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Woord vooraf 
 

 

In de loop van de voorbije jaren heb ik vaak gemijmerd hoe een ideaal woord vooraf er 

zou kunnen uitzien. Het is meer dan zomaar een proloog of een dankwoord. Het zou 

eerder een metastabiele balans moeten zijn tussen het oproepen van de sfeer waarin ik 

vier jaar heb vertoefd, doorspekt met stilistische fijnzinnigheden en een portie 

karikaturale humor om de lezer niet te vervelen, en tussen een terechte dankzegging. 

Deze finale versie op papier krijgen bleek echter een werk van lange adem en is hetgeen 

u nu leest. Een kortverhaal waarin de beslommeringen en wederwaardigheden die mij 

te beurt zijn gevallen uit de doeken worden gedaan – vol herkenbare situaties, oneliners 

en een vleugje weemoedigheid – en waarin vele mensen een hoofd- of bijrol hebben 

gespeeld. 

Alvorens alles teveel verbloemd wordt, dien ik er wel de nadruk op te leggen dat de 

voorbije vier jaar bij wijlen een aaneenschakeling waren van frustratiemomenten, 

gevloek en eindeloos geploeter omdat ‘de beestjes’ niet wilden groeien of besloten om 

pas tegen de avond in gang te schieten. Uiteraard zijn er nog andere topbelevenissen – 

horresco referens – zoals ’s nachts met goede moed een staal nemen uit de reactor die 

blijkt overgeschuimd te zijn, zaterdagochtend katerig de warme kamer binnenwandelen 

en ontdekken dat je toch geen kolonies hebt of snel nog een groeiproef willen opzetten 

en vaststellen dat je geliefkoosde mediumfles weer gecontamineerd is met een 

schimmelbol… Misschien heb ik daarom wel vooraan dit proefschrift de woorden van 

Hannibal neergepend. Ofwel vind ik een weg, ofwel maak ik er een. Dat was zijn antwoord 

toen één van zijn generaals zei dat het onmogelijk was om de Alpen over te steken met 

olifanten. Welja, de vader der strategie achterna heb ik ook steeds een weg proberen 

vinden wanneer er zich verschillende obstakels op mijn pad bevonden.  

In tegenstelling tot Hannibal had ik twee andere generaals aan mijn zijde die met veel 

graagte de moeilijkst begaanbare paden wilden opzoeken en wiens visie en 

overredingskracht mij aanspoorden om de rug te rechten en door te gaan tijdens de 

donkerste uren van dit proefschrift. Daarom ben ik ook veel dank verschuldigd aan 

Marjan De Mey en Wim Soetaert omdat ze mij de mogelijkheid hebben gegeven om mij 

te vervolmaken in dit boeiende onderzoeksdomein in een ongedwongen setting. Ze 

zorgden ervoor dat InBio (en zeker de MEMO-groep!) op de kaart werden gezet en het 

ultieme voorwerp van afgunst waren van menig vakgroep. Waar anders werd gezellig 

ontbeten, gebarbecued of gepintelierd? Waar anders werd lief en leed gedeeld of 

geschaterlacht? Waar anders stond men schouder aan schouder om ons territorium af te 

bakenen in de koepuur? Ik zal er niet ver naast zitten als ik stel dat ons labo een van de 

fijnste plekken is om onderzoek te verrichten. Het is een dorp waar iedereen elkaar (te 



 

 

 

goed) kent en maandag staat te popelen om met een koffie in de hand elkaars geheugen 

op te frissen omtrent de doldwaze avonturen van afgelopen vrijdag… 

Het echte orgelpunt van vier jaar doctoreren was misschien wel het “zorgvuldig” 

samenstellen van het beruchte UDP-suiker team. Deze League of Extraordinary 

Gentlemen werden als thesisstudenten in het heetste vuur gesmeed tot keurtroepen die 

mij hebben bijgestaan om de demonen van dit onderzoek te bedwingen. Zonder hun 

inzet en veerkracht was dit boekje niet geworden tot wat het nu is. Zonder morren 

werden groeiproeven herhaald, PCR’s opnieuw ingezet of vermaledijde vials op de 

mysterieuze Shimadzu gestoken. Het moreel van het klein labo’s finest werd steevast 

opgekrikt met een verraderlijk streekbier of een feestdis in de Pampa’s. Hoewel hun 

namen later vast wel vereeuwigd en bezongen zullen worden, lijst ik ze hier toch 

nogmaals op. Brecht – tovenaar der TLC’s en productiemedia – met jou had ik de eer en 

het genoegen om samen de eerste ongelooflijke glucosyleringsresultaten te behalen die 

tevens het begin van een nieuw doctoraatstijdperk inluidden. Maar al die wetenschap 

verbleekte bij de talloze side-experiments die we daarnaast hebben opgezet (“ik doe da 

gewoon he”) of hoe we op een ongeëvenaarde manier legio wereldmysteries en 

samenzweringstheorieën oplosten, doorprikten of zelfs versterkten. Een pluim voor het 

out of the box-denken, het verdragen van mijn Michael Scott imitaties en je vriendschap. 

De volgende in rij was Jarno, die na ettelijke worstelpogingen met SuSy het enzym deels 

op de knieën kreeg. Zijn goedgemutstheid en kalmte waren legendarisch, alsook zijn 

alomgekende jeeps ochtend- en avondgroet. Aansluitend brak het jaar aan van de 

dweepkes Pieter (Cockeeer!) en Maarten (Van Breeempt!), die het begrip ‘in vivo 

glycosyleren’ naar een ander niveau tilden. Maarten, ik sta nog steeds versteld hoeveel 

constructen iemand kan maken én volledig testen. Hoeveel keer namen we ons niet voor 

om een paar Ferrari’s te kopen met onze bereide globotriose? En Pieter, hoeveel keer 

heb jij niet gevloekt op Beverly (nvdr: reactor B+1) of gebeld met de ontstellende 

woorden “ja lap, da medium is weer verkleurd”? Gespannen momenten werden dan ook 

geventileerd met spontane dance show-offs in het labo, de meeste bizarre imitaties 

(“Don’t you die on me Billy”) of een volmondig KHA-KHAAAA! Gasten, merci! 

Veel dank ben ik eveneens verontschuldigd aan het gouden drietal dat de MEMO-groep 

jaren in goeie banen heeft geleid en mij steevast met raad en daad heeft bijgestaan. 

Vooreerst wil ik nogmaals Marjan in de bloemetjes zetten omwille van de uren en uren 

tijd die je in mij geïnvesteerd hebt tijdens het samen vorm geven, nalezen en zeer 

kritisch evalueren van dit werkstuk. Het kostte soms wat tijd, maar de violen werden 

steeds gelijk gestemd. Ook Jo, dag en nacht bereikbaar voor “Bruin”, wil ik bedanken. 

Jouw vage schematische pentekeningen op maagdelijk wit papier bleken meer dan eens 

een waardevolle leidraad voor het structureren van papers en presentaties. Jouw 

onblusbare inzet alsook liefde voor lekker eten en cultuur lieten mij snel inzien dat zich 

achter de cynische humor een warme vriend schuilhield, wiens blikken en korte 

tussenwerpsels zoals koepuur!, urrrgh en ow fuck genoeg waren om te snappen wat je 

wilde zeggen. Tot slot mag ook de immer enthousiaste Joeri niet in de rij ontbreken. 

Hoewel je het veelal erg druk had, nam je de tijd om je licht te laten schijnen of wilde 



 

 

 

verklaringen te zoeken voor de rare fenomenen die optraden tijdens mijn onderzoek. 

Tezamen hebben jullie een sterke basis gelegd en mij behoed voor de valkuilen van het 

doctoreren. 

Niet in het minst wil ik ook alle andere InBio-kameraden in de schijnwerpers stellen, 

temeer omdat zij het labo écht maken tot wat het is. Mijn courante habitat (afgezien van 

de koffieruimte) was de bureau beneden waar een deel van de harde MEMO-kern 

gestationeerd was. Ondanks de grote turnover bleven enkelen de voorbije vier jaar tot 

het vaste meubilair behoren. Pieter en Gert – de boyz – waren altijd paraat voor overleg, 

nieuwe ideeën of een vroege aperitief. Met ons drie wilden we een jeugdig regime 

installeren, een activiteitenloos MEMO-weekend organiseren en goud behalen met het 

iGEM team… Achja, de lat mag soms hoog genoeg liggen. Gaspard, wiens practical jokes 

en sarcastisch geplaag vaak mythische proporties aannamen, bood graag hulp bij 

statistische problemen en bleef maar aandringen om op Linux over te stappen. Ook Sofie 

DM maakte graag tijd voor een goed gesprek en leverde een wijsheid aan die volledig in 

mijn kraam paste: “als het twee keer niet lukt, doe dan iets anders”. Ook de recentere 

aanwinsten Thomas, Bob, Maarten DM, Tom en David zullen ongetwijfeld bijdragen tot 

voortzetting van de topsfeer beneden en een nieuwe wind doen waaien. Ook ben ik zeer 

verheugd dat niemand minder dan Wouter nu plaats heeft genomen achter de bureau 

waar ik vier jaar gesleten heb. Jouw onvermoeibaar enthousiasme, werkethiek en 

grenzeloze sfeermakerij zijn niet te beschrijven, tenzij je het zelf hebt meegemaakt. 

Señor, hoed af! Samen met je kompaan Dries D hebben jullie cruciaal werk verricht in de 

lastigste en laatste uren van mijn doctoraat. Zonder jullie kon ik dit woord vooraf 

waarschijnlijk maar een maand later neerpennen.  

Om nog maar te zwijgen over de diehards van het klein labo. Jullie bureau was een vaste 

halte tijdens de ochtendkoffie (sorry voor de achtergebleven tassen!), een ware oase die 

soms ontsierd werd door een welriekende autoclaaf en waar de nieuwste nieuwtjes 

werden uitgewisseld. Hoe dikwijls kwam ik niet bij Maarten, Dries, Eric, Gilles en 

Catherine binnen met een onoplosbaar PCR-mysterie, een spoedbestelling, een 

vastgelopen HPLC of een vraag tot medium-uitlening. En tegelijk moest ik jullie 

ontgoochelen met het fameuze venting-experiment of verzette ik de post al eens naar 

Topradio. Ik zal niet snel de blik in Eric zijn ogen vergeten als we weer weekly supply 

sh*t manager bleken te zijn, alsook de ongeëvenaarde tijd waarop we dit toch maar weer 

klaarspeelden à la monkeystyle. Of de talloze weddenschappen over geografische- en 

dierenweetjes waarbij ik jammerlijk de duimen moest leggen tegen de disco lion. Of hoe 

Vrijdag-Dries mij vier jaar geleden de twijfel ontnam om te doctoreren. Aansluitend wil 

ik de goedlachse MEMO-dames Lien en Isabelle bedanken, alsook deze van het 

coördinatieteam (Hilde, Dominique, Barbara, Anneleen en Liesbet) voor de 

administratieve rompslomp in goede banen te leiden. Ook de Glyco-collega’s en in het 

bijzonder Karel, Tom, Magali en Mareike stonden paraat als het over enzymen of een 

goed feestje ging! En dan heb ik het nog niet gehad over de kleurrijke figuren van Biosurf 

zoals daar zijn: Sophie – eierkopke – Roelants, HPLC/dj Stijn, de overenthousiaste 

Isabelle en Robin – de broer die ik nooit gehad heb. De soms iets te amicale avonturen 



 

 

 

die Robin en ik beleefd hebben zijn meer dan memorabel, en ik zie er dan ook zeer naar 

uit om de Blue Lagoon, de kelder van een niet nader genoemd café en de Bourgoyen nog 

eens op stelten te zetten! 

Overigens wens ik ook mijn vriendengroep buiten de labomuren te bedanken, die al 9 

jaar het vaste decor vormen voor feestjes op ons boerekot, Brusseldrinks en heuse 

roadtrips. Stijn, Kèvn, Langen, Claire, Jef, Spekkie, Ruben en Ken: twas plezant! Ook Tom 

wil ik bedanken, een globetrotter van het eerste uur, met wie ik de eer heb gehad een 

groot deel van de Oude Wereld te verkennen, deels uit avonturenlust, deels uit 

weetgierigheid, zonder ons de allure van ontdekkingsreizigers aan te meten. Het maken 

van de meest absurde Slavische woordgroepen, de Kaukasische kookinitiaties en de 

talloze zoo-bezoeken op de Balkan staan allemaal in ons collectief geheugen geprent. 

Het mooiste en dierbaarste dat deze doctoraatsjaren mij echter gebracht hebben, is de 

vrouw van mijn leven, Margo. Ik zal niet gauw vergeten hoe we naar elkaar zijn 

toegegroeid tijdens de summerschool die plaatsvond in de zwoele zomer van 2013. Ik 

denk dat onze genegenheid zelfs aanstekelijk heeft gewerkt op het labo… Dat we twee 

handen op een buik zijn, is meer dan eens gebleken tijdens de laatste loodjes van mijn 

doctoraat. Bedankt dat ik kon klagen, zagen en mijn hart uitstorten wanneer het 

allemaal onmogelijk leek, bedankt dat jij de stress voor mij ventileerde, bedankt voor je 

kritische kijk en SuSy tips, bedankt voor de momenten van puur geluk, bedankt om wie 

je bent. Er wachten ons nog vele avonturen, de wereld is aan ons! 

Als laatste, en het hoogst van al in het vaandel gedragen, wil ik mijn ouders bedanken. Zij 

hebben ervoor gezorgd dat ik sta waar ik nu sta door hun onvoorwaardelijke steun en 

motivatie. Twee bijzondere mensen die meermaals (ja, zelfs wekelijks) op het labo 

geciteerd werden, waarbij ik meestal aanhief met de woorden “mijn moeder/vader zei 

altijd …”. Meestal volgde hierop een pakkende uitspraak die menig omstaander met 

verstomming sloeg en dikwijls maar het topje van de kennisijsberg waren die zij mij 

hebben meegegeven. Deze mensen hebben thuis een warm nest gecreëerd waar vele 

onderwerpen werden aangesneden (gaande van gouden reistips, ideeën voor self-

sufficiency en het maken van wijn, tot uitdieping van kennis over de klassieke auteurs), 

en waar ik altijd met raad en daad werd bijgestaan. Daarnaast waren de kleine 

hulpstukjes zoals een meegekregen bakje ingevroren appelmoes, een proper gestreken 

hemd of een telefoontje om te vragen hoe het ging meer dan welkom en vormden zij 

tegelijk de steunpilaren voor dit grote bolwerk en de mens die ik geworden ben. 

Woorden kunnen niet genoeg beschrijven hoeveel ik jullie verschuldigd ben. Mama, 

Papa, bedankt! Ook andere familieleden speelden een sleutelrol, zoals mijn zus Caroline, 

met wie ik dikwijls samen de Pinuts onveilig maakte, of mijn grootouders, die met grote 

fierheid hun streekgebonden wijsheden doorgaven vergezeld van koffie en gebak. 

Ziezo, dit zal de laatste maal zijn dat ik de hand leg aan mijn boekje. Geschreven aan een 

bureau die er al vier jaar hetzelfde uitziet en getooid is met een geluksprentje gekregen 

van mijn tante bij aanvang van mijn studies, een Oekraïens vlagje van toen de Krim nog 



 

 

 

niet Russisch was en een moleculaire structuur van UDP-glucose terwijl ik uitkijk op een 

beduimeld papiertje met aminozuren. De boeken kunnen toe, de blik kan op oneindig… 

Stiekem hopend dat dit werkstuk of één van mijn alternatieve levenswijsheden als 

leidraad kan dienen voor anderen. Want sed omnia praeclara tam difficilia quam rara 

sunt.1 

 

 

 

Frederik 

10 november 2014 

 

 

                                                             
1 Baruch Spinoza (1632-1677) 
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AMP   adenosine monophosphate 

ATP  adenosine triphosphate 

BGG  β-glucogallin 

CDW  cell dry weight 

F6P  fructose 6-phosphate 

GA  gallic acid 

gal1P  galactose 1-phosphate 

GC   gas chromatography 

glc1P  glucose 1-phosphate   

glc6P   glucose 6-phosphate 

GNB  galacto-N-biose 

GT  glycosyltransferase 

HBA  hydroxybenzoic acid 

HCA  hydroxycinnamic acid 

HMO  human milk oligosaccharide 

HPLC   high performance liquid chromatography 

KI  knockin 

KO  knockout 

LB   Luria Bertani 

LC  liquid chromatography 

LNB  lacto-N-biose 

MES  2-(N-morpholino)ethanesulfonic acid 

MOPS  3-(N-morpholino)propanesulfonic acid 

MS   mass spectrometry 

NAD  nicotinamide adenine dinucleotide 

OD  optical density 

PEP  phosphoenolpyruvate 

PPi  pyrophosphate 

qp  specific production rate 

qS  specific substrate uptake rate 

RC  regeneration cycles 



 

xi 
 

rp  volumetric production rate 

TB  terrific broth 

TLC  thin layer chromatography 

UDP  uridine diphosphate 

UDP-gal UDP-galactose 

UDP-glc UDP-glucose 

UDP-rha UDP-rhamnose 

UGT  uridine glycosyltransferase 

UMP  uridine monophosphate 

UTP  uridine triphosphate 

WT  wild type 

Y  yield 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Contents 
 

 

 

 

 

Abbreviations ....................................................................................................................................... x 

Introduction ......................................................................................................................................... 1 

literature overview ............................................................................................................................. 5 

Unravelling the Leloir Pathway of Bifidobacterium bifidum .................................................... 28 

Development of an in vivo glucosylation platform by coupling production to growth ...... 48 

Building a versatile glycosylation platform ................................................................................ 73 

Unlocking the potential of Sucrose Synthase for in vivo glycosylation .................................. 97 

Conclusions and perspectives ...................................................................................................... 115 

Appendices....................................................................................................................................... 124 

Bibliography .................................................................................................................................... 148 

Summary .......................................................................................................................................... 174 

Samenvatting ................................................................................................................................... 177 

Curriculum vitae ............................................................................................................................. 181 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

1 Chapter 1 

Introduction 
 

 

During the last couple of decades, industrial biotechnology has evolved from an infant 

technology into a cornerstone of today’s global economy and was recently identified as a 

Key Enabling Technology2 by the EU. This biotechnology branch – also called white 

biotechnology – uses micro-organisms or components thereof (such as enzymes) as 

industrial catalysts to produce valuable chemicals out of renewable carbon sources or 

waste streams. Prominent examples are the production of succinic acid1, lactic acid2,3, 

ethanol4-6, glutamic acid7, lysine8-10 and citric acid11 as bulk chemicals with various 

applications as solvents, fuel, food additives, precursors for synthesis or as building 

blocks for creating biodegradable polymers. These processes have replaced the 

traditional chemical manufacturing, hence supporting the economy to become more 

independent from fossil resources. On the other hand, biotechnology can aid with its 

complementary techniques in the existing chemical synthesis, thus shifting from stand-

alone technologies towards the beneficial integration and expansion of these two 

fields.12 Organic synthesis has the major advantages of broad reactivity and rapid 

optimization, while biological synthesis is characterized by high selectivity, mild 

conditions and sustainability. 

 

Interesting compounds in this perspective are “small molecules”, which often refers to 

specialized (secondary) metabolites such as alkaloids, flavonoids, phenolic acids, 

antibiotics or terpenoids. These molecules and analogues thereof are in high demand 

due to their interesting properties and applications in pharmaceutical, cosmetic or food 

industries, and are usually produced by physicochemical extraction or chemical 

synthesis. However, the majority of specialized metabolites in nature occurs in its 

glycosylated form, hereby greatly altering the solubility, stability or bioactivity of these 

molecules, which are desirable properties for their application in various fields. Since 

selective attachment of a sugar residue is chemically a daunting task, a myriad of 

biotechnological processes have been developed using enzymes (in vitro) or a whole-cell 

bioconversion (in vivo) approach. Key players in this context are glycosyltransferases 

(GTs), which are enzymes that regio- and stereoselectively transfer a sugar residue from 

                                                             
2 http://ec.europa.eu/enterprise/sectors/ict/key_technologies/index_en.htm  

http://ec.europa.eu/enterprise/sectors/ict/key_technologies/index_en.htm
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an activated nucleotide sugar donor (often UDP-sugar) to various small molecules.13 

These in vitro methods are however often plagued by scalability issues, the need for 

purified proteins and the requirement for (equimolar) amounts of expensive donors 

(e.g. UDP-glucose: 150 €/g; UDP-galactose: 1500 €/g). Fueled by these challenges and a 

high demand, various in vivo processes have been developed whereby the UDP-sugars 

and enzymes are formed by an (engineered) micro-organism from cheap substrates. 

These recent biotechnological advances are critically reviewed in Chapter 2 and the 

major hurdles for economic viability of the processes are identified. These include low 

conversion yields and titers, inefficient UDP-sugar formation, limited acceptor flexibility 

and problems regarding scale-up.  

 

Hence, the objective of this doctoral research is to design a novel in vivo glycosylation 

platform which is generic, easily scalable and actively couples growth and production, 

thus overcoming the aforementioned hurdles. To this end, the model organism 

Escherichia coli W was metabolically engineered to create a completely novel 

glycosylation strain for various small molecules using GTs. This new approach should 

enable the bacterium to grow and produce glycosides simultaneously, hereby using only 

sucrose as an extremely cheap (250 €/ton) and sustainable carbon source. An overview 

of the envisaged approaches to obtain these objectives is presented as a chapter based 

flowchart (Figure 1.1). 

 

To efficiently generate UDP-sugars in the cell as a donor for GTs, the expression of a 

promiscuous uridylyltransferase enzyme is necessary. In Chapter 3, the search for such 

an enzyme was started based on research from the late 70’s using crude protein extract 

from the probiotic Bifidobacterium bifidum.14 Since no sequence information was 

present on the enzyme, three uridylyltransferase candidates were cloned and 

investigated with a newly developed chemo-enzymatic assay. UgpA was identified as the 

enzyme sought after, exhibiting activity towards both glucose 1-phosphate and galactose 

1-phosphate resulting in the formation of their respective UDP-sugars. 

 

Chapter 4 describes the first engineering of E. coli W for the creation of a glucosylation 

platform. The strategy makes use of the introduction of an alternative sucrose 

metabolism in the form of a sucrose phosphorylase. This enzyme splits sucrose into 

fructose, which is used as a carbon source and glucose 1-phosphate, which is ideally 

converted into UDP-glucose by the UgpA enzyme selected in Chapter 3. A trimodular 

engineering approach is applied to obtain a split metabolism where both growth and 

production (glucosylation) can occur simultaneously. Expression of a 

glucosyltransferase from Vitis vinifera (VvGT2) enables the strain to efficiently produce 
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the promising compound β-glucogallin (1-O-galloyl-β-D-glucose) starting from only 

gallic acid and sucrose. Due to the broad activity of VvGT2, various other phenolic acids 

were tested to demonstrate the potential of this platform. 

 

Chapter 3: Quest for a promiscuous uridylyltransferase
  - Selection of 3 putative uridylyltransferases from B. bifidum
  - Developing a rapid chemo-enzymatic activity assay for gal1P
  - Engineering E. coli into a suitable screening host
  - Characterization of gene products

Chapter 4: Glucosylation platform

  - E. coli W strain engineering
  - Coupling production to growth
  - Evaluating in vivo β-glucogallin formation

  - Versatility towards other acceptors
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Chapter 5: Glycosylation platform
  - Expanding the glucosylation platform
  - Galactosylation strain:
          Globotriose and hyperoside prod.
  - Rhamnosylation strain:

          Isoquercetrin production

Chapter 6: Exploring sucrose synthase for in vivo glucosylation
  - Improving the affinity for sucrose by random and rational protein engineering
  - Developing a toolbox for enhanced SuSy mutant evaluation and screening
  - Coupling engineered SuSy with glucosyltransferase VvGT2

Chapter 7: Conclusions and perspectives

 

 

Figure 1.1: Flowchart of the different chapters covered in this thesis and the central 
objectives to obtain a generic and versatile in vivo glycosylation platform. 

Because of its generic nature, the glucosylation platform can be easily transformed into a 

general glycosylation platform. In Chapter 5 the possibilities are investigated to create a 

platform for the galactosylation and rhamnosylation of small molecules by expanding 

the production strain from Chapter 4 with an interconverting enzyme. Overexpression 

of either a UDP-glucose epimerase (galE) or a UDP-rhamnose synthase (MUM4) results 

in the formation of UDP-galactose or UDP-rhamnose respectively. As proof of concepts, 

the in vivo formation of the highly demanded galactosides hyperoside (quercetin 3-O-

galactoside) and globotriose (α-galactosyl-1,4-lactose) and the rhamnoside quercitrin 

(quercetin 3-O-rhamnoside) will be evaluated and discussed. 

 

Next, in Chapter 6, the potential of the promising enzyme sucrose synthase (SuSy) for 

the one-step generation of UDP-glucose from sucrose is explored. Coupling of SuSy with 

a glycosyltransferase results in an efficient UDP recycling system, which makes it 

attractive for industrial applications. However, due to its unfavorable kinetics (low 
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affinity for sucrose), it has been rarely used for in vivo generation of UDP-glucose. In this 

chapter, SuSy from Solanum tuberosum will be engineered to increase its affinity for 

sucrose and the obtained mutants will be evaluated using a developed screening system. 

The most active SuSy exhibiting the highest affinity for sucrose will be selected and 

coupled with the glucosyltransferase VvGT2 to assess the in vivo glucosylation potential 

of this regeneration system. 

 

In a final chapter (Chapter 7), the approaches followed in this doctoral research are 

assessed and the versatile ‘plug and play’ glycosylation platforms are evaluated. 

Suggestions are given to further optimize the platforms and expand their industrial 

applicability. 
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2.1 Abstract 

Glycosylation of small molecules like specialized (secondary) metabolites has a 

profound impact on their solubility, stability or bioactivity, making glycosides attractive 

compounds as food additives, therapeutics or nutraceuticals. The subsequently growing 

market demand has fuelled the development of various biotechnological processes, 

which can be divided in the in vitro (using enzymes) or in vivo (using whole cells) 

production of glycosides. In this context, uridine glycosyltransferases (UGTs) have 

emerged as promising catalysts for the regio- and stereoselective glycosylation of 

various small molecules, hereby using uridine diphosphate (UDP) sugars as activated 

glycosyldonors. This review gives an extensive overview of the recently developed in 

vivo production processes using UGTs and discusses the major routes towards UDP-

sugar formation. Furthermore, the use of interconverting enzymes and 

glycorandomization is highlighted for the production of unusual or new-to-nature 

glycosides. Finally, the technological challenges and future trends in UDP-sugar based 

glycosylation are critically evaluated and summarized. 
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2.2 Glycosylation: orchestrating life 

Glycosylation is one of the most prevalent and important modifications in nature as it 

plays a central role in cellular communication and the orchestration of life in general. 

Many diseases are associated with the unusual glycosylation of proteins15-17 and the 

recognition of specific cell surface glycans often forms the basis of viral and bacterial 

infections18 or cancer metastasis19. Sugar residues can be attached to a variety of 

molecules ranging from macromolecules like proteins, lipids or cell wall glycans to 

rather small molecules13 such as specialized (secondary) metabolites and 

oligosaccharides. Glycosylation of these small molecules often has a profound impact 

since it can greatly alter their solubility, stability or bioactivity.20 Remarkable examples 

are the glycosylation of vitamin C21 or anthocyanidins22 for increased stability, the 

detoxification of xenobiotics from the body by means of glucuronidation23,24, the 

glycosylation of steviol resulting in sweet tasting steviosides25, or the possibility to 

target galactosylated compounds towards the liver, making them interesting for site-

specific drug delivery26. Furthermore, alteration of the sugar residue of the same 

compound often affects its pharmacological properties: quercetin 3-O-glucoside and 

quercetin 3-O-glucuronide have antioxidant properties27,28, whereas their 3-O-

galactoside, rhamnoside or xyloside exhibit anti-inflammatory29, antiviral30 or 

anticarcinogenic31 activities, respectively. In addition, the type of sugar moiety of 

quercetin glycosides has been proven to be the major determinant in their small 

intestinal absorption.32 

 

The majority of glycosylation reactions in nature are mediated by glycosyltransferases, 

which can transfer the sugar residue from an activated sugar donor to various 

acceptors.33 These gatekeepers of glycodiversity use nucleotide sugars in 90 % of cases as 

activated donors and are often referred to as Leloir glycosyltransferases.34 The uridine 

diphosphate (UDP) sugars form the largest group of nucleotide sugars35 and 

consequently give rise to the large class of uridine glycosyltransferases (UGTs), which 

are characterized by a unique carboxy-terminal consensus sequence36. Predominant 

UDP-sugars in nature for the glycosylation of specialized metabolites are UDP-glucose, 

UDP-glucuronate, UDP-xylose, UDP-arabinose and UDP-rhamnose, while UDP-galactose 

and UDP-N-acetylglucosamine mostly occur in the formation of oligosaccharides. These 

UDP-sugars and corresponding UGTs are capable of efficiently glycosylating various 

compounds from diverse chemical classes in a regio- and stereoselective way.13,37 Some 

examples of the glycosylation potential and versatility of UGTs towards small molecules 

are schematically shown in Figure 2.1, together with their applications.  
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Figure 2.1: Schematic representation of the glycosylation of diverse classes of small 
molecules by uridine glycosyltransferases (UGTs) resulting in glycosides with various 
applications. The UDP-sugar is used as an activated donor for the regio- and 
stereoselective glycosylation, hereby releasing UDP which can be recycled via different 
routes further discussed in this chapter. 
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The microbial production of these small molecules has made an enormous progress in 

the last two decades.56 This was largely stimulated by the increasing market demand 

and by a mentality shift in replacing chemically synthetized molecules by ‘natural’ ones. 

In addition, due to vast metabolic engineering57 efforts in model organisms like 

Escherichia coli58,59 and Saccharomyces cerevisiae60, the sustainable production of 

flavonoids61,62, anthocyanidins63, terpenoids61,62, phenolic acids62, coumarins64 and 

phenylpropanoids65 has been made possible. Since their corresponding glycosides 

display attractive properties (Figure 2.1), many methodologies have been developed for 

the production thereof, which will be critically revised and compared in this review.  

2.3 State of the art glycosylation processes 

The seemingly easiest way to obtain naturally occurring glycosides is the extraction 

from native producing hosts (which are mostly plants). However, this process is often a 

low-yielding, laborious task and requires a specific method for each host. In addition, the 

yield can be highly dependent on geographical, seasonal or even political factors. 

Nevertheless, extraction remains to date a widely used technique, especially for 

obtaining anthocyanins66, triterpenoid glycosides67, polyphenol glycosides68 and 

steviosides69. Seasonal factors and low yields can be tackled by using in vitro plant cell 

cultures and metabolic engineering thereof, thus guaranteeing or improving 

production.70-72 However, cell cultures often suffer from economic issues and their use is 

currently restricted towards relatively highly priced metabolites.73 

 

Alternatively, organic synthesis of natural glycosides remains a daunting task, even 

though it has become a sport for many chemists to synthesize every molecule 

imaginable. The stereospecific formation of glycosidic linkages is frequently 

compromised by the presence of many reactive groups74, which results in the need for 

various protecting and deprotecting steps75. Furthermore, a low atom-efficiency, the 

generation of toxic waste and use of very expensive catalysts76,77 make this method unfit 

for large-scale and economically viable production. 

 

Hence, fuelled by a high demand and sustainability issues, numerous biotechnological 

solutions have been established. Most of them can be divided in two main categories: in 

vitro (enzymatic) and in vivo (bioconversion and fermentation) production. These aim at 

converting an acceptor (aglycon) into its corresponding glycoside (glycon), hereby only 

differing in the localization of the enzyme(s) involved and the metabolic state of the 

host. In general four types of carbohydrate-active enzymes are used for in vitro 

glycosylation: glycoside hydrolases (GHs), transglycosidases (TGs), glycoside 

phosphorylases (GPs) and (Leloir) glycosyltransferases (GTs).78 These enzymes have 
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been classified in the Carbohydrate-Active Enzymes database (CAZy), which provides 

updated access to more accurate sequence-based family classification linking the 

sequence to the specificity and 3D structure of the enzymes.79 Each of them have their 

own characteristics and drawbacks concerning substrate usage, yields and scale-up. GHs 

are naturally hydrolytic enzymes but can use various molecules as acceptor instead of 

water under controlled conditions. Their activity in the synthesis direction can be often 

boosted by using high substrate concentrations or adding an organic solvent to lower 

the water content, as for example in some industrially promising processes: production 

of rutin and various phenolic acid rhamnosides by an α-L-rhamnosidase from Aspergillus 

terreus80 and large-scale production of prebiotic galactooligosaccharides (GOS) with 

different galactosidases81,82. TGs on the other hand are retaining GHs which do not use 

water as an acceptor. They are widely used since they can transfer the glucosyl moiety 

from cheap carbon sources such as sucrose towards other carbohydrates or small 

molecules. Interesting examples of multigram synthesis are the production of 

ampelopsin glucosides with a dextransucrase from Leuconostoc mesenteroides83 or the 

biosynthesis of catechin glycosides with an amylosucrase from Deinoccocus 

geothermalis84. The less well-studied GPs require more expensive glycosyl phosphate 

donors and have been proven to be efficient catalysts for glycoside synthesis.85,86 Well 

known examples are the glycosylation with sucrose phosphorylase of vitamin C87, 

stilbenoids88, hydroxybenzoates89 and catechins90. In spite of their broad activity, the 

affinity of GHs, TGs and GPs towards new acceptors is generally very low and 

consequently require high concentrations of these (expensive) aglycons91. In addition, 

high substrate concentrations are evenly necessary to combat their reverse (and 

preferred) reaction, making the process overall often very costly. Due to their low 

conversion yield, restriction to mainly form O-glycosides, and hydrolytic/phosphorolytic 

nature, they are generally of no practical use when applied in in vivo systems.  

 

The last type of carbohydrate-active enzymes are the GTs – with the aforementioned 

UGTs as largest group – and display superior conversion efficiencies (up to 100 %) 

towards an enormous variety of small molecules (Figure 2.1). They are able to stereo- 

and regiospecifically form O-, N-, S- and even C-glycosides37 hereby requiring low 

acceptor concentrations. Furthermore, they can be readily applied in both in vitro and in 

vivo glycosylation systems. However, the main constraint to their use in an in vitro 

context is the need for UDP-sugars, which are extremely expensive and rarely available 

in large quantities.92 One way to overcome this is to overexpress UGTs in a micro-

organism, thus making use of their intracellular UDP-sugar pool. This methodology is 

the basis for in vivo UDP-sugar based glycosylation and eliminates the need for extensive 

enzyme purification and the addition of expensive cofactors. Figure 2.2 depicts a 
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schematic comparison of in vitro (A) and various in vivo (B to D) approaches. The latter 

can be divided in three major types depending on the addition of the aglycon and the 

metabolic state of the host(s). One of the first techniques developed was bacterial 

coupling (B), which basically consists of combining different hosts, each fulfilling a 

specific step in the formation of the glycosides. Typically, Corynebacterium glutamicum 

is used for the formation of UTP starting from the cheap precursor orotic acid (step 1). 

UTP is subsequently used by a recombinant strain (often E. coli) for the production of 

the UDP-sugar (step 2) and finally consumed by another E. coli host performing the 

glycosylation by expressing a UGT (step 3).93 Such a system has been frequently used for 

large-scale production of oligosaccharides and is characterized by high product titers 

and rates.93,94 However, the need for cell permeabilization and separate fermentations to 

obtain high cell densities of the various hosts involved, makes the overall process 

instable and less cost effective. The development of processes where these individual 

steps take place in one organism was, hence, a next logical step. 

 

 

 

 

Figure 2.2: Schematic representation of different UGT based glycosylation mechanisms. 
Based on the location of the enzymes involved, in vitro (A) and in vivo (B,C,D) processes 
can be identified. While in vitro glycosylation requires purified enzymes and expensive 
cofactors, these are generated by the host itself from cheap substrates during in vivo 
production. The evolution of different types of in vivo glycosylation is also depicted. 
Bacterial coupling (B) combines different permeabilized (dashed line) hosts, each 
carrying out a step towards glycosylation of an added acceptor. A single cell glycosylation 
(C) process on the other hand combines all these steps in one host, which may be 
permeabilized to facilitate conversion of the acceptor. Cells that actively grow and 
glycosylate simultaneously are designated as a fermentation, resting cells as a 
bioconversion. Finally, the recently developed de novo fermentation (D) processes 
produces both the acceptor and subsequently its glycoconjugate from a cheap carbon 
source, thus eliminating the need for external addition of the acceptor. 
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The advances in the fields of metabolic and genetic engineering made it possible to 

merge various different pathway steps inside a single cell. This approach can be as 

effective as combining multiple hosts, provided that the released UDP can be efficiently 

regenerated. The major advantages of using a single cell are the need for only one 

fermentation and the use of a cheap carbon source like glucose or glycerol as only 

precursor for UDP-sugars. Depending on the metabolic state of the cell, a bioconversion 

(resting cells) or fermentation (actively growing cells) approach can be discerned. 

Bioconversion often requires permeabilization of the host and high initial cell densities 

to ensure proper conversion. In addition, the production rate frequently decreases in 

time due to cell decay, in contrast to actively growing cells where the reaction speeds up. 

The potential of producing glycosides with a fermentation based system and the recent 

expansion of metabolic engineering towards microbial production of many small 

molecules gave rise to a final and novel approach: de novo fermentation of glycosides 

(Figure 2.2 D). This system eliminates the need for addition of expensive acceptors such 

as specialized metabolites and effectively couples growth and production. Few examples 

exist to date with only vanillin glucoside95,96, kaempferol 3-O-rhamnoside97, resveratrol 

glucosides98, anthocyanins99 and steviol glycosides100 being reported in the traditional 

hosts E. coli and S. cerevisiae.  

 

A comprehensive overview of all in vivo systems for UDP-sugar based glycosylation 

focussing on small molecules like specialized metabolites and oligosaccharides is given 

in Table 2.1. To give a fair comparison of the processes and to make an estimation of 

their economic viability, the production rate, conversion efficiency, titer and medium 

composition is given for each process. Remarkably, UGTs have only been successfully 

applied for the in vivo production of oligosaccharides in terms of rates and titers (up to 

188 g/L), while thus far glycosides derived from specialized metabolites are produced 

about three orders of magnitude lower. One explanation is the low solubility and toxicity 

of some of these metabolites, thus hampering efficient formation of the corresponding 

glycosides. On the other hand, it is striking how many in vivo approaches primarily 

concentrate on the expression of novel UGTs or medium optimization, while generally 

little effort has been put into the efficient generation and regeneration of UDP-sugars. In 

contrast, engineering strategies for oligosaccharide production have primarily focused 

on building an efficient UDP-sugar synthesizing module hereby exploiting the whole 

range of UDP-sugar formation techniques. The different methodologies and their 

applications in each system (in vitro/in vitro) are discussed in the next section. 
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Table 2.1: Overview of all existing in vivo processes for the glycosylation of natural small molecules using overexpressed UGTs. 

Glycoconjugate Process Hosts Culture conditions; Medium; Cofactors Acceptor Phases a Conv b 
rgc 

(g/L/h) 
Titer 
(g/L) 

Ref 

Flavonoids 
 

 
 

 
     

Quercetin 3-O-rhamnoside bioconv EC High initial cell density; M9, Glc, def quercetin Gr  Pr 0.84 0.003 0.15 
101

 

Quercetin 3-O-glucoside bioconv EC LB-medium quercetin GrPr 0.03 0.005 0.10 
102

 

Quercetin 3-O-N-
acetylglucosamine 

bioconv/ 
ferm 

EC High initial cell density; M9, Glc, def quercetin Gr  GrPr 0.84 0.015 0.38 
103

 

Quercetin 3-O-xyloside bioconv EC High initial cell density; TB-medium, Mann, Glc quercetin Gr  GrPr 0.97 0.001 0.04 104 

Quercetin 3-O-xyloside bioconv EC High initial cell density; M9, Glc, def quercetin Gr  Pr 0.86 0.005 0.15 105 

Quercetin 3-O-arabinoside bioconv EC High initial cell density; M9, Glc, def quercetin Gr  Pr 0.91 0.002 0.16 105 

Quercetin 3,7-O-
bisrhamnoside 

bioconv EC High initial cell density; M9, Glc, def quercetin Gr  Pr 1.13 d 0.003 0.07 106 

Apigenin 7-O-glucoside ferm EC TB-medium, Glc apigenin GrPr 0.91 0.001 0.039 
107

 

Baicalein 7-O-glucoside ferm EC TB-medium, Glc baicalein GrPr 0.77 0.001 0.033 
107

 

Biochanin A 7-O-glucoside f bioconv EC 
Unknown cell density; TB-medium, Mann, Glc, Fru, 
Glyc 

biochanin A Gr  Pr 0.75 0.001 0.067 108 

Naringenin 7-O-glucoside ferm SC Modified SGI medium; 10 mM oro naringenin GrPr 0.71 0.002 0.155 109 

Kaempferol 3-O-glucoside bioconv EC 
Unknown cell density; TB-medium, Manno, Glc, 
Fru, Glyc 

naringenin Gr  Pr 0.49 0.002 0.109 110 

Kaempferol 3-O-rhamnoside 
ferm 

 de novo 
EC M9, Glc, YE, def - GrPr - 0.002 0.057 97 

Stilbenoids          

Resveratrol 3-O-glucoside 
ferm 

 de novo 
EC M9, Glc, CaCO3, def - GrPr - 0.0001 0.003 98 

Resveratrol 4’-O-glucoside 
ferm 

 de novo 
EC M9, Glc, CaCO3, def - GrPr - 0.0002 0.007 98 

Chalcones          

Phloretin 2’,4’,4’-O-
triglucoside e 

bioconv EC High initial cell density; TB-medium phloretin Gr  Pr 0.11 0.003 0.163 
111

 

Phloretin C-glucoside ferm SC YPGE medium, Raff, def; 10 mM oro phloretin GrPr 0.79 0.002 0.052 112 
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Glycoconjugate Process Hosts Culture conditions; Medium; Cofactors Precursor Phases a Conv b 
rgc 

(g/L/h) 
Titer 
(g/L) 

Ref 

Anthocyanidins          

Cyanidin 3-O-Glucoside 
ferm 

 de novo 
EC Modified M9, def; 0.1 mM oro catechin Gr  GrPr - ND 0.104 99 

Pelargonidin 3-O-Glucoside 
ferm 

 de novo 
EC Modified M9, def; 0.1 mM oro afzelechin Gr  GrPr - ND 0.113 99 

Phenolic compounds          

Vanillin 4-O-glucoside 
ferm 

 de novo 
SC/SP YES medium - GrPr 0.56 g 0.002 0.12 96 

Vanillin 4-O-glucoside 
ferm 

 de novo 
SC Verduyn medium, Glc, def - GrPr - 0.008 0.50 95 

Vanillin 4-O-glucoside 
ferm 

 de novo 
SC SC medium, Glc, Scr, def - GrPr - 0.006 0.45 113 

Arbutin ferm EC LB-medium hydroquinone GrPr 0.51 0.007 0.25 114 

Terpenoids          

Rebaudioside A 
ferm 

 de novo 
SC SC medium w/o methionine, Glc - GrPr - 0.0002 0.015 100 

Plant hormones          

(+)-abscisic acid glucose ester bioconv EC Sodium phosphate buffer, Glc, def (±)-AA Gr  Pr 0.20 0.004 0.085 115 

Oligosaccharides          

Globotriose BC - perm CG+EC 250 g/L cells c; Glc, Fru, Gal, def; 50 mM oro lactose Gr  Pr 0.79 5.22 188 93 

Globotriose ferm EC High initial cell density; Glyc, def lactose Gr  GrPr 0.96 1.41 7.1 49 

Globotriose 
bioconv -

perm 
EC 200 g/L cells c; Scr, def; 2 mM UDP lactose Gr  Pr 0.22 0.61 22 116 

Globotriose BC EC Unknown cell amount; Tre; 7.4 mM UDP lactose Gr  Pr 0.05 0.16 2 117 

Globotetraose ferm EC High initial cell density; Glyc, def lactose Gr  GrPr 0.44 0.115 4.6 49 

α-Gal epitope 
bioconv -

perm 
EC 200 g/L cells c; Scr, def; 2 mM UDP lactose Gr  Pr 0.18 0.50 18 116 

α-Gal epitope 
bioconv -

perm 
PP 250 g/L cells c; Scr, def; 2 mM UDP lactose Gr  Pr 0.37 0.353 14.1 118 

α-Gal epitope bioconv A 100 g/L cells c; Scr, def lactose Gr  Pr 0.03 0.006 1 119 

α-Gal epitope 
bioconv -

perm 
EC 

130 g/L cells c; Gal, Glc, def; 2 mM Glc1P, 0.5 mM 
UDP-glc, 2 mM ATP 

lactose Gr  Pr 0.57 0.36 7.16 120 

α-Gal epitope BC EC Unknown cell amount; Tre; 7.4 mM UDP lactose Gr  Pr 0.04 0.15 1.76 117 
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Process: bioconv: bioconversion, ferm: fermentation, de novo: acceptor was not added but also microbially produced, BC: bacterial 

coupling, perm: permeabilized cells; Hosts: EC: Escherichia coli, SC: Saccharomyces cerevisiae, SP: Schizosaccharomyces pombe, CG: 

Corynebacterium glutamicum, PP: Pichia pastoris, A: Agrobacterium sp.; Culture conditions/Medium/Cofactors: M9: M9 mineral 

medium, Glc: glucose, def: defined medium, TB: terrific broth, Mann: mannitol, Fru: fructose, Glyc: glycerol, oro: orotic acid, Manno: 

mannose, YE: yeast extract, Raff: raffinose, YES: yeast extract with supplements, SC: synthetic complete, Scr: sucrose, Gal: galactose, Tre: 

trehalose; Precursor: AA: abscisic acid, GlcNAc: N-acetylglucosamine; Phases: Gr: growth phase, Pr: production phase, GrPr: 

simultaneous growth and production; rgc: volumetric production rate of glycoconjugates, ND: not determined. 

 

a Bioconversion and bacterial coupling require a growth phase for the accumulation of enzymes in contrast to fermentative processes 

often exhibiting simultaneous growth and production (GrPr). 

b Conversion (Conv) is expressed as mM glycoconjugate formed/mM acceptor added 

c Cells expressed as wet weight 

d Conversion exceeds 100 % without obvious explanation  

e The triglucoside was the major glucoside formed next to 3 other mono- and diglucosides 

f Other isoflavonoids (genistein, formononetin and daidzein) showed lower conversions and yielded glucoside mixtures 

g Conversion was based on mM glucoside/mM vanillin and precursors thereof formed 

 

 

Glycoconjugate Process Hosts Culture conditions; Medium; Cofactors Precursor Phases a Conv b 
rgc 

(g/L/h) 
Titer 
(g/L) 

Ref 

N-acetyllactosamine bioconv A 100 g/L cells c; Glc, def GlcNAc Gr  Pr 0.19 0.15 7.3 121 

N-acetyllactosamine bioconv EC 100 g/L cells c; Glc, def GlcNAc Gr  Pr 0.16 0.20 3.14 122 

N-acetyllactosamine BC - perm CG+EC 250 g/L cells c; Glc, Fru, Gal, def; 50 mM oro GlcNAc Gr  Pr 0.96 2.81 107 94 

P1 trisaccharide 
bioconv -

perm 
EC 100 g/L cells c; Scr, def; 5 mM UDP-glc GlcNAc Gr  Pr 0.67 0.38 27 123 

1
5

 



Chapter 2:  Literature overview 

16 

 

2.4 Formation of common UDP-sugars: sweet routes to synthesis 

In contrast to in vitro approaches, which make use of a vast arsenal of cofactor 

regeneration techniques or interesting methods for UDP-sugar generation from cheap 

substrates, most whole cell (in vivo) approaches apply the same methodology. Despite 

their reported process variety, only three major routes exist for the formation of all 

natural UDP-sugars: a synthase, a phosphorylase and a kinase route. A schematic 

representation of these is shown in Figure 2.3 together with a UGT coupling reaction to 

illustrate their different cofactor requirements (ATP, UTP, …) for sugar activation and 

UDP recycling. 
 

Synthase route  
 

This first route has gained a lot of attention since it directly forms a highly energetic 

UDP-sugar from a disaccharide. To date, only sucrose synthase (EC 2.4.1.13) and 

trehalose synthase (EC 2.4.1.245) have been extensively used for the generation of UDP-

glucose from sucrose124,125 and trehalose126,127 respectively, due to their readily 

reversible character. Many other synthases such as cellulose synthase or lactose 

synthase have been described, but their application is restricted to the synthesis 

reaction because of their unfavorable equilibrium constants.128 The reported trehalose 

synthases originate from bacteria126,127, while the majority of sucrose synthases used 

typically originate from plants125,129,130, with a cyanobacterial homolog as only exception 

to date116. Due to the availability of sucrose and trehalose at low cost and in bulk 

quantities, various processes using the corresponding synthases can be very cost 

effective when coupled with a UGT. Moreover, coexpressing a synthase prevents 

accumulation of UDP, which has been shown to cause the frequently encountered 

problem of UGT product inhibition.124 This coupling principle has been applied both in 

in vitro and in vivo processes for the production of various oligosaccharides116,123,131 and 

glycosylated specialized plant metabolites130,132. Moreover, a fusion protein of sucrose 

synthase and a UGT has been created and used for the production of quercetin 3-O-

glucoside.133 Despite the clear potential of synthases, most reported in vitro coupling 

systems still rather illustrate only a low-yielding proof of concept. Thus far only three 

efficient bioconversion processes have been developed, producing globotriose (22 

g/L)116, α-gal epitope (18 g/L)116,118 and P1 trisaccharide (27 g/L)123 as shown in Table 

2.1. The key feature for an economically viable in vitro process, as recently pointed out 

by Nidetzky and coworkers130, is a high number of regeneration cycles (RC) for the UDP-

sugar. Through controlled feeding of the substrate phloretin and repeated co-addition of 

enzymes, they could obtain an impressive 20 g/L of the C-glucoside nothofagin with an 

RCmax of 50. 



Chapter 2:  Literature overview 

17 

 

A major challenge when applying synthases as catalysts is improving their stability and 

kinetic parameters. For example, the affinity constant (Km) of sucrose synthase for 

sucrose often dramatically increases when recombinantly overexpressed in a 

prokaryotic host134, easily reaching up to 100 mM125 or more135. Similarly, the Km values 

for UDP and trehalose are 30 and 25 mM, respectively, for trehalose synthase from 

Pyrococcus horikoshii126. This feature makes synthases less suitable for fermentation 

systems since growing cells cannot accumulate the respective disaccharides 

intracellularly at the required concentrations, thus impeding UDP-sugar generation. The 

only example to date is the coexpression of sucrose synthase from Coffea arabica in 

yeast, which resulted in a 35 % increased de novo vanillin 4-O-glucoside production.113 

Extensive (structure based) protein engineering efforts could beneficially influence 

these kinetic parameters118,120 and subsequent production.  

 

 

 

Figure 2.3: Schematic overview of the three major routes towards UDP-sugar formation, 
each coupled with a uridine glycosyltransferase (UGT). The synthase, phosphorylase and 
kinase route are shown and differ in their need for cofactors and the regeneration of UDP. 
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Phosphorylase route 
 

Another less elaborate route comprises the use of glycoside phosphorylases, which have 

the ability to cleave disaccharides with inorganic phosphate (Pi) hereby producing an 

activated sugar 1-phosphate.136 This reaction alleviates the need for ATP to generate a 

sugar 1-phosphate, which can be subsequently coupled with a uridylyltransferase to 

yield the corresponding UDP-sugar. Although many types of phosphorylases have been 

reported, α-glucose 1-phosphate is the most prevalent phosphate sugar136 and can be 

formed through the action of a sucrose phosphorylase137 (EC 2.4.1.7), a cellobiose 

phosphorylase138 (EC 2.4.1.231) or a maltodextrin phosphorylase139,140 (EC 2.4.1.1) from 

their respective substrates. Furthermore, the cellobiose phosphorylase from 

Cellulomonas uda was engineered by directed evolution to result in a novel lactose 

phosphorylase enzyme that can efficiently generate α-galactose 1-phosphate from the 

cheap disaccharide lactose.141  

 

Although the only documented example of the phosphorylase route is the in vitro one 

pot synthesis of N-acetyllactosamine142 using sucrose phosphorylase, this methodology 

holds great promise for in vivo glycosylation. In contrast to sucrose synthase, 

overexpression of sucrose phosphorylase can enable growth143 on sucrose as only 

carbon source due to its high affinity144 for this substrate (Km ≈ 1 mM). Metabolic 

engineering of the host cell can direct the increased intracellular glucose 1-phosphate 

pool completely towards UDP-glucose, thus creating an efficient strain for in vivo 

glucosylation reactions. A first attempt based on this principle was described by Heinzle 

and coworkers145, who created an engineered E. coli strain expressing a sucrose 

phosphorylase from L. mesenteroides which efficiently produced UDP-glucose after 

permeabilization. Interestingly, the use of disaccharides as starting substrate for UDP-

sugars (phosphorylase and synthase route) generates a monosaccharide ‘byproduct’ 

(often fructose) which can be used as additional carbon source, thus unlocking the 

potential to simultaneously grow and produce glycosides using only a cheap substrate 

like sucrose.  

 

Kinase route 
 

The last route discussed is probably the most widely used both in in vitro and in vivo 

systems and is based on the combined action of a kinase and a uridylyltransferase to 

generate the required UDP-sugar (Figure 2.3). Many ATP dependent kinases have been 

discovered with specific or promiscuous activities towards a variety of monosaccharides 

for the generation of sugar 1-phosphates. The galactokinase (GalK, EC 2.7.1.6) from E. 

coli and Streptococcus pneumoniae naturally produces galactose 1-phosphate, but also 
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has activity towards other galactose derivatives146,147 and glucose147. Furthermore, GalK 

has been the subject of site-directed and random mutagenesis to further expand the 

activity spectrum and has been extensively used for the phosphorylation of galacturonic 

acid, galactosamine, talose, and various L-sugars such as L-glucose.148-150 Another kinase 

which gained a lot of attention is the N-acetylhexosamine kinase (NahK, EC 2.7.1.162) 

from Bifidobacterium longum, which predominantly acts on N-acetylglucosamine and N-

acetylgalactosamine151, but it also shows activity towards other hexosamine 

derivatives152-154. The latter kinases are mainly used for the in vitro synthesis of UDP-

sugars, whereas most in vivo routes naturally generate a sugar 6-phosphate pool which 

can be easily interconverted through a phosphosugar mutase as depicted in Figure 2.3. 

The best  documented example is phosphoglucomutase (Pgm) which forms glucose 1-

phosphate from glucose 6-phosphate. The formed sugar 1-phosphates are the substrates 

for specific or promiscuous sugar 1-phosphate uridylyltransferases and this process 

functions as salvage pathway for UDP-sugar formation in many organisms. Regarding in 

vivo systems, GalU (EC 2.7.7.9) and GlmU (EC 2.7.7.23) have been frequently used for the 

formation of UDP-glucose and UDP-N-acetylglucosamine respectively103, while in vitro 

synthesis more often relies on uridylyltransferases with broad activity. These 

promiscuous uridylyltransferases are often referred to as SLOPPY (EC 2.7.7.64)155 and 

have been cloned from various organisms like B. bifidum156, B. longum146, H. sapiens157, P. 

sativum158 or the extremophile P. furiosus159 for the formation of UDP-sugars derived 

from galactose, arabinose, xylose, glucuronic and galacturonic acid and N-

acetylgalactosamine. 

 

The kinase-uridylyltransferase route has been frequently applied both in in vitro and in 

vivo systems coupled with a UGT for the production of various glycosides. In spite of the 

need for expensive cofactors (ATP and UTP) during the in vitro formation of UDP-sugars, 

these (one pot) multi-enzymatic conversion processes have been repeatedly applied for 

multigram-scale production of oligosaccharides and derivatives such as globotriose160, 

N-acetyllactosamine oligomers161 and T-MUC1 glycopeptide162. To reduce the high costs, 

efficient systems for the regeneration of the UDP-sugar have been developed based on 

the coupling with pyruvate kinase.163,164 This versatile enzyme catalyzes the transfer of a 

phosphate group from PEP to a nucleoside diphosphate (NDP), yielding pyruvate and 

the corresponding nucleoside triphosphate (NTP). This system is of particular interest 

since it eliminates product inhibition by accumulating UDP. In the case of these tailor 

made oligosaccharides, their market price justifies the costs of cofactors, regeneration 

systems and large-scale enzyme purification.  

 



Chapter 2:  Literature overview 

20 

 

Taking everything into account, in vitro application of the kinase route is only 

advantageous for rapid, small-scale production of (novel) glycosides or UDP-sugars. In 

response to this fact, many efficient in vivo production processes have been developed, 

mostly relying on bacterial coupling or bioconversion while genuine (de novo) 

fermentation approaches are rather uncommon. In contrast to bacterial coupling and 

bioconversion where the kinase and uridylyltransferase are actively overexpressed, few 

engineering efforts have been made regarding UDP-sugar formation in the hosts for 

fermentation based glycosylation. As pointed out by Chen and coworkers122, glucose 1-

phosphate formation (mediated by Pgm) is a major bottleneck and overexpression of 

Pgm and GalU can result in a 10-fold higher glycoside production. Furthermore, 

fermentation systems could benefit from an improved recycling of the released UDP 

towards UTP, which is often built-in in a bacterial coupling93 or bioconversion 

process120. A nucleotide diphosphate kinase (Ndk) naturally catalyzes this reaction and 

overexpression of this enzyme has been shown to enhance the formation of cyanidin 3-

O-glucoside in growing E. coli cells99. 

2.5 Interconverting common UDP-sugars 

In principle, production of a required UDP-sugar can be achieved by using one of the 

three routes discussed in Figure 2.3. The most common UDP-sugars are however formed 

through the kinase route since no synthase or phosphorylase alternatives exist for their 

generation. This in contrast to UDP-glucose, which can be rapidly generated via all three 

routes from various substrates, thus acting as a central pivot and starting point for the 

production of a large variety of UDP-sugars. These can be elegantly formed through the 

(combined) action of a large variety of epimerases, dehydrogenases or decarboxylases 

as shown in Figure 2.4. While epimerases can be used for both in vivo and in vitro 

systems, dehydrogenases and decarboxylases are (economically) restricted to in vivo 

processes due to the need for expensive cofactors like NAD(P)+. 

 

The first UDP-sugars that can be generated from UDP-glucose are UDP-galactose, UDP-

glucuronate and UDP-rhamnose. The formation of UDP-galactose by a UDP-glucose 4-

epimerase (GalE) is by far the best studied epimerization reaction which has been 

exploited in many in vitro or in vivo processes116,119,123. Despite its widespread use, it is 

often identified as the rate-limiting step in enzymatic systems so that the (galacto)kinase 

route is a preferred alternative.164,165 In most cases, GalE from E. coli is used due to its 

broad pH range, general stability and high specific activity166, with the highly 

thermostable GalE from P. horikoshii as a notable exception167.  
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A less known multifunctional and interesting enzyme is rhamnose synthase (RHM), 

which catalyzes the conversion from UDP-glucose to UDP-rhamnose. RHM is only 

present in plants and the N-terminus of the enzyme carries out a dehydratase reaction 

while the C-terminus is responsible for a sequential epimerase and reductase 

reaction.168 Recently, expression of RHM from A. thaliana in E. coli resulted in an 

efficient bioconversion process for the production of quercetin 3-O-rhamnoside and 

kaempferol 3-O-rhamnoside.101 In bacteria, rhamnosylation occurs via dTDP-rhamnose, 

requiring three enzymes (RmlBCD) for its generation starting from dTDP-glucose169 

which often yields lower titers170. The UDP-rhamnose pathway thus proves to be a 

promising alternative for in vivo rhamnosylation and can be efficiently exploited for 

example when coupled with sucrose synthase.  

 

Finally, UDP-glucuronate can be formed by a dehydrogenase enzyme Ugd, using two 

NAD+ molecules which are activated by a tyrosine kinase.171 Expression of UGD from A. 

thaliana in yeast has shown to elevate the UDP-glucuronate pool172, whereas a fission 

yeast strain was metabolically engineered for the production of various (sterol) 

glucuronides.173 Besides the metabolic importance of glucuronidation and the central 

role of UDP-glucuronate as a major constituent of glycosaminoglycans (GAG)174, it is also 

a hub towards the formation of UDP-galacturonate, UDP-apiose and UDP-xylose, which 

itself acts as an intermediate for UDP-arabinose formation. 

 

Decarboxylation of UDP-glucuronate results in the formation of UDP-apiose and UDP-

xylose in a 2 to 1 ratio through the plant enzyme UDP-apiose/UDP-xylose synthase 

(AXS).175 Depending on whether the decarboxylated intermediate undergoes a reduction 

or a ring rearrangement, UDP-xylose or UDP-apiose are formed, respectively, with the 

latter being highly unstable.176 Recently, bacterial UDP-xylose synthases (Uxs) have also 

been characterized from Sinorhizobium meliloti177, Bacteroides fragilis178 and 

Micromonospora echinospora104. The latter Uxs and AXS from A. thaliana have both been 

successfully expressed in E. coli for the in vivo production of quercetin 3-O-

xyloside.104,105 Coupling UDP-xylose formation with a UDP-xylose 4-epimerase (UXE) 

efficiently generates UDP-arabinose and similarly produces quercetin 3-O-arabinoside 

when expressed in E. coli. This enzyme is present in green plants but has recently been 

cloned from S. meliloti177. Finally, UDP-glucuronate can be easily epimerized into UDP-

galacturonate with a UDP-glucuronate 4-epimerase (Gla), an enzyme very similar to 

GalE, which is present in plants but has also been discovered in Klebsiella pneumonia179 

and S. pneumoniae180. 
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Figure 2.4: Overview of the interconverting enzymes for the generation of the most 
common UDP-sugars found in nature derived from the central molecule UDP-glucose. EC 
numbers and the abbreviated gene products are shown next to the reaction. Names 
colored in green are only present in plants, names in blue are (also) present in bacteria. 

 

Next to UDP-glucose, UDP-N-acetylglucosamine is another core metabolite which can be 

easily formed in vivo and in vitro. It is the building block for chitin, various GAG174 and is 

omnipresent in the sugar moiety of many glyconjugates such as 2-deoxystreptamine-

containing aminoglycosides52. As shown in Figure 2.5, UDP-N-acetylglucosamine can be 

interconverted into UDP-N-acetylgalactosamine by a UDP-N-acetylglucosamine 4-

epimerase (GalE2). This bacterial enzyme has been used for the enzymatic production of 

the oligosaccharides globotetraose and isoglobotetraose181 and resulted in the in vivo 

production of globotetraose when overexpressed in an E. coli mutant49. Both UDP-N-

acetylglycosamines can also be converted into their corresponding glycosaminuronate 

by the dehydrogenases WbpO182 and WbpA183. Although these enzymes have thus far 

not been used for the production of rare UDP-sugars, they could become increasingly 

popular since glycoconjugates containing a carboxyl moiety are ligands to the activation 

receptors of human natural killer cells184.  
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Figure 2.5: Overview of the interconverting enzymes for the generation of the most 
common UDP-sugars found in nature derived from the central molecule UDP-N-
acetylglucosamine. EC numbers and the abbreviated gene products are shown next to the 
reaction. Names in blue are present in bacteria. 

2.6 Glycorandomization: beyond nature’s glycosylation toolbox 

As illustrated in the previous sections, UGTs have the capability to glycosylate a myriad 

of acceptors, hereby using a large variety of UDP-sugars. Due to the importance of 

specialized metabolites as major drug leads and the profound effects of adding a sugar 

residue to these compounds, there is a growing interest in unusual or new-to-nature 

glycosides. The latter form the basis for the next generation glycosylated therapeutics185 

by combining new or unusual sugars with chemically synthesized aglycon libraries. 

Producing such glycosides with glycosyltransferases results in two key challenges: the 

formation of exotic UDP-sugars and the search for or engineering of promiscuous UGTs. 

 

Unusual or new UDP-sugars can be formed by either exploiting the diversity provided by 

nature through the use of rare UDP-sugar modifying enzymes or by exploiting the 

chemical synthesis potential to produce new and diverse sugar libraries (Figure 2.6).186 

Such unusual NDP-sugar modifying enzymes are mainly found in (soil) bacteria, which 

mostly produce exotic glycosides for communication or for their never-ceasing chemical 

warfare. While the arsenal of unusual UDP-sugars may seem overwhelming, the most 

common starting point are UDP-4-keto-6-deoxy-sugars which are formed by a 4,6-

dehydratase from UDP-glucose or UDP-N-acetylglucosamine.187,188 These deoxysugars 

may subsequently undergo eight different types of modifications: epimerization, 

isomerization, transamination, group-transfer (formylation, acetylation, sulfation, 

methylation,…), reduction and oxidation, amino oxidation, pyranose/furanose 
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interconversion and dehydration reactions, whereby the underlying mechanisms and 

types of NDP-sugars formed have been excellently reviewed.187,189,190  

 

These useful classes of modifying enzymes have only scarcely been used to create in 

vitro diversity due to the need for equimolar amounts of expensive cofactors like 

NAD(P)H or S-adenosyl methionine.191,192 Notwithstanding the advances in enzymatic 

synthesis, these processes are often plagued by low yields, which has greatly stimulated 

an in vivo approach. Generally, the cluster coding for the unusual sugar biosynthesis is 

altered or expanded in the native host or introduced in a recombinant host by means of 

metabolic engineering.193,194 Interesting examples thereof are the formation of a UDP–4-

amino-4-deoxy-L-arabinose (UDP-Ara4FN)195 and UDP–2-acetamido-2-deoxy-xylose 

(UDP–XylNAc)196 pool in E. coli or the expansion of the natural deoxysugar metabolism 

of various Streptomyces species towards 4-epi-L-daunosamine197 and 4-deacetyl-L-

chromose B198 decorated anthracyclines. It should however be noted that most of the 

unusual deoxysugars are dTDP-sugars, but due to the structural resemblance between 

(d)TDP and UDP and similarity between the mechanisms of their modifying enzymes, 

they can easily be interchanged.199 Furthermore, the existing enzyme machinery will 

probably be greatly expanded or become more specific due to recent advances in the 

field of (functional) metagenomics which gives access to the enormous biodiversity.200 

 

Another approach to produce new-to-nature sugar (libraries) is the exploitation of the 

vast array of chemical methodologies. These methods make use of selective aldol 

reactions201,202 or ring-closing metathesis203 for the formation of novel 

monosaccharides, but commonly available sugars may also be chemically 

modified152,153,204. Activation of these sugars is achieved by coupling with promiscuous 

(anomeric) kinases and uridylyltransferases to yield the corresponding UDP-sugars 

(Figure 2.6). As pointed out in section 2.4, both GalK and NahK display broad kinase 

activity147,152-154, and have been the subject of protein engineering as well, resulting in an 

E. coli Y371H/M173L GalK which literally opened the gate for unnatural sugars205. 

Regarding promiscuous uridylyltransferases, the SLOPPY enzyme from B. longum has 

proven to be an efficient in vitro catalyst towards an enormous range of unusual or 

modified sugar 1-phosphates.146 In addition, the uridylyl/thymidylyltransferase (RmlA; 

EC2.7.7.24) from Salmonella enterica has been frequently applied for both in vivo and in 

vitro generation of various UDP-sugars.150,206 Various engineering efforts (rational 

design and directed evolution) have improved the activity and promiscuity of RmlA  

towards C2 to C4 modified sugars and nucleotides.206-208 Another remarkable example is 

the mutagenesis of a Cps2L thymidylyltransferase from S. pneumonia, resulting in a 
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novel (uridylyl) catalyst for the production of a series of UDP-furanoses and UDP-3-O-

alkylglucoses and UDP-mannose.199 
 

 
Figure 2.6: Chemo-enzymatic glycorandomization is based on the combination of an 
aglycon library with various (new or unusual) UDP-sugars. These can be formed by either 
exploiting the diversity of nature, using unusual UDP-sugar modifying enzymes or by 
exploiting the potential of chemistry to create new sugar libraries. The latter can be 
converted into the corresponding UDP-sugar via the combined action of a promiscuous 
kinase and uridylyltransferase. A chemically diverse aglycon library can be subsequently 
glycosylated with a promiscuous UGT using the new or unusual UDP-sugars, which results 
in a glycorandomized library. 

The culminating step in glycorandomization is coupling the diversity of UDP-sugars with 

an aglycon (library). Despite the enormous wealth of UGTs, the majority of them is 

highly specific towards both the UDP-sugar and the aglycon, often rendering them 

unable to glycosylate even closely resembling analogues. An exception are some 

bacterial UGTs – characterized by a rather open and large aglycon binding pocket – 

which show promiscuous activity towards an enormous variety of chemical classes. To 

date, two bacterial UGTs have been extensively used: YjiC from Bacillus 

licheniformis108,209 and OleD from Streptomyces antibioticus150,210, the latter being 

extensively engineered into an enhanced multifunctional biocatalyst generating O-, S- 

and N-glycosides of well over 100 extremely diverse compounds.210-214 Interestingly, the 

reversibility of some GTs (including OleD as best studied example) has been employed 
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to generate 22 nucleotide sugars from corresponding 2-chloro-4-nitrophenyl β-D-

glycosides.215 Since the released 2-chloro-4-nitrophenolate can be readily detected at 

410 nm, this resulted in the first generally applicable high throughput screen for UGTs, 

which is an indispensable tool in screening their glycosylation potential in 

glycorandomization trials and eliminated the need for tedious UDP-sugar 

synthesis.128,215 

2.7 Future outlook 

The merging and recent advances in the fields of metabolic engineering, protein 

engineering and chemo-enzymatic glycorandomization have paved the way for UGT 

mediated production of virtually any glycoside. In this respect, in vitro glycosylation 

approaches are of great importance for discovery-scale synthesis of glycosides. These 

systems generally benefit from a facilitated downstream processing, and don’t suffer 

from acceptor toxicity or solubility issues when compared to in vivo processes. However, 

scale-up towards economically viable processes is hampered by the need for purified 

proteins and expensive cofactors. Key requirements for successful in vitro application of 

UGTs in industry will consist of (thermo)stable enzymes, a high regeneration of UDP 

(RCmax of 50 or more), efficient conversion of the aglycon and cheap starting substrates. 

From this point of view, sucrose synthase is emerging as an efficient (re)generator of 

UDP-glucose from cheap sucrose as recently reported by Nidetzky and coworkers.130 

Also coupling two UGTs for the biocatalytic rearrangement of glycosides holds promise, 

as illustrated by the conversion of inexpensive phlorizin (O-glucoside) into nothofagin 

(C-glucoside).216 

 

To overcome the issues regarding scalability and process costs, in vivo production of 

glycosides has become an interesting alternative since the microbial host produces its 

enzymes and endogenous UDP-sugar pool out of cheap substrates. Although some highly 

efficient producer strains have been developed for the multigram-scale production of 

oligosaccharides, the glycosylation of specialized metabolites lacks far behind. A major 

reason is the inadequate formation of UDP-sugars, which results in rapid depletion of 

these UDP-sugars when UGTs are overexpressed. To this end, the productivity of many 

strains could be greatly improved when most engineering strategies are revised as a 

function of the metabolic state of the host and the introduction of active UDP-sugar 

formation routes. In the latter case, sucrose synthase or sucrose phosphorylase could be 

of particular interest, since these directly form the activated precursors from the bio-

economically attractive and more sustainable substrate sucrose. In this way, the classic 

engineering strategies relying on the bottleneck enzyme phosphoglucomutase (Pgm) for 

the generation of glucose 1-phosphate (as a precursor for UDP-glucose) are skipped. 
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Moreover, intracellularly released fructose (from sucrose) can function as a substrate 

for growth, thus opening the possibility for simultaneous growth and production, which 

results in a fermentative system. In addition, the formed UDP-glucose can subsequently 

act as a versatile pivot for many other natural and unusual UDP-sugars by 

overexpressing UDP-sugar interconverting or modifying genes. The wealth of these 

exotic enzymes and UGTs provided by nature may even be further expanded by using 

the powerful tools developed in metagenome research217,218 and structure based protein 

engineering149,206,219,220. These methodologies will converge in the development of an 

easily scalable glycosylation host which is industrially applicable. However, some 

technological challenges remain regarding the evaluation of undesired events or side-

reactions taking place in the cell: degradation of UDP-sugars, modification or 

metabolization of the aglycon, insolubility of overexpressed enzymes, aglycon or 

glycoside transport problems, or a redox imbalance by overconsumption of NAD(P)H. In 

addition, the toxicity of the aglycon can be a major hurdle for in vivo approaches, but can 

be partly resolved by controlled feeding or the de novo production of the aglycon, thus 

detoxifying the cell through glycosylation96.  

 

Although large-scale glycosylation is still in its infancy, many progress has been made in 

the microbial production of an overwhelming variety of specialized metabolites. 

Stimulated by a more systematic metabolic engineering approach, production pathways 

have been divided in modules which can be varied on various levels such as 

transcription, translation and even enzyme properties. This multivariate modular 

metabolic engineering (MMME) technique has proven to be very promising221 as it 

alleviates the need for high throughput screens. To boost in vivo glycosylation and more 

specifically the de novo production of glycosides, UDP-sugar formation (and concomitant 

glycosylation) should be considered and implemented as a new module. In this way, 

aglycon and UDP-sugars modules can be varied to determine the optimal pathway 

conditions which can greatly enhance the product yields and titers. Eventually, the 

modular merging of novel and robust glycosylation strategies with microbial production 

of aglycons will unlock a new era for a myriad of glycosides, as extraction techniques 

will be increasinly replaced by de novo production. 
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3.1 Abstract 

Sugars (cellulose, pectin, glycogen, starch) are the building blocks of life  and play a 

central role at the same time in the organization thereof. Adding a sugar residue to a 

molecule can greatly alter its stability or bioactivity, and can even aid in organ specific 

(drug) delivery. However, sugars usually need to be ‘activated’ into a uridine-

diphosphate (UDP) sugar before they can be linked by glycosyltransferases to a 

molecule of interest. This activation is usually mediated through uridylyltransferases, 

which reversibly catalyze the transfer of a UDP group to a sugar 1-phosphate. Many 

specific uridylyltransferases have been described in great detail, but those having a 

broad substrate range are absent in most bacteria. One exotic enzyme activity was 

reported in the late 70’s from the crude extract of Bifidobacterium bifidum exhibiting 

activity towards both glucose 1-phosphate (glc1P) and galactose 1-phosphate (gal1P), 

but detailed information lacked about the sequence. 

 

In this chapter, 3 uridylyltransferase candidates (galT1, galT2 and ugpA) were cloned 

from B. bifidum, expressed in an engineered E. coli mutant and investigated with a newly 

developed chemo-enzymatic assay. GalT1 and GalT2 showed UDP-glucose-hexose-1-

phosphate uridylyltransferase activity (EC 2.7.7.12), whereas UgpA showed the sought 

after promiscuous UTP-hexose-1-phosphate uridylyltransferase activity (EC 2.7.7.10). 

The activity of UgpA towards glc1P was about 33-fold higher than towards gal1P. 

Furthermore, the physiological roles of the other GalT’s were also investigated and 

revealed that GalT1, as part of the bifidobacterial Leloir pathway, was about 357-fold 

more active than GalT2, the functional analog in the galacto-N-biose/lacto-N-biose 

(GNB/LNB) pathway. These results suggest that GalT1 plays a more significant role than 

previously thought and predominates when B. bifidum grows on lactose and human milk 

oligosaccharides. GalT2 activity is only required during growth on substrates with a GNB 

core such as mucin glycans. 
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3.2 Introduction 

In 1899 a bacterium was isolated by Henri Tissier from the faeces of a breast-fed 

infant.222 He introduced the name Bacillus bifidus (later reclassified as Bifidobacterium 

bifidum) after the Latin word bifidus, meaning forked, because of its Y-shaped 

morphology. Bifidobacteria are considered to benefit human health through inhibition of 

pathogens and regulation of intestinal microbial homeostasis.223 They are a 

predominant part of the gut microbiota of breastfed infants and occur naturally in the 

lower part of the human gastrointestinal tract, where common mono- and disaccharides 

are scarce.224 Therefore, bifidobacteria have developed alternative and exotic pathways 

that enable them to utilize various oligosaccharides such as mucin glycans and the two 

types of human milk oligosaccharides (HMO) based on their core sugars: lacto-N-biose I 

(LNB, type I) and N-acetyllactosamine (LacNAc, type II).151,225,226 Growth of B. bifidum on 

these oligosaccharides by action of extracellular glycosidases has been investigated in 

great detail, demonstrating rapid release and subsequent uptake of LNB.227 LNB is 

hypothesized to be the bifidus factor in HMO and thus a key factor in intestinal 

colonization.50,228 Degradation of this disaccharide and the related galacto-N-biose 

(GNB) occurs through the GNB/LNB pathway.151 

 

Table 3.1: Locus tags of the genes investigated in this study based on the B. bifidum 
PRL2010 genome229 and their gene products. 

Gene Locus Tag Gene product 

ugpA BBPR_0976 UTP-glucose-1-phosphate uridylyltransferase 

galE1 BBPR_1456 UDP-glucose 4-epimerase 

galT1 BBPR_0406 UDP-glucose-hexose-1-phosphate uridylyltransferase 

galK BBPR_0407 galactokinase 

lnbp BBPR_1055 galacto-N-biose/lacto-N-biose I phosphorylase 

nahK BBPR_1052 N-acetylhexosamine kinase 

galT2 BBPR_1051 UDP-glucose-hexose-1-phosphate uridylyltransferase 

galE2 BBPR_1050 UDP-glucose 4-epimerase 

 

The GNB/LNB pathway was discovered in Bifidobacterium longum and is encoded by the 

lnpABCD operon. This operon codes for a galacto-N-biose/lacto-N-biose I phosphorylase 

(LNBP), a N-acetylhexosamine 1-kinase (NahK), a UDP-glucose-hexose-1-phosphate 

uridylyltransferase (GalT2), and a UDP-glucose 4-epimerase (GalE2).151 Metabolic 

profiling and genome sequencing of various B. bifidum strains229-232 reveal that a similar 

GNB/LNB gene cluster is present in this species and the corresponding locus tags are 

listed in Table 3.1. However, this cluster is organized differently as two sugar kinases lie 
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between the coding sequences for LNBP and NahK (Figure 3.1). LNBP catalyzes the first 

reaction of this pathway, the phosphorolytic cleavage of a galactosyl-beta-1,3-N-

acetylhexosamine (GNB or LNB) into an N-acetylhexosamine (HexNAc) and galactose 1-

phosphate (gal1P).233 Due to its similarity to the Leloir pathway and the direct 

generation of gal1P without action of a galactokinase (GalK), the GNB/LNB pathway is 

considered an energy-saving variant of the Leloir pathway (Figure 3.2). Therefore, it has 

been suggested that this is the main pathway for galactose metabolism in bifidobacteria 

and that it prevails over the more common Leloir pathway.151,234,235 

 

BBPR_1051BBPR_1050 BBPR_1052 BBPR_1055 BBPR_1056 BBPR_1057 BBPR_1058

BL1643BL1644 BL1642 BL1641

LNBPNahKGalT2GalE2

BL1640 BL1639 BL1638

BBPR_1053 BBPR_1054

1 kbp

Bifidobacterium bifidum

Bifidobacterium longum

ABC-transporter for sugar

LNBPNahKGalT2GalE2 ABC-transporter for sugarsugar kinases

 

Figure 3.1: Schematic representation of the GNB/LNB gene cluster in B. longum NCC2705 
(gene BL1638 to BL1644) and B. bifidum PRL2010 (gene BBPR_1050  to BBPR_1058). Two 
sugar kinases interrupt the GNB/LNB pathway of B. bifidum and it is not organized as in 
the lnpABCD operon (BL1641 to BL1644) of B. longum. 

 

However, based on the presence of other uridylyltransferases and transcriptome 

profiling of B. bifidum, there are indications that the key intermediate gal1P may be 

metabolized via routes other than the GNB/LNB pathway. In this study we investigate 

the function of three annotated yet poorly characterized uridylyltransferases – GalT1, 

GalT2 and UgpA – of B. bifidum and their activity towards gal1P. GalT1 and GalT2 are 

both annotated as UDP-galactose-1-phosphate uridylyltransferases, yet share little (12.1 

%) sequence identity, while UgpA is annotated as an UTP-glucose-1-phosphate 

uridylyltransferase (EC 2.7.7.9). In this paper, the enzymes were cloned and 

overexpressed in an engineered E. coli strain in order to eliminate interference with the 

enzymes investigated, and were screened for both activities, using a new chemo-

enzymatic assay. More detailed characterization of these uridylyltransferases provides 

new insights in gal1P degradation and its metabolic implications in B. bifidum. 

 



Chapter 3:  Unraveling the Leloir pathway of Bifidobacterium bifidum 

33 

 

UDP-glc

UDP-galglc1P

gal1P

β-galactose

α-galactose

GalE1GalT1

GalK

GalM

ATP

ADP

UDP-glc

UDP-galglc1P

gal1P

GNB/LNB + Pi

GalT2GalT2

LNBP

HexNAc

HexNAc1P

NahK

ATP

ADP

HexNAc1P

UDP-HexNAc

UDP-HexNAc

GalE2 GalE2

glycolysis glycolysis
Aminosugar 
metabolism

A. Leloir Pathway B. The GNB/LNB pathway

 

 

Figure 3.2: Overview of the Leloir pathway (A) and GNB/LNB pathway (B) in 
Bifidobacterium bifidum. LNBP, NahK, GalT2 and GalE2 are encoded in the same gene 
cluster.151 In contrast, the classic Leloir pathway (A) is encoded by scattered genes and 
evidence is lacking for the existence of metabolic crossover between both pathways. Gene 
locus tags of the corresponding enzymes are listed in Table 3.1. 
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3.3 Materials and methods 

3.3.1 Bacterial strains and plasmids 

All plasmids and strains used in this study are listed in Appendix 1 and 2 respectively. E. 

coli DH5α (subcloning) was used for plasmid cloning and propagation, while E. coli 

MG1655 ΔgalETKM ΔgalU ΔushA Δugd Δagp (hereafter named sMEMO_WT) was used 

for the expression and crude extract preparation of the uridylyltransferases. E. coli BL21 

(DE3) was used for the expression of the His6 tagged uridylyltransferases. The λ-red 

pKD46 plasmid, plasmid pKD4 for amplification of the kanamycin resistant marker and 

plasmid pCP20 for removal of this marker were used for the one step inactivation in E. 

coli MG1655 as described by Datsenko and Wanner.236 

3.3.2 Reagents 

T4 DNA-ligase and all restriction enzymes were purchased from New England Biolabs 

(Ipswich, Massachusetts). PrimeSTAR polymerase was purchased from Takara Bio 

(Japan). All chemicals used in crude extract preparation and assays were purchased 

from Sigma Aldrich (Germany), except for gal1P and UTP purchased from Merck 

(Darmstadt, Germany) and UDP-glucose and N-acetylglucosamine 1-phosphate from 

Carbosynth (Berkshire, UK). 

3.3.3 Culture media 

E. coli cultures were grown on Luria-Bertani (LB) medium (Difco) with the necessary 

antibiotics (50 µg/mL kanamycin, 100 μg/mL ampicillin, 25 µg/mL chloramphenicol) 

for maintenance and selection of the plasmids. B. bifidum (ATCC 29521) was grown 

anaerobically at 37 °C on LMG Medium 144 (per liter of medium: 23 g special peptone 

(Difco), 1 g soluble starch, 5 g NaCl, 0.3 g cysteine hydrochloride and 5 g glucose). The 

anaerobic environment, consisting of 5 % H2 and 95 % N2, was created by an anaerobic 

chamber (Concept 1000, Ruskinn Technology Ltd, UK). 

3.3.4 DNA isolation, manipulation and construction of uridylyltransferase 

vectors 

Genomic DNA (gDNA) was obtained by harvesting the cells of the culture by 

centrifugation at 22000 × g (Heraeus Biofuge, Thermo). Cells were washed with saline 

and heated for 5 min at 100 °C. The cell debris was removed by centrifugation at 22000 

× g for 10 min and the supernatant was used as gDNA. All primers used in this study are 

listed in Appendices Appendices A5 (deletion primers) and A6 (cloning primers) and the 

gDNA of B. bifidum was used for the amplification of ugpA, galT1 and galT2 genes. gDNA 
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of E. coli MG1655 was used for the amplification of galU. All the genes were amplified 

two times independently and sequenced to ensure no mutations occurred in the 

constructs. The amplified galU and ugpA fragments were cut with EcoRI-HF and SacI-HF 

and ligated into the pCX-Kan-P22 vector resulting in pCX-Kan-P22-galU and pCX-Kan-

P22-ugpA respectively. The galT1 and galT2 fragments were cut with NdeI-HF and PmeI 

and ligated into the p10-Trc vector resulting in the p10-Trc-galT1 and p10-Trc-galT2 

plasmids. In addition, both vectors were also redesigned so that an N-terminal His6 tag 

was added to allow purification, resulting in the p10-Trc-His-galT1 and p10-Trc-His-

galT2 plasmids. These plasmids were created by using a 2 pieces Gibson assembly 

method237 using cloning primers for the amplification of the p10-Trc backbone and His-

galT1 and His-galT2 inserts listed in Appendix A6. All plasmids were sequenced and 

showed no mutations. 

3.3.5 Construction of deletion mutants and expression strains 

To eliminate interference of the crude enzyme extract with the substrates used in the 

assay an E. coli MG1655 knockout mutant was created by application of the one step 

deletion system of Datsenko and Wanner236. The linear DNA for the deletion of each 

target gene was amplified using deletion primers (Fw/Rv_gene_del) as mentioned in 

Appendix A5. The galETKM operon and the genes galU, ushA, ugd and agp were deleted 

resulting in the sMEMO_WT mutant (Appendix A2) as an expression host for the 

recombinant uridylyltransferases. Transformation of the constructed pCX-Kan-P22-

galU, pCX-Kan-P22-ugpA, p10-Trc-galT1 and p10-Trc-galT2 plasmids in this sMEMO_WT 

mutant resulted in the sMEMO_GalU, sMEMO_UgpA, sMEMO_GalT1 and sMEMO_GalT2 

strains respectively. The p10-Trc-His-galT1 and p10-Trc-His-galT2 plasmids were 

transformed in BL21(DE3), resulting in sMEMO_His_GalT1 and sMEMO_His_GalT2 

strains. 

3.3.6 Preparation of crude enzyme extracts 

The sMEMO_GalU, sMEMO_UgpA, sMEMO_GalT1 and sMEMO_GalT2 strains were grown 

in tubes containing 5 mL LB (plus kanamycin or chloramphenicol when required) for 8 h 

at 37 °C. The culture served as 2 % inoculum for 250 mL Erlenmeyer flasks containing 

50 mL LB medium with 1 % glucose (and kanamycin or chloramphenicol when 

required). Strains sMEMO_GalT1 and sMEMO_GalT2 were induced with 0.2 mM IPTG 

after inoculation. Shake flasks were incubated at 37 °C and 200 rpm for 16 h. Cells were 

harvested by centrifugation (Heraeus Biofuge, Thermo) for 10 min at 5000 × g. The cell 

pellet was washed first with saline and then with 50 mM MOPS buffer (pH 6.5 or pH 7 

depending on the assay). Finally, the pellet was dissolved in 5 mL of the above MOPS 

buffer and disrupted by sonication for 2 x 4 min (Branson sonifier, 50 % duty cycle, 
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output 3). The crude enzyme extract was obtained by centrifugation for 20 min at 22000 

× g. Protein concentration was determined via Bradford assay.238 

3.3.7 Purification of GalT enzymes 

For the purification of both GalT1 and GalT2 enzymes, strains sMEMO_His_GalT1 and 

sMEMO_His_GalT2 were cultivated on 100 mL LB medium and chloramphenicol at 30 °C 

and 200 rpm. When absorbance at 600 nm reached 0.6, IPTG was added at a final 

concentration of 0.4 mM. The crude extract was obtained in the same way as described 

above and both enzymes were purified on Ni-nitrilotriacetic acid agarose gel (QIAGEN, 

Hilden, Germany) according to the manufacturer’s instructions. After purification a 

buffer exchange was performed to 50 mM MOPS buffer (pH 7) using an Amicon Ultra-4 

centrifugal filter unit (30 kDa NMWL) from Merck (Darmstadt, Germany). Protein 

concentration was determined via Bradford assay 238. 

3.3.8 Assay for UTP-hexose-1-phosphate uridylyltransferase activity 

The assay was based on the article of Wu and coworkers239, but redesigned for 

pyrophosphate quantification. UTP-hexose-1-phosphate uridylyltransferase activity was 

measured in a 20 µL reaction mixture containing 50 mM MOPS buffer (pH 6.5), 2 mM 

UTP, 2 mM hexose 1-phosphate (glucose 1-phosphate (glc1P) or gal1P), 2 mM MgCl2, 1 U 

of inorganic pyrophosphatase from E. coli, and various concentrations of crude enzyme 

extract. The reaction mixture was incubated at 37 °C for 15 min and was stopped by 

adding 180 µL of a 10 mM EDTA solution. Final activity was determined by quantifying 

the released phosphate during the reaction using a malachite green assay as described 

below. One unit of UTP-hexose-1-phosphate uridylyltransferase activity was defined as 

the amount of enzyme that formed 1 µmol of UDP-hexose per minute under these 

conditions. 

3.3.9 Assay for UDP-glucose-hexose-1-phosphate uridylyltransferase 

UDP-glucose-hexose-1-phosphate uridylyltransferase activity was measured by using a 

continuous coupled assay for glc1P quantification. The assay mixture consisted of 100 

µL assay solution (50 mM MOPS buffer (pH 7), 2 mM NAD+, 10 mM MgCl2, 30 µM 

glucose-1,6-diphosphate, 1.2 U/mL phosphoglucomutase from rabbit muscle and 1.2 

U/mL glucose 6-phosphate dehydrogenase from L. mesenteroides), 50 µL of substrate 

solution (50 mM MOPS buffer (pH 7), 4 mM gal1P and 4 mM UDP-glucose) and a 50 µL 

dilution of crude enzyme extract or purified enzyme in 50 mM MOPS buffer (pH 7). 

Reaction was performed at 37 °C in a microtiter plate and NADH formation was 

monitored continuously by measuring the absorbance at 340 nm. One unit of UDP-
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glucose-hexose-1-phosphate uridylyltransferase activity was defined as the amount of 

enzyme that formed 1 µmol of glc1P per minute under these conditions. 

3.3.10 Kinetic analysis 

The kinetic constants were derived from initial rate analysis by varying the 

concentration of individual substrate. For the UTP-hexose-1-phosphate 

uridylyltransferase assay, UTP was varied from 0 to 2 mM in the presence of 2 mM 

hexose 1-phosphate (glc1P or gal1P). Hexose 1-phosphate was subsequently varied 

from 0 to 2 mM at 2 mM saturation of UTP. For the UDP-glucose-hexose-1-phosphate 

uridylyltransferase assay, gal1P was varied from 1 to 0.02 mM in the presence of 1 mM 

UDP-glucose. Kinetic parameters were calculated from an S-V plot by non-linear 

regression analysis using the Michaelis-Menten kinetic equations in R (‘nlstools’ 

package). 

3.3.11 Malachite green assay 

Phosphate concentration of the samples in the micromolar range was determined using 

a malachite green assay: to 50 µL of sample, 30 µL reagent A, 100 µL milliQ water and 30 

µL reagent B was added (in this order). The mixture was incubated for 20 min in a 

microtiter plate at room temperature and absorbance was measured at 630 nm. Reagent 

A consists of 50 mM of ammonium heptamolybdate in 3 M of sulphuric acid. Reagent B 

consists of 0.093 % (w/v) malachite green and 0.93 % (w/v) polyvinyl alcohol (Mw 

14000). Concentrations were determined using a phosphate standard (serial dilutions 

ranging from 0 – 100 µM). 

3.3.12 LC-MS 

The products – phosphorylated and nucleotide sugars – of the enzymatic reactions were 

also verified by Liquid Chromatography coupled to a Mass Spectrometer (LC-MS) using a 

Cosmosil Hilic (Nacalai USA, San Diego) column (4.6 x 250 mm) with isocratic separation 

(0.1 M ammonium acetate (50 %) and acetonitrile (50%) at a flow rate of 1 mL/min at 

35 °C for 30 min). The LC system was coupled to a  Micromass Quattro LC (McKinley 

Scientific, USA). Detection was performed in negative mode ESI-MS with a capillary 

voltage of 2.53 kV, a cone voltage of 20 V, cone and desolvation gas flows of 93 and 420 

L/h, and source and cone temperatures of 150 and 350°C, respectively. 

3.3.13 Nucleotide sequences accession number 

The accession numbers of the cloned genes are listed in Appendix A3. 
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3.4 Results 

3.4.1 Cloning of the uridylyltransferase genes 

The nucleotide sequences of ugpA, galT1 and galT2 from B. bifidum ATCC 29521 were 

99.4 %, 99.6 % and 99.5 % identical to the BBPR_0976, BBPR_0406 and BBPR_1051 

genes of B. bifidum PRL2010229. The predicted functions of these genes are UTP-glucose-

1-phosphate uridylyltransferase (ugpA) and galactose-1-phosphate uridylyltransferase 

(galT1 and galT2), respectively. These genes were expressed in the E. coli MG1655 

mutant and an assay was performed to determine their function as described in the 

Materials and Methods section. 

3.4.2 Assay validation 

A new UTP-hexose-1-phosphate uridylyltransferase assay was developed based on the 

principle of phosphate detection as described by Wu and coworkers239. Crude extracts 

with this uridylyltransferase activity release pyrophosphate, which is converted to 

organic phosphate (Pi) when coupled with a pyrophosphatase. The subsequent reaction 

of phosphate with a malachite green reagent is spectrophotometrically detected in the 

micro molar range. A schematic overview of this assay is given in Figure 3.3. Since the 

detailed composition of the reagents for malachite green detection of phosphate was not 

available, a reverse engineering effort was done to determine this. The result is the 2-

component mixture described in 3.3.11 and was able to quantify inorganic phosphate up 

to 100 µM.  

 

 Validation of the UTP-hexose-1-phosphate uridylyltransferase assay was performed 

using commercially available uridine-5′-diphosphoglucose pyrophosphorylase from 

baker's yeast (Sigma-Aldrich, 40 – 60 % protein concentration, ≥ 50 U/mg protein). One 

unit was defined as forming 1 µmol glucose 1-phosphate (glc1P) at 25 °C at pH 7.6 in 1 

minute. Enzyme dilutions were incubated for 10 min with 2 mM of UTP and glc1P under 

the conditions described in section 3.3.8 and released phosphate was measured with the 

malachite green assay. A specific activity of 65.2 ± 1.7 U/mg protein was found. This 

coupled assay with subsequent malachite green phosphate detection proved to be a 

stable and precise method for determination of the specific activity. Validation of the 

UDP-glucose-hexose-1-phosphate uridylyltransferase assay was performed by adding 

100 µL of 2 mM glc1P to the assay solution. 
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Figure 3.3: Schematic overview of the developed UTP-hexose-1-phosphate uridylyl-
transferase activity assay (A), screening of the crude enzyme extract dilutions for this 
activity (B) and the measurement of the specific activity towards glc1P and gal1P (C). 

 

3.4.3 Expression host validation 

An E. coli MG1655 mutant (sMEMO_WT) was created as an efficient screening host for 

the different uridylyltransferases from B. bifidum. The Leloir pathway (galETKM) and 

the gene coding for UTP-glucose-1-phosphate uridylyltransferase (galU) were deleted to 

prevent interference with the investigated enzymes. The degradation of hexose 1-

phosphate or UDP-hexose substrates was also prevented by knocking out UDP-sugar 

hydrolase (ushA), UDP-glucose 6-dehydrogenase (ugd) and an acid glucose-1-

phosphatase (agp). The crude extract of sMEMO_WT was tested against the substrates of 

both assays to detect possible interference. No activity was observed for the UDP-

glucose-hexose-1-phosphate uridylyltransferase assay. Testing of the crude extract 

against a hexose 1-phosphate and UTP showed no activity for the UTP-hexose-1-

phosphate uridylyltransferase assay. However minor activity was observed with UTP as 

sole substrate after extended incubation times (> 30 min) and using undiluted crude 

extracts. This is probably due to UTP hydrolysis by an unidentified hydrolase. Since 
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incubation times were always lower than 15 min and dilutions starting from 0.05 were 

used, sMEMO_WT was considered a suitable screening host. 

3.4.4 UTP-hexose-1-phosphate uridylyltransferase activity 

Crude enzyme extract dilutions of UgpA, GalT1 and GalT2 were screened for UTP-

hexose-1-phosphate uridylyltransferase activity against 2 mM hexose 1-phosphate 

(glc1P or gal1P) and 2 mM UTP. Only UgpA showed activity against both substrates. 

Formation of the corresponding UDP-hexose (UDP-glucose or UDP-galactose 

respectively) was confirmed by LC-MS. The specific activity of UgpA crude extract 

towards glc1P was 13 U mg-1, which was about 33-fold higher than towards gal1P. The 

apparent Km values were also calculated and seemed to be similar for both substrates 

(Table 3.2). As a reference point for the substrate usage spectrum, the UgpA equivalent 

of E. coli (GalU) was also assayed against both substrates, showing only activity towards 

glc1P. The specific activity of the GalU crude extract was about 6.9-fold lower compared 

to UgpA. 

 

Table 3.2: Kinetic parameters for UgpA and GalU crude protein extracts a 

  H1P UTP 

 Sp act (U mg-1) Km (mM) Km (mM) 

UgpA (G1P) 13.0 ± 0.08 0.098 ± 0.011 0.042 ± 0.006 

UgpA (gal1P) 0.40 ± 0.01 0.148 ± 0.034 0.032 ± 0.010 

GalU (G1P) 1.88 ± 0.03 0.010 b 0.070 b 

GalU (gal1P) ND - - 

a Reactions carried out at pH 6.5 and 37 °C. ND: not detected. Experiments were carried out in 
triplicate and standard deviations are shown. 

b Data from Weissborn et al. 240. Reaction carried out at pH 7.8 and 37 °C. 

3.4.5 Activity of GalT1 and GalT2 

The 3 recombinant uridylyltransferase crude extracts were screened for UDP-glucose-

hexose-1-phosphate uridylyltransferase activity against 2 mM UDP-glucose and 2 mM 

gal1P at pH 7 and 37 °C. GalT1 showed high activity; a 0.01 dilution of the crude extract 

converted all gal1P into glc1P within a 5 min incubation. The same dilution of GalT2, 

however, displayed a very weak activity which was 417-fold lower compared to GalT1. 

The activity did not improve after adding cysteine, Fe2+, or Zn2+, as proposed in 

literature.241,242 Altering the expression conditions (0.1 mM IPTG induction), lowering of 

the assay temperature to 25 °C or raising the buffer pH to 8.5 had no effect either. To 

confirm these results, the His6 tagged GalT1 and GalT2 were purified from the 
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sMEMO_His_GalT1 and sMEMO_His_GalT2 strains and different dilutions were used to 

measure activity. Other acceptors than gal1P were also tested, including N-

acetylgalactosamine 1-phosphate (galNAc1P) and N-acetylglucosamine 1-phosphate 

(glcNAc1P) in the presence of 2 mM UDP-glucose and the specific activities are given in 

Table 3.3. GalT2 showed a 357-fold lower activity than GalT1, which is consistent with 

the results based on the crude extracts. The apparent Km of GalT1 for gal1P in the 

presence of 2 mM UDP-glucose was 0.29 ± 0.08 mM, which is in the range of previous 

findings.243 The apparent Km of GalT2 for gal1P was 0.61 ± 0.1 mM, while the Km of GalT2 

towards galNAc1P was only 65.1 ± 15.9 µM. 

 

Table 3.3: Kinetic parameters of the purified GalT1 and GalT2 enzymes as function of 
various hexose 1-phosphates a 

Enzyme (H1P) kcat (s-1) Km (mM)  kcat/Km (M-1s-1) 

GalT1 (gal1P) 73 ± 1.8 0.29 ± 0.08 251240 

GalT1 (galNAc1P) ND - - 

GalT1 (glcNAc1P) ND - - 

GalT2 (gal1P) 0.24 ± 0.01 0.61 ± 0.1 400 

GalT2 (galNAc1P) 0.31 ± 0.03 0.07 ± 0.02 4802 

GalT2 (glcNAc1P) 0.22 ± 0.01 - - 

a Reactions carried out at pH 7 and 37 °C for various acceptors. Experiments were carried out in 
triplicate and standard deviations are shown. ND: not detected. 
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3.5 Discussion 

3.5.1 Assay and expression host validation 

A new and reliable assay was developed that allows fast screening and characterization 

of enzymes with UTP-hexose-1-phosphate uridylyltransferase activity. The same assay 

can be used to investigate various other enzymes that liberate pyrophosphate, such as 

mannose-1-phosphate guanylyltransferase (EC 2.7.7.13) or isoprene synthase (EC 

4.2.3.27). The development of the described expression host, lacking the Leloir pathway 

and relevant degradation reactions, bypasses the need to purify the enzymes 

investigated. These assays proved to be indispensable tools to characterize UgpA, GalT1 

and GalT2 and gain new insights in the LNB/GNB metabolism of bifidobacteria. 

3.5.2 Specificity of UgpA 

Our results indicate that UgpA is a promiscuous UTP-hexose-1-phosphate uridylyl-

transferase that catalyzes the formation of UDP-hexose from hexose 1-phosphate. Based 

on this activity and the size of the monomer (55 kDa), this enzyme is probably 

homologous to the enzyme purified from B. bifidum by Lee et al. but was never properly 

annotated.14,244 They described the reverse (pyrophosphorylase) action of UgpA, which 

showed the same reactivity towards UDP-galactose as towards UDP-glucose. However, 

our findings indicate a 33-fold lower activity in the synthesis direction of UDP-galactose. 

Because of this promiscuity, a new EC number (EC 2.7.7.10) was proposed to distinguish 

it from UTP-glucose-1-phosphate uridylyltransferase (EC 2.7.7.9; GalU) that 

predominantly acts on glc1P in prokaryotes.240,245 However, due to the activity on 

different sugar 1-phosphates, the absence of similarity with GalU-type enzymes, and a 

high level of identity with promiscuous eukaryotic uridylyltransferases, we suggest that 

UgpA should be classified as an UTP-monosaccharide-1-phosphate uridylyltransferase 

(EC 2.7.7.64, synonym of UDP-sugar pyrophosphorylase, USP)158,246,247. Moreover, a 

UDP-sugar pyrophosphorylase from B. longum (BLUSP) was recently cloned, showing 82 

% amino acid identity with UgpA, and was used for the efficient synthesis of a variety of 

UDP-sugars146. 

3.5.3 Specificity of GalT enzymes 

We observed that both GalT1 and GalT2 possessed UDP-glucose-hexose-1-phosphate 

uridylyltransferase activity (EC 2.7.7.12; GalT), yet the activity of GalT2 was 357-fold 

lower compared to GalT1. A similar result was reported in the large scale preparation of 

LNB, where GalT1 of B. longum was used instead of GalT2.50,151 GalT2 shows a broad 

acceptor specificity, with a 9-fold higher affinity towards galNAc1P than gal1P. The 
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amino acid sequences of both GalT enzymes shared almost no identities (12.1 %), which 

could be explained by convergent evolution of similar enzymatic function. However, it 

was shown that the majority of catalytic residues are under different evolutionary 

constraints in both type of enzymes and they likely have different functions.248 This is 

supported by the fact that purified GalT2 was 28 % more active towards galNAc1P than 

gal1P as substrate, providing a link between growth on GNB/LNB and aminosugar 

metabolism. 

3.5.4 galT gene clusters 

GalT enzyme activity, which is essential for the transfer of the uridine nucleotide moiety 

from UDP-glucose to gal1P, is widespread in many organisms. However, based on the 

enzyme dissimilarities between GalT1 and GalT2, two classes seem to exist. Class I 

enzymes (GalT1 type) are found in various eukaryotic organisms and bacteria, while 

Class II enzymes (GalT2 type) are almost exclusively present in Firmicutes and 

Actinobacteria.249,250 Coding sequences for GalT1 or GalT2 do not co-occur in the same 

organism, with some Clostridiales and bifidobacteria as exceptions. Based on 

comparative bifidobacterial genome analysis, only B. bifidum, B. longum and B. breve 

strains possess both galT1 and galT2, being part of a galTK gene cluster and a GNB/LNB 

degradation gene cluster, respectively.229,231,251 A schematic phylogenetic overview of 

these gene clusters is given in Figure 3.4. Metabolic and genetic explanations for the 

unique coexistence of both GalT enzymes in B. bifidum, B. longum and B. breve strains 

remain unclear, but is coupled to the occurrence of the GNB/LNB pathway, which is 

apparently absent in other bifidobacteria227,232. 

3.5.5 Metabolic implications 

The occurrence of three uridylyltransferases in B. bifidum that act on gal1P can have 

metabolic implications that have been overlooked. While the Leloir pathway is in most 

organisms the major, if not the only, pathway for the degradation of galactose, an 

alternative route was discovered in B. longum under the form of the GNB/LNB pathway. 

The same gene cluster is also present in B. bifidum and it is suggested that this energy-

saving variant of the Leloir pathway is the main pathway for galactose metabolism.151 

However, glycoprofiling of B. bifidum during growth on HMO shows the release of 

lactose and LNB as prominent disaccharides. While LNB enters the GNB/LNB pathway, 

galactose is released by action of a β-galactosidase227 from lactose. Our findings suggest 

that galactose is primarily metabolized via the Leloir pathway, together with gal1P 

originating from LNB or GNB. 
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Although GalT2 (as part of the GNB/LNB pathway) is put forward to play the key role in 

gal1P degradation151, we suggest that GalT1 (as part of the Leloir pathway) 

predominates when grown on lactose, galactooligosaccharides (GOS) and HMO. In 

addition to the 357-fold lower activity of GalT2, transcription data showed the 

upregulation of galT1 during growth on these substrates relative to glucose252,253. It is 

often stated that the genes of the GNB/LNB pathway are upregulated during growth on 

oligosaccharides or mucin, but whether a part or the whole cluster is upregulated is 

highly dependent on the substrate. Growth on LNB-containing oligosaccharides (HMO) 

only requires LNBP and NahK activity in principle, yielding gal1P and glcNAc1P. The 

latter is metabolized into fructose 6-phosphate (F6P) by action of a 

phosphoglucosamine mutase, a N-acetylglucosamine 6-phosphate deacetylase, and a 

glucosamine 6-phosphate deaminase, which then enters the bifid shunt254. A significant 

upregulation of these genes was observed when grown on HMO.229,255  

 

Substrates with a GNB core (such as mucin glycans) require LNBP and NahK activity, 

yielding gal1P and galNAc1P, yet also require GalT2 and GalE2 activity to be converted 

to glcNAc1P in order to enter the bifid shunt. This hypothesis is supported by the 

substrate preference of GalT2 towards galNAc1P and by transcriptional data of 

bifidobacteria grown on lactose, HMO, GOS or mucin based media.229,252,253 A proposed 

metabolic route for lactose, LNB and GNB degradation is depicted in Figure 3.5. The 

metabolic implications of UgpA are probably limited to UDP-sugar generation, to 

provide the Leloir pathway with initial amounts of UDP-glucose.235,245 This is supported 

by the fact that the Km for hexose 1-phosphate is more than 2-fold lower compared to 

GalT1. 
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Figure 3.5: Proposed routes for the metabolization of galactose, lacto-N-biose I (LNB) and 
galacto-N-biose (GNB) in B. bifidum. All 3 substrates yield gal1P which is solely 
metabolized by the Leloir pathway (left). Depending on the presence of LNB or GNB, N-
acetylglucosamine (glcNAc) or N-acetylgalactosamine (galNAc) are respectively formed 
through the action of LNBP. Utilization of glcNAc only requires N-acetylhexosamine kinase 
(NahK) activity to generate glcNAc1P. However, GNB rich substrates such as mucin need 
the full set of enzymes encoded by the GNB/LNB gene cluster (right). GalNAc is 
phosphorylated to GalNAc1P by NahK, which is subsequently converted by GalT2 and 
GalE2 via a Leloir like pathway to glcNAc1P which can then enter the Bifid Shunt via 
fructose 6-phosphate (F6P) by consequent action of a glucosamine mutase, a deacetylase 
and a deaminase. glcN6P: glucosamine 6-phosphate. 
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3.6 Conclusions 

In this chapter 3 uridylyltransferases (UgpA, GalT1 and GalT2) from B. bifidum were 

characterized by expression in an engineered E. coli strain and using the crude extracts, 

thus avoiding the need to purify the enzymes. The extracts were easily screened for 

hexose-1-phosphate uridylyltransferase activity due to the development of a novel 

chemo-enzymatic assay based on phosphate detection in the micromolar range. UgpA 

was identified as the promiscuous uridylyltransferase with activity towards both glc1P 

and gal1P. This interesting feature together with its 7-fold higher activity compared to 

GalU has enabled the implementation in the next chapters. GalT1 and GalT2 exhibited 

UDP-glucose-hexose-1-phosphate uridylyltransferase activity and their function in 

respect to substrate usage in B. bifidum was discussed based on the data obtained in 

vitro. 
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of V. vinifera. 

 

 

Spectral analyses for the determination of the glucosides were carried out by C. Stevens 
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4.1 Abstract 

Glycosylation of small molecules can significantly alter their properties such as 

solubility, stability and/or bioactivity, making glycosides attractive and highly 

demanded compounds. Consequently, many biotechnological glycosylation approaches 

have been developed, with enzymatic synthesis and whole-cell biocatalysis as the most 

prominent techniques. However, most processes still suffer from low yields, production 

rates and inefficient UDP-sugar formation. To this end, a novel metabolic engineering 

strategy is presented for the in vivo glucosylation of small molecules in Escherichia coli 

W. This strategy focuses on the introduction of an alternative sucrose metabolism using 

sucrose phosphorylase for the direct and efficient generation of glucose 1-phosphate as 

precursor for UDP-glucose, and fructose, which serves as a carbon source. By targeted 

gene deletions, a split metabolism is created whereby glucose 1-phosphate is rerouted 

from glycolysis to product formation (i.e. glucosylation). Further, the production 

pathway was enhanced by increasing and preserving the intracellular UDP-glucose pool. 

Expression of a versatile glucosyltransferase from Vitis vinifera (VvGT2) enabled the 

strain to efficiently produce 14 glucose esters of various hydroxycinnamic and 

hydroxybenzoic acids with conversion yields up to 100 %. To our knowledge, this fast 

growing (and simultaneously producing) E. coli mutant is the first versatile host 

described for the glucosylation of phenolic acids in a fermentative way using only 

sucrose as a cheap and sustainable carbon source. 
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4.2 Introduction 

In nature, the majority of specialized (secondary) metabolites exist in its glycosylated 

form. Addition of a sugar residue to such molecules significantly alters the solubility, 

stability and/or bioactivity20, which are desirable properties when glycoconjugates are 

applied as nutraceuticals, therapeutics or cosmetics. Small (lipophilic) molecules such as 

flavonoids, phenolic acids, alkaloids or terpenoids are an interesting class within plant 

specialized metabolites due to their myriad of applications ranging from 

cardioprotective42, anticarcinogenic40 and antiviral30 to antioxidative44 or sweetening25 

effects. Furthermore, glucosylation of these compounds, which is catalyzed by 

glucosyltransferases (GTs), proves to be the key factor in metabolic homeostasis13 of 

plants. These enzymes transfer a glucose residue regio- and stereoselectively from the 

activated sugar donor UDP-glucose (UDP-glc) to the respective acceptors.37 

 

Chemical synthesis of glucosides (and glycosides in general) has proven to be a very 

daunting task, requiring many protecting and deprotecting steps.75 In addition, large-

scale synthesis is hampered by a low yield and a low atom efficiency. To tackle these 

difficulties, many enzymatic processes have been developed using either glycoside 

hydrolases, or phosphorylases or the mentioned GTs for the generation of various 

glucosides.78 However, whereas glycoside hydrolases often suffer from an unfavorable 

equilibrium, typically shifted towards hydrolysis rather than the synthesis reaction 

which results in low yields86, glycoside phosphorylases require high concentrations of 

acceptor molecules for efficient catalysis91. The main constraint to the use of GTs in 

biocatalysis is the need for equimolar amounts of UDP-glc, which is very expensive and 

rarely available in large quantity.92 To overcome this issue, a lot of effort has been 

invested both in the enzymatic regeneration of these nucleotide sugars163,181 and in 

coupling GTs with sucrose synthase130. Despite these efforts, production rates remain 

low and the overall processes costly. An alternative approach is the use of microbial 

whole-cell systems for the in vivo glucosylation of various acceptors.98,102,124,256 The used 

(engineered) cells generate the aforementioned expensive cofactors in situ and the 

expression of GT enzymes, thus bypassing the need for extensive protein purification.  

 

Most of these microbial processes are bioconversions which use resting cells, hence 

resulting in inefficient UDP-sugar formation.114,257 They typically require an initial 

growth phase and expensive growth media to obtain high cell densities that function as 

passive biocatalysts during the subsequent production phase. Furthermore, the majority 

of glycosylation systems to date rely on phosphoglucomutase (Pgm) for the generation 

of glucose 1-phosphate (glc1P) as precursor for UDP-glc, despite the fact that this 
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reaction has been frequently identified as a major bottleneck.122 As a result, most in vivo 

glycosylation strains are plagued with low product titers and rates, rendering them unfit 

for large-scale applications. However, production rates and space-time yields could be 

greatly improved when formation of glycosides occurs simultaneously with biomass 

accumulation. Reassessing existing engineering strategies in such a way that the carbon 

source is equally invested in growth and production bypasses the need for a trade-off 

between both. Since growth is the main driving force of a cell, a steady supply of the 

UDP-sugars and its precursors is ensured. 

 

 

 

 

Figure 4.1: Overview of the novel metabolic engineering strategy which consists of (1) 
introducing sucrose phosphorylase (BaSP) in E. coli W for the direct generation of glucose 
1-phosphate; (2) creation of a split metabolism by preventing glucose 1-phosphate 
degradation and rerouting it towards UDP-glucose; (3) formation and preservation of an 
enlarged UDP-glucose pool; and (4) the expression of a versatile glucosyltransferase 
VvGT2 for the glucosylation of various phenolic acids. 

 

In this contribution, a novel metabolic engineering strategy that couples production to 

growth is presented for the in vivo glucosylation of small molecules in Escherichia coli W. 

This strategy, depicted in Figure 4.1, focuses on (1) the introduction of an alternative 

sucrose metabolism, using sucrose phosphorylase, for the efficient generation of glc1P, 

the precursor of UDP-glc; (2) the creation of a split E. coli W metabolism, resulting in the 

reduced or eliminated use of glc1P for growth, preserving it for UDP-glc formation; (3) 

enhancing and securing UDP-glucose formation; and (4) the expression of the versatile 

glucosyltransferase VvGT2 from Vitis vinifera for the glucosylation of various phenolic 

acids. To our knowledge, these compounds have not been the subject of in vivo 
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glucosylation in spite of their interesting properties as (dietary) antioxidants, which 

hold a large and steadily growing market.62 Due to this engineering strategy, sucrose is 

split in fructose, which is used as a carbon source, and glc1P, which fuels the formation 

of glucosides, resulting in a strain that simultaneously grows and produces. 
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4.3 Materials and methods 

4.3.1 Materials and Molecular Agents 

All plasmids used were constructed using Gibson assembly237 and all PCR fragments 

were amplified using Q5 polymerase from New England Biolabs (Ipswich, 

Massachusetts). Oligonucleotides were purchased from IDT (Leuven, Belgium). The 

plasmids and bacterial strains used in this study are listed in appendices A1 and A2. A 

list of primers for the creation of gene knockouts and a list of primers for the cloning of 

the expression plasmids are given in appendices A5 and A6, respectively. E. coli DH5α 

was used for plasmid cloning and propagation, while E. coli W was used for expression 

of the production plasmids and creation of gene knockouts. β-glucogallin was purchased 

from Carbosynth (Berkshire, UK). All other chemicals used were purchased from Sigma 

Aldrich (Germany) unless otherwise indicated. 

4.3.2 Creation of the production plasmids 

The plasmids for the production of glucosylated compounds were constructed by 

cloning the genes of interest (sucrose phosphorylase from Bifidobacterium adolescentis 

(BaSP), glucosyltransferase from Vitis vinifera (vvGT2), and glucose-1-phosphate 

uridylyltransferase from E. coli (galU) and Bifidobacterium bifidum (ugpA)) first in a 

pCX-Kan expression vector with medium-strength constitutive promoter P22 

originating from a previously constructed promoter library59,156,258. This resulted in the 

corresponding pCX-Kan-P22-gene (pBaSP, pVvGT2, pUgpA and pGalU) plasmids. The 

gene accession numbers are listed in appendix A3 and an overview of the total cloning 

strategy is given in appendix A7. The genes with P22 promoter were then amplified and 

ligated following Gibson assembly237 into an amplified pUC57 backbone containing 200 

bp homologous sequential linkers (L4 to L7) flanking the insert, which permits rapid 

assembly and switching of genes. Assembly of the amplified L4-P22-BaSP-L5 insert and 

pCX-Kan backbone led to the construction of pCX-Kan-L4-P22-BaSP-L5. This plasmid 

was used for the consequent (homology based) stitching and creation of the final 

constitutive production plasmids pCX-Kan-L4-P22-BaSP-L5-P22-VvGT2-L6 

(pBaSP/VvGT2) and pCX-Kan-L4-P22-BaSP-L5-P22-VvGT2-L6-P22-GalU/UgpA-L7 

(pBaSP/VvGT2/GalU or pBaSP/VvGT2/UgpA). 

4.3.3 Creation of the E. coli W mutant strains 

All E. coli W knockout mutants were created by using the one step deletion method of 

Datsenko and Wanner.236 The genes cscAR, pgm, agp, ushA and glgC were subsequently 

deleted. Each knockout mutant was transformed with the plasmid pCX-Kan-P22-BaSP 
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(pBaSP) for the reintroduction and evaluation of the sucrose metabolism and with the 

plasmids pBaSP/VvGT2, pBaSP/VvGT2/GalU or pBaSP/VvGT2/UgpA for assessing the 

production potential of glucosylated compounds. E. coli W was transformed with pCX-

Kan-P22-VvGT2 (pVvGT2) to compare production between the engineered strains and 

the wild type (WT). 

4.3.4 Media 

Luria Broth (LB) medium consisted of 10 g L-1 tryptone peptone (Difco, Belgium), 5 g L-1 

yeast extract (Difco) and 10 g L-1 NaCl and was autoclaved for 21 min at 121 °C. 

 

Minimal medium contained 2 g L-1 NH4Cl, 5 g L-1 (NH4)2SO4, 3 g L-1 KH2PO4, 7.3 g L-1 

K2HPO4, 8.4 g L-1 MOPS, 0.5 g L-1 NaCl, 0.5 g L-1 MgSO4 ∙ 7H2O, 20 g L-1 sucrose, 1 mL L-1 

trace element solution and 100 µL L-1 molybdate solution. The medium was set to a pH 

of 7 with 1 M KOH and filter sterilized. 

 

Trace element solution consisted of 3.6 g L-1 FeCl2 ∙ 4H2O, 5 g L-1 CaCl2 ∙ 2H2O, 1.3 g L-1 

MnCl2 ∙ 2H2O, 0.38 g L-1 CuCl2 ∙ 2H2O, 0.5 g L-1 CoCl2 ∙ 6H2O, 0.94 g L-1 ZnCl2, 0.0311 g L-1 

H3BO4, 0.4 g L-1 Na2EDTA ∙ 2H2O, 1.01 g L-1 thiamine ∙ HCl. The molybdate solution 

contained 0.967 g L-1 Na2MoO4 ∙ 2H2O. 

 

Production medium has the same composition as the minimal medium but the pH is set 

to 6.5 and MES buffer is used instead of MOPS. Gallic acid (0.5 g L-1) was added as 

acceptor and 1 g L-1 citric acid to prevent medium auto-oxidation. 

4.3.5 Growth in shake flasks 

E. coli W mutant precultures were grown in 50 mL glass tubes containing 5 mL LB 

medium with the necessary antibiotics (50 μg mL-1 kanamycin) for maintenance and 

selection of the various plasmids used. Cultures were grown for 16 h at 37 °C and 200 

rpm and used for the 2 % inoculation of 100 mL minimal medium in 500 mL shake 

flasks. Experiments for glucogallin production were carried out in production medium. 

Glucosylation of various hydroxycinnamic acids (HCA) and hydroxybenzoic acids (HBA) 

was evaluated by adding 1 g L-1 of these compounds to the minimal medium. All shake 

flask cultures were grown at 37 °C and 200 rpm and samples were collected at regular 

intervals for the measurement of extracellular metabolites and optical density at 600 nm 

(OD600) using a Jasco V-630Bio spectrophotometer (Easton, UK). 
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4.3.6 Growth in bioreactors 

To evaluate the metabolic parameters, 100 mL cultures were grown overnight on 

minimal medium and used to inoculate (5 %) Biostat B+ reactors (Sartorius Stedim, 

Germany) with a 1 L working volume. The fermentor culture was maintained at 37 °C 

and 4 M of KOH and 0.5 M H2SO4 were used to keep the pH to 6.8. The gas flow was fixed 

at 1 vvm and the agitation ranged from 200 to 1200 rpm as function of the dissolved 

oxygen (kept above 40 %). Off-gas analysis (EGAS-1, Sartorius AG, Germany) provided 

on-line measurement of O2 and CO2. Growth experiments were performed in minimal 

medium without MOPS buffer and all parameters described above were monitored using 

MFCS/win software (Sartorius AG). 

4.3.7 Product analysis and quantification 

Culture samples containing HCA or HBA were primarily analyzed by TLC on Silica gel 60 

F254 precoated plates (Merck, Germany). The plates were run in a solvent system of ethyl 

acetate/butanone/formic acid/water in a volume ratio of 5:3:1:1 in a closed TLC 

chamber and were developed using standard visualization techniques or agents: UV 

fluorescence (254 nm) or by staining with 10 % (v/v) H2SO4 and subsequent charring. If 

no glucoside standard was available, acceptor and product spot intensities were 

processed and quantified using ImageJ259. β-glucogallin and gallic acid were 

simultaneously detected with the method of Takemoto et al.260 using a Prevail Organic 

Acids column (5 µm, Grace, USA) at 30 °C and a Varian HPLC system (Agilent 

technologies, California). Sucrose, fructose and glucose were detected using an X-bridge 

Amide column (35 μm, Waters, USA) at 35 °C. The mobile phase consisted of a mixture of 

75 % acetonitrile, 24.8 % water and 0.2 % triethylamine at a flow rate of 1 mL min-1. The 

accumulation of extracellular glucose 1-phosphate (glc1P) was analyzed by an 

enzymatic assay as previously described by De Bruyn et al.156  

4.3.8 Purification and structural elucidation of compounds 

Glucosylated compounds were purified from the culture broth using centrifugation of 

the culture broth (10 min at 5000 × g) and adding 1.5 g of activated carbon to 50 mL of 

the supernatant. After 3 min of adsorption, the mixture was poured onto a glass sintered 

filter and subsequently washed with 300 mL of water to remove salts and 

monosaccharides, 120 mL of 10 % EtOH to remove disaccharides, 90 mL of 20 % EtOH 

and 60 mL of 30 % EtOH. The HBA or HCA glucose esters were eluted with 3 times 30 

mL of 50 % EtOH. Ethanol was removed from the purest fractions by evaporation at 40 

°C and the samples were freeze dried (Christ Alpha 1-4 LSC Freeze Dryer, SciQuip, UK). 

The only exception to this procedure was the glucoside of syringic acid which 



Chapter 4:  Development of an in vivo glucosylation platform 

57 

 

crystallized at 4 °C and was filtered off and washed with cold water. 1H NMR (300 MHz) 

and 13C NMR (75 MHz) spectra were run with a Bruker Avance III 400 MHz 

spectrometer (Bruker, Germany) at room temperature. The compounds were diluted in 

deuterated water, DMSO or acetone, quoted in parts per million (ppm) and referenced to 

tetramethylsilane (TMS, δ=0) or the appropriate residual solvent peak. The NMR spectra 

of novel glucosides are listed in appendix A12.  

4.3.9 Mathematical methodologies 

SigmaPlot (Systat Software, California) was used for fitting the data and calculation of 

standard errors. Maximal specific growth rate (µmax) was calculated using a three 

parameter exponential growth model. Biomass yield (YXS) and product yield (YPX) were 

calculated as slopes of a linear regression model. Specific production rate (qp) was 

obtained as the product of YPX and µ during the exponential growth phase. 
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4.4 Results and discussion 

4.4.1 Introduction 

In this work, we describe the transformation of E. coli W into an efficient glucosylation 

platform for phenolic acids. E. coli W was the bacterial host of choice since it is a safe, 

fast-growing strain261 that has a good tolerance for acidic conditions and osmotic 

stress262. Furthermore, it can be easily grown to high cell density cultures263 and 

uniquely possesses exotic gene clusters to cope with a wide variety of aromatic 

compounds261, thus rendering it a very attractive production host for industrial 

purposes. A detailed overview of the engineering strategy, which couples production to 

growth, is shown in Figure 4.1 and will focus on the interesting class of phenolic acids as 

target for glucosylation. At first, production of β-glucogallin (BGG, 1-O-galloyl-β-D-

glucose), a glucose ester derived from gallic acid, was chosen as a proof of concept since 

it has many beneficial properties besides a highly effective and stabile antioxidant. BGG 

is commonly found in oak (Quercus sp.)264 as the first step towards gallotannin 

biosynthesis265 and is proven to be a therapeutic lead to treat diabetic complications41. 

Furthermore it exhibits antibacterial activity266 and is an efficient UV-

photoprotectant267. In the following sections, an overview will be given of the various 

steps of the metabolic engineering strategy to transform E. coli W in a platform organism 

for in vivo glucosylation of gallic acid and other phenolic acids. 

4.4.2 Altering the sucrose metabolism of E. coli W to efficiently generate glc1P 

Sucrose is an industrially important and sustainable carbon source for microbial 

fermentation. In this context, E. coli W recently gained attention since it is a fast-growing 

strain that can utilize sucrose due to the presence of the cscBKAR regulon.261 This 

regulon, shown in Figure 4.2, consists of a sucrose permease (cscB), a fructokinase 

(cscK) and a sucrose hydrolase (cscA). cscR, however, codes for a protein that represses 

expression of these sucrose utilization genes at low sucrose concentrations.268 The cscA 

and cscR genes were simultaneously inactivated with the method of Datsenko and 

Wanner236 resulting in an E. coli W ΔcscAR mutant which is unable to grow on sucrose as 

sole carbon source. Transforming this strain with plasmid pBaSP, which constitutively 

overexpresses a sucrose phosphorylase from Bifidobacterium adolescentis137, restored 

growth on sucrose when grown on minimal medium.  
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Figure 4.2: Metabolic representation of the cscBKAR regulon of E. coli W and the various 
reactions it codes for. A comparison is shown between the native sucrose metabolism (A) 
and the introduction of an alternative sucrose metabolism by deleting cscAR and 
overexpressing the sucrose phosphorylase BaSP (B). 

 

Both E. coli W WT and ΔcscAR + pBaSP were cultured and characterized on 1-L 

bioreactors to ensure no limitation of oxygen. The obtained growth profiles and 

parameters (Figure 4.3 and Table 4.1) show that the WT strain reaches the upper limit 

of growth rates reported in E. coli W under controlled conditions261,269. The maximal 

specific growth rate µmax of the ΔcscAR + pBaSP mutant on the other hand was half the 

one of the WT strain. However, when the sucrose concentration fell below 10 g/L, the 

WT slowed down and started to accumulate equimolar amounts of fructose and glucose 

(not shown), which were rapidly cometabolized when the sucrose concentration fell 

below 3 g/L. This is caused by the repression effect of CscR at low sucrose 

concentrations and has been described by Nielsen and coworkers268. Conversely, the 

ΔcscAR + pBaSP mutant displays a more constant growth. 

 

Table 4.1: Kinetic parameters of WT and ΔcscAR + pBaSP grown on bioreactor scale in 
minimal medium. 

 WT ΔcscAR + pBaSP 

µmax (h-1) 0.92 ± 0.08 0.48 ± 0.04 

CDW/OD 0.284 ± 0.001 0.249 ± 0.005 

YXS (g/g) 0.33 ± 0.02 0.29 ± 0.05 

qS (g/g/h) 2.68 ± 0.03 1.75 ± 0.31 
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In addition, Table 4.1 shows a comparable biomass yield (YXS) for both strains. This 

proves the simultaneous metabolization of fructose/glucose for the WT, and 

fructose/glc1P for the ΔcscAR + pBaSP strain, respectively. The ΔcscAR + pBaSP mutant 

initially accumulated 1.8 g/L of fructose, which was subsequently cometabolized with 

sucrose as depicted in Figure 4.3. This fructose overflow is due to the constitutive 

expression of BaSP, resulting in the continuous splitting of sucrose into intracellular 

glc1P and fructose. Since extracellular glc1P levels are much lower, this indicates that 

glc1P is the preferred substrate and is rerouted towards glycolysis. The extracellular 

fructose is reconsumed by action of a phosphotransferase system (PTS) for fructose270, 

thus bypassing the fructokinase CscK. After consumption of fructose, extracellular glc1P 

(absent in the WT) started to increase, reaching a maximal concentration of 0.58 g/L. 

Finally, all glc1P was metabolized and invested as biomass. 

4.4.3 Coupling growth and production 

Due to the consumption of glc1P, which is intended as a precursor for the formation of 

UDP-glc and not for growth, various genes need to be knocked out as depicted in Figure 

4.1. The major biochemical routes directing glc1P towards the formation of biomass are 

encoded by the genes pgm, agp and glgC, and the enzymatic reactions they code for are 

shown in Appendix A4. Pgm is the key switch for converting glc1P into glucose 6-

phosphate, rerouting it towards glycolysis, while GlgC forms the precursor ADP-glucose 

for the synthesis of the storage metabolite glycogen.271 Agp is an acid glucose-1-

phosphatase which is believed to be the main scavenger for glc1P in E. coli.271 Deleting 

these genes preserves glc1P for UDP-glc formation, hence improving the glucosylation 

capacity. However, to prevent degradation of accumulated UDP-glc, also ushA, which 

encodes a UDP-sugar hydrolase, was knocked out. The resulting mutant (sGLC) strains 

are shown in Table 4.2 and were transformed with pBaSP, to gain more insight in the 

substrate flow and biomass yield. 
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Figure 4.3: Culture growth and sugar utilization of E. coli W WT (top) and ΔcscAR + pBaSP 
(bottom) grown in minimal medium on bioreactor scale. Cell dry weight (●) was 
measured together with the extracellular sugars: fructose (▲), glucose 1-phosphate (△) 
and sucrose (■).  
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Table 4.2: Overview of the E. coli W mutants used in this chapter. Detailed information on 
the deleted genes is given in Appendix A2. 

Strain Code 

E. coli W ∆cscAR sGLC1 

E. coli W ∆cscAR ∆pgm sGLC2 

E. coli W ∆cscAR ∆pgm ∆agp sGLC3 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA sGLC4 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA ∆glgC sGLC5 

 

The transformants were grown and characterized on shake flasks in minimal medium. 

All strains exhibited growth on sucrose with a µmax comparable to sGLC1 + pBaSP as 

shown in Figure 4.4, except for sGLC5 + pBaSP which grew significantly faster (µmax = 

0.62 ± 0.02). Interestingly, mutants sGLC1 to 3 displayed a similar overall biomass yield 

(YXS ≈ 0.31 g/g), indicating that glc1P was still metabolized in spite of the agp gene 

deletion. Strains sGLC4 and sGLC5 displayed a significantly lower YXS of 0.26 ± 0.01 g/g, 

illustrating an altered metabolism. This could be explained by deletion of a futile cycle 

catalyzed by UshA, which hydrolyzes UDP-glc again into glc1P and by inhibiting (ΔglgC) 

glycogen formation, thus preventing glc1P to re-enter glycolysis during glycogen 

degradation. However, extracellularly accumulated glc1P during growth of sGLC5 on 

sucrose was again metabolized when the strain entered the stationary phase (data not 

shown).  
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Figure 4.4: Comparison of the maximal specific growth rates µmax (black) and calculated 
biomass yields YXS (gray) of the sGLC transformants expressing BaSP when grown on 
minimal medium. Error bars represent the standard deviation (n = 3). 
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This observation suggests that other sugar phosphatases are present besides Agp. 

Possible alternative candidates for glc1P degradation are the sugar phosphatases YihX 

and YidA, which were first discovered in a high-throughput screen of purified proteins 

of the haloacid dehalogenase (HAD)-like hydrolases.272 To verify this, the putative genes 

yihX and yidA were additionally knocked out in sGLC5. These mutants were also 

transformed with pBaSP, resulting in the strains sGLC5 ∆yihX + pBaSP and sGLC5 ∆yidA 

+ pBaSP. Both strains were cultured in minimal medium and exhibited a decreased µmax 

of 0.42 ± 0.02 h-1 and 0.45 ± 0.01 h-1, respectively. However, the observed biomass yields 

(0.25 ± 0.02 g/g and 0.26 ± 0.03 g/g) were not significantly different from sGLC5 + 

pBaSP and glc1P was equally degraded at the end of the exponential phase. Despite 

these parallel putative sugar phosphatase knockouts, the metabolism was not fully split. 

It is possible that both phosphatases complement each other so that a double knockout 

would truly prevent glc1P degradation. In addition, two other poorly studied enzymes 

may divert glc1P towards glycolysis. A first candidate is the phosphoglucosamine 

mutase (GlmM) enzyme, which has proven to effectively catalyze the formation of 

glucose 6-phosphate from glc1P in vitro, albeit at a rate 1400-fold lower than that 

observed with its natural substrate glucosamine 1-phosphate (glc1NP).273 In addition, it 

was shown that expression of glmM could partially complement a Δpgm mutant strain 

when grown on galactose, indicating that GlmM catalyzes at least to some extent the in 

vivo interconversion of glucose phosphate isomers.274 However, since the Km of GlmM 

towards glc1P is 10-fold higher than towards glc1NP273, the role of GlmM as substitute 

for Pgm should not be overestimated. A second and more interesting candidate is the β-

phosphoglucomutase YcjU, which presumably catalyzes the interconversion of β-glucose 

1-phosphate (βglc1P) to β-glucose 6-phosphate. It was observed that overexpression of 

ycjU in E. coli led to a higher glucoside production than combined overexpression of 

pgm/galU when grown on glucose.275 However, it is very unlikely that GalU (or other 

nucleotidyltransferases) would exhibit anomeric flexibility as this is highly conserved in 

nature.207 A plausible explanation is either a spontaneous interconversion of αglc1P into 

βglc1P or the existence of a mutatrotase in E. coli, thus rerouting glc1P (mediated by 

YcjU) towards glycolysis. 

4.4.4 Optimization of production medium for glucosylation of gallic acid 

Prior to evaluating the production potential of the various developed mutants, the 

ability of the WT strain to produce BGG was investigated. To this end, the WT was 

transformed with the constructed plasmid pVvGT2, which constitutively expresses a 

glucosyltransferase from Vitis vinifera. VvGT2 catalyzes the formation of 1-O-acyl-

glucose esters of phenolic acids in vitro, with gallic acid (GA) as the preferred 

substrate.276 As a preliminary test, 1 g/L of GA was added to minimal medium and 
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inoculated with the transformant. After 16 h of growth, the supernatant was 

investigated using TLC and a spot was observed with the same retention as BGG (Rf = 

0.5). The compound was purified by preparative TLC and its structure was confirmed by 

both NMR and MS (687 m/z as a [2M+Na]), thus proving the likelihood of in vivo BGG 

production. 

 

On the other hand, the medium had acquired a dark green to off-brown color after 16h 

of incubation due to auto-oxidation of GA. This is likely due to Fe2+ present in the 

minimal medium which is complexated by GA, causing a significant drop in the reduction 

potential with rapid oxidation into Fe3+ (in the presence of O2) as a result.277 At pH 6, 

Fe2+ is typically complexated by 2 or 3 gallic acid ligands generating a dark blue complex 

(λmax from 542 to 561 nm) and an oxygen radical species277 initiating degradation of 

other GA molecules. Since the optical cell density is measured at 600 nm, this 

discoloration greatly interferes with a correct estimation of the growth characteristics. 

To minimize these undesirable effects, different GA concentrations were tested in 

minimal medium at different pH levels as well as the addition of citric acid as a chelating 

agent for Fe2+. After 16 h, the absorbance at 400 nm was evaluated. Media containing 5 

g/L GA showed significantly more discoloration compared to 0.5 g/L GA (p=0.008, data 

not shown) and lowering the pH, with addition of citric acid, proved to be the best 

composition as shown in Figure 4.5.  
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Figure 4.5: Optical density at 400 nm of different minimal media containing 0.5 g/L of GA 
at pH=7, 6.5 and 6 and addition of 1 or 2 g/L of citric acid (C) after 16 h. 
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Since GA is a phenolic acid with reported antimicrobial activity against E. coli (ATCC 

25922)278,279, a final experiment was conducted for the determination of the maximal 

specific growth rate at different gallic acid concentrations. The results are shown in 

Figure 4.6 and indicate no significant inhibition of growth up to 10 g/L. This in contrast 

to a minimal inhibitory concentration reported of 1 g/L in E. coli UB1005279, which 

illustrates the adaptation of E. coli W to phenolic compounds. Therefore, the 

composition of the production medium was defined as minimal medium put on pH 6.5 

with 1 g/L of citric acid and 0.5 g/L of GA. MES was used instead of MOPS buffer, since 

its buffer ranges from 5,5 to 6,7. Although pH 6 gave less discoloration, it is less close to 

the physiological optimum (pH 7). E. coli W + pVvGT2 was able to produce BGG at a 

specific rate of 14.7 ± 4.5 mg/g CDW/h when grown in this production medium and was 

used as a reference for the engineered strains described hereafter. 

 

 

 
Figure 4.6: Maximal specific growth rates of E. coli W at different concentrations of gallic 
acid in minimal medium pH 6.5 and citric acid. 

 

4.4.5 Production of β-glucogallin 

In order to merge the effects of a split metabolism and BGG production, various 

production plasmids were constructed and are schematically shown in Table 4.3. The 

use of a constitutive P22 promoter sequence59 results in uniform expression of the genes 

and does not require expensive inducers like IPTG. Furthermore, it is very difficult to 

fine-tune multiple genes carrying inducible promoters, since most expression systems 

exhibit an all-or-nothing effect.59 
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Table 4.3: Schematic representations of the gene organization in each production plasmid 
used in this chapter. P22: constitutive promoter, Ln: homologous sequential linker, 
hairpin: terminator sequence. Gene function is described in Appendix A4. 

Plasmid name Genetic diagram 

pVvGT2 

            
VvGT2

P22

 

pBaSP/VvGT2 

P22 P22

L6VvGT2BaSP L5L4

 

pBaSP/VvGT2/GalU 
L6VvGT2BaSP L5L4 L7GalU

P22 P22 P22

 

pBaSP/VvGT2/UgpA 
L6VvGT2

P22

BaSP L5L4 L7UgpA

P22 P22

 

 

To present a first and fair comparison, all sGLC strains were transformed with the 

pBaSP/VvGT2 plasmids and grown on production medium. When the cultures reached 

an OD of 1, 0.5 g/L of GA was added and production of BGG was measured. The 

calculated specific production rates are shown in Figure 4.7 and unexpectedly depict a 

higher productivity for the WT compared to sGLC1 to sGLC3. Deletion of ushA in sGLC4 

however, coding for a promiscuous UDP-sugar hydrolase, resulted in a 10-fold 

productivity increase. This can be explained by prevention of UDP-glc hydrolysis, which 

gives rises to an enlarged UDP-glucose pool. Although the precise regulation 

mechanisms of UshA are not known, its deletion has a profound effect regarding in vivo 

glucosylation reactions. Indeed, a ΔushA mutant is commonly used for the in vivo 

glycosylation of compounds104,108 though a comparison between WT and this mutant 

lacks in these studies. Additionally, deletion of glgC did not significantly improve the 

productivity compared to sGLC4, but showed less biological variation. 

 

Up to this point, the UDP-glucose pool in these strains is only formed by action of the 

native GalU enzyme. Therefore, all sGLC strains were transformed with either the 

constructed pBaSP/VvGT2/GalU or pBaSP/VvGT2/UgpA plasmid. These plasmids 

constitutively co-express a UTP-glucose-1-phosphate uridylyltransferase (GalU or 

UgpA), thus ensuring the formation of UDP-glucose from the accumulated glc1P.240 Both 

GalU, native in E. coli, and UgpA from B. bifidum were studied, since the latter has been 

proven to exhibit a 7-fold higher activity in crude extracts (Chapter 3) and since the 

regulation of GalU is not fully understood. The transformants were again grown on 
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production medium in shake flasks and GA was added when the OD reached 1. 

Remarkably, sGLC2, sGLC4 and sGLC5 mutants containing pBaSP/VvGT2/GalU didn’t 

reach OD 1 within 24 h.  To  this  end,  only  the  growing  strains  were evaluated and are 

 

 
Figure 4.7: Comparison of WT + VvGT2 and sGLC strains expressing both BaSP and VvGT2, 
grown in production medium on shake flasks. Errors are standard errors (n=2). 

 

 
Figure 4.8: Evaluation of the specific productivity of the sGLC strains expressing 
BaSP,VvGT2 and a uridylyltransferase GalU or UgpA. Strains were grown on production 
medium on shake flasks. Errors are standard errors (n=2). 
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are depicted in Figure 4.8. When comparison was available, it was clear that UgpA led to 

a significantly higher production than GalU. Overexpression of UgpA in mutants sGLC1 

to sGLC3 significantly increased the BGG production on average by 2.7-fold, probably 

resupplying the UDP-glucose pool depleted by VvGT as hypothesized above. However, 

this was not visible in sGLC4 and sGLC5. Since sGLC5 + pBaSP/VvGT/UgpA showed in 

general a shorter lag phase and less biological variation when compared to sGLC4, this 

strain was used for further experiments. 

4.4.6 Screening for the glucosylation potential of different acceptors 

The used VvGT2 glucosyltransferase was first characterized by Terrier and coworkers276 

and showed broad in vitro activity towards many different hydroxycinnamic and 

hydroxybenzoic acids. The derived glucose esters of these hydroxycinnamic and 

hydroxy-benzoic acids are often applied as efficient acyl donors for the biosynthesis and 

thus decoration of numerous plant specialized metabolites.280,281 Attachment of phenolic 

residues to plant polymers such as arabinoxylan can induce crosslinking in cell walls via 

dehydrodimerization and is said to be the initiator for lignification in grasses.282 

Furthermore, these phenolic aglycons have proven to be powerful antioxidants. The 

trend in replacing synthetic antioxidant food additives with natural ones has boosted the 

search for biotechnological production alternatives with many success stories.62 

Addition of a sugar moiety to these phenolates can confer extra stability, improved 

solubility20 or even organ specific drug delivery26. Despite these attractive properties, 

efficient and economically viable production of these glucosides does not exist and relies 

on expensive chemical or enzymatic synthesis.265,283 

 

Due to the ability of the final production mutant (sGLC5 + pBaSP/VvGT/UgpA) to 

produce BGG in an efficient way with full conversion, various phenolic acceptors were 

screened for their glucosylation potential in vivo. The glucosylation mutant was grown in 

shake flasks containing 100 mL minimal medium with 1 g/L of acceptor mentioned in 

Table 4.4. The acceptor range tested by Terrier and coworkers276 was extended with 

vanillic, nicotinic, p-aminobenzoic, ferulic, cinnamic, isophthalic, terephthalic, 

cyclohexanecarboxylic and salicylic acid. The production and growth were monitored 

during 48 h and 13 out of 15 acceptors showed a spot on TLC with a retention 

comparable to BGG, except for salicylic and p-hydroxybenzoic acid. A newly developed 

and quick method based on activated carbon adsorption was developed as described in 

4.3.8 for the efficient separation of the putative glucose esters. Structures were 

elucidated and confirmed by NMR sprectoscopy as β-D-glucose esters of the added 

acceptors. The references to the spectra of previously reported glucosides are shown in 

Table 4.4 next to the acceptor name. To undoubtedly prove that the acceptors were 
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glucosylated solely through the action of VvGT2 and not by cryptic genes in E. coli W, the 

WT strain was grown in the same media. The supernatant was visualized on TLC after 

48 h and no spot with a retention comparable to the glucose esters was observed. 
 

Table 4.4: Glucosylation potential of the final production mutant towards various 
phenolic acids.  

Acceptor 
µmax 

(h-1) 

rp,max 

(mg/L/h) 

qp 

(mM/g CDW/h) 

Conversion a 

(%) 

caffeic acid 284 0.24 ± 0.02 171 ± 9 0.55 ± 0.02 100 

sinapic acid 283 0.22 ± 0.03 111 ± 6 0.53 ± 0.02 82 

protocatechuic acid 285 0.23 ± 0.05 183 ± 12 0.51 ± 0.04 100 

p-coumaric acid 284 0.23 ± 0.01 128 ± 5 0.55 ± 0.01 100 

vanillic acid 285 0.28 ± 0.03 126 ± 6 0.62 ± 0.03 100 

nicotinic acid 286 0.25 ± 0.04 34.6 ± 1.6 0.28 ± 0.02 45 

p-aminobenzoic acid 287 0.11 ± 0.02 137 ± 11 0.63 ± 0.03 100 

ferulic acid 283 0.25 ± 0.03 166 ± 8 0.54 ± 0.03 100 

cinnamic acid 288 0.13 ± 0.02 75.7 ± 4.5 0.45 ± 0.02 47 

isophthalic acid 0.19 ± 0.03 84.1 ± 6.3 0.62 ± 0.05 100 

terephthalic acid 0.23 ± 0.02 89.7 ± 4.9 0.69 ± 0.02 100 

cyclohexanecarboxylic acid 0.11 ± 0.02 144 ± 13 0.58 ± 0.04 100 

syringic acid 285 0.23 ± 0.02 160 ± 8 0.55 ± 0.02 100 

salicylic acid 0.03 ± 0.02 - - - 

p-hydroxybenzoic acid 0.21 ± 0.02 - - - 

a Maximal conversion is expressed as mM glucoside/mM acceptor added after 48 h hours 

 

Apparently the potential of VvGT2 is as broad in vivo as it is in vitro, and may be 

explained by the similarity in the conjugated system of hydroxycinnamic and 

hydrobenzoic acids. The newly tested nicotinic acid showed 45 % conversion after 48 h, 

indicating the promiscuity towards a heterocyclic aromatic ring. Remarkably, VvGT2 

also showed a high activity towards cyclohexanecarboxylic acid, which was completely 

converted, proving that even aromaticity is no necessity for VvGT2. To our knowledge, 

the β-D-glucose esters of terephthalic, isophthalic and cyclohexanecarboxylic acid have 

not been described before and details about the 1H and 13C NMR spectra are shown in 

Appendix A12.  

 

To make a fair comparison of the glucosylation potential of the production strain 

towards various acceptors, the specific production rate qp was calculated and expressed 

in mM of glucoside/g CDW/h. Although there is a big difference in growth rate, probably 
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caused by toxicity of some compounds289, the calculated qp values are quite comparable 

with nicotinic acid as sole exception. The obtained profiles (Appendix A13) showed the 

coupling of growth to production, which results in a non-linear production rate. The 

rp,max shown is the maximal production slope during the growth phase. Interestingly, all 

acceptors could enter the E. coli cell and the glucose esters were subsequently secreted 

back into the medium. An explanation lies in the fact that E. coli W is the most versatile 

host in the degradation of aromatic compounds in comparison to E. coli B, C or K12.261 

Degradation routes are not necessarily a drawback since the associated gene clusters 

often express a promiscuous transporter. Table 4.5 shows the gene clusters responsible 

for the metabolization or transportation of compounds comparable to the acceptors 

investigated. The mechanisms of secretion of the glucosides are not known in E. coli W, 

but uptake of β-D-glucosides is often linked with cellobiose uptake (and degradation)290, 

which is encoded by the bgl regulon261. Interestingly, the bglX gene codes for a β-

glucosidase and has been shown to hydrolyze o-nitrophenyl-β-D-glucopyranoside.291 

Possible hydrolysis (decreasing spot intensity) due to this undesirable glucosidase was 

observed with production of protocatechuyl-glucose (data not shown).  

 

Table 4.5: Gene clusters and number of genes responsible for the metabolization or active 
transport of aromatic compounds in E. coli W.292 

Gene cluster Aromatische componenten # genes 

hpa 3- or 4- hydroxyphenylacetic acid (HPA) and 3,4-diHPA 11 

paa Phenylacetic acid 14 

mhp 3-hydroxyphenylpropionic and 3-hydroxycinnamic acid 8 

hca Phenylpropionic and cinnamic acid 5 

 

4.4.7 Productivity comparison with the WT strain 

To validate the engineering strategy which envisioned coupling growth and production 

for the glucosylation of various phenolic acids, the performance of the WT + pVvGT2 was 

compared to sGLC5 + pBaSP/VvGT2/UgpA. To this end, three representative compounds 

(caffeic, terephthalic and p-aminobenzoic acid) from different phenolic subclasses were 

added to minimal medium, whereafter the growth and production of the WT + pVvGT2 

were followed up over time. The growth and conversion profiles are shown in Appendix 

A13, clearly illustrating the improved glucosylation potential of the engineered strain 

sGLC5 + pBaSP/VvGT2/UgpA. As depicted in Figure 4.9, the specific productivity (qp) 

increased 3.5 to 35-fold compared to the WT, and all 3 acceptors were fully converted 

within 48 h. Expression of VvGT2 in the WT strain probably rapidly consumes the 

intracellular UDP-glc pool, which is not as efficiently regenerated as in the engineered 
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strain. Furthermore, production is linear over time and continues in the stationary 

phase, thus resembling a bioconversion process.  

gallic caffeic terephthalic p-aminobenzoic
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Figure 4.9: Comparison of the specific productivities qp between the WT + pVvGT2 (black) 
and the final production strain sGLC5 + pBaSP/VvGT/UgpA (gray). The conversion of the 
added acceptor after 48 h of incubation is shown above the bars.  

 

When the created platform is compared to other reported in vivo processes for the 

glucosylation of specialized metabolites, the importance of engineering UDP-glc 

formation becomes clear. All processes display glucoside production rates between 

0.001 and 0.01 g/L/h, which is at least a factor 10 to 100 lower than our developed 

process. As a result, most reported glucoside titers are around 100 mg/L (Table 2.1), 

with 500 mg/L of vanillin 4-O-glucoside95 and 250 mg/L of arbutin114 as notable 

exceptions. Moreover, these systems mostly use expensive growth media (TB, LB) and 

enzyme inducers to obtain proper glucosylation. Strains with an ushA deletion107,108,110 

generally show a 2-fold increase in glucoside production, yet this effect is less significant 

than the data we obtained, due to indirect glc1P generation from glucose via the 

bottleneck enzyme Pgm. Despite the possibilities of this novel in vivo platform, 

economic feasibility and large-scale production should be evaluated. Both on strain level 
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(complete split of the metabolism) and process level (fed-batch high cell density 

fermentations and downstream processing), more research will be needed to fully 

optimize this process. Furthermore, glucosylation of (other) acceptors or increasing 

their concentration could give rise to issues regarding toxicity, low solubility, transport 

or by degradation or metabolization of the acceptors by the host. This would require 

tailor-made solutions on a strain level, by deleting unwanted side reactions or enhancing 

transport. Toxicity on the other hand can be countered by controlled feeding, continuous 

extraction of the glucoside from the broth or adaptive evolution of the strain. Moreover, 

the rationale of the split metabolism is not restricted to E. coli W and can be effectively 

applied to other industrial hosts. 

4.5 Conclusions 

In this contribution the systematic creation and evaluation of a glucosylation platform in 

the form of an engineered E. coli strain is described. To this end, the existing sucrose 

metabolism of E. coli W was deleted (ΔcscAR) and successfully replaced by 

overexpressing a sucrose phosphorylase (BaSP). In this way, the released fructose is 

used as a carbon source for growth and glucose 1-phosphate as a precursor for UDP-

glucose. Through specific gene deletions (pgm, agp, ushA and glgC), the organism could 

effectively channel glucose 1-phosphate to UDP-glucose, which was consumed by the 

overexpressed glucosyltransferase (VvGT2) from Vitis vinifera. This enabled the final 

production strain to efficiently glucosylate gallic acid in vivo, yielding the interesting 

glucose ester β-glucogallin at a specific production rate (qp) of 93.1 ± 9.9 mg/g CDW/h. 

Due to the promiscuity of VvGT2, the created strain could easily convert 14 other 

phenolic acids into their corresponding glucose esters (up to 100 % conversion), 

resulting in three new-to-nature glucosides. The engineering strategy which coupled 

production to growth proved to be very effective as the qp’s were up to 35-fold higher 

when compared to the wild type strain. This novel glucosylation approach could 

overcome existing economic hurdles and pave the way for large-scale production of 

glycosides. 
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5.1 Abstract 

Flavonoids are bio-active specialized plant metabolites which mainly occur as different 

glycosides. Due to the increasing market demand, various biotechnological approaches 

have been developed which use Escherichia coli as a microbial catalyst for the 

stereoselective glycosylation of flavonoids. Despite many metabolic engineering efforts, 

most processes still display low production rates and titers, thus rendering them 

unsuitable for large-scale applications. In this contribution, we expanded a previously 

developed in vivo glucosylation platform in E. coli W, into a strain for galactosylation and 

rhamnosylation of the flavonol quercetin. The main rationale of the novel metabolic 

engineering strategy relied on the introduction of an alternative sucrose metabolism in 

the form of a sucrose phosphorylase, which divided sucrose into fructose for growth and 

glc1P as precursor for UDP-glucose.  Due to the pivotal role of UDP-glucose, 

overexpression of interconverting enzymes galE and MUM4 ensured the formation of 

both UDP-galactose and UDP-rhamnose, respectively. By coupling this in vivo UDP-sugar 

formation with a flavonol galactosyltransferase (F3GT) and rhamnosyltransferase 

(RhaGT), 0.94 g/L hyperoside (quercetin 3-O-galactoside) and 1.12 g/L quercitrin 

(quercetin 3-O-rhamnoside) could be obtained, respectively. These strains, effectively 

coupling growth and production, also showed activity towards other promising dietary 

flavonols like kaempferol, fisetin, morin and myricetin. Finally, the flexibility of the 

galactosylation platform to produce specialty oligosaccharides from lactose was also 

assessed. Replacing F3GT with a lipo-oligosaccharide galactosyltransferase (LgtC), 

enabled the strain to efficiently produce 2.8 g/L of globotriose (α-galactosyl-1,4-lactose).  
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5.2 Introduction 

Flavonoids are a large and diverse class of specialized plant metabolites which have 

attracted much attention in recent years because they have various beneficial effects on 

human health. Among other, biological activities ranging from anticancer293 and 

antioxidant294 to anti-inflammatory295, antimicrobial296 and antiviral296,297 effects have 

been attributed to them. As a final step in their biosynthesis, flavonoids are often 

glycosylated which has a profound effect on their solubility, stability or bio-activity.13,20 

For example, the best studied flavonol quercetin predominantly occurs as different 

glycosides, which make up to 75 % of our daily flavonoid intake. Over 350 different 

quercetin glycoforms have been reported to date with varying pharmacological 

properties.298,299 In this context, hyperoside (quercetin 3-O-galactoside) and quercitrin 

(quercetin 3-O-rhamnoside) have gained a lot of attention as valuable products for the 

pharmaceutical industry. They are the major glycosides found in apple peels299,300 and 

are powerful antioxidants resulting in cytoprotective effects301-304. Both have shown to 

be promising antiviral agents by blocking replication of the influenza virus305 or 

inhibiting the viruses hepatitis B306 and SARS307. Furthermore, they have been attributed 

with anti-inflammatory29,308, antidepressant309,310, apoptotic311 and antifungal312 

activities, rendering them interesting therapeutics resulting in a steadily increasing 

market demand. 

 

To date, the majority of quercetin and its glycosides are extracted from plant material, 

which is generally a laborious and low-yielding process requiring many purification 

steps.313 In vitro plant cell cultures or engineered plants can be used to overcome the 

low yields and improve production70-72, however since metabolic engineering of plants 

is controversial and still in its infancy73, this approach is often restricted to small-scale 

production. Although chemical synthesis of quercetin (glycosides) has proven to be 

feasible314-316, stereo- or regiospecific formation of glycosidic linkages is often hampered 

by the presence of various reactive groups74. The need for many protecting and 

deprotecting steps75, the generation of toxic waste and a low atom-efficiency77 make 

these production processes not sustainable nor economically viable. 

 

As a result, the microbial production of specialized (secondary) plant metabolites has 

made an enormous progress in the last two decades.56 Advances in the fields of 

metabolic engineering and synthetic biology have accelerated the sustainable 

production of flavonoids61,62,317 in model organisms like Escherichia coli and 

Saccharomyces cerevisiae, rendering them in real microbial cell factories. Subsequently, 

strategies for the in vivo glycosylation of flavonoids have also been developed. These are 
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based on both the overexpression of specific glycosyltransferases, which transfer a 

sugar residue from an activated nucleotide sugar to a molecule in a stereo- and 

regioselective way, and the engineering or introduction of the targeted nucleotide sugar 

pathway. In this way, various quercetin glycosides have already been produced in E. coli 

such as the naturally occurring 3-O-glucoside102, 3-O-xyloside104 and 3,7-O-

bisrhamnoside106, or the new-to-nature quercetin 3-O-(6-deoxytalose)318. Despite these 

engineering efforts, the reported product rates and titers are still in the milligram range, 

rendering these microbial hosts unsuitable as industrial catalysts. In addition, since the 

developed strategies typically rely on bioconversion processes using resting cells, which 

require a growth phase to gain biomass with a subsequent production phase, it is 

difficult to improve the production rates or the active generation of the UDP-sugar 

involved. Furthermore, such systems often entail expensive growth media or the 

addition of enzyme inducers, making the overall process very costly. 

 

To tackle these problems, we previously developed an efficient platform for the 

glucosylation of small molecules in E. coli W.319 Through metabolic engineering, a 

mutant was created which couples production of glucosides to growth, using only 

sucrose as a cheap and sustainable carbon source. The rationale of the engineering 

strategy is depicted in Figure 5.1. Here, sucrose is split by a sucrose phosphorylase from 

Bifidobacterium adolescentis (BaSP) into fructose to be used for growth purposes and a 

glucose 1-phosphate (glc1P) as precursor for UDP-glucose (UDP-glc) formation. To 

impede the conversion of glc1P into biomass, the endogenous genes for 

phosphoglucomutase (pgm) and an acid glucose-1-phosphatase (agp) were knocked out. 

Glc1P is subsequently rerouted by overexpression of a uridylyltransferase from 

Bifidobacterium bifidum (UgpA) towards UDP-glc, whose metabolization is prevented by 

knocking out the UDP-sugar hydrolase (ushA) and the galactose operon (galETKM). This 

system can however easily be expanded towards other UDP-sugars such as UDP-

galactose (UDP-gal), UDP-rhamnose (UDP-rha) or UDP-glucuronate in view of the 

pivotal role of UDP-glc, which is an ideal starting point for the production of a large 

variety of UDP-sugars. In this contribution, the system’s flexibility is demonstrated by 

the possibility to galactosylate and rhamnosylate exogenously fed quercetin in E. coli W, 

yielding hyperoside and quercitrin, respectively.  

 

Unlike other systems, our engineered hosts display growth-coupled in vivo glycosylation, 

resulting  in  gram-scale  production of  hyperoside  and  quercitrin.  In  addition,  this  

novel approach can be used for the production of various other galactosides or 

rhamnosides. This  is of particular  interest  since rhamnosides  play an important role in  
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cell and tissue aging320 and galactosides are targeted towards the liver, making them 

interesting for site-specific drug delivery26. Harnessing the power of this glycosylation 

strategy into production strains of specialized metabolites will unlock new possibilities 

for the de novo production of glycosides from renewable resources. 

5.3 Materials and methods 

5.3.1 Materials and Molecular Agents 

All plasmids used were constructed using Gibson assembly method237 or CLIVA321. All 

PCR fragments were amplified using Q5 polymerase from New England Biolabs 

(Ipswich, Massachusetts). Oligonucleotides were purchased from IDT (Leuven, Belgium). 

The plasmids and bacterial strains used in this study are listed in appendices A1 and A2. 

A list of primers for the creation of gene knockouts/knockins and a list for the cloning of 

the expression plasmids are given in appendices A5 and A6, respectively. E. coli DH5α 

was used for plasmid cloning and propagation, while E. coli W was used for expression 

of the production plasmids and creation of gene knockouts and knockins. Globotriose, 

hyperoside, quercitrin, isoquercitrin, kaempferol and myricetin were purchased from 

Carbosynth (Berkshire, UK). All other chemicals used were purchased from Sigma 

Aldrich (Germany) unless otherwise indicated. 

5.3.2 Creation of the production plasmids 

First, the expression plasmid for the production of the galactosides hyperoside and 

globotriose were constructed as depicted in Appendix A9. The constitutive expression 

plasmid pCX-Kan-L4-P22-BaSP-L5-P22-VvGT2-L6-P22-UgpA-L7 (pBaSP/VvGT2/UgpA) 

constructed in Chapter 4 was used as a PCR template for the generation of the 

backbones. Plasmids pKan-L5-P22-LgtC-L6 (pLgtC) and pKan-L5-P22-F3GT-L6 (pF3GT) 

were synthesized by GeneArt® (Life Technologies) and used as PCR template for the 

inserts. LgtC was a C-terminal 25 amino acid truncation of the lgtC gene from N. 

meningitidis and the f3gt sequence from Petunia hybrida was codon optimized. The 

accession numbers and functions of all the genes used are listed in Appendices A3 and 

A4, respectively. Gibson or CLIVA assembly of backbones and inserts resulted in the 

construction of the production plasmids pCX-Kan-L4-P22-BaSP-L5-P22-LgtC-L6-P22-

UgpA-L7 (pBaSP/LgtC/UgpA) and pCX-Kan-L4-P22-BaSP-L5-P22-F3GT-L6-P22-UgpA-

L7 (pBaSP/F3GT/UgpA). These were subsequently used for the amplification of a 

pBaSP/LgtC or pBaSP/F3GT backbone. The galE and galE2 sequences were amplified 

from the genomic DNA of E. coli and Bifidobacterium bifidum, respectively, and inserted 

in a pUC-P22 backbone with linkers L4 and L5 flanking the gene as shown in Appendix 

A9. These intermediate pUC plasmids served as template for the amplification of the L4-
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P22-gene-L5 fragment and were inserted using Gibson assembly into the backbones at 

the position of BaSP. This resulted in the final galactosylation plasmids pGalE/GT/UgpA 

and pGalE2/GT/UgpA, with GT either LgtC or F3GT. 

 

Plasmids for rhamnosylation were similarly constructed and are shown in Appendix 

A11. The plasmids pKan-L5-P22-RhaGT-L6 (pRhaGT) and pUC-L4-P22-MUM4-L5 

(pMUM4) were synthesized by GeneArt® (Life Technologies) and used as PCR template 

for the inserts. Sequences MUM4 and RhaGT (AtUGT78D1) from A. thaliana were codon 

optimized. pBaSP/VvGT2/UgpA was used for backbone amplification, which was 

subsequently used for a 3-pieces Gibson assembly with MUM4 and RhaGT, resulting in 

the rhamnosylation plasmid pCX-Kan-L4-P22-MUM4-L5-P22-RhaGT-L6-P22-UgpA-L7 

(pMUM4/RhaGT/UgpA).  

5.3.3 Creation of the E. coli W production mutants 

The overall E. coli W knockout mutants were created by using the one step deletion 

system of Datsenko and Wanner.236 The sGLC4 strain created in Chapter 4 was used as a 

starting point to delete the lacZYA operon. Subsequently, lacY was constitutively 

overexpressed by knocking in a truncated P22 promoter (Appendix A8). Subsequently, 

BaSP, with constitutive promoter P22, was knocked in flanked by L4 and L5 with 

constitutive promoter P22 at two different sites resulting in ΔmelA::L4-P22-BaSP-L5 and 

ΔglgC::L4-P22-BaSP-L5. The strategy is schematically shown in Appendix A10. L4-P22-

BaSP-L5 was amplified from its corresponding pUC vector and the homologous regions 

adjacent to melA and glgC were amplified from the gDNA of E. coli. Using built-in 

homologous overlaps, a 3-pieces Gibson assembly was carried out and the resulting 

mixture was used as a template for amplification. The obtained knockout/knockin linear 

DNA was used to transform sGLC1 and sGLYC1 (E. coli W ∆cscAR ∆pgm ∆agp ∆ushA 

ΔlacZYA::P22-lacY, Appendix A2) according to the Datsenko and Wanner protocol. The 

transformants were plated on minimal sucrose medium agar plates and grown 

overnight. Finally, the galETKM operon was deleted, yielding the final base strain E. coli 

W ∆cscAR ∆pgm ∆agp ∆ushA ΔlacZYA::P22-lacY ΔmelA::L4-P22-BaSP-L5 ΔgalETKM.  

 

These strains and the E. coli W wild type were transformed with the production 

plasmids described above, resulting in the galactosylation (sGAL) and rhamnosylation 

(sRHA) strains given in Table 5.1. Additionally, strains for the production of globotriose 

as a proof of concept were also created and denoted as sGLOBO. 
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Table 5.1: Overview of the quercetin galactosylation (sGAL) and rhamnosylation (sRHA) 
mutants used in this chapter. Strains for globotriose production are denoted as sGLOBO. 

Strain Code 

E. coli W + pF3GT sGAL1 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA ΔlacZYA::P22-lacY ΔgalETKM ΔmelA::P22-BaSP + pGalE/F3GT/UgpA sGAL2 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA ΔlacZYA::P22-lacY ΔgalETKM ΔmelA::P22-BaSP + pGalE2/F3GT/UgpA sGAL3 

E. coli W + pRhaGT sRHA1 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA ΔlacZYA::P22-lacY ΔgalETKM ΔmelA::P22-BaSP + pMUM4 + pRhaGT sRHA2 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA ΔlacZYA::P22-lacY ΔgalETKM ΔmelA::P22-BaSP + 

pMUM4/RhaGT/UgpA 
sRHA3 

E. coli W + pLgtC sGLOBO1 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA ΔlacZYA::P22-lacY + pBaSP/LgtC/UgpA sGLOBO2 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA ΔlacZYA::P22-lacY ΔgalTKM + pBaSP/LgtC/UgpA sGLOBO3 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA ΔlacZYA::P22-lacY ΔgalETKM ΔmelA::P22-BaSP + pGalE/LgtC/UgpA sGLOBO4 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA ΔlacZYA::P22-lacY ΔgalETKM ΔmelA::P22-BaSP + pGalE2/LgtC/UgpA sGLOBO5 

5.3.4 Media 

LB medium and minimal (sucrose) medium are described in Chapter 4. Minimal medium 

agar plates with sucrose (50 g/L) had the same composition as minimal medium, but 

contained 15 g/L of agarose. The agarose and salts were autoclaved separately at 121 °C 

for 21 min. Sucrose was filter sterilized through a 0.22 µm corning filter (Fisher, 

Belgium) and heated for 1 min in a microwave oven at 800 W prior to mixing it with the 

warm agarose and salt solutions. 1 mL/L of mineral solution (described in Chapter 4) 

was sterilely added prior to pouring the plates. 

5.3.5 Growth in shake flasks and sampling 

E. coli W mutant precultures were grown in 5 mL LB medium with the necessary 

antibiotics (50 μg/mL kanamycin or carbenicillin) for maintenance and selection of the 

plasmids. The cultures were grown for 16 h at 37 °C and 200 rpm and used for the 2 % 

inoculation of 100 mL minimal sucrose or lactose medium in 500 mL shake flasks. For 

the production of hyperoside and quercitrin, quercetin was added to the minimal 

medium at a concentration of 0.15 or 1.5 g/L. Production of globotriose was achieved by 

adding lactose to the minimal medium. Growth conditions were the same as described in 

Chapter 4. Samples were taken at regular intervals from the broth and the supernatant 

was used for the analysis and quantification of sugars. For the simultaneous analysis of 

quercetin and its glycosides, 200 µL of the culture was collected and extracted with 800 

µL ethyl acetate. The organic layer was collected, evaporated in a SpeedVacTM vacuum 

concentrator (Thermo Fisher, USA) and dissolved in 200 µL of DMSO for HPLC 

quantification. 
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5.3.6 Growth in bioreactors 

The description of the bioreactor set-up and conditions is given in Chapter 4. Production 

experiments were performed on minimal sucrose medium without MOPS buffer and 

with the addition of quercetin or lactose as acceptors. 

5.3.7 Product analysis and quantification 

Culture samples were primarily analyzed by TLC on Silica gel 60 F254 precoated plates 

(Merck, Germany). All plates were run in a closed TLC chamber and developed using 

standard visualization techniques or agents: UV fluorescence (254 nm) or by staining 

with 10 % (v/v) H2SO4 and subsequent charring. The mobile phase for simultaneous 

detection of the various flavonols and corresponding glycosides consisted of an ethyl 

acetate:acetic acid:formic acid:water (100:11:11:27 v/v) mixture.322 If no flavonol 

glycoside standard was available, product spot intensities were processed and 

quantified using ImageJ259. For the detection of globotriose, lactose and sucrose, an 

isopropanol:water:NH4OH mixture was used in a 7:3:2 volume ratio.93 HPLC 

quantification of globotriose, lactose, sucrose, fructose and glucose was performed using 

an X-bridge Amide column (35 μm, Waters, USA) as described in Chapter 4. Quercetin, 

hyperoside, quercitrin and isoquercitrin were detected with the method described by 

Pandey et al.104 using a Varian HPLC system (Agilent technologies, California). Mass 

spectrometry for determination of the various flavonol glycosides was performed with a 

Micromass Quattro LC (McKinley Scientific, USA). Detection was performed in negative 

mode ESI-224 MS with a capillary voltage of 2.53 kV, a cone voltage of 20 V, cone and 

desolvation gas flows of 93 and 420 L/h, and source and cone temperatures of 150 and 

350 °C, respectively. 

5.3.8 Purification and structural elucidation of compounds 

Supernatant from the bioreactors was used for the purification of globotriose and 

quercetin glycosides. Purification of globotriose consisted of heating the supernatant 

first to denature the remaining proteins. Activated carbon was added (2 g to 50 mL) to 

the cleared supernatant and globotriose was separated and purified according to the 

method of Koizumi et al.93 Quercetin glycosides were extracted from the broth with an 

equal volume of ethyl acetate after which the organic layer was evaporated to dryness. 

The remaining products were dissolved in the solvent system described in 5.3.7 and run 

on a preparative TLC plate. The band containing hyperoside (Rf 0.53) or quercitrin (Rf 

0.75) was scraped off, extracted with ethyl acetate and evaporated to yield a bright 

yellow powder. Products were confirmed by NMR. Spectra were reported 

elsewhere.101,323,324 
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5.4 Results and discussion 

5.4.1 Using E. coli W as a host for in vivo glycosylation 

E. coli W is a fast-growing non-pathogenic strain which tolerates osmotic stress, acidic 

conditions, and can be cultured to high cell densities, making it an attractive host for 

industrial fermentations.261 Moreover, E. coli W is able to grow on sucrose as sole carbon 

source261, which is an emerging feedstock for the production of bio-products, due to its 

widespread availability and exceptional performance in life-cycle assessments.325 In the 

recent light of developing sustainable processes, E. coli W was selected as host for 

sucrose-based in vivo glycosylation reactions. Prior to the production of the glycosides 

hyperoside and quercitrin in E. coli W, the toxicity of the acceptor quercetin was 

evaluated. To this end, the wild type (WT) strain was grown on minimal sucrose 

medium containing different concentrations of quercetin ranging from 0.05 to 5 mM. No 

significant (p < 0.05) growth inhibition was observed and all cultures reached a biomass 

concentration of 1.28 ± 0.09 g CDW/L at the beginning of the stationary phase. This is in 

contrast to the gradual addition of quercetin to avoid (supposed) lysis of E. coli cells as 

reported by Kim et al.103  

 

To evaluate the potential of in vivo glycosylation, the WT strain was transformed with 

the plasmids pF3GT or pRhaGT, which constitutively expressed the flavonol 3-O-

galactosyltransferase from Petunia hybrida or the flavonol 3-O-rhamnosyltransferase 

from A. thaliana, respectively. In a first test, 5 mM of quercetin was added to minimal 

medium and inoculated with the new transformants WT + pF3GT (sGAL1) and WT + 

pRhaGT (sRHA1). After 16 h of growth, the supernatants of both cultures showed a new 

yellow product spot when analyzed on TLC. The spot of sGAL1 had the same retention 

time as a hyperoside standard (Rf = 0.5), which was subsequently purified and 

confirmed by both NMR and MS to be quercetin 3-O-galactoside. However, the product 

spot obtained after incubation of sRHA1 with quercetin had a different retention factor 

(Rf = 0.55) than the quercitrin standard (Rf = 0.74). Purification and analysis showed 

that the compound was isoquercitrin (quercetin 3-O-glucoside). As opposed to other 

reports on wild type E. coli strains expressing RhaGT, which simultaneously produced 

quercitrin (quercetin 3-O-rhamnoside) and iso-quercitrin101,170, no rhamnoside could be 

detected. Examination of the E. coli W genome revealed that the gene cluster responsible 

for the endogenous production of dTDP-rhamnose is not present261,271, which functions 

as an alternative rhamnosyldonor for RhaGT in E. coli B and K12 derivatives.101 

 

In a more detailed experiment, sGAL1 and sRHA1 were grown on minimal medium with 

two different concentrations (0.5 and 5 mM) of quercetin. Growth and glycoside 
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formation were monitored during 30 h. The final titers and specific productivities (qp) 

are shown in Figure 5.2. Remarkably, an increase in quercetin concentration resulted in 

a 2 to 3-fold increase in productivity and titer, indicating that quercetin transport is 

rate-limiting and crucial for efficient in vivo glycosylation. sGAL1 continuously produced 

hyperoside during the exponential phase, which is reflected in the relatively high 

specific productivity. On the other hand, sRHA1 only started to accumulate significant 

amounts of isoquercitrin at the end of the exponential phase. At this stage, the specific 

growth rate dropped from 0.35 ± 0.04 h-1 to 0.06 ± 0.01 h-1, which subsequently affected 

the corresponding productivities for isoquercitrin.  
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Figure 5.2: Comparison of the specific productivities (qp) and glycoside titers reached 
after 30 h of incubation of strains sGAL1 and sRHA1. Strains were grown on minimal 
medium containing 0.15 or 1.5 g/L (0.5 or 5 mM) of quercetin. The 3-O-galactoside and 3-
O-glucoside of quercetin were produced by sGAL1 and sRHA1, respectively. Errors 
represent standard deviations (n=2). 
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5.4.2 Construction of an advanced sucrose-based glycosylation strain 

We previously created an in vivo glucosylation platform by metabolic engineering of E. 

coli W which was able to simultaneously grow and produce various phenolic glucosides. 

This growth coupled production is a highly desirable feature for industrial fermentation 

processes since the need for a carbon source trade-off between growth and production 

is bypassed. The engineering strategy relies on the introduction of an alternative sucrose 

metabolism in the form of a sucrose phosphorylase from Bifidobacterium adolescentis, 

BaSP, which splits sucrose into fructose, to be used for growth, and glc1P as precursor 

for UDP-glc formation. The genes pgm, agp and ushA were deleted to prevent 

metabolization of glc1P and UDP-glc, thus dividing the routes for growth and 

production.  

 

In the basic glucosylation strain, BaSP is expressed on a medium-copy plasmid under 

control of a medium-strong constitutive promoter (P22). To allow a more modular 

assembly and variation of the genes encoding the glycosyltransferase and the UDP-sugar 

pathway, these were combined on a single plasmid, while BaSP was integrated in the 

genome of E. coli W. Chromosomal integration may be advantageous because of a 

significant increase in gene stability, no need for antibiotics to retain the plasmid and a 

reduced metabolic load. However, expression levels can differ between different 

integration sites due to structural differences such as supercoiling DNA regions326,327 

which can impair growth. Subsequently, two different DNA sites were assessed for BaSP 

integration, being melA and glgC, which encode an α-galactosidase and a glucose-1-

phosphate adenylyltransferase, respectively. To this end, an adapted knockin-knockout 

procedure for large DNA fragments was developed, which is schematically shown in 

Appendix A10. The BaSP sequence, under control of promoter P22 and flanked by 

homologous linkers L4 and L5, was first knocked in in E. coli W ΔcscAR to evaluate the 

effect of the integration site. This resulted in the respective E. coli W strains ΔcscAR 

ΔmelA::L4-P22-BaSP-L5 and ΔcscAR ΔglgC::L4-P22-BaSP-L5, which were grown on 

minimal sucrose medium and compared to strain ΔcscAR + pBaSP. The resulting 

maximal specific growth rates (µmax) are shown in Figure 5.3. The influence of the 

knockin locus on the expression of sucrose phosphorylase and on the maximal specific 

growth rate is clear. Interestingly, integration at the melA position resulted in a strain 

with a µmax which was not significantly different from its plasmid bearing equivalent. 

Given these results, the same knockin-knockout method was performed at the melA site 

to yield the final production base strain E. coli W ΔcscAR Δpgm Δagp ΔushA 

ΔlacZYA::P22-lacY ΔgalETKM ΔmelA::L4-P22-BaSP-L5 (sGLYC2, Appendix A2).  
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cscAR + pBaSP

 

Figure 5.3: Effect of the chromosomal integration site on the expression of the knocked in 
BaSP gene, under control of promoter P22 and flanked by homologous linkers L4 and L5. 
Strains were grown in shake flasks (n=2) and the resulting µmax was compared to E. coli W 
ΔcscAR + pBaSP. 

 

5.4.3 Enhanced production of bio-active quercetin glycoforms 

In nature, UDP-glc serves a pivotal role in the formation of other UDP-sugars by using 

various interconverting enzymes.155 UDP-gal is generated by a UDP-glucose 4-epimerase 

(GalE), while UDP-rha synthesis is catalyzed by a UDP-rhamnose synthase (MUM4). GalE 

naturally occurs in E. coli W, but due to its tight and complex regulation, an alternative 

homologous epimerase (GalE2) from B. bifidum was also selected and cloned. On the 

other hand, UDP-rhamnose synthesis is restricted to plants, whereas E. coli W is unable 

to form endogenous dTDP-rhamnose as alternative rhamnosyl donor due to lack of the 

rfb cluster261,271. To this end, the MUM4 sequence from A. thaliana was codon optimized 

and ordered as plasmid pMUM4 to achieve UDP-rhamnose formation in E. coli W (Figure 

5.1).  

 

Two production plasmid variants pGalE/F3GT/UgpA and pGalE2/F3GT/UgpA were 

created, as described in materials and methods, to ensure the formation of hyperoside. 

Both plasmids were transformed in sGLYC2 to yield the galactosylation strains sGAL2 

and sGAL3. In a similar way, the rhamnosylation plasmid pMUM4/RhaGT/UgpA was 

constructed and transformed in sGLYC2, resulting in strain sRHA3. Alternatively, sRHA2 

was also created, carrying plasmids pRhaGT and pMUM4. The obtained galactosylation 

and rhamnosylation strains were grown on minimal medium with two levels (0.5 and 5 
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mM) of quercetin. Growth and production were monitored to calculate the specific 

productivities, as shown in Figure 5.4. Again, higher extracellular quercetin 

concentrations resulted in a 5-fold increase in qp. However, no significant difference in 

productivity was observed between sGAL2 and sGAL3 at 5 mM quercetin, indicating that 

UDP-galactose formation is as efficient with both GalE homologs and not the rate 

limiting step. The highest hyperoside titer obtained was with sGAL3 (0.94 g/L), which 

was 3.5-fold higher compared to sGAL1.  
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Figure 5.4: Comparison of the specific productivities qp of the sGAL (hyperoside 
formation) and sRHA (quercitrin formation) strains. Strains were grown on minimal 
medium containing 0.5 mM (gray bars) and 5 mM (black bars) quercetin. 

 

In contrast to sRHA1, incubation of sRHA2 and sRHA3 showed a product spot on TLC 

with an altered retention factor corresponding to quercitrin. Analysis of the compound 

using MS proved the formation of the 3-O-rhamnoside and consequently the in vivo 

activity of MUM4. A quercitrin titer of 1.18 g/L was obtained after 30 h incubation of 

sRHA3 when 5 mM quercetin was added to the medium, which corresponded to a 53 % 

conversion. Detailed analysis showed that also 51 mg/L of isoquercitrin was produced 

extracellularly, with a specific productivity of 3.17 ± 1.01 mg/g CDW/h, showing the 

preference of RhaGT for UDP-rhamnose when different UDP-sugar donors are present. 

Remarkably, the specific productivity of sRHA2 was significantly lower (5-fold decrease) 

compared to sRHA3. Possible explanations are either a higher metabolic burden caused 

by a two plasmid system or a too low activity of the native GalU, which is not sufficient 

for adequate formation of UDP-glc. Furthermore, the potential of the novel metabolic 
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engineering strategy, which couples growth and production, becomes apparent in the 

form of a 20-fold increase in specific productivity of sRHA3 compared to sRHA1. 

 

To our knowledge, this is the first reported in vivo production of hyperoside. To 

demonstrate the scalability of the engineered strain, strain sGAL3 was cultured in a 1-L 

bioreactor to ensure a constant pH set at 6.80 and avoid oxygen limitation. A detailed 

overview of growth, production and consumption of sucrose is given in Figure 5.5. After 

an observed lag-phase of 5 h (possibly due to shear stress from the impellers), the strain 

displayed a growth rate of 0.32 ± 0.02 h-1 while simultaneously producing hyperoside. A 

specific productivity was observed of 65.9 ± 2.6 mg/g CDW/h which is comparable to 

the one on shake flask. When nearly all quercetin was converted, hyperoside formation 

slowed down. This can be explained by the observed correlation between quercetin 

concentration and qp, but also by the reported reversibility of F3GT328. A continuous 

supply of quercetin using a fed-batch mode will likely result in a constant qp and 

improve the existing titer. 

 

 
Figure 5.5: Production of hyperoside (▽) in a 1-L bioreactor on minimal medium 
containing 2.5 mM (755 mg/L) quercetin (▼) using strain sGAL3. Cell dry weight (●) was 
measured together with extracellular sucrose (■). 

 

To the best of our knowledge, the obtained hyperoside and quercitrin titers are the 

highest reported to date, which proves the potential of this novel metabolic engineering 

strategy. A more fair comparison with other in vivo processes can be made based on 

production rates. To this end, the maximal production rates (rp,max) of reported 

processes were compared to those obtained in this contribution, the here obtained 



Chapter 5:  Building a versatile glycosylation platform 

89 

 

maximal production rate was 6 to 50-fold higher as illustrated in Figure 5.6. However, in 

view of the growth coupled production obtained with the strains developed, even higher 

production rates are likely achievable. 

 

 
Figure 5.6: Comparison of the maximal production rates obtained using the developed 
galactosylation and rhamnosylation platform (*) with reported maximal rates found in 
literature101-103,105.  

5.4.4 Beyond quercetin: in vivo glycosylation of other flavonols 

Quercetin is the most abundant and best studied dietary flavonol. However, other 

flavonols such as kaempferol, fisetin, morin and myricetin significantly contribute to our 

daily flavonoid intake and their beneficial effects are extremely diverse.329,330 

Kaempferol 3-O-rhamnoside for example inhibits breast cancer cell proliferation 

through activation of the caspase cascade pathway331 while its galactoside has a 

remarkable anti-inflammatory effect332. Myricetin glycosides on the other hand, which 

naturally occur in the mediterranean shrub Myrtus communis, display antioxidant and 

antimutagenic activity333, but also exert potent antipsychotic and anxiolytic-like 

effects334. In addition, fisetin can act as a novel inhibitor in prostate cancer 

management335 and has proven to be an interesting antiseptic336. Finally, morin 

glycosides have shown to be responsible for the antimicrobial effect in the leaves of 

Psidium guajava337, whereas its aglycon has been recently identified as a promising 

insulin-mimetic for diabetes treatment.338 As the sugar moiety is a major determinant of 

the intestinal absorption of dietary flavonoids and their subsequent bioactivity32,339, we 

investigated the potential of the created E. coli W mutants towards both galactosylation 

and rhamnosylation of various flavonols.  
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To this end, strains sGAL3 and sRHA3 were grown in tubes with 5 mL minimal medium, 

each containing 5 mM of kaempferol, myricetin, morin or fisetin. Growth and production 

were monitored over 48 h and various spots were observed on TLC with similar 

retention factors as hyperoside and quercitrin. Mass spectrometry was used to identify 

the compounds, which confirmed the in vivo galactosylation of myricetin, kaempferol 

and fisetin (Table 5.2). All compounds occurred mainly with an m/z of [M+114], 

illustrating the complexation with trifluoroacetic acid from the mobile phase. The 

galactoside of morin was produced at a slow rate, which is in accordance to the very low 

in vitro activity of F3GT towards this flavonol.328 A possible explanation lies in the 

presence of an unusual hydroxyl group at the 2’ position, which may sterically hinder 

the deprotonation and consequent galactosylation of morin at hydroxyl group 3.340  

 

Table 5.2: Galactosylation and rhamnosylation potential of strains sGAL3 and sRHA3 
respectively towards other flavonols. Specific productivity qp and titer reached after 48 h 
of incubation are shown. ND = not detected. 

 3-O-galactoside 3-O-rhamnoside 

Flavonol titer (mg/L) qp 

(mg/gCDW/h) 

titer (mg/L) qp (mg/gCDW/h) 

Kaempferol 84 ± 14 3.46 ± 0.86 416 ± 37 a 12.1 ± 1.4 

Myricetin 52 ± 7.1 2.88 ± 0.22 72.3 ± 9.1 2.8 ± 0.5 

Morin  34 ± 5.8 1.65 ± 0.15 116 ± 21 b 2.5 ± 1.5 

Fisetin 134 ± 22 9.32 ± 0.55 403 ± 31 c 11.3 ± 0.9 

a 3-O-glucoside was also detected at 52 ± 17 mg/L 
b 3-O-glucoside was also detected at 21.7 ± 6.2 mg/L 
c 3-O-glucoside concentration was lower than 5 mg/L 

 

Incubation of sRHA3 with the different flavonols investigated showed two distinct 

glycoside spots on TLC, which corresponded to the 3-O-rhamnoside and 3-O-glucoside. 

Kaempferol proved to be the best substrate for RhaGT and was predominantly 

rhamnosylated (8:1 ratio), with a titer exceeding 400 mg/L, which is 2-fold higher than 

previously reported101. Fisetin on the other hand was efficiently glucosylated, yet the 

formation of its rhamnoside was not as efficient, with a titer below 5 mg/L. A similar 

preference towards glucoside formation was also observed with myricetin and morin, 

which indicates that the positioning of the hydroxyl groups is the determining factor for 

glycosylation with RhaGT. The production of preferred rhamnosides, galactosides or 

glucosides may be largely improved by using UGTs that are more specific towards 

certain flavonols and UDP-sugars. Subsequent implementation of these UGTs in the 

developed in vivo glycosylation strains presents an efficient alternative for the large-
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scale production of various flavonol glycoforms, which are to date mainly extracted from 

plant material. 

5.4.5 Production of the oligosaccharide globotriose 

Besides glycosylated flavonols, the developed glycosylation platform is a flexible tool for 

the production of other molecules. For example, galactose residues widely occur in 

diverse oligosaccharide structures such as blood group antigens341, globosides342, Lewis 

antigens343, galactomannan344, Galili epitopes345 and human milk oligosaccharides346. 

Hence, the galactosylation potential of the metabolically engineered strains was 

investigated for the production of the interesting oligosaccharide globotriose 

(galactosylated lactose; α-D-Gal-(1→4)-β-D-Gal-(1→4)-D-Glc). Globotriose has 

promising pharmaceutical properties due to its involvement in numerous pathogenic 

recognition processes. In addition, it naturally occurs as globotriaosyl-ceramide, is a part 

of the P1PK Blood Group System, which consists out of three membrane associated 

antigens and has a function in the immune system related to B cell differentiation.347 

Furthermore, the globotriose moiety of the antigen binds specifically to the Shiga toxin 

from Shigella dysenteriae or Shiga like toxins from pathogenic E. coli strains.348 This 

process forms the base for diseases such as hemorrhagic colitis and hemolytic uremic 

syndrome. Hence, the clinical applications of freely soluble (or conjugated) globotriose 

are as pathogen-capturing drugs to combat for example urinary tract infections.349,350 

 

Globotriose production can be achieved by replacing the flavonol galactosyltransferase 

(F3GT) on the production plasmids by LgtC, a lipo-oligosaccharide α-1,4-galactosyl-

transferase from Neisseria meningitidis, which is able to galactosylate lactose 

moieties351. When overexpressed however, LgtC is prone to proteolysis323, so by deleting 

the C-terminal 25 amino acids of the lgtC gene, the stability and expression of this 

enzyme can be increased. This truncated sequence was flanked by the homologous 

linkers L5 and L6 to allow rapid assembly of the globotriose production plasmids, which 

were subsequently transformed in the mutant strains as described in Materials and 

Methods, yielding the sGLOBO strains. A metabolic overview of the globotriose 

production strategy is shown in Figure 5.7. To avoid hydrolysis of the acceptor lactose, 

lacZ was additionally knocked out. On the other hand, since lactose permease (LacY) 

activity is necessary for adequate influx of the acceptor lactose271, the lacZYA operon 

was replaced with a constitutively expressed lacY gene (ΔlacZYA::P22-lacY) as shown in 

Appendix A8.  
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Figure 5.7: Schematic representation of the globotriose production strategy in E. coli W. 
Exogenously fed lactose is transported into the cell by constitutive expression of lacY and 
galactosylated by the galactosyltransferase LgtC. The sucrose phosphorylase BaSP splits 
sucrose in a fructose part for growth and a glucose 1-phosphate part for the formation of 
UDP-galactose through UgpA and GalE. Targeted gene deletions (red) prevent the 
consumption of these intermediates for biomass formation while the lacZ knockout 
prevents degradation of the acceptor lactose.  

 

In a first experiment, sGLOBO1 (E. coli W + pLgtC) and sGLOBO2 (E. coli W ∆cscAR ∆pgm 

∆agp ∆ushA ΔlacZYA::P22-lacY + pBaSP/LgtC/UgpA) were grown overnight on minimal 

medium with 1 g/L lactose. Only visualization of the supernatant of sGLOBO2 on TLC 

showed a production spot with a similar retention factor as the globotriose standard. 

This is probably caused by hydrolytic activity of LacZ in sGLOBO1, which prevents the 

intracellular accumulation of lactose and concomitant globotriose formation. The 

product was purified from the supernatant with activated carbon and confirmed to be 

globotriose by MS.  

 

To determine the optimal lactose concentration, sGLOBO2 was grown on minimal 

medium with lactose ranging from 1 to 10 g/L. The average maximal specific growth 

rate, which was independent of the different lactose concentrations used, was 0.32 ± 

0.02 h-1 as shown in Figure 5.8. Conversely, the specific productivity qp showed a 49 % 

increase from 1 to 10 g/L lactose, which may indicate that higher extracellular lactose 

concentrations result in an increased inflow of lactose in the cell. Furthermore, the 

product to biomass yield (YPX) was linear during exponential growth, proving growth-

coupled production. However, increasing the lactose concentration even further to 50 

g/L did not show a significant productivity increase when compared to 10 g/L. 

Therefore, the lactose concentration in the following experiments was set to 10 g/L.   
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Figure 5.8: Maximal specific growth rates (left) and specific production rates of 
globotriose (right) of sGLOBO2 in minimal sucrose medium containing different lactose 
concentrations. 

 

In sGLOBO2, the native GalE activity is solely responsible for the formation of UDP-

galactose. To investigate the effects of this operon, three other sGLOBO strains were 

created whereby either the galTKM part (sGLOBO3) or the whole operon galETKM 

(sGLOBO4) was deleted. In the latter strain, galE was additionally overexpressed 

yielding sGLOBO5. The latter two have a constitutive knockin of BaSP at the melA 

position, which is believed to code for an α-galactosidase that can hydrolyze 

globotriose.49 The strains were grown on minimal medium containing 10 g/L of lactose 

and the obtained specific productivities are shown in Figure 5.9. Comparison of 

sGLOBO4 and 5 with sGLOBO3 clearly shows that overexpression of galE from E. coli or 

galE2 from B. bifidum does not result in a significantly increased globotriose production.  

 

A plausible explanation could be that constitutive overexpression of galE(2) does not 

result in a higher UDP-galactose pool and only complements for the chromosomal galE. 

It has indeed been observed that expression of galE is higher than that of the promoter-

distal genes galTKM.352 Another possibility may be that LgtC is the rate limiting step in 

globotriose formation. On the other hand, it is remarkable that a ΔgalTKM deletion has a 

profound impact on globotriose production, which was at least 15-fold lower. This may 

indicate that ribosomal translation or the stability and/or synthesis of the 

corresponding mRNA is hampered in this strain, which is supported by the fact that the 

mRNA termination is disrupted. Furthermore, GalE is an endogenously SsrA-tagged 

protein, resulting in its degradation to rescue stalled ribosomes.353  
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Figure 5.9: Comparison of the specific globotriose productivity of the created sGLOBO 
strains. Strains were grown on minimal medium containing 10 g/L of lactose. 

Since sGLOBO5 showed the least biological variation, it was chosen to investigate the 

potential for large-scale globotriose production. Subsequently, the strain was grown in a 

1-L bioreactor on minimal medium with 10 g/L lactose. The obtained fermentation 

profiles are shown in Figure 5.10 and clearly illustrate growth coupled globotriose 

production. At the end of the exponential phase, 1.9 g/L globotriose had accumulated 

extracellularly which increased further to 2.8 g/L during the stationary phase. The 

product to biomass yield YPX was 360 ± 14 mg/g CDW, which is comparable to the one 

observed on shake flask. However, the maximal specific growth rate of 0.22 ± 0.01 h-1 

was significantly lower (possibly due to shear stress), resulting in a lower productivity 

and accumulation of fructose. Fine-tuning of this fermentation set-up will likely improve 

the production rates (rp) which are, in contrast to existing processes (rp = constant)49,323, 

exponentially increasing (rp = YPX . µ . X) due to growth coupled production.  
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Figure 5.10: Production of globotriose in a 1-L bioreactor on minimal medium containing 
10 g/L of lactose using strain sGLOBO5. Cell dry weight (●) was measured together with 
the extracellular sugars globotriose (▾), sucrose (■) and fructose (○). 
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5.5 Conclusions 

In this contribution, the generic nature of the previously created glucosylation host was 

demonstrated by expanding it towards a galactosylation and rhamnosylation platform. 

To this end, UDP-glucose was converted into UDP-galactose or UDP-rhamnose by 

expressing a UDP-glucose epimerase (galE) or a UDP-rhamnose synthase (MUM4), 

respectively. As a proof of concept, the bio-active flavonol quercetin was selected for 

galactosylation and rhamnosylation, yielding hyperoside (quercetin 3-O-galactoside) 

and quercitrin (quercetin 3-O-rhamnoside), respectively. To achieve this, the flavonol 3-

O-galactosyltransferase (F3GT) from Petunia hybrida and the flavonol 3-O-

rhamnosyltransferase from Arabidopsis thaliana (RhaGT) were overexpressed in the 

engineered E. coli W mutants, respectively. The created strains were able to produce 940 

mg/L of hyperoside and 1176 mg/L of quercitrin at specific production rates of 68.7 

mg/g CDW/h and 47.8 mg/g CDW/h, respectively, which are the highest reported to 

date. Interestingly, both GTs showed in vivo activity towards other dietary flavonols, 

whereby over 400 mg/L of kaempferol 3-O-rhamnoside could be formed extracellularly. 

Finally, the flexibility of the engineered strain towards other acceptors than flavonols 

was illustrated by overexpressing the UGT LgtC, which galactosylates lactose. In this 

way, 2.8 g/L of the therapeutic oligosaccharide globotriose was produced in a 1-L 

bioreactor with a specific productivity of 117 mg globotriose/g CDW/h.  
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6.1 Abstract 

Sucrose Synthase (SuSy) is a promising enzyme which catalyzes the reversible 

conversion of sucrose and UDP into fructose and UDP-glucose. Since SuSy efficiently 

generates UDP-glucose from a cheap carbon source, it has been frequently used in 

bioconversion experiments or enzymatic synthesis of various glycoconjugates. When 

SuSy is coupled with a (uridine) glycosyltransferase (UGT), UDP is recycled which makes 

the overall process economically attractive. However, the use of SuSy in (in vivo) 

glycosylation systems has been hampered by its low affinity for sucrose, low stability or 

difficult expression.  

 

To this end, a SuSy from Solanum tuberosum was selected due to its excellent overall 

stability and was engineered to obtain a robust enzyme with increased affinity for 

sucrose. To rapidly screen and characterize various SuSy mutants, a screening system 

was developed, which consisted of developing a growth-based high-throughput screen 

and creating a continuous assay to quickly identify altered kinetic parameters. 

Introduction of an S11E mutation resulted in a 3-fold higher affinity for sucrose due to 

mimicking phosphorylation of the serine residue. This improved enzyme was 

coexpressed with the glucosyltransferase VvGT2 in an engineered E. coli W host to 

produce the glucose ester of vanillic acid. The permeabilized cells efficiently produced 

vanilloyl-β-D-glucose at a rate of 0.41 ± 0.11 g/L/h with 68 % conversion. This newly 

developed system for the glucosylation of specialized metabolites alleviates the need to 

purify the proteins involved and is easily scalable. 
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6.2 Introduction 

Sucrose synthase (SuSy – EC 2.4.1.13) is a key enzyme in the sucrose catabolism of green 

plants.354 It catalyzes the reversible conversion of sucrose and a nucleoside diphosphate 

(preferably uridine diphosphate, UDP) into fructose and a nucleoside diphosphate 

glucose (often UDP-glucose, UDP-glc).355 The function of SuSy shows a strong correlation 

with cellulose synthesis356, sugar import357, environmental stress response358, nitrogen 

fixation and phloem unloading359, yet still remains the subject of much debate in the 

field of plant physiology. Recently SuSy has been cloned from cyanobacteria such as 

Anabaena and Synechocystis species, being the first prokaryotic SuSy’s elucidated. These 

SuSy’s exhibit a preference for adenosine diphosphate (ADP) and have a non-

homologous N-terminal region of the amino acid sequence.360 

 

Since SuSy has the possibility to directly generate the expensive nucleotide sugar UDP-

glc from the cheap and sustainable carbon source sucrose, it has been used in 

bioconversion experiments or enzymatic synthesis for the production of nucleotide 

sugars361 and glycoconjugates123,130,362. When coupling SuSy with a (uridine) 

glycosyltransferase (UGT), UDP is recycled which makes the overall process 

economically attractive. However, the use of SuSy in (in vivo) glycosylation systems has 

been hampered by its low affinity for sucrose, low stability or difficult expression of this 

large (eukaryotic) protein (805 residues). Moreover, expression of several SuSy’s in E. 

coli showed a 10-fold increase of the Km in comparison to the native enzyme purified 

from the plant.125,134 Native SuSy is phosphorylated on a conserved serine (Ser11) 

residue near the N-terminus which has a significant impact on the kinetic 

parameters.134,363 This feature is disadvantageous since E. coli is unable of 

phosphorylating SuSy. Cyanobacterial SuSy has no phosphorylation site and a high 

affinity constant for sucrose of 303 mM.360  

 

Despite the recent structure elucidation of SuSy from A. thaliana by Garavito and 

coworkers364, SuSy has never been the subject of extensive protein engineering to 

improve its kinetic parameters, nor the target for introduction of an alternative sucrose 

metabolism in micro-organisms. To this end, the main goal of this chapter is selecting a 

SuSy for subsequent engineering to obtain a stable, active enzyme with an improved 

affinity for sucrose, which can be used as an efficient in vivo catalyst. The pinnacle of this 

engineering strategy would be a SuSy that enables growth on sucrose when expressed in 

E. coli and is coupled with a UGT, thus giving rise to an effective in vivo glycosylation 

host.  
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To achieve this challenging goal, a novel SuSy enzyme will be selected as a starting point 

for both rational and random mutagenesis. The obtained mutants or mutant library will 

be screened for altered kinetic parameters using a developed high-throughput in vitro 

and in vivo screening system. The overall strategy is depicted in Figure 6.1, whereby the 

most active SuSy (exhibiting the lowest Km) will be coexpressed with a UGT in an 

engineered E. coli W production host. In this perspective, VvGT2 (from Chapter 4) will 

be used as UGT of choice due to its in vivo versatility towards various phenolic acids. The 

production of vanilloyl-β-D-glucose was chosen as a proof of concept, since this 

compound has remarkable antioxidant properties365 and a promising therapeutic 

potential366. 

 

 

 
 

Figure 6.1: Overview of the strategy for the development of an in vivo glycosylation 
platform based on an engineered sucrose synthase and coexpression of an uridine 
glycosyltransferase (UGT) of choice. First, a novel SuSy will be selected based on reported 
activities, which will serve as a template for both random and rational mutagenesis. The 
obtained mutants are subsequently screened for altered kinetic parameters using a 
developed in vitro and in vivo screening system. Finally, the SuSy exhibiting the highest 
affinity for sucrose is coexpressed with a UGT in an engineered host to produce a 
glucosylated acceptor molecule. 
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6.3 Materials and methods 

6.3.1 Bacterial strains and plasmids 

All plasmids and strains used in this study are listed in Appendices A1 and A2, 

respectively. A codon optimized susy gene (accession number P49039) from Solanum 

tuberosum was synthesized by GeneArt® (Life Technologies, Massachusetts) and was 

used as a template for the amplification of susy using primers Fw_SuSy_EcoRI and 

Rv_SuSy_SacI, listed in Appendix A6. The amplified fragment was cut with EcoRI-HF and 

SacI-HF and ligated into the pCX-Kan-P22258 vector resulting in the plasmid pCX-Kan-

P22-SuSy (pSuSy). This plasmid was used as a template for both random and rational 

mutagenesis using primers from Appendix A6. All resulting fragments (truncated genes, 

S11E and S11D mutants, and randomly mutated genes) were subsequently religated in 

the pCX-Kan-P22 backbone following the Gibson assembly method237. Error prone PCR 

(ePCR) was performed according to the protocol of Savilahti and coworkers.367 The 

obtained pCX-Kan-P22-SuSy-S11E was used as template for the amplification of susy-

S11E sequence, whereas pBaSP/VvGT2 (Chapter 4) was used for amplification of the 

backbone. Gibson assembly of the SuSy-S11E insert at the BaSP position resulted in the 

production plasmid pCX-Kan-L5-P22-VvGT2-L6-P22-SuSy-S11E-L7 (pSuSy-

S11E/VvGT2). E. coli W ∆cscAR was used as general expression host for pSuSy mutants, 

while E. coli W ∆cscAR ∆pgm ∆agp ∆ushA was used as production host for pSuSy-

S11E/VvGT2.  

6.3.2 Materials and Molecular Agents  

T4-ligase, all restriction enzymes and Q5 polymerase were purchased from New 

England Biolabs (Ipswich, Massachusetts). All chemicals used were purchased from 

Sigma Aldrich (Germany) unless otherwise stated. Oligonucleotides were purchased 

from IDT (Leuven, Belgium). 

6.3.3 Structural modelling 

SuSy homology models were created on the I-TASSER server.368 All figures were created 

with PyMOL.369 Protein and ligands (sucrose, UDP, fructose) were converted when 

needed to pdb files and were further prepared using AutoDock Tools by converting 

them to pdbqt files.370 Docking was performed using Autodock Vina371 and affinities 

(kcal/mol) of the ligands to the receptor were calculated automatically. An estimation of 

the route(s) to the active site was calculated by using CAVER.372 
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6.3.4 Culture media and culture conditions 

General growth media (LB and minimal medium) are described in Chapter 4. MacConkey 

agar base was purchased from Difco and was used to create sucrose based MacConkey 

agar according to the manufacturer’s instructions. Minimal medium agar plates with 

sucrose (50 g/L) where created according to Aerts (2012)373, but with addition of 1 mL 

L-1 of mineral solution as described in Chapter 4. Cells for permeabilization experiments 

were grown in tubes containing 5 mL LB with kanamycin (50 µg/mL) and served as a 2 

% inoculum for 2 L shake flasks containing 500 mL LB medium and kanamycin . The 

cultures were grown at 37 °C at 200 rpm until the end of the exponential phase was 

reached. Cells were sterilely harvested by centrifugation for 20 min at 5000 × g and 

washed with 50 mM MOPS buffer (pH 7). Cell pellet was stored at -80 °C for 

permeabilization experiments. Conversion medium consisted of 50 mM MOPS buffer 

(pH 7) containing 200 mM sucrose, 0.5 mM UDP-glc, 1 mM MgCl2 and 1 g/L vanillic acid. 

6.3.5 Preparation of crude extracts and enzyme assays 

Preparation of crude enzyme extracts has been described in Chapter 3. Determination of 

the enzyme activity was based on the protocol described by Salerno and coworkers374, 

but fructose accumulation was continuously measured by adding hexokinase, 

phosphoglucose isomerase, glucose 6-phosphate dehydrogenase, ATP and NAD+ directly 

to the reaction mixture. UDP-glucose was continuously measured (340 nm) using a 

newly developed assay by adding 1.2 U UDP-glucose pyrophosphorylase, 1.2 U 

phosphoglucomutase, 1.2 U glucose 6-phosphate dehydrogenase, 1 mM pyrophosphate 

(PPi), 2 mM NAD+ and 0.2 mM glucose 1,6-bisphosphate.  

6.3.6 Bioconversion experiments 

Cells stored at -80 °C were thawed and dissolved in cold 50 mM MOPS buffer (pH 7) to a 

concentration of 500 g/L. Aliquots of 1 mL cell paste were used for cell permeabilization 

by sonication for 4 min at suboptimal conditions (Branson sonifier, 50 % duty cycle, 

output 3). Conversion experiments were initiated by adding 10 mL of conversion 

medium to the permeabilized cells.  

6.3.7 Product analysis and quantification 

Vanilloyl-β-D-glucose was primarily analyzed on TLC and afterwards quantified in detail 

using the same method described in Chapter 4 for glucogallin measurements. Purified 

vanilloyl-β-D-glucose from Chapter 4 was used as a standard. 
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6.3.8 Kinetic analysis 

The kinetic constants were derived from initial rate analysis by varying the 

concentration of individual substrate. Using the continuous fructose assay, sucrose was 

varied from 0 to 1 M in the presence of 2 mM UDP. Kinetic parameters were calculated 

from an S-V plot by non-linear regression analysis using the Michaelis-Menten kinetic 

equations in R (‘nlstools’ package).  
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6.4 Results and discussion 

6.4.1 Selection of a suitable sucrose synthase 

Since a large number of sucrose synthases have been described to date and a lot of 

isoforms exist, choosing a suitable SuSy as a starting point for engineering is challenging. 

The goal of this chapter is to identify or design a SuSy with favorable kinetic parameters 

(high affinity for sucrose) when expressed in E. coli, which can coupled to a UGT, thus 

resulting in an efficient in vivo glucosylation platform. However, heterologous 

expression of SuSy in E. coli often results in an increased Km when compared to the 

native enzyme due to the impossibility of phosphorylation.134 An exception is the 

cyanobacterial SuSy of Anabaena which does not possess this conserved serine 

residue.135 Although many SuSy’s have been kinetically characterized, the obtained data 

are often inconsistent due to the fact that Km estimation methods, protein expression 

and purification, and assay conditions significantly vary. Table 6.1 attempts to give an 

overview of frequently reported SuSy’s and compares these affinity constants for 

different isoforms and expression methods.  

 

Table 6.1: Overview of the affinity constants for sucrose of native SuSy’s (Km,scr) and 
recombinant SuSy’s (Km,scr,rec) expressed in E. coli. All Km values were determined at 
saturation with UDP. A distinction is made between different isoforms when applicable. 
ND: not determined. 

origin isoform Km,scr (mM) Km,Scr,rec (mM) reference 

Solanum tuberosum 1 35 80.3 375,376 

Solanum tuberosum 2 ND 105 ± 10 This study 

Vigna radiata 2 17 161 134
 

Arabidopsis thaliana 1 ND 53 ± 6 355
 

Arabidopsis thaliana 3 ND 48 ± 3 355
 

Glycine max 1 31.3 ± 7.1 55.4 377,378 

Pisum sativum 1 33 ± 5 32.1 ± 2.1 379,380 

Pisum sativum 2 ND 42.7 ± 2.2 379 

Pisum sativum 3 ND 67.5 ± 1.6 379 

Zea mays 1 52 to 40 ND 381-383 

Zea mays 2 63 ND 381 

Anabaena sp.  2 303 270 135,360 

  

Although their affinity constants are rather high, the SuSy’s from S. tuberosum were 

selected since they have been proven to be very stable at 37 °C and show no activity loss 

during repeated freeze-thawing125, making them suitable for industrial applications and 
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the goals of this chapter. Furthermore, they are well documented125,375,376, exhibit a high 

affinity375 for the cosubstrate UDP (Km = 0.2 mM) when expressed in E. coli and they 

already have been deployed as efficient catalysts for the large scale production of ADP-

glucose384 and various oligosaccharides131,385. Isoform 1 (SuSy1) has been 

comprehensively studied, but isoform 2 (SuSy2, hereafter named SuSy) from S. 

tuberosum was not yet characterized in detail. The native sequence of susy was screened 

for rare codon clusters, which can drastically impede ribosomal translation and thus 

have a negative impact on protein expression.386 As shown in Appendix A14, the number 

of  rare codon clusters increased from 16 to 58 % when the expression host switched 

from S. tuberosum to E. coli. Based on this information the susy sequence was codon 

optimized and cloned in the constitutive expression vector pCX-Kan-P2259, resulting in 

the plasmid pCX-Kan-P22-SuSy that was used throughout this chapter as a template for 

mutagenesis. Expression of SuSy in E. coli BL21(DE3) showed activity and had a Km of 

105 ± 10 mM based on the crude enzyme extract (Table 6.1). As a preliminary test, this 

strain was inoculated on minimal medium with 20, 200 and 500 g/L sucrose as only 

carbon source, but none of the cultures displayed growth after 72 h. 

6.4.2 Developing a SuSy screening system 

Obtaining an enzyme with desired properties solely by rational design is a very difficult 

challenge. Hence, a lot of enzyme engineering strategies rely on evolutionary processes 

in which a selective pressure is applied to a population of mutants, and those expressing 

a particular or desired function are preferentially propagated.387 Due to the relative ease 

with which a mutant library can be generated nowadays, high-throughput screening 

efforts are needed. On the other hand, the mutagenesis process is typically applied in an 

iterative fashion until a satisfactory level of functional performance has been attained.387 

The probability that a first round of mutagenesis yields a SuSy with a 10-fold higher 

sucrose affinity is very low, which implies the need for developing an in vitro screen to 

evaluate the kinetic parameters of the obtained mutants. Therefore, a typical sceening 

system consists of two parts: an in vivo high-throughput screen to assess the possibility 

to grow on sucrose and a continuous assay for rapid determination of the kinetic 

parameters. 

 

Developing a high-throughput screen 
 

To develop a growth-based high-throughput screen, it is important to select a suitable 

screening host for SuSy mutants. A good host is sucrose negative, has a high 

transformation efficiency, expresses an active SuSy and is able to import sucrose. Three 

commonly used E. coli strains BL21(DE3), DH5α and MG1655 were screened together 

with the created E. coli W mutant ΔcscAR from Chapter 4 for these desired properties 
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(Table 6.2). All strains showed no growth on minimal medium with sucrose as only 

carbon source and had a high transformation efficiency, which is important to maintain 

the diversity generated by random mutagenesis. The occurrence of a sucrose 

transporter in many E. coli strains is still not fully elucidated, but it is suggested that lacY 

and lamB respectively code for a lactose permease and a maltose porin, which have a co-

affinity for sucrose.388 E. coli W, which grows particularly fast on sucrose, expresses a 

sucrose permease (CscB) which belongs like LacY to the oligosaccharide/H+ symporter 

subfamily of the major facilitator superfamily.389 It was shown that a cscB deletion 

mutant was unable to grow on sucrose, proving that no other transporter in E. coli W is 

capable of transporting sucrose.269 On the other hand, MG1655 that constitutively 

overexpresses a sucrose phosphorylase (BaSP) is able to grow on sucrose while a DH5α 

transformant is not.269,390 This suggests that LacY probably plays a significant role in 

sucrose transport, as the lacZYA operon is absent in E. coli DH5α. 

 

Table 6.2: Overview of desired properties in some frequently used E. coli genotypes 
concerning the expression of (mutant) SuSy’s. Transf. eff.: transformation efficiency. 

E. coli strain 
Growth on 

sucrose 

Transf. eff. a 

(CFU/µg 

DNA) 

Sucrose 

transporter 
Reference 

BL21 (DE3) No 1 x 109 LacY? 271 

DH5α No 2.54 x109 - 269 

K12 MG1655 No 1 x 109 LacY? 390 

W ΔcscAR No 1.56 x109 CscB This study 

a transformation by electroporation 

 

Since E. coli W ΔcscAR displays all the necessary characteristics, it was chosen as the 

expression host for SuSy screening. Furthermore, E. coli W ΔcscAR is deprived of its 

sucrose regulator which encodes the CscR protein that represses expression of the 

sucrose utilization genes at low sucrose concentrations.268 In addition, E. coli W 

expresses a unique fructokinase CscK, absent in the other investigated E. coli strains, 

that effectively channels intracellular fructose towards the glycolysis.269 This feature is 

of particular interest since cleavage of sucrose by SuSy or a sucrose phosphorylase 

releases fructose in the cell, which is normally converted by the manno(fructo)kinase 

Mak. This enzyme is shown to be promiscuous and exhibits a rather low activity270,391, 

thus hampering the screen for an active SuSy in the other hosts.  
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Assay development 
 

Various enzymatic assays have been developed for SuSy in both the synthesis and 

cleavage reaction. Since a quick screen for improved kinetics of SuSy is required, there 

will be only focused on continuously coupled assays which greatly reduce the assay time 

and cost. Figure 6.2 gives an overview of three possible continuous assays. An 

adaptation of the discontinuous fructose assay described by Salerno and coworkers374 

was identified as the best of these three, since the coupled enzymes are cheap, widely 

available and form a stabile mixture. Therefore, this assay was used for the 

determination of the kinetic constants of SuSy. 

6-PGL

G6P
NAD+

NADH

F6P

G6P 
dehydrogenase

Phosphoglucose 
isomeraseHexose kinase

UDP

sucrose

fructose

UDP-glc

SuSy

UDP-glucose 
pyrophosphorylase

PPi UTP

glc1P glc6P

Phosphogluco- 
mutase NAD+

NADH

G6P 
dehydrogenase

UDP-glcA

NAD+ NADH

ATP ADP

UDP-glucose 6-dehydrogenase

 

Figure 6.2. Possible continuous assays for the cleavage reaction of SuSy. Coupling 
enzymes are shown in green and NADH (absorbance at 340 nm) is depicted in blue. PPi: 
pyrophosphate, glc1P: glucose 1-phosphate, glc6P: glucose 6-phosphate, 6-PGL: 6-
phosphogluconolactone. 

Conversely, the UDP-glucose 6-dehydrogenase assay has been used by some research 

groups392,393, but the current availability, price and overall stability of the enzyme make 

it however very expensive. Also, the possibility of coupling UDP-glucose 

pyrophosphorylase to the SuSy reaction was explored.156 Though the new assay 

performed well in measuring SuSy activity, combination of Mg and pyrophosphate (PPi) 

resulted in the precipitation of an insoluble MgPPi complex (Kd = 55.3 µM)394 which 

interfered with the absorbance measurements.  

 

6.4.3 Engineering the affinity for sucrose 

Finalization of the screening system permits the start of engineering a SuSy with an 

increased affinity for sucrose. First, the general structure of SuSy will be discussed 

whereafter some structure based engineering strategies will be evaluated.  
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General structure considerations 
 

Although SuSy has been the subject of extensive (physiological) characterization for the 

past 50 years, any attempts towards protein engineering are scarce.134,378 Only in 2011, 

the structure of SuSy1 from A. thaliana was elucidated by Garavito and coworkers364 and 

showed that the structure was a flat, donut-like tetramer with two types of subunit 

interfaces. Each monomer has a tri-lobed structure with 4 distinct domains shown in 

Figure 6.3: a cellular targeting domain (CTD, residues 11-127), an ENOD10 peptide 

binding domain (EPBD, residues 157-276), and 2 glycosyltransferase B domains (GT-BN, 

residues 277-526; GT-BC, residues 527-754).364 An interesting characteristic is the 

presence of a unique Nα1 helix which is 10 Å longer than any other homologous helix in 

GT-B structures reported. 

 

The SuSy structure of Arabidopsis (AtSuSy) is 78 % identical to isoform 2 of Solanum and 

a monomeric homology model was created using I-TASSER368, which was used to 

identify interesting regions for mutagenesis. Plotting of the overall electrostatic 

potential φ(r)395,396 by solving the Poisson-Boltzmann equation revealed that SuSy has a 

negatively charged surface (Figure 6.4). This is in accordance to the theoretical 

isoelectric point of 5.93 and the slightly more acidic pI of 5.5 as determined 

experimentally125. Figure 6.4 also displays the presence of a positively charged (blue) 

zone which probably acts as an entrance for the negatively charged UDP or UDP-glucose. 

The route towards the active site of SuSy has never been investigated and the 3D 

structure of AtSuSy is presumably in the “closed” and thus active conformation364, a 

typical feature of glycosyltransferases34,397. The substrates are captured in between the 

cleft of GT-BN (light green) and GT-BC (light yellow) as shown in Figure 6.4. The CAVER 

tool372 was used to search for possible routes towards the active center and are depicted 

in white, which correspond to the positively charged cleft.  
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Figure 6.3: Ribbon representation of the tetrameric SuSy from A. thaliana (PDB 3S27) 
displaying the subunit interface interactions (A:B and A:D). The cellular targeting domain 
(CTD) is colored in marine and the ENOD40 peptide binding domain (EPBD) is cyan. The 
GTB domains are depicted in wheat together with the C-terminus in orange. Figure 
adapted from Zheng et al. (2011).364 

 

    
 

Figure 6.4: Structural overview of the electrostatic potential (left) and closed 
conformation with routes to the active site (right) of SuSy from S. tuberosum (PDB 3S29). 
The electrostatic surface potential shows a positively charged zone (blue) which 
corresponds to the cleft between the GTBN (green) and GTBC (yellow) domains. Two 
possible routes near the active site were visualized using CAVER372 (white).  
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Truncation mutants of SuSy 

A first attempt to gain insight in the function and necessity of the N-terminal domains 

(CTD and EPBD) of SuSy, is to make truncations. These domains cover 34 % of SuSy 

without any contribution to the active site of the GTB. A previous study created an N-

terminal truncation (A2 to R13) of soybean SuSy and concluded that the activity and Km 

were not significantly different compared to the wild type.378 In addition, precise 

truncation of proteins can result in a higher specific activity398 or the identification of 

the minimal active protein399. Figure 6.5 shows the location of various selected 

truncations whereby SuSy-T111 codes for SuSy with amino acids 2 to 110 deleted. The 

selection of deleted residues was based on the starting position of a new helix or 

limitation of  the hydrophobic effect.  

 

EPBDCTD C-terminus

T111

P139

G156

T243

D262

I273

 

 

Figure 6.5: Location of the selected truncations in SuSy of S. tuberosum in the N-terminal 
region, consisting of a cellular targeting domain (CTD) and an ENOD40 peptide binding 
domain (EPBD). Arrows indicate the position where the truncation was made, whereby 
T111 is SuSy with amino acids 2 to 110 deleted. 

 

Analysis of the crude protein extracts revealed that all activity in both cleavage and 

synthesis direction was lost. These findings illustrate the importance of the cellular 

targeting domain (CTD) and ENOD40 peptide binding domain (EPBD). Possible 

explanations for the inactivity of these mutants are the loss of its tetrameric 

conformation, deletion of highly conserved residues and destabilization of the structure. 

As shown in Figure 6.3, the A:B interface originates almost entirely from interactions 

between adjacent EPBDs, while the A:D interface is formed between EPBD and the C-

terminus. It has been shown that a C-terminal truncation results in the direct loss of 

activity378 and that a dimeric SuSy is not active400. Furthermore, the highly conserved 

residue Q77 makes a polar contact with E491 from the GTB domain thus ensuring 

proper folding and holding both domains together. Deletion of this residue probably 

results in a destabilized structure. 
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Mimicking phosphorylation  
 

 

The S11 residue is highly conserved in plants and is phosphorylated, which results in a 

lowering of the Km.125,134 The N-terminus of cyanobacterial SuSy’s is completely different 

as depicted in Figure 6.6 and has no comparable residue. Two mutations (S11D and 

S11E) were introduced to mimic a constitutive phosphorylation, resulting in the pCX-

Kan-P22-SuSy-S11D/E plasmids. The plasmids were transformed in the developed E. 

coli W ΔcscAR host and the crude extracts showed an apparent increase in sucrose 

affinity from 105 mM to 54.8 ± 1.2 mM for S11D and 35.7 ± 1.1 mM for the S11E mutant, 

respectively. The S11E mutation is more beneficial since its phosphomimetic potential 

(charge and residue length) is higher. These findings are inconsistent with the data 

obtained by Elling and coworkers375, which showed no significant increase in affinity 

between isoform 1 of SuSy from S. tuberosum and the corresponding S11D mutant.  

 

 

Figure 6.6: Alignment of the SuSy amino acid sequences from Table 6.1 at the N-terminus. 
The serine (S11) residue is conserved in plants and is not present in Anabaena, while K39 
and L42 are conserved within all described SuSy’s. 

 

Random mutagenesis 
 

 

Rational design of SuSy is very challenging and resulted till now in an S11E mutant with 

a 3-fold higher affinity for sucrose. Since other educated guesses to improve the kinetic 

constants of this enzyme are difficult to make, some effort will be put in (semi) random 

mutagenesis. The activity of SuSy S11E was not significantly different from the native 

SuSy, so that the corresponding sequence was used as a template for mutagenesis. Error 

prone PCR (ePCR) using a mutagenic buffer based on the method of Rasila et al.367 was 

used to generate mutant libraries of the complete SuSy-S11E gene or large subdomains 

thereof. The latter regions of interest were the Nα1 helix (stretching from G301 to 

Q324), an outer loop (from L338 to Q349) and a combination thereof (from G301 to 
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Q349). The complementary backbones were amplified using a high fidelity polymerase 

and the degenerated inserts were ligated using the Gibson assembly method237. The 

created mutant libraries were transformed in E. coli W ΔcscAR and 80 % of the 

transformation mixture was plated on sucrose minimal medium agar, whereas 10 % was 

plated out on sucrose based MacConkey agar and the remaining 10 % on LB agar with 

kanamycin. No colonies were detected on minimal medium after extended incubation. In 

addition, no mutants were found on MacConkey agar that could coferment sucrose. The 

colonies on LB+Kan plates were grown on liquid medium and the crude extracts were 

tested for activity. The positives were rapidly screened for an improved affinity for 

sucrose and are listed in Table 6.3. A second round of ePCR on the Nα1 helix resulted in 

loss of activity or activity starting from 100 mM sucrose, thus illustrating the challenge 

of lowering the Km value by both rational and random mutagenesis. 

 

Table 6.3. Results of the random mutagenesis. 

Mutation Result 

Complete gene All active. Km higher than WT. 

Nα1 helix G301 to Q324 Active mutants with Km as WT. 

Outer loop L338 to Q349 Mutants only active from 100 mM sucrose 

Combined V303 to Q349 Mutants only active from 100 mM sucrose 

6.4.4 Coupling SuSy to UGT 

Although this affinity constant was greatly reduced with the S11E mutation, it proved to 

be too high to enable growth on sucrose when expressed in E. coli. As the intracellular 

concentration of UDP is almost 10-fold higher than the Km for UDP of this enzyme125,401, 

sucrose concentration in the cell is likely to be the limiting factor. When taken into 

account the Km of other sucrose degrading enzymes like invertases and phosphorylases 

(SP)373 which do permit growth when expressed, an estimation of the affinity range 

needed is between 0.5 and 5 mM. This is supported by the fact that SP enzymes with a 

Km above 5 mM were unable to grow on sucrose when expressed in E. coli.390 Since the 

affinity constant of SuSy-S11E is over 7-fold higher than this threshold, further 

engineering is required when a strain needs to be obtained with production coupled to 

growth as described in Chapters 4 and 5. 

 

Nevertheless, this engineered SuSy has become more suitable and efficient for 

biocatalysis, especially when coupled with a UGT. To this end, SuSy-S11E was 

coexpressed with the glucosyltransferase VvGT2, resulting in the constitutive expression 

plasmid pSuSy/VvGT2, which was transformed in the sGLC4 host (E. coli W ∆cscAR 
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∆pgm ∆agp ∆ushA) from Chapter 4. The strain was grown on LB after which the cells 

were harvested, washed and stored at -80 °C. The cell pellet was resolved in 50 mM 

MOPS (pH 7), permeabilized and used at a concentration of 50 g/L for conversion 

experiments. Vanillic acid was used as acceptor, since the resulting glucose ester 

vanilloyl-β-D-glucose has promising therapeutic potential366. A first bioconversion was 

carried out in 50 mM MOPS buffer (pH 7) containing 200 mM sucrose, 2 mM UDP, 1 mM 

MgCl2 and 1 g/L vanillic acid, but after 8 h of incubation at 37 °C, no glucoside could be 

detected. Analysis of SuSy in the permeabilized extracts showed an activity of 61 ± 12 

U/L, thus proving that SuSy was not the bottleneck. Repeating the experiment in the 

presence of 0.5 mM of UDP-glc instead of 2 mM UDP showed a rapid formation of 

glucoside as shown in Figure 6.7. 
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Figure 6.7: Bioconversion of 1 g/L of vanillic acid into vanilloyl-β-D-glucose by coupling 
SuSy-S11E and VvGT2 in presence of 200 mM sucrose and 0.5 mM UDP-glucose at pH 7 
and 37 °C. 

 

This indicates that UDP inhibits VvGT2 as an end product, a phenomenon frequently 

encountered with O-glucosyltransferases124,130. The vanillic acid was almost completely 

converted in 2 h, resulting in 8.13 regeneration cycles of UDP-glc. Remarkably, the 

product degraded over time and resulted in a maximal conversion of 69.1 ± 9.7 %. An 

average production rate of 0.41 ± 0.11 g/L/h of glucoside could be reached, which is to 

our knowledge in the same line as the most efficient in vitro process reported regarding 

the glucosylation of specialized metabolites130. This system could efficiently convert the 

dihydrochalcon phloretin in its corresponding C-glucoside nothofagin at an estimated 

rate of 0.34 g/L/h. Despite the potential of this in vitro process, it should be mentioned 
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that this was carried out on a 1.5 mL scale and that scale-up will be far from cost-

effective due to the need for extensive enzyme purification. Moreover, the process 

required repeated enzyme feed to avoid slowdown of the production rate, thus making 

this system even more expensive. In contrast, our process alleviates the need for 

extensive enzyme purification and is easily scalable, thus illustrating an improved in vivo 

method for the glucosylation of small molecules. 

6.5 Conclusions 

In this chapter, a structural analysis is made of the Sucrose Synthase (SuSy) from 

Solanum tuberosum to generate both rational and random mutants with an increased 

affinity towards sucrose. To efficiently screen and characterize these mutants, a 

screening system was developed which consisted of a growth-based high-throughput 

screen and an adapted continuous assay. The newly designed E. coli W ΔcscAR proved to 

be the most suitable screening host for SuSy due to its high transformation efficiency 

and presence of the sucrose transporter CscB. N-terminal truncation mutants (up to 

I237) showed no activity, thus illustrating the importance of these domains. The native 

affinity constant (Km) for sucrose could be reduced 3-fold to 35.7 ± 1.1 mM by 

introducing an S11E mutation, which mimics phosphorylation of the serine residue. 

Random mutagenesis efforts starting from this SuSy-S11E mutant yielded only mutants 

with the same Km or enlarged values. Coexpression of the improved SuSy-S11E with the 

glucosyltransferase VvGT2 in an engineered E. coli W host (sGLC4) resulted in a strain 

that could efficiently glucosylate vanillic acid after permeabilization. The glucoside 

vanilloyl-β-D-glucose was produced at a rate of 0.41 ± 0.11 g/L/h with 8.13 

regeneration cycles of UDP-glucose, which illustrates the potential of this new system 

for the glucosylation of specialized metabolites. 

 

 

 

 

 

 

 

 



Chapter 7:  Conclusions and perspectives  

115 

 

7 Chapter 7 

Conclusions and perspectives 
 

 

Glycosylation is an important modification in nature which can significantly improve the 

physicochemical and biological properties of small molecules like specialized 

(secondary) plant metabolites or antibiotics. The majority of glycosylation reactions are 

mediated by glycosyltransferases (GTs), which transfer the sugar residue from an 

activated sugar donor (like UDP-sugars) to various acceptors such as specialized 

(secondary) metabolites or oligosaccharides. The addition of a sugar residue to these 

molecules can greatly alter their solubility, stability or bioactivity, which are desirable 

properties when they are applied as nutraceuticals, therapeutics or cosmetics. Since the 

majority of specialized metabolites occurs as glycosides, extraction from natural 

resources remains the most widely used method to deal with the ever increasing 

demand for glycosylated compounds. However, this is often a low-yielding and laborious 

task using toxic solvents and generating much waste.  

 

Fuelled by these challenges, many ‘green’ alternatives have been developed for the 

production of glycosides as illustrated in Chapter 2. These can be divided in in vitro 

(using enzymes) and in vivo (using whole cells) systems, each having their specific 

advantages and challenges. Since in vitro processes are difficult to scale up and need 

purified enzymes and expensive cofactors, the key factors towards their economic 

viability are engineering the enzymatic (thermo)stability and increasing the number of 

regeneration cycles (RC) of nucleotide sugars. Furthermore, the search for tailor-made 

enzymes with novel or improved functions is greatly stimulated by the expanding fields 

of enzyme engineering402 and metagenomics218. Sequence based metagenomics can aid 

in the discovery of more stabile or active alternatives for existing enzymes, while 

function based screens can unravel completely novel enzyme activities.  

 

On the other hand,  in vivo processes have been proven to be very useful for the cheap 

and large scale production of various oligosaccharides and glycosylated specialized 

metabolites. Notwithstanding the promising conversion yields obtained in hosts like E. 

coli and S. cerevisiae, the corresponding production rates and titers of many glycosides 

are often very low. This is primarily caused by metabolic engineering strategies which 

mostly achieve indirect formation of UDP-sugars via the bottleneck enzyme Pgm. To this 
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end, alternative routes could be introduced in the form of sucrose synthase or sucrose 

phosphorylase, thus resulting in the direct formation of activated precursors from the 

bio-economically attractive and more sustainable substrate sucrose. In addition, the 

released fructose can function as a substrate for growth, which opens the possibility to 

simultaneously produce and grow. A final and recently emerging perspective for in vivo 

glycosylation is the complete de novo synthesis of glycosides, whereby the aglycon is 

equally formed by the host. In this way, glycosylation becomes a ‘decoration’ module in 

the total biotechnological synthesis of natural or new to nature glycosides. 

 

In the light of efficient UDP-sugar formation and the search for more flexible enzymes, a 

promiscuous uridylyltransferase from B. bifidum was identified in Chapter 3. Three 

putative gene candidates (galT1, galT2 and ugpA) were cloned in a newly engineered E. 

coli strain. Expression in this host enabled to screen and characterize the enzymes only 

by their crude extracts since major interference reactions were deleted, thus alleviating 

the need for enzyme purification. A newly developed chemo-enzymatic assay based on 

phosphate detection in the micromolar range enabled to identify UgpA as the 

promiscuous uridylyltransferase with UTP-monosaccharide-1-phosphate 

uridylyltransferase activity (EC 2.7.7.64). This enzyme catalyzed both the formation of 

UDP-glucose and UDP-galactose from glucose 1-phosphate (glc1P) and galactose 1-

phosphate (gal1P), respectively. Remarkably, UgpA showed a 7-fold higher activity 

compared to the homologous E. coli uridylyltransferase GalU. Hence, UgpA proved to be 

a versatile catalyst for in vitro UDP-sugar generation. To what extent other sugar 1-

phosphates may be converted by UgpA could be the subject of future research, hereby 

optionally using the developed screening host. 

 

To address the aforementioned inadequate UDP-sugar formation in most in vivo 

platforms and to harness the power of the newly discovered UgpA, a novel glucosylation 

platform was designed in Chapter 4. Through metabolic engineering of Escherichia coli 

W, a robust plug and play strain was developed that couples production of glucosides 

directly to growth, hereby only using sucrose as a cheap carbon source. To this end, the 

existing sucrose metabolism (encoded by cscARKB) was modified by knocking out cscAR 

combined with introduction of the sucrose phosphorylase from Bifidobacterium 

adolescentis (BaSP), which directly generates glc1P as an activated precursor for UDP-

glucose. To ensure proper glucoside production, three consequent modules were 

elaborated: (1) the creation of a split E. coli W metabolism, resulting in the reduced or 

eliminated use of glc1P for growth, preserving it for UDP-glc formation; (2) enhancing 

and securing UDP-glucose formation; and (3) the expression of the versatile 

glucosyltransferase VvGT2 from Vitis vinifera for the glucosylation of various phenolic 
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acids. This VvGT2 specifically enabled the strain to produce the therapeutic compound 

β-glucogallin (1-O-galloyl-β-D-glucose) starting from gallic acid and sucrose while 

actively growing. Specific productivities were obtained up to 100 mg β-glucogallin/g 

CDW/h, which was 20-fold higher compared to the wild type strain harboring VvGT2. 

This effect was largely caused by the deletion of ushA, which prevented degradation of 

the UDP-sugar pool. Due to the promiscuous character of VvGT2, 14 other glucose esters 

of various hydroxycinnamic and hydroxybenzoic acids were produced in a stereospecific 

way with high conversion yields up to 100 %, including three newly reported glucose 

esters. To our knowledge, this fast growing (and simultaneously producing) E. coli 

mutant is the first versatile host described for the glucosylation of phenolic acids in a 

fermentative way solely relying on sucrose.  

 

However, as discussed in Chapter 4, the envisioned split metabolism (characterized by a 

50 % decrease in biomass yield) was not fully achieved. In this context, investigating the 

effect of a double phosphatase (encoded by yihX and yidA) knockout or an ycjU knockout 

in sGLC5 could be very useful. Alternatively, 13C metabolic flux analysis can provide 

fundamental information403 on the intracellular fluxes in the central metabolism of the E. 

coli W mutants, which can result in an educated guess for engineering a truly split 

metabolism. In this way, product yields and concomitantly specific productivities will be 

even further increased, which gives rises to a more robust strain.  

 

Expression of other GTs in this platform would result in a true plug and play strain that 

glucosylates any desired small molecule, thus demonstrating the versatility towards 

different acceptors. However, this could require additional engineering efforts regarding 

transport, degradation, scalability and toxicity of each tested acceptor and 

corresponding glucoside. This was clearly demonstrated when more than 1 g/L of 

vanillic acid was added, which proved toxic and caused inhibition of growth, whereas 

the glucoside could be accumulated over 2 g/L without any effects (data not shown). 

Some ways to overcome this are the controlled (exponential) feed of the acceptor or the 

use of a continuous fermentation. Besides alteration of the process conditions, strain 

improvements can be realized on molecular level as well. At this moment, the genes 

encoding BaSP, VvGT2 and UgpA are constitutively expressed under the same promoter 

P22, possibly resulting in an imbalanced pathway with accumulation of key 

intermediates. In order to minimize the metabolic burden and to maximize the flux 

through the pathway, resulting in a fine-tuned and increased production, a combination 

of different promoters with different strengths and ribosome binding sites preceding the 

constitutively overexpressed genes can be tested. A schematic representation of the 

combinatorial pathway optimization for selecting improved β-glucogallin producer 
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strains is shown in Figure 7.1. The resulting mutant library can be rapidly screened by a 

newly developed assay whereby rhodanine reacts with residual gallic acid, resulting in a 

bright red complex (540 nm)404. 

 

 
 

Figure 7.1: Schematic representation of a combinatorial pathway optimization. A mutant 
library can be easily obtained by combining the fixed pathway parts (BaSP, UgpA, VvGT2) 
with a promoter or RBS library. The selection of the best producer strains for β-
glucogallin is done using a high-throughput screen based on the coloration of residual 
gallic acid (rhodanine assay). 

 

In Chapter 5 the generic nature of the created glucosylation host was demonstrated by 

expanding it towards a galactosylation and rhamnosylation platform. To this end, UDP-

glucose was converted into UDP-galactose or UDP-rhamnose by simply expressing a 

UDP-glucose epimerase (galE) or a UDP-rhamnose synthase (MUM4), respectively. As a 

proof of concept, the bio-active flavonol quercetin was selected for galactosylation and 

rhamnosylation, yielding hyperoside (quercetin 3-O-galactoside) and quercitrin 

(quercetin 3-O-rhamnoside), respectively. To achieve this, the flavonol 3-O-

galactosyltransferase (F3GT) from Petunia hybrida and the flavonol 3-O-

rhamnosyltransferase from Arabidopsis thaliana (RhaGT) were overexpressed in the 

engineered E. coli W mutants. The created strains were able to produce 940 mg/L of 

hyperoside and 1176 mg/L of quercitrin at specific production rates of 68.7 mg/g 

CDW/h and 47.8 mg/g CDW/h, respectively, which are the highest reported to date. 

Interestingly, both GTs showed in vivo activity towards other dietary flavonols, whereby 

over 400 mg/L of kaempferol 3-O-rhamnoside could be formed extracellularly. Finally, 

the flexibility of the galactosylation platform to produce specialty oligosaccharides from 

lactose was also assessed. However, to prevent metabolization of this acceptor, the lac 

operon, containing an β-galactosidase (lacZ) and lactose permase (lacY) was knocked 

out and lactose transport was restored by knocking a constitutively expressed lacY back 

in at the same locus. Replacing F3GT with the lipo-oligosaccharide galactosyltransferase 

(LgtC) from Neisseria meningitidis, enabled our mutant strain to efficiently produce 2.8 

g/L of globotriose (α-galactosyl-1,4-lactose) at a rate of 117 mg/g CDW/h.  
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Due to the pivotal role of UDP-glc, various other UDP-sugars can be formed in vivo such 

as UDP-glucuronate, UDP-xylose, UDP-arabinose, UDP-apiose and UDP-galacturonate. 

Figure 7.2 gives an overview of the UDP-sugars produced in this dissertation (coloured 

in green) and the most common derivatives thereof. When implementing a 

dehydrogenase like Ugd, effects of NAD+ consumption should be taken into account to 

co-engineer an optimal redox balance.  
 

 

 

 

Figure 7.2: Overview of the interconverting reactions starting from the central molecule 
UDP-glucose for the generation of the most common UDP-sugars found in nature. UDP-
sugars depicted in green were successfully produced in this dissertation. EC numbers and 
the abbreviated gene products are shown next to each reaction. 

In combination with the modularity of the developed glycosylation strains, which 

permits rapid introduction of any GT or UDP-sugar pathway, virtually any glycoside can 

be produced. Together with the novel metabolic engineering strategy which established 

coupling of growth and production, over 50-fold increase in productivity can be 

achieved compared to existing processes. To fully exploit this strategy, the 

fermentations carried out in this dissertation should be expanded into a fed-batch set-

up. In this way, high cell densities can be obtained which equally result in exponentially 

increasing product titers. Interesting target molecules for future research with industrial 

applications are the antioxidative bisglycoside rutin (quercetin 3-O-rutinoside), the 

anticarcinogenic baicalin (baicalein 7-O-glucuronide) or the cardioprotective piceid 

(resveratrol 3-O-glucoside). 

 

Finally in Chapter 6, we explored the potential of the promising enzyme sucrose 

synthase (SuSy), which is able to directly generate UDP-glucose from sucrose. Since 

combination of SuSy with a GT gives rise to a rapid and energy efficient recycling of UDP, 
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exploiting this principle in actively growing cells is industrially very attractive. However, 

due to its unfavorable kinetics (low affinity for sucrose), SuSy has been rarely used for 

the in vivo formation of UDP-glucose. To create a more suitable SuSy, a new screening 

system was developed to rapidly evaluate and characterize SuSy mutants. This system 

consists of a growth-based high-throughput screen and a continuous assay to quickly 

identify altered kinetic parameters. The SuSy of Solanum tuberosum was used as a 

starting point and displayed an affinity constant (Km) of 105 ± 10 mM. This value could 

be significantly reduced to 35.7 ± 1.1 mM by introducing an S11E mutation, which 

mimics phosphorylation of the serine residue. Other attempts (random mutagenesis and 

N-terminal truncations) to lower this constant remained unfruitful and expression of 

SuSy-S11E in E. coli W ΔcscAR did not confer growth on sucrose to this strain. However, 

coexpression of this SuSy mutant with the glucosyltransferase VvGT2 in the engineered 

host created in chapter 4 resulted in an in vivo (bioconversion) host. The permeabilized 

cells were able to efficiently glucosylate vanillic acid at a rate of 0.41 ± 0.11 g/L/h with 

68 % conversion and an RCmax of 8. This system alleviates the need to purify the proteins 

involved and is easily scalable. Production rates, RCmax and titers can be further 

increased by (stepwise) addition of more acceptor, which will result in a new 

economically viable and versatile glycosylation host. 

 

This methodology could be further improved by engineering a SuSy that permits growth 

on sucrose, thus effectively creating a split metabolism with production (glycosylation) 

coupled to growth. In this way, the cells do not need to be cultured before, since growth 

and production will be coupled. An estimation of the Km to be achieved for growth will 

be in the range of 1 mM, which is 20 to 300-fold higher than the naturally occurring 

SuSy’s. However, engineering the affinity constant of SuSy will be very challenging, 

especially since no attempts have been made to date to approach this enzyme in a 

systematic and structural way. Indeed, the only available 3D structure from A. thaliana 

gives no information about the combined position of UDP and sucrose ligands, but only 

shows UDP combined with a possible glucosyl intermediate.364 To this end, a homology 

model was created of Susy from S. tuberosum, which was subsequently used to dock the 

ligands sucrose and UDP. Figure 7.3 shows the most representative docking with a 

binding affinity of 7 kcal/mol whereby the residues located in the active site are colored 

in orange. Other possible conformations were useful in the identification of other 

catalytic residues or residues that influence the affinity for sucrose or UDP. However, 

these results are estimations since the structure is only available in its closed 

conformation, yet give an interesting insight in the molecular organization of SuSy. 

Sucrose is stabilized by the pyrophosphate moiety of UDP and the conserved residues 

H436 and E673. The glycines (G300 and G301) are conserved in all GTB type 
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glycosyltransferases and possibly have the same ‘hinge’ function during closing of the 

domains in their active forms as described in sucrose 6-phosphate synthase405. 

Furthermore, G301 forms the beginning of the interesting Nα1 helix, which pushes into 

the active centre and probably has a major influence on the affinity constant for sucrose. 

Alanine scanning or site saturation of the residues surrounding the docked sucrose 

ligand could provide valuable information on their contribution to the activity, 

specificity and affinity of SuSy. 
 

 
Figure 7.3: Docking of sucrose in the modeled SuSy of S. tuberosum with UDP (green) 
ligand. Residues that participate in bonding interactions are shown in orange. Polar 
interactions are displayed as yellow dashes. 

Remarkably, all research concerning SuSy has been focused on eukaryotic enzymes, with 

two cyanobacterial homologs (Anabaena sp. and Thermosynechococcus elongatus) as 

only exceptions. However, since many proteobacterial genomes have been sequenced in 

the past years, certain gene clusters exhibiting strong homology with SuSy have been 

identified, but not yet characterized.406 To this end, we cloned a putative SuSy gene 

originating from Nitrosomonas europaea and confirmed its function as genuine sucrose 

synthase for the first time. This SuSy preferred ADP over UDP and displayed a Km value 

towards sucrose of only 25 ± 5 mM, which is even lower as the engineered SuSy of S. 

tuberosum. These proteobacterial SuSy’s could unlock new possibilities when used as 

industrial catalysts. 

 

Up to now, the created glycosylation strains were sucrose based, hereby exploiting 

sucrose phosphorylase to generate glc1P. Theoretically, various other disaccharides may 

be ‘split up’ by various carbohydrate active enzymes to yield a part for growth and a part 

for the formation of the required UDP-sugar. In this perspective, Table 7.1 gives an 

overview of disaccharides commonly used in growth media and which activated 

intermediates they form when split by a synthase, phosphorylase or hydrolase. For 
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example, UDP-galactose can be generated in different ways, other than by 

overexpressing the interconverting enzyme GalE. However, its direct formation by 

lactose synthase (EC 2.4.1.22) is not feasible since the  equilibrium is  completely  shifted  

towards  synthesis  of  lactose.  Alternatively, lactose phosphorylase may be used to 

generate gal1P, but due to the high Km value (228 mM) and low activity141, strains 

expressing this enzyme show slow growth on lactose. Finally, lactose may be hydrolyzed 

by the naturally occurring β-galactosidase LacZ in E. coli, which yields intracellular 

galactose and glucose. The latter is used as a substrate for growth, while galactose is 

converted to UDP-galactose by combined action of GalKM (galactose kinase/mutarotase) 

and the promiscuous UgpA. 
 

 

Table 7.1: Overview of other metabolic strategies for coupling production to growth, 
represented as a function of the disaccharide substrates and the carbohydrate active 
enzyme class. EC numbers of the enzymes involved are also shown. N.D.= not described. 

 Synthase Phosphorylase Hydrolase 

 

      Sucrose 

 

UDP-glucose 

EC 2.4.1.13 

fructose 

glucose 1-phosphate 

EC 2.4.1.7 

fructose 

glucose 

EC 3.2.1.26 

fructose 

 

      Lactose 

 

UDP-galactose 

EC 2.4.1.22 

glucose 

galactose 1-phosphate 

EC 2.4.1.20 

glucose 

galactose 

EC 3.2.1.23 

glucose 

 

      Trehalose 

 

UDP-glucose 

EC 2.4.1.245 

glucose 

glucose 1-phosphate 

EC 2.4.1.231 

glucose 

glucose 

EC 3.2.1.28 

glucose 

 

       Maltose  

 

 

N.D. 

 

β-glucose 1-phosphate 

EC 2.4.1.8 

glucose 

glucose 

EC 3.2.1.20 

glucose 

 

To evaluate the potential of this newly designed galactosylation pathway starting from 

lactose (depicted in Figure 7.4), two E. coli mutants were created. E. coli W ∆cscAR ∆pgm 

∆agp ∆ushA ∆galETKM was used as base strain for the expression plasmids 

pGalKM/LgtC/UgpA and pGalKM/F3gt/UgpA, resulting in a globotriose and hyperoside 

producer respectively. Both strains grew on lactose as only carbon source, albeit 

relatively slow, but showed no production of the respective galactosides. In the case of 

globotriose, this could be attributed due to competition between the substrate and 

acceptor, which are both lactose. In the case of hyperoside, a glucose/galactose and 

glycerol/galactose medium were tested, but without success. A probable explanation 

lies in the fact that the intermediate gal1P accumulates in the cell, which is toxic at very 

low concentrations (galactosemia). A possible solution for the reduction of intracellular 
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gal1P is fine-tuning of the production pathway, by altering the promoter strengths of 

galK and ugpA, for example. An unconfirmed hypothesis about the toxicity of gal1P is 

that it competitively inhibits the essential enzyme phosphoglucosamine mutase (GlmM), 

thus preventing peptidoglycan synthesis and growth. Another solution in this context 

could be the search for an alternative GlmM that is not inhibited407. 

UDP

UDP

Lactose

Globotriose

Quercetin

Hyperoside

lgtC

f3gt

ugpA

E. coli W

Lactose

UDP-galactoseβ-galactose

Glucose

α-galactose
galactose 1-
phosphate

lacZ

galM galK

Biomassa

ushAgalETagp

lacY

 

Figure 7.4: Alternative strategy for the galactosylation of small molecules starting from 
lactose. The endogenous β-galactosidase (LacZ) is used to generate intracellular 
galactose, which is converted to UDP-galactose by the combined action of GalKM and the 
promiscuous UgpA. Deletion of galET, agp and ushA again give rise to a split metabolism 
whereby glucose is used as a carbon source. 

 

In conclusion, all routes towards a novel in vivo glycosylation platform were explored 

whereby a sucrose based approach was identified as the most promising. Metabolic 

engineering of E. coli W resulted in a versatile plug and play strain for the efficient 

glucosylation, galactosylation and rhamnosylation of small molecules. This new 

approach enabled the engineered host to grow and produce glycosides simultaneously, 

hereby using only sucrose as a cheap and sustainable carbon source. As a result, we 

obtained the highest product rates and titers reported to date, which outcompetes the 

majority of existing glycosylation processes. The ease of scaling up the created 

glycosylation strains truly paves the way for an economically viable production of 

various glycosides, thus meeting the envisioned objectives of this PhD thesis. Merging 

these novel insights and engineering approaches with existing microbial cell factories 

for production of aglycons will unlock a new era for sustainable de novo glycoside 

formation. 
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A1. Plasmids created and used 

Plasmid vectors Description 

pCX-Kan-P22 a Constitutive expression vector with P22 promoter, Ampr, Kanr 

pCX-Kan-P22-BaSP a 
pCX-Kan-P22 vector carrying BaSP (sucrose phosphorylase) 

from B. adolescentis 

pCX-Kan-P22-GalU pCX-Kan-P22 vector carrying galU from E. coli 

pCX-Kan-P22-UgpA pCX-Kan-P22 vector carrying ugpA from B. bifidum 

pCX-Kan-P22-GalK pCX-Kan-P22 vector carrying galK from E. coli 

pCX-Kan-P22-VvGT2 pCX-Kan-P22 vector carrying vvGT2 from Vitis vinifera 

pKan-L5-P22-LgtC-L6 
pUC57-Kan vector carrying C-25 truncated lgtC from N. 

meningitidis flanked by homologous linkers L5 and L6 and P22 

pKan-L5-P22-F3GT-L6 
pUC57-Kan vector carrying codon optimized f3gt from Petunia 

hybrida flanked by homologous linkers L5 and L6 and P22 

pKan-L5-P22-RhaGT-L6 
pUC57-Kan vector carrying codon optimized AtUGT78D1 from A. 

thaliana flanked by homologous linkers L5 and L6 and P22 

pCX-Kan-P22-SuSy 
pCX-Kan-P22 vector carrying codon optimized susy isoform 2 

from Solanum tuberosum 

pCX-Kan-P22-SuSy-S11D pCX-Kan-P22-SuSy vector with Ser11 changed to aspartic acid 

pCX-Kan-P22-SuSy-S11E pCX-Kan-P22-SuSy vector with Ser11 changed to glutamic acid 

p10-Trc a Inducible expression vector, Cmr, low copy number (± 10) 

p10-Trc-galT1 p10-Trc carrying galT1 from B. bifidum 

p10-Trc-galT2 p10-Trc carrying galT2 from B. bifidum 

p10-Trc-His-galT1 p10-Trc carrying galT1 from B. bifidum with His6 tag 

p10-Trc-His-galT2 p10-Trc carrying galT2 from B. bifidum with His6 tag 

pUC-Ln-RFP-Ln+1 
a 

pUC57 vector carrying RFP sequence flanked by 200 bp 

homologous linkers, Ampr 

pUC-L4-P22-BaSP-L5 
pUC57 vector constitutively expressing BaSP flanked by 

homologous linkers L4 and L5 

pUC-L4-P22-GalE-L5 
pUC57 vector constitutively expressing galE from E. coli flanked 

by homologous linkers L4 and L5 

pUC-L4-P22-GalE2-L5 
pUC57 vector constitutively expressing galE2 from B. bifidum 

flanked by homologous linkers L4 and L5 

pUC-L4-P22-GalK-L5 
pUC57 vector constitutively expressing galK flanked by 

homologous linkers L4 and L5 

pUC-L4-P22-GalKM-L5 
pUC57 vector constitutively expressing galKM from E. coli 

flanked by homologous linkers L4 and L5 

pUC-L5-P22-VvGT2-L6 
pUC57 vector constitutively expressing vvGT2 flanked by 

homologous linkers L5 and L6 

pUC-L6-P22-GalU-L7 
pUC57 vector constitutively expressing galU flanked by 

homologous linkers L6 and L7 

pUC-L6-P22-UgpA-L7 
pUC57 vector constitutively expressing ugpA flanked by 

homologous linkers L6 and L7 

pUC-L4-P22-MUM4-L5 
pUC57 vector constitutively expressing codon optimized MUM4 

from A. thaliana flanked by homologous linkers L4 and L5 
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pCX-Kan-L4-P22-BaSP-L5-P22-

VvGT2-L6 

pCX-Kan vector constitutively expressing BaSP and vvGT2 

flanked by homologous linkers 

pCX-Kan-L4-P22-BaSP-L5-P22-

VvGT2-L6-P22-GalU-L7 

pCX-Kan vector constitutively expressing BaSP, vvGT2 and galU 

flanked by homologous linkers 

pCX-Kan-L4-P22-BaSP-L5-P22-

VvGT2-L6-P22-UgpA-L7 

pCX-Kan vector constitutively expressing BaSP, vvGT2 and ugpA 

flanked by homologous linkers 

pCX-Kan-L4-P22-BaSP-L5-P22-LgtC-

L6-P22-UgpA-L7 

pCX-Kan vector constitutively expressing BaSP, lgtC and ugpA 

flanked by homologous linkers 

pCX-Kan-L4-P22-GalE-L5-P22-LgtC-

L6-P22-UgpA-L7 

pCX-Kan vector constitutively expressing galE, lgtC and ugpA 

flanked by homologous linkers 

pCX-Kan-L4-P22-GalE2-L5-P22-LgtC-

L6-P22-UgpA-L7 

pCX-Kan vector constitutively expressing galE2, lgtC and ugpA 

flanked by homologous linkers 

pCX-Kan-L4-P22-BaSP-L5-P22-F3GT-

L6-P22-UgpA-L7 

pCX-Kan vector constitutively expressing BaSP, f3gt and ugpA 

flanked by homologous linkers 

pCX-Kan-L4-P22-GalE-L5-P22-F3GT-

L6-P22-UgpA-L7 

pCX-Kan vector constitutively expressing galE, f3gt and ugpA 

flanked by homologous linkers 

pCX-Kan-L4-P22-GalE2-L5-P22-F3GT-

L6-P22-UgpA-L7 

pCX-Kan vector constitutively expressing galE2, f3gt and ugpA 

flanked by homologous linkers 

pCX-Kan-L4-P22-MUM4-L5-P22-

RhaGT-L6-P22-UgpA-L7 

pCX-Kan vector constitutively expressing MUM4, AtUGT78D1 and 

ugpA flanked by homologous linkers 

pCX-Kan-L4-P22-SuSy-S11E-L5-P22-

VvGT2-L6 

pCX-Kan vector constitutively expressing susy S11E and vvGT2 

flanked by homologous linkers 

pCX-Kan-L4-P22-GalK-L5-P22-LgtC-

L6-P22-UgpA-L7 

pCX-Kan vector constitutively expressing galK, lgtC and ugpA 

flanked by homologous linkers 

pCX-Kan-L4-P22-GalK-L5-P22-F3GT-

L6-P22-UgpA-L7 

pCX-Kan vector constitutively expressing galK, f3gt and ugpA 

flanked by homologous linkers 

pCX-Kan-L4-P22-GalKM-L5-P22-LgtC-

L6-P22-UgpA-L7 

pCX-Kan vector constitutively expressing galKM, lgtC and ugpA 

flanked by homologous linkers 

pCX-Kan-L4-P22-GalKM-L5-P22-

F3GT-L6-P22-UgpA-L7 

pCX-Kan vector constitutively expressing galKM, f3gt and ugpA 

flanked by homologous linkers 

pKD46 b λ Red recombinase expression, Ampr 

pCP20 b FLP recombinase expression, Ampr, Cmr 

pKD3 b Cm cassette template, Cmr, Ampr 

pKD4 b Kan cassette template, Kanr, Ampr 

 

a plasmids were in house 

b plasmids obtained from Datsenko and Wanner (2000) 
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A2. Strains 

Strain (CODE) Description 

E. coli DH5α a General cloning host 

E. coli DH5α Competent Cells a Subcloning Efficiency Competent Cells 

E. coli MG1655 a Escherichia coli λ-, F-, rph-1 

E. coli BL21 (DE3) a Escherichia coli  F– λ(DE3 [lacI lacUV5-T7]) 

E. coli W Escherichia coli W LMG 11080 

B. bifidum 
Bifidobacterium bifidum (Tissier 1900) LMG 

11041 

E. coli MG1655 ΔgalETKM ΔgalU ΔushA Δugd 

Δagp(sMEMO_WT) 

E. coli MG1655 with galETKM, galU, ushA, ugd, 

and agp -deleted 

sMEMO_UgpA sMEMO_WT carrying pCX-Kan-P22-UgpA 

sMEMO_GalU sMEMO_WT carrying pCX-Kan-P22-GalU 

sMEMO_GalT1 sMEMO_WT  carrying p10-Trc-GalT1 

sMEMO_GalT2 sMEMO_WT  carrying p10-Trc-GalT2 

sMEMO_His_GalT1 E. coli BL21 (DE3) carrying p10-Trc-His-GalT1 

sMEMO_His_GalT2 E. coli BL21 (DE3) carrying p10-Trc-His-GalT2 

E. coli W ∆cscAR (sGLC1) E. coli W with cscAR-deleted 

E. coli W ∆cscAR ∆melA::L4-P22-BaSP-L5 
E. coli W with cscAR and melA deleted and L4-

P22-BaSP-L5  integrated in genome 

E. coli W ∆cscAR ∆glgC::L4-P22-BaSP-L5 
E. coli W with cscAR and glgC deleted and L4-

P22-BaSP-L5  integrated in genome 

E. coli W ∆cscAR ∆pgm (sGLC2) E. coli W with cscAR, and pgm-deleted 

E. coli W ∆cscAR ∆pgm ∆agp (sGLC3) E. coli W with cscAR, pgm, and agp-deleted 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA (sGLC4) 
E. coli W with cscAR, pgm, agp, and ushA-

deleted 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA ∆glgC (sGLC5) 
E. coli W with cscAR, pgm, agp, ushA and glgC-

deleted 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA ∆glgC ∆yihX::cat 

(sGLC6) 

E. coli W with cscAR, pgm, agp, ushA , glgC and 

yihX –deleted with Cm cassette at yihX position 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA ∆glgC ∆yidA::cat 

(sGLC7) 

E. coli W with cscAR, pgm, agp, ushA , glgC and 

yidA –deleted with Cm cassette at yidA position 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA ΔgalETKM (sGLYC4) 
E. coli W with cscAR, pgm, agp, ushA and 

galETKM-deleted 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA ΔlacZYA::P22-lacY 

(sGLYC1) 

E. coli W with cscAR, pgm, agp, ushA and lacZYA 

deleted and P22-lacY integrated in genome 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA ΔlacZYA::P22-lacY 

ΔgalTKM (sGLYC3) 

E. coli W with cscAR, pgm, agp, ushA, lacZYA 

and galTKM deleted and P22-lacY integrated in 

genome 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA ΔlacZYA::P22-lacY 

ΔmelA::L4-P22-BaSP-L5 

E. coli W with cscAR, pgm, agp, ushA, lacZYA 

and melA deleted and P22-lacY and L4-P22-

BaSP-L5 integrated in genome 
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E. coli W ∆cscAR ∆pgm ∆agp ∆ushA ΔlacZYA::P22-lacY 

ΔmelA::L4-P22-BaSP-L5 ΔgalETKM (sGLYC2) 

E. coli W with cscAR, pgm, agp, ushA, lacZYA, 

melA and galETKM deleted and P22-lacY and 

L4-P22-BaSP-L5  integrated in genome 

E. coli W + pVvGT2 E. coli W carrying pCX-Kan-P22-VvGT2 

E. coli W + pLgtC E. coli W carrying pKan-L5-P22-LgtC-L6 

E. coli W + pF3GT E. coli W carrying pKan-L5-P22-F3GT-L6 

E. coli W + pRhaGT E. coli W carrying pKan-L5-P22-RhaGT-L6 

E. coli W ∆cscAR + pBaSP sGLC1 carrying pCX-Kan-P22-BaSP 

E. coli W ∆cscAR + pSuSy sGLC1 carrying pCX-Kan-P22-SuSy 

E. coli W ∆cscAR + pSuSy-S11D sGLC1 carrying pCX-Kan-P22-SuSy-S11D 

E. coli W ∆cscAR + pSuSy-S11E sGLC1 carrying pCX-Kan-P22-SuSy-S11E 

E. coli W ∆cscAR ∆pgm + pBaSP sGLC2 carrying pCX-Kan-P22-BaSP 

E. coli W ∆cscAR ∆pgm ∆agp + pBaSP sGLC3 carrying pCX-Kan-P22-BaSP 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA + pBaSP sGLC4 carrying pCX-Kan-P22-BaSP 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA ∆glgC + pBaSP sGLC5 carrying pCX-Kan-P22-BaSP 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA ∆glgC ∆yihX::cat + 

pBaSP 
sGLC6 carrying pCX-Kan-P22-BaSP 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA ∆glgC ∆yidA::cat + 

pBaSP 
sGLC7 carrying pCX-Kan-P22-BaSP 

E. coli W ∆cscAR + pBaSP/VvGT2 
sGLC1 carrying pCX-Kan-L4-P22-BaSP-L5-P22-

VvGT2-L6 

E. coli W ∆cscAR ∆pgm ∆agp + pBaSP/VvGT2 
sGLC3 carrying pCX-Kan-L4-P22-BaSP-L5-P22-

VvGT2-L6 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA + pBaSP/VvGT2 
sGLC4 carrying pCX-Kan-L4-P22-BaSP-L5-P22-

VvGT2-L6 

E. coli W ∆cscAR + pBaSP/VvGT2/GalU 
sGLC1 carrying pCX-Kan-L4-P22-BaSP-L5-P22-

VvGT2-L6-P22-GalU-L7 

E. coli W ∆cscAR ∆pgm ∆agp + pBaSP/VvGT2/GalU 
sGLC3 carrying pCX-Kan-L4-P22-BaSP-L5-P22-

VvGT2-L6-P22-GalU-L7 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA + 

pBaSP/VvGT2/GalU 

sGLC4 carrying pCX-Kan-L4-P22-BaSP-L5-P22-

VvGT2-L6-P22-GalU-L7 

E. coli W ∆cscAR + pBaSP/VvGT2/UgpA 
sGLC1 carrying pCX-Kan-L4-P22-BaSP-L5-P22-

VvGT2-L6-P22-UgpA-L7 

E. coli W ∆cscAR ∆pgm ∆agp + pBaSP/VvGT2/UgpA 
sGLC3 carrying pCX-Kan-L4-P22-BaSP-L5-P22-

VvGT2-L6-P22-UgpA-L7 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA + 

pBaSP/VvGT2/UgpA 

sGLC4 carrying pCX-Kan-L4-P22-BaSP-L5-P22-

VvGT2-L6-P22-UgpA-L7 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA ∆glgC + 

pBaSP/VvGT2 

sGLC5 carrying pCX-Kan-L4-P22-BaSP-L5-P22-

VvGT2-L6 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA ∆glgC + 

pBaSP/VvGT2/GalU 

sGLC5 carrying pCX-Kan-L4-P22-BaSP-L5-P22-

VvGT2-L6-P22-GalU-L7 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA ∆glgC + 

pBaSP/VvGT2/UgpA 

sGLC5 carrying pCX-Kan-L4-P22-BaSP-L5-P22-

VvGT2-L6-P22-UgpA-L7 
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E. coli W ∆cscAR ∆pgm ∆agp ∆ushA ∆glgC ∆yihX::cat + 

pBaSP/VvGT2/UgpA 

sGLC6 carrying pCX-Kan-L4-P22-BaSP-L5-P22-

VvGT2-L6-P22-UgpA-L7 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA ∆glgC ∆yidA::cat + 

pBaSP/VvGT2/UgpA 

sGLC7 carrying pCX-Kan-L4-P22-BaSP-L5-P22-

VvGT2-L6-P22-UgpA-L7 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA ΔlacZYA::P22-lacY + 

pBaSP/LgtC/UgpA 

sGLYC1 carrying pCX-Kan-L4-P22-BaSP-L5-

P22-LgtC-L6-P22-UgpA-L7 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA ΔlacZYA::P22-lacY 

ΔgalTKM + pBaSP/LgtC/UgpA 

sGLYC3 carrying pCX-Kan-L4-P22-BaSP-L5-

P22-LgtC-L6-P22-UgpA-L7 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA ΔlacZYA::P22-lacY 

ΔgalETKM ΔmelA::P22-BaSP + pGalE/LgtC/UgpA 

sGLYC2 carrying pCX-Kan-L4-P22-GalE-L5-

P22-LgtC-L6-P22-UgpA-L7 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA ΔlacZYA::P22-lacY 

ΔgalETKM ΔmelA::P22-BaSP + pGalE2/LgtC/UgpA 

sGLYC2 carrying pCX-Kan-L4-P22-GalE2-L5-

P22-LgtC-L6-P22-UgpA-L7 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA ΔlacZYA::P22-lacY 

ΔgalETKM ΔmelA::P22-BaSP + pGalE/F3GT/UgpA  

sGLYC2 carrying pCX-Kan-L4-P22-GalE-L5-

P22-F3GT-L6-P22-UgpA-L7 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA ΔlacZYA::P22-lacY 

ΔgalETKM ΔmelA::P22-BaSP + pGalE2/F3GT/UgpA 

sGLYC2 carrying pCX-Kan-L4-P22-GalE2-L5-

P22-F3GT-L6-P22-UgpA-L7 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA ΔlacZYA::P22-lacY 

ΔgalETKM ΔmelA::P22-BaSP + pRhaGT + pMUM4  

sGLYC2 carrying pCX-Kan-L5-P22-RhaGT-L6 

and pUC-L4-P22-MUM4-L5 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA ΔlacZYA::P22-lacY 

ΔgalETKM ΔmelA::P22-BaSP + pMUM4/RhaGT/UgpA 

sGLYC2 carrying pCX-Kan-L4-P22-MUM4-L5-

P22-RhaGT-L6-P22-UgpA-L7 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA ∆galETKM + 

pGalK/LgtC/UgpA 

sGLYC4 carrying pCX-Kan-L4-P22-GalK-L5-

P22-LgtC-L6-P22-UgpA-L7 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA ∆galETKM + 

pGalK/F3GT/UgpA 

sGLYC4 carrying pCX-Kan-L4-P22-GalK-L5-

P22-F3GT-L6-P22-UgpA-L7 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA ∆galETKM + 

pGalKM/LgtC/UgpA 

sGLYC4 carrying pCX-Kan-L4-P22-GalKM-L5-

P22-LgtC-L6-P22-UgpA-L7 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA ∆galETKM + 

pGalKM/F3GT/UgpA 

sGLYC4 carrying pCX-Kan-L4-P22-GalKM-L5-

P22-F3GT-L6-P22-UgpA-L7 

E. coli W ∆cscAR ∆pgm ∆agp ∆ushA + pSuSy/VvGT2 
sGLC4 carrying pCX-Kan-L4-P22-SuSy-S11E-

L5-P22-VvGT2-L6 
 

a strains were in house 
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A3. Accession numbers of cloned genes 

Gene Acc. number Remarks 

galU NC_000913 Amplified from gDNA 
ugpA KC261357 Amplified from gDNA. Deposited at GenBank. 
galT1 KC261358 Amplified from gDNA. Deposited at GenBank. 
galT2 KC261359 Amplified from gDNA. Deposited at GenBank. 
BaSP NC_008618 Sequence has a N-terminal hexahistidine tag 
vvGT2 JN164680 Sequence was provided by N. Terrier (INRA) 
lgtC U65788 Sequence was C-terminal truncated (25 AA) and ordered 
f3gt AF165148 Sequence was codon optimized and ordered 
MUM4 NC_003070 Sequence was codon optimized and ordered 
AtUGT78D1 NC_003070 Sequence was codon optimized and ordered 
galK NC_000913 Amplified from gDNA. 
galM NC_000913 Amplified from gDNA. 
galE NC_000913 Amplified from gDNA. 
galE2 KJ543703 Amplified from gDNA. Deposited at GenBank. 
susy P49039 Sequence was codon optimized and ordered 
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A4. Reaction overview 

Enzyme Reaction EC code 

Agp Glucose 1-phosphate + H2O   Glucose + Phosphate 3.1.3.10 
BaSP Sucrose + phosphate  Fructose + Glucose 1-phosphate 2.4.1.7 
CscA Sucrose + H2O   Glucose + Fructose 3.2.1.26 
CscB Sucrose[extracellular] + H+   Sucrose[intracellular] + H+ - 
CscK Fructose + ATP   Fructose 6-phosphate + H2O + ADP 2.7.1.4 
F3GT Flavonol + UDP-galactose  Flavonol-3-O-galactoside + UDP 2.4.1.234 
GalE UDP-glucose  UDP-galactose 5.1.3.2 
GalE2 UDP-glucose  UDP-galactose 5.1.3.2 
GalK Galactose + ATP   Galactose 1-phosphate + ADP 2.7.1.6 
GalM α-D-galactose  β-D-galactose 5.1.3.B1 
GalT(1) Galactose 1-phosphate + UDP-glc  UDP-gal + glucose 1-phosphate 2.7.7.12 
GalT2 galNAc1P + UDP-glcNAc  glcNAc1P + UDP-galNAc 2.7.7.12 
GalU UTP + Glucose 1-phosphate  UDP-glucose + pyrophosphate  2.7.7.9 
GlgC ATP + Glucose 1-phosphate  ADP-glucose + pyrophosphate  2.7.7.27 
Glk Glucose[intracellular] + ATP   Glucose 6-phosphate + ADP 2.7.1.2 
LgtC Lactose[moiety] + UDP-galactose  Globotriose[moiety] + UDP 2.4.1.44 
Mak Fructose[intracellular] + ATP   Fructose 6-phosphate + ADP 2.7.1.4 
MelA Globotriose + H2O  Lactose + Galactose 3.2.1.22 
MUM4 UDP-glucose + NADPH + H+  UDP-rhamnose + NADP+ + H2O - 
Ndk Nucleoside diphosphate + ATP  Nucleoside triphosphate + ADP 2.7.4.6 
Pgi Glucose 6-phosphate  Fructose 6-phosphate 5.3.1.9 
Pgm Glucose 1-phosphate  Glucose 6-phosphate 5.4.2.2 
RhaGT Flavonol + UDP-rhamnose  Flavonol-3-O-rhamnoside + UDP 2.4.1.- 
SuSy Sucrose + UDP   UDP-glucose + Fructose 2.4.1.13 
Ugd UDP-glucose + 2 NAD+ + H2O   UDP-glucuronate + 2 NADH + 3 H+ 1.1.1.22 
UgpA UTP + sugar 1-phosphate   pyrophosphate + UDP-sugar 2.7.7.64 
UshA UDP-glucose + H2O  UMP + glucose 1-phosphate + 2 H+ 3.6.1.45 
 UMP + H2O  uridine + phosphate 3.1.3.5 
VvGT2 UDP-glucose + gallic acid   UDP + 1-galloyl-β-D-glucose 2.4.1.136 
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A5. Primers for knockouts and knockins 

Primers a Oligonucleotide sequences (5’-3’) b 

Fw_galETKM_KO_MG1

655 

CTGGTGATTTGAACAATATGAGATAAAGCCCTCATGACGAGGGCGTAACAgtgtaggctg

gagctgcttc 

Fw_galETKM_KO_W 
GTGATTTGAGCAATATAAGGATAAAGCCCTCATTACGAGGGCTTCAGGTGgtgtaggc
tggagctgcttc 

Rv_galETKM_KO 
CTTTGTTATGCTATGGTTATTTCATACCATAAGCCTAATGGAGCGAATTATGcatatga

atatcctccttag 

Fw_galU_KO GCGATACAGAAATATGAACACGTTCAAAACACGAACAGTCCAGGAGAATTTAAgtgta
ggctggagctgcttc 

Rv_galU_KO ACGGCGTCGATTGCTCAACGCCGTTTCGTGGATAACACCGATACGGATGcatatgaatatc
ctccttag 

Fw_ushA_KO 
TCGCGTCATACTATTTTTCAACACGTTGAAATCAGGTCAGGGAGAGAAGTgtgtaggctg

gagctgcttc 

Rv_ushA_KO 
CCCGCCGCGATTAAGCATTGTGCCGGATGCAAACATCCGGCACTTTCGGAcatatgaatat

cctccttag 

Fw_ugd_KO 
TGTAAGTAACAAAAGACAATCAGGGCGTAAATAGCCCTGATAACAAGATGgtgtaggct

ggagctgcttc 

Rv_ugd_KO 
GATGCTAAAAACATCATGATTCACAGTTAAGTTAATTCTGAGAGCATGAAcatatgaat

atcctccttag 

Fw_agp_KO 
CATATTTCTGTCACACTCTTTAGTGATTGATAACAAAAGAGGTGCCAGGAgtgtaggctg

gagctgcttc 

Rv_agp_KO_MG1655 
TAAAAACGTTTAACCAGCGACTCCCCCGCTTCTCGCGGGGGAGTTTTCTGcatatgaatat

cctccttag 

Rv_agp_KO_W TAAAAACGTTTAACCAGCGACTCCCCCACTTCTCGCGGGGGAGTTTTCTGcatatgaatat
cctccttag 

Fw_cscAR_KO AAAAGTTAACGTTAACAATTCACCAAATTTGCTTAACCAGGATGATTAAAgtgtaggct
ggagctgcttc 

Rv_cscAR_KO GCTTGGGTATGGCTTCATTAAAGGATGTCGCACGCCTGGCGGGAGTGTCGcatatgaata
tcctccttag 

Fw_pgm_KO TGAGAAGGTTCGCGGAACTATCTAAAACGTTGCAGACAAAGGACAAAGCAgtgtaggct
ggagctgcttc 

Rv_pgm_KO CAAAGTAAAAAAGGGCGATCTTGCGACCGCCCTTTTTTTATTAAATGTGTcatatgaata
tcctccttag 

Fw_glgC_KO AGACCGCCGGTTTTAAGCAGCGGGAACATCTCTGAACATACATGTAAAACCTGCAgtg
taggctggagctgcttc 

Rv_glgC_KO GTCTGGCAGGGACCTGCACACGGATTGTGTGTGTTCCAGAGATGATAAAAAAGGAGT
TAGTCcatatgaatatcctccttag 

Fw_lacZYA_KO 
GCGCAACGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTCGCCTACC
TGTGACGGAAG 

Rv_lacZYA_KO 
GCTGAACTTGTAGGCCTGATAAGCGCAGCGTATCAGGCAATTTTTATAATCTTCATT
TAAATGGCGCGC 

Fw_galTKM_KO_W 
GGCACTGGCAGTCACGCCATCCACAGGGATATCCCGATTAAGGAACGACCgtgtaggctg
gagctgcttc 

Rv_galTKM_KO_W 
GTGATTTGAGCAATATAAGGATAAAGCCCTCATTACGAGGGCTTCAGGTGcatatgaata
tcctccttag 

Fw_yihX_KO 
CCATCCTTTCCCGCTACAGTTAATTTCTTGTGGCGCGAAAGGAGGCAAAAgtgtaggctg
gagctgcttc 
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Rv_yihX_KO 
CCAGGCCCATAGTGGACGGGTACGGTGCCTGGCTTTGTCCTGAATGGTTTcatatgaatat
cctccttag 

Fw_yidA_KO 
AATAATCAGTAAGCGGGCAAACGCGTTTATGCTGTTTGCCCGTCCACTGAgtgtaggctg
gagctgcttc 

Rv_yidA_KO 
GAGCGGAATCGCGTTAGCATGGGTCAGGAACTAATCTACCTGGGGAACTCcatatgaata
tcctccttag 

Fw_lacY_KI CAGGTTTCCCGACTGGAAAG 

Rv_lacY_KI TGTGCGTCGTTGGGCTGATG 

Fw_L4_start_BaSP_KI GGCAGGAGTATCGTCCGTAG 

Rv_L5_tail_BaSP_KI CTGAAGGCGCTCCTCATAC 

Fw_glgC::BaSP_L GACCATGTTCGTCACCGGCCAGTAACATCGCCTTGATAGGCCAGGTTGTG 

Rv_glgC::BaSP_L ACAGTTGAAACTACGGACGATACTCCTGCCGAAATGCTACGGAAGTTAGG 

Fw_glgC::BaSP_R 
GTATTCAGCCAGTATGAGGAGCGCCTTCAGGACTAACTCCTTTTTTATCATCTCTGGA
AC 

Rv_glgC::BaSP_R CGATGTTACTGGCCGGTGAC 

Fw_melA::BaSP_L GGATATTCCCTTCTGGTCGCTGGTTCCAAGCGTGATATGACCCTGATTG 

Rv_melA::BaSP_L ACAGTTGAAACTACGGACGATACTCCTGCCCTCCTGGCTTGCTTGAATAAC 

Fw_melA::BaSP_R GTATTCAGCCAGTATGAGGAGCGCCTTCAGAACGCGACTAAACGCTACTG 

Rv_melA::BaSP_R TTGGAACCAGCGACCAGAAG 

Fw_glgC_KO_BaSP_KI AAGCCCGCTGGCCATTTCTG 

Rv_glgC_KO_BaSP_KI CGCCGCGTTAATCCATCTGC 

Fw_melA_KO_BaSP_KI TGCTTCACGCAGGATCTGAG 

Rv_melA_KO_BaSP_KI ACAGACAGCCCAACGACATC 
 

a Notations KO: knockout, KI: knockin, MG1655: primer specific for E. coli MG1655 

genome, W: primer specific for E. coli W genome. 

b Priming sites for the kanamycin resistance marker are denoted in lower case, flanking 

regions in upper case. 
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A6. Primers for plasmid constructions and SuSy mutagenesis 

Primers Oligonucleotide sequences (5’-3’) a 

Fw_galU_EcoRI CCGGCGAATTCGGAGGAAACAAAGATGGCTGCCATTAATACGAAAG 

Rv_galU_SacI CGCCGAGCTCTTACTTCTTAATGCCCATCTC 

Fw_ugpA_EcoRI CCGGCGAATTCGGAGGAAACAAAGATGTTTGCCGAAGATCTGAAACG 

Rv_ugpA_SacI CGCCGAGCTCTCACACCCAATCACCGGGCTCGATG 

Fw_galT1_NdeI AGGTCGCGCATATGGCAGAAATCACCAACTACAC 

Rv_galT1_PmeI 
TATGTTTAAACGCTAGCCTCGAGGCGGCCGCGAGCTCTAAAGGGCCGGCCTAAACG

AATTCTCAGTCGGAGATGTCGATCTG 

Fw_galT2_NdeI AGGTCGCGCATATGACCACGGAAGAGAAGAAGG 

Rv_galT2_PmeI 
TATGTTTAAACGCTAGCCTCGAGGCGGCCGCGAGCTCTAAAGGGCCGGCCTAAACG

AATTCCTAATGCTGAGTATGGAATCCGAGGCCTTCC 

Fw_galT1_his 
ATGGGCGGCTCACACCACCACCACCACCACGGTATGGCGTCTATGGCAGAAATCAC

CAACTAC 

Fw_galT2_his 
ATGGGCGGCTCACACCACCACCACCACCACGGTATGGCGTCTATGACCACGGAAGA

GAAGAAG 

Rv_galT1_his CAATGATGATGATGATGATGGTCGACTCAGTCGGAGATGTCGATCTGTC 

Rv_galT2_his CAATGATGATGATGATGATGGTCGACCTAATGCTGAGTATGGAATC 

Fw_backbone_p10 
AGACGCCATACCGTGGTGGTGGTGGTGGTGTGAGCCGCCCATATGTTATTCCTCCT

TATTTAATC 

Rv_backbone_p10 GTCGACCATCATCATCATCATCATTG 

Fw_L4_backbone ATTTATAAATGAAGCGGCCGCCCGGGATAGACTTCAGGCAGACCACGCTTGAC 
Rv_L5_Backbone TAACCATGGGCTAGCATTGC 
Fw_L5_backbone ATTTATAAATGAAGCGGCCGCCCGGGATCTGAAGGCGCTCCTCATACTG 
Rv_L6_Backbone TAACCATGGGCTAGCGGCCAGCAAAG 
Fw_L6_backbone ATTTATAAATGAAGCGGCCGCCCGGGATGTTCCGATGGCGTGCATCAG 
Rv_L7_Backbone TAACCATGGGCTAGCAATGC 
Univ_Fw_primer_P22
_insert 

ATCCCGGGCGGCCGCTTCATTTATAAATTTC 

Rv_insert_BaSP AGTCGGAACGGCAATGCTAGCCCATGGTTATCAGGCGACGACAGGCGGATTG 

Rv_insert_VvGT2 
GTCCCTTTGCTGGCCGCTAGCCCATGGTTATTAAATTTTCTTTGACTTGCAAACCA
GCTCCATAC 

Rv_insert_galU GGTTAAGGCCGTTTGGCATTGCTAGCCCATGGTTATTACTTCTTAATGCCCATCTC 

Rv_insert_UgpA 
GGTTAAGGCCGTTTGGCATTGCTAGCCCATGGTTATCACACCCAATCACCGGGCTC
GATG 

Fw_pCX_backbone GAAGGCGGCGGTGGAATCGAAATC 
Rv_pCX_backbone CGTGAGTTTTCGTTCCACTGAGCGTCAGAC 

Fw_L4_BaSP 
TCACGAGATTTCGATTCCACCGCCGCCTTCAGACGAATTACTTATCTGGCAGGAGT
ATC 

Rv_BasP_L5 GTCTGACGCTCAGTGGAACGAAAACTCACGCTGAAGGCGCTCCTCATACTG 
Fw_ori_pCX CGTTCCACTGAGCGTCAGAC 
Rv_L5_stitch GCCGTTGCACTAATACAGGGTAATTC 
Fw_L5_stitch GAGGGAATTACCCTGTATTAG 
Rv_L6_end TTTCTACGGGGTCTGACGCTCAGTGGAACGGTTCCGATGGCGTGCATCAG 
Rv_L6_stitch GTAAAGCGGGCGCACCCTCTGAGAATTAAC 
Fw_L6_stitch GTTAATTCTCAGAGGGTGCGCCCGCTTTAC 
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Rv_L7_end TTTCTACGGGGTCTGACGCTCAGTGGAACGCATCTTCTTCGAGTGGTCCCAGAAC 

Fw_P22_galE CCGTCGACCTCGAATTCGGAGGAAACAAAGATGAGAGTTCTGGTTACCGGTGGTAG 

Rv_galE_T4 GAACGGCAATGCTAGCCCATGGTTATTAATCGGGATATCCCTGTGGATGG 

Fw_P22_galE2 CCGTCGACCTCGAATTCGGAGGAAACAAAGATGACAGTTCTCGTTACCGGTGGGTG 

Rv_galE2_T4 GAACGGCAATGCTAGCCCATGGTTATCAGCCGACCTGCTTCCAGGTG 

Rv_bb_general CTTTGTTTCCTCCGAATTCGAGGTC 

Fw_L4_stitch CGATGGTCAAGCGTGGTCTG 

Rv_L4_stitch AGACTTCAGGCAGACCACGC 

Fw_L5-stitch_CLIVA CGCGGA*CATGAT*TTTGATTG 

Rv_L6-stitch_CLIVA CGCTGC*GGCAAT*CTTATGG 

Fw_L6-stitch_CLIVA ATTGCC*GCAGCG*CTTTATTG 

Rv_L5-stitch_CLIVA ATCATG*TCCGCG*CCAGTTTC 

Rv_SuSy_T6 CCGTTTGGCATTGCTAGCCCATGGTTATTATTCAACTGCCAGCGGAACC 

Rv_L6_P22 ATTTATAAATGAAGCGGCCGCCCGGGATGTTCCGATGGCGTGCATCAG 

Rv_L7_ori TTTCTACGGGGTCTGACGCTCAGTGGAACGCATCTTCTTCGAGTGGTCCCAGAAC 

Rv_L4_P22 ATTTATAAATGAAGCGGCCGCCCGGGATAGACTTCAGGCAGACCACGCTTGAC 

Rv_galK_T4 GGAACGGCAATGCTAGCCCATGGTTATCAGCACTGTCCTGCTCCTTG 

Fw_P22_galKM 
CCGTCGACCTCGAATTCGGAGGAAACAAAGATGAGTCTGAAAGAAAAAACACAAT
CTC 

Rv_galKM_T4 GGAACGGCAATGCTAGCCCATGGTTACTACTCAGCAATAAACTGATATTCC 

Fw_pCXkanBackbone CATCTTTGTTTCCTCCGAATTCG 

Rv_pCXKanBackbone TAAGAGCTCCCAACGCGTTGGATG 

Fw_SuSy_EcoRI GGTACCGAATTCGGAGGAAACAAAGATGGCAGAACGTGTTCTGAC 

Rv_SuSy_SacI GCCCAGGAGCTCTTATTATTCAACTGCC 

Rv_backbone_S11E ATGAACACGGGTCAGAACACG 

Fw_backbone_S11E GTAAACTGGCACAGCTGGTTCC 

Fw_insert_S11E GGAAACAAAGATGGCAGAACGTGTTCTGACCCGTGTTCATGAACTGCGTGAACG 

Rv_insert_S11E CTTATTATTCAACTGCCAGCGGAACCAGCTGTGCCAGTTTACG 

Rv_Susy_end 
TTGCATGCCTGCATCCAACGCGTTGGGAGCTCTTATTATTCAACTGCCAGCGGAAC
C 

Fw_SuSyThr111 
GATCCGTCGACCTCGAATTCGGAGGAAACAAAGATGACCGTTCCGGAATTTCTGCA
GTTTAAAG 

Fw_Susy_Pr139 GATCCGTCGACCTCGAATTCGGAGGAAACAAAGATGCCGTTTACCGCAAGCTTTCC 

Fw_Susy_Gly157 
GATCCGTCGACCTCGAATTCGGAGGAAACAAAGATGGGTGTGGAATTTCTGAATC
GTCATC 

Fw_Susy_Thr243 
GATCCGTCGACCTCGAATTCGGAGGAAACAAAGATGACCGCAGAACGTGTGCTGGA
AATG 

Fw_Susy_Asp262 
GATCCGTCGACCTCGAATTCGGAGGAAACAAAGATGGATAGCTGTACCCTGGAAA
AATTTCTG 

Fw_Susy_Ile273 
GATCCGTCGACCTCGAATTCGGAGGAAACAAAGATGATTCCGATGGTGTTCAATGT
TG 

Fw_SuSy_begin CTTGGGATCCGTCGACCTCGAATTC 

Fw_dgBackboneA GGCACTGGAACGTGAAATGC 

Rv_dgBackboneA CATTTTCTTGGGCAAAATAACCATGCGGACTC 

 
Fw_dgloopA 

 
CCGCATGGTTATTTTGCCCAAGAAAATGNNNNNNNNNNNNNNNNNNNNNNNN
NNNNGGTTGTTTATATTCTGGATCAGGTTCCG 

Rv_dgloopA GTTTCAGCATTTCACGTTCCAGTGCCGGAACCTGATCCAGAATATAAACAACC 

Fw_ins_helixNa 
TTCTGAGTCCGCATGGTTATTTTGCCCAAGAAAATGTTCTGGGTTATCCGGATACC
GGTGGTC 



Appendices 

136 

 

 

Rv_ins_helixNa 
TGGTGCCAACTGCATCCGGCAGCAGACGGGTAACAATCAGAATACGCGGTTTAATG
TCCAG 

Rv_bb_helixNa CCAGAACATTTTCTTGGGC 

Fw_bb_helixNa TGATTGTTACCCGTCTGCTG 

Fw_ins_loopA 
GCACCGGATAGCTGTACCCTGGAAAAATTTCTGGGTCGTATTCCGATGGTGTTCAA
TGTTGTTATTCTG 

Rv_ins_loopA 
CGGTACGAAACGGCACACGCAGAATATGGCTATGTTCGGTGCCAAAAACTTTTTCC
AGACGC 

Fw_bb_loopA CCGAACATAGCCATATTCTGCGTGTG 

Rv_bb_loopA AATACGACCCAGAAATTTTTCCAGGG 
 

a Restriction sites are underlined. His6 tags are underlined and in bold. 
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A7. Cloning strategy for plasmids of the glucosylation platform 

pUC57-Ln-RFP-Ln+1

Ln

Ln+1

Terminator n

RFP

Fw_Ln_backbone

Rv_Ln+1_backbone

Ampr

pCX-Kan-P22-gene

P22
gene

Fw_primer_P22_insert

Rv_insert_gene

Kanr

Terminator

pUC-L4-P22-BaSP-L5

L4

L5

Term. 4

BaSP

Fw_L4_BaSP

Rv_L5_stitch

Ampr

P22

gene =

BaSP

VvGT2

GalU

UgpA

pUC-L5-P22-VvGT2-L6

L5

L6

Term. 5

VvGT2

Fw_L5_stitch

Rv_L6_stitch

Ampr

P22

pUC-L6-P22-GalU-L7

L6

L7

Term. 6

GalU or 

UgpA

Fw_L6_stitch

Rv_L7_stitch

Ampr

P22

Gibson Assembly

pCX-Kan-P22-gene

P22
gene

Fw
_p

CX
_b

ac
k

b
on

e

Kanr

Terminator

R
v

_p
C

X
_b

a
ck

b
o

n
e

G
ib

s
o

n
 A

s
s
e
m

b
ly

pCX-Kan-L4-P22-

BaSP-L5

L4

L5

Term. 4

BaSP

Rv_L5_stitch

P22

Kanr

Rv_ori_pCX

Gibson Assemblies

‘final stitching’

L5 L6Term. 5VvGT2P22

L6 L7Term. 5GalUP22

L6 L7Term. 5UgpAP22

PCR

pCX-Kan-L4-P22-

BaSP-L5-P22-

VvGT2-L6

L4

L5

Term. 4

BaSP
P22

Kanr

L6

Term. 5

VvGT2

P22

L4

L5

Term. 4

BaSP

P22

Kanr

L6

Term. 5

VvGT2

P22

L7

Term. 6

GalU or 

UgpA P22

pCX-Kan-L4-P22-

BaSP-L5-P22-

VvGT2-L6-P22-

UgpA-L7

Rv_L6_end
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A8. Cloning strategy for constitutive lacY knockin 

 

Promoter

lacI

Term. Prom.

lacZ lacY lacA

Terminator

lac operon

Operator

Cm resistance
pKD3

gDNA E. coli WA

B Fw_lacZYA_KO Rv_lacZYA_KO

Promoter

lacI

Terminator Terminator

Cm resistance gDNA E. coli W

Promoter

lacI

Term.

lacY

Terminator

gDNA s1

P22 (truncated)

Kan resistance

FRT FRTFw_lacY_KI Rv_lacY_KI

Promoter

lacI

Term.

lacY

Terminator

gDNA E. coli W

P22 (truncated)

Kan resistance

FRT FRT

+ pKD46

+ pKD46

+ pCP20

Promoter

lacI

Term.

lacY

Terminator

gDNA E. coli W

P22 (truncated)
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A9. Cloning strategy for plasmids of the galactosylation platform 
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A10. Cloning strategy for KO/KI of ΔmelA::BaSP and ΔglgC::BaSP 
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Figure A10. BaSP knockin strategy at two different loci, resulting in two new strains. First, BaSP and its 
surrounding linker sequences, were amplified from the plasmid pUC-L4-P22-BaSP-L5 using PCR. Adjacent 
DNA regions of the integration spots, genes melA and glgC, were also amplified from the genome. The primers 
were designed with the reverse primer of the left border and the forward primer of the right border having 
an overhanging sequence homologous to respectively linker L4 and L5. Also the forward primer of the left 
border has an overhang sequence homologous to the right end of the right border. For both the melA and glgC 
gene replacement, these 3 pieces were put together using Gibson Assembly. Subsequently, these circular DNA 
molecules were used as a template to pick up the knockin-knockout constructs containing prolonged 
homologous regions for recombination. 
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A11. Cloning strategy for plasmid of the rhamnosylation platform 
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A12. NMR spectra of novel glucose esters 

1-O-cyclohexanoyl-β-D-glucose 

 

 
1H-NMR (DMSO-d6, 400 MHz)  

δ 1.13 – 1.41 (5H, m, H2’a, H3’a, H4’a, H5’a, H6’a),  

1.56 – 1.60 (1H, m, H4’b) 

1.66 – 1.69 (2H, m, H3’b, H5’b) 

1.79 – 1.91 (2H, m, H2’b, H6’b) 

2.24 – 2.36 (1H, m, H1’) 

3.06 – 3.13 (2H, m, H2, H4) 

3.16 – 3.24 (2H, m, H3, H5) 

3.40 – 3.46 (1H, m, H6a) 

3.61 – 3.66 (1H, m, H6b) 

4.53 (1H, dxd, J1 = 5.9 Hz, J2 = 5.9 Hz, C6-OH) 

4.98 (1H, d, J = 5.4 Hz, OH) 

5.07 (1H, d, J = 5.0 Hz, OH) 

5.21 (1H, d, J = 5.5 Hz, OH) 

5.31 (1H, d, J = 8.1 Hz, H1) ppm 

 

13C-NMR (DMSO-d6, 100.6 MHz) 

δ 24.6 – 24.7 (C3’, C5’) 

25.3 (C4’) 

28.3 – 28.5 (C2’, C6’) 

42.1 (C1’) 

60.5 (C6) 

69.5 (C4) 

72.5 (C2) 

76.4 (C5) 

77.9 (C3) 

94.1 (C1) 

173.9 (C7’) ppm 
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1-O-isophthaloyl-β-D-glucose 

 

 

 
1H-NMR (Acetone-d6, 400 MHz)  

δ 2.82 (OH) 

3.51 – 3.58 (4H, m, H2, H3, H4, H5) 

3.69 – 3.73 (1H, m, H6a) 

3.83 – 3.86 (1H, m, H6b) 

5.80 (1H, d, Jequatoriaal = 2.9 Hz, Jaxiaal = 8.0 Hz, H1)* 

7.72 (1H, dxd, J1 = 7.8 Hz, J2 = 7.8 Hz, H5’) 

8.30 – 8.33 (2H, m, H4’, H6’) 

8.70 (1H, s, H2’) ppm 

* over 80 % of the compound had glucose in an equatorial position.  

 

13C-NMR (Acetone-d6, 100.6 MHz) 

δ 62.3 (C6) 

71.0 (C4) 

73.8 (C2) 

77.7 (C5) 

78.6 (C3) 

96.3 (C1) 

130.0 (C5’) 

131.2 (C1’ or C3’) 

131.5 (C2’) 

132.0 (C1’ or C3’) 

134.8 (C4’) 

135.2 (C6’) 

164.9 (C7’) 

166.7 (C8’) ppm 
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1-O-terephthaloyl-β-D-glucose 

 

 

 
1H-NMR (DMSO-d6, 400 MHz)  

δ 3.16 – 3.21 (1H, m, H4) 

3.30 – 3.32 (3H, m, H2, H3, H5) 

3.47 (1H, m, H6a) 

3.64 – 3.69 (1H, m, H6b) 

5.61 (1H, d, Jequatoriaal = 3.5 Hz, Jaxiaal = 7.8 Hz, H1)* 

8.07 – 8.13 (4H, m, H2’, H3’, H5’, H6’) ppm 

* over 90 % of the compound had glucose in an equatorial position. 

 

13C-NMR (DMSO-d6, 100.6 MHz) 

δ 60.7 (C6) 

69.6 (C4) 

72.6 (C2) 

76.4 (C5) 

78.1 (C3) 

95.4 (C1) 

129.7 (C2’, C6’ or C3’, C5’) 

129.9 (C2’, C6’ or C3’, C5’) 

132.6 (C4’) 

136.0 (C1’) 

164.3 (C7’) 

167.0 (C8’) ppm 
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A13. Growth and glucose ester formation  

 

 

 

Figure A13. Overview of the growth (triangles) and conversion of a phenolic acid 
(squares) into the corresponding glucose ester (diamonds) over time. The engineered 
mutant sGLC5 + pBaSP/VvGT2/UgpA is compared with the WT + pVvGT2 for the 
formation of caffeic, terephthalic and p-aminobenzoic acid (PABA). 
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A14. Rare codon clusters of SuSy isoform 2 in different hosts 

SuSy native sequence – codon usage of S. tuberosum 

 
SuSy native sequence – codon usage of E. coli 

 
SuSy codon optimized – codon usage of E. coli 

 
Figure A14. Frequency plots on the distribution of rare and common codons in the 
sequence of SuSy from Solanum tuberosum. A comparison is shown between the native 
sequence translated in S. tuberosum (top) and E. coli (middle) versus a codon optimized 
sequence for E. coli translated in E. coli (bottom).  
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Summary 
 

 

Glycosylation is one of the most important and widespread modifications in nature. 

Adding a sugar residue to (lipophilic) small molecules greatly alters or enhances their 

solubility, stability or bioactivity, which are desirable properties when they are applied 

as nutraceuticals, therapeutics or cosmetics. The majority of specialized (secondary) 

metabolites exists in its glycosylated form, with well-known examples like steviosides 

(used as sweeteners), the skin lightener arbutine, the chemotherapeutic daunorubicin or 

the antiviral compound quercitrin. Glycosides can be extracted from natural sources 

such as plants, or can be chemically synthesized. However, this is often a low-yielding 

and laborious task using toxic solvents. In nature, glycosylation is mainly catalyzed by 

glycosyltransferases (GTs), which efficiently and selectively transfer a sugar residue 

from an activated sugar donor (such as UDP-sugars) to a myriad of acceptor molecules. 

Despite the potential of GTs, their use in in vitro (enzymatic) synthesis is often 

hampered by the exuberant price of nucleotide sugars (UDP-glucose: 150 €/g; UDP-

galactose: 1500 €/g) and difficulties regarding scale-up. Fuelled by these challenges and 

a high demand for glycosides, various in vivo (whole cell) systems have been developed 

whereby the host cell produces its own UDP-sugars and enzymes in situ starting from 

cheap substrates. Although very promising, economically viable processes remain scarce 

due to low product yields, titers and rates. 

 

Therefore, the main objective of this PhD research is to create a novel in vivo 

glycosylation platform which is easily scalable and couples production to growth. To this 

end, the model organism Escherichia coli W was metabolically engineered to obtain a 

generic yet versatile host that effectively glycosylates various small molecules, hereby 

using only sucrose (250 €/ton) as cheap carbon source.  

 

To ensure adequate UDP-sugar formation in the E. coli host, a robust and flexible 

uridylyltransferase needs to be expressed. The native enzyme (GalU) ‘activates’ glucose 

1-phosphate (glc1P) into the corresponding UDP-glucose, but is unable to catalyze the 

formation of other UDP-sugars. To this end, a promiscuous uridylyltransferase was 

searched for in Bifidobacterium bifidum and three gene candidates (ugpA, galT1 and 

galT2) were selected and expressed in a newly engineered E. coli strain. Expression in 

this host enabled to screen and characterize the enzymes only by their crude extracts 

since major interference reactions were deleted, thus alleviating the need for enzyme 
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purification. The extracts were firstly screened for hexose-1-phosphate 

uridylyltransferase activity due to the development of a novel chemo-enzymatic assay 

based on phosphate detection in the micromolar range. UgpA was identified as the 

promiscuous uridylyltransferase with activity towards both glc1P and galactose 1-

phosphate (gal1P). Interestingly, UgpA showed a 7-fold higher activity compared to the 

native GalU. On the other hand, GalT1 and GalT2 exhibited UDP-glucose-hexose-1-

phosphate uridylyltransferase activity, with the latter being 375-fold less active, thus 

revealing that GalT1 plays a more significant role than previously thought regarding 

galactose metabolism in B. bifidum. 

 

To harness the power of the newly discovered UgpA, it was used to build a glucosylation 

platform in the form of a metabolically engineered E. coli W strain. Although this strain 

is sucrose positive by the presence of a sucrose hydrolase (CscA), its metabolism was 

altered by introducing a sucrose phosphorylase from Bifidobacterium adolescentis 

(BaSP). This novel strategy is advantageous since the precursor glc1P is directly formed 

together with fructose, which serves as a carbon source. By introducing specific gene 

(pgm, agp, ushA and glgC) deletions, the formed glc1P is exclusively channeled towards 

UDP-glucose. Expression of a glucosyltransferase from Vitis vinifera (VvGT2) enabled the 

strain to efficiently produce β-glucogallin (1-O-galloyl-β-D-glucose) starting from gallic 

acid and sucrose. By implementing this novel metabolic engineering approach, growth 

and production occurred simultaneously. Indeed, specific productivities could be 

reached up to 100 mg β-glucogallin/g CDW/h, which was 20-fold higher than compared 

to the wild type strain. This effect was largely caused by the deletion of ushA, which 

prevents the degradation of the UDP-sugar pool. Due to the promiscuous character of 

VvGT2, 14 other glucose esters of various hydroxycinnamic and hydroxybenzoic acids 

were produced in a stereoselective way with high conversion yields up to 100 %, 

including 3 newly reported glucose esters. To our knowledge, this fast growing (and 

coupled production) E. coli mutant is the first versatile host described for the 

glucosylation of phenolic acids in a fermentative way using only sucrose as a cheap and 

sustainable carbon source. 

 

In view of the pivotal role of UDP-glc as ideal starting point for the production of a large 

variety of UDP-sugars, the glucosylation strain was expanded towards formation of UDP-

galactose (UDP-gal) and UDP-rhamnose (UDP-rha) by overexpressing a UDP-glucose 

epimerase (GalE) and UDP-rhamnose synthase (MUM4), respectively. Due to its 

beneficial effects on human health, the flavonol quercetin was chosen as target for the 

production of hyperoside (quercetin 3-O-galactoside) and quercitrin (quercetin 3-O-

rhamnoside). The production of these bio-active flavonol glycosides was achieved by co-
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expression with a galactosyltransferase from Petunia hybrida (F3GT) or a 

rhamnosyltransferase from A. thaliana (RhaGT). The created strains were able to 

produce 900 mg/L of hyperoside and 1176 mg/L of quercitrin at specific production 

rates of 68.7 mg/g CDW/h and 47.8 mg/g CDW/h, respectively, which are the highest 

reported to date. Furthermore, the glycosylation potential towards other flavonols was 

also evaluated, with the formation of over 400 mg/L of kaempferol 3-O-rhamnoside as 

most successful example. In addition, the galactosylation strain proved equally flexible 

for the production of therapeutic and extremely expensive oligosaccharide globotriose 

(α-galactosyl-1,4-lactose). To this end, the lipo-oligosaccharide galactosyltransferase 

from Neisseria meningitidis (LgtC) was expressed. However, to prevent metabolization of 

the acceptor lactose, the lac operon, containing an β-galactosidase (lacZ) and lactose 

permase (lacY) was knocked out and lactose transport was restored by knocking a 

constitutively expressed lacY back in at the same locus. By optimization of the added 

lactose concentrations, a specific production rate of 117 mg globotriose/g CDW/h was 

obtained, yielding a final titer of 2.8 g/L. 

 

Finally, the potential of sucrose synthase (SuSy) for the one-step generation of UDP-

glucose from sucrose was explored. Since combination of SuSy with a GT gives rise to a 

rapid and energy efficient recycling of UDP, exploiting this principle in actively growing 

cells is industrially very attractive. However, due to its unfavorable kinetics (low affinity 

for sucrose), SuSy has been rarely used for the in vivo formation of UDP-glucose. To 

create a more suitable SuSy, a new screening system was developed to rapidly evaluate 

and characterize SuSy mutants. SuSy from Solanum tuberosum was used as a starting 

point and displayed an affinity constant (Km) of 105 mM. This value could be 

significantly reduced to 35.7 mM by introducing an S11E mutation, which mimics 

phosphorylation of the serine residue. Coexpression of this SuSy mutant with the 

glucosyltransferase VvGT2 in the engineered strain created in chapter 4 resulted in an in 

vivo (bioconversion) host. The permeabilized cells were able to efficiently glucosylate 

vanillic acid at a rate of 0.41 g/L/h with 68 % conversion and an RCmax of 8. This system 

alleviates the need to purify the proteins involved and is easily scalable. 

 

To conclude, the most important outcome of this PhD thesis is the creation of versatile 

glycosylation platform using a completely novel metabolic strategy which couples 

growth and production. In this way, in vivo glucosylation, galactosylation and 

rhamnosylation of various molecules could be achieved, hereby outcompeting the 

majority of glycosylation processes described to date. Therefore, this unique 

fermentative approach using only sucrose as sustainable carbon source paved the way 

for economically viable production of glycosides. 
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Samenvatting 
 

 

Glycosylatie, de additie van een suikergroep aan een andere molecule, is één van de 

belangrijkste en meest voorkomende modificaties in de natuur. Dit proces beïnvloedt of 

verandert de oplosbaarheid, stabiliteit of bio-activiteit van vele verbindingen, wat erg 

aantrekkelijke eigenschappen zijn wanneer deze moleculen worden gebruikt in de 

farmaceutische of voedingsindustrie. Bekende voorbeelden zijn steviosiden, die gebruikt 

worden als laag-calorische zoetstof, daunorubicine, een gevestigd chemotherapeuticum, 

of quercitrine, een veelbelovend antiviraal middel. De meerderheid van secundaire 

metabolieten komt voor in zijn geglycosyleerde vorm, waardoor tot op heden de meeste 

glycosiden geëxtraheerd worden uit natuurlijke bronnen zoals plantenmateriaal. Deze 

extractieprocessen zijn echter vaak zeer arbeidsintensief en gaan gepaard met lage 

opbrengsten. Anderzijds wordt chemische synthese van geglycosyleerde verbindingen 

sterk bemoeilijkt door de vele reactieve groepen, waardoor vele beschermings- en 

ontschermingsstappen nodig zijn die veel afval genereren. Als duurzaam alternatief 

wordt daarom tegenwoordig gebruikt gemaakt van glycosyltransferasen (GT’s), die het 

merendeel van glycosyleringsreacties in de natuur katalyseren. Deze enzymen brengen 

zeer efficiënt en selectief een suikergroep over van een geactiveerde suikerdonor 

(bijvoorbeeld UDP-suikers) naar een groot aantal acceptormoleculen. Ondanks het 

potentieel van deze GT’s wordt hun gebruik in enzymatische synthese (in vitro) vaak 

belemmerd door de exuberante prijs van de benodigde UDP-suikers (kostprijs UDP-

glucose = 150 €/g; UDP-galactose = 1500 €/g). Door de steeds groter wordende vraag 

naar glycosiden zijn recent diverse cellulaire (in vivo) systemen ontwikkeld, waarbij een 

microbiële cel zelf zijn UDP-suikers en enzymen produceert vertrekkende van goedkope 

substraten. Hoewel deze nieuwe processen veelbelovend zijn, blijft hun uitvoering op 

grote schaal verre van economisch rendabel ten gevolge van lage productiviteiten, 

opbrengsten en titers. 

 

Daarom is de belangrijkste doelstelling van dit onderzoek om een geheel nieuw in vivo 

glycosyleringsplatform te creëren dat eenvoudig opschaalbaar is en eveneens productie 

koppelt met groei. Hiertoe werd het modelorganisme Escherichia coli W metabolisch 

gemodificeerd zodat een generieke en veelzijdige gastheer werd bekomen die 

verschillende kleine moleculen kan glycosyleren, en hierbij bovendien enkel gebruik 

maakt van sucrose (250 € / ton) als goedkope koolstofbron. 
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Om adequate vorming van UDP-suikers in de E. coli gastheer te verzekeren, dient een 

flexibel uridylyltransferase tot expressie te worden gebracht. Het natieve E. coli-enzym 

GalU “activeert” glucose 1-fosfaat (glc1P) tot het overeenkomstig UDP-glucose, maar kan 

de vorming van andere UDP-suikers niet katalyseren. Daarom werd een promiscue 

uridylyltransferase gezocht in Bifidobacterium bifidum waarna drie kandidaat genen 

(ugpA, galT1 en galT2) werden geselecteerd en tot expressie werden gebracht in een 

gemodificeerde E. coli mutant. Expressie in deze mutant maakte het mogelijk om de 

onderzochte enzymen enkel op basis van hun ruwe celextracten te screenen en 

karakteriseren doordat de belangrijkste afbraakreacties waren verwijderd en het 

bijgevolg niet nodig was om de enzymen op te zuiveren. De extracten werden eerst 

gescreend op hexose-1-fosfaat uridylyltransferase activiteit door middel van een nieuwe 

chemo-enzymatische assay, dewelke gebaseerd was op fosfaatdetectie op micromolair 

niveau. UgpA werd geïdentificeerd als promiscue uridylyltransferase dat zowel glc1P en 

galactose 1-fosfaat (gal1P) als substraat kon gebruiken. Bovendien vertoonde UgpA een 

7-maal hogere activiteit vergeleken met het natieve GalU. GalT1 en GalT2 daarentegen 

vertoonden een UDP-glucose-hexose-1-fosfaat uridylyltransferase activiteit. GalT2 bleek 

375 keer minder actief dan GalT1, waardoor dit enzym een veel belangrijker rol speelde 

in het complexe galactosemetabolisme van B. bifidum dan tot nu toe gedacht.  

 

Het geïdentificeerde UgpA werd gebruikt om eerst een glucosyleringsplatform te 

bouwen in een metabolisch gemanipuleerde E. coli W stam. Hoewel dit organisme van 

nature in staat is om sucrose te gebruiken door de aanwezigheid van een sucrose 

hydrolase (CscA), werd het metabolisme veranderd door introductie van het sucrose 

fosforylase uit Bifidobacterium adolescentis (BaSP). Deze nieuwe strategie zorgt ervoor 

dat de precursor glc1P direct gevormd wordt samen met fructose, die als koolstofbron 

fungeert. Door gericht specifieke genen (pgm, agp, ushA en glgC) uit te schakelen, werd 

het gevormde glc1P voorbehouden voor de vorming van UDP-glucose. Expressie van een 

glucosyltransferase uit Vitis vinifera (VvGT2) stelde de stam in staat om efficiënt β-

glucogalline (1-O-galloyl-β-D-glucose) te produceren uitgaande van galluszuur en 

sucrose. Implementatie van deze nieuwe metabolic engineering strategie zorgde ervoor 

dat groei en productie gelijktijdig plaatsvonden en aan elkaar gekoppeld waren. Op deze 

manier kon een specifieke productiviteit worden bereikt boven de 100 mg β-

glucogalline/g CDW/h, wat 20 maal hoger was dan deze in de wild type stam. Dit effect 

werd grotendeels veroorzaakt door het uitschakelen van ushA, wat afbraak van de 

intracellulaire UDP-suikers verhindert. Door het promiscue karakter van VvGT2 konden 

14 andere glucose esters van verschillende hydroxykaneelzuren en 

hydroxybenzoëzuren worden gevormd op een stereoselectieve wijze met hoge 
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conversies tot 100 %. Deze snel groeiende (en simultaan producerende) E. coli stam is 

de eerste veelzijdige mutant voor de glucosylering van fenolische zuren op een 

fermentatieve manier, waarbij enkel sucrose wordt verbruikt als een goedkope en 

duurzame koolstofbron.  

 

In de natuur speelt UDP-glucose een centrale rol als startpunt voor de vorming van vele 

andere UDP-suikers. Hierdoor kon het ontworpen glucosyleringsplatform makkelijk 

worden uitgebreid tot het vormen van UDP-galactose en UDP-rhamnose door 

overexpressie van respectievelijk een UDP-glucose epimerase (GalE) en een UDP-

rhamnose synthase (MUM4). Het flavonol quercetine werd omwille van zijn interessante 

gezondheidseffecten gekozen als startverbinding voor de productie van hyperoside 

(quercetine 3-O-galactoside) en quercitrine (quercetine 3-O-rhamnoside). De productie 

van deze bio-actieve flavonolglycosiden gebeurde door co-expressie met een 

galactosyltransferase van Petunia hybrida (F3GT) of een rhamnosyltransferase van 

Arabidopsis thaliana (RhaGT). De gecreëerde mutanten konden 900 mg/L hyperoside en 

1176 mg/L quercitrine produceren met een specifieke productiviteit van 68,7 mg/g 

CDW/h en 47,8 mg/g CDW/h, respectievelijk, dewelke de hoogste zijn tot nu toe 

beschreven. Bovendien werd het glycosyleringspotentieel tegenover andere flavonolen 

eveneens geëvalueerd, waarbij de vorming van meer dan 400 mg/L kaempferol 3-O-

rhamnoside het meest succesvol bleek. Voorts kon het ontworpen 

galactosyleringsplatform worden aangepast voor de productie van het therapeutische 

oligosacharide globotriose (α-galactosyl-1,4-lactose). Daartoe werd het lipo-

oligosacharide galactosyltransferase van Neisseria meningitidis (LgtC) tot overexpressie 

gebracht en werd lactose toegevoegd als acceptormolecule. Hiertoe werd het lac operon 

uitgeschakeld (om degradatie van lactose te vermijden) en vervangen door een 

constitutieve knock-in van het lactose permease lacY. Door optimalisatie van de 

toegevoegde lactose concentratie kon een specifieke productiesnelheid van 117 mg 

globotriose/g CDW/h worden bekomen met een finale titer van 2,8 g/L. 

 

Tenslotte werd ook de combinatie van een GT met sucrose synthase (SuSy) geëvalueerd. 

SuSy is immers in staat om in één stap UDP-glucose te vormen uit sucrose en vormt zo 

een aantrekkelijk alternatief voor het hierboven beschreven sucrose fosforylase-

gebaseerde glycosylatie platform. Wegens de ongunstige kinetische eigenschappen van 

SuSy (lage affiniteit voor sucrose) is dit enzym echter zelden gebruikt voor in vivo 

vorming van UDP-glucose. Hiertoe werden verschillende SuSy mutanten (random en 

rationeel) gecreëerd die met behulp van een nieuw screeningssysteem snel konden 

worden gekarakteriseerd. Het SuSy van Solanum tuberosum werd gebruikt als startpunt 

voor mutagenese en had een initiële affiniteitsconstante van 105 mM. Deze waarde kon 
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significant verlaagd worden tot 36 mM door introductie van een S11E mutatie, dewelke 

fosforylatie van het serine residu nabootst. Co-expressie van deze verbeterde SuSy 

mutant met het glucosyltransferase VvGT2 in de gemodificeerde E. coli W stam, 

resulteerde in een nieuw in vivo (bioconversie) glucosylatieplatform. De 

gepermeabiliseerde cellen konden efficiënt vanillezuur glucosyleren met een 

productiesnelheid van 0,41 g/L/h en een RCmax van 8. Dit systeem omzeilt de noodzaak 

om de betrokken enzymen op te zuiveren en is gemakkelijk opschaalbaar.  

 

De belangrijkste uitkomst van dit proefschrift is de creatie van een veelzijdig 

glycosyleringsplatform met behulp van een geheel nieuwe metabolic engineering 

strategie die groei en productie aan elkaar koppelt. Zo werd de in vivo glucosylering, 

galactosylering en rhamnosylering van verschillende moleculen bekomen, die efficiënter 

en economisch rendabeler is dan alle bestaande processen tot nu beschreven. Deze 

unieke fermentatieve benadering, die enkel sucrose als duurzame koolstofbron gebruikt, 

heeft de weg vrijgemaakt voor een grootschalige en duurzame productie van glycosiden. 
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