

Prioriteitswachtlijnen met gelimiteerde capaciteit

Priority Queues with Limited Capacity

Thomas Demoor

Promotoren: prof. dr. ir. H. Bruneel, prof. dr. ir. J. Walraevens
Proefschrift ingediend tot het behalen van de graad van
Doctor in de Ingenieurswetenschappen

Vakgroep Telecommunicatie en Informatieverwerking
Voorzitter: prof. dr. ir. H. Bruneel
Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2014 - 2015

ISBN 978-90-8578-732-7
NUR 919
Wettelijk depot: D/2014/10.500/78

Universiteit Gent
Faculteit Ingenieurswetenschappen en Architectuur

Vakgroep Telecommunicatie en Informatieverwerking

Prioriteitswachtlijnen met gelimiteerde capaciteit

Priority Queues with Limited Capacity

Thomas Demoor

IN
G

ENIE
URS W E TENSCHAPPEN

A R C H IT E C T U U R

Proefschrift tot het bekomen van de graad van
Doctor in de Ingenieurswetenschappen

Academiejaar 2014-2015

Universiteit Gent
Faculteit Ingenieurswetenschappen en Architectuur

Vakgroep Informatietechnologie

Promotoren: Prof. dr. ir. Herwig Bruneel
Prof. dr. ir. Joris Walraevens

Universiteit Gent
Faculteit Ingenieurswetenschappen en Architectuur
Vakgroep Telecommunicatie en Informatieverwerking
Onderzoeksgroep SMACS

St-Pietersnieuwstraat 41, B-9000 Gent, België
Tel.: +32-9-264.34.12
Fax.: +32-9-264.42.95

S T O C H A S T I C M O D E L L I N G A N D A N A L Y S I S

O F C O M M U N I C A T I O N S Y S T E M S

IN
G

ENIE
URS W E TENSCHAPPEN

A R C H IT E C T U U R

Proefschrift tot het behalen van de graad van
Doctor in de Ingenieurswetenschappen

Academiejaar 2014-2015

DANKWOORD

Uiteraard kan ik niet aan de plicht verzaken diegenen die een (onrechtstreekse) bij-
drage aan dit doctoraat hebben geleverd te bedanken, uiteraard in de eerste plaats
mijn promotor Herwig. Niet zozeer omdat hij mij ooit gevraagd heeft bij hem te
komen doctoreren op prioriteitswachtlijnen, of omdat hij me daardoor jarenlang
“tewerkgesteld” heeft, maar voor de manier waarop zijn onderzoeksgroep inge-
richt is. De wetenschappelijke vrijheid en het minimaliseren van administratieve
overlast scheppen een perfect kader voor het bedrijven van “wetenschap om de
wetenschap”. Ik kon maandenlang ongestoord mijn hoofd breken over een onder-
zoeksprobleem zonder verantwoording af te moeten leggen voor die stilstand op
tussentijdse evaluatievergaderingen of via “progress reports”. Soms moest ik een
probleem opbergen om later (of nooit meer) nog eens de strijd aan te gaan. Soms
had ik geluk en schoot me plots de (achteraf gezien natuurlijk triviale) oplossing
te binnen. Zo’n “eureka-moment” vond (wat de oude Grieken ook moge beweren)
niet per se in bad plaats maar evengoed aan mijn bureau of tijdens discussies (met
de collega’s) op café . Dat we in een tijd leven waar sommigen dit “Don Quichot-
achtige” proces proberen omvormen tot een industrieel fabricageproces heb ik bij
de onderzoeksgroep SMACS amper gemerkt, waarvoor dank.

Van Joris, co-promotor, die ook mijn licenciaatsthesis (Master-thesis voor de
jongelingen onder jullie) begeleid heeft, heb ik geleerd door te zetten tijdens het
bovenvermelde “vast zitten” op een probleem. Blijven prutsen, vereenvoudigde ge-
vallen bestuderen, . . . gewoon hard werken.

On the mountains of truth you can never climb in vain: either you will
reach a point higher up today, or you will be training your powers so
that you will be able to climb higher tomorrow.

— Friedrich Nietzsche

Behalve professor is Joris een “down-to-earth” prachtkerel met een brede interesse.
“Informele co-promotor”, Dieter sprong in de bres toen Joris voor enkele maan-

den naar het buitenland trok toen ik nog maar 1 maand onderzoeker was. Hij liet
me kennis maken met een hele rits aan methoden binnen het gebied van de toege-
paste probabiliteit. Hoe meer werktuigen je hebt, hoe meer kans dat één ervan je
de mogelijkheid geeft aan de oplossing te sleutelen.

The surest way to corrupt a youth is to instruct him to hold in higher
esteem those who think alike than those who think differently.

— Friedrich Nietzsche

ii

Hij leerde me hoe je op intuitie een goede benadering van de oplossing kunt be-
denken, wat ongelooflijk nuttig is om te weten of je in de juiste richting zit. Verder
was hij de ideale sparringpartner voor ideologische en filosofische discussies.

Ik kwam als vierde man in de bureau van de “anciens” terecht, waar iedereen
zijn onderzoeksproblemen op het bord kwam uiteenzetten in de hoop geholpen te
worden door een van de “wijzen” . Al zal het jullie niet verbazen dat ik na enkele
weken ook daar het hoogste woord voerde, de aard van het beestje . . . Naast Joris en
Dieter huisde daar ook een zekere Stijn, die vanwege zijn didactische kwaliteiten
de persoon was aan wie je “domme” vragen stelde, maar ook auteur (artiest) van
menig grafisch hoogstandje in MetaPost (waarvan enkele in deze thesis verwerkt
zijn) en alom gekend als idealist. Al verloor hij die laatste stempel toen hij de stal
verliet om professor te worden in het “industrieel management”.

Verder sta ik erop de juryleden te bedanken voor het spenderen van hun over-
bevraagde tijd aan het evalueren van mijn proefschrift.

Bedankt aan de collega’s voor de toffe werkomgeving: Koen de modelonder-
zoeker (correct?), Tom de mobiliteitsmaniak, Wouter de Walibi-wacko, Dieter de
“pwat”, de Roeselarenaars voor hun accent, de interne-dienstverlenings-strategen,
de tennissers voor de geladen partijtjes, de middageters voor het verdragen van
mijn “rants” richting beeldbuis, de mensen waarmee ik op congressen plezier mee
gemaakt heb en alle andere SMACSers en TELINners.

De voetsoldaten van TELIN: Annette, Sylvia, Patrick, Davy, Philippe voor het
vooral met daad bijstaan van deze hulpeloze onderzoeker bij allerhande admini-
stratieve en technische uitdagingen tijdens (de eindfase van) mijn doctoraat.

David en Sherolyn van het, nabij de vakgroep gelegen, Geuzenhuis, voor het
aanbieden van een onderzoeks- en plezier-vriendelijke gelagzaal waar de vrijdag-
avondfile richting kust altijd maar langer werd.

Mijn vrienden Jeroen, Pieter, Frederik, Sofie, Pieter & Annelies, Siegfried & Shir-
ley en diegenen die ik vergeten ben.

Mijn ouders voor de verkenningsmogelijkheden en het bijhorende vertrouwen
en mijn broer David voor de fratsen tijdens die verkenningstochten. De rest van de
(schoon)familie voor hun onvoorwaardelijke steun.

Mijn vrouw Céline voor de steun bij het bereiken van een volgende mijlpaal in
ons leven en mijn dochter Anna, de enige mijlpaal die er toe doet.

De duur van de “schrijffase” van vele doctoraten (en ook het mijne) volgt een
geometrische distributie. Elke maand dacht ik nog een maandje werk te hebben,
ongeacht van hoelang ik eigenlijk al aan het schrijven was.

When you screw up and nobody’s saying anything to you anymore, that
means they gave up. Your critics are the ones telling you they still love
you.

— Randy Pausch

Ik zou dus de collega’s, vrienden, familieleden en vooral mijn vrouw Céline willen
bedanken om te blijven vragen wanneer ik nu eindelijk klaar zou zijn. Bij deze . . .

Thomas Demoor — September 2014, De Haan

Table of Contents

1 Introduction 1-1
1.1 The queue and you . 1-1
1.2 Queueing theory . 1-1
1.3 Stochastic modeling . 1-2

1.3.1 Discrete-time Markov chains 1-3
1.3.2 FIFO queue with finite capacity 1-4
1.3.3 Order of events in a slot . 1-6
1.3.4 Recursive formulation of Markov chains 1-7
1.3.5 Generating functions . 1-7
1.3.6 FIFO queue with infinite capacity 1-9
1.3.7 Other methods . 1-10

1.4 Telecommunication networks . 1-10
1.5 Two-class priority queue . 1-11
1.6 Partially shared buffer . 1-11
1.7 Publications . 1-12

1.7.1 Publications in international journals 1-12
1.7.2 Publications in international conferences 1-13
1.7.3 Publications in national conferences 1-14

I Two-class Priority Queue

2 N /∞ Priority Queue - Single-slot Service Times 2-1
2.1 Introduction . 2-1
2.2 Model . 2-3
2.3 System content . 2-5

2.3.1 Relating consecutive slots . 2-5
2.3.2 Steady state . 2-7
2.3.3 Matrix representation . 2-8
2.3.4 Stability . 2-11

2.4 Queue content . 2-12
2.5 Class-1 delay . 2-12

2.5.1 Direct method . 2-13
2.5.2 Distributional form of Little’s Law 2-15

2.6 Class-2 delay . 2-18
2.6.1 Remaining class-1 busy period 2-19
2.6.2 Class-1 busy period . 2-21

iv

2.6.3 Extended service completion time 2-21
2.6.4 Arrivals in the same slot as the tagged packet to be served

before it . 2-22
2.6.5 Class-2 delay . 2-23

2.7 Calculating performance measures . 2-24
2.8 Numerical examples . 2-25

2.8.1 Output-queueing switch . 2-25
2.8.2 Poisson and power-law arrivals 2-30

2.9 Concluding remarks . 2-33

3 N /∞ Non-preemptive Priority Queue - General Service Times 3-1
3.1 Introduction . 3-1
3.2 Model . 3-2
3.3 System content . 3-3

3.3.1 Relating consecutive start-slots 3-4
3.3.2 Arrivals during a service . 3-6
3.3.3 System content at the beginning of start-slots 3-8
3.3.4 Moving from start-slots to random slots 3-10
3.3.5 Queue contents at start-slots conditioned on the server . . . 3-10
3.3.6 Arrivals during an elapsed service time 3-11
3.3.7 System content at the beginning of random slots 3-12

3.4 Class-1 delay . 3-14
3.5 Class-2 delay . 3-17

3.5.1 Remaining class-1 busy period 3-18
3.5.2 Extended service completion time 3-18
3.5.3 Class-2 delay . 3-19

3.6 Numerical Examples . 3-20
3.7 Concluding remarks . 3-23

4 N /∞ Priority Queue - Tail Behavior 4-1
4.1 Introduction . 4-1
4.2 Summary: ∞/∞ priority queue . 4-3

4.2.1 Tail of total system content . 4-3
4.2.2 Investigating Y (z) . 4-4
4.2.3 Tail of class-2 system content 4-4

4.3 Numerically determining tail behavior in the N /∞ priority queue . 4-7
4.3.1 Numerically computing the poles 4-7
4.3.2 Numerically computing the tail behavior 4-11

4.4 Explicit expression for UN (z) for arrival processes with maximum 2
class-1 arrivals per slot . 4-12
4.4.1 Expressing UN (z)in terms of Yi (z) 4-13
4.4.2 Mean class-2 system content 4-21
4.4.3 Location of singularities of UN (z) 4-21

4.5 Explicit expression for DN (z) for arrival processes with maximum S
class-1 arrivals per slot . 4-23
4.5.1 Recurrence relation for DN (z) 4-24
4.5.2 An expression for DN (z) . 4-26

v

4.6 Concluding remarks . 4-28

II Partial Buffer Sharing

5 Partial Buffer Sharing 5-1
5.1 Introduction . 5-1
5.2 Model . 5-2
5.3 System analysis . 5-4

5.3.1 System equations . 5-4
5.3.2 Effective arrivals . 5-5
5.3.3 Balance equations . 5-6

5.4 Performance analysis . 5-8
5.5 Intra-slot space priority . 5-10

5.5.1 Class-1 intra-slot space priority. 5-11
5.5.2 Class-2 intra-slot space priority. 5-11
5.5.3 No intra-slot space priority. 5-11

5.6 Numerical examples . 5-12
5.7 Concluding remarks . 5-16

III Conclusions

6 Conclusions 6-1

IV Appendices

A Appendix: Stochastic Processes A-1
A.1 Poisson distribution . A-1

A.1.1 Bivariate independent Poisson arrival process A-1
A.2 Geometric distribution . A-2

A.2.1 Bivariate independent geometric arrival process A-2
A.3 Power-law distribution . A-2

A.3.1 Bivariate independent power-law arrival process A-3
A.4 Switch arrival process . A-3
A.5 Multiple on-off sources . A-5

B Appendix: Spectral Decomposition B-1

C Appendix: Inverting a pgf C-1

NEDERLANDSTALIGE SAMENVATTING

–SUMMARY IN DUTCH–

Wachtlijnen zijn alomtegenwoordig. Iedereen heeft wel al eens in de rij gestaan in
de supermarkt, het postkantoor, het pretpark of met de wagen in de file. Wacht-
lijnen zijn ook in fabricageprocessen, ketenbeheer en logistieke netwerken over-
vloedig aanwezig. Verder kan men ook aspecten van verschillende takken van de
computerwetenschappen modelleren door middel van een wachtlijn. Bijvoorbeeld
als in een telecommunicatienetwerk verschillende verbindingen tezelfdertijd data-
pakketten over dezelfde verbinding in het netwerk willen sturen.

Het bestuderen van wachtlijnsystemen, ook wel wachtlijntheorie genoemd, ligt
op het kruispunt van toegepaste probabiliteit, door de stochastische (willekeurige)
aard van het tijdstip waarop klanten aankomen en de tijd die nodig is om hen te be-
dienen, en operationeel onderzoek, door de veelvuldige praktische toepassingen.
Een stochastisch model wordt gestuurd door willekeur (toevalsveranderlijken) en
heeft tot doel het kwantificeren (door middel van probabiliteitsdistributies) van de
willekeur van de uitkomsten (performantiematen), veroorzaakt door de willekeur
van (een of meer van de) invoerveranderlijken.

Dit doctoraat bestudeert prioriteitswachtlijnen die bepaalde scenario’s in tele-
communicatienetwerken modelleren. De razendsnelle evolutie van telecommuni-
catienetwerken heeft tot een veelvoud van performantie-eisen voor verschillende
soorten netwerkverkeer geleid. Uiteraard is het verzekeren van goede “Quality of
Service” (QoS) voor alle types verkeer uitermate belangrijk. Door de telecommuni-
catie-context zullen we de klanten van het wachtlijnsysteem pakketten noemen.

In telecommunicatienetwerken kan je de verschillende soorten netwerkverkeer
grosso modo in twee klassen (types) opsplitsen (er bestaan natuurlijk ook veel fij-
nere opsplitsingen). “Real-time” verkeer uit videostreaming en spraaktoepassing-
en, zoals een conversatie op Skype, vereist lage wachttijden maar kan een beperkte
mate van pakketverlies verdragen. Dataverkeer daarentegen verdraagt helemaal
geen pakketverlies maar kan wel wat tijdsvertraging aan. Globaal zegt men dat
pakketten die hun vertraging willen minimaliseren tijdsprioriteit vereisen en dat
plaatsprioriteit gevraagd wordt om de pakketverlieskans te minimaliseren.

In het eerste deel van dit proefschrift bestuderen we een prioriteitswachtlijnsys-
teem die de situatie uit de vorige paragraaf modelleert. Er zijn twee klassen pakket-
ten die elk toekomen in een afzonderlijke wachtlijn. Beide wachtlijnen worden be-
diend door dezelfde bedieningseenheid maar klasse-1 pakketten krijgen absolute
(tijds)prioriteit om de vertraging van deze hoge-prioriteitspakketten te minimali-
seren. Bijgevolg kunnen lage-prioriteitspakketten (klasse-2) enkel bediend worden
als er geen klasse-1 pakketten in het systeem aanwezig zijn. Het model heeft als

viii NEDERLANDSTALIGE SAMENVATTING

bijzonderheid dat de capaciteit van de wachtlijn voor klasse-1 pakketten beperkt
is tot N maar er oneindig veel klasse-2 pakketten in de wachtlijn aanwezig kunnen
zijn. Daardoor noemen we dit model het N /∞ model. In de literatuur daarente-
gen veronderstelt men gewoonlijk dat beide wachtlijnen een ongelimiteerde capa-
citeit bezitten (het ∞/∞ model). Uiteraard bestuderen we de convergentie van het
N /∞ model naar het ∞/∞ model als N groeit. De analyse van het N /∞ model
gebeurt gelijktijdig in het probabiliteitsdomein voor klasse 1 en in het getransfor-
meerd domein voor klasse 2 door het gebruik van een vector/matrix-representatie.
In een eerste hoofdstuk veronderstellen we dat de bediening van een pakket altijd
slechts een enkel slot duurt. In het volgende hoofdstuk kan de bedieningstijd een
algemene distributie volgen. Dit deel wordt afgesloten door een hoofdstuk over
de staartprobabiliteiten van de systeembezetting van de lage-prioriteitsklasse. De
convergentie van het N /∞ model naar het ∞/∞ model voor N naar oneindig is
vanzelfsprekend maar dit was niet af te leiden uit de analytische uitdrukkingen voor
beide systemen. Onze analyse legt een cruciale relatie tussen de karakteristieke ver-
gelijking van een recursierelatie in het eindige geval en de “kernel”, die de impliciet
gedefinieerde functie veroorzaakt in het oneindige geval, bloot. Verder tonen we
in verschillende praktische voorbeelden aan dat onder bepaalde omstandigheden
(kleine capaciteit van de wachtlijn, hoge klasse-1 belasting, aankomsten met zware
staarten) de resultaten van het N /∞ model merkbaar verschillen van deze die men
bekomt door de capaciteit van de klasse-1 wachtlijnen door oneindig te benaderen.

In een tweede (korter) deel van het proefschrift bestuderen we een prioriteits-
wachtlijnsysteem met twee klassen die samen een enkele wachtlijn met eindige ca-
paciteit delen volgens een “partial buffer sharing” (PBS) strategie. Hier spelen zowel
tijds- als plaatsprioriteit een belangrijke rol. Een van de klassen krijgt tijdspriori-
teit en heeft dus net als in het vorige deel absolute prioriteit bij het bedienen. Een
van de klassen wordt plaatsprioriteit toegewezen. Als de wachtlijn minder pakket-
ten bevat dan een zekere drempelwaarde worden alle pakketten toegelaten tot de
wachtlijn maar wanneer deze waarde overschreden wordt laat het systeem pakket-
ten zonder plaatsprioriteit niet meer tot de wachtlijn toe en worden ze verwijderd.
Uiteraard kan geen enkel pakket de wachtlijn vervoegen als deze zijn maximale ca-
paciteit bereikt heeft. Er zijn vier mogelijke combinaties van de twee prioriteits-
types maar we moeten er maar twee beschouwen omdat de andere twee symme-
trisch zijn. In het ene scenario krijgt een klasse zowel tijds- als plaatsprioriteit en in
de andere krijgt een klasse tijdsprioriteit en de andere plaatsprioriteit. Het laatste
scenario past goed in the telecommunicatie-context die we ook in het eerste deel
bespraken waar real-time verkeer tijdsprioriteit krijgt en dataverkeer plaatspriori-
teit. Het ander scenario modelleert bvb. een “scalable video coding” (SVC) omge-
ving. SVC is een formaat voor het versturen van stromende video en gebruikt twee
types pakketten: basislaagpakketten en augmentatielaagpakketten. De eerste zijn
noodzakelijk om de video af te kunnen spelen aan lage kwaliteit terwijl de tweede
enkel de kwaliteit verhogen en op zichzelf nutteloos zijn. In een dergelijke context
is het dus verstandig om zowel tijds- als plaatsprioriteit aan basislaagpakketten te
geven. We modelleren beide scenario’s op een geünificeerde manier en analyseren
ze met matrix-analytische oplossingsmethoden. Men kan besluiten dat de QoS dif-
ferentiatie die door deze modellen geleverd wordt groot is en dat het vinden van de
juiste drempelwaarde voor de PBS strategie cruciaal is.

SUMMARY IN ENGLISH

Queues are ubiquitous. Everyone has queued (waited in line) at a supermarket,
post office, amusement park or has been stuck in traffic. Queues are also om-
nipresent in manufacturing plants, supply chains, logistics networks and all other
kinds of processes. Queues also arise in several branches of computer science, e.g.
in telecommunications when multiple connections concurrently want to send traf-
fic over the same link of the network.

The study of queues, queueing theory, lies on the intersection of applied proba-
bility, due to the stochastic nature (randomness) associated with customer arrivals
and the duration of service, and operations research, due to the myriad of real-life
applications. A stochastic model is governed by randomness (random variables).
Its purpose is to quantify (through probability distributions) the randomness of its
outputs (performance measures) , which is caused by the randomness of one (or
more) of its inputs.

This dissertation studies priority queues that model certain settings in telecom-
munications networks. The rapid development of modern telecommunication net-
works has resulted in a wide variety of performance demands for various types of
traffic. Evidently, allowing all traffic to meet their Quality of Service (QoS) require-
ments is of paramount importance. Due to the telecommunications context, we
refer to the customers of the studied queueing system as packets.

In telecommunications networks, a rather coarse, but very practical, classifica-
tion distributes packets in two traffic classes. Real-time traffic, such as streaming
video and voice, e.g. a Skype conversation, requires low delays but can endure a
small amount of packet loss. On the other hand, data traffic, such as file transfer,
benefits from low packet loss but has less stringent delay characteristics. In gen-
eral, packets requiring minimal mean delay and delay jitter are said to request time
priority whereas space priority is requested for minimizing packet loss.

In the first part of this dissertation, a two-class priority queueing system will be
studied that models the setup described in the previous paragraph. There are two
classes of packets, each arriving in a dedicated queue. Both queues are served by
the same server but the server gives absolute (time) priority to class-1 packets in
order to minimize the delay of these high-priority packets. Consequently, the (low-
priority) class-2 packet waiting at the head of the class-2 queue can only enter the
server if there are no class-1 packets in the system. The peculiarity of this model is
that the class-1 queue capacity is limited to N , which is a finite positive integer, but
the class-2 capacity is infinitely large. Therefore, we denote this the N /∞ model.
In contrast, in the literature, the queue capacity is generally assumed to be infi-
nite for both classes (the ∞/∞ model). Evidently, as N increases, the N /∞ priority
queue is increasingly similar to a system where both queues are presumed to be of

x SUMMARY IN ENGLISH

infinite capacity, and we thus investigate this behavior. The analysis of the N /∞
model simultaneously takes place in the probability domain for class-1 and in the
transform domain for class-2 through the use of a vector/matrix representation. In
a first chapter, we assume that service of a packet always takes a single slot. In the
subsequent chapter, we let the service times follow a general distribution. The part
is concluded with a chapter on determining the tail behavior of the distribution
of the low-priority system content. It is evident that, in the limit for N to ∞, the
results for the N /∞ model must converge to those for the ∞/∞ model. However
this was not clear from the formulas of both systems. Our analysis has uncovered
a crucial relation between the characteristic polynomial of a recurrence relation in
the finite case and the kernel, which causes the implicitly defined function, in the
infinite case. Furthermore, through several numerical examples, we have showed
that, under certain conditions (small queue capacity, relatively high class-1 load,
power-law arrivals), the results for the N /∞ model are considerably different from
the ones obtained if one assumes infinite class-1 queue capacity.

In the second (shorter) part of this dissertation, we study a two-class priority
queueing system where both classes share a single queue with finite capacity ac-
cording to a partial buffer sharing (PBS) policy. Here, both time and space priority
play a crucial role. One of the classes receives absolute time priority. As in the
previous part, these packets receive service before the packets of the other class.
Additionally, one of the classes receives space priority. When the queue contains
less packets than a (predetermined) threshold value, PBS accepts all packets but
when the queue (also called buffer) level is over a predetermined threshold, pack-
ets with low space priority cannot enter the queue and are dropped by the system.
Evidently, when the system is entirely full, all arriving packets are dropped. There
are four possible combinations of the two priority types. However, we only need to
consider two as the other two then follow directly by swapping the classes. The two
scenarios are thus giving both time and space priority to one of the classes or giving
time priority to one class and space priority to the other. In a general telecommu-
nications context, as detailed in the previous part, one would of course give time
priority to real-time packets and space priority to data packets. In contrast, in a
scalable video coding (SVC) setting one would prefer the other scenario. SVC uses
two types of packets: base layer and enhancement layer packets. The former are
required to decode and playback the video, although at poor quality, whereas en-
hancement packets increase quality but are useless without base packets. Here, it
thus makes sense to give both time and space priority to base packets. We present
a unified way to model both scenarios and analyze them using well-known matrix
analytic solution techniques. One can conclude that the range of QoS differentia-
tion covered by these models is large and that determining an appropriate value for
the threshold of the PBS policy is of paramount importance.

1
INTRODUCTION

1.1 The queue and you

A queue is formed when multiple “customers” concurrently require access to a “ser-
vice”. Queueing is ubiquitous. Everyone has queued (waited in line) at a supermar-
ket, post office, amusement park or has been stuck in traffic. Queues are also om-
nipresent in manufacturing plants, supply chains, logistics networks and all other
kinds of processes. Queues also arise in several branches of computer science, e.g.
in file storage, when multiple files concurrently need to be written to or read from
a storage medium, such as a hard disk, or in telecommunications, when multiple
connections concurrently want to send traffic over the same link of the network.

Note 1. As the research presented in this dissertation was performed at the Depart-
ment of Telecommunications and Information Processing, the studied models were
chosen with telecommunications applications in mind. Therefore, we will often de-
note the customers of the queueing systems by packets. However, this is mere termi-
nology. The mathematical modeling and analysis is completely independent of the
application. Therefore, if a model is a sensible approximation of reality in the appli-
cation at hand, the analysis method and the results presented in this dissertation can
be applied in any practical setting.

1.2 Queueing theory

The formal (mathematical) study of queues is over a hundred years old. In 1908, Ag-
ner Krarup Erlang, a Danish engineer who worked for the Copenhagen Telephone
Exchange, published the first “queueing paper”. In this era, automatic switching of

1-2 INTRODUCTION

telephone calls was in its very early development. Before that, making a telephone
call consisted of calling a telephone exchange and asking to the operator to con-
nect you to your intended destination. Calls were manually switched by connect-
ing both lines on a switching board. Erlang realized that overload at the telephone
exchange was caused by the fact that telephone calls arrive randomly in time (ac-
cording to a Poisson process) and can thus be clumped together and that call dura-
tions are highly variable. His subsequent papers studied the waiting time and the
occurrence of lost calls due to all lines being busy. His work was of great practi-
cal value for dimensioning telephone switching boards but remained unknown to
those outside the field of teletraffic theory until the 1930s, when the Russian math-
ematicians discovered this field, immediately noted its probabilistic (also called
stochastic) nature and formalized the results by fitting them into the probability
framework developed by Markov. However, the queueing theory domain did not
become popular among the mathematical community until after the second world
war. During the war, mathematicians had to tackle operations research problems
(for military and logistics purposes) of stochastic nature and hence started to ap-
preciate queueing theory. Telephone systems are less of a “hot” topic today but
queueing theory has solidified its position at the intersection of applied probabil-
ity and operations research because, as mentioned in the previous section, it has a
myriad of applications. For a more extensive history of the field, see [1],which was
written in celebration of “100 years of queueing” .

Note 2. For those who are unaccustomed to reading scientific texts, remark that ref-
erences to the bibliography, which can be found at the back of this dissertation, are
indicated by their index number between brackets: e.g. [1].

1.3 Stochastic modeling

Note 3. One can fill an entire library with books on this topic so being exhaustive
would not only be impossible but also detrimental to our goals. Here, we focus on
the aspects of stochastic modeling relevant to the setting used in this dissertation,
discrete-time Markov chains with countable state spaces. Furthermore, in order to
grasp this text, some very basic notions of probability, see e.g. [2],are required.

A stochastic model is governed by randomness (random variables). Its pur-
pose is to quantify (through probability distributions) the randomness of its out-
puts (performance measures) , which is caused by the randomness of one (or more)
of its inputs.

A discrete random variable x, taking values inN, is generally described through
its probability mass function (pmf) given by

x(n) = Pr[x = n] , n ≥ 0, (1.1)

which gives the probability that x is equal to n, for all possible values n and is often
called “the distribution of x”.

INTRODUCTION 1-3

1.3.1 Discrete-time Markov chains

Time is discretized by dividing it into fixed-length periods, called slots. Consider a
sequence of random variables {xk }∞k=1, where k indicates the slot index. The value
of xk is called the state in slot k. Loosely speaking, this sequence “forms” a Markov
chain if, in each slot, the next state only depends on the present state (what is the
current state), not on the past states (how did we get in the state). Formally, the
sequence {xk }∞k=1 is said to satisfy the Markov property if, for all k (and all i1, . . . , ik),

Pr[xk+1 = ik+1 | xk = ik , xk−1 = ik−1, . . . , x1 = i1] = Pr[xk+1 = ik+1 | xk = ik] . (1.2)

In this dissertation (and in general), one mostly encounters time-homogeneous
Markov chains, where the transitions from one slot to the next are independent of
the slot number k. A time-homogeneous Markov chain is completely characterized
by a single transition matrix P , where the element on the i -th row, j -th column is
given by

pi j = Pr
[

xk+1 = j
∣∣ xk = i

]
. (1.3)

Note 4. Throughout this dissertation, matrices and vectors are set in boldface, the
former represented by capital letters and the latter by a lowercase letter.

States of countable Markov chains are commonly classified based on three cri-
teria. First, a state is called k-periodic if a Markov chain starting in the state only
returns at times that are multiples of k. For k = 1, the state is aperiodic. Secondly,
a state is called recurrent if the return time is finite with probability one, and tran-
sient if it is not. If one state of a Markov chain is periodic, then the Markov chain is
called periodic. Likewise, if one state is recurrent, then the Markov chain is called
recurrent. Finally, states i and j are said to communicate if there exists a positive
probability of going from i to j and from j to i . The communication relation forms
an equivalence relation, dividing the system into equivalence classes which in this
context are known as recurrence classes. A Markov chain with a single recurrence
class is called irreducible.

The “most interesting output” one can get from a Markov chain is its steady-
state (or stationary) distribution given by (the row vector) π. This is the distribu-
tion indicating the probability that the chain is in a state, once the influence of the
initial distribution, the state in slot 1, has dissolved and letting the Markov chain
transition to the next slot no longer changes this distribution. This is generally in-
dicated by taking the limit for k, the slot number, to ∞. For an irreducible Markov
chain with transition matrix P , the stationary distributionπ is the unique solution
of {

π=πP

1 =πe
. (1.4)

Note 5. Throughout this dissertation, e denotes a column vector of ones of appropri-
ate size.

1-4 INTRODUCTION

1.3.2 FIFO queue with finite capacity

Let us make the reasoning in the previous section a bit more tangible by exploring
an example. Consider a First-In-First-Out (FIFO), meaning that packets are served
in order of arrival, queue with a single server that serves one packet per slot. This
is the most basic type of queue. Let the number of arriving packets in slot k be
given by the sequence of independent and identically distributed (i.i.d.) random
variables {ak }∞k=1. Each ak thus follows the same distribution, with pmf a(n), inde-
pendent of the rest of the sequence.

Furthermore, let the queue capacity, this is the maximum number of packets
that can concurrently wait in the queue, be limited to N and assume that packets
that arrive at a full system are dropped (they do not enter the system, they are dis-
carded). The number of packets in the queueing system, called the system content,
at the beginning of slot k is denoted by uk .

Note 6. The next subsection will explain the exact meaning of “at the beginning of a
slot”. In the meanwhile, the context should provide enough information to grasp the
essentials.

This sequence clearly is Markovian as uk+1, the system content in slot k+1, is found
by subtracting the packet served in slot k from uk (if there was a packet in service,
thus if uk > 0), and then adding the number of arriving packets in slot k, given by
ak , independent of the system content in the slots before slot k.

Our goal is to quantify the steady-state distribution of the sequence {uk }∞k=1
through the pmf

u(n) = lim
k→∞

Pr[uk = n] , 0 ≤ n ≤ N , (1.5)

which is stochastic due to the stochastic nature of the arrival process at the queue.

Note 7. Notice the difference between an i.i.d. sequence, where all random vari-
ables have the same distribution, and a Markov sequence, where they “converge” to a
steady-state distribution.

In fact, using the terminology developed in the previous section, the transition ma-
trix of this Markov chain is given by

P =


a(0) a(1) · · · a(N −1)

∑∞
n=N a(n)

a(0) a(1) · · · a(N −1)
∑∞

n=N a(n)
0 a(0) · · · a(N −2)

∑∞
n=N−1 a(n)

...
. . .

. . .
...

...
0 · · · 0 a(0)

∑∞
n=1 a(n)

 , (1.6)

which is irreducible and aperiodic for practical arrival processes, and the stationary
distribution is given by

π= [
u(0) . . . u(N)

]
. (1.7)

INTRODUCTION 1-5

u1 = 0 u1 = 1 u1 = 2 u1 = 3

Pr[a1 = 0]

Pr[a1 = 1]

Pr[a1 = 2]

Pr[a1 ≥ 3]

Pr[a1 = 1]

Pr[a1 = 0]

Pr[a1 = 2]

Pr[a1 ≥ 3]

Pr[a1 = 1]

Pr[a1 = 0]

Pr[a1 ≥ 2]

Pr[a1 ≥ 1]

Pr[a1 = 0]

Figure 1.1: States and transitions for Markov chain of a FIFO queue with capacity N = 3.

The structure of P is perhaps clearer by investigating a visual representation of
the Markov chain, which is depicted in figure 1.1 for N = 3. For the specific case
where the queue capacity is limited to N = 3, we have

P =


a(0) a(1) a(2)

∑∞
n=3 a(n)

a(0) a(1) a(2)
∑∞

n=3 a(n)
0 a(0) a(1)

∑∞
n=2 a(n)

0 0 a(0)
∑∞

n=1 a(n)

 . (1.8)

Now, if we specify the distribution of the arrival process, one can simply calcu-
late these probabilities numerically. Let the arrival process follow a Poisson distri-
bution with parameter λ= 0.5. This is the most common distribution in queueing
theory, detailed in appendix A.1. When λ = 0.5, the probabilities of the number
of arrivals in a slot are given by a(0) = 0.6065306597, a(1) = 0.3032653298, a(2) =
0.0758163324, a(3) = 0.01263605541, a(4) = 0.001579506926, . . . and, on average,
one packet arrives per two slots. Then we have,

P =


0.6065306597 0.3032653298 0.0758163324 0.0143876780
0.6065306597 0.3032653298 0.0758163324 0.0143876780

0 0.6065306597 0.3032653298 0.0902040104
0 0 0.6065306597 0.3934693403

 , (1.9)

π=


0.5077
0.3293
0.1244
0.038


T

. (1.10)

Note 8. The transpose of a vector a (matrix A) is denoted by aT (AT).

For Markov chains with a finite (and relatively small) state space like the one
studied here, we can simply compute the evolution through time numerically from

1-6 INTRODUCTION

slot to slot, illustrating the convergence to a stationary distribution. For instance,
let us start from an empty queue in slot 1. Thus, u1 = 0 and the distribution over the
states is given by the vector

[
1 0 0 0

]
. In the next slot, the distribution is then

given by

[
1 0 0 0

]
P =


0.6065
0.3033
0.0758
0.0143


T

, (1.11)

after 5 slots by

[
1 0 0 0

]
P 4 =


0.5136
0.3285
0.1212
0.0365


T

, (1.12)

and in slot 50 by

[
1 0 0 0

]
P 49 =


0.5077
0.3293
0.1244
0.0383


T

. (1.13)

One can thus “see” the convergence toπ.

Note 9. Evidently, Markov chains are not solely used to model queueing processes.
For instance, in part 2 of this dissertation, we consider a Markovian arrival process,
where a Markov chain modulates the background state of the arrival process in order
to introduce time-correlation.

1.3.3 Order of events in a slot

In the example in the previous section, some (tacit) assumptions were made on
the order of arrivals, departures and the moment of observation. Here following
assumptions were made. Service of a packet starts and is completed at slot bound-
aries. Observation of the system (content) “at the beginning of a slot” happens im-
mediately after the slot boundary, before any arrivals. Arrivals occur during the slot.
Consequently, service of a packet arriving into an empty system cannot start in that
slot but only at the next slot boundary.

These assumptions, which will also be used in part 1 of this dissertation, are
not set in stone. In part 2 of this dissertation, a different convention is used. How-
ever, the different sets of assumptions almost always yield similar results [3] and are
thus merely a technicality. The different possibilities are called early/late arrivals,
delayed access,etc. More information can be found, a.o. in [4, vol. 3].

Note 10. The fact that one needs to define some assumptions due to the discretization
of time into slots is, in my opinion, one of the main reasons of the (perceived) messi-
ness of discrete-time queueing models in comparison with continuous-time queue-
ing models.

INTRODUCTION 1-7

1.3.4 Recursive formulation of Markov chains

There is a more intuitive and easier to construct description of a Markov chain de-
scribing a queueing process than by defining the transition matrix. Consider an
auxiliary sequence of i.i.d. random variables {yk }∞k=1. The sequence {xk }∞k=1 is a
Markov chain if there exists a function f such that, for k > 1,

xk+1 = f (xk , yk) . (1.14)

This representation is common when describing a (reflected) random walk, a type
of Markov chain of which queueing models are a prime example. For the FIFO
queue with finite capacity studied in the previous subsection, the recursive rep-
resentation is given by

uk+1 = min(N , (uk −1)++ak) . (1.15)

Note 11. In this dissertation and in the queueing literature in general, (x)+ denotes
the maximum of x and 0. This operator exemplifies that a queueing process is a
reflected random walk. As the system content cannot be negative, the process is re-
flected at 0.

Notice how this representation intuitively follows how we think “about” a queue:
what was already present minus what was served plus new arrivals.

1.3.5 Generating functions

The probability generating function (pgf) of a random variable x, is simply a trans-
formation of the pmf, defined by

X (z) = E
[
zx]= ∞∑

n=0
Pr[x = n] zn . (1.16)

This can be seen as a function in complex variable z, which can be proven to be
analytic for |z| < 1.

Note 12. Due to the ubiquity of z as argument of a probability generating function,
the pgf is often called the z-transform.

Now, let us present some properties that make pgfs “easier to work with” com-
pared to pmfs. Firstly, let a and b be independent random variables, with respective
pgfs A(z) and B(z). The random variable c = a +b, representing their sum, has pgf
C (z) given by

C (z) = E
[

za+b
]
= E

[
za zb

]
= A(z)B(z) . (1.17)

The final transition is based on the independence of the random variables. The
power of generating functions is apparent as the pgf is much easier to handle than
the equivalent pmf

Pr[c = n] =
n∑

i=0
Pr[a = i]Pr[b = n − i] . (1.18)

1-8 INTRODUCTION

Secondly, let {bi }∞i=1 be a sequence of i.i.d. random variables, each with pgf B(z)
and let a be a random variable independent of the bi with pgf A(z). The random
variable c = b1 +b2 +·· ·+ba has a remarkably neat pgf C (z) as

C (z) = E
[

z
∑a

i=1 bi
]

=
∞∑

n=0
E

[
z

∑a
i=1 bi

∣∣∣ a = n
]

Pr[a = n]

=
∞∑

n=0
E

[
z

∑n
i=1 bi

]
Pr[a = n]

=
∞∑

n=0
B(z)nPr[a = n]

= A
(
B(z)

)
.

(1.19)

The second transition holds due to the law of total expectation and the second to
last one due to (1.17). Again, this expression in the transform domain is much
neater than the equivalent expression in the probability domain.

Finally, the moments of a random variable are easily found from its pgf as the
k-th derivative in z of X (z) is the k-th factorial moment of x

E[x(x −1) . . . (x −k +1)] = X (k)(1) . (1.20)

Hence, one can also easily compute the regular moments of x, such as the mean
(average value): E[x] = X ′(1), the variance: Var[x] = X ′′(1)+ X ′(1)− (X ′(1))2, etc.
Consequently, if one has calculated the pgf of one of the “output” random variables
of a queueing system (e.g. the system content), the moments of this random vari-
able, which are key performance measures of the system, can be readily obtained.

Note 13. We interchangeably use several notations for the derivative of a function.
Let f ′(z) denote the first derivative of f (z) in z and f ′′(z) the second derivative.
Higher order derivatives are indicated differently. The k-th derivative is given by

f (k)(z) or equivalently by ∂k f (z)
∂zk .

However, using pgfs also has a downside. Computing the moments is easy, but
obtaining the probabilities, called “inverting the pgf” (making the inverse trans-
formation from the pgf to the pmf) is far from straightforward. In theory, one can
simply see the pgf as a Taylor series around z = 0 and hence

x(n) = 1

n!

∂n X (z)

∂zn

∣∣∣∣
z=0

, n ≥ 0, (1.21)

but this becomes computationally infeasible as n becomes large. Unfortunately,
the probabilities for large values of n, the so-called “tail of the distribution”, are of
great interest as these “rare-events” often correspond to worst-case behavior, dis-
asters, etc. Appendix C details a method for inverting a pgf, which will be frequently
used in chapter 4.

INTRODUCTION 1-9

1.3.6 FIFO queue with infinite capacity

Let us again consider the FIFO queue but let us remove the restriction on the queue
capacity. Then, the recursive representation of the system content is given by

uk+1 = (uk −1)++ak . (1.22)

Notice that the stochastic recursion here is much simpler than (1.15). Consequently,
most papers in the queueing literature assume the queue capacity to be infinite. In
the case of a finite queue capacity N , one has an additional reflecting boundary (as
the system content at the beginning of a slot cannot exceed N) similar to the one at
the origin, and thus additional complexity.

However, the transition matrix P is now infinitely large and the method used
previously is no longer feasible, but the generating functions, introduced in the
previous subsection, are also ideal for tackling a recursion of the form (1.22). Re-
call that the arrivals are denoted by i.i.d. random variables {ak }∞k=1 with common
pmf a(n). Let the corresponding pgf be given by A(z) and let the pgf of the system
content in slot k be given by Uk (z). Then, (1.22) yields

Uk+1(z) = E
[
zuk+1

]
= E

[
z(uk−1)++ak

]
= E

[
z(uk−1)++ak 1{uk = 0}

]
+E

[
z(uk−1)++ak 1{uk > 0}

]
= E

[
zak 1{uk = 0}

]+E
[
zuk−1+ak 1{uk > 0}

]
=Uk (0)A(z)+ 1

z

(
Uk (z)−Uk (0)

)
A(z) .

(1.23)

Note 14. The indicator function 1 {x = i } is 1 if x = i and equals 0 otherwise.

Here, the third transition uses the law of total expectation to split the expression
into two terms corresponding to the two “states” of the server: either it is serving
a packet (when uk > 0) or idle (when the system is empty). Given the state of the
server, expression (1.23) simplifies considerably. The fifth transition is based on the
fact that ak is independent of uk .

Our goal is to obtain the pgf U (z), which is the pgf of the steady-state distribu-
tion of the sequence {uk }∞k=1. This queueing system reaches a steady-state equilib-
rium if the mean number of arrivals, denoted by λ= E[a] = A′(1), does not exceed
the service capacity per slot which equals 1, thus if λ < 1. By taking the limit on
both sides of (1.23), one finds that

lim
k→∞

Uk+1(z) = lim
k→∞

Uk (0)A(z)+ 1

z
(Uk (z)−Uk (0))A(z) , (1.24)

and, as U (z) = limk→∞Uk+1(z) = limk→∞Uk (z), hence

U (z) =U (0)A(z)+ 1

z

(
U (z)−U (0)

)
A(z)

=U (0)
(z −1)A(z)

z − A(z)
.

(1.25)

1-10 INTRODUCTION

In steady state, the probability that the system is empty equals U (0) = 1−λ. This
can be obtained through several different arguments. For instance, as U (z) is a pgf,
U (1) =∑∞

i=0 Pr[u = i] = 1 and setting z = 1 in (1.25) and using L’Hôpital’s rule yields

1 =U (0)
1

1−λ . (1.26)

Alternatively, the identity can also be obtained through the following classic steady-
state argument that, roughly, states “what goes in must come out”.

Theorem 1.1. When a system is in steady state, the average number of packets ac-
cepted per slot equals the average number of packets served per slot.

A packet is served by the system when the system content at the beginning of
the slot is larger than 0. Consequently, invoking the theorem yields λ = 1−U (0).
Consequently, the pgf of the steady-state system content can be expressed in terms
of the arrival process as

U (z) = (1−λ)
(z −1)A(z)

z − A(z)
. (1.27)

Thus, by specifying a specific arrival process one can numerically calculate U (z),
and all its moments, directly. For instance, for Poisson arrivals with parameter λ=
0.5 the pgf is given by A(z) = e0.5(z−1).

1.3.7 Other methods

The previous subsection demonstrated that a system with an infinitely large transi-
tion matrix P is readily solved through generating functions. However, a myriad of
useful methods, each with their own strengths and weaknesses, have been devel-
oped for handling these kind of systems. Most notably, numerical methods , such
as the matrix-geometric/matrix-analytic methods pioneered by Neuts [5, 6], have
been very succesfull. We will use a numerical method in part 2 of this work. Fur-
thermore, large deviations and software simulation are other notable approaches
for tackling the kind of problems considered in this dissertation.

1.4 Telecommunication networks

The rapid development of modern telecommunication networks has resulted in a
wide variety of performance demands for various types of traffic. Evidently, allow-
ing all traffic to meet their Quality of Service (QoS) requirements is of paramount
importance. One of the more popular attempts to supply improved QoS is Differ-
entiated Services (DiffServ) [7],[8], a computer networking architecture in Internet
Protocol (IP) networks that distributes packets in various traffic classes. It provides
QoS differentiation by basing the order in which packets are transmitted on class-
dependent priority rules. In DiffServ each packet is forwarded according to its Per-
Hop Behavior (PHB). Obviously, implementation of DiffServ is particularly inter-
esting in networks that struggle to provide acceptable QoS because bandwidth is
limited and/or variable.

INTRODUCTION 1-11

A rather coarse, but very practical, classification distributes packets in two traf-
fic classes. Real-time traffic, such as streaming video and voice, e.g. a Skype con-
versation, requires low delays but can endure a small amount of packet loss. On
the other hand, data traffic, such as file transfer, benefits from low packet loss but
has less stringent delay characteristics. In general, packets requiring minimal mean
delay and delay jitter are said to request time priority whereas space priority is re-
quested for minimizing packet loss.

1.5 Two-class priority queue

In the first part of this dissertation, a two-class priority queueing system will be
studied. There are two classes of packets, each arriving in a dedicated queue. Both
queues are served by the same server but the server gives absolute (time) priority to
class-1 packets. Consequently, the class-2 packet waiting at the head of the class-2
queue can only enter the server if there are no class-1 packets in the system.

This setup models a DiffServ implementation where real-time traffic (Expedited
Forwarding PHB) has strict priority scheduling over data traffic (Default PHB). Al-
though this scheduling algorithm is drastic, as data packets are only served if the
system is void of real-time packets, it minimizes the delay of the real-time packets
hence delivering maximum performance to real-time traffic. As real-time packets
receive absolute priority, they can occupy the server (almost) permanently, deny-
ing data traffic of any service, if no admission control is performed. Therefore, the
amount of real-time traffic allowed into the system should be regulated. Moreover,
queueing a very large amount of real-time packets is useless anyway as they re-
quire small delays. These two observations emphasize the importance of limiting
the queue capacity for real-time packets, evidently, without neglecting packet loss
constraints. On the other hand, data packets require a very low amount of loss to
achieve their QoS requirements. Therefore, the queue capacity for data packets
should be as large as practically feasible. Hence, we can assume that the capac-
ity for data packets is sufficiently large to be approximated by infinity but that the
capacity for real-time packets should be modeled exactly. Here, space priority is
only implicitly present, through the limited queue capacity for real-time packets,
as each class has its dedicated queue.

We study this queueing system and compare it to the related system where the
capacity for both classes is unbounded and identify the conditions under which
they yield different results. Crucially, we have developed a model that is amenable
to singularity analysiis allowing us to provide insight into the convergence between
these two systems when letting the finite capacity restriction increase to infinity.

1.6 Partially shared buffer

In the second part of this dissertation, we study a two-class priority queueing sys-
tem where both classes share a single queue with finite capacity according to a par-

1-12 INTRODUCTION

tial buffer sharing (PBS) policy. Here, both time and space priority play a crucial
role. One of the classes receives absolute time priority. As in the previous section,
these packets receive service before the packets of the other class. Additionally, one
of the classes receives space priority. When the queue contains less packets than a
(predetermined) threshold value, PBS accepts all packets but when the queue (also
called buffer) level is over a predetermined threshold, packets with low space pri-
ority cannot enter the queue and are dropped by the system. Evidently, when the
system is entirely full, all arriving packets are dropped.

There are four possible combinations of the two priority types. However, we
only need to consider two as the two others then follow directly by swapping the
classes. The two scenarios are thus giving both time and space priority to one of
the classes or giving time priority to one class and space priority to the other. In a
general telecommunications context, as detailed in the previous section, one would
of course give time priority to real-time packets and space priority to data packets.
In contrast, in a scalable video coding (SVC) setting one would prefer the other sce-
nario. SVC uses two types of packets: base layer and enhancement layer packets.
The former are required to decode and playback the video, although at poor quality,
whereas enhancement packets increase quality but are useless without base pack-
ets. Here, it thus makes sense to give both time and space priority to base packets.

We present a unified way to model and analyze both scenarios. One can con-
clude that this queueing system allows for a broad spectrum of QoS differentiation
and that tuning the threshold parameter is of paramount importance.

1.7 Publications

1.7.1 Publications in international journals

• [9] J. Walraevens, T. Demoor, T. Maertens, and H. Bruneel. Stochastic queueing-
theory approach to human dynamics. Phys. Rev. E, 85:021139, 2012

• [10] T. Demoor, D. Fiems, J. Walraevens, and H. Bruneel. Partially shared
buffers with full or mixed priority. Journal of Industrial and Management
Optimization, 7(3):735–751, 2011
⇒ This paper corresponds to part 2 of this dissertation.

• [11] T. Demoor, J. Walraevens, D. Fiems, and H. Bruneel. Performance analy-
sis of a priority queue : expedited forwarding PHB in DiffServ. AEU-International
Journal of Electronics and Communications, 65(3):190–197, 2011

• [12] T. Demoor, J. Walraevens, D. Fiems, S. De Vuyst, and H. Bruneel. Influ-
ence of real-time queue capacity on system contents in Diffserv’s expedited
forwarding per-hop-behavior. Journal of Industrial and Management Opti-
mization, 6(3):587–602, 2010
⇒ This paper is related to chapter 3 of this dissertation.

INTRODUCTION 1-13

1.7.2 Publications in international conferences

• [13] J. Walraevens, T. Demoor, D. Fiems, and H. Bruneel. Uncovering the evo-
lution from finite to infinite high-priority capacity in a priority queue. In
2013 International Conference on Computing, Networking and Communica-
tions (IEEE ICNC), San Diego, 2013
⇒ This paper is related to chapter 4 of this dissertation.

• [14] D. Fiems, S. Andreev, T. Demoor, H. Bruneel, Y. Koucheryavy, and K. De
Turck. Analytic evaluation of power saving in cooperative communication.
In Conference on Future Internet Communications (CFIC), Coimbra, Portugal,
2013

• [15] T. Demoor, S. Andreev, K. De Turck, H. Bruneel, and D. Fiems. On the
effect of combining cooperative communication with sleep mode. In 9th An-
nual Conference on Wireless On-demand Network Systems and Services (WONS),
Courmayeur, Italy, 2012

• [16] T. Demoor, J. Walraevens, D. Fiems, and H. Bruneel. The impact of queue
capacities on asymptotics in priority queues. In International conference on
Stochastic Modelling and Simulation, Chennai, India, pages 29–29, 2011
⇒ This paper is related to chapter 4 of this dissertation.

• [17] T. Demoor, J. Walraevens, D. Fiems, and H. Bruneel. Tail behaviour of a
finite-/infinite-capacity priority queue. In 3rd Madrid conference on Queue-
ing Theory, Toledo, Spain, pages 31–32, 2010
⇒ This paper is related to chapter 4 of this dissertation.

• [18] T. Demoor, D. Fiems, J. Walraevens, and H. Bruneel. The preemptive re-
peat hybrid server interruption model. In Analytical and Stochastic Modeling
Techniques and Applications (ASMTA 2010), Cardiff, Wales. Lecture Notes in
Computer Science, volume 6148, pages 59–71. Springer, Springer, 2010

• [19] T. Demoor, J. Walraevens, D. Fiems, and H. Bruneel. Time and space
priority in a partially shared priority queue. In 5th International conference on
Queueing Theory and Network Applications, Beijing, China, pages 125–131.
Association for Computing Machinery (ACM), 2010
⇒ This paper corresponds to part 2 of this dissertation.

• [20] T. Demoor, J. Walraevens, D. Fiems, S. De Vuyst, and H. Bruneel. Mixed
finite-/infinite-capacity priority queue with general class-1 service times. In
Analytical and Stochastic Modeling Techniques and Applications (ASMTA 2009),
Madrid, Spain. Lecture Notes in Computer Science, volume 5513, pages 264–
278. Springer, 2009
⇒ This paper is related to chapter 3 of this dissertation and won the best pa-
per award at the conference.

1-14 INTRODUCTION

• [21] T. Demoor, J. Walraevens, D. Fiems, S. De Vuyst, and H. Bruneel. Mod-
elling queue sizes in an expedited forwarding DiffServ router with service dif-
ferentiation. In 4th International conference on Queueing Theory and Net-
work Applications, Singapore, Singapore. Association for Computer Machin-
ery (ACM), 2009
⇒ This paper is related to chapter 3 of this dissertation.

• [22] T. Demoor, J. Walraevens, D. Fiems, and H. Bruneel. Mixed finite-/infinite-
capacity priority queue with interclass correlation. In Analytical and Stochas-
tic Modeling Techniques and Applications (ASMTA), Nicosia, Cyprus. Lecture
Notes in Computer Science, volume 5055, pages 61–74. Springer-Verlag, 2008
⇒ This paper is related to chapter 2 of this dissertation.

1.7.3 Publications in national conferences

• [23] T. Demoor, D. Fiems, J. Walraevens, and H. Bruneel. Controlling delay
and loss in a DiffServ router with expedited forwarding PHB. In 23rd National
Conference of the Belgian Operations Research Society, pages 98–98, 2009

• [24] T. Demoor, J. Walraevens, D. Fiems, and H. Bruneel. Performance anal-
ysis of a two-class priority queue with finite high-priority queue capacity. In
22nd National Conference of the Belgian Operations Research Society, pages
54–56, 2008

Part I

Two-class Priority Queue

2
N /∞ PRIORITY QUEUE - SINGLE-SLOT

SERVICE TIMES

2.1 Introduction

In this chapter, we study a discrete-time queueing system with a single server fed
by two queues, one per priority class, and with an absolute priority scheduling al-
gorithm in order to minimize the delay of the high-priority packets. This means
that low-priority packets (class 2) are only served if there are no high-priority pack-
ets (class 1) in the system. This is the most drastic scheduling method, minimizing
class-1 delay at the cost of class-2 performance. To the best of our knowledge, such
a system, called a priority queue, was first studied over half a century ago, more
precisely in 1954, in [25]. Survey [26] gives an overview up to 1960 and one of the
first books dedicated to priority queues [27] appeared in 1968.

Note 15. One can identify a pioneering work by the number of cited references. The
seminal paper [25] mentions two references: Feller’s 1950 book on probability (which,
in modern times, is just assumed to be the invisible reference [0] in any paper using
probability) and a paper from Bell Labs to show that there are practical applications
(telephone systems). That must have been magical times. Now please do not go and
check the number of references at the end of this dissertation, dear reader. Please
proceed by reading the next paragraph.

In the more recent literature, various studies on priority queueing systems (in
continuous and in discrete time) have been performed, e.g.[28, 29, 30, 31]. A com-
plete overview up to 2003 can be found in the PhD dissertation [32]. In the last
decade, the research in this domain has moved in several directions but we will

2-2 N /∞ PRIORITY QUEUE - SINGLE-SLOT SERVICE TIMES

not survey all of them immediately. The contributions focusing on general distri-
butions for the service times are discussed in the next chapter of this dissertation.
Furthermore, there is a huge interest in the cause of different types of tail probabil-
ities, but, as this is the subject of chapter 4, we defer the discussion of the relevant
literature until then. For now, let us focus on the queue capacity, this is the number
of packets that can concurrently be waiting for service in the queue, which is the
most distinctive feature of the model discussed in this chapter.

In practice, queueing systems have a limited queue capacity. In contrast, ana-
lytic studies of queueing systems generally assume infinite queue capacity as this
facilitates the mathematical analysis of the system. Papers describing priority queues
with finite capacity for both classes exist, but are far less numerous than their in-
finite capacity counterparts. The pioneering work in this area was performed in
1984 [33]. A more recent work [34] references most of the relevant papers in this
area. Evidently, if the queue capacity is finite, one must detail what happens when
the queue is completely full and an additional packet tries to enter the system. The
packet can be dropped, it can push out another packet, etc. More information will
be provided in part II of this dissertation, as this type of queueing systems are re-
lated to the one that is studied there.

Note 16. The motivations for studying a system with limited class-1 queue capacity
are not solely of intellectual but also of practical nature. Some systems have an ob-
vious (physical) limit to the queue capacity. Also, enforcing a limited queue capac-
ity provides a mechanism for mitigating the effect of the priority scheduling, thereby
(partly) protecting class-2 customers from having to give priority to an endless stream
of class-1 customers, as mentioned in the introductory chapter of this dissertation.
On a more philosophical level one might even argue that infinite capacity queues do
not exist, as the number of people standing in line is constrained by the global popu-
lation, the number of emails in an inbox by computer storage, etc. However, infinite
capacity models have proven to be very accurate approximations in many situations,
but, as will become clear in this dissertation, this is not always the case.

In this part of the dissertation, we will study a two-class discrete-time priority
queueing model where the class-1 queue capacity is limited to N , which is a finite
positive integer, but the class-2 capacity is infinitely large. We will refer to this sys-
tem as the N /∞ priority queueing system. Furthermore, class-1 packets that find
the class-1 queue to be full upon their arrival (as there are already N packets wait-
ing for service) are dropped by the system. Note that, in contrast to the queueing
systems mentioned in the previous paragraph, the state-space of the underlying
Markov chain of an N /∞ priority queueing system is not finite.

Evidently, as N increases, the N /∞ priority queue is increasingly similar to a
system where both queues are presumed to be of infinite capacity, which is studied
in the paper [30] and the corresponding chapter in the PhD dissertation [32], which
we will call the ∞/∞ priority queue. Investigating how (the performance measures
of) the N /∞ system converge to those of the ∞/∞ system in the limit for N →∞ is
the main goal of this part of the dissertation.

N /∞ PRIORITY QUEUE - SINGLE-SLOT SERVICE TIMES 2-3

Note 17. Therefore, we will often refer to the results of the corresponding ∞/∞ sys-
tem studied in the dissertation [32], which can be downloaded from the author’s web-
site http: // telin. ugent. be/ ~jw/ PhDthesis. pdf .

The N /∞ priority queue is considered in [35] as well, where packet loss ratio
and tail behavior are analyzed using a matrix-analytic method. This method is per-
fectly suited for studying two-dimensional Markov processes if (at least) one of the
dimensions is finite. However, this method is sometimes inaccurate for the ∞/∞
system and discovering how the limit for N →∞ works out is thus not completely
solved. The methodology developed in the current chapter will provide extra in-
sight in this limiting behavior, as will be shown in chapter 4. Furthermore, con-
currently with the research presented here, the continuous-time equivalent of the
N /∞ priority queue was studied in [36].

The remainder of this chapter is organized as follows: first, in section 2.2, the
N /∞ priority queueing model is thoroughly described. Several subsequent sec-
tions each detail how to analyze a particular performance measure for the system.
Next, section 2.7 demonstrates how one can calculate the moments of the perfor-
mance measures. Then, the applicability of the analysis is exemplified through sev-
eral numerical examples and finally the chapter is concluded with some closing
remarks.

2.2 Model

We consider a discrete-time single-server priority queueing system with 2 classes,
finite class-1 queue capacity N and an infinite class-2 queue. Class-1 packets are
served with absolute priority over class-2 packets and within a class the queueing
discipline is First-Come-First-Served (FCFS). First, in order to give some insights
into the queuing model, let us consider a specific sample path of the system de-
picted in figure 2.1. On the left, the queueing system is depicted. One can discern
the two queues and the server. The class-1 queue capacity is limited to N = 3. To
the right, the evolution of the system content, influenced by arrivals and completed
services, is depicted, aligned horizontally, during 20 slots. Class-1 (class-2) infor-
mation is indicated in dark- (light-)grey and full (dotted) lines respectively. The
queue content of both classes is shown on the positive vertical axis whereas the
content of the server is visible on the negative one (the aggregation of queue con-
tent and server content is the system content). Arrows indicate service time dura-
tions (always a single slot). Time is divided into fixed-length slots corresponding to
the transmission time of a packet and time progresses from left to right in the pic-
ture as can be deduced from the slot numbers. A packet can only enter the server
at the beginning of a slot, even if it arrives in an empty system (slot 19). The Tail
Drop queue management algorithm is used for the class-1 queue, hence the sys-
tem accepts packets until the corresponding queue is entirely filled up and packets
that arrive at a full queue are dropped by the system (slots 6 and 19).The system can
contain up to N +1 class-1 packets simultaneously in a slot, N in the queue and 1

2-4 N /∞ PRIORITY QUEUE - SINGLE-SLOT SERVICE TIMES

1
2
2
2

1 1
1
1
1

1 1
2

1 1 1 1
1
1
1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N

server

queue
content

12

2

...

1

Figure 2.1: Evolution of the finite/infinite queueing system with N = 3 over 20 slots. The
content of both the high-priority queue (class-1 packets, dark grey) and low-priority queue

(class-2 packets, light grey) is shown.

in the server. Consequently, there are at most N class-1 packets in the system at the
beginning of a slot. Also note that a class-1 packet thus resides in the system for at
most N slots, which bounds its delay.

We assume that for both classes the numbers of arrivals in consecutive slots
form a sequence of independent and identically distributed (i.i.d.) random vari-
ables. We define ai ,k as the number of class-i (i = 1,2) packet arrivals during slot k.
The arrivals of both classes are characterized by the joint probability mass function
(pmf)

a(m,n) = Pr
[
a1,k = m, a2,k = n

]
, (2.1)

and joint probability generating function (pgf)

A(z1, z2) = E
[

z
a1,k
1 z

a2,k
2

]
. (2.2)

Note that the arrival process allows correlation between both classes. Let the mean
number of class-i arrivals per slot (class-i load) be

λi = E
[
ai ,k

]= ∂A(z1, z2)

∂zi

∣∣∣∣
z1=1,z2=1

, (i = 1,2) . (2.3)

The total (arrival) load equals λT =λ1 +λ2.

The bivariate pgf A(z1, z2) is the standard representation of the arrival process
for tackling two-dimensional queueing processes, such as the ∞/∞ system [32].
However, due to the limited class-1 queue capacity, the queueing process we study
has an additional boundary requiring us to track class-1 more explicitly. Therefore,
let us define the (partial) pgf of the class-2 arrivals in a slot with i (i or more) class-1
arrivals as Ai (z) (A∗

i (z)), yielding

Ai (z) = E
[
za2,k 1

{
a1,k = i

}]
, A∗

i (z) =
∞∑

j=i
A j (z) . (2.4)

Note 18. Recall that the indicator function 1 {x = i } is 1 if x = i and equals 0 other-
wise.

N /∞ PRIORITY QUEUE - SINGLE-SLOT SERVICE TIMES 2-5

In this dissertation, one will only encounter these pgfs for i = 0, . . . , N as the class-1
queue capacity is limited to N and hence at most N packets can be admitted into
the queue during a slot.

It is immediately clear that the representations are related as

A(z1, z2) =
∞∑

i=0
Ai (z2)zi

1 . (2.5)

Furthermore, note that, as Pr
[
a1,k = i

]= Ai (1), (2.3) is equivalent to

λ1 =
∞∑

i=1
i Ai (1) , λ2 = d

d z
A∗

0 (z)
∣∣∣

z=1
= A∗

0
′(1) . (2.6)

2.3 System content

First, we study how the system content evolves from slot k to k +1. This is rather
straightforward using pgfs as the process {(u1,k ,u2,k),k ≥ 1} forms a Markov chain
and thus a bivariate representation is sufficient. However, due to the limited class-1
capacity of N packets, rather than obtaining an expression for a bivariate pgf like
in [32] a system of N +1 equations of partial pgfs is established. Next, the steady-
state behaviour is investigated. Finally, as systems of equations are rather messy,
a more intuitive matrix representation, which will be used throughout the entire
dissertation, is presented.

2.3.1 Relating consecutive slots

Let the class-i system content at the beginning of slot k be denoted by ui ,k . As
expected, we study the evolution of the queueing system in consecutive slots. Re-
lating the system content at the beginning of slots k and k +1 yields

u1,k+1 = min(N , (u1,k −1)++a1,k) ,

u2,k+1 =
{

(u2,k −1)++a2,k if u1,k = 0,

u2,k +a2,k if u1,k > 0.

(2.7)

Note 19. Recall that (x)+ denotes the maximum of x and 0.

Clearly, as the class-1 capacity is bounded by N , the queue cannot always ac-
commodate all arriving class-1 packets. Let the number of effective class-1 arrivals
in slot k be denoted by ae

1,k . This random variable is clearly influenced by the class-
1 system content in slot k and can be characterized by

ae
1,k = min(a1,k , N − (u1,k −1)+) . (2.8)

Consequently, the evolution of the class-1 system content, as detailed in (2.7), can
equivalently be expressed, in more traditional fashion, as

u1,k+1 = (u1,k −1)++ae
1,k . (2.9)

2-6 N /∞ PRIORITY QUEUE - SINGLE-SLOT SERVICE TIMES

The (partial) pgf of the class-2 system content in slot k with class-1 system content
equal to i is defined as

Ui ,k (z) = E
[
zu2,k 1

{
u1,k = i

}]
. (2.10)

These pgfs can be related to eachother by the system equations (2.7). The pgf in
slot k +1 is obtained as

Ui ,k+1(z) = E
[
zu2,k+1 1

{
u1,k+1 = i

}]
= E

[
zu2,k+1 1

{
u1,k+1 = i , u1,k = 0, u2,k = 0

}]
+E

[
zu2,k+1 1

{
u1,k+1 = i , u1,k = 0, u2,k > 0

}]
+E

[
zu2,k+1 1

{
u1,k+1 = i , u1,k > 0

}]
= E

[
za2,k 1

{
min(N , a1,k) = i , u1,k = 0, u2,k = 0

}]
+E

[
zu2,k−1+a2,k 1

{
min(N , a1,k) = i , u1,k = 0, u2,k > 0

}]
+E

[
zu2,k+a2,k 1

{
min(N ,u1,k −1+a1,k) = i , u1,k > 0

}]
.

(2.11)

Here, we first conditioned on the “state” of the server in slot k. There are three
different cases: no service (system empty), class-2 packet in service (class-1 empty
and class-2 non-empty), class-1 packet in service (class-1 non-empty). Then, in
each of these cases, the relation between slots k+1 and k described in (2.7) becomes
straightforward as the operator (x)+ has vanished. However, due to the presence of
the minimum operator, UN ,k+1, the pgf when the class-1 queue is entirely full, must
be treated separately in order to proceed.

For 0 ≤ i < N , we have

Ui ,k+1(z) = E
[
1
{
u1,k = 0, u2,k = 0

}]
E

[
za2,k 1

{
a1,k = i

}]
+ 1

z
E

[
zu2,k 1

{
u1,k = 0, u2,k > 0

}]
E

[
za2,k 1

{
a1,k = i

}]
+

i+1∑
j=1

E
[
zu2,k 1

{
u1,k = j

}]
E

[
za2,k 1

{
a1,k = i +1− j

}]
=U0,k (0)Ai (z)+ 1

z

(
U0,k (z)−U0,k (0)

)
Ai (z)+

i+1∑
j=1

U j ,k (z)Ai− j+1(z) .

(2.12)

As the arrivals during slot k are independent of the system content at the beginning
of slot k, they can be separated into a different expectation operator. Also, note that,
as at most one (class-1) packet can leave the system each slot, u1,k+1 = i implies
u1,k ≤ i +1 which defines the range of the sum in the last term.

N /∞ PRIORITY QUEUE - SINGLE-SLOT SERVICE TIMES 2-7

Analogously,

UN ,k+1(z) = E
[
1
{
u1,k = 0, u2,k = 0

}]
E

[
za2,k 1

{
a1,k ≥ N

}]
+ 1

z
E

[
zu2,k 1

{
u1,k = 0, u2,k > 0

}]
E

[
za2,k 1

{
a1,k ≥ N

}]
+

N∑
j=1

E
[
zu2,k 1

{
u1,k = j

}]
E

[
za2,k 1

{
a1,k ≥ N +1− j

}]
=U0,k (0)A∗

N (z)+ 1

z

(
U0,k (z)−U0,k (0)

)
A∗

N (z)

+
N∑

j=1
U j ,k (z)A∗

N+1− j (z) .

(2.13)

In this derivation, due to the limitation of the class-1 system content to N , the sum
only runs to N and it is necessary to account for all arriving packets (also those that
are dropped by the system) leading to the appearance of the pgfs A∗

i (z).

Summarizing, the system content in slot k +1 is determined by

Ui ,k+1(z) = 1

z
U0,k (z)Ai (z)+ z −1

z
U0,k (0)Ai (z)

+
i+1∑
j=1

U j ,k (z)Ai− j+1(z), i = 0. . . N −1,

UN ,k+1(z) = 1

z
U0,k (z)A∗

N (z)+ z −1

z
U0,k (0)A∗

N (z)

+
N∑

j=1
U j ,k (z)A∗

N− j+1(z) .

(2.14)

2.3.2 Steady state

Under the assumption that the system reaches steady state, on which we will elab-
orate later on, let us define

Ui (z) = lim
k→∞

Ui ,k (z) = lim
k→∞

Ui ,k+1(z), i = 0. . . N ,

U (z1, z2) = lim
k→∞

Uk (z1, z2) =
N∑

i=0
Ui (z2)zi

1 .
(2.15)

Furthermore, dropping the slot index k in the notation of a random variable indi-
cates the corresponding random variable in a random slot in steady state, e.g. u1

is the class-1 system content in a random slot in steady state. Accordingly, let us

2-8 N /∞ PRIORITY QUEUE - SINGLE-SLOT SERVICE TIMES

define u2, a1, a2 and ae
1. In steady-state, the system of equations (2.14) becomes

Ui (z) = 1

z
U0(z)Ai (z)+ z −1

z
U0(0)Ai (z)

+
i+1∑
j=1

U j (z)Ai− j+1(z), i = 0. . . N −1,

UN (z) = 1

z
U0(z)A∗

N (z)+ z −1

z
U0(0)A∗

N (z)

+
N∑

j=1
U j (z)A∗

N− j+1(z) .

(2.16)

2.3.3 Matrix representation

Systems of linear equations are more conveniently handled using matrices. In the
representation used here, the elements of the vector/matrix express class-2 infor-
mation through a partial pgf and the position of this element encodes the class-1
information. Let us define the row vector representing the system content in slot k
by

uk (z) = [
U0,k (z) U1,k (z) · · · UN ,k (z)

]
. (2.17)

Thus, [uk (z)]i is the partial pgf of the class-2 system content in slot k with class-1
system content equal to i −1.

Note 20. Row- and column numbers of vectors (and matrices) are assumed to start
at 1. Thus, e.g. the first element of the vector uk (z) is [uk (z)]1 =U0,k (z). Accordingly,
the element on the i -th row, j -th column of a matrix M is given by [M]i , j .

Accordingly, let us define the (N +1)× (N +1) “arrival matrix”

A(z) =



A0(z) A1(z) · · · AN−1(z) A∗
N (z)

0 A0(z) · · · AN−2(z) A∗
N−1(z)

...
. . .

. . .
...

...
...

. . . A0(z) A∗
1 (z)

0 · · · · · · 0 A∗
0 (z)

 . (2.18)

Adding arriving packets to the system content can thus be represented by the mul-
tiplication uk (z)A(z). Informally, for 1 ≤ i , j ≤ N +1, given that the class-1 system
content is i − 1, A(1)i j is the probability that j − i class-1 packets are effectively
allowed into the system and A(z)i j is the corresponding partial pgf of the packets
added to the class-2 queue.

Furthermore, for notational purposes, let us introduce the matrices

H 0 =
[

1 0
0T O

]
, H>0 = I −H 0, D H =

[
0 0
I 0T

]
. (2.19)

Note 21. Throughout this dissertation, 0 denotes a row vector of zeroes of appro-
priate size, xT represents the transpose of vector x, I and O respectively denote the
identity matrix and the zero matrix of appropriate size.

N /∞ PRIORITY QUEUE - SINGLE-SLOT SERVICE TIMES 2-9

Right-multiplying by H 0 and H>0 filters for “only the first column” and “all but the
first column” respectively. Recall that whether or not a class-1 packet is in service is
the defining factor for the evolution of the queuing system to the next slot. To that
end, uk (z)H 0 = [

U0,k (z) 0 · · · 0
]

can be “informally” seen as “when u1,k = 0”
and uk (z)H>0 = [

0 U1,k (z) · · · UN ,k (z)
]

as “when u1,k > 0” (the letter H was
chosen as visual reminder that the matrix operations concern high-priority, i.e.
class-1, and the subscripts were chosen for clarification purposes as well). Right
multiplying by the matrix D H shifts all elements to the left and thus uk (z)D H =[
U1,k (z) · · · UN ,k (z) 0

]
“informally” can be stated to represent u1,k − 1, i.e. a

high-priority departure (again influencing the notation, D H).
In view of these definitions, (2.14) is identical to

uk+1(z) = uk (0)H 0 A(z)+ (uk (z)−uk (0)) H 0
1

z
A(z)+uk (z)H>0D H A(z) . (2.20)

Again, the different terms can be seen to reflect the state of the server as the first
term corresponds to no-service (system empty), the second to class-2 service (class-
1 empty, class-2 not) and the final term to class-1 service. Rearranging leads to

uk+1(z) = uk (z)

(
1

z
H 0 +H>0D H

)
A(z)+ z −1

z
uk (0)H 0 A(z) . (2.21)

Note 22. Although H>0D H = D H , I choose not to invoke this identity in order to
increase the legibility of the expressions by “humans”.

Now, introducing the (N +1)× (N +1) matrix

X̃ (z) =
(

1

z
H 0 +H>0D H

)
A(z)

=



1
z A0(z) 1

z A1(z) · · · 1
z AN−1(z) 1

z A∗
N (z)

A0(z) A1(z) · · · AN−1(z) A∗
N (z)

0 A0(z) · · · AN−2(z) A∗
N−1(z)

...
. . .

. . .
...

...
0 · · · 0 A0(z) A∗

1 (z)

 ,
(2.22)

allows us to write (2.21) as

uk+1(z) = uk (z)X̃ (z)+ (z −1)
[
U0,k (0) 0

]
X̃ (z) , (2.23)

because [
U0,k (0) 0

]
X̃ (z) = [

U0,k (0) 0
](

1

z
H 0 +H>0D H

)
A(z)

= uk (0)H 0

(
1

z
H 0 +H>0D H

)
A(z)

= uk (0)

(
1

z
H 0H 0 +H 0H>0D H

)
A(z)

= uk (0)

(
1

z
H 0 +O

)
A(z) .

(2.24)

2-10 N /∞ PRIORITY QUEUE - SINGLE-SLOT SERVICE TIMES

However, the fractions in the first row of X̃ (z) make manipulating this matrix rather
tedious. As, in chapter 4, further investigation of this model is performed and such
manipulations are frequently needed, an alternative but equivalent representation
is introduced by defining

X (z) = z X̃ (z) =


A0(z) A1(z) · · · AN−1(z) A∗

N (z)
z A0(z) z A1(z) · · · z AN−1(z) z A∗

N (z)
0 z A0(z) · · · z AN−2(z) z A∗

N−1(z)
...

. . .
. . .

...
...

0 · · · 0 z A0(z) z A∗
1 (z)

 . (2.25)

for which (2.23) becomes

uk+1(z) = uk (z)
X (z)

z
+ (z −1)

[
U0,k (0) 0

] X (z)

z
. (2.26)

Consequently, the corresponding steady-state row vector

u(z) = lim
k→∞

uk (z) = [
U0(z) U1(z) · · · UN (z)

]
, (2.27)

can be expressed by

u(z) = 1

z
u(z)X (z)+ z −1

z

[
U0(0) 0

]
X (z) , (2.28)

finally leading to

u(z) = (z −1)
[
U0(0) 0

]
X (z)

(
zI −X (z)

)−1 . (2.29)

The unknown constant U0(0) is yet to be obtained. To that end, let us substitute
z = 1 in (2.28) yielding u(1) = u(1)X (1) or, equivalently,

u(1)
(

I −X (1)
)= 0 . (2.30)

Note 23. The identity u(1) = u(1)X (1) is not surprising at all. Considering class-1
in isolation is identical to studying a standard single-server FIFO queue with finite
capacity, as presented in the introductory chapter of this dissertation, with steady-
state vector u(1) and transition matrix X (1).

However, I −X (1) is not invertible, as X (1) is a right stochastic matrix. We have

Rank
(

I −X (1)
)= N . (2.31)

We thus require one additional relation in order to determine the N +1 unknowns
in the vector u(1). The normalisation property of probability distributions and re-
calling that Ui (1) = Pr[u1 = i] lead to

N∑
i=0

Ui (1) = 1 ⇔ u(1)e = 1. (2.32)

By replacing one of the relations in (2.30) by this normalisation condition, the pmf
of the class-1 system content is found to be

u(1) = [
0
∣∣1][

I −X (1)
∣∣e]−1 . (2.33)

N /∞ PRIORITY QUEUE - SINGLE-SLOT SERVICE TIMES 2-11

Note 24. Recall that e denotes a column vector of ones of appropriate size. By [A|b]
we denote the matrix A with the last column replaced by the column vector b and by
[a|b] the vector a with the last element replaced by b.

We are now ready to determine the unknown constant U0(0), the probability
that the system is empty, using theorem 1.1, as in the introductory chapter. In the
current model, class-1 packets are not affected by class-2 packets, due to the prior-
ity scheduling, and hence class-1 can be studied separately. Consequently, we first
apply this theorem on a queueing system where we neglect class-2 packets. The
mean number of class-1 packets accepted by that system during a slot is denoted
by λe

1. A class-1 packet is served by the system when the class-1 system content at
the beginning of the slot is larger than 0. Consequently, invoking the theorem yields

λe
1 = 1−U0(1) . (2.34)

This quantity is known from (2.33) as U0(1) is simply the first element of u(1). Let
λe

T be the total effective load, i.e. the mean number of packets accepted by the sys-
tem, thus λe

T = λe
1 +λ2. Repeating the argument above for the complete system

(containing packets of both classes) yields

λe
T = 1−U0(0) . (2.35)

Combining (2.34) and (2.35) finally provides

U0(0) =U0(1)−λ2 . (2.36)

The system content of both classes is thus completely expressed in terms of the
arrival process (through X (z), λe

T) as (2.29) becomes

u(z) = (1−λe
T)(z −1)

[
1 0

]
X (z)

(
zI −X (z)

)−1 . (2.37)

Note 25. As the model studied here is of M/G/1-type, the stationary distribution could
have been derived immediately using the famous Pollaczeck-Khinchine formula, see
f.i. [37]. However, the analysis above was preferred to make this dissertation more
self-containing and to use a similar solution method for both system content and
delay.

2.3.4 Stability

As the class-1 queue has finite capacity and excess packets are thus dropped the
class-1 system is always stable. For the entire system to reach steady state it is re-
quired that the average number of class-2 packets that can be served exceeds the
average number of class-2 arrivals, or that λ2 < 1−λe

1. Notice that requiring that
U0(0) > 0 is an equivalent stability constraint.

2-12 N /∞ PRIORITY QUEUE - SINGLE-SLOT SERVICE TIMES

2.4 Queue content

The class-i queue content at the beginning of slot k, denoted by qi ,k , is defined as
the number of class-i packets in the queue, thus in the system but not in the server.
An explicit expression for the queue content will facilitate calculating the packet
delay in the following sections. Evidently, the queue content is closely related to
the system content as

q1,k = (u1,k −1)+ ,

q2,k =
{

(u2,k −1)+ if u1,k = 0,

u2,k if u1,k > 0.

(2.38)

The corresponding (partial) pgfs are defined by

Qn,k (z) = E
[
zq2,k 1

{
q1,k = n

}]
, n = 0. . . N −1. (2.39)

Recall that the queue can contain up to N −1 packets at the beginning of the slot.
Thus (2.38) yields

Q0,k (z) = E
[

z(u2,k−1)+ 1
{
u1,k = 0

}]+E
[
zu2,k 1

{
u1,k = 1

}]
=U0,k (0)+ 1

z

(
U0,k (z)−U0,k (0)

)+U1,k (z) ,
(2.40)

and, for n = 1. . . N −1,

Qn,k (z) = E
[
zu2,k 1

{
u1,k = n +1

}]=Un+1,k (z) . (2.41)

Again, let us express these relations using matrices. Consider the vector

q k (z) = [
Q0,k (z) Q1,k (z) · · · QN−1,k (z)

]
. (2.42)

Using this vector representation, combining (2.40) and (2.41) yields the steady-state
(as before, this is indicated by dropping the slot index k from the notation) vector
q(z) of the queue content of both classes, given by

q(z) = lim
k→∞

q k (z) = u(z)

(
1

z
H 0 +H>0D H

)[
I
0

]
+ z −1

z

[
U0(0) 0

]
. (2.43)

Note 26. The (N +1)×N “resizing” matrix

[
I
0

]
, which removes the last element, re-

solves the difference in size between q(z) and u(z).

2.5 Class-1 delay

The delay of a packet is defined as the number of slots during which it is present in
the queueing system for the entire slot. This thus does not include the packet’s ar-
rival slot. The delay can be subdivided into two major parts: the time spent waiting
in the queue and the service time.

N /∞ PRIORITY QUEUE - SINGLE-SLOT SERVICE TIMES 2-13

2.5.1 Direct method

As stated earlier, class-1 packets are not affected by class-2 packets in the model
under consideration and thus class 1 can be studied in isolation as a standard FIFO
queueing system with finite capacity. Consider an infinitely long sample path of
the system and arbitrarily tag a class-1 packet that is accepted into the system (the
delay of dropped packets is undefined). As one choses a packet randomly (out of
the infinitely large number of packets), with probability 1, the system is in steady
state during its arrival slot. Let the delay of the tagged packet be denoted by d1 and
the arrival slot of the packet by k. The class-1 (packet) delay is given by

d1 = q1,k + â1,k +1. (2.44)

Here, â1,k denotes the class-1 packets arriving in the same slot as, but before, the
tagged packet.

Note 27. For the delay, class 1 and 2 are studied separately, as choosing a class-1
packet at random and choosing a class-2 packet at random are completely unrelated.
In contrast, when choosing a random slot, one can observe the system content of both
classes in that random slot.

The class-1 delay consists of at least one slot (the packet’s service time), if the
packet arrives in an empty queue, and at most N slots (service of the N −1 pack-
ets present upon the packet’s arrival plus its own service), if the packet fills up the
queue. Consequently, the pmf of the delay of an accepted class-1 packet in steady
state is given by

Pr
[

d1 = n | packet accepted
]= Pr

[
d1 = n, packet accepted

]
Pr

[
packet accepted

] , n = 1. . . N . (2.45)

The denominator can be obtained easily, as, by a counting argument,the (long-run)
probability that a packet is accepted equals

Pr
[
packet accepted

]=λe
1/λ1 . (2.46)

In order to determine the numerator, it is crucial to note that the arrival slot of
the tagged packet is not a random slot, e.g. it is impossible that no packets arrive (as
the tagged one does). Randomly tagging a packet favours slots with a lot of arrivals.
This classical renewal-theory inspection paradox is well-known, see a.o. [4, 38]. Let
ã1,k denote the number of arrivals in the arrival slot of the tagged packet (˜ indicates
that slot k is not a random slot). Then, the corresponding pmf is given by

Pr
[
ã1,k = n

]= nPr[a1 = n]

λ1
. (2.47)

As the tagged packet is accepted into the system per definition, so are the packets
arriving before it in the same slot (â1,k). However, packets arriving after the tagged
packet (which are a subset of the packets in ã1,k) can potentially be dropped.

2-14 N /∞ PRIORITY QUEUE - SINGLE-SLOT SERVICE TIMES

Now, we can proceed by noting that, for n = 1. . . N ,

Pr
[
d1 = n, packet accepted

]
= Pr

[
q1,k + â1,k +1 = n, packet accepted

]
=

n−1∑
m=0

Pr
[
q1,k = m, â1,k = n −m −1

]
=

n−1∑
m=0

∞∑
i=n−m

Pr
[
ã1,k = i

]
Pr

[
q1,k = m, â1,k = n −m −1

∣∣ ã1,k = i
]

=
n−1∑
m=0

∞∑
i=n−m

i Pr[a1 = i]

λ1
Pr

[
q1,k = m

∣∣ ã1,k = i
]

Pr
[

â1,k = n −m −1
∣∣ q1,k = m, ã1,k = i

]
= 1

λ1

n−1∑
m=0

Pr
[
q1,k = m

] ∞∑
i=n−m

i Pr[a1 = i]
1

i

= 1

λ1

n−1∑
m=0

Pr
[
q1 = m

]
A∗

n−m(1) .

(2.48)

The second transition considers all possible values for the queue content, which
can maximally run up to n −1 as the tagged packet’s service slot also has to be in-
corporated in the delay. Furthermore, for the values of n and m considered here,
q1,k = m and â1,k = n −m − 1 guarantee that the tagged packet is accepted. The
third transition is obtained by considering all possible numbers of total arrivals
(accepted or not) in the arrival slot of the tagged packet. Next, we invoke (2.47)
and also use the definition of conditional probability. The fitfh transition holds as
the queue content at the beginning of a slot (q1,k) is independent of the total num-
ber of arrivals in that slot (ã1,k) and as choosing the tagged packet so that there are
n −m −1 packets arriving before it equals choosing a packet uniformly out of the i
arriving packets. Finally, as we are in steady-state, the slot index k can be dropped
because q1,k and q1 are statistically indistinguishable.

Then, plugging (2.48) and (2.46) into (2.45) leads to

Pr
[

d1 = n | packet accepted
]= 1

λe
1

n−1∑
m=0

Pr
[
q1 = m

]
A∗

n−m(1), n = 1. . . N . (2.49)

As before, we will revert to a matrix representation and consider system be-
haviour in steady state. The arguments made in (2.48) lead to the matrix repre-
sentation 1

λ1
Â1 for â1, with Â1 the N ×N matrix

Â1 =


A∗

1 (1) A∗
2 (1) · · · A∗

N (1)
0 A∗

1 (1) · · · A∗
N−1(1)

...
. . .

. . .
...

0 · · · 0 A∗
1 (1)

 . (2.50)

Then, from (2.49), the (probability distribution) vector of the steady-state class-1

N /∞ PRIORITY QUEUE - SINGLE-SLOT SERVICE TIMES 2-15

delay is found by

d 1 = lim
k→∞

[
Pr[d1 = n]

]
n=1...N

= 1

λe
1

q(1)Â1

= 1

λe
1

u(1)(H 0 +H>0D H)

[
I
0

]
Â1 .

(2.51)

Note 28. The paradox that by considering a randomly selected packet one does not
consider a random slot is one of these “counter-intuitive” but evident results that
make probability utterly fascinating to me (and I hope us, dear reader) but is often
considered “witchcraft” by the general public.

2.5.2 Distributional form of Little’s Law

There is an alternative method for computing the delay of a random (accepted)
class-1 packet using (an extension of) probably the most famous theorem in queue-
ing theory.

Theorem 2.1 (Little’s Law). The average number of customers in a system in steady
state is equal to the average effective arrival rate multiplied by the average time a
customer spends in the system.

In the current model, this theorem thus states that E[u1] =λe
1E[d1].

For simple queueing systems, such as the finite FIFO queue one considers when
studying class-1 in isolation in the current queueing model, an even stronger result
holds as not only the expectations but the entire distributions adhere to such a law.
This distributional form of Little’s Law is thoroughly detailed in [39, 40] and states
that

Pr[d1 = n] = Pr[u1 = n]

λe
1

, n = 1. . . N , (2.52)

or, equivalently,

d 1 = 1

λe
1

u(1)D H

[
I
0

]
. (2.53)

Consequently, the right-hand sides of equations (2.51) and (2.53) should be
proven to be identical. To that end, consider the (N + 1)× (N + 1) matrix, which
is similarly structured as A(z),

A∗(z) =



A∗
0 (z) A∗

1 (z) · · · A∗
N−1(z) A∗

N (z)
0 A∗

0 (z) · · · A∗
N−2(z) A∗

N−1(z)
...

. . .
. . .

...
...

...
. . . A∗

0 (z) A∗
1 (z)

0 · · · · · · 0 A∗
0 (z)

 , (2.54)

2-16 N /∞ PRIORITY QUEUE - SINGLE-SLOT SERVICE TIMES

and observe that then, (2.51) yields

d 1 = 1

λe
1

u(1)(H 0 +H>0D H)

[
I
0

]
Â1

= 1

λe
1

u(1)(H 0 +H>0D H)
(

A∗(1)− A(1)
)[I

0

]
= 1

λe
1

(
u(1)(H 0 +H>0D H) A∗(1)−u(1)(H 0 +H>0D H) A(1)

)[I
0

]
= 1

λe
1

(
u(1)(H 0 +H>0D H) A∗(1)−u(1)X (1)

)[I
0

]
= 1

λe
1

u(1)
(
(H 0 +H>0D H) A∗(1)− I

)[I
0

]
= 1

λe
1

u(1)(D H +F)

[
I
0

]
.

(2.55)

Here, the fifth transition holds through (2.30) and the final one uses A∗
0 (1) = 1. Fur-

thermore, the matrix F is given by

F =



0 A∗
1 (1) A∗

2 (1) A∗
3 (1) · · · A∗

N−1(z) A∗
N (z)

0 −A0(1) A∗
2 (1) A∗

3 (1) · · · A∗
N−1(z) A∗

N (z)
...

. . . −A0(1) A∗
2 (1) · · · A∗

N−2(z) A∗
N−1(z)

...
. . . −A0(1)

. . .
...

...
...

. . .
. . . A∗

2 (1) A∗
3 (1)

...
. . . −A0(1) A∗

2 (1)
0 · · · · · · · · · · · · 0 −A0(1)


. (2.56)

In the remainder of this subsection it is proven that u(1)F = 0 which asserts that
(2.55) equals (2.53) and thus (2.51) equals (2.53). First, the general proof is detailed
and then a practical example for N = 3 is provided for clarification purposes.

Recall that class-1 in isolation is simply a finite Markov chain with N +1 states,
as studied in the introductory chapter. The stationary distribution is found by re-
quiring that the rates to and from a state need to be equal. Moreover, a similar result
holds for “partitions” of the state space, resulting in “local balance” equations, first
discovered in [41].

Theorem 2.2. Consider a Markov chain with state space Ω. Select some subset of
states Ωout , and let Ωi n =Ω \Ωout denote its complement. In steady state, the rate
fromΩi n toΩout equals the rate fromΩout toΩi n .

Let p j , j = 0. . . N , be the partition of the state spaceΩ= {0, . . . , N } into the set of
statesΩout = { j , . . . , N } and the set of statesΩi n =Ω\Ωout . If partitioning happens
according to partition p j−1, [F]i , j contains the sum of all transitions from state u1 =
i − 1 ∈ Ωi n to any state in Ωout minus the sum of all transitions to state u1 = i −
1 ∈Ωi n from any state in Ωout (recall that matrix indices start at 1). Consequently,

N /∞ PRIORITY QUEUE - SINGLE-SLOT SERVICE TIMES 2-17

u1 = 0 u1 = 1 u1 = 2 u1 = 3

Pr[a1 = 0]

Pr[a1 = 1]

Pr[a1 = 2]

Pr[a1 ≥ 3]

Pr[a1 = 1]

Pr[a1 = 0]

Pr[a1 = 2]

Pr[a1 ≥ 3]

Pr[a1 = 1]

Pr[a1 = 0]

Pr[a1 ≥ 2]

Pr[a1 ≥ 1]

Pr[a1 = 0]

cut p1

cut p2

cut p3

Figure 2.2: Markov states and transitions of the model for N = 3

([u(1)F)] j characterizes the rates betweenΩi n andΩout when these are partitioned
according to p j and theorem 2.2 thus asserts that u(1)F = 0, which completes our
proof.

Let us consider the case N = 3, detailed in figure 2.2. For each partition, we
have visibly indicated the “cut” that encapsulates the states in set Ωi n . Informally,
one could say that the theorem states that the rates passing “through” the cut from
inner to outer should cancel out those from outer to inner. Partition p0 is trivial as
then Ωout encompasses all states and there are thus no transitions between Ωout

and Ωi n = ;. For partition p1, the transitions Pr[a1 = 1] , Pr[a1 = 2] , Pr[a1 ≥ 3] go
fromΩi n toΩout and the transition Pr[a1 = 0] fromΩout toΩi n . The corresponding
rates are found by incorporating the probability that the system is in the state from
which the transition originates, leading to Pr[u1 = 0]Pr[a1 ≥ 1] from Ωi n to Ωout

and Pr[u1 = 1]Pr[a1 = 0] fromΩout toΩi n . As the rates should be equal, we have

Pr[u1 = 0]Pr[a1 ≥ 1] = Pr[u1 = 1]Pr[a1 = 0] , (2.57)

or [(u(1)F)]2 = 0. For partition p2 this argument leads to

Pr[u1 = 0]Pr[a1 ≥ 2]+Pr[u1 = 1]Pr[a1 ≥ 2] = Pr[u1 = 2]Pr[a1 = 0] , (2.58)

which amounts to [u(1)F]3 = 0, and for partition p3 to

Pr[u1 = 0]Pr[a1 ≥ 3]+Pr[u1 = 1]Pr[a1 ≥ 3]+Pr[u1 = 2]Pr[a1 ≥ 2]

= Pr[u1 = 3]Pr[a1 = 0] , (2.59)

which equals [u(1)F]4 = 0.

2-18 N /∞ PRIORITY QUEUE - SINGLE-SLOT SERVICE TIMES

2.6 Class-2 delay

Class-2 packets have to give priority to class-1 packets causing them to reside in the
system for a (potentially) longer period of time as not only class-1 packets present
in the system upon arrival of a class-2 packet, but also class-1 packets arriving while
the class-2 packet waits in the queue are to be served before the class-2 packet.
Consider an arbitrarily tagged class-2 packet. Let the delay of the packet be denoted
by d2 and the arrival slot of the packet by k. The class-2 (packet) delay is given by

d2 = r1,k+1 +
q2,k+â2,k∑

i=1
t2,ki +1 . (2.60)

From the point of view of class 2, the system resembles a queueing system with
server vacations as the server becomes unavailable for class 2 (takes a vacation)
when class-1 packets are served. As the tagged class-2 packet arrives in slot k, its
delay starts in slot k + 1. The first part of the delay is the remaining class-1 busy
period in slot k +1, r1,k+1, as class-1 packets have priority over the tagged packet.
It consists of the (single-slot) service times of u1,k+1, the class-1 packets in the sys-
tem at the beginning of slot k +1 and, as even future class-1 arrivals have priority
over class-2 packets, the service times of the class-1 packets arriving during these
service times, and the service times of the class-1 packets arriving during those ser-
vice times, and etc. In short, it is the time until the system is void of class-1 packets
for the first time after slot k. Then, the server becomes available for class-2 pack-
ets. Two “groups” of class-2 packets have to be served before the tagged packet.
The first group is formed by the class-2 queue content in slot k, given by q2,k . It
consists of the class-2 packets in the system at the beginning of slot k, except the
class-2 packet in service, if any, as that packet leaves the system by slot k + 1 and
thus does not contribute to the delay. The second group, represented by â2,k , con-
sists of the class-2 packets arriving in the same slot as, but before, the tagged packet.
Each class-2 packet to be served before the tagged packet contributes a (single-slot)
service time to the tagged packet’s delay. However, if class-1 packets arrive during
this service slot, an entire class-1 busy period is added to the delay before the next
class-2 packet can be served. This period, the service slot possibly extended with
a class-1 busy period, is called the extended service completion time of a class-2
packet and is denoted by t2,ki . Here, ki indicates the slot number of the service of
the i th class-2 packet served after slot k. Finally, the tagged packet’s own service
slot completes its delay.

In order to clarify the components of the class-2 delay, a concrete example is
portrayed in figure 2.3. Let the tagged packet be the second class-2 packet arriv-
ing in slot 2 (thus k = 2). Its delay starts at the beginning of slot 3. As the system
contains class-1 packets (u1,3 = 1), the first contribution to the tagged packet’s de-
lay is the remaining class-1 busy period, r1,3 = 2, consisting of the service times
of the class-1 packet in the system and the class-1 packet arriving in slot 3. Next,
we can start serving class-2 packets. Note that q2,3 = 2 as there were two packets
already waiting in the queue at the beginning of slot 2 and that the tagged packet

N /∞ PRIORITY QUEUE - SINGLE-SLOT SERVICE TIMES 2-19

1
2
2
2

1 1
1
1
1

1 1
2

1 1 1 1
1
1
1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N

server

queue
content

12

2

...

1

Figure 2.3: Sample path of the queueing system with N = 3 over 20 slots. The content of both
the high-priority queue (class-1 packets, dark grey) and low-priority queue (class-2 packets,

light grey) is shown.

was the second class-2 packet in its slot thus â2,2 = 1. The first of these packets
is served in slot 5 and no class-1 packets arrive in slot 5 so its extended service
completion time equals its (single slot) service time (t2,5 = 1) and the next class-2
packet can be served in the next slot. However, that packet’s extended service com-
pletion time, t2,6, equals its service time (slot 6) and the entire class-1 busy period
(slots 7 to 13) as four class-1 packets arrive at the system in slot 6 (of which three
are accepted). Analogously, the final class-2 packet to be served before the tagged
packet, the packet in â2,2, has an extended service time, t2,13, consisting of its ser-
vice time (slot 13) and a (in this case short) class-1 busy period (slot 14). Finally,
the tagged class-2 packet is served in slot 15. Note that the class-1 packet arriv-
ing in slot 15 does not contribute to the delay. Summarizing, the delay is given by
d2 = 2+1+7+2+1 = 13 from slot 3 to slot 16.

Note 29. Notice that “from slot k to slot l ” denotes a time period that includes slot k
and excludes slot l .

In the remainder of this section, analytical expressions are obtained for the ran-
dom variables involved in (2.60).

2.6.1 Remaining class-1 busy period

A (class-1) busy period is a period of consecutive slots with strictly-positive (class-
1) system content or, equivalently, the number of slots between two consecutive
instants where the system does not contain any (class-1) packets. Consequently,
the remaining class-1 busy period in slot k, r1,k , can be seen as the number of slots
until the next slot with class-1 system content equal to 0. Evidently, it depends on
the system content in slot k as a larger queue generally leads to a longer remain-
ing busy period. Consequently, let us define the conditional pgf of the remaining
class-1 busy period at the beginning of slot k, if the class-1 system content at the
beginning of that slot equals n. We have

R1,k (z|n) = E
[

zr1,k
∣∣ u1,k = n

]
, n = 0. . . N . (2.61)

2-20 N /∞ PRIORITY QUEUE - SINGLE-SLOT SERVICE TIMES

Note 30. Remark that, here, the pgf tracks the number of slots instead of the number
of packets.

Recall that class-1 packets are unaffected by class-2 packets as they have prior-
ity. Evidently, R1,k (z|0) = 1 as the class-1 busy period ends when the class-1 queue
is empty. For n = 1. . . N , relating slots k and k +1 yields

R1,k (z|n) = E
[

zr1,k
∣∣ u1,k = n

]
= E

[
z1+r1,k+1

∣∣ u1,k = n
]

= z
∞∑

m=0
E

[
zr1,k+1 1

{
a1,k = m

} ∣∣ u1,k = n
]

= z
∞∑

m=0
E

[
zr1,k+1

∣∣ u1,k = n , a1,k = m
]

E
[

1
{

a1,k = m
}]

= z

(
N−n∑
m=0

E
[

zr1,k+1
∣∣ u1,k+1 = n −1+m

]
Pr

[
a1,k = m

]
+E

[
zr1,k+1

∣∣ u1,k+1 = N
]

Pr
[
a1,k ≥ N −n +1

])

= z

(
N−n∑
m=0

R1,k+1(z|n −1+m)Am(1)+R1,k+1(z|N)A∗
N−n+1(1)

)
.

(2.62)

Evidently, the remaining busy period in slot k is one slot longer than in slot k + 1
(if u1,k = n > 0). Next, we differentiate between all possible arrival patterns in slot
k through the law of total probability. Then, observe that, for the remaining busy
period in slot k +1, the pair of random variables (u1,k , a1,k) contains the same in-
formation as u1,k+1. Finally, note the separate treatment of a completely full queue.

Again, let us introduce a more convenient vector notation. Consider following
(column!) vector

r 1,k (z) = [
R1,k (z|0) · · ·R1,k (z|N)

]T
. (2.63)

Then, (2.62) leads to

r 1,k (z) = [
1 0

]T + zH>0 X (1)r 1,k+1(z) . (2.64)

Again, notice the intuitiveness of the matrix representation. The first term covers
the case u1,k = 0 and thus R1,k (z|0) = 1, which marks the end of the busy period,
whereas the second term starts with H>0, selecting for u1 > 0, thus for a continua-
tion of the busy period, which consists of the single elapsed slot k (z), during which
the evolution of the class-1 queue content is governed by X (1) and of the remaining
busy period at the beginning of the next slot (r 1,k+1(z)).

Note 31. Remark that, as matrix-multiplication is not commutative, the order of the
vectors/matrices has to be consistent with the evolution of time in order to correctly
encode the evolution of the class-1 queue. Therefore, the expression above is of the
form r 1,k (z) ∼ X (1)r 1,k+1(z) as we express slot k in terms of slot k + 1 whereas, in
section 2.3, the system content was determined by expressing slot k+1 in terms of slot
k yielding uk+1(z) ∼ uk (z)X (z).

N /∞ PRIORITY QUEUE - SINGLE-SLOT SERVICE TIMES 2-21

Consequently, as H>0 X (1) = D H A(1) the steady-state vector of conditional pgfs
of the remaining class-1 busy period given the system content is given by

r 1(z) = lim
k→∞

r 1,k (z) = (
I − zD H A(1)

)−1 [
1 0

]T
. (2.65)

2.6.2 Class-1 busy period

A class-1 busy period starts in slot k if, in the previous slot, the class-1 system con-
tent is zero and the number of class-1 arrivals is greater than zero. Let us denote
the length of this period by b1,k . We have

B1,k (z) = E
[

zb1,k

∣∣∣ u1,k−1 = 0, a1,k−1 > 0
]

=
∞∑

n=1
E

[
zb1,k 1

{
a1,k−1 = n

} ∣∣∣ u1,k−1 = 0, a1,k−1 > 0
]

=
N−1∑
n=1

E
[

zr1,k
∣∣ u1,k = n

]
Pr

[
a1,k−1 = n

∣∣ a1,k−1 > 0
]

+E
[

zr1,k
∣∣ u1,k = N

]
Pr

[
a1,k−1 ≥ N

∣∣ a1,k−1 > 0
]

=
N−1∑
n=1

R1,k (z|n)
An(1)

1− A0(1)
+R1,k (z|N)

A∗
N (1)

1− A0(1)
.

(2.66)

Notice that, once the conditions for starting a busy period are fulfilled, the busy pe-
riod evidently equals the remaining busy period. Hence, in steady-state, the class-1
busy period is given by

B1(z) = lim
k→∞

B1,k (z) = 1

1− A0(1)

(N−1∑
n=1

R1(z|n)An(1)+R1(z|N)A∗
N (1)

)
= 1

1− [
1 0

]
A(1)H 0e

[
1 0

]
A(1)H>0r 1(z) .

(2.67)

2.6.3 Extended service completion time

The extended service completion time of a class-2 packet starts when the packet
starts service and lasts until the next slot wherein a class-2 packet can be served.
Let t2,k denote the extended service completion time of a class-2 packet starting
service in slot k. We have

t2,k =
{

1 if a1,k = 0,

1+b1,k+1 if a1,k > 0.
(2.68)

If no class-1 packets arrive during the service-slot of the packet, the server can han-
dle another class-2 packet in the next slot. If there are class-1 arrivals, we have to
wait for a class-1 busy period after the service-slot until the service of another class-
2 packet can start. The corresponding pgf is given by

T2,k (z) = E
[

z t2,k
]

= Pr
[
a1,k = 0

]
z +Pr

[
a1,k > 0

]
zB1,k+1(z) .

(2.69)

2-22 N /∞ PRIORITY QUEUE - SINGLE-SLOT SERVICE TIMES

We can thus express t2, the extended service completion time of a class-2 packet in
steady state, through its pgf

T2(z) = lim
k→∞

T2,k (z) = A0(1)z + (
1− A0(1)

)
zB1(z) . (2.70)

Note 32. The notion of extended service completion times stems from queueing sys-
tems with server vacations [42]. Such a queueing system typically has one class of
customers and a server that can be unavailable. It is used to model real-life phe-
nomena such as repair in a production line, temporary shut-down of transmission
for energy savings purposes in wireless communications, etc. An extended service
completion time encapsulates both the service time and the vacation time. In order
to asses the performance of this system, an alternative (standard) queuing system
(without vacations!) is considered with service time set to the extended service com-
pletion time in the original queueing model. For many performance metrics these
two models behave indistinguishably and the formulas for the standard model are
evidently readily available. This methodology cannot be applied to the model stud-
ied here, as it generally requires the arrival process to be independent of the vacation
process. In the current model, the server vacations perceived by class-2 packets are
caused by class-1 packets and the arrivals of the two types of packets can be corre-
lated. However, the concept of extended service completion times remains very useful
to us.

2.6.4 Arrivals in the same slot as the tagged packet to be served
before it

The following analysis is similar to that in subsection 2.5.1 but the total number of
class-1 arrivals (a1,k) needs to be tracked simultaneously with the number of class-
2 arrivals before the tagged packet (â2,k) as all arriving class-1 packets need to be
served before the tagged packet due to the priority scheduling. Furthermore, as the
arrivals of both classes are correlated it is clear that a1,k and â2,k are correlated as
well. Recall that slot k, the arrival slot of the tagged class-2 packet, is not a ran-
dom slot, as it is more likely to have more class-2 arrivals, but that the system is in
steady state. Let ã2,k denote the number of arriving class-2 packets in this slot k.
Analogous to (2.47), we have

Pr
[
a1,k = m, ã2,k = n

]= nPr[a1 = m, a2 = n]

λ2
. (2.71)

Now, the (joint) probability of the class-1 arrivals and the class-2 arrivals before the
tagged packet can be obtained as

Pr
[
a1,k = m, â2,k = n

]= ∞∑
i=n+1

Pr
[

â2,k = n
∣∣ ã2,k = i

]
Pr

[
a1,k = m, ã2,k = i

]
=

∞∑
i=n+1

Pr[a1 = m, a2 = i]

λ2
.

(2.72)

N /∞ PRIORITY QUEUE - SINGLE-SLOT SERVICE TIMES 2-23

Again, the selection of the tagged class-2 packet such that there are n class-2 pack-
ets arriving before it, boils down to choosing uniformly from the i arriving packets
and, as the system is in steady state, the slot index k could be dropped because
the respective random variables are statistically indistinguishable. We define the
corresponding (partial) pgfs by

Âi (z) =
∞∑

n=0
Pr

[
a1,k = i , â2,k = n

]
zn = Ai (z)− Ai (1)

λ2(z −1)
,

Â∗
i (z) =

∞∑
l=i

Âl (z) = A∗
i (z)− A∗

i (1)

λ2(z −1)
.

(2.73)

Then, the corresponding matrix, characterizing the (class-1 and class-2) arrivals
in the same slot as the tagged class-2 packet, that are to be served before it, is given
by

Â2(z) = A(z)− A(1)

λ2(z −1)
. (2.74)

2.6.5 Class-2 delay

Finally, we have adequate tools for characterizing the class-2 delay. From (2.60),
D2(z), the pgf of the delay of a (randomly tagged) class-2 packet, with arrival slot k,
is obtained as

D2(z) = E
[

zd2
]

=
N∑

n=0
E

[
zd2 1

{
u1,k+1 = n

}]
=

N∑
n=0

E

[
zr1,k+1+

∑q2,k+â2,k
i=1 t2,ki

+1 1
{
u1,k+1 = n

}]

= z
N∑

n=0
E

[
zr1,k+1

∣∣ u1,k+1 = n
]

E

[
z

∑q2,k+â2,k
i=1 t2,ki 1

{
u1,k+1 = n

}]

= z
N∑

n=0
R1,k+1(z|n)E

[
z

∑q2,k+â2,k
i=1 t2,ki 1

{
q1,k +ae

1,k = n
}]

.

(2.75)

The last transition holds as q1,k = (u1,k −1)+ and thus u1,k+1 = q1,k +ae
1,k . Now, ob-

serve that the information concerning slot k +1 and slot k has been separated into
two distinct expectations. Then, as we are in steady state, the slot indices (k and
k +1) can be dropped in each part. Furthermore, the successive extended service
completion times are i.i.d., with pgf T2(z) given by (2.70). Recalling (1.19), one can

2-24 N /∞ PRIORITY QUEUE - SINGLE-SLOT SERVICE TIMES

then proceed by

D2(z) = z
N∑

n=0
R1(z|n)E

[
T2(z)q2+â2 1

{
q1 +ae

1 = n
}]

= z

(
N−1∑
n=0

R1(z|n)
n∑

m=0
E

[
T2(z)q2 1

{
q1 = m

}]
E

[
T2(z)â2 1{a1 = n −m}

]
+R1(z|N)

N−1∑
m=0

E
[
T2(z)q2 1

{
q1 = m

}]
E

[
T2(z)â2 1{a1 ≥ N −m}

])

= z
N−1∑
m=0

E
[
T2(z)q2 1

{
q1 = m

}](
N−1∑
n=m

E
[

T2(z)â2 1{a1 = n −m}
]

R1(z|n)

+E
[

T2(z)â2 1{a1 ≥ N −m}
]

R1(z|N)

)
= [

q
(
T2(z)

)
0
]

Â2
(
T2(z)

)
r 1(z)z .

(2.76)

Note that, in the second transition, one has to take into account that q1 cannot
exceed N −1. In the next transition, we interchange both sums.

Note 33. Again, notice that the order of the matrices mimics the evolution of time.

2.7 Calculating performance measures

From the expressions obtained in the previous sections, several performance mea-
sures can be derived. Typically, for class-1 this is straightforward. For instance, as
the entire distribution of the class-1 system content is provided by the finitely sized
vector u(1), computing moments of u1 is trivial. Furthermore, from the class-1 sys-
tem content we easily obtain the class-1 packet loss ratio pl r1. This is the fraction
of class-1 packets that arrive at the system but are dropped. We have

pl r1 =
λ1 −λe

1

λ1
= 1− 1−U0(1)

λ1
. (2.77)

Deriving performance measures is less straightforward for class 2. The moment-
generating property of pgfs enables determination of the moments of the class-2
system content. First, in order to find the mean, E[u2] = u′(1)e, let us compute the
first derivative of (2.37) yielding

u′(z)
(
zI −X (z)

)+u(z)
(

I −X ′(z)
)= (1−λe

T)
[
1 0

](
X (z)+ (z −1)X ′(z)

)
. (2.78)

Then, setting z = 1 implies

u′(1)
(

I −X (1)
)+u(1)

(
I −X ′(1)

)= (1−λe
T)

[
1 0

]
X (1) . (2.79)

However, again, as I − X (1) is not invertible, an additional relation is required. To
that end, let us take the second derivative of (2.37) producing

u′′(z)
(
zI −X (z)

)+2u′(z)
(

I −X ′(z)
)−u(z)X ′′(z)

= (1−λe
T)

[
1 0

](
2X ′(z)+ (z −1)X ′′(z)

)
. (2.80)

N /∞ PRIORITY QUEUE - SINGLE-SLOT SERVICE TIMES 2-25

Now, putting z = 1 yields

u′′(1)
(

I −X (1)
)+u′(1)2

(
I −X ′(1)

)−u(1)X ′′(1) = (1−λe
T)

[
1 0

]
2X ′(1) . (2.81)

Multiplying both sides of the equation with e makes the term in u′′(z) vanish as
(I −X (1))e = 0. This is quite convenient as it completes our quest for an additional
relation for u′(1). We have

u′(1)2
(

I −X ′(1)
)
e −u(1)X ′′(1)e = (1−λe

T)
[
1 0

]
2X ′(1)e . (2.82)

Finally, combining (2.79) and (2.82), while recalling the [A|b] notation defined in
note 24, leads to

E[u2] = u′(1)e

=
(
u(1)

[
X ′(1)− I

∣∣X ′′(1)e
]+ (1−λe

T)
[
1 0

][
X (1)

∣∣2X ′(1)e
])

[
I −X (1)

∣∣∣2(
I −X ′(1)

)
e
]−1

e .

(2.83)

Note that the variance of the arrival process appears in this equation (through X ′′(1)),
which is consistent with the ∞/∞ model [32, p. 25].

Completely analogously, higher-order moments are obtained. The variance,
Var[u2] = u′′(1)e+E[u2]−E[u2]2, requires the computation of u′′(1), which is found
from (2.81). Again, as I − X (1) is not invertible, calculating the third derivative of
(2.37), setting z = 1 and multiplying by e yields the required additional relation.
This procedure can be repeated ad infinitum to compute all moments. It allows for
very efficient computations as it expresses the moments in terms of derivatives of
X (z) evaluated in z=1. Thus, we can directly express the moments of the perfor-
mance measures in terms of real numbers, costly symbolic inversion is not needed,
and computations are thus very efficient.

2.8 Numerical examples

In the numerical examples, we will primarily focus on topics that identify the im-
pact of the limited class-1 queue capacity. This is achieved by comparing the results
for the N /∞ priority queue to those for the ∞/∞ priority queue. Other interesting
topics on two-class priority queues, e.g. the impact of correlation between the two
arrival classes, are extensively detailed throughout the literature. In the remainder
of this dissertation, the values for the performance measures for the ∞/∞ priority
queue were calculated using the expressions in [32].

Note 34. Let us introduce the shorthand notation “finite case” and “infinite case” for
the N /∞ and the ∞/∞ priority queue respectively.

2.8.1 Output-queueing switch

In order to illustrate how the type of research performed in this dissertation might
be applied, let us consider a relatively practical example. Therefore, let us first study

2-26 N /∞ PRIORITY QUEUE - SINGLE-SLOT SERVICE TIMES

10-5

10-4

10-3

10-2

10-1

100

0 10 20 30
Class-1 queue capacity (N)

p
lr

1

Figure 2.4: Class-1 Packet loss ratio vs. class-1 queue capacity.

one of the outputs of an 8×8 output-queueing switch of a computer network, de-
tailed in appendix A.4. Assume the batches to have size b = 4 and arrive with prob-
ability ν1 = ν2 = 0.1 yielding λ1 = λ2 = 0.4. On average the system thus receives the
same amount of packets of each class.

First, let us study the performance measures, using these parameters, versus
the class-1 queue capacity. Figure 2.4 depicts the class-1 packet loss ratio versus
the class-1 queue capacity N . Obviously the packet loss decreases with increasing
N . The region between 10−2 and 10−3, which we have marked in grey, is particularly
interesting as, in a practical computer networking setting, most real-time applica-
tions tolerate this amount of packet loss. In this region, we will show that system
content and packet delay, which are evidently exact for the finite case, are not ac-
curately approximated by the infinite case, hence identifying a practical use for the
queueing model developed in this chapter. A packet loss ratio over 10−2 causes the
Quality of Service (QoS) delivered to real-time applications to be unacceptable and
is hence impractical in a DiffServ setting. Systems with a very small packet loss ratio
(pl r1 << 10−3) are accurately modelled by the infinite case.

In figure 2.5, the mean and standard deviation of the delay of both classes are
plotted versus the class-1 queue capacity N . We clearly see the effect of priority
scheduling as the low mean and standard deviation for the class-1 delay demon-
strate the performance boost, at the cost of the class-2 performance measures. The
values increase for increasing N , as the number of dropped class-1 packets de-
creases. For larger N , the values clearly approach the values corresponding with
the infinite case, which are represented by the horizontal dotted lines. This vali-
dates that, for N going to infinity, the finite case converges to the infinite case, as
the number of dropped class-1 packets tends to zero. In the region with 10−2 <

N /∞ PRIORITY QUEUE - SINGLE-SLOT SERVICE TIMES 2-27

E [d1]

σd1

E [d2]

σd2

0

5

10

15

20

0 10 20 30
Class-1 queue capacity (N)

Sl
o

ts

Figure 2.5: Moments of class-1/2 delay vs. class-1 queue capacity.

E [u1]

σu1

E [u2]

σu2

0

2

4

6

8

0 10 20 30
Class-1 queue capacity (N)

Pa
ck

et
s

Figure 2.6: Moments of class-1/2 system content vs. class-1 queue capacity.

pl r1 < 10−3, determined in figure 2.4 and again marked in grey here, the infinite
system considerably overestimates the mean and standard deviation of the delay
of both classes. For instance, at N = 11, the mean and standard deviation of the
class-2 system content are overestimated by 5-7%. Figure 2.6 depicts the moments
of the system content in the same scenario. When comparing these figures, one can
“literally“ see Little’s Law at work, as the respective means have similar graphs.

Note 35. Notice that for the standard deviations the graphs are not similar, even for
class-1 where the distributional form of Little’s Law holds.

2-28 N /∞ PRIORITY QUEUE - SINGLE-SLOT SERVICE TIMES

E [d1]15

E [d1]∞

E [d2]15

E [d2]∞

0

10

20

30

0.00 0.25 0.50 0.75 1.00
Total arrival load (λT)

Sl
o

ts

Figure 2.7: Mean class-1/2 delay vs. total load, with α= 0.75, for class-1 queue capacity 15
and ∞.

α= 0.25 α= 0.75

0

10

20

30

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Total arrival load (λT)

Sl
o

ts

Figure 2.8: Comparison of figure 2.7 with the same scenario but with α= 0.25.

Next, define the “arrival mix” α to be the fraction of class-1 packets out of all
arriving packets, thus

α=λ1/λT . (2.84)

For figure 2.7, let us fix N = 15 and set α = 0.75, meaning that 3 out of 4 arriving
packets are of class 1. Thus, we vary the total arrival load λT by varying ν1, ν2,
while keeping ν1 = 3ν2 and plot the mean system content of both classes. Further-
more, we have again marked the region where 10−3 < pl r1 < 10−2, in grey. The
effect of the priority scheduling is apparent, class-2 packets reside in the system for

N /∞ PRIORITY QUEUE - SINGLE-SLOT SERVICE TIMES 2-29

a much longer time than class-1 packets. Especially note the long class-2 delays
as the load increases. For λT = 0.75, where the packet loss ratio pl r1 approaches
the 1% boundary, the error introduced by using the infinite model over our model
amounts to 7% and 10% overestimation for class-1 and class-2 respectively. Also
note that the total load can exceed 1 in the finite case (and not in the infinite case)
as excess class-1 packets are dropped. Here, it can run up to approximately 1.03.
This is caused by the fact that the finite system is stable as long as λ2 < 1−λe

1.

Note 36. Notice that, even for very low load, the delays are considerably longer than
a single slot due to the batch size b = 4.

Now, through figure 2.8, the influence of α is investigated by comparing figure
2.7 (on the right) to the scenario where all parameters are the same except now
α = 0.25 (on the left). Evidently, for α = 0.25, as there are less class-1 packets in
the system (and more class-2 packets), class-1 packet loss is reduced. It is even
so low (pl r1 << 10−3) that there is hardly any difference between the finite and
the infinite cases. Furthermore, increasing α, thus increasing the number of class-
1 packets and decreasing the number of class-2 packets), increases the delays for
both(!) class-1 and class-2 packets. For the former, this is due to the queueing
effect, for the latter due to the priority mechanism. Finally, note that the region
where the system is stable is smaller for α= 0.25, λT can hardly exceed 1.

λ2 = 0.1 λ2 = 0.5 λ2 = 0.9

0

10

20

30

40

50

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Class-1arrival load (λ1)

Sl
o

ts

Figure 2.9: Mean class-1/2 delay vs. class-1 load for class-1 queue capacity 15 and ∞.

Figure 2.9 exhibits the region of stability for different arrival loads. It plots the
class-1/2 mean delay versus the class-1 load for, from left to right, class-2 load equal
to 0.1, 0.5, 0.9 respectively. The dotted lines, representing the infinite case, evi-
dently stop at λT = 1 thus at λ1 = 0.9,0.5,0.1 respectively. For λ2 = 0.1, the finite
case is stable up to λ1 = 1.05, meaning the system can support a total load of 115%

2-30 N /∞ PRIORITY QUEUE - SINGLE-SLOT SERVICE TIMES

E [d1]15

E [d1]∞

E [d2]15

E [d2]∞

0

20

40

60

0 5 10 15 20
Batch size (b)

Sl
o

ts

Figure 2.10: Mean class-1/2 delay vs. batch size for class-1 queue capacity 15 and ∞.

(λT = 1.15). For λ2 = 0.5, the system can barely support λT over 100% (λ1 = 0.51)
and for λ2 = 0.9 the excess supported load is negligible. Evidently, this difference is
caused by the difference in packet loss and, as packet loss causes λe

1 to be smaller
than λ1, this directly follows from the stability condition λ2 < 1−λe

1. Furthermore,
one again sees that there only is a noticeable difference between the finite and infi-
nite case if the fraction of class-1 packets (α) is large enough.

Finally, let us study the effect of the variance of the arrival process. Assume
class-1 queue capacity N = 15 and λ1 = λ2 = 0.4. We vary the batch size b while
adjusting the νi accordingly in order to keep the arrival load λi constant. For in-
creasing b the system thus receives the same amount of packets but the variance of
the number of arrivals increases, as packets are more clumped together. In figure
2.10, we depict the mean delays of both classes, as well as the mean delays of the
infinite case (as dotted lines), versus the batch size b. We clearly see that the delay
increases and that the infinite case leads to inaccurate results when the variance in
the arrival process increases. The decrease of the mean delays for b ≥ 15 can be at-
tributed to a high loss rate since for b ≥ 15 the batch size exceeds the class-1 queue
capacity.

2.8.2 Poisson and power-law arrivals

Now, we verify if the results from the previous subsection, where the arrival process
was driven by the switch, are also applicable for other arrival processes. There-
fore, let us investigate the queueing system studied in this chapter when arrivals
occur according to processes that are traditionally used in the queueing literature.
The Poisson distribution is the most frequently used distribution for describing the
arrival process of a queuing system. In contrast, in real-life, power-law arrival pro-

N /∞ PRIORITY QUEUE - SINGLE-SLOT SERVICE TIMES 2-31

E [u1]p

E [u1]t

E [u2]p

E [u2]t

0

1

2

0 20 40 60 80
Class-1 queue capacity (N)

Pa
ck

et
s

Figure 2.11: Moments of class-1/2 system content vs. class-1 queue capacity.

cesses are very common (see appendix A.3). Therefore, let us compare the impact
of using these arrival processes. Let us assume that the arrivals of class 1 and class
2 are mutually independent. Then, the expressions describing the bivariate arrival
process (Ai (z)) for the Poisson and for the power-law arrival process are detailed in
appendix A.1.1 and A.3.1 respectively. In the figures in this subsection, we will use
the subscripts p and t to indicate Poisson and power-law (heavy-tailed) arrivals re-
spectively.

Figure 2.11 depicts the mean system content for both classes vs. the class-1
queue capacity, where, for the Poisson arrivals, we let λ1 = λ2 = 0.4 and, for the
power-law arrivals, we let γ1 = γ2 = 3.5, hence the mean and variance exist but
the higher moments are infinitely large, and in order to also have λ1 = λ2 = 0.4,
we set β1 = β2 = 0.3359655818. The mean numbers of arrivals are thus the same
as in figure 2.6 for the switch, allowing for a comparison of both figures (only for
the means as the standard deviation is infinite for the power-law arrivals). Clearly,
notice that Poisson arrivals yield a smaller mean system content for both classes
than power-law arrivals, which in turn is smaller than those for the switch arrival
process. This is caused by the increasing amounts of variances of these processes
(in the switch case, the batch arrivals cause high variance). One can see that this
is also true for the infinite case, where the mean system content is completely de-
termined by the mean and variance of the arrival process [32, p. 25]. Again, regions
with moderate packet loss have a grey background. As demonstrated in figure 2.12,
the grey area for N = 3−4 marks the region where 10−3 < pl r1 < 10−2 for Poisson ar-
rivals, whereas the other grey area for N = 8−34 corresponds to power-law arrivals.
In figure 2.11, also notice that convergence to the infinite case is almost immediate
with Poisson arrivals but, more importantly, that the convergence is very slow with

2-32 N /∞ PRIORITY QUEUE - SINGLE-SLOT SERVICE TIMES

pl r1,p

pl r1,t

10-30

10-25

10-20

10-15

10-10

10-5

100

0 20 40 60 80
Class-1 queue capacity (N)

p
lr

1

Figure 2.12: Class-1 packet loss ratio system content vs. class-1 queue capacity.

power-law arrivals. For N = 30, the overestimation by the infinite case amounts to
5% for class 1 and 11% for class 2 and it remains considerably large at 3% and 6%
respectively for N = 80. This is caused by the heavy tail of the class-1 arrival distri-
bution, which is carried over to the class-1 packet loss ratio, which is apparent in
2.12. Even for packet loss ratios smaller than 10−4, the difference between the infi-
nite and the finite case is considerably large as most of the class-1 packets arriving
in case of a “tail event” are dropped by the system, even when N is large. There-
fore, in the finite case, not only mean and variance of the arrival process, but the
entire arrival process and also the class-1 queue capacity N have a major influence
on system performance.

Finally, in order to further investigate the impact of power-law arrivals, let us
reconsider the situation studied in figure 2.7, but with power-law arrivals, again
with γ1 = γ2 = 3.5. In 2.13, we vary the total arrival load λT by varying β1 and β2,
while keeping β1 = 3β2 and plot the mean system content of both classes. It looks
similar to figure 2.7 but, for all values of λT , it holds that 10−3 < pl r1 < 10−2 and the
entire background is thus grey. Also, note that the stability region is smaller for this
arrival process. The divergence for higher loads is clear but the difference is smaller
than with the switch arrival process, as the arrival process has a smaller variance.
However, here, there is already a difference between the finite and the infinite case
for moderate values of λT , caused by the heavy-tailednesss of the arrival process.
Due to the ubiquity of power-law processes in practical applications, the results of
this subsection are of significant importance.

N /∞ PRIORITY QUEUE - SINGLE-SLOT SERVICE TIMES 2-33

E [d1]15

E [d1]∞

E [d2]15

E [d2]∞

0

10

20

30

0.00 0.25 0.50 0.75 1.00
Total arrival load (λT)

Sl
o

ts

Figure 2.13: Mean class-1/2 delay vs. total load, with α= 0.75, for class-1 queue capacity 15
and ∞.

2.9 Concluding remarks

This chapter exhibits the methodology for studying a two-class priority queue with
finite class-1 queue capacity. The analysis simultaneously takes place in the proba-
bility domain for class-1 and in the transform domain for class2 through the use of
a vector/matrix representation where the elements are partial generating functions
tracking class-2 while the position of an element encodes class-1 information. This
enables the determination of various performance measures of such a queueing
system from the probability mass functions of the high-priority (class 1) and the
probability generating functions of the low-priority (class 2) system content and
delay, one derives through the analysis. Under certain conditions (small queue ca-
pacity, relatively high class-1 load, power-law arrivals), our results are considerably
different from the ones obtained if one assumes infinite class-1 queue capacity, as
is standard in the literature, hence justifying our queueing model.

3
N /∞ NON-PREEMPTIVE PRIORITY

QUEUE - GENERAL SERVICE TIMES

3.1 Introduction

In many real-life queueing systems, not all customers require the same (fixed) ser-
vice time. Evidently, the model with single-slot service times studied in previous
chapter cannot (accurately) describe such systems. Therefore, this chapter extends
that model by treating the service times as random variables that follow any gen-
eral distribution. Moreover, in priority systems, customers can have different ser-
vice requirements from class to class and thus the service times follow a (potentially
different) general distribution for each class.

Here, we will study a non-preemptive priority queue, which means that class-2
service is modeled to be uninterruptible. This means that a class-1 packet arriving
at the system while a class-2 packet is in service, thus when there are no class-1
packets in the system, has to wait (potentially for multiple slots) until the ongoing
class-2 service is finished, before it can enter the server. Consequently, the class-1
system cannot be studied separately as a FIFO queue, as detailed in the previous
chapter, because class-1 performance depends on the class-2 system content and
service time distribution.

Numerous studies of non-preemptive and preemptive (which has different vari-
ants depending on whether an interrupted service can be resumed, has to be be
restarted completely or a mixture of these) priority queues with infinite capacity
have been performed with all kinds of arrival processes. Recall that the first chap-
ter on priority queues was written in 1954 [25]. Furthermore, Takagi’s book [4, vol.
3] treats several of these models and the PhD dissertation [32] surveys the literature,

3-2 N /∞ NON-PREEMPTIVE PRIORITY QUEUE - GENERAL SERVICE TIMES

such as [43, 31], extensively. To the best of our knowledge, priority queues with gen-
eral service distributions and finite queue capacities were first studied in [33, 44].
More work in this area is found, a.o. in [45] and in [46], with Markovian arrival pro-
cesses.

This chapter is structured in the same manner as the previous one. First, the
N /∞ priority queueing model is detailed. Next, the analysis of the system content
and delay of both classes is performed. Finally, the applicability of the formulas is
demonstrated through some numerical examples and the chapter is concluded by
some summarizing remarks.

3.2 Model

This chapter studies a discrete-time single-server two-class non-preemptive pri-
ority queueing system where class-1 (real-time) packets receive absolute priority
over class-2 (data) packets. Packets are handled in a FIFO manner within a class.
We limit the capacity of the class-1 queue to N packets such that real-time packets
that arrive at a full queue are dropped by the system. The system can hence contain
up to N +1 class-1 packets simultaneously, N in the queue and 1 in the server. In
contrast, the class-2 queue has infinite capacity. Time is divided into fixed-length
slots and a packet can only enter the server at slot boundaries, even if arriving in an
empty system.

Let s j (j = 1,2) denote a generic random service time of a class- j packet . These
independent variables have corresponding mean values µ j (j = 1,2) and pgfs

S j (z) =
∞∑

n=1
Pr

[
s j = n

]
zn , (3.1)

where the sum starts at 1 as service times are assumed to take at least one slot
(Pr

[
s j = 0

] = 0), which is standard in the queueing literature. As in the previous
chapter, observing the system at the beginning of a slot happens after the depar-
ture (if any) at the slot boundary but before arrivals in the subsequent slot.

Note 37. In the queueing literature, µ generally denotes the service rate so that the
mean service time is 1/µ. However, we have chosen our notation to match that of [32],
facilitating the comparison of equations.

We assume that, for both classes, the numbers of arrivals in consecutive slots
form a sequence of independent and identically distributed (i.i.d.) random vari-
ables. We define ai ,k as the number of class-i (i = 1,2) packet arrivals during slot k.
The arrivals of both classes are characterized by the joint probability mass function
(pmf)

a(m,n) = Pr
[
a1,k = m, a2,k = n

]
(3.2)

which allows us to take into account dependence between both classes. The corre-

N /∞ NON-PREEMPTIVE PRIORITY QUEUE - GENERAL SERVICE TIMES 3-3

sponding joint probability generating function (pgf) is denoted by

A(z1, z2) =
∞∑

i=0

∞∑
j=0

a(i , j)zi
1z j

2 . (3.3)

The partial pgf of the number of class-2 arrivals in a slot with i and i or more class-1
arrivals are respectively denoted by Ai (z) and A∗

i (z). We establish

Ai (z) = E
[
za2,k 1

{
a1,k = i

}]= ∞∑
j=0

a(i , j)z j , A∗
i (z) =

∞∑
j=i

A j (z) . (3.4)

The mean number of class-1 and class-2 arrivals per slot are respectively expressed
as

λ1 =
∞∑

i=1
i Ai (1) , λ2 = d

d z
A∗

0 (z)
∣∣∣

z=1
= A∗

0
′(1) . (3.5)

Hence, the loads per class are ρ1 = λ1µ1 and ρ2 = λ2µ2. Furthermore, the total
mean number of arrivals and the total load are respectively denoted by λT =λ1+λ2

and ρT = ρ1 +ρ2.

3.3 System content

Again, let the class-i (i = 1,2) system content at the beginning of slot k be denoted
by ui ,k . For this model, one can no longer directly relate the system content of
both classes in consecutive slots as the process {(u1,k ,u2,k),k ≥ 1} no longer forms a
Markov chain because the service process, which evidently has an effect on the sys-
tem, spans multiple slots. One popular approach to tackling this issue introduces
supplementary random variables, xi ,k , denoting the remaining number of slots re-
quired for the service of the class-i packet in service in slot k (if any). Then, the
four-dimensional process {(u1,k ,u2,k , x1,k , x2,k),k ≥ 1} is a Markov chain.

Another popular approach, the path by which we will travel, considers a pro-
cess that tracks the system content of both classes only at specific slots rather than
at all slots. These specific slots, slots where a packet starts service or the system is
empty, are called start-slots. Let ni ,l denote the class-i system content at the be-
ginning of start-slot l . The start-slots are chosen in such a way that the process
{(n1,l ,n2,l), l ≥ 1} forms a Markov chain allowing for an analysis along the lines of
the one in the previous chapter. These slots are also called embedded points and
the process the “embedded” Markov chain. Once the properties of the embedded
process are known, one can easily study the process {(u1,k ,u2,k),k ≥ 1}.

Note 38. I prefer the embedded Markov chain approach over the supplementary
variable method as it divides the problem in several sub-problems which are tackled
separately and, as added bonus, often yield intermediate results with a clear proba-
bilistic interpretation.

This section proceeds as follows. First, the operation of the system is detailed
through the study of a specific sample path and the relation between the system

3-4 N /∞ NON-PREEMPTIVE PRIORITY QUEUE - GENERAL SERVICE TIMES

content of both classes at the beginning of start-slots is established. The next sub-
section addresses the characterization of arrivals during a class-i service. This en-
ables determination of the system content at start-slots in subsection 3.3.3. Next,
the system content at the beginning of random slots is derived from those at start-
slots but this requires several intermediate results which make up the preceding
subsections.

3.3.1 Relating consecutive start-slots

A start-slot is a slot where the server is available for starting service of a packet,
thus if a service actually starts or the system is empty. In figure 3.1, the evolution
of the system is exemplified for a specific sample path in order to clarify the con-
cept of start-slots and give some insights into the system studied in this chapter.
On the left, the queueing system is depicted for N = 3. To its right, the evolution
of the system content, influenced by arrivals and completed services, is depicted,
aligned horizontally, during 37 slots. Class-1 (class-2) information is indicated in
dark- (light-)grey and full (dotted) lines respectively. Time evolves on the horizon-
tal axis and the queue content of both classes is shown on the positive vertical axis
whereas the state of the server is visible on the negative one. For the server, ar-
rows indicate service time durations and start-slots are highlighted with a ‘•’. The
following events are particularly interesting. In slot 10, class-1 packets arrive in a
system void of class-1 packets. Although class-1 packets have priority, class-1 ser-
vice can only start after the class-2 service in progress is completed as the priority
is non-preemptive. Therefore, class-1 performance is dependent on class-2 traffic,
in contrast with the model studied in the previous chapter. Slot 12 exemplifies that
the class-1 queue can only hold N packets, while slot 26 demonstrates that packets
cannot enter the server upon arrival, but only at slot boundaries. Moreover, slot 26
clarifies that the class-1 system content is limited to N at start-slots, whereas, at the
non-start-slots 28, 29 and 32 it can amount to N +1 if the queue is full and a class-1
packet is in service. Remark that a slot where the system is empty at the beginning
of the slot is a start-slot as well (slots 25 and 26). Furthermore, notice the dotted line
in slot 32 visualizing the class-2 queue content “behind” the class-1 content (as the
former is smaller).

Evidently, the time period between the beginning of two consecutive start-slots
consists of s1, s2 or a single slot(s), depending on the type of packet in the server
(if any). Therefore, study of the evolution of the system during a service time is of
paramount importance to the analysis. Let ei , j ,k represent the number of class-i
arrivals during a class- j service that starts in slot k. We have

ei , j ,k =
s j −1∑
m=0

ai ,k+m . (3.6)

Recall that ni ,l denotes the class-i system content at the beginning of start-slot
l . The process {(n1,l ,n2,l), l ≥ 1} forms a Markov chain. Assume that start-slot l

N /∞ NON-PREEMPTIVE PRIORITY QUEUE - GENERAL SERVICE TIMES 3-5

1
2

11
112

111111

1
1

122

2
2

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37

N

se
rv
er

q
u
eu
e

co
n
te
n
t

1
222. . .

1

Fi
gu

re
3.

1:
E

vo
lu

ti
on

of
th

e
fi

n
it

e/
in

fi
n

it
e

n
on

-p
re

em
p

ti
ve

qu
eu

ei
n

g
sy

st
em

w
it

h
N

=
3

ov
er

37
sl

ot
s.

3-6 N /∞ NON-PREEMPTIVE PRIORITY QUEUE - GENERAL SERVICE TIMES

corresponds with slot k. Relating start-slots l and l +1 establishes the set of system
equations

n1,l+1 =


min(N , a1,k) if n1,l = 0,n2,l = 0,

min(N ,e1,2,k) if n1,l = 0,n2,l > 0,

min(N ,n1,l −1+e1,1,k) if n1,l > 0,

n2,l+1 =


a2,k if n1,l = 0,n2,l = 0,

n2,l −1+e2,2,k if n1,l = 0,n2,l > 0,

n2,l +e2,1,k if n1,l > 0,

(3.7)

The system equations can be explained as follows: if the system is empty, start-slot
l+1 is slot k+1, thus only the arrivals during slot k contribute to the system content.
If n1,l = 0,n2,l > 0, a class-2 packet starts service at the beginning of start-slot l and
it leaves the system immediately before start-slot l + 1. For each class, admitted
arrivals during this class-2 service contribute to the system content at the beginning
of start-slot l +1. On the other hand, if n1,l > 0, a class-1 packet starts service at the
beginning of start-slot l and it leaves the system immediately before start-slot l +1.
For each class, admitted arrivals during this class-1 service contribute to the system
content at the beginning of start-slot l +1. Note that the class-1 system content at
the beginning of start-slots cannot exceed N , the class-1 queue capacity.

3.3.2 Arrivals during a service

Evidently, we try to stick to the analysis method that was successful in the previous
chapter. In order to proceed from (3.7), we need expressions characterizing the
ei , j ,k . Without loss of generality, one can drop the index k as the ei , j ,k are i.i.d.
(for different k) as the ai ,k are i.i.d. and independent of the s j . Consequently, the
corresponding partial pgfs of the number of class-2 arrivals during a class- j service,
during which i (0 ≤ i ≤ N) and i or more class-1 packets arrive, respectively denoted
by Ei , j (z) and E∗

i , j (z), are given by

Ei , j (z) = E
[
ze2, j ,k 1

{
e1, j ,k = i

}]
, E∗

i , j (z) =
∞∑

m=i
Em, j (z) . (3.8)

Mimicking the matrix-based approach of the previous chapter, leads to

E j (z) =



E0, j (z) E1, j (z) · · · EN−1, j (z) E∗
N , j (z)

0 E0, j (z) · · · EN−2, j (z) E∗
N−1, j (z)

...
. . .

. . .
...

...
...

. . . E0, j (z)
...

0 · · · · · · 0 E∗
0, j (z)


. (3.9)

Unfortunately, obtaining these partial pgfs is, in general, a tedious task. We have

Ei , j (z) = 1

i !

d i

d xi
S j

(
A(x, z)

)∣∣∣
x=0

, E∗
i , j (z) = S j

(
A(1, z)

)− i−1∑
k=0

Ek, j (z) . (3.10)

N /∞ NON-PREEMPTIVE PRIORITY QUEUE - GENERAL SERVICE TIMES 3-7

However, from a computational point of view, this is infeasible for general S j (z) and
A(z1, z2).

Note 39. A very common approach to tackling these kind of problems would be to
invert this two-dimensional transform using the Fourier-series method, which is fast
but approximate, rendering it useless for our purposes of finding an exact closed-
form solution.

Fortunately, the following alternative method is interesting, especially from a
numerical point of view as a lot of the computational effort is reused in the further
analysis of the system. Recall, the matrix of arrivals in a slot, given by

A(z) =



A0(z) A1(z) · · · AN−1(z) A∗
N (z)

0 A0(z) · · · AN−2(z) A∗
N−1(z)

...
. . .

. . .
...

...
...

. . . A0(z)
...

0 · · · · · · 0 A∗
0 (z)

 . (3.11)

Intuitively, the matrix E j (z), governing the arrivals during a service, should be the
multiplication of s j , the number of slots in a service time, times the matrix A(z),
which governs the arrivals in a slot. It turns out that the fact that s j is a random
variable does not pose any issues and the preceding argument is completely correct
yielding

E j (z) = S j
(

A(z)
)
, j = 1,2. (3.12)

Evaluating a function in a matrix is perfectly feasible by grace of the spectral de-
composition theorem (see appendix B), if S j (z) satisfies the requirements detailed
in (B.2).

This theorem provides us with a very powerful tool from a computational point
of view. Instead of having to evaluate the matrix power series

∑∞
n=0 Pr

[
s j = n

]
A(z)n ,

we only need to evaluate the function S j (z) and its derivatives for scalar arguments
and compute a finite number of matrix multiplications. The downside is that the
eigenvalues of A(z) have to be calculated, as well as the matrices G j . In general,
this can prove to be quite difficult but in our case the downsides are virtually non-
existent as the eigenvalues and spectral projectors are surprisingly easy to obtain.

Computing the eigenvalues is straightforward because of the special eigenstruc-
ture of A(z). As this matrix has a triangular form, the eigenvalues simply are its di-
agonal elements. There are two distinct eigenvalues: ξ1 = A∗

0 (z), with index 1, and
ξ2 = A0(z), with index N .

Note 40. Note that we obtain an (exact) analytic expression for the eigenvalues whereas
finding eigenvalues usually requires some numerical calculations .

The corresponding spectral projectors are easily shown to be given by

G1 =
[
0T · · · 0T e

]
, G2 =

[
I −e
0 0

]
. (3.13)

Remarkably, they are independent of z.

3-8 N /∞ NON-PREEMPTIVE PRIORITY QUEUE - GENERAL SERVICE TIMES

Note 41. Recall that I denotes the identity matrix of appropriate size, xT is the trans-
pose of vector x and e and 0 indicate the column vectors of appropriate size with all
elements equal to 1 and 0 respectively.

Finally, applying the spectral decomposition theorem (B.1) yields

E j (z) = S j
(

A(z)
)= S j

(
A∗

0 (z)
)
G1 +

N−1∑
k=0

S(k)
j

(
A0(z)

)
k !

(
A(z)− A0(z)I

)kG2 . (3.14)

Note 42. Recall that the notation f (k)(z) denotes the k-th derivative of f (z).

Notice that E 1(z) and E 2(z) share all factors except (the derivatives of) the functions
S1(z) and S2(z). Especially note that the (computationally expensive) powers of(

A(z)− A0(z)I
)

are shared.

3.3.3 System content at the beginning of start-slots

Let us denote the partial pgf of the class-2 system content at the beginning of start-
slot l that has class-1 system content equal to i by

Ni ,l (z) = E
[
zn2,l 1

{
n1,l = i

}]
. (3.15)

The corresponding row vector of size N+1 of the system content at the l th start-slot
is given by

nl (z) = [
Ni ,l (z)

]
i=0..N . (3.16)

Again, define the (N +1)× (N +1) matrices

H 0 =
[

1 0
0T O

]
, H>0 = I −H 0, D H =

[
0 0
I 0T

]
. (3.17)

By conditioning on the state of the server at start-slot l , a relation between nl (z)
and nl+1(z) is derived from the system equations (3.7). We have

nl+1(z) = nl (0)H 0 A(z)+ (
nl (z)−nl (0)

)
H 0

1

z
E 2(z)+nl (z)H>0D H E 1(z) . (3.18)

This can be explained as follows. The first term corresponds with an empty server.
Therefore, n2,l = 0,n1,l = 0 and start slot l +1 is the next slot thus we take into ac-
count the arrivals in a single slot (start-slot l). The second term represents the evo-
lution of the system when a class-2 service starts at start-slot l . This yields that
n2,l > 0,n1,l = 0, that by start-slot l +1 the class-2 packet in service will have left the
system and that we need to consider arrivals during a class-2 service. The final term
corresponds with a class-1 packet starting service at start-slot l . Then, n1,l > 0 and
the class-1 packet in service will have left the system by start-slot l +1 and packets
arriving during this class-1 service need to be accounted for.

Assume that the system has reached steady state and define following steady-
state values

n(z) = lim
l→∞

nl (z) = lim
l→∞

nl+1(z) = [
Ni (z)

]
i=0..N . (3.19)

N /∞ NON-PREEMPTIVE PRIORITY QUEUE - GENERAL SERVICE TIMES 3-9

Taking the limit of (3.18) for l →∞ induces

n(z)
(
zI −H 0E 2(z)− zD H E 1(z)

)= n(0)H 0
(
z A(z)−E 2(z)

)
. (3.20)

Note 43. From now on, we opt for brevity over clarity in order to reduce formula sizes.
Consequently, we have invoked the identity H>0D H = D H in the formula above.

As n(0)H 0 =
[
N0(0) 0

]
, (3.20) becomes

n(z)
(
zI −H 0E 2(z)− zD H E 1(z)

)= [
N0(0) 0

](
z A(z)−E 2(z)

)
. (3.21)

The constant N0(0) is the only unknown. It is found in two steps.
First, evaluation of (3.21) in z = 1 produces

n(1)
(

I −H 0E 2(1)−D H E 1(1)
)= [

N0(0) 0
](

A(1)−E 2(1)
)

. (3.22)

As the matrices E j (1), j = 1,2 are right-stochastic by construction, each row of ma-
trix [I −H 0E 2(1)−D H E 1(1)] sums to 0 and it hence has rank N and is not invertible.
We thus require an additional relation in order to obtain the vector n(1). The nor-
malization condition provides n(1)e = 1. Combining this with (3.22) yields

n(1) =
[[

N0(0) 0
](

A(1)−E 2(1)
)∣∣∣1][

I −H 0E 2(1)−D H E 1(1)
∣∣∣e]−1

. (3.23)

Second, differentiation of (3.21) with respect to z yields

n(z)
(

I −H 0E ′
2(z)−D H E 1(z)− zD H E ′

1(z)
)

+n′(z)
(
zI −H 0E 2(z)− zD H E 1(z)

)= [
N0(0) 0

](
A(z)+ z A′(z)−E ′

2(z)
)

.
(3.24)

Observe that E j (1) (j = 1,2) and A(1) are right-stochastic matrices by construction.
Therefore, (

I −H 0E 2(1)−D H E 1(1)
)
e = 0 ,

[
1 0

]
A(1)e = 1. (3.25)

Keeping these identities in mind, evaluation of (3.24) in z = 1 and multiplication of
both sides of the resulting equation by e yields

N0(0) = n(1)
(

I −H 0E ′
2(1)−D H E 1(1)−D H E ′

1(1)
)
e

1+ [
1 0

](
A′(1)−E ′

2(1)
)
e

. (3.26)

Substitution of (3.23) for n(1) and solving the resulting expression for N0(0) finally
provides this probability.

Now that N0(0) has been obtained, (3.23) provides n(1), the probability mass
function (pmf) of the class-1 system content at the beginning of a start-slot in steady
state and as (3.21) leads to

n(z) = [
N0(0) 0

](
z A(z)−E 2(z)

)(
zI −H 0E 2(z)− zD H E 1(z)

)−1 , (3.27)

the pgf of the class-2 system content at the beginning of a start-slot in steady state
is found as n(z)e.

Note 44. As in the previous chapter, the stationary distribution could have been de-
rived immediately using the Pollaczeck-Khinchine formula.

3-10 N /∞ NON-PREEMPTIVE PRIORITY QUEUE - GENERAL SERVICE TIMES

3.3.4 Moving from start-slots to random slots

Consider a randomly chosen slot, say k. We will construct the system content in
slot k starting from the preceding start-slot l as the system content at start-slots is
known from the previous subsection. Recall that, if slot k happens to be a start-slot,
the preceding start-slot l is slot k itself. The key observation to make is that the state
of the server (the type of the packet in service, if any) in slot k equals the state of the
server in the preceding start-slot l , as in an empty system these slots coincide and
in a non-empty system a class- j (j = 1,2) packet enters the server in start-slot l and
remains there until the following start-slot. Therefore, if we condition on the state
of the server in slot k, the state of the server in start-slot l is known and one only has
to focus on the evolution of the queue content from start-slot l to slot k. To that end,
one needs to account for the class-i queue content at (the beginning of) start-slot
l , denoted by mi ,l , and for the packets arriving between start-slot l (inclusive) and
slot k (exclusive). If a class- j (j = 1,2) packet is in service during a random slot, the
time period between the beginning of that slot and the beginning of the preceding
start-slot is called the elapsed service time s−j of that packet. Furthermore, let e−i , j ,k
represent the number of class-i arrivals during the elapsed class- j service time up
to slot k. Parallel to (3.6), we then have

e−i , j ,k =
s−j∑

m=1
ai ,k−m . (3.28)

Formally, the arguments above can be stated as

u1,k =


0 if no service,

m1,l +e−1,1,k +1 if class-1 service,

m1,l +e−1,2,k if class-2 service,

u2,k =


0 if no service,

m2,l +e−2,1,k if class-1 service,

m2,l +e−2,2,k +1 if class-2 service.

(3.29)

Evidently, if there is no service then no packets are present at the beginning of slot k
(start-slot l). Otherwise, we simply add the queue contents at start slot l , the pack-
ets arriving during the elapsed service time and the packet in service (to the appro-
priate class). In the following subsections we characterize these random variables.

3.3.5 Queue contents at start-slots conditioned on the server

Obtaining the queue content in function of the system content was performed in
the previous chapter. Consequently, completely analogous to (2.38), we have

m1,l = (n1,l −1)+ ,

m2,l =
{

(n2,l −1)+ if n1,l = 0,

n2,l if n1,l > 0.

(3.30)

N /∞ NON-PREEMPTIVE PRIORITY QUEUE - GENERAL SERVICE TIMES 3-11

Recall that, here, as we study the start-slot l preceding random slot k, the state
of the server is identical in these slots and thus ui ,k and mi ,l are correlated. Con-
sequently, we are interested in the queue content conditioned on the state of the
server. Furthermore, let the 1×N +1 vector ml

(
z | j

)
, (j = 0,1,2) denote the queue

content at the beginning of a start-slot l when the server is empty (j = 0), serving a
class-1 packet (j = 1) or a class-2 packet (j = 2) respectively. Then, by conditioning
on the state of the server, (3.30) leads to

ml (z |0) = [
E

[
zm2,l 1

{
m1,l = i

} ∣∣ no service
]]

i=0..N

= [
E

[
1{0 = i } | n1,l = 0, n2,l = 0

]]
i=0..N

= [
1 0

]
,

ml (z |1) = [
E

[
zm2,l 1

{
m1,l = i

} ∣∣ class-1 service
]]

i=0..N

= [
E

[
zn2,l 1

{
n1,l −1 = i

} ∣∣ n1,l > 0
]]

i=0..N

= 1

1−N0,l (1)
nl (z)H>0D H ,

ml (z |2) = [
E

[
zm2,l 1

{
m1,l = i

} ∣∣ class-2 service
]]

i=0..N

= [
E

[
zn2,l−1 1{0 = i }

∣∣ n1,l = 0, n2,l > 0
]]

i=0..N

= 1

N0,l (1)−N0,l (0)
(nl (z)−nl (0)) H 0

1

z
.

(3.31)

Notice that knowing the state of the server implies knowledge about the possible
values for n1,l and n2,l . Furthermore, as before, D H is used to “subtract” a class-1
packet, in this case the packet moving from the queue to the server. For class-2,
this happens through the factor z−1. The corresponding steady-state expressions
m

(
z | j

)
, (j = 0,1,2), the steady-state queue content given the state of the server,

are trivially obtained by dropping the index l , yielding

m (z |0) = [
1 0

]
,

m (z |1) = 1

1−N0(1)
n(z)D H ,

m (z |2) = 1

z
(
N0(1)−N0(0)

) (
n(z)−n(0)

)
H 0 .

(3.32)

3.3.6 Arrivals during an elapsed service time

If a class- j (j = 1,2) packet is in service in slot k, the elapsed service time s−j runs
from the preceding start-slot l up to slot k. The goal of this subsection is obtain-
ing an expression (jointly) quantifying e−1, j ,k and e−2, j ,k . First, recall that slot k was
chosen randomly. However, the total service time of the packet in service, s̃ j is not
statistically indistinguishable from s j due to the renewal theory inspection para-
dox. Similar to arrivals before a randomly tagged packet, a random slot during a
service is more likely to belong to a long service time. Consequently, analogous to
(2.47), we have

Pr
[
s̃ j = n

]= nPr
[
s j = n

]
µ1

, (3.33)

3-12 N /∞ NON-PREEMPTIVE PRIORITY QUEUE - GENERAL SERVICE TIMES

and thus

Pr
[

s−j = n
]
=

∞∑
i=n+1

Pr
[
s j = i

]
µ j

, (3.34)

Hence, the pgf of the elapsed service time of the class- j packet in service in a ran-
dom slot is given by

S−
j (z) = S j (z)−1

µ j (z −1)
. (3.35)

Note 45. The link with equation (2.73) is evidently due to the conceptual similarity
of “arrivals before a tagged packet” and “slots before a tagged slot”.

Finding an expression for the arrivals during the elapsed service time follows
the template of subsection 3.3.2 where the arrivals during a service were computed
using the spectral decomposition theorem, but here S−

j (z) evidently is used instead
of S j (z). Hence, the number of arrivals during an elapsed class- j service time are
characterized by the matrix

E−
j (z) = S−

j

(
A(z)

)
= S−

j

(
A∗

0 (z)
)
G1 +

N−1∑
k=0

S−(k)
j

(
A0(z)

)
k !

(
A(z)− A0(z)I

)kG2 .
(3.36)

Note 46. Almost all factors were previously obtained in (3.14), which is very interest-
ing from a computational point of view.

3.3.7 System content at the beginning of random slots

Let the vector uk (z), of size N +2 denote the system content (of both classes) at the
beginning of slot k, given by

uk (z) = [
E

[
zu2,k 1

{
u1,k = i

}]]
i=0..N+1 . (3.37)

Note that 0 ≤ u1,k ≤ N + 1 as the class-1 queue can hold up to N packets and the
server can hold a single packet.

Conditioning on the state of the server in slot k and invoking (3.29) easily yields

uk (z) = [
E

[
zu2,k 1

{
u1,k = i , no service in slot k

}]]
i=0..N+1

+ [
E

[
zu2,k 1

{
u1,k = i , class-1 service in slot k

}]]
i=0..N+1

+ [
E

[
zu2,k 1

{
u1,k = i , class-2 service in slot k

}]]
i=0..N+1

= Pr[no service in slot k]ml (z |0)

+Pr[class-1 service in slot k]ml (z |1)E−
1 (z)

[
0 I

]
+Pr[class-2 service in slot k]ml (z |2)E−

2 (z)z
[

I 0
]

.

(3.38)

As mentioned at the beginning of subsection 3.3.4, the crucial step lies in acknowl-
edging that knowing the state of the server in slot k implies the same server state

N /∞ NON-PREEMPTIVE PRIORITY QUEUE - GENERAL SERVICE TIMES 3-13

in the preceding start-slot l . Also, note that tracking the packet in service is ac-
counted for by

[
0T I

]
for a class-1 packet and z

[
I 0T]

for a class-2 packet. This
also transforms the vector dimension to incorporate the server capacity (of one).

Now, in order to take the limit of the equation above to move to steady state,
one must first determine the steady-state probability of the server being in one
of the three possible states (idle, serving class-1/2). To that end , recall that if the
server is idle during a slot, that slot is a start-slot. Therefore, let us first determine
the probability that a slot is a start-slot. On average, the time period between the
beginning of start-slots l and l + 1 consists of a single slot if the system is empty
(Pr

[
n1,l = n2,l = 0

]
), of µ2 slots if a class-2 packet is served (Pr

[
n1,l = 0,n2,l > 0

]
) or

of µ1 slots if a class-1 packet is served (Pr
[
n1,l > 0

]
). Therefore, γ, the steady-state

probability that a random slot is a start-slot, is defined as

γ= lim
k→∞

Pr[slot k is a start-slot]

= 1

N0(0)+ (
N0(1)−N0(0)

)
µ2 +

(
1−N0(1)

)
µ1

.
(3.39)

Then, the probability that the system is empty at the beginning of a random slot in
is given by

U0(0) = lim
k→∞

Pr
[
u1,k = u2,k = 0

]
= lim

k,l→∞
Pr

[
n1,l = n2,l = 0,slot k is a start-slot

]
= γN0(0) .

(3.40)

In steady state, the system is in stochastic equilibrium. Therefore, on average, the
amount of packets effectively accepted by the system equals the amount of packets
served by the system. This yields that the effective total load is found as ρe

T = 1−
U0(0). The effective class-1 load and mean number of effective class-1 arrivals are
therefore expressed as ρe

1 = ρe
T −ρ2 and λe

1 = ρe
1/µ1 respectively. Consequently, the

steady-state probabilities of the state of the server are given by

Pr[no service] =U0(0) = 1−ρe
T ,

Pr[class-1 service] =(
1−U0(0)

) ρe
1

ρe
T

= ρe
1 ,

Pr[class-2 service] =(
1−U0(0)

) ρ2

ρe
T

= ρ2 .

(3.41)

Hence, taking the limit of (3.38) produces

u(z) = (1−ρe
T)m (z |0)+ρe

1m (z |1)E−
1 (z)

[
0 I

]+ρ2m (z |2)E−
2 (z)z

[
I 0

]
, (3.42)

and substitution of (3.32) finally results in

u(z) = (1−ρe
T)

[
1 0

]+ ρe
1

1−N0(1)
n(z)D H E−

1 (z)
[
0T I

]
+ ρ2

N0(1)−N0(0)

(
n(z)−n(0)

)
H 0E−

2 (z)
[

I 0T]
.

(3.43)

3-14 N /∞ NON-PREEMPTIVE PRIORITY QUEUE - GENERAL SERVICE TIMES

Note 47. Note the conciseness of this expression achieved by breaking up the problem
in different parts allowed by the embedded Markov chain approach. However, the
relation is not expressed “immediately” in terms of the arrival and service process but
through intermediate concepts (e.g. system contents at start-slots, arrivals during the
elapsed part of service). We feel this is justifiable because these concepts have a clear
(probabilistic) meaning and because, the “immediate” expression would be devoid
of any practical use as it is clear that the gargantuan expression one would end up
with when substituting the expressions (3.36),(3.39) and subsequently replacing all
occurrences of n(z), n(0), N0(0), N0(1), . . . by the corresponding expressions found in
subsection 3.3.3 into the formula above would provide little insight.

3.4 Class-1 delay

The main assumption used for calculating the class-1 delay in the previous chapter
no longer holds. General service times and non-preemptive service imply that a
class-1 packet arriving in a system void of other class-1 packets cannot start service
in the next slot if the system is currently performing a class-2 service, occupying
the server until completion of that task (thus until the next start-slot). For exam-
ple, recall the sample path depicted in figure 3.1. In slot 10, the first class-1 packet
that arrives only enters the server in slot 14. Consequently, one can no longer study
class-1 in isolation in order to obtain the class-1 delay and the distributional form
of Little’s Law does not hold forcing us to a direct approach. However, the interme-
diate concepts derived in the previous subsection will be of great use. Furthermore,
unlike in the previous chapter, calculating the class-1 delay in the probability do-
main is cumbersome as the service times can be unboundedly long and thus an
upper bound for the class-1 delay does no longer exist. Consequently, we revert to
the use of pgfs.

Again, randomly tag a class-1 packet and let its delay be denoted by d1, the
arrival slot of the packet by k and the preceding start slot by l . Recall that, if a packet
is in service during slot k, that packet’s service time, denoted by s̃ j , is different from
s j due to the renewal theory paradox. Furthermore, similar to the elapsed service
time s−j , let us define the remaining service time s+j , the number of slots between
slot k (exclusive) and the next start slot (l + 1). Consequently, upon arrival of the
tagged packet in slot k , the ongoing service consists of an elapsed service time, slot
k itself and a remaining service time, or equivalently s̃ j = s−j +1+ s+j .

Again, the state of the server plays a crucial role. If the system is empty at the
beginning of slot k, only the service times of the class-1 packets arriving in slot k
before the tagged packet and the service time of the tagged packet itself contribute
to the delay. If the tagged packet arrives during a class-1 service, these periods are
also part of the delay, but they are preceeded by the remaining service time of the
ongoing class-1 service, the service times of the class-1 packets waiting in the queue
at the start of the ongoing service and the service times of the class-1 packets that
have arrived during the elapsed part of the ongoing service. If the tagged packet

N /∞ NON-PREEMPTIVE PRIORITY QUEUE - GENERAL SERVICE TIMES 3-15

arrives during a class-2 service, the situation is similar but the ongoing service is of
class 2 and thus it is impossible that there were class-1 packets in the system at the
beginning of the service. Formally, this is expressed by

d1 =



â1,k+1∑
i=1

s1,ki if no service in slot k ,

s+1 +
m1,l+e−1,1,k+â1,k+1∑

i=1
s1,ki if class-1 service in slot k ,

s+2 +
e−1,2,k+â1,k+1∑

i=1
s1,ki if class-2 service in slot k .

(3.44)

Here, s1,ki represents the service time of the i -th class-1 packet starting service after
slot k. Furthermore, recall that â1,k denotes the class-1 packets arriving in the same
slot as but before the tagged packet and that m1,l consists of the class-1 packets
in the queue at start-slot l . This formula is completely analogous, barring some
difference in notation, to [32].

Recall from the previous chapter, that one must take into account that it only
makes sense to consider the delay of an accepted packet. The (long-run) probabil-
ity that a class-1 packet is accepted is given by

Pr
[
packet accepted

]=λe
1/λ1 . (3.45)

The goal of this section is computing the pgf of the class-1 delay D1(z), given by

D1(z) = lim
k,l→∞

E
[

zd1

∣∣∣ packet accepted
]

. (3.46)

Proceeding from (3.44) seems rather complicated at first but remark that, unlike
s̃ j , the service times s1,ki are all statistically indistinguishable from s1. This allows
following key insight: the delay of the tagged packet equals the time between slot k
(exclusive) and start-slot l +1 plus a service time s1 for each class-1 packet whose
complete service time contributes to the delay (thus not the potential packet al-
ready in service during slot k). Thus, let us construct a row vector which, in the
transform domain, tracks the part of the delay up to start-slot l + 1 and, through
the position in the vector, tracks the number of class-1 packets that will contribute
to the delay of the tagged packet through their service times. Then, simply multi-
plying this row vector with a column vector with i -th element equal to S1(z)i yields
D1(z).

Almost all of the “tools” required for this construction have already been de-
veloped in the previous sections and the previous chapter. The only new tool we
need is the description of the three “parts” of an ongoing class- j service time upon
arrival of the tagged packet. As slot k can be each slot of the ongoing service with

3-16 N /∞ NON-PREEMPTIVE PRIORITY QUEUE - GENERAL SERVICE TIMES

equal probability [4, vol 3, p. 31], the corresponding joint pgf is given by

S̃ j (z1, z2, z3) = lim
k→∞

E

[
z

s−j
1 z2 z

s+j
3

]
=

∞∑
n=0

Pr
[
s̃ j = n +1

] 1

n +1

n∑
i=0

zi
1z2zn−i

3

=
∞∑

n=0

1

µ j
Pr

[
s j = n +1

]
zn

3

(
z1
z3

)n+1 −1(
z1
z3

)
−1

z2

= S j (z1)−S j (z3)

µ j (z1 − z3)
z2 .

(3.47)

Recall, from (2.50), that the class-1 arrivals before a tagged class-1 packet are given
by Â1. Now, conditioning on the state of the server, we have

D1(z) = λ1

λe
1

[
Pr[no service]

[
1 0

]
Â1

+Pr[class-1 service]m(1|1)S̃1
(

A(1), Â1, z
)

+Pr[class-2 service]
[
1 0

]
S̃2

(
A(1), Â1, z

)]
s1(z) ,

(3.48)

with s1(z) the column vector

s1(z) = [
S1(z) · · · S1(z)N 0

]T
, (3.49)

where the last element is zero as it is impossible for a packet to enter the system
when the class-1 queue is full (recall that we can only tag an accepted packet).
However, evaluating S̃ j (z1, z2, z3) in multiple matrix arguments is not straightfor-
ward as there is no multivariate version of the spectral decomposition theorem.
Fortunately, one can easily sidestep the problem for the arguments needed here.
The specific form of the expression developed in (3.47) and the fact that matrices
and scalars commute, yields

S̃ j
(

A(1), Â1, z
)= S̃ j

(
A(1),1, z

)
Â1 . (3.50)

Then, one can see this as a function in one (matrix) argument by assuming the
second and third arguments to be constants, enabling the use of spectral decom-
position. This leads to

S̃ j
(

A(1),1, z
)= S̃ j

(
A∗

0 (1),1, z
)
G1

+
N−1∑
k=0

1

k !

∂k S̃ j (x,1, z)

∂xk

∣∣∣∣
x=A0(1)

(
A(1)− A0(1)I

)kG2 .
(3.51)

Note 48. Recall that the i -th order partial derivative in x of a function f is indicated

by ∂i f
∂xi .

N /∞ NON-PREEMPTIVE PRIORITY QUEUE - GENERAL SERVICE TIMES 3-17

Finally, by invoking (3.32) and (3.41), (3.48) becomes

D1(z) = λ1

λe
1

(
(1−ρe

T)
[
1 0

]+ ρe
1

1−N0(1)
n(1)D H S̃1

(
A(1),1, z

)
+ρ2

[
1 0

]
S̃2

(
A(1),1, z

))
Â1s1(z) .

(3.52)

3.5 Class-2 delay

The delay of a class-2 packet is (potentially) longer as the packet not only has to
wait for the service of the packets arriving before it to complete, it also has to give
priority to all class-1 packets accepted into the system before the class-2 packet
starts service. As before, we randomly tag a class-2 packet. Assume the arrival slot
of the packet to be slot k and the preceding start-slot to be start-slot l . The delay of
the tagged packet, denoted by d2, is given by

d2 =



r1,l+1 +
â2,k∑
i=1

t2,ki + s̄2 if no service in slot k ,

s+1 + r1,l+1 +
m2,l+e−2,1,k+â2,k∑

i=1
t2,ki + s̄2 if class-1 service in slot k ,

s+2 + r1,l+1 +
m2,l+e−2,2,k+â2,k∑

i=1
t2,ki + s̄2 if class-2 service in slot k .

(3.53)

Let us first elaborate on this formula and the involved random variables. Once
again, the state of the server in slot k is crucial. If the system is empty at the be-
ginning of slot k, the tagged packet’s delay starts with the remaining class-1 busy
period in start-slot l +1, denoted by r1,l+1, which is caused by (potential) class-1 ar-
rivals in slot k. Next, for each class-2 packet arriving in slot k before the tagged
packet (â2,k), an extended service completion time has to be accounted for, as
class-1 packets arriving during their service have priority. Let t2,ki represent the
extended service completion time of the i -th class-2 packet starting service after
slot k. Finally, the service time of the tagged packet itself, denoted by s̄2, concludes
the delay. If the tagged packet arrives during a class-1 service, the same periods
contribute to the delay but one of course also has to include the remaining service
time of the ongoing class-1 service and take into account the class-2 packets al-
ready waiting in the queue at the start of the ongoing service and the ones arriving
during the elapsed part of the ongoing service. Furthermore, the remaining class-1
busy period in start-slot l +1 is induced by the class-1 packets in the queue in start-
slot l plus the ones arriving during the entire ongoing service. If the tagged packet
arrives during a class-2 service, the situation is similar but the ongoing service is of
class 2 and thus it is impossible that there were class-1 packets in the system at the
beginning of the service so the remaining class-1 busy period in start-slot l + 1 is
induced only by the class-1 packets arriving during the ongoing service.

Next, as in the previous chapter, expressions for the different parts contributing
to the class-2 delay are first developed in separate subsections. Obtaining these ex-

3-18 N /∞ NON-PREEMPTIVE PRIORITY QUEUE - GENERAL SERVICE TIMES

pressions only requires some small variations of the methods used in the previous
chapter.

3.5.1 Remaining class-1 busy period

As busy periods start and end at start slots, it seems natural to study the evolution
of the remaining busy period between consecutive start-slots. Let us define the
conditional pgf of the remaining class-1 busy period at the beginning of a start-slot
l , with class-1 system content equal to n, by

R1,l (z|n) = E
[

zr1,l
∣∣ n1,l = n

]
, n = 0. . . N , (3.54)

and the corresponding column vector by

r 1,l (z) = [
R1,l (z|0) · · ·R1,l (z|N)

]T
. (3.55)

Then, one can follow the exact same reasoning used in the previous chapter, but
now accounting for the service time between two consecutive start-slots during the
remaining busy period. The busy period ends if n1,l = 0. Otherwise, we track the
number of slots until the next start-slot, obviously a class-1 service, while at the
same time accounting for the changes in system content, consisting of the arrivals
during the service and the departure of the served packet. This leads to

r 1,l (z) = [
1 0

]T +D H S1
(

A(1)z
)
r 1,l+1(z) . (3.56)

Consequently, in steady state, the vector of conditional pgfs of the remaining
class-1 busy period in a start-slot, given the system content, is expressed as

r 1(z) = lim
l→∞

r 1,l (z) =
(

I −D H S1
(

A(1)z
))−1 [

1 0
]T

. (3.57)

Note 49. Note that S1
(

A(1)z
) 6= E 1(z). As mentioned above, the similarity with equa-

tion (2.65) in the previous chapter is natural.

3.5.2 Extended service completion time

The general service times make calculating the extended service completion time
of a class-2 packet quite intricate. Recall that the extended service completion time
of a class-2 packet starts when the packet starts service and lasts until the next slot
wherein a class-2 packet can be served. Let t2,k denote the extended service com-
pletion time of a class-2 packet starting service in slot k (start-slot l). We have

t2,k =
{

s2 if e1,2,k = 0,

s2 + r1,l+1 if e1,2,k > 0.
(3.58)

However, as one can expect that during longer class-2 service times more class-1
packets arrive, e1,2,k and s2 are correlated and furthermore, this also causes a longer

N /∞ NON-PREEMPTIVE PRIORITY QUEUE - GENERAL SERVICE TIMES 3-19

subsequent class-1 busy period. The extended service completion time starts in
start slot l with the start of a class-2 service, thus in a system void of class-1 packets.
The class-1 packets arriving during this service form the class-1 system content in
start-slot l +1, hence triggering a subsequent remaining class-1 busy period. Con-
sequently, we have

T2,k (z) = E
[
z t2,k

]= [
1 0

]
S2

(
A(1)z

)(
H 0e +H>0r 1,l+1(z)

)
. (3.59)

Evidently, the corresponding pgf in steady state is given by

T2(z) = [
1 0

]
S2

(
A(1)z

)
r 1(z) . (3.60)

3.5.3 Class-2 delay

Now, we are ready to compute the pgf of the class-2 delay, given by

D2(z) = lim
k,l→∞

E
[

zd2
]

. (3.61)

In order to proceed from (3.53), one can follow a strategy similar to the one used for
computing the class-1 delay in the previous section. Again we construct a row vec-
tor that tracks the number of class-1 packets in the system at start-slot l +1 through
the position in the vector. Multiplying with r 1(z) then accounts for the remaining
class-1 busy period. The other parts of the delay, associated with the class-2 pack-
ets to be served before the tagged packet, are tracked in the transform domain as
the elements of the row vector. Also, note that the extended service completion
times t2,ki are each statistically indistinguishable from t2 and the service time of
the tagged packets s̄2 is also not distinguishable from s2. Furthermore, recall that
Â2(z) is given by (2.74). These arguments lead to

D2(z) =
[

(1−ρe
T)

[
1 0

]
Â2

(
T2(z)

)
+ρe

1m
(
T2(z)

∣∣1)
S̃1

(
A

(
T2(z)

)
, Â2

(
T2(z)

)
, A(1)z

)
+ ρ2m

(
T2(z)

∣∣2)
S̃2

(
A

(
T2(z)

)
, Â2

(
T2(z)

)
, A(1)z

)]
r 1(z)S2(z) .

(3.62)

Here, evaluating S̃ j
(

A
(
T2(z)

)
, Â2

(
T2(z)

)
, A(1)z

)
, the class- j ongoing service time

(j = 1,2), is not straightforward. Recall that there is no multivariate version of the
spectral decomposition theorem and the “trick” used in the previous section is not
applicable here as all three arguments contain matrices. However, if we specify the
function S̃(z1, z2, z3) by its power series expansion, as in (3.47), we can apply the
spectral decomposition theorem on the arguments separately. Power series expan-
sion produces

S̃ j
(

A
(
T2(z)

)
, Â2

(
T2(z)

)
, A(1)z

)
= E

[
A

(
T2(z)

)s−j Â2
(
T2(z)

)(
A(1)z

)s+j
]

=
∞∑

n=0

1

n +1
Pr

[
s̃ j = n +1

] n∑
i=0

A
(
T2(z)

)i Â2
(
T2(z)

)(
A(1)z

)n−i .

(3.63)

3-20 N /∞ NON-PREEMPTIVE PRIORITY QUEUE - GENERAL SERVICE TIMES

Now, one can perform spectral decomposition (B.1) on the function x → xi and
on the function x → xn−i separately. Both decompositions share the same spectral
projectors G1 and G2. The eigenvalues and their index are respectively denoted by

ξ1(z) = A∗
0

(
T2(z)

)
with k1 = 1 , ξ2(z) = A0

(
T2(z)

)
with k2 = N ,

ξ′1(z) = A∗
0 (1)z with k ′

1 = 1 , ξ′2(z) = A0(1)z with k ′
2 = N .

(3.64)

Note that the eigenvalues are functions in z. Then, the straightforward but te-
dious task of substituting the two spectral decompositions into (3.63), expanding
all terms of the resulting equation and finally reconstructing the generating func-
tion from the power series in each term yields

S̃ j
(

A
(
T2(z)

)
, Â2

(
T2(z)

)
, A(1)z

)
=

2∑
n=1

kn−1∑
m=0

2∑
n′=1

k ′
n′−1∑

m′=0

1

m!

1

m′!
∂m+m′

∂xm ym′ S̃
(
x,1, y

)∣∣∣∣x=ξn (z)
y=ξn′ (z)(

A
(
T2(z)

)−ξn(z)I
)m

Gn Â2
(
T2(z)

)(
A(1)z −ξ′n′ (z)I

)m′
Gn′ .

(3.65)

Finally, substituting (3.32) in (3.62) yields

D2(z) =
[

(1−ρe
T)

[
1 0

]
Â2

(
T2(z)

)
+ ρe

1

1−N0(1)
n

(
T2(z)

)
D H S̃1

(
A

(
T2(z)

)
, Â2

(
T2(z)

)
, A(1)z

)
+ ρ2

T2(z)
(
N0(1)−N0(0)

) (
n

(
T2(z)

)−n(0)
)

H 0

×S̃2
(

A
(
T2(z)

)
, Â2

(
T2(z)

)
, A(1)z

)]
r 1(z)S2(z) .

(3.66)

3.6 Numerical Examples

Let us validate the analysis performed in this chapter through some numerical ex-
amples. In this section, the main goals are comparing the results of the N /∞ queue
to those of the ∞/∞ priority queue and assessing the impact of general service
times. Again, let us focus on the cases were the models yield different results as the
default behavior of priority queues is well-documented [32].

Again, let us consider the N /∞ queueing system at one of the outputs of an
output-queueing switch, detailed in appendix A.4. Let us study a 4 × 4 output-
queueing switch. Let the parameters of the arrival process be batch size b = 5 and
probability that a batch arrives and is of class 1/2 by ν1 = ν2 = 0.04. Consequently,
the arrival loads for each class are the same (λ1 =λ2 = 0.2). However, let the pgfs of
the service times be given by

S1(z) = 1/4z2 +1/2z3 +1/4z4 ,S2(z) = 1/2z +1/2z2 . (3.67)

N /∞ NON-PREEMPTIVE PRIORITY QUEUE - GENERAL SERVICE TIMES 3-21

10-4

10-3

10-2

10-1

100

10 20 30 40 50
Class-1 queue capacity (N)

p
lr

1

Figure 3.2: Class-1 Packet loss ratio vs. class-1 queue capacity.

E [u1]

σu1

E [u2]

σu2

0

10

20

30

0 10 20 30 40 50
Class-1 queue capacity (N)

Pa
ck

et
s

Figure 3.3: Moments of class-1/2 system content vs. class-1 queue capacity.

Consequently, class-1 service times are, on average, longer than those for class-2
packets as µ1 = 3 and µ2 = 1.5. Note that, consequently, the arrival load is given by
ρT = 0.9.

Figure 3.2 depicts the packet loss ratio versus the class-1 queue capacity N . Ob-
viously the packet loss decreases with increasing N . Again, the region between 10−2

and 10−3, which we have marked in grey, is particularly interesting as most real-
time applications tolerate this amount of packet loss. Systems with a very small
packet loss ratio (<< 10−3) are accurately modeled by the infinite system. The mean
and the standard deviation of the system content at the beginning of random slots

3-22 N /∞ NON-PREEMPTIVE PRIORITY QUEUE - GENERAL SERVICE TIMES

E [d1]15

E [d1]∞

E [d2]15

E [d2]∞

0

20

40

60

0.00 0.25 0.50 0.75 1.00
Total arrival load (ρT)

Sl
o

ts

Figure 3.4: Mean class-1/2 delay vs. total load for class-1 queue capacity 20 and ∞.

are plotted for both classes versus the class-1 queue capacity N in figure 3.3. The
effect of the priority scheduling is apparent as the class-2 system content exceeds
the class-1 system content, despite that, on average, the system receives the same
amount of packets of each class and that class-1 packets generally have longer ser-
vice times. The values increase for increasing N and clearly converge to the values
corresponding with the infinite system, represented by the horizontal dotted lines.
This validates that, for N going to infinity, the N /∞ system considered in this chap-
ter tends to the infinite system, as the number of dropped class-1 packets tends to
zero. However, in our region of interest (again marked in grey) the infinite system
considerably overestimates the mean value and standard deviation of the system
content of both classes. For instance, at N = 21, the smallest value for N where
pl r1 < 10−2, the mean and standard deviation of the class-2 system content are
overestimated by 14% and 17% respectively.

Next, for figure 3.4 we fix N = 20 and vary ν1 = ν2 to consequently vary the total
arrival load ρT between 0% and 100% while plotting the mean system content of
both classes. Instead of showing the packet loss on a separate figure, we have again
marked the region of interest, where 10−3 < pl r1 < 10−2, in grey. Again the effect
of the priority scheduling is apparent. Especially note the class-2 starvation as the
curves for the N /∞ system and the infinite system seem to be close together, due
to the steep slope, but for ρT

∼= 0.875, where pl r1 approaches the 1% boundary, the
error introduced by using the infinite model over our model amounts to 8 and 13%
for class-1 and class-2 respectively.

To conclude this subsection, let us focus on the impact of the mean class-2 ser-
vice time. For the arrival and service processes, consider the parameters

N = 25, ν1 = 0.06, S1(z) = z2 , ν2 = 0.06/i , S2(z) = zi . (3.68)

N /∞ NON-PREEMPTIVE PRIORITY QUEUE - GENERAL SERVICE TIMES 3-23

E [u1]25
E [u1]∞

E [u2]25 E [u2]∞

0

5

10

15

20

0 10 20 30 40
Mean class-2 service time (µ2)

Pa
ck

et
s

Figure 3.5: Mean system content versus mean class-2 service time for class-1 queue capacity
25 and ∞.

Note that µ2 = i . By increasing i , the average class-2 service time increases, while,
at the same time, we let the average number of class-2 arrivals decrease, thereby
keeping the arrival load ρT constant at 0.9. Figure 3.5 depicts the average system
content at the beginning of random slots of both classes for class-2 service times
from 1 to 40. Evidently, the decrease of E [u2] is caused by the longer service time
as λ2 decreases and less packets arrive. Furthermore, this figure exemplifies the
effect of class-2 traffic on class-1 traffic, as increasing values ofµ2 yield an increased
probability that a class-1 packet arrives during the service time of a class-2 packet
in a system void of class-1 packets and has to wait until the end of this service before
it can enter the server. Again, it is clear that the infinite capacity approximation is
inaccurate under certain conditions.

3.7 Concluding remarks

A two-class non-preemptive priority queue with finite capacity for high-priority
packets has been studied. Analytical formulas for system content and delay of both
traffic classes were determined making extensive use of the spectral decomposition
theorem to cope with the difficulties that arise when considering general service
times for both classes. Several numerical examples indicate the impact of small but
practically feasible amounts of real-time packet loss on system performance, which
is considerably different from what was predicted by existing models.

4
N /∞ PRIORITY QUEUE - TAIL BEHAVIOR

4.1 Introduction

In this chapter, we investigate the tail behavior of the class-2 system content in
the priority-queueing model with single-slot service times studied in chapter 2 and
compare it to the ∞/∞ model. The latter assumes that both queues can hold an in-
finite amount of packets. This assumption is retracted for the high-priority class in
the N /∞ model, where only N high-priority packets can be stored simultaneously.
Evidently, this has an impact on (the tail of) the class-2 system content.

It has been observed that modeling the high-priority queue capacity as finite
or infinite leads to different low-priority tail behavior, which is closely related to
packet loss, but it remains unclear how this shift in behavior arises. Studying the
asymptotic behaviour of these type of queues started with [47]. Abate and Whitt [48]
were the first to prove exactly that tails in an infinitely-sized priority queue are not
necessarily exponential, even if the distributions of inter-arrival and service times
are exponentially decaying. They heavily rely on singularity analysis of the Laplace
transform of the low-priority waiting time in the complex plane and characterize
three types of tails of the pmf of the delay of low-priority customers in a two-class
M/G/1 priority queue, namely (i) ∼ αt−3/2e−ηt , (ii) ∼ αe−ηt and (iii) ∼ αt−1/2e−ηt ,
with α and η constants depending on the arrival and service-time distributions.
Depending on the parameters of the arrival and service processes, one of these
three types of tail behavior appears.

Type (i) is encountered when the ‘priority effect’ dominates (large low-priority
waiting time due to blocking by high-priority customers). In this case, the tail of the
low-priority waiting time is related to the tail of the busy period of the high-priority
queue, which has a Laplace transform expressed by an implicitly defined function.

4-2 N /∞ PRIORITY QUEUE - TAIL BEHAVIOR

This implicit function, a solution of the so-called kernel equation, is the origin of
the non-exponentiality of the tail, as it has a branch cut in the complex plane, rather
than simple poles (the latter lead to exponentially decaying tails). This type is ob-
served when the load of the low-priority class is low relative to the high-priority
load. On the other hand, exponential tails (ii) are encountered when the ‘queueing
effect’ dominates (large low-priority waiting time due to many low-priority cus-
tomers blocking each other) and is observed when the load of the low-priority class
is relatively high. Type (iii) is the boundary between the other cases (both of the
aforementioned effects are equally strong). Furthermore, using large deviations
principles, these results were verified [49].

In contrast, when the capacity for the high-priority customers is limited, tail
probabilities of the low-priority system content are always exponentially decaying
(i.e., for all possible values of the involved parameters). Here, all singularities of the
transform are (simple) poles, leading to purely exponential tails. This is also appar-
ent using matrix-analytic techniques [35, 36], where the terms “levels” and “phases”
are used for the two dimensions of the queueing system. The high-priority capac-
ity corresponds to the number of phases but treating an infinite amount of phases
remains an open problem. Furthermore, it has been shown [50, 51, 52] that the
standard practices to transform the state-space, such as truncation, can lead to er-
roneous results concerning tail behavior. Recent research in matrix-analytic tech-
niques has therefore focused on trying to cope with an infinite number of phases.
Primary attention has been paid to obtaining the boundary condition for exponen-
tiality, i.e. finding conditions under which the tails are exponential, for several sub-
classes of random walks [53, 54]. Consequently, the methods from literature can ei-
ther handle infinite or finite capacity, but the evolution/limit from finite to infinite
capacity is still not fully discovered (although for the QBD sub-case some recent
results give some hope [55, 56, 57]).

Note 50. Recall that the N /∞ and the ∞/∞ priority queue are respectively called
the finite and infinite case/system.

This chapter is structured as follows. First, we summarize the results for the
∞/∞ model. Next, we investigate the location of all singularities for some prac-
tical examples and we numerically compute the pmf by calculating all poles and
the respective residues. Then, under the restriction of maximum two high-priority
arrivals in a slot, a crucial relation between the characteristic polynomial of this re-
currence relation in the finite case and the kernel in the infinite case is established.
Part of this reasoning is then repeated under the relaxed restriction of maximum S
high-priority arrivals in a slot.

Note 51. This chapter is rather strange. The content ranges from numerical explo-
ration to a more rigorous mathematical style with theorems and lemmas with corre-
sponding proofs and a lot of the results only hold under certain assumptions. This
might be untraditional but I think it is an original way to simultaneously indicate
the boundaries of the performed research and highlight in what directions the most
interesting future work is to be found.

N /∞ PRIORITY QUEUE - TAIL BEHAVIOR 4-3

4.2 Summary: ∞/∞ priority queue

In this chapter, the comparisons between the N /∞ and the ∞/∞ model are so fre-
quent that we briefly summarize the relevant results from the latter here. Evidently,
the reader should consult [32] for a more detailed view.

The joint pgf of the steady-state system content is given by

U (z1, z2) = E
[
zu1

1 zu2
2

]= (1−λT)
A(z1, z2)(z2 −1)(Y (z2)− z1)

(z2 −Y (z2))(A(z1, z2)− z1)
, (4.1)

where the pgf Y (z) is implicitly defined as it is the unique (as will be proven later)
root in x of the kernel F (x, z) when |x| < 1, |z| < 1, with

F (x, z) = A(x, z)−x . (4.2)

The total system content is given by

UT (z) =U (z, z) = (1−λT)
AT (z)(z −1)

z − AT (z)
, (4.3)

and the class-2 system content by

U2(z) =U (1, z) = (1−λT)
A2(z)(z −1)(Y (z)−1)

(z −Y (z))(A2(z)−1)
. (4.4)

We obtain an approximation for the tail probabilities by studying the dominant sin-
gularity of these expressions.

Note 52. In the entire chapter (unless mentioned otherwise), we assume that the pgfs
of the arrival processes are meromorphic (pgfs and their derivatives go to infinity for
z equal to their radii of convergence or for z → ∞), which is correct for “standard”
arrival distributions. Even for most pgfs that do not fulfill this assumptions, the rea-
soning can be adjusted and the results still hold but this process is quite messy, as
these arrival processes introduce extra singularities. Here, we want to focus on the
singularities emerging from the priority scheduling mechanism, which makes sin-
gularities transferred from the arrival process undesirable.

4.2.1 Tail of total system content

We prove that the dominant singularity of UT (z) is a pole with multiplicity 1 and is
a zero of z − AT (z). From Pringsheim’s theorem [58, p. 242], we know that the dom-
inant singularity lies on the positive real axis. We first look at the zeros of f (z) = z −
AT (z). Its smallest zero on the positive real axis is z = 1. Since f ′(1) = 1−λT > 0, this
is a zero with multiplicity 1. This is however not a pole of UT (z) since pgfs remain
finite at z = 1. Starting from z = 1, we look for the next zero of f (z) by increasing z.
It is seen that f (z) > 0 at first (since f (1) = 0 and f ′(1) > 0). However since A′

T (z)
is a strictly increasing function, f ′(z) = 1− A′

T (z) is a strictly decreasing function.
Therefore f (z) reaches a certain maximum and then decreases. For a certain zT ,

4-4 N /∞ PRIORITY QUEUE - TAIL BEHAVIOR

f (z) equals zero (again) and f ′(zT) < 0. Therefore zT is a zero with multiplicity 1 of
z − AT (z). Since zT is inside the region of convergence of AT (z), zT is smaller than
the (possible) dominant singularity of AT (z) and is thus the dominant singularity
of UT (z).

4.2.2 Investigating Y (z)

The tail behavior of the system content of class-2 packets is a bit more involved,
since it is not a priori clear what the dominant singularity of U2(z) is due to the
occurrence of the implicitly defined function Y (z) in (4.4). First we investigate Y (z)
on the (positive) real axis. The first derivative of Y (z) is given by

Y ′(z) = A(2)(Y (z), z)

1− A(1)(Y (z), z)
. (4.5)

Consequently, Y (z) has a singularity, denoted by zB , where the denominator of
Y ′(z) becomes 0, i.e., A(1)(Y (zB), zB) = 1. One can prove that Y (zB) is finite and
that Y (z) is a pgf and thus can be written as a power series with non-negative coef-
ficients:

Y (z) =
∞∑

n=0
y(n)zn , (4.6)

thus with y(n) a pmf. If we find an explicit function approximating Y (z) in the
neighborhood of zB , we can use Flajolet’s singularity analysis, detailed in appendix
C to obtain the tail probabilities y(n). In [59] it is shown (in the more general context
of a set of functional equations) that, in the neighborhood of zB , Y (z) is approxi-
mately given by

Y (z) ∼Y (zB)−KY (zB − z)1/2 , (4.7)

with

KY =
√

2A(2)(Y (zB), zB)

A(11)(Y (zB), zB)
. (4.8)

Using theorem (C.1) on expression (4.7), we get

y(n) =− KY
p

zB

Γ(−1/2)
n−3/2z−n

B . (4.9)

4.2.3 Tail of class-2 system content

A first singularity of U2(z) is zB as taking the first derivative yields

U ′
2(z) =

(1−λT)


(z −1)(1−Y (z))(z −Y (z))A′

2(z)
+A2(z)(1−Y (z))2(1− A2(z))
−A2(z)(z −1)2(1− A2(z))Y ′(z)


(z −Y (z))2(1− A2(z))2 , (4.10)

N /∞ PRIORITY QUEUE - TAIL BEHAVIOR 4-5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.5 1 1.5 2 2.5 3 3.5 4

z

z
Y(z) (λ1=0.05)

Y(z) (λ1=2/3)

Y(z) (λ1=0.75)

Figure 4.1: Types of behavior of Y (z)

and this clearly goes to infinity as Y ′(z) →∞, or, as z → zB .
A second possible singularity zL of U2(z) on the real axis is given by the positive

zero of the denominator z−Y (z), and it is easily proved to be equal to zT , if zL exists.
Figure 4.1 gives three typical types of behavior of Y (z). In the case indicated with a
long-dashed line, Y (z) intersects z twice (for z = 1 and for z = zL), before reaching
the branch point. When the line is short-dashed, Y (z) intersects z once in z = 1
and equals z in its branch point. In case of the dotted line, Y (z) intersects z once in
z = 1 and reaches its branch point before intersecting z a second time. In this case,
zL does not exist, or alternatively, z −Y (z) 6= 0 for real z > 1 (and for z for which
Y (z) exists), as zT does not lie on Y(z) but on the other branch (Y (z) = A(Y (z), z)
has multiple solutions).

The tail behavior of the system content of class-2 packets is thus characterized
by zL or zB , depending on which is the dominant (i.e., smallest) singularity, which
is dependent of the used arrival process and its parameters, on which we will elab-
orate at the end of this subsection. Furthermore, zL equals zT when it is dominant
(or equivalently, when it exists). Three situations may thus occur, namely when
zL = zT < zB , zL does not exist, and zL = zT = zB . We study the (approximate) be-
havior of U2(z) in the neighborhood of its dominant singularity (thus for all three
cases). In the first case, the single pole zT is dominant and thus

U2(z) ∼ K (1)
2

zT − z
, (4.11)

4-6 N /∞ PRIORITY QUEUE - TAIL BEHAVIOR

for z → zT . K (1)
2 can be calculated by substituting expression (4.4) in the previous

expression and setting z = zT yielding

K (1)
2 = (1−λT)A2(zT) (zT −1)2

(A2(zT)−1)(Y ′(zT)−1)
. (4.12)

In the second case, i.e., when zL does not exist, the branch point zB is dominant.
We study the behavior of U2(z) in the neighborhood of zB . Using expression (4.7)
in (4.4), we find

U2(z) ∼(1−λT)
A2(z)(z −1)

(
Y (zB)−KY (zB − z)1/2 −1

)(
z −Y (zB)+KY (zB − z)1/2

)
(A2(z)−1)

(4.13)

∼(1−λT)

{
A2(z)(z −1)

(
Y (zB)−KY (zB − z)1/2 −1

)
×(

z −Y (zB)−KY (zB − z)1/2
) }

(
(z −Y (zB))2 −K 2

Y (zB − z)
)

(A2(z)−1)
. (4.14)

This expression leads to

U2(z) ∼U2(zB)−K (3)
2 (zB − z)1/2 , (4.15)

in the neighborhood of zB — note that we have used the notation K (3)
2 instead of

(the expected) K (2)
2 because we will switch the last two types of tail behavior in the

end formulas — with

K (3)
2 = (1−λT)KY A2(zB) (zB −1)2

(A2(zB)−1)(zB −Y (zB))2 . (4.16)

In the third case, zT and zB coincide. Again, we will study the behavior of U2(z)
in the neighborhood of this dominant singularity. The approximation of U2(z) in
the neighborhood of zB is again found by substituting expression (4.7) in expression
(4.4):

U2(z) ∼(1−λT)
A2(z)(z −1)

(
zB −KY (zB − z)1/2 −1

)(
z − zB +KY (zB − z)1/2

)
(A2(z)−1)

(4.17)

∼(1−λT)
A2(z)(z −1)

(
zB −KY (zB − z)1/2 −1

)
(zB − z)1/2

(
(zB − z)1/2 +KY

)
(A2(z)−1)

, (4.18)

where we have used that Y (zB) = zB . This leads to the following form of U2(z) in
the neighborhood of its dominant singularity:

U2(z) = K (2)
2

(zB − z)1/2
, (4.19)

with

K (2)
2 = (1−λT)A2(zB) (zB −1)2

KY (A2(zB)−1)
. (4.20)

N /∞ PRIORITY QUEUE - TAIL BEHAVIOR 4-7

Summarizing, U2(z) can be approximated in the neighborhood of its dominant
singularity by

U2(z) ∼



K (1)
2

zT − z
if zL = zT < zB

K (2)
2

(zB − z)1/2
if zL = zT = zB

U2(zB)−K (3)
2 (zB − z)1/2 if zL does not exist,

(4.21)

where the constants K (i)
2 (i = 1,2,3) are given by expressions (4.12), (4.20) and (4.16)

respectively (note that we switched the second and third case). Using theorem
(C.1), we find the tail probabilities for the three possible cases:

u2(n) =Prob[u2 = n] ∼



(1−λT)A2(zT) (zT −1)2 z−n−1
T

(A2(zT)−1)(Y ′(zT)−1)

(1−λT)A2(zB) (zB −1)2 n−1/2z−n
B

KY
p

zBπ (A2(zB)−1)

(1−λT)KY A2(zB) (zB −1)2 n−3/2z−n
B

2
p
π/zB (A2(zB)−1)(zB −Y (zB))2

,

(4.22)

for large enough n, if zL = zT < zB , if zL = zT = zB and if zL does not exist, re-
spectively. The first expression constitutes a typical geometric (or exponential) tail
behavior, while the third expression is a typical non-geometric tail behavior. The
second expression exhibits a behavior in between the two other cases, and we will
thus call this tail behavior of transition type. As mentioned before, the type of tail
behavior is driven by the arrival process (and thus also the class-1/2 load). For the
switch arrival process with S = 16 and b = 1, figure 4.2 marks the regions where dif-
ferent tail behavior is observed, in terms of the relative amount of high priority load
versus low-priority load.

4.3 Numerically determining tail behavior in the N /∞
priority queue

4.3.1 Numerically computing the poles

First, in order to get some (visual) understanding of how the singularities (and
hence the tail behavior) for the N /∞ model and the ∞/∞ model are related, let
us calculate them numerically and plot them for a number of different scenarios.

Recall from (2.29) that

u(z) =
(
(z −1)U0(0)

[
1 0 · · · 0

]
X (z)

)(
zI −X (z)

)−1 . (4.23)

Let us slightly change the notation by adding the subscript N (and substituting
U0(0) by p0,N) to explicitly indicate the size of the class-1 queue capacity. The pgf

4-8 N /∞ PRIORITY QUEUE - TAIL BEHAVIOR

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
λ1

Transition type behavior

Non-geometric behavior

Geometric behavior

λ2

 system contents
cell delay

Figure 4.2: Tail behavior in the different regions of the parameter space (λ1,λ2).

of the class-2 system content in N /∞ model is denoted by UN (z)

UN (z) = u(z)e =
(
(z −1)p0,N

[
1 0 · · · 0

]
X N (z)

)(
zI −X N (z)

)−1e . (4.24)

As a shorthand, define P (z) = zI − X (z). Invoking the definition of the matrix in-
verse, equation (4.24) can also be written as

UN (z) =
(
(z −1)p0,N

[
1 0 · · · 0

]
X N (z)

) adj(P N (z))

det(P N (z))
e . (4.25)

Note 53. Let adj(A) denote the adjugate matrix of a matrix A and det(A) the deter-
minant of A.

As the pgfs of the arrival processes are meromorphic and calculating the adju-
gate of a matrix does not introduce singularities, the singularities of UN (z) are the
zeroes of det(P N (z)).

Note 54. These zeroes can be numerically found using any root-finding algorithm.
Kravanja’s method [60, 61] does not require an initial value and is well-suited for the
kind of searching that needs to be done here.

Let us verify that all the singularities of the N /∞ model are singular poles and
compare the location of these poles to the singularities of the ∞/∞ model for some
practical examples. Here, we use a different symbol to depict each type of singular-

N /∞ PRIORITY QUEUE - TAIL BEHAVIOR 4-9

ity. We have

∞/∞ pole: ©
∞/∞ branch point: �

N /∞ pole: •

First, let us again study an output-queueing switch as described in appendix A.4.

0

0

0

0

N
=

1
N

=
2

N
=

10
N

=
50

0 5 10 15 20 25 30
Re

Im

Figure 4.3: Location of poles for 2×2 switch: geometric.

Consider a 2×2 switch with b = 1 and λ1 = 0.40, λ2 = 0.35. Figure 4.3, depicts the
location of the poles in the complex plane, with the real part shown on the horizon-
tal axis and the imaginary part on the vertical axis, for different values of the class-1
queue capacity N for the finite case. Furthermore, the singularities for the infinite
case are also shown, which for the parameter settings considered here, correspond
to geometric tail behavior. For increasing N , the number of poles increases and
their modulus decreases. The pole with smallest modulus clearly converges to the
value of the (dominant) pole in the infinite case and all other poles converge to the
branch point of the infinite case and it is apparent that in the limit a branch cut will
be formed. Note that we focus on the range close to zL and zB and thus poles with
very large modulus are not visible on the figure.

4-10 N /∞ PRIORITY QUEUE - TAIL BEHAVIOR

0

0

0

0

N
=

1
N

=
2

N
=

10
N

=
50

0 5 10 15 20 25 30
Re

Im

Figure 4.4: Location of poles for 2×2 switch: non-geometric.

Next, in figure 4.4, consider the same arrival process but with λ1 = 0.40, λ2 =
0.12, which corresponds to non-geometric tail behavior, as zL does not exist and
the branch point zB is dominant. In the finite case, we see that all poles now seem
to converge to the branch point, and, in contrast to in the previous figure, none of
the poles have a modulus smaller than zB .

Now, let us check if the entire (structure of the) arrival process influences the
location of the poles. Let us study a 4×4 switch in figure 4.5, where we chose b =
1 and λ1 = 0.40, λ2 = 0.47. As this corresponds to geometric tail behavior in the
infinite case there is again a single pole that converges to the dominant pole of the
infinite case. However, there are now 3 branch points and poles accumulate at each
of them.

Finally, let us also study the bivariate independent geometric arrival process
detailed in A.2.1 for p1 = 1/7, p2 = 1/3. Consider figure 4.6. Again, this corresponds
to the geometric tail behavior and thus one pole converges to the dominant pole in
the infinite case and the others line up at the branch point. However, for this arrival
process there are fewer poles Also note that the arrival process has a pole around
7.7 that is transferred to the class-2 system content.

N /∞ PRIORITY QUEUE - TAIL BEHAVIOR 4-11

N = 1 N = 2

N = 10 N = 50

-20

-10

0

10

20

-20

-10

0

10

20

-20 -10 0 10 20 -20 -10 0 10 20
Re

Im

Figure 4.5: Location of poles for 4×4 switch: geometric.

4.3.2 Numerically computing the tail behavior

Once the singularities have been located (numerically), the tail of u2N is obtained
by investigating the behavior of its pgf around its poles by computing the residue
in a pole. One is not restricted to the dominant-pole approximation but can also
use all poles. In figure 4.7, we plot the tail of u220 using only the dominant pole
(squares), all poles (circles) and the tail of u2∞ (triangles) for the 6×6 switch arrival
process with b = 1, λ1 = 0.4, λ2 = 0.05. The single (dominant) pole approximation
performs badly (difference ∼ 102) as the poles lie close together. When all poles
are taken into account, the results lie very close to the ones obtained in the infinite
case.

4-12 N /∞ PRIORITY QUEUE - TAIL BEHAVIOR

0

0

0

0

N
=

1
N

=
2

N
=

10
N

=
50

0 2 4 6 8
Re

Im

Figure 4.6: Location of poles for bivariate independent geometric arrival process : geometric.

4.4 Explicit expression for UN (z) for arrival processes
with maximum 2 class-1 arrivals per slot

We restrict the maximum number of class-1 arrivals per slot to two. Thus, ∀z :
Ai (z) = A∗

i (z) = 0, i > 2. And, to exclude the degenerate case where there is no
queueing for class-1, let A2(1) > 0. We focus on the steady-state class-2 system con-
tent in the finite and infinite case.

For the ∞/∞ model, recall expression (4.4) for the class-2 system content. As
with the N /∞ model, let us adopt a change of notation replacing the subscript 2 by
∞ in order to avoid confusion with the N /∞ model. We then have

U∞(z) = p0,∞
A∗

0 (z)(z −1)(Y1(z)−1)

(z −Y1(z))(A∗
0 (z)−1)

, (4.26)

with p0,∞ = 1−λ1 −λ2. As Y1(z) is the unique root of the kernel with |x| < 1 when
|z| < 1, the kernel plays a crucial role. The kernel is given by

F (x, z) =
∞∑

i=0
Ai (z)xi −x (4.27)

= A2(z)x2 + (A1(z)−1)x + A0(z). (4.28)

N /∞ PRIORITY QUEUE - TAIL BEHAVIOR 4-13

5 10 15 20

1e
−

25
1e

−
20

1e
−

15
1e

−
10

1e
−

05
1e

+
00

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

N=5 − dom pole
N=5 − all poles
N=20 − dom pole
N=20 − all poles
N=∞

low−priority queue content

Figure 4.7: Low-priority system content for N =∞ and N = 20 (using dominant pole
approximation and all poles.

As the kernel turns out to be quadratic in x due to the restriction on the class-1
arrivals, it has two roots given by

Y1(z) = 1− A1(z)−
√

(1− A1(z))2 −4A0(z)A2(z)

2A2(z)
(4.29)

and

Y2(z) = 1− A1(z)+
√

(1− A1(z))2 −4A0(z)A2(z)

2A2(z)
(4.30)

The square-root in the expression of Y1(z) causes the non-exponential tail proba-
bilities in U∞(z), as it gives rise to branch cuts and branch points (points where the
expression under the square root equals 0). This paper will unveil that Y1(z) also
appears in the expression for UN (z), but that its square-root is in fact canceled by
the square-root of Y2(z).

4.4.1 Expressing UN (z)in terms of Yi (z)

Note 55. Here, we require that λ1 +λ2 < 1, which guarantees that the corresponding
∞/∞ model is stable.

In this subsection, an explicit expression for UN (z) is established. In the pro-
cess, we uncover a crucial relation between the characteristic polynomial of a re-
currence relation for the determinant in the finite case and the kernel in the infi-
nite case. Furthermore, the expression for UN (z) also correctly converges to U∞(z)
when taking the limit for N . First, some manipulations on the matrices in (4.25)
will be performed.

4-14 N /∞ PRIORITY QUEUE - TAIL BEHAVIOR

Note 56. In the remainder, we start the count of rows and columns of matrices and
vectors at 0.

Lemma 4.1. The function UN (z) can be written as

UN (z) = (z −1)p0,N
TN (z)

zN DN (z)
, N ≥ 2, (4.31)

with TN (z) =
(∑2

i=0 Ai (z)
∑N

j=0 adj(P N (z))i j

)
and DN (z) the determinant of

Q N (z) =



z − A0(z) −A1(z) −A2(z) · · · 0 0
−A0(z) 1− A1(z) −A2(z) · · · 0 0

0 −A0(z) 1− A1(z) · · · 0 0
...

. . .
. . .

. . .
...

...
0 · · · −A0(z) 1− A1(z) −A∗

2 (z)
0 · · · 0 −A0(z) 1− A∗

1 (z)


. (4.32)

Proof. Multiplication of vector
[
1 0 · · · 0

]
and matrix X N (z) in (4.25) results in the

vector
[

A0(z) A1(z) A2(z) 0 · · · 0
]
. Multiplication of the adjugate matrix of P N (z)

with e leads to the column vector [
∑N

j=0 adj(P N (z))i j]. Furthermore, all elements of
P N (z) but the ones in the first row have a factor z. Therefore, it is easily seen that
det(P N (z)) = zN DN (z).

Let us commence by calculating DN (z). To that end, a linear homogeneous
recurrence relation for {DN (z)}∞N=0 is constructed, which turns out to be crucial.
This recurrence relation is then solved by means of generating functions.

Theorem 4.1. The determinant DN (z) is a solution of the recurrence relation

DN (z) = (1− A1(z))DN−1(z)− A0(z)A2(z)DN−2(z), N ≥ 2 (4.33)

with seed functions

D0(z) = z −1, (4.34)

D1(z) = z(1− A∗
1 (z))− A0(z). (4.35)

Proof. We first subtract the second row of Q N (z) from its first row, which does not
affect its determinant DN (z).

z −1 0 0 · · · 0 0
−A0(z) 1− A1(z) −A2(z) 0 · · · 0 0

0 −A0(z) 1− A1(z) −A2(z) · · · 0 0
...

. . .
. . .

. . .
. . .

...
...

0 · · · −A0(z) 1− A1(z) −A∗
2 (z)

0 · · · 0 −A0(z) 1− A∗
1 (z)


. (4.36)

Laplace expansion along the last row (and then last column) of this matrix leads to

DN (z) = (1− A∗
1 (z))EN−1(z)− A0(z)A∗

2 (z)EN−2(z), N ≥ 2, (4.37)

N /∞ PRIORITY QUEUE - TAIL BEHAVIOR 4-15

with EN (z) the determinant of the (N +1)× (N +1) matrix

z −1 0 0 · · · 0 0
−A0(z) 1− A1(z) −A2(z) 0 · · · 0 0

0 −A0(z) 1− A1(z) −A2(z) · · · 0 0
...

. . .
. . .

. . .
. . .

...
...

0 · · · −A0(z) 1− A1(z) −A2(z)
0 · · · 0 −A0(z) 1− A1(z)


. (4.38)

Notice that the matrices giving rise to EN (z) and DN (z) only differ in the last col-
umn. Again performing Laplace expansion of (4.38) along the last row (and then
last column), it is clear that EN (z) fulfills a recurrence relation:

EN (z) = (1− A1(z))EN−1(z)− A0(z)A2(z)EN−2(z), N ≥ 2, (4.39)

with seed functions

E1(z) = (1− A1(z))E0(z)− A0(z), (4.40)

E0(z) = z. (4.41)

Eliminating EN−2(z) from expressions (4.37) and (4.39) leads to

DN (z) = EN (z)− A2(z)EN−1(z), N ≥ 1. (4.42)

Note that expression (4.35) can also be obtained from this expression.
Since DN (z) is a linear combination of EN (z) and EN−1(z) for N ≥ 1, DN (z) ful-

fils the same recurrence equation as EN (z), i.e.,

DN (z) = (1− A1(z))DN−1(z)− A0(z)A2(z)DN−2(z), N ≥ 3. (4.43)

In order for this recurrence relation to be valid for N = 2, D0(z) should be chosen as
in (4.34), which completes the proof.

Note 57. Note that D0(z) and D1(z) are chosen such that the recurrence relation is
valid for all N ≥ 2. Therefore, D0(z) has no real meaning as determinant.

Note 58. Theorem 4.1 states that {DN (z)}∞N=0 is a linear homogeneous recurrence
relation of order 2. The order is due to the maximum number of class-1 arrivals in a
slot.

Solving the linear homogeneous recurrence relation in theorem 4.1 can easily
be achieved, for instance by means of generating functions.

Lemma 4.2. The generating function D(x, z) of {DN (z)}∞N=0, defined as

D(x, z) =
∞∑

N=0
DN (z)xN , (4.44)

is given by

D(x, z) = A0(z)
(1− A∗

0 (z)− (z −1)A2(z))x + (z −1)

F (A0(z)x, z)
, (4.45)

with F (x, z) the kernel in the infinite case (expression (4.28)).

4-16 N /∞ PRIORITY QUEUE - TAIL BEHAVIOR

Proof. Multiplying all terms in (4.33) by xN and summing over all valid N leads
to an expression for D(x, z) as a function of D0(z) and D1(z). Inserting these seed
functions leads to (4.45).

Note 59. The denominator of the generating function is directly related to the char-
acteristic polynomial of the underlying recurrence relation and the roots of this poly-
nomial lead to geometric terms in the final expression of DN (z). Both surprisingly
and crucially, the characteristic polynomial is related to the kernel F (x, z) in the in-
finite case (see expression (4.45)), and the root Y1(z) of the kernel will thus appear in
the final expression of DN (z) in the finite case. This turns out to be the crucial link
between the finite and the infinite cases.

Theorem 4.2. For N ≥ 0, DN (z) is given by

DN (z) = (1− A∗
0 (z))

A2(z)(Y2(z)−Y1(z))

[
z −Y1(z)

1−Y1(z)

(
A0(z)

Y1(z)

)N

− z −Y2(z)

1−Y2(z)

(
A0(z)

Y2(z)

)N
]

. (4.46)

Here Y1(z) and Y2(z) are as defined in (4.29) and (4.30).

Proof. The function DN (z) is calculated by writing expression (4.45) as power series
in x. This can be done by partial fraction expansion of the rational expression. As
the denominator equals F (x A0(z), z), its roots in x are Y1(z)/A0(z) and Y2(z)/A0(z).
The partial fraction expansion then equals

D(x, z) = (z −Y1(z))(A2(z)Y1(z)− A0(z))Y2(z)

(Y1(z)−Y2(z))A0(z)

(
1−x

A0(z)

Y1(z)

)
+ (z −Y2(z))(A2(z)Y2(z)− A0(z))Y1(z)

(Y2(z)−Y1(z))A0(z)

(
1−x

A0(z)

Y2(z)

) . (4.47)

Writing both terms on the right as geometric series (cf. (4.44)), identifying the coef-
ficients of xN on both sides, and using that Y1(z) and Y2(z) are roots of kernel (4.28)
leads to (4.46).

Next, we concentrate on calculating TN (z), the numerator of UN (z) (4.31). In
a long and tedious process, let us write the different terms in this numerator as
functions of certain determinants, much like DN (z). For all these determinants,
suitable linear recurrence relations will be constructed and solved, finally leading
to an expression for TN (z). Recall that, here, P N (z) is given by

z − A0(z) −A1(z) −A2(z) · · · 0 0
−z A0(z) z − z A1(z) −z A2(z) · · · 0 0

0 −z A0(z) z − z A1(z) · · · 0 0
...

. . .
. . .

. . .
...

...
0 · · · −z A0(z) z − z A1(z) −z A∗

2 (z)
0 · · · 0 −z A0(z) z − z A∗

1 (z)


. (4.48)

N /∞ PRIORITY QUEUE - TAIL BEHAVIOR 4-17

Lemma 4.3. The terms
∑N

j=0[adj(P N (z))]i j (N ≥ 2, i = 0,1,2) can be written as

N∑
j=0

[adj(P N (z))]0 j = zN−1
[

zFN−1(z)−HN−1(z)

+
N∑

j=2
(−1) j K j−1(z)FN− j−1(z)

]
, (4.49)

N∑
j=0

[adj(P N (z))]1 j = zN−1
[

z A0(z)FN−2(z)+ (z − A0(z))FN−2(z)

−
N∑

j=2
(−1) j L j−1(z)FN− j−1(z)

]
, (4.50)

N∑
j=0

[adj(P N (z))]2 j = zN−1
[

z A0(z)2FN−3(z)+ (z − A0(z))A0(z)FN−3(z)

+
N∑

j=2
(−1) j M j−1(z)FN− j−1(z)

]
. (4.51)

Here, FN (z), HN (z), KN (z), LN (z) and MN (z) are the respective determinants of the
following (N +1)× (N +1) matrices (N ≥ 1)

1− A1(z) −A2(z) 0 · · · 0 0
−A0(z) 1− A1(z) −A2(z) · · · 0 0

0 −A0(z) 1− A1(z) · · · 0 0
...

. . .
. . .

. . .
...

...
0 · · · −A0(z) 1− A1(z) −A∗

2 (z)
0 · · · 0 −A0(z) 1− A∗

1 (z)


, (4.52)



−A1(z) −A2(z) 0 · · · 0 0
−A0(z) 1− A1(z) −A2(z) · · · 0 0

0 −A0(z) 1− A1(z) · · · 0 0
...

. . .
. . .

. . .
...

...
0 · · · −A0(z) 1− A1(z) −A∗

2 (z)
0 · · · 0 −A0(z) 1− A∗

1 (z)


, (4.53)



−A1(z) −A2(z) 0 · · · 0 0
1− A1(z) −A2(z) 0 · · · 0 0
−A0(z) 1− A1(z) −A2(z) · · · 0 0

0 −A0(z) 1− A1(z) · · · 0 0
...

. . .
. . .

. . .
...

...
0 · · · 1− A1(z) −A2(z) 0
0 · · · −A0(z) 1− A1(z) −A2(z)


, (4.54)

4-18 N /∞ PRIORITY QUEUE - TAIL BEHAVIOR



z − A0(z) −A2(z) 0 · · · 0 0
−A0(z) −A2(z) 0 · · · 0 0

0 1− A1(z) −A2(z) · · · 0 0
0 −A0(z) 1− A1(z) · · · 0 0
...

. . .
. . .

. . .
...

...
0 · · · 1− A1(z) −A2(z) 0
0 · · · −A0(z) 1− A1(z) −A2(z)


, (4.55)

and 

z − A0(z) −A1(z) 0 · · · 0 0
−A0(z) 1− A1(z) 0 · · · 0 0

0 −A0(z) −A2(z) · · · 0 0
0 0 1− A1(z) · · · 0 0
...

. . .
. . .

. . .
...

...
0 · · · 1− A1(z) −A2(z) 0
0 · · · −A0(z) 1− A1(z) −A2(z)


, (4.56)

and F0(z) = 1− A∗
1 (z) and F−1(z) = 1.

Proof. Since the element on the i -th row and j -th column of adj(P N (z)) is given by
(−1)i+ j multiplied by the determinant of the N×N matrix that origins from deleting
row j and column i of matrix P N (z), it is easily seen that

[adj(P N (z))]i j =
{

zN [adj(Q N (z))]i j if j = 0
zN−1[adj(Q N (z))]i j if j > 0.

(4.57)

First,

[adj(Q N (z))]00 = FN−1(z), N ≥ 2, (4.58)

with FN (z) the determinant of the (N +1)×(N +1) matrix in (4.52), N ≥ 1. Similarly,
we have

[adj(Q N (z))]01 =−HN−1(z), N ≥ 2, (4.59)

with HN (z) the determinant of the (N +1)× (N +1) matrix in (4.53), N ≥ 1.
Deleting the j -th row (2 ≤ j ≤ N) and the zero-th column of Q N (z) leads to a

matrix of the form [
B j−1(z) 0

C (z) G N− j−1(z)

]
, (4.60)

where B N (z) and G N (z) are the (N + 1)× (N + 1) matrices of (4.54) and (4.52), 0
is a zero matrix of appropriate size and C (z) is a matrix that is of no importance
for the remainder. Indeed, the determinant of matrix (4.60) is the product of the
determinants of B j−1(z) and G N− j−1(z), and thus,

N∑
j=2

[adj(Q N (z))]0 j =
N∑

j=2
(−1) j K j−1(z)FN− j−1(z). (4.61)

N /∞ PRIORITY QUEUE - TAIL BEHAVIOR 4-19

Note that F0(z) and F−1(z) have to be defined as in the lemma to make this expres-
sion valid. Expressions (4.57), (4.58), (4.59) and (4.61) lead to (4.49). The other two
sums (expressions (4.50) and (4.51)) can be obtained in the same way; these calcu-
lations are therefore omitted here.

Lemma 4.4. The functions FN (z) and HN (z) are respectively given by

FN (z) = (A∗
1 (z)+ A2(z)Y1(z)−1)Y2(z)

Y1(z)−Y2(z)

(
A0(z)

Y1(z)

)N

+ (A∗
1 (z)+ A2(z)Y2(z)−1)Y1(z)

Y2(z)−Y1(z)

(
A0(z)

Y2(z)

)N

, N ≥ 0, (4.62)

HN (z) = (A0(z)A∗
1 (z)− (1− A0(z))A2(z)Y1(z))Y2(z)

A0(z)(Y1(z)−Y2(z))

(
A0(z)

Y1(z)

)N

+ (A0(z)A∗
1 (z)− (1− A0(z))A2(z)Y2(z))Y2(z)

A0(z)(Y1(z)−Y2(z))

(
A0(z)

Y2(z)

)N

, N ≥ 1. (4.63)

Furthermore, KN (z), LN (z) and MN (z) are given by

KN (z) = − (−A2(z))N , N ≥ 1, (4.64)

LN (z) = z(−A2(z))N , N ≥ 1, (4.65)

MN (z) = (z − A0(z)− z A1(z))(−A2(z))N−1, N ≥ 1. (4.66)

Proof. FN (z) and HN (z) fulfil the same second-order linear recurrence relation as
DN (z), see theorem 4.1, albeit with different seed functions:

F0(z) = 1− A∗
1 (z), (4.67)

F1(z) = (1− A1(z))(1− A∗
1 (z))− A0(z)A2(z), (4.68)

H0(z) = − A∗
1 (z), (4.69)

H1(z) = − A1(z)(1− A∗
1 (z))− A0(z)A2(z). (4.70)

Therefore, deriving (4.62)-(4.63) is achieved by an analogous method to the one
used to obtain (4.46) from theorem 4.1 for DN (z), i.e. establishing generating func-
tions for {FN (z)}∞N=0 and {HN (z)}∞N=0, using partial fraction expansion and writing
its terms in power series.

The matrices (4.54), (4.55) and (4.56) are all of the form[
B 1(z) 0
C (z) G N−2(z)

]
, (4.71)

with B 1(z) a 2 × 2 matrix and G N−2(z) an (N − 1) × (N − 1) diagonal matrix with
the diagonal elements equal to −A2(z). Therefore, the determinants equal the de-
terminant of B 1(z) multiplied by (−A2(z))N−1 which leads to expressions (4.64)-
(4.66).

4-20 N /∞ PRIORITY QUEUE - TAIL BEHAVIOR

Lemma 4.5. The numerator of expression (4.31) is given by

TN (z) =
(z −1)p0,N A∗

0 (z)zN

[(
A0(z)

Y1(z)

)N

−
(

A0(z)

Y2(z)

)N
]

A2(z)(Y2(z)−Y1(z))
. (4.72)

Theorem 4.3. The pgf UN (z) of the class-2 system content is given by

UN (z) =
(

1−λ1

1− (A2(1)/A0(1))N
−λ2

)
(z −1)A∗

0 (z)

(1− A∗
0 (z))(

Y2(z)N −Y1(z)N
)(

z −Y1(z)

1−Y1(z)
Y2(z)N − z −Y2(z)

1−Y2(z)
Y1(z)N

) . (4.73)

Proof. The numerator of UN (z) is given byTN (z), while the denominator is given by
zN DN (z); DN (z) is given by equation (4.46). Finally, p0,N is calculated by using the
normalization condition UN (1) = 1, leading to

p0,N = 1−λ1

1− (A2(1)/A0(1))N
−λ2. (4.74)

Corollary 4.1. The correct limiting behavior from the finite to the infinite case is
established as limN→∞UN (z) =U∞(z).

Proof. For z inside the complex unit circle, it is easily proved that |Y1(z)| < 1 <
|Y2(z)| (through e.g. Rouché’s theorem and the implicit function theorem). There-
fore, when taking the limit of (4.73) for N →∞, the terms in Y2(z)N dominate those
in Y1(z)N , both in numerator and denominator. Furthermore, for a stable system,
λ1 < 1, which results in A2(1) < A0(1). Therefore limN→∞(A2(1)/A0(1))N = 0. These
two observations immediately lead to (4.26).

Corollary 4.2. If the Ai (z) (i = 0,1,2) are meromorphic, UN (z) is meromorphic and
thus cannot have branch points.

Proof. If the Ai (z) (i = 0,1,2) are meromorphic so are the seed values of all recur-
rence relations used in this chapter. As the recurrence relations consist of basic
operations and the meromorphic functions form a field with respect to the usual
pointwise operations followed by redefinition at the removable singularities, evi-
dently DN (z), FN (z), HN (z), KN (z), LN (z), MN (z) and finally UN (z) are all mero-
morphic.

Note 60. This corollary asserts that UN (z) (expression (4.73)) cannot contain branch
points and thus the square root in Y1(z) is canceled by the square root in Y2(z) for

N /∞ PRIORITY QUEUE - TAIL BEHAVIOR 4-21

each finite N . This is highly comparable to the expression of the N -th Fibonacci
number,

1p
5

(
1+p

5

2

)N

− 1p
5

(
1−p

5

2

)N

, (4.75)

that ‘seems’ to contain
p

5 while the Fibonacci numbers are obviously integer as the
square-roots in both terms cancel out.

4.4.2 Mean class-2 system content

Although the main point of this section is obtaining an “explicit” expression for
UN (z), achieved in (4.73), and studying the limit behavior to U∞(z), this explicit
expression can also be used for other purposes. By taking the derivative of (4.73)
and evaluating in z = 1, the average of u2N , the class-2 system content in a priority
queue with class-1 capacity N is

E
[
u2N

]=λ2 + 1

Y2(1)N (1−λT)+λ2)

[
Y2(1)Nλ12 + Y2(1)Nλ11λ2

2(1−λ1)

+ (Y2(1)N −1)λ22

2
+ λ2

Y2(1)−1
+ [(1−λ1)Y ′

2(1)−λ2Y2(1)]Y2(1)N−1N

(Y2(1)N −1)

]
. (4.76)

Furthermore, this allows us to study how u2N approaches u2∞ , the class-2 system
content in a priority queue with infinite capacity. For arbitrarily large N , we have

E
[
u2N

]∼ E
[
u2∞

]+ [(1−λ1)Y ′
2(1)−λ2Y2(1)]N

(1−λT)Y2(1)N+1
. (4.77)

Evidently, E
[
u2N

] < E
[
u2∞

]
as Y2(1) > 1, Y ′

2(1) < 0. Also, as Y2(1) > 1, the linear
evolution in N in the numerator is dampened by the appearance of Y2(1)N in the
denominator so the geometric convergence rate is 1/Y2(1).

4.4.3 Location of singularities of UN (z)

We have established an explicit expression for UN (z), the pgf of the class-2 system
content when the high-priority capacity equals N customers. We showed that the
roots of the kernel in the infinite case appear in UN (z) and proved the limit for N
going to ∞. In this section, singularity analysis is performed in the finite case, i.e.,
we take a closer look at the location of the singularities of UN (z) and investigate
how the singularities accumulate into a branch cut for N going to infinity.

Lemma 4.6. If Ai (z) (i = 0,1,2) is meromorphic, a pole of UN (z) is a root of DN (z)
or a pole of A0(z), A1(z) or A2(z).

Proof. In the numerator and denominator of (4.31) only summations and multipli-
cations of terms and factors in Ai (z) occur, from which the lemma follows.

4-22 N /∞ PRIORITY QUEUE - TAIL BEHAVIOR

Corollary 4.3. If Ai (z) (i = 0,1,2) is meromorphic, UN (z) is meromorphic as well
and has only poles as singularities.

Note 61. By restricting the input pgfs (the Ai (z)) to meromorphic functions, we avoid
having to deal with branch cuts introduced by these input pgfs, which would clut-
ter observing the formation of the branch cut in the infinite case from poles in the
finite case. In the remainder, we therefore use the more specific term ‘pole’ instead of
‘singularity’ in the finite case.

Lemma 4.7. The roots of TN (z) inlude 0 and 1.

Proof. From (4.72), this is quite straightforward. Clearly, 0 and 1 are roots, with
resp. multiplicities N and 1. Also, A∗

0 (z) is increasing by definition. Furthermore,
when Y1(z) = Y2(z), both the numerator and denominator of (4.72) are zero. Invok-
ing L’Hôpital’s rule asserts that this does not lead to a root.

Corollary 4.4. All roots of DN (z) except 0 or 1 are poles of UN (z).

It is known that the dominant pole of a pgf lies on the positive real axis in the
interval]1,∞]. We first have following lemma.

Lemma 4.8. The functions DN (z) (N ≥ 0) have a root in 1.

Proof. Since A∗
0 (1) = 1, it is clear that D0(1) = D1(1) = 0. From recurrence relation

(4.33) then follows that DN (1) = 0 for all N ≥ 0.

However, since 1 is also a root of TN (z) this root is canceled once. The fact that
1 is not a pole of UN (z) is also immediate from following lemma.

Lemma 4.9. The first derivatives of the functions DN (z) in 1 are ordered in the fol-
lowing way:

0 < . . . < D ′
N+1(1) < D ′

N (1) < D ′
N−1(1) < . . . < D ′

1(1) < D ′
0(1) = 1. (4.78)

Proof. First, it is evident that D ′
0(1) = 1. Furthermore, reverting to generating func-

tions, (4.33) leads to

∞∑
N=2

D ′
N (1)xN =

∞∑
N=2

(1− A1(1))D ′
N−1(1)xN − A0(1)A2(1)

∞∑
N=2

D ′
N−2(1)xN . (4.79)

Subsequent partial fraction expansion yields

D ′
N (1) = A0(1)N + λ2

A0(1)− A2(1)
(A2(1)N − A0(1)N) . (4.80)

Hence, as A0(1)− A2(1) = 1−λ1, we have

D ′
N (1) = 1−λT

1−λ1
A0(1)N + λ2

1−λ1
A2(1)N , (4.81)

from which the lemma is evident.

N /∞ PRIORITY QUEUE - TAIL BEHAVIOR 4-23

Next, it is proven that DN (z) has at least one root in]1,RA[, with RA the min-
imum of the radii of convergence of the Ai (z). We call the smallest of such roots
zN ,1.

Note 62. In the remainder, frequent use of the intermediate value theorem for a con-
tinuous function is made. This theorem states that if f is a real-valued continuous
function on the interval [a,b], and u is a number between f (a) and f (b), then there
is a c ∈]a,b[such that f (c) = u.

Lemma 4.10. If Ai (z) (i = 0,1,2) is meromorphic, DN (z) has at least one root in
]1,RA[for all N ≥ 1. If the smallest of such roots is denoted by zN ,1, it holds that
zN ,1 < zN−1,1, N ≥ 2.

Proof. We prove this by induction on N , starting with N = 1 and N = 2. Firstly, since
Ai (z) and A∗

i (z) are partial generating functions that are meromorphic and since at
least one of the Ai (z) goes to infinity for z → RA , it is easily seen from (4.35) that
D1(RA) = −∞. Combining lemmata 4.8 and 4.9 yields D1(1+ ε) > 0, for ε > 0 and
small enough. Hence, due to the intermediate value theorem, D1(z) must have a
root z1,1 ∈]1,RA[, and (4.33) yields (for N = 2)

D2(z1,1) = − A0(z1,1)A2(z1,1)D0(z1,1). (4.82)

As A0(z1,1), A2(z1,1),D0(z1,1) > 0, evidently D2(z1,1) < 0. Again, lemmata 4.8 and 4.9
and the intermediate value theorem lead to the existence of at least one zero of
D2(z) in]1,RA[and z2,1 < z1,1.

Similarly, say zN−1,1 exists for an N ≥ 2, then

DN (zN−1,1) = − A0(zN−1,1)A2(zN−1,1)DN−2(zN−1,1). (4.83)

Thus, DN (zN−1,1) and DN−2(zN−1,1) have opposite signs, yielding DN (zN−1,1) < 0,
as assuming that the lemma is fulfilled for N − 1 produces DN−2(zN−1,1) > 0. As
above, lemmata 4.8 and 4.9 and the intermediate value theorem then lead to the
existence of zN ,1 satisfying zN ,1 < zN−1,1, completing the proof.

Corollary 4.5. If Ai (z) (i = 0,1,2) is meromorphic, the dominant pole of UN (z)
equals zN ,1, the smallest root of DN (z) in]1,∞[.

Note 63. A direct consequence of this lemma and consequent corollary is that the
tail of the probability mass function of the low-priority system content decays slower
for larger N . Intuitively, this was to be expected, as larger N means that more high-
priority customers are admitted into the system, which negatively influences the low-
priority system content.

4.5 Explicit expression for DN (z) for arrival processes
with maximum S class-1 arrivals per slot

In this section, we will relax the restriction on the arrival process and prove that a
similar explicit expression can be found for DN (z). Here, we limit the class of arrival

4-24 N /∞ PRIORITY QUEUE - TAIL BEHAVIOR

processes by asserting that a(m,n) = 0 for m > S, hence also Ai (z) = 0 for m > S.
Hence, the number of class-1 arrivals in a slot is at most S. Due to this restriction,
the kernel turns out to be a polynomial of degree S in x, given by

F (x, z) =
S∑

i=2
Ai (z)xi + (A1(z)−1)x + A0(z) . (4.84)

Evidently, F (x, z) then has S roots in x, denoted by Yi (z), i = 1. . .S. The Yi (z) con-
tain radicals causing non-exponential tail probabilities and Y1(z) thus causes such
behavior in U∞(z).

Lemma 4.11. F (x, z) has a single unique root for |x| < 1, |z| < 1, denoted Y1(z).

Proof. Choose a complex number z with |z| < 1. Rouché’s Theorem states that the
functions x → F (x, z) and x → x have the same amount of roots within the complex
unit circle (for x), as these functions are both analytic in the complex unit circle.
Evidently x = 0 is the only root of the latter causing the former to also have only
a single root, say Y1(z). Invoking the implicity function therorema completes the
proof.

This section first establishes a recurrence relation for DN (z). Then, we postulate
an expression for DN (z) and prove that it adheres to the recurrence.

4.5.1 Recurrence relation for DN (z)

As in the previous section, but with the assumption of maximum S class-1 arrivals,
the determinant DN (z) = det(zI −X (z))/zN , is given by∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z − A0(z) −A1(z) −A2(z) · · · −AN−1(z) −A∗
N (z)

−A0(z) 1− A1(z) −A2(z) · · · −AN−1(z) −A∗
N (z)

0 −A0(z) 1− A1(z) · · · −AN−2(z) −A∗
N−1(z)

...
. . .

. . .
. . .

...
...

0 · · · −A0(z) 1− A1(z) −A∗
2 (z)

0 · · · 0 −A0(z) 1− A∗
1 (z)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (4.85)

Again, in parallel with the previous section, we construct a linear homogeneous
recurrence relation for {DN (z)}∞N=0.

Proposition 4.1. Let

rk (z) = (1− A1(z))Dk−1(z)−
min(k,S)∑

i=2
A0(z)i−1 Ai (z)Dk−i (z). (4.86)

Then, DN (z) is a solution of the recurrence relation DN (z) = rN (z) for N > S, with S
seed values:

DN (z) = rN (z)− A0(z)N−1 A∗
N+1(z)(z −1) ,1 < N ≤ S ,

D1(z) = z(1− A∗
1 (z))− A0(z) ,

D0(z) = z − A∗
0 (z) .

N /∞ PRIORITY QUEUE - TAIL BEHAVIOR 4-25

Proof. Laplace expansion of the determinant (4.85) along the last row (recursively)
yields

DN (z) = (1− A∗
1 (z))EN−1(z)−

S∑
i=2

A0(z)i−1 A∗
i (z)EN−i (z) , N > S , (4.87)

DN (z) = (1− A∗
1 (z))EN−1(z)−

N∑
i=2

A0(z)i−1 A∗
i (z)EN−i (z)

− A0(z)N A∗
N (z) ,1 ≤ N ≤ S , (4.88)

with EN (z) the determinant of the (N +1)× (N +1) matrix

z − A0(z) −A1(z) −A2(z) · · · AN−1(z) AN (z)
−A0(z) 1− A1(z) −A2(z) · · · AN−1(z) AN (z)

0 −A0(z) 1− A1(z) · · · AN−2(z) AN−1(z)
...

. . .
. . .

. . .
...

...
0 · · · −A0(z) 1− A1(z) −A2(z)
0 · · · 0 −A0(z) 1− A1(z)


. (4.89)

Notice that the matrices giving rise to EN (z) and DN (z) only differ in the last col-
umn and that this column contains zero entries for N > S as Ai (z) = 0, i > S. Fur-
thermore, it is clear that EN (z) fulfils following recurrence relation

EN (z) = (1− A1(z))EN−1(z)−
S∑

i=2
A0(z)i−1 Ai (z)EN−i (z) , N > S , (4.90)

EN (z) = (1− A1(z))EN−1(z)−
N∑

i=2
A0(z)i−1 Ai (z)EN−i (z) (4.91)

− A0(z)N AN (z) ,1 ≤ N ≤ S , (4.92)

E0(z) = z − A0(z) . (4.93)

Combining expressions (4.87) and (4.90) leads to

DN (z) = EN (z)−
N∑

i=1
A0(z)i−1 A∗

i+1(z)EN−i (z) , N > S . (4.94)

Since DN (z) is a linear combination of E0(z), . . . ,EN (z) it fulfils the same recurrence
equation as EN (z), i.e.,

DN (z) = (1− A1(z))DN−1(z)−
S∑

i=2
A0(z)i−1 Ai (z)DN−i (z) , N > S . (4.95)

Proposition 4.1 states that {DN (z)}∞N=0 is a linear homogeneous recurrence re-
lation of order S. The order is due to the maximum number of class-1 arrivals in a
slot.

4-26 N /∞ PRIORITY QUEUE - TAIL BEHAVIOR

Lemma 4.12. The characteristic equation of this recurrence relation is given by

G(x, z) = xS − (1− A1(z))xS−1 +
S∑

i=2
A0(z)i−1 Ai (z)xS−i , (4.96)

and has S zeros: A0(z)/Yi (z) , i = 1..S.

Proof. Trivial by Proposition 4.1, recalling that Ai (z) = 0 for i > S and by

G(x, z) = xS

A0(z)
F (A0(z)/x, z) . (4.97)

4.5.2 An expression for DN (z)

Let us define the following shorthand notations. Let

g j (z) = (
z −Y j (z)

) S∏
i=1
i 6= j

1−Yi (z)

Y j (z)−Yi (z)

W j (z) = A0(z)/Y j (z)

. (4.98)

Following lemmata are mere technicalities but necessary for proving the subse-
quent theorem.

Lemma 4.13. For 1 < N ≤ S :

S∑
j=1

g j (z)
S∑

i=N
A0(z)i−1 Ai (z)W j (z)N−i = A0(z)N−1 A∗

N (z)(z −1) (4.99)

Proof.

S∑
j=1

g j (z)
S∑

i=N
A0(z)i−1 Ai (z)W j (z)N−i

= A0(z)N−1
S∑

i=N
Ai (z)

S∑
j=1

g j (z)A0(z)i−N W j (z)N−i

= A0(z)N−1
S∑

i=N
Ai (z)

S∑
j=1

g j (z)Y j (z)i−N

= A0(z)N−1
S∑

i=N
Ai (z)

S∑
j=1

(
z −Y j (z)

)
Y j (z)i−N

S∏
i=1
i 6= j

1−Yi (z)

Y j (z)−Yi (z)

= A0(z)N−1
S∑

i=N
Ai (z)(z −1) .

The final transition is achieved by noting that the Lagrange interpolation polyno-
mial L(x) of the polynomial function f (x) = (z − x)xi−N , with interpolation points
Y j (z), j = 1. . .S, is exact, if the degree of f (x) is smaller than the number of data
points, thus for i −N +1 < S. Then, replace f (1) by L(1). Note that the constraint on
the degree is fulfilled for all 1 < N ≤ i ≤ S.

N /∞ PRIORITY QUEUE - TAIL BEHAVIOR 4-27

Lemma 4.14.

AS (z) = (−1)S A0(z)
S∏

i=1

1

Yi (z)
, (4.100)

AN (z) = (−1)N A0(z)
∑

Ω∈pn (S)

∏
i∈Ω

1

Yi (z)
,1 < N ≤ S , (4.101)

A1(z) = 1− A0(z)
S∑

i=1

1

Yi (z)
, (4.102)

with pn(m) the collection of sets formed by all possible ways of choosing n distinct
elements out of the set {1, . . . ,m}.

Proof. Proof is trivial by equating the powers of x on both sides of

G(1/x, z) =
S∏

i=1
(1−xWi (z)) (4.103)

Theorem 4.4. DN (z) can be expressed explicitly in terms of the Yi (z) by

DN (z) =
S∑

j=1

(
z −Y j (z)

) S∏
i=1
i 6= j

1−Yi (z)

Y j (z)−Yi (z)

(A0(z)

Y j (z)

)N
, N > 0,

D0(z) = z − A∗
0 (z) ,

(4.104)

Proof. Proof by induction on N . i) N > S :
Substituting (4.104) into Proposition 4.1 leads to

DN (z) = (1− A1(z))
S∑

j=1
g j (z)W j (z)N−1 −

S∑
i=2

A0(z)i−1 Ai (z)
S∑

j=1
g j (z)W j (z)N−i

=
S∑

j=1
g j (z)W j (z)N−S

(
−G(W j (z), z)+W j (z)S

)
=

S∑
j=1

g j (z)W j (z)N−SW j (z)S .

The final transition, based upon Lemma 4.12, asserts that G(W j (z), z) = 0 .
ii) 1 < N ≤ S : First, note that, by using D0(z) = z − A∗

0 (z), for these values of N :

rN (z)+ A0(z)N−1(AN (z)(1− A∗
0 (z))+ A∗

N+1(z)(1− z)
)

= rN−1(z)− A0(z)N−1 A∗
N (z)(z −1) .

4-28 N /∞ PRIORITY QUEUE - TAIL BEHAVIOR

Consequently, substituting (4.104) into Proposition 4.1 yields

DN (z) = (1− A1(z))
S∑

j=1
g j (z)W j (z)N−1 −

N−1∑
i=2

A0(z)i−1 Ai (z)
S∑

j=1
g j (z)W j (z)N−i

− A0(z)N−1 A∗
N (z)(z −1)

=
S∑

j=1
g j (z)W j (z)N−S

(
(1− A1(z))W j (z)S−1 −

N−1∑
i=2

A0(z)i−1 Ai (z)W j (z)S−i
)

− A0(z)N−1 A∗
N (z)(z −1)

=
S∑

j=1
g j (z)W j (z)N−S

(
(1− A1(z))W j (z)S−1 −

N−1∑
i=2

A0(z)i−1 Ai (z)W j (z)S−i
)

−
S∑

j=1
g j (z)W j (z)N−S

S∑
i=N

A0(z)i−1 Ai (z)W j (z)S−i

=
S∑

j=1
g j (z)W j (z)N−SW j (z)S .

The last two transitions are based upon Lemmata 4.13 and 4.12 respectively.
iii) N = 1: Straightforward but tedious through substitutions from lemma 4.14.

Note 64. Notice that all S roots Yi (z) appear in (4.104) .

As verification, note that (4.104) corresponds to (4.46) for S = 2, as, after tedious
substitutions from lemma 4.14, (4.104) can be found to be equal to

DN (z) =−1− A∗
0 (z)

AS (z)

S∑
j=1

z −Y j (z)

1−Y j (z)

S∏
i=1
i 6= j

1

Y j (z)−Yi (z)

(A0(z)

Y j (z)

)N
, N > 0. (4.105)

Note 65. Porting over the reasoning used for S = 2 to general S, which was man-
ageable for DN (Z), seems even more tedious for TN (z). However, a more appealing
approach in proving that the kernel also drives the N /∞ model, lies in using formal
power series, for which we have a conjecture and are working on a proof.

4.6 Concluding remarks

We have (numerically) compared the location of the singularities in the∞/∞model
and the N /∞ model, which indicates that there is “convergence” between both
models as N increases, which was to be expected. Furthermore, the tail behavior
was also numerically computed in a practical example. However, the main result of
this chapter is the discovery of the crucial relation between the characteristic poly-
nomial of the recurrence relation in the finite case and the kernel in the infinite
case. We have restricted the arrival process so that no more than 2 class-1 packets
arrival per slot. We identify that, in the finite case, all roots of the kernel influence
system behavior but cancel out each others branch cuts. In the limit to the infinite

N /∞ PRIORITY QUEUE - TAIL BEHAVIOR 4-29

case, we show that the root inside the unit circle dominates the other roots, and the
branch cut of this root is no longer canceled. We have relaxed this to maximum S
arrivals per slot and proven a similar but partial result. However, these restrictions
are probably unnecessary, which is an interesting line of future work. Furthermore,
although we have provided some more insight, additional information on the loca-
tion of the poles and their behavior (the probable convergence to infinite case as
the class-1 queue capacity N increases) remains a “holy grail”.

Part II

Partial Buffer Sharing

5
PARTIAL BUFFER SHARING

5.1 Introduction

In this part of the dissertation, we study a single-server queueing model with two
traffic classes that share a single finitely-sized buffer. The system can differentiate
the service it delivers by giving a class time priority and/or space priority. The class
receiving time priority has absolute transmission priority over the other class. Fur-
thermore, space priority is provided by adopting the partial buffer sharing (PBS)
acceptance policy. As there are two classes, say class 1 and class 2, there are four
possible combinations of the two priority types. However, we only need to con-
sider two as the two others then follow directly by swapping class 1 and 2 around.
Therefore, we can choose class 1 to have time priority. The model wherein this
class also receives space priority is called Full Priority (FP), whereas the term Mixed
Priority (MP) is used when class 2 receives space priority. Arrivals are modeled as
a two-class discrete batch Markovian arrival process (2-DBMAP) [62]. A discrete
background Markov chain drives this arrival process as the number of arrivals in
a slot depend on the state (transitions) of this Markov process. Consequently, one
can take the burstiness of network traffic as well as correlation between both classes
into account. The two queueing models are studied in a unified manner and solved
using matrix analytic methods.

Priority queueing systems providing time priority have been studied extensively
in the first part of this dissertation. In these models, each class has its dedicated
queue whereas in the current chapter both classes share a single queue hence in-
troducing here space priority. PBS is easily implemented [63] and has been widely
studied in, [64, 65, 66]. However, these models do not include time priority as
packets of all classes are served in a First-In-First-Out manner. The current con-

5-2 PARTIAL BUFFER SHARING

tribution encapsulates [19] and extends [67]. The former paper studies networks in
the same setting as the first part of this dissertation where packets are categorized
into two classes: real-time packets (multimedia, gaming,. . .) requiring time priority
and data packets (file transfer, email,. . .) requiring space priority and consequently
the MP-model is perfect for providing QoS. In contrast, [67] studies the FP-model
in order to provide QoS in scalable video coding (SVC) (see e.g. [68]), which uses
two types of packets: base layer and enhancement layer packets. The former are
required to decode and playback the video, although at poor quality, whereas en-
hancement packets only increase quality. Here, the FP-model is clearly appropriate.
However, it is assumed that, at a slot boundary, all base-layer packets arrive before
enhancement packets. The current contribution does not make any assumptions
on the order of arrivals and provides unified formulas for both models.

The remainder of this chapter is organized as follows. The queueing model is
described in the next section and is subsequently analyzed in section 5.3. The next
section determines how to obtain several performance measures and is followed
by a section elaborating on intra-slot space priority. Section 5.6 illustrates the ob-
tained results by means of some numerical examples. Finally, this chapter is con-
cluded in section 5.7.

5.2 Model

We consider a discrete-time single-server priority queueing system. Time is divided
into fixed-length intervals (slots) and arrivals and departures are synchronized with
respect to slot boundaries. There are two classes of packets, say class 1 and 2. Trans-
mission times of packets of both classes are assumed to be fixed and equal to the
slot length. Each slot, a packet enters the server for transmission if any packets are
present in the queue. In the remainder, we thus distinguish between the queue and
the server. The queue capacity of the system under investigation is finite as the
queue can only store up to N packets simultaneously.

Actually, we study two queueing models. In both models, time priority is granted
to class 1 in the form of absolute transmission priority over class 2. In the first
model, class 1 gets time and space priority over class 2 and it is called the FP-model.
In contrast, class 2 receives space priority in the MP-model.

Space priority is provided by adopting the PBS buffer acceptance policy with
threshold T (0 ≤ T ≤ N). A packet of the class with space priority can enter the
buffer containing less than N packets upon arrival of the packet whereas a packet
of the other class is only allowed into a buffer containing no more than T packets
upon arrival of the packet. Thereby, packet loss is minimized for the prioritized
class. Here, the packets that are present “upon arrival” of a certain packet include
the packets that arrived at the same slot boundary but that entered the queue be-
fore this packet.

Both the finite queue capacity and the PBS mechanism give rise to packet loss
and the order in which packets arrive at a slot boundary determines which of these

PARTIAL BUFFER SHARING 5-3

packets are lost. In the literature, this peculiarity is avoided by assuming that all
packets of a certain class arrive concurrently. However, this may not hold in prac-
tice. Furthermore, when rearrangement is possible, it often can be exploited to
improve performance. We consider a more formal arrival process making no as-
sumptions on the order of arrivals at a slot boundary by using a string represen-
tation leading to the notion of intra-slot space priority (ISP), which is discussed in
section 5.5.

Note 66. In the previous part of this dissertation, each class had a dedicated queue
making the order of packet arrivals within a slot irrelevant.

The arrival sequence at a slot boundary is embodied by a vector x with i -th
element xi ∈ {1,2} denoting the class of the i th packet. The total number of arrivals
obviously equals the total number of elements of x , given by dim(x). For instance,
a class-2 arrival followed by a class-1 arrival and another class-2 arrival is depicted
by the vector x = [2 1 2] whereas a slot with no arrivals corresponds to x = []. For
each n ∈N, there are 2n vectors representing a possible arrival sequence. Let the set
of all vectors representing an arrival sequence be denoted byΩ. The arrival process
is then specified by defining appropriate probability measures onΩ.

Note 67. The length of such sequences is, in general, unbounded. Furthermore, con-
sidering only a finite number of elements of a sequence is not sufficient as an infinite
amount of packets without space priority can be dropped due to the threshold while
the following packets with space priority are accepted. However, assigning proba-
bility to such sequences is straightforward as one can easily construct an equivalent
finite representation where each element tracks the number of consecutive arrivals
of the same class (similar to “run length encoding”). Due to the buffer finiteness, at
most N + 1 “transitions” between consecutive arrivals of the same class need to be
considered to determine which packets enter the buffer.

Let the vector ak represent the arrival sequence at the kth slot boundary. In this
chapter, class-1 and class-2 arrivals are modelled by means of a 2-class discrete-
time batch Markovian arrival process (2-DBMAP). As we need to keep track of the
entire sequence of arrivals, the definition of this process is more general than the
standard one [69]. In the current contribution, a 2-DBMAP is completely charac-
terized by the Q ×Q matrices A(x) governing the transitions from slot to slot of the
underlying discrete-time Markov chain when arrivals occur according to the se-
quence x ∈Ω. Here, Q denotes the size of the state space of the underlying chain.
We have

A(x) =
[

Pr[ak = x , sk+1 = j |sk = i]
]

i , j=1,...,Q
, (5.1)

with sk the state of the underlying Markov chain during slot k. As A(·) is to be a
proper (probability) measure, for any setΦ⊆Ωwe have

A(Φ) = ∑
x∈Φ

A(x) . (5.2)

5-4 PARTIAL BUFFER SHARING

The number of class-m (m = 1,2) packets amongst the first n packets in an ar-
rival sequence x is given by

cn
m(x) =

mi n(n,di m(x))∑
i=1

1{xi = m}, . (5.3)

Note 68. Recall that 1{.} is the indicator function, evaluating to 1 if its argument is
true and to 0 if it is false. Also, the size (dimension) of a vector a is denoted by dim(a).

Obviously, the dimension of x is an upper bound on cn
m(x). The total number

of arrivals at the kth boundary, aT,k , equals dim(ak). Also note that the number
of class-i packets arriving at the kth boundary, ai ,k , is easily found to be equal to
c∞i (ak).

For further use, let λi denote the mean number of packets of class i (i = 1,2)
that arrive at a slot boundary and be defined as

λ1 =
∑

x∈Ω
c∞1 (x)ψA(x)e , λ2 =

∑
x∈Ω

c∞2 (x)ψA(x)e . (5.4)

Here e is a column vector of ones and ψ is the steady-state probability row vector
of the underlying Markov chain, i.e., it is the unique non-negative solution of

ψ=ψA(Ω) , ψe = 1. (5.5)

Furthermore, let λ=λ1 +λ2 denote the total load.

Due to the possible simultaneity of arrivals of both classes and departures at slot
boundaries, one needs to specify the order in which these arrivals and departures
are processed at a boundary. We here assume that the departure, if any, occurs
before any arrivals. In the remainder, observation of the queue “at slot boundaries"
means after possible departures but before arrivals.

5.3 System analysis

We first relate the total number of packets and the number of class-2 packets in the
queue at consecutive slot boundaries. These relations contain the notion of effec-
tive arrivals and these are subsequently derived in the second subsection. Finally,
a set of balance equations can be established and solved numerically.

5.3.1 System equations

Consider slot boundary k and let uk and vk denote the total queue content and the
class-2 queue content — i.e., the total number of packets and the number of class-2
packets in the queue — at this slot boundary. Possibly, some arriving packets are
not accepted into the queue giving rise to packet loss. Therefore, let ã1,k and ã2,k

denote the number of class-1 and class-2 packets arriving at the kth slot boundary
that the system accommodates, called effective arrivals.

PARTIAL BUFFER SHARING 5-5

The system equations relate the total queue content and the class-2 queue con-
tent at consecutive slot boundaries. As a packet leaves the queue at the (k + 1)th
boundary if there are any packets present, the total queue content evolves accor-
ding to

uk+1 = (uk + ã1,k + ã2,k −1)+ . (5.6)

Note 69. Recall that (·)+ is the usual shorthand notation for max(·,0).

The evolution of the class-2 queue content is more intricate. If a class-1 packet
enters the server at the (k + 1)st slot boundary, this is if uk − vk + ã1,k > 0, class-2
packets obviously have no access to the server yielding

vk+1 = vk + ã2,k . (5.7)

On the other hand, if there are no class-1 packets present, this is if uk −vk + ã1,k = 0,
a class-2 packet enters the server, if any is present. This produces

vk+1 = (vk + ã2,k −1)+ . (5.8)

Note 70. Here, we observe the queue at slot boundaries, whereas in the first part of
this dissertation, the queue was observed at the beginning of a slot. This is clearly
visible in the system equations as here, the arrivals are also contained in the (·)+
operator. In the next section, the queue content at (the beginning of) a random slot
will be computed from the one at slot boundaries. Furthermore, the terms queue
content and the system content are equal in the current context. These discrepancies
between both parts of the dissertation was chosen to keep each part in sync with the
relevant literature in that area.

5.3.2 Effective arrivals

Before constructing the balance equations from the system equations, we intro-
duce some auxiliary functions which will allow us to describe both models in uni-
fied formulas. The number of effective arrivals when the queue content equals n
and packets arrive according to the vector x are given by

ãn
1 (x) =

{
min(c∞1 (x), N −n − ãn

2 (x)) , Full Priority

cT−n
1 (x) , Mixed Priority

ãn
2 (x) =

{
cT−n

2 (x) , Full Priority

min(c∞2 (x), N −n − ãn
1 (x)) , Mixed Priority

. (5.9)

Consequently, ãi ,k = ãuk
i (ak). Note that the queue accommodates arriving packets

of the class receiving space priority until there are N packets in the queue and pack-
ets of the other class until there are T packets in the queue. Especially note that the
number of effective arrivals of the class without space priority is obtained first as it
appears in the expression for that of the other class. This stems from the fact that,

5-6 PARTIAL BUFFER SHARING

obviously, the threshold is reached before the entire buffer is full (or concurrently if
T = N).

The maximum number of effective class-i arrivals in a slot given the queue con-
tent equals n is denoted by ãmax

i (n) yielding

ãmax
1 (n) =

{
N −n , Full Priority

(T −n)+ , Mixed Priority

ãmax
2 (n) =

{
(T −n)+ , Full Priority

N −n , Mixed Priority

. (5.10)

Notice that, evidently, these functions exactly oppose each other for both models.
Next, the class-2 queue content given that the total queue content equals n ranges
from vmin(n) to vmax(n) with

vmin(n) =
{

0, Full Priority

(n +1−T)+ , Mixed Priority

vmax(n) =
{

min(T,n) , Full Priority

n , Mixed Priority

. (5.11)

Especially note that, in the FP-model, there are at most T class-2 packets present
in the buffer, whereas in the MP-model, there must be class-2 packets present if
the total content exceeds T − 1 as the buffer can only contain up to T − 1 class-1
packets immediately following a departure. Furthermore, in the MP-model, T = 0
is an exceptional case as then vmin(n) should equal n and not n+1. Here, the system
behaves as a FIFO queue with a single class of (class-2) packets as all class-1 packets
are dropped.

Let Ãu(m,n) denote the matrix governing the transitions of the underlying Mar-
kov chain at a slot boundary when there are m effective class-1 arrivals and n effec-
tive class-2 arrivals, given that there are u packets in the queue at that slot bound-
ary. That is

Ãu(m,n) =
[

Pr[ã1,k = m, ã2,k = n, sk+1 = j |sk = i ,uk = u]
]

i , j=1,...,Q

= ∑
x∈Ω

A(x)1{m = ãuk
1 (x), n = ãuk

2 (x)} ,
(5.12)

for u = 0, . . . , N −1, m ≥ 0 and n ≥ 0.

5.3.3 Balance equations

Clearly, the triple (uk , vk , sk) describes the state of the queueing system at the kth
slot boundary in the Markovian sense. Therefore, let πk (m,n) denote the row vec-
tor whose i th entry is the probability to have n−m class-1 and m class-2 packets in
the queue at the kth slot boundary while the arrival process is in state i , i.e.,

πk (m,n) =
[

Pr[vk = m,uk = n, sk = i]
]

i=1,...,Q
, (5.13)

PARTIAL BUFFER SHARING 5-7

for n = 0, . . . , N − 1 and m = vmin(n), . . . , vmax(n). In view of (5.6), (5.7) and (5.8),
relating slots k and k +1 and conditioning on the state of the server yields

πk+1(m,n) =
min(n+1,N−1)∑

j=0

vmax(j)∑
i=vmin(j)

πk (i , j)Ã j (n −m + i +1− j ,m − i)

+1{n = m}
min(n+1,N−1)∑

j=0
πk (j , j)Ã j (0,n − j +1)

+1{n = m = 0}πk (0,0)Ã0(0,0) ,

(5.14)

for n = 0, . . . , N −1 and m = vmin(n), . . . , vmax(n).
Grouping the vectorsπk (m,n) by total total queue content defines the row vec-

tors
πk (n) = [πk (vmin(n),n), . . . ,πk (vmax(n),n)] , (5.15)

for n = 0, . . . , N −1. The set of equations (5.14) then has block matrix representation

πk+1(n) =
min(n+1,N−1)∑

j=0
πk (j)C (j ,n) , (5.16)

where the block elements (of size Q ×Q) of C (j ,n) are given by

ci+1,m+1(j ,n) = Ã j (n +1− j −m + i ,m − i)

+1{m = n, i = j }Ã j (0,n − j +1)

+1{n = j = 0}Ã0(0,0) ,

(5.17)

for i = vmin(j), . . . , vmax(j) and m = vmin(n), . . . , vmax(n). Note that ci+1,m+1(j ,n)
corresponds to the evolution ofπk (i , j) toπk+1(m,n).

Under mild assumptions, the Markov chain under consideration has only one
ergodic class. Consequently, there exists a unique stationary distribution (a non-
negative normalized vector), denoted by the (block) vectorπ= [π(0), . . . ,π(N −1)],
withπ(n) = [π(vmin(n),n), . . . ,π(vmax(n),n)], satisfying the balance equations

π(n) =
min(n+1,N−1)∑

j=0
π(j)C (j ,n) , (5.18)

for n = 0, . . . , N − 1. Consequently, the transition matrix of the priority queueing
system under consideration has an upper-Hessenberg block-structure with vary-
ing block sizes which is efficiently solved by means of a linear level reduction algo-
rithm [70, 62, 71]. In the block matrix, the level (block-row number) indicates the
total queue content while the phase (size of a block element) indicates the class-2
queue content and the state of the arrival process. In general, the number of phases
equals (vmax(n)− vmin(n))×Q at level n. Consequently, for n ≤ T , the number of
phases equals (n +1)×Q as, out of n packets in total, from 0 up to n packets can
be of class 2. For levels n > T , the block size remains constant at (T + 1)×Q and
T ×Q for the FP- and MP-model respectively as the class-2 queue content can vary
from 0 to T and from n +1−T to n respectively. Figure 5.1 demonstrates the block
structure of the FP-model for a small example (N = 6, T = 3).

5-8 PARTIAL BUFFER SHARING

1

3

4

4

4

2

0

1

2

3

4

5

T=3

level # of phases

Figure 5.1: Transition matrix block structure for N = 6, T = 3.

5.4 Performance analysis

Onceπ(n) has been obtained, various performance measures can be derived. This
section describes how to calculate supported load, packet loss, queue content at a
random slot boundary and system content at (the beginning of a random slot) and
mean packet waiting time.

The supported class-i load λ̃i is defined as the average number of class-i pack-
ets arriving at a slot boundary that are accommodated by the queue. They are de-
termined by

λ̃1 =
N−1∑
i=0

ãmax
1∑

m=0

ãmax
2∑

n=0
mπ(i)e Ãi (m,n)e , λ̃2 =

N−1∑
i=0

ãmax
1∑

m=0

ãmax
2∑

n=0
nπ(i)e Ãi (m,n)e . (5.19)

Note that π(i)e is a row vector of size Q with i th element denoting the probability
that the queue contains i packets in total and that the underlying chain of the ar-
rival process is in state j , (1 ≤ j ≤Q). Furthermore, the total supported load is given
by λ̃= λ̃1 + λ̃2.

Alternatively, the supported load can also be retrieved by observing the depar-
ture process. As the system is stationary, the total supported load has to equal the
probability that a packet leaves the queue at a random slot boundary. As a packet
departs at each slot boundary except when the queue is empty, this produces

λ̃= 1−π(0,0)Ã0(0,0)e . (5.20)

Similarly, the class-1 supported load equals the probability of a class-1 departure
at a random slot boundary. A class-1 packet leaves the queue if there are class-1

PARTIAL BUFFER SHARING 5-9

packets present in the queue. Thus

λ̃1 = 1−
vmax(N−1)∑

m=0

ãmax
2 (m)∑
n=0

π(m,m)Ã0(0,n)e . (5.21)

Note that the appearance of vmax(N −1) indicates that, at a slot boundary, the sys-
tem can contain up to T and up to N −1 class-2 packets for the FP- and MP-model
respectively. Also, the class-2 supported load is easily determined as λ̃2 = λ̃− λ̃1.

The packet loss ratio is the fraction of packets that cannot be accommodated by
the queue. In view of the definitions of supported load and packet loss ratio, one
easily derives the packet loss ratio of class-1 packets (plr1), of class-2 packets (plr2)
and of all packets (plr) to be

plr1 = 1− λ̃1

λ1
, plr2 = 1− λ̃2

λ2
, plr = 1− λ̃

λ
. (5.22)

Let u1 and u2 denote the class-1 and class-2 queue content at a random slot
boundary. Sinceπ(m,n) is the joint distribution of the queue content of both clas-
ses, all moments (mean, variance, etc.) of the random variables u1 and u2 are easily
obtained. For instance, the i -th moment of the class- j queue content at random
slot boundaries u(i)

j is given by

u(i)
1 =

N−1∑
n=0

vmax(n)∑
m=vmin(n)

(n −m)iπ(m,n)e , u(i)
2 =

N−1∑
n=0

vmax(n)∑
m=vmin(n)

miπ(m,n)e . (5.23)

The mean total queue content is given by u(1) = u(1)
1 +u(1)

2 . Similar expressions can
be established for joint moments. For instance, the covariance between the queue
content of both classes at a random slot boundary is given by

Cov(u1,u2) =
N−1∑
n=0

vmax(n)∑
m=vmin(n)

(n −m)mπ(m,n)e −u(1)
1 u(1)

2 . (5.24)

Note 71. Here, the i -th moment of a random variable a is denoted by a(i).

When the system is observed at (the beginning of) a random slot (or equiva-
lently at random points in time), this is after all departures and arrivals occurred
at the preceding slot boundary, let θ(m,n) denote the probability that it contains
n −m class-1 and m class-2 packets. These packets either were already present at
the preceding slot boundary or have arrived at that slot boundary. Consequently,
the queue content at random slots is easily obtained from the one at random slot
boundaries yielding

θ(m,n) =
m∑

i=0

n∑
j=0
π(i , j)Ã j (n −m − j + i ,m − i)e , (5.25)

for n = 0, . . . , N and for m = vmin(n), . . . , vmax(n). Notice that the queue can now
contain up to N packets as we no longer observe the system immediately following

5-10 PARTIAL BUFFER SHARING

a departure. Again the i -th moment of the class- j queue content at random points
in time y i is given by

y (i)
1 =

N∑
n=0

vmax(n)∑
m=vmin(n)

(n −m)iθ(m,n)e , y (i)
2 =

N∑
n=0

vmax(n)∑
m=vmin(n)

miθ(m,n)e . (5.26)

Alternatively, y (1)
i can also be obtained by noting that there are λ̃i class-i arrivals at

a slot boundary on average yielding

y (1)
i = u(1)

i + λ̃i . (5.27)

Consequently, calculating θ(m,n) is superfluous when one is only interested in the
mean values y (1)

i .
Packet waiting time is defined as the number of slots a packet spends in the

queueing system. Applying Little’s law, the mean class-i (i = 1,2) waiting time is
found as

w (1)
i = 1

λ̃i
y (1)

i = 1

λ̃i
u(1)

i +1. (5.28)

Notice that here Little’s result does not relate the mean waiting time to the mean
queue content at random slot boundaries but to the mean queue content at the be-
ginning of random slots. This is caused by the chosen order of arrival, observation
and departure epochs in our queueing model as illustrated in [3].

5.5 Intra-slot space priority

The order in which packets arrive at a slot boundary can be seen as means of pro-
viding intra-slot space priority (ISP), as it partially determines which of these pack-
ets, if any, are dropped. Obviously, ISP will have a larger effect when a large num-
ber of packets arrive at a slot boundary. The literature generally assumes that all
class-1/class-2 packets arrive before packets of the other class (class-1/2 ISP). In
some applications, reordering the arrivals at a slot boundary is feasible. This can
consequently be exploited to improve performance. For instance, as the FP-model
provides time- and space priority to class-1 packets, it is beneficial to use class-1
ISP as well. In contrast, the MP-model gives space priority to class-2 packets so it
seems natural to give these packets ISP as well. Furthermore, in a lot of real-life ap-
plications rearranging is infeasible and packets often arrive in a completely random
order (no ISP).

Theoretically, ISP is achieved by only allowing certain forms of arrival sequences
x ∈ Ω to correspond with non-zero entries in the matrix A(x). Let us call the set
of vectors of this form Ψ, making this formally equal to A(Ψ) = A(Ω). When Ψ
contains a reasonably small number of vectors, determining Au(m,n) is straight-
forward by combining (5.3), (5.9) and (5.12). However, this becomes increasingly
tedious asΨ contains more elements. This can be avoided by giving up some gen-
erality on the order of arrivals. Here, information about the order of arrivals is re-
moved from the arrival process but assumed to be generally known. This enables

PARTIAL BUFFER SHARING 5-11

writing the arrival process as a standard 2-DBMAP [69] given by

A(m,n) =
[

Pr[a1,k = m, a2,k = n, sk+1 = j |sk = i]
]

i , j=1..Q
, (5.29)

that only keeps track of the number of arrivals of each class at a slot boundary.
Several cases where the order of arrivals can be assumed to be generally known
were mentioned above: class-1/2 ISP and no ISP. The remainder of this section will
elaborate on this matter.

5.5.1 Class-1 intra-slot space priority.

Here, all class-1 packets are assumed to arrive before class-2 packets. Consequently,
the setΨ fulfilling A(Ψ) = A(Ω) is the set of all arrival sequences x of the form

x = [
1 . . . 1︸ ︷︷ ︸

m

2 . . . 2︸ ︷︷ ︸
n

]
, (5.30)

for m,n ≥ 0, representing a slot boundary with m class-1 and n class-2 arrivals. If
class-1 ISP is assumed, the only information held by such a vector are the values of
m and n. Consequently, (5.12) simplifies to

Ãu(m,n) =
∞∑

i=m

∞∑
j=n

A(i , j)1{m = min(i , ãmax
1 (u)),n = min(j , ãmax

2 (u +m))} . (5.31)

5.5.2 Class-2 intra-slot space priority.

In this case, each non-zero probability arrival sequence x ∈Ψ is of the form

x = [
2 . . . 2︸ ︷︷ ︸

m

1 . . . 1︸ ︷︷ ︸
n

]
. (5.32)

Again, A(Ψ) = A(Ω) and only m and n need to be accounted for and thus (5.29)
holds again . Here, (5.12) simplifies to

Ãu(m,n) =
∞∑

i=m

∞∑
j=n

A(i , j)1{m = min(i , ãmax
1 (u +n)),n = min(j , ãmax

2 (u))} . (5.33)

5.5.3 No intra-slot space priority.

This situation is more intricate. When i class-1 and j class-2 packets arrive, these
i + j packets are assumed to have a completely random order. We have

Full Priority:

Ãu(m,n) =
∞∑

i=m

∞∑
j=n

A(i , j)

(
1{i + j < (T −u)+)}1{m = i ,n = j }

+1{i + j ≥ (T −u)+)}

((T−u)+
n

)((i+ j−(T−u)+)+
j−n

)
(i+ j

i

) 1{m = min(i , N −u −n)}

)
(5.34)

5-12 PARTIAL BUFFER SHARING

Mixed Priority:

Ãu(m,n) =
∞∑

i=m

∞∑
j=n

A(i , j)

(
1{i + j < (T −u)+)}1{m = i ,n = j }

+1{i + j ≥ (T −u)+)}

((T−u)+
m

)((i+ j−(T−u)+)+
i−m

)
(i+ j

i

) 1{n = min(j , N −u −m)}

)
(5.35)

with
(n

k

) = n!/(k !(n −k)!) denoting the binomial coefficient. In this case, a unified
formula for both models (FP and MP) cannot be established as the class receiving
space priority governs this equation. This can be seen as follows: when i class-1
and j class-2 packets arrive at a slot boundary, choosing i (out of i + j) positions
for class-1 completely determines the arrival vector. The queue can accommodate
(T − u)+ packets until the threshold is reached and packets of the class without
priority are no longer accepted. Consequently, in order to accept m (n) of these
packets, they have to be among the first (T −u)+ arriving packets. The remaining
i −m (j −n) non-prioritized packets are lost, but all possible combinations among
these vectors evidently have to be taken into consideration as well. Once the num-
ber of unprioritized effective arrivals is known, it is straightforward that prioritized
packets are accepted as long as the queue is not entirely full.

5.6 Numerical examples

In this section, we investigate the impact of time priority, PBS and ISP on the per-
formance measures of both classes in both the FP- and MP-model. Obviously, the
impact of ISP increases as multiple packets arrive at the same slot boundary while
it has no impact when only a single packet arrives. Therefore, a bursty arrival pro-
cess where multiple packets arrive at the same slot boundary is considered in this
section. Furthermore, ISP only has effect in slots where the threshold is crossed. If
the threshold is not reached, all arriving packets are accepted, whereas, if the queue
content already exceeds the threshold, only packets with space priority may enter
the queue. Consequently, one would expect ISP to have a minor impact but in the
following we demonstrate that ISP can considerably influence system performance.
Furthermore, time priority and PBS have a large impact as expected.

We now study the queueing system described in this chapter when packets ar-
rive according to the arrival process generated by M on/off sources as described in
appendix A.5. The legends use following 3 character notation. The first character
denotes the model: F for FP and M for MP, the second denotes the ISP: 1 and 2 for
class-1 and class-2 ISP respectively and r for random (no ISP). This is followed by a
hyphen and the class number (1 or 2). For instance, when the load is depicted for
Fr-2 it denotes the class-2 load for the FP-model with no ISP. Each figure has two
graphs. The left one depicts the results for the FP-model and the right one for the
MP-model. Obviously, the results for no ISP will always lie between the values for
class-1 and class-2-ISP. Furthermore, in order to make the graphs clearer, curves

PARTIAL BUFFER SHARING 5-13

0.0 0.2 0.4 0.6 0.8 1.0 1.2

1e
−

06
1e

−
04

1e
−

02
1e

+
00

load (by varying σ)

pa
ck

et
 lo

ss
 r

at
io

●

●

●

●

●

●

●

●

●

●

Fr−1
Fr−2

F1−1
F1−2

F2−1
F2−2

0.0 0.2 0.4 0.6 0.8 1.0 1.2

1e
−

06
1e

−
04

1e
−

02
1e

+
00

load (by varying σ)

pa
ck

et
 lo

ss
 r

at
io

●

●

●

●

●

●

●

●

●

●

Mr−1
Mr−2

M1−1
M1−2

M2−1
M2−2

Figure 5.2: Loss vs. load with 3 ISP types for the FP-model (on the left) and the MP-model (on
the right).

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
10

20
30

40

load (by varying σ)

m
ea

n
de

la
y

in
 s

lo
ts

●
●

●

●

●

●

●

●

●

Fr−1
Fr−2

F1−1
F1−2

F2−1
F2−2

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
10

20
30

40

load (by varying σ)

m
ea

n
de

la
y

in
 s

lo
ts

● ● ● ●

●

●

●

●

●

●

Mr−1
Mr−2

M1−1
M1−2

M2−1
M2−2

Figure 5.3: Delay vs. threshold with 3 ISP types for the FP-model (on the left) and the
MP-model (on the right).

5-14 PARTIAL BUFFER SHARING

0 10 20 30 40 50

1e
−

09
1e

−
07

1e
−

05
1e

−
03

1e
−

01

threshold (T)

pa
ck

et
 lo

ss
 r

at
io

●

●

●

●

●

●

●
●

●
●

●

●

Fr−1
Fr−2

F1−1
F1−2

F2−1
F2−2

0 10 20 30 40 50
1e

−
09

1e
−

07
1e

−
05

1e
−

03
1e

−
01

threshold (T)

pa
ck

et
 lo

ss
 r

at
io

●

●
●

●
●

●

●

●

●

●

●

●

Mr−1
Mr−2

M1−1
M1−2

M2−1
M2−2

Figure 5.4: Packet loss ratio vs. threshold with 3 ISP types for the FP-model (on the left) and
the MP-model (on the right).

are full for class-1 and dashed for class-2 and each type of ISP has a symbol: a circle
for class-1 ISP, a triangle for class-2 ISP and a square for no ISP.

First, consider a buffer that can hold N = 50 packets and has threshold T = 25.
Packets are generated by M = 2 sources with K = 1.5 and when a source is on it
generates 4 packets of each class. The fraction of time a source is on σ is varied
causing the load λ to vary from 0 to 1.3 (note that the system is finite and thus
always stable). We investigate the impact hereof on the packet loss ratio in figure
5.2 and on the mean delay in figure 5.3.

We first study the packet loss ratio. Obviously, it increases when the load in-
creases. The QoS differentiation provided by the model is immediately apparent.
The loss is much lower for the class receiving space priority (class-1 on the left and
class-2 on the right). Furthermore, the effect of ISP is easily observed as loss is up
to three times higher (for light loads) between the different ISP types. For the class
without space priority, all packets are discarded once the threshold T is exceeded
and thus the ISP only plays a role in the slots where T is crossed. As the load in-
creases the queue content surmounts the threshold more frequently and the packet
loss becomes less dependent on the type of ISP and the three lines converge. Also
note that, as time priority does not influence packet loss ratio, but only the order
in which packets are served, the results are symmetric for the FP- and MP-model
(swapping classes and ISP).

The mean delay of class 1 is lower than that of class 2 for both models as time
priority is always provided to class 1. ISP affects mean class-2 delay considerably
(5-20% difference) whereas class-1 packets are hardly influenced. This can be seen
by noting that class-1 packets are not affected by other packets arriving while they

PARTIAL BUFFER SHARING 5-15

0 10 20 30 40 50

0
10

20
30

40
50

threshold (T)

m
ea

n
de

la
y

in
 s

lo
ts

● ● ● ● ● ●

●

●

●

●

●

●

●

●

Fr−1
Fr−2

F1−1
F1−2

F2−1
F2−2

0 10 20 30 40 50
0

10
20

30
40

50

threshold (T)

m
ea

n
de

la
y

in
 s

lo
ts

●
● ● ● ● ●

●

●

●

●

●

●

●

●

Mr−1
Mr−2

M1−1
M1−2

M2−1
M2−2

Figure 5.5: Delay vs. threshold with 3 ISP types for the FP-model (on the left) and the
MP-model (on the right).

wait in the queue whereas class-2 packets have to give priority to any arriving class-
1 packets and are consequently more reactive to packet drops and thus also to dif-
ferent ISP. For the FP-model, the mean class-1 delay increases with the load as more
and more class-1 packets are allowed into the system. The mean class-2 delay in-
creases as more and more packets enter the system. Note that the ISP resulting in
the highest packet loss ratio also yields the lowest delay as more and more pack-
ets are dropped. In contrast, for the MP-model, the mean class-1 delay first in-
creases slightly when the load increases and then starts decreasing as more and
more class-1 packets are dropped as they do not have space priority and conse-
quently the packets that do get accepted have shorter delay. Furthermore, both the
mean class-1 and class-2 delay are lower than for the FP-model because, opposed
to that model, the MP-model drops more class-1 packets than class-2 packets and
the former have an impact on the delay of both classes whereas the latter only have
an impact on the delay of other class-2 packets. This also explains why the ISP re-
sulting in the highest class-2 packet loss ratio also yields the highest class-2 delay
for the MP-model.

Next, we will investigate the effect of the threshold (T) as it controls how the
available space (N) is distributed between both classes. Consider, N = 50, M = 2,
σ= 0.12, K = 1.5 and b1 = b2 = 2 yielding a load λ= 0.96. We let T vary from 0 to N
and again depict the packet loss ratio (figure 5.4) and the mean delay (figure 5.5).

For T = 0, the system behaves as a system with only one traffic class (those with
space priority). The differentiation in packet loss ratio between both classes de-
creases as T increases as more and more packets are allowed into the system (pack-
ets of both classes can utilize the spaces up to T). For T = N there is no space pri-

5-16 PARTIAL BUFFER SHARING

ority and thus no difference between both classes. Furthermore, as explained for
figure 5.2, ISP has only a limited effect on class-1 packet loss for high load (recall
that λ= 0.96) whereas its impact on class-2 is bigger. Obviously, the ISP equivalent
to the class receiving space priority corresponds to the smallest amount of packet
loss. Again, it is apparent that both models are symmetric concerning packet loss.

The mean class-1 delay is hardly affected by varying the threshold for the FP-
model and for larger N it even decreases slightly as the system even starts to drop
space prioritized (class-1) packets resulting in a shorter delay for packets of this
class that are accepted. This also explains the decrease in class-2 delay when T
approaches N . Furthermore, class-2 delay increases as the threshold increases as
more and more class-2 packets are allowed into the system causing a longer de-
lay for other packets of this class (recall that they do not affect the delay of class-1
packets). For the MP-model, when the threshold increases, more class-1 packets
are allowed into the system at the cost of class-2 packets. But, as stated before,
class-1 packets affect the mean delay of both classes which thus get longer as T in-
creases. Concerning ISP, similar arguments as above lead to the same conclusions.
It is clear that choosing the threshold T appropriately (with respect to the required
QoS) is of paramount importance

5.7 Concluding remarks

This chapter studies a finite-sized discrete-time two-class priority queue where
packets arrive according to a two-class discrete batch Markovian arrival process (2-
DBMAP). Time and space priority are incorporated in the queueing model to pro-
vide different types of service to each class. One of both classes receives absolute
time priority in order to minimize its delay. Space priority is implemented by the
partial buffer sharing acceptance policy and can be provided to the class receiving
time priority or to the other class. This choice gives rise to two different queueing
models (Full and Mixed Priority) and this chapter analysed both these models in
a unified manner. Furthermore, the buffer finiteness and the use of space priority
make it interesting to consider a general order of arrivals at a slot boundary. This
paper introduces a string representation for sequences of arriving packets. This
naturally gives rise to intra-slot space priority (ISP) governing space priority be-
tween the packets arriving at a slot boundary. Performance of these queueing sys-
tems is then determined using matrix-analytic techniques. One can conclude that
the range of service differentiation covered by these models is large and that ISP
has a major impact for certain parameter settings and can thus not be neglected
for bursty arrival processes. Determining an appropriate value for the threshold
(space priority) is of paramount importance as it not only affects packet loss but
also the queue content (and thus delay/time priority performance) of packets of
both classes, especially for Mixed Priority.

Part III

Conclusions

6
CONCLUSIONS

In the first part of this dissertation, a two-class priority queueing system was stud-
ied modelling a node in a telecommunications network with two traffic classes.
Real-time traffic, such as streaming video and voice, e.g. a Skype conversation, re-
quires low delays but can endure a small amount of packet loss. On the other hand,
data traffic, such as file transfer, benefits from low packet loss but has less strin-
gent delay characteristics. Packets of each class arrive in a dedicated queue. Both
queues are served by the same server but the server gives absolute (time) priority to
class-1 packets in order to minimize the delay of these high-priority packets. Con-
sequently, the (low-priority) class-2 packet waiting at the head of the class-2 queue
can only enter the server if there are no class-1 packets in the system. The peculiar-
ity of this model, denote this the N /∞ model, is that the class-1 queue capacity is
limited to N , which is a finite positive integer, but the class-2 capacity is infinitely
large. In contrast, in the literature, the queue capacity is generally assumed to be
infinite for both classes (the ∞/∞ model). Evidently, as N increases, the N /∞ pri-
ority queue is increasingly similar to a system where both queues are presumed to
be of infinite capacity, and we thus investigate this behavior. The analysis of the
N /∞ model simultaneously took place in the probability domain for class-1 and
in the transform domain for class-2 through the use of a vector/matrix representa-
tion. In a first chapter, we assumed that service of a packet always takes a single
slot. In the subsequent chapter, we let the service times follow a general distribu-
tion. The part was concluded with a chapter on determining the tail behavior of
the distribution of the low-priority system content for the model with single-slot
service times studied earlier. It is evident that, in the limit for N to ∞, the results for
N /∞ model must converge to those for ∞/∞ model. However this was not clear
from the formulas for both systems. Our analysis has uncovered a crucial relation

6-2 CONCLUSIONS

between the characteristic polynomial of a recurrence relation in the finite case and
the kernel, which causes the implicitly defined function, in the infinite case. Fur-
thermore, through several numerical examples, we have showed that, under certain
conditions (small queue capacity, relatively high class-1 load, power-law arrivals),
the result for the N /∞ model are considerably different from the ones obtained if
one assumes infinite class-1 queue capacity.

In the second (shorter) part of this dissertation, we studied a two-class priority
queueing system where both classes share a single queue with finite capacity ac-
cording to a partial buffer sharing (PBS) policy. Here, both time and space priority
played a crucial role. One of the classes receives absolute time priority. As in the
previous section, these packets receive service before the packets of the other class.
Additionally, one of the classes receives space priority. When the queue contains
less packets than a (predetermined) threshold value, PBS accepts all packets but
when the queue (also called buffer) level is over a predetermined threshold, pack-
ets with low space priority cannot enter the queue and are dropped by the system.
Evidently, when the system is entirely full, all arriving packets are dropped. There
are four possible combinations of the two priority types. However, we only needed
to consider two as the two others then follow directly by swapping the classes. The
two scenarios are thus giving both time and space priority to one of classes or giving
time priority to one class and space priority to the other. In a general telecommu-
nications context, as detailed in the previous paragraph, one would of course give
time priority to real-time packets and space priority to data packets. In contrast,
in a scalable video coding (SVC) setting one would prefer the other scenario. SVC
uses two types of packets: base layer and enhancement layer packets. The former
are required to decode and playback the video, although at poor quality, whereas
enhancement packets increase quality but are useless without base packets. Here,
it thus makes sense to give both time and space priority to base packets. We pre-
sented a unified way to model both scenarios and analyzed them using well-known
matrix analytic solution techniques. One can conclude that the range of service dif-
ferentiation covered by these models is large and that determining an appropriate
value for the threshold of the PBS policy is of paramount importance.

Part IV

Appendices

A
APPENDIX: STOCHASTIC PROCESSES

This appendix describes the stochastic processes used in the numerical examples
sections throughout this dissertation.

A.1 Poisson distribution

A discrete random variable x is said to have a Poisson distribution with parameter
λ> 0, if the probability mass function (pmf) of x is given by

Pr[x = n] = λne−λ

n!
, n ≥ 0. (A.1)

Then, the corresponding probability generating function (pgf) reads

X (z) = E
[
zx]= eλ(z−1) . (A.2)

The mean and variance of a random variable with Poisson distribution happen to
be identical, as

E[x] = Var[x] =λ . (A.3)

A.1.1 Bivariate independent Poisson arrival process

Now, let us define a process appropriate for modelling the arrivals at a a two-class
priority queue, the system studied in the first part of this dissertation. Let class-i
(i = 1,2) arrivals occur according to a Poisson arrival process with parameter λi ,
independent of eachother. Using the notation developed there, we have

Ai (z) = (λ1)i e−λ1

i !
eλ2(z−1), i ≥ 0. (A.4)

A-2 APPENDIX: STOCHASTIC PROCESSES

A.2 Geometric distribution

A discrete random variable x is said to have a geometric distribution with parame-
ter 0 < p < 1, if

Pr[x = n] = (1−p)n p, n ≥ 0, (A.5)

and a shifted geometric distribution with parameter 0 < p < 1, if

Pr[x = n] = (1−p)n−1p, n ≥ 1. (A.6)

The latter corresponds to the number of trials until the first success in a Bernoulli
experiment with success probability p, whereas the former denotes the number of
failures before the first succes. Note that the support is different in each case as x
does not take the value 0 in the shifted geometric case. The corresponding pgfs are
given by

X (z) = p

1− (1−p)z
, (A.7)

and

X (z) = pz

1− (1−p)z
. (A.8)

A.2.1 Bivariate independent geometric arrival process

Evidently, we use the (regular) geometric distribution here in order to allow slots
without arrivals. When class-i (i = 1,2) arrivals occur according to a geometric ar-
rival process with parameter pi , independent of eachother, we mean that

Ai (z) = (1−p1)i p1p2

1− (1−p2)z
, i ≥ 0. (A.9)

A.3 Power-law distribution

In the distributions described above, the probabilities decay rapidly as n increases.
In practice, one very often encounters so called power-law distributions where the
probabilities of “large” events remain significant. Such behaviour has been ob-
served in city population, earthquake size, word frequency in texts (Zipf’s law), in-
ternet traffic, etc. Power-law distributions are also called heavy-tailed distributions,
regularly varying distributions and Pareto distributions.

A power-law distribution with parameters β and γ is defined by Pr[x = 0] = 1−β
and

Pr[x = n] =β n−γ

Liγ(1)
, n > 0, (A.10)

APPENDIX: STOCHASTIC PROCESSES A-3

with

Liγ(z) =
∞∑

i=1
i−γzi , (A.11)

the so-called polylogarithm.
Therefore, the corresponding generating function

X (z) = 1−β+βLiγ(z)

Liγ(1)
. (A.12)

has a branchpoint in z = 1.
Only the moments up to γ−1 are finite, f.i. for 3 < γ< 4 mean and variance are

finite and skewness, kurtosis and all higher-order moments are infinite. If finite,
the average is given by

λ=βLiγ−1(1)

Liγ(1)
. (A.13)

A.3.1 Bivariate independent power-law arrival process

Again let us define a process appropriate for modelling the arrivals at a a two-class
priority queue. For each class, assume independent arrivals occurring according to
a power-law process. Thus, by specifying the parameters (β1, γ1) and (β2, γ2) one
completely describes the arrival process. In our notation, this yields

A0(z) = (1−β1)

(
1−β2 +β2

Liγ2 (z)

Liγ2 (1)

)
,

Ai (z) =β1
i−γ1

Liγ1 (1)

(
1−β2 +β2

Liγ2 (z)

Liγ2 (1)

)
, i > 0.

(A.14)

A.4 Switch arrival process

Consider an output-queueing switch with S inlets and S outlets and two types of
traffic. Such a switch is common in computer networks providing Differentiated
Services (DiffServ) [7, 8]. In such networks, a switch is used to route incoming net-
work traffic to several different destinations. This kind of switch is represented in
figure A.1 for S = 4, where the queueing system we study is marked in gray. The
switch operates as follows. Each inlet has the same input characteristics and traffic
from the inlets is assumed to be destined for one of the outlets in a uniform man-
ner. In front of each outlet a queueing system is in place, as up to S packets could try
to access the same output in a (time-)slot, in order to buffer packets. The queuing
systems in front of each outlet are statistically identical and one thus only needs to
study one of them. Now, let us formally describe the arrival process at the studied
queueing system.

On each inlet of the switch a batch arrives according to a Bernoulli process with
parameterνT . A batch contains b (fixed) packets of class 1 with probabilityν1/νT or

A-4 APPENDIX: STOCHASTIC PROCESSES

…

…

…

…

1 1

S S

.

.

.

.

.

.

Figure A.1: Representation of a 4×4 output queuing switch. The studied two-class queueing
system is indicated in gray.

b packets of class 2 with probability ν2/νT (with ν1+ν2 = νT). Incoming packets are
routed uniformly to the outlets where they arrive at a two-class priority queueing
system. The arrival process at the queueing system can consequently be described
by the bivariate pmf

a(bn,bm) = S!
(ν1

S

)n(ν2
S

)m(
1− νT

S

)S−n−m

n!m!(S −n −m)!
, (A.15)

for n and m integers with n +m ≤ S and by a(p, q) = 0, for all other values of p
and q . Because of the finite support (no more than Sb packets can arrive in a slot),
constructing the corresponding functions Ai (z) is straightforward. Furthermore,
the mean number of class-i arrivals is given by λi = b ∗νi .

Obviously the number of arrivals of class-1 and class-2 are negatively correlated
as there can be no more than Sb − i class-2 arrivals in a slot with i class-1 arrivals.
For increasing values of S, the correlation increases and the numbers of arrivals of
both types become uncorrelated for S going to infinity.

We have chosen this arrival process to, again, facilitate comparison with [32],
where it is frequently used, but with b = 1. The addition of batch arrivals yields an
easy way to increase variance in the arrival process.

APPENDIX: STOCHASTIC PROCESSES A-5

ON OFFα

1−α

β

1−β

Figure A.2: Source transition diagram.

A.5 Multiple on-off sources

This arrival process is a discrete batch Markovian arrival process (DBMAP) [62],
which is a very versatile class of arrival processes. Packets are generated by M
on/off sources. Given that a source is on (off) at a slot boundary, it remains on
(off) at the following slot boundary with probability α (β). This is demonstrated in
figure A.2.

Consequently, consecutive on-periods (off-periods) constitute a series of geo-
metrically distributed random variables with mean 1/(1−α) (1/(1−β)). When a
source is on at a slot boundary, it generates b1 class-1 packets and b2 class-2 pack-
ets. A source does not generate packets when it is off at a slot boundary. The ag-
gregated DBMAP of these sources is easily established. The arrival process at the
buffer is completely characterized by the quintuple (M ,b1,b2,α,β). However, it is
equivalent and often more convenient to use the quintuple (M ,b1,b2,σ,K), where

σ= 1−β
2−α−β , K = 1

2−α−β . (A.16)

The parameter σ denotes the fraction of time a source is on and K is a measure
for the absolute lengths of the on- and off-periods. The parameter K takes values
between max(σ,1−σ) and ∞. For K < 1, K = 1 and K > 1 the arrivals in consecutive
slots are negatively correlated, not correlated and positively correlated respectively.
Furthermore, the class-i arrival load is given by

λi = Mσbi . (A.17)

B
APPENDIX: SPECTRAL DECOMPOSITION

Consider a square m ×m matrix A and a scalar function f . The spectral decompo-
sition theorem allows us to express the image of A under f by evaluating f (and its
derivatives) in the eigenvalues of A, see e.g. [72].

In the context of this dissertation, the function f is typically a power series
f (z) = ∑∞

n=0 fn zn and the matrix A is non-diagonalisable. Such a matrix A cannot
be reduced to a completely diagonal form by a similarity transform. However, any
square matrix can be reduced to a form that is almost diagonal, called the Jordan
normal form J. Based on this reduction, it is possible to prove that the matrix f (A)
can be uniquely defined as

f (A) =
s∑

j=1

k j −1∑
i=0

1

i !
f (i)(ξ j) (A−ξ j I)i G j , (B.1)

see formula (7.9.9) in [72]. In this expression, {ξ1, . . . ,ξs } (s ≤m) are the s distinct
eigenvalues of A, k j denotes the index of eigenvalue ξ j and G j the spectral projec-
tor.

Note 72. Recall that f (i) is the i th derivative of f . Here, we use ξ to denote an eigen-
value whereas most linear algebra texts use λ. However, throughout the queueing
literature, λ is used to denote the mean number of arrivals in a slot. As this disserta-
tion is primarily about queueing theory and linear algebra is merely a tool that helps
us accomplish our goals, we have given “priority” to the queueing sense of λ.

Obviously, it is required that the function f and its derivatives exist in the eigen-
values, i.e.

ξ j ∈ dom f (i) , j = 1, . . . , s , i = 0, . . . ,k j −1. (B.2)

B-2 APPENDIX: SPECTRAL DECOMPOSITION

The matrices G j are called the constituents or spectral projectors of A belonging to
the eigenvalue ξ j and have the following properties:

• G j is idempotent, i.e. G2
j =G j .

• G1 +G2 + . . .+Gs = I, with I the m ×m identity matrix.

• G j G j ′ = 0 whenever j 6= j ′ (1≤ j , j ′≤s).

In general, the matrices G j need to be calculated from the transformation matrix P,
for which J = P−1AP. Specifically, if P is partitioned conformably as

A = PJP−1 = [
P1 P2 · · · Ps

]


J1

J2

. . .
Js




Q1

Q2
...

Qs

 , (B.3)

with J j the Jordan segment corresponding with eigenvalue ξ j , then the projectors
G j are

G j = P j Q j (j = 1, . . . , s) . (B.4)

We also note that the columns of P j span the space of the right eigenvectors of A
corresponding to ξ j while the rows of Q j span the space of its left eigenvectors.

C
APPENDIX: INVERTING A PGF

Consider a random variable x. The locations of singularities of the corresponding
generating function X (z) allow obtaining (an approximation of) the tail behavior.
Moreover, the singularity with lowest norm (the so-called dominant singularity)
determines the tail of the corresponding pmf Pr[x = n], when n is large enough.
Consequently, the tail is completely characterized by the lowest-norm singularity
zx of X (z) and the behaviour of X (z) in the neighbourhood of this singularity. It
is generally known that zx ∈ [1,∞]. For z ∈ [0, zx [, X (z) is a positive-real strictly-
increasing function, so the inverse function X −1(z) can be defined on the real in-
terval [X (0), X (zx)[.

Following theorem (see [58]) allows characterization of the tail of the distribu-
tion of a random variable x from its generating function:

Theorem C.1. Let X (z) be the generating function of a random variable x, with
dominant singularity zx . Let β ∈R\ {0,1,2, . . .}. If for z → zx

X (z) ∼ cx · (1− z/zx)β,

then the distribution x(n) satisfies

x(n) ∼ cx n−β−1z−n
x

Γ(−β)
,

for n →∞, with Γ(.) the Gamma function.

Basically, if the dominant singularity of a generating function (zx) and the be-
haviour of the generating function in the neighbourhood of this dominant singu-
larity (β and cx) are identified, this theorem expresses the tail of the corresponding
distribution (x(n) for large n).

C-2 APPENDIX: INVERTING A PGF

E.g. a dominant pole of multiplicity 1 (β=−1) in the interval]1,∞[leads to an
exponential tail, whereas, if the dominant singularity is 1 (zx = 1), a power-law tail
is encountered.

BIBLIOGRAPHY

[1] J.F.C. Kingman. The first Erlang century - and the next. Queueing Systems,
63(1-4):3–12, 2009.

[2] W. Feller. An introduction to probability theory and its applications, volume
vol. I. John Wiley & Sons, New York, 1950.

[3] D. Fiems and H. Bruneel. A note on the discretization of Little’s result. Opera-
tions Research Letters, 30(1):17–18, 2002.

[4] H. Takagi. Queueing analysis: a foundation of performance evaluation, volume
I, II and III. North-Holland, 1991-1993.

[5] M.F. Neuts. Matrix-geometric solutions in stochastic models. John Hopkins
University Press, Baltimore, 1981.

[6] M.F. Neuts. Structured stochastic matrices of M/G/1 type and their applications.
Probability, pure and applied. Marcel Dekker, 1989.

[7] S. Blake, D. Black, M. Carlson, E. Davies, Z Wang, and W. Weiss. An architecture
for differentiated services. IETF RFC 2475, 1998.

[8] B. Carpenter and K. Nichols. Differentiated Services in the Internet. Proceed-
ings of the IEEE, 90:1479–1494, (2002.

[9] J. Walraevens, T. Demoor, T. Maertens, and H. Bruneel. Stochastic queueing-
theory approach to human dynamics. Phys. Rev. E, 85:021139, 2012.

[10] T. Demoor, D. Fiems, J. Walraevens, and H. Bruneel. Partially shared buffers
with full or mixed priority. Journal of Industrial and Management Optimiza-
tion, 7(3):735–751, 2011.

[11] T. Demoor, J. Walraevens, D. Fiems, and H. Bruneel. Performance analysis of
a priority queue : expedited forwarding PHB in DiffServ. AEU-International
Journal of Electronics and Communications, 65(3):190–197, 2011.

[12] T. Demoor, J. Walraevens, D. Fiems, S. De Vuyst, and H. Bruneel. Influence of
real-time queue capacity on system contents in Diffserv’s expedited forward-
ing per-hop-behavior. Journal of Industrial and Management Optimization,
6(3):587–602, 2010.

[13] J. Walraevens, T. Demoor, D. Fiems, and H. Bruneel. Uncovering the evolution
from finite to infinite high-priority capacity in a priority queue. In 2013 Inter-
national Conference on Computing, Networking and Communications (IEEE
ICNC), San Diego, 2013.

[14] D. Fiems, S. Andreev, T. Demoor, H. Bruneel, Y. Koucheryavy, and K. De Turck.
Analytic evaluation of power saving in cooperative communication. In Con-
ference on Future Internet Communications (CFIC), Coimbra, Portugal, 2013.

[15] T. Demoor, S. Andreev, K. De Turck, H. Bruneel, and D. Fiems. On the effect of
combining cooperative communication with sleep mode. In 9th Annual Con-
ference on Wireless On-demand Network Systems and Services (WONS), Cour-
mayeur, Italy, 2012.

[16] T. Demoor, J. Walraevens, D. Fiems, and H. Bruneel. The impact of queue
capacities on asymptotics in priority queues. In International conference on
Stochastic Modelling and Simulation, Chennai, India, pages 29–29, 2011.

[17] T. Demoor, J. Walraevens, D. Fiems, and H. Bruneel. Tail behaviour of a finite-
/infinite-capacity priority queue. In 3rd Madrid conference on Queueing The-
ory, Toledo, Spain, pages 31–32, 2010.

[18] T. Demoor, D. Fiems, J. Walraevens, and H. Bruneel. The preemptive repeat
hybrid server interruption model. In Analytical and Stochastic Modeling Tech-
niques and Applications (ASMTA 2010), Cardiff, Wales. Lecture Notes in Com-
puter Science, volume 6148, pages 59–71. Springer, Springer, 2010.

[19] T. Demoor, J. Walraevens, D. Fiems, and H. Bruneel. Time and space priority in
a partially shared priority queue. In 5th International conference on Queueing
Theory and Network Applications, Beijing, China, pages 125–131. Association
for Computing Machinery (ACM), 2010.

[20] T. Demoor, J. Walraevens, D. Fiems, S. De Vuyst, and H. Bruneel. Mixed finite-
/infinite-capacity priority queue with general class-1 service times. In Analyt-
ical and Stochastic Modeling Techniques and Applications (ASMTA 2009), Ma-
drid, Spain. Lecture Notes in Computer Science, volume 5513, pages 264–278.
Springer, 2009.

[21] T. Demoor, J. Walraevens, D. Fiems, S. De Vuyst, and H. Bruneel. Modelling
queue sizes in an expedited forwarding DiffServ router with service differen-
tiation. In 4th International conference on Queueing Theory and Network Ap-
plications, Singapore, Singapore. Association for Computer Machinery (ACM),
2009.

[22] T. Demoor, J. Walraevens, D. Fiems, and H. Bruneel. Mixed finite-/infinite-
capacity priority queue with interclass correlation. In Analytical and Stochas-
tic Modeling Techniques and Applications (ASMTA), Nicosia, Cyprus. Lecture
Notes in Computer Science, volume 5055, pages 61–74. Springer-Verlag, 2008.

[23] T. Demoor, D. Fiems, J. Walraevens, and H. Bruneel. Controlling delay and loss
in a DiffServ router with expedited forwarding PHB. In 23rd National Confer-
ence of the Belgian Operations Research Society, pages 98–98, 2009.

[24] T. Demoor, J. Walraevens, D. Fiems, and H. Bruneel. Performance analysis of
a two-class priority queue with finite high-priority queue capacity. In 22nd
National Conference of the Belgian Operations Research Society, pages 54–56,
2008.

[25] A. Cobham. Priority assignment in waiting line problems. Journal of the Amer-
ican Operations Research Society, 2(1):70–76, 1954.

[26] R. Miller. Priority queues. Annals of Mathematical Statistics, 31:86–103, 1960.

[27] N. Jaiswal. Priority queues. Academic Press, New York, 1968.

[28] M. Sidi and A. Segall. Structured priority queueing systems with applications
to packet-radio networks. Performance Evaluation, 3(4):265–275, 1983.

[29] T. Takine, B. Sengupta, and T. Hasegawa. An analysis of a discrete-time queue
for broadband ISDN with priorities among traffic classes. IEEE Transactions
on Communications, 42(2-4):1837–1845, 1994.

[30] J. Walraevens, B. Steyaert, and H. Bruneel. Performance analysis of a single-
server ATM queue with a priority scheduling. Computers & Operations Re-
search, 30(12):1807–1829, 2003.

[31] M. Mehmet Ali and X. Song. A performance analysis of a discrete-time priority
queueing system with correlated arrivals. Performance Evaluation, 57(3):307–
339, 2004.

[32] J. Walraevens. Discrete-time queueing systems with priorities. PhD thesis,
Ghent University, 2004.

[33] A. Kapadia, M. Kazmi, and A. Mitchell. Analysis of a finite capacity non pre-
emptive priority queue. Computers & Operations Research, 11(3):337 – 343,
1984.

[34] K. Avrachenkov, N. Vilchevsky, and G. Shevlyakov. Priority queueing with finite
buffer size and randomized push-out mechanism. Perform. Eval., 61(1):1–16,
June 2005.

[35] J. Van Velthoven, B. Van Houdt, and C. Blondia. The impact of buffer finite-
ness on the loss rate in a priority queueing system. Lecture Notes in Computer
Science, 4054:211–225, 2006.

[36] K. Al-Begain, A. Dudin, A. Kazimirsky, and S. Yerima. Investigation of the
M(2)/G(2)/1/∞, N queue with restricted admission of priority customers and
its application to HSDPA mobile systems. Computer Networks, 53(8):1186–
1201, 2009.

[37] S. Asmussen. Applied Probability and queues. Springer-Verlag, New York, 2003.

[38] H. Bruneel and B. Kim. Discrete-time models for communication systems in-
cluding ATM. Kluwer Academic Publisher, Boston, 1993.

[39] B. Vinck and H. Bruneel. A note on the system contents and cell delay in FIFO
ATM-buffers. Electronics Letters, 31(12):952–954, 1995.

[40] D. Bertsimas and D. Nakazato. The distributional Little’s law and its applica-
tions. Operations Research, 43:298–310, 1995.

[41] P. Whittle. Equilibrium distributions for an open migration process. Journal of
Applied Probability, 5(3):567–571, 1968.

[42] D. Fiems. Analysis of discrete-time queueing systems with vacations. PhD the-
sis, Ghent University, 2004.

[43] T. Takine. A nonpreemptive priority MAP/G/1 queue with two classes of cus-
tomers. Journal of Operations Research Society of Japan, 39(2):266–290, 1996.

[44] M. Kramer. Waiting times in a queueing system with capacity constraints and
preemptive priorities. Operations-Research-Spektrum, 9(1):33–39, 1987.

[45] C. Blondia. A finite capacity multi-queueing system with priorities and with
repeated server vacations. Queueing Systems, 5(4):313–330, 1989.

[46] U. Gupta, S. Samanta, R. Sharma, and M. Chaudhry. Discrete-time single-
server finite-buffer queues under discrete Markovian arrival process with va-
cations. Performance Evaluation, 64(1):1–19, Jan 2007.

[47] E. Falkenberg. On the asymptotic behaviour of the stationary distribution of
markov chains of m/g/1-type. Communications in Statistics. Stochastic Mod-
els, 10(1):75–97, 1994.

[48] J. Abate and W. Whitt. Asymptotics for M/G/1 low-priority waiting-time tail
probabilities. Queueing Systems, 25(1-4):173–233, 1997.

[49] I. Adan, M. Mandjes, W. Scheinhardt, and E. Tzenova. On a generic class of
two-node queueing systems. Queueing Systems, 61(1):37–63, 2009.

[50] D.P. Kroese, W.R.W. Scheinhardt, and P.G. Taylor. Spectral properties of the
tandem Jackson network, seen as a quasi-birth-and-death process. Annals of
Applied Probability, 14(4):2057–2089, 2004.

[51] Y. Sakuma and M. Miyazawa. On the effect of finite buffer truncation in a two-
node Jackson network. Journal of Applied Probability, 42(1):199–222, 2005.

[52] N. Bean and G. Latouche. Approximations to quasi-birth-and-death processes
with infinite blocks. Adv. in Appl. Probab., 42(4):1102–1125, 12 2010.

[53] M. Miyazawa and Y.Q. Zhao. The stationary tail asymptotics in the GI/G/1-
type queue with countably many background states. Advances in Applied
Probability, 36(4):1231–1251, 2004.

[54] M. Miyazawa. A Markov renewal approach to M/G/1 type queues with count-
ably many background states. Queueing Systems, 46(1-2):177–196, 2004.

[55] Q. He, H. Li, and Y. Zhao. Light-tailed behavior in qbd processes with count-
ably many phases. Stochastic Models, 25(1):50–75, 2009.

[56] M. Miyazawa. Tail decay rates in double QBD processes and related reflected
random walks. Mathematics of Operations Research, 34(3):547–575, 2009.

[57] F. Guillemin and J.S.H. van Leeuwaarden. Rare event asymptotics for a random
walk in the quarter plane. Queueing Systems, 67(1):1–32, 2011.

[58] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University
Press, 2008.

[59] M. Drmota. Systems of functional equations. Random Structures & Algo-
rithms, 10(1-2):103–124, 1997.

[60] P. Kravanja. On Computing Zeros of Analytic Functions and Related Problems
in Structured Numerical Linear Algebra. PhD thesis, Katholieke Universiteit
Leuven, 1999.

[61] P. Kravanja, M. Van Barel, O. Ragos, M. Vrahatis, and F. Zafiropoulos. ZEAL:
A mathematical software package for computing zeros of analytic functions.
Computer Physics Communications, 124(2-3):212–232, FEB 2000.

[62] C. Blondia. A discrete time batch Markovian arrival process as B-ISDN traffic
model. Belgian Journal of Operations Research, Statistics and Computer Sci-
ence, 32:3–23, 1993.

[63] H. Kröner, G. Hébuterne, P. Boyer, and A. Gravey. Priority management in atm
switching nodes. IEEE Journal on Selected Areas in Communications, 9(3):418–
427, 1991.

[64] Y. Wang, C. Liu, and C. Lu. Loss behavior in space priority queue with
batch markovian arrival process - discrete-time case. Performance Evaluation,
41:269–293, 2000.

[65] G. Hwang and B. Choi. Performance analysis of the D AR(1)/D/c priority
queue under partial buffer sharing policy. Computers & Operations Research,
31:2231–2247, 2004.

[66] Y. Wang, J. Wang, and F. Tsai. Analysis of discrete-time space priority queue
with fuzzy threshold. Journal of Industrial and Management Optimization,
5:467–479, 2009.

[67] D. Fiems, J. Walraevens, and H. Bruneel. Performance of a partially shared
priority buffer with correlated arrivals. In Proceedings of the 20th International
Teletraffic Congress (ITC20), LNCS, volume 4516, pages 582–593, Ottawa, 2007.

[68] H. Radha, Y. Chen, Parthasarathy K., and R. Cohen. Scalable internet video
using MPEG-4. Signal Processing: Image Communication, 15:95–126, 1999.

[69] J. Zhao, B. Li, X. Cao, and I. Ahmad. A matrix-analytic solution for the
DBMAP/PH/1 priority queue. Queueing Systems, 53(3):127–145, 2006.

[70] C. Blondia and O. Casals. Statistical multiplexing of VBR sources - a matrix-
analytic approach. Performance Evaluation, 16(1-3):5–20, 1992.

[71] D.A. Bini, G. Latouche, and B. Meini. Numerical methods for structured Markov
chains. Oxford University Press,.

[72] C. D. Meyer. Matrix Analysis and Applied Linear Algebra. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2000.

