

Computerondersteunde exploratie van architecturale ontwerpruimtes:
een digitaal schetsboek

Computer-Aided Exploration of Architectural Design Spaces:
a Digital Sketchbook

Tiemen Strobbe

Promotoren: prof. dr. R. De Meyer, em. prof. dr. ir. J. Van Campenhout
Proefschrift ingediend tot het behalen van de graad van
Doctor in de Ingenieurswetenschappen: Architectuur

Vakgroep Architectuur en Stedenbouw
Voorzitter: prof. dr. ir. -architect A. Janssens
Faculteit Ingenieurswetenschappen en Architectuur

}

UNIVERSITEIT
Academiejaar 2015 - 2016 GENT

ISBN 978-90-8578-850-8
NUR 956, 965
Wettelijk depot: D/2015/10.500/94

Voorwoord

Onderzoek is een dialoog; het ontstaat en krijgt enkel betekenis door ver-
der te bouwen op de kennis van anderen. Een lijst maken van iedereen
die hierbij betrokken was, is overbodig en altijd te kort, maar een aantal
van hen verdienen een speciale vermelding voor hun bijdrage aan dit on-
derzoek. Niet in het minst wil ik mijn beide promotoren bedanken die,
elk op hun eigen manier, een zeer belangrijke invloed hebben gehad op dit
werk. Prof. Ronny De Meyer gaf mij enkele jaren geleden de kans om een
doctoraatsonderzoek op te starten en heeft een belangrijk aandeel in het
resultaat vanuit zijn interesse in een digitale ontwerpomgeving op maat
van de architect. Prof. Jan Van Campenhout introduceerde mij in het on-
derzoeksdomein van de informatietechnologie, waardoor het resultaat van
dit onderzoek ook functioneel is uitgewerkt; the proof of the pudding is in the
eating. Tijdens mijn onderzoek werd ik goed omringd door behulpzame
collega’s. De gesprekken op kantoor met mijn dichtste collega’s, Pieter en
Ruben, hebben mijn traject sterk bepaald, en onze pauzes op het terras
van de Vooruit waren een welkome afwisseling tussen het werken door.
Ook de goede samenwerkingen met Francis, Marc, en Sara voor diverse
onderzoeksprojecten waren een bijzondere verrijking. Bij uitbreiding be-
dank ik graag alle collega’s en medewerkers van de vakgroepen VAS en
ELIS, en ver daarbuiten, voor de fijne en interessante discussies. Ik bedank
ook graag de leden van examencommissie: prof. Rik Van de Walle, prof.
Patrick De Baets, prof. Sara Eloy, prof. Stefan Boeykens, prof. Francis
wyffels, dr. Pieter Pauwels, en dr. Ruben Verstraeten. Geen onderzoek
zonder middelen; daarom ook dank aan het agentschap voor Innovatie
door Wetenschap en Technologie (IWT) om mij een onderzoeksbeurs voor
vier jaar te verlenen. Natuurlijk wil ik ook graag al mijn vrienden en fami-
lie bedanken; dit proefschrift is opgevat als een boek met een verhaal om
het toegankelijker te maken, en jullie steun en interesse in het wat, hoe en
waarom van mijn onderzoek heeft hierin een belangrijke rol gespeeld.

Tiemen Strobbe

Table of Contents

Voorwoord i
Nederlandse samenvatting XV
English summary xix

1 Introduction 1
1.1 Onoracles, draughtsmenandagents 1
1.2 The need for alternatives? 3
1.3 Research question and contributions 5
14 Outlineofthethesis. 6
1.5 Publications 0 L. 8

2 Design and Computation 11
2.1 The influence of artificial intelligence 11
2.1.1 Problem solving using search and heuristics 12

212 Designasaformofsearching 15

2.1.3 Alinarchitecturaldesign 18

22 Secondthoughts. 20
2.2.1 Design as a unique discipline 20

2.2.2 Thedesignspacerevisited 22

223 Design space exploration 24

2.3 Adigital sketchbook? 25
2.3.1 Generative designtools 27

2.3.2 Parametricmodels 28

233 Rule-basedmodels 30

2.34 The dilemma of design and computation 32

3 Shape Grammars 35
3.1 Definitions Lo 35
3.1.1 Shapes: basic elements and algebras 38

3.1.2 The embedding and part relations 40

iv

313 Shaperules
314 Someextensions
3.2 More ambitious grammars
321 Shape grammars for analysis
3.2.2 Shape grammars for analysis and original design
3.2.3 Some furtherremarks
3.3 Design space exploration with shape grammars
3.3.1 Design move codification
3.3.2 Shape grammar reformulation
3.3.3 Seeing shapes differently
3.4 Bridgingthegap?

From Shapes to Graphs

4.1 Computer implementations of shape grammars
41.1 Why computer implementations?
412 Overview of previous approaches

4.2 Graph-theoretic representation of shapes
421 Definitions o o 0oL
422 Overview of graph-theoretic representations
423 Discussion

4.3 A new approach for grammar implementation
43.1 Step 1: Definingatypegraph
432 Step 2: Constructing attributed graphs.
43.3 Step 3: Defining graphrules.

4.4 Evaluation of the proposed approach
441 Graph grammar benchmarks
442 Implementation of the RdB-tf grammar

Design Space Exploration

51 Amplification strategies
5.1.1 Representation, codification, and implication
512 The explicit designspace

5.2 Shape grammar implementationtools
521 Overview
522 Keeping track of the explicit design space?

53 Treestructures L.
53.1 Generation of alternatives
5.3.2 Designspacenavigation

Digital Sketchbook

6.1 A digital sketchbook for design space exploration
6.1.1 Design space visualization
6.12 Backupandrecall
6.1.3 Changing the structure of the design space
6.14 Software prototype L.

6.2 Some visual examples of exploration
6.2.1 Example 1: Chinese lattices
6.2.2 Example 2: Spatial configurations
6.2.3 Example 3: the Frank Lloyd Wright grammar

Conclusion
7.1 Some futurelinesofresearch
7.2 Concluding remarks on design and computation

Implementation of the RdB-tf grammar

A.l The original RdB-tf grammar
A2 Step 1: Definingatypegraph
A.3 Step 2: Constructing attributed graphs
A4 Step 3: Defining graphrules
A5 Conclusion L oo

Classification of architectural designs

B.1 Introduction,
B.2 Design features of two-dimensional floor plans
B.3 One-class SVMs with graph kernels
B.4 Hyperparameter optimization
B.5 Evaluation of the trained SVMmodel
B6 Conclusion
References

1.1

2.1

2.2

23

24

25
2.6

27
2.8

29

2.10

3.1

3.2

3.3

34

3.5

List of Figures

Drawing a line using Sketchpad and a light-pen. 2
An example of a state space consisting of different states
which can be reached by performing actions. 13
Searching a state space using a heuristic function (k) to esti-
mate the path cost to the goalstate. 15
Formulation of a design task as a well-structured design
space, in which problem-solving techniques can be used. . . 17
An example of 10 design requirements and some existing
interactions. o o oo o 19
A model of design as exploration. 22
A single cycle in the iterative process of formulating and
searching a designspace. 23
Two overlapping squares result in a third emergent square. . 27
Parametric model built in Grasshopper and geometric vari-
ations.. L 29
Some variations of one spatial relation between volumetric
building blocks of the Froebelean type. 31
Some geometric variations of a grammar-based model. . . . 32

A shape grammar for the generation of a specific class of

paintings. Lo 36
An example derivation of SG1, starting from the initial
shapel.. 37
Three shapes defined in the algebras Upz, Uiz, and Usg, re-
spectively. Lo 39
The results of sum, difference, product, and product differ-
ence operations on two identical square shapes. 40

A shape defined in the algebra U, and some of its underly-
ing topologies. L oo 41

viii

3.6 A shape rule to translate a copy of a square along its diago-
nalaxis.
3.7 A possible derivation of a shape grammar rule.
3.8 A shape rule for the generation of three-dimensional Koch
snowflakes. L oL Lo
3.9 An initial shape and a possible derivation using the shape
rulein Figure3.8. o oL
3.10 An example of a three-by-three grid.
3.11 Four shape rules from the Palladian grammar to concatenate
SPACES. . . i e
3.12 Floor plan layout definition, window placement, and door
placement of villa Angarano using the Palladian grammar .
3.13 Two shape rules from the Palladian grammar for placing
windows (top) and doors (bottom).
3.14 Four possible derivations of the Palladian shape grammar. .
3.15 Two shape rules of the Queen Anne shape grammar.
3.16 Floor plan and three-dimensional view of some possible
derivation results of the Malagueira shape grammar. .
3.17 The floor plan of an existing house (left) and an adapted
floor plan generated using the RdB-tf grammar (right).
3.18 A part of the design space represented by the Palladian

3.19 Additional shape rule from the Palladian grammar to con-
catenatespaces. oo
3.20 Shape grammar for the design of truss structures.

3.21 Two example cellular automata and the corresponding rules.

3.22 Emergence in shape grammars.

41 Different typesof graphs.
4.2 Shape defined in the algebra U;; and the corresponding di-
rect graph representation.
4.3 The difference in the direct graph representations of the
large triangle and the small triangles.
44 Shape defined in the algebra U;s and the corresponding
overcomplete graph representation.
4.5 Shape defined in the algebra U5 and the corresponding hy-
pergraph representation. L.
4.6 Shape defined in the algebra U; and the corresponding in-
verted graph representation.
4.7 Shape defined in the algebra U;s and the corresponding
part-relation graph representation.
4.8 Part-relation graph representation.
49 Graphs can be decomposed in to various sub-graphs, simi-
larly to how this occurs for shapes.
4.10 Part-relation graph representation of an example of a shape.

46
47

78
78

79
81

411

4.12
413
4.14
4.15
4.16

417

4.18

4.19

5.1

52
53
54
5.5
5.6
5.7
5.8
59

6.1
6.2
6.3
6.4
6.5
6.6
6.7

6.8
6.9
6.10

6.11
6.12
6.13

6.14
6.15
6.16
6.17

ix

Example of a type graph for the construction of part-relation

graphs. 83
Graph-theoretic representation of a floor plan. 84
Attributed part-relation graph representation of a floor plan. 87
A graph rule L — R and an example of graph transformation. 88

A graph rule to scale a quadrilateral shape. 89
Benchmark scenario for finding all rectangles embedded in

atwo-dimensional grid. 91
The generation time measured for a sequence of 50 applica-

tions of an unlabeled and a labeled shaperule. 92
Original representation of an existing RdB housing design

and the corresponding part-relation graph. 94
Derivation of the implemented RdB-tf shape grammar. . .. 96
An example of an implicit design space and an explicit de-

SIGNSPACE. . . . v v v e 103
The graphical user interface of GEdit. 107
The graphical user interface of Spapper 108
The graphical user interfaceof SGI 109
The graphical user interface of GRAPE 110
An example of an irreversiblerule. 112
Representation of the design spaceasatree.. 113
Two operations on tree structures. 114

An example of back navigation in the explicit design space. . 116

The graphical user interface of SGI [Trescak et al., 2012]. . . . 121
Outline of the entities stored in the database system. 123
Userinterface of AGG. 126
Database system of the software prototype. 127
Design space visualization of the software prototype. 128
Import functionality of the software prototype. 129
An example of an IFC model that has been added to the

databasesystem. 130
Four parametric shape rules of the ice-ray grammar. 132

Ice-ray designs generated with the implemented grammar. . 133
An additional shape rule of the ice-ray grammar and two

resulting designs. o o o oL 134
The exploration of the Chinese ice-ray design space. 135
Graph grammar for exploring spatial configurations (1). . . 136
Spatial configurations generated from a collection of floor

plandocuments. 138
Some rules of the Frank Lloyd Wright grammar. 139
Partial derivation of the FLW grammar. 140
Partial derivation of the FLW grammar (continued). 141

Visual and graph representation of a FLW prairie house. . . 142

Al
A2

A3
A4

A5

A6
A7

A8

B.1

B.2

B.3

B.4

B.5

Compound representation of an existing RdB housing design. 153
Example of a rule for connecting two adjacent spaces by

eliminating a straightwall. 154
Type graph for the construction of part-relation graphs. . . . 155
Attributed part-relation graph of an existing RdB housing
design. 156
Rule from the original RdB-tf grammar for the assignment
ofahallspace. 157

Graph-theoretic representation of the hall assignment rule. . 158
Rule from the original RdB-tf grammar to connect two adja-

cent spaces by eliminating a partofawall. 159
Graph-theoretic representation of the connection rule. 160

A visual and graph representation of one floor plan design

in the Malagueira corpus. 166
The frontier separates the inliers from the outliers in a two-
dimensional featurespace. 168
The previous two-dimensional feature space is mapped to a
three-dimensional feature space. 169
Two-dimensional parameter space that indicates the total
accuracy for all the hyper-parameter values. 174

Four floor plans from the test set that were withdrawn from
the training procedure. o oL 175

3.1
3.2

3.3

41

4.2

43

5.1

6.1

Al

A2

List of Tables

Some properties of shapes in different algebras. 39
A given shape and some equivalent shapes using different
sets of transformations. L. 43
Analogy between the definition of a state space and shape
GramMINAIS. o vt v e e e e e 56

Different kinds of graph-theoretic representations of shapes

and some of their properties. 74
Some examples of direct graph representations and their ge-

ometric realizations. 80
The function attributes used in the Rdb-tf grammar. 95

Comparison of design space exploration possibilities in sev-
eral shape grammar implementations. 106

Labels used for the representation of spatial configurations. 137

Labels used for the representation of housing designs and
for the transformationrules. 152
The implementation of RdB-tf grammar rules corresponding
to one particular transformation strategy. 161

List of Acronyms

A

AEC Architecture, Engineering and Construction
AGG Attributed Graph Grammar

Al Artificial Intelligence

B

BFS Breadth-first search

BIM Building Information Modelling

C

CA Cellular automaton

CA(A)D Computer-Aided (Architectural) Design
D

DFS Depth-first search

Xiv

FLW Frank Lloyd Wright

GUI Graphical User Interface

H

HCI Human-Computer Interaction

I

IFC Industry Foundation Classes

R

RdB Rabo-de-Bacalhau

RdB-tf Rabo-de-Bacalhau transformation grammar

SVM Support Vector Machine

Nederlandse samenvatting

Talloze informatiesystemen werden de laatste jaren ontwikkeld om diverse
aspecten van de creatieve ontwerppraktijk te ondersteunen. Hedendaagse
informatiesystemen blijken succesvol in het verbeteren van de kwaliteit en
nauwkeurigheid van ontwerpdocumenten, in het verkorten van de tijds-
duur om informatie uit te wisselen tussen de betrokken actoren en zelfs in
het verbeteren van ontwerpen door ondersteuning te bieden bij het maken
van simulaties en berekeningen voor structurele, thermische, akoestische
en andere ontwerpaspecten. Toch is de impact van dergelijke informa-
tiesystemen in de praktijk meestal beperkt omdat ze enkel gebruikt wor-
den om een idee uit te werken dat de ontwerper reeds in gedachten heeft,
met weinig tot geen interactie tussen computer en ontwerper voor gevolg.
In onderhavig proefschrift wordt een andere benadering nagestreefd: hoe
kunnen informatiesystemen ingezet worden als agents, die zich gedragen
als assistent of sidekick van de ontwerper? Als dergelijke functionaliteit
voorhanden is, kan een gemengde of zogenaamde mixed-initiative onder-
neming ontstaan waarin zowel de ontwerper als de computer elk op de
voor hun meest geschikte wijze bijdragen aan het ontwerpproces.

Terwijl agents onder vele vormen bestaan, kunnen informatiesystemen
die de exploratie van ontwerpalternatieven ondersteunen of zelf verster-
ken van belang zijn in de architecturale ontwerppraktijk; bijvoorbeeld op
het vlak van de meer en meer aan belang winnende prestaties van gebou-
wen. De metafoor van een digitaal schetsboek, waarbij menselijke exploratie
wordt versterkt door de (reken)kracht van een computer, is de inzet en het
onderzoeksthema van dit proefschrift. Exploratie wordt hierbij opgevat als
het zoeken naar eerdere ontwerpen en het genereren van nieuwe ontwer-
pen in een gestructureerd netwerk, met name de ontwerpruimte. ‘Hoe in-
formatiesystemen inzetten op een effectieve manier om de exploratie van
architecturale ontwerpruimtes te ondersteunen?’, vormt als onderzoeks-
vraag de kern van dit proefschrift.

Deze onderzoeksvraag wordt in dit proefschrift opgestart aan de hand
van een onderzoek naar de centrale principes die aan de basis liggen van
hedendaagse computerondersteunde ontwerp systemen (CAD). De oor-

Xvi

sprong van het concept van de ontwerpruimte gaat terug op het ontstaan
van de discipline van de artificiéle intelligentie (Al) tijdens de jaren zes-
tig. Deze discipline initieerde het paradigma van het doorzoeken van
probleem- of ontwerpruimtes om tot een oplossing te komen. Bij hoofdrol-
spelers uit Al en CAD ontstond het gezamenlijke idee een ontwerpvraag-
stuk te formuleren als een door middel van daarvoor geschikte heuristie-
ken ‘op te lossen” zoekprobleem. Het heersende paradigma in de jaren
zestig was dat een ontwerptaak kan worden voorgesteld door middel van
een ontwerpruimte waarin op zoek kan worden gegaan naar ontwerpen
die voldoen aan een aantal vooropgestelde doelcriteria. De sleutel tot in-
telligentie in dergelijke representaties bestond er volgens de pioniers van
de Al'in om zo snel mogelijk het pad in de ontwerpruimte te vinden met de
minst mogelijke weerstand om van de initi¢le ontwerpfase tot een eindfase
te komen. Vele van de hedendaagse CAD-systemen werken op basis van
dezelfde principes van het doorzoeken van een ontwerpruimte. Terwijl
het doorzoeken van een ontwerpruimte een belangrijk deel van ontwerp-
exploratie kan zijn, is dit geen kenmerk dat creativiteit en ontwerp onder-
scheidt van andere disciplines. In dit proefschrift wordt ontwerpexploratie
geinterpreteerd als een ‘“wicked’, avontuurlijk, en onbevooroordeeld proces
dat gekenmerkt wordt door het ontbreken van een rechtlijnige aanpak. He-
dendaagse informatiesystemen zijn niet of slechts in beperkte mate in staat
om deze vorm van ontwerpexploratie te ondersteunen, wat resulteert in
een ogenschijnlijk dilemma tussen de wickedness van creatief ontwerpen en
de gestructureerde symbolische eigenschappen van informatiesystemen.
CAD-systemen zouden in staat moeten zijn om de wickedness van crea-
tieve ontwerpprocessen te ondersteunen, maar ook om de mogelijkheid
tot ontwerpexploratie (zoeken, generatie en navigatie) voor de ontwer-
per te versterken. Vormgrammatica’s (shape grammars), zoals ontwikkeld
in de jaren zeventig door George Stiny en James Gips, kunnen hier met
het ondersteunen van de exploratie van architecturale ontwerpruimtes een
belangrijke opstap vormen naar het beoogde digitale schetsboek. Vorm-
grammatica’s geven een niet-traditionele, formele visie op (computer on-
dersteund) ontwerpen, waarin vormen, in plaats van vooraf gedefinieerde
symbolen, een prominente rol spelen. Met deze klemtoon op visuele aspec-
ten leveren vormgrammatica’s een belangrijke kritiek op het traditionele
CAD-discours. Het is een specifieke klasse van productiesystemen waarin
generatieve regels gebruikt worden om een ontwerpruimte te genereren.
Deze ontwerpruimte bevat (visuele) ontwerpen die beschreven zijn in een
specifieke algebra en die kunnen gegenereerd worden door het herhaal-
delijk toepassen van (verschillende) regels in de grammatica. Deze regels
coderen, of versleutelen, specifieke ontwerpkennis of ontwerpstappen die
onder de vorm van regels kunnen bewaard en gebruikt worden. Boven-
dien laten vormgrammatica’s ook een vorm van visueel denken en am-
biguiteit toe die kenmerkend is voor het creatief ontwerpen. Ontwerpen
kunnen immers gedefinieerd en geinterpreteerd worden op een ambigue

xvii

manier, omdat regels worden toegepast door middel van een partiéle or-
dening. Doordat ontwerpen bij iedere stap opnieuw geinterpreteerd wor-
den, kunnen emergente ontwerpen ontstaan, die niet vooraf gedefinieerd
zijn in een grammatica, maar die ontstaan zijn door regels toe te passen.
Als gevolg hiervan leveren vormgrammatica’s een effectieve manier om
een ontwerpruimte te representeren in een computersysteem en tegelijker-
tijd hangen ze nauwer samen met de wickedness van het creatief ontwerpen.

De volgende twee onderzoeksvragen resulteren uit de keuze voor het
gebruik van vormgrammatica’s als onderliggend raamwerk voor het be-
oogde digitale schetsboek:

m Welke symbolische representaties van vormen zijn zowel geschikt
voor computerimplementatie en behouden ook de essentiéle ken-
merken eigen aan de ambiguiteit van vormen?

m Hoe kan menselijke exploratie van architecturale ontwerpruimtes
ondersteund en zelfs versterkt worden door informatiesystemen?

De eerste onderzoeksvraag behandelt het begrip ‘representatie’ in
CAD. De ontwikkeling van geschikte symbolische representaties voor vor-
men is een hachelijke onderneming, in het bijzonder om (automatische)
detectie van emergente sub-vormen mogelijk te maken en ook om parame-
trische vormen te herkennen die vergelijkbaar maar niet volledig identiek
zijn. In dit proefschrift worden geattribueerde deel-relatie grafen (attri-
buted part-relation graphs) geintroduceerd om grammatica’s implementeer-
baar te maken op een computer. Doordat dergelijke representatie van gra-
fen toelaat om (parametrische) sub-vormen te herkennen, is het een haal-
bare en waardevolle manier om grammatica’s toe te passen. Bovendien is
het een rijkere representatievorm doordat semantische in plaats van louter
geometrische objecten kunnen beschreven worden. Een praktische geval-
studie van de implementatie van een bestaande vormgrammatica, die tot
nu toe nog niet geimplementeerd was op een computer toont de haalbaar-
heid aan van de voorgestelde implementatiemethode en toont bovendien
aan hoe een dergelijke geimplementeerde grammatica een meerwaarde
kan vormen voor ontwerpers en architecten.

De tweede onderzoeksvraag behandelt het “proces’ als thema binnen
CAD. Terwijl traditionele CAD systemen voornamelijk inzetten op het
doorzoeken van vaste ontwerpruimtes en/of optimalisatie van ontwerpen,
ligt de focus in dit proefschrift voornamelijk op het veranderen van de
wijze van benadering van een ontwerper door middel van exploratie, wat
een rijker concept inhoudt dan louter zoeken. Door middel van een litera-
tuuronderzoek worden in dit proefschrift verschillende strategieén voor-
gesteld die exploratie kunnen versterken: het belang van externe repre-
sentatie, de codificatie van ontwerpstappen en het belang van implicatie.
In de meeste (geimplementeerde) grammatica’s worden deze strategieén
ondersteund. Andere strategieén zoals het opslaan (backup), terugroepen

Xviii

(recall) en hernemen (replay) van bestaande ontwerpen en het genereren
en visualiseren van nieuwe ontwerpalternatieven worden in veel mindere
mate ondersteund. Deze laatste strategieén gaan terug op de representa-
tie van een expliciete ontwerpruimte die de verzameling van ontwerpen
omvat die gemaakt zijn door een enkele ontwerper of een ontwerpteam.
De expliciete ontwerpruimte werkt als een steeds groeiende bibliotheek
van potentieel realiseerbare ontwerpen en reeds verkende ontwerpstap-
pen en kan dus waardevol zijn om ontwerpalternatieven te onthullen en
te vergelijken, om eerder werk op te slaan en terug te roepen en om eerder
gebruikte ontwerpstappen opnieuw te doorlopen. Dit proefschrift intro-
duceert het concept van boomstructuren om ontwerpen in de expliciete
ontwerpruimte te bewaren.

De voorgestelde concepten van de vormgrammatica’s, de representa-
tie van vormen als grafen, en de boomstructuren vormen de basis van
een nieuw grammatica-gebaseerd CAD-systeem voor de exploratie van
ontwerpruimtes — het digitale schetsboek. Het doel van dergelijk CAD-
systeem is ontwerpers in staat te stellen de ontwerpruimte van een be-
paalde grammatica te exploreren op een visuele en interactieve manier. In
dit proefschrift worden de hoofdlijnen van het digitale schetsboek beschre-
ven aangevuld met een aantal visuele voorbeelden en gevalstudies. De
drie voornaamste kenmerken hiervan zijn: (1) het representeren en visua-
liseren van de ontwerpruimte als een geheel, (2) het ondersteunen van een
expliciete ontwerpruimte om ontwerpen op te kunnen slaan, terug te roe-
pen, en te hernemen en (3) het ondersteunen van ontwerpers in het creéren
en aanpassen van regels op een intuitieve manier. Een softwareprototype
dat werd ontwikkeld en gebruikt om de gevalstudies in dit proefschrift uit
te werken, laat tot slot toe de voorgestelde aanpak te valideren.

Dit leidt tot de conclusie van dit proefschrift: het digitale schetsboek
kan beschouwd worden als een krachtig hulpmiddel voor de exploratie
van ontwerpruimtes en komt hiermee tegemoet aan de centrale onder-
zoeksvraag. Het resulterende CAD-systeem dient daarbij geinterpreteerd
te worden als een hulpmiddel en net zoals bij ieder hulpmiddel is dit maar
zo goed als wie het gebruikt. Met andere woorden, de metafoor van een
digitaal schetsboek is een voorbeeld van een mixed-initiative onderneming
waarin menselijke exploratie wordt versterkt door de (reken)kracht van
een computer. Met de vele voorbeelden in dit proefschrift wordt aange-
toond dat de resultaten van dergelijke samenwerkingen tussen mens en
machine de door de ontwerper of de computer gegenereerde resultaten
kunnen overtreffen. De hier beschreven samenwerkingen tussen mens en
machine zijn misschien minder ambitieus dan de vroege pogingen van de
pioniers van de artificiéle intelligentie om een creatief ontwerp “op te los-
sen’, maar blijken minstens even veelbelovend.

English summary

Over the past years, numerous information systems have been realized to
support various aspects of creative design practice; in particular, nowadays
information systems prove to be successful in enhancing the quality and
accuracy of design documents, shortening the duration time to communi-
cate information among the different actors involved, and even increasing
the performance of designs by providing simulation and calculation aids
for structural, thermal, acoustical, and other aspects. Yet, the impact of
such information systems is often limited, because they are used to execute
an idea that designers already had in mind, with little or no interaction be-
tween the computer and designer. In this thesis, a different line of thought
is followed — namely, how information systems could more closely re-
semble agents, acting like an assistant or sidekick to the designer. With
such agent-like functionality available, it is possible to talk about a mixed-
initiative enterprise, in which both the designer and computer contribute
to the design task that it does best.

While agent-like design tools may come in many guises, information
systems that support — and amplify — exploration of design alternatives
may be of particular interest in architectural design; for example, in the
context of an increased emphasis on building performance. The metaphor
of a digital sketchbook, in which human exploration is mixed with computer
amplification, is the motivating idea and main research topic of this thesis.
The definition of exploration given here involves both searching for pre-
vious designs and generating new designs in a structured network called
the design space. The central research question of this thesis is —how can
information systems effectively support design space exploration?

In addressing this research question, this thesis starts by looking into
some of the main principles for design space exploration underlying cur-
rent CAD tools. In fact, the origin of the design space is traced back to the
1960s with the birth of artificial intelligence, which initiated the paradigm
of searching a problem space for solutions. Through the shared protago-
nists of the fields of Al and computer-aided (architectural) design, the act
of design was formulated as a form of searching — which can be ‘solved’

XX

through appropriate heuristics. In particular, the prevailing paradigm in
the 1960s was that a design task could be represented by a design space,
in which goal designs could be found through searching this design space.
The key to intelligence in this kind of representation, according to the early
pioneers, is the ability to quickly find the path with the lowest cost that
leads from an initial design to a goal design. To some extent, many of
nowadays CAD tools operate under the same principles of searching a de-
sign space. However, while searching might be an important part of de-
sign space exploration, it is not what characterizes design as a distinct kind
of behavior. Instead, design space exploration is often characterized as a
‘wicked’, adventurous, open-minded, and at times weakly guided activ-
ity. Nowadays information systems are not, or only so to a limited extent,
able to accommodate this kind of design space exploration, resulting in
an apparent dilemma between the wickedness of creative design and the
structured, symbolical nature of information systems.

So it turns out that CAD tools for design space exploration should be
able to support the wickedness of creative design processes, while also am-
plifying the designer’s capabilities in exploring the design space through
search, generation, and navigation. In this regard, the theory of shape
grammars, developed by George Stiny and James Gips in the 1970s, might
offer an important step towards the envisioned digital sketchbook for sup-
porting design space exploration. The theory of shape grammars stands as
a critique of the traditional CAD discourse, and provides a non-traditional,
formalized view on design and computation, in which shapes — rather
than predefined symbols — play the leading role. In particular, shape
grammars are a class of production systems, in which generative rules
are used to generate a broad range of designs, which can retroactively be
called a design space. This design space contains (visual) designs specified
in particular algebras that can be accessed by applying rules. These rules
encode specific design knowledge or design moves that can then be stored
and used for computation. Moreover, it also incorporates a kind of visual
thinking and ambiguity that is characteristic for creative design. Through
the part and embedding relations under which rules apply, designs can
be defined and interpreted in ambiguous ways. As designs can be (re)-
interpreted and decomposed freely, this might result in emergent designs,
which are designs that that are not predefined in a grammar, but arise from
the shapes generated by rule applications. As a result, the theory of shape
grammars provides a concise and computable framework to represent a
design space, by encoding design moves in the form of rules, and at the
same time, it more closely coheres with the wicked nature of design space
exploration.

XXi

Using shape grammars as the underlying framework for the envisioned
digital sketchbook, this leads to the two following additional research
questions:

m Which symbolic representations for shapes are suitable for computer
implementation, on the one hand, and maintain the essential features
resulting from the ambiguous nature of shapes, on the other hand?

m How can human design space exploration be supported, and even
amplified, by information systems?

The first research question concerns the issue of ‘representation’ in com-
puter-aided design. The development of appropriate symbolic representa-
tions for shapes is challenging, in particular to enable (automatic) detection
of emergent subshapes, and also to handle parametric shapes that may
be similar though not completely identical. In this thesis, attributed part-
relations graph are introduced and are shown to be a feasible and valuable
choice to implement grammars — not only because they enable (paramet-
ric) subshape detection, but they also extend shape grammars by also in-
cluding semantic, instead of purely geometric, objects. A practical case
study of implementing an existing shape grammar, originally developed
on paper, demonstrates the feasibility of this proposed graph-theoretic im-
plementation approach, and more importantly, shows how designers may
benefit from such computer implemented grammars.

The second research question concerns the issue of ‘process’ in com-
puter-aided design. While traditional CAD tools mainly focus on search
and/or optimization, the focus in this thesis is mainly on changing the
designer’s way of thinking through exploration, which is a much richer
concept than merely search. Based on a literature review and analysis, sev-
eral exploration amplification strategies are pointed out, including external
representation, codification of design moves, and implication. While these
strategies are commonly found in shape grammar theory and its computer
implementations, the strategies of replay, recall, backup, and alternatives
— all involving the representation of an explicit design space — are avail-
able to a far less extent. The representation of the explicit design space
might be valuable to reveal and compare alternatives, to backup and recall
prior work, and to replay paths previously discovered in a design space.
In this thesis, the concept of tree structures is introduced to keep track of
the explicit design space.

The theory of shape grammars, the graph-theoretic representation of
shapes and designs, and the tree structure together form the keystones of
a new kind of grammar-based tool — the digital sketchbook. The focus
of such design tool is on supporting designers to explore the language of
a grammar in a visual and interactive way. The outline of such a digital
sketchbook, together with several visual examples and case studies, are
described in this thesis. The three main aspects are (1) representing and

xxii

visualizing the design space as a whole, (2) enabling backup and recall
strategies, and (3) enabling designers to create, change, or delete rules in
an intuitive manner. Finally, the idea of a digital sketchbook has been val-
idated through the development of a software prototype for design space
exploration, which has been used to develop and explore the case studies
in this thesis.

This leads to the final conclusion of this thesis. The resulting digi-
tal sketchbook can be considered as a powerful tool for design space ex-
ploration, thereby addressing the central research question of how infor-
mation systems can effectively support design space exploration. In any
case, information systems are to be considered as tools for exploration,
and much like any other design tool, they are only as good as the per-
son who is using them. In other words, the digital sketchbook metaphor is
to be considered as a mixed-initiative enterprise of human creativity and
computer amplification. The results of such a mixed-initiative enterprise
might surpass the results generated by either the designer or the compu-
ter alone — which is demonstrated in the examples throughout this thesis.
Human-machine collaborations, such as the one proposed in this thesis,
might perhaps be less ambitious than the early attempts of Al pioneers to
‘solve’ creative design, but they are certainly as promising.

Introduction

1.1 On oracles, draughtsmen and agents

In a Lincoln Laboratory documentary [Morash, 1964], a person draws a
line on a computer screen using Sketchpad and a light-pen. For many peo-
ple, this was the very first time they had seen someone interacting with a
computer, albeit in a very rudimentary way (Figure 1.1). Sketchpad, de-
veloped by Ivan Sutherland [1963], is commonly regarded as the ancestor
of modern Computer-Aided Design (CAD) systems, and its conception is
considered to be the starting point of CAD research. In the early days of
CAD research, there was much optimism about the potential benefits of
using computers to support design practice. Architect and technologist
Nicholas Negroponte [1970] envisioned a dynamic between human and
machine that “would bring about ideas unrealizable by either conversant alone”.
More than 45 years later, the progress made in supporting various aspects
of creative design practice is remarkable, to say the least. Nowadays, in-
formation systems have proven to be successful in enhancing the quality
and accuracy of design documents, shortening the duration time to com-
municate information among the different players involved, and even in
increasing the performance of designs by providing calculation aids for
structural, thermal, and other aspects. Indeed, such information systems
have matured substantially, gaining acceptance by users throughout the
whole Architecture, Engineering and Construction (AEC) community.

Figure 1.1: Drawing a line using Sketchpad and a light-pen. Image taken from the Lincoln
Laboratory documentary [Morash, 1964].

On the other hand, none of the current information systems resem-
ble the optimistic human-machine interaction that was envisioned in the
1960s. Lawson [2005] describes the current role of computers in creative
design practice as draughtsmen — advanced drawing tools for generating
production and presentation drawings. In this sense, information systems
enhance the quality and accuracy of design documents, and they even en-
able designers to develop complex ideas that would have been impossible
to resolve otherwise. However, such information systems are often limited
to executing an idea that the designers already had in mind. There is lit-
tle or no interaction between the computer and the designer, because the
idea is already fixed in the mind of the designer before computers become
involved. Therefore, the actual impact of such information systems on cre-
ative design practice is limited, and current information systems seem to
have never evolved beyond this traditional role of draughtsman.

A far more ambitious role for computers is that of an oracle — in which
an information system proposes the designs that are optimal for a given
design task [Lawson, 2005]. In this case, the role of the designer is merely
supportive and limited to revising, developing, or rejecting the idea pro-
posed by the computer. This approach has been popular mainly in aca-
demic circles during the first decades of CAD research (1960-1980). Re-
searchers first used computers to create mathematical models for solving
space planning and circulation problems, and this focus later shifted to en-
vironmental design. For example, Whitehead and Eldars [1964] describe
a program to design building layouts by minimizing the walking distance

between the different rooms. Examples of computer models for optimizing
designs towards environmental aspects are described in the extensive body
of work of Radford and Gero [1980]. The approach of using computers as
oracles has now fallen out of favor, mainly because the resulting solutions
are often too limited in scope to be of practical use, and they have not been
found to lead to ‘better” designs, as some of the pioneers had predicted.

With the impact of draughtsmen and oracles being too limited, how
can computers effectively support creative design practice? Lawson [2005]
argues that information systems should be conceived as agents — au-
tonomous systems that are able to observe and act upon a given (design)
situation. An agent-like system is more like an assistant or sidekick, which
provides an alternative point of view to the designer or has (computation)
skills that the designer does not have. Neither the role of the computer nor
the designer is exclusive in such a mixed-initiative interaction, but rather
it mixes human intervention with machine generation [Allen et al., 1999;
Woodbury and Burrow, 2006]. The term ‘mixed-initiative” refers to an in-
teraction strategy, where each agent contributes to the task that it does best
— “At any time, one agent might have the initiative — controlling the interaction
— while the other works to assist it, contributing to the interaction as required.
At other times, the roles are reversed, and at other times again the agents might be
working independently, assisting each other only when specifically asked.” [Allen
et al., 1999]. Such characterization corresponds to the agent-like designer—
computer interaction envisioned by Lawson — “It will need to be able to con-
verse with designers in a way that they find helpful.” [Lawson, 2005]. The quest
for such agents is an ongoing undertaking, approached from a variety of
angles, and with no definite answer yet available.

1.2 The need for alternatives?

In his paper “Creating creativity”, Shneiderman [2000] argues that infor-
mation systems are capable of supporting creative design. The extensive
literature available on creativity offers diverse perspectives on how cre-
ative behavior can be enhanced — ranging from structuralist theories us-
ing problem-solving methods, to situationist theories emphasizing social
context as a key part of creativity, and other theories promoting the playful
nature of creativity. Based on a combination of these perspectives, Shnei-
derman [2000] points out several human—computer interaction strategies
for information systems to support creative design:

m Searching and browsing digital libraries;

m Consulting with peers and mentors;

m Visualizing data and processes;

Thinking by free associations;

Exploring solutions (what-if tools);

Composing artifacts and performances;
m Reviewing and replaying session histories; and

m Disseminating results.

For some of these strategies, examples within current information sys-
tems can easily be found. For example, rendering tools and more advanced
game engines enable designers to visualize their ideas, while calculation
and simulation tools allow them to consider performance aspects of their
designs, such as structure, energy, or acoustics. On the other hand, other
strategies such as searching libraries for previous designs, replaying his-
tories, and exploring novel design alternatives, are more difficult to re-
solve. In a more recent issue of Architectural Design on design computation,
Woodbury [2013] points out that the ability to explore both previous and
novel design alternatives is limited in current information systems:

“Strangely, until very recently, computer interfaces in all fields have
provided direct interaction with one model at a time. As they al-
ways do when provided with poor tools, people have responded with
workarounds. Multiple layers, version of files, scripts with elaborate
if-then—else constructs, manually programmed tables of alternatives:
all of these attest to an unmet need for better support for alternatives.
Perhaps the best demonstration of need is any good designer’s sketch-
book. Typically these can be read as a story of exploration, of a path
through a space of possibilities.” [Woodbury, 2013].

Indeed, a designer’s sketchbook can be read as a series of explorations
or history of design moves that were undertaken during a design process
[Goldschmidt, 2003]. In other words, a sketchbook provides a visual record
of previously explored design ideas or concepts, which may help design-
ers to search, browse, or filter these ideas. Also, the ability to review and
replay these ideas and histories of design moves previously created (and
perhaps abandoned) may become relevant later in another design con-
text. Sketches contain a certain amount of ambiguity, so that designers
are free to make their own interpretations of the forms drawn. On the
other hand, the sketchbook is an effective tool for generating new ideas
by making rapid sketches. Moreover, it supports experimentation in the

sense that sketches can easily be refined, adapted, or even permanently
erased should an idea be proven futile. These are the kinds of properties
that make sketching such a flexible and attractive tool for designers [Gold-
schmidt, 2003]. As Woodbury [2013] points out, these kinds of interactions
are available to a far less extent in current CAD tools, and are often dealt
with using workarounds. The use of multiple versions of files or external
spreadsheets are typical examples of such workarounds found in architec-
tural design practice.

1.3 Research question and contributions

In this thesis, we investigate the potential of computers to support — and
amplify — the exploration of designs. The metaphor of a digital sketchbook,
in which human exploration is mixed with computer amplification is the
motivating idea and central research topic of this thesis. The definition of
exploration given here involves both searching for previous designs and
generating new designs in a structured network called the design space. In
other words, we investigate the feasibility of enabling designers to move
within a design space, instead of following a linear sequence of decisions
— which is more typical for current CAD software. While this concept
of design space exploration is less supported by current CAD software, as
pointed out by Woodbury [2013], it has gained renewed interest in the cur-
rent context of increased emphasis on building performance. Building de-
signs now need to comply with multiple standards and regulations (struc-
ture, energy, acoustics, and so forth), and also several qualitative aspects.
In order to meet specific performance requirements, designers have to cre-
ate and evaluate design alternatives and their performance. For this rea-
son, the central research question of this thesis is how information systems
can effectively support design space exploration, thereby more closely re-
sembling the functionality of an agent.

Throughout this thesis, we question some of the principles underlying
current CAD tools and we examine the suitability of alternative models for
representing and exploring a design space. A good starting point can be
found in the domain of Artificial Intelligence (AI), which is concerned with
the study of computer models to represent different kinds of information
and knowledge. The concept of the design space can be traced back to
the Al paradigm of searching a problem space for solutions. In particular,
we investigate more closely a specific rule-based generative model, called
shape grammars [Stiny, 2006; Stiny and Gips, 1972], developed in the CAD
research community in the 1970s. The theory of shape grammars is clearly
influenced by concepts drawn from the field of AL; however, it also in-

corporates a kind of visual thinking and ambiguity that is characteristic of
creative design. Using shape grammars as the main research methodology,
we investigate two important aspects of CAD — representation and process.
The former involves the apparent dilemma between the structured nature
of computer representations and the kind of freedom that is involved with
creative design. In particular, a closer look is taken at developing appro-
priate representations for making shape grammars amenable to computer
implementation. The latter involves how the design space represented can
be explored, and how human design space exploration capabilities can be
amplified in a mixed-initiative interaction. In particular, a new kind of
grammar-based tool for design space exploration is outlined, in which the
designer can interact with the design space through search, generation,
and navigation. As a result, the contribution of this thesis is twofold —
it advances the state-of-the-art in the computer implementation of shape
grammars, and it contributes to the ongoing discussion on the potential of
computers in supporting design space exploration.

1.4 Qutline of the thesis

The thesis is divided into 6 chapters, discussing the following topics:

m Chapter 2 — Design and Computation traces back the origin of the
design space to the 1960s with the birth of Al, which can be con-
sidered to be one of the first concerted efforts to explore a problem
domain (which can retroactively be called a design space). We give
a brief historical overview of how architects and CAD researchers
adopted various concepts from Al in an attempt to represent and ex-
plore a design space using computers. Throughout this chapter, we
point out an apparent dilemma in accomplishing design space ex-
ploration between the structured nature of computer representations
and the kind of freedom that is involved with creative design.

m Chapter 3 — Shape Grammars investigates how shape grammars, a
rule-based formalism for generating spatial designs, can be used for
design space exploration. The theory of shape grammars is proven
to provide a concise framework to represent a design space, while
maintaining sufficient freedom to allow for visual thinking and am-
biguity which are characteristic for creative design. In particular, we
point out how shape grammars can be used to encode design moves
in the form of rules to perform exploration in a design space that is
implicitly represented by the grammar.

m Chapter 4 — From Shapes to Graphs addresses the computer im-
plementation of shape grammars using a graph-theoretic approach.
While shape grammars seem to be an obvious candidate for com-
puter implementation, there is a tension between the visual nature
of shape grammars and the symbolic nature of computation. We re-
fer to concepts from the field of graph theory and graph transforma-
tion to propose a graph-theoretic representation of shape grammars
that is computable and effective, without losing the essential features
of shape grammars that make them such a powerful tool for design
space exploration.

m Chapter 5 — Design Space Exploration discusses several amplifica-
tion strategies for design space exploration in CAD tools. In partic-
ular, we describe how these strategies can be achieved in the case of
grammar-based CAD tools. Special attention is given here to demon-
strate how it is possible to keep track of an explicit design space of
previously generated designs, which is like a library of recoverable
work. Tree structures are shown to be suitable data structures for
enabling navigation in the design space, and for recall and replay of
previous designs.

m Chapter 6 — Digital Sketchbook describes the prototype soft-
ware tool for design space exploration, which results from the con-
cepts that are introduced in the previous chapters (shape grammars,
graphs, and tree structures). We describe the main functionality and
user interface of this prototype, after which we demonstrate, through
a number of visual examples, how the prototype can be used in (ar-
chitectural) design practice. These examples range from analytic to
original grammars, and from simple to more complex grammars.

m Chapter 7— Conclusions describes the findings and results of the re-
search performed. First, we point out how the proposed implemen-
tation approach and the proposed strategies for amplification ad-
vance the state-of-the-art situation in shape grammar research. Sec-
ond, the theory of shape grammars is also used to better understand
the more general concept of the design space, including the complex
constraints that often define this design space. As a result, the over-
all findings are not only situated in the domain of shape grammars,
but also might help us forwards on the path to CAD software that
operates more like an agent.

1.5 Publications

m T. Strobbe, S. Eloy, P. Pauwels, R. Verstraeten, R. De Meyer, and J.
Van Campenhout. A graph-theoretic implementation of the Rabo-
de-Bacalhau transformation grammar. Artificial Intelligence for Engi-
neering Design, Analysis and Manufacturing, 2015 (in press).

m T. Strobbe, P. Pauwels, R. Verstraeten, R. De Meyer, and J. Van Cam-
penhout. Towards a visual approach in the exploration of shape
grammars. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, 2015 (in press).

m T. Strobbe, F. wyffels, R. Verstraeten, R. De Meyer, and J. Van Cam-
penhout. Automatic architectural style classification using one-class
support vector machines and graph kernels. Automation in Construc-
tion, 2015 (in press).

m T. Strobbe, R. Verstraeten, M. Delghust, J. Laverge, R. De Meyer,
and A. Janssens. Using a building information modeling approach
for teaching about residential energy use and official energy perfor-
mance. In 14th International Conference of the International Building Per-
formance Simulation Association, 2015.

m T. Strobbe, R. De Meyer, and J. Van Campenhout. A semi-automatic
approach for the definition of shape grammar rules. In Real time -
Proceedings of the 33rd eCAADe Conference, 2015.

m P. Pauwels, T. Strobbe, and R. De Meyer. Analyzing how constraints
impact architectural decision-making. In International Journal of De-
sign Sciences and Technology, 21(1), pages 93-111, 2015.

m P. Pauwels, T. Strobbe, S. Eloy, and R. De Meyer. Shape grammars
for architectural design: The need for reframing. In The Next City -
New Technologies and the Future of the Built Environment, pages 507-526,
2015.

m M. Delghust, T. Strobbe, R. De Meyer, and A. Janssens. Using BIM-
based parametric typologies to supplement single-zone calculations
for official performance assessment with multi-zone calculations for
predictions on real energy use. In 14th International Conference of the
International Building Performance Simulation Association, 2015.

m T. Strobbe, P. Pauwels, R. De Meyer, and J. Van Campenhout. Design
space exploration using a shape grammar implementation. In Sixth

International Conference on Design Computing and Cognition, pages 79-
80, 2014.

P. Pauwels, T. Strobbe, J. Derboven, and R. De Meyer. The role of
conversation and critique within the architectural design process.
In Sixth International Conference on Design Computing and Cognition,
pages 141-176, 2014.

P. Pauwels, T. Strobbe,]. Derboven, and R. De Meyer. Analyzing the
impact of constraints on decision-making by architectural designers.
In K. Zreik, editor, Architecture, City & Information Design, pages 97-
111, 2014.

W. Bekers, R. De Meyer, and T. Strobbe. World War I naval camou-
flage : an evaluation through image analysis. In Intellectuals and the
Great War, 2014.

T. Strobbe, R. De Meyer, and J. Van Campenhout. A generative ap-
proach towards performance-based design: using a shape grammar
implementation. In R. Stouffs and S. Sariyildiz, editors, Computation
and Performance - Proceedings of the 31st eCAADe Conference, volume 2,
pages 627-633. Delft University of Technology, 2013.

T. Strobbe and R. De Meyer. Generative systems in architectural de-
sign. In FEA PhD Symposium, 2013.

V. Mueller and T. Strobbe. Cloud-based design analysis and opti-
mization framework. In R. Stouffs and S. Sariyildiz, editors, Com-
putation and Performance - Proceedings of the 31st eCAADe Conference,
volume 2, pages 185-194. Delft University of Technology, 2013.

T. Strobbe, P. Pauwels, R. Verstraeten, R. De Meyer, and J. Van Cam-
penhout. Optimization in compliance checking using heuristics:
Flemish energy performance regulations (EPR). In G. Gundason and
R. Scherer, editors, Ework And Ebusiness in Architecture, Engineering
and Construction, pages 477-482. CRC Press/Balkema, 2012.

P. Pauwels, P. Present, and T. Strobbe. A pragmatic approach towards
software usage in construction projects: the port house in Antwerp,
Belgium. In G. Gundason and R. Scherer, editors, Ework And Ebusi-
ness in Architecture, Engineering and Construction, pages 509-512. CRC
Press/Balkema, 2012.

T. Strobbe, P. Pauwels, R. Verstraeten, and R. De Meyer. Metaheuris-
tics in architecture: using genetic algorithms for constraint solving

10

and evaluation. In P. Leclercq, A. Heylighen, and G. Martin, editors,
Proceedings of the 14th International Conference on Computer Aided Ar-
chitectural Design (CAADFutures), pages 866-867, 2011.

T. Strobbe, P. Pauwels, R. Verstraeten, and R. De Meyer. Metaheuris-
tics in architecture. In J. Van Wittenberghe, editor, Sustainable Con-
struction and Design, volume 2, pages 190-196. Ghent University,
2011.

Design and Computation

In this chapter, we trace back the origin of the design space to the birth
of artificial intelligence in the 1960s (Section 2.1). The design as a search
paradigm quickly fell out of favor, making room for new insights into
the wicked nature of creative design (Section 2.2). In this context, we
introduce the concept of design space exploration — where exploration
is amuch richer concept than purely searching. We point out how current
CAD tools are unable to support this kind of exploration, resulting in an
apparent dilemma between the wicked nature of creative design and the
structured nature of computation (Section 2.3).

2.1 The influence of artificial intelligence

The origin of the design space can be traced back to the 1960s with the
birth of Artificial Intelligence (Al), which initiated the paradigm of search-
ing a problem space for solutions. For researchers in CAD, the Al field has
been — and continues to be — a fertile area from which to draw inspira-
tion. The Al field is concerned with the study of representing knowledge
in such a form that information systems can be used to perform (complex)
tasks with this knowledge. A common definition of Al is the study and de-
sign of rational agents, which are systems that perceive the environment and
act upon that environment to maximize their chance of success [Russel and
Norvig, 2010]. The history of Al has known several approaches to achieve

12

this goal — simulating human problem-solving skills, using formal logic,
describing knowledge in the form of rules, or using statistical methods.
Surprisingly, many of these approaches and Al techniques have influenced
(architectural) designers and researchers in CAD, as demonstrated in spe-
cialized scientific journals, such as Artificial Intelligence for Engineering De-
sign, Analysis and Manufacturing and Artificial Intelligence in Engineering.

Of course, artificial intelligence is not the first approach concerned with
building intelligent entities. Throughout human history, people have been
fascinated with building machines that could support them in some kind
of intelligent way. However, it was not until the introduction of the digital
computer in the 1950s that the idea of artificial intelligence gained momen-
tum. The foundations for theories about computing and computers were
laid in 1936 with the development of the Turing machine — a hypothetical
device for symbol manipulation. From this point on, the computer became
the artifact of choice for implementing models of intelligence. Researchers
were then able to write programs that could actually learn to play check-
ers [Samuel, 1959] or prove mathematical theorems [Newell et al., 1957].
The term ‘artificial intelligence” was first coined at the Dartmouth sum-
mer workshop of 1956 [McCarthy et al., 1956], which is considered to be
the starting point of Al research. The participants — among whom John
McCarthy, Marvin Minsky, Herbert Simon, and Allen Newell — laid the
basis for a problem-solving paradigm that would dominate Al research for
the next few decades.

2.1.1 Problem solving using search and heuristics

At the Dartmouth summer workshop of 1956, Newell and Simon presented
the Logic Theorist — one of the first Al programs developed to solve spe-
cific problems. In particular, the program was able to prove several math-
ematical theorems and, in some cases, find shorter proofs than the ones
that were available at the time. The early success of the Logic Theorist
was quickly followed by the General Problem Solver [Newell et al., 1959]
which was developed as a universal problem solver. Unlike the Logic The-
orist, this program was designed to mimic human problem-solving skills
by creating and solving simpler sub-goals first. The Logic Theorist and
the General Problem Solver led to the establishment of problem solving
as the canonical task during early Al research [Russel and Norvig, 2010].
This Al paradigm — retroactively called good old-fashioned AI (GOFAI)
— was particularly successful at simulating high-level intelligence in small
showcase programs [Haugeland, 1985].

13

Figure 2.1: An example of a state space consisting of different states which can be reached
by performing specific actions. The initial state is indicated in gray.

In order to solve a given problem, such as winning a game of check-
ers or proving a theorem, many Al programs follow the same principles
that were first used by Newell and Simon. In particular, the problem is
represented as a state space in which a specific goal state is reached from
an initial state by performing actions step by step. The problem is defined
formally by five components [Russel and Norvig, 2010] — an initial state,
a set of available actions, a transition model, a goal test, and a path cost
function. The initial state describes an initial hypothesis or situation that
forms the starting point of the search process. The set of available actions
defines which actions can be performed in a particular state. The transition
model returns the state that results from performing an action in a partic-
ular state. The initial state, actions, and transition model implicitly define
the state space — a directed graph in which the nodes are states and the
links between nodes are actions (Figure 2.1).

Every sequence of states connected by actions is a path in the state
space. The task of problem solving can now be considered as finding a
path that leads from the initial state to a goal state. The goal test determines
whether a given state is a goal state, and the path cost function assigns a
cost to each path. Every path that leads from the initial state to a goal state
is a possible solution to the problem; however, the path with the lowest
cost is the optimal solution. For example, in the Logic Theorist program,
the initial state is a hypothesis, the goal state is the theorem intended to
be proven, and each action corresponds to applying a specific rule of logic.

14

Every path that leads from the initial hypothesis to the goal theorem con-
stitutes a possible proof of this theorem. As a result, the task of proving a
theorem is conceived as finding the shortest path in a state space. In a sim-
ilar way, playing chess, natural language processing, or solving a puzzle
can be conceived as searching a state space to find the shortest path.

Each problem gives rise to a state space that a problem solver — both
human and computer — can traverse. The key to intelligence in this kind
of representation, according to Newell and Simon, is the ability to quickly
find the path with the lowest cost that leads from the initial state to a goal
state. The power of information systems is that they can search large state
spaces quickly by considering various possible action sequences. This is
done by following a specific path step by step, while retaining other op-
tions in case the path followed leads to a dead end. Several options on
searching a state space are available, of which two common search strate-
gies are depth-first (DFS) and breadth-first search (BFS). The former strat-
egy involves expanding the deepest state first each time, while in the latter
strategy every state on a level is traversed before going to a deeper level.
In the case of Figure 2.1, DFS would result in the sequence {1, 2,4,5,6, 7,3}
and BFS would result in the sequence {1, 2, 3,4, 5,6, 7}. Another interesting
way to search state spaces is by using a branch and bound (BB) algorithm,
in which states are enumerated systematically by checking first whether a
given path can produce a better solution than the best solution found so far.
If this is not the case, then the current path is discarded and another path is
expanded. Other kinds of (uninformed) search strategies include uniform-
cost search, depth-limited search, and iterative deepening DFS [Russel and
Norvig, 2010].

Newell and Simon also realized that the state space of real-world prob-
lems is often of such order of magnitude that the number of possible action
sequences becomes intractable [Newell et al., 1958]. In technical terms,
many problems to be solved are part of the complexity class NP, which
is the class of problems for which a solution can quickly be verified (in
polynomial time), but for which no efficient algorithm is known to find the
solution. On the other hand, the complexity class P contains the problems
that are tractable, which means that they can be solved efficiently. In order
to solve real-world problems (which are mostly in NP), Newell and Simon
used heuristic functions to trim paths that would be unlikely to lead to a
goal state [Polya, 1945]. A heuristic function calculates an estimated dis-
tance to a goal state and, therefore, guides the search process by eliminat-
ing the paths with the highest estimated path cost. Figure 2.2 demonstrates
how some heuristic function might inform search in the state space. For
example, Shannon [1950] devised a heuristic function to evaluate moves

15

State 6

Figure 2.2: Searching a state space using a heuristic function (h) to estimate the path cost
to the goal state (black). At each node in the state space, the path with lowest estimated
path cost is followed.

in chess by assigning relative values to each piece (queen, rook, bishop,
knight and pawn). The benefit of using heuristic search over uninformed
search is that this uses problem-specific knowledge to find solutions more
efficiently. The flexibility and efficiency of heuristic search comes at a price;
at best, it results in a near-optimal solution, whilst a full optimum cannot
be guaranteed, because such algorithms often get stuck in local optima.
Search algorithms lie at the core of so-called problem-solving agents.

2.1.2 Design as a form of searching

At the same time of the birth of artificial intelligence, several influential de-
sign schools, journals, and practices started to question the position of the
designer as an ‘artist’, in favor of more rational and objective design meth-
ods. This has led to a long-running debate on the relationship between cre-
ative design disciplines and science and mathematics. For example, several
proponents of the scientific approach, among whom Christopher Alexan-
der, Lionel March, and Leslie Martin worked together at the University of
Cambridge [Keller, 2005]. They were among the first researchers and archi-
tects who attempted to establish architectural design as a scientific field in
post-war Britain. The need to revise the position of the designer arose from
a sense of war-time inferiority — “The extremities of war had forced to the sur-
face many doubts about architecture as a significant profession.” [Keller, 2006].
Moreover, this apparent need to legitimize the architectural design pro-

16

fession was strengthened by several post-war technological developments
[Bayazit, 2004]. Architects then had to deal with new user needs and (au-
tomated) production systems, requiring a more ‘scientific’ approach that
allowed decision-making based on objective and quantifiable criteria.

An answer to the need for scientific design approaches was provided
in the work of Herbert Simon — one of the early Al pioneers who chose
design as the area to demonstrate his science of the artificial. In his book
The Sciences of the Artificial, Simon [1969] argues that creative design can be
considered as a specific kind of problem solving. According to Simon, the
functionality of the human mind is similar to the functionality of a compu-
ter — “The evidence is overwhelming that the [human information-processing]
system is basically serial in its operation: that it can process only a few symbols
at a time and that the symbols being processed must be held in special, limited
memory structures whose content can be changed rapidly.” [Simon, 1969]. In
other words, Simon assumes that creative design is open for explicit for-
malization and can be treated in a similar way as other problem-solving
tasks, such as playing checkers, proving a theorem, or solving a puzzle. In
particular, he considers creative design to be an ill-structured problem, as
opposed to well-structured problems — “It will generally be agreed that the
work of an architect presents tasks that lie well towards the ill-structured end of the
problem continuum. Of course this is only true if the architect is trying to be cre-
ative.” [Simon, 1973]. Nevertheless, Simon demonstrates that ill-structured
and well-structured problems can both be solved using systematic and ra-
tional problem-solving techniques, such as the ones underlying the Logic
Theorist and the General Problem Solver.

Such a formulation of creative design as a specific kind of problem solv-
ing laid the foundation for Al in design as a form of searching. For creative
design specifically, the term ‘design space” has been adapted from the field
of AL In the view of Simon, the activity of design can be formulated as the
act of searching a design space in order to find designs that satisfy spec-
ified criteria expressed in the form of constraints or objectives. Using an
appropriate search strategy, a designer would then be able to find a near-
optimal solution to the design problem posed. In order to overcome a com-
binatorial explosion of possibilities, heuristic search can be employed to
control the search process or even generate near-optimal designs, in a rea-
sonable amount of time. A key aspect in Simon’s theory on design is that a
real-world design situation should be formulated as a well-structured de-
sign space in order to apply problem-solving techniques, such as heuristic
search (Figure 2.3). This process is called the disambiguation or abstraction
of the (design) situation as a well-structured problem.

17

Design situation Well-structured problem

Disambiguation

B —

Figure 2.3: The formulation of a design task as a well-structured design space, in which
rational problem-solving techniques, such as heuristic search, can be used.

While Al indeed provided a fertile area to draw inspiration from, the
paradigm of design as search had already come to the surface in earlier
design research on operation research and (numerical) optimization. The
field of operations research, which arose during World War II, investigated
mathematical models to search for near-optimal solutions in complex or-
ganization systems [Churchman et al., 1957]. These mathematical mod-
els were picked up by the design methods movement, which was one of
the first concerted efforts to explore design alternatives in a design space
[Jones and Thornley, 1962]. The contribution made by Al to the paradigm
of design as a search was to expand the domain of search computation to a
wider range of symbolic representations. Through the use of symbolic rep-
resentation, search was not only applicable to numerical aspects of design,
but the same problem-solving techniques could be used to address other
formulations of design. A notable example was expert systems, which be-
came the focus of mainstream Al research in the 1980s. An expert system
is built from logical if-then rules that are derived from expert knowledge.
Using these rules, expert systems were able to solve problems in a spe-
cific knowledge domain. The underlying principles of search remained
unchanged, but rules allowed for a wider range of representations. These
new developments inspired the design research community, for example
in the conception of shape grammars [Stiny and Gips, 1972] — a specific
class of rule-based systems for geometric shapes.

18

2.1.3 Alin architectural design

Christopher Alexander was one of the first architects in the early 1960s
who applied the Al paradigm of design as search to architectural design
practice. Much like Simon’s theory on design, Alexander conceived (archi-
tectural) design as a problem that can be solved with heuristic problem-
solving techniques — using the computer to implement and solve these
problems. His ideas were strongly influenced by the fields of cognitive sci-
ence, cybernetics, and artificial intelligence — to which he was introduced
during his studies at Harvard University [Steenson, 2014]. The published
version of his dissertation Notes on the Synthesis of Form [Alexander, 1964]
quickly became one of the founding works of the design methods move-
ment and has been, and continues to be, very popular in academic circles.
However, Alexander’s theory is often overlooked by architectural theo-
rists and historians alike due to the underlying anti-architect theme that is
found in many of his writings [Steenson, 2014].

In the introduction of Notes on the Synthesis of Form, Alexander dislikes
the idea of a designer relying “on his position as an artist, on catchwords, per-
sonal idiom, and intuition” [Alexander, 1964], and proposes a more rational
problem-solving approach. In particular, he defines the process of design
as being “an effort to achieve fitness between two entities: the form in question
and its context.” [Alexander, 1964]. In Alexander’s words, the context de-
fines the problem, the form is the solution to the problem, and a good fit
is the desired property of the solution. In his characterization of design,
Alexander defines fitness in its negative form — a list of requirements that
should be neutralized in order to achieve a good fit between the context
and the form. These requirements cannot be satisfied separately due to
the potential interaction between some requirements. By achieving fitness
for one particular requirement, this might influence several other require-
ments, either in a positive or negative way. Figure 2.4 (left) graphically
shows an example of design requirements (points) and some existing in-
teractions (links). In order to achieve fitness for as many requirements
as possible (which is the goal of the design task), Alexander proposes to
break down the requirements into a number of smaller subsets that are, at
the lowest level, fairly autonomous.

According to Alexander, the breaking down, or decomposition, of the
requirements into a number of small and independent subsets is an impor-
tant phase of the design process. Alexander argues that the appropriate
structure for such decomposition is a tree. For every design problem, a
large number of possible decompositions or trees can be devised, though
some decompositions make more sense than others. As Alexander points
out — “For every problem, there is one decomposition which is especially proper

A

TN

A PON

Figure 2.4: The figure on the left shows an example of 10 design requirements (points) and
some existing interactions (links). This system can be decomposed into two subsets
(circles) that operate rather autonomously, though a large number of other decompositions
can be devised. The figure on the right demonstrates how a decomposition is represented as
a tree structure. Reproduced from the original images appearing in Alexander [1964].

to it” [Alexander, 1964]. In order to find the most suitable decomposition,
Alexander conceives the task of finding it as a state space of possible de-
compositions in which search techniques can be applied. The HIDECS 2
program, designed by Alexander and Manheim [1962] for solving set the-
ory problems, was able to find an appropriate decomposition for problems
(with approximately 150 requirements) by using a heuristic search algo-
rithm called hill climbing. The essence of the HIDECS 2 search algorithm
is to find graph decompositions with the least number of interactions be-
tween them. The result of the search process is a decomposition or tree that
consists of fairly autonomous subsets (Figure 2.4 right).

With an appropriate decomposition available, a design can be solved
on the lowest level, for each autonomous subset of requirements individu-
ally. A solution to a particular subset of requirements is called a diagram,
which in the later work of Alexander [1977] evolved into the concept of
(design) patterns. A pattern describes a solution to a small system of in-
teracting requirements that is independent of all other requirements. The
concept of patterns that could be reused was a highly influential idea in
various disciplines — more so than the original application of patterns in
the field of architecture. When each autonomous subset is solved using
a particular design pattern, these can then be recombined into compound
patterns on a higher level of the tree structure, which Alexander called the
synthesis of form. As a result, the theory of Alexander conceives the act
of design as searching for autonomous subsets of requirements that can be
solved and recombined into the larger whole. Alexander demonstrates the
application of the method to the design of an Indian village with 141 de-
sign requirements — a number that is too large to be solved manually, but
small enough to be solved with the computation power then available.

20

Alexander is one of the first architects who used Al techniques to solve
a given design task by searching and solving simpler problems first. Ob-
viously, the Al paradigm of designing as a search has inspired many other
designers, architects, and researchers. The impact on architectural design
practice during the period 1960-1980 is investigated in the work of Steen-
son [2014] on the architects Christopher Alexander, Cedric Prince, Nicholas
Negroponte, and the Architecture Machine Group at MIT. Also, designing
as a search was the predominant Al paradigm in the research on CAD,
reflected in the papers of the time. Many of these research efforts can be
found in specialized scientific journals, such as Artificial Intelligence for En-
gineering Design, Analysis and Manufacturing and Artificial Intelligence in En-
gineering, which later continued as Advanced Engineering Informatics.

2.2 Second thoughts

During the mid 1970s, both the field of Al and the design methods move-
ment experienced setbacks. Just like many technologies that progress on
the hype cycle [Fenn and Raskino, 2013], the field of Al could not live up
to the bold claims that were made by the early pioneers. When the am-
bitious expectations of Al were not met, researchers in Al experienced se-
vere cutbacks in funding, which in turn led to a so called Al winter — a
period in which little research progress was made in this field. The 1970s
also witnessed the breakdown of the design methods movement, at least in
the field of architectural design. Some of the pioneers disassociated them-
selves from the movement; for example, Alexander said in an interview
that “There is so little in what is called design methods that has anything useful
to say about how to design buildings that I never even read the literature any more.
I would say forget it, forget the whole thing.” [Alexander, 1971]. Even Jones,
one of the leaders in the early research on design methods, reacted against
the foundations on which design methods were established [Jones, 1977].

2.2.1 Design as a unique discipline

There was a developing concern that design as a search paradigm did not
sufficiently capture the kind of thinking involved in creative design. In-
stead of trying to fix design into the straitjacket of rationality and objectiv-
ity, researchers started to acknowledge the distinguishing characteristics
of design. For example, Rittel and Webber [1973] described several obsta-
cles in problem-solving approaches in the field of social planning, which
are also valid in other fields of creative design [Conklin, 2006]. “We shall
want to suggest that the social professions were misled somewhere along the line
into assuming they could be applied scientists — that they could solve problems

21

in the way scientists can solve their sorts of problems. The error has been a seri-
ous one.” [Rittel and Webber, 1973]. The tasks dealt with in creative design
practice are inherently different from problems that scientists deal with
and, therefore, they are classified as wicked problems by Rittel and Webber
— in contrast to tame problems in science. Wicked problems are, among
others, characterized by the lack of a definite problem formulation, by the
absence of an immediate and ultimate test for the solution (they are not
right or wrong), by having an innumerable set of possible solutions, and
every wicked problem is essentially novel and unique.

For wicked problems, knowledge about the problem itself is achievable
only by iterating subsequent problem formulations and solutions. Maher
and Poon [1996] coined the term ‘co-evolution’ to denote this process, in
which both the problem and the solution are evolving simultaneously. It-
erative (re-)formulation of the problem is an important step, which is often
overlooked in Al-based design approaches. Indeed, an important critique
on the design-as-search paradigm is its reliance on a fixed problem formu-
lation — which is often not part of the search process itself, but is a result
of designer judgment that takes place before a search is involved. For ex-
ample, in the work of Alexander, the determination of which requirements
and interactions should be taken into account is done before a search can
be applied. This choice corresponds to problem formulation, and is always
the result of designer judgment — “We shall say that two variables interact if
and only if the designer can find some reason (or conceptual model) which makes
sense to him and tells him why they should do so.” [Alexander, 1964]. In other
words, a large (and perhaps the most important) part is completed by ap-
plying human judgment before any computers are even involved. Due to
the “‘wickedness’ of design, the set of requirements and interactions cannot
be determined definitely but is subject to changes as the design process
proceeds. Similarly, in response to the General Problem Solver program,
Al critic Hubert Dreyfus pointed out that “since insight is necessary in solv-
ing complex problems ... we should not be surprised to find that in the work of
Newell and Simon this insightful restructuring of the problem is surreptitiously
introduced by the programmers themselves.” [Dreyfus, 1972]. These exam-
ples signify the problematic nature of trying to capture design situations
in explicit and unambiguous representations. Instead, design (like other
hard Al problems) is a process that cannot be constrained to the bounds of
the initial problem formulation, but may require changes in the problem
statement itself. Such absence of a definite problem formulation is one of
the key characteristics of the wickedness of creative design, and one of the
main reasons why the design-as-search paradigm fails.

22

2.2.2 The design space revisited

The renewed insights into the nature of creative design did not lead to the
rejection of the design-as-search paradigm, but led to a reformulation and
expansion of the design space concept. Results from empirical and cogni-
tive studies of designers indicated that the early AI models of searching
a fixed symbolic state space could not adequately capture the wickedness
of creative design. As Logan and Smithers [1992] noticed in an article on
design as exploration — “In fact one might almost say that the defining char-
acteristics of design problems is that they are not amenable to purely search-based
problem solving techniques. This is not to deny that problem solving forms part of
the design process. However, it is not what characterizes design as a distinct kind
of intelligent behavior.”. Logan and Smithers, both researchers of the Artifi-
cial Intelligence in Design research program at the University of Edinburgh,
proposed an exploration-based model of design [Smithers et al., 1990], in
which knowledge about the structure of the design space has to be ob-
tained before goals can be adequately formulated. This determination of
the structure of the design space is an act of exploration — an adventurous,
open-minded, and at times only weakly-guided activity prior to search.
The model of design as exploration as proposed by Logan and Smithers
is visually demonstrated in Figure 2.5. Using this model, a design task
starts with the construction of an initial design requirement description
(R;) that is incomplete and inconsistent and, therefore, cannot define a goal
state in design space. The actual design process (£;) is the exploration of
the design space — “a collection of concurrent and serial searches each inter-
connected by intuitive leaps, analytical assessments, syntheses, simulations, pro-

DKB - Domain Knowledge Base

Kdm - domain knowledge

Kdn - design knowledge

Rj - initial design requirement description
Eq - design exploration process

Hq - design exploration history

Rf - final design requirement description
Ds - final design specification

DDD- Design Description Document

knowledge application knowledge generation knowledge transfer

Figure 2.5: A model of design as exploration. Reproduced from the original image
appearing in Smithers et al. [1990].

23

Design situation Well-structured problem

Disambiguation

Knowledge

Figure 2.6: A single cycle in the iterative process of formulating and searching a design
space, by which new design knowledge is accumulated.

totypes, decisions, choices, skilled and experiential judgments, etc. In other words,
an adventure.” [Smithers et al., 1990]. This results in a design requirement
description (Ry) and design specification (D;) that are complete and con-
sistent. The former describes what kind of behavior is required and the
latter describes how the specified design should work. Together with the
record of what parts of the design space were explored (H), a design de-
scription document (DD D) is defined that represents the knowledge gen-
erated and is used for a specific design task.

By means of exploring several design space formulations, a feedback
loop is established by which new design and domain knowledge (¥4, and
K g, respectively) is accumulated. Instead of using a fixed representa-
tion of the design situation at hand, the design process is characterized by
continuously (re-)formulating and searching a design space (Figure 2.6).
As Logan and Smithers point out — “The formulation of the problem at any
stage is not final: rather it reflects the designer’s current understanding of the
problem. As the design progresses, the designer learns more about possible prob-
lem and solution structures as new aspects of the situation become apparent and
the inconsistencies inherent in the formulation of the problem are revealed. As
a result, designers gain new insights into the problem (and the solution) which
ultimately result in the formulation of a new view: the problem and the solution
are redefined.” [Logan and Smithers, 1992]. The process of exploring a de-
sign space continues until the incremental gain in knowledge has become
insignificant, too costly, or until the available resources (mainly time) have
become exhausted.

24

This process of iterative refinement of both the design problem and
the solutions (co-evolution) is a well-studied phenomenon in the field of
design thinking and theory. For example, Cross [1997] describes design
thinking as an oscillation between problems and solutions — “During the
design process, partial models of the problem and of its solution are constructed
side-by-side.” [Cross, 1997]. In his theory of the designer as a ‘reflective
practitioner’, Schon [1983] describes the importance of ‘reframing’, which
refers to the habit of designers of continuously making representations of
the design situation at hand, thereby framing the design situation into a
new perspective. The act of framing is not as clear as problem formulation,
because the design task can only be fully understood through several at-
tempts to change it. Schon [1988] also points out that “the work of framing
is seldom done in one burst at the beginning of a design process”, but rather it is
a continuous process. These kinds of findings are also supported by em-
pirical research work; for example, Goel and Pirolli [1992] conclude, based
on protocol studies, that problem formulation reoccurs at regular intervals
throughout the design process.

2.2.3 Design space exploration

One of the early definitions and usages of the exploration model in the field
of CAD can be found in the work of Gero [1994; 1996]. In this definition,
the act of exploration is represented by a change in the design space that
either extends or substitutes (a part of) the original design space. More
recently, Woodbury and Burrow describe design as exploration in CAD
as the idea that “computers can usefully depict design as the act of exploring
alternatives. This involves representing designs in a network structure termed
the design space, and exploring this space by traversing paths in the network to
visit both previously represented designs and to find sites for new insertions in the
network.” [Woodbury and Burrow, 2006]. In other words, Woodbury and
Burrow assume that designers address a design task, as understood in the
interpretation of a wicked problem, through design space exploration — they
continuously represent and search an evolving design space with the aim
of finding an adequate design solution to an evolving design problem. In
the broadest sense, design space exploration involves several cycles of:

m formulating the structure of the design space;
m searching new designs by traversing paths in the design space;
m navigating between existing designs;

m evaluating designs against goal states.

25

According to Woodbury and Burrow [2006], design space exploration
rests on several premises. Not only it is an effective and feasible basis for
computer support, it is also a compelling model from a cognitive point of
view. Goldschmidt [2006], for example, defines design space exploration
on a more cognition-oriented basis, and argues that exploration is an im-
portant part of an inquiry or experiment that designers undertake. These
inquiries or experiments are to be understood in the context of Schén’s
[1983] theory on the designer as a reflective practitioner. Schon describes
design as a combination of different kinds of experiments: exploratory ex-
periments, move-testing experiments and hypothesis testing. The inquiry
starts by formulating or ‘framing’ the design situation, after which design-
ers can perform exploratory experiments to either find new design solu-
tions (move testing) or alter their exploration strategy (hypothesis testing).
Under the effect of these inquiries or experiments, both the design problem
and corresponding solutions co-evolve within the design space.

2.3 A digital sketchbook?

In the last couple of years, research on design space exploration has gained
renewed interest due to an increasing emphasis on building performance
in AEC. The architectural design and renovation process of contemporary
buildings is subject to numerous building requirements that are specified
in various building codes and standards. Such requirements — including
thermal and structural specifications, safety and accessibility regulations,
acoustic standards, and others — have a significant impact on the design
process. In order to meet these building requirements, designers need to
create and evaluate several design alternatives. Information systems might
play an important role to support designers in accomplishing these buil-
ding requirements by guiding them through a design space of possible al-
ternatives. With building performance back on the architectural agenda,
the Al models used in the 1960s serve as a warning for the possible pitfalls
of using the Al paradigm in design practice.

In current CAD research, the unbridled optimism and bold promises
of early pioneers have given way to more cautious and less ambitious at-
tempts. Instead of attempting to support all aspects within one, the quest
for agent-like information systems is now being approached from a more
pragmatic angle. To name just a few recent examples, the work of Aksoy
et al. [2015] describes a heuristic search method to provide decision sup-
port for the site layout design of social housing, and Borges and Fakury
[2015] describe a method for the generation of complex geometric struc-
tures. The “all-singing, all-dancing, fully integrated, multi-disciplinary design

26

decision support system”, as criticized by Maver [1995], seems to have faded
away. This has resulted in the incorporation of many novel technologies
in CAD tools — all developed with a specific task in mind, and often op-
erating from the background. Mitchell et al. [2003] nicely point out how
CAD tools, by definition, are supposed to be supportive, but like any other
tool (sketches, drawings, and scale models), they cannot solve all problems
— “Because creativity is associated with novelty, comprehensive tools for creative
work will be neither possible nor necessary to develop, any more than it is neces-
sary for a pencil to include all functions for drawing.”[Mitchell et al., 2003]. In
this regard, the digital sketchbook envisioned in this thesis is conceived as
tools — one of many — for exploring design alternatives.

To some extent, common CAD modeling environments (AutoCAD?,
Microstation?, BricsCAD?, etc.) can be used as tools for design space ex-
ploration. Such tools allow designers to represent their design, after which
they can evaluate different viewpoints, material choices, etc. Based on
the feedback received from the model, the designer might choose to fur-
ther elaborate, modify, or entirely discard his or her model. This act of
subsequently adapting the model corresponds to searching a design space
that is implicitly represented by the modeling environment. In this per-
spective, CAD modeling tools operate on the same principles of search-
ing a state space. The problem here is that this design space is heavily
bound by the information structure of the particular modeling environ-
ment. This information structure determines how a design model should
be constructed; for example, three-dimensional CAD tools enable the de-
signer to use particular operations on three-dimensional geometric objects
(including boxes, spheres, and surfaces), and building information model-
ing (BIM) tools enable the user to model a design using semantic elements
(including walls, windows, and columns). When a design model is built
according to a particular logic, the model cannot accommodate changes
that were not foreseen initially. For example, if two overlapping squares
are drawn, a third square ‘emerges’ from the two overlapping squares (Fig-
ure 2.7 top). On the other hand, Figure 2.7 (bottom) shows how only the
two original squares — and not the emergent square — are represented
in DWG (a common file format for storing geometric data). This example
demonstrates how CAD tools restrict designers into seeing designs from
a new perspective (reframing). For each geometric structure built up, the
model becomes more and more rigid — leaving the designer no choice but
to completely rebuild the model if some major changes are necessary.

Inttp://www.autodesk.com/products/autocad/
2http://www.bentley.com/products/microstation/
Shttp://www.bricsys.com/bricscad/

27

(AcDbPolyline) (AcDbPolyline)
num points 4 num points 4
point2d (0,0) point2d (1,1)
point2d (2,0) point2d (3,1)
point2d (2,2) point2d (3,3)
point2d (0,2) point2d (1,3)

Figure 2.7: Two overlapping squares result in a third emergent square (indicated in gray).
When this shape is constructed by drawing two squares, this emergent square is not
represented in the DWG file format, and thus is unavailable for further computation.

2.3.1 Generative design tools

The metaphor of the design space and design space exploration is made
explicit in CAD tools that enable designers to build generative design mod-
els. In generative design, either a set of parameters or rules is used to
generate alternative solutions based on predefined goals and constraints.
By this means, the generative design model represents a design space that
can be explored; for example by selecting different parameter values or
applying different rules. In both academic circles and creative design prac-
tice, generative design is becoming increasingly popular. The availabil-
ity of new (visual) programming environments or scripting capabilities
incorporated in traditional CAD software packages make it easy for de-
signers with little programming knowledge to build such generative de-
sign models. For example, Proc:essing4 is a programming environment
that serves as a software exploration sketchbook for designers and visual
artists. Grasshopper® is a visual programming language that enables de-
signers to build parametric models and explore geometric variations of this
parametric model. Also, generative design is taught at many schools of ar-
chitecture, and is gaining ground in architectural and design practice. For
example, the architectural firm Foster + Partners has an in-house specialist
modeling group to develop and implement generative design models for
particular architectural projects [De Kestelier, 2013].

4http://www.processing.org/
Shttp://www.grasshopper3d.com/

28

2.3.2 Parametric models

Most generative design is based on parametric modeling — the process
of representing a design through parameterized components and relation-
ships. Examples of parameterized components include dimensions, for-
mulas, geometric objects, and others. The relationships between the com-
ponents are structured in a hierarchical chain of dependencies defined by
the designer. Based on this hierarchy, some parameterized components act
like inputs to the model, while other components are dependently vari-
able. In this way, a parametric model has the structure of a directed graph
in which the input values are propagated through the graph. When the
input parameters are modified, the model updates itself to reflect the mod-
ification, while the graph structure of the model remains consistent. Varia-
tions of the input parameters result in different geometric variations of the
model. More details about parametric modeling can be found in the work
of Aish and Woodbury [2005].

Where traditional CAD tools aim to represent a single design, para-
metric modeling allows for the divergence of a design space in order to
generate geometric variants of the model. The act of searching the design
space of the parametric model corresponds to changing the parameter val-
ues. Several advantages of parametric modeling are described by Aish and
Woodbury — “Positively, parameterization can enhance the search for designs
better adapted to context, can facilitate the discovery of new forms and kinds of
form-making, can reduce the time and effort required for change and reuse, and
can yield better understandings of the conceptual structure of the artifact being
designed.” [Aish and Woodbury, 2005]. Indeed, the designer might spend
less time on producing different design representations, because a para-
metric model accounts for a design space of alternatives that can easily be
generated by changing the input parameters of the model. An example of a
typical parametric model in Grasshopper is shown in Figure 2.8. The input
parameters — rotation, number of vertical elements, height, a loft curve,
and a center point — are visualized on the left, the dependent components
and the relationships between them are visualized in the center, and the
resulting output is visualized on the right. When the input parameters are
modified, either by adjusting a slider value or choosing a geometric ob-
ject, these changes are propagated through the graph, resulting in different
geometric realizations of the model.

Despite the advantages of parametric modeling in searching a design
space, this design space is again bounded by the information structure of
the model built up. Only the design alternatives within the boundaries of
the represented design space can easily be generated (by changing the in-
put parameters), while others require more profound changes in the para-

29

Input
parameters Dependencies Output

=========

Figure 2.8: The top figure shows a parametric model, built in Grasshopper, driven by five
input parameters — rotation, number of vertical elements, height, a loft curve, and a
center point. The bottom figure shows some geometric variations of the parametric model.

metric model itself — such as changing the components or dependencies
between them. In order to really support exploration, in its broadest sense,
it should be easier to accommodate such profound changes. However,
there is growing evidence that exploration is quite limited in parametric
models used in practice — “While it is alluring to think of a design represen-
tation flexible enough to reduce time spent remodeling, the reality — a reality
commonly not addressed — is that parametric models are often quite brittle. Fre-
quently I find my models have grown so tangled they can no longer accommodate
even the most trivial change. Often I just start again.” [Davis, 2013]. Nev-
ertheless, parametric modeling is a promising approach in finding better
tools for design space exploration, and several improvements are still be-
ing developed, such as the use of re-usable patterns for parametric design
[Woodbury et al., 2007], the work of Shireen et al. [2012] on parallel gener-
ation and editing of design alternatives, and the work of Tidafi et al. [2011]
on using backtracking with parametric models.

30

2.3.3 Rule-based models

Another kind of generative design tools is based on rule-based modeling
— the process of representing a design space through generative rules. The
mathematical foundations of rule-based systems were laid in the work of
Emil Leon Post on production systems. Production systems, in the defini-
tion of Post [1943], consist of a set of initial strings and a set of produc-
tions (rules) that can be applied in order to generate new strings. Post
also pointed out the generative power of productions, and demonstrated
that complex systems can be generated with productions of a much sim-
pler form. Production systems were later used to provide some form of
artificial intelligence by representing expert knowledge from a certain ap-
plication domain in the form of rules. Typically, productions are defined as
if-then statements in which the conditions (if-part) of a production must
match a given state in order to execute the action (then-part) of this pro-
duction.

A special case of production systems are generative grammars found in
the field of linguistics, which are originally described by Noam Chomsky
in his book Syntactic Structures [Chomsky, 1957]. This type of grammar is
defined as a 4-tuple (V, X, P, S), where V is a finite set of symbols called
the vocabulary, 3 is a set of terminal symbols, S is a designated symbol
called the start symbol, and P is a finite set of rules of the form (o« — f).
For example, the grammar

= (S,NP, VP,N,V,ADV)

v
Y = {colorless, green, ideas, sleep, furiously)
S

S — NP VP | NP - A NP

NP —- AN VP -V ADV

N — ideas A — (colorless, green)
V — sleep ADV — furiously

generates the sentence “Colorless green ideas sleep furiously” by iteratively
applying rules to the start symbol. Using such grammar, all grammatical
sentences of a language can be generated, however, these do not necessar-
ily have understandable meaning — as is the case for the sentence given.

The theory of generative grammars influenced CAD research that took
production systems or linguistics as the main motivation underlying their
formulations. For example, Stiny and Gips [1972] developed their theory
of shape grammars in close alignment with such rule-based systems. In
the theory of shape grammars, rules are used to implicitly represent a de-

31

Figure 2.9: Some variations of one spatial relation between volumetric building blocks of
the Froebelean type. Image produced using GRAPE, a web-based shape grammar modeling
tool [Grasl, 2013].

sign space that can be explored by applying different rules of the gram-
mar. In contrast to parametric models, shape grammars can generate
design alternatives that supersede purely parametric variations, includ-
ing topological configurations and semantic aspects. As a result, shape
grammars provide a concise and computable framework to represent a
large and complex design space with a fairly small number of shape rules.
For example, Figure 2.9 shows some results generated with a single rule
that describes a particular spatial relation between three-dimensional buil-
ding blocks of the Froebelean type. These variations are produced us-
ing GRAPE®, which is a web-based modeling environment based on the
shape grammar paradigm. Another notable example is CityEngine’, a
grammar-based modeling approach to generate large-scale architectural
models (Figure 2.10. The rules of the grammar are defined in the form
id : predecessor : cond — successor : prob, where each rule has a unique
identifier id and is selected with a probability prob, predecessor is a shape
that is to be replaced with successor, and cond is a conditional statement
in order for the rule to be applied [Miiller et al., 2006].

®http://grape.swap-zt.com/
"http://www.esri.com/software/cityengine/

32

Figure 2.10: Some geometric variations of a grammar-based model, presented in the work

of Miiller et al. [2006]. The grammar generates variations of a building mass model, after

which fagade details are created. Reproduced from the original image appearing in Miiller
et al. [2006].

2.3.4 The dilemma of design and computation

Although information systems for generative design, provided in the form
of parametric or rule-based modeling, allow for the divergence of a design
space of alternatives, the functionality of such information systems resem-
bles more the act of searching a design space, rather than exploration. In-
deed, exploration in the broadest sense of reformulating the design space
requires a substantial remodeling effort that can often be accommodated
less easily. In particular, the design space is heavily bound by the informa-
tion structure of a particular modeling environment (by using predefined
types) — making it hard for a designer to see designs from a new perspec-
tive. For example, reformulating the design space in parametric models
requires profound changes to the dependencies of the parametric compo-
nents and, similarly, changes to rule-based models become more difficult
to manage for more complex rule sets. The continuous reformulation of
the design space is, however, an important step to support creative design
processes, which are inherently wicked.

As a result, there might be an apparent dilemma between the wicked-
ness of creative design and the structured nature of information systems.
Creative design is often associated with metaphors like ‘thinking outside
the box’, or ‘getting rid of preconceptions’, in order to stress the importance
of reformulation. When searching for creative solutions, people prefer not
to ‘follow the herd’, but rather ‘explore new avenues’ to come up with new

33

ideas. On the other hand, information systems derive their usefulness by
relying on explicit problem formulations and a bounded range of solutions.
This dilemma was already pointed out by Sketchpad-inventor Sutherland
in 1975:

“To a large extent it has turned out that the usefulness of compu-
ter drawings is precisely their structured nature and that this struc-
tured nature is precisely the difficulty in making them. An ordinary
draftsman is unconcerned with the structure of his drawing material.
Pen and ink have no inherent structure. They only make dirty marks
on paper. The behavior of the computer-produced drawing, on the
other hand, is critically dependent upon the topological and geometric
structure built up.” [Sutherland, 1975].

In order to enhance generative design systems for supporting design
space exploration, and thereby achieving a more agent-like role for the
computer in a design process, there are several key aspects that should be
taken into account. First and foremost, generative design systems should
allow an iterative (re)-formulation of the design space, corresponding to
the wickedness of creative design. Furthermore, the constructed design
space to be explored should be sufficiently large and diverse in order to
provide the designer with adequate alternatives. Finally, appropriate func-
tionalities should be available that augment the ability of the designer to
interact with the design space in different ways, including visualizing the
design space, browsing previously generated designs, comparing design
alternatives, and others. In the context of these requirements, the theory
of shape grammars [Stiny, 2006; Stiny and Gips, 1972] offers a well-studied
approach that might bridge the gap between design and computation. In-
deed, shape grammars stand as a critique of the traditional CAD discourse,
and provide a non-traditional, formalized view on design and computa-
tion, in which shapes — rather than predefined symbols or types — play
the leading role. The theory of shape grammars might offer an impor-
tant step towards the envisioned digital sketchbook for supporting design
space exploration, which is the main topic discussed in Chapter 3.

Shape Grammars

In this chapter, we introduce the concept of shape grammars and dis-
cuss some of its key characteristics (Section 3.1). Several examples of
shape grammars for analysis and original design are also provided (Sec-
tion 3.2). Furthermore, we point out how shape grammars provide a con-
cise framework to represent a design space by encoding design moves in
the form of shape rules (Section 3.3).

3.1 Definitions

The foundations of the theory of shape grammars were laid in a semi-
nal article Shape Grammars and the Generative Specification of Painting and
Sculpture by George Stiny and James Gips [1972]. Shape grammars are a
specific class of production systems that operate on shapes, using gener-
ative rules to describe a family of designs. In the field of creative design,
shape grammars are the most commonly used formalism for analyzing and
generating (families of) designs in the form of shape rules. They were in-
troduced by Stiny and Gips [1972] as a way of analyzing and synthesiz-
ing paintings, but soon adopted for other purposes as well. For example,
the Palladian grammar by Stiny and Mitchell [1978a] initiated work on
other shape grammars for specifying architectural design corpora, includ-
ing shape grammars for the architectural corpus of Frank Lloyd Wright
[Koning and Eizenberg, 1981], Glenn Murcutt [Hanson and Radford, 1986]

36

SG1 =<V, VR I>
Ve={=) Vyu={)

R contains

Rule 1 N Rule 3 @ N S
Q C B Iis

Rule 2 Qi ;

l - E Uy

Figure 3.1: A shape grammar (SG1) for the generation of a specific class of paintings.
Reproduced from the original image appearing in Stiny and Gips [1972].

I

and Alvaro Siza [Duarte, 2005a], and for the vernacular styles of Queen
Anne houses [Flemming, 1987], traditional Turkish houses [Cagdas, 1996]
and traditional Portuguese houses [Eloy, 2012]. Examples of other shape
grammar application domains include engineering [Geyer, 2008; Schaefer
and Rudolph, 2005; Shea and Cagan, 1999], decorative arts [Knight, 1980;
Stiny, 1977], and product design [Agarwal and Cagan, 1996; e Costa and
Duarte, 2014].

Stiny and Gips based their initial definition of shape grammars on lin-
guistic analogies: “Where phrase structure grammars are defined over an alpha-
bet of symbols and generate one-dimensional strings of symbols, shape grammars
are defined over an alphabet of shapes and generate n-dimensional shapes” [Stiny
and Gips, 1972]. Phrase structure grammars are a specific kind of genera-
tive grammars to specify the syntax of languages [Chomsky, 1957]. Indeed,
Stiny was influenced by this formalized theory of linguistic structure dur-
ing his study period at the Massachusetts Institute of Technology. In partic-
ular, Stiny and Gips [1972] defined shape grammars in close alignment to
generative grammars — a shape grammar (SG) is a 4-tuple (Vr, Var, R, I)
where:

m V7 is a finite set of terminal shapes;
m V) is a finite set of non-terminal shapes or marker shapes;
m Ris a finite set of shape rules of the form u — v;

m [is an initial shape that is part of V- U V.

37

Figure 3.1 shows a shape grammar (SG1) for the generation of paint-
ings, developed by Stiny and Gips. The shapes in the set V3 U V), are
the basic elements for the definition of shape rules in the set R and the
initial shape I. New shapes are generated from a shape grammar by itera-
tively applying shape rules to the initial shape. A shape rule is described
as an ‘if-then’ statement u — v, and can be applied if a shape is detected
that is geometrically similar to the pattern shape u (if-part) under a cer-
tain geometric transformation (translation, rotation, reflection, scaling, or
other transformations). The application of a rule involves replacing the
transformed shape with the replacement shape v (then-part). Each rule ap-
plication results in a new shape upon which new rules can potentially be
applied. The generation process is terminated when no further rule can be
applied. Figure 3.2 shows an example derivation of SG1, starting from the
initial shape I. The resulting shape from this derivation cannot be trans-
formed any further, because the marker shape Vj, is deleted in the last step.
Other derivations than the one shown in Figure 3.2 can be performed, each
resulting in a new shape that is part of the grammar’s language.

A e]

—_
N

D

Figure 3.2: An example derivation of SG1, starting from the initial shape I. The resulting
shape is part of the language of SG1. Reproduced from the original image appearing in
Stiny and Gips [1972].

38

Since the seminal work on shape grammars by Stiny and Gips [1972],
several other definitions have appeared in the literature — each having
a different focus and reflecting a particular understanding of the shape
grammar formalism. A chronological survey of the development of shape
grammar definitions is presented by Yue and Krishnamurti [2013]. In gen-
eral, the subsequent definitions evolved from a rather rigid and formal
definition to less rigid formalizations. Noticeably, while shape grammars
were initially defined in close resemblance to phrase structure grammars,
in the later work of Stiny [2006], the formal definition of a shape gram-
mar as a 4-tuple is nowhere to be found. The author questions the analogy
between sentences generated by phrase structure grammars and designs
generated by shape grammars — “When I started thinking about grammar
and language in design, I had no idea that it was a bad mistake”. According to
Stiny, the main issue with the linguistic analogy is the lack of an equiva-
lent for ‘words’ in shape grammars. He argues that there is no need for a
predefined vocabulary of parts in design, but parts may change freely any
time rules are applied. Therefore, designs are no longer defined in terms of
components that are given in advance (Vi U V)s), but they are interpreted
on the fly. This characteristic — the absence of a fixed vocabulary— is what
distinguishes shape grammars from their symbolic counterparts.

3.1.1 Shapes: basic elements and algebras

Shapes play an essential role in the renewed formulation of shape gram-
mars [Stiny, 2006]. A shape is composed of basic elements — points, lines,
planes, and solids — though this can be extended to curves, surfaces or
other geometric elements. The properties of basic elements and how they
can be arranged are summarized in algebras of shapes. In the general case,
algebra involves the study of (mathematical) symbols and how they can
be manipulated. A shape algebra U;; consists of basic elements defined in
dimension ¢ = 0, 1, 2 or 3, which are points, lines, planes, and solids, re-
spectively. The basic elements can be arranged in an Euclidean space with
dimension j > 4. For example, shapes in the algebra U;, consist of lines
arranged in a two-dimensional space, and shapes in the algebra Us,s are
made up of planes arranged in a three-dimensional space. The shapes in
Figure 3.3 are defined in the algebras Upz, U2, and Usz, and can be built
solely from points, lines, and planes, respectively. Each shape reveals the
same arrangement of two overlapping squares, but using different basic
elements.

39

Figure 3.3: Three shapes defined in the algebras Uoz, U2, and Usa, respectively.

The shapes contained in a particular algebra U;; share some common
properties. First, the dimension of the basic elements (index 7) specifies
how shapes of different algebras are related to each other via a boundary
operator. The boundary of a shape in an algebra with high-dimensional
basic elements (¢ > 0) is another shape in an algebra with index i — 1.
In other words, the boundary of a shape made up of lines, planes, or
solids is a shape containing points, lines, or planes, respectively (see Table
3.1). Second, the dimension of the basic elements specifies how shapes in
specific algebras can be decomposed into smaller elements (the topology
of shapes). Shapes in the algebras with high-dimensional basic elements
(¢ > 0) consist of an uncountably infinite set of basic elements. In other
words, shapes that consist of lines, planes, or solids can be composed from
an infinite number of smaller lines, planes, or solids, respectively (see Table
3.1). For example, the middle shape in Figure 3.3 can be built from at least
eight lines; however, it can also be composed using smaller line segments.
On the other hand, the left shape in Figure 3.3 is built from eight points,
and contains only a single topology. Shapes with high-dimensional basic
elements are commonly represented as a set of maximal elements. This set
of maximal elements contains the smallest number of the largest possible
basic elements that are needed to compose the shape. Maximal elements
cannot be contained in, overlapping with, or adjacent to other maximal
elements.

Algebra Basic elements Boundary shapes Number of parts

Uy, points none finite

Un; lines Uo; uncountably infinite
Us; planes Ui, uncountably infinite
Us; solids Us; uncountably infinite

Table 3.1: Some properties of shapes in different algebras.

40

a b

a+b a—>b a-b al\b

Figure 3.4: The results of sum, difference, product, and product difference operations on
two identical square shapes. A registration mark (+) fixes the spatial relation.

A shape algebra U;; specifies how shapes can be manipulated using dif-
ferent kinds of Boolean operations, including sum, difference, product, and
symmetric difference. For shapes in the algebras with zero-dimensional
basic elements (i = 0), the definition of sum and difference is straightfor-
ward. When shapes in the high-dimensional algebras (i > 0) are added,
however, the maximal elements of these shape may fuse if they (partly)
overlap. As a result, the maximal elements of shapes may not be preserved
if they are added together. For example, the sum of two identical shapes
results in an identical shape, because the maximal elements overlap com-
pletely. The same holds true for the other operations, such as difference,
product, and symmetric difference. Given two identical square shapes a
and b, the results of the four Boolean operations (sum, difference, product,
and product difference) are shown in Figure 3.4.

3.1.2 The embedding and part relations

The embedding relation describes how the basic elements of shapes interact
with each other. A basic element is embedded in another basic element,
if the first completely overlaps the second. Therefore, every basic element
of dimension that is greater than zero (¢ > 0) has infinitely many basic
elements of the same kind embedded in it. Mathematically, the embedding
relation is defined as a partial order satisfying three conditions:

41

m reflexivity — every basic element is embedded in itself;

m antisymmetry — if two basic elements are embedded in each other,
they are identical;

m transitivity — for three basic elements where each is embedded in
the next, the first basic element is also embedded in the last.

Similarly, the part relation describes how shapes interact with each other.
A shape is part of another shape if every maximal element of the first is em-
bedded in a maximal element of the second. In other words, a shape that
is part of another shape is called a sub-shape of this other shape. Shapes
in the algebras U;; where i is larger than zero can be decomposed into in-
finitely many parts or sub-shapes. As a result of such partial ordering, a
shape is considered to be a discrete topology or hierarchical composition of
smaller parts or sub-shapes. As Stiny [1994, 2006] has shown, these topolo-
gies should not be fixed, but they can change freely anytime needed. As an
example, Figure 3.5 shows a shape defined in the algebra U5 and some of
its underlying topologies. In particular, this shape can be seen as a compo-
sition of two squares (first row), four triangles (second row), two K-shapes
(third row), or infinitely many other sub-shapes. In contrast, shapes con-
taining points (Up;) have a finite number of sub-shapes, because points
cannot be divided into smaller elements.

O

AN

Figure 3.5: A shape defined in the algebra Uy2 (left) and some of its underlying topologies
(right).

42

Although shapes are identified uniquely by maximal elements, the em-
bedding and part relations allow shapes to be decomposed into different
sub-shapes. In other words, shapes are not defined in terms of fixed com-
ponents that would limit the number of parts embedded. This is a key
difference with earlier definitions of shape grammars by Stiny [1980], in
which shapes are formed by predefined components of the set Vo U Vi,
(the so-called vocabulary). In the current formulation, any sub-shape em-
bedded in the shape is accessible, independent of how the shape is created.
As a result, shapes can be (re)-interpreted in a large number of ways, de-
pending on what is needed at the time. Each interpretation reveals differ-
ent parts of a shape to which shape rules can be applied, which is the real
power behind the shape grammar theory.

3.1.3 Shape rules

In the theory of shape grammars, any action on shapes is encoded in the
form of a shape rule. Shape rules are mechanisms for operating with shapes,
independent of the algebra they belong to. In particular, they describe
how a specific shape (the pattern shape) can be transformed into another
shape (the replacement shape). Any pair of specific shapes, shown one af-
ter the other, determines a shape rule. The pattern and replacement shape
are conventionally separated using an arrow (—) to indicate the action be-
tween the two shapes. As a result, shape rules follow the most general
rule schema ¢ — b, in which a and b designate the pattern shape and
replacement shape, respectively [Stiny, 2011]. The most common actions
described in shape rules involve the Boolean operations sum (for adding
shapes) and difference (for deleting shapes). Additionally, registration
marks (+) are used to specify the spatial relation between the two shapes.
An example of a shape rule is shown in Figure 3.6. The rule specifies that,
if a square is found in a given shape, a copy of this square will be translated
along its diagonal axis.

+ +

Figure 3.6: A shape rule to translate a copy of a square along its diagonal axis.

43

Shape rules are applied using the embedding and part relations. In
other words, a rule @ — b can be applied to a given shape c if the pat-
tern shape a of the rule is a sub-shape (or part) of the given shape. If
this is the case, the maximal elements of the (sub-)shape and the pattern
shape are embedded in each other, and the two shapes are said to be
equivalent. Moreover, this equivalence relation can be determined using
different transformations, including translation, rotation, reflection, scaling,
and other linear or non-linear transformations. Wortmann [2013] distin-
guishes four different sets of transformations that are commonly used for
shape rules — identity, isometry, similarity, and topology. For identity, two
shapes have to be exactly the same (including position), so no transforma-
tions are allowed. Isometry includes the set of Euclidean transformation
(translation, rotation, and reflection), thus preserving the size and propor-
tions of shapes. Similarity also consists of scaling transformations, thus
retaining only the size of shapes. Other kinds of transformation, such as
affine and projective transformations, do not preserve the size or the pro-
portion of shapes. Such transformations are often called parametric trans-
formations, because they only preserve the topology of the shape instead
of the geometric characteristics. The division between isometry and topol-
ogy transformations reflects the usual separation between shape grammars
and parametric shape grammars, originally defined by Stiny [1980]. In this
case, the shapes a and b contain parameters (such as coordinate geometry)
to which different values can be assigned. Table 3.2 shows some equiva-
lent shapes to a given shape using different sets of transformations, from
identity to topology — with identity the most and topology the least strict.

Given shape = Transformations

Identity

”

Isometry

Similarity ” ” Q
Topology 7 7 7 D

Table 3.2: A given shape and some equivalent shapes using different sets of
transformations (identity, isometry, similarity, and topology).

44

Shape rules are applied recursively using a particular set of transfor-
mations, the part and embedding relations, and the sum and difference
operations. In particular, a shape rule can be applied if there is a match
between the pattern shape of this rule and a part of a given shape. Given
an initial shape and a set of shape rules, the application of a shape rule
involves the following three steps:

m Find a transformation (¢) such that the pattern shape «a is equivalent
to (a part of) the initial shape ¢;

m Define a new shape by subtracting the transformed pattern shape
from the initial shape ¢ — ¢(a); and

m Obtain the final shape by adding the transformed replacement shape
c+t(b).

As a result, a new shape ¢ = ¢ — t(a) + t(b) is generated to which
rules can be applied. An example derivation of the translation rule (see
Figure 3.6) is shown in Figure 3.7. Where rules are indicated using a single
arrow (—), a double arrow (=) is used to indicate a derivation step. For
this particular example, similarity transformations (translation, rotation,
reflection, and scaling) are used to match the shape rule to the given shape.
Each application of this particular shape rule generates additional (sub)-
shapes, to which rules can keep being applied. Without an additional rule
to terminate the derivation, an infinite number of shapes can be generated.

Figure 3.7: A possible derivation of the shape rule in Figure 3.6. A derivation step is
indicated with a double arrow (=).

45

3.1.4 Some extensions

So far, the examples given in this chapter have only dealt with shapes,
specified in the algebras U;;. While shapes indeed play an important role
in describing form and spatial relations in the context of creative design,
designs cannot be reduced to shapes alone. In fact, designs are often as-
sociated with other kinds of representations that are non-visual, such as
functional, social, or aesthetic descriptions. These aspects influence design
in different ways and are often expressed verbally. In the view of design
associated with the theory of shape grammars, shapes and descriptions go
hand in hand — “Design is drawing — true enough, it is calculating with shapes
and rules. Yet most of the time words are involved, too, to say what designs are
for and to connect them to other things.” [Stiny, 2006]. In this sense, it might
be preferable to talk about ‘design grammars’, because they involve more
than just shapes, but the term shape grammar is more commonly used.

The algebras U;; can be extended with label and weight algebras V;;
and W;;, respectively. Labels may be used to associate semantic meaning
to shapes, and weights may be used to incorporate shape properties, such
as color, area (for points), thickness (for lines), and texture (for planes).
Moreover, composite shape algebras can be formed by combining differ-
ent algebras. In this case, basic elements of different kinds are arranged in
multiple dimensions with different layers. For example, the composite al-
gebra Uys - V12 contains both points and labeled lines in a two-dimensional
space. As a result, algebras and their combinations provide a broad range
of tools for specifying shapes and, by extension, designs.

Finally, shape grammars are not limited to two-dimensional shapes,
but can also include three-dimensional shapes. For example, Heisserman
[1991] describes a shape grammar, or more correctly a solid grammar,
that generates a “three dimensional analogue to Koch snowflakes”. The Koch
snowflake is one of the earliest fractal curves described. A fractal is a set

r

Figure 3.8: A shape rule for the generation of three-dimensional Koch snowflakes.
Reproduced from the original image appearing in Heisserman [1991].

+ +

46

Figure 3.9: An initial shape and a possible derivation using the shape rule in Figure 3.8.
Reproduced from the original image appearing in Heisserman [1991].

of mathematical equations intended to generate a geometric pattern that
is repeated at every scale. In the mathematical sense, fractals are contin-
uous curves that are not differentiable and which have an infinite surface
area. Interestingly, some natural phenomena display or approximate frac-
tal forms (such as trees, crystals, and geographic patterns). A shape rule
from this Koch grammar, which adds a three-dimensional pyramid shape
to a triangular plane of a given solid, is shown in Figure 3.8. Starting from
an initial pyramid shape, this rule can be applied an infinite number of
times, because each rule application creates new (smaller) planes to which
rules can be applied. A possible derivation is shown in Figure 3.9.

3.2 More ambitious grammars

The shape grammar examples shown so far illustrate some of the most im-
portant aspects of the shape grammar formalism — algebras and maximal
elements, the embedding and part relations, and shape rules. In recent
years, many more specialized shape grammars have been developed for
both analysis and original design purposes. Shape grammars of the for-
mer kind attempt to analyze an existing corpus of designs and capture the
design rationale of this particular corpus in the form of rules. Such gram-
mars provide an explanatory description of the corpus in the form of shape
rules. Shape grammars of the latter kind focus on the generation and ex-
ploration of original designs. Such grammars are used to study the varia-
tions of original designs, while maintaining a certain coherence. In shape
grammars for analysis, rules are used mainly for their descriptive power,
while in shape grammars for original design, rules are used as generative
devices. As a result, shape grammars offer a framework that unifies the
storage and analysis of existing designs with the creation of new ones. The
numerous formal studies available demonstrate the analytic and genera-
tive power of shape grammars.

47

3.2.1 Shape grammars for analysis

The earliest shape grammar applications focus almost exclusively on the
analysis of the existing corpora of designs. This analysis includes both the
classification of designs and the prediction of design characteristics. A de-
sign is classified either as part of a corpus or not, depending on whether
it can be generated with the rules that describe this corpus. On the other
hand, an analytic shape grammar can be used to predict design character-
istics that follow from this grammar. The first application for analysis pur-
poses is a shape grammar for Chinese ice-ray designs described by Stiny
[1977]. This grammar demonstrates the descriptive power of shape gram-
mars by using just a few rules to capture the compositional logic of ice-ray
designs. This approach was quickly adopted in other application domains,
including architectural design, engineering and product design.

The first analytic architectural shape grammar is the Palladian gram-
mar by Stiny and Mitchell [1978a]. This grammar is an analytic shape
grammar in the sense that the authors attempt to capture, in the form of
rules, the underlying design principles of floor plans of villas appearing
in Palladio’s Four Books of Architecture. This grammar also generates novel
designs that are not in the original corpus, however. The rules of this gram-
mar are structured in distinct stages — grid definition, exterior wall defini-
tion, room layout, interior-wall realignment, principal entrances, exterior
ornamentation, windows and doors, as well as termination. The first set
of rules describes the construction of a rectangular grid with bilateral sym-
metry relative to a north—south axis. Once the grid is generated, it is cir-
cumscribed by a rectangle to define the exterior walls of the floor plan. An
example of a three-by-three grid is shown in Figure 3.10.

Figure 3.10: An example of a three-by-three grid generated using the Palladian grammar
by Stiny and Mitchell [1978a]. An axis (dashed line) denotes the bilateral symmetry of the
floor plan.

48

1 N 1
+ | + |
1 N 1
+ | + |
! — 1
+ +
L 1
+ | + |

Figure 3.11: Four shape rules from the Palladian grammar to concatenate spaces, while
preserving the symmetry of the plan — in particular, rules 12—15 in Stiny and Mitchell
[1978al.

The next step in the derivation is the concatenation of spaces in the
floor plan to create larger spaces. In doing so, the symmetry of the floor
plan must always be preserved, which is reflected in the four concatenation
rules shown in Figure 3.11. Indeed, due to the axis (dashed line) in the
pattern shape of the rules, concatenation is only possible for symmetric
spaces. The actual Palladian grammar also includes rules to generate cross-
shaped or T-shaped spaces by concatenation. Another set of rules describes
the placement and ornamentation of the principal entrance on the north-
south axis. An example of a floor plan layout generated from the initial
three-by-three grid, including the placement of the principal entrance, is
shown in Figure 3.12 (left).

49

% J_kL S —
i ;
1]
! i
]

IR B
JL
?

| |
! |
| |
0,0 \—w— 0,02
| |

Figure 3.12: Floor plan layout definition (left), window placement (middle), and door
placement (right) of villa Angarano using the Palladian grammar by Stiny and Mitchell
[1978a].

A final set of rules describes how windows and doors are located along
a horizontal or vertical axis in the floor plan. An example of such a rule
from the Palladian grammar, shown in Figure 3.13 (top), defines the place-
ment of two windows along a horizontal axis. This rule locates windows
in two opposing wall segments and, additionally, adds a new horizontal
axis («+») between these two windows. This additional axis is needed to
locate interior doors on the intersections of the axis and interior walls, us-
ing a second rule shown in Figure 3.13 (bottom). For example, Figure 3.12
shows the placement of windows and their corresponding axes (middle),
after which doors are placed on the intersections to finalize the floor plan
(right). The resulting floor plan corresponds to the villa Angarano that
appears in Palladio’s Four Books of Architecture.

- H

Figure 3.13: Two shape rules from the Palladian grammar for placing windows (top) and
doors (bottom) along a horizontal axis — in particular, rules 59 and 60 in Stiny and
Mitchell [1978a].

50

O O O O

F —
o
o
o
o
C——
P —
C——

O O O O

[R

Figure 3.14: Four possible derivations of the Palladian grammar, one of which is a new
design. Reproduced from the original image appearing in Stiny and Mitchell [1978b].

In the paper Counting Palladian plans, Stiny and Mitchell [1978b] demon-
strate both the analytic and generative power of this shape grammar by
generating several existing and original floor plans, though at a certain
level of abstraction. Figure 3.14 shows four resulting floor plans generated
using the Palladian grammar — one of which is a new design and does not
appear in the Four Books of Architecture (which one?). As a result, the gram-
mar described by Stiny and Mitchell is shown (1) to capture the design
principles underlying the floor plans of Palladian villas and (2) to gener-
ate new designs that go beyond the existing corpus of designs. However,
this shape grammar is neither to be understood as a historically accurate
description, nor as a claim for a specific design method. As Stiny [2006]
points out — “What I am doing is not a commentary on contemporary architec-
ture and how it is practiced, or an arqument for classical principles of building or
for the plan as a method of designing. Nor is my interest in Palladio historical.”.
Historical accuracy is seldom the main goal of analytic shape grammars.
Instead, they may reveal design principles, such as compositional, func-
tional, and technical aspects.

51

B B

N H
F F

+H +R
B X
R
B X -
H H
+R +R X=ForB

Figure 3.15: Two shape rules of the Queen Anne shape grammar. Reproduced from the
original image appearing in Flemming [1987].

This is nicely demonstrated in the shape grammar of Queen Anne
houses, developed by Flemming [1987]. This shape grammar generates,
step-by-step, three-dimensional designs, where “each step is based on an
identifiable technical or compositional logic, very much in the way architects use
sequential diagrams to explain the logic behind a certain composition” [Flem-
ming, 1987]. In particular, this grammar describes the arrangement of
rooms around a core entrance hall in order to satisfy certain structural and
spatial requirements. The top shape rule in Figure 3.15 is the initial rule,
which places the entrance hall using a labeled shape (H). The labels F' and
B are used to identify the front and back of the floor plan. The bottom
shape rule in Figure 3.15 adds a new room (R) by extending a floor plan
towards the side or back. In total, 17 rules describe the spatial organization
and 32 rules describe the exterior articulation of Queen Anne houses. In
this way, analytic shape grammars provide a comprehensive way of de-
scribing and explaining specific design principles.

3.2.2 Shape grammars for analysis and original design

Another kind of shape grammar application focuses on the generation, and
by extension exploration, of original designs. For such shape grammars,
the emphasis is on the generative aspect of rules, rather than the analytic
or descriptive value of shape rules. The theoretical distinction between
analytic and original shape grammars made here is often less apparent in
practice. Many shape grammars developed by researchers in the architec-

52

ki

be

Figure 3.16: Floor plan and three-dimensional view of some possible derivation results of
the Malagueira shape grammar. Only the first two results are existing designs in the
corpus. The labels are living room (1i), bedroom (be), patio (pa), kitchen (ki), yard (ya),
laundry (la), and service (ts). Reproduced from the original image appearing in Duarte
[2005b].

tural design domain are hybrid analysis/original shape grammars. For ex-
ample, Duarte [2005a] describes a shape grammar for the Malagueira hous-
ing system designed by the Portuguese architect Alvaro Siza Vieira. While
this grammar encapsulates the design principles underlying the specific
corpus of Malagueira designs, the grammar is also used to generate new
variations in the context of mass-customization of housing designs. The
proposed design system generates both known designs from the Malagu-
eira corpus and new customized designs that use the same compositional
principles underlying the Malagueira corpus. Figure 3.16 shows the floor
plan and the three-dimensional view of three designs generated using the
grammar. The first two results are existing houses in the Malagueira cor-
pus, designed in 1978. The third result is a new design for a five-bedroom
backyard house that is customized for a specific client. A thorough evalua-
tion of the descriptive and generative power of this grammar can be found
in the work of Duarte [2005b]. Noticeably, “when the new design was shown
to Siza amidst other Malagueira designs, he did not notice that it was not his own
design.” [Duarte, 2005b].

53

hs Xla ho la
Xki Ko
Xba ba.g
Ths Xbal| hs ® [best]] 2 ai
5 0 98
i D L
nhs ™ (1 cop N C
lnhs nhs nhs N Co.p hl CE
i ba.p2
hs ’—/ U hs P be.d _“—
L hs be.s2 l

Figure 3.17: The floor plan of an existing house (left) and an adapted floor plan generated
using the Rabo-de-Bacalhau grammar (right). The labels are explained in Table 4.3 (p. 95).
Reproduced from the original image appearing in Eloy [2012].

Eloy [2012] describes a shape grammar for the renovation of traditional
Portuguese houses. The grammar attempts to provide an answer to the
need for mass rehabilitation of the existing housing stock in Portugal. In
order to develop a more general methodology, Eloy has first developed
a transformation grammar for the specific case study of traditional Por-
tuguese Rabo-de-Bacalhau (or ‘cod-tail’) houses. This shape grammar en-
capsulates various customized transformation strategies for adapting ex-
isting houses to the current standards, depending on specific client needs
and cost requirements. Unlike analytic grammars, the rules are inferred
from other relevant experience of rehabilitation work and expert knowl-
edge [Eloy and Duarte, 2014]. In other words, the rules are not derived
from an existing corpus of design, but they encode design knowledge that
is acquired directly from architects. For this grammar, the floor plan of any
existing Rabo-de-Bacalhau house can be used as the starting point of the
grammar. By applying different rule sequences (the so-called transforma-
tion strategies), multiple transformed floor plans can be generated, each
adapted to the comfort and accessibility standards. For example, Figure
3.17 shows the resulting floor plan of a particular transformation strategy
that involves re-assigning functions, changing room dimensions, and mak-
ing rooms more accessible by widening connections.

54

3.2.3 Some further remarks

The theory of shape grammars has been in existence for a few decades now.
Several definitions, improvements, and other kinds of contributions have
followed, thereby adding new insights from different perspectives (for ex-
ample, mathematical foundations, new application domains, or computer
programs for the development and application of shape grammars). To
date, shape grammars are an established field of study both in computer-
aided (architectural) design and design theory. Further refinements of the
theory are still being made [Economou and Kotsopoulos, 2014; Stouffs,
2014], as well as methods for developing and assessing shape grammars
[Grasl and Economou, 2014; Kénigseder and Shea, 2014] and new applica-
tion domains [Coutinho et al., 2014; e Costa and Duarte, 2014; Krstic, 2014].
The broad range of this work demonstrates the appeal of shape grammars
as a tool for analyzing and generating languages of designs, but also as a
general theory for studying creative design.

On the other hand, the theory of shape grammars is, at least, contro-
versial, and subject to a long-standing debate about their usefulness in cre-
ative design practice. A common criticism of shape grammars is that de-
signs are supposedly to be treated in terms of linguistic concepts [Fleisher,
1992; Gerzso, 2003], including the analogy between sentences generated
by phrase structure grammars and designs generated by shape grammars.
Such a criticism presumably arises from the term ‘grammar’ that conveys
a linguistic association to Chomsky’s phrase structure grammars. Fleisher
[1992] points out, rightly so, that linguistic associations between language
and architecture are problematic; however, such alleged associations are
probably the result of misinterpretations. Flemming [1994] argues that “the
‘erammar’ part in shape grammars is to be understood in a purely technical sense,
no analogies, legitimate or not, are implied.”. A similar argument is made by
Stiny [2006] — ”Sometimes, analogies imply a lot more than they should ... I did
not think that designs were sentences, but instead that grammars could generate
both sentences and designs.” .

Another criticism is that grammar-based CAD tools, and CAD tools in
general, cannot support every aspect of designs (such as subjectivity, aes-
thetic qualities, or cultural aspects). For this reason, CAD tools are only
able to support some reductionist definition of design (design as search,
design as problem-solving, design as ...). In this sense, CAD tools could
not be used in a meaningful way to support a creative design practice
[Flemming, 1994]. Indeed, the theory of shape grammars is no exception,
because it, by no means, provides a complete or all-knowing model of de-
sign. However, this criticism vanishes if CAD tools are considered, not
as models of design, but merely as tools to explain or support some par-

55

ticular aspects of design. In this sense, shape grammars are conceived as
(generative) tools that might be useful in supporting analysis and genera-
tion of designs and for working out the implications of particular design
theories. As tools, shape grammars are particularly appealing due to their
flexibility in reinterpreting shapes, and also due to their expressive power
in describing and generating designs using a unified formalism of shape
rules.

In this context of using shape grammars as tools for analysis and gener-
ation, another recurring criticism is that there is little evidence of the prac-
tical usability of such grammar-based design tools. Indeed, while shape
grammars are an established field of study within the field of CAD re-
search, they are far less known outside the academic world. Unlike other
technologies (such as parametric modeling), shape grammars have not yet
found widespread adoption — neither in creative design practice, nor in
computer-aided design tools. In order to expand the impact of shape gram-
mars, research on computer implementations is gaining renewed interest;
for example, the work of McKay et al. [2012] on grammar-based software
approaches, or the work of both Grasl [2013] and Wortmann [2013] on
computer representations of shapes and shape grammars. Of particular
interest, is to investigate whether shape grammars can be used as tools for
design space exploration.

3.3 Design space exploration with shape grammars

Shape grammars might provide a concise and computable way to repre-
sent and explore a design space. A design space is a special kind of state
space, in Al terminology, and typically consists of an initial design, a set of
available actions, a transition model, a goal test, and a path cost function.
Shape grammars, on the other hand, define a language of designs through
generative rules. An analogy between such a formulation of a design space
and shape grammars is first described in the early work of Gero and Kaza-
kov [1996]. In particular, an initial shape is to be understood as the initial
design of the design space. The set of shape rules in shape grammars cor-
responds to the set of applicable actions in the design space. Each shape
rule is defined as a pair of shapes, shown one after the other, and sepa-
rated using an arrow (—) to indicate the action between the two shapes. A
such, a shape rule describes a transition between a given (sub-)shape and
a resulting shape, and involves navigating from one shape in the design
space to another. A sequence of shapes connected by a sequence of rule
applications designates a path in the design space. The shapes generated
with a specific shape grammar are part of the language of this grammar,

56

State space definition Shape grammar definition

[Russel and Norvig, 2010] [Stiny, 2006]

Initial state Initial shape

Set of available actions

Transition model } Set of shape rules

Goal test } Goal test and path cost, only if

Path cost the design task is formulated as
an optimization problem

State space Language of the grammar

Path Sequence of shapes

Table 3.3: Analogy between the definition of a state space and shape grammars.

which is the set of shapes that can be generated by the grammar. This lan-
guage implicitly defines a design space in a way that is both concise and
computable, because it is represented through a finite set of rules and be-
cause these rules provide the main mechanism for searching the design
space. The analogies drawn between state spaces (as defined by Russel
and Norvig [2010]) and shape grammars are shown in Table 3.3.

In the context of problem solving, a goal test and path cost should be in-
cluded in the definition of the state space, enabling the search for the path
with the lowest cost to a goal state (which is the solution to the problem).
However, a goal test and path cost are typically not included in the defi-
nition of shape grammars, since they are not so much conceived as tools
for problem-solving, but rather as tools for the analysis and generation of
designs. In the context of creative design, goals are not fixed and their for-
mulation is part of the design process itself (they are wicked problems).
In some cases, particular aspects of the design task at hand involve an ex-
plicit goal test — for example, the optimization of structures, costs, and
project scheduling. In these cases, heuristic search methods can be used
to find near-optimal designs in a reasonable amount of time. For exam-
ple, in the work of Cagan and Mitchell [1993], a heuristic search method
called ‘simulated annealing’ is combined with shape grammars to “control
choice among alternative rule applications as shapes are derived. The result is an
optimally directed design solution.” [Cagan and Mitchell, 1993]. In the work
of Shea and Cagan [1999], this method has been applied for the design of
truss structures. More recently, Grasl and Economou [2014] describes dif-
ferent strategies for automatic rule selection in shape grammars, ranging
from random selection (which may be useful to spark new ideas) to genetic
algorithms [Holland, 1992] that mimic the process of natural selection.

57

Unlike the symbolic kind of state space defined by Russel and Norvig
[2010], a design space represented by shape grammars consists of visual
designs defined in a specific algebra. In other words, a design space is a
structured network of shapes (U;;) possibly associated with other kinds of
representation that are non-visual (V;; or W;;). The structure of the design
space is defined by the shape grammar rules that make designs accessible
through rule application. Therefore, the resulting design space is a directed
graph in which the nodes are shapes and the links between nodes are shape
rule applications. Figure 3.18 shows a visualization of (a small part of) the
design space that is represented by the Palladian grammar. In particular,
only the possible actions of the four concatenation rules (Figure 3.11) are
shown, starting from a three-by-three grid.

LT
LT
L]

L]
L]

[]
[]
[]

L]
1
L]

1
[11
[]

[]

L —

L — [
[]

[1

Il

HIFE HEHEES
L E |) |) | |

Figure 3.18: A part of the design space represented by the Palladian grammar [Stiny and
Mitchell, 1978a]. Rule applications (—) relate one design to another.

58

As shape rules are applied using the embedding and part relations, the
design space is structured according to a partial ordering (which means
that not every pair of designs is related). In some cases, different rule se-
quences may result in the same design. As a result, the design space might
contain designs that look the same, and only differ in the rule sequence
that was used to generate the particular designs (the creation history). For
illustrative purposes, the design space shown in Figure 3.18 only contains
the twelve distinct possibilities of floor plan layouts that can be generated
— each following a single derivation path. The actual resulting design
space would look more like a network with equivalent shapes and mul-
tiple links between them. Also, the actual design space contains equiv-
alent designs under particular transformations, such as isometric shapes,
which are identical under translation, rotation, and reflection transforma-
tion. These equivalent shapes are not shown in Figure 3.18.

3.3.1 Design move codification

The most significant ability of shape grammars to represent a design space
lies in the encoding of design moves in the form of shape rules. The term
‘design move’ originates from the design thinking research field, where it
is defined as “a step, an act, an operation, that transforms the design situation
somewhat relative to the state it was in before that move.” [Goldschmidt, 2014].
Whereas in a problem-solving context, such as playing chess or proving a
theorem, the notion of moves is clearly defined as an action that leads from
one state to another, the notion of design moves is often more equivocal.
A design move varies in temporal extent from a few seconds to more pro-
found changes in the development of designs. For most shape grammar
applications, the rules describe design moves that are quite short, though
in some cases they cover more profound interventions; for example, Knight
[1981] describes how new designs can be created by an informed and delib-
erate manipulation of known or given information. In particular, Knight
uses shape equivalence rules to encode how an existing design is to be
transformed to new designs. In a more general way, shape grammars ex-
plicitly encode different kinds of design moves in the form of shape rules.

By encoding design moves as shape rules, designers might be able to
foresee the possible effects of taking a particular design move, or to store
successful design moves, their own or others, for later design projects. As a
result, shape grammars represent a design space in which both navigation
to existing designs and generation of original designs can take place. Sev-
eral implementations of shape grammars on computer systems have made
this codification explicit; for example the early work of Heisserman [1994]
and the more recent shape grammar implementations described in the

59

work of McKay et al. [2012]. The design space represented by shape gram-
mars is sufficiently large and diverse, as demonstrated by shape grammars
representing an entire corpus of designs such as the Palladian grammar
[Stiny and Mitchell, 1978a], and others. On the other hand, the design
space represented by shape grammars is limited in its breadth and main-
tains a certain amount of coherence. By representing such a deliberately
limited, yet broad enough design space, exploration occurs in a design
space in which the goal is refinement of a coherent and well-developed de-
sign idea. The advantage of considering a limited number of coherent de-
sign alternatives, rather than many widely different alternatives, has been
indicated in several (empirical) research studies, such as the work of Gold-
schmidt and Tatsa [2005] and Goldschmidt [2006].

At first sight, the act of testing design moves resembles the act of search-
ing a design space. Shape rules enable a designer to consider designs in
a design space that is already defined implicitly when the grammar was
constructed. Indeed, using a predefined shape grammar, it is possible to
foresee the possible effects of designs within the implicit design that is
represented; however, designs beyond the scope of this implicit design
space seem to be out of reach. In other words, the design space repre-
sents only those designs that are in the language of the shape grammar. So,
while shape grammars adequately account for the act of searching a design
space, the question remains — how can shape grammars support design
space exploration in the broadest sense, including the (re)-formulation of
this design space? Two possibilities are reformulation of the shape grammar
by changing the rules, and reinterpretation by seeing designs differently.

3.3.2 Shape grammar reformulation

An important aspect of design space exploration is the (re)-formulation
of the design space, which involves setting the boundaries in which the
search can occur. This act of (re)-formulation might completely precede
the process of searching the design space; for example, for shape grammars
that have already been defined before they are used. On the other hand,
(re)-formulation might also occur in sequential stages, similar to the pro-
cess of oscillation [Cross, 1997] or co-evolution [Schén, 1983] of problems
and solutions. Reformulation involves the process of creating a new de-
sign space or modifying an existing design space by means of changing the
underlying mechanism of this design space. As shape rules are the main
structuring mechanism of the design space represented by a shape gram-
mar, an obvious way to enable design space reformulation is by making
changes to the rules themselves. For every change in the shape grammar,
such as adding new rules, deleting rules, or modifying rules, this results

60

Figure 3.19: Additional shape rule (rule 18 in Stiny and Mitchell [1978a]) from the
Palladian grammar to concatenate spaces, whilst preserving the symmetry of the plan.

in a reformulation of the design space represented. By adding additional
rules, new paths for exploration are made available that might (or might
not) lead to interesting areas in the design space. In a similar way, deleting
or modifying shape rules redefines the scope of the design space repre-
sented. For example, adding a shape rule for concatenating spaces to a
cross-shaped space (Figure 3.19) to the Palladian grammar results in the
possibility to generate more floor plan layouts.

The iterative reformulation of a grammar and its application to search
alternative designs should be a key aspect of grammar-based information
systems, as pointed out in a workshop on the computer implementation
of shape grammars [McKay et al., 2010, 2012] — “We anticipate the role of
designers and engineers changing to include the development of grammars from
which shapes could be computed in generate—test cycles. System users would de-
sign, develop, and use their own grammars to generate designs in, for example,
a given style or to suit the capabilities of a particular fabrication process with as-
sociated constraints.” [McKay et al., 2012]. In this context, one of the key
features of grammar-based design tools should be to provide designers
with the possibility to make changes to the grammar in an interactive and
intuitive manner. By doing so, the design space might become more dy-
namic, in the sense that it does not remain static during the exploration
process. This could in turn lead to a more agile exploration of a design
space through generate—test cycles. Chakrabarti et al. [2011] point out sev-
eral strategies to support designers in the iterative development of a shape
grammar, such as building specialized, yet intuitive, shape grammar edi-
tors or building self-learning shape grammar implementations.

While the possibility to make changes to the grammar during explo-
ration could indeed prove to be a valuable approach, the possibility to
manually intervene by modifying designs with no regard for rules could

61

prove equally valuable. In doing so, designs could be generated that are
outside the language of the grammar. In the terminology of the design
space, this would enable the designer to make shortcuts — not following
any design path — thereby allowing ‘on-the-fly” experimentation.

3.3.3 Seeing shapes differently

Another way to support design space exploration is a result of the embed-
ding and part relations that allow shapes to be decomposed into differ-
ent sub-shapes; in other words, by using different underlying topologies.
Shapes can freely be (re)-interpreted and decomposed, thereby revealing
different parts to which rules can be applied. In this way, a new under-
standing or alternative perspective on the design space is obtained that
might lead to new designs — ranging from new but anticipated designs
to unconventional designs, as pointed out by Knight [2003]. The Malagu-
eira housing grammar [Duarte, 2005a], which generates new customized
designs that are similar to the existing ones, is an example of the former
approach. On the other hand, the grammar for the design of truss struc-
tures [Shea and Cagan, 1999] generates new and structurally sound de-
signs that are difficult to predict beforehand. A few possible derivations of
this grammar are shown in Figure 3.20.

A - 4& 4& - A Some possible derivations:
f ff ff f

rule 1 rule 2
3 3 3 3 m
AN AN AN
2 1 21f 4 21f 4 2 1
rule 3 rule 4
A
N — LT ° e
12 1 2 (xy) (erdxy+dy)
rule 5 rule 6
O free point
® fixed point <
f free line A A

Figure 3.20: Shape grammar for the design of truss structures (left) and some possible
derivations. Reproduced from the original image appearing in Shea and Cagan [1999].

62

The embedding and part relations might also result in emergent shapes.
Emergence is a concept rooted in 19th century philosophy, and became
widely popular in the field of computer science. In the book Emergence:
From Chaos to Order, Holland [1999] points out that “emergence, in the sense
used here, occurs only when the activities of the parts do not simply sum to give
activity of the whole. For emergence, the whole is indeed more than the sum
of its parts.”. The concept of emergence is often associated with terms
such as novelty and surprise [Knight, 2003], and is therefore, the subject
of many computational models that attempt to generate and understand
emergence. Among the most well-known computation models of emer-
gence are cellular automata (CA) [Wolfram, 2002]. In their most simple form,
CAs are two-dimensional configurations of cells that are in an active or
non-active state (Figure 3.21). Starting from an initial configuration with
one active cell, rules can be applied to change the states of particular cells
in the configuration. These rules are defined in terms of the current state
of a particular cell and its immediate neighbors. The top row of the rules,
shown in Figure 3.21, contains all the possible combinations of states for a
cell and its immediate neighbors. The bottom row then specifies what state
the center cell should be after the rule is applied. The recursive application
of such rules may give rise to more complex emergent patterns. For the
two examples given in Figure 3.21, the emergent patterns are a nesting of
triangles (left) and a random configuration of local structures (right). In
other words, while low-level cells of the automaton are changed through
local rules, they result in high-level patterns that are not described in the
rules.

o | o |
.I | I. .I | I.
- N - N
.I.I I.I I.I I.I I.I I.I I.I I.I.
N N
e e
N N N N
I.I I.I I.I I.I I.I I.I I.I I.I
I.I I.I I.I | |
nesting local structures
rule: rule:
[l _Ei B || ENjin _jiN EiEE NN LIl _Ell B || ENjin jiN NjiEE jinEE
B u 0 u u 0 u 0 0 u u B u u u 0

Figure 3.21: Two example cellular automata (top) and the corresponding rules (bottom,).
The recursive application of the rules results in emergent patterns (nesting and local
structures) [Wolfram, 2002].

63

The kind of emergence in cellular automata can also be found in
other kinds of computational rule-based systems, such as shape grammars
[Stiny, 1994]. In the context of shape grammars, emergence refers to the
ability to recognize and, more importantly, to operate on shapes that are
not predefined in a grammar, but arise, or are formed from the shapes gen-
erated by rule applications [Knight, 2003]. In particular, an emergent shape
is a shape that is not directly added by a previous rule application, but is
the result of fusing basic elements. As an example, Figure 3.22 shows one
possible derivation of two shape rules that shift a shape along a diagonal
axis. The bold lines indicate how a rule is applied in each derivation step,
and an asterisk indicates whether an emergent shape is used. The result-
ing shape of this derivation might appear somewhat surprising, especially
considering the geometric simplicity of the initial shape and rules.

Rules
- 5 -
+
Derivation
= =
*
= =

Figure 3.22: Two shape rules (top) and an example derivation with emergence (bottom).
Bold lines indicate how rules are applied in each derivation step. Emergent shapes are
indicated with an asterisk. Reproduced from the original image appearing in Knight
[2003].

64

At each step of the shape grammar derivation, new opportunities for
exploration occur by seeing designs in a different way or by means of
emergent shapes. Rules can then be applied in ways other than they were
initially created for — possibly resulting in unexpected, or perhaps even
surprising, designs. According to Stiny, this is what distinguishes design
from search — “But design is not search. It is far more than sifting through com-
binations of predetermined parts that are the set results of prior analysis ... I don’t
have to know what shapes are, or to describe them with definite units, for them
to work for me as I design.” [Stiny, 2006]. In other words, shapes are inher-
ently ambiguous, and this ambiguity is “a limitless source of novelty” [Stiny,
2006]. The key importance of ambiguity and emergent behavior has been
discussed at length in the work of Stiny. In particular, he describes an itera-
tive process of seeing and doing, where the designer applies a rule based on
what he sees. The act of seeing is a continuous process that precedes every
move that designers undertake, as understood by Stiny. As a result, emer-
gence can be considered to be an act of exploration, because it changes the
design space and, in particular, it changes the way the design space is un-
derstood by the designer. Through emergence and reinterpretation, a new
understanding or alternative perspective on the design space is obtained
that might lead to serendipitous developments, thereby taking designs in
new directions.

3.4 Bridging the gap?

As shape grammars embed some elements of design space exploration —
in reformulation, reinterpretation, or through emergent designs — they en-
able a certain kind of freedom that is characteristic for creative design. In
particular, shapes are defined and interpreted in ambiguous ways (through
the part and embedding relations) and as a designer, you can “use any
rule(s) you want, whenever you want to”[Stiny, 2011]. In other words, the
view of designing associated with the theory of shape grammars does not
relieve designers from their creative task of coming up with new rules
and being able to deviate from preconceptions. Simultaneously, it involves
storage, repetition, and copying of existing rules in new design situations
via reinterpretation — “The idea is to let embedding work for you — to see
things in new ways, and to have the means to do something about this without
having to invent [the rules]”[Stiny, 2011].

On the other hand, the theory of shape grammars also describes par-
ticular aspects of creative design as a specific kind of visual calculation
with rules. This formalized understanding of exploration enables the cod-
ification of design knowledge or design moves into rules that are more

65

amenable to information systems because they can be stored and be used
for computation. As Tapia points out — “Shape grammars naturally lend
themselves to computer implementations: the computer handles the book keeping
tasks (the representation and computation of shapes, rules and grammars and the
presentation of correct design alternatives), while the designer specifies, explores,
develops design languages, and selects alternatives.”[Tapia, 1999]. The compu-
ter implementation of shape grammars makes the codification of design
moves explicit and amenable to the computational power of information
systems — not so much to automate the design process, but rather to sup-
port the designer in storing and applying rules. Such characterization more
closely resembles a mixed-initiative interaction strategy [Allen et al., 1999],
in which each agent contributes to the task that it does best.

The theory of grammars is clearly influenced by concepts drawn from
Al such as the formulation of a rule production system. However, this
also deviates from the traditional approaches to Al by avoiding any form
of explicit or fixed representation. As a result, shape grammars offer a
means of bridging the gap between the wickedness of creative design and
the structured nature of information systems [Wortmann, 2013]. This is
achieved by avoiding predefinitions of shapes, on the one hand, while en-
abling explicit formalization, on the other. In doing so, shape grammars
are free from restrictions inherent to other generative design tools, such as
parametric modeling or BIM. Such traditional tools do not allow for am-
biguity or emergence, because shapes are constructed using some set of
predefined primitives and “the behavior of the computer-produced drawing ...
is critically dependent upon the topological and geometric structure built up in
the computer memory as a result of drawing operations.” [Sutherland, 1975].
While traditional generative tools merely focus on representation and/or
optimization, shape grammars can support design space exploration not
limited by a bounded range of solutions.

Given their formulation as rule production systems, shape grammars
seem to be an obvious candidate for computer implementation. Such com-
puter implementations promise more designerly exploration design tools,
compared to their traditional counterparts. However, the implementation
of shape grammars on to computer systems is not as straightforward as it
might seem, because by directly representing shapes as symbols, the es-
sential features of ambiguity and emergence of shapes would be lost. The
tension between the visual nature of shape grammars and symbolic com-
putation is well pointed out by Gips — “The tension in computer implemen-
tation of shape grammars is the tension between the visual nature of shape gram-
mars and the people who want to use them and the inherently symbolic nature of
the underlying computer representations and processing.”[Gips, 1999].

From Shapes to Graphs

In this chapter, we look at the topic of implementing shape grammars so
that they can be used on computer systems. An overview of previous ap-
proaches to implementation is provided (Section 4.1), and particular at-
tention is given to graph-theoretic implementation approaches (Section
4.2). Furthermore, we describe a step-by-step approach to implement-
ing a shape grammar using a graph-theoretic representation (Section 4.3).
This approach is evaluated by implementing an existing shape grammar,
originally developed on paper, on to a computer system (Section 4.4).

4.1 Computer implementations of shape grammars

The computer implementation of shape grammars has been the subject of
many research efforts since their original conception in the 1970s. While
the theory of shape grammars has produced a long series of formal studies,
the corresponding efforts for the computer implementation of these gram-
mars have not met with the same success [Grasl and Economou, 2013]. A
number of authors [Chau et al., 2004; Gips, 1999; McKay et al., 2012] have
identified several issues and challenges for computer implementations of
shape grammars. Characteristic requirements that crop up regularly for
an ideal implementation are: support for sub-shape detection, parametric
shape grammars, three-dimensional or curved shapes, and providing an
intuitive user interface. Most of these challenges remain valid to date.

68

Among the key challenges is finding suitable symbolic representations
for shape grammars that are both amenable to computer implementation
and which support the emergent nature of shapes. In other words, pre-
definitions of shapes should be avoided, but instead, the chosen represen-
tation should preserve the embedding and part relations. As a result, a
computer-implemented shape grammar should be able to detect (emer-
gent) sub-shapes to which shape rules can be applied — which is com-
monly referred to as solving the sub-shape detection problem. The problem
of sub-shape detection is one of the main difficulties in computer imple-
mentations of shape grammars — “The hardest and certainly most crucial step
in the application of a shape rule to a labeled shape is in actually determining
whether or not the shape rule applies to the labeled shape. In general, there may
be several sub-shapes in a given labeled shape to which a given shape rule may
be applied.”[Krishnamurti, 1981]. Moreover, Yue and Krishnamurti [2013]
demonstrate that no general algorithm is known to efficiently solve the
sub-shape detection problem.

A second key challenge results from the transformations under which
the pattern shape of shape rules are matched to a given shape. For isometry
and similarity transformations of shapes, it is possible to detect sub-shapes
based on specific geometric characteristics, such as size and proportion (for
isometry) or only proportion (for similarity). The seminal approach for
sub-shape detection, described by Krishnamurti [1981], uses such coordi-
nate geometry from three distinct points to detect similar shapes. How-
ever, for parametric shape rules operating under transformations that only
preserve the topology of the shape, thereby omitting geometric character-
istics, the problem of sub-shape detection cannot be solved in such way. In-
deed, geometric realizations of the same parametric shape can be visually
different, making it difficult to detect equivalence between these shapes.
Many existing shape grammars, developed only on paper, are parametric
shape grammars — such as the Palladian grammar [Stiny and Mitchell,
1978a] and the Queen Anne grammar [Flemming, 1987].

The question of how to enable sub-shape detection for parametric
shape grammars remains an open research discussion to date. Other im-
portant challenges include the support for three-dimensional shapes and
curved shapes. Such extensions make the problem of finding appropriate
symbolic representations of shapes more difficult, especially for general
shape grammar implementations. Another challenge is the development
of intuitive interfaces and user interaction mechanisms — on the one hand,
to allow designers to develop, implement, and explore their grammars, but
also to deal with the combinatorial explosion and infinite number of emer-
gent possibilities to which shape grammars are subject.

69

4.1.1 Why computer implementations?

While the computer implementation of shape grammars presents a num-
ber of difficulties and challenges, such implementations have merit in sev-
eral specific situations. For example, Gips [1999] identifies a number of
possible tasks that shape grammar implementations could support:

m Generation — generating designs in the language of a given shape
grammar;

m Parsing — determining whether a given shape is in the language gen-
erated by a shape grammar;

m Inference — generating a shape grammar from a set of given shapes
or designs;

m Development — assisting the user in creating a shape grammar by
providing suitable (editor) tools.

In the context of supporting design space exploration, the first task
(generation) and latter task (development) are of special interest. By sup-
porting these tasks, shape grammar implementations might provide the
basis for a new generation of design tools for design space exploration. On
the one hand, generation tools for shape grammars support the designer
in storing shape grammars and to generate or analyze designs in the lan-
guage of the grammar — which is particularly useful for grammars that are
too extensive to explore manually. On the other hand, development tools
for shape grammars allow designers to design, develop, and use their own
grammars, thereby supporting iterative generate—test cycles [McKay et al.,
2012]. An example of parsing shape grammars can be found in the work of
Teboul et al. [2011], and for an example of inferring visual grammars from
a set of given designs, see the work of Talton et al. [2012].

Many of the challenges involved with shape grammar implementations
result from supporting the embedding and part relations in automatic sub-
shape detection. As a result, some authors question whether it is necessary
to solve the general sub-shape detection problem in every implementation
[Gips, 1999]. Indeed, in some cases of very specific and specialized gram-
mar implementations, it might be beneficial to let the user decide where
to apply the rules, instead of enabling automatic sub-shape detection. In
other cases, the embedding relation and parametric functionalities might
be omitted, thereby reducing the complexity of rule applications and caus-
ing the implemented shape grammar to be more manageable but also lim-
ited in its generative power. Wortmann [2013] gives an overview of several
implementations without embedding and parametric shapes, but he also

70

correctly remarks that because of their limited functionality, such imple-
mentations are relatively uninteresting as tools for exploratory design. The
most useful implementations, in the context of design space exploration,
are those that fully support (parametric) sub-shape detection, because they
enable recognition of emergent shapes and they relieve the designer from
having to manually represent and compute shapes and rule applications.

4.1.2 Overview of previous approaches

Several overviews of the computer implementations of shape grammars
are available; for example, in the work of Gips [1999], Chau et al. [2004],
Yue [2009], and McKay et al. [2012]. At a 2010 workshop, the current state-
of-the-art, limitations, and key challenges in computer implementations
of shape grammars were discussed [McKay et al., 2010]. In particular, an
evaluation and comparison was performed in terms of modeling capabil-
ities, semantics (ranging from general geometric elements to domain spe-
cific elements), interface definition (ranging from sketching to scripting),
and generative capabilities (automatic sub-shape detection or rule applica-
tion) of the main representative shape grammar implementations — which
are the ones discussed in Correia et al. [2010]; Ertelt and Shea [2010]; Hoisl
and Shea [2011]; Jowers et al. [2010]; Jowers and Earl [2011]; Li et al. [2009];
Trescak et al. [2012]. Also, McKay et al. [2012] analyze these systems with
regard to four broad aspects — the representation and algorithms for ge-
ometry and semantic objects, user interaction and user interfaces, support
for specific design tasks, and integration of the system into design and
product development processes.

A milestone of primary importance in the development of shape gram-
mar implementations, was the work of Krishnamurti [1981] — this was
the first to feature a maximal representation of (straight) lines, thereby en-
abling sub-shape detection and shape emergence. However, the applica-
bility of the underlying sub-shape detection algorithm is limited, because
only shapes with at least three non-collinear points are processed; the no-
tion of rational shapes is introduced to overcome the problem of non-
exact arithmetic; and the proposed algorithm is computationally expen-
sive. Many research efforts that followed this, built further on the initial
work set out by Krishnamurti; for example, the work of Trescak et al. [2012]
is notable for improving the sub-shape detection algorithm to the point
that real-time calculation of sub-shape detection is achievable. While the
earliest research efforts mainly focused on general shape grammar imple-
mentations or solving the sub-shape detection problem, later research ef-
forts demonstrate a broader scope, including work on implementations for
specific design problems and implementations that do not support emer-

71

gence [Chase, 2010]. In particular, new approaches have been developed
that focus on the interface and user interaction [Chase, 2002; Tapia, 1999],
curved elements [Jowers and Earl, 2011], and three-dimensional extensions
[Hoisl and Shea, 2011; Krishnamurti and Earl, 1992].

Most approaches rely on the geometric representations of shapes (often
using maximal geometric elements) to detect and compute shape rule ap-
plications. Such approaches take advantage of specific geometric charac-
teristics of shapes to enable sub-shape detection. Two notable approaches
that do not rely on such geometric representations include computer vi-
sion approaches [Jowers et al., 2010] and the use of graph-theoretic repre-
sentations of shapes [Grasl, 2013; Keles et al., 2010; Wortmann, 2013]. The
former approach involves the use of object recognition, a specific research
domain of computer vision, to match shapes by detecting similarities be-
tween them. Among the main benefits of this approach, is the ability to
work with complex curved shapes and hand-drawn sketches; however,
this approach has proven to be less successful in supporting parametric
shape grammars [Jowers et al., 2010]. The latter approach involves the rep-
resentation of shapes as graphs that describe the topological structure of
shapes. These graphs can be constrained according to various properties,
such as size, proportion, angles, and position — thereby enabling different
non-parametric (isometry and similarity) and parametric transformations.
Also, sub-shape detection can then be achieved by searching for a specific
sub-graph in graphs, which is known as the sub-graph isomorphism problem
— a well-studied research topic in the field of graph theory.

If shapes are represented as graphs, then graph rewriting or graph trans-
formation systems can be used to create new graphs out of an original graph,
similarly to how it occurs for shape grammars. Among the first attempts
to describe the language of spatial objects (three-dimensional solids), us-
ing a graph-theoretic representation is the approach of Fitzhorn [1990].
In this approach, a graph transformation system is defined to generate
valid three-dimensional solids. This approach is adopted and extended
in the work of Heisserman [1994], in which a so-called boundary solid
grammar was developed for the generation of three-dimensional solids.
More recently, Grasl [2013]; Wortmann [2013] have emphasized the im-
portance of graph-theoretic representations of shapes, by demonstrating
how sub-shape detection for parametric shapes can be achieved. Grasl and
Economou [2013] translate shapes to graphs, after which a graph transfor-
mation system is used to search for isomorphic sub-graphs to which rules
can be applied. These isomorphic sub-graphs are then constrained (size
and proportion) to limit the candidate parametric sub-shapes to specific
geometric realizations.

72

4.2 Graph-theoretic representation of shapes

Considering the open research challenges, it is clear that a definite answer
for the computer implementation of shape grammars — the “Big Enchi-
lada” as described by Gips [1999] — is not available to date. The tech-
nique of using a graph-theoretic representation of shapes, together with
a corresponding graph transformation system, might provide one of the
stepping stones towards grammar-based design tools for design space ex-
ploration, by making possible several essential features of shape grammars
that were significantly more difficult to achieve before, such as (paramet-
ric) sub-shape detection and supporting the ambiguous nature of shapes.

4.2.1 Definitions

Graphs are mathematical structures to model relations between objects.
They are used in many fields because of their intuitive way of representing
relations; for example, to model road networks or electronic circuits. For-
mally, a graph G = (V, E) consists of a set of vertices or nodes V, together
with a set E of node pairs or edges [Skiena, 2009]. Graphs exist in differ-
ent kinds — undirected, directed, unlabeled, labeled, and multigraphs. A
graph is called a directed graph, if it only contains ordered pairs of nodes

(© (d)

Figure 4.1: Different types of graphs — (a) an undirected and unlabeled graph with four
nodes and four edges, (b) a directed graph, (c) a labeled graph, and (d) a multigraph.

73

or, in other words, if every edge (x,y) is directed from node x to node y.
For a labeled graph, each node or edge is associated with a unique name
or identifier to distinguish it from all other nodes and edges. A graph is
called a multigraph if it contains edges that occur more than once in the
graph. Examples of different graph types are shown in Figure 4.1.

Graphs can easily be represented on a computer system; for example,
in the form of a two-dimensional adjacency matrix. An adjacency matrix A
of the graph G with n nodes has the form N"*" in which the non-diagonal
entries A;; are the number of edges from node ¢ to node j. For example,
the adjacency matrix of the graph shown in Figure 4.1 (a) is

01 11
1 010
A_1100
1 0 0 0

If two graphs are identical they are said to be isomorphic. The graph iso-
morphism problem consists of finding a mapping f from the nodes of one
graph to another in such a way that the two graphs are identical [Skiena,
2009]. Given two graphs G = (V,,E,) and H = (V},, E},), they are iso-
morphic if for every edge (z,y) of G there exists one and only one edge
(f(z), f(y)) that is part of H. A special case of the graph isomorphism
problem consists of finding a subset of edges and nodes of a graph that is
isomorphic to a smaller graph, which is called the sub-graph isomorphism
problem. In general, the sub-graph isomorphism problem is proven to be
in the complexity class NP-complete, which means that should an efficient
(polynomial time) solution be known, then all problems in NP could be
solved in polynomial time. In other words, the problem cannot be solved
efficiently using any currently known algorithm, but nevertheless, practi-
cal (heuristic) solutions for handling sub-graph isomorphism are available
in graph transformation systems [Geifs et al., 2006; Taentzer, 2004]

Graph transformation involves the rule-based manipulation of graphs,
where each graph rule application leads to a graph transformation step.
The process of generating new graphs from an original graph is similar
to how it occurs for shape grammars — for example, Krishnamurti and
Stouffs [1993] point out a unified description of different kinds of gram-
mars. In particular, applying a graph rule L — R involves (1) searching
an occurrence of the pattern graph L in a given graph G by detecting iso-
morphic sub-graphs of L, and (2) replacing the chosen occurrence of L by
the replacement graph R [Ehrig et al., 2006]. In other words, if shapes and
shape rules are represented as graphs and graph rules, respectively, graph
transformation systems can be used to represent and explore a shape gram-
mar on a computer system.

74

4.2.2 Overview of graph-theoretic representations

Mapping between shapes and graphs is needed if a graph transformation
system is to be used for the implementation of shape grammars. Various
approaches to represent shapes as graphs have been proposed before, each
having specific benefits and drawbacks. Wortmann [2013] proposes a num-
ber of criteria to which a graph-theoretic representation should comply.
First and foremost, the representation should capture not only the defining
properties of shapes, which are maximal elements, intersections, but also
the embedding and part relations. Second, the representation should be
compact (as few nodes and edges as possible) to reduce the computational
complexity. Third, the representation should be complete and sufficiently
transparent to make the mapping between shapes and graphs intuitive.
Table 4.1 points out the different approaches found in the literature and
summarizes some of the main properties of these approaches. With the
exception of the first approach, which is added because of its simplicity,
maximal elements are maintained in every approach. The main difference
between the remaining approaches is the kind of information represented
either in the graph nodes or in the graph edges. Depending on the nature
of the shape to be represented (for example, the number of intersecting
lines or the algebra in which it is defined), one approach is preferable to
the other.

Maximal Nodes Edges Example
elements? represent: represent: references
Direct graph Intersections Lines [Yue and .
or plan graph or endpoints Krishnamurti,
2014]
Ol‘éfécom_ v Intersections Maximal [Keles et al.,
g raph or endpoints lines 2010]
Intersections Maximal No reference
Hypergraph v or endpoints lines known
Inverted Maximal Intersections [Wortmann
graph or v lines or endpoints 201 '
edge graph P 013]
Elaborated or . [Grasl, 2013;
. (Geometric) . .
part-relation v clements Relations Heisserman,

Table 4.1: Different kinds of graph-theoretic representations of shapes and some of their

properties.

75

/

Figure 4.2: Shape defined in the algebra U2 (left) and the corresponding direct graph
representation (right). Graph nodes are commonly drawn as circles and graph edges are
drawn as lines between the nodes.

The most straightforward approach is to construct a direct graph [Wort-
mann, 2013] or plan graph [Grasl and Economou, 2013], in which intersec-
tions or endpoints are represented as graph nodes and line segments are
represented as graph edges. The terms ‘direct graph” and “plan graph’ refer
to the same approach, which was initiated in the early work of Steadman
[1976]. Figure 4.2 shows an example of a shape defined in the algebra U
and the corresponding direct graph representation. The direct graph ap-
proach is an intuitive way of representing shapes because, for shapes in
the algebra U, the shape and its graph representation are visually simi-
lar. However, this representation is incomplete in the sense that maximal
elements are not preserved, but instead they are decomposed into smaller
line segments. As a result, it is not always possible to detect similar shapes
using a single pattern graph. For the shape in Figure 4.3(a) the large outer
triangle is similar to the small triangles inside, but the graph representa-
tion of the large triangle (b) is different from the graph representation of
the small triangles (c). As a result of this decomposition, two different pat-
tern graphs, defined in two different rules, would be needed to detect the
similar triangles in the shape. An example of this direct graph approach
can be found in the work of Yue and Krishnamurti [2014].

Figure 4.3: While the large triangle is similar to the small triangles in shape (a), the direct
graph representations of the large triangle (b) and the small triangles (c) are different.

76

Figure 4.4: Shape defined in the algebra U2 (left) and the corresponding overcomplete
graph representation (right).

A second approach involves the construction of an overcomplete graph
— as proposed in the work of Keles et al. [2010]. The overcomplete graph
representation is similar to the direct graph representation, except that for
every line segment between each pair of points coincident with the same
straight line, an additional edge is added to the graph. Figure 4.4 shows
an example of a shape defined in the algebra U;, and the corresponding
overcomplete graph representation. In this case, a single pattern graph
is sufficient to return both the large triangle and the small triangles. The
overcomplete graph representation preserves maximal elements and their
decompositions, though at the expense of compactness and intuitiveness.

A third approach, somewhat similar to overcomplete graphs, is to con-
struct a hypergraph. A hypergraph is a generalization of a graph in which an
edge can connect an arbitrary set of nodes (instead of just a pair of nodes).
Instead of adding an edge between each pair of points coincident with the
same straight line, all these points are connected with a single hyperedge.
Figure 4.5 shows the hypergraph representation of an example of a shape.
The hyperedges are shown as sets (gray fill) that can connect any number

\

| A |
o & ©

Figure 4.5: Shape defined in the algebra Uy2 (left) and the corresponding hypergraph
representation (right).

77

Figure 4.6: Shape defined in the algebra U2 (left) and the corresponding inverted graph
representation (right).

of nodes. The hypergraph representation preserves maximal elements, and
the compactness is preferable to overcomplete graphs because less graph
edges are needed to represent lines with multiple intersections. Currently,
there are no precedents to this approach in the context of implementing
shapes and shape grammars, presumably due to the limited availability of
practical hypergraph grammar libraries [Grasl and Economou, 2013].

A fourth approach involves the construction of an inverted graph [Wort-
mann, 2013] or edge graph [Grasl and Economou, 2013], in which maximal
lines are represented as nodes and their intersections as edges. In other
words, this approach is the inverse of the direct graph approach. Figure 4.6
shows the hypergraph representation of an example of a shape. As edges
can only represent intersections between two maximal lines, at most, addi-
tional information is needed to represent intersections with more than two
lines intersecting at the same point. In the approach of Wortmann [2013],
such intersections are handled by labeling the edges that represent inter-
sections with more than two lines (see label “1” in Figure 4.6). For each pair
of elements that intersects at the same point, the corresponding edge is
given an identical label. The inverted graph approach represents maximal
elements (as nodes), while maintaining sufficient compactness and allow-
ing similar shapes to be detected using a single pattern graph. On the other
hand, the representation of lines as nodes and intersections as edges might
seem counterintuitive. The work of Wortmann [2013] describes the algo-
rithms needed for constructing graphs for shapes in the algebra Uy, based
on the inverted graph approach. Also, this work contains four heuristics to
represent shapes with different kinds of intersections of maximal lines (full
intersections, partial intersections, and empty intersections). For example,
empty intersections occur for parallel lines, and partial intersections ap-
pear for non-parallel lines without a physical intersection. In these cases,
the shapes to be represented are not fully connected, and selecting the in-
tersection points depends on the perception of the user.

78

Figure 4.7: Shape defined in the algebra U2 (left) and the corresponding overcomplete
graph representation (right). Two different node types are used to represent points (white)
and maximal lines (black).

A final approach is to construct an elaborated graph [Wortmann, 2013]
or part-relation graph [Grasl and Economou, 2013], in which all geometric
elements (maximal lines, intersections, and endpoints) are represented as
nodes and the relations between these elements as edges. Figure 4.7 shows
the part-relation graph representation of an example of a shape, using two
different node types to represent points (white) and maximal lines (black).
Maximal elements are represented as nodes and similar shapes can be de-
tected using a single pattern graph. The origin of the part-relation ap-
proach is traced back to the work of Heisserman [1991] that describes a
graph-theoretic boundary representation of three-dimensional solids. In
particular, a part-relation graph is constructed including geometric ele-
ments such as vertex, edge-half, loop, face, shell or solid, and different kinds

v1

€12 €31

v2 U3
€23

Figure 4.8: Part-relation graph representation proposed in the work of Heisserman [1991].
The edge types include next clockwise edge-half (cw), next counterclockwise edge-half
(ccw), and vertex of edge-half (ehv).

79

of relations (Figure 4.8). In later work of Grasl and Economou [2013], the
construction of a part-relation graph is focused on representing maximal
elements and their intersections, and using a single kind of relation. The
former approach of Heisserman is more aimed towards efficiently access-
ing information about shapes — for example, what is the next adjacent
edge? — while the latter approach is aimed at compactness and represent-
ing maximal elements.

4.2.3 Discussion

Several graph-theoretic representations of shapes are available — includ-
ing direct, overcomplete, hyper-, inverted, and part-relation graphs. While
the direct graphs approach is the most intuitive, this representation is in-
complete because it does not preserve maximal elements. The other ap-
proaches maintain the defining properties of shapes (maximal elements
and the part and embedding relations). This means that shapes repre-
sented by such graphs behave in a similar way as the shapes themselves.
In other words, shapes represented by graphs can be decomposed into
various parts (similarly to the part and embedding relations) — thus new
shapes might emerge from applying rules to them. Figure 4.9 shows how
an example of a shape and its corresponding part-relation graph can be de-
composed in a similar way. Moreover, graphs can easily be implemented
on a computer system (due to their symbolic nature) — making graphs a
highly suitable formalism for the computer implementation of grammars.

& o

Figure 4.9: Graphs can be decomposed in to various sub-graphs, similarly to how this
occurs for shapes. In this examples, shapes are represented by part-relation graphs.

80

Using graphs to represent shapes, it is also possible to support sub-
shape detection for similar shapes using a single search pattern, and to en-
able both non-parametric and parametric transformations. Such transfor-
mations are enabled because graphs only represent the topological struc-
ture of the shape, and therefore, each graph representation corresponds
to a large number of geometric shapes. Additional constraints can be im-
posed on the graph to limit the number of shapes to specific geometric real-
izations (Table 4.2). As a result, the graph-theoretic representation enables
non-parametric (isometry and similarity) and parametric transformations.

The selection of the most suitable approach among the available graph-
theoretic representations depends on the design task at hand. For ex-
ample, the compactness of the different representations depends on the
number of (coincident) intersections; for shapes with only a few coinci-
dent intersections, the inverted graph representation is the most compact.
As each graph-theoretic representation has slight drawbacks and benefits
compared to the others, the selection of a particular approach is often a

Possible shapes

Vi
/

0

S
s

=

B|CD

OO

O AN

AB || CD
AD || BC

Table 4.2: Some examples of direct graph representations and their geometric realizations.
For each constraint imposed on the graph representation, the number of possible shapes is
reduced. The unconstrained graph (top) represents all quadrilateral shapes.

81

practical one. For example, the presence or absence of geometric elements
other than lines and points and the limited availability of practical hyper-
graph grammar libraries are two feasible arguments for choosing the part-
relation graphs approach.

The approach of representing shapes as part-relation graphs is com-
plete and the resulting graphs are rather transparent and easy to interpret
(though some authors disagree — “[the part-relation graph] is potentially con-
fusing in its employment of nodes for both elements and intersections. [Wort-
mann, 2013]). In order to realize a complete mapping between shapes
and graphs, additional coordinate geometry should be associated with the
graph nodes, because graphs only represent the topology of shapes. An
example of representing a shape as a part-relation graph, which includes
three node types and coordinate geometry, is shown in Figure 4.10. The
part-relation graph has the benefit of being flexible in representing node
types other than points and lines. Some additional node types that might
be of interest include faces and labels, but also non-geometric or seman-
tic concepts such as space, wall, window, door, etc. In this regard, such
graph grammars deviate from traditional shape grammar theory and pre-
vious implementation approaches. Indeed, once semantic node types are
included in the graph representation of a shape, this ‘disambiguates’ the
shape, meaning that the emergent nature of shapes is no longer supported.
Nevertheless, grammars that include semantic node types, might be as use-
ful as purely shape grammars; for example, in later stages of the design
process, thus beyond the sketch stage, where emergence is of lesser impor-
tance. As a result, part-relation graphs support both shape grammars and
more semantic grammars, depending on which node types are chosen.

€

V4 34 v3 vyt (07 0)
vy vg : (2,0)
€78 €67 v3:(2,2)
€41 K U8 V6 > €23 va:(0,2)
vs : (1,0)
€85 €56 ve 1 (2,1)
vs o7t (1,2)

v U
! €12 2 vg : (0,1)

Figure 4.10: Part-relation graph representation of an example of a shape. The node types
used include points (white), maximal lines (black), and faces (gray). The mapping from
graph nodes to coordinate geometry is shown on the right of the figure.

82

4.3 A new approach for grammar implementation

So far, graphs have been used only to implement (parametric) shapes but,
as shown in the remainder of this chapter, they may also be used to im-
plement richer (semantic) kinds of grammars. The computer implementa-
tion of a grammar, using a graph-theoretic representation, involves three
steps. The first step is to define a suitable graph-theoretic representation,
by specifying which node and edge types should be considered. This can
be done by creating a type graph, which specifies which node and edge
types are included in the graph. The second step involves the actual con-
struction of the graph-theoretic representation of the shape and the map-
ping of graph nodes to the coordinate geometry. This is needed in order
to constrain the topology to a specific geometric shape — either fully con-
strained or allowing several (non-)parametric transformations. The third
step is the specification of the graph rules by adding application conditions
to guide and control rule application. The theory of graph transformation
provides several approaches to specify such application conditions. This
approach proposed here differs from previous approaches, because both
shape grammars and more semantic grammars can be implemented, de-
pending on the node and edge types chosen.

4.3.1 Step 1: Defining a type graph

In accordance with the part-relation graph definition, geometric and se-
mantic elements are represented as nodes, and the relations between these
elements as edges. The question remains which elements and relations
between these elements should be maintained in the graph-theoretic rep-
resentation. Several possibilities exist, and choosing how to represent geo-
metric elements and their relations not only influences the compactness of
the graph-theoretic representation, but also the time needed to access in-
formation about the design or shape. For example, the representation used
in the work of Heisserman [1991] is aimed at enabling efficient reasoning
about shapes. In particular, multiple edge types (next clockwise edge, next
counterclockwise edge, and vertex of edge) are maintained (Figure 4.8). As
a result, it is possible to efficiently perform adjacency queries on a (three-
dimensional) shape — though at the cost of losing compactness. In the con-
text of shape grammar implementations, however, compactness is a critical
issue because of the NP-completeness of the sub-graph isomorphism prob-
lem. In other words, the time required to detect sub-graph isomorphism
increases exponentially as the size of the graph grows. This would mean
that automatic rule application becomes infeasible for large shapes or com-
plex designs.

83

In order to specify type descriptions of graph nodes and edges, this can
be done using type graphs. A type graph is a distinguished graph TG =
(Vre, Ere), in which Vpg and Epg are called the node and the edge type
sets, respectively [Ehrig et al., 2006]. In general, the nodes in T'G represent
the collection of node types in a graph G, and the edges in T'G represent
the collection of edge types in a graph G. The benefit of using a type graph,
instead of a type set for nodes and edges, is that a type graph also specifies
the number of nodes that may be connected to edges of the given edge
type. This number of nodes that can be connected, either at the source
or the target end of an edge, is called the multiplicity of the given edge.
Additionally, type graphs are specified with node type inheritance; in other
words, each node type can have one or more parent node type(s) from
which it inherits the multiplicity and edges.

As an example, a type graph with six node types (face, line, point, and
three subtypes of the point element) and two edge types (line-point and
face-line) is shown in Figure 4.11. The three different kinds of points are
used to distinguish between endpoints, intersections, and projected inter-
sections of maximal line elements. An abstract node type (point) is defined
as the parent node type, from which these three kinds of points inherit the
multiplicity and relations. Figure 4.11 shows this type graph, including
five node types, one abstract node type, and two edge types. The multi-
plicity of the edge types is indicated at the source and the target end of the
edges, where an asterisk (*) indicates that an indefinite number of connec-
tions is allowed.

endpoint
. . {point} .~ intersection
G face-line @ line-point E
face Q O
3.% * 2. "
" projected

O

Figure 4.11: Example of a type graph for the construction of part-relation graphs,
including five node types (face, line, endpoint, intersection, and projected intersection),
one abstract node type (point), and two edge types (line-point and face-line).

84

While the type graph defined in Figure 4.11 is sufficient to represent
shapes in the algebra U,» (see Figure 4.10), other useful type graph defini-
tions can also be devised. Indeed, the definition of a type graph depends
on the characteristics of the shape grammar to be implemented. For the
computer implementation of the Palladian grammar [Stiny and Mitchell,
1978a], an approach with only three node types (orientation, room, and
portico) and two edge types (east-west and north—-south) has proven to be
sufficient to represent the floor plans [Grasl, 2012]. Although these types of
generated graphs do not contain a lot of information, they can be mapped
to shapes due to implicit knowledge about the floor plans — including
“the orthogonal nature of the designs, the reduced formal vocabulary, the domi-
nance of the underlying grid, and the uniform placement of doors and windows
along an axis.” [Grasl, 2012]. In the approach of Grasl [2012], several se-
mantic concepts are represented as node types, such as ‘room’” and ‘orien-
tation” (Figure 4.12). This is an important difference to the theory of shape
grammars, where all kinds of information are strictly described in terms of
visual shapes in an algebra U;; and labels in V;;.

Humans are very good at interpreting shapes and readily make mean-
ing from visual patterns. For example, a room in a two-dimensional floor
plan is generally perceived as a void enclosed by walls, and can easily be
detected by just ‘seeing’ the floor plan. On the other hand, if the same
approach — representing a floor plan in terms of strictly geometric ele-
ments (maximal lines and points) — would have been followed for the
computer-implemented grammar, this would result in an overly complex

L
N

© 0 O O O O

Figure 4.12: Part-relation graph representation of a floor plan, including three node types
(orientation, room, and portico) and two edge types (east—west o and north—south m). The
different node types are indicated using markers. Reproduced from the original image
appearing in Grasl [2012].

85

graph with a large number of nodes and edges. Also, the search pattern of
rules would be highly complicated, even for simple rules such as detecting
a specific room in a floor plan. In some cases, the introduction of semantic
node types might simplify the graph-theoretic representation, thereby en-
hancing the compactness of the graph. Other semantic concepts that can
be represented as node types include architectural elements such as ‘wall’,
‘column’, “‘window’, and ‘door’, but also labels and metadata.

In Al terminology, determining which elements and relations are to be
maintained in the graph-theoretic representation is called the process of
knowledge engineering or ontological engineering [Russel and Norvig, 2010].
An ontology — meaning ‘the study of the things that be’ — describes a set
of types, properties, and relations between types. In other words, the on-
tology determines which information can be represented, and how this in-
formation is ‘interpreted’ by an information system. In general, the knowl-
edge engineering step has to be performed for each task individually, so
there exists a broad range of different type graphs. First, a type graph con-
taining only point and line types is more suitable for early design stages,
in which the designer might benefit from the typical emergence character-
istics of shapes. As shown earlier in this thesis, part-relation graphs that
contain only points and lines behave in a similar way as shapes. Second,
by introducing semantic node types, the graphs become disambiguated,
thereby omitting the emergent nature of shapes and shape grammars. Such
type graphs can be more useful in later stages of the design process, be-
cause emergence might then be of lesser importance, and because designs
can then be represented in a more compact way, thereby facilitating auto-
matic rule application.

4.3.2 Step 2: Constructing attributed graphs

The second step involves the construction of the part-relation graph of
shapes, in correspondence with the type graph defined in the first step.
At this moment, the resulting graph only represents the topology of the
shape or design and is not yet limited to a specific geometric realiza-
tion. In this sense, the part-relation graph accounts for several paramet-
ric or non-parametric transformations of the shape. A mapping of graph
nodes to coordinate geometry is needed in order to constrain the topol-
ogy to a (set of) specific geometric shape(s). This can be achieved by ex-
tending the classical notion of a graph G = (V, E) to an attributed graph
G = (Vo,Vp,Eq, Ena, Ega) [Ehrig et al.,, 2006], in which:

m Vi and E¢ are the common graph nodes and edges, respectively;

m Vp is the set of data nodes (attributes);

86

m Ena, Epa are the node attribute and edge attribute edges, respec-
tively.

In other words, an attributed graph contains data nodes Vp that can be
associated with both graph nodes V; and edges E, using special attribute
edges E'n 4 and Ef 4, respectively. Attribute edges are different from graph
edges, because the source of these edges can be either a graph node or an
edge node, and the target of these edges is always a data node. Data nodes
or attributes are a special kind of graph nodes that contain an attribute
type (numeric, string, boolean), a name, and a value. As a result, multiple
attributes can be associated with either nodes or edges of graphs. Attribute
values are also taken into account in graph transformations, where they
can be modified in going from the pattern graph to the replacement graph.
In this respect, attributed graphs differ from labeled graphs, because labels
of graph objects are preserved in graph transformations.

In general, graph attributes represent different kinds of information
that are not topological in nature, for example numerical features or tex-
tual descriptions. At the very least, attributes are needed to constrain
the topology of graphs to specific geometric shapes. In particular, the
point node type should contain numerical attributes ‘x’, ‘y’, and ‘z’ for
three-dimensional shapes. Attributes can also be added to semantic node
types (space, wall, column, window, door, and label) to describe func-
tional aspects of spaces, to characterize the material properties of walls and
columns, to describe the geometric properties of doors and windows, or to
assign a value to label nodes. Attributes further specify the graph-theoretic
representation of the shape or design in a way that can be implemented on
an information system. As a result, such graph-theoretic representation is
complete in the sense that topological, geometric, and descriptive informa-
tion are included in a single representation of graph objects and attributes.

Figure 4.13 shows a single-room floor plan and the corresponding at-
tributed part-relation graph. The node types used in this example are point
(white), edge (black), space (light gray), wall (dark gray), door (+), and
window (x). The introduction of semantic nodes (such as wall, door, and
window) enables the representation of more than purely geometric con-
cepts. Attributes are in fact a special kind of (data) nodes, however, they
are commonly not visualized as such, instead they are shown as labels as-
sociated with the nodes. In this example, the attributes are coordinate ge-
ometry (x and y), function (f), wall thickness (t), and width (w). The result-
ing graph can directly be mapped to its shape equivalent with no implicit
knowledge needed — which is not the case, for example, in the approach
of Grasl [2012] (see Figure 4.12).

87

room
x:1.0 t:0.2
y:0.0
w:1.0

Figure 4.13: Attributed part-relation graph representation of a floor plan. The node types
are point (white), edge (black), space (light gray), wall (dark gray), door (4), and window
(x). The edge types are face-line (fl), line-point(lp), wall-line (wl), door-wall (dw), and
window-wall (ww). The attributes are coordinate geometry (x and y), function (f), wall
thickness (t), and width (w).

4.3.3 Step 3: Defining graph rules

The final step involves the definition of graph rules L — R that contain
a pattern graph (L), a replacement graph (R), and a morphism from L to
R. The pattern graph defines the search pattern of the rule, of which an
occurrence must be found in a graph G in order to apply the rule L — R
to G. This can be done automatically by a graph transformation system
or manually by the user. The replacement graph describes the action of
the rule — either adding graph objects (nodes and edges), deleting graph
objects, or modifying graph attributes. Graph objects in L that are not in R
are to be deleted, while graph objects in R that are not in L are to be added.
Special attention is required for rules that delete graph nodes, because such
rule applications may result in dangling edges, which are edges with a
missing source or target node. The morphism between L and R specifies
which graph objects of L are preserved in R. Figure 4.14 shows a graph rule
(top) and a possible application (bottom). The rule morphism is indicated
by showing identical numbers for each graph object in L and R.

88

~

%

R i j
Figure 4.14: A graph rule L — R (top) and an example of graph transformation (bottom).

The two nodes indicated in the pattern graph L are preserved in the replacement graph R,
while the third node in L is deleted and two new nodes are added in R.

Graph rules also specify transformations on graph attributes; for exam-
ple, modifying an attribute value from the pattern graph L to the replace-
ment graph R. The pattern graph of a rule contains attribute variables to
which a value is assigned once this rule is matched to a given graph. If
this is the case, the attribute variables take the value of the matched graph
object attributes. The scope of these attribute values is the rule itself. As
a result, attribute values defined in L can also be used or modified in R.
The replacement graph either contains new attributes values or attribute
variables from L. Moreover, the attribute variables can be combined to
expressions — including arithmetic expressions, boolean expressions, or
conditional expressions. These expressions are evaluated once the rule is
applied to a given graph.

A straightforward example of a rule that modifies the attribute values
is a rule to scale a quadrilateral shape. In this case, the topology of the
shape is preserved, while the coordinate geometry is altered according to
the scaling ratio. The graph rule shown in Figure 4.15 illustrates the use
of attribute variables (X, Y;, X5, and Y3) to scale down a quadrilateral
shape. In the pattern graph of the rule, these attribute variables are com-
bined in expressions to modify the coordinate geometry of the point nodes
according to a scaling ratio (¢).

89

x: X1 X2X1+t(X27X1)
y:Y1 + (Y2 — Y1) y:Y1 + (Yo — Y1)

XZX1+t(X2—X1)
y:Y1

Figure 4.15: A graph rule to scale a quadrilateral shape using attribute variables X1, Y1,
Xo, and Y.

Another aspect of graph rules is that they can be subject to application
conditions to further specify in which conditions, rules can be applied. In
the field of graph transformation theory, such application conditions are
defined as attribute conditions and negative application conditions [Ehrig et al.,
2006]. Attribute conditions specify restrictions on the attributes of graph
objects in the pattern graph of a rule. Such attribute conditions are defined
as conditional expressions using constants and attribute values declared in
the pattern graph of the rule. In general, attribute conditions define de-
scriptive requirements — including geometric constraints (length or area)
or functional constraints. As a result, they can be used to constrain para-
metric topologies to specific geometric realizations. For example, in order
to constrain the rule in Figure 4.15 to squares, instead of all quadrilateral
shapes, attribute conditions should constrain opposing lines to be of equal
length (|AB| = |CD| and |AD| = |BC)|), at least one pair of adjacent lines
to be equal length (JAB|=|BC|), and the diagonals to be of equal length
(IAC|=|BDJ).

On the other hand, negative application conditions specify require-
ments for the non-existence of graph objects. Negative application condi-
tions can be specified for graph nodes, edges, or even a specific sub-graph.
In general, they are used to ensure that rules can only be applied if spe-
cific graph objects are absent. A common usage of negative application
conditions is to avoid the generation of duplicate graph objects by specify-
ing a negative application condition on the replacement graph of the rule.
Both the attribute conditions and negative application conditions can be
specified for each graph rule individually and, therefore, they provide a
convenient way to guide and control rule application.

90

4.4 Evaluation of the proposed approach

The examples of graphs and graph rules shown so far illustrate the most
important steps for a graph-theoretic representation of shapes, and by ex-
tension designs — which are (1) defining type graphs, (2) constructing
attributed part-relation graphs, and (3) specifying application conditions.
Using the approach proposed in this thesis, grammars can be implemented
on a computer system, thereby providing the basis for a new kind of CAD
tools for design generation, exploration, and development. In order to
evaluate whether such computer implementations are feasible — namely,
that designs can be generated in reasonable time — a benchmark for mea-
suring the generation time is devised. A second important research ques-
tion is whether the proposed approach is effective when it should be gen-
eralized from ‘showcase’ grammars to more complex shape grammars.

4.41 Graph grammar benchmarks

The generation time of designs in the language of a grammar is an im-
portant measure of the responsiveness and feasibility of the proposed ap-
proach. This generation time should be kept below a reasonable threshold
for the implementation to be of practical use. Indeed, a low generation
time enhances an intuitive way for design space exploration, because new
design paths are quickly unveiled, thereby making available new areas in
the design space. For common tasks involved with shape grammar im-
plementations, a generation time below a few seconds should be reason-
able — though for very complex and specialized designs or rules, a higher
threshold can sometimes be justified. In general, the most complex (run-
time intensive) step in the generation process is the automatic detection of
(parametric) sub-shapes to which rules can be applied. In this case, the
sub-shape detection step corresponds to solving a sub-graph isomorphism
problem, sometimes called pattern matching.

General benchmarks for graph transformation systems [Geifs and Kroll,
2007; Varr6 et al., 2005] demonstrate how the time needed for pattern
matching is influenced by (1) the size of the pattern graph of rules and (2)
the density of the graph to which rules are to be applied. In general, match-
ing a large pattern graph to a dense graph will take longer than matching a
small pattern graph to a graph with fewer connections. In order to demon-
strate what this means for graph-theoretic implementations of shape gram-
mars, two benchmark scenarios are defined — the first to measure the time
needed for finding all matches of a rule to a given shape, and the second
to calculate only the first matching of a rule. The reported benchmarks are

91

Figure 4.16: Benchmark scenario for finding all rectangles embedded in a two-dimensional
(5%5) grid (left), using a parametric shape rule (right).

performed using AGG !, an interpreted graph transformation tool written
in Java [Taentzer, 2004], on an Intel Core 2 Quad processor (3.00GHz). A
‘warm-up’ phase of a few iterations is taken into account and the measure-
ments of the benchmarks are averaged over 30 iterations to avoid noise
coming from external influences.

A first benchmark is selected for the scenario where a small part of
a design or shape is modified. This scenario is characterized by a large
and nearly-static graph, where each rule application modifies only a small
part of the graph. This is particularly useful for shape grammars that em-
phasize enumeration of possible alternatives where rules can be applied.
Examples of shape grammars in which enumeration is important include
the transformation grammar of Eloy [2012] and the Malagueira grammar
[Duarte, 2005a]. In such cases, the time needed for finding all matches
exceeds the time needed for executing the actual rules. As an example,
consider a two-dimensional (5x5) grid, in which the task is to find all rect-
angles that are embedded in this grid (Figure 4.16). This task is typically
perceived as difficult to solve for humans, because they easily overlook
particular rectangles that are ‘hidden” in the grid. Also, this task is partic-
ularly useful as a benchmark because it involves both sub-shape detection
and parametric rules. In order to do this, an identity rule is defined that op-
erates under parametric transformations; in other words, the pattern shape
can be matched to all kinds of rectangles in the grid. The graph-theoretic
representation of the grid contains 48 graph nodes and 72 graph edges.
The time needed to find and store a total number of 225 rectangles using
the proposed set-up is measured to be around half a second. In the case of
a 6x6 grid, 441 rectangles are found in less than one second.

nttp://user.cs.tu-berlin.de/-gragra/agg/

92

A second benchmark is selected for the scenario where a rather small
design or shape is modified, but this time in a more profound way. In this
case, the time needed to perform the entire rule application (both pattern
matching and graph transformation) is measured. Only the time needed
to calculate the first matching of a rule is measured (instead of the time
needed for finding all matches). This scenario corresponds to shape gram-
mars where rules are applied one-by-one and where the selection of al-
ternatives is less important. Examples of such shape grammars often use
labels to guide rule application, thereby constraining the number of pos-
sible rule applications within reasonable limits [Flemming, 1987; Koning
and Eizenberg, 1981].

As an example, the shape rule in Figure 4.17 (left) is applied recursively
50 times, and the time needed for each generation of a new shape is mea-
sured. The generation time increases exponentially as the number of graph
objects (nodes and edges) becomes larger. For long rule sequences (>50 ap-

VAN NRVANR. v

(unlabeled) (labeled)

2500
g 2000 -O- unlabeled
g -5 labeled
+ 1500
o
2
g
&, 1000 —
a
[
2
£ 500 A

0 t t t t |
0 200 400 600 800 1000

Number of graph objects

Figure 4.17: The generation time (ms) measured for a sequence of 50 applications of an
unlabeled shape rule (left) and a labeled shape rule (right). The generation time increases
as the number of graph objects (nodes and edges) becomes larger.

93

plications) and large graphs (>1000 graph objects), the average generation
time exceeds 2 seconds. It is possible to reduce the generation time for
complex shapes or designs by choosing a more compact graph-theoretic
representation or by using more constrained rules. For example, the gen-
eration time of the rule in Figure 4.17 (right) is remarkably lower. In this
rule, labels are used to limit the number of pattern matches that can be
found to one, which is the most inner triangle.

In general, the results of the benchmarks demonstrate that the imple-
mentation of shape grammars using a graph-theoretic approach is feasible
in the sense that designs can be generated in reasonable time. Moreover,
because the measurements of the benchmarks are performed on a general
graph transformation system, further improvements in performance can
be expected when a more specific transformation system should be used.
The implementation of shape grammars as graph grammars is shown to be
a valuable approach, at least from a technical point of view. The question
remains what can be the added value of using graph grammars over shape
grammars? In order to provide an answer, the Rabo-de-Bacalhau transfor-
mation grammar (RAB-tf grammar), originally developed on paper by Eloy
[2012], has been implemented using the proposed approach to compare the
characteristics of both grammars.

4.4.2 Implementation of the RdB-tf grammar

In many papers describing shape grammar implementations, the case
studies provided with the proposed implementation approach include a
few ‘showcase’ grammars which are often quite straightforward to imple-
ment. In practice, the more useful and extensive shape grammars, such as
the ones describing the corpus of prairie houses [Koning and Eizenberg,
1981], Malagueira houses [Duarte, 2005a], or the vernacular styles of tradi-
tional Portuguese houses [Eloy, 2012], are far more complex to implement.
In contrast to showcase grammars, such complex grammars contain a large
number of rules, or they are defined in different algebras U;;, V;;, and W;;.
These grammars are developed on paper and relatively few have been im-
plemented on a computer system — some exceptions include the work of
Grasl [2012] and Granadeiro et al. [2013]. The question whether grammars
of such extent can be implemented on a computer system, and what might
be the potential benefits of doing so, remains largely unanswered due to
the limited availability of such implementation efforts in the literature.

In order to investigate whether the graph-theoretic implementation ap-
proach of complex grammars is possible, and more importantly, whether
designers benefit from such implementation, the RdB-tf grammar devel-
oped by Eloy [2012] has been implemented using the proposed approach.

94

The original RdB-tf grammar was only available in the form of rules writ-
ten on paper, and thus could not be explored on a computer system. The
RdB-tf grammar contains rules for the refurbishment of housing designs
in order to meet the current comfort and functional standards, also de-
pending on specific client needs and cost requirements. Eloy and Duarte
[2014] describe the process undertaken to develop the grammar, and dis-
cuss how both designer knowledge and knowledge acquired from other
experiences are incorporated in the grammar. The RdB-tf grammar pro-
vides an interesting case study to evaluate the proposed implementation
approach of shape grammars, due to its extensive nature (142 rules), the
grammar is defined in different algebras (including weights and labels),
the rules contain a lot of dimensional and functional conditions, and also
the rules are applied using parametric sub-shape detection. Moreover, the
computer implementation can be seen as the next step in the development
of a computer-aided methodology to support mass housing rehabilitation.

The full details of the implementation of the original RdB-tf grammar
— following the proposed approach of defining type graphs, construct-
ing attributed graphs, and specifying application conditions — are de-
scribed in Appendix A. An initial RdB housing design has been trans-
lated to a part-relation graph (Figure 4.18). This part-relation graph is de-
fined with six node types (point, edge, space, wall, door, and window),

[2]
hs P22l hs A€ [

nhs N N o

nhs' nhs

hs hs

Figure 4.18: Original representation of an existing RdB housing design (left) and the
corresponding part-relation graph (right). Point nodes are indicated in white, edge nodes
are indicated in black, and the remaining semantic nodes are indicated in gray. The
attributes are not shown here, except for the function attribute of space node types.

95

nhs Non-habitable space co Corridor

hs Habitable space co.p Private corridor
xba Existing private bathroom la Laundry

xki Existing kitchen hl Hall

xla Existing laundry ba Bathroom

be Bedroom ba.p Private bathroom
be.s Single bedroom ba.g Guest bathroom
be.d Double bedroom Ih Lift hall

ki Kitchen di Dining room

li Living room ho Home office

Tnble 4.3: The function attributes used in the Rdb-tf grammar.

seven edge types (space-edge, space-point, edge-point, wall-edge, door-
wall, window-wall, and adjacent-space), and six attribute node types (in-
cluding coordinate geometry, thickness, function, and dimension). For il-
lustrative purposes, the attributes are not shown in the graph representa-
tion, except for the function attribute of space node types. An overview
of the abbreviated function attributes is shown in Table 4.3. The result-
ing graph contains 113 nodes, 294 edges, and 126 attributes. This initial
housing design serves as a possible starting point for the RdB-tf grammar.

The rules defined in the original RdB-tf grammar encode two trans-
formation strategies — which are (1) moving the kitchen from its original
position to strengthen the relationship between the social and service ar-
eas, and (2) maintaining the position of the kitchen, and relocating other
spaces, thereby keeping construction transformations to a minimum. Part
of these shape rules have been translated to a set of graph rules. In par-
ticular, the set of rules implemented corresponds to the second transfor-
mation strategy encoded in the grammar. Several examples of these rules
and their implemented counterparts can be found in Appendix A. One
possible derivation of the implemented RdB-tf grammar is shown in Fig-
ure 4.19. The visual representation of the grammar derivation is shown for
illustrative purposes. Each design state is the result of one or multiple rule
applications, which is indicated with a double arrow (=). Starting from
an initial housing design (state a), the first set of rules locates the kitchen,
defines the position of the hall, and locates the private spaces (state b).
Next, the room dimension of the bathroom is changed by moving a wall
(state c) and the bedroom assignment is permuted due to area criteria (state
d). The next set of rules locates the remaining (social) spaces and circula-
tion area (state e). Finally, the connection between the hall and corridor
is widened (state f). The derivation was completed in approximately 1.5
seconds, which is in line with the results of the benchmarks reported.

96

(@)

(c)

(e)

hsZl, xla (b)
xki
—ixba
[2]
hs |kball phg H<
nhs N
nhS§.l nhs nh => ... >
hs hs
hs
hsCl la (d)
ki
—ixba
hs a. hs Eg
nhs N
nhs =
ba. hi
be.s
be.d hs
ocl 1 (f)
ki
—uba.
a. i Hdo
be.s di ©
CO. N
=
co.p
ba. hi
be.d)
be.s l

hsd, la
ki
—ixba
hs pa. hs o g
nhs N
bapl nhs hi >
be.d be.s
hs
hsl, la
ki
—lxba
hs pa. hs A .é’
nhs N
nhs => ..
ba.p hi
be.d
be.s hs
ho] la
ki
—iba.
a. i Ho
be.s di ©
CO. N
co.p
ba. hl
be.d .
be.s li

Figure 4.19: Random derivation of the implemented RdB-tf shape grammar. Each design
state shown is the result of one or multiple rule applications — (a) existing housing
design, (b) assignment of spaces (kitchen, hall, bedrooms, and bathrooms), (c) changing
room dimension, (d) permuting bedroom, (e) assignment of remaining spaces, (f) widening

the connection between hall and corridor.

97

Among the key findings and issues encountered during the implemen-
tation and comparison of the original and implemented grammar are (1)
the difference in representation, (2) the complementariness of shape gram-
mars and graph grammars, and (3) the benefit of graph grammars in re-
vealing new possibilities.

First, the representations used in shape grammars and graph grammars
differ in how semantic meaning is treated. On the one hand, shapes and
shape grammars nicely cohere with the kind of freedom that is typically
associated with creative design. Human designers are able to draw and
(re-)interpret shapes and rules during a process of design exploration, and
they are extremely good at recognizing visual patterns in shapes. On the
other hand, computer systems are only able to ‘interpret’ the visual in-
formation in terms of the ontology used, or in this case, the underlying
graph representation. While several architectural or semantic elements,
such as spaces, walls, doors, and windows, can indeed be drawn as shapes,
they are treated as symbolic entities in the implemented graph grammar.
The main benefit of doing so is that the design and the rules can be de-
fined with as few graph objects as possible, thereby avoiding overly large
graphs when only geometric node types (point and edge) should be used.
Such compact representations positively influence the time needed for rule
matching or sub-shape detection, and also make it easier to specify rules.
Nevertheless, an intuitive rule editor is of key importance, because the con-
struction of graph rules is error-prone and perhaps less natural than shape
rules.

Second, the development of shape grammars and graph grammars has
shown to be complementary in the sense that both lead to an alternative
understanding of the grammar at hand. In some cases, the direct imple-
mentation of the original RdB-tf grammar has resulted in undesired situa-
tions; for example, rules being applied in the wrong way or the generation
of invalid designs. Such situations are largely due to the original rules be-
ing underconstrained or ambiguous. Human designers easily make mean-
ing from visual patterns in the rules and, as a result, such forms of ambigu-
ity often remain unnoticed. This is not the case for computer implemented
grammars, in which such forms of ambiguity directly become noticeable.
As a result, the effort of computer implementation might lead to a deeper
understanding and further development of the grammar. In practice, the
implementation effort involves several generate-test iterations (as shown
in Appendix A) because shape and graph grammars operate using differ-
ent principles. This also forces designers to think about several aspects of
their grammar in a different way, for example the definition of ontologies
and rule application conditions — which demonstrates how the develop-

98

ment of graph grammars is complementary to the development of shape
grammars.

Third, perhaps the greatest benefit of computer implemented gram-
mars can be gained for extensive and complex grammars that are more
difficult to explore manually. For example, the rules of the RdB-tf gram-
mar contain many dimensional and functional conditions that must be sat-
isfied before they can be applied. Using the original grammar, it might be
difficult to detect all possibilities where rules can be applied, because of
the large amount of conditions that need to be taken into account. On the
other hand, with a computer implementation, it is possible to efficiently
handle this management of rule applications and to reveal where rules can
be applied. In other words, the main benefit of this specific grammar lies
in pattern matching and enumerating all the possible design alternatives.
This implementation of the RdB-tf grammar might provide the next step in
the development of a computer-aided methodology to support mass hous-
ing rehabilitation.

To conclude, the implemented RdB-tf grammar demonstrates that the
proposed implementation approach remains feasible when it is general-
ized to a more complex grammar and that designers might benefit from
such implementations. The RdB-tf grammar is a highly specialized gram-
mar built for the specific case of transforming existing RdB housing de-
signs. The rules in the grammar are defined entirely before the process of
exploring the grammar takes place, as they are inferred from the design
process carried out by several architects, who acted as experimental sub-
jects in a procedure to capture the rules [Eloy and Duarte, 2014]. In other
words, the design space implicitly represented by the grammar does not
change during the process of exploring the grammar. An entirely differ-
ent situation occurs when rules are created or modified on the fly, thereby
changing the structure of the design space. This more closely resembles
the act of design space exploration in the broadest sense of interacting with
the design space. Supporting or amplifying this act of design space explo-
ration on a computer system requires additional functionalities, such as
the possibility to consider multiple design alternatives simultaneously, to
backup and recall previous designs, and to navigate in the design space.
These topics are the subject of the next chapter.

Design Space Exploration

In this chapter, we discuss several amplification strategies for design
space exploration in CAD tools, and grammar-based CAD tools, in par-
ticular. An overview of those amplification strategies is given in Section
5.1. A literature review of how those strategies have been integrated into
CAD tools to date is included in Section 5.2. Furthermore, we consider
the concept of tree structures to keep track of an explicit design space
of previously generated designs, thereby amplifying several key design
space exploration functionalities (Section 5.3).

5.1 Amplification strategies

The theory of shape grammars provides a generative mechanism to repre-
sent a design space. As shown in the previous chapter, representing such a
design space is proven to be feasible and effective when a graph-theoretic
representation of shapes or designs is used, not least when this is gen-
eralized to more complex and specialized shape grammars. Clearly, the
existence of such a design space representation is a necessary condition
for supporting design space exploration, though it may not be a sufficient
condition. In order to support design space exploration in the broadest
sense, thus involving the exploration of alternatives and reformulating the
design space at hand, a more agent-like role for the computer should be
pursued in which the limits of human design space exploration capabili-

100

ties are amplified. In other words, computers should enable amplification
strategies for design space exploration that reach beyond unaided human
capabilities. In doing so, a mixed-initiative interaction [Allen et al., 1999]
can be achieved in which each agent (the computer and the designer) con-
tributes to a result that would have been impossible to achieve by either
participant alone.

Most previous research efforts towards design space exploration focus
on the representation of individual design states or (heuristic) search algo-
rithms, while relatively little work has been done on the design space itself
[Woodbury and Burrow, 2006]. As a result, it is difficult to claim, based
on empirical evidence, whether design space exploration can be amplified,
and if so, how this can be achieved — “Given the state of design space ex-
ploration work today, we have little evidence for amplification of designer action
through supporting exploration. We also have little ground for arquing against
such amplification. Having almost no systems that engage designers with multi-
ple states, we can make only shallow and tentative inferences about their utility.”
[Woodbury and Burrow, 2006]. In their paper on design space exploration,
Woodbury and Burrow [2006] sketch some opportunities for amplification
strategies that are vital to the successful exploration of the design space
— (1) externalizing design ideas and encoding design moves to help de-
signers foresee the implications of taking particular design moves, and (2)
representing an explicit design space, which is the record of designs already
explored, expanding over time as a library of potentially recoverable work.

5.1.1 Representation, codification, and implication

Much like other kinds of representations used by creative designers (sket-
ches, drawings, and scale models), digital representations (CAD-models,
scripts, etc.) provide a means for externalizing mental images or design
ideas outside the human mind. For example, in the paper The Dialectics of
Sketching, Goldschmidt [1991] shows how sketches serve as an extension
of imagery. Sketches are a particularly powerful medium for quickly rep-
resenting mental images or design ideas, after which designers can choose
to further develop, modify, or entirely discard their ideas, based on the
feedback received from the sketch. The same holds true for other kinds of
representations, including digital representations, as they enable design-
ers to externalize design ideas and allow them to act upon those represen-
tations. The possibility of being able to generate such representations is
an important amplification strategy of CAD tools; for example to gener-
ate complex forms that would have been impossible to resolve otherwise.
Solid modeling tools enable designers to create partial, three-dimensional
models of their design ideas, after which it is possible to evaluate different

101

viewpoints, material choices, etc. The term “partial’ refers to the fact that
representations describe only those parts and aspects of the design that are
of interest at a particular moment in time. BIM models enable designers to
model architectural or building elements (such as walls, doors, windows,
and building systems), and are rather intended to document and exchange
building information. As pointed out in Chapter 2, it is particularly chal-
lenging to find suitable representations which are sufficiently meaningful,
and also allow enough freedom to associate alternative meanings to the
model represented.

In the context of design space exploration, an additional amplification
strategy involves the explicit codification of design moves, which are the
operations that serve to transform a design relative to the state it was in
before that move. In other words, this strategy not only involves the rep-
resentation of designs, but also the transformations that relate the different
states of designs in a structured network, called the design space. The cod-
ification of design moves goes hand in hand with the ability of information
systems to store these encoded moves and use them for computation. In
particular, codification is one of the main amplification strategies behind
visual scripting environments and generative CAD systems. Such genera-
tive CAD systems enable designers to iteratively encode and evaluate the
implications of design moves; for example, in the form of parametric mod-
els. As a result, one of the roles of creative designers might be to develop
design moves from which designs could be generated in generate—test cy-
cles. Furthermore, the value of codification not only lies in the generation
of designs, but the codification of past (successful) design moves also en-
ables designers to recall these moves in future design projects.

An important property of representations, either of designs or a design
space, is what can be inferred from them [Woodbury and Burrow, 2006].
Inference or implication is an amplification strategy found in many tra-
ditional CAD systems. For example, rendering tools enable designers to
explore a model through different viewpoints and under different light-
ing conditions. In the context of design space exploration, implication is
strongly related to codification, and therefore, one of the main amplifica-
tion strategies underlying generative CAD systems. By explicitly encoding
design moves, it is possible to foresee the potential implications of taking
a particular design move (testing “what—if’ scenarios). In other words, opt-
ing for a particular design move grants access to new areas in the design
space that can be explored further. The strategy of implication also enables
designers to leave certain design decisions open for future consideration.
A typical example is parametric modeling, which allows designers to make
rapid changes along a limited range of geometric variations. The paramet-

102

ric variables can be given some initial value, which can subsequently be
adapted to a specific (geometric) context later in the design process. As a
result, parametric models enable designers to test multiple ‘what-if" sce-
narios by trying different parameter values.

External representation, codification of design moves, and implication
are three of the main strategies for amplification found in shape grammar
theory and its computer implementations. First, designs are represented
in different algebras U,;, V;;, and W;; to describe visual information and
descriptive information (labels and weights), respectively. In this sense,
designs are represented in a partial manner, because only those aspects
that are of interest to the design situation at hand are considered. For ex-
ample, the original RdB-tf grammar, developed by Eloy [2012], is defined
in five algebras — including a two-dimensional floor plan with labels and
weights, topological relations, and spatial voids. Moreover, due to the part
and embedding relations, the given design can be reinterpreted, or decom-
posed, in multiple ways. Second, shape grammars encode different kinds
of design moves in the form of shape rules — each defining a particular
transformation between two states of a design. The notion of designing
backed by the theory of shape grammars involves both the codification of
new rules, and also the storage and retrieval of existing rules in new design
situations. In other words, using shape grammars does not relieve design-
ers from their creative task to create new rules or to adapt existing rules in
a new context. Third, as shape rules describe an action between two states,
their application involves navigating from one state in the design space to
another. As a result, it is possible to foresee the implications of making a
particular design move. Computer implementations of shape grammars,
such as the ones described in the work of McKay et al. [2012], have made
the codification of design moves amenable to computer systems. Designs
in the language of such a grammar can then be explored on a computer
system — either step-by-step or by using some kind of automatic rule se-
lection strategy.

5.1.2 The explicit design space

In their characterization of the design space, Woodbury and Burrow [2006]
distinguish between the implicit design space and the explicit design
space. The former includes the collection of all design states that can be
generated using a specific generative system; for example, the set of ge-
ometric variations encoded in a parametric model or the language of a
(shape) grammar. The latter includes the collection of design states which
designers (either a single designer, a design team, or a group of unrelated
designers) have generated over time. The explicit design space is a sub-

103

Explicit
design space

Figure 5.1: An example of an implicit design space and an explicit design space (gray). A
design move in the implicit design space involves generation (—) while a design move in
the explicit design space involves navigation ().

set of the implicit design space (Figure 5.1). The implicit design space is
shown as a directed graph of connected design states — in close resem-
blance to Al state spaces. The explicit design space is indicated as a subset
(gray), where the frontier contains all the design states that can be further
explored. In other words, the frontier marks the boundary between the
explicit and implicit design space. Depending on the position of the navi-
gator (or designer), either at the frontier or elsewhere in the explicit design
space, the act of taking a design move has different implications. In the
former case, this involves the generation (—) of new design states rela-
tive to a particular design state at the frontier of the explicit design space,
while in the latter, it is possible to navigate (<) from a known design state
to another along explicit paths that express some measure of relatedness
between the two states.

The importance of the explicit design space as an expanding library
of potentially recoverable designs or explored design paths is emphasized
in the paper of Woodbury and Burrow [2006]. In particular, the impor-
tance of representing the explicit design space has multiple facets, namely
(1) to provide alternatives, (2) to back up and recall prior work, and (3)
to replay paths previously discovered in a design space [Woodbury and
Burrow, 2006]. First, the availability of design alternatives is important for
reasons of revelation and comparison. Indeed, design alternatives reveal
multiple new paths in the design space to be explored, resulting in new, an-
ticipated, or sometimes unexpected, designs [Shea and Cagan, 1999]. Also,
design alternatives can be compared against each other along multiple cri-
teria — some of which are quantifiable, while others are not. In this case,

104

comparison should be considered as an act of ‘satisficing” [Simon, 1956],
rather than an act of optimizing. Satisficing, a combination of ‘satisfy” and
‘suffice’, directs a comparison of the alternatives towards criteria for ad-
equacy rather than fully rational solutions, due to the limited resources
(time and information) available. The availability of design alternatives,
and more specifically the recording of which design alternatives are ex-
plored and which alternatives are ignored, constitutes the history of how
a resulting design is achieved. This history might go some way towards
explaining the design.

Second, the representation of the explicit design space is important to
enable backup and recall of prior work. The benefit of backup strategies
in a design process is obvious, as they allow designers to recover earlier
design states, thereby avoiding having to start from scratch in case of a
mistake. In almost all CAD systems, short-term backup is supported along
the current design path through a typical ‘undo” command. Longer-term
backup requires the use of automatic version control systems or manually
performed versioning (by saving different file versions) at regular inter-
vals. In some cases, it might be beneficial to enable designers to recover
design states unrelated to the current exploration process. Woodbury and
Burrow [2006] define the concept of ‘recall’ as the metaphor for such dis-
tant access. In particular, recall enables designers to recover designs that
were generated at different times, in different projects or contexts, or by
different designers. Examples of recall in CAD systems include catalogues
of drawings, symbol collections, and libraries with specific functionalities.

Third, another amplification strategy is to enable the ‘replay’ of paths
previously discovered in a design space. Replay involves using recalled
design states or paths in a new context, and is available in many CAD
systems through a typical ‘copy and paste’ command. Although to some
extent, replay is a successful amplification strategy for independent ob-
jects, Woodbury and Burrow [2006] correctly point out that replay is also
very fragile if object dependencies are involved. For example, many shape
grammar rules have labels that make them difficult to apply outside the
context of the original grammar in which they were defined. In the case
of the RdB-tf grammar [Eloy, 2012], labels contain intentional information
about the stage in derivation in which rules can be applied. If these labels
are not available in the new grammar, the rules cannot be applied. The
same holds true for parametric design patterns [Woodbury, 2010], which
are (successful) parts of a parametric model that can be replayed if partic-
ular components are available in the new context.

105

5.2 Shape grammar implementation tools

In general, representation, codification, and implication are functionalities
that are available in most (generative) CAD systems. Also, these function-
alities are among the main amplification strategies underlying shape gram-
mars and their implementations. Even though the functionalities of replay,
recall, backup, and alternatives (all involving the representation of the ex-
plicit design space) may not be available at all (or only to a significantly
reduced extent) in current CAD systems and shape grammar implementa-
tions, they might also prove to be valuable amplification strategies.

5.2.1 Overview

A literature review of existing tools for shape grammar implementation
[Chau et al., 2004; Gips, 1999; McKay et al., 2012; Yue, 2009] reveals that
most implementation tools focus on the representation of typical charac-
teristics of shape grammars; such as subshape detection, parametric rules,
curvilinear shapes, etc. Researchers have focused far less on represent-
ing the design space and amplifying exploration in the interface of the im-
plementation tool. A comparative overview of design space exploration
functionalities of four shape grammar implementation tools [Grasl, 2013;
Hoisl and Shea, 2011; Tapia, 1999; Trescak et al., 2012] is summarized in
Table 5.1. This overview lists the functionalities required to (1) represent a
design space, (2) support the generation of new design states, and (3) sup-
port the exploration of already visited design states (the explicit design
space). The shape grammar implementation tools considered — GEdit
[Tapia, 1999], Spapper [Hoisl and Shea, 2011], SGI [Trescak et al., 2012],
and GRAPE [Grasl, 2013] — have been selected, because they take a par-
ticular approach to supporting design space exploration. To compile this
overview, either a working copy of the tool was obtained, or its function-
ality was determined from a tutorial or published paper.

GEdit, developed by Tapia [1999], is an early example of a shape gram-
mar implementation tool in which design space exploration is considered,
at least to some extent. The graphical user interface of GEdit, shown in
Figure 5.2, contains multiple windows showing (a) where rules can be ap-
plied, (b) the possible rule applications, (c) the current design, and (d) a
visualization of the rules in the grammar. In other words, the design space
is represented through a visualization of the current design state and the
possible alternatives that are the result of a single rule application. The de-
sign alternatives are structured in a two-dimensional array. The possible
resulting shapes of a chosen number of rule applications are first generated
and shown in this two-dimensional array, before they are definitely ap-

GEdit Spapper SGI GRAPE
[Tapia, [Hoisl and [Trescak [Grasl,
1999] Shea, 2011] etal,2012] 2013]
(1) Design space visualization:
Cur.rent Visual Visual Visual a.nd Visual
design state symbolical
Rule Individual . Individual
application Array List
results results
results
Derivation Yes, current
.e atio No No derivation No
history
only
(2) Generation of alternatives:
Rule Semiauto- Sem}auto— . Semiauto-
.. . matic or Automatic .
application matic matic
manual
Automatic
detec;hon of No No Yes No
applicable
rules
Manual
manipulation No No No Yes
of shapes
(3) Navigation and storage of designs:
Backtracking Yes ?) No No
fjlj:eagll(?sign No Yes, current Yes, current Yes, current
states (.dxf, etc.) (:xml) (.dxf)
Save Yes, current
derivation No No No derivation
history (.dxf)
Reuse
derivation No No No No
history

implementations.

Table 5.1: Comparison of design space exploration possibilities in several shape grammar

107

=——Alternatives =—=HH =——Possitilities.. ——=H18
O E g | [O
[l Yz l [z
(@ (b)
—_ —aed ———————————— H
ga=
| HHH
L5 e
=— (urrent Shape =— 01 & i]
= 8-fold pattern symmetry: rule applies in 4 ways
I |

[~
SE

(© (d)

Figure 5.2: The graphical user interface of GEdit — (a) subshape detection alternatives,
(b) possible rule applications, (c) current design, and (d) rules of the grammar. GEdit is
among the first implementations to consider some aspect of design space exploration, such
as structuring design alternatives in a two-dimensional array. Reproduced from the
original image appearing in Tapia [1999].

plied. New design alternatives are generated in a semi-automatic manner
— all possible rule applications are calculated automatically, after which
alternatives are selected manually. In general, GEdit is one of the first im-
plementations that recognizes the importance of design space exploration
— ‘the designer explores the language of designs, generating designs, imposing
additional constraints, halting the generation process, backtracking to a previous
design, or saving the current state.” [Tapia, 1999].

108

Spapper is a more recent shape grammar implementation tool, devel-
oped by Hoisl and Shea [2011], which provides a visual way of editing
or developing shape grammars. Similarly to GEdit, the interface visual-
izes a single design that can be altered over time. Only the current design
state in the design space is visualized. Designers can choose to explore
the language of a grammar using manual rule application (through a pre-
defined sequence or manual selection), semiautomatic rule application, or
automatic (random) rule application. However, it is not possible to au-
tomatically detect which rules can be applied to the current design. The
current design state can be stored using the standard functionality of the
underlying CAD system (Figure 5.3). Only the resulting designs of rule
applications are stored (in separate files), without the history of rule appli-
cations used. As a result, the stored designs are considered as fresh designs
(without history) when they are used in a new exploration process.

Pt FreeCAD =3 E=R |

file Edit View Tools Macro Development Application Windows Help

2 [F spapper DRk LR sl R

Loaded Rules and Application Settings: & %

soptctons 10 [| socumnce (Eeiupimms o

Soktions 2 %] | [Colision Detection Roundng 2 ¢

Labels & Attributes

Application
[solution 1
B solution 2

Loaded Rules: Matches Selection Free Perameters
Range Unrestricted

7] sterpinshrue Random =] [Randon_+] [Random =] |

R soltion_1:1* 3 R soltion_2:1*

185,16 173,21 mm

Figure 5.3: The graphical user interface of Spapper [Hoisl and Shea, 2011]. Spapper is
integrated into a three-dimensional CAD environment, allowing the import and export of
three-dimensional shapes to and from conventional CAD-formats.

109

SGI, developed by Trescak et al. [2012], includes several features to en-
able interactive exploration of the language of a shape grammar. First, a
render line view shows the current derivation line of the exploration pro-
cess (Figure 5.4). This provides designers with the possibility of tracing
the execution of the shape grammar from the initial design state to the
current design state. Second, new designs can be generated using a partic-
ular search algorithm, such as depth-first or breadth-first search, or using
a sub-shape detection algorithm. The sub-shape detection algorithm is an
improved version of the one described in the work of Krishnamurti [1981].
The resulting shapes are stored in a list view in which the user is able to
select and delete design alternatives manually. Third, the current design
state is displayed in both a visual and a symbolic manner by also show-
ing a list of all the design properties (for example a name, position, etc.).
As a result, designs can be compared in terms of both geometric and non-
geometric design properties.

B3 shape Grammar Interpreter1.31 (o ===
File Window Help
9 [subshape ~|[Nome ~[ves =|1 [b M1 2 & | Reset | % 5 [100% +]
[Shapes | [Rules 52| = B ||C] Render £3 =8
o= S
&=
1 rulel
< rule2 —
1]
Heh,
| it
| 1l
=
[m
_+J
1
& Tree View | [Subshape View = Properties|] Render Line View 3 =8

)
|

==
[

]

l
[k

4

=
Kid

%
L

&)
d

Figure 5.4: The graphical user interface of SGI [Trescak et al., 2012]. The render view
(top) shows the current shape. The render line view (bottom) shows the current derivation
line of the exploration process. In the example shown, new shapes are generated using the

sub-shape detection algorithm.

110

GRAPE is a graph-based shape grammar library, developed by Grasl
[2013]. Several interfaces to the GRAPE library have been developed, ei-
ther based on commercial CAD packages or as a web application (Figure
5.5). The design space is represented through a single design state view
that shows the current design state. Alternatives are generated in a semi-
automatic manner, because designers explore and select designs one at a
time. Based on the functionality of the underlying CAD package, it is pos-
sible to manually intervene in the exploration process by adding, deleting
and modifying designs without the use of shape rules. This feature is re-
flected in the structure of the user interface, which distinguishes between a
common CAD mode and a grammar mode. The CAD functionality makes
it possible to store the current design state (without history). Also, it is
possible to export a snapshot of the current derivation line (from the initial
design to the current design). This derivation cannot be re-used in a new
exploration process. Several approaches are discussed to automating rule
selection in recent work of Grasl and Economou [2014]. These approaches
are divided into two sub-approaches, namely, extensive enumeration and
goal-directed generation, with a view to reducing the grammar’s design
space and filtering out only those alternatives that might be of interest.

pP~0 |MGRAPEFurWeh'Shapr are 1 1

(o]
@
&

Exit Grammar Mode SRYESS ST G

[

Add EW Windows ®

I | — ‘[
@

Add EW Doors

Add NS Windows

00 g
o
o
o
o

Add NS Doors

Add Centre Door
Add Exterior Door
Add Exterior Triplet

Finish Rule applied

Finding matehes. ..

Object Angle -285.00, 180.00 o iy R

Figure 5.5: The graphical user interface of the GRAPE web application [Grasl, 2013]. The
current design (right) can be transformed using shape grammar rules (left) or by
switching from the grammar mode to a CAD mode in which designs can be modified
without the use of rules.

111

5.2.2 Keeping track of the explicit design space?

The overview in Table 5.1 demonstrates that design space exploration in
current shape grammar implementations is not supported or if it is, then
only to a limited extent. The representation of the (explicit) design space is
often restricted to a small subset of design states and paths, or even a single
design state. Also, navigation in the design space is limited to new alter-
natives being generated, with limited scope for backtracking or recalling
prior design states. According to Woodbury and Burrow [2006], design
space exploration for shape grammar implementations is less supported
because shape rules do not represent an explicit design space:

A flaw in standard rule-based accounts of design space exploration
in implicit space is that the usual formulation of rules cast navigation
solely in terms of derivation, thus putting the landscape of the explicit
space forever beyond the sight of the navigator. Applying rules of the
form o — f3 involve removing a transformed version of « from the
design and substituting for it an identically transformed version of 3.
This means that the granule of movement specified in a rule can go
from one point in a design space to another point irrespective of any
underlying design space order. [Woodbury and Burrow, 2006].

In other words, while shape grammars do represent an implicit design
space by structuring a set of rules, they do not provide an explicit represen-
tation of the paths already traversed in the design space. This is due to the
fact that rules do not keep track of the design state that is to be replaced.
For example, a particular rule application might delete everything in a de-
sign state, after which it is not possible to return to this design state. In a
direct response to Woodbury and Burrow, Krishnamurti [2006] acknowl-
edges this ‘flaw’, but also adds that it should not be difficult to envisage an
implementation of grammars that maintains a history of derivations. Fol-
lowing this line of thought, two possible approaches can be devised. A first
approach involves the use of reverse rules to go back in the design space.
As Krishnamurti and Stouffs [1993] postulate — a shape rule a — b cannot
simply be inverted to b — a, because the resulting shape of the inverse rule
may not equal the original shape (Figure 5.6). The reversibility of a rule de-
pends on the shape ¢ to be transformed — in particular, the additive part
of the rule (b — a) that is also part of the original shape (b — a) - ¢ is not
maintained when the rule is applied. As a result, a rule is only reversible if
(b — a) - ¢ = @. If this is not the case, the shape (b — a) - ¢ should be stored
at each stage of rule application in order to support backtracking. This can
be done easily by associating this shape with each design state generated.

112

Figure 5.6: An example of an irreversible rule (left). After subsequently applying the rule
and its inverse rule (right), the resulting shape is not the same as the original shape
(bottom).

5.3 Tree structures

A second approach to keeping track of the explicit design space is to main-
tain a tree structure with pointers to the parent nodes. In the theory of
shape grammars, rules are applied using the part relation, which means
that shapes or designs can be decomposed in infinitely many ways. In
other words, designs in the language of a grammar are structured accord-
ing to a partial order, which means that not every pair of designs is related.
In set theory, a tree is a specific kind of a partially ordered set that has one
root element (an initial design). The design space represented by a shape
grammar can thus be described as a tree. In computer science, a tree is also
a widely used data structure to represent hierarchical structures. In par-
ticular, a tree structure contains nodes, along with parent—child edges that
represent the hierarchical relations between nodes (Figure 5.7). In other
words, tree structures maintain a pointer to the parent of every node in the
tree. Each node in the tree structure has exactly one parent node — except
for the root node, which has none. As a result, a tree structure is a directed
acyclic graph in which any pair of nodes is connected by exactly one path.
In the context of representing a design space, a tree structure could be used
to represent the different states of a design, starting from an initial design
state. In this case, the parent-child edges represent specific rule applica-
tions between parent and child design states. As both the design states
and the relations are stored in the tree structure, it is possible to keep track
of the explicit design space.

113

Figure 5.7: Representation of the design space as a tree. The nodes represent different
states of a design. The edges between the nodes represent rule applications. The current
design path is indicated in gray.

While a tree structure neatly corresponds to the partial order of designs
generated by a shape grammar, other structures can be used as well. In
some cases, it is possible to generate the same design by applying different
rule sequences; in other words, different paths in the design space might
lead to the same design state. This is, for example, the case for shape gram-
mar with commutative rules, which means that their order can be changed
without affecting the result. If this is the case, a design state has pointers
to a non-empty set of parents instead of a single parent. The resulting de-
sign space structure is then no longer a tree, but a network. A structure
of this kind has the advantage of being more compact (visually equiva-
lent designs are stored only once in the network), but is less effective in
maintaining the derivation history of design states due to the multi-valued
nature of the parent relation.

The advantage of representing the design space as a tree structure is
that several efficient off-the-shelf algorithms [Skiena, 2009] are available for
common operations (such as enumerating, searching, adding, and deleting
items) and for ‘walking’ the tree. If the design state associated with a node
in the tree structure is yet unexplored, it is possible to generate new child
nodes from this unexplored node (Figure 5.8 left). In other words, these
child nodes correspond to the possible design alternatives that can be gen-
erated from the parent node. If, however, the design state associated with
a node in the tree structure is already explored, it is possible to walk from
this node to another by means of the connections between parent and child
nodes — this is commonly called walking the tree (Figure 5.8 right). The

114

Figure 5.8: Two operations on tree structures; (a) generation of new child nodes and (b)
traversing nodes. These operations correspond to generation and navigation in a design
space, respectively.

act of walking the tree structure corresponds to navigating in the explicit
design space. By enabling both generation and navigation, trees provide
a practical and elegant solution to structuring the implicit and explicit de-
sign space.

5.3.1 Generation of alternatives

A design in the language of a grammar can be generated in several ways
— ranging from a manual approach to an automatic approach. For each
generation step, there are several actions that occur [Chase, 2002]:

m Determination of a rule to be applied;
m Determination of a sub-shape to which the rule can be applied; and

m Determination of matching conditions.

A first possible approach is to perform these actions in an entirely man-
ual way. If done manually, new design alternatives can be explored one
by one by selecting a rule, detecting a (sub)-shape to which this rule can
be applied, calculating the necessary transformations, and finally applying
the rule. Of course, performing these actions manually is a labor-intensive
task that can easily be automated. In the automatic case, the computer
system is used to detect which rules can be utilized and where they can
be applied (sub-shape detection). For a graph-theoretic representation of
shape grammars, (parametric) sub-shape detection can be detected auto-
matically using subgraph isomorphism detection (see Chapter 4). As a
result of this automatic approach, a set of all possible design alternatives

115

is generated, relative to a given design state. The availability of design al-
ternatives is beneficial for reasons of revelation (they reveal new areas in
the design space) and also for comparison based on multiple criteria. For
grammars with many rule application possibilities, however, such an ap-
proach quickly triggers exponential explosion. For this reason, heuristic
selection (given some predefined selection criteria) might be necessary to
constrain the set of design alternatives.

The next step involves the manual selection (in the set of alternatives)
of the design alternative to be further explored. This design can then again
be reconsidered for the generation of new alternatives. As a result, a tree
structure with multiple levels and branches is constructed during the ex-
ploration process. The levels in the tree structure correspond to specific
moments in time, while the branches correspond to the designs generated
at these specific moments in time. As a result, this semi-automated ap-
proach for generating alternatives involves both computer generation and
human intervention, which is in line with Tapia’s characterization of shape
grammar implementations — “the computer handles the book keeping tasks (the
representation and computation of shapes, rules and grammars and the presenta-
tion of correct design alternatives) while the designer specifies, explores, develops
design languages, and selects alternatives. [Tapia, 1999].

5.3.2 Design space navigation

In order to walk a tree structure, nodes must be visited by means of the
parent-child connections. This can be done in several ways — either
level by level, where the root node is visited first, followed by the child
nodes, grandchild nodes, and so forth, or in the opposite direction, start-
ing from child nodes and visiting their respective parent nodes (predeces-
sors). These operations correspond to navigating back and forward in the
explicit design space. Back and forward navigation is only possible for de-
sign states that have already been discovered and explored. If this is not
the case, for example in the case of nodes on the frontier of the explicit de-
sign space, forward navigation actually involves the creation of new child
nodes. The key idea here is to mark the places and paths already traveled,
which can be done easily using boolean flags. Other navigation possibili-
ties include “pruning’ a specific branch or even a whole section of the tree
structure; for example, when this particular area of the design space is con-
sidered to be no longer relevant. Figure 5.9 shows an example of back nav-
igation, where the top design states are generated first, after which new
design alternatives are generated starting from a previously generated de-
sign state.

116

Back navigation

g e @L State
)

Figure 5.9: An example of back navigation in the explicit design space, after which new
alternatives are generated starting from a previously generated design state.

If design states are explicitly stored (in a tree structure), it is possible to
recall these design states in two distinct ways. The first approach involves
navigation by means of connections between nodes in the tree structure.
In this case, recall is achievable by navigating from one design state to an-
other along explicit paths that relate the design states to each other. The
second approach involves searching stored design states based on design
state properties; for example, a name, a timestamp, a rule, or other kinds of
descriptive information associated with each design state. This kind of re-
call can be done without reference to a given design state. In this case, some
kind of persistence system (such as a database) is needed to efficiently store
and organize design states, after which they can be retrieved based on par-
ticular search queries. Design states that belong in one grammar or design
context can then be recalled in contexts other than the one in which they
were created.

A similar case can be made for the replay of design paths. As Stiny
[1994, 2006] has shown, it is always possible to find a retroactive explana-
tion for any sequence of rule applications in such a way that continuity is
maintained. As a result, the replay of shape grammar derivations does not
only involve a sequence of changes in design states, it might also lead to
restructured descriptions because derivations — just like shapes — can be
interpreted in multiple ways due to the part and embedding relations [Kr-
ishnamurti, 2006]. The use of designs, derivations, and rules outside their
original context might provide an important amplification strategy [Wood-
bury and Burrow, 2006]. The importance of recall and replay of existing
work in a new design can also be found in the large body of (mainly the-
oretical) work on case-based reasoning systems [Aamodt and Plaza, 1994].

117

Those systems scan a collection for relevant existing cases by identifying
commonalities, after which the retrieved case is generalized and mapped
to the new design case. From a technical point of view, recall also has a pos-
itive impact on the computational complexity of generating alternatives,
because already-visited design states can be recalled, instead of having to
be regenerated.

To conclude, tree structures can be used to keep track of the explicit de-
sign space, to enable generation of new designs, and to enable navigation
in the explicit design space. Unlike previous research efforts in which trees
are used [Trescak et al., 2012], they are not used as devices for searching
design solutions, but they are used to implement several aspects of design
space exploration — which is a far richer concept than merely searching.
The tree structure forms one of the keystones of a new kind of grammar-
based tool for design space exploration, which is described in the next
chapter (Chapter 6).

Digital Sketchbook

In this chapter, we look at the prototype software tool for design space
exploration that has been developed. The main functionality and user
interface of this prototype is described in Section 6.1. Also, we pro-
vide three more examples of grammar-based explorations in Section
6.2, thereby demonstrating how the prototype can be used in practice.
The first example involves the ice-ray grammar, originally developed by
Stiny; the second example demonstrates a graph grammar for exploring
spatial configurations; and the third example describes the implementa-
tion and visual exploration of the Frank Lloyd Wright grammar.

6.1 A digital sketchbook for design space exploration

In the previous chapters of this thesis, several concepts have been intro-
duced and discussed that might facilitate design space exploration. First,
the theory of shape grammars (Chapter 3) provides a concise and com-
putable framework to represent a design space by encoding design moves
in the form of shape rules. Second, the graph-theoretic representation of
shapes and grammars, as described in Chapter 4, enables the representa-
tion of a design space that can be effectively explored on a computer sys-
tem, using rules as the main device for doing so. Third, the tree structures
(Chapter 5) keep track of the explicit design space, making it possible to
interact with the design space in a number of ways, including generation

120

and navigation. The theory of shape grammars, the graph-theoretic rep-
resentation of shapes and designs, and the tree structures together form
the keystones of a new kind of grammar-based tool for design space ex-
ploration — the digital sketchbook. The focus of such a design tool is on
supporting designers to explore the language of a grammar in a visual and
interactive way. In fact, the envisioned sketchbook for design space explo-
ration provides the following functionality:

m Design space visualization;

o Representation of the design space as a visual whole, allowing
designers to compare alternatives simultaneously.

o Visualization of the explicit design space and the current design
path.

o Representation of design states in both a visual and descriptive
manner.

m Backup of design states and recall of previous design states and de-
sign paths;

m Changing the structure of the design space;

o On-the-fly generation of new rules.
o Manual intervention without the use of grammar rules.

6.1.1 Design space visualization

An important difference between present and previous shape grammar im-
plementation tools is the visualization of the (explicit) design space as a
whole, rather than merely displaying a single design state that can be al-
tered over time. The design states are organized in a two-dimensional grid
of m x n cells. Figure 6.1 shows a schematic visualization of the graphical
user interface of the proposed shape grammar implementation tool. Each
cell in the grid layout contains a visual representation of the design, and
has zoom and pan functionalities — allowing designers to consider rule
applications that are more subtle, and therefore harder to identify. Each
column stores the n design alternatives at a specific level in the design
space. Once a specific design state is selected for further exploration by the
designer, a new set is generated in a new column m + 1, which is added
to the grid. The current design path is indicated in gray color to show the
position of the designer in the design space. Also, it is possible to navigate
back in the explicit design space by selecting a design state at a previous
level or column = < m. If this state has not been expanded yet, a new set
of alternatives is generated in a new column x + 1, which is subsequently
added to the grid. If this is the case, the descendants of the selected shape

121

or design state are no longer visible, and they are replaced by a new set of
alternatives. As a result, designers are able to return to a prior design state
in the design process, thereby making new areas available for future explo-
ration. It is also useful to note how emergent shapes occur in the example
shown in Figure 6.1.

The layout of the user interface is an intuitive interpretation of the ex-
plicit design space as a tree. The tabular layout enables designers to scroll
both in a horizontal and a vertical direction, allowing them to examine
multiple alternatives and shape derivations in a limited amount of screen
space. In the proposed approach, only the current design path and the sib-
ling design states are shown in the interface. While the visualization of the
complete explicit design space can be useful in some cases, it quickly be-
comes overly complex for larger design spaces. Nevertheless, it is possible
to explore the complete explicit design space by selecting different designs
in the tree. In addition to the proposed two-dimensional grid layout, other
layouts can also be useful in specific cases; for example, a radial layout can
be useful to show visually adjacent design states or shapes. The different
components of the layout can be changed, or resized, according to user
preferences. Currently, new design states are generated one step, or rule

1 2 3 4
>>> >>> >>> rule:
initial shape rule: rule: rotate

copy- rotate <>
translate r
rule: rule: rule:
rotate copy- ,j copy-
translate] translate
rule:
copy-
translate

rule:
rotate

Figure 6.1: Schematic visualization of the graphical user interface of the proposed shape
grammar implementation tool. The design states are organized in a two-dimensional grid,
in which each column contains the design alternatives at a specific level in the design
space. The current design path is indicated in gray color.

122

application, from the selected shape in the tree. This could be extended
using search algorithms for the creation of new designs at a greater depth;
for example, breadth-first, depth-first, or even heuristic search algorithms
(if some heuristic function is available to guide the search process).

As shown in Chapter 4, graphs provide a natural and efficient way of
representing shapes, labels, and other kinds of descriptive information.
However, this graph-theoretic representation should only be used for rep-
resentation and calculation purposes, because designers typically prefer
visual over mathematical representations (see the work of Bleil de Souza
[2012]). Indeed, the graphs quickly become complex in size and number
of node types, and therefore they become difficult to grasp intuitively. For
this reason, the designs are shown in a visual manner, together with a tex-
tual description, while the graph-theoretic representation is maintained for
representation and calculation only. The visual representation facilitates
the comparison of design alternatives, while the textual information can
be used to compare alternatives towards non-visual design properties, as
well as to facilitate design state recall based on searching design proper-
ties. This textual information might include the rule that was used to cre-
ate this design state, the grammar that was applied, the project name, and
also other kinds of information that might be relevant. A design process is
often associated with a specific program, design intent, or design reason-
ing, which is expressed verbally and can then be associated with a specific
design state in a descriptive manner.

6.1.2 Backup and recall

Another important difference to previous shape grammar implementation
tools is the ability to recall design states and derivations stored in a previ-
ous project. This is the result of implementing an external persistence sys-
tem that allows for the efficient storage of design states, after which they
can be retrieved based on particular search queries. These search queries
may direct to metadata associated with the stored design states, such as
a timestamp, the rule used to create the design state, or the project and
grammar in which the design state was generated. These search queries,
however, might also involve searching for particular properties that are
associated with design states. These properties describe some design in-
tent or reasoning (often expressed verbally) that is related to the design
state at hand. Figure 6.2 outlines the entities that are stored in a database
system (design states, grammars, projects, and properties) and their rela-
tions. With these entities and relations stored, it is possible to fetch design
states from the database together with their corresponding grammar, or al-
ternatively, an existing design state or grammar can be recalled from the

123

database in a new design project. Also, since the parent—child relations be-
tween design states are maintained, it is possible to fetch successors of a
design state from the database without having to regenerate them. As a
result, it is possible to recall entire derivations, which has a positive impact
on the computational complexity of generating alternatives because design
states are pulled directly from the database.

With such a persistence system in place, it is possible to recall design
states, as long as they were created using the proposed design tool. An
additional external recall functionality can be used to import designs that
were generated outside the proposed design environment; for example,
designs or drawings generated in other CAD environments, or even man-
ually drawn sketches. In the former case, the geometric elements in the
original CAD drawing are translated into the corresponding graph objects
in an attributed part-relation graph. In the present shape grammar imple-
mentation tool, it is possible to import two-dimensional CAD drawings
using the Drawing interchange format (.dzf) and more complex three-
dimensional building information models (BIM) using the Industry Foun-
dation Classes (IFC) data model. For example, the initial floor plans that
are the starting point of the RdB-tf grammar [Eloy, 2012] have been im-
ported in this manner. In the latter case, either the drawings have to be
converted manually into the appropriate graph-theoretic representation,
or this can be done automatically using a tool like the one described in the
work of de las Heras et al. [2014]. This tool recognizes floor plans using
pattern recognition methods that are inspired by the way designers draw
and interpret floor plans, after which they are converted into graphs, so
they can be imported in the system.

Project Grammar Property
Name
. Name Timestamp Name
Timestamp Rules Value

[]

Design state

Name
Timestamp
Graph
Creation rule

|

Figure 6.2: Outline of the entities that are stored in the database system (design states,
grammars, projects, and properties) and their relations.

124

6.1.3 Changing the structure of the design space

As described earlier in this thesis, the ambiguous and emergent nature of
shapes enables the designer to obtain new understandings or alternative
perspectives on the design space. In this way, new opportunities for ex-
ploration occur by seeing designs from a different angle, possibly lead-
ing to a restructuring of the design space. A more explicit way to design
space reformulation involves providing designers with the ability to make
changes (such as adding new rules) to the grammar and the design space
represented, and to enable them to do this in an interactive and intuitive
manner. This might trigger a more agile exploration of the design space,
in the sense that it does not remain static during the actual exploration.
In most previous grammar implementation tools, the definition and ex-
ploration of the shape grammar are two different steps in the process; for
example, Chase [2002] describes a model of interaction between designers
and a computer system in which the development of the grammar com-
pletely precedes the derivation of this grammar. Nevertheless, it may be
beneficial to allow designers to create, adapt or delete rules in the gram-
mar during the derivation process, which is something McKay et al. [2012]
refer to as exploring the design space through generate-test cycles. In the
context of design space exploration, ‘on-the-fly’ generation or modification
of rules results in an altered design space, possibly leading to design alter-
natives that were unreachable until then. Some visual examples of this are
described in the following section.

In the present approach, new rules can be specified at any time during
the exploration process, whenever this may be needed. Unlike previous
approaches, in which new rules are to be defined in a separate editor en-
vironment, it is possible to manually adapt the current design using com-
mon CAD functionality — thus without the use of rules. In particular, the
designer is able to switch from a ‘grammar’ mode to a ‘manual’ drafting
mode, in which the current design can be adapted manually. This means
that either new shapes can be added or erased, or their properties can be
modified. After the manual intervention, it is possible to store this action
in the form of a new shape rule that is subsequently added to the grammar.
As a result, new rules can be created during, instead of before, the explo-
ration process. The step of capturing a manual action in the form of a new
rule cannot be performed in an entirely automatic manner, because it is
not possible to determine the pattern shape of the rule without additional
information being provided from the user. If the current design is man-
ually modified, only the transformation of a possible pattern shape to a
replacement shape is explicitly defined, but the pattern shape itself cannot
be determined. Once this pattern shape has been specified by the user (by

125

selecting the parts in the current shape), a new rule is fully specified and
may eventually be added to the grammar for later recall in (new) design
situations.

Nevertheless, the on-the-fly generation or modification of new rules re-
mains a difficult and delicate issue. Chakrabarti et al. [2011] even consider
the inability of current shape grammar implementations to support itera-
tive development of the grammar as a main roadblock to achieve wider
impact — especially in conceptual design. Indeed, grammar rules must
be ‘knowledge engineered’, which can be a laborious and error-prone task
because the designer needs to determine the important features and how
to formulate the rules. An intuitive rule editor interface, such as the one
proposed here, provides a first step to enable designers in creating and
modifying rules during the exploration process. Several other approaches
exist to ease the process for the designer in developing grammar rules;
for example, by providing systematic analysis during rule development
[Konigseder and Shea, 2014] or by learning grammar rules in an automatic
manner using machine learning techniques [Ruiz-Montiel et al., 2013; Tal-
ton et al., 2012]. Machine learning is a subfield of Al that deals with al-
gorithms that learn from examples, instead of following static predefined
commands. The machine learning method described in Appendix B ad-
dresses the problem of learning to classify architectural designs belonging
to a particular corpus, based on a set of examples. This method can be
used (1) to select a consistent corpus from which it is easier to extract rules
(grammar formulation), and (2) to assess the output of a grammar and de-
termine, in a quantitative way, whether the rules extracted are working
(grammar evaluation).

6.1.4 Software prototype

The software prototype proposed is based on the underlying JAVA devel-
opment environment for graph rewriting, called AGG!. The existing algo-
rithms for automatic rule matching and rule application of AGG have been
used. Figure 6.3 shows the interface of AGG, which contains a list of the
grammar rules (left), a visualization of the current graph (center), and the
node and edge type sets (right). As these graphs and graph rules are used
only for representation and calculation purposes, this window is by de-
fault hidden for the end-user. Instead, a new interface has been developed
on top of the underlying graph rewriting framework to enable users to de-
velop and explore grammars. This interface consists of two main panels —
the first panel includes the external recall and database functionality, and

nttp://user.cs.tu-berlin.de/-gragra/agg/

126

the second panel includes the functionality of generation and navigation in
the explicit design space. Figure 6.4 shows the database system, in which
existing designs can be searched based on metadata that is associated with
the designs (left). Both this metadata and a visual representation of this de-
sign are shown (right). Figure 6.5 shows the explicit design space (right),
the current grammar (upper left) and the current design state (bottom left).
The explicit design space is visualized as a whole, following the schematic
visualization shown in Figure 6.1.

-
3 §
i o 2 =
i g ¥ 3
9 mq’E%‘ @ g g O‘
-
& 5 B £5z582; =
@’_h‘st:w ._.#‘E‘SEEE%’.M
83338 § |zz2333%3282 i
| [F555556 AANRERL -
U E []
P ?? N
| [e] ??
= - .
i %g . 5
g 5 & E
IS 2 55 : £
F[1] & . =
g 5 w
x[#])3 i | 5
. RE P $
L= 5@ P
‘%.E 33;
Ny =3 i H
el |2
S |2
Rl |2 1l .
g =12 =l®o = E
i E i
825 |3 ik
§@§ il - E
o e A e Sl S
BEE EEEEEEEEEECfEget 5 &
S cE 3 B fiEsifsciisiiiiz H
2 g é .
E 3;” Edﬁlﬁqun‘;"w:'%i%f‘élgql 'E
s] E 'lﬁdddﬁgdggii‘?ﬁ:r—':' 8
i S8 e i 2222282218 :
< (= £ & 2
S A d;!; n:n:n:n:n:n:e:n:e:n:n:n:n: s
%E‘ §®L‘j— jfaeaeaaaa&a aef =
;2 l§°_ [
2l B e 2 =

Figure 6.3: User interface of AGG, which contains a list of the grammar rules (left), a
visualization of the current graph (center), and the sets of node and edge types (right).

127

0'ERH0NTT 62-30-5102

O°LELLONTT B2-00-5102

QP4aPEE0pqT-2009-0250-9FpO-28 10532

P6:SUDISLATX-AID3EBIq0

<YHED 3= <S8 > < 4B < 390U = PRZRE $ T 09L45-0T29-ER0b-66s

s

UnISUa)Ka- L5y

aiodxa

S1EQUOIEIPOLISE|
ajequoneas

Pl

3

ydeis

ydeapu:

EuEIS

palosd

ajag

>

FOISTIAT 80-20-+102)

“alpBunsdwoT g

e sdojdzasainid]

PRHTEIA0 60-21-4102)

“BLia-2-BUIppEZ

4| uoisuayxa-ymgsa)

ZT92iZT ET-90-+102)

a-hiDEDNAD ¢

0 paloid-vau

ZT92iZT ET-90-+102)

ra-hiDEDNAT ¢

0 Jpaloid-vau

FFIEIE0 60-21-+102)

“aupbupEdwoT ¢

1] Mo Ea]

£k L0 60-21-4102)

T

PEIPEITT £T-90-4102)

0 Jpafoid-mau

ERLDTT 62-90-5102)

1o B e |

EFA00TT 62-90-5107)

A1) MO gsa

FEIFCITT ET-90-102) **|

0 paloid-mau

ZT9ZIZ1 ET-90-+102)

0 Jaloid-mau

FOISTIAT 80-80+102) **

%a-hiDEBIgD b

w0 siopdzaeinid

£0:51:AT 80-20-+102)

“BLiw-2-BUIppEZ

w0 siojdzaeinid

F0:ST6T 90-20-+102]
PaLIpO

RN

any

M 2dojdxa-jaaioid
SRS Jaloag

M

2B QUONEIL PO
SEqguUoRES.D
A

PIEITITLY .}

paloud

28 pieas

sajeys ubisaq

sieie 5 | spaloid [senadoid | Unneioa UBEad | sasuo.g ages ubksaq [y

4

diaH oo 041 314

be searched

igns can

Database system of the software prototype. Existing des
based on metadata (left), and both this metadata and a visual representation are shown

Figure 6.4

(right).

128

LLgE]
|sUap@-Logef|oe Ty
LIS E- Ui 1550

w4
Isusp@-A0jeDgn ¢
LIOISUBYKE- 153

A4

IsUas-uoelqo Ty
uDjsURYEe-YYsE]

W4
|sUBpa-Uoel|g0 Tk
Ui UE R 155

14

IsUala-uoelgo Ty
UBISUEyEa- [t-sa)

R4
|sUap@-Logef|oey
Ui UET L1550

-

I

rs g

| L-01:su01suapa-u0ebIqo

PE:SUOISUalE-MOJE A0 F

GE-su0l 90)

ER:SUOISUBa-M0EDIQ0 f|

M4 E wid| (2] B
Isuaa-u0edqo ¢ Isuap@-Mojelgn ¢ ina-suy-dugsidwon g | |2~ GEISUOISUBkE-OIEdIN0 |
e ERT e oIS ALl 15) uosuagza-yymeseg | |[2] Ea SUOISUBEA-HOIEBIND K
4= == |
aInby _ sapngLye anfu sajnguge alnby sapngLpe anfu sanguge =
Ll
]
£ 4 I . 4 |:80e|daly-ay-Bunean| |
<< S 510580305 Pjed : ares |f suopda NG WEEN

[Sietitieie | 5atoi | SanE000 | uonpngbeq Ubiq | BSOS 3 UPEsa

»

dizH ooy 041 34

ional grid (right), the current

1mens

two-d

sualization of the design space as a

Vi

Figure 6.5

grammar (upper left) and the current design state (bottom left).

129

In order to enable the designer to create design models in their fa-
miliar CAD environment, it is possible to import these models into the
database system, by converting them into attributed part-relation graphs,
after which they can be further explored in the design space. Currently,
two-dimensional CAD drawings can be imported using the Drawing in-
terchange format (.dz f), and more complex three-dimensional building
information models (BIM) can be imported using the Industry Founda-
tion Classes (IFC) data model. For the IFC data model, geometric and
other entities are first added as the nodes of the part-relation graph, af-
ter which the connections and attributes are determined. In fact, the enti-
ties that are imported include I fcCartesionPoint, I fcPolyline, I fcSpace,
I fcWallStandardCase, I fcDoor, and I fcWindow. Figure 6.6 shows the
‘IFC-import” window, in which an IFC model can subsequently be opened,
viewed, and added to the database system. Figure 6.7 shows an example
of an IFC model that has been added to the database system. Since this de-
sign state is imported as a fresh starting point, the rule field remains blank
until it is used in a future exploration process.

|%| testFile IFC — (= & [t
File Data Info
| residential house -
File: B) 1172046 F
testfile ifc B
G- | chimney
Loading time: (- L roof level
2 seconds [
[[roams
Number of elements: - L. ground level
| BB485 [#- |, Space
(- | Annotation =
M [#- | Beam
f G- | BuildingElementProxy
- |, Covering
' - || Curtainial
[Ju Door
b [}y FlowFitting
[|, FlowSegment
[#- |, Roof
fl - |y Slab =
f [[Stair
= 1) WallStandardCase
t Basic Wall:binnenmuur 9:105557
Basic Wall:binnenmuur 9: 105597
i@ Basic Wall:binnenmuur 9:133192
... Rasic Wallhinnenmuur 813927 Sl
i -

Figure 6.6: An IFC model can subsequently be opened, viewed, and added to the database
system.

130

I
|
|
|
|
|
|
IG6T /7-00-+T 07| "MHoy-20eds-Jds 5| mau-sajn-2jdwexa(3aalo.d-panoadul il
‘6T OZ-00-+T 07| 26pa-03-|[em-ppe /| mau-sajn-jdwexa| 323lo.d-panoJdul il
6T /7-00-+T 07| "Hoy-20eds-3ds 5| mau-sajn-jdwexa| 323l0.d-panoJdul il
BT 0Z-00-+T 07| 20pa-03-|[em-ppe £ mau-sajn-2jdwexa(32alosd-panoadu |
IGT £Z-00-+T 07| "Moy-20eds-Jds 5| mau-sajn-Ijdwexa(3a3losd-pasoadu il
16T OZ-00-+T (7| 0pa-03-|[em-ppe /| mau-sajn-jdwexa| 323loid-panoJdul |
BT OZ-00-+T 07| " J2i-200ds-Jjds | mau-sajn-jdwexa| 1a3losd-panoJdul |
16T OZ-00-+T 07| ||2M-03-J00p-ppe 8| mMau-s3jn-yjdwexa| 322losd-panoJduy - |
180 6Z-00-+T (7| """ J2n-200ds-Jjds | mau-sajn-jdwexa| 323lo.d-panoJdul il
BT OZ-00-+T0Z| |[2M-03-J00p-PpE 8| Mau-s3jn-jdwexa| 323lo.d-panoJdul |
6T OZ-00-+T0Z| "' 03-MOPUIM-PPE B MaU-s3jn-2jdwexa| 323lo.d-panoJdul il
IGT £Z-00-+T 07| "Moy-20eds-Jds 5| mau-sajn-2jdwexa(32alosd-panoadu il
BT 0Z-90+T0Z| " 03-MOpUIM-PPE 6| Mau-sajns-2jdwexa| 32alosd-panoadu |
BT 0Z-90-+T 0T L maL-sans-dwexa) 3aaloud-panosdu) il
ST £T-90HT0Z) maL-sans-dwexa) 3eloud-panosdu |
iST £T-90+T 0T maL-sansdwexa| 3eloud-pancsdu il
OTET0BT TT-90-+T1 02 SjEUOREIYIPOLRSE|
PAUIPOW 2y Jewwen 1aloag |
OTET0RT T2-90+1 02 SHECREMER
SSEU0KL 8L OE-qTLE+32F-2560- 23T BREY P A
ajequonEaD
3y
3
Ydeas
W3U-52|N-3dwexa) Jewwe 5
3> <20e= <ouef > <1300y > £ 0y L £ O o0 £ <3200m > < 20UN0S > 20/ ydesjux e
S2YN-Idwexa Jewwe s 5
2l0d-paaoidun oalosd E bt
ey wepa | s1e35 ubiseq
_mkmEEEu _ spalold _ sanJadoly _ uoneloidx3 ubisaq _ asmoug 225 ubisag n
dEH 99v 241 214

e] S 4 T

=

Figure 6.7: An example of an IFC model that has been imported and added to the database

system.

131

6.2 Some visual examples of exploration

In order to demonstrate how the proposed shape grammar implementa-
tion tool can be used in (architectural) design practice, several visual exam-
ples of design space exploration have been performed using the prototype.
Many of the shape grammars found in the literature have been developed
on paper, solely, and relatively few of them have been implemented on a
computer system. The examples include both an original grammar (for the
generation of spatial configurations) and two analytical shape grammars
(for the generation of Chinese lattices and traditional prairie houses).

6.2.1 Example 1: Chinese lattices

The shape grammar for Chinese lattice designs, originally developed by
Stiny [1977], is one of the first (analytic) applications of shape grammars.
Chinese lattices are traditional, mostly ornamental, window and grille de-
signs that were constructed between 1000 BC and 1900 AD. An overview of
these lattice designs is given in the catalogue A Grammar of Chinese Lattice
by Dye [1937]. Most of the designs exhibit some periodicity or regularity,
but a particular subset — called ice-ray — exhibits a more complex struc-
ture, at first sight. Such ice-ray lattices contain patterns that resemble the
lines formed by cracking ice. Stiny demonstrated, using shape grammars,
how the compositional logic of these seemingly complex ice-ray designs
can be captured in a few simple (parametric) shape rules [Stiny, 1977]. The
rules needed to create ice-ray designs are shown in Figure 6.8. Each rule
divides a particular shape (a triangle, quadrilateral, and pentagon, respec-
tively) into smaller shapes. The rules are parametric, in the sense they can
be applied to any geometric realization of these shapes, under all kinds of
transformation (translation, rotation, scaling, and so forth).

The ice-ray grammar has not been implemented on a computer system,
so far. In order to explore the language of this shape grammar, the rules
have been implemented using the implementation approach discussed in
Chapter 4. This means that the shapes and rules have been translated to
part-relation graphs and graph rewriting rules, respectively. Unlike the
computer implementation of the Rabo-de-Bacalhau transformation gram-
mar, in which semantic node types and different kinds of application con-
ditions are used (Appendix A), the computer implementation of the ice-ray
grammar is more straightforward. In particular, two geometric node types
(point and line) have proven to be sufficient in representing the shapes
as part-relation graphs (see Figure 4.11), and no particular geometric con-
straints are needed, because the rules are fully parametric.

132

iz

+

DDDP

+ Q
’ bi
+
Figure 6.8: Four parametric shape rules of the ice-ray grammar. Reproduced from the
original image appearing in Stiny [1977].

|

After the graph rewriting rules have been specified, it is possible to
explore new and existing Chinese lattice designs, either by manually ap-
plying rules step by step, or by automatically generating random designs.
The stopping criterion of this random design process is either when the
parts are too small to be divided, or when a maximum number of rules
has been applied. The results shown in Figure 6.9 include five randomly
generated designs and one design (bottom right) that has been generated
step by step. The latter design is also included in the catalogue of existing
Chinese lattices by Dye [1937], thus demonstrating the ability of the ice-ray
grammar in capturing the compositional principles of Chinese lattice de-
signs. The other lattice designs in Figure 6.9, which are generated using the
same grammar, clearly share the same compositional principles, but they
are also different in terms of visual coherence and uniformity. In order to
generate new designs that more closely resemble the existing lattice de-
signs, the grammar could be elaborated further by introducing additional
application conditions, constraints, or predefined rule sequences. Another
way to achieve this goal is by using a goal-directed search strategy, instead
of random rule application; for example, using a heuristic search strategy

33

"y
KPD
y A&Q 7/4
p
Vzat
TR

o
A

)

o\

—

=—_ ==

=77
W B

Figure 6.9: Lattice designs in the language of the implemented ice-ray grammar. The
designs are generated using random rule application, except for the bottom right design,
which is generated manually.

that evaluates visual uniformity. These types of approaches would limit
the number of designs that can be generated, thereby constraining the de-
sign space. In the context of original design, however, this might come at
the expense of design freedom, thus lowering the chances for discovering
unexpected or surprising designs.

An important aspect of design space exploration is the ability to come
up with new rules. These new rules might make new paths in the de-
sign space available for future exploration. In the case of Chinese lattice
designs, some of the existing designs in the catalogue contain axial pat-

134

TR] e
7\
Dﬁﬁ& :

g’]%bﬁ

Figure 6.10: An additional shape rule of the ice-ray grammar (top) and two resulting
designs (bottom).

terns, which cannot be generated with the rules in Figure 6.8 alone. For
this reason, it is desirable to enable designers to create new rules during,
instead of before, the process of design space exploration. In doing so, the
new rules might change, enlarge, or sometimes reduce the design space
in which exploration can be performed. For example, Figure 6.10 shows
an additional shape rule of the ice-ray grammar (top) and two resulting
designs (bottom). The newly added rule divides a quadrilateral shape ac-
cording to an axial pattern. Of course, other kinds of rules can easily be
devised and added to the grammar in a similar way. As a result, while the
ice-ray grammar was initially developed for analytical purposes, it forms
the basis for a generative or exploratory process, in which existing and new
rules co-exist. Figure 6.11 shows the stepwise exploration of (part of) the
Chinese ice-ray design space, as performed on the software prototype.

6.2.2 Example 2: Spatial configurations

In creative design practice, shapes often play an important role in describ-
ing form and spatial relations. In some cases, however, the focus is more
on semantic or topological aspects of designs, rather than geometric as-
pects. Especially in architectural sketch design phases, designers tend to
explore spatial configurations without having specific geometric realiza-
tions in mind. Typical examples include so-called ‘bubble diagrams’ or
sketches in which architectural spaces are represented as symbols with re-

135

sau-saa
c-unpassp
palod-apiuexa

safru-sa2)

e
palod-aguexa

sau-san
2
uum_sn‘_

wexa

N‘
palo.d-aguexa

palod-gduexa

paloid-gduexa

av

_ ainby seingLpe anby

seingupe

a.nby

seIngUpe

2.nby

seinaune

L-U0[8SSIp

[Tsmsmns ey [aves | ek [ses

weepy |

[Freuiiess | 33001 | 53009001 | uonesopdeg ubisa [1EMOIE S UBEST u

dBH 99V D4l 314

Figure 6.11: The stepwise exploration of (part of) the Chinese ice-ray design space, as

performed on the software prototype.

136

lations drawn between them. Graphs offer a natural framework to model
objects and relations between these objects. The use of graphs to represent
spatial configurations is not uncommon in the architectural design domain;
for example, see the early work of Steadman [1976], and the use of graphs
in space syntax theory [Hillier and Hanson, 1984] to represent spaces and
connections.

A graph grammar has been created to support the exploration of spa-
tial configurations. The type graph of such grammar contains one node
type (space) with a single attribute (the function of the space). A straight-
forward grammar for supporting exploration of spatial configurations is
shown in Figure 6.12. This grammar contains a rule for adding new
spaces (top left), a rule for assigning functions to spaces (bottom left), and
two rules for changing the relations between the spaces (right). Using
this grammar, it is possible to generate any configuration of architectural
spaces, even when these spatial configurations would be nonsensical, from
an architectural point of view. This kind of grammar can be useful for the
purpose of revealing unexpected designs, or comparing designs towards
multiple design criteria. In some cases, however, it could be more useful to
have a grammar that generates only those spatial configurations that make
sense from an architectural point of view. In order to develop such a gram-
mar, additional design knowledge has to be included in the grammar rules
on how feasible spatial configurations can be achieved. In other words,
the grammar rules have to be ‘knowledge engineered’, which means that
design or expert knowledge on desirable and undesirable spatial relations
has to be included in the grammar rules. This kind of design knowledge
can be found in building codes, good practice manuals, and of course, in
the mind of experienced designers.

- O o O0-0—70

O-0© O—0O-0 O

Figure 6.12: Graph grammar for exploring spatial configurations. The grammar contains
a rule for adding new spaces (top left), for assigning functions to spaces (bottom left), and
two rules for changing the connections between the spaces (right).

137

For example, several guidelines for floor plan design are collected in
the design manual called C2008%. These guidelines are stated in a textual
manner:

m The entrance room, which acts as a buffer between the living room
and the outdoor environment, is strictly required;

m The kitchen should be directly connected to the dining room;

m The storage room should either be connected to the kitchen, or be
easily accessible via the entrance; ...

Another way of exploring new spatial configurations is by browsing a
library of potentially recoverable designs. The designs in this library might
have merit in a new design context; for example, to serve as a source of in-
spiration, or to learn from (successful) precedents. As these precedents
can be developed using a broad range of design media (sketches, several
kinds of CAD drawings, and so forth), they should be converted to part-
relation graphs, before they can be used in the proposed shape grammar
implementation tool. For example, the CVC database® contains a collec-
tion of 122 scanned floor plan documents. The corresponding part-relation
graphs have been generated automatically, using the floor plan recogni-
tion tool described in the work of de las Heras et al. [2014]. Subsequently,
these spatial configurations have been added to the database, after which
they can be recalled in a new exploration process, as a fresh starting point.
Figure 6.13 shows several spatial configurations that have been generated
from a collection of scanned floor plan documents. Table 6.1 shows an
overview of the labels that are used in this figure.

2http://www.vmsw.be/C2008
3http://dag.cvc.uab.es/resources/floorplans

li Living room ba Bathroom

ol Open living room sh Bathroom (2)
ki Kitchen de Workroom
en Entrance sr Hall

st Storage la Laundry

ga Garage dr Dressing

ci Circulation ou Outside

wc Toilet ea Dining room
be Bedroom hl Hall

Table 6.1: Labels used for the representation of spatial configurations.

138

Figure 6.13: 18 spatial configurations that have been generated from a collection of
scanned floor plan documents.

6.2.3 Example 3: the Frank Lloyd Wright grammar

The Frank Lloyd Wright (FLW) grammar is a three-dimensional paramet-
ric shape grammar, originally developed by Koning and Eizenberg [1981].
The FLW grammar generates the compositional forms, and specifies the
function zones of FLW prairie-style houses. Koning and Eizenberg de-
scribe the development of the grammar as being based on a corpus of
eleven existing designs. Part of this grammar has been implemented, in
order to demonstrate how a designer can explore the design space asso-
ciated with this grammar. In particular, the grammar implemented con-

139

" (0,:,0) - (x3,2) ° @ — @
r2: m — @ 7 ; ; ; i
s O = Q 8:

- - g' gg

Figure 6.14: Some rules of the FLW grammar [Koning and Eizenberg, 1981] — locating
the fireplace (1), adding a living zone (2-4), completing the core unit (5), adding obligatory
extensions (6-7), and assigning function zones (8-10). Living zones are indicated in white,

service zones in light gray, and the obligatory extension in dark gray.

tains rules to locate the fireplace (1), to add a living zone (2-4), to complete
the core unit (5), to add obligatory extensions (6-7), and to assign function
zones (8-10). These rules generate all the basic compositions that under-
lie specific FLW prairie house designs. The resulting designs are specified
as three-dimensional objects with labels (Uss - Vo3). An overview of the
implemented rules is shown in Figure 6.14. There are slight differences be-
tween the original grammar and the implemented grammar; for example,
rule 1 does not distinguish between a single-hearth and a double-hearth
fireplace, and some additional labels have been used to guide the rule ap-
plication.

140

The first step involves locating the fire place, after which a living zone
can be added in three different ways (determined by rules 2, 3, and 4). This
results in a tree structure with three branches denoting the possible alter-
natives. After manual selection (in the set of alternatives) of the design
state to be further explored, a service zone is added by rule 5 in the gram-
mar. This sequence of rules generates the ‘core unit’ of a prairie house. The
current design path “Adding a living zone and completing the core unit” can
be stored to recall it in a future project (Figure 6.15). In order to recall this
sequence from the database in a new design project, a search query can
be performed based on metadata, such as the name, the grammar or rule
used, or some additional properties that may be associated with the design
(sequence).

When the core unit is established, obligatory extensions are added that
radiate outwards and are smaller than the core unit, to maximize views
and to maintain the fireplace as the hierarchical center of the design. These
obligatory extensions are added by rules 6 and 7, resulting in a tree struc-
ture with six branches. The selected design state is then further specified
by assigning functions to the obligatory extensions. The rules 8, 9, and 10
attempt to group service and living zones together, in order to maximize
interior spaciousness. As a result, the rules generate the basic composi-
tions underlying prairie houses, which can further be refined to complete
the designs. Figure 6.15 shows some part of the explicit design space of

“Adding a living zone and
completing the core unit”

*
(0,0,0) X Y,2)

Figure 6.15: Partial derivation of the FLW grammar. The current design path is indicated
in light gray. Redrawn from the original image that has been generated using the software

prototype.

141

HGG Y

Figure 6.16: Partial derivation of the FLW grammar, starting from a design state that is
recalled from a different project. Redrawn from the original image that has been generated
using the software prototype.

the implemented grammar — starting from a recalled design state and fol-
lowing one particular design path in the tree structure. The intermediate
design states shown in the tree structure may not have intentional value,
but they provide access to specific areas of the design space. In this re-
spect, a design is not only characterized by the current state, but also by
the derivation history. Through navigation in the explicit design space,
new paths are becoming available for future exploration.

As is the case for many shape grammars, the FLW grammar was not
implemented on a computer system, yet. In order to do so, the three-
dimensional compositions have been implemented using the approach dis-
cussed in Chapter 4. In particular, a type graph (or ontology) is used, which

142

1:2
w:l.5
- fise
NS NS
13 13
w2 Q EW EW —Q w2
f:1i fise
NS
1:2
w:1.5

f:1i

Figure 6.17: Visual representation of a FLW prairie house composition (left) and the
corresponding part-relation graph (right). The space nodes are indicated in white and the
core unit nodes are indicated in black. The graph edges represent north—-south (NS) and
east—west (EW) relations between the spaces.

contains two semantic node types (core unit and space), two kinds of re-
lations (north—south and east-west), three attributes (length, width, and
function), and some labels to control rule application. Figure 6.17 shows
a visual representation of a FLW prairie house composition, together with
the corresponding part-relation graph.

Conclusion

This thesis started from the observation that information systems for cre-
ative design can be roughly classified into three categories — draughts-
men, oracles, and agents (Chapter 1). Given that the impact of draughts-
men and oracles is considered to be limited, a different line of thought
is followed in this thesis; namely, how information systems could more
closely resemble agents, acting like an assistant or sidekick to the designer.
With such agent-like functionality available, it is possible to talk about a
mixed-initiative enterprise in which both designers and computers con-
tribute to a result that would have been unviable by either conversant
alone. While agent-like design tools may come in many guises, informa-
tion systems that support — and amplify — the exploration of design alter-
natives may be of particular interest in architectural design; for example, in
the context of an increased emphasis on building performance. The defini-
tion of exploration given here involves both searching for previous designs
and generating new designs — very similar to the way in which designers
perform exploration in a sketchbook. The metaphor of a digital sketchbook in
which human exploration is mixed with computer amplification strategies
is the motivating idea and the central research topic of this thesis.

During the last few years, the topic of design space exploration has
gained increasing attention in academic circles and (architectural) design
practice alike. While new technologies are now slowly coming to the sur-
face (for example, in visual programming environments), the concept of

144

searching a design space is actually an old idea — parametric modeling
was already put at the center of the Sketchpad system in 1963, thereby
foreseeing one of the main features of CAD systems to come. In fact, this
thesis traces back the origin of the design space to the 1960s, with the birth
of artificial intelligence (Al), which initiated the paradigm of searching a
problem space for solutions (Chapter 2). Through the shared protagonists
of Al and architectural design, this shift marks the formulation of design
as a form of searching, which can be ‘solved’ through appropriate heuris-
tics. Such a reductionist definition of design as being ‘problem solving,
searching, goal oriented, etc.” quickly fell out of favor, making way for
renewed insights in the wicked nature of designing. These fresh insights
did not lead to the rejection of the design-as-search paradigm, but led to a
more subtle formulation and expansion of the design space concept. While
searching might be an important part of design explorations, it is not what
characterizes design as a distinct kind of behavior. Instead, design space
exploration is often characterized as an adventurous, and at times poorly
guided, activity. This results in an apparent dilemma between the wicked-
ness of creative design and the structured nature of information systems.

A well-studied approach shown to be capable of bridging this gap is
provided in the theory of shape grammars (Chapter 3). This thesis points
out how shape grammars provide a concise and computable framework to
represent a design space by encoding design moves in the form of shape
rules. On the one hand, shape grammars are clearly influenced by concepts
drawn from the field of AI — such as their formulation as rule production
systems. On the other hand, they deviate from traditional Al approaches
by avoiding any form of explicit or fixed representation and by incorpo-
rating a kind of visual thinking and ambiguity that characterizes creative
design. In particular, exploration with shape grammars involves creating,
storing, repeating, and copying rules in new design situations — using
embedding as the key mechanism for doing so. As a result, they offer
an elegant formalism for describing a kind of rule-based design, while at
the same time providing a computable representation of the design space,
which can be explored in a mixed-initiative enterprise. This is not to say
that design can be reduced to calculating with shapes and rules alone, and
most certainly not that all aspects of design can be described with shape
grammars. Nevertheless, they do incorporate some phenomena described
in the field of design theory and thinking (such as reframing and emer-
gence), making them a notable and interesting formal theory. Rather than
a reductionist model of design, shape grammars should be considered as
being powerful tools for exploration — the large number and diversity of
visual explorations shown throughout this thesis serve to illustrate this.

145

The contribution of this thesis is twofold — it advances the state-of-the-
art in the computer implementation of shape grammars, and also, it allows
several conclusions to be drawn based on the more general topic of design
space exploration. Turning our attention to its contribution to the field
of shape grammar theory first, this thesis proposes a particular symbolic
representation for shapes, which is suitable for computer implementation,
without losing the essential features resulting from the emergent nature
of shapes (Chapter 4). The development of appropriate symbolic repre-
sentations is challenging; for example, to support subshape detection and
parametric grammars, but is valuable for reasons of automatic generation,
parsing, inference, and development. In this thesis, attributed part-relation
graphs are introduced and are shown to be a feasible and valuable choice to
implement grammars — because they enable (parametric) subshape detec-
tion, but they also extend shape grammars by describing semantic objects,
instead of purely geometric ones. This results in more compact represen-
tations, which positively influences the time needed for rule matching or
subshape detection, and also makes it easier to specify rules. Neverthe-
less, the specification of graph rules and grammars might be less natural
(and more error-prone) to designers than their shape counterparts, which
implies the need for an intuitive and visual editor built on top of the under-
lying graphical rule editor. Also, the development of shape grammars and
graph grammars has been shown to be complementary, in the sense that
both lead to an alternative understanding of the grammar at hand. Finally,
the RdB-tf case study (Appendix A) discussed in this thesis has shown that
computer-implemented grammars are found to be useful for purposes of
enumeration, revelation or comparison — especially for grammars that are
more difficult to explore manually.

The second aspect of the thesis’ contribution is the implementation of
several amplification strategies for design space exploration (Chapter 5).
While external representation, codification of design moves, and implica-
tion are three strategies commonly found in shape grammar theory and
its computer implementations, the strategies of replay, recall, backup, and
alternatives — all involving the representation of the explicit design space
— are only available to a far less extent. The representation of the explicit
design space may be valuable to reveal and compare alternatives, to back
up and recall prior work, and to replay paths previously discovered in a
design space. In this thesis, the concept of tree structures is introduced to
keep track of the explicit design space. Unlike previous research efforts
in which trees are used, they are not used as devices for searching design
solutions, but they are used to implement several aspects of design space
exploration, including the generation of design alternatives and the navi-

146

gation in the explicit design space. Navigation in the explicit design space
can be done by navigating from one design state to another along design
paths, or by searching stored design states based on design state proper-
ties; for example, a name, a timestamp, a rule, or other kinds of descriptive
information associated with each design state. In order to enable this kind
of navigation, a persistence system (such as a database) is needed to effi-
ciently store and organize design states. As a result, tree structures might
enable some aspects of design space exploration, which is a far richer con-
cept than merely searching.

The theory of shape grammars, the graph-theoretic representation of
shapes and designs, and the tree structure together form the keystones of a
new kind of grammar-based tool for design space exploration — the digital
sketchbook. The outline of such a digital sketchbook, together with sev-
eral visual examples, is described in Chapter 6. The three main aspects
are: (1) representing and visualizing the design space as a whole, (2) en-
abling backup and recall strategies, and (3) enabling designers to create,
change, or delete rules in an intuitive manner. The visual examples in this
chapter demonstrate how the proposed shape grammar implementation
tool can be used in a variety of situations — ranging from analytic gram-
mars (FLW prairie houses) to original grammars (spatial configurations),
and from simple grammars (Chinese lattices) to more complex grammars
(Portuguese RdB houses).

7.1 Some future lines of research

While the proposed approach shows merit in several aspects, it only
scratches the surface of a new kind of design space exploration tools. There
are several future lines of research that can be identified in order to further
develop the work set out in this thesis. First, the recall of designs, not
based on navigation in the tree, but based on searching on (semantic) de-
sign properties, is an interesting future research area worth pursuing. The
database system that has been implemented in the software prototype al-
ready hints at some potential benefits, however, it is possible to deal with
semantics in a much more structured way — a notable example is the se-
mantic web, in which data can be shared and linked over the web. In the
context of design recall, an equivalence relation for detecting similarities
between designs can be useful for retrieving similar design precedents in
the design space — the classification method that is described in Appendix
B might be a first step in this direction.

147

Second, the implementation of the tool for design space exploration on
to a (commercial) CAD environment is a key aspect for extending its im-
pact. The software prototype enables designers to import designs that were
generated in a particular CAD environment, after which they can be fur-
ther explored in the design space. An important future research question
here is how to deal with semantics that are inherently associated with the
data structure of the CAD model imported. It is indeed possible to import
a design, by converting it into an attributed part-relation graph, which may
contain geometric node types (for representing shapes) and semantic node
types (for representing semantic or architectural concepts). However, in
the current prototype, it is not possible to transfer modified shapes or de-
signs back to the initial CAD environment.

Third, since the development of grammar rules is often a laborious and
error-prone task, the development of intuitive rule editor interfaces is a
key aspect that should be further investigated — especially in the context
of creative design, where rules should be created and modified on the fly,
thus during the exploration process. Two possible approaches for support-
ing grammar development are providing systematic analysis during rule
development and learning grammar rules in an automatic manner. The
use of algorithms from machine learning, a subfield of Al that deals with
algorithms that learn from examples, is a promising future line of research.

The proposed digital sketchbook, in its current form, can be used on
the short term by other researchers in the field who are interested in imple-
menting shape grammars on a computer system. The design tool can then
be used to evaluate the correctness of a grammar, and to explore the lan-
guage of a grammar in a systematic way. However, the lack of integration
into a commercial CAD environment and the lack of an intuitive rule editor
prevent the tool for being used in architectural design practice. Also, exten-
sive error handling and a more robust implementation would be needed to
make the step from prototype to a full-fledged, foolproof software system.
While this step might not include additional research difficulties, it is not
possible to realize such a system within the timespan of one PhD research
period. Given that a more elaborated rule editor, user interface, and ro-
bust implementation would be available, the software system could then
be used by a larger group of architects, using the feedback and surveys to
further elaborate the proposed design tool. This also indicates the need for
a more concerted research effort on the topic of shape grammar implemen-
tations. This concerted research effort was initiated at a 2010 workshop
‘shape grammar implementation: from theory to usable software’, and continues
to date. The work discussed in this dissertation provides only a small, but
nevertheless an important, step towards this end.

148

7.2 Concluding remarks on design and computation

In a more general way, this thesis touches upon two key aspects of design
and computation — representation and process. First, representation in most
traditional CAD tools involves a set of predefined types (line, polyline, etc.)
that can be combined to make ‘meaningful” objects. This information struc-
ture is strongly hierarchical and combinatoric. As a result, making changes
to this structure becomes increasingly difficult for each geometric structure
built up. In contrast, the kind of representation described in this thesis
does not involve predefined types, but designs can continuously be reinter-
preted, according to what parts the designers consider to be of interest (at
a particular moment in time). This idea could form the basis for any kind
of CAD tool — not only grammar-based tools — which uses specialized
algorithms to detect which parts can be of interest to designers. Second, in
most traditional CAD tools, the aspect of process involves search and/or
optimization in a design space that is limited by a bounded range of alter-
natives. Search and optimization play an important role in narrowing the
design space towards design alternatives that are near-optimal in terms of
some predefined goal test. Many designs in a given design space may in-
deed be nonsensical — for instance, the sentence “Colorless green ideas sleep
furiously” composed by Noam Chomsky, is an example of a sentence that
is grammatically correct, but without understandable meaning that can be
derived from it. In this thesis, the focus is not so much on choosing a sin-
gle (near-optimal) design, but rather on changing the designer’s way of
thinking through exploration. Exploration is a much richer concept, which
involves interaction with the design space through search, generation, and
navigation. These aspects are not limited to grammar-based design tools
only, but could also be incorporated in any kind of CAD tool.

The latent theme underlying this thesis is the use of Al and other
knowledge representations in the domain of creative design. While Al has
successfully outperformed humans in several tasks (playing chess, route
navigation, etc.), the human ability for creative design seems to be out of
reach. At the very best, the proposed tool for design space exploration
might generate new, anticipated, or sometimes even surprising results, but
this can hardly be called creative behavior. Instead of trying to simulate,
or even surpass, human creativity, as pursued by the early Al pioneers, the
search for suitable human-machine collaborations might perhaps be less
ambitious, but more promising. As Horst Rittel, a stubborn skeptic of Al,
already pointed out — “as my eyeglasses do not see on my behalf but help me
to see better, one might use the computer not to think on ones behalf but to rein-
force and enhance ones own ability to think.”. It is in this context that the digital

149

sketchbook metaphor should be considered as a mixed-initiative enterprise
of human creativity and computer amplification. In other words, the com-
puter is a tool — one of many — and much like any other tool, it is only as
good as the person who is using it. The results of such a mixed-initiative
enterprise might surpass the results generated by either the designer or the
computer alone — which is demonstrated in the examples throughout this
thesis. In fact, many of today’s designed objects are the result of human-—
machine collaborations, including this very thesis.

Implementation of the RdB-tf
grammar

In this appendix, we describe the implementation of the original Rabo-
de-Bacalhau transformation (RdB-tf) grammar. In order to do this, the
proposed approach of type graph definition, attributed graph construc-
tion, and application condition specification is followed. This results in
a graph grammar that can be explored on a computer system. This ap-
pendix is adapted from the paper that is to be published in T. Strobbe,
S. Eloy, P. Pauwels, R. Verstraeten, R. De Meyer, and J. Van Campenhout.
A graph-theoretic implementation of the Rabo-de-Bacalhau transforma-
tion grammar. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, 2015.

A.1 The original RdB-tf grammar

The original RdB-tf grammar, developed by Eloy [2012], attempts to pro-
vide an answer to the need for mass rehabilitation of the existing housing
stock in Portugal. A large part of the existing housing stock shows several
constructional and functional problems — resulting in unsuitable housing
in terms of contemporary comfort and accessibility standards. In particu-
lar, the RdB-tf grammar constitutes a grammar-based methodology to gen-
erate alternative housing designs that meet the current comfort and acces-

152

sibility standards, but that also depend on specific client needs and cost re-
quirements. In order to do this, the RdB-tf grammar encodes several trans-
formation strategies to adapt traditional Portuguese Rabo-de-Bacalhau (cod-
tail) houses. These transformation strategies — such as moving the kitchen
from its original position to strengthen the relationship between the social
and service areas, or maintaining the position of the kitchen while keep-
ing construction transformations to a minimum — contain a number of
transformation rules that step by step transform an existing housing de-
sign to a transformed housing design. The floor plan of any existing RdB
house can be used as the starting point of the grammar, and by applying
different rule sequences (the so-called transformation strategies), multiple
transformed floor plans can be generated — each adapted to the comfort
and accessibility standards, client needs, and cost requirements.

The original RdB-tf grammar uses a compound representation of the
designs and the transformation rules (Figure A.1). In particular, the Rdb-
tf grammar is defined in the algebras Upa, Uiz, Uaa, Vo2, and Wya. The
different representations of an existing housing design to be transformed
include a two-dimensional floor plan (U;2), the topological relations (Ups -
U12), and the spatial voids (Us2). Labels (Vj2) are attributed to spaces in
the floor plan to associate semantic information not provided by shapes
— for example to assign habitable spaces, non-habitable spaces, and so
forth. Table A.1 shows an overview of all the labels used in the RdB-tf
grammar. Weights (Wy2) are used to incorporate shape properties and to
characterize construction systems — for example brick walls (light gray)
structural elements (dark gray), or side walls (black).

nhs Non-habitable space co Corridor

hs Habitable space co.p Private corridor
xba Existing private bathroom la Laundry

xki Existing kitchen hl Hall

xla Existing laundry ba Bathroom

be Bedroom ba.p Private bathroom
be.s Single bedroom ba.g Guest bathroom
be.d Double bedroom Ih Lift hall

ki Kitchen di Dining room

li Living room ho Home office

F Function Dn Derivation stage
w Width 1 Length

Ff Function of front room Fb Function of back room

Table A.1: Labels used for the representation of housing designs and for the transformation
rules.

153

(b) ()

hs Xla o
XKi
Xbam L, . 4w
hs Xba hs <

nhs
nhs nhs nhs

hs hs hs
— L] ﬁu &

(d) (e)

Figure A.1: Compound representation of an existing RdB housing design. (a) Floor plan
representation, (b) topological configuration of spaces, (c) spatial voids, (d) labels, and (e)
weights. Reproduced from the original image appearing in Eloy [2012].

The rules in the original RdB-tf grammar are defined using the same
compound representation. In particular, the rules consist of three parts —
a shape part, a conditional part, and a descriptive part. First, the shape part
of the rules contains a combination of multiple representations (algebras).
At least two representations are needed to specify the rules, but sometimes
more or all representations are needed to fully specify the rule. The rule
in Figure A.2 contains a representation of a partial floor plan (U;2) and
topological relations (Upz - U12). Second, the conditional part of the rules
describes dimensional and functional aspects to control rule application
towards specific cases. The rule in Figure A.2 describes that it can only be
applied if the dimensional and functional conditions are satisfied. A logical
notation is used to define these conditions. Third, the descriptive part of
the rules contains information that cannot be defined in terms of shapes;
for example, to keep track of functions already assigned to a design or to

154

E E Conditions:
W W, W, Dimensions:
— l l w<2m
TF W v w ! Om<wl, w2, w3<2m
f
Function:
Fe Fb € {be.d, be.t, be.s} A Ff € {nhs, co, co.p, co.s, cl}
b
! \%
E . Fe \I/Jb e {li, di, li/di, ho, mr} A Ff ¢ {be, ba, la, ki}

Fb € {la} A Ff € {Xba, nhs, st}
Y%

Fb, Ff € {co,co.s, co.p} A Fb = Ff

Description (abbreviated):
R7.1.b <D7: Fb, Ff; w*wub(Fb, Ff)> - <D7: Fb; w*O>

Figure A.2: Example of a rule for connecting two adjacent spaces by eliminating a straight
wall. The shape part is shown on the left, and the conditional and descriptive parts are
shown on the right. Reproduced from the original image appearing in Eloy [2012].

keep track of spaces still available for assignment. The descriptive part
is defined as an operation on a tuple of elements (separated by a semi-
colon). In this example, the operation has the format < D,, : F, Ff;w *
wes(Fy, Fr) >—=< Dy, + Fyy, Fr, ;0w s wes(Fy, Fy) >, where D,, is the stage in
the derivation, w is the width of the wall, and w,, is the wall construction
system.

A.2 Step 1: Defining a type graph

The original RdB-tf grammar is available in the form of rules written on
paper, so that it can be explored using manual rule applications. On the
other hand, if this grammar should be implemented as a graph grammar,
it could be explored on a computer system. The first step to implement
such grammar is to define a type graph that specifies which node types,
edge types, and attributes can be represented in the graph. The aim is to
represent designs and rules with as little graph objects as possible, while
maintain sufficient semantic meaning. Compact representations positively
influence the time needed for rule matching or subshape detection, and
they also make the specification of rules more easy and intuitive. For ex-
ample, the floor plan could have been represented using nothing but ge-
ometric node types (lines and points). Indeed, architectural or semantic
elements — such as spaces, walls, doors, and windows — can all be rep-

155

edge window

Figure A.3: Type graph for the construction of part-relation graphs, including six node
types (space, edge, point, wall, door, window) and six attributes (function f, coordinate
geometry x and y, construction system cs, width w, length 1).

resented as shapes, but this would result in overly large graphs, which is
disadvantageous for automatic subshape detection. Moreover, this would
result in ambiguity, because architectural elements can be drawn according
to different conventions (which is a major problem in automatic floor plan
recognition). As a result, architectural and semantic elements are treated
as symbolic entities in the implemented graph grammar. Figure A.3 shows
the chosen type graph, which contains six node types (space, edge, point,
wall, door, window), and seven edge types (space-edge, space-point, edge-
point, wall-edge, door-wall, window-wall, adjacent-space).

A.3 Step 2: Constructing attributed graphs

The second step is to construct the attributed part-relation graphs. At-
tributes represent different kinds of information that are not topological in
nature, for example numerical features or textual descriptions. In this case,
attributes are associated with the graph nodes to fix coordinate geometry,
to characterize construction systems for walls, to describe geometric prop-
erties of windows and doors, and to assign functions to spaces. In particu-
lar, the attributes "x” and “y’ define the point coordinates, the attribute ‘cs’
describes the wall constructions, the attributes ‘w’” and ‘1’ define the width
and length of door and window objects, and the attribute ‘f” describes the
function of spaces.

With both the type graph and the attributes specified, a housing design
and the shape part of the rules can be represented using such an attributed
part-relation graph. For example, Figure A.4 shows the part-relation graph
of the initial housing design shown in Figure A.1. The resulting part-
relation graph contains 113 graph nodes, 294 graph edges, and 126 at-
tributes. For illustrative purposes, the attributes are not shown, except for

156

N

e/ 574
e N egp/u AY"V‘A”() "%/
e By \\ e AV'A/‘. N
W%
Q

5SS 57

2SN e
ZriaaN N

>
?‘ SN

Figure A.4: Attributed part-relation graph of an existing RdB housing design. The
attributes are not shown here, except for the function attribute of space node types.

the function attribute of space node types. Note how the information con-
tained in the resulting graph is equivalent to the five representations used
in the original RdB-tf grammar. This attributed part-relation graph serves
as one possible starting point of the RdB-tf grammar, but in the context
of this grammar, the floor plan of any other existing RdB housing design
might serve as the starting point of the transformation process. Manually
constructing the part-relation graph of each floor plan would prove to be
a laborious and error-prone task. In practice, these initial floor plans are
usually drawn in a traditional CAD environment. For this reason, a con-
version tool was developed to convert floor plans from a traditional CAD
environment to an attributed part-relation graph. As a result, users can
specify the designs and rules in their familiar CAD environment, while the
underlying graph for the representation of shapes, rules, and the genera-
tion of design alternatives remains hidden for the user.

157
A.4 Step 3: Defining graph rules

The rules in the RdB-tf grammar encode multiple strategies to transform
an existing housing design so that it meets the current standards, client
needs, and cost requirements. These transformations involve assigning
(new) functions to spaces, connecting spaces by removing (parts of) walls,
and dividing spaces by adding walls. In order to specify these kinds of
transformations, three main rule types are used in the TdB-tf grammar —
which are assignment rules, connection rules, and division rules. Other
rule types include rules to permute functions of spaces, to integrate tech-
nical devices, and to change the derivation stage in the grammar.

A first rule type is used to assign functions, required by a given client
program, to spaces in the existing design. For example, the rule in Figure
A.5 transforms a non-habitable space (nhs) to a hall space (hl) by modi-
fying the label from this space — both in the floor plan and graph repre-
sentation. The shape part of the rule contains a parametric shape to match
spaces with different geometry in the floor plan. The conditional part of
the rule describes dimensional and functional conditions that must be sat-
isfied to apply the rule. The descriptive part of the rule is described as an
operation on a four-tuple with the format < D,, : F,, Fy; F; Z'; E >—<
D, : Fy,, Fy; F1,Z' + {F1}; E — {F}, E + {F1} >, where D, is the stage in
the derivation, Z’ is the set of spaces already assigned, and FE is the set of
existing spaces.

— W, N, Conditions:
wlwl wlwl
h 411 s 5§11 Dimensions:
11 11 L, w>09m
F | F1 1 1m?2 < F <20m?
et g g 0m <11, wl <1m
Wi —> Wit 12, w2 > 0m
wlwl wlwl e € {135°, 180°}
Functions:
E E F € {nhs}
Fb € {lh} A F(passage_to(lh)) = true
F F1 Ff € {nhs} A F(passage_to(nhs)) = true
= F1 € {hl}
E E Description (abbreviated):

R1.1<D1: 1h, nhs; F; Z'; E> -
<D1: 1h, nhs; hl; Z'+{hl}; E - {nhs}; E + {hl}>

Figure A.5: Rule from the original RAB-tf grammar for the assignment of a hall space.
Reproduced from the original image appearing in Eloy [2012].

158

Attribute conditions: Negative application condition:
F == nhsF, == 1lh
Fy == nhs f:hl

Xo— X1 >209m
YQ - Y1 2 0.9m
(X2 — X1) % (Yo — Y1) < 20m?

Figure A.6: Graph-theoretic representation of the hall assignment rule. The rule contains a
pattern graph (left), a replacement graph (right), attribute conditions, and a negative
application condition. The numbers indicate the rule morphism.

The graph-theoretic representation of the hall assignment rule is shown
in Figure A.6. The pattern graph contains three nodes (light gray) to rep-
resent the space to be transformed (F') and two adjacent spaces (£}, and
Fy). Also, geometric nodes (point and line) define the topology and ge-
ometry of the space to be transformed. In the original rule, the space to
be transformed is drawn as a parametric shape to match spaces with dif-
ferent geometry. In the implemented graph rule, the pattern graph can be
matched to all parametric variations of a rectangle. The transformation
performed by the rule is to modify the attribute ‘f” of the space F, leav-
ing the topology of the graph unchanged. Additional attribute conditions
define the necessary dimensional and functional conditions of the original
rule. These attribute conditions are specified as logical expressions, which
are evaluated once the rule is applied to a given graph. In order to avoid
a hall function being assigned to more than one room in the floor plan,
a negative application condition is added to the hall node in the replace-
ment graph. Due to this negative application condition, the particular rule
can only be applied if no hall function can be found in the graph, thereby
avoiding duplicate assignments.

159

A second rule type is used to eliminate a part of a straight wall, thereby
connecting or enlarging spaces. For example, the rule in Figure A.7 con-
nects two adjacent spaces, if several dimensional and functional condi-
tions are satisfied. The shape part of the rule is defined using two rep-
resentations — a partial floor plan and the topological relation between
a front space (F) and back space (). The conditional part of rule de-
scribes that only specific adjacent spaces can be connected, for example a
bedroom (be) with a corridor (co) or non-habitable space. The descriptive
part of the rule is described as an operation on a tuple with the format
< Dy, : Fy, Ff; w *wcs(Fb, Ff) >—< Dy i Fy, Ff, ; w’ >i<’LUCS<FWb7 Ff) >, where
w is the width of the wall and w,, is the wall construction system. In this
specific rule, a part of the existing brick wall (w,;) is removed to make a
door opening between two spaces.

K K
x x
1TWwW, T W W,
E E
of I E
or R
Conditions: Description (abbreviated):
Dimensions: R7.1f <D7:Fb, Ff,w*wub(Fb, Ff) -
wl+w+w2>1Im <D7: Fb, Ff, w*@>

w € {0.8m, 0.9m, 1m, 1.2m, 1.6m}
w1, w2 >0m

Function:

Private areas:

Fb € {be.d, be.t, be.s} A Ff € {nhs, co.p, co} A Fb(passage_to(x) = false, Vx € {nhs, co})
= w € {0.8m, 0.9m, Im}

Fb € {be.d, be.t, be.s} A Ff € {cl, ba.p} A Ff(passage_to(x) = false, ¥x € {Z, hs, nhs})
= w € {0.8m, 0.9m, 1m}

Fb € {ba.p, cl} A Ff € {nhs, co.p, co} A Fb(passage_to(x) = false, Vx € {Z, hs, nhs})
= w € {0.8m, 0.9m, Im}

Figure A.7: Rule from the original RAB-tf grammar to connect two adjacent spaces by
eliminating a part of a wall. Only the conditions for private spaces are shown. Reproduced
from the original image appearing in Eloy [2012].

160

The graph-theoretic representation of the connection rule is shown in
Figure A.8. The pattern graph contains two nodes (light gray) to represent
two adjacent spaces (£} and F), an edge node (black) connected with two
point nodes (white) to represent the shared edge of the two adjacent spaces,
and a wall node (dark gray) connected with the edge node. The transfor-
mation performed by the rule involves adding a new node that represents
a door object, and adding a new ‘adjacent-space’ edge between the two
spaces to connect them. The dimensional and functional conditions are
defined as attribute conditions, using a similar logical notation as in the
original rule. In particular, only specific combinations of rooms can be con-
nected, and only if the wall is sufficiently large to make an opening in it. A
negative application condition is added to the replacement graph to avoid
that the two spaces are already connected, or in other words, to ensure that
the wall does not yet contain an opening. Finally, the implemented rule —
just like the original rule — contains one parametric attribute (w) that can
take three different values, depending on the selection of the user.

Attribute conditions: Negative application condition:
(X2 =X1) 2 1mV (Y2 — Y1) > 1Im

(Fy == {be.d, be.t, be.s} A Fy == {nhs, co.p, co})V

(Fy == {be.d, be.t,be.s} A Fy == {cl,ba.p})V 94

(Fp == {ba.p,cl} A Fy == {nhs, co.p, co})

Figure A.8: Graph-theoretic representation of the connection rule. The rule contains a
pattern graph (left), a replacement graph (right), attribute conditions (bottom), and a
negative application condition. The numbers indicate the rule morphism.

161

Other rules in the original RdB-tf grammar include rules to divide
spaces by adding a wall, to permute functions of spaces, to integrate tech-
nical devices in the housing design, and to change the derivation stage in
the grammar. These rules can be implemented in a similar way as the two
examples (assignment and division rule types) discussed — without ad-
ditional significant difficulties. Table A.2 shows the rules that have been
implemented using the AGG graph transformation tool [Taentzer, 2004].
This set of rules corresponds to one of the two transformation strategies
encoded in the original grammar. In particular, the implemented trans-
formation strategy involves maintaining the position of the kitchen, and
relocating other spaces, thereby keeping construction transformations to a
minimum effort.

A.5 Conclusion

This appendix presents a summary of an approach for the graph-theoretic
implementation of a shape grammar, originally developed on paper, on a
computer system. A practical step-by-step approach is given for the trans-
lation of a shape grammar to an equivalent graph grammar. The RdB-tf
grammar is used to demonstrate the details of this approach and to eval-
uate the feasibility. In particular, two relevant types of rules used in the

Description Reference
Assignment of isolated kitchen Rule 0.1
Assignment of hall Rule 1.1
Assignment of double bedroom Rule 2.1b
Assignment of single bedroom Rule 2.3b
Permuting bedroom assignment due to area criteria Rule 2.5
Assignment of main private bathroom Rule 2.6
Assignment of second private bathroom Rule 2.8b
Assignment of living room Rule 3.1a
Assignment of dining room Rule 3.2b
Assignment of isolated home office Rule 3.4
Assignment of guest bathroom Rule 3.11
Assignment of private corridors Rule 4.1
Assignment of corridors Rule 4.2

Widening the connection between two rooms (by elimi- Rule 7.1.i
nating walls on both sides of a door opening)
Changing room dimension by moving a wall Rule 7.4b

Table A.2: The implementation of RAB-tf grammar rules corresponding to one particular
transformation strategy. For each rule, a short description is given, together with a
reference to the original rule [Eloy, 2012].

162

RdB-tf grammar are discussed — assignment rules and connection rules.
In order to evaluate the feasibility of the implementation approach, a part
of the RdB transformation grammar is implemented, using a JAVA devel-
opment environment for graph rewriting. This implementation is shown
to be both feasible and valuable in several aspects. First, the proposed
approach contributes to the existing state-of-the-art on the graph-theoretic
representation of shape grammars. Second, the work presented in this pa-
per can be considered as an example of how shape grammars are imple-
mented on a computer system, which might in the turn increase the im-
pact of grammars on design practice. In particular, the development of a
(semi)automated methodology to support mass housing refurbishment is
described. Finally, the proposed approach is embedded within a commer-
cial CAD environment to make the shape grammar formalism more acces-
sible to students and practitioners. An elaborated discussion of the benefits
and drawbacks of the proposed approach can be found in the original ar-
ticle T. Strobbe, S. Eloy, P. Pauwels, R. Verstraeten, R. De Meyer, and |. Van
Campenhout. A graph-theoretic implementation of the Rabo-de-Bacalhau trans-
formation grammar. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, 2015.

Classification of architectural
designs

In this appendix, we describe a method for the automatic classification
of architectural designs, belonging to a particular architectural corpus.
This method can be used complementary to generative and grammar-
based methods, by enabling the designer (1) to select a consistent corpus
from which it is easier to extract rules (grammar formulation), and (2) to
assess the output of a grammar (grammar evaluation). This appendix is
adapted from the paper that is to be published in T. Strobbe, F. wyffels,
R. Verstraeten, R. De Meyer, and]J. Van Campenhout. Automatic archi-
tectural style classification using one-class support vector machines and
graph kernels. Automation in Construction, 2015.

B.1 Introduction

In this appendix, we address the problem of automatically classifying ar-
chitectural designs, belonging to a particular architectural corpus. Given a
particular architectural corpus and a new design — does this new design
belong to the corpus; does it exhibit some patterns or influences of this cor-
pus; or should it be considered as a completely different design? In the
field of Al, this problem is known as the classification problem. A method
for automatic classification can be used complementary to generative and

164

grammar-based methods, especially in the context of analytic shape gram-
mars. On the one hand, such a method could enable the designer to select
a consistent corpus from which it easier to extract rules (grammar formula-
tion). Even a consistent design corpus may contain designs that are unex-
pected, making rule formulation a lot harder. For example, in the analysis
of the Malagueira corpus that led to the formulation of the Malagueira
shape grammar, Duarte [2005b] identified several housing designs that de-
viate from the other designs. On the other hand, such a method could
enable the designer to assess the output of the grammar, and determine,
in a quantitative way, whether the generative rules extracted are working
(grammar evaluation). In other words, it could be possible to determine to
what extent the designs generated fit the corpus from which the grammar
was extracted.

For this classification task, we apply a technique from Machine Learn-
ing, which is a scientific domain that deals with algorithms that can learn
from data. In particular, one-class Support Vector Machines (SVM) [Cortes
and Vapnik, 1995; Scholkopf et al., 2000; Vapnik, 1995] are applied for au-
tomatically identifying an architectural corpus, after which new designs
can be classified, either as similar of different to this corpus. One-class
SVMs are learning models with associated algorithms that recognize pat-
terns from a set of coherent training examples. They are commonly used
for similarity detection, which involves deciding whether a new example is
similar to the training examples (it is an inlier, or in the same architectural
corpus), or should be considered as different (it is an outlier, or outside
a particular corpus). In contrast to conventional classification algorithms,
one-class SVMs do not need training examples of all classes, making them
a suitable way to perform the classification task, because collecting a gen-
eral set of other design corpora would be time-consuming, or even im-
possible. In the context of this research, designs are represented using a
representation method commonly used by architectural designers — the
two-dimensional floor plan. In fact, a graphical representation of floor plans
is used that describes both morphological (geometrical), topological, and
functional features of designs. With the training examples represented as
floor plan graphs, the one-class SVM can be combined with graph kernels
[Vishwanathan et al., 2010] to efficiently perform the classification task.
The use of SVMs combined with graph kernels is popular in a wide va-
riety of biological and other applications [Noble, 2006] but, to the extent
of our knowledge, has not been applied in the field of architectural design
before. In general, little research has been carried out in the field of auto-
matic architectural design identification and classification [Mathias et al.,
2012; Romer and Plumer, 2010].

165

The remainder of this appendix is structured as follows. First, we de-
scribe how architectural designs, or two-dimensional floor plans, can be
converted to (labeled) graphs. In particular, the corpus of Malagueira
houses, designed by the architect Alvaro Siza Viera, is used as a case study
to illustrate the concepts discussed in this appendix. The next section de-
scribes some of the concepts of one-class SVMs and graph kernels. Subse-
quently, we train and optimize the one-class SVM for the given Malagueira
dataset, using four-fold cross-validation, while also holding out part of the
available data as a test set to avoid overfitting. In the final section, we ap-
ply the trained and optimized model to the test set, in order to evaluate the
performance in classifying new designs, which are not in training dataset.

B.2 Design features of two-dimensional floor plans

The design process of architectural floor plans involves different kinds of
data; including the generation of sketches, CAD drawings, solid models,
and written reports. These documents are typically generated using dif-
ferent media and conventions, and as a result, they rely on different infor-
mation representations. In order to apply Machine Learning techniques,
such as one-class SVMs, the dataset of examples must be described using
a unique representation that reflects the design features that we attempt to
learn. In the case of architectural floor plans, two important design fea-
tures are (1) the function of individual spaces and (2) the topological rela-
tionships between these spaces. Geometric design features (such as size,
proportion, etc.) are typically secondary to the functional and topological
design features. Especially in early sketch design phases, designers tend to
develop several spatial configurations, without having specific geometric
realizations in mind. One possible representation that reflects geometri-
cal, topological and functional design features are graphs, which contain
nodes and edges to represent objects and relations, respectively. In do-
ing so, spaces in floor plans can be represented by graph nodes, and the
relations between these spaces can be represented by graph edges. Also,
each graph node can be associated with a specific label that represents the
function of the space. Geometrical features can also be added as attributes
of the nodes or edges, including coordinate geometry, angular constraints,
etc. By using graphs to represent architectural floor plans, the task of clas-
sifying designs of floor plans can now be considered a classifying a set of
labeled graphs. This can be performed using one-class SVMs combined
with graph kernels, which are discussed further in this paper.

166

We demonstrate the feasibility of the proposed classification method
on a specific case study — the Malagueira houses designed by the archi-
tect Alvaro Siza Viera. The work of Duarte [2001] describes the corpus
of houses that were developed in the Malagueira plan. The corpus con-
sists of several houses, each of which is adapted to a given site and user
constraints. In an earlier research effort, Duarte [2005a] has manually cap-
tured, or encoded, this corpus in the form of a shape grammar, which con-
tains an elaborated set of 162 rules. Using such a grammar, it is possible to
classify a new design as being or not being in the Malagueira corpus, by de-
termining whether or not this new design is in the ‘language’ of the shape
grammar. The approach proposed in this appendix involves an automatic
way of classifying designs as being or not being in the Malagueira corpus.
In order to do this, the Malagueira floor plans are first translated to labeled
graphs, by representing the functional spaces in the floor plans as graph
nodes, and by connecting the appropriate nodes with graph edges. Figure
B.1 shows the visual representation (left) and the corresponding graph rep-
resentation (right) of one of the floor plans in the corpus. The conversion
from floor plan images to graphs is done in an automatic manner, using the
method proposed in the work of de las Heras et al. [2014]. After this au-
tomatic conversion has been completed, several smaller rooms are merged
into larger functional spaces; including living spaces ‘li’, sleeping spaces

—#

living sleep

adjacent
building

transition

yard

ya

entrance ‘ en

kitchen

Figure B.1: A visual representation (left) and graph representation (right) of one floor plan
design in the Malagueira corpus.

167

‘sl’, kitchen spaces ‘ki’, transition or laundry spaces ‘ts’, and yard ‘ya’.
The grouping together of rooms in functional zones is also proposed in the
work of Duarte [2005a]. Second, additional entrance nodes ‘en’ and adja-
cent building nodes ‘ab” are added to the graph representation to include
information about the location of the entrance and the adjacency of other
neighboring buildings or houses, respectively. As a result, the context of
the house is also taken into account during the training process.

The resulting Malagueira dataset generated contains 128 labeled graphs
with an average of 7 nodes and 1.56 edges per node. Additionally, an
equally large dataset of 128 outlier floor plans has been generated. This
dataset of outlier floor plans has been generated in a procedural way, by
randomly creating functional zones and adding topological relations be-
tween them. As a result, this outlier dataset contains 128 randomly gener-
ated floor plans that are not in the Malagueira corpus. This random dataset
serves to evaluate the accuracy of the trained SVM in correctly classifying
outliers.

B.3 One-class SVMs with graph kernels

The one-class support vector machine

A one-class SVM [Cortes and Vapnik, 1995; Scholkopf et al., 2000; Vapnik,
1995] is a classification technique that seeks to distinguish one specific class
(the inliers) from a broad set of classes (the outliers). In contrast to standard
classification techniques, a one-class SVM is trained with examples of the
target class. This makes one-class SVMs particularly useful when examples
of the other classes are hard to obtain. More specifically, one-class SVMs
construct a frontier, which separates the inliers from the outliers in a cer-
tain given feature space, thereby delimiting a sub-area of this feature space.
If new examples lie within this frontier, they are considered to be similar to
the training examples. Otherwise, these examples are classified as outliers.
This is visually demonstrated in Figure B.2, in which the frontier is shown
as an ellipse that geometrically separates the inliers from the outliers in
a two-dimensional feature space. Typical applications are anomaly detec-
tion; for example, to detect atypical genes [Metzler and Kalinina, 2014],
and network intrusion detection [Li et al., 2003]. In our case, the goal is to
‘learn” an architectural corpus from a single set of coherent designs. Since
it is too time consuming and even impossible to collect a sufficiently rich
design set of all other styles, one-class SVMs are preferred over the more
common multi-class SVMs.

168

— learned frontier

xxx training examples

000 new similar examples (inliers)
aaa new different examples (outliers)

Second feature

First feature

Figure B.2: The frontier separates the inliers from the outliers in a two-dimensional feature
space, and delimits a sub-area of this feature space. The learned frontier does not classify
all training examples correctly, because of the reqularization parameter v.

In many cases, the examples to discriminate can not be linearly sepa-
rated in the given feature space. In the example given in Figure B.2, the
inliers can not be separated from the outliers using a linear hyperplane in
the given feature space. Therefore, the initial finite-dimensional feature
space R? is mapped into a (much) higher-dimensional feature R™ (where
n > p), using a function ®. This makes the separation presumably easier in
that space. Figure B.3 shows the mapping of the previous two-dimensional
feature space to a three-dimensional space, in which the examples become
linearly separable with a hyperplane. This hyperplane corresponds to the
non-linear hypersurface in the initial lower-dimensional feature space; for
example, the ellipse in Figure B.2. As a result, one-class SVMs can also
perform classification on examples that are non-linearly separable.

For many classification problems, it is not possible to fully separate the
inliers from the outliers, using a hard boundary. Therefore, a ‘soft margin’
is defined in order to allow some classification errors, without affecting the
final results. In the case of one-class SVMs, Scholkopf et al. [2000] intro-
duced a user-specified parameter v (0 < v < 1), which is the lower and
upper bound on the number of examples that are support vectors — in-
put vectors that just touch the boundary of the margin, and that lie on the

169

Third feature

First featyre

Figure B.3: The previous two-dimensional feature space is mapped to a three-dimensional
feature space, in which the examples become linearly separable with a hyperplane.

wrong side of the hyperplane, respectively [Chen et al., 2005]. In layman
terms, a number of classification errors of the training examples are delib-
erately allowed during the training process, in order to reduce the amount
of outliers that are falsely classified as inliers (false positives). Consequently,
the amount of false negatives (i.e. inliers that are classified as outliers) will
increase. Hence, the value of the v parameter must be chosen carefully, in
order to find a good trade-off between the amount of false positives and
false negatives. In other words, the v regularization parameter is used
to avoid ‘overfitting’ of the model, which means that the trained model
would perform very well on classifying the training examples, but would
fail to correctly classify unseen data. An overfitted model specializes on
particular training examples, but is less able to generalize to unseen exam-
ples.

The graph kernel

In many cases, the explicit mapping of low-dimensional feature spaces into
higher-dimensional feature spaces is computationally expensive. In order
to overcome this, kernel functions are used that implicitly map the orig-

170

inal feature space to a higher-dimensional feature space. By doing so, it
is possible to separate the inliers from outliers based on some measure of
similarity that is introduced by the kernel function. In other words, a ker-
nel function k(x,x’) can be considered as a similarity measure between x
and x’. The benefit of using kernel functions is that an explicit mapping &
of the initial feature space to a higher-dimensional feature can be omitted,
because the similarity measure may be computed easily in terms of the ini-
tial feature space. This is known as the kernel trick, which is a powerful
feature of SVMs in classifying non-linearly separable data.

The Malagueira dataset is represented as a collection of labeled graphs,
which can in turn be represented as a set of adjacency matrices (as shown
further). The challenge is thus to find a computationally efficient kernel
function that captures the topological and functional information that is
implicitly represented in the adjacency matrix. Graph kernels, as initiated
by Kondor and Lafferty [2002], are able to do this. A recent overview of
graph kernels is given in the work of Vishwanathan et al. [2010]. The use
of graph kernels to study relationships between graphs has already been
applied in several domains, including shape classification [Dupé and Brun,
2009], bio-informatics [Mahé et al., 2005; Ralaivola et al., 2005], and social
networks [Kumar et al., 2010]. A common approach is the use of random
walk graph kernels [Kashima et al., 2003]. In order to calculate the simi-
larity between two graphs, a random walk graph kernel performs random
walks of different length on both graphs, and counts the number of match-
ing walks. In other words, the number of matching walks gives an indi-
cation of the similarity between the two given graphs. Random walks of
different length are performed in order to take into account both local sim-
ilarities (short random walks) and more complex similarities (long random
walks). In order to calculate the random walk graph kernel, the following
steps are needed;

First, the graphs are represented using an adjacency matrix. Given two
undirected graphs G and G’ of respectively m and n nodes, the adjacency
matrices A € N™*™ and A’ € N"*" are symmetric matrices in which the
diagonal entries are zero and the non-diagonal entries A;; are the number
of edges from node i to node j. For example, the adjacency matrix A of the
following undirected graph is:

oo

—_ == O
o= O -
OO = =
oo o

171

The second step consists of calculating the direct product graph of the
two given graphs. The adjacency matrix A, € N™"*™" of the direct prod-
uct graph G is calculated as the Kronecker product of A and A":

AllAl AlgA/ s AlmA/
Ac=AoA = A
AmlA/ A12A/ e AmmA/

The corresponding graph G is a graph over pairs of nodes from
graphs G and G’, in which two nodes in G are neighbors if and only if
the corresponding nodes in G and G’ are both neighbors. As a result, per-
forming a random walk on the direct product graph G is equivalent to
performing a simultaneous random walk on both graphs G and G’ [Vish-
wanathan et al., 2010]. In our case, the graph nodes in G and G’ are associ-
ated with labels from a finite set {1, 2, ..., d}. These labels correspond to the
different functional spaces of the architectural designs that can be assigned
to the graph nodes. Therefore, the adjacency matrix A x should have a non-
zero entry if and only if an edge exist in the direct product graph, and the
corresponding nodes in G and G’ have the same label. In this case, we use
the filtered adjacency matrix of the graphs ‘A to calculate A :

d
A=Y "'A®'A
=1
The third step consists of calculating the random walk graph kernel
k« (G, G") directly from the direct product graph, according to the follow-

ing equation (for the complete derivation, we refer to [Vishwanathan et al.,
2010]):

kx (G,G) = Zi,j(l — M)

in which, I € N™**™" js an identity matrix, and) is a decay parameter
that ensures the convergence of the equation. The value of the decay pa-
rameter A has to be chosen carefully in order to obtain a good performance
of the graph kernel. In practice, a very low value for A is often chosen, but
this makes the contribution of long random walks negligible. As a result,
the impact of local similarities between graphs (or short random walks)
would be larger than the impact of complex similarities between graphs
(or long random walks). The kernel k« (G, G’) can be calculated efficiently
in O(n3) time using several optimizations discussed in the paper of Vish-
wanathan et al. [2010].

172

B.4 Hyperparameter optimization

The test set and validation set

Training one-class SVMs on a set of examples, and testing the performance
on the same set of examples leads, in many cases, to false conclusions. For
particular hyper-parameter values, the trained model would be able to per-
fectly classify the training examples, but would fail to classify yet-unseen
data. It is important that the classifier should be able to classify unseen
designs correctly. In order to optimize the hyper-parameters correctly, a
subset of the available examples is withdrawn from the training procedure
and used as a test set to evaluate the performance of the trained model
afterwards. In this experiment, we randomly hold out 28 of 128 valid ex-
amples for future performance evaluation. Also, an additional 28 outliers
are withheld from the outlier dataset to evaluate outlier accuracy. As a re-
sult, the test set contains 56 examples, half of which are Malagueira houses
and the other half are outliers.

Moreover, overfitting can occur during the optimization of the regular-
ization parameter v and the decay parameter A (see below). If examples
from the test set are used to evaluate the performance of the parameters,
the trained model would be optimized to classify the test examples instead
of new unobserved examples. In order to overcome this problem, another
part of the remaining dataset should be held out as a so-called validation
set. In this case, training is performed on the training set, after which eval-
uation is done on the validation set, and final evaluation can be done on
the test set. However, partitioning the dataset of 128 valid examples into
three sets would seriously reduce the size of the training set. For this rea-
son, we apply a well-known technique called ‘k-fold cross-validation’, by
which a validation set is no longer needed [Stone, 1974]. In general, this
technique involves splitting the training examples into k smaller sets. For
each of the folds, the model is trained using (k — 1) of the smaller sets,
and validated on the remaining part of the examples. In this experiment,
four-fold cross-validation is used — the model is consequently trained and
validated four times on 75 and 25 examples of the training set, respectively.
Also, the model is each time validated on a set of 25 outlier examples, in
order to prevent the model in classifying all examples to be inliers.

Hyper-parameter optimization through grid-search

In order to evaluate the performance of the trained model, the average
accuracy of the four folds is calculated. Accuracy is a well-known per-
formance measure in Machine Learning that indicates the rate of correctly

173

classified examples. For one-class SVMs, we distinguish between valida-
tion accuracy, outlier accuracy and total accuracy. The validation accuracy
indicates the rate of validation examples that are correctly classified as sim-
ilar to the training examples (true positive). The outlier accuracy indicates
the rate of outlier examples that are correctly classified as different from
the training examples (true negative). The total accuracy is defined as the
average of the validation and outlier accuracy, and gives a good indication
of the performance of the trained model.

As mentioned earlier in this appendix, the values for the regulariza-
tion parameter v and the decay parameter A must be optimized in order
to obtain a good performance of the trained model. These parameters are
often referred to as hyper-parameters, because they are not optimized dur-
ing the learning procedure of one-class SVMs, but have to be optimized
beforehand. In order to do this, a two-dimensional parameter space is de-
fined that consists of the two hyper-parameters v and A. For each value in
this parameter space, a one-class SVM is trained using the specified hyper-
parameters. The validation accuracy is measured on the validation set (us-
ing four-fold cross-validation) and the outlier accuracy is measured on the
set of random outliers. In particular, we define a logarithmic x-scale, rang-
ing from 1075 to 1, that specifies several values for v. Also, a logarithmic
y-scale specifies several values for), ranging from 107> to 1. This tech-
nique is known as grid-search optimization. Figure B.4 shows the total
accuracy, which is the average of the validation and outlier accuracy, of
the grid-search that has been performed. An optimal accuracy of 84.5% is
found for the hyperparameter values indicated with “x” in the figure.

B.5 Evaluation of the trained SVM model

In order to evaluate the generalization performance of the trained SVM
model, it is applied to the test set that was withdrawn from the training
procedure. As a result, 49 out of 56 houses are correctly recognized ei-
ther as Malagueira designs or outliers, corresponding to a total accuracy of
87.5%. These findings are in the same line of the total accuracy found on
the validation sets during the optimization (84.5%) — thereby demonstrat-
ing that the trained model is able to generalize well to new, unobserved
examples. Figure B.5 shows four examples from the Malagueira test set.
The top left floor plan is a housing design from the Malagueira corpus,
which is not recognized as an inlier (false negative). One of the reasons
that the left floor plan is not recognized as a Malagueira design may be
that this specific spatial composition is less frequent in the training exam-
ples. Indeed, houses in the Malagueira corpus typically have a sleeping

174

Total accuracy

1e-05 T T

0.80

1e-04 0.75

0.70
<

o 1e-03 0.65
©
§

© 0.60
o
[0}

< 1e-02 40.55
ey

+40.50

1e-01 40.45

410.40

1 : : : . L
1e-05 1e-04 1e-03 1e-02 1e-01 1
hyperparameter v

Figure B.4: Two-dimensional parameter space that indicates the total accuracy for all the
hyper-parameter values. The best total accuracy (0.845) is achieved for the combination of
v and X indicated with *x’.

space on the ground level, which is not the case in this example. The top
right floor plan is a housing design from the Malagueira corpus, which is
correctly classified as an inlier (true positive). The bottom left floor plan
is a randomly generated floor plan, but is recognized as an inlier by the
trained SVM model (false positive). While this floor plan shows several
patterns that are atypical for Malagueira houses, it also shows several pat-
terns that are similar to housing designs in the Malagueira corpus, such
as the relationship between the kitchen and transition space. The bottom
right floor plan is a randomly generated floor plan, which is correctly clas-
sified as an outlier (true negative). Indeed, this floor plan shows a linear
spatial composition that is both infeasible and atypical for the corpus.

The examples given in Figure B.5 indicate that trained one-class SVM is
able to generalize well to new unobserved floor plans, and is able to distin-
guish between floor plans that are either very similar or different from the
training examples. However, some floor plans are more difficult to classify,

175

false negative true positive
transition

kitchen yard

living kitchen

transition
o NN B . .. |
living
yard
sleeping
I
false positive true negative
| R |
transition
yard
sleeping
kitchen transition
| living
kitchen
yard living

sleeping

Figure B.5: Four floor plans from the test set that were withdrawn from the training
procedure. The two top floor plans are examples from the Malagueira corpus, while the
bottom floor plans are randomly generated examples.

176

because they have some design patterns in common, while other patterns
are different. A possible solution to overcome this limitation, is by using a
scoring parameter; in this case, the distance of the examples from the sepa-
rating frontier. In the case of SVMs, Platt scaling [Platt, 1999] is often used
to transform the outputs of the SVM into a probability distribution. Un-
like other kinds of supervised models, SVMs do not directly provide such
probabilities, but they are calculated using cross-validation. This probabil-
ity indicates a certain confidence level that a given floor plan is either an
inlier or an outlier. The higher or lower this scoring parameter, the more
likely a given floor plan is an inlier or an outlier, respectively. As a result,
the scoring parameter, using Platt scaling, gives a good indication of how
similar new examples are to the training examples.

B.6 Conclusion

In this appendix, we investigated whether or not it is possible to ‘learn’
an architectural corpus from a set of examples, and classify new designs
as similar or different from these examples. We proposed the use of one-
class support vector machines with graph kernels, and demonstrated the
feasibility on the case study of Malagueira houses. After the optimization
of the hyper-parameters, a best total accuracy of 84.5% was achieved. With
an accuracy of 87.5% on the test set, we illustrated that our model is able
to generalize to designs that have not yet been observed during training.
Finally, we used a scoring parameter to calculate the confidence level that
a given floor plan is either an inlier or an outlier. An elaborated discussion
of the proposed approach and future lines of research can be found in the
original article T. Strobbe, F. wyffels, R. Verstraeten, R. De Meyer, and]. Van
Campenhout. Automatic architectural style classification using one-class support
vector machines and graph kernels. Automation in Construction, 2015.

References

A. Aamodt and E. Plaza. Case-based reasoning: Foundational issues,
methodological variations, and system approaches. Artificial Intelligence
Communications, 7:39-52, 1994.

M. Agarwal and]. Cagan. A blend of different tastes: The language of
coffee makers. Environment and Planning B, 25(2):205-226, 1996.

R. Aish and R. Woodbury. Multi-level interaction in parametric design.
In A. Butz, B. Fisher, A. Kriiger, and P. Olivier, editors, Smart Graphics.
Lecture Nodes in Computer Science, volume 3638, pages 151-162, 2005.

Y. Aksoy, G. Cagdas, and O. Balaban. A model for sustainable site layout
design of social housing with pareto genetic algorithm: Sspm. In Pro-
ceedings of the 16th International Conference on Computer Aided Architectural
Design (CAADFutures), 2015.

C. Alexander. Notes on the synthesis of form. Harvard University Press, 1964.

C. Alexander. The state of the art in design methods. DMG Newsletter, 5
(3):3-7, 1971.

C. Alexander. A pattern language: towns, buildings, construction. Oxford
University Press, 1977.

C. Alexander and M. Manheim. HIDECS 2: computer program for the
hierarchical decomposition of a set with an associated graph. Technical
report, MIT Civil Engineering Systems Laboratory, 1962.

J.E. Allen, 1.G. Curry, and E. Horvtz. Mixed-initiative interaction. Intelligent
systems and their applications, IEEE, 14(5):14-23, 1999.

N. Bayazit. Investigating design: A review of forty years of design re-
search. Design Issues, 20:16-29, 2004.

178

W. Bekers, R. De Meyer, and T. Strobbe. World war I naval camouflage :
an evaluation through image analysis. In Intellectuals and the Great War,
2014.

C. Bleil de Souza. Contrasting paradigms of design thinking: the building
thermal simulation tool user vs. the building designer. Automation in
Construction, 22:112-122, 2012.

M. Borges and R. Fakury. Structural design based on performance applied
to development of a lattice wind tower. In Proceedings of the 16th Interna-
tional Conference on Computer Aided Architectural Design (CAADFutures),
2015.

J. Cagan and W. J. Mitchell. Optimally directed shape generation by shape
annealing. Environment and Planning B, 20(1):5-12, 1993.

G. Cagdas. A shape grammar: the language of traditional turkish houses.
Environment and Planning B, 23(5):443-464, 1996.

A. Chakrabarti, K. Shea, R. Stone,]J. Cagan, M. Campbell, N.V. Hernan-
dez, and K.L. Wood. Computer-based design synthesis research: An
overview. Journal of Computing and Information Sciences in Engineering, 11
(2):021003, 2011.

S. Chase. A model for user interaction in grammar-based design systems.
Automation in Construction, 11:161-172, 2002.

S. Chase. Shape grammar implementation the last 35 years. Technical
report, Design Computing and Cognition workshop, 2010.

H. H. Chau, X. Chen, A. McKay, and A. de Pennington. Evaluation of a 3D
shape grammar implementation. In Design Computing and Cognition 04,
pages 357-376, 2004.

P. H. Chen, C.]. Lin, and B. Scholkopf. A tutorial on v-support vector
machines. Applied Stochastic Models in Business and Industry, 21(2):111-
136, 2005.

N. Chomsky. Syntactic Structures. Mouton, The Hague/Paris, 1957.

C.W. Churchman, R. L. Ackoff, and E. L. Arnoff. Introduction to operations
research. Wiley, Oxford, England, 1957.

J. Conklin. Dialogue mapping : building shared understanding of wicked prob-
lems. Wiley Publishing, 2006.

179

R. Correia, Duarte J.P.,, and A. Leitao. Malag: a discursive grammar in-
terpreter for the online generation of mass customized housing. In 4th
International Conference on Design Computing and Cognition, 2010.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20:
273, 1995.

F. Coutinho, J. P. Duarte, and M. Kruger. Constructing a shape grammar,
the Ducal palace facade. In Proceedings of the 32nd eCAADe Conference,
2014.

N. Cross. Descriptive models of creative design: application to an example.
Design Studies, 18:427-455, 1997.

D. Davis. Modelled on Software Engineering: Flexible Parametric Models in the
Practice of Architecture. PhD thesis, School of Architecture and Design,
RMIT University, 2013.

X. De Kestelier. Recent developments at Foster + Partners’ specialist mod-
elling group. Architectural Design, 83(2):22-27, 2013.

L. de las Heras, S. Ahmed, M. Liwicki, E. Valveny, and Sanchez G. Statisti-
cal segmentation and structural recognition for floor plan interpretation.
International Journal on Document Analysis and Recognition, 17(3):221-237,
2014.

M. Delghust, T. Strobbe, R. De Meyer, and A. Janssens. Using BIM-based
parametric typologies to supplement single-zone calculations for official
performance assessment with multi-zone calculations for predictions on
real energy use. In 14th International Conference of the International Buil-
ding Performance Simulation Association, 2015.

H. Dreyfus. What ccomputer can’t do. MIT Press, 1972.

J. P. Duarte. Customizing mass housing: a discursive grammar for Siza’s Mala-
gueira houses. PhD thesis, Massachusetts Institute of Technology, 2001.

J. P. Duarte. A discursive grammar for customizing mass housing: the case
of Siza’s houses at Malagueira. Automation in Construction, 14(2):265-275,
2005a.

J. P. Duarte. Towards the mass customization of housing: the grammar
of Siza’s houses at Malagueira. Environment and Planning B, 32:347-380,
2005b.

180

F. X. Dupé and L. Brun. Tree covering within a graph kernel framework for
shape classification. In Image Analysis and Processing—ICIAP 2009, pages
278-287. Springer, 2009.

D.S. Dye. A Grammar of Chinese Lattice. Harvard University Press, 1937.

E. C. e Costa and J. P. Duarte. Tableware shape grammar: Towards mass
customization of ceramic tableware. In John S. Gero, editor, Design Com-
puting and Cognition 14, 2014.

A. Economou and S. Kotsopoulos. From shape rules to rule schemata and
back. In Design Computing and Cognition 14, 2014.

H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic
Graph Transformation. Springer, 2006.

S. Eloy. A transformation grammar-based methodology for housing rehabilita-
tion: meeting contemporary functional and ICT requirements. PhD thesis, TU
Lisbon, 2012.

S. Eloy and J. P. Duarte. Inferring a shape grammar: translating design-
ers knowledge. Artificial Intelligence for Engineering, Design, Analysis and
Manufacturing, 28:153-168, 2014.

C. Ertelt and K. Shea. Shape grammar implementation for machine plan-
ning. In 4th International Conference on Design Computing and Cognition,
2010.

J. Fenn and M. Raskino. Understanding Gartner’s hype cycles. Technical
report, Gartner, 2013.

P. Fitzhorn. Formal graph languages of shape. Artificial Intelligence for En-
gineering Design, Analysis and Manufacturing, 4(3):151-163, 1990.

A. Fleisher. Grammatical architecture? Environment and Planning B, 19(2):
221-226,1992.

U. Flemming. More than the sum of parts: the grammar of Queen Anne
houses. Environment and Planning B, 14(3):323-350, 1987.

U. Flemming. Get with the program: common fallacies in critiques of
computer-aided architectural design. Environment and Planning B, 21(7):
106-116, 1994.

R. Geifs and M. Kroll. On improvements of the varré benchmark for graph
transformation tools. Technical report, Universitdt Karlsruhe, 2007.

181

R. Geif3, G. V. Batz, D. Grund, S. Hack, and A. Szalkowski. GrGen: A fast
spo-based graph rewriting tool. In Graph Transformations, Third Inter-
national Conference, ICGT, volume 4178, pages 383-397. Springer Berlin
Heidelberg, 2006.

J. S. Gero. Towards a model of exploration in computer-aided-design. In
Gero and E.Tyugu, editors, Formal Design Methods for CAD, pages 315-
336, North-Holland, 1994.

J. S. Gero and V. A. Kazakov. An exploration-based evolutionairy model
of a generative design process. Computer-Aided Civil and Infrastructure
Engineering, 11:211-218, 1996.

M. Gerzso. On the limitations of shape grammars: comments on aaron
fleisher’s article “grammatical architecture?”. In Annual Conference of the
Association for Computer Aided Design In Architecture, 2003.

P. Geyer. Multidisciplinary grammars supporting design optimization of
buildings. Research in Engineering Design, 18(4):197-216, 2008.

J. Gips. Computer implementation of shape grammars. In NSF/MIT Work-
shop on Shape Computation, volume 55, 1999.

V. Goel and P. Pirolli. The structure of design problem spaces. Cognitive
Science, 16:395-429, 1992.

G. Goldschmidt. The dialectics of sketching. Creativity Research Journal, 4
(2):123-143, 1991.

G. Goldschmidt. The backtalk of self-generated sketches. Design Issues, 19
(1):72-88, 2003.

G. Goldschmidt. Quo vadis, design space explorer? Artificial Intelligence
for Engineering Design, Analysis and Manufacturing, 20:105-111, 2006.

G. Goldschmidt. Linkography - Unfolding the design process. The MIT Press,
2014.

G. Goldschmidt and D. Tatsa. How good are good ideas? correlates of
design creativity. Design studies, 26(6):593-611, 2005.

V. Granadeiro, J. Duarte, R. Correia, and M.S L. Vitor. Building envelope
shape design in early stages of the design process: Integrating architec-
tural design systems and energy simulation. Automation in Construction,
32:196-209, 2013.

182

T. Grasl. Transformational palladians. Environment and Planning B, 39(1):
83-95, 2012.

T. Grasl. On Shapes and Topologies: Graph theoretic representations of shapes
and shape computations. PhD thesis, TU Vienna, 2013.

T. Grasl and A. Economou. From topologies to shapes: parametric shape
grammars implemented by graphs. Environment and Planning B, 40(5):
905922, 2013.

T. Grasl and A. Economou. Towards controlled grammars, approaches to
automating rule selection for shape grammars. In Proceedings of the 32nd
eCAADe Conference, 2014.

N. L. R. Hanson and A. Radford. On modelling the work of the architect
Glenn Murcutt. Design Computing, 1(3):189-203, 1986.

J. Haugeland. Artificial Intelligence: The Very Idea. MIT Press, 1985.

J. Heisserman. Generative geometric design and boundary solid grammars. PhD
thesis, Carnegie Mellon University, Pittsburgh, PA, 1991.

J. Heisserman. Generative geometric design. IEEE Computer Graphics and
Applications, 14(2):37-45, 1994.

B. Hillier and J. Hanson. The Social Logic of Space. Cambridge University
Press, 1984.

F. Hoisl and K. Shea. An interactive, visual approach to developing and
applying parametric 3-d spatial grammars. Artificial Intelligence for Engi-
neering Design, Analysis and Manufacturing, pages 333-356, 2011.

J. H. Holland. Adaptation in Natural and Artificial Systems. The MIT Press,
1992.

J. H. Holland. Emergence: From Chaos to Order. Addison-Wesley, 1999.

J.C. Jones. How my thoughts about design methods have changed during
the years. Design methods and theories, 11(1):48-62, 1977.

J.C. Jones and D. Thornley. The Conference on Design Methods: papers pre-
sented at the conference on systematic and intuitive methods in engineering,
industrial design, architecture and communications. Pergamon Press, Lon-
don, 1962.

I. Jowers, D.C. Hogg, A. McKay, H. H. Chau, and A. de Pennington. Shape
detection with vision: implementing shape grammars in conceptual de-
sign. Research in Engineering Design, 21(4):235-247, 2010.

183

J. Jowers and C. Earl. Implementation of curved shape grammars. Envi-
ronment and Planning B: Planning and Design, 38:616-635, 2011.

H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between
labeled graphs. In Proceedings of the Twentieth International Conference on
Machine Learning, 2003.

H.Y. Keles, M. Ozkar, and S. Tari. Embedding shapes without predefined
parts. Environment and Planning B, 37:664-681, 2010.

S. Keller. Systems Aesthetics: Architectural Theory at the University of Cam-
bridge, 1960-75. PhD thesis, Harvard University, 2005.

S. Keller. Fenland tech, architectural science in postwar Cambridge. Grey
Room, 23:40-65, 2006.

T. Knight. The generation of Hepplewhite-style chair-back designs. Envi-
ronment and Planning B, 7(2):227-238, 1980.

T. Knight. Languages of designs: from known to new. Environment and
Planning B, 6:213-238, 1981.

T. Knight. Computing with emergence. Environment and Planning B, 30:
125-155, 2003.

R.I. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete
input spaces. In International Conference on Machine Learning, pages 315-
322, 2002.

C. Konigseder and K. Shea. Analyzing generative design grammars. In
Design Computing and Cognition 14, 2014.

H. Koning and]. Eizenberg. The language of the prairie: Frank Lloyd
Wright's prairie houses. Environment and Planning B, 8(3):295-323, 1981.

R. Krishnamurti. The construction of shapes. Environment and Planning B,
8:5-40, 1981.

R. Krishnamurti. Explicit design space? Artificial Intelligence for Engineering
Design, Analysis and Manufacturing, 20:95-103, 2006.

R. Krishnamurti and C. Earl. Shape recognition in three dimensions. Envi-
ronment and Planning B, 19:585-603, 1992.

R. Krishnamurti and R. Stouffs. Spatial grammars: Motivation, compari-
son, and new results. In U. Flemming and S. Van Wyk, editors, CAAD
Futures, pages 5774, 1993.

184

D. Krstic. Language of the rascian school: Analyzing rascian chuch plans
via parallel shape grammar. In Design Computing and Cognition 14, 2014.

R. Kumar, J. Novak, and A. Tomkins. Structure and evolution of online
social networks. In Link mining: models, algorithms, and applications, pages
337-357. Springer, 2010.

B. Lawson. Oracles, draughtsmen, and agents: the nature of knowledge
and creativity in design and the role of it. Automation in Construction, 14:
383-391, 2005.

A. Li, H. H. Chau, L. Chen, and Wang Y. A prototype system for devel-
oping two- and three-dimensional shape grammars. In 14th Int. Conf.
Computer-Aided Architectural Design Research in Asia, 2009.

K. L. Li, H. K. Huang, S. F. Tian, and W. Xu. Improving one-class svm for
anomaly detection. In International Conference on Machine Learning and
Cybernetics, volume 5, pages 3077-3081. IEEE, 2003.

B. Logan and T. Smithers. Creativity and design as exploration. InJ. S.
Gero and M.L. Maher, editors, Modelling Creativity and Knowledge Based
Creative Design, 1992.

P. Mahé, N. Ueda, T. Akutsu, J. L. Perret, and J. P. Vert. Graph kernels
for molecular structure-activity relationship analysis with support vec-
tor machines. Journal of chemical information and modeling, 45(4):939-951,
2005.

M.L. Maher and J. Poon. Modelling design exploration as co-evolution.
Microcomputers in civil engineering, 11:195-209, 1996.

M. Mathias, A. Martinovic, J. Weissenberg, S. Haegler, and L. Van Gool.
Automatic architectural style recognition. In ISPRS - International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sci-
ences, pages 171-176, 2012.

T. Maver. CAAD’s seven deadly sins. In Proceedings of the International
Conference on Computer Aided Architectural Design (CAADFutures), 1995.

J. McCarthy, M. Minsky, N. Rochester, and C. Shannon. A proposal for the
Dartmouth summer research project on artificial intelligence. Technical
report, Dartmouth College, 1956.

A. McKay, K. Shea, S. Chase, A. Li, T. Trescak, F. Hoisl, I. Jowers, C. Ertelt,
and R. Correia. Shape grammar implementation: from theory to useable
software. Technical report, DCC 10 workshop, 2010.

185

A. McKay, S. Chase, K. Shea, and Hau Hing Chau. Spatial grammar im-
plementation: From theory to useable software. Artificial Intelligence for
Engineering Design, Analysis and Manufacturing, 26(2):143-159, 2012.

S. Metzler and O.V. Kalinina. Detection of atypical genes in virus families
using a one-class svm. BMC genomics, 15(1):913, 2014.

W. J. Mitchell, A.S. Inouye, and M.S. Blumenthal. Beyond productivity: in-
formation technology, innovation, and creativity. National Academic Press,
Washington, DC, USA, 2003.

R. Morash. Computer sketchpad. MIT - Lincoln Laboratory, 1964.

V. Mueller and T. Strobbe. Cloud-based design analysis and optimization
framework. In R. Stouffs and S. Sariyildiz, editors, Computation and Per-
formance - Proceedings of the 31st eCAADe Conference, volume 2, pages 185
194. Delft University of Technology, 2013.

P. Miiller, P. Wonka, S. Haegler, A. Ulmer, and L. Van Gool. Procedural
modeling of buildings. Association for Computing Machinery, pages 614—
623, 2006.

N. Negroponte. The Architecture Machine. M.L.T. Press, 1970.

A. Newell,]. Shaw, and H. Simon. Empirical explorations with the logic
theory machine. In Western Joint Computer Conference, volume 15, pages
218-239, 1957.

A. Newell, J. Shaw, and H. Simon. The processes of creative thinking. In
Symposium on creative thinking. University of Colorado, 1958.

A. Newell, J. Shaw, and H. Simon. Report on a general problem-solving
program. In International Conference on Information Processing, page
256264, 1959.

W. S. Noble. What is a support vector machine? Nature biotechnology, 24
(12):1565-1567, 2006.

P. Pauwels, P. Present, and T. Strobbe. A pragmatic approach towards
software usage in construction projects : the port house in Antwerp,
Belgium. In G. Gundason and R. Scherer, editors, Ework And Ebusi-
ness in Architecture, Engineering and Construction, pages 509-512. CRC
Press/Balkema, 2012.

186

P. Pauwels, T. Strobbe, J. Derboven, and R. De Meyer. The role of conver-
sation and critique within the architectural design process. In Sixth In-
ternational Conference on Design Computing and Cognition, pages 141-176,
2014a.

P. Pauwels, T. Strobbe,]. Derboven, and R. De Meyer. Analysing the impact
of constraints on decision-making by architectural designers. In K. Zreik,
editor, Architecture, City & Information Design, pages 97-111, 2014b.

P. Pauwels, T. Strobbe, S. Eloy, and R. De Meyer. Shape grammars for archi-
tectural design: The need for reframing. In Computer-Aided Architectural
Design Futures. The Next City - New Technologies and the Future of the Built
Environment, page 507526, 2015.

J. Platt. Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods. Advances in large margin classifiers, 10:
61-74, 1999.

G. Polya. How to solve it. Princeton University Press, 1945.

E. L. Post. Formal reductions of the general combinatorial decision prob-
lem. American Journal of Mathematics, 65(2):197-215, 1943.

A.D. Radford and J. S. Gero. On optimization in computer aided architec-
tural design. Building and Environment, 15:73-80, 1980.

L. Ralaivola, S.]J. Swamidass, H. Saigo, and P. Baldi. Graph kernels for
chemical informatics. Neural Networks, 18(8):1093-1110, 2005.

H.J.W Rittel and M.M Webber. Dilemmas in a general theory of planning.
Policy Science, 4(2):155-169, 1973.

C. Romer and L. Plumer. Identifying architectural style in 3d city models
with support vector machines. Photogrammetrie - Fernerkundung - Geoin-
formation, 14:371-384, 2010.

M. Ruiz-Montiel, J. Boned, J. Gavilanes, E. Jimenez, L. Mandow, and J. L.
Perez-de-la Cruz. Design with shape grammars and reinforcement learn-
ing. Advanced Engineering Informatics, 27(2):230245, 2013.

S. Russel and P. Norvig. Artificial Intelligence - A modern approach. Prentice
Hall, 2010.

A. Samuel. Some studies in machine learning using the game of checkers.
IBM Journal of Research and Development, 3(3):210-229, 1959.

187

J. Schaefer and S. Rudolph. Satellite design by design grammars. Aerospace
Science and Technology, 9(1):81-91, 2005.

B. Scholkopf, A. Smola, R. Williamson, and P. L. Bartlett. New support
vector algorithms. Neural Computation, 12:1207-1245, 2000.

D. Schon. The Reflective Practitioner: How professionals think in action. Temple
Smith, 1983.

D. Schon. Designing: rules, types and worlds. Design studies, 9:181-190,
1988.

C. Shannon. Programming a computer for playing chess. Philosophical
Magazine, 41(314), 1950.

K. Shea and J. Cagan. Languages and semantics of grammatical discrete
structures. Artificial Intelligence for Engineering Design, Analysis and Man-
ufacturing, 13(4):241-251, 1999.

N. Shireen, H. Erhan, D. Botla, and R. Woodbury. Parallel development
of parametric design models using subjunctive dependency graphs. In
27th Annual Conference of the Association for Computer Aided Design in Ar-
chitecture, pages 57-66, 2012.

B. Shneiderman. Creating creativity: user interfaces for supporting inno-
vation. In ACM Transactions on Computer-Human Interaction, volume 7,
pages 114-138, 2000.

H. Simon. Rational choice and the structure of the environment. Pshycho-
logical Review, 63:129-138, 1956.

H. A. Simon. The Sciences of the Artificial. The MIT Press, Cambridge, Mas-
sachusets, 1969.

H. A. Simon. The structure of ill-structured problems. Artificial Intelligence,
4:181-201, 1973.

S. Skiena. The Algortihm Design Manual. Springer Science & Business Me-
dia, 2009.

T. Smithers, A. Conkie, J]. Doheny, B. Logan, K. Millington, and M. X. Tang.
Design as intelligent behaviour: an Al in design research programme.
Artificial Intelligence in Engineering, 5(2):78-109, 1990.

P. Steadman. Graph-theoretic representation of architectural arrangement.
In L. March, editor, The architecture of form. Cambridge university press,
1976.

188

M. W. Steenson. Architectures of Information: Christopher Alexander, Cedric
Price, Nicholas Negroponte & MITs Architecture Machine Group. PhD thesis,
Princeton University, 2014.

G. Stiny. Ice-ray: a note on Chinese lattice designs. Environment and Plan-
ning B, 4(1):89-98, 1977.

G. Stiny. Introduction to shape and shape grammars. Environment and
Planning B, 7(3):343-351, 1980.

G. Stiny. Shape rules: closure, continuity, and emergence. Environment and
Planning B, 21:478, 1994.

G. Stiny. Shape - Talking about Seeing and Doing. The MIT Press, London,
England, 2006.

G. Stiny. What rule(s) should i use? Nexus Network Journal, 13:14-47, 2011.

G. Stiny and J. Gips. Shape grammars and the generative specification of
painting and sculpture. In C. V. Freiman, editor, Information Processing,
volume 71, pages 1460-1465. North-Holland, 1972.

G. Stiny and W. J. Mitchell. The Palladian grammar. Environment and Plan-
ning B, 5(1):5-18, 1978a.

G. Stiny and W. J. Mitchell. Counting Palladian plans. Environment and
Planning B, 5(2):189-198, 1978b.

M. Stone. Cross-validatory choice and assessment of statistical predictions.
Journal of the Royal Statistical Society, 36:111-147, 1974.

R. Stouffs. Towards a formal representation for description rules. In Pro-
ceedings of the 32nd eCAADe Conference, 2014.

T. Strobbe and R. De Meyer. Generative systems in architectural design. In
FEA PhD Symposium, 2013.

T. Strobbe, P. Pauwels, R. Verstraeten, and R. De Meyer. Metaheuristics in
architecture : using genetic algorithms for constraint solving and evalu-
ation. In P. Leclercq, A. Heylighen, and G. Martin, editors, Proceedings
of the 14th International Conference on Computer Aided Architectural Design
(CAADFutures), pages 866-867, 2011a.

T. Strobbe, P. Pauwels, R. Verstraeten, and R. De Meyer. Metaheuristics in
architecture. In J. Van Wittenberghe, editor, Sustainable Construction and
Design, volume 2, pages 190-196. Ghent University, Laboratory Soete,
2011b.

189

T. Strobbe, P. Pauwels, R. Verstraeten, R. De Meyer, and J. Van Campen-
hout. Optimization in compliance checking using heuristics : Flemish
energy performance regulations (EPR). In G. Gundason and R. Scherer,
editors, Ework And Ebusiness in Architecture, Engineering and Construction,
pages 477-482. CRC Press/Balkema, 2012.

T. Strobbe, R. De Meyer, and J. Van Campenhout. A generative approach
towards performance-based design : using a shape grammar implemen-
tation. In R. Stouffs and S. Sariyildiz, editors, Computation and Perfor-
mance - Proceedings of the 31st eCAADe Conference, volume 2, pages 627-
633. Delft University of Technology, 2013.

T. Strobbe, P. Pauwels, R. De Meyer, and J. Van Campenhout. Design space
exploration using a shape grammar implementation. In Sixth Interna-
tional Conference on Design Computing and Cognition, pages 79-80, 2014.

T. Strobbe, R. De Meyer, and J. Van Campenhout. A semi-automatic ap-
proach for the definition of shape grammar rules. In Real time - Proceed-
ings of the 33rd eCAADe Conference, 2015a.

T. Strobbe, S. Eloy, P. Pauwels, R. Verstraeten, R. De Meyer, and J. Van Cam-
penhout. A graph-theoretic implementation of the Rabo-de-Bacalhau
transformation grammar. Artificial Intelligence for Engineering Design,
Analysis and Manufacturing, 2015b.

T. Strobbe, P. Pauwels, R. Verstraeten, R. De Meyer, and J. Van Campen-
hout. Towards a visual approach in the exploration of shape grammars.
Artificial Intelligence for Engineering Design, Analysis and Manufacturing,
2015c.

T. Strobbe, R. Verstraeten, M. Delghust,]J. Laverge, R. De Meyer, and
A. Janssens. Using a building information modelling approach for teach-
ing about residential energy use and official energy performance. In 14th
International Conference of the International Building Performance Simulation
Association, 2015d.

T. Strobbe, F. wyffels, R. Verstraeten, R. De Meyer, and J. Van Campenhout.
Automatic architectural style classification using one-class support vec-
tor machines and graph kernels. Automation in Construction, 2015e.

I. E. Sutherland. Sketchpad, A man-machine graphical communication system.
PhD thesis, Massachusetts Institute of Technology, 1963.

L. E. Sutherland. Structure in drawings and the hidden-surface problem. In
N. Negroponte, editor, Reflections on Computer Aids To Design and Archi-
tecture, New York, 1975. Petrocelli/Charter.

190

G. Taentzer. AGG: A graph transformation environment for modeling and
validation of software. In J.L. Pfaltz, M. Nagl, and B. Bohlen, editors,
AGTIVE, pages 446-453. Springer-Verlag Berlin Heidelberg, 2004.

J. Talton, L. Yang, R. Kumar, M. Lim, N. Goodman, and R. Mech. Learning
design patterns with bayesian grammar induction. In 25th annual ACM
symposium on User interface software and technology, pages 63-74, 2012.

M. Tapia. A visual implementation of a shape grammar system. Environ-
ment and Planning B, 26:59-73, 1999.

O. Teboul, I. Kokkinos, L. Simon, P. Koutsourakis, and N. Paragios. Shape
grammar parsing via reinforcement learning. In Computer Vision and Pat-
tern Recognition, 2011.

T. Tidafi, N. Charbonneau, and S. K. Araghi. Backtracking decisions within
a design process: a way of enhancing the designers thought process and
creativity. In Ann Heylighen Pierre Leclercq and Genevive Martin, edi-
tors, 14th International conference on Computer Aided Architectural Design.,
pages 573-587, 2011.

T. Trescak, M. Esteva, and I. Rodriguez. A shape grammar interpreter for
rectilinear forms. Computer-Aided Design, 44:657-670, 2012.

V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New
York, 1995.

G. Varré, A. Schiirr, and D. Varré. Benchmarking for graph transformation.
In IEEE Symposium on Visual Languages and Human-Centric Computing,
2005.

S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M. Borg-
wardt. Graph kernels. The Journal of Machine Learning Research, 11:1201-
1242, 2010.

B. Whitehead and M.Z. Eldars. The planning of single-storey layouts. Buil-
ding Science, 1(2):127-139, 1964.

S. Wolfram. A new kind of science. Wolfram Media, 2002.
R. Woodbury. Elements of Parametric Design. Taylor and Francis, 2010.

R. Woodbury. Design flow and tool flux. Architectural Design Smart, 1:
102-111, 2013.

R. Woodbury and A. Burrow. Whither design space? Artificial Intelligence
for Engineering Design, Analysis and Manufacturing, 20:63-82, 2006.

191

R. Woodbury, R. Aish, and A. Kilian. Some patterns for parametric model-
ing. In 27th Annual Conference of the Association for Computer Aided Design
in Architecture, pages 222-229, 2007.

T. A. Wortmann. Representing shapes as graphs: a feasible approach for
the computer implementation of parametric visual calculating. Master’s
thesis, Massachusetts Institute of Technology, 2013.

K. Yue. Computation-friendly shape grammars: With application to determin-
ing the interior layout of buildings from image data. PhD thesis, School of
Architecture, Carnegie Mellon University, 2009.

K. Yue and R. Krishnamurti. Tractable shape grammars. Environment and
Planning B, 45:576-594, 2013.

K. Yue and R. Krishnamurti. A paradigm for interpreting tractable shape
grammars. Environment and Planning B, 41:110-137, 2014.

	titelpg_recto_verso_Strobbe.pdf
	franse_pg_recto_Strobbe.pdf
	franse_pg_verso_Strobbe.pdf

