. gilvipes and P. littoralis. Calibrating this node in the 

mtIdh gene tree using the divergence date estimated from the concatenated 

mitochondrial gene tree (0.618 ± 0.06 MY) allowed estimating the divergence time of the 

mtIdh alleles. Based on this calibration point, the divergence between the mtIDH-AB and 

mtIDH-DE haplotypes was estimated between maximally 0.047 and 0.165 MY ago 

(Figure 17B).  
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Figure 17. Divergence time estimates. (A.) Divergence time estimates (MY) between Pogonus and 

Pogonistes species based on the concatenated mitochondrial sequences. The black dot indicates the 

node that was used for calibrating the mtIdh gene trees. (B.) Divergence time estimates for part of 

the mtIdh gene (673bp). Gray bars, representing 95% confidence intervals of the estimated 

divergence times, are only shown for nodes with relatively high confidence based on MrBayes 

analysis (see Appendix 11). Node values represent estimated ages and Bayesian posterior 

probabilities, respectively. The x-axis shows time in million years (MY) before present.  
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DISCUSSION 

The main findings reported in this study can be summarized as follows: (i) The mtIDH-

DE haplotypes, associated with short-winged populations, are derived and 

monophyletic, indicating that these haplotypes have a singular mutational origin. The 

association between the mtIDH-DE allozymes and habitat stability and short wing size 

that is repeatedly found across Atlantic European coasts most likely results from the 

spread of this allele into other locations and populations. (ii) Coalescent simulations 

suggest that the observed sequence variation among the mtIDH allozymes, including a 

high number of fixed differences between the differently selected mtIDH allozymes and 

a low average number of pairwise differences among the derived haplotypes, indicates 

that the allele evolved most likely recently in a large population that is partially isolated 

from the ancestral population. 

 

 

SINGLE ORIGIN OF REPEATED ADAPTATION 

As all related species of P. chalceus studied are long-winged, it can be expected that the 

long-winged ecotype is the ancestral state. Furthermore, the long-winged ecotype can 

colonize new locations, which may then locally adapt to these environments. In this way, 

distinct populations of P. chalceus could have evolved reduced wing sizes along the 

Atlantic European coasts repeatedly as a response to differences in habitat dynamics. For 

instance, populations in the historical salt fields in the Guérande (France) strongly 

diverged in wing sizes, despite that distances between the habitats lie within a single 

generation walking distance (Dhuyvetter et al. 2007). Correspondingly, in this study, a 

long-winged population has been found in a temporary salt extraction pond in Aveiro 

(Portugal) surrounded by tidal marshes in which short-winged populations occur. 

Hence, local adaptation even occurs within sympatric mosaics with ample opportunity 

of gene flow. Furthermore, divergence between ecotypes based on microsatellite 

markers appeared to be negligible, indicating high levels of gene flow among ecotypes 

(Dhuyvetter et al. 2007). Allozyme frequencies of the mtIDH protein are strongly 

associated with this divergence in wing sizes and the monophyletic clustering of the 

mtIDH-DE haplotypes indicates a single origin of the adaptation associated with this 

locus, followed by a subsequent spread to other populations. This suggests that repeated 

local adaptation associated with the mtIdh locus is based on repeated colonization and/or 

introgression of genetic variation. 
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TRANSPORTER PROCESS 

Although the mtIDH-D allozyme is associated with the low dispersal morph and shows 

little nucleotide diversity, it has a very wide distribution along the Atlantic European 

coasts. Therefore, it might be speculated that this allele is recessive, or at least 

codominant, compared to the allele that is frequent in the high dispersal morph. 

Codominance or recessiveness could easily allow the allele to be spread by long-winged 

individuals in analogy with the ‘transporter process’ hypothesized for the Eda locus in 

sticklebacks (Schluter & Conte 2009, Bell & Aguirre 2013). The similarities of the local 

adaptation dynamics of P. chalceus to that of sticklebacks emphasizes the importance of 

this transporter mechanism for the recurrence of similar ecotypic divergence that is 

facilitated by introgression of adaptive variation. Although the transporter hypothesis 

was not explicitly tested in P. chalceus, theoretical and simulation studies suggest that 

migration rates may be very small for adaptive alleles to spread to other populations (De 

Busschere et al. under review, Messer & Petrov 2013). 

 

 

DEEP DIVERGENCE AND REDUCED RECOMBINATION BETWEEN 

MTIDH-AB AND MTIDH-DE HAPLOTYPES 

Divergence between the mtIDH-AB and mtIDH-DE haplotypes was estimated at 0.047 to 

0.165 MY ago. Node ages were estimated with a nucleotide substitution rate of 0.0563 ± 

0.00196 nucleotide substitutions/site/MY (Pons et al. 2010), which is five times higher 

than the proposed standard rate of 2.3% divergence/MY (0.0115 nucleotide 

substitutions/site/my) for the insect mitochondrial genome (Brower 1994). Therefore, the 

estimated divergence time between the mtIDH-AB and mtIDH-DE haplotypes may be 

interpreted as a lower-bound estimation of the actual divergence time and indicates that 

this divergence may predate the end of the last glacial period which occurred 

approximately between 0.01 and 0.11 MY ago. Considering these time scales, if 

disruptive selection operates on different alleles within a single population, as for 

example under true balancing selection or high gene flow, recombination is expected 

between the positions linked to each allele and, therefore, a relatively low number of 

fixed differences is expected (Hey 1991). Given the estimated recombination rate among 

the ancestral mtIDH-AB haplotypes, significantly reduced levels of recombination were 

observed between the sequence clusters associated with each mtIDH allozyme which 

contributes to the large number of fixed differences. As suggested by the coalescent 

simulations discussed in the following section, these reduced recombination rates may 

result from selection as well as some degree of geographical isolation (i.e. reduced gene 

flow). 
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EVOLUTIONARY SCENARIOS 

A high number of fixed differences and deep branches between the ancestral and 

derived haplotypes clusters suggests an old time since divergence (i.e. balancing 

selection), whereas a low average number of pairwise differences (k) among the derived 

haplotypes suggests a selective sweep (Figure 18). Accordingly, our coalescent 

simulations suggest that the observed sequence variation among the mtIDH allozymes is 

most consistent with a relatively recent selective sweep of haplotypes that evolved in a 

partially isolated subpopulation. 

Analyzing relatively simple evolutionary scenarios, our simulations encompassed 

parameter combinations that resulted in summary statistics that were comparable to 

those observed for the mtIdh locus. Under the assumption that the allele evolved in a 

population of similar size as the population experiencing negative selection for the 

derived mutation (scenario 1), it is most likely that the origin of the derived mutation has 

been recent and that migration between both subpopulations is low (i.e. partial 

geographic isolation) (left panel in Figure 15). More precisely, in this scenario only a 

short selection time explains the low nucleotide diversity among the derived mtIDH-DE 

haplotypes because a mutation with strong selective advantage increasing rapidly in 

frequency will have little opportunity to incorporate variants by mutation and to 

recombine with variants in the surrounding region of the genome (Charlesworth 2006). 

On the other hand, reduced gene flow or geographical isolation allows for the buildup of 

nucleotide differences between populations, which may result in a high number of fixed 

differences when the derived allele evolves. Alternatively, the observed low nucleotide 

and haplotype diversity among the mtIDH-DE haplotypes might also be explained by a 

smaller size of the subpopulation experiencing positive selection for the derived allele 

(scenario 2). Under these conditions higher levels of gene flow between the 

subpopulations can also result in the observed sequence variation. A longer time since 

the derived allele arose and was selected is, however, needed to observe a high number 

of fixed differences. 
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Figure 18. Observed and expected coalescent pattern of mtIdh sequence variation under a stable 

allele polymorphism in which selection time ranges from short (i.e. selective sweep) to the total 

coalescent time (i.e. balancing selection or allopatric divergence). Numbers in the mtIdh gene tree 

(left) indicate posterior probability values. Triangles represent collapsed clades; triangle height 

represents coalescent time of the clades. The grey shaded area on the trees indicates the selection 

time. Average number of pairwise differences among ancestral allele sequences (kB), among derived 

allele sequences (kD) and fixed differences between derived and ancestral allele sequences (fixedBD) 

for the mtIdh locus and for expected coalescent scenarios is also shown. 

 

 

In further support of scenario 1, we found differences between Atlantic and 

Mediterranean coasts in haplotype composition for the mtIDH-AB haplotypes, the cytIdh 

gene and the enolase gene. This suggest geographical effects on variation which were also 

found when studying microsatellite and allozyme frequencies (Desender 2000, 

Dhuyvetter et al. 2004). Next, we found very low haplotype structure among the derived 

mtIDH-DE haplotypes, which suggests a relatively recent spread of these haplotypes 

along the Atlantic coasts. Furthermore, the majority of the Atlantic populations carry 

both alleles, which are often present in almost equal frequencies (heterozygosity within 

populations ranging between 0-50 %; Van Belleghem and Hendrickx 2013). This 

indicates current high rates of gene flow, low selection against heterozygotes and ample 

opportunity for recombination between the haplotypes, which support a recent 

evolution of the derived allele. Finally, considering the better fit of the simulated 

Tajima’s D values to the observed values in the scenario in which the derived allele 

evolved recently in a geographically structured population, we might give more support 
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to this scenario compared to the scenario with smaller size of the subpopulation 

experiencing positive selection for the derived allele. 

In contrast, in support of scenario 2, there are indications that disruptive selection 

maintains differentiation between the differently selected alleles despite high rates of 

gene exchange between populations. On relatively small distances (100 km), P. chalceus 

populations do not generally show a correlation between geographical and genetic 

distance in neutral markers (Dhuyvetter et al. 2005a). Altogether, this indicates that 

neutral genes are being exchanged but differentiation (at mtIdh locus) is maintained 

within the locations. Hence, the current distribution of mtIdh alleles is clearly influenced 

by spatially heterogeneous balancing selection (i.e. selection maintains the association 

between the alleles and the habitat) (Dhuyvetter et al. 2004, 2007, Van Belleghem & 

Hendrickx 2014). More precisely, a gene favorable in one given genomic context might 

be unfavorable in other genomic contexts (Wright 1931) and reduced recombination 

rates are likely caused by selection against these negative epistatic effects among closely 

linked genes. In accordance, selection on multiple alleles may also reduce recombination 

between the mtIDH-AB and mtIDH-DE haplotypes, because recombination of these 

adaptive allele combinations will be selected against (Feder et al. 2012a). Finally, an 

inverted chromosomal segment could also explain reduced recombination rates 

(Kirkpatrick 2010). However, this latter scenario is quite unlikely in the present system 

as a recombinant haplotype between the mtIDH alleles was observed.  

Lack of empirical values of selection strength and migration rates render it difficult to 

make sound conclusions on the evolutionary scenario. Furthermore, intermediate and 

more complex evolutionary scenarios may be possible. For instance, the low haplotype 

structure among the mtIDH-DE haplotypes may also result from a recent bottleneck and 

subsequent population expansion. This could also result in the observed sequencing 

variation, despite long term balancing selection. 

 

 

mtIDH ALLOZYMES AND SELECTION 

All non-synonymous nucleotide variants found in this study, both in the mtIDH and 

cytIDH protein, occur along the enzyme’s surface (Appendix 12 and Appendix 13). Watt 

and Dean (2000) argue that functional constraints shrink with distance from the active 

site because changes become less disruptive of function. This argumentation suggests 

that adaptive as well as neutral variation is expected to be found at the protein’s surface. 

Whether the (Lys – Asn) amino acid substitution at amino acid position 447 that 

differentiates the mtIDH-AB and mtIDH-DE allozyme has a functional effect on the 

protein functioning is difficult to infer and necessitates functional analysis (Storz & 

Wheat 2010, Barrett & Hoekstra 2011). Alternatively, the amino acid polymorphism in 
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this position may have no functional effect, but rather be in close linkage with a selected 

target. For instance, the mtIdh gene is likely transcribed by the same (bidirectional) 

promoter as the NADP+-transhydrogenase (Nnt) gene. Sequencing variation has not 

been studied in this gene, but the observed pattern in the mtIdh gene might be expected 

to extend into a far larger genomic region then currently studied. 
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ABSTRACT 

The salt marsh beetle Pogonus chalceus represents a unique opportunity to understand 

and study the origin and evolution of dispersal polymorphisms as remarkable inter-

population divergence in dispersal related traits (e.g. wing development, body size and 

metabolism) has been shown to persist in the face of strong homogenizing gene flow. 

Sequencing and assembling the transcriptome of P. chalceus is a first step in developing 

large scale genetic information that will allow us to further study the recurrent 

phenotypic evolution in dispersal traits in these natural populations. We used the 

Illumina HiSeq2000 to sequence 37 Gb of the transcriptome reads and performed de novo 

transcriptome assembly with the Trinity short read assembler. This resulted in 65,766 

contigs, clustering into 39,393 unique transcripts (unigenes). A subset of 12,987 show 

similarity (BLAST) to known proteins in the NCBI database and 7,589 are assigned Gene 

Ontology (GO). Using homology searches we identified all reported genes involved in 

wing development, juvenile- and ecdysteroid hormone pathways in Tribolium castaneum. 

About half (56.7%) of the unique assembled genes are shared among three life stages 

(third-instar larva, pupa, and imago). We identified 38,141 single nucleotide 

polymorphisms (SNPs) in these unigenes. Of these SNPs, 26,823 (70.3%) were found in a 

predicted open reading frame (ORF) and 6,998 (18.3%) were nonsynonymous. The 

assembled transcriptome and SNP data are essential genomic resources for further study 

of the developmental pathways, genetic mechanisms and metabolic consequences of 

adaptive divergence in dispersal power in natural populations.  

 

 

 

INTRODUCTION 

A vast number of insect species are characterized by remarkable and often discontinuous 

morphological variation in traits related to dispersal capacity (Roff 1986, Roff & 

Fairbairn 2007). As variation in such traits determines the ability of populations and 

species to persist in both patchy and changing landscapes (Denno et al. 1996, Dhuyvetter 

et al. 2004, Kokko & López-Sepulcre 2006, Hendrickx et al. 2009), research on the ultimate 

and proximate causes of dispersal is a central theme in both evolutionary ecology and 

conservation biology (Van Dyck & Matthysen 1999, Ronce 2007). Theoretical and 

empirical research on the ultimate cause of dispersal demonstrated that such dispersal 

polymorphisms are the result of disruptive selection in heterogeneous landscapes in 

response to habitat persistence (den Boer 1968, Roff 1994a, Denno et al. 1996) and fitness 
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homogenization under spatiotemporal population fluctuations (McPeek & Holt 1992, 

Holt & McPeek 1996, Doebeli & Ruxton 1997, Mathias et al. 2001, Hendrickx et al. 2013). 

Still, only little is known about the molecular basis of this profound phenotypic 

variation. For instance, it is unclear whether (i) divergence in dispersal traits is caused by 

a small set of genes that exert large effects or by many genes with moderate to small 

effect, and in which order they are involved in adaptive differentiation (Orr 2005, 

Hoekstra et al. 2006, Michel et al. 2010), (ii) whether adaptations and the evolution of 

distinct dispersal phenotypes are mainly the result of mutations in coding regions of the 

genome or rather due to differences in gene expression (i.e. regulatory changes) (West-

Eberhard 2005, Steiner et al. 2007, Hoekstra & Coyne 2007), (iii) if the recurrent 

appearance of this trait is caused by independent mutations or rather by introgression of 

standing genetic variation (Arendt & Reznick 2008, Barrett & Schluter 2008) or the 

release of cryptic genetic variation by changes in epistatic interactions (Gibson & 

Dworkin 2004, Le Rouzic & Carlborg 2008), and (iv) how disruptive selection in 

dispersal traits affects metabolic pathways resulting in genetically correlated changes in 

other life history traits (Stevens et al. 2012). Such information is particularly crucial to 

link the proximate and ultimate mechanisms underlying the recurrent intra- and 

interspecific evolution of dispersal phenotypes. 

 

The endangered halobiontic ground beetle Pogonus chalceus (Marsham, 1802) is a most 

suitable system to study the molecular mechanisms behind adaptive divergence in 

dispersal traits. The species exhibits a clear wing polymorphism with both short-winged 

individuals (brachypterous), long-winged individuals (macropterous), as well as 

intermediate forms (Desender 1985). These differences in dispersal power have been 

shown to be related to differences in habitat stability and persistence, with long-winged 

individuals occurring primarily in unstable and relatively recent salt marsh areas. The 

determination of wing size in this species is polygenic as crosses between brachy- and 

macropterous populations result in the production of individuals with intermediate 

wing sizes (Desender 1989a). Divergent selection on wing size likely results in 

simultaneous selection in other life history traits, as suggested by a strong correlation 

among populations between average wing size and frequencies of allozymes of the 

mitochondrial NADP+-dependent isocitrate dehydrogenase (mtIDH) protein 

(Dhuyvetter et al. 2004, 2007). Moreover, within a salt marsh situated at the Atlantic coast 

in the Guérande region in France, individuals of P. chalceus occur chiefly in two habitat 

types interlaced at a very small scale, i.e. ponds and canals (Dhuyvetter et al. 2007). Salt 

extraction ponds are mostly occupied by long-winged individuals with larger body size 

and the mtIDH-B allozyme. The borders of tidal canals that lead sea water to these 

ponds are occupied by smaller short-winged individuals with the mtIDH-D allozyme. 
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While signals of strong divergent natural selection are observed between the ecotypes 

for the mtIDH allozymes, dispersal power and body size, no differentiation could be 

detected for neutral markers, suggesting high levels of gene flow among both ecotypes 

(Desender et al. 1998, Dhuyvetter et al. 2004, 2007). These findings and the incipient stage 

of divergence make the salt marsh beetle P. chalceus attractive for genetic studies of 

selection, adaptation, and gene flow. 

 

It has been shown that portions of the wing development gene network are largely 

conserved among holometabolous insect orders (Weatherbee et al. 1999, Abouheif & 

Wray 2002). A number of genes involved in the patterning, growth and differentiation of 

the wing in Drosophila have been identified (Weihe et al. 2005) and characterized in T. 

castaneum (Richards et al. 2008). Furthermore, genes involved in the juvenile hormone 

(JH) and ecdysteroid (ECD) pathway have also been shown to be relevant for the study 

of insect polymorphisms, including wing polymorphisms (Zera & Denno 1997, Emlen & 

Nijhout 1999, Zera 2004, Ishikawa et al. 2012). However, little genomic resources are 

available to study the genetic architecture of dispersal polymorphisms in natural 

populations of ground beetles, in which intraspecific dispersal polymorphisms can be 

found abundantly (den Boer 1970, 1980, Desender 1988). Considering ground beetles 

(Carabidae), NCBI reports 306 ESTs from a study comparing seven coleopteran species 

(Theodorides et al. 2002) and a mitochondrial genome of a Calosoma species (Song et al. 

2010). Other genomic resources comprise mostly single barcoding gene sequences, such 

as cytochrome oxidase and ribosomal RNA, used for phylogenetic studies. The only 

coleopteran species for which the genome has been sequenced is the red flour beetle 

Tribolium castaneum (Richards et al. 2008), belonging to the Polyphaga suborder. The 

evolutionary distance of this suborder to the Adephaga suborder, comprising Carabidae 

species, is estimated to be more than 200 MY (Hunt et al. 2007). 

Short read de novo transcriptome analysis has proven to be a valuable first step to study 

genetic characteristics and allowed researchers to obtain sequence information and 

expression levels of genes involved in developmental and metabolic pathways, 

insecticide resistance, candidate transcripts for diapauses preparation based on 

homology with related organisms and to discover single nucleotide polymorphism 

(SNP) in all kinds of model and non-model organisms (Mittapalli et al. 2010, Xue et al. 

2010, Poelchau et al. 2011, Sloan et al. 2012).  

In this study, we used Illumina short read sequencing for de novo transcriptome 

assembly and analysis of the salt marsh beetle P. chalceus. We constructed three libraries 

covering three life stages, one third-instar larva, one pupa and one adult male beetle. We 

matched these sequences in a BLAST search to known proteins of the NCBI database 

and aligned the sequences to the genome of T. castaneum. Matches include a number of 
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genes relevant to the study of wing development and dispersal polymorphism. 

Furthermore, we screened the transcriptome for both conservative SNPs and SNPs 

resulting in amino acid changes, which will allow genome wide screening of variation 

between different ecotypes. The resulting assembled and annotated transcriptome 

sequences constitute comprehensive genomic resources, available for further studies and 

may provide a fast approach for identifying genes involved in developmental pathways 

(i.e. wing development, JH, and ECD) relevant to adaptive divergence in this species.  

 

 

 

MATERIAL & METHODS 

TISSUE MATERIAL AND NUCLEIC ACID ISOLATION 

The geographical distribution of P. chalceus extends along the Atlantic coasts from 

Denmark up to and including the major part of the Mediterranean coasts (Turin 2000). 

Beetles were captured in the Guérande region, France. No specific permits were required 

for the described field study. Eggs were obtained from the canal ecotype (short-winged) 

and raised in a common environment. A larva (third-instar), pupa and imago (male) 

resulting from the same mother were frozen in liquid nitrogen and subsequently used 

for sequencing (Figure 19). The sex determination is probably of the XY type (Serrano 

1981a). Total RNA was isolated from a complete larva (third-instar), pupa and newly 

emerged male imago. RNA was extracted using the SV Total RNA isolation System 

(Promega, Madison, USA) according to manufacturer’s instructions and genomic DNA 

was removed by on-column digest with DNase I. RNA was quantified by measuring the 

absorbance at 260 nm using a NanoDrop spectrophotometer (Thermo Fisher Scientific, 

Inc.). The purity of the RNA samples was assessed at an absorbance ratio of OD260/280 and 

OD260/230 and the integrity was confirmed on an Agilent 2100 Bioanalyzer (Agilent 

Technologies, Inc.). 

 

       
Figure 19. Pogonus chalceus third-instar larva (left), pupa (middle) and adult beetle (right). 
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ILLUMINA PAIRED-END cDNA LIBRARY CONSTRUCTION AND 

SEQUENCING 

The cDNA libraries were constructed for the larva, pupa and imago using the TruSeq™ 

RNA Sample Preparation Kit (Illumina, Inc.) according to the manufacturer’s 

instructions. Poly-A containing mRNA was purified from 2 µg of total RNA using 

oligo(dT) magnetic beads and fragmented into 200-500 bp pieces using divalent cations 

at 94°C for 5 min. The cleaved RNA fragments were copied into first strand cDNA using 

SuperScript II reverse transcriptase (Life Technologies, Inc.) and random primers. After 

second strand cDNA synthesis, fragments were end repaired, a-tailed and indexed 

adapters were ligated. The products were purified and enriched with PCR to create the 

final cDNA library. The tagged cDNA libraries were pooled in equal ratios and used for 

2 x 100 bp paired-end sequencing on a single lane of the Illumina HiSeq2000 (Genomics 

Core, UZ Leuven, Belgium). After sequencing, the samples were demultiplexed and the 

indexed adapter sequences were trimmed using the CASAVA v1.8.2 software (Illumina, 

Inc.). 

 

 

DE NOVO TRANSCRIPTOME ASSEMBLY 

The transcriptome reads were de novo assembled using Trinity (release 20111126) 

(Grabherr et al. 2011) on the STEVIN Supercomputer Infrastructure at Ghent University 

(48 cores, 350 G of memory). The three samples (i.e. larva, pupa, and imago) were 

assembled and analyzed as a pooled dataset. As the Trinity assembler discards low 

coverage k-mers, no quality trimming of the reads was performed prior to the assembly. 

Trinity was run on the paired-end sequences with the fixed default k-mer size of 25, 

minimum contig length of 200, paired fragment length of 500, 12 CPUs, and a butterfly 

HeapSpace of 25G (i.e. allocated memory). Prior to submission of the data to the 

Transcriptome Shotgun Assembly Sequence Database (TSA), assembled transcripts were 

blasted to NCBI’s UniVec database (Cochrane & Galperin 2010) to identify segments 

with adapter contamination and trimmed when significant hits were found. This adapter 

contamination may result from sequencing into the 3’ ligated adapter of small fragments 

(< 100 bp). Human and bacterial sequence contamination was investigated using the 

web-based version of DeconSeq (Schmieder & Edwards 2011), with a query coverage 

and sequence identity threshold of 90%. 
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FUNCTIONAL ANNOTATION  

The assembled transcripts were subjected to similarity searches against NCBI’s non-

redundant (nr) database using the BLASTx algorithm (Altschul et al. 1990), with a cut-off 

E-value of ≤ 10-3 and a HSP (high-scoring segment pairs) length cut-off of 33.  The 

publicly available platform independent java implementation of the Blast2GO software 

(Götz et al. 2008) was used for blasting and to retrieve associated gene ontology (GO) 

terms describing biological processes, molecular functions, and cellular components 

(Ashburner et al. 2000). Top 20 blast hits with a cut-off E-value of ≤ 10-6 and similarity 

cut-off of 55% were considered for GO annotation. Next, to get an idea of the amount of 

genes of the T. castaneum transcriptome that are covered by P. chalceus transcripts, 

assembled transcripts were aligned to the Tribolium Official Gene Set (Richards et al. 

2008, Kim et al. 2010) using the PROmer pipeline of the MUMmer 3.0 software (Kurtz et 

al. 2004) with default parameters. The presence of open reading frames (ORFs) was 

investigated using the ORF-predictor server with an ORF cut-off length of 200 bp (Min et 

al. 2005).  

 

 

GENES OF INTEREST 

To guide our search for wing development genes, we used a previously generated list of 

Tribolium castaneum (Table S13b Richards et al. 2008 (Richards et al. 2008)). To find P. 

chalceus wing development orthologs, we used T. castaneum protein sequences in a local 

BLAST search (tBLASTn) querying the assembled P. chalceus transcriptome sequences. 

Hits with an E-value less than 1e-15 were examined. The most significant hit was 

considered to be the putative P. chalceus orthologue of the wing development gene in T. 

castaneum. Subsequently, the P. chalceus transcript sequence was used in a reciprocal 

blast to the NCBI nr database. If the BLAST and reciprocal BLAST matched, we assigned 

orthology to that sequence. For the apterous gene, we extracted sequences of D. 

melanogaster, T. castaneum, A. mellifera and A.pisum from GenBank and constructed a 

neighbor-joining tree of the protein sequences with MEGA 5.0 (Tamura et al. 2011), 

bootstrapped 1000 times. The methodology used is similar to that of Brisson et al. 2010 

(Brisson et al. 2010).  

Next, genes involved in the juvenile hormone (JH) (Bellés et al. 2005) and ecdysteroid 

(ECD) (Warren et al. 2004) pathway in T. castaneum were extracted from the KEGG 

pathway database (Kanehisa & Goto 2000) and the same procedure for orthologue 

discovery for wing development genes was followed. The assembled transcriptome was 

also investigated for the presence of the mitochondrial NADP+-dependent isocitrate 

dehydrogenase (mtIdh) gene, which has been shown to be strongly correlated with 
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dispersal power in P. chalceus (Dhuyvetter et al. 2004, 2007). For this, the T. castaneum 

protein sequence of the gene homologues to mtIdh (XP_970446) was blasted to the P. 

chalceus transcript. 

 

 

MAPPING READS TO REFERENCE TRANSCRIPTOME 

To align the reads back to the assembled reference transcriptome the Burrows—Wheeler 

Aligner (BWA) program (Li & Durbin 2010) and the Bowtie aligner (Langmead et al. 

2009) were used. BWA was used for variant analysis. Reads were mapped for each 

sample (i.e. larva, pupa, and imago) separately to the assembled transcriptome based on 

the pooled read data. The BWA default values for mapping were used, except for a 

maximum number of alignments (sampe -n) of 40. Under these settings, read pairs 

mapping to multiple equally best positions are placed randomly. Properly paired reads 

with a mapping quality of at least 25 (-q) were extracted from the resulting BAM file using 

SAMtools (Li et al. 2009) for further analyses. Properly paired is defined as both left and 

right reads mapped in opposite directions on the same transcript at a distance 

compatible with the expected mean size of the fragments. The high mapping quality 

ensures reliable (unique) mapping of the reads, which is important for variant calling. 

As reads can map to multiple genes or isoforms and we have no available reference 

genome, we used the RSEM software (Li & Dewey 2011) to assign reads to genes and 

isoforms and to count transcript abundances. RSEM requires gap-free alignments and 

therefore the Bowtie aligner (older version, not Bowtie 2) was used and properly paired 

reads were extracted.  RSEM and Bowtie were used as implemented in the Trinity 

software package (Grabherr et al. 2011). Bowtie mapping parameters were set as follows: 

a maximum number of 2 mismatches allowed (-v) and a number of valid alignments per 

read pair (-k) of 40. Setting the –k parameter allows reads to align against up to 40 

different locations. The old version of Bowtie does not report mapping quality and, 

hence, does not enable filtering on this parameter. We compared the three 

developmental stages for transcript composition. Uniquely expressed genes for each life 

stage were counted and investigated for Gene Ontology (GO) composition. 

 

 

VARIANT ANALYSIS 

Only reliable properly paired BWA mapped reads were considered for Single 

Nucleotide Polymorphism (SNP) calling. Indels were not considered because alternative 

splicing impedes reliable indel discovery. SNPs were called using the SAMtools software 

package (Li et al. 2009). Genotype likelihoods were computed using the SAMtools 
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utilities and variable positions in the aligned reads compared to the reference were 

called with the BCFtools utilities (Li 2011). Using the varFilter command, SNPs were 

called only for positions with a minimal mapping quality (-Q) and coverage (-d) of 25. 

The maximum read depth (-D) was set at 200. The reference is based on all three samples 

combined. Therefore, to compare the variational composition of the samples, we 

extracted only heterozygous SNP positions (i.e. Max-likelihood estimate of the site allele 

frequency ≈ 0.5) from each sample for the unigenes. Unique and shared SNPs were 

extracted with the VCFtools software (Danecek et al. 2011). SNPs located in an open 

reading frame (ORF) ≥ 200 bp were extracted. A custom perl script was used to test 

whether these SNPs resulted in an amino acid change in the predicted ORF. 

 

 

 

RESULTS & DISCUSSION 

SEQUENCING, TRANSCRIPTOME ASSEMBLY AND VALIDATION 

Three developmental stages (one third-instar larva, pupa and male adult beetle) were 

barcode tagged and sequenced on one lane of an Illumina HiSeq2000 sequencer. 

Sequencing of cDNA libraries generated a total of 184,749,261 raw paired end reads with 

a length of 101 bp, resulting in a total of 37.32 giga bases. The raw sequence reads were 

of good quality (≥ 20 Phred score). A summary of sequencing, assembly and annotation 

results for the three samples and the pooled reads dataset is presented in Table 3. For the 

pupa sample, notably less reads were sequenced. Reads were assembled using the 

RNAseq de novo assembler Trinity (Grabherr et al. 2011). The complete read dataset 

assembled into 65,766 contigs, clustering into 39,393 isoform clusters (i.e. unigenes). We 

selected the longest transcript as the representative for each cluster. The size of the 

contigs ranged from 200 (minimum contig length) up to 19,606 bp, with a mean length of 

1,046 bp and totaling 68,799,644 bp for all contigs (Figure 20) and a mean length of 869 

bp totaling 34,249,556 bp for the unigenes. The top longest (> 16,000 bp) assembled 

sequences were inspected for correctness. Overall these extremely long transcripts 

matched long gene sequences present in NCBI’s nr database, indicating that these 

sequences are not the result of chimerical assembly errors due to repeat regions in the 

genes. The longest transcript (19,606 bp) also matches the D. melanogaster dumpy gene, a 

gigantic extracellular protein required to maintain tension at epidermal cuticle 

attachment sites (Wilkin et al. 2000).   

Bacterial and human transcriptome contamination was negligible. Fifty and fifty-seven 

unigenes were identified by DeconSeq (Schmieder & Edwards 2011) as bacterial and 
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human contaminant sequences, respectively. However, these sequences were short in 

length (289 bp (SD = 148) and 251 bp (SD = 60) for bacterial and human contaminants, 

respectively) and most likely represent conserved protein regions. 

All sequencing reads were deposited into the Short Read Archive (SRA) of the National 

Center for Biotechnology Information (NCBI), and can be accessed under the accession 

number SRA050429. The assembled transcriptome was submitted to the Transcriptome 

Shotgun Assembly Sequence Database (TSA) and can be accessed through the GenBank 

accession numbers JU404687 - JU470452. 

 

 

 
Figure 20. Contig length distribution of Trinity assembly for Pogonus chalceus. All assembled contigs 

were included. 

 
 

 



 

 

Table 3. Pogonus chalceus transcriptome sequencing, assembly and annotation summary. 

 

Stage  Larva Pupa Imago ALL 

Sequencing Sequencing reads (101 bp paired end) 66,595,267   48,251,298 69,902,696 184,749,261  

 Bases (Gb) 13.45 9.75 14.12 37.32 

Assembly Trinity assembly (Transcripts)    65,766 

 Unigenes (Isoform clusters)    39,393 

 N50 length (bp) (Unigenes)*    1,904 

 Max length (bp) (Transcripts)    19,606 

 Max length (bp) (Unigenes)    19,606 

 Mean length (bp) (Transcripts)    1,044 

 Mean length (bp) (Unigenes)    868 

 Median length (bp) (Transcripts)    422 

 Median length (bp) (Unigenes)    365 

Annotation Transcripts with BLAST results    29,358 

 Unigenes with BLAST results     12,987 

 Transcripts annotated with GO terms     17,756 

 Unigenes annotated with GO terms     7,589 

Mapping  Read mappings (properly paired) 83,539,754 53,814,547 85,597,567  

(BWA)** Properly paired reads (%) 92.6 90.4 93.1  

 Mean coverage (properly paired) 93.7 55.2 111.6  

 Median coverage (properly paired) 0.93 0.91 2.27  

Mapping Read mappings 143,056,584 97,896,830 156,747,118  

(Bowtie)** Properly paired reads (%) 86.8 87.2 87.7  

 Mean coverage (properly paired) 132.98 78.54 150.71  

 Median coverage (properly paired) 1.95 2.21 4.67  

*Contig length for which half of all bases in the assembled sequences are in a sequence equal or longer than this contig length 

**Reads of each sample were mapped to the assembled transcriptome of the pooled data (ALL) 
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FUNCTIONAL ANNOTATION 

From the assembled unigenes, 12,987 (33.0 %) showed significant similarity (E value < 1e-

3) to proteins in NCBI’s non-redundant (nr) database, with an average best-hit amino 

acid identity of 70.5% (SD=14.2). As expected, the majority of the sequences had top hits 

to T. castaneum proteins (54.5 %) (Figure 21), the only Coleoptera species for which a 

complete genome is available. Other insects resembling P. chalceus sequences are divided 

across different insect orders, the most relevant being Hymenoptera (Nasonia vitripennis 

(2.85%), Camponotus floridanus (2.41%), Apis mellifera (2.15%), Harpagnathos saltator 

(1.86%)), Lepidoptera (Danaus plexippus (2.48%)), Hemiptera (Acyrthosiphon pisum 

(2.24%)), and Diptera (Aedes aegipty (1.88%)). The only non-Arthropoda species with top 

blast hits worth mentioning is Hydra magnipapillata (0.53%). In total 7,589 (19.3 %) P. 

chalceus unigenes were assigned Gene Ontology (GO) terms based on BLAST matches to 

sequences with known function. The functional classification based on biological 

process, molecular function and cellular component is depicted in Figure 22. Among the 

biological process terms, a significant percentage of genes were assigned to cellular 

(22.1%) and metabolic (18.0%) processes. Molecular functions were for a high percentage 

assigned to binding (44.8%) and catalytic activity (36.4%), whereas many genes were 

assigned to cell part (48.2%) and organelle (27.5%) for the functional class cellular 

component. These observations are in accordance with observations of metabolic 

processes in other transcriptomic studies on insects (Mittapalli et al. 2010, Wang et al. 

2010, Xue et al. 2010, Bai et al. 2011, Shen et al. 2011). Redundancy is expected in the 

assembled transcriptome due to the stochastic process of sequencing and the heuristic 

nature of the assembly process, which can result in the fragmented assembly of genes. 

To assess how many actual unique genes we have found in our data, we aligned the 

obtained unigenes to the 16,645 official genes reported for T. castaneum. Of these 

Tribolium genes, 6,883 were covered by P. chalceus transcripts based on the PROmer 

alignments (Kurtz et al. 2004), with a mean percent similarity of 76.2% (SD = 10.4). Next, 

mining the alignments shows that 764 of these Tribolium gene hits have more than one 

hit by unique P. chalceus transcripts (comprising 1,837 unigenes). For the transcripts with 

a PROmer alignment to a Tribolium gene this corresponds to a maximal redundancy of 

15.6% ((1,837-764)/6,883). However, further investigating these multiple hits showed that 

most comprise genes that belong to the same gene family (i.e. paralogs). Only 272 

Tribolium genes are matched by multiple non-overlapping P. chalceus contigs (comprising 

649 unigenes) and align to different portions of the same gene. This reduces the 

redundancy to 5.5% ((649-272)/6,883). Hence, the contig sets that are different portions of 

the same gene do inflate the gene counts for P. chalceus to only a minor extent. 
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Figure 21. Species distribution of top BLASTx results. The pie chart shows the species distribution 

of unigenes top BLASTx results against the nr protein database with a cutoff E value < 1e-3. 

 

 
Figure 22. Gene Ontology (GO) categories of the unigenes. Distribution of the GO categories 

assigned to the Pogonus chalceus transcriptome. Unique transcripts (unigenes) were annotated in 

three categories: cellular components, molecular functions, biological process. 
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We calculated the ‚ortholog hit ratio‛ as described in O’Neil et al. 2010 (O’Neil et al. 

2010) by dividing the length of the putative coding region of  a unigene by the length of 

the ortholog found for that unigene. For this, each unigene and its best BLASTx hit were 

considered orthologs and the hit region in the unigene is considered to be a conservative 

estimator of the ‚putative coding region‛. In this way, the ortholog hit ratio gives an 

estimate on the amount of a transcript that is represented by each unigene. Ratios greater 

than 1.0 can indicate insertions in unigenes.  Figure 23A shows that the completeness of 

the assembled transcripts decreases for very long genes. However, for genes with a 

length < 12,000 bp this relationship disappears, which shows that the sequencing design 

and Trinity assembler succeed well in assembling both short and long transcripts. The 

distribution of ortholog hit ratios is represented in  Figure 23B. Overall, unigenes with 

BLASTx results have high ratios, indicating high completeness of these transcripts. Of 

the 12,987 transcripts with BLASTx results, 4,567 genes have a ratio ≥ 0.9 and 8,300 have 

a ratio ≥ 0.5.  

 
Figure 23. Relationship between ortholog hit ratio and ortholog length (left) and distribution of 

ortholog hit ratios (right). Ortholog hit ratios were calculated for contigs with BLASTx results. A 

ratio of 1.0 indicates the gene is likely fully assembled. 

A high percentage of unigenes (31,804; 80.7%) could not be assigned a GO term. 

Examining the length and coverage distribution of these annotated and unannotated 

unique transcripts shows that most reads (68.8%) are, however, mapped to annotated 

transcripts. Furthermore, a major portion of the unannotated transcripts consist of 

assembled transcripts with very low coverage values and short length (Figure 24). For 

instance, 23,497 (59.6% of all unigenes) of these unannotated transcripts have a length 

shorter than 500 bp and only 3.1% of all reads map to these transcripts. These short low 
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coverage transcripts may represent chimeric sequences resulting from assembly errors, 

fragmented transcripts corresponding to lowly expressed genes, as well as untranslated 

regions. The remaining 8,427 unannotated sequences are more likely to represent true 

gene sequences, which may represent novel genes or less conserved genes for which no 

annotation is found. 15,765 (40.0%) of the unigenes had an ORF (open reading frame) 

≥200 bp, with an average length of 1,040 bp and a median length of 659 bp. 7,203 (45.7%) 

of these unique sequences with ORFs were assigned GO annotations. The remaining 

sequences with an ORF ≥ 200 bp that lack annotation results might represent true gene 

sequences. From the daphnia genome sequence it was discovered that significant 

genomic regions without assigned open reading frames are actively transcribed 

(Colbourne et al. 2011). The functional significance of these regions remains to be 

elucidated, but such transcripts may also be present in the Pogonus transcriptome, which 

cannot be functionally analyzed. Furthermore, high numbers of unannotated contigs are 

frequently found in other transcriptome sequencing projects (Wang et al. 2010, Bai et al. 

2011, Karatolos et al. 2011, Shen et al. 2011) and may give some indication of the 

limitation of inferring the relevant functions of transcripts assembled from sequence data 

from species with very limited genomic resources or with long evolutionary distances to 

model species. On the other hand, Trinity succeeds in assembling a reasonable set of 

annotated genes despite low coverage values (Figure 24).  

 

Figure 24. Contour plot of length and coverage distribution of annotated (left) and unannotated 

(right) unigenes. Transcripts were annotated using Blast2GO. Reads were mapped using BWA. For 

the annotated transcripts, mean length and coverage was 2,139 and 932, respectively. For the 

unannotated transcripts, mean length and coverage was 567 and 224, respectively. The color bar 

shows the log10 transformed count values. 
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GENES OF INTEREST 

As we are interested in the adaptive divergence of wing length in populations of P. 

chalceus, we began our investigation by searching the assembled transcriptome for 

orthologous genes known to be involved in wing development in the fruit fly Drosophila 

melanogaster. In particular, we used a previously generated list of the wing development 

genes reported in the genome of the red flour beetle Tribolium castaneum (Table S13b of 

Richards et al. 2008 (Richards et al. 2008)), which was based on Drosophila wing 

development studies.  We found orthologous genes for every wing development gene 

that we looked for in the assembled P. chalceus transcriptome with high confidence 

(Table 4). Engrailed (en) and invected (inv) blasted to the same P. chalceus transcript and 

reciprocal blast of this component returned engrailed. This is not surprising considering 

their similarity in sequences and function (Gustavson et al. 1996). Retrieving orthologous 

genes for the apterous (ap) gene was problematic as this gene exhibits a duplication in T. 

castaneum and Acyrthosiphon pisum (Brisson et al. 2010, Shigenobu et al. 2010). Therefore, 

we aligned the amino acid sequences of apterous genes from D. melanogaster (NP_724428), 

T. castaneum (apA: NP_001139341, apB: ACN43342), Apis mellifera (XP_392622) and A. 

pisum (apA: XP_001946004, apB: XP_001949543) with those retrieved from BLAST hits to 

the P. chalceus transcriptome (Figure 25). The apterous gene is a hox transcription factor 

and contains two conserved domains; the homeo domain and the LIM-containing region 

(Cohen et al. 1992). As we did not retrieve the homeo domain for apB of P. chalceus, we 

only compared the conserved LIM domain region of the apterous genes as reported in 

(Brisson et al. 2010). To root the tree, we added the closely related LIM-containing gene 

tailup (tup) of A. pisum (XP_001944557) and T. castaneum (XP_001815525). The 

phylogenetic inference indicates that P. chalceus exhibits both apterous paralogs that are 

present in T. castaneum and A. pisum genome, which were lost in the holometabolous 

insects Drosophila and Apis. The relationships are similar as the ones reported by (Brisson 

et al. 2010). 

 

Subsequently, we performed similar similarity analyses for genes involved in the 

Juvenile hormone and ecdysteroid pathway. We found orthologous candidates with 

high certainty for each gene reported in the KEGG insect hormone biosynthesis pathway 

(Table 5). The length of the ORF of the P. chalceus match, compared to the ORF length in 

T. castaneum is also reported. 

Finally, we identified the full coding sequence of the mitochondrial NADP+-dependent 

isocitrate dehydrogenase (mtIdh) gene (Pc_comp1560_c0_seq1) based on homology to the 

T. castaneum protein sequence (EFA04299; E-value =0, bit score =760). The blast result 

also identified the cytoplasmic NADP+-dependent isocitrate dehydrogenase (cytIdh) gene 

(Pc_comp296_c0_seq1), but with less support (E-value = e-172, bit score = 602). 
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Figure 25. Phylogenetic analysis of the LIM domain of the apterous gene. (A.) Alignment of protein 

sequences of the LIM domain region of the apterous (ap) orthologs and paralogs of Tribolium 

castaneum (Tc), Acirthosyphon pisum (Ap), Drosophila melanogaster (Dm), Apis mellifera (Am) with the 

presumed paralogs found in the Pogonus chalceus (Pc_apA and Pc_apB) transcriptome. (B.) 

Neigbour-joining tree of ap protein sequences, rooted with tailup (tup). Bootstrap support values are 

given at each node.  
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Table 4. List of wing development genes found in Pogonus chalceus orthologous to Tribolium 

castaneum. %AAI = Amino Acid Identity (%). OHR= Orthologous Hit Ratio. 

 

 Function Gene  Accession P. chalceus %AAI OHR 

Anterior/ Engrailed (en) Pc_comp5821_c0_seq1 62 1.27 

Posterior Invected (inv) Pc_comp5821_c0_seq1 56 1.31 

 Hedgehog (hh) Pc_comp8905_c0_seq1 76 0.96 

 Cubitus interruptus (ci) Pc_comp4719_c0_seq1 60 1.12 

 Patched (ptc) Pc_comp7372_c1_seq1 78 0.62 

 Decapentaplegic (dpp) Pc_comp8429_c0_seq2 64 0.85 

 Daughters against (dad) Pc_comp5722_c0_seq1 63 1.08 

 Brinker (brk) Pc_comp8966_c0_seq1 78 0.29 

 Optomotor-blind-like (omb) Pc_comp6103_c0_seq1 77 0.68 

 Spalt-like protein (sal) Pc_comp7794_c0_seq1 73 0.87 

Dorsal/ Apterous a (ap A) Pc_comp9155_c1_seq1 77 0.76 

Ventral Apterous b (ap B) Pc_comp10531_c0_seq1 89 0.69 

 Notch (N) Pc_comp3149_c0_seq1 81 1.02 

 Serrate (Ser) Pc_comp6451_c0_seq1 80 1.00 

 Wingless (wg) Pc_comp9580_c0_seq1 96 0.74 

 Distal-less (Dll) Pc_comp7089_c0_seq1 77 1.08 

Vein  Serum response factor (srf) Pc_comp3744_c0_seq2 96 0.36 

and sensory Rhomboid (rho) Pc_comp9713_c0_seq1 96 0.72 

 Knirps (kni) Pc_comp8029_c0_seq2 74 0.83 

 Knot transcription factor (knot) Pc_comp14479_c0_seq1 84 0.61 

 Iiroquois (iro) Pc_comp4855_c0_seq2 74 1.04 

 Abrupt (ab) Pc_comp3738_c0_seq3 85 1.00 

 Noradrenaline transporter (net) Pc_comp9252_c0_seq1 85 0.94 

 Delta (DI) Pc_comp8811_c0_seq1 70 0.95 

 Extramacrochaetae (emc) Pc_comp778_c0_seq1 86 1.04 

 Achaete-scute (ASH) Pc_comp5966_c0_seq1 67 1.09 

 Asense (ase) Pc_comp12489_c0_seq1 54 1.07 

Bodywall/ Teashirt (tsh) Pc_comp7294_c0_seq1 69 1.13 

wing Homothorax (hth) Pc_comp2739_c0_seq1 87 1.04 

 Nubbin (nub) Pc_comp7766_c0_seq1 93 0.36 

 Ventral vein lacking (vvl) Pc_comp4049_c0_seq1 91 1.05 

 Vestigial (vg) Pc_comp7899_c0_seq1 69 0.74 

Hox Sex combs reduced Scr (Cx) Pc_comp5657_c0_seq1 73 1.07 

 Prothoraxless (ptl) Pc_comp8727_c0_seq1 100 0.31 

 Ultrabithorax (Ubx) Pc_comp6090_c0_seq1 84 0.97 
 

 



 

 

 

 

 
Table 5. List of insect hormone biosynthesis genes.  

 

Function Gene  NCBI geneID 

T. castaneum 

Accession P. chalceus  Amino acid 

identity (%) 

Ortholog 

hit ratio 

Juvenile  juvenile-hormone esterase (JHE) 658208 Pc_comp7235_c0_seq1 62 0.97 

hormone juvenile hormone acid methyltransferase (JHAMT) 662961 Pc_comp8820_c0_seq1 65 1.01 

 juvenile hormone epoxide hydrolase (JHEH) 659305 Pc_comp841_c0_seq1 74 0.98 

 cytochrome P450, family 15 (CYP15A1) 658858 Pc_comp2578_c2_seq2 77 0.95 

Molting  ecdysteroid 25-hydroxylase (PHM) 656884 Pc_comp6141_c0_seq1 72 0.98 

hormone ecdysteroid 22-hydroxylase (DIB) 663098 Pc_comp7215_c0_seq2 73 0.70 

(ecdysone) ecdysteroid 2-hydroxylase (SAD) 658665 Pc_comp5946_c0_seq1 64 0.75 

 ecdysone 20-monooxygenase (SHD) 661451 Pc_comp8625_c0_seq2 73 0.69 

 cytochrome P450, family 307 (Spo/spok) 658081 Pc_comp9046_c0_seq1 79 0.93 

 cytochrome P450, family 18 (CYP18A1) 656794 Pc_comp3811_c0_seq1 86 0.52 

 

Note: Genes were extracted from T. castaneum through the KEGG pathway database.
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MAPPING 

Reads for each sample (i.e. larva, pupa, adult) were mapped back to the assembled 

reference transcriptome based on the pooled data and properly paired reads were 

extracted (Table 3; Figure 26). Based on the BWA mappings (Li & Durbin 2010), 92.6%, 

90.4% and 93.1% of the mapped reads were aligned properly paired when aligning the 

reads of the larva, pupa and adult sample, respectively, to the assembled reference 

transcriptome. The mean coverage depth (reads covering each base pair) for the larva, 

pupa and adult sample is respectively 93.7, 55.2 and 111.6. The Bowtie aligner resulted in 

a higher mean coverage, owing to reads being mapped to multiple positions. The pupa 

sample has less mean coverage depth resulting from less sequenced reads. 

 

 
Figure 26. Unique and shared transcript presence of the three developmental stages. The venn 

diagram shows the unique and shared transcript presence of the three developmental stages (larva, 

pupa and adult), based on RSEM counts. Reads were assigned to isoforms (Is) or unigenes (U). 

When RSEM reported a count of at least one, the transcript was reported as present. 

 

 

Some transcripts were represented by many reads. Moreover, 50% of the reads mapped 

to only 146 transcript sequences and 90% mapped to 2,971 transcripts. Mapping of the 

reads shows that read coverage is very high. However, the fact that only 149 transcripts 
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consume 50% of all reads may indicate that normalization can be useful for 

transcriptome assembling. The top twenty of these were investigated and are shown in 

Table 6. Amongst these transcripts, several are associated with energy metabolism 

(cytochrome c oxidase subunit II and III, succinate and NADH dehydrogenase and 

ADP/ATP translocase), locomotion (actin and myosin light chain), transcription (DNA 

topoisomerase 1) and translation (elongation factor 1 and 2). Ferritin is a protein that 

stores and buffers iron (Theil 1987) and its high abundance may resemble an 

accommodation to high reduced iron concentrations and high oxidative stress in salt 

marshes (Odum 1988, Orino et al. 2001) or a stress response.  

 

 

 

Table 6. Top twenty transcripts with most reads assigned. 

 

Accession  

P. chalceus 

Nr.  

reads 

Length 

(bp) 

Annotation 

Pc_comp0_c1_seq1    21905861 1,272 Unknown 

Pc_comp5_c0_seq1    4116337 5,118 Succinate dehydrogenase* 

Pc_comp18_c0_seq1    3016196 3,942 Melanization -related protein 

Pc_comp23_c1_seq1    2836940 3,453 Unknown 

Pc_comp7_c0_seq1    2585095 1,672 Myosin light chain 2** 

Pc_comp32_c0_seq1    1912972 3,409 NADH dehydrogenase subunit  4* 

Pc_comp4_c3_seq1 1842608 651 Unknown 

Pc_comp30_c0_seq1 1823110 8,598 Alpha-tubulin 

Pc_comp41_c0_seq1 1788846 1,961 Elongation factor 1-alpha*** 

Pc_comp1_c0_seq3 1511917 1,714 Actin** 

Pc_comp39_c0_seq1 1501260 2,011 Unknown 

Pc_comp14_c0_seq1 1505364 6,711 DNA topoisomerase 1*** 

Pc_comp16_c0_seq1 1501260 2,186 Muscular protein 20 

Pc_comp58_c0_seq1 1419825 1,732 ADP/ATP translocase* 

Pc_comp13_c0_seq1 1346169 759 Unknown 

Pc_comp10_c4_seq1 1217481 1,679 Cytochrome c Oxidase subunit III (coxIII)* 

Pc_comp26_c0_seq1 1178489 3,236 Elongation factor 2*** 

Pc_comp2_c0_seq1 1128159 634 Unknown 

Pc_comp19_c1_seq1 1124751 821 Cytochrome c Oxidase subunit II (coxII)* 

Pc_comp60_c0_seq1 1114040 2,504 Ferritin subunit 

*Associated with mitochondria, energy metabolism and electron transport chain 

**Associated with muscles and movement  

***Associated with translation or transcription 
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COMPARISON OF THE SAMPLES 

Reads were mapped with Bowtie (Langmead et al. 2009) and assigned to genes and 

isoforms with the RSEM software (Li & Dewey 2011). Shared and unique presence of 

genes and isoforms is shown in Figure 26. 30,200 (45.8%) and 18,462 (56.7%) of the 

isoforms and unigenes respectively were shared among life stages. 1,879 (4.8%), 1,403 

(3.5%) and 7,086 (17.9%) of the unigenes are uniquely expressed in the larva, pupa and 

adult stage, respectively. Of these uniquely expressed unigenes, only 170, 106, and 243 

respectively were assigned GO terms (Figure 27). Overall, the GO term composition of 

these uniquely expressed transcripts in each life stage corresponds well to the GO term 

composition of the complete transcriptome. No statistical differences in GO term 

composition were found between these sets of uniquely expressed genes. The higher 

amount of uniquely expressed genes in the adult stage most likely resulted from more 

short transcripts being assembled.  

 

 

 
 

Figure 27. Gene Ontology (GO) distribution assigned to unigenes that are found uniquely in each 

life stage. Reads were mapped with Bowtie and assigned to genes and isoforms with the RSEM 

software. 

  



CHAPTER 3 

 

99 

VARIANT CALLING 

For SNP calling, BWA was used to map the reads of each sample to the reference 

transcriptome. In total, SAMtools (Li et al. 2009) detected 38,141 different heterozygous 

SNP positions in unique transcript sequences using the stringent parameters (i.e. 

coverage and mapping quality of 25) (Figure 28). This is about one SNP per nine 

hundred bp of unique transcript sequence (1/898). Of these SNPs, 26,823 (70.3%) were 

found in a predicted open reading frame (ORF) ≥ 200 bp and 6,998 (18.3%) resulted in a 

amino acid change (nonsynonymous SNP (nsSNP)) and are found in 2,907 different 

unigenes. This results in a percentage of nonsynonymous changes in the coding region 

of 26.1%, which is lower compared to studies reporting up to 57.3% nsSNPs in coding 

regions in a single individual of Japanese native cattle (Kawahara-Miki et al. 2011) and 41 

to 47% in human individual resequencing studies (Eck et al. 2009, Kim et al. 2009), but 

comparable to ratios found in other studies (Levy et al. 2007, Bentley et al. 2008).  

 

 

 
Figure 28. Shared and unique SNPs. Only Heterozygous SNPs are considered from unigenes. The 

total amount of heterozygous SNPs called in the three samples is 38,141. 70.3% (26,823) of these 

SNPs were found in an open reading frame (ORF) and 18.3% (6,998) resulted in an amino acid 

change (nsSNP). 
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CONCLUSION 
In the present study, we sequenced and characterized the transcriptome in the wing 

polymorphic beetle P. chalceus.  The assembled sequence data comprising 39,393 unique 

transcripts provides valuable resources to study wing polymorphism and the adaptive 

divergence in the face of strong gene flow found in P. chalceus. We characterized a large 

set of genes relevant to wing development and dispersal polymorphism with high 

significance, including paralogs, giving an indication of the integrity and completeness 

of the assembled P. chalceus transcriptome resulting from short read Illumina 

sequencing. We found a high number of putative SNPs (37,492). The combination of SNP 

calling with ORF prediction allowed us to infer that a large part of the SNPs located in a 

coding fragment (26,757) result in nonsynonymous nucleotide substitutions (23.2%). The 

results show that it is possible to combine transcriptome assembly and characterization 

with the discovery of both synonymous and nonsynonymous SNPs, providing a 

framework for further population genomic studies to identify the molecular basis 

underlying phenotypic variation of ecologically relevant traits in a non-model species. 
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ABSTRACT 
Ground beetles (Coleoptera, Carabidae) are a diverse group of beetle species, widely 

used in ecological and evolutionary studies. However, few genomic resources exist for 

Carabid beetles. Here, we report the draft genome sequence of the wing-polymorphic 

ground beetle Pogonus chalceus, which is of particular interest for studying the genetics of 

local adaptation in the face of gene flow. The draft genome was assembled from paired-

end and mate-paired Illumina Hiseq2000 reads using SOAPdenovo2. We obtained 

312.78 Mb of genome sequence comprising 109,580 unordered scaffolds covering 58.98 % 

of the estimated genome size (530.28 Mb). Repetitive and mobile elements comprised 

18.60 % of the assembled genome. The intron and exon size distribution indicates intron 

definition as the major splice pathway in P. chalceus. Finally, alignment with the genome 

of Tribolium castaneum suggests a high rate of intra as well as interchromosomal 

rearrangements. 

 

 

 

INTRODUCTION 
Coleoptera (beetles) are by far the largest order of insects with more than 400,000 

described species (Gaston 1991). Despite its species richness, to date, the only 

coleopteran species for which the genome has been sequenced is the red flour beetle 

Tribolium castaneum (superfamily Tenebrionoidea; Richards et al. 2008) and the mountain 

pine beetle Dendroctonus ponderosae (superfamily Curculionoidea (weevils); Keeling et al. 

2013). Both species belong to the Polyphaga suborder which diverged from the 

Adephaga suborder around 280 MY ago (Hunt et al. 2007). For the Adephaga suborder, 

with more than 40,000 species and comprising ground beetles (Carabidae), no 

comprehensive genome sequences have been published. Apart from a few herbivorous 

species, most ground beetles are considered beneficial organisms as predators of 

invertebrates. Further, multiple species of ground beetles have lost their capability of 

flying or show wing dimorphism or polymorphism as seen by reduced wings and/or 

lacking functional flight muscles (den Boer 1980, Desender 1989b). Therefore, many 

ground beetles have been a popular object for studying the dynamics, ecology and 

evolution of dispersal (den Boer 1970, Desender et al. 1986, 2000, Aukema 1995, 

Hendrickx et al. 2013). 

One carabid species which has gained a lot of attention is the wing-polymorphic ground 

beetle Pogonus chalceus. This ground beetle can be found in salt marshes along the 

Atlantic coasts from Denmark down to and including the entire Mediterranean region 
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(Turin 2000). Interestingly, P. chalceus shows remarkable local adaptation to habitats with 

different hydrological dynamics, with short-winged ecotypes in habitats that are 

frequently inundated, but for short periods, and long-winged ecotypes in habitats that 

are inundated irregularly for longer periods (Dhuyvetter et al. 2004, 2007, Van Belleghem 

& Hendrickx 2014). In some regions, these distinct habitats occur very close to each other 

(Dhuyvetter et al. 2007), on spatial scales in which geography alone cannot explain a 

reduction in gene flow to allow divergence. Therefore, P. chalceus is of particular interest 

for studying the genetics of local adaptation in the face of gene flow and the evolution of 

dispersal related traits. 

Pogonus chalceus has a diploid genome with a karyotype of 11 pairs of chromosomes 

(Serrano 1981b). The sex-determination system is probably of the XY type, although the 

sex chromosomes have not been identified. The size of the haploid genome is unknown. 

Previously, the transcriptome of this species has been characterized (Van Belleghem et al. 

2012). The construction of a draft genome sequence will provide an additional valuable 

reference for studying the genome wide signal of local adaptation and the genetic 

architecture of adaptive divergence. In particular when combined with molecular 

methods that reduce the complexity of the target genome, such as Restriction site 

Associated DNA (RAD) tag sequencing (Davey et al. 2011), the availability of genomic 

contigs allow (i) to estimate the degree of genetic linkage and, hence, the characterization 

of genomic islands of divergence and (ii) to characterize the genes associated with 

genomic sites that experience opposing selection. Here, we report the draft genome of P. 

chalceus and assess its completeness and quality. 

 

 

 

MATERIALS & METHODS 

ILLUMINA PAIRED-END AND MATE-PAIR LIBRARY 

CONSTRUCTION AND SEQUENCING 

Total DNA was extracted from complete adult individuals using the DNA extraction 

NucleoSpin® Tissue kit (Macherey-Nagel GmBH). Four 200bp insert libraries, 

originating from genomic DNA from four males captured in the canal habitat in the 

Guérande region (France), were sequenced by the Genomics Core of the University 

Hospital of Leuven (Belgium). Additionally, 500 bp, 800 bp, 2 kb and 5 kb insert 

libraries, originating from two Guérande canal females, were sequenced by the Beijing 

Genomics Institute (BGI, China). Shortly, for the short-insert libraries (paired-end; 200 

bp, 500 bp and 800 bp), genomic DNA was fragmented randomly, ends were repaired, 
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A-tailed, and ligated to paired-end adapters (Illumina, San Diego, CA, USA). After 

electrophoresis, DNA fragments of desired length were gel purified. Long-insert 

libraries (mate-pair; 2 kb and 5 kb) were constructed by shearing genomic DNA to the 

appropriate insert size. These fragments were end-repaired with biotinylated nucleotide 

analogues (Illumina, San Diego, CA, USA), and size-selected fragments (2 kb and 5 kb) 

were circularized via intramolecular ligation.  Circular DNA was fragmented and biotin 

labels of the fragments (corresponding to the ends of the original DNA ligated together) 

were affinity purified. Purified fragments were end-repaired and ligated to Illumina 

paired-end sequencing adapters. Libraries were sequenced on a Hiseq2000 sequencing 

platform (Illumina, San Diego, CA, USA). Sequencing read length was 101 bp for both 

ends of the paired-end libraries with 200 bp inserts and 100 bp for the 500 bp and 800 bp 

insert libraries. The same procedure was used to sequence the mate-pair libraries, with a 

read length of 49 bp for both ends. 

 

 

GENOME SIZE ESTIMATION 

Genome size was estimated from the k-mer coverage estimate and the total number of 

non-error k-mers (∑    ) using all raw reads from the short insert libraries as follows: 

 

             
∑    

             
 

 

With di the depth (multiplicity) value of the ith unique non-error k-mer. Non-error k-mers 

are considered those with a depth value larger than the k-mer valley (Figure 29). The k-

mer coverage was estimated from the k-mer coverage peak. However, as we did not find 

a clear coverage peak in the k-mer species curve, k-mer coverage was estimated from the 

k-mer individuals curve (Figure 29) (Liu et al. 2013). The k-mer species curve represents 

the distribution of unique k-mers with a certain depth. The k-mer individuals curve is 

calculated from the product of k-mer species number (Nd ; number of unique k-mers 

found with a certain depth) and corresponding depth value (d).  

 

                        

 

The k-mer individuals curve is a variation of a Poisson distribution, which has the same 

figure shape, but moves rightwards by one unit compared to the k-mer species curve 

(Liu et al. 2013) and allows calculating the k-mer coverage peak and valley.  

Counting of k-mer frequency in the sequencing data was performed using Jellyfish 

v2.1.3. (Marçais & Kingsford 2011) using all short insert libraries combined. A k-mer size 
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of 17 was chosen so that most k-mers are expected to be unique in the genome based on 

initial genome size expectations. The peak of 17-mer frequency (M) in the reads is 

correlated with the real sequencing depth (N), read length (L), and k-mer length (K) and 

their relations can be expressed as follows (Li et al. 2010): 

 

    
       

 
 

 

(L – K +1) gives the number of k-mers created per read.  

 

 

GENOME ASSEMBLY 

Adapter contamination in reads was deleted using Cutadapt v1.4 (Martin 2011) and 

reads that did not have a matching pair after adaptor filtering were removed. Reads 

were corrected for sequencing error with SOAPec v2.02  (Luo et al. 2012), using a k-mer 

size of 17 and a low frequency cutoff of consecutive k-mer of 3. Subsequently, reads were 

assembled using SOAPdenovo2 (Luo et al. 2012) using a k-mer parameter of 47, which 

was selected for producing the largest contig and scaffold N50 size after testing a range 

of k-mer settings between 19 and 71. The short insert libraries were used for both contig 

building and scaffolding. The long insert libraries were only used for scaffolding. The 

SOAPdenovo GapCloser v1.12 tool  (Luo et al. 2012) was used with default settings to 

close gaps emerging during scaffolding. Transcript sequences were used to improve 

scaffolding using L_RNA_scaffolder (Xue et al. 2013). Finally, we used DeconSeq v0.4.3 

(Schmieder & Edwards 2011) to identify and remove possible human, bacterial and viral 

contamination in the assembly. Completeness of the assembled genome was assessed by 

comparing the assembly with a highly conserved core gene dataset that occur in a wide 

range of eukaryotes using the CEGMA pipeline v2.5 (Parra et al. 2007). This dataset 

consists of 248 conserved genes representing different protein families from the 

eukaryotic orthologous groups (KOGs) database (Tatusov et al. 2003). 

 

 

REPETITIVE ELEMENTS  

Tandem repeats were predicted using Tandem Repeat Finder (TRF) v4.0.4 (Benson 1999) 

with recommended parameters (Match = 2; Mismatch = 7; Delta = 7; PM = 80; PI = 10; 

Minscore = 50; Maxperiod = 500). Next, we used RepeatMasker v4.0.5 and rmblastn 

v2.2.27 (Smit et al. 2014) using the RepBase Update Coleoptera library to identify known 

sequences representing repetitive DNA (Jurka et al. 2005). After these repetitive elements 

were masked in the assembly, novel repetitive elements were identified with 
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RepeatScout v1.0.5 (Price et al. 2005) using default parameters. Subsequently, these 

repeats were used as a repeat library in RepeatMasker v4.0.5 (Smit et al. 2014) and those 

occurring at least 10 times in the genome were counted. 

 

 

ALIGNMENT OF TRANSCRIPTOME TO GENOME 

The previously assembled P. chalceus transcriptome (Van Belleghem et al. 2012) was 

mapped to the assembled genome using Splign v1.39.8 (Kapustin et al. 2008) with default 

parameters. Only Splign alignments with an identity larger than 97 % (~ error rate) were 

considered. Average exon and intron sizes were calculated from the Splign results. 

 

 

SYNTENY WITH THE TRIBOLIUM CASTANEUM GENOME 

P. chalceus scaffolds longer than 600 Kb were mapped to the Tribolium castaneum genome 

v3.0 (09-06-2014) (Richards et al. 2008) using the PROmer pipeline of the MUMmer 3.0 

software (Kurtz et al. 2004) with a minimum similarity of 80 % and alignment length of 

100 bp. Alignments were visualized with Circos v0.66 (Krzywinski et al. 2009). 

 

 

 

RESULTS & DISCUSSION 

GENOME SIZE ESTIMATION 

Sequencing resulted in approximately 56 Gb of sequencing data (Appendix 14). From the 

k-mer distribution, the P. chalceus genome size was estimated to be 530.28 Mb (Figure 29; 

Table 7). The k-mer species curve did not show a distinct frequency valley or peak. This 

may result from high heterozygosity in the data as individuals were not inbred and 

sequences from multiple individuals were pooled to obtain sufficient coverage (e.g. 

heterozygous k-mers will have half the frequency of homozygous k-mers). Therefore, the 

k-mer coverage valley and peak were estimated from the k-mer individual curve as 3 (= 

4-1) and 25 (= 26-1), respectively (Figure 29). The estimated k-mer coverage valley 

corresponds to a 0.027 per base error rate in the raw sequencing reads. Sequencing 

coverage combining all the short insert size libraries was estimated to be 29.70. 
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Table 7. k-mer counts and estimation of sequencing coverage and genome size calculated from the 

short insert libraries. Non error k-mers indicates the number of 17-mers with a frequency higher 

than the k-mer coverage valley. 

 

Total k-mers (billion) 13.62 

Distinct k-mers (billion) 0.50 

k-mer coverage valley 3 

Non error k-mers (billion) 13.26 

k-mer coverage peak (M) 25 

Sequencing coverage (N) 29.70 

Genome size (Mb) 530.28 

 

 

 

 
Figure 29. k-mer individual (left axis) and species (right axis) curve for 17-mers. Grey dashed lines 

indicate the k-mer frequency valley (left) and the estimated k-mer coverage (right). 

 

 

GENOME ASSEMBLY 

Genomic sequencing reads were assembled into 110,093 scaffolds with a minimum size 

of 300 bp resulting in a total sequence length of 309 Mb and an N50 size of 55,203 bp 

(Table 8). 1.34 million scaffolds and contigs smaller than 300 bp with a total length of 

207.26 Mb were excluded from the genome assembly used in further analysis. Gaps were 

closed by remapping the reads to the scaffolds reducing the percentage of Ns in the 
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scaffolds from 32.0 % to 15.8 %. Next, using transcripts the scaffolds were further linked 

increasing the N50 size to 72,845 bp and resulting in a total size of the assembly of about 

313.08 Mb. Screening for bacterial, viral and human contamination removed 137 contigs 

covering 297,781 bp of the genome assembly. Most contamination was caused by 

endosymbiontic Rickettsia sp. (77.37 %), followed by Wolbachia sp. (10.22 %) (Appendix 

15). Both these bacteria species are common endosymbionts in arthropod species (Duron 

et al. 2008). Viral contamination was about 4.38 % (Staphylococcus phage). 

Mapping core eukaryotic genes (CEGs) to the assembled P. chalceus genome, using the 

CEGMA pipeline (Parra et al. 2007), identified 230 full-length and 9 partial CEGs out of 

the conserved set of 248 CEGs. The assembled genome size covers about 59 % of the 

estimated genome size when excluding contigs smaller than 300 bp. As about 93 % of the 

core genes are identified in full-length, the estimated missing 41 % of the genome likely 

comprises difficult to assemble repetitive regions. 

 

 

Table 8. Pogonus chalceus genome assembly statistics. Statistics were calculated for scaffolds larger 

than 300 bp. 

 

 Scaffolds + Gaps closed + RNA scaffold + DeconSeq 

Assembled total size (bp) 309,290,483 309,346,765 313,080,367 312,782,586 

Number 110,093 110,093 109,717 109,580 

Largest (bp) 1,116,948 1,116,948 1,116,948 1,116,948 

Average size (bp) 2,809 2,810 2,854 2,854 

N50 size (bp) 55,203 55,231 72,845 73,053 

Number included N50 1,227 1,224 916 914 

N80 size (bp) 8,863 8,867 8,849 8,960 

Number included N80 5,157 5,150 4,470 4,445 

N 99,096,987 48,907,118 51,243,516 51,243,516 

% N 32.04 15.81 16.37 16.38 

% GC 26.86 26.87 26.43 26.25 

 

 

REPETITIVE ELEMENTS  

Repetitive elements occupied approximately 49.96 Mb or 18.60 % of the assembled 

genome (Appendix 16). A total of 7.12 Mb of tandem repeats were identified with TRF 

(Benson 1999), comprising 2.72 % of the assembled genome. Only 1.29 % of the P. 

chalceus genome assembly had similarity to the known Coleoptera repeats in RepBase. 

The remainder appeared to be unique to P. chalceus, with 2,414 novel elements appearing 

at least 10 times and comprising 14.78 % of the genome assembly. This percentage is in 

the range of 8 to 42% of repetitive elements found in other Coleoptera and insects (Wang 

et al. 2008, Keeling et al. 2013, Kocher et al. 2013). 
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ALIGNMENT OF TRANSCRIPTOME TO GENOME 

Next, we assessed the completeness of the P. chalceus assembly by comparing it with an 

independently sequenced and assembled set of transcripts putatively representing 

39,393 genes (Van Belleghem et al., 2012). 77.30 % of the putative gene transcripts 

mapped to the genome assembly (Identity > 97 %) covering a total of 36.72 Mb of the 

genome (Table 9). The average exon and intron size was estimated to be 332 bp (SD = 

395.21) and 1,796 bp (SD = 7,656), respectively. Interestingly, the intron size distribution 

is strongly skewed towards small intron sizes, whereas the exon size distribution seems 

less constrained. This results in a median exon and intron size of 225 bp and 69 bp, 

respectively. This exon and intron size distribution found in P. chalceus (Figure 30A) 

closely resembles distributions found in other insects and lower eukaryotes (Collins & 

Penny 2006, McGuire et al. 2008). This distribution can be explained by the pathway of 

splice site recognition (Collins & Penny 2006, McGuire et al. 2008, Osella & Caselle 2009). 

Short introns are spliced away preferentially through a pathway called intron definition in 

which the spliceosomes interact with the ends of the intron (i.e. splice sites are recognized 

across introns). In contrast, the alternative exon definition pathway requires an initial 

interaction between the spliceosome factors, bound at the splice sites, across the exon 

(i.e. splice sites are recognized across exons). This latter pathway is thought to constrain 

the exon size distribution in vertebrates (Collins & Penny 2006). The exon size 

distribution in P. chalceus is most likely not constrained due the use of intron definition, 

whereas intron definition likely explains the high abundance of short introns. In 

particular, it has been suggested from analysis of the intron definition pathway that the 

threshold of intron length above which intron-defined splicing ceases almost completely 

is between 200 and 250 bp (Fox-Walsh et al. 2005). This threshold seems to be present in 

P. chalceus (Figure 30A). In contrast, the presence of long introns (up to 200 kb) indicates 

the activity of the exon definition pathway. Genes with a single coding exon appear in 

excess in P. chalceus (Figure 30B). However, this distribution may be slightly skewed to 

smaller values due to the fragmentation of the genome and transcripts. The maximum 

number of exons found in a gene was 120.  
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Table 9. Alignment results of the P. chalceus transcriptome to the assembled genome. Alignment 

results are shown for the unigenes (excluding splice variants) with identity > 97 % to the assembled 

genome (Van Belleghem et al. 2012). 

 

   SD 

Number of unigenes 39,393  

Genome covered by unigenes (Mb) 36.72  

Percentage of unigenes aligned to genome 77.30  

Mean/median exon length (bp) 332/225 395 

Mean/median intron length (bp) 1,796/69 7,656 

Number of genomic contigs with > 1 unigene mapped 5,546  

Number of genomic contigs with > 2 unigenes mapped 2,374  

Number of genomic contigs with > 10 unigenes mapped 849  

 

 

 
Figure 30. (A.) Exon and intron size distribution. Exon and intron sizes were calculated from Splign 

alignments of transcripts to the assembled genome. (B.) Distribution of the exon number per gene. 

The maximum number of exons found in a gene was 120 (not shown in the graph). 
 

 

SYNTENY WITH THE TRIBOLIUM CASTANEUM GENOME 

Sixteen P. chalceus genomic scaffolds had a length larger than 600 Kb and were aligned to 

the Tribolium castaneum genome (Figure 31). We only considered alignments with a 

nucleotide similarity higher than 80 %, giving relatively high confidence of homology. In 

comparison, amino acid similarities of a set of wing development genes identified as 



CHAPTER 4 

 

111 

homologous between P. chalceus and T. castaneum ranged between 60 % and 100 % (Van 

Belleghem et al. 2012).  

 
Figure 31. Shared synteny between Pogonus chalceus assembly scaffolds and Tribolium castaneum 

linkage groups. P. chalceus scaffolds longer than 600 Kb were aligned to the T. castaneum linkage 

groups with PROmer (similarity > 80%). (A.) Circos map depicting alignments and indicating intra -

and interchromosomal rearrangements. P. chalceus scaffolds are drawn on a scale ten times larger 

compared to T. castaneum (100 Kb and 1 Mb, respectively). (B.) Dashes represent alignments of P. 

chalceus scaffolds to the T. castaneum linkage groups. Scaffolds were ordered in increasing length in 

the same order as in the Circos map. Scaffolds with hits on multiple T. castaneum linkage groups 

indicate interchromosomal rearrangements. 
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Although P. chalceus and T. castaneum diverged more than 280 MY, there is still evidence 

for shared synteny (Figure 31). However, the alignment of the P. chalceus scaffold and T. 

castaneum chromosomes also indicates extensive intrachromosomal as well as 

interchromosomal rearrangements (Figure 31). This is in contrast to genome alignments 

of the mountain pine beetle Dendroctonus ponderosae to the T. castaneum linkage groups, 

in which interchromosomal rearrangements seem less extensive (Keeling et al. 2013). 

Latter species diverged about 200 MY ago and both belong to the Polyphaga. Among the 

set of 16 largest assembled scaffolds, 8 showed homology to the LG1 T. castaneum 

linkage group (scaffold 1529, 5329, 2668, 1741, 2492, 2941, 1485, and 876), corresponding 

to the T. castaneum sex chromosome. 

 

 

 

CONCLUSION 
In the present study, we sequenced and assembled a large part of the genome of the 

ground beetle P. chalceus. The assembled sequence comprises 109,580 scaffolds spanning 

312.78 Mb and covering approximately 58.98 % of the P. chalceus genome. Despite the 

fragmented assembly, repeat structure, exon-intron size distribution and synteny with T. 

castaneum could be well investigated. Future sequencing of larger insert size libraries and 

linkage mapping will aid in further ordering of the scaffolds and the development of a 

complete genome sequence for P. chalceus. 
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ABSTRACT 
Understanding the genetic architecture and evolutionary history of divergence in the 

face of gene flow is essential to the study of adaptive divergence and, eventually, 

speciation processes. When rates of gene flow are high, genetic architectures underlying 

the oppositely selected traits are expected that reduce recombination, such as close 

genetic linkage or pleiotropy. Additionally, when replicated instances of adaptive 

divergence are found, a major question concerns whether adaptations evolved 

independently or whether genetic variation is rather shared through ancestral 

polymorphisms or introgression. Here, we use RAD tag sequencing to study population 

structure at a genome-wide scale of two ecotypes of the wing-polymorphic ground 

beetle Pogonus chalceus and identify loci associated with adaptive divergence in both 

sympatric and allopatric populations. Comparison of genome wide variation indicates 

low population divergence between sympatric as well as allopatric populations, 

suggesting high rates of gene flow and relatively recent separation. However, variation 

in multiple loci was strongly associated with adaptive divergence. The absence of 

genetic linkage between these loci indicates widespread genomic divergence even 

between sympatric populations. All the alleles identified as outlier loci have a singular 

mutational origin and are shared between repeatedly diverged populations. Moreover, 

most of these loci have a similar evolutionary history that suggests a recent increase of 

the alleles associated with the short-winged populations from tidal habitats. This shared 

evolutionary history suggests a singular evolutionary origin of the short-winged 

ecotypes in P. chalceus and a recent spread along the Atlantic coasts.  

 

 

 

INTRODUCTION 
Identifying both the genetic architecture of adaptive divergence as well as the 

evolutionary history of traits involved in adaptation allows understanding how 

populations adapt in response to the environment. When populations diverge in the face 

of gene flow, a major aspect concerns the amount of genetic divergence as well as the 

genetic architecture underlying oppositely selected traits. More precisely, when gene 

flow is ample, recombination will hamper the independent evolution of adaptive 

lineages (Felsenstein 1981) and, therefore, strong genetic linkage and/or pleiotropy is 

often suggested to play an important role in maintaining contrasting ecotypes in 

hybridizing populations (Via 2001, Griswold 2006, Yeaman & Whitlock 2011). 

Additionally, the origin of adaptive traits from new mutations or from preexisting 
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variation has important implications for the adaptation process (Barrett & Schluter 2008) 

and potentially the speciation process (e.g. Dasmahapatra et al. 2012; Feulner et al. 2013). 

First, introgression of adaptive gene variants into other populations and reuse of shared 

standing genetic variation may aid in rapid adaptation in different localities (Barrett & 

Schluter 2008, Arnold & Martin 2009, Jones et al. 2012). Secondly, it has been argued that 

reuse of standing genetic variation may have an important role in the maintenance of 

divergent ecotypes during early stages of reproductive isolation (Jones et al. 2012). For 

instance, when populations adapt from standing genetic variation, genetically unlinked 

traits may be in linkage disequilibrium. Moreover, the preexistence of multiple adaptive 

loci may allow for a rapid evolution of linkage disequilibrium between performance and 

assortative mating traits resulting in the evolution of reproductive isolation (Dieckmann 

& Doebeli 1999, Fry 2003, Nosil et al. 2012, Feder et al. 2012a).  

To address both the origin adaptive alleles and the genetic architecture of differently 

selected traits, it is essential to identify the genomic regions that are involved in 

adaptation during sympatric divergence. However, complex interactions of selection, 

drift, migration, recombination, mutation, and ancestral polymorphism can lead to 

heterogeneity and noisy patterns in divergence (Noor & Bennett 2009, Martin et al. 2013). 

Therefore, occurrences of repeated adaptation to similar environmental gradients are of 

particular interest in evolutionary biology as they provide strong evidence for a role of 

natural selection and help in discriminating underlying evolutionary processes (e.g. 

Colosimo et al. 2005, Jones et al. 2012, Soria-Carrasco et al. 2014) and different historical 

sequences of events (Johannesson et al. 2010, Butlin et al. 2013). More precisely, when 

rates of gene flow between diverging populations are high, selection is expected to 

preserve the association of the genetic variation at the selected site (or closely linked to 

the selected site) with the environmental gradient. On the other hand neutral gene 

sequences not closely linked to the selected site can be freely exchanged and recombined 

into other genomic backgrounds (Maynard Smith & Haigh 1974, Hohenlohe et al. 2010b). 

Therefore, studying genome wide patterns of variation in these settings is expected to 

provide strong support for separating locus-specific effects that affect one or a few loci at 

a time (e.g. recombination, selection and mutation) from genome-wide demographic 

effects (e.g. population size increase, genetic bottlenecks, founder events and inbreeding) 

(Luikart et al. 2003, Stinchcombe & Hoekstra 2008).  

 

The wing-polymorphic ground beetle Pogonus chalceus represents a situation of 

replicated adaptation in different spatial settings with different opportunities for gene 

flow. Populations of P. chalceus have repeatedly diverged in short-winged and long-

winged populations as a response to different hydrological dynamics (Dhuyvetter et al. 

2004, 2007, Van Belleghem & Hendrickx 2014). Short-winged ecotypes are found in tidal 
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habitats that are frequently inundated, but for short periods, whereas long-winged 

ecotypes are found in seasonal habitats that are inundated irregularly for longer periods. 

In some regions, such as the Guérande salterns in France, these distinct habitats occur 

very close to each other (Dhuyvetter et al. 2007), on spatial scales in which geography 

alone cannot explain a reduction in gene flow to allow divergence. In the Guérande 

salterns, both habitats are found in multiple replicates only 10-20 m apart. In these 

salterns, ponds are used to evaporate water and concentrate salt and resemble seasonal 

marshes in that they are flooded irregularly for extensive periods. Canals, on the other 

hand, are used to bring water to the ponds and are subject to the tides. 

 

In this study, we explore the extent of genomic divergence among repeatedly adapted 

populations at different spatial scales. Establishing the demographic history and 

evolutionary relations of these populations is essential for reliable identification of loci 

under divergent selection (Crisci et al. 2012). Therefore, by using Restriction Associated 

DNA markers (RAD tags), representing randomly distributed but consistent genomic 

regions from multiple individuals, we first reconstruct population structure and 

demographic history of several diverged P. chalceus population pairs representing the 

nearly entire distribution of this species. Next, we identify markers that are linked to 

adaptation by using outlier analysis and identify variation that is shared among 

similarly adapted populations.  By reconstructing phylogenies of these adaptive loci, we 

study their evolutionary history. Finally, by investigating genetic linkage of the adaptive 

variation, we discuss the genetic architecture of the adaptive differentiation. These 

results help us understand (i) to what extent the adaptive divergence evolved only once 

and colonized similar pairs of environments or occurred repeatedly in multiple localities 

(i.e. CHAPTER 2) and (ii) what the effect is of spatial proximity versus separation on 

genomic variation in P. chalceus.  

 

 

 

MATERIALS & METHODS 

SAMPLE DESIGN 

Ecotypically diverged P. chalceus individuals were collected from both tidal and seasonal 

salt marshes representing nearly the entire species range (Figure 32). We sampled four 

geographically isolated population pairs (separated between approximately 450 km and 

900 km) of a tidal and seasonally flooded inland population each, which were 

characterized by short and long wings respectively. Distances between tidal and 
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seasonal populations ranged from 20 m in France (GUO-GUE), 5 km in Portugal (AVE1-

AVE2), 37 km in Belgium (DUD-NIE) and 50 km in Spain (HUE-COD). Additionally, 

allopatric populations were sampled from the tidal and short-winged population from 

the Severn Estuary population in the UK (SEE) and a seasonally flooded long-winged 

population from the Camargue (CAM). Twenty-four individuals of each ecotype were 

sampled in the Atlantic France and Belgian populations (GUO, GUE, NIE and DUD) and 

8 individuals in the remaining populations (AVE1, AVE2, HUE, COD, SEE and CAM). 

The Atlantic France and Belgian populations were sampled and analyzed most 

extensively in this study. The remaining populations were used as a comparison and to 

study the genetic differentiation among these populations. More precisely, analyses 

aimed at quantifying genetic divergence between populations residing in contrasting 

environments in close allopatry (37-50 km), parapatry (5 km) or sympatry (20 m). We 

expected strong gene flow at these geographical scales. In addition, we evaluated the 

effect of strong geographical isolation by quantifying genetic divergence between 

populations separated by more than 1300 km. 

 

 
 

Figure 32. Pogonus chalceus sampling locations (left) and density plots of the wing size distribution 

of the sampled populations (right). Population names in blue letters indicate tidal habitat, red letters 

indicate seasonal habitat. Pie charts show the mtIDH allozyme distribution (mtIDH-B in red, 

mtIDH-D in blue; see Van Belleghem and Hendrickx 2013). Numbers between brackets indicate 

sample sizes. Wing size is expressed as percentage of maximal realizable wing size (%MRWS).  
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DNA EXTRACTION, RAD LIBRARY PREPARATION AND 

SEQUENCING 

DNA was extracted using the DNA extraction NucleoSpin® Tissue kit (Macherey-Nagel 

GmBH). Extracted genomic DNA was normalized to a concentration of 7.14 ng/µl and 

processed into RAD libraries according to Etter et al. (2011), using the restriction enzyme 

SbfI-HF (NEB) and 16 PCR cycles for final enrichment. A total of nine RAD libraries 

including 16 individuals each and, hence, a total of 144 individuals were sequenced 

paired-end for 100 cycles (i.e. 100 bp) in a single lane of an Illumina HiSeq2000 platform 

according to manufacturer’s instructions. 

 

 

SEQUENCE ANALYSIS 

The raw data was demultiplexed to recover individual samples from the Illumina 

libraries using the Stacks v1.20 software (Catchen et al. 2013). Reads were quality filtered 

when they contained 15 bp windows of mean Phred scores lower than 10. PCR duplicates 

were identified as almost (i.e. allowing for sequencing errors) identical reverse read 

sequences (which result from random shearing) and removed, using a custom Perl script 

(Kerth 2012). Loci were built de novo (denovo_map.pl) and using the P. chalceus genome 

assembly (ref_map.pl) with Stacks v1.20 (Catchen et al. 2013). 

 

DE NOVO DATASET First, Stacks identifies exactly matching reads (i.e. stacks) 

within each individual. Next, loci are built within each individual by combining stacks 

that putatively represent alleles. Finally, loci from each individual are matched to 

determine which haplotype alleles are present at every locus in each individual (i.e. 

catalog loci). For the de novo building of loci we used a minimum depth of coverage (-m) 

of 5 for the exactly matching stacks. Distance allowed between stacks (-M) and distance 

allowed between catalog loci (-n) were set at 1 and 2, respectively. These latter 

parameters were chosen after testing a range of values for each parameter and the 

parameter combination that resulted in a minimum number of loci with more than two 

alleles and a maximum number of shared loci between individuals. This dataset is 

further referred to as the ‘de novo dataset’ and is mostly used to study differentiation and 

evolutionary relations among populations. 

 

REFMAP DATASET We mapped reads to the P. chalceus genome assembly v1.0 

(CHAPTER 4) using BWA v.0.7.9a (Li & Durbin 2010). We used a maximum edit 

distance (-n) of 2 % of the read length and a maximum insert size (-a) of 1,000 bp. 

Uniquely mapped reads were filtered based on mapping quality using SAMtools (view –q 
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25) (Li et al. 2009). Next, loci of the forward read were built using Stacks v1.20 using the 

BWA alignments to the reference genome (Catchen et al. 2013) with a maximum number 

of two mismatches (-n) allowed between loci of different individuals. This dataset is 

further referred to as the ‘refmap dataset’ and was used to construct sequence 

alignments of the outlier loci and to help in assessing linkage between RAD tags. 

 

We calculated the nucleotide diversity (π) by averaging the number of nucleotide 

differences per site between two sequences. Heterozygosity (Hz) was calculated as the 

average proportion of polymorphic sites within individuals, both within populations 

and across populations. 

 

 

CLUSTER ANALYSIS 

We used the Bayesian clustering method implemented in Structure v2.3.4 (Falush et al. 

2007) to determine genetic clusters and to infer the number of clusters that best fit the 

data. We used the de novo dataset for this analysis and only loci that were present in at 

least 50 % of the individuals in all populations were retained for the analysis. Given a 

certain number of populations (K), we calculated the log-probability of the data 

(LnP(D|K)) and compared across a range of K values to determine which number of 

clusters best fits the data and whether these coincide with the geographical locations. A 

Monte Carlo Markov Chain (MCMC) was run for 100,000 iterations and a burn-in of 10,000 

under the admixture model with correlated allele frequencies. We performed 3 replicate 

runs at each K from 1 to 5 for the Guérande and Belgian populations and 1 to 10 for all 

populations combined. 

 

 

OUTLIER ANALYSIS 

Outlier analysis was performed on both the de novo and the refmap dataset. Fst (Wright’s 

fixation index) values were calculated between each pairwise population comparison for 

each SNP and all SNPs combined using Stacks v1.20 (Catchen et al. 2013). Loci showing 

extreme allele frequency differences across the tidal and seasonal environments were 

identified using Bayenv2 (Coop et al. 2010). To account for differences in sample sizes 

and neutral correlation of allele frequencies across populations due to shared history and 

gene flow, Bayenv2 implements a Bayesian method to estimate the empirical pattern of 

covariance in allele frequencies between populations from a set of markers, and then 

uses this as a null model for a test at individual SNPs. Population covariance matrices 

were calculated using all available SNP data and by averaging matrices from 500,000 
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MCMC iterations sampled every 500 iterations with a burn-in of 100,000. Next, 

correlations between the environment and SNPs were detected by estimating Bayes 

Factors (BF). For this, populations of the tidal and seasonal habitats were assigned an 

environmental value representing the mean wing size in the populations. BFs were 

estimated using 100,000 MCMCs and sampling every 500 iterations. When multiple 

SNPs within a RAD tag were present, the SNP with the highest BF value was selected. 

Linkage Disequilibrium (LD) between each pair of outlier loci was tested within each 

population using Genepop v4.2 (Rousset 2008). Genepop v4.2 tests for an association 

between pairs of loci by constructing contingency tables of the genotypic counts and 

analyses them using a Markov chain method (Dememorization number = 1000; Number 

of batches = 100; Number of iteration  per batch = 1000) to estimate exact P values 

(Raymond & Rousset 1995). P values were adjusted using Bonferroni correction. 

 

From the BWA alignments to the P. chalceus reference assembly we obtained consensus 

sequences for genomic regions with a minimum coverage of 5 for each individual using 

SAMtools (Li et al. 2009) and Seqtk v1.0 (Li 2013). Sequence alignments were built for the 

outlier loci identified in the Canal-Pond-Nieuwpoort-Dudzele comparison using 

Bayenv2 with a minimum Bayes Factor (BF) of 15. These sequence alignments were then 

subdivided according to the genotype of the SNP that was identified as outlier (Figure 

33). Only sequences were retained from individuals with a homozygous SNP genotype 

so that polymorphic positions associated with the outlier SNP could be correctly 

assigned to a subset. Nucleotide diversity (π) and Tajima’s D values were calculated 

using a home-made Python script and DendroPy v3.12.0 (Sukumaran & Holder 2010). 

Differences in nucleotide diversity (π) and Tajima’s D values between the subsets of 

sequences were tested using paired t-tests and their associations were tested using Proc 

GLM (SAS v9.4) and a Type 3 sum of squares analysis. Neighbor-Net networks were 

constructed using SplitsTree v4.13.1 (Huson and Bryant 2006) with default settings. 

 

 
Figure 33. Graphical representation of calculation of nucleotide diversity (π) among sets of 

sequences. π1 = π among sequences with SNP allele most frequent in the tidal canal and 

Nieuwpoort populations.  π2 = π among sequences with SNP allele most frequent in the seasonal 

pond and Dudzele populations. π12 = π among all sequences with homozygous SNP genotype. 
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Finally, previously identified gene sequences involved in wing development (Van 

Belleghem et al. 2012) were aligned to the P. chalceus genome assembly. Subsequently, 

RAD tags were identified in scaffolds associated with these wing development genes 

and Fst values and distance between the RAD tag and wing development gene were 

calculated. 

 

 

 

RESULTS 

READ MAPPING 

Sequencing resulted in on average 229,519 (SD = 125,244) reads per individual, after 

removing PCR duplicates (Appendix 17). For the de novo dataset, we obtained on 

average 2,773 (SD = 922) loci per individual (Table 10). 128 of these loci were 

polymorphic and present in all individuals. 738 polymorphic loci were present in at least 

50 % of the individuals in each population. Further, we obtained 1,325 polymorphic loci 

among the Guérande canal, Guérande pond, Nieuwpoort and Dudzele populations 

present in at least 50 % of the individuals. 

On average 52.57 % (SD = 6.63 %) of individuals’ reads mapped to the P. chalceus genome 

assembly. We estimated the genome size from the percentage of mapped reads for each 

individual onto the draft genome. As the assembled genome has a length of 312.78 Mb, 

this results in an expected genome size of 528.35 – 680.85 Mb. Although this comprises 

the estimated genome size of 530.28 Mb calculated using k-mer frequencies (Chapter 4), 

this previous estimation may have underestimated the genome size. This likely results 

from not incorporating sequence repetitiveness when using k-mer frequencies. Building 

loci using the reference genome resulted in on average 1,844 (SD = 459) loci in each 

individual (Table 10). 319 of these loci were polymorphic and present in all individuals. 

814 polymorphic loci were present in at least 50 % of the individuals in each population. 

Further, we obtained 987 polymorphic loci among the Guérande canal, Guérande pond, 

Nieuwpoort and Dudzele populations present in at least 50 % of the individuals.  

The higher number of polymorphic loci found when using reads aligned to the reference 

genome results from the alignment strategy in which BWA allows more mismatches 

when building loci. This allowed building loci for more strongly diverged haplotypes, 

but resulted in more loci with more than two alleles within a single individual (0.35 % in 

de novo loci building versus 5.37 % when using BWA alignments). These latter loci likely 

result from assembling paralogous or repetitive sequences. 
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GENOME-WIDE ESTIMATION OF GENETIC DIFFERENTIATION 

From the loci and SNP genotype data we calculated genetic variation within and across 

populations (Table 10). Average nucleotide diversity (π) was 0.0031 (SD = 0.0006) within 

each population and 0.0039 (SD = 0.0006) across populations. Genetic diversity measures 

across populations increased only slightly, indicating recent population differentiation 

and/or high rates of gene flow. However, the conservative (and unbiased) nature with 

which loci were built de novo may have resulted in an underestimation of the nucleotide 

diversity. Conversely, the marked higher π and Hz among the loci built using the 

reference genome likely results from the high percentage of erroneous loci with more 

than two alleles.  

 

Table 10. Comparisons of loci statistics built de novo and using the P. chalceus reference genome. 

CPND = Guérande canal, Guérande pond, Nieuwpoort and Dudzele. 

 De novo  Reference genome 

  SD   SD 

Average n loci/individual 2,773 922  1,844 459 

Loci in all individuals 128 -  319 - 

Loci in all CPND individuals 254 -  491 - 

Loci in all individuals > 50 % 738 -  814 - 

Loci in all CPND individuals > 50% 1,325 -  987 - 

Polymorphic sites (Individual average) 281 41  125 61 

Polymorphic sites (Population average) 1,882 439  401 58 

π within individuals 0.0014 0.0002  0.0044 0.0005 

π within populations 0.0031 0.0006  0.0054 0.0006 

π across populations 0.0039 -  0.0065 - 

Hz within individuals 0.0014 0.0002  0.0044 0.0005 

Hz within populations 0.0017 0.0002  0.0050 0.0004 

Hz across populations 0.0017 -  0.0045 - 

 

As expected, Fst values significantly increased with geographical distance between each 

population (F1,43 = 13.22, P = 0.0007; Figure 34). Distribution of Fst values between 

populations shows a clear L-shape for all population comparisons (Figure 35A). The L-

shape is especially pronounced between the sympatric Guérande canal (GUE) and pond 

(GUO) population and the Nieuwpoort (NIE) and Dudzele (DUD) population. This 

likely indicates high rates of gene flow between sympatric or closely located pairs of 

populations because gene flow keeps most values low while selection increases 

divergence at a minority of loci. Between the Spanish Huelva (HUE) and Coto Doñana 

(COD) population Fst values are generally higher (Figure 35A). Moreover, the Fst 

distribution between the sympatric Portuguese populations (AVE1 versus AVE2) is even 

higher compared to allopatric populations (Figure 35A). Based on the Fst values, the 

Portuguese populations are more genetically diverged from all other populations 

(Figure 34).  
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Figure 34. Relationship between average Fst between each population pair and distance between 

the populations. A distinction is made between Fst comparisons of populations from the same or 

different ecotypes. Comparisons including the Portuguese populations are indicated separately. The 

grey line indicates the regression line. 

 

 
Figure 35. (A.) Fst density distribution of comparison between populations separated by less than 50 

km (GUE-GUO, NIE-DUD, AVE2-AVE1 and HUE-COD) and of populations separated by more 

than 1,300 km. (B.) Logarithmic density distribution of Fst between GUE, GUO, NIE and DUD. 
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When only incorporating the Guérande canal (GUE), Guérande pond (GUO), 

Nieuwpoort (NIE) and Dudzele (DUD) populations, cluster analysis identified four 

genetic clusters corresponding to the four sampling locations (Figure 36A). Virtually all 

individuals were assigned to a genetic cluster that corresponds to the sampled 

population. When all populations were incorporated, highest likelihood was given to 

five genetic clusters (Figure 36B), wherein the Nieuwpoort and Dudzele as well as the 

Guérande canal and pond were assigned to the same cluster according to geographic 

proximity. In this latter case, only two clusters were recognized for the Guérande and 

Belgian populations according to location. The France Camargue (CAM) population was 

recognized as a separate genetic cluster. The Severn Estuary population from the UK 

(SEE) showed similarity to both the Belgian and France Atlantic populations. Among the 

Portuguese (AVE1 and AVE2) and Spanish populations (HUE and COD) two genetic 

clusters were recognized. AVE2 and COD seemed to be clearly distinct, whereas AVE1 

and HUE have elements of both former clusters.  

 
 

Figure 36. Population structure for (A.) the Guérande canal (GUE), Guérande pond (GUO), 

Nieuwpoort (NIE) and Dudzele (DUD) population and for (B.) all populations combined for a 

number of populations K = 4 and K = 5, respectively. 
 

 

Principal Coordinate Analysis (PCoA) shows similar results as the genetic clustering 

analysis (Figure 37A). The Guérande canal (GUE) and Guérande pond (GUO) 

populations cluster together according to location. The Severn estuary (SEE) population 

clusters between the Belgian and France Atlantic populations. The Portuguese 

populations (AVE1 and AVE2) cluster separately from all the other populations. These 

results indicate a clear effect of geographical isolation on the genetic variation among 
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populations. However, the Coto Doñana (COD) population clusters closer together with 

the Mediterranean Camargue (CAM) population compared to the geographically close 

Huelva (HUE) population. 

Performing a PCoA on only the Guérande canal (GUE), Guérande pond (GUO), 

Nieuwpoort (NIE) and Dudzele (DUD) populations indicates genetic variation resulting 

from geographical isolation as well as ecotypic divergence (Figure 37B). Moreover, in 

this analysis, the tidal populations from different localities (GUE and NIE) cluster closer 

together compared to the seasonal populations from the same localities. The distribution 

of genetic variation among the populations is comparable to the differences found in Fst 

distribution (Figure 35B). 

 

 
Figure 37. Principle Coordinate Analysis (PCoA). (A.) PCoA for all populations including 128 

polymorphic markers. Points and error bars represent the population average and the standard 

deviation of the genetic variation along the first and second PCoA axis. The first and second axis 

explains 9.05 % and 7.03 %, respectively, of the variation contained in the dataset. Tidal and 

seasonal populations are indicated in blue and red, respectively. (B.) PCoA for the Guérande canal 

(GUE), Guérande pond (GUO), Nieuwpoort (NIE) and Dudzele (DUD) populations including 254 

polymorphic markers. Each points represents a single individual. The first and second axis explains 

7.75 % and 6.96 %, respectively, of the variation contained in the dataset. Genetic markers were 

used that were polymorphic, were sequenced in all individuals and had a minimum coverage of 5. 
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OUTLIER LOCI 

SNPs showing strong association with the tidal and seasonal environments were 

identified while taking into account neutral population structure (Table 11). When using 

all populations, we found two strongly associated SNPs with the tidal and seasonal 

habitats with a Bayes Factor (BF) larger than 15. These were found among both the de 

novo built loci as well as among the reference built loci. Among the tidal Guérande canal 

(GUE) and Nieuwpoort (NIE) and seasonal Guérande pond (GUO) and Dudzele (DUD) 

populations we found 24 outlier loci among the de novo built loci. Only one pair of loci 

showed significant linkage disequilibrium. Among the reference built loci we found 40 

outlier loci. However, after building alignments of the latter reference built loci and 

manual inspection, 17 loci were discarded as they resulted from incorrectly aligned 

reads. Further, four pairs of outlier loci were located on the same scaffold and additional 

testing for linkage disequilibrium found significant linkage for one more loci, reducing 

the total set of unlinked outlier loci to 18. Of the 24 outlier loci found among the de novo 

dataset, 15 were shared with the 23 outlier loci identified among the ‘refmap dataset’. 

 

 

Table 11. Number of identified outlier loci with Bayes factor larger than 15 and number of loci with 

significant pairwise linkage disequilibrium. CPND: Comparison of Guérande canal, Guérande 

pond, Nieuwpoort and Dudzele populations. ALL: Comparison among all populations. 

 

 De novo  Ref map 

 CPND ALL  CPND ALL 

Outlier loci 24 2  23 2 

Pairs with LD  1 0  5 0 

Unlinked outlier loci 23 2  18 2 

 

 

Comparing Fst values between Guérande canal (GUE) and Guérande pond (GUO) 

populations and Nieuwpoort (NIE) and Dudzele (DUD) shows that most loci with a 

high Bayes Factor also have a high Fst value in both population comparisons (Figure 38). 

However, several loci have a high Fst value in only one of the population comparisons, 

indicating independent differentiation. Further, Fst values between the sympatric 

Guérande canal (GUE) and Guérande pond (GUO) populations are generally higher 

than Fst values between the Nieuwpoort (NIE) and Dudzele (DUD) population which 

are located approximately 37 km apart. 



CHAPTER 5 

 

127 

 
Figure 38. Plot of the Fst values between the Canal-Pond populations against the Fst values between 

the Nieuwpoort-Dudzele populations. Dashed line indicates Fst value of 0.5. Points are colored 

according to Bayes Factors (BF) estimated using Bayenv2. Points with high BF indicate SNPs that 

are strongly correlated with the environmental variable differentiating the tidal and seasonal 

populations.  

 

 

For the 18 retained outlier loci, we constructed alignments from the paired-end RAD tag 

read mappings to the P. chalceus genome assembly. This was done for individuals from 

the Guérande canal (GUE), Guérande pond (GUO), Nieuwpoort (NIE) and Dudzele 

(DUD) populations. The obtained alignments had an average length of 858 bp (SD = 254). 

Next, these alignments were subdivided according to the outlier SNP allele and the 

nucleotide diversity and Tajima’s D values among each subset of sequences was 

calculated for the following subsets: (i) nucleotide diversity and Tajima’s D among the 

sequences associated with the allele most frequent in the tidal habitats (π1 and D1), (ii) 

nucleotide diversity and Tajima’s D among the sequences associated with the allele most 

frequent in the seasonal habitats (π2 and D2) and (iii) nucleotide diversity and Tajima’s D 

among all the sequences (π12 and D12). 

In general, nucleotide diversity among the sequences associated with the allele most 

frequent in the tidal habitats (π1) was much lower compared to nucleotide diversity 

among the sequences associated with the allele most frequent in the seasonal habitats 

(π2) (paired t(17) = -3.5, P = 0.003; Figure 39A).  Fifteen out of the 18 unlinked outlier loci 

had nucleotide diversity lower among the sequences associated with the allele most 

frequent in the tidal habitats. Nucleotide diversity among the sequences associated with 
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the allele most frequent in the tidal habitats (π1) did not markedly increase with the total 

nucleotide diversity (π12) (F1,16 = 1.87, P = 0.20). In contrast, nucleotide diversity among 

the sequences associated with the allele most frequent in the seasonal habitats (π2) 

strongly increased with total nucleotide diversity (π12) (F1,16 = 23.88, P = 0.0002), 

indicating a different evolutionary history of these alleles (Figure 39A). In contrast, 

overall nucleotide diversity did not markedly differ between populations from tidal and 

seasonal habitats (Appendix 18), suggesting that the reduced nucleotide diversity among 

the sequences associated with the allele most frequent in the tidal habitats (π1) is 

restricted to the outlier loci and not neutral gene sequences. 

We did not find any significant differences in Tajima’s D values between the sequence 

subsets associated with the allele most frequent in the seasonal and tidal habitats (paired 

t(15) = -1.14, P = 0.27). However, among the sequences associated with the allele most 

frequent in the tidal habitats (D1) more extreme negative Tajima’s D values were 

observed (Figure 39B). Negative Tajima's D values signify an excess of low frequency 

polymorphisms relative to the expectation under neutrality and are expected under 

population size expansion (e.g. after a bottleneck or a selective sweep) and/or purifying 

selection. Furthermore, we found that Tajima’s D values significantly increase with 

increasing nucleotide diversity among the subsets of sequences (F1,32 = 4.67, P = 0.04). 

This indicates a disappearing signal of the bottleneck or selective sweep as time 

progresses and more mutations arise in the sequences. 

 

 
 

Figure 39. (A.) Plot of nucleotide diversity among the total set of sequences (π12) against nucleotide 

diversity within each subset of sequences (πwithin). π1 = π among sequences with SNP allele most 

frequent in canal and Nieuwpoort populations.  π2 = π among sequences with SNP allele most 

frequent in pond and Dudzele populations. Dashed lines represent regression lines. (B.) Plot of 

Tajima’s D values against the nucleotide diversity (πwithin) within each subset of sequences. 
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Haplotypes associated with each nucleotide that differentiated both ecotypes 

consistently clustered together, indicating that the shared genetic variation between 

populations of the same habitats has a singular mutational origin (Figure 40). Neighbor-

Net networks of 13 loci showed resemblance with the network constructed for the mtIdh 

gene in P. chalceus with low haplotype diversity among the sequences associated with 

the tidal habitat and high haplotype diversity among sequences associated with the 

seasonal habitat (CHAPTER 2). Moreover, several networks showed strong 

differentiation between the subsets of sequences, indicating reduced recombination 

between these haplotype sets.  Two loci (locus 917 and 1652) showed a notable opposite 

pattern of sequence variation with more nucleotide variation among the sequences 

associated with the tidal habitat. 

 

We identified all wing development genes in the P. chalceus genome assembly, apart 

from one (Appendix 19). All these genes were located in a different scaffold. At least one 

RAD tag was present in ten of these scaffolds (Appendix 19). Three of these scaffolds 

had a RAD tag with a markedly higher Fst value. Two had a high Fst in both the 

Guérande canal versus pond and Nieuwpoort versus Dudzele population comparison 

(wingless (Fst = 0.45/0.17) and Sex combs reduced (Fst = 0.16/0.28)). One RAD tag associated 

with a wing development gene had a higher Fst value only in the Guérande canal versus 

pond population comparison (Nubbin (Fst = 0.41/0.08)). All genes related to hormones 

were identified in the P. chalceus genome assembly. However, only two scaffolds 

associated with one of these genes (cytochrome P450, family 307 and ecdysteroid 22-

hydroxylase) had a RAD tag which both had Fst values of 0. The mtIdh gene maps to 

scaffold 1175 in the P. chalceus genome assembly. The Fst value of the RAD tag 

positioned in this scaffold was 0.46 for the Guérande canal versus pond comparison and 

0.38 for the Nieuwpoort versus Dudzele comparison. This RAD tag was located 3,627 bp 

downstream of the end of the mtIdh gene, indicating that the previously found 

differentiation in the mtIdh gene extends into a genomic island of differentiation and 

may be hitchhiking with a closely linked selected target. However, the RAD tag was not 

identified as an outlier in our analysis due to very stringent scoring conditions. 
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Figure 40. Neighbor-Net networks of unlinked outliers with Bayes Factor (BF) larger than 15. The 

green dashed line indicates the split between allele 1 and 2. Allele 1 represents the allele most 

frequent in the tidal populations (blue), whereas allele 2 represents the allele most frequent in the 

seasonal populations (red). The frequencies of allele 1 and 2 are given in each population; Guérande 

canal (GUE), Guérande pond (GUO), Nieuwpoort (NIE) and Dudzele (DUD). π1 = nucleotide 

diversity among the haplotypes of allele 1. π2 = nucleotide diversity among the haplotypes of allele 

2. π12 = nucleotide diversity among all haplotypes. 

 

 

 

DISCUSSION 
It is generally argued that high rates of gene flow result in divergence in only a few 

regions that harbor genes under strong divergent selection (Via 2001, Savolainen et al. 

2006). Hence, the ‘L-shaped’ distribution of Fst values (i.e. most loci have low Fst values 

and a pronounced tail of extreme values) between the sympatric P. chalceus populations 

is consistent with gene flow keeping most values low while selection increases 

divergence at only a minority of loci. Allopatric divergence, on the other hand, is 

expected to generate a more even distribution across the genome (e.g. Martin et al. 2013). 

However, in the early stages of allopatric divergence the ‘L-shaped’ distribution of Fst 

values is also expected and the long tail of extreme Fst values may be explained by 

selection in allopatry (Butlin 2010). This may explain the largely ‘L-shaped’ distribution 

found between allopatric population comparisons in P. chalceus. In addition, we found 

only a small increase of genetic diversity when combining populations. These estimated 

nucleotide diversity values in P. chalceus are in rough agreement with studies of genetic 

variation within and among stickleback populations using RAD tag sequencing (wihin: 

π  = 0.0020 - 0.0027, across: π  = 0.0034; Hohenlohe, Bassham, et al. 2010). In these 

sticklebacks, it is argued that this small increase in genetic diversity when combining 

populations is in agreement with the hypothesis that freshwater populations in the 

studied region have been derived post-glacially from oceanic populations. Similarly, 
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Atlantic coasts may have been inhabitable during the last glacial period for P. chalceus 

beetles and a recent spread may explain why genetic diversity increases only slightly 

when combining populations. Moreover, sticklebacks generally have a generation time 

of two years (Bell et al. 2004), whereas P. chalceus beetles have a generation time of one 

year, suggesting that the colonization of P. chalceus along the European coasts may be 

more recent. 

Further, Fst values between the sympatric Guérande canal (GUE) and Guérande pond 

(GUO) populations were generally higher than Fst values between the Nieuwpoort 

(NIE) and Dudzele (DUD) populations that are located approximately 37 km apart. This 

may indicate more pronounced reproductive isolation between the tidal and seasonal 

populations in the Guérande. Possibly, this results from stronger selection against 

hybridization between the sympatric populations compared to the allopatric populations 

(i.e. reinforcement; Servedio and Noor 2003). Moreover, Fst values between the 

sympatric Portuguese populations (AVE1 and AVE2) were in the same range or even 

higher as very distant (> 1,300 km) allopatric populations. 

 

The idea that speciation may occur in the presence of gene flow is being increasingly 

accepted (Pinho & Hey 2010, Smadja & Butlin 2011, Feder et al. 2012a). Theoretical 

models of sympatric speciation discuss the importance of genetic linkage versus the 

possibility of genome wide differentiation during early speciation (Via 2001, Fry 2003, 

Yeaman & Whitlock 2011, Feder et al. 2012a). Genetic architectures with fewer, larger 

and more tightly linked divergent alleles are expected to reduce the swamping of 

divergence at weakly selected alleles (Yeaman & Whitlock 2011) and the effect of 

recombination on the association between different adapted loci or traits (Fry 2003, 

Bolnick & Fitzpatrick 2007, Pinho & Hey 2010). Indeed, several studies have found traits 

defined by only a few quantitative trait loci (QTL) of large effect. These include pelvic 

girdle (Shapiro et al. 2004) and armor plating (Colosimo et al. 2004) in sticklebacks, 

coloration in beach mice (Steiner et al. 2007) and large effect QTLs explaining phenotypic 

variation in several Timema cristinae stick insect traits (Comeault et al. 2014). Moreover, 

fine mapping of skeletal traits in mice revealed that the large effect QTL associated with 

this trait actually contains several tightly linked genes contributing small individual 

effects (Christians & Senger 2007). Further, in lake whitefish large islands of divergence 

were found in the early stages of adaptive divergence (Renaut et al. 2012). Finally, in pea 

aphids genetic linkage has been found between performance and assortative mating 

traits which is argued to promote speciation in this species (Hawthorne & Via 2001). 

However, these examples are in contrast with recent studies demonstrating genome 

wide divergence between sympatrically differentiating populations in Rhagoletis 

pomonella (Michel et al. 2010) and Anopheles gambiae (Lawniczak et al. 2010) and 
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theoretical arguments that selection on many loci can generate widespread divergence 

even with gene flow (Feder & Nosil 2010, Feder et al. 2012b).  

Indeed, we found 24 unlinked SNPs that are strongly associated with adaptive 

divergence between the tidal and seasonal habitats. A RAD tag located in a genomic 

scaffold comprising the mtIdh locus showed marked Fst values between both the tidal 

Guérande canal and seasonal pond populations as well as between the tidal Nieuwpoort 

and seasonal Dudzele populations. However, our outlier analysis did not retain this 

locus, emphasizing our conservative scoring and that many more loci may be 

differentiated between populations and be associated with the repeated adaptive 

divergence. The 24 retained outlier loci did not show significant linkage disequilibrium 

within populations, suggesting that selection acts on multiple unlinked loci and that 

linkage is not a main factor maintaining the ecotypic differences in sympatry. These 

findings are in agreement with a previously demonstration that genes involved in wing 

size and the strongly differentiated mtIdh alleles, that are associated with the tidal and 

seasonal habitats, are genetically unlinked (Van Belleghem & Hendrickx 2014). 

Furthermore, finding these multiple unlinked outlier loci between sympatric 

populations may be indicative that even very early stages of the speciation process may 

by characterized by genome wide adaptation. Possibly, this is driven by a reproductive 

isolating mechanism that reduces gene flow and assists natural selection in the evolution 

of distinct ecotypes that have diverged in multiple unlinked loci. Additionally, 

comparisons between populations within localities showed several loci with increased 

Fst values, indicating adaptation unique to the localities. 

 

Some of the outlier loci were situated in scaffolds that contain genes that are important 

for wing development in Drosophila melanogaster (Weihe et al. 2005) and Tribolium 

castaneum (Richards et al. 2008), such as wingless, Sex comb reduced and Nubbin. Wingless is 

a segment polarity gene and has a role in the establishment of different cell fates. Sex 

comb reduced is required for labial and first thoracic segment development. The RAD tag 

associated with Nubbin only showed a marked Fst value between the Guérande canal 

and pond population. Nubbin is a regulatory protein implicated in early development. 

Studying the genetic variation associated with these genes in more detail should allow 

identifying whether these genes are actually targets of selection. 

 

All outlier loci investigated were shared between the repeatedly adapted populations. 

Whether this shared genetic variation results from reuse of standing genetic variation or 

rather introgression of adaptations from one population to other populations is difficult 

to infer. Reuse of globally shared standing genetic variation has, for instance, been 

demonstrated to play an important role in repeated evolution of distinct marine and 
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freshwater sticklebacks (Jones et al. 2012). Introgression, on the other hand, has been 

shown to even allow transferring adaptations between infrequently hybridizing 

Heliconius butterfly species (Dasmahapatra et al. 2012). Thirteen out of the 18 retained 

outlier loci identified using the reference genome had a marked reduction in nucleotide 

diversity, indicative for a recent selective sweep or bottleneck. Furthermore, 

reconstructing the genealogical relationships between the haplotypes showed that about 

half of the outlier loci have a deep differentiation between the subsets of sequences 

associated with the tidal and seasonal habitats. This suggests reduced recombination 

between these haplotype sets. Moreover, the pattern of haplotype variation and 

structure is similar to the pattern found in the mtIdh gene in which the reduced 

recombination is suggested to be due to geographical isolation as suggested by 

coalescent simulations performed on the mtIdh gene (CHAPTER 2). 

Finding a similar evolutionary history in the majority of the outlier loci suggests a 

largely singular evolution of the short-winged ecotypes. Possibly, as suggested by the 

deep divergence and reduced nucleotide diversity in several of the outlier loci associated 

with the tidal habitat, a large set of adapted loci associated with the short-winged 

ecotype from tidal marshes spread recently along the Atlantic coasts from a partially 

isolated subpopulation. Hence, the observed pattern of genetic variation among 

sympatric populations may be consistent with secondary contact and admixture after a 

period of geographical separation. Moreover, the reuse of adaptive genetic variation in 

the repeated occurrence of the ecotypes may be important for the repeated evolution and 

maintenance of the ecotypes in sympatry. 
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ABSTRACT 
Understanding how disruptive selection can result in the evolution of reproductive 

isolation is of major interest in the study of sympatric speciation. One such mechanism 

proposes that traits subjected to disruptive selection directly result in spatial sorting 

between the diverging populations. This may result in a match between phenotype and 

habitat performance and decrease mating opportunities between the diverging ecotypes. 

Here we study habitat preference and performance in the salt marsh beetle Pogonus 

chalceus, which is found in two strongly contrasting habitats which differ in hydrological 

regime. Tidal habitats are inundated frequently for only a few hours, whereas seasonal 

habitats are usually inundated for longer periods. Based on choice experiments, we 

found no indication of assortative mate preference in sympatric P. chalceus populations. 

Alternatively, we demonstrate that short-winged populations from tidally inundated 

marshes show less reluctance to inundation compared to populations from seasonal 

marshes. We argue that these behavioral differences may result in spatial sorting and 

can as such provide a unique and simple explanation for the persistence of distinct 

ecotypes in sympatric mosaics. 

 

 

 

INTRODUCTION 
Natural selection has long been claimed to be a major force in the evolution of new 

species (Darwin 1859). Moreover, when speciation occurs in the face of homogenizing 

gene flow, it is argued that strong disruptive selection is necessary to cause the evolution 

of reproductive isolation (Coyne & Orr 2004). However, verifying the link between 

natural selection and the evolution of reproductive barriers remains a major challenge 

(Kirkpatrick & Ravigné 2002, Coyne & Orr 2004, Schluter & Conte 2009, Hendry 2009, 

Nosil 2012, Faria et al. 2014). Studying this link is important as it allows to understand if 

and how populations can adapt to divergent ecological conditions when there is ample 

opportunity for homogenizing gene exchange.  

A common problem encountered in the joint evolution of two or more genetically 

unlinked traits is that random mating and recombination will break down the adaptive 

gene combination (Felsenstein 1981). Therefore, it is often argued that sympatric 

speciation requires the evolution of non-random or assortative mating (Thibert-Plante & 

Gavrilets 2013). One mechanism that is often considered is mate preference in which, for 

instance, females prefer certain display traits that are only present in males belonging to 
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the same ecotype (Jones & Ratterman 2009). Another important and often considered 

more plausible mechanism for the evolution of assortative mating is habitat preference 

or spatial sorting. Here, individuals adapted to the same environmental conditions will 

experience positive selection for preferring the habitat to which they adapted. This 

spatial sorting of ecotypes in their respective habitat will then result in lower gene flow 

levels between individuals belonging to the different ecotype. However, even if 

variation exists for genes underlying habitat preference, recombination will yield 

individuals that prefer the habitat in which they are unfit, which challenges the 

likelihood of both the evolution as well as persistence of sympatric divergence. 

Therefore, for speciation to occur, an association is expected between habitat preference 

and genes that are involved in performance in that habitat. This link may include closely 

linked genes in the genome, or one gene affecting preference and performance 

pleiotropically. Pleiotropy causing this link has been called an automatic magic trait, 

indicating the debated and rare occurrence and nature of these traits (Servedio et al. 

2011).  

When individuals experience fitness trade-offs across different environments, selection 

should favor mechanisms that allow individuals to select and use habitats that best suit 

their phenotype. The importance of habitat preference as a means to optimize an 

individuals’ fitness has long been recognized (Mayr 1963). Moreover, this is expected to 

greatly facilitate phenotypic segregation as the non-random distribution of locally 

specialized phenotypes also results in assortative mating among individuals with a 

similar genetic constitution. Several theoretical studies have demonstrated that habitat 

choice may aid sympatric speciation (Rice 1984, Johnson et al. 1996b, Kawecki 1996, 

Fry 2003). However, empirical examples of habitat preference as a promoting factor in 

sympatric divergence and speciation are strongly underrepresented (Edelaar et al. 2008, 

Edelaar & Bolnick 2012). Despite the relative ease of the concept, this most likely results 

from difficulties to study non-random dispersal and its effect on restricting gene flow 

between diverging ecotypes in the field (Jaenike and Holt 1991). Scarce examples include 

habitat preference in lake and stream three-spined sticklebacks (Bolnick et al. 2009) and 

genetic linkage between performance and host plant preference in phytophagous insects 

(Feder et al. 1994, Hawthorne & Via 2001, Berlocher & Feder 2002). 

 

In this study, we investigate mechanisms that may affect assortative mating and their 

effect on the persistence of ecological divergence in a sympatric mosaic of the wing-

polymorphic beetle Pogonus chalceus. The distribution of this carabid beetle is restricted 

to salt marshes along the Atlantic and Mediterranean coast. Here, the species is found in 

two contrasting environments that strongly differ in hydrological regime. One habitat 

consists of tidal marshes being year-round flooded on a regular basis, but for short 
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periods of at maximum a few hours only. The second habitat consists of seasonal marshes 

that are disconnected from the sea and are permanently inundated from late autumn to 

early spring. These pronounced hydrodynamic differences are associated with strong 

differences in ecological traits, wherein populations from tidal marshes are characterized 

by a reduced wing size, a smaller body size and high frequencies of the D allele of the 

mitochondrial NADP+-dependent isocitrate dehydrogenase gene (mtIdh). Conversely, 

populations inhabiting seasonal marshes have fully developed wings, a larger body size 

and higher frequencies of the mtIDH-B allele. These differences in wing size, and 

evidently mtIDH allele frequency, have a strong genetic basis as confirmed from lab 

crosses showing high heritability estimates of h² = 0.9 for wing size and a very strong 

association between mtIDH allele frequencies across, but not within populations 

demonstrating that both traits are exposed to similar selection pressures but genetically 

unlinked (Van Belleghem & Hendrickx 2014). Furthermore, these genetically divergent 

populations often co-occur at a very small geographic scale, such as at the Guérande 

salterns in France where both ecotypes occur in a sympatric mosaic wherein both 

habitats are separated by distances of a few meters (Dhuyvetter et al. 2007). The lack of 

significant genetic differentiation based on microsatellite markers among ecologically 

divergent but geographically nearby populations demonstrated that there is 

considerable gene flow among the two ecotypes (Dhuyvetter et al. 2007).  

 

The high correlation between habitat types with different hydrological regimes and wing 

size in P. chalceus strongly suggests that these habitats select differently for dispersal 

ability (Van Belleghem & Hendrickx 2014). More specifically, we hypothesize that 

resident behavior during inundations is selected in tidal habitats, but not in seasonal 

habitats as beetles can tolerate the short inundations. This adaptation to tidal habitats 

may then result in spatial sorting of the ecotypes which, subsequently, results in 

assortative mating if the beetles mate in the habitat which they prefer. 

 

 

 

MATERIALS & METHODS 

SAMPLING 

P. chalceus populations were sampled in two different regions i.e. in Belgium at 

Nieuwpoort (NIE) and Dudzele (DUD) in August 2013 and in France in the canal and 

pond habitats of the Guérande salterns in June 2013 (Figure 41). Populations from 

Nieuwpoort and Guérande canal, located in tidal marshes, have high frequencies of 
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individuals with strongly reduced wing sizes, whereas populations from Dudzele and 

Guérande pond populations, located in seasonal marshes, have on average long wing 

sizes (Figure 41). Differences in hydrological dynamics are the major differences between 

tidal and seasonal habitats. Populations from Nieuwpoort are sampled in a tidal marsh 

that is inundated frequently but for a few hours only, whereas Dudzele habitats 

comprise an inland salt marsh that is separated from the influence of the tides but 

becomes largely inundated for extensive periods during winter. Guérande ponds are 

being used for over a millennium to concentrate salt by evaporate water and are 

inundated irregularly for extensive periods and thus strongly resemble the seasonally 

inundated Dudzele habitats in its hydrological dynamics as well as in its vegetation. 

Guérande canals, on the other hand, are used to bring ocean water into the ponds and 

are subjected to the tides. These canals strongly resemble the Nieuwpoort habitats in its 

hydrological dynamics as well as vegetation. The Guérande ponds and canals are 

separated by distances of a few meters only. 

Sampling was performed by hand and beetles were kept individually in a climate 

chamber at 15°C with a 16:8h light:dark photoperiod in small plastic cups containing a 

plaster being saturated with brackish water. Beetles were fed with parts of mealworms 

(Tenebrio molitor) every 2 to 3 days.  

 

 

 
 

Figure 41. Sampling sites (left) and density plots of the wing size distribution of the sampled 

populations (right). Tidal habitats are indicated in blue, seasonal habitats are indicated in red. In the 

Guérande, tidal and seasonal habitats are found in hundreds of replicates and only separated 10-20 

m. Wing size is expressed as percentage of maximal realizable wing size (%MRWS). GUO = 

Guérande pond habitat, GUE = Guérande canal habitat, NIE = tidal Nieuwpoort habitat, DUD = 

seasonal Dudzele habitat. 
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MATE PREFERENCE 

P. chalceus beetles hibernate as adult and have their reproductive activity mainly during 

spring (Desender 1985). We tested if females of P. chalceus beetles show a higher 

acceptance rate towards males belonging to their respective ecotype. This was 

performed by subjecting beetles from the Guérande canal and pond habitats to a 

reciprocal no-choice mate preference trial. Females of each ecotype were exposed to a 

single male, which was placed in the container of the female. Couples were observed for 

5 minutes and the occurrence of mating, the latency time until mating occurred and the 

duration of mating were recorded. A Generalized Linear Model (Proc GENMOD, SAS 

v9.4) assuming a binomial distribution and a logit link function was fitted to the data 

and significance of the effect of male and female ecotype and their interactions was 

tested by means of a Type 3 likelihood ratio (LR) test. A significant interaction between 

male and female ecotype indicates assortative mating (or negative assortative mating). 

To test significant differences in latency time until mating occurred and the duration of 

mating, a General Linear Model was fitted (Proc GLM, SAS v9.4) on log transformed 

time data and significance of the effects was tested by means of a Type 3 sum of squares 

analysis. 

 

 

BEHAVIORAL RESPONSE TO INUNDATION  

In this experiment, we tested whether both ecotypes differ in their response towards 

inundation of their habitat. To simulate inundation, beetles were kept in a sealed plastic 

cup containing plaster. The plaster was hollowed out at the bottom and this open space 

was accessible through a central corridor from the top to the bottom (Figure 42). At the 

side there was a small groove which allowed adding brackish water in a drop wise 

fashion to simulate inundation. Adding water through the groove ensured that no air 

bubbles would persist under the plaster in which the beetles could reside after the 

flooding. During the simulated inundation event, the behaviour of the beetles was 

observed and timed using a stopwatch. We noted the following behaviors: (i) presence 

or absence of escape behavior upon flooding and (ii) time until beetles reach the surface 

for taking air. For each test, three trials were performed, separated by approximately one 

week and using the same beetles.  
 

Differences in behavioral response were compared between trials, habitats and regions. 

Habitats comprise the tidal versus seasonal habitats. Regions comprise the Guérande 

canal and pond populations versus the Belgian Nieuwpoort and Dudzele populations. 

We compared the proportion of individuals that expressed immediate escape behaviour 
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compared to the individuals that remained submerged upon inundation by means of a 

generalized linear model assuming a binomial distribution, a logit link function and 

significance of the fixed effects habitat, trial, region and their interactions were tested 

with a Type 3 likelihood ratio (LR) test (Proc GENMOD, SAS v 9.4). For individuals that 

stayed submerged, the average time they spent under water was compared using a 

General Linear Model (Proc GLM, SAS v9.4) on log transformed data with significance 

of factors habitat, trial, region and their interaction being tested by means of a Type 3 

sum of squares analysis. Best statistical models were selected by stepwise simplifying 

the models and using the Akaike Information Criterion (AIC). 

 

 

  
Figure 42. Experimental set-up of inundation experiment. Plaster was hollowed out at the bottom 

and this open space was accessible through a central corridor from the top to the bottom The arrow 

indicates a small groove for adding brackish water in a drop wise fashion to simulate inundation. 

 

 

INUNDATION TOLERANCE 

During the inundation experiment it was noted that in rare cases beetles entered a non-

responsive state (i.e. hypoxic coma; Hoback and Stanley 2001; Pétillon et al. 2009). 

Therefore, a performance experiment was performed to compare (i) the beetles’ entrance 

in a non-responsive comatose state when forced to long term inundations and (ii) their 

ability to recover from this state. We used P. chalceus beetles from the tidal Nieuwpoort 

and Guérande canal populations and from the seasonal Dudzele and Guérande pond 

populations. Individuals were placed separately in a test tube filled with brackish water. 

A parafilm piece was brought in the tube to prevent the beetles to reach the top of the 

tube to breathe and take air bubbles under their elytra. Tubes were incubated at a 

constant temperature of 10 °C. Individuals were monitored during a time span of one 

hour with intervals of 10 minutes. If the beetles did not respond by leg movement after 

tapping with the index finger on the tube, they were considered as non-responsive and 

the time of entering the hypoxic coma was noted. We compared the number of 

individuals that remained active during inundation by means of a generalized linear 

model assuming a binomial distribution, a logit link function and a Type 3 likelihood 
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ratio (LR) test (Proc GENMOD, SAS v 9.4) using time, habitat, region and their 

interactions as fixed effects.  

The number of individuals that remained active during inundation was also compared 

per time frame (each 10 minutes) between the different populations from the Guérande 

(pond and canal) and Belgium (Dudzele and Nieuwpoort) using Fisher’s exact test (SAS 

v9.4). After one hour the beetles were removed from the tubes and their recovery 

capacity was measured as the time until the beetles regained leg movements. The 

recovery time of individuals that had been in a hypoxic comatose state was related to the 

duration of the hypoxic comatose state, habitat, region and their interactions using Proc 

GLM (SAS v9.4) and a Type 3 sum of squares analysis. Best statistical models were 

selected using the Akaike Information Criterion (AIC). Additionally, it was investigated 

how long P. chalceus beetles can maximally endure a forced comatose state. For this 

experiment, several groups of Guérande canal and pond individuals were placed under 

water consecutively for 6, 12, 24, 48 and 72 hours and their recovery was recorded. 

 

 

 

RESULTS 

MATE PREFERENCE 

In total, 74 mating trials were performed among beetles from the sympatric Guérande 

populations (Table 12). We found no significant interaction between male and female 

ecotype on the mating probability (Table 13). Female ecotype did also not significantly 

affect the probability of mating (Table 13). However, mating probability was 

significantly higher for males of the canal population compared to those sampled at the 

pond habitat (Table 13). We found no significant effect of male or female ecotype on 

mating time as well as no significant interaction between male and female ecotype (Table 

13). Additionally, we found no significant effect of male ecotype or interaction between 

male and female ecotype on the time until mating occurred (Table 13). Females of the 

canal population accepted males more readily compared to those of the pond population 

(Table 12; Table 13). 
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Table 12. Proportion of mating occurrences, mean mating time and time until mating from the 

reciprocal mate preference experiment between Guérande canal and Guérande pond individuals. 

 

Ecotype  
♂ 

Ecotype  
♀ 

Number 

of trials 

Proportion of 

mating 

Mean mating 

time (s) 

Mean time until 

mating (s) 

Canal Canal 15 0.67 44.20 (± 49.35) 58.30 (± 70.79) 

Canal Pond 20 0.60 41.08 (± 21.33) 89.83 (± 52.11) 

Pond Canal 19 0.32 32.33 (± 16.50) 73.17 (± 41.83) 

Pond Pond 20 0.50 25.50 (± 15.77) 106.80 (± 60.50) 

 

 

 

Table 13. Statistical comparison of the effect of male and female ecotype on mating occurrence, 

mating time and time until mating between Guérande canal and Guérande pond individuals. 

 

 Mating occurrence Mating time Time until mating 

 Χ2 P F1,34 P F1,34 P 

Ecotype ♂ 4.02 0.05 1.17 0.29 2.60 0.11 

Ecotype ♀ 0.56 0.45 0.00 1.00 4.53 0.04 

Ecotype ♂ x Ecotype ♀ 1.43 0.23 0.67 0.42 1.15 0.29 

 

 

 

BEHAVIORAL RESPONSE TO INUNDATION  

Beetles from Nieuwpoort, Dudzele, Guérande canal and pond habitats were subjected to 

inundation in three consecutive trials. The proportion of individuals that remained 

under water after inundation was significantly higher for the tidally inundated 

Nieuwpoort and Guérande canal populations compared to the seasonal Dudzele and 

Guérande pond populations (habitat: χ2 = 66.49; P < 0.0001; Figure 43). Additionally, the 

populations from the Guérande region had a significantly lower proportion of 

individuals that remained under water compared to the populations from Belgium, 

Nieuwpoort and Dudzele (region: χ2 = 116.51; P < 0.0001). We found no significant effect 

of trial on the proportion of individuals that remained under (trial: χ2 = 1.71; P = 0.42). 

However, trials had a significantly different effect between the two regions (region*trial: 

χ2 = 11.57; P < 0.0031). 
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Figure 43. Proportion of P. chalceus beetles that remained submerged upon inundation for 

Nieuwpoort and Dudzele populations (left) and Guérande canal and pond populations (right).  
 

 

Further, individuals from the tidal Nieuwpoort and Guérande canal populations that 

stayed submerged upon inundation, remained submerged significantly longer than 

individuals from seasonal Dudzele and Guérande pond populations (habitat: F5,817 = 

109.06; P < 0.0001; Figure 44). Again, the populations from the Guérande region had a 

significantly higher submergence time compared to populations from Belgium (region: 

F5,817 = 5.56; P = 0.019). Moreover, differences in submergence time between habitats were 

significantly more pronounce between the Guérande canal and pond population 

compared to differences in submergence time the Nieuwpoort and Dudzele population 

(habitat*region: F5,817 = 6.27; P = 0.013). Trial in which the time of submergence was 

measured did not significantly affect the time of submergence (trial: F5,817 = 1.90; P = 0.15). 

 

 
 

Figure 44. Duration of submergence for Nieuwpoort and Dudzele populations (left) and Guérande 

canal and pond populations (right). The tidal populations are indicated in blue, the seasonal 

populations in red. Error bars represent standard errors. 
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INUNDATION TOLERANCE 

When P. chalceus beetles were forced to stay submerged, the average proportion of 

reactive individuals significantly differed between tidal and seasonal populations as 

submergence time progressed (habitat*time: χ2 = 5.85; P < 0.016; Figure 45). The average 

proportion of reactive individuals was significantly higher for individuals from tidal 

compared to individuals from seasonal habitats when both comparing Nieuwpoort and 

Dudzele and Guérande canal and pond populations (Figure 45). However, for the 

Guérande populations, significant differences were only observed after one hour of 

forced inundation. Hence, the average proportion of reactive individuals within 

ecotypes significantly differed between regions (habitat*region: χ 2 = 4.22; P < 0.04). 

Further, we found a significantly different response on submergence time between 

regions (region*time: χ 2 = 7.11; P < 0.008). 

 

 
 

Figure 45. Comparison of P. chalceus inundation tolerance of Nieuwpoort, Dudzele (left) and 

Guérande canal and pond (right) populations. P-values were calculated with a Fisher’s exact test. *: 

P-value < 0.05; **: P-value < 0.01; ***: P-value < 0.001. 

 

 

The recovery of individuals that were in a hypoxic coma correlated strongly with the 

duration of the coma (Figure 46). Beetles that were in a hypoxic coma for a longer time, 

took longer to recover than beetles that had been in a shorter comatose state (coma time: 

F3,89 = 26.61; P < 0.0001). This relationship significantly differed between individuals from 

tidal and seasonal habitats (coma time*habitat: F3,89 = 6.63; P = 0.012). That is, individuals 

from seasonal habitats needed increasingly more time to recover compared to 

individuals from tidal habitats. Recovery times did not significantly differ between 

regions. 
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Figure 46. Recovery time compared to the duration of the hypoxic coma. The blue and red lines 

indicate the significantly different regression lines of the tidal and seasonal populations 

respectively. 

 

 

Only after an extensive forced submergence time of 48 hours, some P. chalceus beetles 

did not recover from the hypoxic coma (Figure 47). The tested Guérande pond 

individuals seemed to be more resistent to forced inundation as seen by the higher 

proportion of recovery after 48 and 72 hours of inundation. 

 

 

 
 

Figure 47. Proportion of P. chalceus beetles from the Guérande populations recovering after forced 

inundation. Numbers above bars indicate the number of individuals tested. 
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DISCUSSION 
In this study, we show (i) little or no indication of assortative mating through mate 

preferences, but (ii) strong indications of a different response to environmental cues (i.e. 

inundation); beetles from seasonally flooded marshes showed significantly more escape 

behavior when exposed to inundations. This different behavioral response is likely to 

result in spatial sorting and promote the association of P. chalceus populations with their 

habitat. Hence, these latter findings provide a potential mechanism for reproductive 

isolation between P. chalceus populations. 

 

Our mating experiments revealed that when individuals are exposed to the same 

environmental conditions, individuals belonging to the same ecotype did not prefer to 

mate with each other compared to individuals sampled at different habitats. Such 

patterns have been observed, for instance, in other arthropod species that mate 

assortatively by size (Crespi 1989). The long -and short-winged P. chalceus populations 

generally also significantly differ in body size (Desender 1989a, Dhuyvetter et al. 2007, 

Van Belleghem & Hendrickx 2014). However, we found no significant indication of mate 

preference based on ecotype in P. chalceus. Another mechanism that can lead to 

assortative mating is allochrony resulting from differences in developmental timing or 

phenology in response to different environments. We did find significant differences in 

the willingness to pair between Guérande canal and pond males. These differences 

might result from phenological differences as different environmental conditions 

between the habitats (Dhuyvetter et al. 2007) could result in a slight offset of the 

reproductive period. This offset has not been investigated in the field, but the 

reproductive period of the ecotypes clearly overlaps (personal observation). Further, 

physical difficulties or mechanical incompatibilities may result in a reduction of the 

probability or duration of mating. Possible mechanical incompatibilities are also thought 

to be negligible in P. chalceus as crosses of both ecotypes are easily obtained in the lab, 

which result in intermediate phenotypes when considering wing and body size (Van 

Belleghem & Hendrickx 2014). Hence, given the absence of beetles’ discrimination 

according to ecotype, we argue that mate preferences and mechanical incompatibilities 

are unlikely to be sufficient for the persistence of these ecotypes in sympatric settings.  

 

Alternatively, our results demonstrate that, apart from the previously demonstrated 

genetic divergence in wing size and mtIdh alleles, the investigated tidal and seasonal 

populations strongly differ in behavioral responses to the different hydrological 

dynamics present in both habitats. Short-winged P. chalceus populations from tidally 
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inundated habitats (i.e. Nieuwpoort and Guérande canals) are significantly less reluctant 

to inundation compared to beetles from seasonal habitats (i.e. Dudzele and Guérande 

ponds), which are usually inundated for longer periods. Oppositely, when confronted 

with inundation, beetles from the seasonal habitats showed a significantly higher 

probability to avoid submergence, both in the Dudzele as well as in the Guérande pond 

populations. Moreover, individuals from the seasonal Dudzele and Guérande pond 

populations spend significantly less time submerged than beetles from, respectively, the 

Nieuwpoort and Guérande canal populations. These effects were consistent over all 

consecutive trials. We did find significant differences in responses between the Belgian 

and France populations. However, differences between tidal and seasonal habitats were 

in the same direction in both regions.  

After prolonged submergence, beetles go into a hypoxic coma. This kind of non-

responsive state is interpreted as an adaptation in salt-marsh insects to cope with 

repeated and high frequency inundation (Pétillon et al. 2009). Beetles from the seasonal 

marshes seem to be more susceptive to a hypoxic coma as is indicated by the 

significantly shorter time needed for pond individuals to go into a non-responsive state. 

These differences in inundation tolerance possibly result from differences in metabolic 

activity between the long -and short-winged beetles from, respectively, seasonal and 

tidal marshes (Mueller & Diamond 2001, Haag et al. 2005). In contrast, beetles from 

seasonal habitats seemed to survive prolonged inundations to a higher rate compared to 

beetles from tidal marshes. Only after 72h a marked proportion of individuals did not 

recover from the hypoxic coma, probably due to the accumulation of anaerobic end 

products (e.g. lactate and alanine) (Hoback & Stanley 2001). This could be an adaptation 

to prolonged inundations. However, the higher susceptibility to a hypoxic coma of 

seasonal individuals may increase the necessity of these beetles to avoid submergence. 

Most important, the different responses of both ecotypes can be interpreted as an 

adaptation towards the different hydrological regimes that simultaneously and directly 

acts as a reproductive barrier through spatial sorting of individuals in their respective 

habitat. This process wherein an adaptive trait results in non-random habitat use and, 

therefore, assortative mating among individuals adapted to the same habitat has been 

referred to as matching habitat choice (Edelaar et al. 2008, Edelaar & Bolnick 2012). Indeed, 

escape behavior during inundations can be considered to be an adaptive response in 

habitats that are unpredictably flooded for several months, as is the case for seasonal 

marshes (i.e. pond habitat in the Guérande). Hence, when these beetles end up in nearby 

tidal marshes, dispersal out of these habitats is expected during tidal floods. 

Alternatively, remaining submerged during floods is likely adaptive in tidal habitats (i.e. 

canal habitat in the Guérande) as beetles do not face predation risks by repeated escape 

behavior during these frequent and short inundations that can easily be survived as 
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shown by our experiments. This absence of escape behavior is in contrast highly 

detrimental during long term inundations.  

 

This mechanism, wherein a single phenotypic trait (i.e. escape behavior) involved in 

adaptation towards these habitats can readily and directly result in spatial separation, 

could be a key mechanism promoting reproductive isolation in this system. 

Furthermore, this behavioral differences between individuals from seasonal and tidal 

marshes may result in similar patterns of habitat preference as described, for instance, in 

phytophagous insects (Fry 2003). In these phytophagous insects, different preference 

alleles are argued to be associated with alleles that are oppositely selected on different 

hosts resulting in reproductive isolation between these races (Hawthorne & Via 2001). 

However, in contrast to the mechanism presented in phytophagous insects, the 

mechanism presented here suggests a simple and direct link between divergent selection 

(hydrology) and spatial sorting (i.e. escape behavior). From an ecological perspective, 

this trait could, hence, be classified as an automatic magic trait in which a trait affects 

both performance and assortative mating (Servedio et al. 2011). However, the genetic 

basis of this trait is unknown and may be affected by maternal effects as well as habitat 

experience during larval or early life stages. 

In conclusion, our study showed clear behavioral differences to inundation between P. 

chalceus populations. These behavioral differences are argued to play an important role 

as a mechanism resulting in spatial sorting and reproductive isolation, which provides 

an explanation for the persistence of distinct ecotypes in sympatric settings. 
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ABSTRACT 
Genetic habitat preferences can play an important role as a reproductive barrier between 

sympatric ecotypes. However, a possibility that has received much less attention is that 

individuals may develop a preference for the habitat they experienced at a young age. 

Such natal habitat preference may easily result in spatial sorting of individuals that 

experienced different environmental conditions and, hence, quickly lead to assortative 

mating within habitats. Ecotypes of the ground beetle Pogonus chalceus likely mate 

assortatively through spatial sorting by habitat preference, which results from 

alternative dispersal responses to environmental (inundation) cues present in tidal and 

seasonal habitats. In this study, P. chalceus larvae and pupa from Guérande canal and 

pond populations were reared under different hydrological regimes, simulating 

environmental differences between tidal and seasonal habitats. Adults of both ecotypes 

that were exposed to frequent but short inundations showed a significantly lower 

response to escape these inundations in the adult stage. However, these effects changed 

after consecutive exposure to inundation. Besides, we also found strong indications that 

responses to inundation have a genetic component as seen by the consistently higher 

water reluctance of seasonal beetles. These indications of natal habitat experience may 

have important consequences for both the evolution and persistence of sympatric races 

in P. chalceus. 

 

 

 

INTRODUCTION 
When disruptive selection favors ecological specialization on two different habitats, 

habitat preference can be an important mechanism for the occurrence of sympatric 

speciation (i.e. speciation in the absence of a geographical barrier). If sympatric 

speciation occurs via the evolution of a genetic habitat preference, the genes involved in 

habitat preference need to become associated with genes that affect performance in the 

habitats (Dieckmann & Doebeli 1999, Fry 2003, Beltman & Metz 2005, Thibert-Plante & 

Gavrilets 2013). This association can result from the evolution of linkage disequilibrium 

of the assortative mating and performance genes (Dieckmann & Doebeli 1999), from 

physical linkage of the assortative mating and performance genes (Hawthorne & Via 

2001) or through pleiotropy in which one trait affects both assortative mating and 

performance (Servedio et al. 2011). Alternatively, a largely neglected mechanism in the 

emergence of an association between performance and habitat choice is through the 

effect of natal habitat preferences (Davis & Stamps 2004, Beltman & Metz 2005). Here, 
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individuals develop a preference for the habitat that they have experienced as 

immatures, which most often constitutes the habitat wherein females oviposit. 

Accidental or forced niche shifts will then result in assortative mating of individuals 

raised in the same habitat as well as preference to produce offspring in this habitat. Two 

hypotheses address the possible adaptive significance of natal habitat preference 

(Stamps 2001). First, the habitat cuing hypothesis suggests that dispersing individuals can 

quickly and efficiently locate suitable habitat based on stimuli comparable to those in the 

natal habitat. Alternatively, the preference-performance hypothesis suggests that it is 

beneficial to select a habitat of the same type as the natal habitat to which the 

phenotypes are likely adapted. 

Speciation through the evolution of a natal habitat preference is expected to be an 

effective mechanism because it may represent a one-allele mechanism (Felsenstein 1981). 

That is, alleles that affect learning have the same effect in both habitats, hence, resolving 

the problem of evolving an association between assortative mating and performance 

genes. In contrast, speciation through the evolution of a genetic habitat preference is a 

two-allele mechanism in which different alleles promote assortative mating among 

different populations (Felsenstein 1981). Simulation models have shown that natal 

habitat preferences can quickly and easily lead to the formation of sympatric races 

(Beltman et al. 2004, Beltman & Haccou 2005, Beltman & Metz 2005, Ravigné et al. 2009). 

Interestingly, this theoretical mechanism easily explains the colonization of new niches, 

and is thus of particular relevance in the context of eco-evolutionary mechanisms of 

adaptation to novel habitats. Despite that the ecological implications have long been 

recognized (Maynard Smith 1966, Immelmann 1975), relatively few empirical studies 

have observed natal habitat preferences (reviewed in Davis and Stamps 2004) and tested 

how effective and plausible this mechanism is for speciation in natural systems. One 

important example of natal habitat preference involved in speciation includes imprinting 

on hosts in brood parasitic indigobirds (Sorenson et al. 2003). As adults, male indigobirds 

mimic host song, whereas females imprint on these songs to choose both their mates and 

the nests they parasitize (Payne et al. 2000). It is found that these behavioral mechanisms 

promote the association of indigobird populations with a given host species, and 

provide a mechanism for reproductive isolation after a new host is colonized. Scarce 

other examples in which natal habitat learning has been found include odor learning in 

parasitoid wasps (Smith & Cornellt 1979, Cortesero et al. 1995, Storeck et al. 2000, Kaiser 

et al. 2003). However, in the latter examples it is unclear whether this mechanism may be 

involved in maintaining the association of races with their hosts (Smith & Cornellt 1979). 

 

We previously demonstrated the existence and importance of spatial sorting resulting 

from disruptive selection on traits that affect dispersal upon inundation in the 
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sympatrically diverging beetle Pogonus chalceus (Chapter 6). This beetle inhabits two 

distinct types of marshes; tidal and seasonal marshes. Tidal marshes are year-round 

flooded on a regular basis, but for short periods of at maximum a few hours only. 

Seasonal marshes are disconnected from the sea and are permanently inundated for 

extensive time periods. Tidal and seasonal marshes are generally inhabited by, 

respectively, short- and long-winged P. chalceus beetles (Van Belleghem & Hendrickx 

2014). In some areas, such as the Guérande salterns in France, both habitats are found in 

multiple replicates only 10-20 m apart (Dhuyvetter et al. 2007). In these salterns, ponds are 

used to evaporate water and concentrate salt and resemble seasonal marshes in that they 

are flooded irregularly for extensive periods. Canals, on the other hand, are used to bring 

water to the ponds and are subject to the tides. The different hydrological regimes 

present in the habitats likely serve as cues to which populations from tidal and seasonal 

marshes respond differently. More precisely, individuals from tidal marshes tend to stay 

submerged more frequently and longer compared to individuals from seasonal marshes 

which tend to be more reluctant to submergence (Chapter 6). These behavioral 

differences likely result from disruptive selection and, moreover, are expected to result 

in spatial sorting and assortative mating in the respective habitats and, hence, likely are 

an important mechanism for the preservation of distinct P. chalceus ecotypes in 

sympatric settings. 

In this chapter, we shortly explore the possibility of natal habitat experience affecting 

beetles’ response to inundation. If significant effects of natal habitat experience on traits 

involved in spatial sorting (and assortative mating) exist in P. chalceus, this may be an 

important factor influencing repeated colonization of new and distinct habitats and local 

adaptation. 

 

 

 

MATERIALS & METHODS 

REARING AND EXPOSURE TO DIFFERENT HYDROLOGICAL 

REGIMES 

Eggs from adults sampled in the field in both tidal (canal habitat) and seasonal (pond 

habitat) marshes at the Guérande were raised in the lab and emerging larvae and pupae 

were reared in a common-garden set-up simulating the exposure to different 

hydrological regimes during development. One group of pond and one group of canal 

individuals were not exposed to inundation during their development, while a second 

set of pond and canal individuals experienced inundation for 30 min each two days 
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during larval and pupal development. If more than one egg was raised from the same 

female, the progeny was evenly divided over the different exposure experiments. After 

eclosion these adult beetles were tested for their response towards inundation.  
 

 

INUNDATION EXPERIMENT 

To simulate inundation, beetles were kept in a sealed plastic cup containing plaster. The 

plaster was hollowed out at the bottom and this open space was accessible through a 

central corridor from the top to the bottom (Figure 42 in Chapter 6). At the side there 

was a small groove which allowed adding brackish water in a drop wise fashion to 

simulate inundation. Adding water through the groove insured that no air bubbles 

would persist under the plaster in which the beetles could reside after the flooding. 

During the simulated inundation event, the behaviour of the beetles was observed and 

timed using a stopwatch. We noted the following behaviours: (i) presence or absence of 

escape behaviour upon flooding and (ii) time until beetles reach the surface for taking 

air. For each test, three trials were performed, separated by approximately one week and 

using the same beetles.  
 

Differences in behavioural response were compared between Guérande canal and pond 

ecotypes that were subjected to different hydrological regimes during larval and pupal 

development. We compared the proportion of individuals that expressed immediate 

escape behavior compared to the individuals that remained submerged upon inundation 

by means of a generalized linear model assuming a binomial distribution and a logit link 

function (Proc GENMOD, SAS v 9.4) and tested the significance of the factors habitat 

(pond versus canal), larval environment (inundated versus dry), trial and their 

interactions as fixed effects by means of a likelihood ratio test. For individuals that 

stayed submerged, the average time they spent under water was compared using a 

General Linear Model (Proc GLM, SAS v9.4) on log transformed data with a Type 3 

sums of squares analysis.  
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RESULTS 
In total, we raised 15 (from 11 females) offspring from Guérande canal beetles under dry 

conditions and 13 (from 9 females) under frequently inundated conditions. Additionally, 

offspring from 19 (from 14 females) Guérande pond beetles were raised under dry 

conditions and 18 (from 14 females) under frequently inundated conditions. Ecotype 

significantly affected the proportion of beetles that remained submerged upon 

inundation (habitat: χ2 = 10.35; P = 0.001). More precisely, individuals from the tidal 

canal habitat consistently had a higher probability of remaining submerged during 

inundations (Figure 48). Considering all three trials, we did not find a consistent effect of 

treatment on the proportion of beetles that remained submerged upon inundation. In 

contrast, we found that the effect of treatment significantly differed between consecutive 

trials (treatment*trial: χ2 = 9.39; P = 0.009). Moreover, considering only the first trial, we 

did find a significant effect of treatment on the proportion of beetles that remained 

submerged (treatment trial 1: χ2 = 5.73; P = 0.017). More precisely, in the first trial, beetles 

raised in an inundated environment had a significantly lower propensity to escape 

inundations in the first trial. Also, in the first trial, no significant habitat effect was 

observed. In the second trial, the effect of treatment was also significant, but reversed 

(treatment trial 2: χ2 = 7.85; P = 0.005). Further, the canal and the pond ecotypes did 

significantly differ in their response in the second trial (habitat: χ2 = 9.42; P = 0.002). 

Moreover, the canal and pond populations responded significantly different to the 

treatment (treatment trial 2*habitat: χ2 = 5.12; P = 0.024). Finally, in the third trial, we 

only found a significant effect of habitat on the proportion of beetles that remained 

submerged (habitat: χ2 = 5.12; P = 0.024). 

 

The time individuals remained submerged significantly differed according to the 

population of origin, with canal individuals remaining submerged for a significantly 

longer time (habitat: F7,159 = 51.99; P < 0.0001; Figure 49). Interestingly, treatment 

significantly affected submergence time, with individuals raised in a frequently 

inundated environment staying submerged for a longer time (treatment: F7,159 = 4.02; P = 

0.047). This effect was consistent over all three trials (trial*treatment = NS). Further, 

treatment did not affect populations differently (treatment*habitat = NS). Finally, the 

submergence time of populations differed significantly between trials (trial*habitat: F7,159 

= 3.63; P = 0.029). 
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Figure 48. Proportion of P. chalceus beetles from Guérande canal (tidal) and pond (seasonal) habitat 

raised under different hydrological regimes that remained submerged upon inundation.  

 

 

 

 
 

Figure 49. Duration of submergence of P. chalceus beetles raised under different hydrological 

regimes that remained submerged upon inundation. Error bars represent standard errors.  
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DISCUSSION 
Our experiments established that (i) natal habitat experience may influence differences 

in response to inundation between tidal canal and seasonal pond populations, but that 

(ii) there is likely also a genetic component as seen by the consistently higher water 

reluctance of beetles from seasonal habitats. 

 

Rearing the larvae and pupae in a frequently inundated versus a non-inundated 

environment significantly affected the adult beetles’ response to inundation, both for 

individuals from tidal canal and seasonal pond habitats. Further, the effect of treatment 

significantly differed between consecutive trials. During the first exposure to inundation, 

beetles that were subjected to frequent inundation tended to stay submerged more 

frequently and for a longer time period, both for individuals from tidal canal and 

seasonal pond habitats. However, in the subsequent trial this pattern was reversed and 

disappeared in the final trial. Changes in the effect of natal experience have also been 

found in the parasitoid wasp Leptopilina boulardi (Kaiser et al. 2003). This species has been 

found to condition on odor when looking for Drosophila larvae to oviposit in. 

Furthermore, it has been shown that the conditioning of an association between odor 

and ovipositioning strongly depends on the number of conditioning trials and decreases 

during consecutive testing trials. Altogether, this results in highly plastic responses to 

cues in this wasp species. Additionally, the habitat of origin significantly affected both 

the proportion of P. chalceus beetles that stayed submerged upon inundation as well as 

the time they stayed submerged. As previously found, individuals from the seasonal 

pond habitat escape inundations with higher probability compared to tidal canal 

individuals (Chapter 6). This suggests a genetic component affecting response to 

inundation. However, maternal effects have not been controlled for in this study. 

 

Determining the importance of natal habitat experience for the initial colonization and 

speciation event is a daunting task. When individuals initially colonize a new habitat, 

learning processes may be the most important factor keeping populations in their 

respective habitats. However, as time progresses and populations adapt, these learning 

processes may become accommodated by genetic differences which strengthen the 

association of the adapted phenotypes with their environments (West-eberhard 2003). 

This may partly explain why few examples exist that link this mechanism to speciation 

despite that natal habitat preference could strongly facilitate phenotype-habitat 

matching. 

Moreover, it has been argued that the intensity of selection on learned preferences is 

lower than on genetic preferences (Beltman & Metz 2005). This can be understood by 
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considering individuals that are adapted to habitat A ending up in habitat B to which 

they are less adapted. In case of learned habitat preferences, the offspring of these 

dispersers, adapted to habitat A, will be more likely to stay and produce their offspring 

in habitat B (the ‘wrong’ habitat). However, the offspring of the dispersers would do best 

by producing their offspring in habitat A, but this is only achieved when they would 

have a genetic habitat preference. In contrast, genetic preferences necessitate the 

evolution of an association between preference and performance genes. Interestingly, in 

pea aphids, early experience is known not to influence habitat preference (Via 1991) and 

genes for habitat choice and ecological adaptation appeared to be closely linked or 

influenced by the same gene (Hawthorne & Via 2001). 

 

In conclusion, finding significant effects of natal environment on response to inundation 

in P. chalceus despite the relatively low sample number implies that this effect is 

substantial and may be of particular importance in P. chalceus during colonization and 

subsequent differentiation.  
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GENERAL DISCUSSION 

 

Steven M. Van Belleghem 

 

 

Investigating the genetic and behavioral aspects of population differentiation in the 

ground beetle Pogonus chalceus led to the identification of several factors and mechanism 

that have important implication for understanding the evolution of adaptation and 

ultimately the origin of reproductively isolated populations in this beetle species. The 

peculiarity of this study system resulted from finding differentiation in multiple traits 

(i.e. wing and body size and allozymes of the mtIDH protein) between populations that 

are not separated by any geographical barriers. Moreover, we found that wing size is 

strongly genetically determined in these sympatric populations and that genes involved 

in wing size are likely not genetically linked to the mtIdh locus (CHAPTER 1). 

Additionally, by studying the genome-wide pattern of differentiation (CHAPTER 5), we 

identified a genomically widespread set of unlinked outlier loci associated with ecotypic 

differentiation. This strongly invokes the selection-migration antagonism because 

recombination is expected to result in maladapted gene combinations when gene flow is 

high. Therefore, we looked for ecological and genetic factors that may facilitate 

sympatric divergence and/or reduce gene flow or recombination. First, we found that the 

differentiation in the mtIdh locus has a single origin (CHAPTER 2). This singular 

evolution may have provided building material for rapid and recurrent sympatric 

divergence. However, understanding the evolutionary history of this locus in high detail 

necessitates detailed knowledge of historic rates of gene flow, population size and 

selection strengths. Next, most of the identified outlier SNPs as well as the mtIdh allele 

associated with short-winged populations from tidal habitats have reduced nucleotide 

diversity (π) compared to SNPs associated with the long-winged populations form 

seasonal habitats, indicating a relatively recent increase to high frequencies and a similar 

evolutionary histories of the SNPs associated with the tidal habitats (CHAPTER 2, 

CHAPTER 5). Finally, by studying behavioral variation in the response to inundation, 

we identified a mechanism that may result in spatial sorting and, hence, assortative 

mating and reproductive isolation between individuals from differently selected 

populations (CHAPTER 6-7). Here, I discuss implications of these findings for the 

interpretation of the P. chalceus evolutionary system, delineate the evolutionary 

processes and mechanisms involved in the differentiation and persistence of P. chalceus 

ecotypes and, finally, discuss future prospects.  
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GENOMICALLY WIDESPREAD ADAPTATION IN P. CHALCEUS 

Ecotypic divergence in P. chalceus is associated with local adaptation in multiple genetic 

traits. First, Wing size and allozymes of the mtIDH protein were previously found to be 

strongly correlated with habitat stability (Dhuyvetter et al. 2004). These traits are likely 

associated with hydrological dynamics in the habitats (i.e. tidal versus seasonal 

marshes). Additionally, we demonstrated that for a sympatric setting, wing size has a 

high heritability, comparable to heritability estimates found in allopatric populations, 

and that genes involved in wing size are likely not closely linked to the adaptation 

associated with the mtIdh locus (CHAPTER 1). Next, we demonstrated that local 

adaptation also resulted in behavioral differences in response to inundation between the 

habitats (CHAPTER 6). These differences likely have a genetic component as raising 

beetles in common environments still express behavioral differences according to their 

original habitat. Finally, using RAD tag sequencing, we identified multiple unlinked loci 

that are strongly differentiated between sympatric populations (CHAPTER 5). Therefore, 

altogether ecotypic divergence in P. chalceus seems to be genomically widespread, even 

between sympatric populations. However, it is argued that adaptive divergence in 

multiple loci between sympatric populations suffers from the antagonism between 

recombination and selection (Felsenstein 1981). Therefore, models of speciation in 

sympatry usually make stringent assumptions (Kirkpatrick & Ravigné 2002), which may 

potentially result in widespread genomic differentiation if they result in a reduction of 

gene flow and/or recombination. These assumptions include a source of disruptive 

selection, an isolating mechanism and a link between disruptive selection and the 

isolating mechanism. Furthermore, the genetic basis of the traits affected by disruptive 

selection and/or the traits involved in reproductive isolation has important implications 

for the evolution of reproductive isolation (GENERAL INTRODUCTION). In the 

following section, the possible effects of these assumptions are discussed and related to 

sympatric divergence in P. chalceus. 

 

 

MECHANISMS MAINTAINING DIVERGENCE IN SYMPATRY  

Here, I discuss mechanisms that may affect the evolution and persistence of population 

differentiation in P. chalceus despite the ample opportunity of gene flow between the 

ecotypically diverged populations (Figure 50).  
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Figure 50. Overview of the evolutionary processes and mechanisms involved in the differentiation 

and persistence of P. chalceus ecotypes. 

 

 

SOURCE OF DISRUPTIVE SELECTION Differences in hydrological dynamics most 

likely provide a major source of disruptive selection. Tidal and seasonal habitats differ 

strongly in the duration of inundation, with tidal habitats flooded frequently for short 

periods (5-6h) and seasonal habitats flooded for extensive periods (months). Remaining 

submerged during floods is likely adaptive in tidal habitats as beetles do not face 

predation and mortality risk by repeated escape behavior during these frequent short 

inundations that can easily be survived as shown by our experiments (CHAPTER 6). The 

absence of escape behavior is in contrast highly detrimental during long term inundation 

in seasonal marshes. Hence, these differences can be expected to exert strong opposing 

selection pressures, with seasonal habitats selecting for dispersal and a resident strategy 

selected in tidal marshes. Consequently, differences in hydrological regime have 

resulted in adaptive differences between beetles from tidal and seasonal marshes. One 

set of adaptations includes performance in the habitats, with a higher susceptibility to a 

hypoxic coma and longer recovery time in beetles from seasonal habitats (CHAPTER 6). 

Additionally, the differences in hydrological regime likely also select variation in 
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dispersal ability as beetles are forced to disperse from the seasonal habitats. 

Interestingly, this adaptation also includes different dispersal behavior to a similar cue 

(CHAPTER 6). More precisely, P. chalceus beetles from tidal marshes are less reluctant to 

inundation and can survive the inundations staying submerged. This is also observed in 

the field when tides rise and quickly flood large areas. The beetles stay buried in the 

sand and most likely use air bubbles under their elytra or stay in small air pockets (e.g. 

under shell particles) during the inundation (personal observation). Alternatively, 

inundation in seasonal marshes serves as a cue to escape these detrimental flooding 

conditions.  

 

ISOLATING MECHANISM Reproductive isolation likely results from spatial sorting in P. 

chalceus. We demonstrated that beetles from seasonal habitats tend to escape inundation 

events. This is expected to result in spatial sorting as these beetles from seasonal habitats 

should avoid habitats that are frequently inundated whereas beetles from tidal habitats 

remain in these habitats. Consequently, the spatial sorting is expected to result in 

assortative mating and, consequently, in a reduction of gene flow (i.e. reproductive 

isolation). This reduction in gene flow is expected to be strong, as for instance all 48 

individuals from the canal and pond population sampled for the RAD tag sequencing 

were assigned to a genetic cluster matching their habitat (CHAPTER 5). Furthermore, 

previous sampling in the Guérande canal and pond habitats resulted in only 1% – 1.5% 

out of 404 individuals found in the wrong habitat (based on wing size and mtIDH 

genotype; Dhuyvetter et al. 2007). Hence, this mechanism may be expected to aid 

disruptive selection in maintaining divergence in multiple genetically unlinked loci, 

while gene flow may be high enough to swamp or mix neutral variation. In contrast, 

assortative mating resulting from mate preference so that each morph mates 

preferentially with similar individuals (e.g. based on body size; Conde-Padín et al. 2008) 

has not been found in P. chalceus. Mating in P. chalceus seems little discriminative and 

most likely takes place within their habitat (CHAPTER 6). 

 

LINK BETWEEN DISRUPTIVE SELECTION AND ISOLATING MECHANISM The link between 

disruptive selection and reproductive isolation is obvious in P. chalceus as selection for 

alternative behaviors results in spatial sorting and, consequently, assortative mating 

within the habitats and partial reproductive isolation. Hence, we argue that the effect of 

selection is related directly to the isolating mechanism. More precisely, genes that affect 

habitat choice also directly influence assortative mating in P. chalceus. Therefore, 

reproductive isolation may be evolving automatically as a result of selection to the 

divergent environments. Such traits are referred to as automatic magic traits (Servedio et 

al. 2011). Moreover, besides a genetic component, we also demonstrated significant 
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effects of the habitat experienced by the larval stages on the adult behavior (CHAPTER 

7). Such natal habitat preferences may easily result in the evolution of reproductive 

isolation between differently selected populations (Davis & Stamps 2004, Beltman & 

Metz 2005). 

 

GENETIC BASIS It is a comprehensive task to determine the genetic basis that links 

selection to assortative mating. Most importantly, as reproductive isolation progresses, 

populations will diverge in multiple loci (Wu 2001b, Hendry et al. 2009). Hence, as 

populations differentiate, finding the loci that are directly involved in reproductive 

isolation becomes increasingly difficult from genomic comparisons. Indeed, we found 

multiple diverged loci in P. chalceus, but it is difficult to infer whether these directly 

influence reproductive isolation, or, conversely, whether reproductive isolation allows 

these multiple genomic regions to diverge. Quantitative Trait Loci (QTL) mapping using 

second generation (F2) crosses of individuals from contrasting habitats might help to 

identify the genetic basis of reproductive isolation (Kronforst et al. 2006, Nosil & Schluter 

2011, Van Ooijen & Jansen 2013). Nevertheless, it is reasonable to suggest that genomic 

architectures that suppress recombination are expected to facilitate coupling of genetic 

adaptations and, hence, speciation in P. chalceus. If natal habitat experience has a major 

influence on adult habitat preferences, the same allele may increase isolation in both 

habitat types. This could then potentially be classified as a one-locus, one-allele 

mechanism, which very easily solves the selection-recombination antagonism 

(Felsenstein 1981). However, one-allele mechanisms are difficult to detect as they do not 

leave a population-specific genetic signature in the genome at the primary isolation 

locus (Seehausen et al. 2014). Only if they arise during speciation they would be 

detectable as sweeps that are shared by both diverging populations (Seehausen et al. 

2014). To date, this has not been detected in any case to our knowledge. Alternatively, if 

habitat preference (~ reluctance to inundation) is strictly determined by different alleles 

in both populations (i.e. one-locus, two-alleles mechanism), recombination is expected to 

break up the association between the habitat preference locus and performance genes 

and, therefore, close genetic linkage might be expected. However, it may also be argued 

that when multiple loci are involved in habitat preference and adaptation, the chance of 

correlation between several of these traits increases, which can result in an association 

between habitat preference and habitat performance, leading to the onset of sympatric 

adaptation and speciation (Feder et al. 2012b, a). 
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P. CHALCEUS ALONG THE SPECIATION CONTINUUM 

It is difficult to infer whether the distinct ecotypes represent a stable outcome versus an 

intermediate state that is bound to progress to complete reproductive isolation. 

Important elements for speciation in sympatry are present in P. chalceus. More precisely, 

incipient reproductive isolation is evident and likely allows populations to diverge in 

multiple genetically unlinked traits. However, given the incipient stage of speciation in 

P. chalceus, intrinsic postzygotic barriers (genetic incompatibilities that are independent 

of the environment) have likely not evolved as they usually evolve later in the speciation 

process (Seehausen et al. 2014). Therefore, isolating barriers depend mostly on disruptive 

selection (i.e. selecting against intermediate phenotypes) and a mechanism resulting in 

assortative mating in P. chalceus and the absence of intrinsic postzygotic barriers would 

allow high rates of hybridization in the absence of disruptive selection. 

 

 

EVOLUTION OF P. CHALCEUS ECOTYPES 

The evolution of distinct ecotypes despite gene flow has been found in multiple species 

(e.g. Johannesson et al. 2010; Cristescu et al. 2012; Drotz et al. 2012; Butlin et al. 2013). In 

these study systems, conflicting patterns in neutral and selected genes can either be 

explained by initial divergence in allopatry followed by secondary overlap and extensive 

introgression that homogenizes neutral differences evolved under allopatry, or by 

repeated evolution in sympatry, with the same ecotypes appearing in each local site (Faria et 

al. 2014). From a genetic perspective, repeated evolution of ecotypes can result from 

separate parallel mutations in the (i) same gene or (ii) different genes, or may have a single 

origin and result from (iii) shared ancestral polymorphisms (i.e. standing genetic 

variation) or (iv) introgression in which a new positive mutation spreads rapidly among 

populations inhabiting similar habitats (Johannesson et al. 2010). Considering the 

evolution of the long- and short-winged ecotypes found in P. chalceus, these scenarios 

can be described as follows: (i) a single and allopatric origin of the short-winged ecotype 

in tidal marshes that spread along the Atlantic coasts and hybridized with the long-

winged ecotype (Figure 51A), (ii) different adaptive traits evolved in different short-

winged tidal populations and rapidly introgressed into other tidal populations (Figure 

51B), and (iii) the short-winged ecotype has evolved repeatedly in each location (Figure 

51C). Notably, different genes and adaptations may correspond to different scenarios. 
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Figure 51. Different scenarios depicting the evolutionary history of the P. chalceus ecotypes. (A.) The 

short-winged ecotype inhabiting tidal marshes evolved only once and spread along the Atlantic 

coast. (B.) Different adaptive traits evolved in different tidal populations and introgressed into other 

tidal populations. (C.) Ecotypes have evolved de novo in each location and are being maintained by 

spatially heterogeneous balancing selection. 

 

 

Considering the mitochondrial NADP+-dependent isocitrate dehydrogenase (mtIdh) gene 

we found strong indications that the adaptation associated with this locus has a single 

origin (CHAPTER 2). Additionally, all outlier loci associated with the tidal and seasonal 

habitats identified from the RAD tag sequencing were shared between the repeatedly 

adapted populations (CHAPTER 5). This demonstrates that for these loci or traits, 

adaptations did not evolve de novo within each location, but evolved once and spread to 

other locations. Whether this adaptive variation results from standing genetic variation 

or introgression is difficult to distinguish and partly depends on the definition of these 

concepts and the proportion of individuals being exchanged between populations. For 

instance, if many individuals are being exchanged or colonize new locations, the spread 

of adaptive alleles could be considered as resulting from ancestral polymorphisms 

present in the populations (i.e. standing genetic variation). Oppositely, when low rates of 

migration are considered between established populations, the spread of adaptive alleles 

could be considered as resulting from introgression of adaptive alleles from one 

population into the other. 

The mtIdh locus and most outlier loci had a strongly reduced genetic diversity among the 

haplotypes associated with the allele most frequent in the tidal habitats. This is in 

accordance with a recent spread or selective sweep of these loci along the Atlantic coasts. 

Moreover, as all these loci show a similar evolutionary history it is reasonable to suggest 

that the short-winged ecotype has (for a large part) spread recently and adaptation can 
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therefore be argued to largely result from ancestral polymorphism (Figure 51A), rather 

than from introgression of adaptive traits with different evolutionary histories (Figure 

51B). Further, we found a deep divergence between the differently selected mtIdh alleles 

as well as between several outlier loci. As inferred from comparing coalescent 

simulations to mtIdh variation (CHAPTER 2), these deep divergences may result from 

evolution in a partially isolated subpopulation, suggesting a possible isolated origin of 

the short-winged ecotype. Additionally, looking at Fst values, we also found indications 

of adaptation unique to the localities, indicating either different selective pressures or 

unique de novo adaptation within these localities (Figure 51C). Furthermore, a few outlier 

loci showed a markedly different evolutionary history compared to the evolutionary 

history suggested by the recently spread outlier loci, which may emphasize the 

importance of introgression of adaptive traits from different populations. 

 

The geographical origin of the ecotypes or adaptations has not been inferred. Divergence 

time estimation of the mtIdh alleles suggests an age between 0.047 and 0.165 MY ago. 

Hence, this divergence may predate the end of the last glacial period which occurred 

approximately 0.01 ago. However, it should be noted that this estimation corresponds to 

the age of the haplotypes and the adaptive mutation might have evolved more recently. 

Nevertheless, the preservation of relatively deep divergence between the mtIdh alleles 

(CHAPTER 2) likely suggests population subdivision which may predate the end of the 

last glacial period. This is strengthened by finding deep divergences between differently 

selected haplotypes in most identified outlier loci (CHAPTER 5). However, divergence 

times between haplotypes have not been estimated in these loci. 

 

 

ALLOPATRY AS A DRIVER FOR SYMPATRIC DIVERGENCE  

It can be argued that an initial evolution of complex adaptations in allopatry can 

facilitate evolution and persistence in sympatry after secondary contact. First, when 

populations diverge in allopatry, they are less constrained by high rates of potentially 

maladaptive gene flow (Lenormand 2002). Next, when the adapted ecotypes spread to 

other locations, adaptive variation is readily available (Barrett & Schluter 2008). Finally, 

genetically unlinked traits may be in linkage disequilibrium when they spread to other 

locations. For instance, in P. chalceus, the difference in behavioral response to inundation 

which is expected to result in spatial sorting and reproductive isolation between 

sympatric populations is also present between allopatric populations. When the ecotypes 

from tidal and seasonal habitats come into close contact, such as in the France Guérande 

or Portuguese Aveiro salterns, the genes responsible for these behavioral differences are 

likely in linkage disequilibrium with genes adapted to the habitat. This preexistence of 
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linkage disequilibrium between performance and assortative mating traits upon 

secondary contact is expected to promote the preservation of the distinct ecotypes in 

sympatry (see for instance the necessity for buildup of linkage disequilibrium for 

sympatric speciation; Fry 2003). Given the ample evidence of reuse of standing genetic 

variation and/or introgression and the possible isolated evolution of several adapted 

loci, this factor may be an important driver for the repeated occurrences of sympatrically 

diverged populations in P. chalceus. 

 

 

P. CHALCEUS – COMPARISON WITH EVOLUTIONARY MODEL 

SYSTEMS 

Studying individual evolutionary systems has provided pivotal insights to understand 

the effect of genetic and ecological factors on adaptation and speciation. However, 

comparing different groups of species is important as individual systems generally allow 

addressing only subsets of the ecological and genetic factors. Moreover, different species 

groups have shown to follow alternative evolutionary trajectories (e.g. parallel 

adaptation from ancestral polymorphism versus new mutations, genetic linkage versus 

genomically widespread adaptation, etc.) and it is important to obtain general patterns 

by comparing evolutionary study systems to fully understand the effect of ecological 

and genetic factors involved in adaptation and speciation. 

The evolutionary trajectory we identified in P. chalceus suggests a largely singular and 

allopatric origin of the derived short-winged ecotype (i.e. deep divergence, singular 

origin and similar evolutionary history of adaptive loci), which subsequently spread 

along the Atlantic coasts and hybridized with the long-winged ecotype and obscuring 

the signatures of events at neutral loci. Both an allopatric origin as well as the existence 

of an isolating mechanism is argued to explain the observed genomically widespread 

differentiation in P. chalceus. In the following section, several evolutionary study systems 

are discussed to highlight similarities and differences of the insights gained from 

studying P. chalceus. 

 

STICKLEBACKS Studies on threespine stickleback (Gasterosteus aculeatus) have 

demonstrated extensive reuse of standing genetic variation in the repeated evolution of 

distinct marine and freshwater stickleback (Colosimo et al. 2005, Schluter & Conte 2009, 

Jones et al. 2012). In respect to these finding, Schluter and Conte (2009) proposed the 

‘transporter hypothesis’ in which marine threespine stickleback populations contain 

numerous freshwater-adapted alleles that have been acquired by introgressive 

hybridization with freshwater stickleback and reassembled when fresh water habitats 
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are colonized (Schluter & Conte 2009). These freshwater-adapted alleles are suggested to 

have been disaggregated into the genetic background of marine stickleback by 

backcrossing. As each member of the marine population carries only a very small 

number of freshwater alleles, these alleles are expected to have little effect on the total 

fitness of marine stickleback. When marine stickleback colonize fresh water habitats, the 

freshwater-adapted alleles will quickly rise in frequency and result in fast adaptation by 

reuse of standing genetic variation. Moreover, many freshwater alleles have been found 

to be recessive compared to marine alleles (Bell & Aguirre 2013). Recessiveness will 

reduce selection against freshwater-adapted alleles in oceanic populations and when 

these alleles are present at low frequencies, homozygotes for disadvantageous but 

recessive freshwater-adapted alleles will rarely be expressed and experience selection in 

marine populations. Moreover, many genes that have been repeatedly selected to high 

frequencies in freshwater habitats are clustered into several genomic regions (i.e. blocks 

of linked alleles) and sometimes contained within inversions (Hohenlohe et al. 2010a, 

Jones et al. 2012). Linkage of adaptive alleles has been suggested to be favored during the 

radiation of freshwater stickleback. This is because alleles that are physically linked to 

other freshwater-adapted alleles would covary among individuals and increase more 

rapidly in frequency due to direct selection as well as hitchhiking on linked alleles that 

are favored by selection. This selection for linkage among freshwater-adapted alleles is 

suggested to occur episodically after freshwater colonization (Bell & Aguirre 2013). 

Selection on freshwater adapted traits encoded by these blocks of linked alleles that are 

maintained in low frequency in marine populations through introgressive hybridization 

helps explain the repeated and predictable evolution of threespine stickleback (Bell & 

Aguirre 2013).  

As the short-winged ecotype of P. chalceus is less dispersive, it might be speculated that 

alleles adapted to the tidal habitats may have been disaggregated into the genetic 

background of long-winged individuals from seasonal habitats in accordance to the 

transporter hypothesis. Partial disintegration (and possibly recessiveness) of short-

winged or tidal adapted alleles into seasonal long-winged populations and subsequent 

repeated reassembly may have helped in the recent spread of the short-winged ecotypes 

along the Atlantic coasts. This may have happened after a singular origin of the short-

winged tidal ecotype resulting in a largely similar evolutionary history of the short-

wing-adapted alleles. In stickleback, the evolutionary origin of freshwater alleles 

remains at present little explored. However, invoking the transporter hypothesis 

suggests the high possibility of different evolutionary origins of freshwater alleles in 

stickleback. In further contrast to stickleback, we did not find any blocks of linked alleles 

in P. chalceus. However, these may have been missed due to sparse sampling of genomic 

variation. 
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Finally, several mechanisms have been suggested that result in reproductive isolation 

between stickleback populations. One set of mechanisms describes differences in female 

mate preference for size and shape between limnetic and benthic populations (Head et 

al. 2013). In P. chalceus, we did not find significant indications of mate preference 

between individuals from tidal and seasonal habitats (CHAPTER 6). Additionally, natal 

habitat preference has been shown to reduce migration between parapatric lake and 

stream stickleback by 76 % and increases the extent of adaptive divergence between 

populations (Bolnick et al. 2009). Similarly, natal habitat preference may play an 

important role in the evolution and preservation of distinct ecotype in P. chalceus as it 

provides a mechanism for rapid evolution of reproductive isolation (CHAPTER 7). 

 

HELICONIUS BUTTERFLIES  Passion-vine butterflies (Heliconius) have radiated 

into an extraordinary evolutionary continuum of divergent races and species at different 

stages of speciation (Mallet 2008, Supple et al. 2014). In this radiation, different stages 

during speciation show different degrees of genomic differentiation (Martin et al. 2013, 

Supple et al. 2014). Similarly to P. chalceus, very low genomic differentiation is found 

among sympatric population pairs (Martin et al. 2013). However, in contrast to 

Heliconius, allopatric populations of P. chalceus likely only established relatively recently 

or are subjected to high degrees of gene flow resulting in low genomic differentiation 

between allopatric P. chalceus populations compared to allopatric Heliconius populations. 

Further, Heliconius species represent a classic example of Müllerian mimicry, in which 

distantly related distasteful species have converged on the same warningly colored 

pattern. The convergence of these mimicry patterns results from the selective advantage 

from sharing the cost of educating predators (Jiggins 2008). Recently, genomic studies 

have shown that convergent evolution between races and species with even low levels of 

hybridization occurs by sharing uniquely derived color pattern alleles (Dasmahapatra et 

al. 2012). This has been demonstrated to result mainly from adaptive introgression after 

the different species established rather than reuse of ancestral polymorphism 

(Dasmahapatra et al. 2012). In contrast, the repeated occurrence of short-winged P. 

chalceus populations in tidal habitats likely has a largely singular origin and 

subsequently spread along the Atlantic coast (CHAPTER 5). Colonization of the short-

winged ecotypes was likely followed by very high levels of gene exchange among the 

ecotypes. Hence, this pattern differs from adaptive introgression in which species or 

populations only exchange adaptive genetic variation. Additionally, continuous gene 

exchange between several Heliconius species has been demonstrated to result in up to 40 

% of 100 kb genomic windows clustering according to geography rather than by species 

among sympatric species which indicates high rates of gene exchange between 

sympatric species (Martin et al. 2013). Similarly, hybridization and gene exchange is high 
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between the P. chalceus ecotypes which explain low genomic differentiation. Finally, in 

some Heliconius species, tight clusters of loci that facilitate the co-segregation of adaptive 

variation and determine wing-pattern morphs have been found. We did not identify any 

blocks of linked alleles in P. chalceus. 

Ecological separation as well as mate preference have been suggested to play a major 

role in the evolution of reproductive isolation in Heliconius (Smith et al. 2001, Jiggins 

2008). Moreover, male preference for color variation may provide a direct link between 

divergent selection on mimicry patterns and assortative mating and has been suggested 

to play a major role in the evolution of reproductive isolation among Heliconius species 

(Jiggins 2008). Similarly, in P. chalceus we determined a link between divergent selection 

and assortative mating through spatial sorting by different responses to inundation of 

individuals from tidal and seasonal habitats (CHAPTER 6 and CHAPTER 7). However, 

in Heliconius, the link between selection and assortative mating requires the evolution of 

both performance alleles (i.e. wing color pattern) as well as preference alleles (i.e. male 

preference allele for certain color pattern). In Heliconius butterflies it has been suggested 

that these traits are closely linked in the genome (Kronforst et al. 2006) and, thus, 

overcome the hampering effect of recombination on the evolution of reproductive 

isolation (Felsenstein 1981). In P. chalceus, the assortative mating mechanism may be 

pleiotropically linked to performance as escaping during inundation affects both spatial 

sorting and performance in the respective habitats. 

 

BEACH MICE In Peromyscus polionotus beach mice a single mutation in the coding 

region of a pigmentation gene (melanocortin-1 receptor, Mc1r) has been found to play a 

major role in determining adaptive color pattern variation (Hoekstra et al. 2006). 

However, this association was absent from other similarly light-colored beach mouse 

populations suggesting that different molecular mechanisms are responsible for 

convergent phenotypic evolution in beach mice (Hoekstra et al. 2006). Additionally, cis-

regulation of Agouti signaling protein (Agouti) expression also strongly affects coat color 

variation (Steiner et al. 2007, Linnen et al. 2009). This locus maps to an independent 

region and, together with Mc1r, is responsible for most of the differences in 

pigmentation between the subspecies. Moreover, the Mc1r and Agouti genes interact 

epistatically and the phenotypic effects of Mc1r are visible only in genetic backgrounds 

containing the derived Agouti allele (Steiner et al. 2007). Finally, it has been shown that at 

the Agouti locus, local adaptation is the result of independent selection on many 

mutations within a single locus and that a large-effect locus can fractionate into many 

small- to moderate-effect mutations (Linnen et al. 2013).  

In P. chalceus, the derived mtIdh allele has been repeatedly selected to high frequencies in 

short-winged populations. Differences between the alternatively selected mtIDH 
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allozymes result from only one amino acid change (Lys – Asn at amino acid position 

447). However, functional effects in the mtIdh gene of P. chalceus have not been studied 

and it is difficult to infer whether selection directly affects this gene. Marked 

differentiation at a locus 3,627 bp downstream of the end of the mtIdh gene suggests that 

selection affects genetic variation at an expanded region and that mtIdh may be linked to 

the target of selection. Also, the relative importance of coding variation and cis-

regulatory changes has not been determined in P. chalceus. 

 

STICK INSECTS Analysis of whole-genome divergence between replicate pairs of stick 

insect (Timema cristinae) populations that are adapted to different host plants revealed 

many modest-sized genomic regions of accentuated divergence (Soria-Carrasco et al. 

2014). Most are inferred to be unique to individual population pairs. Similarly to P. 

chalceus, differentiation between populations is genomically widespread, even during 

the earliest stages of adaptation and speciation. In contrast to P. chalceus, reuse of 

adaptive variation is suggested to play a subordinate role in the parallel evolution of 

stick insect populations (83% of divergent SNPs are unique to population comparisons; 

Soria-Carrasco et al. 2014). Although, the exact ratio of shared and unique variation 

between repeatedly diverged P. chalceus populations has not been determined, the most 

strongly diverged loci are shared between parallel pairs of P. chalceus populations 

(CHAPTER 5). 

 

GALÁPAGOS WOLF SPIDERS In the Galápagos, wolf spiders of the genus Hogna 

have repeatedly evolved into ‘high elevation’ and ‘coastal dry’ species on two islands 

(i.e. San Cristóbal and Santa Cruz) (De Busschere et al. 2012). Phylogenic reconstructions 

using several neutral genes suggests that these species specialized repeatedly and 

independently on the two islands (De Busschere et al. 2010). However, the genetic basis 

of adaptive variation is unknown and comparing rates of gene exchange between islands 

with coalescent simulations suggests the possibility of introgression of adaptive genetic 

variation between similarly adapted species of the different islands (De Busschere et al. 

under review). These speculations are strengthened by findings of introgression of 

adaptive variation and reuse of standing genetic variation in other evolutionary model 

systems such as Heliconius butterflies, sticklebacks and P. chalceus beetles. 

 

LITTORINA SNAILS Ecotypes of the rocky-shore gastropod, Littorina saxatilis, have 

been demonstrated to have arisen in the face of continuous gene flow (Butlin et al. 2013). 

Moreover, studying genome wide neutral variation, it has been suggested that the 

ecotypes evolved repeatedly in different localities and do not have a single origin. 

However, Butlin et al. (2013) note that adaptive differentiation may not be fully 
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genetically independent and that alleles affected by selection may be shared from 

ancestral polymorphism or introgression. The study of P. chalceus indeed shows 

irreconcilable differences between studying neutral and adaptive variation which results 

from free interchange of neutral genetic variation but extensive reuse of adaptive 

variation among parallel population pairs. These results have important implications for 

the interpretation of the evolution of ecotypes in P. chalceus as well as Littorina snails. 

 

MELITAEA AND COLIAS BUTTERFLIES The enzyme phosphoglucose isomerase 

(PGI) is associated with variation in flight metabolic rate, dispersal rate, fecundity and 

local population growth rate in both Melitaea (Orsini et al. 2009) and Colias (Wheat et al. 

2006) butterflies from Finland. The observed polymorphism at this enzyme is suggested 

to result from balancing selection maintaining genetic variation within populations 

through heterozygote advantage (Watt et al. 1983, Wheat et al. 2006). Moreover, the split 

between the balanced polymorphism is estimated to predate the last common ancestor of 

a clade of five extant Melitaea species consistent with long-term balancing selection. In 

contrast, comparative structural analysis of Pgi polymorphism in the Melitaea cinxia and 

the Colias eurytheme butterfly suggests a similar but not identical target of balancing 

selection indicating independent convergent evolution between these species (Wheat et 

al. 2009). 

In P. chalceus, polymorphism and old divergence of the mtIdh alleles most likely does not 

result from heterozygote advantage. Rather, the polymorphism is currently preserved by 

divergent selection in which the mtIDH-B allozyme is selected in seasonal habitats and 

the mtIDH-D allozyme is selected in tidal habitats. Furthermore, as suggested by 

coalescent simulations (CHAPTER 2) the old or deep divergence between the mtIdh 

haplotype clusters (which correspond with the mtIDH allozymes) results from a 

geographically separated evolution rather than from long-term balancing selection.  

 

CICHLID FISHES In radiations of cichlid fishes from the Great Lakes of East Africa it is 

suggested that standing genetic variation present well before the start of the radiations 

has been important in facilitating evolutionary diversification (Brawand et al. 2014). 

Additionally, female preference for male coloration has been shown to be of major 

importance for the evolution of reproductive isolation between cichlid species (Maan et 

al. 2004). Moreover, heterogeneous light conditions in Lake Victoria has led to 

diversifying selection on opsin genes, which produce visual pigments, as a function of 

water depth (Seehausen et al. 2008). Divergence in opsins influences color perception and 

concomitantly affects female preference for male coloration. Hence, this mechanism 

results in a direct link between divergent selection and assortative mating through mate 

preferences. Similarly, in P. chalceus we determined a link between divergent selection 



GENERAL DISCUSSION 

 

175 

and assortative mating through spatial sorting by different responses to inundation of 

individuals from tidal and seasonal habitats (CHAPTER 6 and CHAPTER 7). In contrast, 

we found no significant indications of mate preference in P. chalceus (CHAPTER 6). 

 

PHYTOPHAGOUS INSECTS Fruit flies belonging to the Rhagoletis pomonella species have 

shifted and adapted to new host plants in sympatry (Feder et al. 2003a). However, 

studying several neutral genes and an inversion polymorphism that affects key diapause 

traits showed that ancestral R. pomonella populations first became geographically 

isolated into a Mexican and North American population and that, subsequently, the 

inversion polymorphism introgressed from Mexico into the North American population. 

The inversion polymorphism affecting diapause is suggested to have aided North 

American flies in adapting to a variety of plants with differing fruiting times. The origin 

of adaptive genetic material in allopatry is suggested to have triggered the host shift and 

sympatric divergence (Feder et al. 2003a). In P. chalceus, we have not identified inversion 

polymorphisms. Although inversion polymorphisms may be present in P. chalceus, 

recombination within the mtIdh locus as well as between a large set (18) of adaptive loci 

indicates that inversions do not seem to play a major role in the evolution of the P. 

chalceus ecotypes. In agreement with R. pomonella, adaptive variation (i.e. mtIdh alleles 

(CHAPTER 2) and most loci identified as outlier loci (CHAPTER 5)) in P. chalceus is 

suggested to have evolved largely in geographical separation and subsequently spread 

along the Atlantic coast. 

In specialized host races of the pea aphid Acyrthosiphon pisum pisum, strong genetic 

linkage or pleiotropy of performance (ecological specialization) and reproductive 

isolation through habitat preference has been demonstrated (Hawthorne & Via 2001). 

This mechanism is argued to strongly facilitated speciation between the pea aphid races. 

Similarly, in P. chalceus, selection may pleiotropically affect performance and assortative 

mating through spatial sorting. In P. chalceus, it may be speculated that for the link 

between performance and assortative mating pleiotropy is involved rather than close 

genetic linkage as escaping during inundation affects both spatial sorting and 

performance in the respective habitats and may arguably be determined by one genetic 

trait. 

 

 

P. CHALCEUS – COMPARISON WITH EXISTING DISPERSAL 

POLYMORPHISM MODELS  

Generally, theoretical models simulating the evolution of dispersal polymorphisms 

make assumptions about fluctuations in carrying capacity and/or persistence of habitats, 

trade-offs between reproduction and dispersal and the genetic architecture of the 
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polymorphism (GENERAL INTRODUCTION). These models have helped in 

understanding the range of evolutionary scenarios in which dispersal polymorphisms 

can evolve and be maintained (Johnson & Gaines 1990). One theoretical approach 

focuses on trade-offs between energy available for reproduction versus dispersal (i.e. 

oogenesis-flight syndrome) (Roff 1986, Roff & Fairbairn 2007). In these models, reduction 

in dispersal ability is favored because the resources that are otherwise allocated to 

dispersal can be used for reproduction, whereas the retention of a high dispersal morph 

is selected when habitats disappear and only dispersive individuals are able to colonize 

new habitats. Other models focus on metapopulation dynamics for the evolution of 

dispersal dimorphisms (McPeek & Holt 1992, Olivieri et al. 1995, Mathias et al. 2001, 

Cantrell et al. 2010, Hendrickx et al. 2013). For instance, it has been demonstrated that a 

dispersal dimorphism can be maintained by the interplay of within-population and 

between-population selection as individuals carrying dispersal genes tend to leave the 

local deme, resulting in a progressive decline in such genes within demes, whereas the 

high-dispersal genotypes will be overrepresented in newly colonized habitats (Olivieri et 

al. 1995). Another model, simulated by Mathias et al. (2001), investigated the evolution of 

dispersal in a landscape of many patches with fluctuating carrying capacities and spatial 

heterogeneity in temporal fluctuations. They assumed two kinds of habitats each 

consisting of many patches with patches of the ‘good’ habitat often having large carrying 

capacities and patches of the ‘bad’ habitats having large carrying capacities infrequently. 

No costs to dispersal were assumed (however, costs of dispersal did not change the 

general outcome of this model). In this kind of population structure they found that both 

the high-dispersal and the low-dispersal strategies are at an advantage when rare and 

coexist as a stable polymorphism. This is because when a high-dispersal strategy is 

established such that all individuals become redistributed each generation, the number 

of individuals becomes equal in each generation. In this situation, fitness will be higher 

in the ‘good’ patches (with high carrying capacity) and lower in the ‘bad’ patches due to 

crowding and this results in a source-sink structure in which a rare low-dispersal 

strategy becomes advantageous. Alternatively, if a low dispersal strategy is prevalent, 

environmental fluctuations within the patches will favor a high-dispersal strategy. 

Under these assumptions, the interplay of source-sink dynamics and patch fluctuations 

results in the evolution of a high and low dispersal phenotype which has been studied in 

a multiple models (Cohen & Levin 1991, McPeek & Holt 1992, Holt & McPeek 1996, 

Mathias et al. 2001, Hendrickx et al. 2013). The net outcome of the interacting selection 

forces depends on the frequency of the environmental changes and the size and quality 

of the habitats. Interestingly, in the model of Mathias et al. (2001), coexistence of the 

alternative strategies is made possible by partial spatial segregation of the phenotypes. 

The low dispersal phenotype will mainly occur in the ‘good’ habitat, while the high 
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dispersal phenotype occurs in both habitats. Furthermore, they argue that this spatial 

separation of the different phenotypes may facilitate local adaptation and speciation by 

reducing recombination and facilitating the development of assortative mating. 

  

The model of Mathias et al. (2001) resembles the situation in P. chalceus in that tidal and 

seasonal or, respectively, Guérande canal and pond populations show contrasting 

dynamics that likely influence fluctuations in carrying capacity (or even extinction). 

Moreover, Desender (2000) was not able to provide support for the oogenesis-flight 

syndrome in P. chalceus, which is not a prerequisite in this model. However, it differs in 

that the frequency of the high dispersal phenotype is very low in the tidal habitat, 

whereas the metapopulation dynamics or trade-off models do not predict a strong 

spatial separation of the dispersal morphs. Furthermore, the models cited above describe 

the evolution of stable dispersal dimorphisms, whereas we find that, at least, wing size 

in P. chalceus is polymorphic. Alternatively, wing polymorphism likely does not result 

from metapopulation dynamics in P. chalceus, but rather from local adaptation to 

differing environmental conditions. Only local adaptation and the evolution of isolating 

mechanisms can explain both the repeatedly found polymorphic differences in dispersal 

ability and the spatial separation of ecotypes. 
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FUTURE PROSPECTS 

The repeated ecotypic divergence of populations of the ground beetle P. chalceus offers to 

address a wide set of evolutionary questions. These questions range from identifying the 

genes and genetic architecture involved in polymorphic traits and local adaptation up to 

identifying genes involved in reproductive isolation and studying the process of 

speciation. Several answers have been put to forward, but much is still to learn. Several 

topics could be (relatively) readily addressed: 

 

 LONG INSERT LIBRARIES AND LINKAGE MAPPING TO ORDER SCAFFOLDS 

Constructing and sequencing very large insert mate libraries (>10 kb) will strongly 

improve the genome assembly. Additionally, single parents from tidal and seasonal 

populations (both allopatric and sympatric) or polymorphic individuals within 

populations can be crossed resulting in F1 offspring. Performing RAD tag sequencing on 

these F1 offspring will allow constructing a linkage map in which the available scaffolds 

are divided according to the chromosomes and correctly ordered. This will result in an 

improvement of the draft genome assembly and, consequently, allow studying the 

genetic architecture of divergence in more detail. Also, genomic structural variation, 

such as inversions, deletions end duplications, will be more easily identified. 

Furthermore, an F2 generation can be bred based on crosses within F1 families to allow 

for recombination between the different traits (Van Ooijen & Jansen 2013). When 

measuring phenotypic traits in the F2 offspring, Quantitative Trait Loci (QTL) mapping 

will allow linking certain genomic regions or markers to the phenotypic traits of interest. 

 

 GENOMIC REGION SURROUNDING THE mtIDH GENE 

Identifying and sequencing the genomic region flanking the mtIdh gene will (i) allow 

studying the genomic region affected by selection, (ii) help in determining the precise 

target of selection and (iii) help in discriminating alternative evolutionary scenarios 

responsible for the observed sequencing variation. For instance, a large genomic region 

of reduced nucleotide diversity would provide a strong indication of a recent selective 

sweep (e.g. Linnen et al. 2009). 

 

 COMPLETE GENOME RESEQUENCING 

RAD tag sequencing provides a valuable tool to compare genome wide mutational 

variation among multiple individuals and populations. However, from a genome wide 

perspective, the information obtained from the number of loci using a rare-cutting 

restriction enzyme (SbfI-HF) is limited (e.g. 2,800 RAD tags in a 530 Mb genome 

provides approximately one tag every 189 kb). Therefore, performing more elaborate 

sequencing using a frequent-cutting restriction enzyme or, given the construction of a 
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well finished genome sequence, complete genome resequencing will allow studying the 

genomic pattern of population differentiation in high detail (e.g. Ellegren et al. 2012; 

Jones et al. 2012; Soria-Carrasco et al. 2014). Moreover, it should be possible to construct 

a replicate mesocosmos experiment wherein tidal and seasonal hydrological dynamics 

are simulated to study the effect on genomic differentiation (see e.g. Soria-Carrasco et al. 

2014, Arnegard et al. 2014). 

 

 FUNCTIONAL DIFFERENTIATION 

Differential expression analysis of (common garden raised) P. chalceus beetles from 

differentiated populations using high throughput transcriptome sequencing can help 

identifying the genetic pathways that affect the development of traits involved in local 

adaptation and reproductive isolation (e.g. Wheat et al. 2011). 

 

 MORE EXTENSIVE STUDY OF (NATAL) HABITAT PREFERENCE 

We identified different behavioral responses to inundation between differentiating 

populations and a possible effect of natal habitat experience. First, the constancy of this 

latter effect should be addressed by repeating the experiment. Subsequently, quantifying 

the effect size of these traits (i.e. the increase in total reproductive isolation caused by its 

divergence) can be addressed. Finally, the relative importance of genetic and non-genetic 

(i.e. natal habitat preference) causes for the evolution of reproductive isolation can be 

studied. For instance, gene flow between the two types of habitats could be quantified 

by studying migration and spatial sorting on a larger scale. By constructing a replicate 

mesocosmos setting, wherein the two habitats are spatially separated but connected, it 

can be tested if spatial sorting either occurs in response to population origin or natal 

experimental treatment and to what extant these traits reduce gene flow. 

 

 UNRAVELING THE GENETIC BASIS OF THE TRAIT(S) INVOLVED IN 

REPRODUCTIVE ISOLATION 

An ultimate goal in evolutionary biology is to identify genes involved in reproductive 

isolation (Orr et al. 2004, Nosil & Schluter 2011). By quantifying the behavioral responses 

to inundation in an F2 cross, it should be possible to relate this variation to variation in 

molecular markers (i.e. QTL mapping using markers from RAD tag sequencing or 

complete genome resequencing). Identifying and studying the genes or genomic regions 

directly involved in reproductive isolation will provide unprecedented insights into the 

factors that are thought to be representative of those underlying the origin of species 

(Orr et al. 2004). Again, constructing replicate mesocosmos experiments would allow 

studying the effect of different genes or genomic regions on adaptation and the 

evolution of reproductive isolation (Arnegard et al. 2014). 
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SUMMARY 

 

In this thesis, ecological and genetic mechanisms are investigated that are involved in 

the ecotypic divergence of the wing-polymorphic ground beetle Pogonus chalceus in the 

absence of a geographical barrier (i.e. sympatry). Studying these mechanisms is essential 

to unravel how populations adapt to differing and changing environments and, 

ultimately, gain insights in speciation. 

The ground beetle P. chalceus represents an interesting case of replicated adaptation to 

different hydrological regimes present in salt marshes along the Atlantic European 

coasts. Short-winged populations are found in tidal marshes that are inundated frequently 

but for short periods only (maximally 6 h), whereas long-winged populations are found 

in seasonal marshes separated from the tidal influence of the sea, but inundated 

irregularly for longer time periods. Developing a dispersive phenotype is thought to be 

energetically costly and the retention of long wings is, therefore, argued to be an 

adaptation to escape long term inundations and uninhabitability of the habitats. 

Additional to the correlation between wing size and habitat, there is a strong correlation 

between mean population wing size and frequency of different allozymes of the 

mitochondrial NADP+-dependent isocitrate dehydrogenase (mtIDH) enzyme. 

Interestingly, in some locations, such as the Guérande salterns in France, long -and 

short-winged populations are found in the hydrological alternative habitats on very 

small distances from each other (i.e. canals and ponds; only 10-20 m). In CHAPTER 1, we 

find that wing size is strongly genetically determined in these sympatric populations 

and that genes involved in wing size are likely not genetically linked to the mtIdh locus. 

This strongly invokes the selection-migration antagonism because recombination is 

expected to result in maladapted gene combinations when gene flow is high. To gain 

more insights in this evolutionary system we attempt to answer the following questions: 

(i) Does the repeated occurrence of the locally adapted populations in distinct locations 

result from the single origin or did the adaptation evolve multiple times in different 

locations? (ii) How is adaptive divergence maintained despite the ample opportunity of 

gene flow? 

 

Whether the mtIdh gene is the target of selection or rather closely linked to the target of 

selection is unknown. Nevertheless, in CHAPTER 2 we use the tight association of 

mtIDH allozymes with both habitat dynamics and dispersal ability (i.e. wing size) at 

population level to make inferences about the evolutionary history of the repeated 

evolution of the adaptation associated with this locus (research question i). By studying 
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sequences of the mtIdh gene, we find that the differentiation in the mtIdh locus has a 

single origin. Furthermore, comparing the observed pattern of sequencing variation with 

coalescent simulations suggests that the mtIdh-allele associated with the short-winged 

populations from the tidal habitats likely evolved in a partially isolated subpopulation 

and spread recently along the Atlantic coast. 

 

To gain more insight into the genetic aspects of adaptive sympatric divergence in P. 

chalceus, we first expand the genomic resources available for P. chalceus by sequencing 

the transcriptome and genome in, respectively, CHAPTER 3 and CHAPTER 4. 

Transcriptome sequencing resulted in 65,766 contigs, clustering into 39,393 unique 

transcripts or genes (unigenes). Furthermore, using homology searches we identified all 

reported genes involved in wing development, juvenile- and ecdysteroid hormone 

pathways in Tribolium castaneum. The draft P. chalceus genome assembly consists of 

312.78 Mb of genome sequence comprising 109,580 unordered scaffolds and covering 

about 58.98 % of the estimated genome size (530.28 Mb). Repetitive elements comprise 

about 18.60 % of the assembled genome. Finally, alignment with the genome of T. 

castaneum suggests a high rate of intra as well as interchromosomal rearrangements since 

their divergence. 

 

Next, in CHAPTER 5, we use RAD (Restriction Associated DNA) tag sequencing to 

study population structure at a genome-wide scale and identify the genomic pattern of 

adaptive differentiation among repeatedly adapted sympatric and allopatric 

populations. Comparison of genome wide variation among populations covering nearly 

the entire species range indicates low population divergence between sympatric as well 

as allopatric populations, suggesting high rates of gene flow and relatively recent 

separation. Contrastingly, we find multiple unlinked loci that are strongly associated 

with adaptive divergence, indicating widespread genomic divergence even between 

sympatric populations. By using the assembled P. chalceus genome as a reference to 

construct sequence alignments of the RAD tags, we find that all the alleles identified as 

outlier loci have a singular mutational origin and are shared between repeatedly 

diverged populations. Moreover, most of these loci have a similar evolutionary history 

as the mtIdh locus, which suggests a recent increase of the alleles associated with the 

short-winged populations from tidal habitats. This shared evolutionary history suggests 

a largely singular evolutionary origin of the short-winged ecotypes in P. chalceus and a 

recent spread along the Atlantic coasts (research question i). Moreover, the rapid and 

recurrent sympatric divergence in P. chalceus may have been promoted by the singular 

evolution of the adapted traits and high rates of exchange of this genetic building 

material among populations (research question ii). 
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Finding multiple unlinked outlier loci between the differently selected sympatric P. 

chalceus populations indicates that even very early stages of the speciation process may 

by characterized by genome wide adaptation. Possibly, this is driven by a reproductive 

isolating mechanism that reduces gene flow and assists natural selection in the evolution 

of distinct ecotypes that diverge in multiple unlinked loci in sympatry (research question 

ii). Moreover, understanding how disruptive selection can result in the evolution of such 

a mechanism is of major interest in the study of sympatric speciation. Therefore, in 

CHAPTER 6 we study behavioral variation in the response to inundation in P. chalceus, 

which may provide a mechanism resulting in assortative mating between individuals 

from differently selected populations. We demonstrate that short-winged populations 

from tidally inundated marshes show less reluctance to inundation compared to long-

winged populations from seasonal marshes. These behavioral differences may result in 

spatial sorting and can as such provide a unique and simple explanation for the 

persistence of distinct ecotypes in sympatric mosaics. The mechanism proposes a direct 

link between traits subjected to disruptive selection and habitat preference resulting in 

the evolution of assortative mating and, hence, reproductive isolation. 

 

Finally, in CHAPTER 7, we find significant indications of natal habitat experience on 

habitat preference in P. chalceus. More precisely, we demonstrate that adults of both 

ecotypes that were exposed to frequent but short inundations during larval and pupal 

development have a significantly lower response to escape these inundations in the 

adult stage. Such natal habitat preference may easily result in spatial sorting of 

individuals that experienced different environmental conditions and, hence, quickly lead 

to assortative mating within habitats and, therefore, may have important consequences 

for both the evolution and persistence of sympatric races in P. chalceus. Besides, we also 

found strong indications that responses to inundation have a genetic component as seen 

by the consistently higher water reluctance of seasonal beetles, independent from the 

environment in which they are raised. 

 

Altogether, we find widespread genomic divergence and extensive reuse of adaptive 

genetic variation in the sympatric and repeated evolution of P. chalceus ecotypes. 

Furthermore, we identify a trait that likely results in reproductive isolation between the 

sympatric ecotypes through spatial sorting. This trait provides a direct link between 

selection and reproductive isolation as adaptation of the individuals to the different 

habitats also causes reproductive isolation. Such traits are often called ‘magic traits’. 
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SAMENVATTING 
 

In dit proefschrift worden de ecologische en genetische mechanismen bestudeerd die 

betrokken zijn bij de ecotypische divergentie van de vleugel-polymorfe loopkever 

Pogonus chalceus in de afwezigheid van een geografische barrière (i.e. sympatrie). Het 

bestuderen van deze mechanismen is essentieel om te begrijpen hoe populaties zich 

aanpassen aan verschillende en veranderende omgevingen en uiteindelijk inzicht te 

krijgen in soortvorming. 

De loopkever P. chalceus vertegenwoordigt een interessant voorbeeld van herhaalde 

ecotypische adaptatie aan verschillende hydrologische omstandigheden langsheen de 

Atlantische Europese kust. Kortvleugelige P. chalceus populaties komen voor in tidale 

schorren, terwijl langvleugelige populaties eerder voorkomen in seizoenale of 

binnendijkse zilte moerassen. De tidale schorren staan onder een sterke invloed van de 

getijden en worden frequent overspoeld, maar slechts voor korte periodes (maximaal 

6u). De seizoenale zilte moerassen, daarentegen, staan niet onder invloed van de 

getijden en worden onregelmatig overstroomd voor langere perioden. Gezien het 

ontwikkelen van een dispersief fenotype verondersteld wordt energetisch kostelijk te 

zijn, wordt het behoud van lange vleugels gezien als een aanpassing om aan de lange 

termijn overstromingen en ongunstige omstandigheden te ontsnappen. Naast dit 

verband tussen vleugellengte en habitat is er ook een sterke correlatie tussen de 

gemiddelde vleugellengte van de populaties en de frequentie van verschillende 

allozymes van het mitochondriale NADP+-afhankelijke isocitraatdehydrogenase 

(mtIDH) enzym. In sommige locaties, zoals in de zoutpannen in de Guérande te 

Frankrijk, kunnen zowel lang -als kortvleugelige populaties dicht bij elkaar worden 

gevonden in de alternatieve hydrologische habitats (i.e. kanalen en poelen; slechts 10-20 

m). In HOOFDSTUK 1 tonen we voor de sympatrische populaties aan dat vleugellengte 

sterk genetisch wordt bepaald en dat de genen die betrokken zijn bij vleugellengte 

waarschijnlijk niet genetisch gekoppeld zijn aan het mtIdh locus. Aangezien een 

genetische link tussen deze kenmerken ontbreekt, wordt verwacht dat sterke 

genuitwisseling tussen deze nabijgelegen populaties zal leiden tot recombinatie tussen 

deze kenmerken en dus tot het ontstaan van minder gunstige gencombinaties (selectie-

migratie antagonisme).  Om meer inzicht te krijgen in dit intrigerend evolutionair 

systeem trachten we de volgende onderzoeksvragen te beantwoorden: (i) Heeft het 

herhaaldelijk voorkomen van gelijkaardige ecotypess in verschillende locaties een 

enkelvoudige oorsprong of is de aanpassing aan het habitat meerdere keren 
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onafhankelijk geevolueerd op verschillende locaties? (ii) Hoe wordt adaptieve 

divergentie in stand gehouden ondanks de ruime gelegenheid voor genuitwisseling?  

 

Of het mtIdh gen het effectieve doelwit is van selectie of eerder nauw gekoppeld is aan 

het geselecteerde doelwit is onbekend. Desondanks gebruiken we in HOOFDSTUK 2 de 

sterke associatie van de mtIDH allozymes met zowel habitat dynamiek als gemiddeld 

populatie dispersievermogen (i.e. vleugellengte) om de evolutionaire geschiedenis te 

achterhalen van de herhaalde adaptieve evolutie geassocieerd met dit locus 

(onderzoeksvraag i). Door sequenties van het mtIdh gen te vergelijken tussen populaties, 

tonen we aan dat de differentiatie in het mtIdh locus een enkelvoudige oorsprong heeft. 

Bovendien vinden we, door het waargenomen patroon van sequentievariatie te 

vergelijken met coalescentie simulaties, dat het mtIdh-allel geassocieerd met de 

kortvleugelige populaties uit de tidale habitats waarschijnlijk geëvolueerd is in een 

gedeeltelijk geïsoleerde subpopulatie en zich recent heeft verspreid langsheen de 

Atlantische kust. 

 

Om betere inzichten te verkrijgen in de genetische aspecten van adaptieve en 

sympatrische ecotypische divergentie P. chalceus, breiden we in HOOFDSTUK 3 en 

HOOFDSTUK 4 de genomische data uit die beschikbaar is voor P. chalceus door het 

transcriptoom en genoom te sequeneren. Transcriptoom sequenering resulteerde in 

65.766 contigs die samen kunnen worden geclusterd tot 39.393 unieke transcripten of 

genen (unigenes). Bovendien vinden we homologe transcripten terug van alle genen die 

betrokken zijn bij de vleugelontwikkeling en deel uitmaken van de juveniele- en 

ecdysteroid hormoon pathways in Tribolium castaneum. Het geassembleerde P. chalceus 

genoom bestaat uit 312,78 Mb genomische sequenties bestaande uit 109,580 ongeordende 

scaffolds die ongeveer 58.98% van de geschatte genoomgrootte bedekken (530,28 Mb). 

Repetitieve elementen omvatten ongeveer 18.60% van het geassembleerde genoom. 

Tenslotte, vergelijking met het genoom van T. castaneum suggereert een hoge mate van 

intra evenals interchromosomale herschikkingen sinds hun divergentie. 

 

Vervolgens wordt in HOOFDSTUK 5 gebruik gemaakt van RAD (Restriction Associated 

DNA) tag sequencing om de populatiestructuur te bestuderen op het genoomniveau en 

om het genomische patroon van adaptieve differentiatie te achterhalen tussen 

herhaaldelijk aangepaste sympatrische en allopatrische P. chalceus populaties. 

Genomische variatie tussen populaties die nagenoeg de gehele soortspreiding bestrijken 

toont lage divergentie tussen sympatrische evenals allopatrische populaties, wat 

suggereert dat er een hoge mate van genuitwisseling is tussen sympatrische populaties 

evenals een recente scheiding van de allopatrische populaties. Daarentegen vinden we 
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meerdere niet-gelinkte loci terug die sterk geassocieerd zijn met de adaptieve 

divergentie, wat wijdverspreide genomische verschillen aangeeft ook tussen 

sympatrische populaties. Door gebruik te maken van het geassembleerde P. chalceus 

genoom als referentie voor het construeren van sequentie alignementen van de RAD 

tags tonen we aan dat alle geïdentificeerde allelen die herhaaldelijk sterk geassocieerd 

zijn met de adaptieve divergentie een enkelvoudige oorsprong hebben. Bovendien 

hebben de meeste van deze loci een vergelijkbare evolutionaire geschiedenis met die van 

het mtIdh locus, welke een recente verspreiding van de allelen geassocieerd met het 

kortvleugelige ecotype uit tidale schorren suggereert. Deze gedeelde evolutionaire 

geschiedenis suggereert een grotendeels unieke evolutionaire oorsprong van het 

kortvleugelige  ecotype en een recente verspreiding langs de Atlantische kusten 

(onderzoeksvraag i). Het is mogelijk dat snelle en herhaaldelijke sympatrische 

divergentie in P. chalceus wordt bevorderd door de enkelvoudige evolutie van de 

adaptieve eigenschappen in combinatie met sterke genuitwisseling van dit genetisch 

bouwmateriaal tussen de populaties (onderzoeksvraag ii). 

 

Het vinden van meerdere ongelinkte loci die geassocieerd zijn met de adaptieve 

divergentie tussen sympatrische populaties geeft aan dat zelfs het zeer vroege stadium 

van soortvorming kan gekenmerkt worden door adaptatie langsheen het volledige 

genoom. Mogelijks wordt dit proces gedreven door een mechanisme dat zorgt voor 

reproductieve isolatie en dus genuitwisseling reduceert waardoor natuurlijke selectie 

wordt geholpen in de evolutie van divergente ecotypes die verschillen in meerdere niet 

gelinkte loci (onderzoeksvraag ii). Verklaren hoe disruptieve selectie kan leiden tot de 

evolutie van zo een mechanisme is van groot belang in de studie van sympatrische 

speciatie. Daarom bestuderen we in HOOFDSTUK 6 variatie in gedrag als reactie op 

inundatie in P. chalceus. Variatie in dit gedrag zou een mechanisme kunnen zijn dat leidt 

tot assortatief paargedrag en zodus tot een reductie in genuitwisseling tussen individuen 

van de verschillend geselecteerde populaties. Meer bepaald tonen we aan dat kort-

gevleugelde populaties uit tidale schorren significant minder vluchtgedrag vertonen bij 

innundatie in vergelijking met lang-gevleugelde populaties uit seizoenale moerassen. 

Deze gedrags verschillen kunnen leiden tot ruimtelijke scheiding van de ecotypes en kan 

als zodanig een unieke en eenvoudige verklaring geven voor het voortbestaan van 

verschillende ecotypes in sympatrie. Daarenboven maakt dit mechanisme een directe 

link mogelijk tussen de eigenschappen onderworpen aan disruptieve selectie en habitat 

preferentie, wat resulteert in de evolutie van assortatief paargedrag en dus 

reproductieve isolatie. 
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Tenslotte vinden we in HOOFDSTUK 7 aanwijzingen dat het natale leefgebied in P. 

chalceus een significant effect heeft op habitatvoorkeur van adulte kevers. Meer bepaald, 

zien we dat volwassen kevers van beide ecotypen die werden onderworpen aan 

veelvuldig korte inundaties tijdens het larvaal en popstadium een significant lager 

vluchtgedrag vertonen als reactie op inundatie in het volwassen stadium. Dergelijke 

natale habitatvoorkeur kan theoretisch gemakkelijk leiden tot ruimtelijke scheiding van 

individuen die verschillende milieu-omstandigheden ervaren en kan dus snel leiden tot 

evolutie van assortatieve paring binnen habitats. Dit mechanisme kan belangrijke 

implicatie hebben voor zowel de evolutie als het voortbestaan van sympatrische 

ecotypes in P. chalceus. Daarnaast vonden we ook sterke aanwijzingen dat de reactie op 

overstroming een genetische component heeft zoals gezien door het consequent hogere 

vluchtgedrag van de langvleugelige kevers uit seizoenale moerassen onafhankelijk van 

de omgeving waarin ze worden opgegroeid. 

 

Alles bij elkaar vinden we wijdverspreide genomische divergentie en extensief 

hergebruik van adaptieve genetische variatie in de sympatrische en herhaalde 

divergentie van P. chalceus ecotypes. Daarnaast identificeren we een eigenschap van de 

kevers die waarschijnlijk leidt tot reproductieve isolatie via ruimtelijke scheiding tussen 

de ecotypes in sympatrie. Deze eigenschap zorgt bovendien voor een directe link tussen 

de disruptieve selectie en reproductieve isolatie aangezien de aanpassing van de 

individuen aan de verschillende habitats ook reproductieve isolatie veroorzaakt. 

Dergelijke eigenschappen worden vaak 'magic traits’ genoemd. 
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GLOSSARY 
 

Allozyme 

Allozymes are variant forms of an enzyme that are coded by different alleles at 

the same locus. 

 

Balancing selection 

A selective process by which multiple alleles are maintained in the gene pool. 

This may happen, for instance, when heterozygotes for the alleles have higher 

adaptive values than the homozygotes or by frequency dependent selection 

(Futuyma 2005). 

 

Bayes Factor (BF) 

In Bayesian statistics, a model choice decision can be performed using the so-

called ‘Bayes Factors’ (Goodman 1999). Given two models M1 and M2 (for 

instance neutral versus selection) trying to explain a data set N, the Bayes factor 

BF for model M2 is given by: 

 

   
       

       
 

 

Hence, the BF provides a scale of evidence in favor of one model versus 

another. For example, BF = 2 indicates that the data favors model M2 over 

model M1 at odds of two to one.  

 

Cell means model 

There are several ways to parameterize a general linear model (GLM). In its 

most standard form, the means of each factor level are not estimated directly, 

but the model is parameterized such that the mean of one single factor level is 

estimated as well as the difference between the means of the remaining levels. 

This model is useful for conducting Type III tests, and thus testing the 

significance of a particular factor of interest. However, this model does not 

allow obtaining the means and SE of all the group levels. These can be obtained 

by re-parameterizing the GLM such that the means of each level (and their SE) 

are estimated directly. This latter model is called the cell means model.   

 

Cis-regulation 

Regulation of gene transcription by nearby non-coding DNA which typically 

functions as a binding site for transcription factors (i.e. trans-regulatory 

elements). 
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Coalescent simulations 

Coalescent theory attempts to estimate population parameters (e.g.  population 

size, migration and selection) based on sequence variation. More precisely, 

coalescent theory provides a retrospective model that attempts to trace all 

alleles of a gene shared by all members of a population to a single ancestral 

copy, called the most recent common ancestor (MRCA). The coalescent is 

typically represented as a gene genealogy, similar to a phylogenetic tree. Apart 

from genetic drift, complex coalescent models allow incorporating 

recombination, natural selection, and gene flow or population structure to 

estimate population parameters. Oppositely, coalescent simulation programs, 

such as MSMS (Ewing & Hermisson 2010) use coalescent theory to simulate 

trees and DNA sequences given population parameters as input. 

 

Contigs 

Contiguous consensus sequences that are derived from collections of 

overlapping reads. 

 

Dispersal syndrome 

Refers to the association between dispersal and other behavioral and/or life-

history traits (Stevens et al. 2013). 

 

Disruptive selection 

Special case of divergent selection in which selection favors extreme 

phenotypes over intermediate phenotypes (Rundle & Nosil 2005). 

 

Divergent selection 

Selection is divergent when it acts in contrasting directions or favors different 

phenotypes  in the different populations (Nosil 2012). 

 

Ecological speciation 

The process by which barriers to gene flow evolve between populations as a 

result of ecologically based divergent selection between environments (Nosil 

2012). 

 

Ecotype 

An ecotype is a genetically distinct variety, population or race within a species 

(i.e. are capable of interbreeding), which is adapted to specific environmental 

conditions. 

 

Epistasis 

Epistasis is when the effect of one gene depends on the presence of one or more 

other genes (genetic background) (Cordell 2002). 
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Fst (Wright’s fixation index) 

The fixation index is a measure of population differentiation. It is calculated as 

the fraction of the total genetic variation that is distributed among 

subpopulations in a subdivided population. One way to calculate Fst is 

(Holsinger & Weir 2009): 

 

     
  

 

  
  

 

where   
  is the variance in frequency of alleles in different subpopulations, 

and   
  is the variance of allele frequencies in the total population. 

 

Genetic markers 

Heritable polymorphisms that can be measured in one or more populations of 

individuals. 

 

Heritability 

The proportion of observable differences in a trait between individuals within a 

population that is due to genetic differences (Falconer & Mackay 1996). 

 

k-mer 

String of nucleotides of length k in a sequence read or genomic sequences 

(Compeau et al. 2011). 

 

Linkage disequilibrium (LD) 

Linkage disequilibrium is the occurrence of some combinations of alleles or 

genetic markers in a population more often or less often than would be 

expected from a random formation of haplotypes from alleles based on their 

frequencies. It results from population substructure or from linkage, which is 

the presence of two or more loci on a chromosome with limited recombination 

between them. 

 

Linkage disequilibrium (LD) mapping 

Testing for a statistical association between genetic markers and particular 

phenotypes based on the premise that the marker(s) is in LD with the causal 

locus, or less likely, is in fact the causal mutation itself. (Stinchcombe & 

Hoekstra 2008) 
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Mapping Quality (MQ) 

MQ gives an expression of the estimated probability of true alignment of a read 

to the reference (Li et al. 2008). Expressing this probability (Pe) in the Phred 

scale gives the MQ: 

 

            

 

Given 1000 read mappings, a MQ of 30 indicates that one will be wrong on 

average. MQ calculation considers repeat structure, base quality, sensitivity of 

mapping algorithm and whether reads are mapped in pair. 

 

Monte Carlo Markov Chain (MCMC) 

Algorithm that samples from a probability distribution based on constructing a 

Markov chain that has the desired distribution as its equilibrium distribution.  

Samples of the chain can be used as a sample of the desired distribution. 

 

Maximal Realizable Wing Size (MRWS) 

Wing size is expressed as an index that corrects for the allometric relationship 

between wing length and body size (den Boer 1980, Desender et al. 1986). More 

precisely, the relative wing size corrected for allometry expresses the 

percentage of the maximal realizable wing size (%MRWS). The relative wing 

size is wing length × width divided by elytral length × width. In %MRWS, 

relative wing size is expressed as a percentage of the maximal relative wing size 

for a beetle of a given size. This maximal realizable wing size was derived from 

a regression of wing length and body size from Carabid species with always 

fully developed wings and functional flight muscles allowing comparisons of 

relative wing sizes of beetles with different body sizes (Desender et al. 1986). 

 

Median Joining network 

Median networks are usually constructed for closely related sequences that 

have evolved without recombination. In a median network, every sequence of a 

given multiple sequence alignment is represented by a node and additional 

nodes are said to represent unobserved sequences. Two nodes are connected by 

an edge if they differ by exactly one mutation. The so called median is the 

median sequence between a set of sequences. To construct a network, the 

original sequences have to be converted into binary sequences. Therefore, so 

called quasi-median networks are constructed from the quasi median 

sequences. These quasi median sequences represent the set of possible median 

sequences whenever three different states occur at a certain position in the 

sequence set. 

The number of nodes of the quasi-median network associated with a multiple 

sequence alignment can become very large, even for a small number of short 

sequences. Therefore, the Median Joining method applies two different 

algorithms (Bandelt et al. 1999). First, it repeatedly constructs so called 
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‘minimum spanning networks’ and, secondly, repeatedly uses the quasi-

median calculation of three mutually close sequences at a time. In this way it 

constructs an informative subnetwork of the full quasi-median network, guided 

by the minimum spanning network. The minimum spanning network combines 

‘minimum spanning trees’, which are trees found in a graph connecting 

sequences by edges weighted by their distance. Using both algorithms, the 

median-joining method attempts to provide a useful network of intermediate 

size. (Adopted from Huson et al. 2010) 

 

Microsatellite 

A class of repetitive DNA that is made up of repeats that are 2-8 nucleotides in 

length. They can be highly polymorphic and are frequently used as molecular 

markers in population genetics studies. 

 

Mutation-order speciation 

The evolution of reproductive isolation by the fixation of different 

advantageous mutations in separate populations experiencing similar selection 

pressures (Schluter 2009). 

 

N50 size 

By far the most widely used statistics for describing the quality of a genome 

assembly are its scaffold and contig N50s. A contig N50 is calculated by first 

ordering every contig by length from longest to shortest. Next, starting from the 

longest contig, the lengths of each contig are summed, until this running sum 

equals one-half of the total length of all contigs in the assembly. The contig N50 

of the assembly is the length of the shortest contig in this list. The scaffold N50 

is calculated in the same fashion but uses scaffolds rather than contigs. The 

longer the scaffold N50 is, the better the assembly is. However, it is important to 

keep in mind that a poor assembly that has forced unrelated reads and contigs 

into scaffolds can have an erroneously large N50. Note too that scaffolds and 

contigs that comprise only a single read or read pair — often termed 

‘singletons’ — are frequently excluded from these calculations, as are contigs 

and scaffolds that are shorter than ~800 bp. The procedures used to calculate 

N50 may therefore vary between genome projects. (Yandell & Ence 2012). 

 

Neighbor-Net network 

Neighbor-Net is a distance based split method for constructing phylogenetic 

networks that is based on the Neighbor-Joining (NJ) algorithm (Bryant & 

Moulton 2004). The NJ algorithm takes a distance matrix to construct a fully 

resolved (bifurcating) phylogenetic tree (i.e. joining sets of sequences with 

consecutive larger distance values). Neighbor-Net proceeds by constructing a 

collection of weighted splits (bipartitions of the taxa set) based on a distance 

matrix and then represent these splits using a splits graph (a special type of 
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phylogenetic network that simultaneously represents both groupings in the 

data and evolutionary distances between taxa). 

 

Nucleotide diversity (π) 

Nucleotide diversity measures the degree of polymorphism within a 

population. One common measure is defined as the average number 

of nucleotide differences per site between any two DNA sequences chosen 

randomly from the sample population (Nei & Li 1979): 

 

   ∑       

  

 

 

where xi and xj are the respective frequencies of the ith and jth sequences and πij 

is the number of nucleotide differences per nucleotide site between the ith and jth 

sequences. 

 

Outlier locus 

A genetic marker showing a degree of divergence statistically departing beyond 

background or neutral expectations. Outlier loci are often interpreted as being 

affected by divergent selection (Stinchcombe & Hoekstra 2008). 

 

Parapatry 

Parapatry is the geographic relationship between populations whose ranges do 

not significantly overlap, but are immediately adjacent to each other. 

 

Phred quality (PQ) 

Phred quality is defined on base calls and each base call is an estimate of the 

true nucleotide. The probability that a base call is wrong is called the error 

probability (Be) and PQ is calculated as (Ewing & Green 1998): 

 

         
        

        
 

  

If the quality of a base call is 30, the probability that it is wrong is 0.001. 

 

Pleiotropy 

Pleiotropy occurs when one gene influences multiple phenotypic traits which 

may seem unrelated. 

 

Polyphenism 

Polyphenism is a special case of phenotypic plasticity in which discrete 

phenotypes arise from a single genotype as a result of differing environmental 

conditions. 
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Quantitative trait locus (QTL) 

A locus that controls a quantitative phenotypic trait, identified by showing a 

statistical association between genetic markers surrounding the locus and 

phenotypic measurement (Van Ooijen & Jansen 2013). 

 

Quantitative trait locus (QTL) mapping 

Similar to LD mapping, but with use of controlled crosses (pedigree 

information). This approach necessitates constructing a genome-wide linkage 

map with the relative positions of markers. (Van Ooijen & Jansen 2013) 

 

RAD tag sequencing 

RAD tags are the DNA sequences that immediately flank each instance of a 

particular restriction site of a restriction enzyme throughout the genome. By 

labeling DNA from multiple individuals, RAD-tag sequencing results in 

sequencing randomly distributed but consistent genomic regions from multiple 

individuals. The density of RAD tags in a genome depends on the restriction 

enzyme used during the isolation process. Sequencing is performed using a 

high throughput sequencing platform. DNA sequence polymorphisms in the 

resulting RAD-tags can be used for association mapping, QTL-mapping and 

population genetics. (Davey et al. 2010) 

 

RNA-mediated interference (RNAi) 

Biological process by which RNA molecules inhibit gene expression. RNA 

interference has an important role in defending cells against parasitic 

nucleotide sequences (i.e. viruses and transposons) and developmental 

regulation. In experimental biology, this process can be used to knockdown 

expression of target genes by adding double stranded RNA complementary to 

the gene of interest. 

 

Scaffolds 

Ordered and orientated sets of contigs that are linked to one another by mate 

pairs of sequencing reads. 

 

Segregating sites 

 Nucleotide sites which are polymorphic within a set of sequences. 

 

Selective sweep 

The reduction of nucleotide variation in loci neighboring the target of recent 

and strong positive selection. Selective sweeps can be ‘hard’, where a single 

adaptive allele sweeps through the population, or ‘soft’, where multiple 

adaptive alleles at the same locus sweep through the population at the same 

time. (Messer & Petrov 2013) 
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Spatially heterogeneous balancing selection 

The conceptual definition of temporary or spatially heterogeneous selection 

strictly differs from balancing selection (i.e. heterozygous advantage and 

frequency-dependent selection), but the concepts are similar in the aspect that 

selection maintains diversity and long term temporary or spatially 

heterogeneous selection are, therefore, generally considered forms of balancing 

selection. 

 

Spliceosome 

Spliceosomes are complex molecular machines that remove introns from 

transcribed pre-mRNA. Spliceosomes are assembled from small nuclear RNAs 

(snRNAs) and associated protein complexes. The RNA-protein complexes are 

called snRNPs. Spliceosomes assemble on the pre-mRNA strands after 

recognizing specific sequence elements (i.e. 5’ GU and 3’ AG splice site, 

polypyrimidine (uracil rich) tract and the branch point sequence). 

 

Sympatric speciation 

Sympatric speciation is the process through which species evolve from an 

ancestral species while inhabiting the same geographic region. In its most 

extreme use, the term refers to populations with identical ranges or panmictic 

(random) mating. However, these situation are rare or even absent in nature 

and, therefore, the term is often used to indicate that species evolved without 

the existence of geographical barriers and in the face of putatively ample gene 

flow (Mallet et al. 2009). 

 

Tajima’s D 

The Tajima’s D test (Tajima 1989) compares the total number of segregating 

sites to the average number of mutations between pairs of samples. More 

precisely, the standardized difference between the nucleotide diversity (π) and 

Watterson’s θW, known as Tajima’s D.  

 

   
 ̂   ̂ 

√     ̂   ̂  

 

 

A negative Tajima's D signifies an excess of low frequency polymorphisms 

relative to the expectation under neutrality, indicating population size 

expansion (e.g., after a bottleneck or a selective sweep) and/or purifying 

selection. A positive Tajima's D indicates low levels of both low and high 

frequency polymorphisms, indicating a decrease in population size and/or 

balancing selection 
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Wall’s tests 

Wall’s tests were developed to detect events that produce trees with relatively 

longer external branches, such as under balancing or population structure. 

Wall’s B and Q are based on so called congruent sites (B’), which are pairs of 

adjacent segregating sites (S) in a set of sequences that, if taken as a subset, form 

only two possible haplotypes among sequences (Wall 1999). Wall’s B is 

calculated as: 

 

   
  

     
 

Wall’s Q also includes the number of different partitions defined by the 

congruent sites (A). A partition is a subset of congruent segregating sites that 

divide the sequence set into the same subgroup of sequences. Wall’s Q is 

calculated as: 

 

   
     

 
 

 

Watterson’s θ (θW) 

The Watterson estimator is a method for estimating the population mutation 

rate, θ = 4Neµ, where Ne is the effective population size and µ the per-generation 

mutation rate (Watterson 1975). The estimate is 

 

 ̂   
 

  
 

 

where K is the number of segregating sites in the sample and  

 

    ∑
 

 

   

   

 

 

is a correction factor ((n-1)th harmonic number) for the number of segregating 

sites that do not completely sum up if the number of sequences in the sample 

increases. 
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ZZ test 

The ZZ statistic provides information about intragenic recombination and 

compares the average linkage disequilibrium (LD) between adjacent sites with 

the average LD over all sites (Rozas et al. 2001). ZZ is calculated as: 

 

           

 

With      using information of the    value between all pairs of polymorphic 

sites (S): 

 

     
 

      
∑ ∑    

 

 

     

   

   

 

 

   (measure of linkage disequilibrium) among a pair of loci (i and j) is defined 

as: 

 

   
   

   
 

                
 

 

   and    are the frequencies of the polymorphic alleles i and j and     is the 

measure of LD between both loci: 

 

              

 

   is very similar to      but only takes into account    values between adjacent 

polymorphic pairs (S): 

 

    
 

   
∑    

 
   

   
 

 

ZZ is expected to become increasingly positive as recombination increases. 

 

  



 

 

199 

APPENDIX 
 

 



 

 

Appendix 1. Sampled populations, including code, habitat, number genotyped (N), frequency of the mtIDH-B allozyme, percentage of maximal realizable 

wing size (%MRWS), standard deviation of %MRWS and reference to the publication in which the data has been used. 

 

 Sampling site Code Habitat N Freq. 

mtIDH-B 

%MRWS %MRWS  

SD 

Ref. 

Atlantic         

  United Kingdom Severn estuary SEE 1* Tidal 58 0.34 37.33 6.90 1 

  Severn estuary SEE 2 Tidal 41 0.15 35.94 4.67 1 

 Rye harbor RYE Tidal 41 0.06 31.94 3.99 1 

 Morecambe MOR Tidal 5 0.00 32.50 7.64 1,2 

 Exe estuary EXE Tidal 35 0.07 32.82 2.99 1 

 Thorney THO* Tidal 42 0.37 37.99 7.33 1 

  The Netherlands Friesland FRI 1 Tidal 10 0.45 55.23 12.18 1,2 

  Friesland FRI 2* Tidal 32 0.56 56.22 8.46 1,2 

 Friesland FRI 3 Tidal 10 0.60 51.39 9.60 1,2 

 Friesland FRI 4 Tidal 9 0.56 54.22 8.69 1,2 

 Ossenisse OSS Tidal 14 0.21 42.41 9.73 2 

  Belgium Heist HEI Temp 47 0.84 70.20 12.73 3 

 Nieuwpoort NIE* Tidal 254 0.55 44.45 10.27 1,2 

 Saeftinghe SAE* Tidal 132 0.35 42.34 8.11 2,4 

 Braakman BRA seasonal 70 0.86 76.32 6.18 4 

 Lissewege LIS seasonal 76 0.92 78.88 5.54 4 

 Moeren MOE seasonal 73 0.91 78.87 5.54 4 

 Molenkreek MOK seasonal 34 0.99 80.01 4.44 2,4 

 Watervliet WAT seasonal 37 0.96 72.39 5.69 4 

 Zwin ZW* Tidal 255 0.41 48.80 12.02 1,2 

 Oostende OOS seasonal 159 0.92 79.46 5.87 1,2 



 

 

 Sampling site Code Habitat N Freq. 

mtIDH-B 

%MRWS %MRWS  

SD 

Ref. 

  France Authie AUT 1* Tidal 40 0.59 49.54 13.65 5 

 Authie AUT 2* Tidal 37 0.34 36.11 6.36 5 

 Les Sables d’olonne GAC Tidal 34 0.12 37.22 7.25 5 

 Canches, Etaples CAN* Tidal 47 0.29 35.15 7.15 5 

 Baie de Veys VEY 1* Tidal 145 0.31 46.32 10.12 5 

 Baie de Veys VEY 2 Tidal 37 0.27 52.84 13.39 5 

 Baie de Veys VEY 3 Tidal 33 0.21 38.61 16.08 5 

 Somme estuary SOM 1 Tidal 90 0.22 32.89 5.46 1,2 

 Somme estuary SOM 2 Tidal 66 0.14 31.38 4.75 1,2 

 Mont St Michel MSM 1* Tidal 27 0.65 63.35 12.41 1,2 

 Mont St Michel MSM 2* Tidal 60 0.62 60.70 9.75 1,2 

 Mont St Michel MSM 3* Tidal 62 0.62 60.31 9.59 1,2 

 Mont St Michel MSM 4* Tidal 63 0.67 59.86 8.44 1,2 

 La Guérande-oeillet POND 1* seasonal 102 0.60 63.64 10.59 3,5 

 La Guérande-oeillet POND 2* seasonal 101 0.58 68.00 8.97 3,5 

 La Guérande-oeillet POND 3* seasonal 86 0.57 53.79 11.29 3,5 

 La Guérande-ethier CANAL 1 Tidal 68 0.03 28.35 5.63 3,5 

 La Guérande-ethier CANAL 2 Tidal 67 0.03 28.86 5.58 3,5 

 La Guérande-ethier CANAL 3 Tidal 52 0.06 28.09 4.46 3,5 

 Corsept COR Tidal 8 0.63 58.83 5.97 1 

 Gironde estuary  GIR Tidal 40 0.05 30.87 6.51 1 

  Spain Coto Doñana COD seasonal 18 0.97 90.38 4.48 6 

 Huelva HUE Tidal 16 0.03 24.10 2.39 6 

         

         



 

 

 Sampling site Code Habitat N Freq. 

mtIDH-B 

%MRWS %MRWS  

SD 

Ref. 

Mediterranean         

  France Roussillon ROU 1 Temp 11 1.00 95.03 3.29 1 

 Roussillon ROU 2 Temp 13 1.00 90.51 4.14 1 

 Roussillon ROU 3 Temp 7 1.00 92.56 3.62 1 

 Camargue CAM 1 Temp 11 1.00 86.07 4.83 3 

 Camargue CAM 2 Temp 10 1.00 90.54 5.21 3 

 Camargue CAM 3 Temp 3 1.00 83.89 3.47 3 

 Camargue CAM 4 Temp 5 1.00 92.52 3.71 3 

 Toulon TOU Temp 28 1.00 84.07 4.70 3 

 Montpellier MON Temp 3 1.00 89.50 4.29 6 

  Spain Murcia MUR 1 Temp 8 1.00 93.22 1.74 1 

 Murcia MUR 2 Temp 8 1.00 93.47 2.73 1 

 Murcia MUR 3 Temp 35 0.99 91.65 11.66 1 

 Gata GAT Temp 12 0.96 88.85 4.74 6 

 Albacete ALB 1 Temp 32 1.00 92.00 3.66 1 

 Albacete ALB 2 Temp 35 1.00 92.11 3.76 1 

 Albacete ALB 3 Temp 35 1.00 91.35 3.34 1 

 Almería ALM 1 Temp 10 0.85 93.45 5.98 3 

 Almería ALM 2 Temp 10 1.00 89.97 5.32 3 

 Almería ALM 3 Temp 15 0.93 91.65 4.14 3 

 Ibiza IBI Temp 29 0.91 84.53 6.05 3 

 

* Populations used for the within populations association analysis between wing size and mtIDH 

1 (Desende & Serrano 1999)  3 (Dhuyvetter et al. 2004)  5 (Dhuyvetter et al. 2007b)  

2 (Desender et al. 1998)  4 (Dhuyvetter et al. 2005)  6 This study 



 

 

Appendix 2. Pogonus and Pogonistes species and populations sequenced for the genes considered in this study. 

 

Species Sampling site 
 

Code mtIdh cytIdh enolase cox1 nad1 cob 

    
promoter coding intron 303 - 975 

     Pogonistes convexicollis Greece Thessaloniki THE - - - 2 - 4 1 1 1 
Pogonistes gracilis France Toulon TOU - - - 4 2 2 2 2 2 
Pogonistes rufoaeneus Greece Ioninan Islands -Zakynthos IOI - - - - - 4 1 1 1 
Pogonistes testaceus France Toulon TOU - - - - - 4 1 1 1 

Pogonus gilvipes Spain Almería ALM - - - 4 4 4 1 1 1 
Pogonus littoralis France Rousillon ROU - - - 4 4 4 1 1 1 
Pogonus luridipennis Austria Illmitz ILM - - - 4 4 4 2 2 2 

 
France Montpellier MON - - - 4 - 2 2 2 2 

Pogonus meridionalis Spain Murcia MUR - - - - 2 2 1 1 1 
Pogonus olivaceus Greece Ioninan Islands -Zakynthos IOI - - - 4 6 4 2 2 2 
Pogonus reticulatus Greece Thessaloniki THE - - - 4 4 2 2 2 2 
Pogonus riparius France Montpellier MON - - - 4 4 4 2 2 2 

Pogonus chalceus The Netherlands Friesland FRI 4 4 4 4 - 2 - - - 

 
UK Severn estuary SEE 4 6 6 6 - - - - - 

  
Rye harbor RYE - 2 2 2 - - - - - 

 
Belgium Zwin ZWC 10 10 10 10 10 4 - - - 

  
Oostende OOS 4 4 4 4 2 - - - - 

 
France La Guérande-ethier (canal) GUE 8 10 10 10 20 4 1 1 1 

  
La Guérande-œillet (pond) GUO 12 18 18 18 22 - - - - 

  
Mont St Michel MSM 14 14 14 14 12 4 - - - 

  
Roussillon ROU 2 2 2 2 2 - - - - 

  
Toulon TOU 6 6 6 6 8 4 - - - 

  
Camargue CAM 2 2 2 2 8 2 - - - 

  
Somme estuary SOM - 2 2 2 - 2 - - - 

  
Gironde estuary  GIR - 6 6 6 - - - - - 

 
Portugal Aveiro - Pond AVE 1 6 6 6 6 - - - - - 

  
Aveiro - Marsh AVE 2 4 4 4 4 - - - - - 

 
Spain Coto Doñana COD 8 10 10 10 8 4 - - - 

  
Huelva HUE 8 8 8 8 8 6 - - - 

  
Gata GAT 4 6 6 6 6 - - - - 

  
Almería ALM 4 6 6 6 6 2 - - - 

  
Ibiza IBI 4 4 4 4 4 - - - - 

  
Albacete ALB - - - - 4 - - - - 

GenBank accession numbers:(mtIdh: KJ371353 - KJ371522; cytIdh: KJ371166 - KJ371315; enolase: KJ371316 - KJ371352; cox1: KJ371146 - KJ371165; cob: 

KJ371126 - KJ371145; nad1: KJ371523 - KJ371542. 
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Appendix 3. Mitochondrial and cytoplasmic NADP+-Idh cDNA and genomic sequencing 

 

cDNA SEQUENCING 

Total RNA was extracted from adult P. chalceus beetles using the RNeasy Plus Mini Kit 

(Qiagen Inc.) according to the manufacturer’s instructions. cDNA synthesis used 2 μg of 

total RNA, oligo(dT)18 primer and RevertAid™ H Minus First Strand cDNA Synthesis 

Kit (Fermentas GmbH Inc.) according to the manufacturer’s instructions. Initially we 

used RNA from one individual to clone and sequence the cDNA copy of both the 

mitochondrial NADP+-Idh (mtIdh) and cytoplasmic NADP+-Idh (cytIdh) gene.  

To obtain the sequence of the cytIdh gene a degenerate PCR primer pair was obtained 

using Primo Degenerate 3.4 (Chang Bioscience Inc.) by aligning homologous sequences 

of nine other insect species from GenBank (Acyrthosiphon pisum; XP_001946553, Aedes 

aegypti; XP_001650675, Anopheles gambiae; XM_001688896, Bombyx mori; NP_001040134, 

Culex quinquefasciatus; XM_001841858, Drosophila melanogaster; NP_001137910, Gryllus 

firmus; ABI52605, Nasonia vitripennis; XP_001608101, Tribolium castaneum; XM_963757). 

The degenerate primer pair (Appendix 4) amplified a cDNA fragment of 733 bp 

(excluding primers). PCR was carried out for 40 cycles using the following conditions: 

denaturation at 95° for 1 min, annealing at 55° for 1 min, and extension at 72° for 1 min. 

Next, the amplified fragment was cloned into One Shot® TOP10 Chemically Competent 

E. coli cells (Invitrogen) and sequenced.  

A degenerate PCR primer pair to amplify the mtIdh gene was obtained with the 

iCODEHOP program (Boyce et al., 2009) by aligning mitochondrial NADP+-Idh 

sequences of eight other arthropod species (Acyrthosiphon pisum; XM_001943663, 

Anopheles gambiae; XM_312860, Bombyx mori; NM_001099620, Culex quinquefasciatus; 

XM_001844978, Dendroctonus ponderosae; BT127538, Drosophila melanogaster; 

NM_001144438, Ixodes scapularis; XM_002409629, and Tribolium castaneum; XM_965353). 

The degenerate primer pair (Appendix 4) amplified a cDNA fragment of 600 bp 

(excluding primers), which was cloned into One Shot® TOP10 Chemically Competent E. 

coli cells (Invitrogen Inc.) and sequenced.  The iCODEHOP primer pair also amplified 

the cytoplasmic Idh gene.  

Based on the partial sequence of the cytIdh and mtIdh gene, gene-specific primers were 

designed allowing the identification of 5’ and 3’ ends of the cytIdh and mtIdh mRNA by a 

RACE protocol (Roche, Inc.). Gene specific primers for 5’RACE and 3’RACE can be 

found in Appendix 4. Cloned RACE products yielded the remaining coding sequence of 

the cytIdh and mtIdh gene. In both cases the 5’ end was obtained by three rounds of 

nested PCR. After cDNA synthesis using a first gene specific primer, purified cDNA was 

used for poly(A) tailing at the 5’end using terminal transferase. Next, a second (nested) 

PCR was performed with a anchored oligo d(T) primer (5’-GAC CAC GCG TAT CGA 

TGT CGA CTT TTT TTT TTT TTT TTV-3’) and a second gene specific primer. The 

product of a third PCR round using the anchor primer (5’-GAC CAC GCG TAT CGA 

TGT CGA C-3’) and a third gene specific primer was cloned into One Shot® TOP10 

Chemically Competent E. coli cells (Invitrogen Inc.) and sequenced. 
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The 3’ ends of the cytIdh and mtIdh genes were obtained by cDNA synthesis with the 

anchored oligo d(T) primer, followed by two consecutive rounds of PCR using the 

anchor primer and two nested gene specific primers.  

 

GENOMIC SEQUENCING 

Sequence variation analysis was performed on the genomic sequence of the mtIdh and 

cytIdh gene. DNA extractions were performed using the DNA extraction NucleoSpin® 

Tissue kit (Macherey-Nagel GmBH). PCR were run in a Tpersonal thermal cycler 

(Biometra®). Several gene specific primer sets were designed based on the full mtIdh and 

cytIdh mRNA and UTR sequences (Appendix 4). The genomic sequence of the whole 

cytIdh gene was amplified with one primer pair (F1-R3). Three internal primers were 

designed for sequencing.  

A previous transcriptome sequencing project (Van Belleghem et al. 2012) identified a 

transcript that is homologous to the NADP+-transhydrogenase (Nnt) gene and was found 

upstream to the mtIdh gene in the Tribolium castaneum genome (Richards et al. 2008). 

Moreover, in T. castaneum the Nnt and mitochondrial NADP+-Idh gene appear in a head-

to-head arrangement, i.e. facing away from one another, are separated less than 1,000 bp 

and are transcribed from opposite strands of DNA. Therefore, the Nnt and 

mitochondrial NADP+-Idh gene are most likely transcribed by a bidirectional promoter 

and, therefore, their position may be conserved in P. chalceus (Adachi & Lieber 2002). 

Using a primer in the 3’ coding region of the Nnt gene and the 5’ coding region of the 

mitochondrial NADP+-Idh gene allowed amplifying and sequencing both the 5’ coding 

region and the promoter region of the mtIdh gene from genomic DNA. 

For all PCR amplification reactions, Platinum Taq DNA polymerase (Invitrogen) was 

used according to manufacturer’s instructions. All amplification reactions were carried 

out for 40 cycles using the following conditions: denaturation at 95° for 1 min, annealing 

at 60°C for 1 min, and extension at 72° for 1 min. The PCR products were purified and 

sequenced in both directions using an ABI Prism® BigDye® V 1.1 Terminator Cycle 

Sequencing kit. All sites were scored at least twice and heterozygous positions were only 

scored when both forward and reverse direction sequencing reads were consistent. 

Nucleotide sequences were aligned directly on the sequencer output files and edited if 

necessary by using the sequence analysis and alignment software SEQSCAPE (Version 

2.5; Applied Biosystems, Inc.). Haplotypes were unphased with the PHASE algorithm 

(Stephens et al. 2001) implemented in DNAsp v5.0 software (Librado & Rozas 2009).  

 

STRUCTURAL ANALYSIS 

To localize the amino acid changes in the protein structure, we used the crystal structure 

of porcine mitochondrial NADP+-IDH (PDB: 1lwd; 73.71% sequence identity for both 

long and short splice variant) (Ceccarelli et al. 2002) and mouse cytoplasmic NADP+-IDH 

(PDB: 2cmj; 77.89% sequence identity) to build a model for P. chalceus mitochondrial and 

cytoplasmic NADP+-IDH respectively using the web based Swiss-Model program 

(Bordoli et al. 2009).  

 
  



 

206 

Appendix 4. Sequencing primers. 

 

 Forward (5’- 3’) Reverse (5’-3’) Region Ref. 

mtIdh     
Degenerate primer pair   GCCCATGGCGACCARTAYAARGC GCGAAGATGGAGGCGAYNGGRTTNGT 

 
 

(iCODEHOP)     

Gene specific primers  
 

1:AGGCCAACGTTTTTGAAGTGCCA 

 
 

5’RACE 
 

2:AACACCACCAGCTTTGTAAGTG 

 
 

  
3:CGAGTTCCACCTTTCCTGGATTGGT 

 
 

Gene specific primers  1:TCGCTCAGGGTTATGGGTC 
  

 
3’RACE 2:CAGAAGCTGCACATGGCAC 

  
 

Gene specific primers  1:TGCTGTGTGTCATTTGTAATAG 1:TCTACGGCTTTGTATTGATCAC 

 
 

(for mRNA 2:ACAATAGATGCTGCTCATGC 2:GACAAGTACAAAGGCCAACG 

 
 

amplification) 3:CAATCCAGGAAAGGTGGAACTCG 3:TCTAAACCACGGGTCCATGC 

 
 

 
4:TTGATGATATGGTGGCACAAGC 4:CATTCATAAACCATAGCAAATTTTCG 

 
 

Gene specific primers  1:CGCTGTGCAAGTTTAGCGTA 1:TTTTTGTAAAAGCACAGGAGCA Promoter  
(for genomic  2:ATTAAGACTGATGCACTCTATG 2:CTTAAATTGCTGACAGAAAATTG E1  
amplification) 3:TTCCGGCTATTTACGTTCTTG 3:TGTTAAGCGAATAAGTCTCG E2  

 
4:AGACCAAGAAGTACTTCTACAC 4:TCTACGGCTTTGTATTGATCAC I2/E3/I3/E4  

 
5:ACAATAGATGCTGCTCATGC 5:GACAAGTACAAAGGCCAACG I3/E4/I4/E5  

 
6:GCTGGTGGTGTTGCAATGGGC 6:CCCAATGACCCATAACCCTGAGCG E5/I5/E6  

 
7:TTGATGATATGGTGGCACAAGC 7:CATTCATAAACCATAGCAAATTTTCG E6/I6/E7/I7/E8  

cytIdh     
Degenerate primer pair  RTCYTNGGNGAYGARATGAC YTTRCANGCCCANACRAANC 

 
 

(Primo)     

Gene specific primers  
 

1:TCCCATAGCAACACCGGGTCCT 

 
 

5’RACE 
 

2:TGTGGGCTCGCCATTTTCAGGA 

 
 

  
3:TCAACCCGATTCTCGTCTGGTGT 

 
 

Gene specific primers  1:TCGCTCATTCATCATTCCAATAC 
  

 
3’RACE 2:ACTGCCTTCGAGGCTAAGAAAATCTG 

  
 

Gene specific primers  1:TCCATCGTTAATCCATCGCAAC 1:TCCCATAGCAACACCGGGTCCT 

 
 

(for genomic  2:GGGCACAGTATTCCGTGAAGCA 2:TGGCGGGTAACAGTACCATGAGCA 

 
 

amplification) 3:TGGCGGTTTTGTCTGGGCTTG 3:TTGCGTGAACCCGTTCACC 

 
 

enolase GACTCTCGTGGNAAYCCNACNGTNGAGGT CTTGTAGAACTCNGANGCNGCNACRTCCAT 
 1 

cox1 1:GGTCAACAAATCATAAAGATATTGG 1:TAAACTTCAGGGTGACCAAAAAATCA  2 

 2:GAGCTCCTGATATAGCTTTTCC 2:GGATAATCAGAATATCGTCGAGG  3 

nad1 GCATCACAAAAGGCTGAGGA ACATGATCTGAGTTGAAACC 
 

4 

cob TATGTACTACCATGAGGACAAATATC ATTACACCTCCTAATTTATTAGGAAT 
 

4 

 
1 (Wild & Maddison 2008) 

2 (Folmer et al. 1994) 

3 (Simon 1994) 

4 (Clarke et al. 2001) 
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Appendix 5. Coalescent simulations. 

 

MSMS was run as follows:  

 

msms 100 1 -N 100000 -t [mutation rate] -r [recombination rate] -I 2 50 50 -n 1 [subpopulation 

size] -ma x [migration rate population 1 to 2] [migration rate population 2 to 1] x -Sc 0 1 

[selection coefficient] -Sc 0 2 -[selection coefficient] -Smu 0.01 -SI [selection time] 2 0 0 –s 80 –

Smark 

 

Parameters were varied as follows: 

 

Mutation rate = (13.2) 

Recombination rate (R) = (20.7) 

Subpopulation size = (1, 0.5, 0.1) 

Population migration rates (M) = random.uniform(1, 1000) 

Selection coefficient (Ss) = (1000, 5000, 10000, 50000) 

Selection time (St) = random.uniform(0.01,2)  
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Appendix 6. Supplementary results. 

 

mtIDH ELECTROMORPH (EM) CLASSES 

Non-synonymous substitutions in the mtIdh sequencing dataset corresponded to the 

allozymes found of the mtIDH protein by gel electrophoresis (Desender & Serrano 1999, 

Dhuyvetter et al. 2004). The differentially selected mtIDH-B and mtIDH-D allele are 

distinguished by only a single charge-changing amino acid substitution (Lys - Asn) at 

amino acid position 447. The mtIDH-A allozyme differentiates from the mtIDH-B 

allozyme by a charge changing amino acid substitution (Asp - Asn) at amino acid 

position 391. The mtIDH-E allozyme differentiates from the mtIDH-D allozyme by a 

charge changing amino acid mutation (Glu - Gly) at amino acid position 200. Within the 

mtIDH-B allozyme class we found seven amino acid substitutions, two of which are 

frequent and each comprises 31% of the mtIDH-B samples. In both the mtIDH-D (Cys - 

Tyr) and mtIDH-E (Leu - Phe) class we found one rare amino acid variant that did not 

result in a charge change (Figure 3D in main article). Haplotypes associated with the 

mtIDH-C allozyme class were identical to haplotypes found within one of the previous 

classes, and therefore likely constitute errors in allozyme scoring. Individuals with the 

rare mtIDH-A, mtIDH-C and mtIDH-E allozymes, constitute 0.0020, 0.0016 and 0.0016 % 

of all sampled alleles respectively (Van Belleghem & Hendrickx 2014). Sequence 

conservation of this enzyme across diverse taxa allowed constructing an approximate 

structural model for the P. chalceus mtIDH protein based on homology with porcine 

mtIdh for which high-resolution structures are known (Appendix 12). The protein model 

shows that all of the identified amino acid polymorphisms are found at or near the 

enzymes surface. The amino acid changes at position 22, 35 and 36 are located in the 

putative transit peptide and were not included in the protein model. 

 

CYTOPLASMIC NADP+-IDH (cytIDH) GENE STRUCTURE 

The coding sequence of the cytoplasmic NADP+-Idh gene has a length of 1,227 bp 

(Appendix 8A-B). 77 bp of the 5’ untranslated region (UTR) and 87 bp of the 3’UTR up to 

the poly-A tail were also obtained. Sequencing genomic DNA identified one intron in the 

5’UTR of 147 bp. The resulting protein contains 408 residues. As for the mtIDH protein, 

the first 48 bp of the coding mRNA or 16 amino acids at the N-terminus of the protein of 

the cytIdh sequence show little homology with the protein sequence of cytIdh of other 

eukaryotes and potentially form a transit peptide. 

 

cytIDH ELECTROMORPH (EM) CLASSES 

The rare cytIDH-A allozyme differentiates from the cytIDH-B allozyme by a charge 

changing amino acid change (Gly – Arg) at amino acid position 367 (Appendix 8C). In 

the cytIDH-B allozyme class we found four amino acid substitutions, one of which is 

frequent (96%). Two different amino acid substitution result in two different proteins 

characterized as the cytIDH-C allozyme, one at amino acid position 342 (Asn – Lys) and 

one at amino acid position 404 (Lys – Gln). As for the mtIDH protein, the protein model 

of cytIDH shows that all segregating amino acid sites found occur near the enzymes 

surface (Appendix 13).  
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Appendix 7. Median joining haplotype network for the coding mtIdh sequences. The haplotypes 

belonging to the mtIDH-A, mtIDH-B, mtIDH-D and mtIDH-E allozymes are indicated. Size of the 

pie charts indicates the relative frequency of the haplotypes. Colors in the network match with the 

shaded areas on the map of Europe.  
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Appendix 8. Genomic structure and amino acid variation of P. chalceus cytIdh gene. (A.) Length (bp) 

of the exons, introns, promoter and transit peptide for the cytIdh gene. (B.) Scaled diagram of the P. 

chalceus cytIdh gene, showing exons, introns, promoter and transit peptide. Arrows mark the 

midpoint of detected intragenic recombination. (C.) Positions of non-synonymous nucleotide 

substitutions along the cDNA within the cytIdh gene. Amino acid names are according the IUPAC 

code. Charge-changing amino acid variants defining the EM classes are indicated with an asterisk. 
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Appendix 9. Median joining (A.) and Neighbor-Net (B.) network for the cytIdh gene. The haplotypes 

belonging to the cytIDH-A and cytIDH-B are indicated. The cytIDH-C haplotypes (H_47 and H_50) 

are not highlighted in the graph as this EM class does not form a monophyletic group. Size of the 

pie charts indicates the relative frequency of the haplotypes. Colors in the network match with the 

shaded areas on the map of Europe.  
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Appendix 10. Median joining (above) and Neighbor-Net (below) network for part of the enolase 

gene. Size of the pie charts indicates the relative frequency of the haplotypes. Colors in the network 

match with the shaded areas on the map of Europe. 
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Appendix 11. Species trees. MrBayes trees were constructed to confirm the phylogenetic relations 

among several Pogonus and Pogonistes species. Numbers indicate posterior probability values. 

 

 

 

  



 

214 

Appendix 12. Structure of the mtIDH enzyme in Pogonus chalceus and location of amino acid 

substitutions. Amino acid substitution at residue 22, 35 and 36 of the protein are located in the 

putative transit peptide and were not included in the homology based protein model. All 

segregating amino acid sites found occur near the enzyme surface. 

 

 

 

 
Appendix 13. Structure of the cytIDH enzyme in Pogonus chalceus and location of amino acid 

substitutions. All segregating amino acid sites found occur near the enzyme surface. 

 

 

 

 

 

  



 

 

Appendix 14. Pogonus chalceus sequencing read statistics. Error corrected reads were used for SOAPdenovo2 assembly. 

 

     Raw reads  Cleaned (and error corrected) 

Individual sex Library Insert 

(bp) 

GC  

% 

Length  

(bp) 

Reads  

(M) 

Bases  

(Gb) 

 Length  

(bp) 

Reads  

(M) 

Bases  

(Gb) 

Corrected bases 

(Mb) 

GC3b_01 m Paired-end 200 28 101 107.24 10.83  100.04 107.06 10.71 2.18 

GC3b_02 m Paired-end 200 28 101 72.84 7.36  99.92 72.66 7.26 1.89 

GC3b_03 m Paired-end 200 28 101 53.92 5.46  99.70 53.76 5.36 1.59 

GC3b_04 m Paired-end 200 28 101 101.3 10.23  99.97 101.13 10.11 2.40 

GC3b_055L10 f Paired-end 500 28 100 79.46 7.95  99.17 79.26 7.86 2.29 

GC3b_055L10 f Paired-end 800 28 100 61.74 6.17  99.10 61.54 6.10 2.44 

GC3b_055L10 f Mate-pair 2,000 29 49 112.18 5.50  47.34 103.26 4.89 2.57 

GC3b_003 f Mate-pair 5,000 29 49 87.14 4.27  47.24 79.78 3.77 1.77 

Total      675.82 57.77   658.45 56.06 17.13 

 

 

 

Appendix 15. Bacterial and viral genome assembly contamination. 

 

Species Number (%) 

Rickettsia sp. 106 (77.37) 

Wolbachia sp. 14 (10.22) 

Staphylococcus aureus 6   (4.38) 

Staphylococcus phage 6   (4.38) 

Other bacterial species 6   (4.38) 

Total      137      
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Appendix 16. Repeat analysis. 

 

 

Number of 

elements 

Length 

occupied (bp) 

Percentage 

of sequence 

RepeatMasker (RepBase) 202,288 11,251,189 3.818 

   Retroelements 491 158,654 0.061 

      SINEs: 0 0 0.000 

      Penelope 0 0 0.000 

      LINEs: 46 9,532 0.004 

         CRE/SLACS 0 0 0.000 

            L2/CR1/Rex 10 879 0.000 

            R1/LOA/Jockey 33 8,457 0.003 

            R2/R4/NeSL 3 196 0.000 

            RTE/Bov-B 0 0 0.000 

            L1/CIN4 0 0 0.000 

      LTR elements: 445 149,122 0.057 

         BEL/Pao 156 62,423 0.024 

         Ty1/Copia 31 10,344 0.004 

         Gypsy/DIRS1 258 76,355 0.029 

            Retroviral 0 0 0.000 

   DNA transposons 1,324 330,253 0.126 

      hobo-Activator 9 1,953 0.001 

      Tc1-IS630-Pogo 108 21,913 0.008 

      En-Spm 0 0 0.000 

      MuDR-IS905 0 0 0.000 

      PiggyBac 0 0 0.000 

      Tourist/Harbinger 0 0 0.000 

      Other (Mirage, P-element, Transib) 0 0 0.000 

   Rolling-circles 0 0 0.000 

   Unclassified: 1 60 0.000 

   Total interspersed repeats: 

 

488,967 0.187 

   Small RNA: 311 76,572 0.029 

   Satellites: 3 594 0.000 

   Simple repeats (TRF): 150,413 7,116,659 2.718 

   Low complexity: 45,593 2,317,299 0.885 

RepeatScout 2,414 38,707,718 14.784 

Total 204,702 49,958,907 18.602 

 
  



 

 

Appendix 17. Mean number of reads after demultiplexing and quality filtering (demultiplexed) and reads after removing PCR duplicates (purged) for 

each individual grouped per location.  

 

Population  N Demultiplexed  Purged 

   Mean reads SD  Mean reads SD Min reads Max reads Mean % recov 

Belgium - Dudzele DUD 24 524,627 555,103  194,354 85,618 78,098 342,773 37 

Belgium - Nieuwpoort NIE 24 547,920 269,601  259,084 144,943 66,232 547,737 47 

France - Guérande - Canal GUE 24 753,231 206,938  282,459 100,688 128,326 486,432 37 

France - Guérande -Pond GUO 24 659,047 335,820  133,526 49,333 64,238 231,941 20 

Portugal - Aveiro-Pond AVE1 8 661,608 499,593  287,701 148,589 112,884 578,683 43 

Portugal - Aveiro-Schor AVE2 8 909,661 291,523  389,655 96,498 254,176 254,176 43 

Spain - CotoDonana COD 8 610,113 281,236  158,505 58,810 71,523 226,805 26 

Spain - Huelva HUE 8 644,734 360,228  168,222 86,878 36,619 272,148 26 

France - Camargue CAM 8 1,176,254 567,447  364,114 114,637 230,003 569,458 31 

UK - SevernEstuary SEE 8 482,976 465,222  154,872 110,702 61,163 408,085 32 

Total  144 95,518,562   33,050,689     
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Appendix 18. Nucleotide diversity (π) and heterozygosity (Hz) within each population from loci 

built de novo and using the P. chalceus genome assembly. 

 

 De novo  Reference genome 

Population π Hz  π Hz 

Belgium - Dudzele 0.0022 0.0017  0.0050 0.0048 

Belgium - Nieuwpoort 0.0024 0.0017  0.0050 0.0046 

France - Guérande - Canal 0.0022 0.0015  0.0046 0.0043 

France - Guérande -Pond 0.0023 0.0016  0.0050 0.0046 

Portugal - Aveiro-Pond 0.0025 0.0019  0.0058 0.0054 

Portugal - Aveiro-Schor 0.0019 0.0015  0.0048 0.0049 

Spain - CotoDonana 0.0029 0.0020  0.0063 0.0055 

Spain - Huelva 0.0026 0.0019  0.0057 0.0054 

France - Camargue 0.0029 0.0020  0.0062 0.0050 

UK - SevernEstuary 0.0024 0.0018  0.0053 0.0054 
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Appendix 19. List of wing development genes found in the P. chalceus transcriptome and 

genome. Fst values are given for scaffolds in which we found a RAD tag (stack ID) for the 

comparison between the canal and pond (CP) population and between the Nieuwpoort and 

Dudzele (ND) population. High Fst values are indicated in bold. Dist. = distance between wing 

development gene and RAD tag. 

 

Gene Accession P. chalceus Genome Stack  

ID 

Dist.  

(kb) 

Fst 

(CP/ND) 
Engrailed/ Invected Pc_comp5821_c0_seq1 scaffold5175 - - - 

Hedgehog Pc_comp8905_c0_seq1 scaffold1402 - - - 

Cubitus interruptus Pc_comp4719_c0_seq1 scaffold3209 1181 69.35 -/0.02 

Patched Pc_comp7372_c1_seq1 scaffold1529 932 337.87 0.01/0 

Decapentaplegic Pc_comp8429_c0_seq2 scaffold1908 - - - 

Daughters against Pc_comp5722_c0_seq1 scaffold1054 - - - 

Brinker Pc_comp8966_c0_seq1 scaffold4806 - - - 

Optomotor-blind-like Pc_comp6103_c0_seq1 scaffold4718 - - - 

Spalt-like protein Pc_comp7794_c0_seq1 scaffold3155 - - - 

Apterous a Pc_comp9155_c1_seq1 scaffold3204 - - - 

Apterous b Pc_comp10531_c0_seq1 scaffold1186 - - - 

Notch Pc_comp3149_c0_seq1 scaffold68 710 241.11 0.04/0.06 

Serrate Pc_comp6451_c0_seq1 scaffold352 - - - 

Wingless Pc_comp9580_c0_seq1 scaffold288 390 174.40 0.45/0.17 

Distal-less Pc_comp7089_c0_seq1 scaffold4162 - - - 

Serum response factor Pc_comp3744_c0_seq2 scaffold1599 - - - 

Rhomboid Pc_comp9713_c0_seq1 scaffold1552 - - - 

Knirps Pc_comp8029_c0_seq2 scaffold1878 - - - 

Knot transcription factor Pc_comp14479_c0_seq1 scaffold3686 1260 1.28 0.02/0.05 

Iiroquois Pc_comp4855_c0_seq2 scaffold4868 1533 139.55 0/0.01 

Abrupt Pc_comp3738_c0_seq3 scaffold5117 1548 41.59 0.07/0 

Noradrenaline transporter Pc_comp9252_c0_seq1 scaffold1582 - - - 

Delta Pc_comp8811_c0_seq1 scaffold2089 - - - 

Extramacrochaetae Pc_comp778_c0_seq1 scaffold54 - - - 

Achaete-scute Pc_comp5966_c0_seq1 scaffold6174 - - - 

Asense Pc_comp12489_c0_seq1 scaffold3902 - - - 

Teashirt Pc_comp7294_c0_seq1 scaffold2744 - - - 

Homothorax Pc_comp2739_c0_seq1 scaffold4679 - - - 

Nubbin Pc_comp7766_c0_seq1 scaffold3320 1203 67.88 0.41/0.08 

Ventral vein lacking Pc_comp4049_c0_seq1 scaffold1757 - - - 

Vestigial Pc_comp7899_c0_seq1 scaffold794 - - - 

Sex combs reduced Pc_comp5657_c0_seq1 scaffold1990 1948 104.41 0.16/0.28 

Prothoraxless Pc_comp8727_c0_seq1 - - - - 

Ultrabithorax Pc_comp6090_c0_seq1 Scaffold518 1561 60.50 0.03/0.02 
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