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SUMMARY 

Nematodes are one of the most diverse groups of organisms, have a high functional and 

taxonomical diversity, are ubiquitous distributed in high numbers, and are very successful as 

parasites. They show a high diversity in both parasitic lifestyles and possible hosts, i.e., 

invertebrates, vertebrates and plants, which reflects a high adaptability to new 

environments and an aptitude towards parasitism. Animal parasitism has arisen 

independently at least six times within the phylum (Blaxter et al. 1998; Dorris et al. 1999) 

and in secernentean nematodes, all intermediate stages between free-living saprobionts and 

obligatory parasites, i.e., completely dependent on the host during at least a part of their life 

cycle, are present (Sudhaus 2010). From an evolutionary point of view, facultative parasites, 

i.e., adaptive to a parasitic way of life when placed in such a relationship but not absolutely 

depending on it, are thought to represent the intermediate stage in the acquisition or loss of 

parasitism (Sudhaus 2010). 

Halicephalobus gingivalis, previously also referred to as Rhabditis gingivalis, 

Micronema deletrix or Halicephalobus deletrix, belongs to the family Panagrolaimidae and is 

a small (235 – 460 µm) free-living bacteriovorous nematode, which is capable of facultative 

parasitism in horses (Blunden et al. 1987; Nadler et al. 2003) and humans (Ondrejka et al. 

2010). Single cases have been described in a donkey (Schmitz and Chaffin 2004), a Grévy’s 

zebra (Isaza et al. 2000), in the scrotal skin of a bull (Georgi and Georgi 1990) and H. 

gingivalis like nematodes have been reported in the brain of a three year old black Angus 

cow (Montgomery and O'Toole 2006). Little is known about the epidemiology of H. 

gingivalis. Several possible infection routes have been described, e.g., an oral route through 

the ingestion of contaminated plant material that acts as a mechanical vector (Hermosilla et 

al. 2011), through the respiratory tract via the inhalation of nematodes (Spalding et al. 1990; 

Ruggles et al. 1993; Trostle et al. 1993; Bröjer et al. 2000), or cutaneous infections facilitated 

by recumbency (Dunn et al. 1993). After penetrating the host, the nematodes can either 

remain on the spot and cause local infections or enter the bloodstream and disseminate 

throughout the body. The haematogenous spread is supported by small parasitic granulomas 

that have occasionally been found in the walls of blood vessels, and by the occurrence of 

nematodes in the blood vessel lumina (Bröjer et al. 2000; Reiser et al. 2011). Subsequently, 

its ability for parthenogenetic reproduction enables H. gingivalis to rapidly increase in 
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number and cause massive tissue damage due to its migratory behaviour resulting in 

granulomatous inflammation of the affected organs (Pearce et al. 2001; Mandrioli et al. 

2002; Müller et al. 2008). Equine infections of H. gingivalis mainly involve the brain, kidneys, 

oral and nasal cavities, but have also been reported in the liver, eyes and bone (Blunden et 

al. 1987; Mandrioli et al. 2002; Hermosilla et al. 2011). Given the different internal organs 

that can be affected, halicephalobiasis is very difficult to diagnose and is therefore only 

rarely diagnosed ante mortem. Of the approximately 75 equine cases only two report on a 

successful treatment (Pearce et al. 2001; Müller et al. 2008).  

Although the species is categorized as bacteriovorous, only a few records of free-

living H. gingivalis have previously been reported, i.e., isolate JB128 from a vegetable 

compost heap in Riverside (California, USA) and JB043 from potting soil containing peat near 

Neustadt, Germany (Nadler et al. 2003) and even though cases of equine halicephalobiasis 

are known from most of our neighbouring countries, neither a parasitic nor a free-living 

record was ever reported in Belgium. In current study, a thorough sampling of manure heaps 

and soil at 73 equine facilities in East and West Flanders revealed the first records of free-

living H. gingivalis. Additionally, the first Belgian record of equine halicephalobiasis was 

described from a euthanized 5-year-old anorexic and lethargic Connemara mare with severe 

facial swelling and dyspnoea. Histological evaluation of the lesion revealed a granulomatous 

reaction with numerous adult and juvenile nematodes, which were morphologically and 

molecularly identified as H. gingivalis.  

The total sampling effort resulted in over 40 isolates of different origin, i.e., from 

manure heaps, compost heaps, fresh horse dung, and from the rectum of horses. All these 

isolates, complemented by three non-Belgian isolates (two free-living, one clinical), were all 

kept in culture allowing a thorough biological characterization of H. gingivalis based on a 

multidisciplinary approach. Firstly, since detailed information concerning the internal 

morphology of H. gingivalis -especially in relation to possible adaptations to its lifestyle as a 

facultative parasite- was lacking, the morphology of the intestine of H. gingivalis was 

investigated by means of transmission electron microscopy (TEM) and propidium iodide 

staining. Specimens were cultured under different conditions to determine if differences in 

ultrastructure were induced by culturing method. Although TEM analysis revealed that the 

general morphology of the intestine of H. gingivalis is similar to that of other studied free-

living nematodes (e.g., Epstein et al. 1971), unusual dichotomously and trichotomously 
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branched microvilli were observed next to finger-like cylindrical microvilli, the latter being 

the most commonly described form in nematodes. Also, three different types of secretion 

vesicles, i.e., spherical, threadlike and enlarged, globular vesicles, occurred independently 

from each other along the intestinal tract. The branching of the intestinal microvilli observed 

in H. gingivalis is likely to be a function of food consistency than of food availability. Most 

remarkable, deviations of the usual finger-like intestinal microvilli have arisen independently 

several times within the phylum, their occurrence always being in parasitic or in parasitism-

related nematodes. 

Secondly, the medical history of equine halicephalobiasis reported a regular 

treatment with common anthelmintic drugs, thereby strongly indicating that H. gingivalis 

has some sort of tolerance to these anthelmintic drugs (Boswinkel et al. 2006; Ferguson et 

al. 2008). Therefore an in vitro study was performed on the anthelmintic tolerance of both 

free-living and horse-associated Halicephalobus isolates to thiabendazole and ivermectin 

using an adaptation of the Micro-Agar Larval Development Test (Coles et al. 2006), which 

focused on egg hatching and larval development. Two closely related species, i.e., 

Panagrellus redivivus and Panagrolaimus superbus, were included as a positive control. The 

results generally showed that the anthelmintic tolerance of Halicephalobus to both 

anthelmintic drugs was considerably higher than that of the included Panagrolaimidae and, 

comparing to other studies, than that of obligatory equine parasites. The results further 

revealed a remarkable trend of increasing tolerance from fully free-living isolates towards 

horse-associated isolates, which was ascribed to possible evolutionary lineages or cryptic 

species. Additionally, H. gingivalis was proposed as an experimental tool to deepen our 

understanding of the biology of anthelmintic tolerance since in vitro anthelmintic testing 

with free-living and facultative parasitic nematodes offers the advantage of observing drug 

effect on the complete life cycle as opposed to obligatory parasites which can only be 

followed until the third juvenile stage.  

Thirdly, while maintaining H. gingivalis cultures, it became immediately apparent that 

a substantial morphological variation was present within the individual populations 

depending on cultivating temperature and general condition. Therefore, the progeny of a 

single parthenogenetic female of one isolate (WB0801) was cultured under different food 

(low and high food availability) and temperature (15, 30 and 37°C) conditions, and measured 

in different adult age groups, i.e., young adults with a developed vulva but before the onset 
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of oviposition, adults laying eggs, and old, post-reproductive adults near the end of their life 

cycle. Of 540 specimens in total, 15 morphometric characteristics and 13 indices were 

determined and subsequently analyzed using both univariate (analysis of variance) and 

multivariate (principal components and canonical discriminant analysis) techniques. The 

main results revealed that the morphometric characters most used in Halicephalobus 

identification keys had a huge variability within a single progeny, i.e., of a magnitude that 

had not been observed in nematodes before. Further, by changing the environmental 

factors, the morphometric characters were influenced to an extent that one could assign –

with seemingly ‘statistical support’– different ‘species’ of the genus to different 

subpopulations. Although stoma length, ratio V and ratio corpus/isthmus length had a low 

overall variability, ratio V was influenced by temperature and the small size and weakly 

developed posterior part of the stoma makes previously observed interspecific variation less 

than convincing (Geraert et al. 1988). Therefore, only ratio corpus/isthmus length remained 

potentially useful as a discriminating factor. 

 Finally, it was not clear whether isolates of H. gingivalis rarely and opportunistically 

infect hosts, which would be supported if no genetic differences exist between free-living 

and parasitic isolates, or whether a lineage of H. gingivalis is evolving towards equine host 

specificity, which would be supported by reciprocal monophyly of isolates from horses 

versus those from soil (Blunden et al. 1987; Nadler et al. 2003). To this end, a 

multidisciplinary study was performed combining morphological, morphometrical and 

molecular data of 17 H. gingivalis isolates, of both free-living and parasitic origin, 

complemented with 4 isolates of other species of Halicephalobus with a distinctly different 

biology. A phylogeny based on two nuclear loci (18S and D2D3 expansion segment) and two 

mitochondrial loci (COI and ND4), and on both maximum likelihood and Bayesian inference 

indicated that most Halicephalobus isolates were found both molecularly and 

morphometrically distinguishable from a distinct H. gingivalis-clade. Only for isolates within 

this H. gingivalis-clade, LSU and SSU sequence data revealed a high level of intra-genomic 

variability; next to single nucleotide polymorphisms, two polymorphic regions were 

observed with associated alterations in the secondary structure model. This has, to the best 

of our knowledge, never been described before for nematodes. Given that in Plasmodium 

the expression of two distinct types of SSU rDNA has been linked to different parasitic life 

stages (Gunderson et al. 1987; Li et al. 1994; Rogers et al. 1996), it is possible that the 
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presence of alternating life stages in H. gingivalis is the key to understanding the presence of 

the SSU heterogeneity. Hence, this trait could facilitate the survival of a single population of 

H. gingivalis in extremely different habitats, e.g., temperature ranges of 4 to 40°C 

(Discussion Chapter 3), and consequently enables it to be opportunistically parasitic. Within 

the H. gingivalis-clade, two morphological not discernible lineages were indicated reciprocal 

monophyletic by several species distinctiveness measures, revealing cryptic speciation. Most 

remarkably, all isolates originating from inside horses were within only one of these lineages 

and a phylogeny based on D2D3 sequences complemented with GenBank sequences of 

clinical isolates demonstrated a more close relation of horse-associated isolates, which 

indicates an evolution towards equine host specificity. 

 In conclusion, the present study based on a multidisciplinary approach demonstrates 

that the facultative parasitic nematode H. gingivalis has some characteristics that enable it 

to opportunistically colonize vertebrate hosts: 1) ultrastructural adaptations at the level of 

the intestine, 2) an unseen tolerance for common used anthelmintic drugs, 3) a remarkable 

temperature range, and 4) parthenogenetic reproduction. Moreover, a phylogeny based on 

multiple genes revealed two distinct evolutionary lineages within H. gingivalis of which one 

appears to be evolving towards vertebrate specific parasitism. 
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SAMENVATTING 

Nematoden zijn een van de meest succesvolle en diverse groepen van organismen. Ze 

hebben een hoge functionele en taxonomische diversiteit, zijn alomtegenwoordig verspreid 

in grote aantallen en zijn zeer succesvol als parasieten. Ze vertonen een hoge 

verscheidenheid aan parasitaire levenswijzen en mogelijke gastheren, zowel planten als 

ongewervelde en gewervelde dieren, dit resulteert vanuit hun enorme 

aanpassingsvermogen aan nieuwe omgevingen. Dierparasitisme is binnen het fylum 

minstens zes keer onafhankelijk van elkaar ontstaan (Blaxter et al. 1998; Dorris et al. 1999). 

In de “Secernentea” worden al de intermediaire stadia teruggevonden tussen vrijlevende 

saprofyten en obligate parasieten (Sudhaus 2010). Obligate parasieten zijn volledig 

afhankelijk van een gastheer tijdens een deel of de gehele levenscyclus, terwijl facultatieve 

parasieten zich kunnen aanpassen aan een parasitaire levenswijze, maar er niet noodzakelijk 

afhankelijk van zijn. Vanuit een evolutionair standpunt worden facultatieve parasieten vaak 

gezien als een tussenstadium bij het ontwikkelen of verliezen van een parasitaire 

levenswijze. 

Halicephalobus gingivalis, voorheen ook Rhabditis gingivalis, Micronema deletrix of 

Halicephalobus deletrix genoemd, behoort tot de familie van de Panagrolaimidae en is een 

kleine vrijlevende bacterie-etende nematode die facultatief parasitair kan zijn bij paarden 

(Blunden et al. 1987; Nadler et al. 2003) en mensen (Ondrejka et al. 2010). Geïsoleerde 

gevallen zijn beschreven bij een ezel (Schmitz and Chaffin 2004), een zebra (Isaza et al. 

2000), in de huid rond het scrotum van een stier (Georgi and Georgi 1990) en op H. gingivalis 

gelijkende nematoden zijn beschreven in de hersenen van een drie jaar oude Black Angus 

koe (Montgomery and O'Toole 2006). Er echter is weinig geweten over de epidemiologie van 

H. gingivalis. Er zijn verschillende mogelijke infectieroutes beschreven: langs de 

mondopening door het eten van besmet plant materiaal dat dan dienst doet als 

mechanische vector (Hermosilla et al. 2011), langs het ademhalingsstelsel door inademing 

van nematoden (Spalding et al. 1990; Ruggles et al. 1993; Trostle et al. 1993; Bröjer et al. 

2000), of door infectie langs de huid door het neerliggen van het paard (Dunn et al. 1993). 

Na het binnendringen in de gastheer laat de parthenogenetische voortplanting toe om snel 

in aantal toe te nemen, waarna de nematoden ter plaatse blijven of via het bloedvaten- of 

lymfestelsel de verschillende organen bereiken. De verspreiding via het bloed wordt 
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ondersteund door het voorkomen van nematoden in de bloedvatholte (Bröjer et al. 2000; 

Reiser et al. 2011). Doordat de nematoden doorheen het weefsel migreren ontstaan 

granulomateuze ontstekingen in de aangetaste organen (Pearce et al. 2001; Mandrioli et al. 

2002; Müller et al. 2008). Infecties bij paarden komen vooral voor in de hersenen, de nieren, 

de mond- en neusopening, maar zijn ook beschreven in de lever, de ogen en de beenderen 

(Blunden et al. 1987; Mandrioli et al. 2002; Hermosilla et al. 2011). Doordat verschillende 

organen aangetast kunnen zijn, is het zeer moeilijk een infectie met H. gingivalis vast te 

stellen waardoor de diagnose zelden ante mortem wordt gesteld. Van de ongeveer 75 

beschreven gevallen bij paarden vermelden slechts twee een succesvolle behandeling 

(Pearce et al. 2001; Müller et al. 2008).  

Hoewel de soort gekend is als bacterie-etend, waren er bij de aanvang van dit 

doctoraatsonderzoek slechts enkele meldingen van vrijlevende populaties: isolaat JB128 uit 

een composthoop in Riverside (Californië, VS) en JB043 uit teelaarde met turf nabij Neustadt 

(Duitsland, Nadler et al. 2003). Hoewel infecties met H. gingivalis bij paarden beschreven zijn 

in de meeste van onze buurlanden, waren er nog geen meldingen van parasitaire of 

vrijlevende populaties van deze soort in België. Een grondige bemonstering van mesthopen 

en grond rondom 75 Oost- en West Vlaamse maneges resulteerden in de eerste Belgische 

meldingen van vrijlevende H. gingivalis populaties. Daarnaast werd in de huidige studie 

eveneens het eerste Belgische geval van halicephalobiasis bij paarden beschreven. Dit nadat 

een 5-jaar-oude Connemara merrie aangeboden werd aan de faculteit Diergeneeskunde met 

een opvallende zwelling van het gezicht en kortademigheid. Histologisch onderzoek toonde 

een granulomateuze reactie aan met een grote hoeveelheid volwassen en juveniele 

nematoden, die morfologisch en moleculair geïdentificeerd werden als H. gingivalis. 

De totale bemonstering leverde uiteindelijk meer dan 40 H. gingivalis isolaten op van 

verschillende origine: uit compost- en mesthopen, verse paardenmest en uit meststalen 

genomen uit het rectum van een paard. Al deze isolaten, aangevuld met drie niet-Belgische 

isolaten (twee vrijlevende en één uit een infectie bij een paard) werden allemaal in cultuur 

gehouden wat, gebaseerd op een multidisciplinaire benadering, een uitgebreide biologische 

karakterisering van H. gingivalis toeliet.  

Aangezien de medische dossiers van paarden die gestorven zijn aan halicephalobiasis 

steeds weergaven dat de dieren op regelmatige basis ontwormd waren, werd een tolerantie 

voor deze medicijnen vermoed (Boswinkel et al. 2006; Ferguson et al. 2008). Daarom werd 
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er in een tweede luik van het doctoraatsonderzoek een in vitro studie uitgevoerd naar de 

tolerantie van vrijlevende en paardgeassocieerde isolaten van H. gingivalis voor 

thiabendazole en ivermectine, beide courant gebruikt bij het ontwormen van paarden, met 

behulp van een aangepaste Micro-Agar Larvale Ontwikkeling Test (Coles et al. 2006). Hierbij 

werd er vooral gekeken naar het ontluiken van de eitjes en de verdere ontwikkeling van 

juveniel tot adult. Twee nauw verwante soorten, Panagrellus redivivus en Panagrolaimus 

superbus, werden toegevoegd als positieve controle. De resultaten toonden dat de 

tolerantie van Halicephalobus voor beide ontwormingsmiddelen aanzienlijk hoger was dan 

die van de nauw verwante Panagrolaimidae en, in vergelijking met andere studies, hoger 

dan die van obligate paardparasieten. Bovendien onthulde de resultaten ook een 

opmerkelijke stijgende trend van toenemende tolerantie van vrijlevende tot 

paardgeassocieerde isolaten, wat toegeschreven werd aan de mogelijke aanwezigheid van 

evolutionaire lijnen of cryptische soorten binnen H. gingivalis. Aangezien in vitro 

experimenten met vrijlevende facultatief parasitaire nematoden toelaten het effect van 

medicijnen te testen op de volledige levenscyclus, dit in tegenstelling tot obligate parasieten 

die enkel gevolgd kunnen worden tot het derde juveniele stadium, werd H. gingivalis 

voorgesteld als een potentiële experimentele tool om inzicht te krijgen in de effecten van 

ontwormingsproducten en andere medicijnen. 

In een derde luik werd de interne morfologie van de darm van H. gingivalis 

bestudeerd met behulp van transmissie elektronen microscopie (TEM) en een propidium 

jodide kleuring om na te gaan of er morfologische aanpassingen aanwezig zijn die 

geassocieerd zouden kunnen zijn met een facultatief parasitaire levenswijze. Hierbij werden 

de nematoden onder verschillende omstandigheden gewkeekt om de invloed van externe 

omstandigheden te kunnen uitsluiten. Hoewel de TEM analyse onthulde dat de algemene 

darm morfologie van H. gingivalis gelijkend is op die van andere reeds bestudeerde 

vrijlevende nematoden (zie bijvoorbeeld Epstein et al. 1971), werden er naast cilindrische 

microvilli, die het meest beschreven zijn bij nematoden, ook dichotoom en trichotoom 

vertakte microvilli waargenomen. Ook werden drie verschillende soorten van uitscheiding 

beschreven, zijnde sferische, draadvormige en opgezwollen blaasjes, die onafhankelijk van 

elkaar gevonden werden doorheen de darm. Het vertakken van de darm microvilli kan 

mogelijk worden toegeschreven aan een verscheidenheid van de consistentie van voedsel bij 

een vrijlevende en parasitaire levenswijze. Opvallend is dat afwijkingen van normale 
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cilindrische microvilli verschillende keren in het phylum Nematoda ontstaan is en dit steeds 

in parasitaire of in aan parasitisme gerelateerde nematoden. 

Een vierde luik was gebaseerd op de observatie dat er een aanzienlijk morfologische 

variatie aanwezig was binnen individuele populaties afhankelijk van de kweektemperatuur 

en de algemene conditie van de cultuur. Nakomelingen van één parthenogenetisch vrouwtje 

van isolaat WB0801 werden gekweekt bij een verschillende hoeveelheid beschikbaar voedsel 

(weinig en veel voedsel) en bij verschillende temperaturen (15, 30, en 37°C). Vervolgens 

werden verschillende volwassen leeftijdscategorieën (jonge adulten met een ontwikkelde 

vulva maar zonder eileg, adulten in eileg, en oude, postreproductieve adulten nabij het 

einde van hun levenscyclus) morfo-metrisch opgemeten. Van de in totaal 540 specimens 

werden 15 verschillende afmetingen genomen en 13 verhoudingen berekend die vervolgens 

geanalyseerd werden met behulp van zowel univariate (analysis of variance) als multivariate 

(principal components and canonical discriminant analysis) analyse technieken. De 

belangrijkste resultaten onthulden dat de morfometrische kenmerken die doorgaans 

gebruikt worden in sleutels om soorten van Halicephalobus te identificeren allemaal een 

ongeziene mate van variatie vertonen. Door verandering van de omgevingsfactoren werden 

de morfometrische kenmerken in die mate beïnvloed dat foutief – maar met statistische 

ondersteuning- verschillende soorten van het genus zouden kunnen toegekend worden aan 

verschillende subpopulaties afkomstig van één enkel vrouwtje. Hoewel stoma lengte, de 

verhouding V en de verhouding corpus/isthmus lengte een lage algemene variatie 

vertoonden, werd verhouding V sterk beïnvloed door temperatuur, en de kleine afmeting 

van het stoma en het slecht ontwikkelde achterste deel ervan hebben dan weer tot gevolg 

niet overtuigend te zijn om verschillende soorten van het genus van elkaar te onderscheiden 

(Geraert et al. 1988). Daardoor blijkt enkel de ratio corpus/isthmus lengte weerhouden als 

potentieel bruikbaar als betrouwbaar identificatie kenmerk. 

Ten slotte was het niet duidelijk of isolaten van H. gingivalis eerder zeldzaam en 

opportunistisch gastheren infecteren of dat er een genetische lijn bestaat die evolueert naar 

gastheerspecifiek parasitisme, wat bevestigd zou kunnen worden door een afzonderlijke 

vrijlevende lijn en een parasitaire clade (Blunden et al. 1987; Nadler et al. 2003). Om hier 

klaarheid in te scheppen werd een multidisciplinaire studie uitgevoerd waarin 

morfologische, morfometrische en moleculaire data gecombineerd werden van 17 H. 

gingivalis isolaten en 4 andere soorten binnen het genus. Een gecombineerde fylogenetische 
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analyse van twee nucleaire (18S en D2D3) en twee mitochondriale merkers (COI en ND4), 

zowel gebaseerd op maximum likelihood als op Bayesiaanse analyse methoden, gaven aan 

dat de andere Halicephalobus isolaten moleculair te onderscheiden zijn van een duidelijke H. 

gingivalis-clade. Enkel voor isolaten binnen deze H. gingivalis-clade vertoonde de D2D3 en 

de 18S sequenties een hoge mate van variabiliteit binnen het genoom: naast single 

nucleotide polymorfs, werden er twee polymorfe regio’s onderscheiden in 18S, met 

geassocieerde veranderingen in de secundaire structuur. Dit werd tot op heden, voor zover 

wij weten, niet eerder beschreven bij nematoden. Aangezien bij Plasmodium de expressie 

van twee verschillende kopijen van het 18S rDNA geassocieerd werd met verschillende 

parasitaire levensfasen (Gunderson et al. 1987; Li et al. 1994; Rogers et al. 1996), is het 

mogelijk dat in de aanwezigheid van de wisselende levensfasen geassocieerd met het 

facultatief parasitaire karakter van H. gingivalis wat een aannemelijke verklaring is voor deze 

rDNA heterogeniteit. Binnen de H. gingivalis-clade bleken verder twee goed ondersteunde 

clades morfologisch en morfometrisch niet te onderscheiden maar wel duidelijke 

afzonderlijke evolutieve lijnen te zijn op basis van verschillende maatstaven voor het 

onderscheiden van soorten, wat duidt op de aanwezigheid van cryptische speciatie. Meest 

opmerkelijk is dat al de isolaten afkomstig uit paarden teruggevonden werden binnen één 

clade. Verder toont een afzonderlijke fylogenie (enkel gebaseerd op D2D3 sequenties) 

aangevuld met sequenties van klinische isolaten afkomstig van GenBank een nauwere 

verwantschap aan tussen paardgeassocieerde isolaten wat opnieuw een evolutie naar 

gastheer specificiteit aangeeft. 

Tot besluit, het huidige doctoraatsonderzoek gebaseerd op een multidisciplinaire 

aanpak demonstreert dat de facultatief parasitaire nematode H. gingivalis een aantal 

karakteristieken heeft die het mogelijk maken op opportunistische wijze gewervelde 

gastheren te infecteren: 1) ultrastructurele aanpassingen van de darm, 2) een buitengewone 

tolerantie voor courant gebruikte ontwormingsproducten, 3) een opmerkelijke 

temperatuursrange waarbij ze kunnen overleven, en 4) parthenogenetische voortplanting. 

Bovendien toont een fylogenie gebaseerd op 4 merkers de aanwezigheid aan van twee 

opvallende evolutionaire lijnen binnen H. gingivalis waarvan één lijkt te evolueren naar 

gastheer specificiteit bij zoogdieren. 
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PARASITISM IN THE PHYLUM NEMATODA 

Parasitism is a widespread evolutionary strategy that has arisen independently several times 

throughout the tree of life. Generally, in exploitative interactions between organisms, i.e., 

when one partner is benefitted and the other one experiences some form of disadvantage or 

harm, the aggressor is considered a parasite when typically one host is attacked, but not 

killed (Bush et al. 2001). Obligatory parasites are completely dependent on the host during a 

part or all of their life cycle, while organisms that are adaptive to a parasitic way of life when 

placed in such a relationship -but do not absolutely depend on it- are called facultative 

parasites. From an evolutionary point of view, facultative parasites are thought to represent 

the intermediate stage in the acquisition or loss of parasitism (Sudhaus 2010).  

Nematodes are one of the most successful and diverse groups of organisms in the 

world. They show a high functional and taxonomical diversity and are ubiquitously 

distributed in high numbers. Cobb (1914) once wrote that if all matter in the universe was 

swept away, the world and its structure of mountains, valleys, lakes and oceans would still 

be dimly recognizable by the film of nematodes that was left behind. Although most 

nematodes are free-living forms found in a wide variety of aquatic (both marine and 

freshwater) and terrestrial habitats, most research focuses on parasites of agricultural crops, 

livestock and humans and on nematodes as model organisms, e.g., Caenorhabditis elegans 

and Pristionchus pacificus. Nematodes are very successful as parasites. They show a high 

diversity in both parasitic lifestyles and diversity of possible hosts, i.e., invertebrates, 

vertebrates and plants, which reflects a high adaptability to new environments and an 

aptitude towards parasitism. Animal parasitic nematodes are of great importance, both from 

an ecological, i.e., playing a significant role in regulating the productivity of wild populations, 

and a human point of view (Anderson 1984; Blaxter 2003). They can limit agricultural 

efficiency as parasites of domestic animals and result in a high morbidity and mortality as 

human parasites (Bush et al. 2001). Most vertebrates have associated nematode parasites, 

which can exploit almost any tissue in the vertebrate body (Bundy 1997). 

It has been proposed that the earliest animal-parasitic nematodes probably were 

luminal dwellers feeding on the intestinal microflora of their host, with cutaneous 

penetration or passive ingestion as primary modes of infection (Anderson 1984). According 

to a molecular phylogenetic framework based on the SSU DNA gene such a single 
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mechanism for the evolution of parasitism seems unlikely since animal-parasitic taxa are not 

grouped in one distinct clade but occur within a radiation of free-living taxa (Dorris et al. 

1999) revealing that the acquisition of an animal parasitic mode of life has arisen 

independently at least six times within the phylum (Blaxter et al. 1998; Dorris et al. 1999). 

Additionally, there appears to be an association between invertebrate and vertebrate 

parasitism since invertebrate-pathogenic and -parasitic clades are all placed sister to 

vertebrate-parasitic clades (Dorris et al. 1999).  

Based on clade naming by Blaxter et al. (1998) and following the classification of De 

Ley and Blaxter (2002) (figure 1.1), within the class Enoplea, ‘clade I’ (i.e., subclass 

Dorylaimia) includes -next to plant-parasitic and free-living orders- the animal parasitic 

orders Trichinellida (in vertebrates), Mermithida (in arthropods, molluscs, polychaetes, 

echinoderms), Marimermithida (in deep-sea bottom-dwelling invertebrates), Muspiceida (in 

mammals), Dioctophymatida (birds and mammals), whereas ‘clade II’ (i.e., subclass Enoplia) 

does not include animal parasitic taxa. Within the class Chromadorea, three major clades are 

identified. ‘Clade III’ (i.e., suborder Spirurina) comprises only arthropod- and vertebrate-

parasitic taxa, i.e., the infraorders Ascaridomorpha (large gut roundworms of vertebrates), 

Spiruromorpha (filarial nematodes), Oxyuridomorpha (pinworms) and Rhigonematomorpha 

(millipede-gut parasites). ‘Clade IV’ (i.e., suborder Tylenchina) groups the infraorder 

Panagrolaimomorpha, encompassing -next to free-living bacteriovorous taxa- the 

vertebrate-parasitic family Strongyloididae and the entomopathogenic genus Steinernema, 

together with the plant parasitic infraorder Tylenchomorpha, and the free-living 

bacteriovorous infraorder Cephalobomorpha. In ‘clade V’ (i.e., suborder Rhabditina), the 

superfamily Strongyloidea1 include vertebrate-parasitic taxa within the mainly free-living 

infraorder Rhabditomorpha, the entomopathogenic genus Heterorhabditis, and the 

infraorder Diplogasteromorpha). 

 

                                                           
1
 Note the difference between the family Strongyloididae in clade IV (Strongyloidoidea: Panagrolaimorpha: 

Tylenchina), which contains Strongyloides spp., and the family Strongylidae in clade V (Strongyloidea: 
Rhabditomorpha: Rhabditina), which contains Strongylus spp.; a potential source of confusion. 
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Figure 1.1. Phylogeny based on molecular data of the small subunit ribosomal RNA gene. Systematic 

names are based on De Ley and Blaxter (2002); clade naming is based on Blaxter et al. (1998). 

Feeding mode, animal or plant parasitism, and vector associations are indicated by icons. Figure 

taken from Blaxter (2011). 
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The evolution towards parasitism has long been thought irreversible since it requires 

the acquisition of many novel traits (overview in Siddall et al. 1993). Additionally, obtaining a 

parasitic way of life is often related to a loss of genetic information, e.g., in prokaryotic 

obligatory intracellular parasites (Sakharkar et al. 2004) and in parasitic red algae (Hancock 

et al. 2010), due to a loss of biosynthetic pathways because the parasites scavenge essential 

molecules from their host. Therefore the reduction of genetic information has been used as 

proof of an obligatory parasitic mode of existence (Hauser et al. 2010). However, genomic 

simplification is not necessarily true for parasitic nematodes due to an often complicated life 

cycle including multiple hosts, rendering reversibility of parasitism possible in nematodes 

(Blaxter et al. 2004).  

 

NEMATODES AS EQUINE PARASITES 

Although only a few of the more than 60 possible internal parasites of horses cause 

significant health problems, they remain one of the most important problems affecting their 

health and well-being. Of all domestic livestock, horses have the largest collection of 

parasites of which the vast majority are nematodes. The most common internal parasitic 

nematodes of horses are ascarids, threadworms, pinworms, and small and large strongyles 

(Bowman and Georgi 2009). 

The ascarid species Parascaris equorum (GOEZE, 1782) YORKE AND MAPLESTONE, 1926 

primarily affects younger horses under the age of six months. Adult nematodes reside in the 

small intestine, where they can cause intestinal obstruction when worm burdens are 

numerous (Laugier et al. 2012). Damage by P. equorum is mostly caused by the migration of 

the juveniles. They penetrate the intestinal wall, disseminate hematogenously to the liver, 

heart and lungs, after which they are coughed up and ingested to mature in the intestine. 

Prognosis are good when rapidly treated. In rare cases the lungs are damaged through the 

migration of juveniles, consequently making the horse more susceptible to secondary 

bacterial pneumonia. By 2 years of age most horses develop a natural immunity against this 

parasite (Reinemeyer 2012).  
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The pinworm2 Strongyloides westeri IHLE, 1917 also primarily infects foals, causing 

diarrhoea and indigestion when present in large numbers. Species of the genus 

Strongyloides have a complex life cycle that has elements of both free-living and parasitic 

stages (Harvey et al. 1999). Parthenogenetic adult females reside in the intestine and form 

the parasitic stage. When the produced eggs pass with the faces, L1 juveniles emerge as 

chromosomally determined males or females (Harvey and Viney 2001). The male juveniles 

subsequently develop into functional, free-living males, whereas the female juveniles can 

either develop into free-living amphimictic females or develop directly into infective L3 

juveniles (Harvey et al. 2000). Because arrested juveniles become activated and migrate into 

the mammary tissue with the onset of lactation, infection generally occurs when foals suckle 

the mares’ contaminated milk (Lyons et al. 1973). Treatment consists of the administration 

of ivermectin to the mare shortly after birth or to the suckling foals (Ludwig et al. 1983).  

Adult stages of the threadworm Oxyuris equi SCHRANK, 1788 occupy the dorsal and 

descending colons of horses of all ages, however, are mostly found in young horses up to 

two-years-old. Gravid female nematodes protrude from the anus and deposit their eggs in 

the perianal region which causes irritation and itching. The infection occurs through larvated 

eggs that are ingested from the environment and hatch in the intestine, whereupon they 

develop into adults and migrate to the distal gut (Reinemeyer 2012). Additionally, the 

rubbing of the tail because of irritation may cause secondary infection of the anus, tail and 

surrounding skin. 

Equine parasites of the family Strongylidae are divided into small (subfamily 

Cyathostominae) and large strongyles. They have a direct life cycle without an intermediate 

host. All adult strongyles reside in the large intestine, where they produce eggs that are 

passed out into the horse's environment through the faces. Subsequently, the eggs develop 

into free-living infective third stage (L3) juveniles and infection occurs when contaminated 

grass, food, or water is ingested by the horse (Lyons et al. 1999; Stratford et al. 2011). There 

are three main species of large strongyles in horses, i.e., Strongylus vulgaris LOOSS, 1900, S. 

equinus MÜLLER, 1780, and S. edentatus LOOSS, 1900. Most large strongyles have a migratory 

life cycle. The juveniles penetrate the intestinal wall, migrate to the branches of the 

intestinal arteries and various organs where they can cause damage, irritation and possibly 

                                                           
2
  In British usage, which is followed here, pinworms refer to Strongyloides and threadworms refer to Oxyuris, 

whereas in US usage nematodes of the genus Enterobius (family Oxyuridae) are known as pinworms.  



G e n e r a l  I n t r o d u c t i o n  | 7 

 
 

fatal haemorrhage. Eventually, blood clots can dislodge and occlude the intestinal arteries 

causing colic, or thrombo-embolism of the arteries supplying the hind legs causing lameness. 

The bloodsucking adults can cause anemia, debilitation, and damage to the intestinal 

mucosa. There are approximately 50 equine species of small strongyles, of which about 10 

species are most commonly reported (Corning 2009). As opposed to large strongyles, 

cyathostomins have a non-migratory life cycle. Ingested juveniles penetrate the intestinal 

wall, undergo development and, subsequently, re-emerge and mature to adults in the 

intestinal lumen (Stratford et al. 2011). The penetration of the intestinal wall by the juveniles 

and the emergence of the L4 juveniles can cause considerable damage to the intestinal 

mucosa (Corning 2009). However, the maturation of the L3 juveniles can be delayed in which 

case the L3 juveniles encyst and remain in the intestinal wall for up to two years. When 

these encysted juveniles re-emerge simultaneously into the intestinal lumen in large 

numbers, which is known as ‘larval cyathostominosis’, they can cause severe damage to the 

intestinal wall leading to diarrhoea, potentially serious colic and even the death of the horse 

(Corning 2009; Bodecek et al. 2010). Although cyathostomins mostly affect young horses 

under the age of six-years-old (Reid et al. 1995), they can cause clinical disease in horses of 

any age (Corning 2009). 

 

ANTHELMINTIC RESISTANCE IN EQUINE PARASITIC NEMATODES 

The second half of the 20th century has witnessed the advent of new classes of anthelmintic 

drugs with the first benzimidazoles developed in the 1960’s, the pyrimidines (pyrantel) in the 

1970’s, ivermectin released during the 1980’s and moxidectin during the 1990’s (Nielsen 

2009). With the arrival of new drugs came a new anthelmintic program, first described by 

Drudge and Lyons (1966), which was based on the complete suppression of the parasites 

through worming every other month all year round. Such high-frequency usage of the same 

drug is, however, one of the main causes of anthelmintic resistance known today (e.g., 

Prichard et al. 1980; Martin et al. 1984; Sangster 1999; Kaplan 2004). First reports of 

resistance to benzimidazoles in equine parasites came to light in 1966 (Drudge and Lyons). 

Since then, resistance to this group of anthelmintics has been widely reported in 

cyathostomins (e.g., Lyons et al. 1999). For years, resistance seemed to be restricted to 

Cyathostominae to benzimidazoles. This changed with reports of resistance of cyathostomes 
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to other anthelmintic drugs such as pyrantel (e.g., Chapman et al. 1996; Lyons et al. 1999; 

Tarigo-Martinie et al. 2001), of large strongyles to benzimidazoles (Brady and Nichols 2009) 

and of Parascaris equorum to ivermectin and moxidectin (e.g., Boersema et al. 2002; Edward 

and Hoffmann 2008; Reinemeyer 2009; Veronesi et al. 2009; Laugier et al. 2012). Today, 

reports of anthelmintic resistance of all important equine parasites to at least one class of 

anthelmintic drug have been published (Reinemeyer 2012). 

 

NEMATODES AS FACULTATIVE PARASITES OF MAMMALS 

In secernentean (i.e., class Chromadorea) nematodes, all intermediate stages between free-

living saprobionts and obligatory parasites are present, i.e., those living in close relationship 

with a host, those capable of living temporarily inside a host, and those that are partially or 

facultative parasitic (Sudhaus 2010). Following are the most frequently occurring facultative 

parasitic nematodes of vertebrates that belong to the order Rhabditida, which includes the 

research organism. Diploscapter coronatus (COBB, 1893) COBB, 1913 (Rhabditidae, order 

Rhabditida) is a cosmopolitan and free-living species that has first been described from 

decaying banana roots in Fiji and generally reproduces parthenogenetically (Lahl et al. 2006). 

D. coronatus has been described as an occasional facultative parasite of humans as it has 

been reported in the urinary sediment of an old Japanese woman with a severe kidney 

infection (Yokogawa 1936), in the stomach of nine people who were diagnosed with low 

levels of hydrochloric acid (Chandler 1938), in the faces of a 73-year-old Thai woman 

(Watthanakulpanich et al. 2005) and of a 61-year-old Iranian man (Athari and Mahmoudi 

2008) who had both developed gastrointestinal discomfort including diarrhoea. Additionally, 

D. coronatus has been reported from necrotic nodules in the skin of snakes (Sabu et al. 

2002). Generally, an infection with D. coronatus causes limited discomfort and is easily 

overcome with anthelmintic drugs.  

A second example, Pelodera (Rhabditis) strongyloides (SCHNEIDER, 1860) SCHNEIDER, 

1866, also belonging to the order Rhabditida, is a small free-living inhabitant of decaying 

organic matter occasionally causing significant dermatitis in several mammalian species, 

including cattle, swine, dogs, sheep and horses (Bowman and Georgi 2009). Additionally, 

four human infections have been reported in an 11-year-old girl (Pasyk 1978), a six-month-

old infant (Ginsburg et al. 1984), an 18-year-old male (Jones et al. 1991) and a 20-year-old 
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male (Tanaka et al. 2004), all showing varying degrees of dermatitis. Although sometimes 

difficult, infections have always been treatable with ectoparasiticides (Tanaka et al. 2004).  

The final example, Halicephalobus gingivalis (STEFAŃSKI, 1954) ANDRÁSSY, 1984, is a 

free-living bacteriovorous panagrolaimid which is a known facultative parasite, especially of 

horses. It can be considered the most important of the facultative parasitic nematodes due 

to the high mortality rate it causes in both horses and humans. Since this species is our 

research organism, it will be introduced more thoroughly below. 

 

 

INTRODUCTION TO THE RESEARCH ORGANISM  

THE GENUS HALICEPHALOBUS 

The genus Halicephalobus TIMM, 1956 belongs to the family Panagrolaimidae, which is 

placed in ‘Clade IV’ (Blaxter et al. 1998; De Ley and Blaxter 2002). The genus originally 

consists of 11 species and is morphologically characterized by a short body, a tuboid stoma 

narrowing at the posterior end, a pharynx consisting of a corpus with a median bulb, an 

isthmus and a terminal bulb with valves, and a monodelphic-prodelphic female reproductive 

system which is usually dorsally reflexed (fig. 1.2). Males have never been described in any 

of the species, suggesting that they all reproduce parthenogenetically. Halicephalobus is a 

cosmopolitan genus, which is known for its wide environmental range, i.e., in compost, 

humus, soil, rotten wood, in water enclosures in mines up to approximately 1 km 

belowground, and in association with insects and chelicerates (table 1.1). Especially the 

facultative parasitic behaviour of H. gingivalis, which is bacteriovorous when free-living, is 

remarkable. 

The genus includes species which were originally described as Phytorhabditis 

palmaris LORDELLO AND OLIVEIRA, 1963, Cephalobus (Tricephalobus) similigaster ANDRÁSSY, 1952, 

Halicephalobus limuli TIMM, 1956, Micronema minutum KÖRNER, 1954 and Rhabditis gingivalis 

STEFAŃSKI, 1954. Since the oldest available genus name Micronema is a homonym of a genus 

of sheatfishes (Bleeker 1858 in Blunden et al. 1987), Halicephalobus was proposed by 

Andrássy (1974) to classify these species. 
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Figure 1.2. Morphological characterizations of Halicephalobus. a. Head region 

showing the tuboid stoma (small arrow), different parts of the pharynx, and the 

position of the nerve ring (large arrow), i = intestine; b. Monodelphic-prodelphic 

female reproductive system with dorsally reflexed ovary (asterisk). Position of the 

ventral vulva is indicated (arrowhead). Scale bars = 10 µm. 

The species of the genus have very few discriminating morphologic traits. H. 

laticauda has a broad tail with distinct inner sclerotisations at the tip (Geraert et al. 1988), 

whereas the reproductive system of H. mephisto is not dorsally reflexed (Borgonie et al. 

2011), as opposed to all other species of the genus. Of the remaining species, four have a 

distinctly longer tail, i.e., H. minutus, H. parvus, H. similigaster and H. persicus, and one has a 

distinctly shorter tail, i.e., H. brevicauda. The four other species, i.e., H. gingivalis, H. 

intermedius, H. limuli, and H. palmaris, have a similar morphology and are delineated based 

only on slight morphometrical differences. These characteristics show a relatively high 

intraspecific variation which may surpass species boundaries (Geraert et al. 1988). Further, 

* 
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H. minutus and H. parvus were proposed as junior synonyms of H. similigaster based on 

overlapping morphometrical characters (Köhler 2011). A thorough revision of the genus 

appears necessary. 

 

HALICEPHALOBUS GINGIVALIS 

Halicephalobus gingivalis, previously also referred to as Rhabditis gingivalis, Micronema 

deletrix or Halicephalobus deletrix, is a small (235 – 460 µm) free-living bacteriovorous 

nematode, which is capable of facultative parasitism in horses (Blunden et al. 1987; Nadler 

et al. 2003) and humans (Ondrejka et al. 2010). Single cases have also been described in a 

donkey (Schmitz and Chaffin 2004) and a Grévy’s zebra (Isaza et al. 2000), in the scrotal skin 

of a bull (Georgi and Georgi 1990), and H. gingivalis-like nematodes have been reported in 

the brain of a three-year-old black Angus cow (Montgomery and O'Toole 2006). The species 

was first described as Rhabditis gingivalis STEFAŃSKI, 1954 as an inhabitant of a tumour in the 

gingiva of a horse. Anderson and Bemrick (1965) described a similar tumourous inclusion of 

the nares of a horse and proposed the name Micronema deletrix, because they considered 

the description of Stefański unsatisfactory and claimed the species a ‘species inquirenda’. 

Andrássy (1974) subsequently synonymised the two species under the valid genus name 

Halicephalobus and assigned it the oldest species epithet, i.e., ‘gingivalis’. However, H. 

deletrix is still often wrongfully used. 

Little is known about the epidemiology of H. gingivalis. Many possible infection 

routes have been described such as an oral route through the ingestion of contaminated 

plant material that acts as a mechanical vector (Hermosilla et al. 2011), or through the 

respiratory tract via the inhalation of nematodes (Spalding et al. 1990; Ruggles et al. 1993; 

Trostle et al. 1993; Bröjer et al. 2000). Other possibilities are infection through the gingiva, 

cutaneous infections through entry of free-living specimens facilitated by recumbency (Dunn 

et al. 1993) or open wounds, or infections via the oral cavity by first colonizing ingesta 

embedded in the gums and subsequently penetrating lacerations of the buccal mucosa, 

thereby invading the mandible or maxilla (Anderson et al. 1998; Ferguson et al. 2008). 

Halicephalobiasis is only rarely diagnosed ante mortem (Payan et al. 1979; Dunn et al. 1993; 

Trostle et al. 1993; Pearce et al. 2001; Müller et al. 2008). The geographical distribution of 

the equine infections further reveals that the species is cosmopolitan (table 1.2, figure 1.3). 
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After invading the host, the nematodes can either remain on the spot and cause local 

infections, such as cutaneous swelling or anomalies (Payan et al. 1979; Dunn et al. 1993; 

Pearce et al. 2001; Müller et al. 2008), or enter the bloodstream or lymphatic system and 

disseminate throughout the body. The haematogenous spread is supported by small 

parasitic granulomas that have occasionally been found in the walls of blood vessels, and by 

the occurrence of nematodes in the blood vessel lumina (Bröjer et al. 2000; Reiser et al. 

2011), whereas the affected lymph nodes confirm the involvement of the lymphatic system. 

Both haematogenous and lymphatic transport of nematodes would explain the often 

disseminated nature of H. gingivalis infections and the high variability of organs that can be 

affected. 

Equine infections of H. gingivalis have mostly been described from different parts of 

the central nervous system, i.e., all regions of the brain, nerves and the spinal cord. Renal 

infections and infections of the prepuce, the lymph nodes, and the oral and nasal cavities 

also occur frequently, whereas only occasional infections have been reported in the liver, 

heart, myocardium, lungs, optic nerve, eyes, testicles, mammary glands, stomach and bone, 

i.e., mandible, maxilla, femur, humerus and nasal bones. In case of renal or testicular 

involvement, juvenile nematodes have been detected in the urinary sediment or in the 

semen (Kinde et al. 2000). Additionally, evidence of prenatal, perinatal or transmammary 

transmissions of the infection between mares and their foals has been reported. The first 

case reports on two half sibling foals, born a year apart, which both died within three weeks 

after birth (Spalding et al. 1990). In the second case, a foal born from a mare with a known 

mammary gland infection of H. gingivalis died of halicephalobiasis three weeks after birth, 

whereas the mare only perished from a disseminated infection approximately one year later 

(Wilkins et al. 2001).  

Of the approximately 75 equine cases only two have reported a successful treatment (Pearce 

et al. 2001; Müller et al. 2008), and two cases fail to report further detail on the fate of the 

horse (Payan et al. 1979; Dunn et al. 1993), while the other infections were lethal. Strikingly, 

the medical history of the infected horses reveals a regular treatment with common 

anthelmintic drugs, thereby indicating that H. gingivalis may have some sort of resistance to 

these medicines (Boswinkel et al. 2006; Ferguson et al. 2008). 



 

 

 

Table 1.1 Halicephalobus species list.  

*Synonym of H. gingivalis (Andrássy 1974); ‡ Synonym of H. similigaster (Köhler 2011). 

 

 

 

 

 

 

Species  Environment  Occurrence 

H. brevicauda  (Mavljanov, 1976) Andrássy, 1984  soil  Uzbekistan 
H. deletrix*  (Anderson and Bemrick, 1965) Andrássy, 1974  tumourous inclusion in nares of horse  United States 
H. gingivalis  (Stefański, 1954) Andrássy, 1984  compost, facultative parasitic in horses  cosmopolitan 

H. intermedius  (Pokrovskaja, 1964) Andrássy, 1984  gall on the roots of cucumber plant  Russia 
H. laticauda  Geraert, Sudhaus, Lenaerts and Bosmans, 1988  water supply in mine (600 m deep)  Belgium 
H. limuli  Timm, 1956  in association with chelicerates (Limulus)  Bangladesh 
H. mephisto  Borgonie, Garcia-Moyano, Litthauer, Bert, Bester,   water enclosure in mine (1.3 km deep)  South-Africa 

 
 van Heerden, Moller, Erasmus and Onstott, 2011  

 
 

 H. minutus‡  (Körner, 1954) Andrássy, 1974  moulder of pine and plane tree  Germany 
H. palmaris  (Lordello and De Oliveira, 1963) Andrássy, 1974   dead wood of imperial palm  Brasil 
H. parvus‡  (Körner, 1954) Andrássy, 1974  moulder of oak; gnarl of lime tree  Germany 
H. persicus  Shokoohi, Abolafia and Zad, 2007  soil containing humus of pine and plane tree  Iran 

H. similigaster  (Andrássy, 1952) Andrássy, 1974  dark brown water in tree stump;  Hungary; 

 
 

 
 dead wood live beech tree  Germany 
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Table 1.2. Chronological overview of all described infections of H. gingivalis in horses, humans, and other vertebrates; 

the country of origin of the case, the principal organs affected, and the reference of the clinical description. 

  Origin Principal organs affected  Reference 

horse Poland head, gingiva Stefański 1954 

 
United States  head, maxilla and maxillary sinuses Anderson and Bemrick 1965;  

   
Johnson and Johnson 1966 

 
United States  brain and meninges Stone et al. 1970 

 
Netherlands brain, meninges, kidneys, lymph nodes, maxilla, nasal cavity Linde-Sipman and Gruys 1970 

 
Egypt brain and cervical spinal cord Ferris et al. 1972 

 
United States  brain and kidneys Rubin and Woodard 1974 

 
United States  brain Jordan et al. 1975 

 
United States  brain, cervical spinal cord, meninges and pituitary gland Powers and Benz 1977 

 
United States  brain, pituitary gland, kidneys, cervical spinal cord Alstad et al. 1979 

 
United Kingdom brain, kidneys, heart Khalil et al. 1979;  

   
Ingram and Khalil 1980 

 
Colombia prepuce (no detail on fate of horse) Payan et al. 1979 

 
Switzerland brain, renal lymph node, lung, kidneys Pohlenz et al. 1981 

 
Netherlands head, maxilla, premaxilla, mandible, brain, kidneys Keg et al. 1984 

 
United States  mandible, mandibular lymph nodes Cho et al. 1985 

 
Japan brain Yoshihara et al. 1985 

 
United Kingdom brain, meninges, kidneys, wall of arterioles Blunden et al. 1987 

 
United States  cerebral spinal fluid, brain, meninges Darien et al. 1988 

 
United States  cerebral spinal fluid, brain, meninges Darien et al. 1988 

 
Italy  kidneys Marocchio and Mutinelli 1988 

 
United States  femur, stomach, lungs, kidneys, adrenal gland, lymph nodes Simpson et al. 1988 

 
Philippines  kidneys 

Alejandro-Matawaran and 
Peneyra 1989 

 
Germany kidneys Liebler et al. 1989 

 
Canada  kidneys Chalmers et al. 1990 

 
United States brain, spinal cord, meninges Spalding et al. 1990 

 
United States brain  Spalding et al. 1990 

 
United States  kidneys, brain, meninges, lungs Buergelt 1991 

 
Scotland kidneys, brain, meninges Angus et al. 1992 

 
United States prepuce (no detail on fate of horse) Dunn et al. 1993 

 
Austria brain, meninges Reifinger 1993 

 
United States kidneys, mandible, lungs, brain, meninges Ruggles et al. 1993 

 
Germany  kidneys Schelz 1993 

 
United States cerebellum, lymph nodes, maxilla, nasal sinuses Trostle et al. 1993 

 
United States brain, optic chiasm, eye, kidney Rames et al. 1995 

 
United States humerus Kreuder et al. 1996 

 
Italy brain Cantile et al. 1997 

 
Germany  gingiva, maxilla Teifke et al. 1998 

 
Ireland  brain Weaver et al. 1999 

 
Norway  kidney, brain, meninges, lungs, pericardium and arterial wall Aleksandersen et al. 2000 

 
Norway  kidney, brain, meninges and maxilla Aleksandersen et al. 2000 

 
Norway  kidney, brain, meninges, uvea, retina and optic nerve Aleksandersen et al. 2000 

 
Norway  kidney, brain and meninges Aleksandersen et al. 2000 
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Table 1.2 Continued 
 

 
Origin Principal organs affected Reference 

 
Canada  brain, mandible Bröjer et al. 2000 

 
United States  cerebellum, optic chiasm, kidney Kinde et al. 2000 

 
United States  brain, testicle Kinde et al. 2000 

 
Austria  kidneys, lymph nodes, eye Majzoub et al. 2000 

 
Austria  kidney, lymph nodes, spinal cord Majzoub et al. 2000 

 
Ireland  kidneys  Sturgeon and Bassett 2000 

 
Austria kidneys, central nervous system, eye Wlaschitz et al. 2000 

 
Germany  cerebellum, kidney Wollanke et al. 2000 

 
United States spinal cord, meninges, nerves Johnson et al. 2001 

 
Canada  in a mass above the left eye (horse survived) Pearce et al. 2001 

 
United States  mandible Snider et al. 2001 

 
United States  brain, lungs Wilkins et al. 2001 

 
United States  brain, cervical spinal cord, mammary gland, kidney Wilkins et al. 2001 

 
Germany kidneys, lymph nodes, brain and spinal cord Grosche et al. 2002 

 
Italy  brain Mandrioli et al. 2002 

 
Japan  kidney, perirenal lymph nodes, meninges and brain Shibahara et al. 2002 

 
Japan kidney, brain, cervical lymph nodes Takai et al. 2005 

 
Netherlands kidney, uvea, optic nerve Boswinkel et al. 2006 

 
United States cerebellum Bryant et al. 2006 

 
Japan kidney, brain, perirenal lymph nodes Akagami et al. 2007 

 
Brasil brain and meninges Vasconcelos et al. 2007 

 
Canada mandible, kidney, heart, brain, pituitary gland Ferguson et al. 2008 

 
Switzerland prepuce (horse survived) Müller et al. 2008 

 
Czech Republic brain Halouzka et al. 2010 

 
Costa Rica  kidneys and brain Berrocal and Oliveira 2011 

 
Honduras kidneys Berrocal and Oliveira 2011 

 
Iceland cerebellum Eydal et al. 2012 

 
Iceland cerebellum, brain stem, meninges and cervical spinal cord Eydal et al. 2011 

 
Austria brain, spinal cord, blood vessel walls, heart, kidneys Reiser et al. 2011 

 
Canada kidneys, perirenal lymphnodes, lungs Sponseller et al. 2011 

 
France maxilla, kidneys, aorta wall Deniau et al. 2012 

 
Italy brain Di Francesco et al. 2012 

 
Brasil cerebellum, thalamus, brain stem and meninges de Sant'Ana et al. 2012 

 
United States kidneys, perirenal lymph nodes, brain Umlauf et al. 2012 

 
United States abdominal aorta, kidneys Rodriguez et al. 2013 

zebra United States kidneys, heart, eyes, uterus, lymph nodes Isaza et al. 2000 

donkey United States Kidney (survived after resection affected kidney) Schmitz and Chaffin 2004 

cattle United States scrotal skin bull Georgi and Georgi 1990 

 
United States brain  Montgomery, O'Toole 2006 

human Canada brain, meninges, spinal cord Hoogstraten and Young 1975 

 
United States brain, meninges Shadduck et al. 1979 

 
United States brain, blood vessels, liver, myocardium Gardiner et al. 1981 

  United States brain Ondrejka et al. 2010 



 

 

 

Figure 1.3. Geographical distribution of equine and human infections of Halicephalobus gingivalis, which are listed in table 1.2. Given within each balloon is 

the number of described cases for each country. 
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The difficulty in diagnosing halicephalobiasis lies in the lack of specific clinical 

symptoms when different internal organs are affected, as a result of which diagnosis is often 

only made post-mortem. The migration of the nematodes through the tissue causes 

proliferative, firm, grey-white granulomatous lesions (Johnson et al. 2001). The histological 

findings include replacement of normal tissue architecture by dens collagen and fibroblasts 

with infiltration of tissue by lymphocytes, plasma cells, epitheloid macrophages, 

multinucleate giant cells, eosinophils, and intralesional juvenile and adult nematodes 

(Johnson et al. 2001).  

Several other nematode species can cause a similar kind of inflammation in horses. 

Strongyloides sp. and Pelodera strongyloides can occasionally infect the horse’s skin causing 

granulomatous lesions. They are, however, easily differentiated from H. gingivalis by a 

distinctly different morphology and/or by the absence of adults and eggs (Dunn et al. 1993). 

Further, Cephalobus sp. has been reported from verminous mastitis in a mare (Greiner et al. 

1991), and can be differentiated from H. gingivalis by its blunt tail, different shape of stoma, 

different ratios of pharynx, and presence of males (Dunn et al. 1993). Further, 

encephalomyelitis caused by the migration of parasites is a rare, yet important cause of 

neurological disease in horses. Besides H. gingivalis, also Strongylus vulgaris, S. equines, 

Angiostrongylus cantonensis, Setaria spp. and Draschia megastoma have been identified 

from the equine central nervous system (CNS) (Tanabe et al. 2007).  

Depending on the affected organs, halicephalobiasis should be considered in case of 

ocular disease, granulomatous nephritis or renal failure, acute neurological signs, especially 

in conjunction with cutaneous, osteolytic, or renal sings (Umlauf et al. 2012), and 

radiographies show aggressive osteolytic changes in the mandible or maxilla (Ruggles et al. 

1993). However, a clinical examination of granulomatous infections followed by 

histopathological examinations are necessary to establish a final diagnosis (Müller et al. 

2008). 

The four reported human cases of halicephalobiasis were all fatal within three weeks 

after the onset of clinical symptoms. Human infection probably occurs through wounds or 

the oral cavity, after which the nematodes probably disseminate haematogenously and 

reproduce within the tissue. In humans, H. gingivalis shows a predilection for the central 

nervous system, where it causes a massive inflammatory response, generally resulting in 

fever, neurological signs, mental confusion, headache, coma and finally death. The first case 
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(Hoogstraten and Young 1975) reports on a five-year-old boy who fell into a manure 

spreader, which resulted in deep lacerations contaminated with manure. Eighteen days after 

the accident the boy developed a fever and began to exhibit lethargy. He died 24 days after 

the farming accident and was clinically diagnosed with meningoencephalitis of unknown 

aetiology. Post-mortem examination revealed adult and juvenile nematodes in his brain. In 

the second case (Shadduck et al. 1979), involving a 47-year-old white male, no route of 

infection was determined. The man was a small ranch owner, who had little to no contact 

with his horses. Upon admission to the hospital he complained of acute pain in his leg and 

showed mental confusion, which progressed to lethargy and finally death 19 days later. The 

third case (Gardiner et al. 1981) reports on a 54-year-old African American male who 

entered the hospital for diarrhoea and sudden weight loss. He had a fever and appeared 

disoriented. He died of meningoencephalitis caused by H. gingivalis 11 days after admission. 

The infection is believed to have occurred through the decubitus ulcers that were present on 

each buttock. The final case describes a case of meningoencephalomyelitis caused by H. 

gingivalis in a 39-year-old female (Ondrejka et al. 2010). She was admitted with an acute 

onset of headache, altered mental status and neck pain. The route of entry is unknown since 

the woman had no known contact with horses and never did much gardening.  

The absence of males in both free-living isolates and in examined tissue suggests that 

this species always reproduces parthenogenetically, i.e., without males (Stefański 1954; 

Andrássy 1984; Akagami et al. 2007), which contradicts the hypothesis that H. gingivalis has 

a separate, gonochoristic cycle when free-living (Blunden et al. 1987). More accurately, since 

there are no indications of a specialized lifecycle, the host tissue can be interpreted as an 

alternative habitat in which H. gingivalis is able to survive and reproduce efficiently.  

It is not clear whether isolates of H. gingivalis rarely and opportunistically infect 

hosts, which would be supported if no genetic differences exist between free-living and 

parasitic isolates, or whether a lineage of H. gingivalis is evolving towards equine host 

specificity, which would be supported by reciprocal monophyly of isolates from horses 

versus those from soil (Blunden et al. 1987). The phylogenetic relationship between two 

free-living isolates and four clinical isolates was investigated based on their large subunit 

(LSU) rDNA sequences and provided evidence for the existence of distinct genetic lineages 

(Nadler et al. 2003). However, these genetic lineages did not reflect that one of them is 

evolving towards mammalian host specificity, thus confirming the expectation that free-
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living isolates are capable of equine infections. Furthermore, two H. gingivalis isolates from 

fatal equine cases in Ontario and Tennessee proved genetically homogeneous, while two 

fatal equine cases, both from Tennessee, showed 18 fixed differences in their LSU sequences 

(Nadler et al. 2003). This shows that genetically homogeneous isolates are not necessarily 

restricted in geographical distribution, and single geographic regions may contain a diverse 

pool of isolates capable of equine infection (Nadler et al. 2003). However, only one locus was 

used for the inference of the trees and data from pooled individuals were used. To fully test 

the hypothesis of cryptic species within the morphotype H. gingivalis, a multilocus 

phylogenetic analysis based on single individuals and supported by a detailed study on the 

morphology of the indicated lineages is necessary (Nadler et al. 2003). 

  



20 | C H A P T E R  I   

 

 
 

RESEARCH AIMS  

The general aim of this study is to provide an improved insight in the evolutionary history 

and general biology of the facultative parasitic nematode Halicephalobus gingivalis. 

Following research questions were formulated:  

- i. Infections with H. gingivalis have been described in many of our surrounding 

countries, but does the species occur in Belgium? 

- ii. Considering the high mortality rate it causes in animals treated by anthelmintics, 

does it show resistance to commonly used anthelmintic drugs?  

- iii. Does H. gingivalis have morphological adaptations on an ultrastructural level that 

enables its facultative parasitic life style? 

- iv. Since morphometrical characteristics are very important in Halicephalobus species 

delineation, what is the degree of intraspecific morphometrical variability within the 

progeny of a single female? 

- v. Do clinical and free-living isolates form separate phylogenetic lineages, i.e., is H. 

gingivalis merely an opportunistic invader or is it evolving towards parasitism in 

mammalian hosts? And do morphological and morphometrical data corroborate 

these results? 

 

OUTLINE OF THE THESIS 

The thesis is divided into seven chapters. Chapter I encompasses a general introduction to 

the research organism Halicephalobus gingivalis and to (facultative) animal parasitism in 

nematodes in general. 

Chapters II to VI represent the actual results and are designed in accordance with 

publications in SSCI ranked journals, i.e., containing a specific introduction, a materials and 

methods section, a results section and a specific discussion:  

 

- Chapter II is divided into two parts. The first part describes an extensive sampling in 

East- and West-Flanders which resulted in the first record of free-living H. gingivalis 

in Belgium and lists all Halicephalobus isolates used in this thesis and their origin. The 

second part presents the first Belgian case of equine halicephalobiasis.  
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- In Chapter III, the resistance or tolerance of H. gingivalis to the commonly used 

anthelmintic drugs ivermectin and thiabendazole is analyzed using a modification of 

the Micro-Agar Larval Development test. Herein the suitability of H. gingivalis as an 

additional model for anthelmintic resistance testing is discussed  

 

- Chapter IV comprises the results of a study on the morphology of the intestine of H. 

gingivalis using transmission electron microscopy and propidium iodine staining, in 

order to investigate possible morphological adaptations to a facultative parasite 

lifestyle. Specimens cultured under different conditions were included to determine 

if the ultrastructural morphology is influenced by culturing method. Finally, the 

relationship of morphological adaptations of the microvilli to parasitism in 

nematodes is discussed. 

 

- Chapter V encompasses the results of a study on the intraspecific morphometrical 

variation in H. gingivalis. In order to understand the remarkable variation within one 

species, the progeny of a single female was cultured under varying temperature and 

food conditions. The morphometrical characters of 540 specimens were analyzed 

using both univariate (analysis of variance) and multivariate (principal components 

and canonical discriminant analysis) techniques. An attempt is made to forward 

morphometrical characters that are useful for Halicephalobus species delineation. 

 

- In Chapter VI, H. gingivalis isolates of different origins, both free-living and parasitic, 

were used together with at least two other species of the genus in an integrative 

approach to disentangle their mutual relation. To this end, a thorough phylogenetic 

analysis was performed using both nuclear (18S and 28S) and mitochondrial (COI and 

ND4) markers. Subsequently, morphological (both light and scanning electron 

microscopic data), morphometrical characteristics and biological characteristics were 

mapped on the obtained molecular framework. The evolutionary lineages are 

discussed in relation to parasitism. 
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Finally, Chapter VII concludes the thesis with a general discussion of the results and 

formulates future research prospects. 

 

  

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II 

SEARCHING FOR A NEEDLE IN A HAYSTACK: 

FIRST RECORD OF HALICEPHALOBUS GINGIVALIS IN BELGIUM 

 

 

 

 

 

 

 

Part II modified from: 

FONDERIE P., DE VRIES C., VERRYKEN K., DUCATELLE R., MOENS T., VAN LOON G., BERT W. (2013). Maxillary 

granulomatous inflammation caused by Halicephalobus gingivalis (Nematoda) in a Connemara mare 

in Belgium. Journal of Equine Veterinary Science 33 (3), 186-190. 
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PART I 

FIRST RECORD OF FREE-LIVING HALICEPHALOBUS GINGIVALIS IN BELGIUM 

 

ABSTRACT 

Halicephalobus gingivalis is a free-living bacterivorous nematode which is also known as a facultative 

parasite of primarily horses. Although equine cases of halicephalobiasis have been reported for most 

neighbouring countries of Belgium, there had never been reports of the species in Belgium. 

Presented here are the results of a thorough sampling of 75 horse riding schools in West and East-

Flanders, which led to the first report of free-living H. gingivalis in Belgium. Several isolates of 

different origin (i.e., manure, compost and soil) were brought into culture for future research on the 

biology of this nematode species. 
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INTRODUCTION 

The distribution of infections with H. gingivalis (table 1.2, Chapter I) indicates that the 

species is cosmopolitan. However, although this species is categorized as bacteriovorous, 

only a few records of free-living H. gingivalis have previously been reported, i.e., isolate 

JB128 from a vegetable compost heap in Riverside (California, USA) and JB043 from potting 

soil containing peat near Neustadt, Germany (Nadler et al. 2003).  

Even though equine infections with H. gingivalis are known from most of our 

neighbouring countries, i.e., France, United Kingdom, Netherlands and Germany (table 1.2, 

Chapter 1), neither a parasitic nor a free-living record has ever been reported in Belgium. 

Presented here are the first records of free-living H. gingivalis in Belgium established by 

taking samples of manure heaps and soil at 73 equine facilities in East and West Flanders. 

The initial sampling was followed by a more directed sampling at the facilities that tested 

positive for the presence of the species. Additionally, an overview is given of the origin of all 

Halicephalobus spp. isolates used throughout the following chapters.  

 

MATERIALS AND METHODS 

SAMPLING 

Since H. gingivalis is known as a facultative parasite of horses, sampling was performed 

especially in environments associated with horses. These sites, which were commercial 

enterprises, were sampled with permission of the owners. Initially, both soil samples and 

samples from manure heaps were taken. Sampling was done by means of bulk samples, 

which were composed of 10 individual samples of approximately 100 g each. The bulk 

samples were homogenized, whereafter three subsamples of approximately 50 g were taken 

for nematode extraction. The remainder of the samples was stored at 4°C.  

 

SAMPLE ANALYSIS  

Preliminary analyses indicated that more traditional extraction methods (e.g., adaptation of 

the Baermann-funnel, extraction by flotation using Ludox) have a low success ratio in the 

retrieval of H. gingivalis from life samples (data not shown). Therefore, and since its 

preference for higher temperatures, the extraction of the nematodes was done by 



26 | C H A P T E R  I I  

 

 
 

incubating the samples at 30°C on part of a Petri dish containing 2% bacteriological agar 

(Oxoid Ltd., Hampshire, UK) enriched with cholesterol (final concentration 1 mg ml-1). If 

present in the sample, specimens of the species became visible within a few days as they 

migrated out of the sample onto the agar. As such, the detection of H. gingivalis is possible 

even if only a limited number of eggs or specimens of the species are present in the 

incubated subsample. The plates were closed with Parafilm® M Sealing film (Pechiney Plastic 

Packaging, Chicago, USA) to avoid dehydration and were checked daily. When putative 

Halicephalobus specimens were observed using a stereomicroscope (Leica MZ95), they were 

picked up and mounted for identification.  

 

NEMATODE IDENTIFICATION  

Specimens were identified using a light microscope (Olympus BX 51 DIC, Olympus Optical, 

Tokyo, Japan) and identified as the morphospecies Halicephalobus gingivalis using current 

identification keys for the genus (Andrássy 1984; Geraert et al. 1988; Shokoohi et al. 2007). 

Although considerable mutual sequence differences in the D2D3 expansion region of LSU 

rDNA (28S) have been observed between isolates (Chapter 3), a thorough molecular analysis 

based on 4 markers (Chapter 6) revealed that all isolates but one (i.e., WB0701) belong to a 

highly supported H. gingivalis-clade. Therefore, all isolates established within the framework 

of current research were appointed as H. gingivalis3, with the exception of isolate WB0701 

which was appointed H. cf. gingivalis (Chapter 6). 

 

CULTURE OF THE NEMATODES 

When specimens were positively identified as H. gingivalis, one individual was taken to start 

a culture. No males have ever been observed, confirming that this species reproduces 

parthenogenetically (Andrássy 1952; Stefański 1954; Akagami et al. 2007). Hence, each 

isolate represents the progeny of a single female. Cultures are maintained on 1% agar 

enriched with cholesterol (final concentration 1 mg ml-1), with a bacterial lawn of Escherichia 

coli OP50 as a food source and generally handled as described by Brenner (1974).  
                                                           
3
 Although the isolates found at the beginning of this PhD morphologically resembled H. gingivalis, their 

relationship was not yet clear based on a considerable D2D3 sequence difference. Therefore, they were 
referred to and published as Halicephalobus confer (cf.) gingivalis until their relationship was clarified based on 
a multi-gene phylogeny (Chapter 6), causing some discrepancy between published papers and the present 
thesis. 



 

 

 

Figure 2.1. Map of East and West Flanders, with indication of the sampling sites. Red indicates sampling sites that tested negative for the presence of H. gingivalis in 

both soil and manure sample, whereas yellow or green indicates the presence of H. gingivalis in soil or manure samples, respectively. Blue indicates the location of 

compost heaps, which tested positive for the presence of H. gingivalis. Orange indicates the origin of the first clinical case in Belgium in the province of Antwerp. 
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RESULTS 

FIRST SAMPLING – SOIL AND MANURE HEAPS 

Equestrian facilities were chosen based on their distribution in East and West Flanders in 

an attempt to have a sample site within each 100 km2. At each of the 73 selected sites 

(fig. 2.1) two bulk samples were taken, i.e., one bulk soil sample from the paddocks and 

meadows surrounding the stables and one bulk manure sample from the manure heap 

which was mostly situated outside and based on a concrete floor.  

Five of the 73 equestrian facilities tested positive for the presence of H. 

gingivalis. Positive manure heap samples were found from four equestrian facilities in 

West Flanders and one positive soil sample from an equestrian facility in East Flanders 

(fig. 2.1). These populations are the first records of free-living H. gingivalis in Belgium. 

An isolate from each site was brought successfully into an agar culture, i.e., WB0701 - 

0705 (table 2.1). 

 

SECOND SAMPLING – FRESH DUNG FROM STABLES 

The five sample sites that tested positive for the presence of H. gingivalis (fig. 2.1) in 

either their soil or manure sample, were inspected for a second time by taking bulk 

samples composed of fresh dung taken from ten individual horse stables. This resulted 

in one positive sample from an equestrian facility in West Flanders and also in an 

additional isolate in culture, i.e., WB0801 (table 2.1).  

Subsequently, this facility was investigated more thoroughly by analyzing a single 

sample from each individual stable at two consecutive moments (2 weeks apart). A 

subsample of each sample was used for nematode extraction. The first stable sampling 

revealed the presence of H. gingivalis in 18 individual stables, whereas, at the second 

stable sampling 21 stables tested positive. Only 8 stables were tested positive for the 

presence of H. gingivalis at both sample moments. In other words, H. gingivalis was 

found in 31 out of the 56 stables sampled over a period of two weeks. Nevertheless, the 

equestrian facility never had horses showing symptoms that could indicate an infection 

with H. gingivalis. 
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THIRD SAMPLING – RECTAL FAECAL SAMPLE 

Since H. gingivalis specimens were isolated from fresh horse dung in several individual 

stables during the second sampling (table 2.1), the question arose whether these 

specimens originated from the intestine of the horse or whether their presence was 

caused by external contamination. To this end, rectal faecal samples were taken from all 

8 horses that tested positive for the H. gingivalis specimens in their fresh dung during 

both previously described sampling moments in the stables. All rectal dung samples 

tested negative for the presence of H. gingivalis.  

After the occurrence of the first clinical case in Belgium (Part II Chapter 2), a final 

attempt was made to prove the presence of H. gingivalis in the intestine of horses. 

Previous to admission, the infected mare was part of a small group of 11 ponies that 

were stabled together in an equestrian facility in the Belgian province of Antwerp. Also, 

a horse originating from the same French farm as the infected mare, although not 

housed with the other ponies, was included in the examination.  

These rectal samples of 11 horses finally rendered two rectal samples that tested 

positive for the presence of H. gingivalis, i.e., one pony housed together with the 

infected mare and the horse that originated from the same French farm (isolates 

WB1101 and WB1102). To ensure that not only eggs are transferred through the faces, 

another subsample was analyzed by means of a modification of the Baermann funnel 

during 48 hours at the most. Since eggs of H. gingivalis do not develop into adults at 

20°C during this time4, the adult specimens found indicate the presence of juveniles or 

adults in the rectal samples. 

 

 

 

 

 

 

 

 

 

 

 

                                                           
4
 At 20°C, eggs hatch after approximately 50 hrs and subsequently develop into adults in oviposition after 

5 days (unpublished results, not shown) 
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Table 2.1 An overview of all Halicephalobus spp. isolates that, at this moment, are kept in culture at the 

Nematology Unit of Ghent University. 

Species 
 

Code 
 

Origin 
 

Isolated by 

Halicephalobus 
 

WB0702 
 

soil  
 

East Flanders, Belgium 
 

Fonderie P. 

gingivalis 
 

WB0703 
 

manure heap 
 

West Flanders, Belgium 
 

Fonderie P. 

  
WB0704 

 
manure heap 

 
West Flanders, Belgium 

 
Fonderie P. 

  
WB0705 

 
manure heap 

 
West Flanders, Belgium 

 
Fonderie P. 

  
WB0707 

 
compost 

 
ILVO, Merelbeke, Belgium 

 
Steel H. 

  
WB0708 

 
compost 

 
ILVO, Merelbeke, Belgium 

 
Steel H. 

  
WB0709 

 
compost 

 
ILVO, Merelbeke, Belgium 

 
Steel H. 

  
WB0801 

 
fresh horse dung 

 
West Flanders, Belgium 

 
Fonderie P. 

  
PF 06/01/02 

 
fresh horse dung 

 
West Flanders, Belgium 

 
Fonderie P. 

  
PF 06/01/03 

 
fresh horse dung 

 
West Flanders, Belgium 

 
Fonderie P. 

  
PF 06/01/04 

 
fresh horse dung 

 
West Flanders, Belgium 

 
Fonderie P. 

  
PF 06/01/05 

 
fresh horse dung 

 
West Flanders, Belgium 

 
Fonderie P. 

  
PF 06/01/09 

 
fresh horse dung 

 
West Flanders, Belgium 

 
Fonderie P. 

  
PF 06/01/11 

 
fresh horse dung 

 
West Flanders, Belgium 

 
Fonderie P. 

  
PF 06/01/12 

 
fresh horse dung 

 
West Flanders, Belgium 

 
Fonderie P. 

  
PF 06/01/15 

 
fresh horse dung 

 
West Flanders, Belgium 

 
Fonderie P. 

  
PF 06/01/17 

 
fresh horse dung 

 
West Flanders, Belgium 

 
Fonderie P. 

  
PF 06/01/18 

 
fresh horse dung 

 
West Flanders, Belgium 

 
Fonderie P. 

  
PF 06/01/21 

 
fresh horse dung 

 
West Flanders, Belgium 

 
Fonderie P. 

  
PF 06/01/22 

 
fresh horse dung 

 
West Flanders, Belgium 

 
Fonderie P. 

  
PF 06/01/29 

 
fresh horse dung 

 
West Flanders, Belgium 

 
Fonderie P. 

  
PF 06/01/31 

 
fresh horse dung 

 
West Flanders, Belgium 

 
Fonderie P. 

  
PF 06/01/35 

 
fresh horse dung 

 
West Flanders, Belgium 

 
Fonderie P. 

  
PF 06/01/38 

 
fresh horse dung 

 
West Flanders, Belgium 

 
Fonderie P. 

  
PF 06/01/39 

 
fresh horse dung 

 
West Flanders, Belgium 

 
Fonderie P. 

  
PF 06/01/44 

 
fresh horse dung 

 
West Flanders, Belgium 

 
Fonderie P. 

  
PF 19/01/01 

 
fresh horse dung 

 
West Flanders, Belgium 

 
Fonderie P. 

  
PF 19/01/02 

 
fresh horse dung 

 
West Flanders, Belgium 

 
Fonderie P. 

  
PF 19/01/05 

 
fresh horse dung 

 
West Flanders, Belgium 

 
Fonderie P. 

  
PF 19/01/06 

 
fresh horse dung 

 
West Flanders, Belgium 

 
Fonderie P. 

  
PF 19/01/07 

 
fresh horse dung 

 
West Flanders, Belgium 

 
Fonderie P. 

  
PF 19/01/10 

 
fresh horse dung 

 
West Flanders, Belgium 

 
Fonderie P. 

  
PF 19/01/15 

 
fresh horse dung 

 
West Flanders, Belgium 

 
Fonderie P. 

  
PF 19/01/16 

 
fresh horse dung 

 
West Flanders, Belgium 

 
Fonderie P. 

  
PF 19/01/17 

 
fresh horse dung 

 
West Flanders, Belgium 

 
Fonderie P. 

  
PF 19/01/18 

 
fresh horse dung 

 
West Flanders, Belgium 

 
Fonderie P. 

  
PF 19/01/19 

 
fresh horse dung 

 
West Flanders, Belgium 

 
Fonderie P. 

  
PF 19/01/20 

 
fresh horse dung 

 
West Flanders, Belgium 

 
Fonderie P. 

  
PF 19/01/22 

 
fresh horse dung 

 
West Flanders, Belgium 

 
Fonderie P. 

  
PF 19/01/25 

 
fresh horse dung 

 
West Flanders, Belgium 

 
Fonderie P. 
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Table 2.1. Continued 
        

  
PF 19/01/34 

 
fresh horse dung 

 
West Flanders, Belgium 

 
Fonderie P. 

  
PF 19/01/35 

 
fresh horse dung 

 
West Flanders, Belgium 

 
Fonderie P. 

  
PF 19/01/37 

 
fresh horse dung 

 
West Flanders, Belgium 

 
Fonderie P. 

  
PF 19/01/40 

 
fresh horse dung 

 
West Flanders, Belgium 

 
Fonderie P. 

  
PF 19/01/44 

 
fresh horse dung 

 
West Flanders, Belgium 

 
Fonderie P. 

  
PF 19/01/50 

 
fresh horse dung 

 
West Flanders, Belgium 

 
Fonderie P. 

  
WB1101 

 
rectal dung sample 

 
Antwerp, Belgium 

 
Fonderie P. 

  
WB1102 

 
rectal dung sample 

 
Antwerp, Belgium 

 
Fonderie P. 

  
JB128 

 
compost 

 
Riverside, USA 

 
Baldwin J. 

  
SAN100 

 
clinical isolate 

 
Orlando, Canada 

 
Nadler S. 

H. cf. gingivalis 
 

WB0701 
 

manure heap 
 

West Flanders, Belgium 
 

Fonderie P. 

H. similigaster 
 

WB1103  
 

beech tree 
 

Berlin, Germany  
 

Fonderie P.* 

H. mephisto 
 

not available 
 

water enclosure in mine 
 

South Africa 
 

Borgonie G. 

Halicephalobus spp. 
 

RGD838 
 

association with termites 
 

USA 
 

Giblin-Davis R. 

Halicephalobus spp.   RGD892   association with termites   USA   Giblin-Davis R. 

* isolated from sample from trunk of beech tree provided by Köhler A.  
   

DISCUSSION 

The primary aim of the described sample effort was to demonstrate the presence of 

free-living H. gingivalis in Belgium and not to provide a complete picture of the 

distribution of the species in Belgium. Five of the 73 equestrian facilities tested positive 

for the presence of this facultative parasitic species, and, additionally, a parallel study on 

nematode succession during the composting process revealed a prevalence of this 

species in compost (Steel et al. 2010). These findings strongly indicate that the 

distribution of free-living populations of H. gingivalis is highly underestimated. 

Conversely, the incidence of H. gingivalis in 31 out of the 56 stables of one equestrian 

facility without any of the horses presenting symptoms which could be related to an 

infection with H. gingivalis, suggests the possibility that not all H. gingivalis isolates are 

able to cause infections in horses.  

 

ADDITIONAL ISOLATES 

Parallel to this research, a study on nematode succession during the composting process 

(Steel et al. 2010) provided us with three additional H. gingivalis isolates from compost, 

i.e., WB0707 – 0709 (table 2.1, figure 2.1). Further, the analysis of a sample of rotten 
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wood from the trunk of a live beech tree provided by Köhler A., yielded an isolate of H. 

similigaster (WB1103) (described in Köhler 2011). 
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PART II 

MAXILLARY GRANULOMATOUS INFECTION CAUSED BY HALICEPHALOBUS 

GINGIVALIS IN A CONNEMARA MARE  

 

ABSTRACT 

A 5-year-old anorexic and lethargic Connemara mare presented with severe facial 

swelling and dyspnea. No distinct central nervous symptoms were present. Radiographs 

of the skull showed diffuse radiolucency with loss of definition of the periodontal lamina 

dura and swelling of the decalcified nasal bones. Given the severe bone damage and its 

poor general condition, the pony was euthanized. Histological evaluation of the lesion 

revealed a granulomatous reaction with numerous sections of adult and juvenile 

nematodes, which were morphologically and molecularly identified as Halicephalobus 

gingivalis. The position of this facultative parasite within its free-living congeners is 

reviewed in this article, and the possible infection routes are discussed. This report 

presents the first record of equine halicephalobiasis in Belgium. 
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INTRODUCTION 

Halicephalobus gingivalis, previously referred to as Micronema deletrix and 

Halicephalobus deletrix, is a small (235 – 460 µm) free-living bacteriovorous nematode 

belonging to the family Panagrolaimidae, which is capable of facultative parasitism in 

horses (Blunden et al. 1987; Nadler et al. 2003) and humans (Ondrejka et al. 2010), 

causing generally fatal infections. Single cases have also been described in a donkey 

(Schmitz and Chaffin 2004) and a Grévy’s zebra (Isaza et al. 2000) and H. gingivalis-like 

nematodes have been reported in the brain of a three year old black Angus cow 

(Montgomery and O'Toole 2006). All four human cases had a fatal outcome within three 

weeks after the occurrence of symptoms (Ondrejka et al. 2010), and of the 

approximately 60 equine cases only two have reported a successful treatment (Dunn et 

al. 1993; Pearce et al. 2001). The geographical distribution of the infections further 

reveals that the species is cosmopolitan (Blunden et al. 1987; Nadler et al. 2003). 

However, it is not clear if all reported cases of halicephalobiasis are caused by the 

species H. gingivalis, since molecular data are usually missing (Nadler et al. 2003) and 

the limited morphological traits discriminating the different species of the genus are 

even more difficult to discern in histological sections.  

In addition to its fascinating abilities as a facultative parasite, the genus 

Halicephalobus is known for its wide environmental range, i.e., as an inhabitant of 

compost (Steel et al. 2010), humus (Shokoohi et al. 2007), soil (Andrássy 1952), rotten 

wood (Köhler 2011), water enclosures in mines up to 1 km deep belowground (Geraert 

et al. 1988; Borgonie et al. 2011), and in association with insects (Geraert et al. 1988; 

von Lieven and Sudhaus 2008; Powers et al. 2009) and chelicerates (Timm 1956). The 

genus Halicephalobus is morphologically characterized by its short body, a tuboid stoma 

narrowing at the posterior end, a pharynx consisting of a corpus with a median bulb, an 

isthmus and a terminal bulb with valves, and a monodelphic-prodelphic female 

reproductive system which is usually dorsally reflexed (Stefański 1954; Anderson et al. 

1998). The absence of males in both free-living isolates and in examined tissue suggests 

that this species always reproduces parthenogenetically, i.e., without males (Stefański 

1954; Andrássy 1984; Akagami et al. 2007), which contradicts the hypothesis that H. 

gingivalis has a separate, gonochoristic cycle when free-living (Blunden et al. 1987). 
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Although H. gingivalis has all the morphological characteristics of a free-living 

nematode, it has some ultrastructural adaptations which could emanate from its 

facultative parasitic life style (Chapter 4). H. gingivalis appears to be a soil nematode 

‘preadapted’ for massive proliferation inside vertebrate hosts. Further, the species has a 

very high tolerance to the common anthelmintics ivermectin and thiabendazole 

(Chapter 3). 

Equine infections of H. gingivalis mainly involve the brain, kidneys, oral and nasal 

cavities, but have also been reported in the liver, eyes and bone (Blunden et al. 1987; 

Mandrioli et al. 2002; Hermosilla et al. 2011). Bone infections mainly involve the 

mandible and maxilla, but also the femur and nasal bones (Blunden et al. 1987; 

Mandrioli et al. 2002; Ferguson et al. 2008; Hermosilla et al. 2011). Consequently, it is 

likely that infections are overlooked when affected animals without clear symptoms are 

not subjected to a histological examination. 

This report presents the first record of an equine infection with Halicephalobus 

gingivalis in Belgium and presents conclusive evidence of the parasite’s identity based 

on both morphological and molecular data. 

 

 

CASE REPORT 

CASE HISTORY  

A 5-year-old Connemara pony mare was presented at the faculty of Veterinary 

Medicine, Ghent University, for marked facial swelling and dyspnoea. The mare had 

been imported from France 6 months earlier. First symptoms started 2 weeks prior to 

admission and included a mild facial swelling and loss of appetite. A complete blood cell 

count and biochemistry profile had been performed by the referring veterinarian, 

revealing marked elevation of beta globulines and liver enzymes. The veterinarian 

suspected a severe helminth infection and the horse was treated intramuscularly with 

doramectin (Dectomax®, Pfizer, Belgium, dosage unknown). Subsequently, the horse 

received fenylbutazone 2 g orally once daily for 10 days, penicillin 15 mg kg-1 

intramuscularly once daily for 1 week and dexamethasone orally for 10 days. The mare’s 



36 | C H A P T E R  I I  

 

 
 

temperature was normal and no cough or nasal discharge were observed. Other horses 

on the same farm were normal. Two days prior to admission the symptoms severely 

aggravated. 

 

CLINICAL EXAMINATION 

The horse was anorexic and severe facial swelling was apparent. The buccal mucosae 

were swollen and had a cyanotic colour (fig. 1A). The horse was lethargic and showed 

severe dyspnoea. No distinct central nervous symptoms were present. Tachycardia 

(heart rate 80 beats minute-1) and tachypnoea (respiration rate 40 breaths minute-1) 

were present. Auscultation revealed enforced breathing sounds. No other abnormalities 

were detected. Thoracic and abdominal ultrasound did not show abnormalities. A 

complete blood cell count was normal (6,1x109 L-1 white blood cells). Blood biochemistry 

showed marked elevation in total protein (91 g L-1, reference: 60-80 g L-1) and beta 

globulin fraction (40%, reference: 10-21%). Muscle enzymes were slightly elevated 

(lactate dehydrogenase 1318 mU ml-1, reference: 246-658 mU ml-1 and creatine kinase 

189 mU ml-1, reference: 10-146 mU ml-1). Radiographs of the skull showed diffuse 

radiolucency with loss of definition of the periodontal lamina dura, most obvious within 

the rostral aspects of the skull and swelling of the decalcified nasal bones. The crowns of 

the incisors in the maxilla were not attached to the bone and a large amount of soft-

tissue swelling was present. At this point differential diagnoses included a neoplastic or 

chronic inflammatory process. Given the severe bone damage and the poor general 

condition of the horse, the owners declined further treatment and elected euthanasia. 

 

NECROPSY 

At necropsy, gross findings included a diffuse severe bilateral swelling of the maxillary 

region, extending to the infraorbital region. The oral mucosa showed multifocal 

petechiae and there was cyanosis and multifocal ulceration of the marginal gingiva. The 

upper incisive teeth were displaced due to the space-occupying swelling, which resulted 

in multiple diastemata. Median sagittal section of the skull revealed diffuse replacement 

of the incisive bone, the processus palatinus maxillae and the processus alveolaris 

maxillae, and partial replacement of the maxillary bone by soft tissue swelling (fig. 1B). A 
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complete transverse section of the skull was made cranial to the 1st premolar teeth. The 

swelling extended to the maxillary bone, the ventral and medial meatus, the ventral 

conchal sinus and the ventral concha. On cut surface the swelling was homogeneous 

yellow-to-white and had a firm consistency. There were no macroscopic abnormalities in 

other organs. 

Multiple samples of the swelling between the two upper 1st incisors and 10 cm 

caudal to the 3rd incisor were fixed in 10% phosphate-buffered formalin and embedded 

in paraffin wax. Approximately 5-µm thick tissue sections were made using routine 

histological techniques. The sections were stained with haematoxylin and eosin. 

Histopathological examination revealed a partially encapsulated, moderately 

demarcated granulomatous inflammation in the submucosa. The inflammatory reaction 

mainly consisted of multinucleated Langerhans type giant cells and macrophages, but 

also contained a moderate amount of lymphocytes and plasma cells. There was 

multifocal fibrosis and the capsule was infiltrated by macrophages, lymphocytes and 

plasma cells. The incisive bone was largely replaced by the granulomatous inflammation, 

with only a small part of the bone still visible. Within the granulomatous reaction there 

were numerous tangential and cross-sections of juvenile and adult nematodes. Adult 

specimens were measured from mashed tissue, i.e., 274 ± 21 µm (n=16) in length and 17 

± 1 µm (n=16) in diameter, and were morphologically identified as members of the 

genus Halicephalobus. Occasionally the characteristic rhabditiform pharynx with a 

corpus, isthmus and terminal bulbus (fig. 2A) was visible. Some specimens showed the 

genus-characteristic large, single, dorsally retroflexed ovary (fig. 2B), sometimes 

containing an egg. Multiple developing zygotes (fig. 2C) were present indicating 

reproduction within the tissue. 

A molecular characterisation was done based on specimens recovered from 

frozen maxillary tissue. Amplification and sequencing of the D2D3 expansion region of 

LSU rDNA (441 bp, GenBank JQ838156) was done as in Múnera Uribe et al. (2010) and 

confirmed the morphological identification : Bayesian phylogenetic analysis including 

GenBank sequences of different H. gingivalis isolates, placed isolate JQ838156 within a 

H. gingivalis clade (results not shown), differing 6 (1.3%), 7 (1.6%), 12 (2.7%) or 15 (3.4%) 

nucleotides from other clinical isolates of H. gingivalis available in GenBank, i.e., 

AY294180, AY294177, AY294181 and AY294182, respectively. 
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Figure 2.1. Gross examination of the head. (A) Severe bilateral swelling of the maxillary region 

with cyanosis and multifocal ulceration of the marginal gingiva and multiple diastemata of the 

upper incisive teeth; (B) Median sagittal section of the head. Diffuse replacement of the 

processus palatinus maxillae (asterisk); (C) Transverse section of the head, cranial to the 1st 

premolar. Severe swelling extending to the sinus conchalis ventralis (1), the ventral concha (2) 

and the maxillary bone (3). 
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Figure 2.2 Histopathological examination of the maxillary granulomatous inflammation 

revealing sections of Halicephalobus gingivalis (haematoxylin and eosin staining, scalebar=20 

µm). (A) H. gingivalis specimen showing the characteristic pharynx with a corpus with a 

medial bulb (arrowhead), isthmus (arrow) and a terminal bulb (asterisk); (B) H. gingivalis 

adult showing characteristic female reproductive system with vulva (asterisk) and dorsally 

reflexed ovary (arrow); (C) Developing zygote (arrow) and a transverse section of a H. 

gingivalis specimen (arrowhead).  

 

 

DISCUSSION 

Little is known about the epidemiology of H. gingivalis. Multiple possible infection 

routes have been described such as through open wounds, nasal or oral cavities, 

through the ingestion of contaminated food or via the respiratory tract (Spalding et al. 
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1990; Ruggles et al. 1993; Trostle et al. 1993; Bröjer et al. 2000). Other possibilities are 

cutaneous infections through entry of free-living specimens facilitated by recumbency 

(Dunn et al. 1993), or infections via the oral cavity by first colonizing ingesta embedded 

in the gums and subsequently penetrating lacerations of the buccal mucosa, thereby 

invading the mandible or maxilla (Anderson et al. 1998; Ferguson et al. 2008). However, 

since (endo)phoretic behaviour associated with ants and flies has been described for H. 

similigaster (Köhler 2012), another species of the genus, insects may play an important 

role in the distribution of H. gingivalis. This is especially true for infections through 

lesions in the skin or orbital infections (Anderson et al. 1998). Thus, H. gingivalis may not 

have one specific infection route and may be able to opportunistically colonize the host 

in different ways. Moreover, this species has a predilection for warm and moist 

environments as shown by its optimal culture temperature of 38°C (unpubl. data) and its 

natural environment, including compost (Steel et al. 2010) and manure heaps (Chapter 

2). 

After penetrating the host, the nematodes can either remain on the spot and 

cause local infections or enter the bloodstream and disseminate throughout the body. 

The hematogenous spread is supported by small parasitic granulomas that have 

occasionally been found in the walls of blood vessels, and by the occurrence of 

nematodes in the blood vessel lumina (Bröjer et al. 2000; Reiser et al. 2011). 

Subsequently, its ability for parthenogenetic reproduction enables H. gingivalis to 

rapidly increase in number and cause massive tissue damage through its migratory 

behaviour resulting in granulomatous inflammation of the affected organs (Pearce et al. 

2001; Mandrioli et al. 2002; Müller et al. 2008). 

Given the maxillary involvement in the presented case, it is very likely that 

infection occurred through lesions in the buccal mucosa and subsequently spread to the 

incisive bone, the processus palatinus maxillae, the processus alveolaris maxillae and the 

maxillary bone. Since the macroscopic postmortem examination revealed no additional 

abnormalities, no histological sections were made of other internal organs. Therefore, 

renal or neurological involvement cannot be excluded.  

Equine infections of H. gingivalis have mostly been described to affect the brain, 

kidneys, oral and nasal cavities, prepuce, spinal cord and skin, but have occasionally also 

been reported in the liver, heart, lungs, lymph nodes, optic nerve, eyes, testicles, 
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mammary glands, stomach and bone, i.e., mandible, maxilla, femur and nasal bones 

(table 1.1, Chapter 1). In case of renal or testicular involvement, juvenile nematodes 

have been detected in the urinary sediment or in the semen (Kinde et al. 2000). 

Especially when infections involve the central nervous system or the kidneys the disease 

progresses extremely rapidly and is generally fatal. However, when the infection is 

restricted to non-vital organs it can asymptomatically be present in the horse over a 

longer period of time. This is corroborated by the description of prenatal, perinatal or 

transmammary transmissions between mares and their foals (Spalding et al. 1990; 

Wilkins et al. 2001), in which the foals always perished before the mares.  

Only two equine cases have reported a successful treatment of an infection with 

H. gingivalis. The first case discussed a horse with multiple nodules of approximately 1 

cm diameter on the external lamina of the prepuce and without any further symptoms 

(Dunn et al. 1993). This horse was treated with ivermectin and diethylcarbamazine 

which resulted in regression of the nodules. The second case involved a horse with a 

large granuloma on the head, which was surgically removed followed by a high dosage 

of ivermectin administered locally (Pearce et al. 2001). However, none of these papers 

reported on long-term follow-up of the horses involved. 

Although halicephalobiasis is rare, it should be suspected in case of acute 

neurological disease and renal dysfunction as well as when aggressive osteolytic space-

occupying lesions are present in the mandible or maxilla. Antemortem diagnosis is 

possible after biopsy of infected tissue and, depending on the organ involved, the 

therapy of choice for local infections is surgical debulking and administration of high 

doses of ivermectin. However, a recent in vitro study on both free-living and facultative 

parasitic isolates of H. gingivalis showed that this species has an unseen high tolerance 

for both thiabendazole and ivermectin (Chapter 3), rendering it unlikely that these 

anthelmintics will be sufficient in treating halicephalobiasis, even when concurrently 

administered as proposed by (Ferguson et al. 2008). These findings are supported by the 

medical history of horses which suffered lethal infections of this nematode species in 

spite of regular treatment with common anthelmintics (Boswinkel et al. 2006; Ferguson 

et al. 2008). 

The present case reports on the first record of an equine infection with H. 

gingivalis in Belgium. Since halicephalobiasis is known to occur in France (Deniau et al. 
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2012) and since the Connemara mare was imported from France 6 months earlier, the 

infection was potentially already present upon importation. However, since the 

presence of free-living, but horse-associated H. gingivalis has been demonstrated in 

Belgium (Chapter 2), it is equally possible that the infection occurred on the Belgian 

farm.  

There is no clarity on the phylogenetic relationship between free-living and 

clinical isolates of H. gingivalis (Blunden et al. 1987; Nadler et al. 2003). Existence of 

reciprocal monophyly of clinical isolates versus free-living isolates would support the 

idea that a lineage of H. gingivalis is evolving towards parasitism in mammalian hosts. 

Conversely, if there is no genetic distinction between free-living and clinical isolates 

(Nadler et al. 2003), then H. gingivalis is merely an opportunistic invader that can cause 

massive damage due to its parthenogenetic reproduction and migratory abilities.  
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CHAPTER III 

ANTHELMINTIC TOLERANCE IN FREE-LIVING AND FACULTATIVE PARASITIC 

ISOLATES OF HALICEPHALOBUS (PANAGROLAIMIDAE) 
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ABSTRACT 

Studies on anthelmintic resistance in equine parasites do not include facultative 

parasites. Halicephalobus gingivalis is a free-living bacteriovorous nematode and a 

known facultative parasite of horses with a strong indication of some form of tolerance 

to common anthelmintic drugs. This research presents the results of an in vitro study on 

the anthelmintic tolerance of several isolates of Halicephalobus to thiabendazole and 

ivermectin using an adaptation of the Micro-Agar Larval Development Test hereby 

focusing on egg hatching and larval development. Panagrellus redivivus and 

Panagrolaimus superbus were included as a positive control. The results generally show 

that the anthelmintic tolerance of Halicephalobus to both thiabendazole and ivermectin 

was considerably higher than that of the closely related Panagrolaimidae and, 

comparing to other studies, than that of obligatory equine parasites. Our results further 

reveal a remarkable trend of increasing tolerance from fully free-living isolates towards 

horse-associated isolates. In vitro anthelmintic testing with free-living and facultative 

parasitic nematodes offers the advantage of observing drug effect on the complete life 

cycle as opposed to obligatory parasites which can only be followed until the third larval 

stage. We therefore propose Halicephalobus gingivalis as an experimental tool to 

deepen our understanding of the biology of anthelmintic tolerance. 
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INTRODUCTION 

To date, studies on anthelmintic resistance or tolerance in equine parasites only include 

obligatory parasites, not facultative parasites. Halicephalobus gingivalis (STEFAŃSKI, 1954) 

ANDRÁSSY 1984, also referred to as H. deletrix or as Micronema deletrix (Anderson et al. 

1998), is a small (235 - 460 µm) free-living bacteriovorous nematode (Panagrolaimidae) 

and a known facultative parasite of horses (Blunden et al. 1987; Nadler et al. 2003) and 

zebra (Isaza et al. 2000). In addition, four cases of human infection, all with a fatal 

outcome, have been described (Ondrejka et al. 2010). H. gingivalis has all the 

characteristics of a free-living nematode, only on ultrastructural level some potential 

adaptations to facultative parasitism can be observed (Chapter 4). Infection probably 

occurs through open wounds and oral or nasal cavities (Pearce et al. 2001). 

Subsequently nematodes most likely invade the bloodstream and lymphatic system and 

thus reach different organs (e.g., kidneys, liver and brain) where the number of 

nematodes increases rapidly through parthenogenetic reproduction (Akagami et al. 

2007). The clinical symptoms vary depending on which organs are infected (Blunden et 

al. 1987; Spalding et al. 1990; Rames et al. 1995; Johnson et al. 2001; Müller et al. 2008). 

A few cases have been described in which the infection was recognized in time and the 

horse was successfully treated (Dunn et al. 1993; Pearce et al. 2001; Müller et al. 2008). 

Still, most infections were only recognized post-mortem after a thorough autopsy. Most 

importantly, the clinical histories of all reported equine infections show that the horses 

had been regularly treated with common anthelmintics (e.g., Boswinkel et al. 2006; 

Ferguson et al. 2008). This strongly indicates that H. gingivalis either has a high 

tolerance or some form of resistance to these anthelmintic drugs.  

The current paper presents the first research on anthelmintic tolerance of the 

facultative parasitic nematode Halicephalobus gingivalis. Several isolates were tested for 

tolerance to common anthelmintic drugs through in vitro experiments focusing on egg 

hatching and larval development. Both free-living and parasitic isolates were included to 

examine whether tolerance is restricted to parasitic isolates or whether it also holds for 

free-living isolates. The results on the H. gingivalis isolates were compared with those on 

the closely related free-living nematode species Panagrellus redivivus and 
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Panagrolaimus superbus, allowing us to discriminate species- or strain-specific tolerance 

from any more general tolerance in the free-living Panagrolaimidae. 

 

 

MATERIALS AND METHODS 

MAINTAINING CULTURES 

We selected four isolates for our experiments. They were all light-microscopically 

identified as the morphospecies Halicephalobus gingivalis using different identification 

keys (Geraert et al. 1988; Shokoohi et al. 2007). No males were observed confirming 

that this species is parthenogenetic (Stefański 1954; Andrássy 1984; Akagami et al. 

2007). The JB128 isolate was obtained from a vegetable compost heap in Riverside 

(California, USA). The WB0708 isolate was obtained from a large-scale compost heap 

(Steel et al. 2010) at the Institute for Agricultural and Fisheries Research in Merelbeke 

(Belgium). The WB0801 isolate was obtained from fresh horse droppings from an 

individual stall on a stable in the province of West-Flanders (Belgium). The SAN100 

isolate is a clinical isolate originating from an infection in a horse (Guelph, Ontario, 

Canada) described by Anderson et al. (1998). SAN100 has been maintained in culture on 

plain bacteriological agar with a bacterial food source since its isolation. Hence, we used 

two compost isolates from horse independent habitats and two isolates from horse 

associated habitats including one parasitic isolate and one isolate found in the near 

vicinity of horses. Two closely related free-living species, Panagrellus redivivus PS1163 

and Panagrolaimus superbus DF5050, were included in the experiments to discriminate 

species- or strain-specific tolerance from a possible more general tolerance in the 

otherwise free-living Panagrolaimidae. 

Stock cultures of all species were maintained on 1% bacteriological agar (Oxoid, 

Basingstoke, UK) plates containing cholesterol (1 mg ml-1) and Escherichia coli OP50 as a 

food source. The stock cultures were incubated at 20°C and generally handled as 

described by Brenner (1974). To provide enough eggs to start the experiments, the 

Halicephalobus isolates were subcultured and incubated at 37°C for 3 to 4 days. At this 

temperature the cultures grow fast and numerous eggs can be generated over a short 
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period of time. The P. redivivus and P. superbus isolates were subcultured two weeks 

beforehand and incubated at 20°C to yield a sufficient amount of eggs. 

 

ANTHELMINTIC DRUGS 

The anthelmintic drugs used in the experiments were thiabendazole (TBZ; Sigma-Aldrich, 

Bornem, Belgium) and ivermectin (IVM) which represent members of two important 

anthelmintic groups, the benzimidazoles and the avermectin/mylbecins, respectively. 

They are selected because of the use of products of these groups on the location where 

the WB0801 isolate was found. TBZ is the most soluble member of the benzimidazole 

group which facilitates in vitro experiments. The IVM used in the experiments are 

dilutions of Ivomec® Injection (Merial, Brussels, Belgium), a commercially used form of 

the drug.  

 

EXPERIMENTAL SETUP 

The technique used was a modification of the micro-agar larval development test 

(MALDT) (Coles et al. 2006). The MALDT method was originally designed as a larval 

development test (LDT) on a solid instead of in a liquid medium. MALDT was chosen 

over LDT because of the ease of culturing Halicephalobus on solid medium and because 

this very small nematode is easier to discern on solid than in liquid medium. The main 

objective of any larval development test is to follow the development of nematode eggs 

onto third stage larvae, which generally is the infective stage in obligatory animal 

parasites. Here we mainly focused on quantitative hatching data and development to 

the adult stage. 

The experiments were performed on 24-well plates (Greiner Bio-One, 

Frickenhausen, Germany). The anthelmintics were dissolved in 100% dimethylsulfoxide 

(DMSO; Carl Roth GmbH, Karlsruhe, Germany). Five stock solutions of TBZ (100, 1000, 

2000, 5000, 10000 µg ml-1) and five stock solutions of IVM (1, 10, 50, 100, 200 µg ml-1) 

were prepared. Stock solutions were diluted 100x by adding 49.5 ml 1% bacteriological 

agar at approximately 45°C to 0.5 ml of drug solution in a 50 ml falcon. The final solution 

was carefully homogenized before adding 3 ml to each well. The control consisted of 1% 
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bacteriological agar with a final concentration of 1% DMSO. We chose to keep the 

concentration of DMSO in the final solutions at 1% to exclude any influence on the 

mortality rate as reported for Caenorhabditis elegans by Ura et al. (2002) for DMSO 

concentrations in excess of 5%. Final drug concentrations in the wells were 1, 10, 20, 50 

and 100 µg ml-1 for TBZ and 0.01, 0.1, 0.5, 1.5, and 2 µg ml-1 for IVM. Initially, the 

Halicephalobus isolates were tested against a range of drug concentrations based on 

Várady et al. (2009). Because only small to no effects were noticed, higher 

concentrations were chosen in the present experiments.  

The tests were performed in three replicates for each anthelmintic concentration 

with the zero concentration as a negative control. Approximately 50 nematode eggs 

were transferred into each well. The exact number of eggs was counted for each well. 

The plates were subsequently incubated at an optimal temperature for development, 

i.e., 30°C for the Halicephalobus isolates and 20°C for P. redivivus and P. superbus. 

Hatching was quantified at the time eggs normally develop into the adult stage; which is 

after 48 h incubation at 30°C for the Halicephalobus isolates and after 7 days incubation 

at 20°C for P. redivivus and P. superbus. In order to assess the reproducibility of our 

bioassay, we repeated the entire experiment 15 months after the first trial. 

The hatching proportion (HP) is calculated for each well as follows: the number 

of hatched eggs and surviving larvae or adults is divided by the number of eggs originally 

transferred onto the agar. This proportion is determined at each concentration.  

In contrast to TBZ which prevents both embryonation and hatching of nematode 

eggs (Taylor et al. 2002), IVM mainly has an effect on the larval stage and only prevents 

hatching at very high concentrations (Patel 1997). Therefore, an experiment was 

performed to verify whether larval stages surviving high IVM concentrations but initially 

not developing into the adult stage, can overcome the effect of drug treatment and 

resume development. To this end, three replicas of 40 eggs of each Halicephalobus 

isolate were transferred on 1% bacteriological agar containing 1.5 µg ml-1 IVM and were 

incubated at 30°C. After 76 h, 20 surviving larvae of each replicate were transferred onto 

plain 1% bacteriological agar and observed for several days. Their recovery rate is 

defined as the number of transferred larvae that develop into the adult stage divided by 

the number of initially transferred larvae x100. 
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EFFECT OF PRE-EXPOSURE ON ANTHELMINTIC TOLERANCE 

Anthelmintic tolerance can be caused or increased by contact of the nematodes with the 

anti-parasitic drug in question. In order to verify the short-term effect of a prior 

anthelmintic treatment on the anthelmintic tolerance of Halicephalobus gingivalis, all 

four isolates (JB128, WB0708, SAN100 and WB0801) were cultured for approximately 12 

± 2 generations at 30°C on 1% bacteriological agar containing a low dose of 

anthelmintics, i.e., 10 µg ml-1 TBZ or 0.01 µg ml-1 IVM. After this period, the modification 

of the MALDT method was performed as described above, leaving out the lowest TBZ 

concentration of 1 µg ml-1.  

 

STATISTICAL ANALYSIS 

To test for differences in the response of the isolates towards each anthelmintic across 

the two trials, the data were modeled by means of a generalized linear mixed model 

(PROC GLIMMIX in SAS® v.9.3, SAS Institute Inc., Cary, NC, USA). As we are merely 

interested in the effect of ‘isolate’ and ‘concentration’ and their interaction, these 

factors were treated as fixed effects in the model. Yet, as the whole experiment was 

replicated in two trials, the fixed effects were assessed across both trials by including the 

factor ‘trial’ as random effect in the model. As the response variable includes number of 

hatched or survived individuals on the total number of individuals, a binomial error 

distribution was assumed and a logit link was incorporated to relate the predictive part 

of the model to the mean response. Standard error and degrees-of-freedom were 

estimated according the method described by Kenward and Roger (1997). Significance of 

the fixed effects and their interactions were tested by means of Type III tests. 

Differences in tolerance between the isolates were post-hoc tested by comparing the 

expected hatching success and survival probability at different concentrations (least 

square means), using a Tukey-Kramer-adjustment to correct for multiple testing. 

Given that generalized linear mixed models are large sample tests (Agresti 2002), 

we did not rely on this procedure to compare the effect of the anthelmintics between 

the Halicephalobus isolates and Panagrellus redivivus and Panagrolaimus superbus as 

their hatching proportion approached zero at higher concentrations. Therefore, a Fisher 
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exact test procedure was used for these comparisons as implemented in StatXact® v.5.0 

(Cytel Inc., Cambridge, MA, USA). 

The effect of pre-exposure to anthelmintics was analyzed using Statistica 7 

(StatSoft Europe GmbH, Hamburg, Germany) for each Halicephalobus isolate separately 

using two-way analysis of variance (ANOVA) with the factors anthelmintic concentration 

and pre-exposure, followed by a post-hoc Tukey HSD test. The assumptions for ANOVA 

(normality and homogeneity of variances) were tested using a Kolmogorov-Smirnov test 

and a Bartlett test, respectively.  

 

 

RESULTS 

THIABENDAZOLE (TBZ) 

Figure 4.1 shows the mean hatching proportions (HPs) of the Halicephalobus isolates 

and of Panagrellus redivivus and Panagrolaimus superbus for both trials at different TBZ 

concentrations, with 0 µg ml-1 being the negative control. The mean HPs of the negative 

controls were comparable for the parasite isolate, the droppings isolate, P. redivivus and 

P. superbus, with an average ranging from 0.96 to 0.99. However, the HPs of the 

negative controls of the compost isolates, with an average ranging from 0.91 to 0.93, 

were significantly (Tukey post hoc, P<0.0001) lower than those of the parasite isolate 

and the droppings isolate. 

The response of P. redivivus and P. superbus to TBZ concentration was similar in 

both trials; they had an initially high HP with an average ranging from 0.85 to 0.94 at 1 

µg ml-1 followed by a steep decrease towards zero hatching at 10 µg ml-1 and higher TBZ 

concentrations. From 10 µg ml-1 onwards, the HPs of both P. redivivus and P. superbus 

were significantly lower than those of all Halicephalobus isolates (fig. 4.1; Fisher’s exact 

test: P all <0.0001). 

Besides an overall significant negative effect on the HPs of all the Halicephalobus 

isolates, significant differences were observed in their mean HP (‘Isolate’ effect), as well 

as in their response towards TBZ concentration across trials (Isolate*concentration 

effect) (table 4.1). Comparison of the mean HPs across trials revealed that the effect  
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Figure 4.1. The hatching proportion (HP) for all Halicephalobus gingivalis isolates
†
 and for Panagrellus 

redivivus (PS1163) and Panagrolaimus superbus (DF5050) at different thiabendazole (TBZ) concentrations in 

µg ml
-1

. Data represent the mean of three replicates ±1 stdev for two independent and consecutive trials. 

Data from the second trial are indicated (2
nd

). 
†
compost isolates, i.e., compost 1 (WB0708) and compost 2 

(JB128); horse associated isolates, i.e., parasite (SAN100) and droppings (WB0801). 

 

 

 

Table 4.1. Type III statistics of fixed effects generated by means of a 

generalized linear mixed model on the average hatching proportions 

(HPs).

 

 

 

parasite*isolate had the highest average HPs, which were significantly different from the 

average HPs of the droppings isolate (Tukey post hoc, P all <0.05) and from both 
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compost isolates at all TBZ concentrations (P all <0.0001). The droppings isolate had the 

second highest average HPs, which were also significantly higher than the average HPs 

of both compost isolates at all drug concentrations (P all <0.0001). Compost isolates 1 

and 2 had the overall lowest average HPs of the Halicephalobus isolates, without 

significant (P all >0.07) mutual HP differences. 

 

IVERMECTIN (IVM) 

The mean HPs of the Halicephalobus isolates and of P. redivivus and P. superbus of both 

trials at the different IVM concentrations are shown in figure 4.2, with 0 µg ml-1 being 

the negative control. The average HPs of the negative controls were similar for all 

Halicephalobus isolates and for P. redivivus and P. superbus with an average HP ranging 

from 0.92 to 1.  

As for TBZ, the HPs of both P. redivivus and P. superbus soon dropped significanty 

lower (at 0.1 µg ml-1) compared to those of the Halicephalobus isolates (Fisher’s exact 

test: P all < 0.0001). As the HPs for both P. redivivus and P. superbus even approached 

zero for IVM concentrations that were higher than 0.5 µg ml-1, they were significantly 

lower compared to the HPs of the Halicephalobus isolates for all the remaining IVM 

concentrations (Fisher’s exact test: P all <0.0001). 

Also for IVM, within the Halicephalobus isolates significant differences were 

observed in both the mean hatching rate and in their response to IVM concentration 

across both trials (table 4.1). The average HPs of the parasite isolate were also the 

highest at all IVM concentrations, followed by those of the droppings isolate and 

subsequently those of compost isolate 1. Although they were not clearly seperated, they 

were significantly different from each other (P all <0.02), except for the average HPs of 

the droppings isolate and compost isolate 1 from 1.55 µg ml-1 onwards (P all >0.06). 

Compost isolate 2 had the overall lowest average HPs, which were significantly lower 

than the average HPs of the other Halicephalobus isolates at all IVM concentrations 

(Tukey post hoc, P all <0.0001). 
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Figure 4.2. The hatching proportion (HP) for all Halicephalobus gingivalis isolates
(†)

 and for 

Panagrellus redivivus (PS1163) and Panagrolaimus superbus (DF5050) at different ivermectin (IVM) 

concentrations in µg ml
-1

. Data represent the mean of three replicates ±1 stdev for two 

independent and consecutive trials. Data from the second trial are indicated (2
nd

). 
(†)

compost 

isolates, i.e., compost 1 (WB0708) and compost 2 (JB128); horse associated isolates, i.e., parasite 

(SAN100) and droppings (WB0801). 

 

RECOVERY CAPACITY AFTER DRUG TREATMENT 

TBZ treatment showed a dose-related inhibitory effect on egg hatching for the 

Halicephalobus isolates and for P. redivivus and P. superbus. However, the eggs that 

hatched show no discernible delay in developmental rate at all TBZ concentrations, and 

almost all the hatched larvae developed into the adult stage. In contrast, for the tested 

IVM concentrations the inhibitory effect on egg hatching was less explicit. Only little 

influence on hatching was observed compared to the negative controls and the 

developmental rate of the eggs at the different IVM concentrations was the same. 

However, there was a dose-related effect on the survival of the juveniles and at higher 

IVM concentrations there was a noticeable delay in the development of the juveniles 
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into the adult stage. At 0.01 µg ml-1 IVM concentration the adult stage of all H. gingivalis 

isolates and P. redivivus and P. superbus was attained with a delay of 24 to 48 h. At 0.5 

to 2 µg ml-1 IVM, the larvae of the Halicephalobus isolates survived, however with a 

reduced motility, but did not develop into the adult stage. However, this negative effect 

on larval development was found to be reversible for the parasite isolate, the droppings 

isolate and compost isolate 1. Hatched larvae incubated for 76 h on wells containing 1.5 

µg ml-1 IVM had a survival rate of 85.4 ± 4.5% (mean ± 1 stdev) for the parasite isolate, 

71.6 ± 2.5% for the droppings isolate and 75.8 ± 4.6% for compost isolate 1. Surviving 

larvae were subsequently transferred onto 1% plain bacteriological agar whereupon 

they reached the adult stage after 3 days. The recovery rate was 94.1 ± 2.3% (mean ± 1 

stdev) for the parasite isolate, 77.9 ± 5.7% for the droppings isolate and 91.1 ± 5.1% for 

compost isolate 1. Compost isolate 2 only had 16.5 ± 4.5% surviving larvae, which did 

not develop into the adult stage after transfer onto plain 1% bacteriological agar. Finally, 

this recovery capacity could not be tested for P. redivivus and P. superbus at 1.5 µg ml-1 

IVM since there were no surviving larvae at higher IVM concentrations.  

 

INFLUENCE OF PRE-EXPOSURE ON ANTHELMINTIC TOLERANCE  

The effect of pre-exposure with anthelmintics for ca. 12 generations was very similar for 

all isolates and is therefore only illustrated for compost isolate 1 (fig. 3). For both 

anthelmintics, the HPs of all Halicephalobus isolates in the control treatment were 

significantly lower (Tukey post hoc, P<0.001) upon pre-exposure as opposed to the HPs 

of eggs deposited by nematodes which had not been pre-exposed, i.e., 10-20% and 37-

47% lower for IVM and TBZ, respectively. The dose-response upon pre-exposure was 

nevertheless different between TBZ and IVM. 

Upon pre-exposure to TBZ, the HPs exhibited limited (compost isolate 2) to no 

(compost isolate 1, parasite isolate, droppings isolate) concentration dependence, which 

was demonstrated by the lack of significant differences (Tukey post hoc, P all >0.05) 

between the HPs at different drug concentrations, including the control. 

Upon pre-exposure to IVM the HPs still showed a similar concentration 

dependence as opposed to non pre-exposure. However, for most isolates (compost 

isolate 1, parasite isolate, droppings isolate) the HPs at all concentrations were 
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significantly lower (P all <0.05) than in the original experiment, except the HPs of 

compost isolate 2 that showed no significant difference (P>0.05) at all concentrations.  

 

Figure 4.3. The mean hatching proportion (HP) of pre-exposed eggs (dotted line) is compared with the 

mean HPs of non-exposed eggs (full line) for Halicephalobus compost isolate 1 (WB0708) at different TBZ 

(a) and IVM (b) concentrations in µg ml
-1

. Data represent the mean of three replicates ±1 stdev.  

 

 

DISCUSSION 

METHODOLOGICAL CONSIDERATIONS 

Several methodological aspects may bear upon the results of dose-effect studies like the 

present one. We are, however, convinced that the methods used here allow an accurate 

assessment of the effect of the anthelmintics used in this study. The MALDT method has 

been proven earlier to give reliable results concerning the detection of benzimidazole 

resistance (Várady et al. 2009), and by using this agar based method the insolubility 

problem of IVM is eliminated (Lacey et al. 1991). Moreover, former studies have 

revealed that the activity of IVM incorporated in agar is higher than in aqueous solutions 

(Várady et al. 2009). Secondly, our negative controls of the Halicephalobus isolates, 

Panagrellus redivivus and of Panagrolaimus superbus have HPs close to 100%. Therefore 

it can be assumed that the incubation conditions used here are adequate. Thirdly, the 

steep decrease of the HPs of P. redivivus and P. superbus compared to the relatively high 

HPs of the Halicephalobus isolates at higher concentrations of both TBZ and IVM 

confirms that effective drug treatment is detectable using this method. Finally, the 
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highly concordant results of two independent experimental trials demonstrate the 

reproducibility of our bioassay. 

 

TOLERANCE VERSUS RESISTANCE 

It is very important to distinguish between an original low, or lack of, effectiveness of an 

anthelmintic drug to a population and the presence of actual resistance to that same 

anthelmintic (Brady and Nichols 2009). The lack of effectiveness can be seen as an 

existing natural tolerance to an anthelmintic even before the parasite has come in 

contact with the drug (Fallon et al. 1996; Coles 2006), whereas acquired resistance is the 

conversion within a species of a low or absent tolerance towards a higher tolerance 

which is initiated by contact with the anthelmintic (James et al. 2009). The overall high 

hatching proportions of the Halicephalobus isolates at all concentrations tested in this 

study suggest the presence of some kind of natural tolerance to IVM and TBZ. This 

tolerance appears specific for the facultative parasitic species H. gingivalis, since in at 

least some Panagrolaimidae (P. redivivus and P. superbus) no tolerance was observed. 

The stunning tolerance of the Halicephalobus isolates to TBZ and IVM is further 

confirmed by the considerably higher concentrations (roughly 75 times the maximum 

dose used for TBZ and roughly 45 times the maximum dose used for IVM) used in the 

present study as compared to TBZ and IVM concentrations used in another in vitro study 

using the MALDT method for testing anthelmintic resistance of the obligatory parasite 

Haemonchus contortus (Várady et al. 2009). 

Our results reveal that the horse associated Halicephalobus isolates are highly 

tolerant for both tested anthelmintic drugs and that the Halicephalobus compost 

isolates show an anthelmintic tolerance that is generally lower. Thus, our results also 

reveal a remarkable trend of increasing tolerance from fully free-living isolates towards 

horse-associated isolates, which is especially true for TBZ. This difference in tolerance to 

anthelmintics between the Halicephalobus isolates may be associated with earlier 

contact to these anti-parasitic drugs. However, none of the Halicephalobus strains have 

been found to be fully susceptible to either anthelmintic. Since there is no fully 

susceptible strain available, no actual acquired resistance can be proven (Brady and 

Nichols, 2009). In addition, the pre-exposure experiments did not show a decreased 
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susceptibility to the tested anthelmintics. The average HPs of all pre-exposed isolates in 

the control treatment (no anthelmintic added) were considerably lower (by 10-47%) 

than those of non pre-exposed nematodes, which indicates that the fitness of all isolates 

is negatively affected by prolonged exposure to the anthelmintics, resulting in a lower 

egg viability. This type of negative effect of a chemical compound on nematode egg 

viability has been shown earlier for, e.g., tannins on gastro-intestinal parasites (Min et 

al. 2003). Further, the HPs under anthelmintic exposure exhibited only limited (compost 

isolate 2) to no (the other isolates) concentration dependence for TBZ and similar 

(compost isolate 2) or generally lower HPs (the other isolates) for IVM. This is contrary 

to the idea that the high tolerances observed in short exposure experiments and the 

differences between the horse-associated and the other isolates would be due to a true 

resistance. Moreover, differences in the D2D3 expansion segment of the LSU rDNA 

region (data not shown) shows a remarkable interpopulation variation. However, 

phylogenetic analyses, including GenBank (Benson et al. 2008) sequences, appointed our 

Halicephalobus isolates (WB0801, GenBank HQ697251 and WB0708, GenBank JF706244) 

within an internally unresolved H. gingivalis clade (data not shown). Additionally, a 

thorough molecular analysis based on 4 markers revealed that all isolates belong to a 

highly supported H. gingivalis-clade (Chapter 6). 

Finally, since even the very high anthelmintic concentrations used in the present 

study appear ineffective to control the Halicephalobus isolates and since IVM 

administered to horses at the recommended dosage has a maximum plasma persistence 

of 4 to 62 ng ml-1 (Gokbulut et al. 2010), it is very unlikely that in vivo anthelmintic 

treatments are effective for infections with this facultative parasite. This is supported by 

the medical history of horses which suffered lethal infections of this nematode species 

in spite of regular treatment with common anthelmintics (e.g., Boswinkel et al. 2006, 

Ferguson et al. 2008). 

 

HALICEPHALOBUS AS A MODEL ORGANISM 

In research on the effects of anti-parasitic drugs, using free-living nematodes for in vitro 

experiments has the advantage of allowing observations on their complete life cycle, 

including survival and (delayed) development. In contrast, obligatory animal parasites 
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can only be followed until the infective stage. Caenorhabditis elegans has been used as a 

model for studies on the development of anthelmintic resistance and the testing of the 

efficiency of new drugs (e.g., Simpkin and Coles 1981; Sangster et al. 2002; James and 

Davey 2009). Since its complete genome is known, C. elegans is especially suitable for 

studying the effects of anthelmintics at the gene level (Holden-Dye and Walker 2007). 

However, the usefulness of C. elegans as a model for parasitic nematodes has been 

questioned (Geary and Thompson 2001), among other reasons simply because it is not 

capable of parasitism in its natural environment. Halicephalobus gingivalis shares 

several of the advantages of C. elegans as a model organism: it is amenable to culture 

under laboratory conditions; it has a very short generation time (approximately 48 hrs at 

30°C), produces a lot of offspring, can be cultured in liquid (monoxenic as well as axenic) 

as well as on solid media (Chapter 4) and at temperatures ranging from 4°C to more than 

40°C (personal observations, unpublished). Additionally, H. gingivalis is capable of 

parasitism in its natural environment. Moreover, since complete genome sequencing is 

nowadays relatively fast and easy (Elsworth et al. 2011), the ‘genetic barrier’ can easily 

be overcome. Although the lack of a susceptible isolate is a drawback to the use of 

Halicephalobus gingivalis as a model organism for testing new anthelmintics, the 

presence and ease of cultivation of susceptible close relatives such as Panagrellus and 

Panagrolaimus provides great potential as an experimental tool for testing the effects of 

various drugs on a model system encompassing a range of tolerances and including an 

organism with a life history intermediate between that of obligatory parasites and of 

fully free-living nematodes. 
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CHAPTER IV 

INTESTINE ULTRASTRUCTURE OF THE FACULTATIVE  

PARASITE HALICEPHALOBUS GINGIVALIS  
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Intestine ultrastructure of the facultative parasite Halicephalobus gingivalis (Nematoda: 

Panagrolaimidae). Nematology 11 (6), 859-868. 
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ABSTRACT 

Halicephalobus gingivalis, classified as a free-living nematode, is a known facultative 

parasite of horses, zebras and humans. However, detailed information concerning its 

internal morphology is lacking, especially in relation to possible adaptations to its 

lifestyle as a facultative parasite. The research presented here uses TEM and PI staining 

to analyse the morphology of the intestine of H. gingivalis. Specimens cultured under 

different conditions were included to determine if differences in ultrastructure are 

induced by culturing method. TEM analysis revealed that the intestinal tract comprises a 

single layer of cells in which nine pairs of nuclei can be distinguished. Further, unusual 

dichotomously and trichotomously branched microvilli were observed next to finger-like 

cylindrical microvilli, the latter being the most commonly described form in nematodes. 

Finally, three different types of secretion vesicles, i.e., spherical, threadlike and 

enlarged, globular, vesicles, occurred independently from each other along the intestinal 

tract. The relationship of morphological adaptations of the microvilli to parasitism in 

nematodes is discussed. 
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INTRODUCTION 

Halicephalobus gingivalis (STEFAŃSKI 1954) ANDRÁSSY 1974, formerly referred to as H. 

deletrix or as Micronema deletrix (Anderson et al. 1998), is a small (235-460 µm) free-

living bacteriovorous nematode (Panagrolaimidae) which is also a known facultative 

parasite of horses (Blunden et al. 1987; Nadler et al. 2003) and zebras (Isaza et al. 2000). 

Little is known about the epidemiology of H. gingivalis. Infection can occur through open 

wounds or oral or nasal cavities (Pearce et al. 2001) whereupon the nematodes probably 

invade the bloodstream or the lymphatic system, thereby reaching the different organs 

(Akagami et al. 2007). Subsequently the number of nematodes increases rapidly through 

parthenogenetic reproduction. This massive proliferation usually causes death of the 

infected animal. Most infections in horses are only recognised post-mortem after a 

thorough autopsy in which the extremely small nematode is found. The clinical 

symptoms are very variable depending on which organs are infected (Blunden et al. 

1987; Spalding et al. 1990; Rames et al. 1995; Johnson et al. 2001; Grosche et al. 2002; 

Mandrioli et al. 2002; Müller et al. 2008). In only a few cases does the infected animal 

survive (Dunn et al. 1993; Pearce et al. 2001; Müller et al. 2008). Infection in three 

human cases has also been described, all with a fatal outcome (Hoogstraten and Young 

1975; Shadduck et al. 1979; Gardiner et al. 1981). 

The ability of facultative parasitism renders H. gingivalis an interesting subject 

for further research on the ultrastructural diversity of the intestine within the 

Nematoda. When free-living, H. gingivalis is bacteriovorous, but when parasitic, the 

exact food source is unknown, although as it reproduces and proliferates in the tissue of 

different organs of the host (Müller et al. 2008), some kind of food uptake, such as blood 

and host tissue, is likely. The question, therefore, arises as to whether this species has 

ultrastructural adaptations enabling it to thrive in two very different circumstances with 

two very different food sources. Detailed information on the internal structure of H. 

gingivalis is missing, i.e., whether the ultrastructural morphology resembles other 

known parasitic nematodes of mammals (e.g., Ascaris suum) or is more similar to that of 

other free-living bacteriovorous species (Borgonie et al. 1995). Various ultrastructural 

analyses of the intestine have been done on plant parasitic (reviewed in (Geraert 1992; 

Endo et al. 1997), animal parasitic (Kessel et al. 1961; Jenkins and Erasmus 1969; Smith 
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and Harness 1972; Wright et al. 1985; Endo and Nickle 1991; Frantova and Moravec 

2004), marine (Deutsch 1978; Vandevelde and Coomans 1989; Miljutin and Tchesunov 

2001; Miljutin et al. 2006), predatory (Arpin and Kilbertus 1981)and terrestrial 

bacteriovorous (Epstein et al. 1971; Borgonie et al. 1995) nematodes. The general 

structure of the intestine appears quite uniform, with exception of some marine (e.g. 

Miljutin and Tchesunov 2001; Miljutin et al. 2006) and plant parasitic taxa (Geraert 

1992). The intestine is a straight tube which comprises a limited number of cells 

organised in a single layer with a luminal surface that is lined with microvilli. The 

microvilli mostly have a regular, cylindrical, shape although some exceptions have been 

observed in A. suum (Kessel et al. 1961), Metastrongylus sp. (Jenkins and Erasmus 1969), 

and Hexatylus viviparus (Shepherd and Clark 1976).  

The ultrastructural analysis of the intestine of H. gingivalis is presented here and 

reveals unusual dichotomously branched microvilli and a form of intestinal secretion not 

previously described in nematodes. 

 

 

MATERIALS AND METHODS  

Three Halicephalobus gingivalis isolates were used in this study, i.e., JB128 originating 

from a vegetable compost heap (Riverside, California, USA), JB043 originating from 

potting soil containing peat (Neustadt, Germany), and SAN100 isolated from an equine 

clinical case (Orlando, Canada). The species reproduces parthenogenetically and no 

males have been observed. 

All products were obtained from Sigma-Aldrich (St. Louis, USA) unless mentioned 

otherwise. 

 

NEMATODE CULTURE 

Different culturing methods were used to determine whether ultrastructural 

characteristics were induced when specimens were cultured differently over a longer 

period of time, i.e., during minimal 20 generations. The nematodes were cultured both 

monoxenically and axenically. Monoxenic cultures were maintained on both solid and 
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liquid medium with Escherichia coli OP50 as a food source. The solid cultures were 

maintained on 1% bacteriological agar (Oxoid Ltd., Hampshire, UK) plates containing 

cholesterol (80 µl 5 mg ml-1 in 400 ml medium). The cultures were kept in an incubator 

at 20°C and generally handled as described by Brenner (1974). The liquid culture was 

grown in an Erlenmeyer with S-buffer (0.1 M NaCl, 50 mM potassium phosphate buffer 

in distilled water) and closed with cotton wool. The liquid cultures were kept at room 

temperature and placed in a shaker. 

The axenic medium consisted of 4 ml haemoglobin (5% in 0.1M KOH), 12 g soy 

peptone (Oxoid Ltd., Hampshire, UK) and 12 g yeast extract (Oxoid Ltd., Hampshire, UK) 

in 400 ml distilled water. Eggs of H. gingivalis were sterilised by chloroxing twice in 5.5 

ml sterile bidi, 0.5 ml 10 M NaOH and 4 ml 5% NaOCl. The first chlorox of 2 min was 

followed by rinsing the eggs twice with sterile S-buffer and the second chlorox of 1.5 min 

was followed by rinsing three times with sterile S-buffer. The eggs were then placed in 

the axenic medium under sterile conditions. Axenic cultures were kept in culture flasks 

in an incubator at 20°C and renewed every month. 

 

TRANSMISSION ELECTRON MICROSCOPY (TEM) 

Three specimens from each culturing method were used for the TEM study. Both 

longitudinal and transverse sections were taken at different levels of the intestine. 

Approximately 50 sections of each specimen were studied. Only young adults were used 

for TEM because the eggshell in gravid females can cause poor fixation and tissue 

damage when sectioning. The nematodes were fixed in Karnovsky’s solution (2% 

paraformaldehyde, 2.5% glutaraldehyde and 0.5% CaCl2 in 0.2 M sodium 

cacodylatebuffer pH 7.2) (Bert et al. 2003) at 60°C for 30 min. The specimens were kept 

overnight in Karnovsky’s solution at 4°C, during which time the solution was stirred. The 

following day the nematodes were rinsed in a 0.134 M sodium cacodylatebuffer (pH 7.2) 

for 8 h at room temperature. Post-fixation took place overnight in reduced osmium at 

4°C. After rinsing with double distilled water the specimens were dehydrated in a 50%, 

70%, 90%, and 100% ethanol series at room temperature, each stage being repeated 

three times at 20 min each. Subsequently, the specimens were infiltrated with a low-

viscosity medium (Spurr 1969) and finally polymerised at 70°C for 8 h. Longitudinal 
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sections 70 nm thick were made using a Reichert Ultracut S ultramicrotome (Leica, 

Vienna, Austria) with a diamond knife (Diatome Ltd., Biel, Switzerland) and mounted on 

formvar coated single slot copper grids (Agar Scientific, Stansted, UK). Sections were 

stained (EM stain, Leica) with uranyl acetate and lead citrate. Electron microscopy was 

done using a Jeol JEM 1010 (Jeol Ltd., Tokyo, Japan), operating at 60 kV. The first 

micrographs were taken on Kodak electron image film (Agar Scientific, Stansed, UK). 

Later pictures were digitised using a DITABIS system (Pforzheim, Germany). Plates were 

composed using Adobe Photoshop CS2 (Adobe Systems Inc., San Jose, CA, USA). 

 

NUCLEAR STAINING WITH PROPIDIUM IODIDE 

To determine the number of intestinal cells along the alimentary tract, the nuclei 

of 30 young adult females were stained using propidium iodide (PI). First, the 

nematodes were fixed for 2 h in 4% formaldehyde at 70°C and washed with phosphate 

buffered saline (1x PBS). Subsequently they were incubated for 5 min in propidium 

iodide which was diluted 1:2500 in PBS. Finally the nematodes were washed in PBS and 

then ten specimens were mounted on glass slides in Vectashield mounting medium 

(Vector Laboratories Ltd., Peterborough, UK). The nuclei were visualised with a Nikon EZ-

C1 confocal microscope. 

 
 

RESULTS 

Culturing method and origin of the isolate (free-living versus parasitic) did not influence 

the general ultrastructural morphology of H. gingivalis. As observed with TEM, the 

intestinal lumen is triradiate (Y-shaped) just posterior to the pharynx and becomes 

sausage shaped more posterior. The lumen narrows at the mid-body region as it is 

squeezed between the epidermis and the reproductive system (fig. 3.1A). The intestinal 

tract comprises a single cell layer. Although all nuclei were stained using propidium 

iodide, the intestinal nuclei could be easily discerned from other nuclei due to their large 

size. The intestinal cells surrounded the lumen two by two across the whole length of 

the tract (fig. 3.1B). Nine pairs of nuclei could be distinguished of which five pairs are 

situated anterior to the vulva and four pairs posterior. 
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Figure 3.1. (A) Light microscopic image of Halicephalobus gingivalis from monoxenic culture; (B) Confocal 

image of H. gingivalis with propidium iodide staining showing nuclei (arrow) of nine pairs (1-9) of intestinal 

cells with five pairs anterior and four pairs posterior to vulva; (B’) Detail of two pairs of intestinal nuclei; 

(C) TEM image of transverse section through most anterior part of intestine of H. gingivalis showing 

intercalation (*) with posterior pharyngeal cells and desmosomes (arrowhead) between two adjacent 

cells. (D) TEM image of longitudinal section of H. gingivalis showing intestine and distribution of different 

cell organelles; Abbreviations: A = anus; BL = basal lamina; Cu = cuticula; Gly = glycogen; I = intestine; Li = 

lipid inclusions; Lu = intestinal lumen; Mi = mitochondria; Mv = microvilli; Nu = nucleus; O = ovarium; Ph = 

posterior bulbus of pharynx; V = vulva; Y = yolk inclusions. (Scale bars: A, B = 50 µm; B’ = 10 µm; C = 2 µm; 

D = 1 µm.) 
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Adjacent intestinal cells are joined with membrane junctions or desmosomes (fig. 

3.1C). The large and prominent nuclei are situated centrally in the intestinal cells. They 

are amoeboid shaped, approximately 3.5 ± 0.07 µm (n = 20) across and have an electron 

dense nucleolus. The cytoplasm is granulated and contains a large amount of 

endoplasmatic reticulum. Ovoid to long sausage-shaped mitochondria are present along 

the entire intestinal tract, being more numerous most anteriorly compared to at the 

mid-body region and more posteriorly. Golgi complexes are evenly distributed along the 

intestinal tract. Lipid vacuoles and yolk inclusions are present in all intestinal cells (fig. 

3.1D). The number of yolk inclusions is highest at the mid-body where the reproductive 

system is situated. The number of lipid vacuoles increases at the mid-body and more 

posteriorly. Glycogen (fig. 3.1C) is present along the entire intestine with no discernible 

pattern of distribution. 

At the apical surface of the intestinal cells, relatively short and blunt microvilli 

occur, each with an electron-dense cylinder of microfilaments at their core. The inner 

core of microfilaments extends into the terminal web which is located just beneath the 

brush border. The terminal web can be distinguished as an approximately 0.1 ± 0.01 µm 

(n = 20) thick layer, characterised by a seemingly absence of organelles.  

The length of the microvilli was measured at the anterior end, at the mid-body 

and further posterior for both axenic and monoxenic cultures (fig. 3.2). No differences 

were observed between culturing methods. The length of the microvilli increases at the 

mid-body and decreases again more posteriorly. The shape of the microvilli appeared to 

be independent of both position in the intestine and culturing method. Most microvilli 

are straight and cylindrical and lie within the glycocalyx that is visible as a grey coat 

above and between the microvilli. Besides the cylindrical microvilli, numerous branched 

microvilli were also observed. They were also observed along the entire intestinal tract 

in specimens from all culturing methods. The majority of these branched microvilli are 

dichotomous, although some are trichotomous (fig. 3.3). Figure 3.4 shows a longitudinal 

section (fig. 3.4A) and several consecutive transverse sections (fig. 3.4B-D) through the 

microvilli in which both cylindrical as dichotomously branched microvilli can be seen.  
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Figure 3.2. Bar graph of length of microvilli in µm (y-axis) of Halicephalobus 

gingivalis at different regions of the intestine (x-axis) for both axenic and 

monoxenic cultured specimens (n = 20). Standard deviations are shown on 

bars. 

 

 

 

 

       

Figure 3.3. TEM image of longitudinal section showing both cylindrical 

microvilli (Mv) and a trichotomously branched microvillus (*) (Scale bar = 

200 nm). 

* 

Mv 
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Figure 3.4. TEM images of intestine of Halicephalobus gingivalis. (A) Longitudinal section 

showing both cylindrical microvilli (Mv) and a dichotomously branched microvillus (*); 

(B-D): Consecutive transverse sections through cylindrical and dichotomously branched 

(arrowheads) microvilli. Abbreviations: Li = lipid inclusion; Lu = lumen; Mi = 

mitochondrion; Mv = microvillus; TW = terminal web. (Scale bars = 200 nm) 

 

 

Three types of vesicles could be discerned along the entire length of the 

alimentary tract. The first type consists of small spherical vesicles that are visible in large 

numbers in the most anterior part of the intestine and decrease substantially further 

posterior. They occur between the microvilli as well as in the intestinal lumen (fig. 3.4A). 

The vesicles are small at first but enlarge towards the lumen. The second type is most 

common at the mid-body and in the more posterior end of the intestine and consists of 

thread-like vesicles that seem to emanate from the top of the microvilli (fig. 3.4A). These 

threads are released into the lumen where they disintegrate into smaller particles (fig. 

3.4B). From the mid-body to further posterior this type of vesicle is the most common 

type observed in the intestine. The third type has only been observed at the mid-body 

region and consists of enlarged, globular, vesicles that remain attached to the 
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microvillus (fig. 3.4C). All three vesicle types have a double membrane and seem to be 

budded off from the microvilli. The first and second types of vesicle have been observed 

in all culturing methods, whereas the third type has only been observed in the 

monoxenic cultured specimens. The general number of vesicles decreased from anterior 

to posterior. 

 

Figure 3.4. TEM images of longitudinal sections through intestine of Halicephalobus 

gingivalis showing different types of vesicles observed along gut. (A) Small spherical 

vesicle (first type) in-between the microvilli (arrowhead) and threadlike vesicles (second 

type) that emanate from the top of the microvilli (arrow). Note the dichotomously 

branched microvillus (*); (B) Thread-like vesicles (arrows) disintegrating into smaller 

vesicles in lumen of intestine; (C) Enlarged globular (third type) vesicles (arrows) that 

remain attached to top of microvilli. Abbreviations: Lu = lumen; Mv = microvillus; Y = 

yolk. (Scale bars: A, C= 200 nm; B = 500 nm.) 
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DISCUSSION 

The general morphology of the intestine of H. gingivalis is similar to that of other 

studied free-living nematodes (e.g., Epstein et al. 1971; Borgonie et al. 1995). The 18 

intestinal nuclei, visualised by means of propidium iodide staining, are organised two by 

two along the intestinal tract which is consistent with results of the embryonic cell 

lineage of H. gingivalis (Houthoofd et al. 2006). The ultrastructure of the H. gingivalis 

digestive tract and the distribution of the different organelles in the intestinal cells are 

similar to that of other terrestrial (e.g., Borgonie et al. 1995) and plant-parasitic 

nematodes (e.g., Geraert 1992).  

Using only TEM, the nature of the three types of vesicle observed in H. gingivalis 

could not be exactly determined but, according to their position throughout the 

intestine, it is likely that they represent some form of secretion. The first type observed 

in this study has frequently been described in nematodes as secretion vesicles (Bird and 

Bird 1991; Borgonie et al. 1995; Willems et al. 2005) and is reported as having a double 

membrane (Borgonie et al. 1995). The thread-like vesicles, i.e., the second type, that 

emanate from the top of the microvilli in the intestine of H. gingivalis have also been 

observed in Hexatylus viviparus (Shepherd and Clark 1976), a nematode species that has 

a fungivorous as well as an entomoparasitic life cycle. Shepherd and Clark (1976) 

described these threads in H. viviparus as fine extensions of the microvillar tips which 

were situated in the anterior intestine as well as in the mid-intestine. These extensions 

have a double membrane (see figure 11E in Shepherd and Clark, 1976), in accordance 

with the thread-like vesicles observed in the intestine of H. gingivalis. Because type I 

vesicles occur more anteriorly in the intestine of H. gingivalis than type II, it can be 

concluded that these two types occur independently from each other, i.e., the first type 

of vesicles are not merely a cross section of the second type. Finally, similar to the 

enlarged globular vesicles in this study (i.e., type III vesicles), dilated balloon-like tips to 

the microvilli have been observed in the intestine of Metastrongylus sp. (Jenkins and 

Erasmus 1969). These dilated tips budded from the main stem of the microvilli and were 

released into the lumen. The released vesicles had a granular content and were 

interpreted as a form of secretion (Jenkins and Erasmus, 1969). Kurosumi (Kurosumi 

1961) named this type of secretion “micro-apocrine”. Shepherd and Clark (1976) 
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reported similar “blebs” associated with the mid-intestinal microvilli of H. viviparus. In H. 

gingivalis, the globular secretions were only observed in the monoxenically cultured 

specimens. Possibly, these globular secretions only occur when larger amounts of food 

need to be processed. All three types of vesicle are likely to be pieces that bud from the 

microvilli, an origin that explains the occurrence of a double membrane around all the 

observed vesicles. To our knowledge, this is the first time that all three types of 

secretion have been described in one species. 

Microvilli are projections of the plasma membrane into the lumen of which the 

length, shape and number are known to vary slightly between the different regions of 

the intestine (e.g., Endo and Nickle 1991; Borgonie et al. 1995). Although most 

nematodes have simple cylindrical, finger-like intestinal microvilli, H. gingivalis has both 

dichotomous and trichotomous (fig. branched microvilli located adjacent to cylindrical 

ones. This remarkable observation is confirmed by observations made on several 

specimens and also appeared to be independent of culture method.  

A similar kind of branched microvillus has previously been observed in the animal 

parasitic A. suum (Kessel et al. 1961). According to Kessel et al. (1961) these branched 

microvilli only play a role in imposing geometry on the microvilli, with each microvillus 

equidistant to the six others that surround it (Palay and Karlin 1959). By branching, this 

organisation of the microvilli is preserved throughout the intestine. However, because of 

the relatively long size of the microvilli (6-7 µm) in A. suum (Sheffield 1964) and their 

entanglement with each other, we consider it unlikely that geometry requirements are a 

plausible explanation for branching. Shepherd and Clark (1976) also reported a few 

branched microvilli in the intestine of the insect-parasitic H. viviparus.  

Willems et al. (2005) also reported microvilli that deviate from the usual finger-

like microvilli in Rhabditophanes. Microlamellae were observed here instead of 

cylindrical microvilli. These lamellae formed a complex 3-D maze network with cavities 

of varying length. According to Willems et al. (2005) the function of the microlamellae 

network may be related to a maximisation of the intestinal absorption surface. 

Moreover, by slowing down the movement of the absorbed food through the intestine, 

more time is available for nutrient uptake and the species is able to survive in an 

environment with low food availability. 
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The branching of the intestinal microvilli observed in H. gingivalis is more likely 

to be a function of food consistency than food availability. Food in the intestinal tract of 

most nematodes moves along by the ingestion of more food and by the general 

movement of the nematode (Bird and Bird, 1991). However, when parasitizing a 

vertebrate, it is likely that H. gingivalis ingests blood and other tissues. While 

bacteriovores are thought to concentrate bacteria in their intestine while digesting, it is 

more difficult to concentrate a liquid food source which therefore passes faster through 

the digestive tract. According this hypothesis, H. gingivalis, when in the vertebrate 

parasitic phase, needs an increase of digestive surface in order to optimise the intake of 

nutrients. Although, based on TEM sections, it is impossible to give an exact count of the 

number of branched microvilli vs. the number of cylindrical microvilli, these branched 

microvilli have been observed frequently along the entire intestinal tract and in all 

studied sections. Therefore, it can be assumed that the branching of the microvilli 

represents an increase of abundance and density of the microvilli and thus an increase in 

the surface area of the intestinal epithelium. 

The current study, in corroboration with Kessel et al. (1961), Shepherd and Clark 

(1976) and Willems et al. (2005), shows that the morphology of the intestinal microvilli 

within the phylum Nematoda is more diverse than initially thought. Most remarkable, 

deviations of the usual finger-like intestinal microvilli have arisen independently several 

times within the phylum, their occurrence always being in parasitic or in parasitism-

related nematodes. To our knowledge, there are no reports of branched intestinal 

microvilli in other invertebrates. In vertebrates, however, studies on the intestine of 

salamander (Tilney and Cardell 1970) and chick intestine in organ culture (Burgess and 

Grey 1974) have shown that branching of microvilli can be induced by changing 

environmental conditions or by exposure to drugs. This implies that microvilli are 

dynamic structures that are liable to stress. However, studies on the intestinal 

ultrastructure of nematodes under stress conditions (e.g., Borgonie et al. 1996) did not 

report any form of branched microvilli. Furthermore, in the present study branched 

microvilli were frequently observed independent from culturing method, i.e., they were 

not observed to be induced by external factors. Therefore, it is most likely that 

variations in form of the intestinal microvilli represent adaptations to a parasitic lifestyle. 
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CHAPTER V 

EXPERIMENTAL INDUCTION OF INTRASPECIFIC MORPHOMETRIC VARIABILITY IN A 

SINGLE POPULATION OF HALICEPHALOBUS GINGIVALIS MAY SURPASS TOTAL 

INTERSPECIFIC VARIABILITY 

 

 

 

 

 

 

 

 

 

Modified from: 

FONDERIE P., STEEL H., MOENS T., BERT W. (2012). Experimental induction of intraspecific 

morphometric variability in a single population of Halicephalobus gingivalis may surpass total 

interspecific variability. Nematology available on line (doi:10.1163/15685411-00002699) 
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ABSTRACT 

Although molecular techniques are revolutionising nematode taxonomy, morphological 

data still form the basis of nematode species descriptions. However, morphological 

characters show a natural variability that should be taken into account before describing 

new species. The current study presents the results of an elaborate morphometric study 

of Halicephalobus gingivalis, including 15 measurements and 13 indices of 540 

specimens, the progeny of a single parthenogenetic female and cultured under different 

temperature and food conditions and measured in different adult age groups, i.e., young 

adults with a developed vulva but before the onset of oviposition, adults laying eggs, 

and old, post-reproductive adults near the end of their life cycle. The morphometric 

characteristics were analysed using both univariate (analysis of variance) and 

multivariate (principal components and canonical discriminant analysis) techniques. The 

main results reveal that the morphometric characteristics most used in Halicephalobus 

identification keys have a huge variability within a single progeny, e.g., body length 1.9 

times longer than the shortest or ratio VA/tail length 3.9 times larger than the smallest. 

This variability has a magnitude that has not been observed in nematodes before. 

Further, by changing the environmental factors, the morphometric characteristics are 

influenced to an extent that one could assign – with seemingly ‘statistical support’ – 

different ‘species’ of the genus to different subpopulations. With this experimental 

study we provide convincing elements to advocate an integrative taxonomic approach 

and to discourage the description of new species based only on morphometric 

differences. 
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INTRODUCTION 

Since molecular data are relatively easy to obtain and very useful in identifying 

relationships among species, large-scale application of molecular techniques is 

revolutionising nematode taxonomy (Powers 2004). However, molecular data can 

merely suggest the presence of a new species (Luc et al. 2010) and are therefore best 

used in combination with morphological and physiological characteristics in an 

integrative approach (De Ley 2000; Köhler 2007; Fonseca et al. 2008; Luc et al. 2010; 

Abebe et al. 2011). The importance of such an approach lies in the complexity of species 

biology that requires multiple perspectives to study species boundaries (Dayrat 2005). 

This is especially true in taxonomy, where species boundaries are often not clear.  

Despite the importance of molecular data, morphological and morphometric 

data still form the basis of most nematode species descriptions (Luc et al. 2010). 

Whereas morphometrics generally encompass the quantitative analyses of size and 

shape, in nematodes this concept refers to measurements and derived ratios. These 

measurements and ratios play an important role in the identification and classification of 

nematodes, although they should not be used unconditionally since they can vary to 

different degrees among and within nematode populations (Geraert 1968, 1990). Some 

of the more extensive morphometric variations published in nematodes were recorded 

in adult body length within a single population of Aphelenchus avenae Bastian, 1865, 

where the largest adult specimen was 2.2 times longer than the shortest (Geraert 1990), 

and among the progeny of a single female of Helicotylenchus dihystera (COBB, 1893) 

SHER, 1961, where a variation in body length of 1 : 1.7 (i.e., 1.7 times longer than the 

shortest) was recorded (Fortuner 1984). Variability between individuals can be strongly 

reduced by using ratios between well defined distances (Geraert 1968). However, the 

use of ratios, such as the de Man ratios a, b and c, in the identification of various 

nematode species has often been questioned because of their high variability or a low 

mutual correlation between both entities of the ratio (summarised in (Geraert 1968). 

Conversely, other ratios such as these related to the vulva position (V and V’), are 

considered more stable and thus useful diagnostic characteristics (Geraert 1968).  

Morphometric variation has often been reported between geographically 

separated populations of a species (Brown et al. 1997; Stock et al. 2000; Hazir et al. 
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2001; Lax et al. 2004). Intraspecific variation is not only affected by geographical origin 

but also by other factors such as host, climate and food availability (Evans and Fisher 

1970a, b; Poinar 1992; Stock et al. 2000). Because of environmental influence, variation 

in morphometric characteristics has often been explored experimentally by adjusting 

biotic and/or abiotic factors under controlled laboratory conditions. For example, a 

change of host plant has a significant effect on most measurements used as taxonomic 

criteria in Paratrichodorus christiei (= minor) (ALLEN, 1957) SIDDIQI, 1974 (Bird and Mai 

1967) and P. rhodesiensis (Siddiqi and Brown, 1956) Siddiqi, 1974 (Wondirad et al. 2003), 

and causes a variability in tail shape within the progeny of a single female of H. dihystera 

such that the tail shape may correspond to that of multiple species in the genus 

(Fortuner and Quénéhervé 1980). Also, according to (Doucet et al. 2001) different 

temperatures induce significant variation in several morphometric characteristics in 

Paratylenchus nanus Cobb, 1923 (Fisher 1965) and Pratylenchus vulnus Allen & Jensen, 

1951, and differences in nutrition, especially when measured over several generations, 

influences morphometric variation in Aphelenchus avenae (e.g., Kline 1976). Effects of 

differential food availability on body length and diameter have also been observed in 

several free-living nematodes. As an example, large variations in bacterial abundance 

causes remarkably similar variations in body length (by 1.3 to 1.4) and diameter (by 1.3 

to 1.55) in three bacteriovore marine species, i.e., two Monhysteridae and one 

Rhabditidae (dos Santos et al. 2008). The above studies all point at ratio V as the most 

stable character. 

 De Coninck (1940) reported on this natural variability of measurements and 

ratios, thereby emphasising the importance of addressing this variability in the individual 

morphological characteristics before a morphospecies can be reliably proposed (Dayrat 

2005). Characteristics that are prone to changes in environmental conditions can be 

identified experimentally and multivariate statistical methods can provide an insight into 

which morphological characteristics are the most discriminating between different 

morphological forms or species (Fonseca et al. 2008). 

In this paper we experimentally demonstrate a remarkable variability in 

morphometric characteristics of a population that is morphologically most close to 

Halicephalobus gingivalis (Stefański 1954). H. gingivalis is a small (235-460 µm) free-

living bacteriovorous nematode (Panagrolaimidae) which is known as a facultative 
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parasite of horses (Blunden et al. 1987; Nadler et al. 2003), zebra (Isaza et al. 2000), 

donkey (Schmitz and Chaffin 2004) and humans (Hoogstraten and Young 1975; 

Shadduck et al. 1979; Gardiner et al. 1981; Ondrejka et al. 2010). Halicephalobus 

gingivalis resembling nematodes have also been reported in the brain of a three year old 

black Angus cow (Montgomery and O'Toole 2006). The genus has further been found in 

compost (Steel et al. 2010), horse manure (see first part of Chapter 1), humus (Körner 

1954; Shokoohi et al. 2007), soil (Andrássy 1952; Pokrovskaja 1964; Mavljanov 1976), 

rotten wood (Körner 1954; Lordello and De Oliveira 1963; Köhler 2011), water 

enclosures in mines up to 1 km deep belowground (Geraert et al. 1988; Borgonie et al. 

2011), in (endo)phoretic association with insects (von Lieven and Sudhaus 2008; Powers 

et al. 2009; Köhler 2012), and in commensal association with chelicerates (Timm 1956). 

The different species of the genus have few discriminating morphological traits and 

therefore morphometric data are very important in species identification. By means of 

both univariate and multivariate analyses of 15 measurements and 13 indices from 540 

specimens, all being the progeny of a single parthenogenetic female and cultured under 

different temperature and food conditions, we assess: i) the degree of variability in 

morphometric characteristics commonly used in Halicephalobus species identification; ii) 

whether this variability is significantly influenced by temperature, food availability or 

adult age; and iii) whether this variability is of such magnitude that it could affect a 

correct species diagnosis. 

 

 

MATERIALS AND METHODS 

ISOLATION OF THE NEMATODES 

The H. gingivalis isolate WB0801 used in this study was obtained from fresh horse 

droppings on a stable in the province of Western-Flanders (Belgium). Several fresh horse 

droppings were collected from an individual stall and mixed into a bulk sample. Five 

subsamples were placed on Petri dishes containing 2% bacteriological agar (Oxoid Ltd., 

Hampshire, UK) enriched with cholesterol (final concentration 1 mg ml-1). The plates 

were closed with Parafilm® M Sealing film (Pechiney Plastic Packaging, Chicago, USA) to 
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avoid dehydration and incubated at 30°C. The plates were checked daily and after one 

week putative Halicephalobus specimens were observed and picked up. Specimens were 

identified under the light microscope as the morphospecies H. gingivalis. No males were 

observed, confirming that this species reproduces parthenogenetically (Stefański 1954; 

Andrássy 1984; Akagami et al. 2007). The culture of the WB0801 isolate was started with 

one individual, thus all specimens used in the experiments are the progeny of a single 

female. 

The morphometric variability of specimens (n = 30) from an in situ population of 

Halicephalobus was included for comparison. These specimens originated from a 

compost sample and were extracted by means of a modified Baermann funnel method 

(Steel et al., 2010).  

 

MOLECULAR ANALYSIS AND SPECIES IDENTIFICATION 

The D2D3 expansion region of LSU rDNA (28S) was sequenced for ten specimens 

from a single subculture derived from the original isolate as described in (Múnera et al. 

2010) and all molecular analyses were started from single individuals. The sequences 

showed an intrapopulation difference of 0 to 1 nucleotides (0.2%). Phylogenetic analyses 

based on D2D3 sequences, including GenBank sequences, placed our Halicephalobus 

isolate WB0801 within an internally unresolved H. gingivalis clade (data not shown). 

Although the sequence differences between different H. gingivalis isolates were 

remarkable (i.e., 28S (partial) sequence of WB0801 (HQ697251) shows a 21 base (4.5%) 

difference with H. gingivalis compost isolate JB128 (AY294181), a 27 base (5.8%) 

difference with H. gingivalis parasitic isolate SAN100 (AY294177) and a 60 base (12.8%) 

difference with H. gingivalis pot soil isolate PDL0017 (DQ145637 a thorough molecular 

analysis based on 4 markers revealed that the isolate belongs to a highly supported H. 

gingivalis-clade (Chapter 6). 

 

EXPERIMENTAL DESIGN 

All the eggs used in the experiment originated from one plate that was subcultured from 

the original WB0801 culture. Approximately 100 eggs were placed on each of 18 Petri 

dishes containing 1% bacteriological agar enriched with cholesterol (1 mg ml-1). To 
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determine if and to what extent morphological variability can be affected by 

environmental variability, the developing eggs were subjected to different temperature 

and food conditions. Six plates each were placed at 15°C, 30°C and 37°C, respectively. 

These temperatures are well within the temperature range found in the natural 

environments of Halicephalobus species. At each temperature, three out of six replicates 

contained a bacterial lawn as food source, obtained by adding 10 µl of Escherichia coli 

OP50 at a density of approximately 2.85 × 106 µl-1 to each plate. No food was added to 

the other three replicates except the bacteria (E. coli OP50) that were cotransferred with 

the eggs from the main culture. These were few since the eggs were first collected in 

distilled water. Ten specimens were collected from each plate at three different times 

corresponding to three age groups: young adults with a developed vulva but before the 

onset of oviposition, adults laying eggs, and old, post-reproductive adults near the end 

of their life cycle. Since development of H. gingivalis is faster at higher temperatures and 

under optimal food conditions (personal observations), the age groups occurred at 

different time intervals in different treatments. They were determined using a 

stereomicroscope (Leica MZ95) to observe the movement of the specimens, i.e., active 

for (young) adults or sluggish for old adults, and a microscope (Olympus BX 51 DIC, 

Olympus Optical, Tokyo, Japan) was used to confirm the full development of the vulva in 

young adults. 

 

FIXATION AND MOUNTING 

The nematodes were picked off the plates using a stereomicroscope (Leica MZ95) and 

collected in a very small drop of water in an embryo dish. An excess (4-5 ml) of heated 

(70°C) formaldehyde (4% with 1% glycerol) was added to instantaneously kill and 

preserve the nematodes (Seinhorst 1966). The use of hot formaldehyde has the 

advantage that nematodes are typically outstretched and not curled. The preserved 

nematodes were processed to anhydrous glycerin following the glycerin-ethanol method 

(Seinhorst 1959), as modified by (De Grisse 1969), subsequently mounted on glass slides 

and covered with a cover slip.  
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MEASUREMENTS 

Measurements of 540 individuals were obtained directly from drawings manually 

prepared with a camera lucida on an Olympus BX 51 DIC microscope (Olympus Optical, 

Tokyo, Japan). Measuring was performed using a ruler for straight measurements and a 

curvimeter for curvilinear measurements. The measurements and ratios (table 5.1) were 

chosen based on their use in different identification keys for the genus (Andrássy 1984; 

Geraert et al. 1988; Shokoohi et al. 2007). In addition to morphometrics more generally 

used in nematode identification, in Halicephalobus identification these also include 

specific morphometric characteristics based on different parts of the female 

reproductive system (fig. 5.1): ratio ovary (= post-v/pre-v = distance vulva to posterior 

ovarian flexure/distance vulva to anterior ovarian flexure), ratio reflexed/ovary length (= 

length of dorsally reflexed part of ovary/total length ovary), ratio reflexed/post-v (= 

length of dorsally reflexed part of ovary/distance vulva to posterior ovarian flexure) and 

(VA/2)/post-v (= 0.5 × vulva to anus distance/distance vulva to posterior ovarian 

flexure). 

 

 

 

 

 

 

Figure 5.1. Detail of the female 

reproductive system with 

notation of the different 

measurements used to 

calculate specific ratios used in 

Halicephalobus identification 

keys. Reflexed = length of 

dorsally reflexed part of ovary, 

pre-v = distance vulva to 

anterior ovarian flexure, post-v 

= distance vulva to posterior 

ovarian flexure.  
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STATISTICAL ANALYSIS 

First, for each morphometric character the measurements were normalised for size by 

subtracting its mean and dividing by its standard deviation (both mean and the standard 

deviation being based on 540 measurements). The F-values of all the morphometric 

characteristics were calculated by means of one-way analysis of variance (ANOVA) using 

Statistica 7 (StatSoft Europe GmbH, Hamburg, Germany) with the factor temperature or 

food availability or age. Residual plots indicated homogeneous variances and 

homoscedastic error distributions, but formal testing using a Kolmogorov-Smirnov test 

and a Bartlett test rejected the normality assumption and the assumption of 

homogeneity of variance, respectively. However, when based on a large sample size (n > 

30) deviations from normality are negligible because of the central limit theorem, 

according to which the sampling distribution of the mean approximates the normal 

distribution, regardless of the distribution of the variable in the population (StatSoft 

Electronic Statistics Textbook 2012, http://www.statsoft.com/textbook/). Additionally, 

the F-statistic is remarkably robust to deviations from normality and homogeneity of 

variances (Lindman 1974). 

The F-value represents the ratio between variances due to effect and variances 

due to error and fluctuates around 1 if the variances of the different populations are 

approximately the same (Sokal and Rohlf 1995). Consequently, the F-value can be used 

as an indication of the variability of the measurements and ratios under different 

culturing conditions and for different age groups. A correlation structure among the 

morphometric values was explored in SAS® 9.3 (SAS Institute Inc., Cary, NC, USA) by 

means of a Principal Component Analysis (PCA). Only the diagnostic characteristics 

commonly used in species identification keys (Andrássy 1984; Geraert et al. 1988; 

Shokoohi et al. 2007) were included: ratio a, ratio c, ratio c’, ratio V, ratio ovary (= 

distance vulva to posterior ovarian flexure/distance vulva to anterior ovarian flexure), 

ratio corpus/isthmus, distance vulva to anus/tail length and the ratio dorsally reflexed 

part ovary/distance vulva to posterior ovarian flexure. 

Finally, a canonical discriminant analysis (CDA) was performed including only 

those morphometric characteristics that have no significant correlation with each other 

(significant correlation at P < 0.05, r > 0.8) using the CANDISC procedure in SAS® 9.3 (SAS 



84 | C H A P T E R  V  

 

 
 

Institute Inc., Cary, NC, USA) to find the sets of variables that discriminate most between 

the populations, based on the pooled within variance-covariance matrix, and to test 

whether or not the morphometric values of the subpopulations cultured under variable 

conditions are significantly different. Note that indices and quantitative data can be 

combined in a discriminant function analysis when they are not highly correlated 

(Fortuner 1990). 

 

 

RESULTS 

The measurements and the ratios of 540 individuals subcultured from a single female 

are presented in table 5.1. Measurements for each temperature and food condition are 

based on 90 individuals and include three replicates of ten individuals (n = 10) of each of 

the three different age classes, i.e., young adults with a fully developed vulva but before 

the onset of oviposition, actively moving egg-laying adults and old (sluggish moving) 

adults near the end of their life cycle. 

 

MAXIMAL INTRASPECIFIC VARIABILITY OF MORPHOMETRIC CHARACTERISTICS 

To determine the maximal variability, i.e., the range between the lowest and the highest 

value of a morphometric character, all 540 specimens were analysed together without 

consideration of the influence of temperature, food availability and age (first column of 

table 5.1). The maximal variability is presented (fig. 5.2) as a ratio of one (i.e., 

representing the minimum value) to the least common multiple (i.e., representing how 

many times the maximum value is larger than the minimum value), and the coefficients 

of variation (CV, a measure of relative variability) of all measurements and ratios are 

given in figure 5.2. The results reveal that nearly all morphometric characteristics show 

considerable variation: corpus length, pharynx length, stoma length, ratio V, ratio V’ and 

ratio b show the lowest intraspecific variation, whereas the highest variability is found in 

the different parts of the reproductive system and the ratios derived from these 

measurements. The overall largest variation is found in the length of the dorsally 

reflexed part of the ovary (CV 57%) with the longest length measuring 31 times the 
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shortest (1 : 31). Ratio ovary, which is considered an important diagnostic character in 

Halicephalobus identification keys, shows a maximal variation of 1 : 9 (CV 23%) with 

values ranging between 0.12 and 1.10, thus overlapping ratio ovary values of all known 

Halicephalobus species. For the non-reproduction related characteristics, the putative 

diagnostic ratio VA/tail length (CV 16%; 1 : 4) and the isthmus length (CV 11%; 1 : 3) are 

the most variable. For comparison, such a large variation could also be observed in an in 

situ population of Halicephalobus. Measurements of 30 specimens originating from a 

natural population found in compost and their resulting CV values showed a similar 

variation compared to our cultured populations (table 5.2).  

Table 5.1. Morphometrics of specimens cultured at different temperatures (15°C, 30°C or 38°C) and food 

availability (with or without additional Escherichia coli OP50). The first column represents all measurements 

pooled together without considering the different treatments. Measurements are given in µm and are represented 

as mean ± standard deviation with (ranges) and coefficient of variation expressed as percentage.  

temperature all                                   15°C                             30°C                                    38°C 

character     + E. coli - E. coli   + E. coli - E. coli   + E. coli - E. coli 

n 540 
 

90 90 
 

90 90 
 

90 90 

anal body width 11.80 ± 1.72  
 

10.80 ± 1.53 10.70 ± 1.25 
 

12.67 ± 1.99 11.54 ± 1.40 
 

13.01 ± 1.31 12.08 ± 1.27 

 
(7.23 - 16.87) 

 
(7.83 - 13.86) (7.23 - 13.25) 

 
(8.43 - 16.87) (8.43 - 16.26) 

 
(10.24 - 15.66) (9.04 - 14.46) 

   
14 12 

 
16 12 

 
10 11 

corpus length 47.81 ± 3.17 
 

46.81 ± 2.99 47.11 ± 2.50 
 

48.74 ± 2.90 49.72 ± 3.81 
 

46.23 ± 2.24 48.23 ± 3.00 

 
(38.55 - 57.23) 

 
(38.55 - 53.01) (40.96 - 53.01) 

 
(40.96 - 54.82) (42.17 - 57.23) 

 
(40.36 - 51.81) (40.36 - 54.22) 

   
6 5 

 
6 8 

 
5 6 

dorsally reflexed  60.28 ± 34.59 
 

47.86 ± 20.94 38.63 ± 12.49 
 

80.23 ± 46.53 43.25 ± 16.52 
 

84.44 ± 36.53 67.28 ± 30.22 

part ovary (4.82 - 151.20) 
 

(6.63 - 96.38) (10.84 - 62.05) 
 

(4.82 - 151.20) (10.24 - 81.93) 
 

(15.66 - 147.59) (12.05 - 112.65) 

   
44 32 

 
58 38 

 
43 45 

isthmus length 18.94 ± 2.06 
 

18.47 ± 2.07 18.08 ± 1.65 
 

19.62 ± 1.74 20.01 ± 2.07 
 

18.42 ± 1.88 19.07 ± 2.20 

 
(8.43 - 25.30) 

 
(8.43 - 22.89) (13.86 - 21.69) 

 
(13.86 - 22.89) (13.86 - 25.30) 

 
(13.86 - 22.29) (14.46 - 24.70) 

   
11 9 

 
9 10 

 
10 12 

L 389.58 ± 48.40 
 

397.38 ± 55.51 381.31 ± 45.13 
 

409.36 ± 56.52 374.69 ± 36.43 
 

395.56 ± 36.70 379.20 ± 48.00 

(total body length) (262.04 - 504.81) 
 

(262.04 - 476.50) (273.49 - 455.41) 
 

(286.74 - 504.81) (312.65 - 456.62) 
 

(305.42 - 463.25) (267.47 - 452.40) 

   
14 12 

 
14 10 

 
9 13 

L' 329.61 ± 42.85 
 

340.47 ± 47.18 325.70 ± 38.27 
 

344.52 ± 52.22 309.89 ± 32.35 
 

337.49 ± 31.39 319.58 ± 41.87 

(L – tail lentgh) (224.70 - 439.75) 
 

(224.70 - 407.82) (234.94 - 391.56) 
 

(232.53 - 439.75) (251.80 - 384.33) 
 

(258.43 - 393.97) (228.31 - 384.93) 

   
14 12 

 
15 10 

 
9 13 

max. body width 22.3 ± 4.5 
 

20.96 ± 4.02 19.36 ± 2.54 
 

24.55 ± 6.46 21.01 ±2.94 
 

25.90 ± 3.15 22.02 ± 3.02 

 
(12.05 - 33.13) 

 
(12.05 - 27.11) (13.25 - 23.49) 

 
(12.05 - 33.13) (13.86 - 27.71) 

 
(18.67 - 30.12) (15.06 - 27.71) 

   
19 13 

 
26 14 

 
12 14 

pharynx length 81.84 ± 5.27 
 

80.29 ± 5.15 79.66 ± 3.75 
 

84.13 ± 4.61 84.55 ± 6.22 
 

80.61 ± 4.10 81.79 ± 5.41 

 
(60.24 - 98.19) 

 
(60.24 - 92.17) (71.08 - 88.55) 

 
71.69 - 93.97) (72.29 - 98.19) 

 
(69.88 - 89.16) (68.07 - 93.37) 

   
6 5 

 
5 7 

 
5 7 

post-v 45.64 ± 14.30 
 

47.42 ± 18.02 43.79 ± 9.44 
 

47.75 ± 20.35 40.51 ± 9.60 
 

47.17 ± 12.35 47.16 ± 11.08 

(vulva to posterior (7.23 - 80.12) 
 

7.23 - 80.12) (18.07 - 63.85) 
 

(8.43 - 75.30) (12.05 - 57.83) 
 

(9.04 - 73.49) (18.07 - 66.87) 

ovarian flexure) 
  

38 22 
 

43 24 
 

26 25 

pre-v 72.16 ± 19.35 
 

71.08 ± 20.83 62.85 ± 13.04 
 

78.69  ± 27.74 63.67 ± 12.02 
 

81.81 ± 14.37 74.89 ± 15.36 

(vulva to anterior (26.51 - 115.66) 
 

(26.51 - 104.82) (30.72 - 91.56) 
 

(26.51 - 112.65) (39.76 - 92.77) 
 

(50.60 - 113.85) (37.95 - 115.66) 

ovarian flexure) 
  

29 21 
 

35 19 
 

18 21 
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Table 5.1. Continued 

        
PV 147.64 ± 25.75 

 
155.04 ± 28.12 146.32 ± 24.22 

 
153.54 ± 30.29 133.23 ± 19.67 

 
153.89 ± 19.15 143.82 ± 24.72 

(distance pharynx- (86.75 - 192.77) 
 

(86.75 - 191.56) (90.36 - 184.94) 
 

(89.16 - 192.77) (96.77 - 176.50) 
 

(104.22 - 188.55) (94.58 - 178.91) 

vulva) 
  

18 16 
 

20 15 
 

12 17 

stoma length 8.96 ± 0.85 
 

8.61 ± 0.73 8.80 ± 0.70 
 

9.19 ± 0.77 9.05 ± 1.14 
 

9.08 ± 0.77 9.07 ± 0.79 

 
(7.23 - 12.05) 

 
(7.23 - 10.24) (7.23 - 10.24) 

 
(7.23 - 10.84) (7.23 - 12.05) 

 
(7.23 - 12.05) (7.23 - 10.84) 

   
9 8 

 
8 12 

 
8 8 

tail length 59.97 ± 8.75 
 

56.91 ± 10.10 55.61 ± 8.29 
 

64.85 ± 5.83 64.79 ± 7.46 
 

58.07 ± 8.26 59.62 ± 7.46 

 
(34.94 - 78.31) 

 
(34.94 - 74.70) (36.75 - 78.31) 

 
(53.01 - 75.90) (46.38 - 78.31) 

 
(41.57 - 74.10) (39.16 - 71.69) 

   
18 15 

 
9 12 

 
14 13 

VA 100.13 ± 16.41 
 

105.14 ± 18.06 99.72 ± 13.59 
 

106.85 ± 21.94 92.11 ± 12.20 
 

103.00 ± 11.10 93.97 ± 13.52 

(distance vulva- (59.64 - 166.26) 
 

(59.64 - 140.36) (65.06 - 122.29) 
 

(63.25 - 166.26) (69.28 - 122.29) 
 

(76.50 - 122.29) (63.85 - 119.28) 
Anus) 

  
17 14 

 
21 13 

 
11 14 

vulval body width 21.80 ± 4.38 
 

20.67 ± 3.88 19.03 ± 2.61 
 

23.69 ± 6.13 20.39 ± 2.94 
 

25.62 ± 3.15 21.37 ± 2.90 

 
(11.45 - 31.93) 

 
(12.05 - 26.51) (13.25 - 23.49) 

 
(11.45 - 31.93) (13.25 - 27.71) 

 
(18.67 - 30.12) (14.46 - 26.51) 

   
19 14 

 
26 14 

 
12 14 

a 17.86 ± 2.43 
 

19.27 ± 2.32 19.77 ± 1.27 
 

17.45 ± 3.19 18.04 ± 2.02 
 

15.36 ± 0.99 17.27 ± 0.92 

(L/max. body width) (12.89- 30.68) 
 

(16.68 -- 30.68) (17.52 - 23.61) 
 

(14.00 - 25.71) (15.10 - 25.16) 
 

(12.98 - 18.74) (15.60 - 19.88) 

   
12 6 

 
18 11 

 
6 5 

b 4.77 ± 0.55 
 

4.95 ± 0.65 4.79 ± 0.54 
 

4.87 ± 0.67 4.44 ± 0.42 
 

4.91 ± 0.39 4.63 ± 0.41 

(L/pharynx length) (3.39 - 6.08) 
 

(3.39 - 6.08 (3.61 - 5.72) 
 

(3.51 - 5.78) (3.62 -5.19) 
 

(3.93 - 5.54) (3.69 - 5.32) 

   
13 11 

 
14 10 

 
8 8 

c 6.56 ± 0.77 
 

7.07 ± 0.84 6.91 ± 0.55 
 

6.30 ± 0.60 5.82 ± 0.58 
 

6.89 ± 0.74 6.37 ± 0.45 

(L/tail length) (4.80 - 12.47) 
 

(6.15 - 12.47) (5.77 - 8.77) 
 

(5.14 - 7.76) (4.80 - 7.59) 
 

(5.54 - 8.63) (5.40 - 7.83) 

   
12 8 

 
9 10 

 
11 7 

c' 5.12 ± 0.64 
 

5.26 ± 0.52 5.20 ± 0.52 
 

5.19 ± 0.57 5.65 ± 0.65 
 

4.47 ± 0.48 4.94 ± 0.42 

(tail/anal body  (3.41 - 7.43) 
 

(3.44 - 6.69) (3.59 - 6.50) 
 

(4.05 - 6.71) (4.14 - 7.43) 
 

(3.41 - 5.63) (3.83 - 5.88) 

width) 
  

10 10 
 

11 11 
 

11 9 

ratio corpus/isthmus 2.54 ± 0.23 
 

2.56 ± 0.28 2.63 ± 0.26 
 

2.50 ± 0.22 2.50 ± 0.16 
 

2.53 ± 0.22 2.55 ± 0.19 

 
(1.97 - 4.64) 

 
(2.16 - 4.64) (2.13 - 3.46) 

 
(2.09 - 3.52) (2.17 - 3.30 

 
(1.97 - 3.35) (2.05 - 3.15) 

   
11 10 

 
9 6 

 
9 7 

gonad% 29.84 ± 5.68 
 

29.08 ± 6.54 27.76 ± 3.03 
 

29.96 ± 8.65 27.80 ± 4.40 
 

32.57 ± 4.27 31.89 ± 3.22 

(length reprod (13.32 - 40.09) 
 

(13.37 - 39.46) (19.57 - 34.79) 
 

(13.32 - 40.09) (18.39 - 35.67) 
 

(19.31 - 38.54) (21.76 - 39.26) 

system x 100 /L) 
  

22 11 
 

29 16 
 

13 10 

ratio ovary 0.64 ± 0.14 
 

0.65 ± 0.18 0.70 ± 0.12 
 

0.60 ± 0.13 0.64 ± 0.13 
 

0.59 ± 0.15 0.63 ± 0.12 

(post-v/pre-v) (0.12 - 1.10) 
 

(0.21 - 1.08) (0.39 - 1.04) 
 

(0.17 - 0.85) (0.19 - 0.97) 
 

(0.12 - -0.98) (0.36 - 1.10) 

   
27 17 

 
21 21 

 
26 18 

reflexed part ovary/ 0.48 ± 0.19 
 

0.38 ± 0.09 0.35 ± 0.07 
 

0.56 ± 0.22 0.40 ± 0.11 
 

0.64 ± 0.24 0.52 ± 0.17 

         ovary length (0.11 - 1.07) 
 

(0.14 - 0.66) (0.16 - 0.49) 
 

(0.11 - 0.91) (0.14 - 0.62) 
 

(0.20 - 1.07) (0.17 - 0.779) 

   
25 19 

 
40 27 

 
37 33 

reflexed part ovary/ 1.30 ± 0.73 
 

1.00 ± 0.24 0.87 ± 0.19 
 

1.53 ± 0.69 1.08 ± 0.46 
 

1.94 ± 1.20 1.35 ± 0.43 

                       post-v (0.33 - 7.33) 
 

(0.45 - 1.93) (0.34 - 1.56) 
 

(0.47 - 4.58) (0.33 - 3.995) 
 

(0.51 - 7.33) (0.56 - 2.08) 

   
24 22 

 
45 43 

 
62 32 

V 58.96 ± 1.33 
 

59.37 ± 1.51 59.33 ± 1.16 
 

58.14 ± 1.07 58.14 ± 0.89 
 

59.31 ± 1.29 59.50 ± 1.18 

 
(54.18 - 63.86) 

 
(57.08 - 63.86) (56.80 - 62.11) 

 
(54.18 - 60.93) (55.71 - 60.78) 

 
(55.33 - 62.02) (56.72 - 61.97) 

   
3 2 

 
2 2 

 
2 2 

V' 69.74 ± 1.48 
 

69.27 ± 1.53 69.44 ± 1.09 
 

69.24 ± 2.06 70.34 ± 1.33 
 

69.51 ± 1.00 70.64 ± 0.97 

 
(62.19 - 74.62) 

 
(64.96 - 74.17) (66.90 - 72.31) 

 
(62.19 - 73.47) (67.04 - 74.62) 

 
(66.37 - 72.54) (67.84 - 72.75) 

   
2 2 

 
3 2 

 
1 1 

VA/tail length 1.69 ± 0.28 
 

1.87 ± 0.31 1.81 ± 0.19 
 

1.64 ± 0.28 1.44 ± 0.22 
 

1.80 ± 0.24 1.58 ± 0.14 

 
(1.03 -- 4.02) 

 
(1.45 - 4.02) (1.49 - 2.41) 

 
(1.15 - 2.56) (1.03 - 2.11) 

 
(1.29 - 2.42) (1.28 - 2.09) 

   
16 10 

 
17 15 

 
13 9 

(VA/2) / post-v  1.23 ± 0.56 
 

1.35 ± 0.75 1.17 ± 0.20 
 

1.36 ± 0.68 1.21 ± 0.43 
 

1.24 ± 0.75 1.03 ± 0.19 

 
(0.71 - 6.50) 

 
(0.77 - 4.71) (0.91 - 2.27) 

 
(0.71 - 4.18) (0.83 - 4.18) 

 
(0.79 - 6.50) (0.74 - 1.77) 

      56 17   50 35   60 19 
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INFLUENCE OF CULTURE CONDITIONS AND AGE GROUPS ON MORPHOMETRIC DATA  

An analysis of variance (one-way ANOVA) was performed on all morphometric 

characteristics using the factors temperature, food availability and age group, 

respectively. Most morphometric characteristics are significantly (P < 0.05) influenced by 

the different factors, except stoma length, pharynx length, isthmus length, ratio 

corpus/isthmus, tail length and ratio V, which are not significantly influenced by a 

difference in food availability; total body length, which is not significantly influenced by 

temperature; and ratio ovary, which shows no significant differences between the age 

groups (ANOVA, P > 0.05; annotated as † in table 5.3). The F-values (table 5.3) indicate 

which characteristics are most influenced by the different factors (high F-values) and 

which characteristics are least influenced (low F-values). Note that comparison of F-

values between characteristics should only be done within and not between factors. The 

results show that temperature, food availability and age group clearly have a dissimilar 

influence on the different morphometric characteristics. For example, whereas 

temperature has a strong effect on the pharyngeal measurements (corpus, isthmus and 

total pharynx length) and on ratio V, food availability and age group have little or no 

influence on these characteristics. Evidently, characteristics related to the reproductive 

system (post-v and the ratio (VA/2)/post-v) are highly influenced by the age of the adults 

(factor age group) and less by the factors temperature and food availability. Finally, 

stoma length and ratio corpus/isthmus, but also (VA/2)/post-v and ratio ovary, despite 

their huge overall variability (fig. 5.2), show no clear influence by either factor. 

 

Figure 5.2. The grey bars represent the maximum variability of the measurements (a) and ratios (b), 

given as a proportion of 1 to the least common multiple, ranked from limited variation (top) to highly 

variable (bottom). The coefficient of variation (expressed as percentage) of each morphometric 

character is given left of the grey bar. *Abbreviations: pre-v = distance vulva to anterior ovarian 

flexure, post-v = distance vulva to posterior ovarian flexure, gonad% = (gonad length/L) x100, ratio 

ovary = post-v/pre-v. 
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Table 5.2. Coefficient of variation (CV) of specimens (n=30) 
originating from an in situ population from compost and specimens 
(n=30) originating from a population cultured under laboratory 
conditions (at 30°C with additional E. coli OP50). 

 origin 
character 

in situ population  laboratory population 

 

 

 stoma length 7  8 

pharynx length 8  5 

PV 18  20 

VA 19  21 

tail length 17  9 

L 13  14 

L' 14  15 

KV 12  13 

V 3  2 

V' 2  3 

max. body width 12  26 

a 7  18 

b 11  14 

c 14  9 

c' 21  11 

anal body width 12  16 

pre-v 23  35 

post-v 40  43 

ratio ovary 31  21 

reflexed 54  58 

VA/tail length 18  21 

(VA/2)/post-v 37  18 

reflex/post-v 30  50 

reflexed/ovary length 30  45 

ratio corpus/isthmus 12  9 
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Table 5.3. Measurements and ratios with their respective F-values (ANOVA). The 

lowest F-values (printed in bold) represent the 10 characteristics least influenced by 

the factors temperature (15°C, 30°C, 38°C), food availability (with or without additional 

E. coli OP50) or age (young adults with a developed vulva but before the onset of 

oviposition, adults laying eggs, and old, post-reproductive adults near the end of their 

life cycle). Outlined bars represent the morphometrical characteristics that show a low 

influence by all three factors and have a limited maximal variability. Highlighted (grey 

bars) are the morphometrical characteristics that show a low influence by all three 

factors yet have a high maximal variability.  

  temperature food availability age 

Variable * F2,537 F1,538 F2,537 

a 245 71 153 
anal body width 175 79 302 

b  23 133 524 
c 120 62 9 
c' 110 51 7 

corpus length 47 28 21 

ratio corpus/isthmus 8 2.04† 4.8 

gonad% 93 31 443 

isthmus length 41 2.4† 10 

L 1.6† 108 552 
L' 3.5 139 551 
max. body width 216 388 819 

pharynx length 57 0.9† 23 
PV 15 138 618 

post-v 5.6 24 299 
pre-v 83 190 761 

ratio ovary 16 19 2.9† 
reflexed 284 356 858 
reflexed/ovary length 244 168 478 

reflexed/post-v 104 95 152 

stoma length 17 0.05† 4.6† 

tail length 108 0.02† 153 

V 78 0.27† 30 
V' 20 72 113 
VA 10 167 477 
(VA/2)/post-v 5.5 20 46 

VA/tail length 99 88 31 
vulval body width 202 422 810 

* gonad%=(length reproductive system/L) x100; post-v=distance vulva to posterior 

ovarian flexure; pre-v=distance vulva to anterior ovarian flexure; ratio ovary=post-

v/pre-v; reflexed=length dorsally reflexed part ovary. †
 
ANOVA P>0.05, i.e., character 

showing no significant influence of factor (temperature, food availability or age group). 
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Ordination by PCA of the most commonly used diagnostic morphometric 

variables did not show a clear pattern related to food, temperature or age (results not 

shown). Nevertheless, PCAs of selected data sets showed distinct patterns that illustrate 

clear differences between the subpopulations. For example, a PCA on 180 specimens of 

a subpopulation cultured at 15°C without food and a subpopulation cultured at 30°C 

with E. coli OP50 as food source showed a pattern distinctly related to culture conditions 

(fig. 5.3). This biplot represents 57.5% of the total variation in the morphometric data, 

the first principal component (PC1) axis explains 33.5% of the total variation and is 

mainly correlated with ratio c, ratio c’ and VA/tail length, and the PC2 axis explains 

23.92% of the total variation and is mainly correlated with ratio a, ratio V and ratio 

ovary. 

 

Figure 5.3. PCA plot of diagnostic characteristics of specimens cultured under two different culture 

conditions, 15°C without additional Escherichia coli OP50 and 30°C with additional E. coli OP50. A 

schematic representation of a specimen of each group is added left (30°C + E. coli OP50) and right (15°C - 

E. coli OP50) of the PCA plot. (Scale bar = 20 µm.) 
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Using the morphometric data of these two subpopulations in two independent ‘species’ 

identifications, has different outcomes. For example, following the key of (Geraert et al. 

1988), which already takes the variability of some characteristics into account, the 

morphometrics of the subpopulation cultured at 15°C (c’ = 3.5-5, VA/tail length > 1, ratio 

ovary < 0.5) correspond to H. gingivalis, whereas the morphometrics of the 30°C 

subpopulation (c’ = 3.5-5, VA/tail length > 1, ratio ovary ± 0.66, tail tip straight) 

correspond to the species complex H. palmaris/H. intermedius. 

 

Table 5.4. Pooled within canonical structure, i.e., correlations between the canonical variables and the 

original variables, calculated by CDA analyses of the subpopulations induced by temperature (15, 30 and 

38°C), food availability (with or without additional E. coli OP50) and age groups (young adult, adult and old 

adult). The amount of the variance of the data that each canonical variable accounts for is given between 

brackets. The highest correlations with each canonical variable are given in bold.  

              temperature    food availability                   age 

 
Can1 Can2 

 
Can1 

 
Can1 Can2 

Variable *                  (77.39%) (22.61%)   (100%)   (89.14%) (10.86%) 

a 0.4620 -0.2678 
 

-0.3192 
 

-0.3372 0.1224 
anal body width -0.3734 0.0551 

 
0.3284 

 
0.5081 0.2860 

c' 0.1672 -0.6862 
 

-0.3577 
 

-0.0838 -0.0639 
ratio corpus/isthmus 0.1067 0.1357 

 
-0.0900 

 
-0.0920 -0.0219 

L 0.0020 -0.0546 
 

0.3616 
 

0.7815 0.3425 
post-v -0.0113 0.1194 

 
0.1947 

 
0.5798 -0.3317 

ratio ovary 0.1663 0.0090 
 

-0.2608 
 

0.0341 -0.1598 

reflexed -0.3020 0.1653 
 

0.4881 
 

0.6490 -0.0869 
reflexed/post-v -0.3073 0.2049 

 
0.4259 

 
0.3831 0.2736 

stoma length -0.1640 -0.0808 
 

-0.0117 
 

-0.0498 0.1840 

tail length -0.2082 -0.4920 
 

-0.0058 
 

0.3957 0.1880 
V 0.1167 0.6471 

 
-0.0283 

 
-0.2000 0.1185 

(VA/2)/ post-v 0.0435 -0.1423 
 

0.2450 
 

-0.2228 0.3723 
VA/tail length 0.2829 0.4282   0.4643   0.1817 -0.0239 

* post-v = distance vulva to posterior ovarian flexure; reflexed = length dorsally reflexed ovarian part 

 

A canonical discriminant analysis was done including 14 of the 28 morphometric 

characteristics (listed in table 5.4) chosen based on their low mutual correlation (r < 

0.80). While PCA analysis searches for the components that best explain the variability in 

the data, CDA appoints the variables that depict the differences between pre-defined 

groups, i.e., the subpopulations. All analysed subpopulations are significantly different 

(Wilks’ λ, P < 0.0001) and the morphometric characteristics that cause the overall largest 

separation between the groups are anal body diam., L, VA/tail length, length reflexed 
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part ovary and ratio reflexed part ovary/distance vulva to posterior ovarian flexure. The 

pooled within canonical structure, i.e., the correlations between the canonical variables 

and the original variables, which illustrates how the subpopulations are grouped and 

separated, is listed in table 5.4. 

 

 

Table 5.5. Summary of the results. The morphometric characteristics are categorized as potentially 

useful for species delineation (grey bars), i.e., showing limited variation or low influence by age or 

external factors, or as not suitable for species delineation (X), i.e., showing high variability or high 

influence by age or external factors. Maximum variability is given as a proportion of one to the least 

common multiple. 

    max. variability       ANOVA/CDA     

Variable *       temp   food   age 

         a 
 

1:2.4 
 

X 
 

X 
 

X 

         anal body width 
 

1:2.3 
 

X 
 

X 
 

X 

         c' 
 

1:2.2 
 

X 
 

X 
 

  

         ratio corpus/isthmus  
 

1:2.3 
 

  
 

  
 

  

         L 
 

1:1.9 
 

  
 

X 
 

X 

         post-v 
 

1: > 3 
 

  
 

  
 

X 

         ratio ovary 
 

1: > 3 
 

  
 

  
 

  

         reflexed 
 

1: > 3 
 

X 
 

X 
 

X 

         reflexed/post-v 
 

1: > 3 
 

X 
 

X 
 

X 

         stoma length  
 

1:1.7 
 

  
 

  
 

  

         tail length 
 

1:2.2 
 

X 
 

X 
 

X 

         V 
 

1:1.2 
 

X 
 

  
 

X 

         (VA/2)/post-v 
 

1: > 3 
 

  
 

  
 

X 

         VA/tail length   1: > 3   X   X     
* post-v = distance vulva to posterior ovarian flexure; ratio ovary = post-v/distance vulva to anterior 
ovarian flexure; reflexed = length dorsally reflexed ovarian part 

 

Finally, table 5.5 shows a summary of the results, which reveals that most 

morphometric characteristics used in Halicephalobus identification keys have a notable 

variability and/or can be highly influenced by environmental factors or age. Although 

ratio ovary and ratio corpus/isthmus are not clearly influenced by age and external 

conditions, they show a high intraspecific variability of 1 : 9 and 1 : 2.3, respectively. On 

the other hand, ratio V shows the lowest intraspecific variation (1 : 1.2), but is clearly 

influenced by differences in temperature and age. Stoma length is least influenced by 
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age and external factors (i.e., temperature and food) and shows a relatively low maximal 

variability (1 : 1.7). Thus, only one morphometric character does not show distinct 

morphometric variability. 

 

 

DISCUSSION 

In the absence of other morphological features, measurements and ratios are often used 

to discriminate closely related species. However, when knowledge of the intraspecific 

variation of these characteristics is lacking, their taxonomic value is rather questionable. 

Therefore, when describing new species, the variability of each morphometric character 

should be carefully evaluated before utilising it for species delineation (Dodson and Lee 

2006). However, this requirement is often not met, since many descriptions of new 

species are based on very few or even single specimens collected at one moment in time 

and from a single location. Here, by analysing the morphometric variability of the 

progeny of a single parthenogenetic female, the limits of the intraspecific variability of 

morphometric data are explored and implications for delineating species boundaries are 

discussed. Although several previous studies have shown a high variability in 

morphometric characteristics of nematodes, a variability of this magnitude has never 

been observed before. 

The most obvious influence is that of food availability on the variation in body 

size and diameter. The influence of caloric restriction is well known for Caenorhabditis 

elegans where feeding-defective mutants are significantly smaller than wild type (N2) 

specimens (Morck and Pilon 2006), and in C. briggsae, which also shows a distinct 

decrease in body size and in gonad length correlated with a decrease in food (Schiemer 

1982). Also, Diplolaimelloides oschei MEYL, 1954, D. meyli TIMM, 1961, and Pellioditis 

marina BASTIAN, 1865 show remarkably similar variations in body length and diameter 

due to variations in bacterial abundance (dos Santos et al. 2008). A general negative 

effect of caloric restriction on body size is not limited to invertebrates, but is also known 

for mice and rats (Weindruch 1996; Kristan and Hammond 2001). In the present study, 

the maximal variability in total body length, i.e., 1 : 1.90, even exceeds that of C. elegans 

when comparing wild type specimens (N2) with long mutants, i.e., 1 : 1.22 (Nyström et 
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al. 2002), or short mutants, i.e., 1 : 1.80 (Morita et al. 1999), thereby illustrating the 

huge variation observed in H. gingivalis.  

Variation in size has a considerable effect on many other morphometric 

characteristics. However, variability may be reduced by using ratios instead of individual 

measurements when they are constant and both their entities show a high mutual 

correlation (Geraert 1968; Fortuner 1984; Roggen et al. 1986). In Halicephalobus species 

identification, especially ratio c’ is frequently used. However, the present study reveals 

that ratio c’ shows a relatively high intraspecific variability in H. gingivalis (1 : 2.2), 

exceeding the range of several other species of the genus (see also Geraert et al. 1988). 

Therefore, ratio c’ can only be used to discriminate between a ‘short-tailed’ group 

consisting of H. brevicauda (MAVLJANOV, 1976) ANDRÁSSY, 1984, H. intermedius 

(POKROVSKAJA, 1964) ANDRÁSSY, 1984, H. gingivalis, H. palmaris (LORDELLO AND DE OLIVEIRA, 

1963) ANDRÁSSY, 1974 and H. limuli TIMM, 1956, and a ‘long-tailed’ group encompassing 

H. persicus SHOKOOHI, ABOLAFIA AND ZAD, 2007, H. parvus (KÖRNER, 1954) ANDRÁSSY, 1974, H. 

similigaster (ANDRÁSSY, 1952) ANDRÁSSY, 1974, H. minutus (KÖRNER, 1954) ANDRÁSSY, 1974 

and H. mephisto BORGONIE, GARCIA-MOYANO, LITTHAUER, BERT, BESTER, VAN HEERDEN, MOLLER, 

ERASMUS AND ONSTOTT, 2011. Ratio VA/T, also frequently used in Halicephalobus 

identification keys, exhibited a huge intraspecific variability (1 : 3.9) in our study and can 

be highly influenced by temperature and food availability. This corroborates Geraert et 

al. (1988), who found that the ratio VA/T values are overlapping in multiple species of 

the genus and are thus of limited diagnostic value.  

When evaluating the boundaries of ratio variability, ratios V and V’ have often 

been identified as very stable, thereby confirming the constancy of the position of the 

vulva and its importance in nematode taxonomy (Geraert 1979; Bert et al. 2010). In the 

current study, ratios V and V’ show the least intraspecific variability, thus rendering 

them potential candidates for Halicephalobus species delineation. However, ratio V does 

appear to be influenced by temperature, which corroborates previous findings, e.g., in 

A. avenae (Monoson 1971). Hence, since a morphometric character with a low CV can 

still be modified by the environment (Tarte and Mai 1976; Lax et al. 2004), even the 

most stable characteristics, such as ratio V, must be used with caution.  

In addition, other measurements and ratios related to the reproductive system 

are important in Halicephalobus identification keys (Andrássy 1984; Geraert et al. 1988; 
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Shokoohi et al. 2007). However, the gonad is the fastest growing organ in the adult 

nematode and is closely related to the post-embryonic increase in body size (Levsen and 

Berland 2002). It is therefore not surprising that maximal variability in the morphometric 

characteristics related to the reproductive system is mainly related to the factor age 

group. Conversely, ratio ovary, which plays an important discriminating role between 

some species of Halicephalobus, shows a large overall variability (1 : 9) but is not 

significantly influenced by age as is shown by the ANOVA results. Therefore, ratio ovary 

is also of limited discriminative use, even when comparing the same age groups.  

Ratio corpus/isthmus and stoma length both show a low overall variability in H. 

gingivalis and the experimentally induced environmental factors have no or limited 

influence. The nematode stoma is a complex congregate of several cellular components, 

cuticular structures and tissues of both mesodermic and ectodermic origin (Bird and Bird 

1991; De Ley et al. 1995). The low morphometric variability could be related to this 

complexity since, according to Soule’s (Soule 1982) model of allometric variation, the 

variance of structures reduces as the number of independent developmental events that 

produce them increases. Mind that the small size of the stoma is no explanation for the 

low variability since all our morphometric characteristics were normalised for size prior 

to the statistical analysis. However, as Geraert et al. (Geraert et al. 1988) stated, the 

small size of the structure and the weakly developed posterior part makes previously 

observed interspecific variation less than convincing, rendering stoma length also not 

optimal for delineating Halicephalobus species.  

In conclusion, by only adjusting the culturing conditions in subpopulations of the 

progeny of a single parthenogenetic female, intraspecific morphometric variation may 

surpass total interspecific variability, or measurements and ratios that have been used 

to appoint individuals to different ‘species’ of Halicephalobus according to the current 

keys for the genus. The present study also reveals that morphometric variability can be 

highly influenced by environmental conditions and that caution is necessary when using 

only morphometrics for delineating new species. At the same time, one might expect 

morphological variability within natural populations to be smaller than in single 

populations maintained at a given set of constant environmental conditions, since the 

lack of environmental variability in the laboratory cultures likely implies a lack of the 

selective pressures which act on natural populations. Such selective pressures would be 
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expected to result in loss of variability in natural populations. However, when comparing 

our data on a laboratory population with an in situ population obtained from compost, a 

comparable large intraspecific variability was found, including putative discriminating 

characteristics (Geraert et al., 1988). We therefore feel that the observed variability 

under the experimental conditions applied in our study is relevant to populations from 

natural habitats. 

Additionally, given the presently found variability and its implications on species 

delimitation within Halicephalobus, a thorough revision of the genus is imperative. 

However, we are well aware that it is not feasible to describe species only after such an 

extensive assessment of variability, which can only be attained through an experimental 

culture approach, being only a substitute for natural environmental conditions. Finally, 

we also demonstrate, by showing that subpopulations of a single female can be 

statistically robustly separated, that delimitation of taxa based on multivariate analyses 

alone (Brown et al. 1997; Stock et al. 2000) should be avoided. Clearly, multivariate 

analysis of morphometric data have their merits to determine the most discriminating 

morphometric characteristics, especially when combined with independent molecular 

data (e.g., Fonseca et al. 2008). The present paper is not a plea to discard morphometric 

data in (nematode) taxonomy altogether. With this experimental study we merely 

provide convincing elements to advocate an integrative taxonomic approach and to 

abandon the description of new species based only on morphometric differences.  
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CHAPTER VI 

EVOLUTION OF PARASITISM AND SPECIES DELINEATION IN THE 

PARTHENOGENETIC GENUS HALICEPHALOBUS: MORPHOMETRICAL DATA 

CORROBORATES A MULTIPLE GENE APPROACH IN A MORPHOLOGICALLY 

MINIMALISTIC GENUS  
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ABSTRACT 

Halicephalobus is an obligatory parthenogenetic, free-living genus with a remarkably 

wide environmental range, including facultative parasitism in different mammals. A 

multidisciplinary approach was carried out combining ecological, morphological, 

morphometrical and molecular data of 17 H. gingivalis isolates, of both free-living and 

parasitic origin, complemented with 4 isolates of other species of Halicephalobus with a 

distinctly different biology. A phylogeny based on two nuclear loci (18S and D2D3 

expansion segment) and two mitochondrial loci (COI and ND4), and on both maximum 

likelihood and Bayesian inference, indicated a maximally supported sister relationship of 

H. mephisto with all other Halicephalobus isolates. Most other Halicephalobus isolates 

were also found both molecularly and morphometrically distinguishable from a distinct 

H. gingivalis-clade. Only for isolates within this H. gingivalis-clade, SSU sequence data 

revealed a high level of intra-genomic variability with associated alterations in the 

secondary structure model, which to the best of our knowledge has never been 

described for nematodes. Additionally, two morphological and morphometrical not 

discernible lineages were indicated reciprocal monophyletic by several species 

distinctiveness measures, consequently revealing cryptic speciation within the H. 

gingivalis-clade. Most remarkably, isolates originating from inside horses were 

concentrated in one of these lineages indicating that this lineage is evolving towards 

equine host specificity. 
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INTRODUCTION 

Species of the genus Halicephalobus TIMM, 1954 (Panagrolaimidae) are known for their 

broad environmental range, i.e., as inhabitants of compost, humus, soil, rotten wood, 

water enclosures in mines up to 1 km belowground, and in association with insects and 

chelicerates (table 1.1 Chapter 1). Males have never been described in any of the 

species, suggesting that they are all obligatory parthenogenetic. The genus is usually 

free-living and bacteriovorous, except for H. gingivalis (STEFAŃSKI, 1954) ANDRÁSSY, 1984 

which is known as a facultative parasite. Approximately 75 equine infections have been 

described, all but two of which were fatal. Additionally, single cases have been described 

in a Grevy’s zebra (Isaza et al. 2000) and a donkey (Schmitz and Chaffin 2004), and H. 

gingivalis resembling nematodes have been reported in the brain of a black Angus cow 

(Montgomery and O'Toole, 2006). Finally, four human cases have been reported, which 

were all fatal (Ondrejka et al. 2010). The distribution of reports on equine 

halicephalobiasis indicates that the species is cosmopolitan (see table 1.2, Chapter 1).  

Little is known about the epidemiology of H. gingivalis. This opportunist appears 

able to colonize the host in several different ways, such as through open wounds, 

through the nasal and oral cavities, through the ingestion of contaminated food, via the 

respiratory tract (Spalding et al. 1990; Ruggles et al. 1993; Trostle et al. 1993; Bröjer et 

al. 2000), or facilitated by recumbency (Dunn et al. 1993). Insects may play an important 

role in H. gingivalis infections, which is especially true for infections through lesions in 

the skin or orbital infections (Anderson et al. 1988). Phoretic behaviour associated with 

insects and other invertebrates has been described for many nematodes (e.g., Sudhaus 

and Kiontke 1996; Timper and Davies 1996), including the (endo)phoretic association of 

other species of the genus Halicephalobus with flies, beetles and ants (Köhler 2012), and 

termites (Kanzaki et al. 2012). However, the phoretic ability of H. gingivalis isolates as 

well as the possible role of phoresy in H. gingivalis infections and in the geographical 

distribution of the species in general, has never been investigated. 

It is not yet clear whether free-living H. gingivalis are generally capable of 

infecting vertebrate hosts but only very occasionally do so, or whether a specific lineage 

of H. gingivalis is evolving towards vertebrate host specificity (Blunden et al. 1987, 

Nadler et al. 2003). The former hypothesis would be supported if free-living and 
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parasitic isolates do not exhibit consistent genetic differences, while the latter would be 

supported by reciprocal monophyly of isolates from vertebrate hosts versus those from 

soil (Blunden et al. 1987, Nadler et al. 2003). The phylogenetic relationship between 

several isolates of H. gingivalis based on their large subunit (LSU) rDNA sequences 

provided first evidence for the existence of distinct genetic lineages (Nadler et al. 2003), 

however, not reflecting evolution towards mammalian host specificity, thus pointing 

towards the first hypothesis, i.e., that free-living isolates are generally capable of 

infections (Nadler et al. 2003). Furthermore, genetic lineages are not necessarily 

restricted in geographical distribution, and single geographic regions may contain a 

diverse pool of lineages capable of equine infection (Nadler et al. 2003). However, 

Nadler et al. (2003) only used one locus for the phylogenetic inference and DNA from 

pooled individuals was used. Hence, a multi-locus phylogenetic analysis based on single 

individuals is necessary to better investigate the delineation of the genetic lineages 

within the morphospecies H. gingivalis and the possible evolution of one lineage 

towards parasitism (Nadler et al. 2003). 

Morphologically indiscernible H. gingivalis isolates previously used in other 

studies (Chapter 3) show an intraspecific sequence difference up to 6.3% in the SSU 

ribosomal DNA gene. Conversely, to illustrate the rDNA sequence differences in H. 

gingivalis, a SSU sequence difference of 0.2% between different isolates of the closely 

related Panagrolaimus, revealed two reproductively separated species (Abebe and 

Blaxter 2003). The genetic variability found in H. gingivalis may be a consequence of the 

clonal inheritance of rDNA due to its non-sexual reproduction resulting in a continuum 

of genetic differences between individuals with no gaps separating clades (Birky et al. 

2005), or may indicate the presence of (multiple) cryptic species within the species 

complex H. gingivalis. An integrative approach combining data from multiple sources 

including molecular data has proven successful in disclosing cryptic biodiversity in 

sexually reproducing nematodes (e.g., Fonseca et al. 2008; De Oliveira et al. 2012). 

Because delineating species in non-sexual taxa is often difficult, especially when dealing 

with character-poor organisms of small size and few discriminating morphological traits, 

it is imperative to use an integrative approach when delineating parthenogenetic species 

(Heethoff et al. 2011).  
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 The current study has the aim of revealing whether H. gingivalis is merely an 

opportunistic invader or, conversely, whether a lineage is evolving towards parasitism. 

Hence, a multidisciplinary approach was performed including 17 H. gingivalis isolates 

complemented with 4 isolates of other species of Halicephalobus which have a very 

different biology. Species boundaries were explored based on the evolutionary species 

concept (de Queiroz 2007 and references therein) and whereafter these results were 

compared with morphological and morphometrical data. The presence of permanent 

cultures ensures a sufficient number of specimens of several populations to screen 

genetic and morphological variability (Nadler 2002). Firstly, a thorough analysis of the 

genetic variability of the SSU rDNA gene revealed the presence of intraspecific and intra-

genomic polymorphisms. Their occurrence and consequence for the SSU secondary 

structure model are described. Secondly, to reveal possible cryptic species within the 

morphospecies H. gingivalis, a multiple gene phylogenetic analysis based on single-

specimen sequences of two ribosomal and two mitochondrial loci is performed. These 

molecular results are compared with morphological data, based on both light-

microscopic and scanning electron microscopic (SEM) analyses, and morphometrical 

data.  

 

MATERIAL AND METHODS 

ISOLATION, IDENTIFICATION AND CULTURE OF NEMATODES 

Molecular, morphometrical and scanning electron microscopic data were obtained from 

Halicephalobus spp. isolates WB0701-0705, WB0708, WB0709, WB0801, WB1101-1103, 

PF060103, PF060121, PF060144, PF190101, PF190106, JB043, SAN100, RGD838, RGD892 

and H. mephisto. Isolates PF060103, 060144, 190106 and CaseReportBelgium were only 

included in the molecular analysis. The following isolates were already described in 

former studies, i.e., WB0708 (Chapter 3), WB0801 (Chapters 3 and 5), JB043 (Nadler et 

al. 2003), JB128 and SAN100 (Chapter 3 and Nadler et al. 2003), H. mephisto (Borgonie 

et al. 2011). The origins of the isolates are listed in table 2.1 (Chapter 2), and include 

compost heaps, manure heaps, fresh horse dung, a clinical case, rotten plant material 

and in association with termites. WB1101 and WB1102 were obtained from rectal faecal 
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samples, representing the first direct evidence of the presence of H. gingivalis inside the 

equine digestive tract without causing clinical symptoms. Although there are no 

apparent characteristics to distinguish the new isolates light microscopically from other 

H. gingivalis isolates (e.g., JB128 and SAN100), considerable sequence differences in the 

D2D3 expansion region of LSU rDNA (28S) have been observed (Chapter 3).  

All isolates were kept in culture on 1% bacteriological agar (Oxoid, Basinstoke, 

UK) enriched with cholesterol (Sigma-Aldrich, Belgium) at a final concentration of 1 µg 

ml-1 and with a bacterial lawn of Escherichia coli OP50 as a food source (Brenner, 1974).  

 

MOLECULAR ANALYSIS 

DNA extraction  

All Halicephalobus species/isolates listed above and specimens collected from frozen 

horse tissue (Part II Chapter 2; further referred to as ‘CaseReportBelgium’) were used for 

the molecular analysis. Procephalobus sp. STEINER 1934 (strain JU169) is the most closely 

related genus (Borgonie et al. 2011) and was therefore selected as an outgroup. Single 

specimens of each nematode species/isolate were collected in 50µl of 90-95% acetone 

and kept at room temperature until processed (Fukatsu 1999). DNA was extracted of at 

least two specimens of each isolate.  

The sample in acetone was dried under vacuum, whereafter 30 µl of lysis buffer 

(50 mM KCl, 10 mM Tris pH8.3, 2.5 mM MgCl2, 0.45% NP40, 0.45% Tween2) was added. 

Subsequently, 30 µl of sterile water and 1 µl ProteinaseK were added, the tube was 

mixed and spun down. Samples were incubated for 1 hour at 65°C and subsequently for 

10 min at 95°C to heat inactivate ProteinaseK. Finally, the DNA samples were 

centrifuged for 1 min at 14,000 rpm, and 1-5 µl of extracted genomic DNA was used as a 

template for double-stranded polymerase chain reactions (PCR). 

 

Genetic markers 

Because they are present in multiple copies, can easily be amplified as a whole 

fragment, and contain both variable and conserved regions, the ribosomal (r)DNA genes 

have been used extensively as markers for reconstructing nematode phylogenies. 

Especially the LSU (large ribosomal subunit) and SSU (small ribosomal subunit) regions 
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have been proven to be very useful because of its phylogenetic resolution at the genus 

and higher taxon level (De Ley et al. 2005). Conversely, mitochondrial (mt)DNA genes 

have been used successfully to unravel recent radiations (e.g., Blouin et al. 1998; Blouin 

2002). The ND4 mtDNA gene has a high substitution rate which renders it excellent for 

identifying cryptic species, and resolving relationships among closely related congeners 

(Blouin et al. 1998), concurrently the COI mtDNA gene is used as a barcoding gene (e.g., 

Hebert et al. 2003). Therefore, since we are interested in both the relation between 

different species of the genus and in possible radiations within the H. gingivalis species 

complex, a portion of the mitochondrial gene coding for cytochrome oxidase c subunit 1 

(COI) and the mitochondrial gene coding for NADH dehydrogenase subunit 4 (ND4) were 

complemented with the rDNA genes 18S (SSU) and the D2D3 expansion region of 28S 

(LSU) in a species phylogeny. 

 

PCR amplification  

The different molecular markers were amplified using the primers and PCR protocols 

listed in table 6.1. A PCR reaction volume (50 µl) contained 5 μl of 10X reaction buffer, 

2.5 mM of MgCl2, dNTP-mix at 0.2 mM each, 1 μM of each of the primers, and 0.02 U μl-1 

of Taq polymerase (Goldstar, Eurogentec, Belgium). PCR amplifications were done on a 

2720 Thermal Cycler (Applied Biosystems, Foster City, CA, USA). Amplified PCR product 

was electrophoretically fractionated in 40 ml 0.5x TAE buffer in 1% agarose gel 

(Ultrapure Gibco BRL Life Technologies, UK) and visualized by staining with 0.003% 

ethidium bromide (0.02 µg ml-1). A 1 Kbp DNA ladder (BRL Life Technologies, UK) was 

used as a size marker. Gels were viewed on a UV transilluminator. 

 

Cloning 

Initial sequence analysis revealed multiple ambiguous nucleotides present at the same 

sites in the SSU sequence of many Halicephalobus spp. isolates, indicating the possible 

presence of different copies of the SSU rDNA gene. Polymorphisms were indicated when 

both alternative nucleotide peaks were present in all sequence reactions representing 

both DNA strands and when the minor nucleotide peak represented at least 25% of the 

major peak (following Nadler et al. 2003). To define these polymorphisms, amplification 



104 | C H A P T E R  V I   

 

 
 

products were ligated in a vector using CloneJET PCR Cloning Kit (Fermentas Thermo 

Scientific) according to the manufacturer’s protocol. Transformation of the vector in 

competent E. coli cells of strain DH5a was done by heat shock. After incubation at 37°C 

for 1 hour, the cells were concentrated by centrifugation in 100 µl and this suspension 

was spread on a Petri dish containing agar and ampicillin. Several (5 - 10) positive white 

colonies were selected for sequencing.  

Table 6.1. Primers used for amplification of different genetic markers and respective PCR 

protocols 

Primers & PCR protocol Direction Primer sequence 5'-3' Usage  Reference 

SSU 
    G18S4 forward GCT TGT CTC AAA GAT TAA GCC PCR/Sequencing Blaxter et al. 1998 

4R reverse GTA TCT GAT CGC CKT CGA WC PCR/Sequencing Blaxter et al. 1998 

18P reverse TGA TCC WMC RGC AGG TTC AC PCR/Sequencing Blaxter et al. 1998 

      
PCR protocol 5 min at 94°C, 45 x(30 s 94°C, 30 s 54°C, 2 min 72°C), 5 min 72°C 

 

     9FX forward AAG TCT GGT GCC AGC AGC CGC Sequencing Meldal et al. 2007 

22F forward TCC AAG GAA GGC AGC AGG C Sequencing Blaxter et al. 1998 

9R reverse AGC TGG AAT TAC CGC GGC TG Sequencing Blaxter et al. 1998 

26R reverse CAT TCT TGG CAA ATG CTT TCG Sequencing Blaxter et al. 1998 

2FX forward GGA AGG GCA CCA CCA GGA GTG G Sequencing Meldal et al. 2007 

23F forward ATT CCG ATA ACG AGC GAG A Sequencing Blaxter et al. 1998 

13R reverse GGG CAT CAC AGA CCT GTT A Sequencing Blaxter et al. 1998 

23R reverse TCT CGC TCG TTA TCG GAA T Sequencing Blaxter et al. 1998 
 
PCR protocol 5 min at 94°C, 45 x(30 s 94°C, 30 s 54°C, 2 min 72°C), 5 min 72°C 

 

     D2D3 region 
    D2A forward ACAAGTACCGTGAGGGAAAGTTG PCR/Sequencing De Ley et al. 1999 

D3B reverse TCCTCGGAAGGAACCAGCTACTA PCR/Sequencing De Ley et al. 1999 

     PCR protocol 5 min at 94°C, 45 x (30 s at 94°C, 30 s at 54°C, 45 s at 72°C), 10 min 72°C 

     CoxI 
    CO1490F forward GGT CAA CAA ATC ATA AAG ATA TTG G PCR/Sequencing Folmer et al. 1994 

CO2198R reverse TAA ACT TCA GGG TGA CCA AAA AAT CA PCR/Sequencing Folmer et al. 1994 

     PCR protocol 5 min at 94°C, 45 x (30 s at 94°C, 30 s at 50°C, 30 s at 72°C), 5 min at 72°C 

     NDH4 
    ND4f2 forward GCT TAT TCT TCW GTM WSW CAT ATA GG PCR/Sequencing this study 

ND4r2 reverse GTW CCG ATG KTT TTA TGG TTA G PCR/Sequencing this study 

     PCR protocol 5 min at 94°C, 45 x (30 s 94°C, 30 s 50°C, 1 min 72°C), 5 min 72°C   
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DNA sequencing 

Sequencing was performed using an ABI 3130XL Genetic Analyser (Applied Biosystems, 

Foster City, California, USA). Excess primer and dNTP were removed with ExoSAP-IT (USB 

Corporation; Cleveland, Ohio, USA) for 15 min at 37°C, followed by 15 min at 80°C to 

inactivate the enzymes. This material was then used for cycle sequencing without any 

further purification, using the ABI Prism BigDye V 3.1 Terminator Cycle Sequencing kit 

(Applied Biosystems, Foster City, California, USA). The sequencing conditions were 30 s 

at 96°C, 15 s at 50°C and 1 min at 60°C for 27 cycles. Primers used for sequencing are 

listed in table 6.2. Cycle sequence products were precipitated by adding 25 µl of 95% 

ethanol and 1 µl of 3 M sodium acetate (pH 4.6) to each cycle sequencing reaction (10 

µl). The samples were placed at room temperature for 15 min and centrifuged at 14,000 

rpm for 15 min. The pellet was additionally washed with 125 µl of 70% ethanol and dried 

in a Speedvac concentrator, redissolved in formamide and run on 50 cm capillaries with 

POP7 polymer.  

Before performing a multiple sequence alignment, consensus sequences were 

edited and assembled from contigs using SEQMAN 7.0 (DNASTAR Lasergene; Madison, 

WI, USA) and submitted to a BLAST search (Altschul et al. 1990) on the NCBI website 

(http://www.ncbi.nlm.nih.gov) to check for possible contaminations.  

 

Sequence alignment and post-alignment editing 

Multiple sequence alignment (MSA) was performed with MAFFT version 6.833 (Katoh 

and Toh 2008 a, b) at the freely available Bioportal server at Oslo University 

(www.bioportal.uio.no) (Whetzel et al. 2011). MAFFT has been indicated as one of the 

most accurate MSA programs presently available (Carroll et al. 2007). Both COI and ND4 

datasets were aligned using the default algorithm, whereas both LSU and SSU rDNA 

sequences were aligned on the basis of their rRNA secondary structure information 

using the Q-INS-i algorithm in MAFFT (Katoh and Toh 2008a, b). Secondary structure 

models are used for aligning rDNA sequences because the conservation of secondary 

structures is thought to exceed that of nucleotides (Kjer 1995). Primer regions were 

removed from the alignment. 
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Since alignment errors significantly influence phylogenetic tree reconstruction (Ogden 

and Rosenberg 2006; Wong et al. 2008), random similarities5, were eliminated using the 

parametric profiling method ALISCORE (Misof and Misof 2009, freely available from 

aliscore.zfmk.de) which selects randomness in multiple sequence alignments using 

Monte Carlo resampling within an adaptable sliding window. A window size of 4 base 

pairs was selected. To check for missing data in certain positions, gaps were treated as 

ambiguous characters. Additionally, multiple sequence alignments were also analyzed 

with the non-parametric alignment trimming program GBLOCKS (Castresana 2000) as 

implemented in SeaView v4.4.0 (Galtier et al. 1996; Gouy et al. 2010). GBLOCKS does not 

account for models of sequence evolution and excludes ambiguous sections based on an 

arbitrary chosen threshold and resulted in slightly different tree topologies. However, 

since different studies have consistently shown that GBLOCKS is outperformed by 

ALISCORE (Kück et al. 2010), the latter was chosen for post-alignment editing. 

The alignment of each locus was tested for homoplasy using the substitution 

saturation test in DAMBE version 5.3.0 (Xia and Xie 2001), calculating the index of 

substitution saturation (Iss). The proportion of invariable sites was determined for each 

locus, after which saturation tests were performed on all sites with gaps treated as 

missing data. Further, both COI and ND4 datasets were additionally screened for 

saturation at first, second and third codon positions. As a second control for substitution 

saturation, the overall transition/transversion ratio was calculated for each dataset in 

which a linear relationship between both distances indicates that no saturation has 

occurred. Final alignment lengths are listed in table 6.2. 

 

Estimation of SSU rRNA secondary structure 

The SSU rRNA secondary structure model of H. gingivalis was constructed to pin-point 

the regions with the polymorphisms in order to characterize the ribosomal diversity. 

Initially, the SSU rRNA sequence of isolate WB0705 was aligned against Panagrolaimus 

rigidus (Panagrolaimidae) within a MSA including secondary structure annotation 

obtained from Bert et al. (2008) and manually matched up with the RNA secondary 

                                                           
5 According to Misof and Misof (2009) sequence similarity can be grouped into nonrandom similarity or 

nonrandom homoplasy, as a result of phylogenetic relatedness or selection, and random similarity caused 
by unrelatedness, high sequence divergence, and ambiguous alignment.  
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structure model of P. rigidus, visualized with RnaViz (De Rijk et al. 2003). Diverging 

regions were further refined by folding the sequences using the Mfold Webserver 

(www.mfold.rna.albany.edu) (Zuker 2003). Folding was done at a fixed temperature of 

37°C and based on the default settings. Helices are numbered from 5’-3’terminus 

following the nomenclature proposed by Wuyts et al. (2001). 

 

Choosing the models of DNA evolution and combining multiple genes 

Multiple gene approaches generally reveal phylogenies with higher resolution and 

reliability (Nadler 2002). Moreover, combining the sometimes minor signals present in 

separate genes can yield resolution such that it becomes detectable above the 

background noise of homoplasy (Rokas et al. 2003). Therefore, next to single gene 

alignments, a concatenated alignment of all genes was generated using Geneious 

version R6 created by Biomatters and available from http://www.Geneious.com. 

The model of DNA evolution was determined for each locus separately and for 

the concatenated dataset with jModeltest version 2.1.2 (Posada 2008) using the Akaike 

Information Criterion (AIC) and the Bayesian Information Criterion (BIC) (Posada and 

Buckley 2004). The different proposed models representing the lowest AIC and BIC 

scores, respectively, for the different loci and the concatenated alignment are listed in 

table 6.2. 

 

Table 6.2. Alignment lengths and proposed evolutionary models following the Akaike 

Information Criterion (AIC) and the Bayesian Information Criterion (BIC).  

  SSU D2D3 COI ND4 
Concatenated 

dataset 

Number of taxa 22 22 21 19 
 Original alignment length 836 427 514 445 
 Final alignment length 781 413 514 445 2148 

AIC GTR + Γ+ Ι GTR + Γ GTR + Ι GTR + Γ GTR + Γ+ Ι 

BIC HKY + Γ+ Ι HKY + Γ GTR + Γ HKY + Γ GTR + Γ+ Ι 

 

 

Since the AIC tends to favour more complex, parameter-rich models whereas BIC 

penalizes complex models more, the models selected for the different markers were 

slightly different when based on the AIC as opposed to when based on the BIC. Most 
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importantly, evolutionary models were similar for all the analysed loci when either 

selected by the AIC or the BIC, which facilitates a concatenated analysis. Ultimately, the 

General time reversible model (GTR) that accounts for rate heterogeneity among sites (+ 

Γ) and a proportion of invariable sites (+ Ι) was favoured over the Hasegawa-Kishino-

Yano (HKY, Hasegawa et al. 1985) by both AIC and BIC.  

 

Phylogenetic inference 

Maximum likelihood-based phylogenetic analysis was performed using RaxML version 

7.2.8 (Stamatakis 2006) at the freely available Bioportal server (www.bioportal.uio.no) 

(Whetzel et al. 2011). Analyses were performed using the rapid hill climbing algorithm (-f 

d) and 1000 non-parametric bootstrap replicates (-N 1000) under the GTRGAMMAI 

model (Stamatakis 2006) with 4 distinct rate categories (-c 4). Gaps were treated as 

missing data. Bootstrap replicates were used to construct majority rule consensus trees 

and plot bootstrap proportions on best-scoring trees in TreeView as implemented in 

Geneious version R6. 

Bayesian inference was performed with MrBayes version 3.1.2 (Ronquist and 

Huelsenbeck 2003). Preliminary analyses on single loci were run on the BioPortal server, 

while the final concatenated analysis was done using the STEVIN Supercomputer 

Infrastructure at Ghent University. The analyses were done under the GTR model (nst=6) 

with rates varying following a gamma distribution and a proportion of invariable sites 

(rates=invgamma), using default prior settings. Final analysis on the concatenated 

alignment was performed under the same GTR model using a partitioned Bayesian 

strategy, with all parameters estimated separately for the individual genes. Each 

Bayesian analysis used four chains, one cold and three incrementally heated (default, 

temp=0.2) in two independent, simultaneous runs for several million generations 

(ngen=30,000,000 for monogenic analyses, ngen=50,000,000 for concatenated analysis), 

each started from different random trees and sampled every 1000th generation. Gaps 

were treated as missing data. To control whether the two different runs converged, 

average standard deviation of split frequencies and Potential Scale Reduction factors 

(PSRF) were assessed. Split frequencies approached zero and PSRF approached one at 

the end of the analysis providing proof for converged runs. The burnin was arbitrarily 
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chosen at 7,500,000 generations for monogenic analyses and at 12,500,000 for 

concatenated analysis (burnin 7,500 and 12,500, respectively) or 25% of the results. A 

generation/Log Likelihood scatter was used to evaluate the size of the burn in. Posterior 

probabilities were calculated using Metropolis-coupled Markov chain Monte Carlo 

samplers.  

 

Measures for species distinctiveness 

Rosenberg’s reciprocal monophyly or P(AB), and Rodrigo’s P(RD) measures were 

calculated using the species delimitation plugin (Masters et al. 2011) in Geneious R6 

(created by Biomatters, available from http://www.Geneious.com). Both calculations are 

based on a rooted genealogy containing user specified groups. The null hypothesis for 

Rosenberg’s P(AB) (Rosenberg 2007) is that monophyly is a chance outcome of random 

branching, which can be rejected at p < 10-5. Rodrigo’s P(RD) (Rodrigo et al. 2008) is 

defined as the probability of an observed degree of distinctiveness and designates 

distinctive clades at p < 0.05. P(RD) ranges from 0 to 1 indicating complete 

distinctiveness and no distinctiveness, respectively. 

Additionally, the genealogical sorting index (gsi, Cummings et al. 2008) statistic 

was calculated using the web interface freely available at www.genealogicalsorting.org. 

It is an R based algorithm, which quantifies the degree of exclusive ancestry of labelled 

groups on a rooted genealogy and is especially suitable for investigating distinctiveness 

among recent radiations. The gsi provides information on the extent of lineage 

divergence, which reaches a maximum value of 1 when the group is monophyletic, and 

is accompanied by a significance level (significant at p < 0.05). Bonferroni correction was 

used to assess the significance of the gsi p–values by dividing the p-value by the number 

of predefined groups. 

Finally, differentiation between mtDNA clades/lineages identified by single gene 

phylogenies were analyzed according to the “4x rule” species criterion which is 

specifically designed for delimiting species in non-sexual and clonal organisms (Birky et 

al. 2010), which considers speciation to be complete when populations are separated by 

gaps too deep to be produced by random drift alone (Barraclough et al. 2003). Following 

this criterion, speciation has occurred when the mean sequence divergence (Κ) between 
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individuals from two clades or lineages is greater than 4 times θ, with θ = π/(1-4* π/3), 

in which π is the mean sequence difference between individuals in a clade or lineage 

(Barraclough et al. 2003, Birky et al. 2010).  

 

MORPHOLOGICAL ANALYSIS 

Scanning electron microscopic (SEM) study 

Nematodes were picked off culture plates and transferred to a drop of distilled water. 

Subsequently, 1 ml of freshly prepared 4% paraformaldehyde in phosphate-buffered 

saline (PBS, Sigma-Aldrich, Belgium), at 60°C was added. After 24 h, the specimens were 

dehydrated by passing them through a graded ethanol concentration series of 20, 50, 

75, 95, 100% (20 min each), 100% (10 min) and 100% (10 min). To avoid collapsing the 

nematodes, they were critical-point dried with liquid CO2 using a Balzers CPD 020. The 

dried nematodes were then removed individually, placed on a glass rod on a standard 

specimen stub, sputter-coated with gold (25 nm) using a 1200 JFC (JEOL, Tokyo, Japan), 

and observed using a JSM-840 (JEOL, Tokyo, Japan) at 12 kV. Images were taken on 

Kodak TMAX100 film. 

 

Morphometric analysis 

All cultured Halicephalobus spp. isolates where initially started from single individuals. 

Approximately 50 eggs of each isolate were placed on a Petri dish containing 1% 

bacteriological agar enriched with cholesterol at a final concentration of 1 µg ml-1. To 

ensure that the observed morphological variability between H. gingivalis isolates is 

minimally influenced by environmental conditions, all developing eggs were incubated 

at a constant temperature of 30°C and contained a bacterial lawn of E. coli OP50 as a 

food source, obtained by adding 10 µl at a density of approximately 2.85 × 106 µl-1 to 

each plate and incubating them overnight at 37°C before the transference of the eggs. 

Three replicates of all Halicephalobus spp. isolates were included in the analysis. 

After the first oviposition, the nematodes were removed from the plates using a 

stereomicroscope (Leica MZ95) and collected in 5 µl of water in an embryo dish. An 

excess (4-5 ml) of heated (70°C) formaldehyde (4%) with 1% glycerol was added to 

instantaneously kill and preserve the nematodes (Seinhorst 1966). The use of hot 
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formaldehyde has the advantage that nematodes are typically outstretched and not 

curled. The preserved nematodes were processed to anhydrous glycerin following the 

glycerin-ethanol method (Seinhorst 1966, as modified by De Grisse 1969), subsequently 

mounted on glass slides and covered with a cover slip. Finally, 10 specimens of each 

replicate of all isolates (17 isolates included in the morphometrical study, 30 specimens 

per isolate, 510 specimens in total) were measured digitally using the NIS-elements 

measuring software (Nikon Instruments Europe B.V., Brussels, Belgium). All 28 

measurements and ratios are listed in appendix 1. 

The resulting morphometrical data were analysed with Statistica 7.1 (StatSoft 

Europe GmbH, Hamburg, Germany). Residual plots indicated homogeneous variances 

and homoscedastic error distributions, however, formal testing using a Kolmogorov-

Smirnov test and a Bartlett test often rejected the assumptions of normality and 

homogeneity of variances, respectively. However, when based on a large sample size (n 

> 30), deviations from normality are negligible because of the central limit theorem, 

according to which the sampling distribution of the mean approximates the normal 

distribution, regardless of the distribution of the variable in the population (StatSoft 

Electronic Statistics Textbook 2012, http://www.statsoft.com/textbook/). 

A correlation matrix was generated to determine those characteristics that had 

no significant correlation with each other (significant correlation at p < 0.05, r > 0.75). 

This threshold was set based on the correlation between measurements that were 

expected to be correlated, such as body length and width, isthmus and pharynx length. 

Using these characteristics, a forward stepwise discriminant function analysis (DFA) was 

done to test whether molecular based clades or species were morphometrically 

significantly different. If significant differences were observed (p < 0.05), a posteriori 

canonical analysis was performed which determined an optimal combination of 

variables so that the first function (root 1) provided the largest overall discrimination 

between groups, which was visualized in a scatter plot (root 1 x root 2). Differences 

between molecularly based clades or species were determined by calculating p-values 

and squared Mahalanobis distances (D²) for each pairwise comparison. Differences 

between clades or species were considered significant when p < 0.01.  
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Finally, analysis of variance (one-way ANOVA) with the factor species/isolate was 

used to pinpoint those morphometrical characters that can be used for differentiation 

between the morphometrically defined species/groups. 

 

RESULTS 

MOLECULAR ANALYSIS 

Sequence analysis reveals polymorphisms 

Sequence data obtained from non-cloned amplification product revealed the presence 

of ambiguities representing sequence polymorphisms in the SSU sequences of almost all 

isolates, with the exception of WB0701, RGD838, RGD892, H. similigaster and H. 

mephisto. Some polymorphic sites were randomly distributed single nucleotide 

polymorphisms (SNP), but most (40, i.e., 78%) were concentrated in two distinctive 

regions. It is important to note that different specimens of one isolate did not always 

possess all polymorphisms, which could indicate that not all specimens had all 

polymorphisms or that sequence analysis is not always successful in indicating all 

polymorphisms in every specimen. Figure 6.1 represents the alignment of the two 

polymorphic regions for all Halicephalobus isolates. Isolate WB0705 comprised most 

polymorphisms, i.e., 51 (2.99%) in a total of 1705 sites.  

Subsequent analysis of sequence data obtained from different clones of several 

specimens of SAN100, WB0702 and WB0705, revealed that polymorphic regions were 

not composed of completely random nucleotide sequences, but comprised two 

alternative sequence blocks of homogenous sequences (fig. 6.2, a vs. b). Interestingly, 

different homogenous sequences, or ribotypes, were not only identified intraspecific, 

i.e., from different specimens of the same isolate (for WB0702 and WB0705), but also 

intra-genomic, i.e., from different clones of one specimen (for WB0705). For SAN100, 

only one homogenous sequence could be identified, however, only two clones of this 

isolate were analyzed.  

To further characterize different ribotypes, the secondary structure model of the 

SSU rRNA of H. gingivalis isolate WB0705 was predicted (fig. 6.3). It revealed that the 

two polymorphic regions were located in three helices, i.e., 10, 23/e1 and 23/e4. Both 
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alternative homogenous sequences, were not equally distributed. The predominant 

sequences (black box) were observed in 7 out of 9 clones of a single specimen for 

regions 23/e1 and 23/e4 and in 8 out of 9 clones of a single specimen for region 10. 

Alternative homogenous sequences resulted in different predictions of the secondary 

structure, for the subdominant alternative (red boxes) this resulted in a decreased size 

of the terminal loop in helix 10, a slightly different length of the stem in helix 23/e1, and 

an increased size of the internal loop in helix 23/e4. 
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Figure 6.1. Alignment of two regions of SSU sequence that contain polymorphisms in all 

Halicephalobus spp. isolates except H. mephisto, RGD892, RGD838, WB0701 and H. similigaster. 

Dots represent bases that match the first sequence, ‘-‘ represent gaps. Sequence polymorphisms 

are indicated with W = A or T, R= A or G, Y= C or T.  
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WB0708 T . . . . . . . . T 
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. . . C . . . . - - 
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. . . A C . . . - - 

 
. . . . A G . T A . 

   
WB1102 Y R . . . . . . . W 

 
W . . M Y . . . - - 

 
. . . R R R K T W . 

   
WB1103 T G . . . . . . . T 

 
T . . A C . . . - - 

 
. G . . G G G T G . 

   
H. mephisto . . . . . . . . . . 
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. . . T A . A A . . 
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A . . . . . . . - - 
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RGD892 . . . . . . . . . . 
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Figure 6.1 continued. Alignment of two regions of SSU sequence that contain polymorphisms in all 

Halicephalobus spp. isolates except H. mephisto, RGD892, RGD838, WB0701 and H. similigaster. 

Dots represent bases that match the first sequence, ‘-‘ represent gaps. Sequence polymorphisms 

are indicated with W = A or T, R= A or G, Y= C or T.  

 

                

 

Figure 6.2. Secondary structure model of the partial SSU rRNA sequence of H. gingivalis WB0705. 

Numbers correspond to the helices next to them, following the nomenclature proposed by Wuyts et al. 

(2001). Variable positions of the rRNA molecule are indicated in red inside coloured boxes: green boxes 

represent single nucleotide polymorphisms (SNP), whereas the two polymorphic regions are shown in 

black boxes, representing the predominant homogenous sequence, with the alternative sequence in 

red boxes.  
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To further characterize different ribotypes, the secondary structure model of the 

SSU rRNA of H. gingivalis isolate WB0705 was predicted (fig. 6.3). It revealed that the 

two polymorphic regions were located in three helices, i.e., 10, 23/e1 and 23/e4. Both 

alternative homogenous sequences, were not equally distributed. The predominant 

sequences (black box) were observed in 7 out of 9 clones of a single specimen for 

regions 23/e1 and 23/e4 and in 8 out of 9 clones of a single specimen for region 10.  

Alternative homogenous sequences resulted in different predictions of the secondary 

structure, for the subdominant alternative (red boxes) this resulted in a decreased size 

of the terminal loop in helix 10, a slightly different length of the stem in helix 23/e1, and 

an increased size of the internal loop in helix 23/e4. 

Theoretically, as two sequences were possible for the first region (corresponding 

to helix 10) and two for the second region (corresponding to helices 23/e1 and 23/e4, in 

short helix23), there were four putative combinations of polymorphic regions, and 

therefore four conceivable ribotypes, which were, however, not all found in the present 

dataset. Within all available clones of WB0705 (9 clones from one specimen 

complemented with two clones from other specimens) revealed the presence of only 

three ribotypes, i.e., combinations 10a and (23/e1,e4)a, 10a and (23/e1,e4)b, and 10b 

and (23/e1,e4)b in 8, 2 and 1 out of 11 clones, respectively. 

 

Phylogenetic inference 

Based on ALISCORE, in the SSU and D2D3 alignment, respectively 12 and 14 positions 

were indicated as ambiguous and therefore omitted from the alignment. Additionally, 

43 polymorphic positions were omitted from the SSU alignment since their presence or 

absence can depend on the chosen individual (see higher) and this could erroneously be 

observed as fixed differences between the isolates when based on one sequence. The 

COI and ND4 alignments were retained without modification. Substitution saturation 

tests on the resulting alignments, including screening of all codon positions for COI and 

ND4, did not reveal homoplasy, as the index of substitution saturation (Iss) were 

significantly (p < 0.05) smaller than the critical index of substitution saturation (Iss.c) for 

symmetrical and asymmetrical topologies. Saturation plots, i.e., transitions and 
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transversions over divergence, revealed near linear relationships for all loci, confirming 

no saturation had occurred. Final alignment lengths are listed in table 6.2. 

Both maximum likelihood (ML) and Bayesian (BI) methods of phylogenetic 

inference yielded trees with a limited resolution, however, tree topologies for each locus 

were not contradictory (fig. 6.3). Procephalobus JU169 was used as outgroup for the 

rDNA phylogenies. Based on SSU, H. mephisto had a maximally supported sister 

relationship with all other Halicephalobus isolates; termite isolate RGD892 was sister to 

the remaining Halicephalobus isolates (100 BS, 0.96 PP); and RGD838 and WB0701 

formed a well supported clade. Phylogenies based on the D2D3 expansion segment 

showed maximal support for the relationship of SAN100 and CaseReportBelgium, the 

only two clinical isolates in this study. Since sequence analysis of Procephalobus JU169 

was not successful for COI and ND4, H. mephisto was chosen as outgroup for the mtDNA 

phylogenies based on its highly supported sister relationship with all other 

Halicephalobus isolates in the phylogeny based on SSU. Both mitochondrial genes 

provided maximal support for a H. gingivalis-clade, with two distinct lineages: lineage I 

encompassing WB0708, 0801, 1101, 1102, SAN100, CaseReportBelgium, PF060103 and 

PF060144, and a second lineage (II) encompassing isolates WB0702, 0703, 0704, 0705, 

0709, PF060121, 190101 and 190106.  

 



 

 

 

Figure 6.3. Monogenic phylogenies of SSU (A), D2D3 expansion segment (B), COI (C) and ND4 (D). Values above branches represent RAxML bootstrap support 

and Bayesian posterior probabilities, respectively. Branches were collapsed if bootstrap or posterior probabilities values were less than 85% and 0.95, 

respectively. SSU sequences originally revealing polymorphic positions, are indicated with an asterisk (*). Scale bar denotes nucleotide substitutions per site. 
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Table 6.3. Range of divergences of SSU (above diagonal) and D2D3 (below diagonal) sequences 

expressed as percentages. Isolates assigned to lineage I and II are based on mtDNA phylogenies 
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Procephalobus JU169   18.9 22.9 21.3 21.1 21.4 21.5 - 23.6  21.5 - 22 

H. mephisto 25.9   12.3 8.3 8.4 7.8 8.0 - 10.3 8.0 - 8.6 

RGD892 30.5 24.2   11.9 12.0 12.0 11.8 - 14.1 11.9 - 12.3 

RGD838 33.2 17.9 24.7   0.4 3.8 2.7 - 6.0 2.8 - 3.2 

WB0701 32.9 22.0 25.7 16.7   4.1 3.1 - 6.3 8.2 - 8.6 

H. similigaster 32.4 19.6 23.2 12.8 15.5   2.3 - 5.8 2.4 - 2.8 

H. gingivalis lineage I 31.5 - 32.4 17.2 - 18.4 23.5 - 25.2 9.7 - 11.4 14.5 - 17.7 9.7 - 12.3   0 - 4.1 

H. gingivalis lineage II 31.5 - 32.2 17.2 - 17.9 22.8 - 23.5 10.4 - 10.7 15.3 - 15.5 9.7 - 10.2 0 - 5.8   

 

 

Table 6.4. Range of divergences of COI (above diagonal) and ND4 (below diagonal) 

sequences expressed as percentages. Divergences within lineages I and II are indicated in 

grey boxes, above and below diagonal line for COI and ND4, respectively. 
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H. mephisto   10.1 8.2 7.6 8.8 8.6 - 8.9 7.2 - 7.6 

RGD892 15.1   7.2 8.9 9.3 7.2 - 7.4 8.6 - 9.1 

RGD838 14.6 14.2   8.0 7.4 8.0 - 8.2 7.0 - 7.6 

WB0701 n.a. n.a. n.a.   6.8 7.0 6.6 - 7.0 

H. similigaster 16.6 13.0 13.4 n.a.   7.8 6.4 - 7.2 

H. gingivalis lineage I 15.9 - 16.2 14.8 - 15.1 12.1 - 12.4 n.a. 11.2 - 11.5 0.2       
 4.3 - 4.8 

H. gingivalis lineage II 16.2 - 16.6 14.4 - 15.1 11.5 - 11.9 n.a. 10.8 - 11.5 4.0 - 4.5  0.9 

 

 

SSU, D2D3, COI and ND4 sequence divergences expressed as percentages are 

listed in tables 6.3 and 6.4. The SSU divergence between H. mephisto vs. Procephalobus 

(18.9%) as opposed to that of H. mephisto vs. all other taxa (7.8 – 12.3%) lends support 

to the position of H. mephisto within the genus Halicephalobus. The COI dataset 

revealed a maximal divergence of 0.6% and 0.9% within lineage I and II, respectively, 

0.9 

0.6 
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whereas the divergence between the lineages ranged from 4.3-4.8%. Sequence 

divergences between these two lineages and all other taxa ranged from 6.4-10.1%. ND4 

sequence differences revealed a similar pattern, i.e., a maximal sequence divergence of 

0.2% and 0.9% within lineages I and II, respectively, a divergence of 4-4.5% between 

these two lineages, and a divergence of 10.8-16.6% between these two lineages and all 

other isolates.  

 A monogene species phylogeny based on Halicephalobus isolates used in the 

present study complemented with D2D3-only isolates from GenBank sequences was 

constructed to investigate the possible relationship of clinical isolates. GenBank 

sequences included both free-living, i.e., AY294178 and AY294181, and clinical isolates 

of H. gingivalis obtained from equine infections, i.e., AY294179, 80, 82 (Nadler et al. 

2003), AB288935 (Akagami et al. 2007), and JX194163 (Rodriguez et al. 2013). Both ML 

and BI analyses rendered similar trees with a limited resolution, however, showing a 

highly supported relationship for most clinical isolates with the exception of the 

Japanese isolates AB288935 and AY294179. However, this cluster of clinical isolates also 

includes one free-living isolate obtained from compost (JB128 = AY294181). 

Finally, a concatenate analysis of the four genetic markers, and based on ML and 

BI, rendered highly concordant, well resolved trees with high branching support (fig. 

6.6). For both phylogenetic inference methods, H. mephisto had a maximally supported 

sister relationship with all other Halicephalobus isolates, whereas the termite isolate 

RGD892 was the second most early diverging taxon (89 BS, 1 PP). The other termite 

isolate had a well supported relationship with WB0701, an isolate originating from a 

manure heap at a horse stable (97 BS, 1 PP). This isolate was the only horse associated 

isolate that did not fall within the H. gingivalis-clade. H. similigaster had a well supported 

sister relationship with the H. gingivalis-clade. This clade was further separated into two 

highly supported distinct lineages (100 BS, 1 PP), referred to as ‘H. gingivalis lineage I’, 

i.e., encompassing WB0708, 0801, 1101, 1102, PF060103, 060144, SAN100 and 

CaseReportBelgium with a maximally supported relationship (100 BS, 1 PP) for the latter 

two isolates, and ‘H. gingivalis lineage II’ (100 BS, 1 PP), i.e., encompassing WB0702, 

0703, 0704, 0705, 0709, PF060121, 190101 and 190106. The two H. gingivalis lineages 

did not correspond with geographical origin and only partly with habitat: lineage I 



 

 

 
Figure 6.4. Monogene species phylogeny of D2D3 expansion segment including Halicephalobus isolates of the present study complemented with GenBank 

sequences of both free-living (JB043 and JB128) and clinical isolates (AY294179, 80, 82, JX194163, and AB288935) of H. gingivalis. Values above branches 

represent RAxML bootstrap support and Bayesian posterior probabilities, respectively. Branches were collapsed if bootstrap support or posterior 

probability values were less than 85% and 0.95, respectively. All clinical isolates are indicated (†). Scale bar denotes nucleotide substitutions per site. 



 

 

 

Figure 6.6. Phylogeny of concatenated data based on ML and partitioned Bayesian inference using the GTR + Γ+ Ι model of evolution. Values above 

branches or indicated with a dashed line represent RAxML bootstrap support and Bayesian posterior probabilities, respectively. Branches were collapsed if 

bootstrap support or posterior probability values were less than 85% and 0.95, respectively. The origin of each isolate is schematically represented. Isolates 

originally containing polymorphic positions in their SSU sequences, are indicated with an asterisk (*). Isolates RGD892, RGD838 and WB0701 are named 

based on morphological data. Scale bar denotes nucleotide substitutions per site. 
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comprised all clinical isolates and rectal samples but also included compost isolates (fig. 

6.4, annotation on tree), while lineage II comprised both compost isolates and manure 

isolates, but no clinical isolates. Remarkably, all H. gingivalis isolates have polymorphic 

positions in their SSU DNA sequences, but this apomorphy is absent in all other 

Halicephalobus species. 

 

Measures for species distinctiveness 

The two H. gingivalis lineages indicated by concatenated analysis contained multiple 

haplotypes and could therefore be tested using the different species distinctiveness 

measures (table 6.5). Reciprocal monophyly was indicated for both lineages by 

Rosenberg’s P(AB) (p < 10-5). This was partially corroborated by Rodrigo’s P(RD) which 

indicated complete taxonomic distinctiveness for lineage II (p < 0.05) but not for lineage 

I (p = 0.95). The extent of lineage divergence as indicated by the gsi was maximal (= 1) 

for lineage II, revealing monophyly, and high (0.77) for lineage I. Both gsi-values were 

significant after Bonferroni correction (p < 0.05/2 = 0.025). In conclusion, all measures 

indicated species distinctiveness for lineage II, whereas for lineage I, only P(RD) was not 

significant and the gsi-value indicated incomplete lineage divergence. 

 

 

Table 6.5. Measures for species distinctiveness: Rosenberg’s P(AB), i.e., the degree of reciprocal 

monophyly, Rodrigo’s P(RD), i.e., the probability that a clade has the observed degree of 

distinctiveness, and the genealogical sorting index (gsi) and its associated p-value (significant at 

p < 0.025 after Bonferroni correction). Clade support: bootstrap (BS) and posterior probability 

(PP). Shaded values indicate species distinctiveness.  

 
H. gingivalis 

 
lineage I lineage II 

Rosenberg's P(AB) 1.0 e-5 1.0 e-5 

Rodrigo P(RD) 0.95 < 0.05 

gsi 0.77 1 

gsi p-value < 0.0001 < 0.0006 

clade support (BS, PP) 100, 1 0.99, 0.95 
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Finally, calculations of speciation in accordance with the 4x rule, specifically 

designed for delimiting species in non-sexual organisms, for both COI and ND4 are 

presented in table 6.6 and reveal that Κ is well over 4 times θ (Κ/θ > 4) for both H. 

gingivalis-lineages based on both COI and ND4. 

 

Table 6.6. Calculations of speciation between H. gingivalis lineages I and II in accordance with 

the 4x rule for species delimitation in non-sexual organisms. 

 H. gingivalis Nucleotide 

diversity (π) 
θ 

[=π/(1-4*π /3] 

Sequence 
divergence between 

lineages (Κ) 

Κ /θ 

COI    0.04645  
 lineage I 0.002501 0.00251  18.5 
 lineage II 0.004655 0.00468  9.9 

ND4    0.043018  
 lineage I 0.000642 0.000643  66.9 
 lineage II 0.004414 0.004440  9.7 

 

 

MORPHOLOGICAL ANALYSIS 

Scanning electron microscopy 

Except for H. mephisto, scanning electron microscopy (SEM) did not reveal any 

substantial differences between the studied isolates (fig. 6.7). Cuticle with fine 

annulations, approximately 1 µm wide at mid body. Lateral field with two outer lines. 

Head continuous with body and lip region continuous with neck. Oral aperture 

hexagonal and strengthened by a thin ridge. Six lips not clearly separated and orientated 

along the sides of the hexagon. One circle of six inner labial papillae, with one papilla on 

each lip, and one circle of four cephalic papillae, with one on each subventral and 

subdorsal lip. Amphid aperture round to oval and situated on both lateral lips. Slightly 

protruding vulva. Anus well developed, slit-like. Phasmids posterior to anus. Tail 

elongated, conical, slightly curved ventrally, tapering to pointed terminus with a 

terminal mucro.  

H. mephisto differs from all other Halicephalobus spp. isolates by the presence of 

a triangular oral aperture (vs. a hexagonal oral aperture) and the absence of a mucro at 

the tail tip (fig. 6.8). 
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Figure 6.7. SEM photographs of Halicephalobus gingivalis. A: En face view of head region 

showing hexagonal oral aperture lined with thin ridge, six fused lips with labial papillae, and 

cephalic papillae (arrow); B: Lateral view head region, showing amphid aperture on lateral lip; C: 

lateral field at mid body; D: ventral view vulva; E: Lateral view posterior body region, with vulva 

(large arrowhead) and anus (small arrowhead); F: tail tip with terminal mucro. Scale bars = 2 µm. 
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Figure 6.8. SEM photographs of Halicephalobus mephisto. A: En face view of head region 

showing trigonal oral aperture lined with thin ridge, six fused lips with labial papillae, and 

cephalic papillae (arrow); B: Lateral view head region, showing amphid aperture on lateral lip; C: 

Ventral view vulva; D: Ventral view anus; E: Tail region, arrowhead indicates position of anus. 

Scale bars = 2 µm. 

 

Morphometrical analysis 

The 28 measurements and ratios (Appendix to Chapter 6) are based on ten specimens 

for each Halicephalobus spp. isolate, with three replicates (3 X 10 individuals). A 

correlation matrix including all morphometrical characters selected 7 morphometrics 

(listed in table 6.7) that are not significantly related with other characters (p > 0.05, r < 

0.75). Based on these 7 characters, a forward stepwise DFA identified the variables that 

best discriminate between a priori defined groups, i.e., phylogenetically defined taxa or 

lineages (see tree, fig. 6.6): H. mephisto, H. similigaster, RGD892, RGD838, WB0701 and 
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H. gingivalis lineages I (including isolates WB1101, 1102, 0707, 0708, 0801, SAN100) and 

II (including WB0702, 0703, 0705, PF190101, PF060121). 

 

Table 6.7. Morphometrics with low correlation of Halicephalobus spp. isolates (n = 30). Measurements are given 

in µm and are represented as mean ± standard deviation with (ranges) and coefficient of variation expressed as 

percentage. 
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stoma length 7,1 ± 0,4 7,7 ± 0,3 7,8 ± 0,4 7,0 ± 0,3 7,8 ± 0,5 7,9 ± 0,4 8,2 ± 0,5 7,4 ± 0,4 

 
(6,2 - 8,2) (7,1 - 8,3) (7,0 - 8,6) (6,1 - 7,6) (7,1 - 9,1) (6,8 - 8,6) (7,3 - 9,1) (6,1 - 8,0) 

 
6 4 6 5 6 5 6 5 

         a 15,5 ± 0,8 16,5 ± 1,2 15,2 ± 0,6 15,6 ± 0,9 16,8 ± 1,1 15,2 ± 1,0 16,0 ± 0,5 16,7 ± 0,8 

 
(13,8 - 17,5) (12,0 - 18,1) (14,3 - 16,8) (14,1 - 17,7) (15,2 - 19,8) (12,9 - 17,2) (15,2 - 17,6) (15,0 - 18,6) 

 
5 7 4 6 7 7 3 5 

         c' 4,8 ± 0,4 4,9 ± 0,4 4,3 ± 0,3 4,7 ± 0,4 4,1 ± 0,4 4,0 ± 0,4 4,3 ± 0,2 4,8 ± 0,4 

 
(4,1 - 5,6) (4,0 - 6,0) (3,8 - 5,0) (4,0 - 5,5) (3,3 - 4,8) (2,8 - 4,6) (3,4 - 4,7) (4,1 - 5,5) 

 
8 9 6 8 9 9 6 7 

         ratio 2,4 ± 0,2 2,7 ± 0,2 2,8 ± 0,2 2,4 ± 0,2 2,7 ± 0,2 2,7 ± 0,2 2,6 ± 0,2 2,5 ± 0,1 

corpus/isthmus (1,9 - 2,8) (2,3 - 2,9) (2,4 - 3,2) (2,2 - 2,8) (2,3 - 3,2) (2,4 - 3,2) (2,2 - 3,3) (2,1 - 2,8) 

 
8 6 7 6 8 8 9 6 

         ratio ovary 0,7 ± 0,1 0,7 ± 0,1 0,7 ± 0,1 0,7 ± 0,1 0,8 ± 0,1 0,6 ± 0,1 0,6 ± 0,1 0,6 ± 0,1 

(post-v/pre-v) (0,6 - 0,8) (0,5 - 0,8) (0,6 - 0,8) (0,5 - 0,8) (0,6 - 1,3) (0,5 - 0,8) (0,5 - 1,0) (0,5 - 0,8) 

 
8 9 7 8 19 11 14 11 

         V' 70,8 ± 1,4 68,1 ± 0,7 69,4 ± 1,4 70,1 ± 0,8 69,9 ± 1,0 69,7 ± 1,4 69,1 ± 1,0 69,5 ± 0,9) 

 
(65,9 - 73,6) (66,2 - 69,1) (65,6 - 72,3) (69,1 - 72,4) (68,1 - 71,9) (67,9 - 73,1) (67,9 - 71,5) (68,1 - 71,0) 

 
2 1 2 1 1 2 1 1 

         (VA/2) / post-v 1,0 ± 0,1 1,0 ± 0,1 0,9 ± 0,1 1,0 ± 0,1 0,9 ± 0,1 1,0 ± 0,1 1,0 ± 0,1 1,0 ± 0,1 

 
(0,9 - 1,1) (0,9 - 1,2) (0,8 - 1,1) (0,9 - 1,2) (0,7 - 1,1) (0,8 - 1,1) (0,7 - 1,3) (0,9 - 1,1) 

 
7 7 7 7 8 8 11 7 
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stoma length 8,0 ± 0,5 7,8 ± 0,6 7,4 ± 0,5 8,3 ± 0,8 8,6 ± 0,8 8.8 ± 0.8 9.2 ± 0.9 7,2 ± 0,8 7.7 ± 0.6 

 
(7,2 - 8,9) (6,6 - 9,0) (6,4 - 8,5) (6,9 - 9,6) (7,0 - 10,2) (7.2 - 9.8) (7.2 - 10.4) (5,6 - 8,6) (6,13 - 8,71) 

 
6 7 7 10 10 8 9 11 8 

          a 18,6 ± 0,8 18,4 ± 1,7 16,1 ± 0,9 17,7 ± 1,1 19,5 ± 1 19.6 ± 2.5 19. ± 2.8 17,3 ± 1,1 14,9 ± 0,8 

 
(17,0 - 20,2) (11,2 - 21,1) (14,3 - 18,5) (15,9 - 20,3) (16,9 - 21,5) (16.5 - 30) (14.3 - 26.2) (15,4 - 19,5) (13,4 - 16,7) 

 
4 9 6 6 5 13 15 6 5 

          c' 4,7 ± 0,3 4,7 ± 0,4 4,6 ± 0,4 4,8 ± 0,7 5,4 ± 0,3 7.4 ± 0.8 8.1 ± 1.2 6,3 ± 0,5 3,4 ± 0,2 

 
(4,1 - 5,7) (4,0 - 5,5) (3,3 - 5,3) (3,9 - 6,9) (4,8 - 5,8) (6.1 - 9.6) (6 - 11.3) (5,5 - 7,2) (2,9 - 3,9) 

 
7 8 9 14 6 11 14 8 6 

          ratio 
corpus/isthmus 3,0 ± 0,3 2,9 ± 0,2 2,9 ± 0,2 3,0 ± 0,2 3,1 ± 0,3 2.1 ± 0.1 2.6 ± 0.3 2,1 ± 0,2 2,9 ± 0,2 

 
(2,5 - 3,7) (2,4 - 3,2) (2,3 - 3,4) (2,6 - 3,6) (2,7 - 3,6) (1.9 - 2.4) (2.2 - 3.3) (1,9 - 2,5) (2,4 - 3,3) 

 
9 7 8 7 9 7 11 8 6 

          ratio ovary 0,7 ± 0,1 0,7 ± 0,1 0,6 ± 0,1 0,7 ± 0,1 0,7 ± 0,1 0.7 ± 0.1 0.9 ± 0.4 0,5 ± 0,1 0,5 ± 0,07 

(post-v/pre-v) (0,6 - 0,9) (0,4 - 0,8) (0,3 - 0,9) (0,5 - 1,1) (0,6 - 0,9) (0.4 - 1) (0.5 - 2.3) (0,3 - 0,8) (0,3 - 0,7) 

 
11 14 17 16 10 20 41 22 15 

          V' 70,1 ± 0,8 69,3 ± 1,6 69,7 ± 1,0 69,1 ± 1,2 67,7 ± 0,9 70.1 ± 1.2 67.6 ± 2,2 70,1 ± 0,9 70,7 ±1,3 

 
(67,85 - 71,6) (67,6 - 76,0) (67,0 - 71,2) (66,1 - 70,8) (66,1 - 39,4) (68.7 - 73.7) (58.6 - 70.2) (68,4 - 71,8) (65,7 - 72,9) 

 
1 2 1 2 1 2 3 1 2 

          (VA/2) / post-v 0,9 ± 0,1 1,0 ± 0,2 1,0 ± 0,2 1,0 ± 0,1 1,0 ± 0,1 1.21 ± 0.3 1.1 ± 0.4 1,4 ± 0,3 1,4 ± 0,2 

 
(0,8 - 1,1) (0,5 - 1,7) (0,8 - 1,8) (0,8 - 1,3) (0,8 - 1,1) (0.8 - 2.8) (0.53 - 1.9) (1,0 - 2,78) (0,9 - 2,0) 

 
6 18 18 11 8 28 33 24 14 
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All pairwise comparisons showed significant morphometrical differences, except 

between the two H. gingivalis lineages (p > 0.01, table 6.8). The H. gingivalis lineages are 

most divergent from H. mephisto and H. similigaster (D²= 56 and 42, respectively). The 

highest divergence overall was observed between RGD892 vs. H. mephisto and H. 

similigaster (D²= 81 and 65, respectively) and the least, but significant, divergence was 

found between WB0701 and both H. gingivalis lineages. The canonical analysis 

visualized that both H. gingivalis lineages could not be separated based on 

morphometrical data, and that WB0701 and RGD892 were also plotted close to the H. 

gingivalis lineages (fig. 6.9). 

 

Table 6.8. Squared Mahalanobis distances (D2) (upper right, in bold) 

and P-values (lower left) between pre-defined groups based on the 

molecular analysis.  
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9,4 81 28 49 56 56 

H. similigaster 0,00 
 

65 12,1 32 42 42 

RGD892 0,00 0,00 
 

35 16,0 9,4 9,4 

RGD838 0,00 0,00 0,00 
 

15,1 25 24 

WB0701 0,00 0,00 0,00 0,00 
 

6,0 4,6 

H. gingivalis I 0,00 0,00 0,00 0,00 0,00 
 

0,2 

H. gingivalis II 0,00 0,00 0,00 0,00 0,00 0,03 
 

 

 

In a forward stepwise DFA based on the individual isolates of both H. gingivalis 

lineages and complemented with WB0701 and RGD892, the termite associated isolate 

RGD892 was found significantly (p < 0.05) different from all other isolates, whereas 

isolate WB0701 was morphometrically not discernible (p > 0.05) from WB0704, which 

was nested within H. gingivalis lineage II. Analysis further revealed significant 

morphometrical differences (p < 0.01) (data not shown) between most isolates within 

either H. gingivalis lineage, whereas some isolates from different lineages (WB0703 and 

WB0708) were morphometrically not discernible (p > 0.01). This high morphometrical 

variability within H. gingivalis did not correspond to the molecular based groupings, i.e., 

the two lineages.  
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Table 6.9. Comparison of morphometrical characters (ranges, in µm) of H. 

brevicauda Mavljanov 1976, derived from the original description, and 

RGD892, measured in the present study. Measurements based on 

drawings of one specimen (*), and on an unknown number of specimens 

(§) are indicated. 

  H. brevicauda RGD892 

n 8 30 

L 0.24 - 0.33 0.22 - 0.30 

a 13 - 17.4 13.4 - 16.7 

b 3.9 - 4.1 3.9 - 4.7 

c 11.4 - 14.4 5.9 - 9 

c' 2* 2.9 - 3.9 

V 56 - 60.4 56.2 - 64.8 

stoma 16 6.3 - 8.7 

 

 

 

Subsequently, analysis of variance (one-way ANOVA) identified those 

morphometric characters that could significantly (p < 0.05) differentiate between H. 

mephisto, H. similigaster, RGD892, RGD838 and the H. gingivalis-clade. H. mephisto had 

a straight ovary vs. a dorsally reflected ovary in all other isolates, and a higher c’ value 

(8.1 ± 1.2, mean ± standard deviation) due to its long tail with filiform terminus. Both H. 

similigaster and the termite isolate RGD838 had a lower ratio corpus/isthmus length (2.1 

± 0.1 and 2.1 ± 0.2, respectively) and a higher c’ ratio than the H. gingivalis-clade, and 

differed from one another by their c’ ratio (8.1 ± 1.2 and 6.3 ± 0.5, respectively). Since 

RGD838 does not resemble any species of the genus, it is proposed as Halicephalobus 

sp. n. The other termite isolate RGD892 could be characterized by its shorter total body 

length (266 ± 19) and low c’ ratio (3.4 ± 0.2), resembling H. brevicauda MAVLJANOV 1976 

and is therefore referred to as H. cf. brevicauda.  
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Figure 6.9. Scatterplot of the first two canonical scores obtained by 

forward stepwise DFA on the morphometrics retained based on their low 

mutual correlation.  

 

 

DISCUSSION 

ORIGIN AND POSSIBLE FUNCTION OF POLYMORPHISM IN RDNA 

The ribosomal DNA genes have been used extensively as markers for inferring 

phylogenies since they can easily be amplified as a whole fragment and contain both 

variable and conserved regions. Although the eukaryotic ribosomal DNA (rDNA) array 

consists of several hundred tandem repeated copies, these appear nearly identical 

within a given organism, which has been attributed to concerted evolution (Arnheim 

1983). Hence, intraspecific variation of the rDNA genes is expected to be minimal (Dover 

and Tautz 1986). However, more and more exceptions to this rule have emerged as 

intraspecific and intra-genomic rDNA variability have been reported in various 

organisms. For example, the flatworm Dugesia (Schmidtea) mediterranea contains two 

different types of SSU rDNA within single organisms with an overall sequence divergence 
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of 8% between the two, and of which only one seems to be transcribed to RNA 

(Carranza et al. 1996). Pillet et al. (2012) found both single nucleotide polymorphisms 

(SNP’s) and polymorphisms concentrated in certain regions (defined as expansion 

segment polymorphisms or ESP’s) in the SSU sequence of the foraminifer Elphidium 

macellum. Heterogeneity in the rDNA array, mostly found in the ITS region and then 

generally consisting of SNP’s, has also been reported in different nematode taxa, e.g., in 

Meloidogyne (Zijlstra et al. 1995; Blok et al. 1997; Hugall et al. 1999), Heterodera 

(Szalanski et al. 1997), Belonolaimus (Cherry et al. 1997), Haemonchus (Gasser et al. 

1998; Heise et al. 1999), Globodera (Subbotin et al. 2000), Nematodirus (Heise et al. 

1999; Nadler et al. 2000), and Bursaphelenchus (Cardoso et al. 2012). 

Next to SNP’s, the present study revealed 2 polymorphic regions (similar to the 

ESP’s found in E. macellum (Pillet et al. 2012)) in the SSU sequence of isolates of the H. 

gingivalis-clade. This is a unique trait for the H. gingivalis-clade, as SNP’s and 

polymorphic regions were not found in any of the other Halicephalobus isolates. 

Although intraspecific variation of the rDNA genes is expected to be, the transient 

existence of polymorphism among copies of the rDNA gene is considered intrinsic to the 

concerted pattern of evolution (Porazinska et al. 2009). However, since the traditional 

approach using PCR and direct sequencing results in a single (consensus) sequence from 

individual nematodes, such aberrant copies will most likely not be detected when 

present in low numbers. Using new high-throughput DNA sequencing technologies6, 

different copies of the rDNA gene have been identified in nematodes before (Porazinska 

et al. 2009), albeit not to the extent that it is found here. Ribosomal DNA polymorphisms 

in H. gingivalis had previously been suspected in the LSU sequence of H. gingivalis 

(Nadler et al. 2003), however, the use of pooled individuals in that study precluded the 

possibility to determine whether they represented intra-individual heterogeneity or 

variation between individuals. The occurrence of polymorphisms in both sequenced 

strands of single individuals of H. gingivalis, reflects genuine sequence variants and not 

artefacts resulting from amplification, cloning or sequence procedures. Secondary 

structure modelling further revealed that the polymorphic regions directly affected the 

secondary structure of the expansion segment in which they occurred. Because both 

                                                           
6
 also referred to as next generation sequencing, in which single DNA molecules are sequenced in a 

massively parallel fashion in a flow-cel (Mardis 2008) 
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polymorphic regions had two possible sequence alternatives, 4 different ribotypes are 

theoretically possible. However, based on 20 clones of three H. gingivalis isolates only 

three ribotypes were identified in current study with a strong predominance towards 

the homogenous sequence combination 10a – (23/e1, e4)b. Theoretically, the analyses 

of additional clones of each isolate could reveal additional ribotypes and determine in 

which proportion they are present. Further, to assess whether all sequence variants are 

functional, as in Plasmodium (Gunderson et al. 1987; Rogers et al. 1996), it may be 

useful to directly sequence the ribosomal RNA (Sonnenberg et al. 2007). 

Several hypotheses can be forwarded to explain the origin and function of the 

observed SSU heterogeneity in H. gingivalis. An important consideration in this 

discussion is the presumed non-sexual reproduction in Halicephalobus, as males have 

never been reported for any of its species (Stefański 1954; Andrássy 1984; Akagami et al. 

2007). Current study corroborates non-sexual reproduction, since males have never 

been observed in over 3000 light microscopically observed specimens of 55 

Halicephalobus isolates of different species, both from culture under different 

environmental conditions and from direct field samples. Generally, in mitotic non-sexual 

lineages in the absence of recombination, two alleles at any given locus begin to 

accumulate mutations independently from each other and subsequently diverge in their 

nucleotide sequence, which is called the Meselson-effect (Welch and Meselson 2000). 

Although this effect has been reported in bdelloid rotifers (Welch and Meselson 2000) 

and in Meloidogyne species (Lunt 2008), it is not common for all non-sexual species. 

Moreover, it is unlikely that the Meselson-effect is the cause of SSU rDNA heterogeneity 

as concerted evolution could still be effective in non-sexual lineages through mitotic 

recombination and gene conversion, thereby maintaining the homogeneity of rDNA 

(e.g., Birky 1996). However, several circumstances have been described in which the 

rDNA repeats can escape concerted evolution, thereby resulting in rDNA heterogeneity. 

An important assumption for evolution under the concerted evolution model is the 

organization of genes in tandem arrays (Pillet et al. 2012). Recombination and gene 

conversion occur less frequently between sequences on heterologous chromosomes 

than on homologous chromosomes (Ironside 2013), therefore, in the rare case that the 

repeats are not strictly organized in tandem arrays and are dispersed throughout the 

genome, concerted evolution acts less strongly, as was suggested for the 5.8S rDNA 
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heterogeneity in the amphibian Xenopus laevis (e.g., Peterson et al. 1980) and the loach 

fish Misgurnus fossilis (Mashkova et al. 1981). DNA heterogeneity can also be caused by 

polyploidization, which has on several occasions been described in nematodes, e.g., in 

Meloidogyne (Triantaphyllou and Hirschmann 1997). In case of polyploidization 

concerted evolution is restricted to each set of chromosomes that are encoding for a 

different ribotype, as was suggested for the microsporidian Nosema bombi (O'Mahony 

et al. 2007). Other proposed explanations for rDNA heterogeneity are inter-specific 

hybridisation events, as suggested for Meloidogyne (Lunt 2008; Fargette et al. 2010) and 

the foraminifer E. macellum (Pillet et al. 2012). However, the chromosome state within 

Halicephalobus has not been established and unless non-sexual reproduction has 

evolved independently several times within the genus Halicephalobus, it seems unlikely 

that inter-specific hybridisation forms the basis for the presence of the polymorphic 

regions in the H. gingivalis-clade.  

Although the origin of the SSU heterogeneity in Halicephalobus is uncertain, it is 

remarkable that only the isolates of the H. gingivalis-clade, including facultative 

parasites, show these polymorphic regions in their SSU rDNA. Given that in Plasmodium 

the expression of two distinct types of SSU rDNA has been shown to be developmentally 

regulated (i.e., correlated to discrete stages of sporozoite development), linked to 

different parasitic life stages, i.e., one predominantly expressed in the mosquito host 

and the other in the mammalian host (Gunderson et al. 1987; Li et al. 1994; Rogers et al. 

1996), and possibly related to functional differences between ribosome types or 

mechanisms of transcriptional control, it is possible that the presence of alternating life 

histories is the key to understand the presence of the SSU heterogeneity. Hence, this 

trait could facilitate the survival of a single population of H. gingivalis in extremely 

different habitats and consequently enables it to be opportunistically parasitic.  

 

USING BOTH MOLECULAR AND MORPHOLOGICAL DATA TO INFER TAXONOMIC STATUS 

Regardless of the used method of phylogenetic inference, the concatenated analysis of 2 

rDNA genes and 2 mtDNA genes rendered a highly concordant topology with high 

support (>85% RAxML bootstrap values and >0.95 Bayesian posterior probability) along 

most branches, suggesting that a sufficient number of genes are concatenated to 
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elucidate the poorly supported single gene signals (Rokas et al. 2003). In non-sexuals, 

the evolutionary divergence of mtDNA and nuclear DNA is expected to be similar since 

they are both inherited clonally (Barraclough et al. 2003). However, results show that on 

average, mtDNA divergences are consistently lower than rDNA divergences in 

Halicephalobus species. A similar low, but strongly structured, mtDNA diversity against a 

higher nuclear diversity has been suggested for some polyploid parthenogenetic 

lineages of Meloidogyne and has been attributed to multiple, possibly hybrid, origins 

from closely related females (Hugall et al. 1999). However, since the ploidy of the 

different species of Halicephalobus has not been established, no such conclusions can be 

drawn in the present study.  

All phylogenetically supported taxa, with the exception of WB0701, were 

morphometrically discernible from each other mainly based on the c’ ratio and the ratio 

corpus/isthmus length. Termite isolate RGD838 can be distinguished mainly based on its 

c’ ratio and ratio corpus/isthmus length (2.1 ± 0.2 and 6.3 ± 0.5, respectively), thereby 

differing from all other Halicephalobus taxa. Based on its phylogenetic position, which is 

corroborated by its distinct morphometry, isolate RGD838 is considered a new species. 

The termite isolate RGD892 resembles H. brevicauda based on its short body length, 

although its c’ ratio and stoma length are larger. However, the c’ ratio of H. brevicauda 

(c’ = 2), which is often used in Halicephalobus species identification keys, is based on a 

single drawing from the original description and should therefore only be considered as 

an approximation, whereas the stoma is a weak developed and difficult characteristic 

(Geraert et al. 1988). The isolate WB0701, here appointed as H. cf. gingivalis, was 

morphologically not discernible from the H. gingivalis-clade but formed a clearly 

separated evolutionary line indicating cryptic speciation. Cryptic speciation, i.e., 

morphologically alike but genetically distinct speciation, is found in species throughout 

the tree of life (Bickford et al. 2007), in non-sexual taxa (Schön et al. 2012) and in 

nematodes (e.g., Derycke et al. 2005; Sudhaus and Kiontke 2007; De Oliveira et al. 

2012), including parasitic species (e.g., Ferri et al. 2009; Pérez-Ponce de Leon and Nadler 

2010). Finally, only H. mephisto can be separated from other Halicephalobus isolates by 

other (non-morphometrically) distinct morphological features, including SEM, i.e., by the 

absence of a dorsally reflexed ovary and a trigonal oral aperture. Its deviant morphology 

corroborates its phylogenetic sister relationship to the other Halicephalobus isolates, 
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however its presence within an unresolved LSU based Halicephalobus clade (fig. 6.3B; 

fig. 6.4) and the SSU divergence between H. mephisto vs. Procephalobus (18.9%) as 

opposed to that of H. mephisto vs. all other taxa (7.8 – 12.3%), supported the position of 

H. mephisto within the genus Halicephalobus. 

Concatenated analysis and single gene analysis of COI and ND4 revealed two 

molecular lineages in the H. gingivalis-clade, which were morphometrically and 

morphologically not distinguishable. The two lineages were supported by species 

distinctiveness measures except Rodrigo’s P(RD) that indicated incomplete reciprocal 

monophyly for lineage I. The divergence into two distinct molecular lineages is also 

supported by both single mtDNA phylogenies. Except in Bivalvia (Breton et al. 2009 and 

references therein), mtDNA is generally only inherited maternally, in which case its 

divergence is not influenced by reproductive strategy (Schön et al. 1998). However, 

heteroplasmy, i.e., the presence of different copies of the mitochondrial genome in one 

individual, can fail to distinguish species delimitation from phylogenetic relationships 

(Magnacca and Brown 2010 and references therein). However, although only one 

mtDNA sequence of each isolate was included and therefore multiple copies of the 

mitochondrial genome cannot be excluded, heteroplasmy seems unlikely in the H. 

gingivalis-clade since both COI and ND4 data identically divide the H. gingivalis isolates 

into two lineages. Moreover, the number of fixed differences between the lineages, i.e., 

the number of base positions at which all sequences of one lineage differ from all 

sequences of the other lineage, is 18 and 19 for COI and ND4, respectively, which 

corroborates the existence of distinction. The number (18) of fixed differences of COI 

between the lineages of H. gingivalis approach those found for COI of cryptic species (22 

- 29) within Litoditis marina (Rhabditis (Pellioditis) marina) (Derycke et al. 2005; Derycke 

et al. 2008) and the number of fixed differences for ND4 between both lineages is 

comparable (19). Application of the 4x rule for speciation, specifically designed for non-

sexual organisms (Birky et al. 2010), indicated that the two lineages are sufficiently 

distinct to infer species status under the evolutionary genetic species concept 

(Barraclough et al. 2003; Birky et al. 2010). Conversely, the rDNA phylogenies do not 

support the existence of two lineages in the H. gingivalis-clade. The SSU rDNA gene in 

nematodes has often been found uninformative for defining closely related groups such 

as species within a genus (e.g., Nadler et al. 2005), however, on other occasions 
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unequivocally distinguishes between morphologically indiscernible species (e.g., Abebe 

and Blaxter 2003). Theoretically, there is no outcrossing and recombination in non-

sexual organisms, therefore the phylogeny of one gene should be the phylogeny of all 

other genes within the organism (Birky and Barraclough 2009). However, since the origin 

of rDNA variability within the H. gingivalis clade is unclear, we deem it too speculative to 

draw conclusions based on the information at hand. 

 Geographical distribution of the isolates in current study does not explain the 

two lineages, because isolates originating from one horse riding-school (WB0701, 0801, 

PF060103, 21 44, and PF190101, 06) are found scattered over the two lineages. These 

results corroborate the findings of Nadler et al. (2003) on the distribution of different H. 

gingivalis isolates obtained from equine clinical cases, i.e., genetically different isolates 

were found together in single geographical regions, whereas genetically homogeneous 

isolates were found in different regions. Since coexistence of seemingly similar species is 

possible and, although not necessarily, might be facilitated by some distinct difference in 

their biology (Zhang et al. 2004; Leibold and McPeek 2006), it is possible that several 

cryptic species of H. gingivalis coexist at one location due to an unknown difference in 

their behaviour, physiology or morphology, which might be identified by further 

research. However, at this stage, in the absence of any known observable difference, we 

deem it not pragmatic to describe new species within the H. gingivalis-clade. 

In conclusion, molecular characterization and analyses on different markers 

indicate molecular distinct lineages in the non-sexual genus Halicephalobus which are 

considered species based on the evolutionary species concept (de Queiroz 2007 and 

references therein). The phylogenetic supported taxa were corroborated by 

morphological and morphometrical data, except for the lineages found in H. gingivalis. 

The presence of two cryptic lineages within the morphospecies H. gingivalis, which 

cannot be separated based on geographical origin, is supported by different species 

distinctiveness measures. Although free-living and parasitic isolates do not exhibit 

consistent genetic differences, remarkably, all isolates from inside horses belong to one 

lineage, i.e., H. gingivalis lineage I. This supports the hypothesis that only one lineage is 

capable of equine host parasitism. However, this should be confirmed by a more 

extensive phylogeny including more clinical isolates.  
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APPENDIX TO CHAPTER 6 

Table with all measurements and ratios of Halicephalobus spp. isolates (n = 30), represented as 

mean ± standard deviation with (ranges) and coefficient of variation expressed as percentage. 

Measurements are given in µm. 
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anal body width 9.0 ± 0.5 12.5 ± 1.0 12.0 ± 0.8 9.1 ± 0.5 12.5 ± 0.8 12.5 ± 0.9 12.2 ± 0.6 12.1 ± 0.8 

 

(8.1 - 10.7) (9.8 - 14.2) (10.1 - 13.6) (8.3 - 10.0) (11.2 - 14.3) (10.9 - 15.0) (11.2 - 13.6) 10.5 - 13.5) 

 

6 8 7 6 6 7 5 6 

         bulbus length 12.0 ± 0.9 15.2 ± 1.1 15.0 ± 1.1 12.1 ± 0.9 15.7 ± 0.7 15.0 ± 1.2 15.2 ± 0.8 14.6 ± 0.9 

 

(10.3 - 14.1) (13.1 - 17.7) (12.8 - 18.1) (10.5 - 15.0) (14.4 - 17.5) (13.0 - 17.7) (13.2 - 16.6) (12.3 - 16.3) 

 

7 7 7 8 4 8 5 6 

         corpus length 36.7 ± 1.5 47.1 ± 2.1 45.5 ± 2.0 36.7 ± 1.6 49.5 ± 3.1 44.7 ± 2.8 45.9 ± 1.8 45.6 ± 1.8 

 

(34.3 - 39.5) (43.0 - 52.2) (40.9 - 48.3) (33.5 - 39.6) (43.0 - 54.6) (39.7 - 53.6) (42.5 - 49.6) (42.3 - 49.6) 

 

4 4 4 4 6 6 4 4 

         dorsally reflexed  31.6 ± 6.1 75.8 ± 17.4 78.3 ± 16.8 33.1 ± 4.8 64.4 ± 15.2 66.8 ± 16.9 67.4 ± 12.9 72.8 ± 14.3 

part ovary (17.8 - 41.4) (48.2 - 108) (52.1 - 114) (22.6 - 44.0) (41.2 - 95.1) (31.3 - 95.0) (46.3 - 88.1) (40.4 - 99.8) 

 

4 23 22 15 23 25 19 20 

         isthmus length 15.5 ± 1.1 17.8 ± 1.1 16.6 ± 1.3 15.1 ± 1.2 18.3 ± 1.4 16.7 ± 1.4 17.5 ± 1.5 18.5 ± 1.3 

 

(13.3 - 17.9) (15.4 - 19.8) (13.8 - 19.0) (12.6 - 17.1) (14.8 - 21.9) (13.8 - 19.4) (13.8 - 21.1) (15.5 - 20.8) 

 

7 6 8 8 8 8 9 7 

         L 265 ± 18 398 ± 30 367 ± 37 271 ± 22 376 ± 25 362 ± 33 378 ± 24 383 ± 26 

 

(223 - 298) (340 - 470) (301 - 443) (236 - 316) (331 - 430) (302 - 436) (338 - 428) (326 - 432) 

 

7 7  10 8 8 9 6 7 

         L' 222 ± 17 338 ± 27 315 ± 35 229 ± 18 325 ± 23 312 ± 31 326 ± 23 325 ± 24 

 

(186 - 249) (282 - 404) (251 - 388) (198 - 264) (287 - 380) (257 - 380) (288 - 374) (275 - 375) 

 

8 8 11 8 7 10 7 8 

         max. body width 17.1 ± 1.1 24.3 ± 2.5 24.1 ± 2.4 17.4 ± 1.3 22.5 ± 2.0 23.9 ± 2.6 23.7 ± 1.7 22.9 ± 1..7 

 

(14.6 - 19.6) (20.4 - 32.7) (21.0 - 29.0) (15.5 - 20.0) (18.7 - 27.5) (17.8 - 28.2) (19.7 - 26.8) (19.9 - 25.7) 

 

6 10 10 8 9 11 7 7 

         pharynx length 64.3 ± 2.6 80.1 ± 3.0 77.0 ± 3.6 63.9 ± 2.9 83.4 ± 4.0 76.3 ± 4.1 78.6 ± 2.8 78.8 ± 3.0 

 

(58.8 - 67.6) (73.0 - 85.7) (69.2 - 82.4) (58.3 - 69.1) (74.0 - 90.1) (68.9 - 87.9) (73.7 - 84.3) (72.6 - 84.7) 

 

4 4 5 5 5 5 4 4 

         post-v 34.1 ± 4.27 56.0 ± 5.8 52.6 ± 6.1 34.0 ± 3.6 52.8 ± 6.7 48.9 ± 6.2 49.0 ± 6.7 49.9 ± 5.0  

(vulva to posterior (22.4 - 40.6) (45.4 - 66.6) (38.1 - 61.37) (28.1 - 42.5) (41.3 - 73.6) (36.3 - 64.4) (38.2 - 70.6) (38.9 - 58.2) 

ovarian flexure) 12 10 12 10 13 13 14 10 

         pre-v 48.0 ± 5.7 83.1 ± 8.9 77.2 ± 9.3 50.8 ± 5.1 70.5 ± 10.1 76.2 ± 10.7 77.4 ± 6.8 78.9 ± 8.6 

(vulva to anterior (33.1 - 58.1) (68.5 - 109) (59.9 - 94.7) (42.7 - 60.1) (53.0 - 89.6) (51.4 - 94.1) (61.4 - 90.6) (59.6 - 94.0) 

ovarian flexure) 12 11 12 10 14 14 9 11 

         PV 93.2 ± 11.3 150 ± 17 142 ± 20 97.9 ± 9.8 143 ± 14 140 ± 18 147 ± 15 147 ± 16 

 

(61.8 - 122) (119 - 192) (107 - 173) (80 - 118) (122 - 173) (100 - 182) (118 - 181) (116 - 178) 

 

12 11 14 10 10 13 10 11 

         stoma length 7.1 ± 0.4 7.7 ± 0.3 7.8 ± 0.4 7.0 ± 0.3 7.8 ± 0.5 7.9 ± 0.4 8.2 ± 0.5 7.4 ± 0.4 

 

(6.2 - 8.2) (7.1 - 8.3) (7.0 - 8.6) (6.1 - 7.6) (7.1 - 9.1) (6.8 - 8.6) (7.3 - 9.1) (6.1 - 8.0) 

 

6 4 6 5 6 5 6 5 

         tail length 43.3 ± 3.2 60.8 ± 3.6 51.9 ± 2.9 42.3 ± 4.4 51.5 ± 4.4 50.2 ± 4.1 51.8 ± 2.9 58.0 ± 3.8 

 

(36.5 - 49.5) (53.4 - 68.2) (46.1 - 57.4) (35.8 - 52.5) (39.2 - 59.6) (33.5 - 56.1) (42.0 - 58.6) (49.7 - 65.9) 

 

8 56 6 11 9 8 6 6 

         VA 64.9 ± 5.8 108 ± 9 97 ± 14 66.8 ± 6.0 97.9 ± 8.7 95.0 ± 12.6 101 ± 8.5 99.4 ± 7.9 

 

(50.6 - 74.4) (88 - 126) (70 - 134) (55.7 - 76.5) (81.3 - 119) (73.6 - 120) (85 - 117) (81.5 - 116) 

 

10 9 14 9 9 13 8 8 

         vulval body width 16.8 ± 1.1 23.6 ± 2.5 23.5 ± 2.54 16.9 ± 1.2 22.2 ± 1.69 23.2 ± 2.4 23.2 ± 1.8 22.3 ± 1.7 

 

(14.6 - 19.6) (19.8 - 31.6) (19.9 - 28.4) (15.4 - 19.7) (18.7 - 26.4) (17.7 - 27.2) (19.4 - 26.6) (19.1 - 24.8) 

 

7 10 10 7 9 11 8 7 

         a 15.5 ± 0.8 16.5 ± 1.2 15.2 ± 0.6 15.6 ± 0.9 16.8 ± 1.1 15.2 ± 1.0 16.0 ± 0.5 16.7 ± 0.8 

 

(13.8 - 17.5) (12.0 - 18.1) (14.3 - 16.8) (14.1 - 17.7) (15.2 - 19.8) (12.9 - 17.2) (15.2 - 17.6) (15.0 - 18.6) 

 

5 7 4 6 7 7 3 5 

         b 4.1 ± 0.3 5.0 ± 0.3 4.8 ± 0.4 4.2 ± 0.2 4.5 ± 0.3 4.8 ± 0.4 4.8 ± 0.3 4.9 ± 0.3 

 

(3.6 - 4.6) (4.4 - 5.5) (4.0 - 5.4) (3.7 - 4.6) (3.9 - 5.3) (3.8 - 5.5) (4.2 - 5.6) (4.1 - 5.3) 

 

6 5 8 5 7 9 6 5 

         c 6.2 ± 0.4 6.6 ± 0.4 7.1 ± 0.5 6.4 ± 0.3 7.3 ± 0.5 7.2 ± 0.7 7.3 ± 0.5 6.6 ± 0.4 

 

(5.3 - 7.3) (5.9 - 7.5) (6.1 - 8.0) (5.9 - 7.0) (6.7 - 9.1) (6.3 - 9.2) (6.3 - 8.4) (5.9 - 7.5) 

 

7 6 7 5 7 9 7 6 
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anal body width 12,9 ± 0,8 11,4 ± 0,6 12,7 ± 0,9 12,5 ± 1,0 12,6 ± 0,69 10 ± 1.9 13.4 ± 3.0  7,7 ± 1,1 9,5 ± 0,9 

 
(11,2 - 14,7) (9,7 - 12,6) 11,0 - 15,4) (10,7 - 14,3) (10,8 - 14,3) (6.4 - 12.7) (9.1 - 21.3) (6,1 - 9,4) (6,8 - 10,6) 

 
6 6 7 8 7 19 22 14 9 

          bulbus length 14,9 ± 0,9 13,7 ± 1,0 14,7 ± 1,2 15,4 ± 1,8 16,8 ± 1,2 13.6 ± 1.6 16.3 ± 2.4  11,5 ± 1,3 12,1 ± 1,1 

 
(12,0 - 16,6) (11,8 - 15,9) (12,7 - 17,5) (11,4 - 19,1) (13,5 - 18,7) (10.7 - 16.6) (12.5 - 22.2) (9,2 - 13,2) (9,2 - 14,3) 

 
6 7 8 11 7 11 15 11 9 

          corpus length 51,4 ± 2,9 45,5 ± 1,9 47,6 ± 2,0 50,2 ± 3,5 52,8 ± 3,4 44.5 ± 4.6 59.8 ± 3.3 38,0 ± 4,6 35,5 ± 2,1 

 
(45,7 - 57,0) (41,4 - 49,0) (43,3 - 52,0) (43,3 - 56,1) (46,8 - 60,0) (34.3 - 52.8) (52 - 67.2) (30,3 - 43,9) (32,1 - 39,8) 

 
6 4 4 7 6 10 5 12 6 

          dorsally reflexed  72,5 ± 15,8 52,9 ± 8,4 68,0 ± 13,5 62,3 ± 10,6 74,6 ± 15,9 30.6 ± 10.3 
 

16,4 ± 4,5 27,6 ± 5,1 

part ovary (41,5 - 94,8) (37,5 - 72,7) (31,4 - 90,7) (39,8 - 83,5) (43,9 - 107) (8.2 - 59.3) n.a. (8,7 - 26,7) (15,8 - 39,5) 

 
22 16 20 17 21 34 

 
27 18 

          isthmus length 17,2 ± 1,3 15,6 ± 1,2 16,4 ± 1,5 17,0 ± 1,9 17,0 ± 2,2 21.1 ± 3 23 ± 2.9 18,5 ± 3,4 12,5 ± 1 

 
(14,9 - 19,7) (13,6 - 18,2) (14,0 - 20,2) (13,7 - 21,2) (13,2 - 20,5) (14.5 - 26.1) (16.3 - 27.2) (13,8 - 22,2) (10,3 - 14) 

 
7 7 9 11 13 14 12 18 8 

          L 411 ± 25 355 ± 29 405 ± 16 384 ± 29 419 ± 25 364 ± 50 483 ± 82 279 ± 34 266 ± 19 

 
(358 - 453) (244 - 397) (359 - 427) (336 - 434) (357 - 456) (285 - 441) (398 - 670) (230 - 330) (223 - 301) 

 
6 8 4 8 6 14 17 12 7 

          L' 351 ± 25 302 ± 27 347 ± 14 384 ± 29 352 ± 22 291 ± 42 376 ± 27 231 ± 28 233 ± 19 

 
(299 - 388) (195 - 342) (305 - 364) (228 - 371) (296 - 382) (224 - 356) (305 - 530) (189 - 268) (191 - 264) 

 
7 9 4 8 6 14 18 12 8 

          max. body width 22,1 ± 1,5 19,3 ± 1,5 25,2 ± 1,6 21,7 ± 1,2 21,6 ± 1,9 19 ± 3.8 25.5 ± 5.9 16,1 ± 1,5 17,9 ± 1,3 

 
(18,4 - 24,2) (15,9 - 22,3) (21,2 - 28,1) (19,2 - 23,9) (17,4 - 25,9) (9.9 - 25.5) (15.8 - 39.1) (13,6 - 18,8) (13,7 - 19,9) 

 
7 8 6 6 9 20 23 9 7 

          pharynx length 83,4 ± 3,6 74,8 ± 3,1 (78,6 ± 3,5) 82,7 ± 6,4 86,6 ± 6,1 79.2 ± 8.9 99.2 ± 7.2 68,0 ± 9,1 60,1 ± 3,4 

 
(75,6 - 89,0) (68,9 - 80,5) (71,8 - 85,9) (70,8 - 94,8) 74,4 - 97,1) (59.5 - 93.8) (82.1 - 111.4) (54,5 - 78,7) (54,8 - 65,4) 

 
4 4 4 8 7 11 7 13 6 

          post-v 55,6 ± 5,5 45,7 ± 6,6 53,1 ± 7,9 50,6 ± 5,6 59,4 ± 5,9 38.2 ± 10.6 65 ± 38 25,6 ± 5,9 25,4 ± 3,8 

(vulva to posterior (41,0 - 64,2) (23,9 - 55,0) (30,1 - 65,9) (37,8 - 61,9) (46,6 - 72,4) (12.4 - 63.1) (27.1 - 162) (12,5 - 39,8) (14,6 - 30,9) 

ovarian flexure) 4 14 15 11 10 28 58 23 15 

          pre-v 82,3 ± 9,7 70,0 ± 6,6 84,2 ± 7,3 72,9 ± 11,1 83,0 ± 10,9 51.3 ± 8.3 69.5 ± 22.9 49,2 ± 6,3 57,2 ± 5,7 

(vulva to anterior (65,9 - 100) (55,1 - 84,1) (69,3 - 96,7) (37,8 - 61,9) (62,2 - 106) (28.6 - 67.4) (41.9 - 132) (38,9 - 60,7) (43,5 - 66,3) 

ovarian flexure) 12 9 9 15 13 16 33 13 10 

          PV 163 ± 15 135 ± 16 164 ± 10 142 ± 16 152 ± 13  124 ± 21 155 ± 38 93,6 ± 11,2 104,4 ± 11,6 

 
(133 - 187) (72,4 - 155) (142 - 186) (109 - 173) (127 - 172) (91 - 159) (118 - 235) (76,7 - 108,6) (73,9 - 120) 

 
9 12 6 11 9 17 25 12 11 

          stoma length 8,0 ± 0,5 7,8 ± 0,6 7,4 ± 0,5 8,3 ± 0,8 8,6 ± 0,8 8.8 ± 0.8 9.2 ± 0.9 7,2 ± 0,8 7.7 ± 0.6 

 
(7,2 - 8,9) (6,6 - 9,0) (6,4 - 8,5) (6,9 - 9,6) (7,0 - 10,2) (7.2 - 9.8) (7.2 - 10.4) (5,6 - 8,6) (6,13 - 8,71) 

 
6 7 7 10 10 8 9 11 8 

          tail length 60,3 ± 3,2 52,9 ± 3,9 57,8 ± 4,6 60,0 ± 6,6 67,3 ± 4,4 73.4 ± 9,0 106 ± 15 48,8 ± 6,8 33,7 ± 2,5 

 
(52,3 - 67,6) (44,3 - 59,5) (45,5 - 65,2) (52,7 - 76,9) (59,2 - 75,8) (55.3 - 87.8) (88 - 144) (39,7 - 62,4) (26,8 - 39,1) 

 
5 7 8 11 6 12 14 14 7 

          VA 105 ± 8,3 92,9 ± 11 105 ± 5 100 ± 9 114 ± 8 87.3 ± 14.3 122 ± 27 68,9 ± 8,2 68,2 ± 6,0 

 
(85 - 118) (46,9 - 110) (88 - 114) (82 - 122) (94 - 128) (63.4 - 111) (97 - 191) (55,6 - 81,4) (55,7 - 78,7) 

 
8 12 5 10 7 16 22 12 9 

          vulval body width 21,5 ± 1,5 18,2 ± 1,2 24,1 ± 1,5 21,2 ± 1,2 21,3 ± 1,8 18.9 ± 3.6 24.3 ± 5.6 15,4 ± 1,6 17,3 ± 1,3 

 
(18,4 - 24,1) (15,0 - 20,9) (20,9 - 26,7) (18,5 - 23,3) (17,3 - 24,7) (9.9 - 24.8) (15.7 - 36.2) (12,8 - 18,0) (13,6 - 19,6) 

 
7 6 6 6 9 19 23 11 8 

          a 18,6 ± 0,8 18,4 ± 1,7 16,1 ± 0,9 17,7 ± 1,1 19,5 ± 1 19.6 ± 2.5 19. ± 2.8 17,3 ± 1,1 14,9 ± 0,8 

 
(17,0 - 20,2) (11,2 - 21,1) (14,3 - 18,5) (15,9 - 20,3) (16,9 - 21,5) (16.5 - 30) (14.3 - 26.2) (15,4 - 19,5) (13,4 - 16,7) 

 
4 9 6 6 5 13 15 6 5 

          b 4,9 ± 0,3 4,8 ± 0,4 5,2 ± 0,2 4,7 ± 0,3 4,9 ± 0,4 4.6 ± 0.3 4.9 ± 0.6 4,1 ± 0,1 4,4 ± 0,2 

 
(4,4 - 5,4) (3,2 - 5,2) (4,8 - 5,8) (3,9 - 5,3) (4,2 - 5,8) (3.9 - 5.2) (4.2 - 6.4) (3,9 - 4,3) (3,9 - 4,7) 

 
5 8 5 7 7 7 13 3 5 

          c 6,8 ± 0,5 6,7 ± 0,5 7,0 ± 0,5 6,5 ± 0,6 6,2 ± 0,3 5 ± 0.3 4.5 ± 0.3 5,7 ± 0,3 7,9 ± 0,7 

 
(5,8 - 8,0) (5,0 - 7,7) (6,2 - 8,6) (5,5 - 7,8) (5,8 - 6,9) (4.4 - 5.7) (4 - 5.2) (5,3 - 6,3) (5,9 - 9) 

 
7 8 6 10 4 6 6 5 8 
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c' 4,8 ± 0,4 4,9 ± 0,4 4,3 ± 0,3 4,7 ± 0,4 4,1 ± 0,4 4,0 ± 0,4 4,3 ± 0,2 4,8 ± 0,4 

 
(4,1 - 5,6) (4,0 - 6,0) (3,8 - 5,0) (4,0 - 5,5) (3,3 - 4,8) (2,8 - 4,6) (3,4 - 4,7) (4,1 - 5,5) 

 
8 9 6 8 9 9 6 7 

         ratio corpus/isthmus 2,4 ± 0,2 2,7 ± 0,2 2,8 ± 0,2 2,4 ± 0,2 2,7 ± 0,2 2,7 ± 0,2 2,6 ± 0,2 2,5 ± 0,1 

 
(1,9 - 2,8) (2,3 - 2,9) (2,4 - 3,2) (2,2 - 2,8) (2,3 - 3,2) (2,4 - 3,2) (2,2 - 3,3) (2,1 - 2,8) 

 
8 6 7 6 8 8 9 6 

         ratio ovary 0,7 ± 0,1 0,7 ± 0,1 0,7 ± 0,1 0,7 ± 0,1 0,8 ± 0,1 0,6 ± 0,1 0,6 ± 0,1 0,6 ± 0,1 

(post-v/pre-v) (0,6 - 0,8) (0,5 - 0,8) (0,6 - 0,8) (0,5 - 0,8) (0,6 - 1,3) (0,5 - 0,8) (0,5 - 1,0) (0,5 - 0,8) 

 
8 9 7 8 19 11 14 11 

         V 59,3 ± 1,5 57,7 ± 0,9 59,5 ± 1,1 59,8 ± 0,9 60,3 ± 0,9 60,0 ± 1,2 59,6 ± 0,9 58,9 ± 1,2 

 
(53,4 - 61,8) (55,9 - 59,2) (57,4 - 61,8) (58,1 - 61,2) (58,0 - 62,1) (58,4 - 65,1) (58,4 - 62,6) (56,7 - 60,7) 

 
2 2 2 1 2 2 2 2 

         V' 70,8 ± 1,4 68,1 ± 0,7 69,4 ± 1,4 70,1 ± 0,8 69,9 ± 1,0 69,7 ± 1,4 69,1 ± 1,0 69,5 ± 0,9) 

 
(65,9 - 73,6) (66,2 - 69,1) (65,6 - 72,3) (69,1 - 72,4) (68,1 - 71,9) (67,9 - 73,1) (67,9 - 71,5) (68,1 - 71,0) 

 
2 1 2 1 1 2 1 1 

         VA/tail length 1,5 ± 0,1 1,8 ± 0,1 1,9 ± 0,2 1,6 ± 0,1 1,9 ± 0,2 1,9 ± 0,2 1,9 ± 0,2 1,7 ± 0,1 

 
(1,3 - 1,9) (1,5 - 2,1) (1,4 - 2,4) (1,4 - 1,8) (1,7 - 2,5) (1,5 - 2,3) (1,6 - 2,3) (1,5 - 2,0) 

 
10 7 11 6 10 12 8 7 

         (VA/2) / post-v  1,0 ± 0,1 1,0 ± 0,1 0,9 ± 0,1 1,0 ± 0,1 0,9 ± 0,1 1,0 ± 0,1 1,0 ± 0,1  1,0 ± 0,1 

 
(0,9 - 1,1) (0,9 - 1,2) (0,8 - 1,1) (0,9 - 1,2) (0,7 - 1,1) (0,8 - 1,1) (0,7 - 1,3) (0,9 - 1,1) 

 
7 7 7 7 8 8 11 7 
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c' 4,7 ± 0,3 4,7 ± 0,4 4,6 ± 0,4 4,8 ± 0,7 5,4 ± 0,3 7.4 ± 0.8 8.1 ± 1.2 6,3 ± 0,5 3,4 ± 0,2 

 
(4,1 - 5,7) (4,0 - 5,5) (3,3 - 5,3) (3,9 - 6,9) (4,8 - 5,8) (6.1 - 9.6) (6 - 11.3) (5,5 - 7,2) (2,9 - 3,9) 

 
7 8 9 14 6 11 14 8 6 

          ratio corpus/isthmus 3,0 ± 0,3 2,9 ± 0,2 2,9 ± 0,2 3,0 ± 0,2 3,1 ± 0,3 2.12 ± 0.14 2.6 ± 0.3 2,1 ± 0,2 2,9 ± 0,2 

 
(2,5 - 3,7) (2,4 - 3,2) (2,3 - 3,4) (2,6 - 3,6) (2,7 - 3,6) (1.9 - 2.4) (2.2 - 3.3) (1,9 - 2,5) (2,4 - 3,3) 

 
9 7 8 7 9 7 11 8 6 

          ratio ovary 0,7 ± 0,1 0,7 ± 0,1 0,6 ± 0,1 0,7 ± 0,1 0,7 ± 0,1 0.7 ± 0.1 0.9 ± 0.4 0,5 ± 0,1 0,5 ± 0,07 

(post-v/pre-v) (0,6 - 0,9) (0,4 - 0,8) (0,3 - 0,9) (0,5 - 1,1) (0,6 - 0,9) (0.4 - 1) (0.5 - 2.3) (0,3 - 0,8) (0,3 - 0,7) 

 
11 14 17 16 10 20 41 22 15 

          V 59,8 ± 1,0 59,0 ± 1,2 59,8 ± 0,9 58,3 ± 1,5 56,9 ± 1,0 55.9 ± 1.3 52.6 ± 1.8 57,9 ± 0,8 61,7± 1,6 

 
(57,4 - 61,7) (57,0 - 61,2) (57,5 - 61,6) (54,0 - 61,2) (55,1 - 59,3) (53.5 - 60.2) (44.9 - 55.3) (56,2 - 59,3) (56,2 - 64,8) 

 
2 2 2 3 2 2 3 1 3 

          V' 70,1 ± 0,8 69,3 ± 1,6 69,7 ± 1,0 69,1 ± 1,2 67,7 ± 0,9 70.1 ± 1.2 67.6 ± 2,2 70,1 ± 0,9 70,7 ±1,3 

 
(67,85 - 71,6) (67,6 - 76,0) (67,0 - 71,2) (66,1 - 70,8) (66,1 - 39,4) (68.7 - 73.7) (58.6 - 70.2) (68,4 - 71,8) (65,7 - 72,9) 

 
1 2 1 2 1 2 3 1 2 

          VA/tail length 1,7 ± 0,2 1,8 ± 0,2 1,8 ± 0,2 1,7 ± 0,2 1,7 ± 0,1 1.2 ± 0.1 1.1 ± 0.1 1,4 ± 0,1 2,0 ± 0,2 

 
(1,4 - 2,1) (1,0 - 2,0) (1,6 - 2,3) (1,3 - 2,0) (1,5 - 1,9) (0.97 - 1.46) (0.93 - 1.37) (1,2 - 1,6) (1,4 - 2,3) 

 
9 11 9 12 5 8 11 7 9 

          (VA/2) / post-v  0,9 ± 0,1 1,0 ± 0,2 1,0 ± 0,2 1,0 ± 0,1 1,0 ± 0,1 1.21 ± 0.3 1.1 ± 0.4 1,4 ± 0,3 1,4 ± 0,2 

 
(0,8 - 1,1) (0,5 - 1,7) (0,8 - 1,8) (0,8 - 1,3) (0,8 - 1,1) (0.8 - 2.8) (0.53 - 1.9) (1,0 - 2,78) (0,9 - 2,0) 

 
6 18 18 11 8 28 33 24 14 
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Within the framework of this PhD research, several aspects of the general biology and 

evolutionary history of Halicephalobus gingivalis, i.e., one of the most deadly facultative 

parasitic nematodes of mammals, was investigated. The study revealed that the species 

is more widely distributed than previously assumed, has an unseen high tolerance for 

ivermectin and thiabendazole, has dichotomously branched intestinal microvilli most 

likely associated with parasitism, shows an intraspecific morphometrical variability 

which surpasses interspecific variability, has a high level of intra-genomic rDNA 

variability, and that cryptic speciation in ongoing.  

In this closing chapter, speciation and species delineation in the genus 

Halicephalobus is further discussed. The incidence of infections in the light of our results 

on the distribution of H. gingivalis is evaluated, including possible precautionary 

measures. The discussion on the evolution of H. gingivalis, especially regarding 

parasitism in mammals, is further elaborated. Finally, future research prospects are 

proposed. 

 

SPECIATION AND SPECIES DELINEATION IN PARTHENOGENETIC ORGANISMS  

The existence of species in parthenogenetic lineages remains controversial. In a 

traditional biological view, species arise in sexual clades because interbreeding 

maintains cohesion within species whereas reproductive isolation causes divergence 

between them (Maynard Smith and Szathmary 1995 in Fontaneto et al. 2007). Following 

this rational, non-sexually reproducing organisms could not diversify into species. 

However, if other processes were at least equally important, e.g., specialization into 

distinct niches or geographical separation, than organisms diversify into species 

independently from their reproductive mechanism (Barraclough et al. 2003).  

According to Birky et al. (2005), the most common model of parthenogenetic 

reproduction is when the number of offspring is equal for all individuals, which differ 

from their ancestor and each other by mutations. This results in a continuum of genetic 

differences between individuals without gaps separating the clades (Figure 7.1A). 

However, reproduction is more likely asynchronous with a varying number of offspring 

and the occurrence of extinction (zero offspring), causing random genetic drift (Figure 

7.1B). Yet, the produced clusters of similar organisms are transient and can therefore 
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not be considered species. Conversely, divergent adaptation to different ecological 

niches gives rise to long-lasting, independently evolving clades in parthenogenetic 

species (Figure 7.1C).  

 

 

Figure 7.1. Graphical representation of parthenogenesis that is (A) synchronous with an equal 

amount of offspring for all individuals, (B) asynchronous with a variable number of offspring and 

extinction (zero offspring), and (C) random genetic drift and divergent adaptation to different 

ecological niches give rise to independently evolving clades (Figure taken from Birky et al. 2005). 

 

Several species concepts, including the evolutionary, ecological and phylogenetic 

concept, consider the existence of parthenogenetic species (Heethoff et al. 2011 and 

references therein). However, their description in a biological meaningful context 

A.       B.      C.  
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remains difficult. Purely molecular based approaches have been criticized mainly 

because no general definition is available for the amount of genetic distance that 

indicates separate species in a lineage (e.g., Heethoff et al. 2011). Therefore, it is 

imperative to use an integrative approach when delineating parthenogenetic species, 

especially when they have few discriminating morphological traits (Heethoff et al. 2011). 

Such an integrative approach, in which species boundaries were studied from molecular 

and morphological perspectives, has been proven useful when demonstrating speciation 

in parthenogenetic lineages such as the bdelloid rotifers (Fontaneto et al. 2007) and the 

oribatid mite genera Tectocepheus (Lauman et al. 2007) and Trhypochthonius (Heethoff 

et al. 2011). 

Within the suspected obligate parthenogenetic genus Halicephalobus current 

study revealed the presence of several well supported molecular clades (Chapter 6), 

which could be considered species based on the evolutionary species concept (de 

Queiroz 2007 and references therein). Moreover, all phylogenetic supported taxa, 

except WB0701, were confirmed by morphological and/or morphometrical data 

(Chapter 6). Divergent adaptation can explain at least some of these species. H. 

mephisto, is found in a distinctly different niche than the other included isolates, i.e., in a 

water enclosure in a mine up to 3 km belowground (Borgonie et al. 2011). H. laticauda, 

although not included in this study, is also found in mines (Geraert et al. 1988) but in a 

different habitat and a distinctly different morphology confirms that it represents a 

different molecular lineage. H. cf. brevicauda (RGD892) and Halicephalobus sp. n. were 

both found in association with termites. The co-occurrence of representatives of both H. 

gingivalis lineages on one equestrian facility (Chapter 2 and Chapter 6) could be 

explained by inhabitation of different micro-environments. 

In conclusion, most of the Halicephalobus species identified in the present 

research are based on well supported molecular clades, are also supported by 

morphological and/or morphometrical data, and also on differential ecology. 

 

SPECIES IDENTIFICATION IN HALICEPHALOBUS  

As described in Chapter 5, H. gingivalis has an unseen high degree of intraspecific 

morphometric variation to the extent that different species of Halicephalobus can be 
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identified within the progeny of a single female. Based on these results, only ratio 

corpus/isthmus length remains potentially useful as a morphometric discriminating 

factor. However, a morphometric analysis by means of multivariate analyzing techniques 

revealed that the interspecific variation of some characteristics is larger than their 

intraspecific variation. Consequently, phylogenetically supported taxa, with the 

exception of WB0701, were discernible from each other mainly based on ratio c’ and 

ratio corpus/isthmus length. 

 

Table 7.1. Morphometrics of different Halicephalobus species, both from original species descriptions and 

from the present study. Measurements are given in µm, except total body length (mm). 

       stoma 
length 

corpus/ 
isthmus 

  

 
     L   a    b     c   c'   V 

VA/tail 
length 

 H. mephisto 0.52-0.56 25-29 5.5-6.6 4.3-4.7 9-10 48-51 7-9.5 1.9-2 1.1-1.4 Borgonie et al. 2011 

H. laticauda 0.25-0.35 24-29 3.3-4.2 4.5-7.3 4-6 53-64 8-11 1-2
†
 1.1-1.9 Geraert et al. 1988 

H. brevicauda 0.24-0.33 13-17 3.9-4.1 11.4-14.4 2.4
‡
 56-60 16° 

 
4° Mavljanov 1976 

H. cf. brevicauda 0.22-0.30 13-17 3.9-4.7 5.9-9 3-4 56-65 6-9 2.4-3.3 1.4-2.3 this study  

H. similigaster 0.23-0.39 17-21 3.7-4.3 4.0-4.6 8* 54-56 6-8* 3* 1* Andrássy 1954 

H. similigaster 0.28-0.44 16-30 3.9-5.2 4.4-5.7 7-10 54-60 7-10 1.9-2.4 1.0-1.4 this study 

H. minutus 0.26-0.28 22-25 3.9-4.3 5.2-6.5 8* 57-63 7* 2.1
‡
 1.2

‡
 Körner 1954 

H. parvus 0.25-0.41 17-24 4.0-5.2 3.8-4.5 10* 53-56 9* 2.5
‡
 0.8

‡
 Körner 1954 

H. persicus 0.20-0.25 21-26 3.7-4.2 4.4-5.2 7-12 54-61 6-8 2.2-2.6 0.9-1.1 Shokoohi et al. 2007 

Halicephalobus sp. n. 0.23-0.33 15-20 3.9-4.3 5.3-6.3 5.5-7 56-59 6-9 1.9-2.5 1.2-1.6 this study  

H. deletrix7 0.25 15-20 2.9-3.6 4.4-6.3 5.3
‡
 56-63 

   
Anderson, Bemrick 1965 

H. gingivalis 0.25-0.43 15-23 2.9-3.8 4.4-7.0 5-6 56-65 4-10 
 

1.0-1.3 Andrássy 1984 

H. gingivalis 0.24-0.47 11-22 3.2-5.8 5.0-8.6 3-7 56-65 6-10 2.1-3.6 1.0-2.5 this study  

H. cf. gingivalis 0.22-0.29 14-18 3.6-4.6 5.3-7.3 4-6 53-62 6-8 1.9-2.8 1.3-1.9 this study  

H. intermedius 0.23-0.32 13-23 3.2-4.5 5.0-6.8 4-5* 58-66 
  

1.0-1.3* Pokrovskaja 1964 

H. palmaris 0.36-0.41 17-19 3.8-4.5 6.9-7.5 4.5-6
†
 56-60 7-8 0.6* 1.6-1.8* Lordello, De Oliveira 1963 

H. limuli 0.42-0.46 20-21 4.0-4.8 6.7-7.0 4.5-5
†
 59-61 11-12 

 
1.6-1.8 Tim 1956 

†
 calculated from original descriptions;

 ‡
 measurements from original illustration; ° based on one specimen in the original 

description; * according to Andrássy 1984. For the denotation of the used ratios, we refer to Chapter 5. 

 

Table 7.1 lists the morphometrics of different Halicephalobus species based on 

the original descriptions together with the results of the present study. The 

morphometrics of cultured specimens of H. similigaster are in accordance with those 

measured from an in situ population from the same beech tree (Köhler 2011). This 

confirms that the observed morphometric variability under experimental conditions as 

applied in this study are relevant to populations from natural habitats, as was also 

observed for H. gingivalis (Chapter 5). H. brevicauda and H. cf. brevicauda identified in 

                                                           
7
 H. deletrix is a synonym of H. gingivalis (see General Introduction), but is often still used en therefore 

included in this table. 
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this study showed some minor morphometrical differences (table 7.1). However, since 

both stoma length and ratio VA/T were based on a single individual (Mavljanov 1976) 

and c’ was based on a single illustration, we appoint this isolate H. cf. brevicauda.  

Stoma length and the ratios VA/T, V, and c’ are predominantly used in current 

identification keys. The present study revealed that ratio V showed the least 

intraspecific variability within a fixed environment, but was unable to discriminate 

between the different Halicephalobus spp. used in the present study and by extension in 

the entire genus (table 7.1). Also ratio VA/tail length has a large intraspecific variability 

which overlaps between the different species (Geraert et al. 1988 and table 7.1). The 

stoma it is a small sized structure with a weakly developed posterior part which makes 

observed differences less convincing (Geraert et al. 1988). Although c’ had a relatively 

high intraspecific variability (Chapter 5), the difference between the phylogenetically 

delimited clades (Chapter 6) is larger and this corroborates with Geraert et al. (1988) 

that c’ is a useful character to discriminate certain species. We demonstrated that c’ can 

be used to delimitate the following groups: c’<4 (H. cf. brevicauda), c’=4-7 (H. gingivalis 

and Halicephalobus sp. n.), and c’>7 (H. similigaster and H. mephisto). Ratio 

corpus/isthmus length was able to distinguish H. similigaster and Halicephalobus sp. n. 

(isolate RGD838) from all other isolates based on a discriminant function analysis 

(Chapter 6). However, the range of the characteristic is slightly overlapping and it is 

therefore omitted as a discriminating characteristic. Isolate WB0701 is not 

morphologically or physiologically discernible from the H. gingivalis-clade but forms a 

clearly separated evolutionary lineage indicating cryptic speciation, and was appointed 

H. cf. gingivalis (Chapter 6).  

Current study corroborates Köhler (2011), who proposed H. parvus and H. 

minutus as junior synonyms of H. similigaster because the morphometrical ranges of the 

latter encompass those of the first two. Further, with the exception of its smaller total 

body length, most morphometrics of H. persicus overlap with the morphometrical 

ranges of H. similigaster measured in the present study. Moreover, the minute mucro at 

the tail tip in H. persicus (Shokoohi et al. 2007), proposed as unique in the differential 

diagnosis, has also been found in H. cf. brevicauda, Halicephalobus sp. n., H. similigaster, 

H. cf. gingivalis and H. gingivalis in the present study. Therefore, at this point, there are 
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no reliable characteristics to further distinguish H. similigaster (including H. parvus and 

H. minutus) and H. persicus. 

Geraert et al. (1988) already recognized that H. intermedius and H. palmaris are 

two difficult-to-distinguish species. Moreover, since ratio VA/T and ratio ovary showed a 

high intraspecific morphometrical variability that was highly influenced by 

environmental conditions (Chapter 5), both morphometrics were proven not useful for 

Halicephalobus species identification. Consequently, H. gingivalis and H. intermedius, H. 

palmaris and H. limuli are no longer morphometrically distinguishable. H. limuli was 

always considered having a different biology since it was isolated from a marine 

environment. However, since specimens of H. limuli were also able to survive in tap 

water (Timm 1956) and given the wide environmental range of Halicephalobus spp., the 

origin of isolation should not be used to distinguish between the species. 

Despite the difficulty to characterise the majority of the species within 

Halicephalobus, two species can be easily characterised. H. mephisto is discernible from 

all other taxa by a straight ovary vs. a dorsally reflected ovary, whereas H. laticauda can 

be identified based on its thick tail with a sclerotized tip.  

Although a more thorough revision of the genus is imperative, we here propose a 

preliminary simplified key to the genus enabling identification of some species or species 

groups. Since there are few discriminating characters between the species, we feel an 

integrative approach based on multivariate analysis of morphometric data and 

molecular data is required for accurate species identification. 

 

Key to species 

1 ovary straight  . . . . . . .  .     H. mephisto 

ovary dorsally reflexed . . . . . . .            2 

2 tail with sclerotized tip . . . . .        H. laticauda 

tail without sclerotized tip . . . . . . .            3 

3 tail conical, c’ < 4 . . . . . .               H. brevicauda 

c’≥ 4 . . . . . . . . . .            4 

4 c’= 4 – 7                H. gingivalis (= H. deletrix), H. palmaris,  

           H. limuli, H. intermedius, Halicephalobus sp. n. 

c’ > 7  . . .      H. similigaster, H. parvus, H. minutus, H. persicus 
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DISTRIBUTION OF H. GINGIVALIS AND THE INCIDENCE OF HALICEPHALOBIASIS 

Because of its wide geographical distribution and its ability to tolerate a wide variety of 

environments, H. gingivalis can be classified as an eurytopic species. Current study 

demonstrated that populations of free-living H. gingivalis are more abundantly present 

than previously thought. Although never reported in Belgium at the beginning of the 

PhD, a sampling of manure heaps at 73 different equestrian facilities yielded five free-

living isolates and a more focused analysis at one facility revealed the occurrence of H. 

gingivalis in approximately 55% of the sampled horse stables (Chapter 2). A parallel 

study further demonstrated that H. gingivalis is numerously present in compost heaps 

(see figure 2.1 and Steel et al. 2010). However, since the sample sites were restricted to 

horse associated environments and compost heaps, the possible distribution of H. 

gingivalis outside these habitats was not investigated. As infections with this species 

have been reported, albeit rarely, in other Equinidae and in cattle, it would be 

interesting to map the presence of H. gingivalis populations in the vicinity of these 

animals as well.  

The present study also established phoresy as a possible transport mechanism 

for H. gingivalis (see Appendix), which could facilitate the dispersal of this species 

between distant habitats such as different compost heaps, manure heaps and dung 

patches. However, other mechanisms, which are summarized in figure 7.2, may also play 

a role in the distribution of this facultative parasite. Treading of contaminated dung 

patches could explain the presence of H. gingivalis in individual stables and in a paddock 

(isolate WB0702). Whereas in a fly rich environment such as in the vicinity of horses, 

phoresy might also be an important dispersal mechanism and may even play a role in 

equine infections, especially when these occur in the orbital region or through lesions in 

the skin. The retrieval of H. gingivalis from fresh dung suggested its presence in the 

horse’s intestine, which has been confirmed by two positive rectal faecal samples and 

consequently represents a possible dispersal mechanism through defecation. As seen in 

some plant-parasitic nematodes, intensive trade can facilitate the cosmopolitan 

distribution of local species (Jasmer et al. 2003). Equally, transportation of horses due to 

trading or participation in equestrian sports could facilitate the distribution H. gingivalis 

globally. 
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Figure 7.2. An overview of possible mechanisms in the dispersal of H. gingivalis. Infections can occur both 

through phoresy and by direct contact. Phoresy enables H. gingivalis to disperse between dung patches, 

compost heaps, manure heaps, stables and can play a role in infections. Treading of contaminated patches 

can distribute H. gingivalis in more locally arranged habitats. Ingestion of H. gingivalis could facilitate its 

dispersal through defecation. A mare with a H. gingivalis infection in the mammary glands can transmit the 

infection to her foal by lactation (e.g., Wilkins et al. 2001). 

 

Presuming that free-living populations of H. gingivalis are also abundantly 

present in or near equestrian facilities in other countries, the number of reports of 

halicephalobiasis is surprisingly low. However, equine infections could be overlooked 

because of the difficult diagnosis resulting in an underestimation of the incidence of 

halicephalobiasis (see General Introduction). For example, during a study on causes of 

equine encephalitis in Egypt, histological examination of the brain revealed the presence 

of H. gingivalis in 2 out of 28 animals, of which just one was previously diagnosed with 

halicephalobiasis (Ferris et al. 1972). Although the incidence of equine halicephalobiasis 
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is possibly underestimated, human infections have less likely been overlooked, since a 

post-mortem examination is generally performed in case of an inexplicable death.  

Most likely not all H. gingivalis infections are, or at least not immediately, deadly 

in horses. This is supported by the two horses carrying H. gingivalis in their intestine 

(Chapter 2) without showing clinical symptoms which could be related to 

halicephalobiasis. It is conceivable that this facultative parasite can reside in the 

intestine for longer periods of time, merely thriving in an alternative food rich 

environment. The discrepancy between the high abundance of H. gingivalis in horse rich 

environments and the low incidence of halicephalobiasis could also be explained by the 

fact that not all free-living forms are able to become parasitic. Both molecular lineages 

in the H. gingivalis-clade (Chapter 6) contain free-living isolates, i.e., from compost or 

manure/fresh dung, but only lineage I contains isolates obtained from inside horses, i.e., 

clinical or from rectal faecal sample. This supports the hypothesis that only one lineage 

represents equine host specificity. 

 

TREATMENT AND PRECAUTIONARY MEASURES 

Considering the high anthelmintic tolerance of H. gingivalis, it is unlikely that current in 

vivo drug treatments are sufficient in controlling infections of this species (Chapter 3). 

Therefore, surgical debulking of the granulomatous lesions in an early stage, before 

dissemination of nematodes to vital organs, can be forwarded as the best treatment. 

The subsequent admission of a high dosage of ivermectin, as was proposed by Pearce et 

al. (2001), seems redundant in the light of our results. The prognosis is unfavourable 

once the infection has spread throughout the body. At this moment no treatment can be 

proposed in case of a disseminated infection. However, given its suitability as a model 

organism (Chapter 3), the effects of other anthelmintic drugs on the life cycle of H. 

gingivalis should be tested in order to explore other drug treatment options.  

Present study revealed that cross contamination of H. gingivalis between 

different horses may be possible, because one of the horses carrying H. gingivalis in its 

intestine had been stabled with a lethally infected Connemara mare (Case Report in 

Chapter 2) while the other originated from the same French farm as the infected mare. 

Phylogenetic analysis further showed that all three isolates belonged to same molecular 
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lineage, i.e., lineage I (Chapter 6). Therefore, some precautionary measures can be 

forwarded to prevent the further distribution of H. gingivalis. In case halicephalobiasis 

has been suspected in a mare, she should no longer be allowed to carry or suckle foals 

to prevent in utero or transmammary transmission of H. gingivalis. In case H. gingivalis 

has been known to occur at an equestrian facility, it would be advisable to closely follow 

up on the healing of open wounds. Further, since the distribution of H. gingivalis 

through urine or dung is possible, horses with a (suspected) history of halicephalobiasis 

should be stabled separately and preferably transported to other locations as little as 

possible. Finally, stored semen of stud horses diagnosed with halicephalobiasis should 

be destroyed since the presence of H. gingivalis has been proven in the semen of 

infected stallions (e.g., Kinde et al. 2000) and several nematode species, including 

Panagrolaimids, are able to revive after cryopreservation for longer periods of time (e.g., 

Hwang 1970, Gill and Redwin 1995). 

 

IS H. GINGIVALIS EVOLVING TOWARDS ANIMAL PARASITISM? 

Parasitism is usually described as an association in which the parasitic partner harms but 

not kills its host, whereas parasites that kill their hosts are often called ‘poorly adapted’ 

(Blaxter 2003). Nematodes living in saprobiontic ephemeral habitats, as shown here for 

Halicephalobus gingivalis, have acquired several adaptations, e.g., enduring low oxygen 

levels, changing osmotic pressures, and higher temperatures, which are essential for 

survival and ultimately parasitism inside a vertebrate host (Sudhaus 2010). The 

biological mechanisms that subsequently enable parasites to thrive in their host 

environment, probably resulted from gradual adaptations to a changing environment 

after nematodes entered the host body (Sangster and Dobson 2002). The current study 

revealed several adaptations in H. gingivalis which could facilitate its facultative parasitic 

life style and the presence of two distinct phylogenetic lineages in the H. gingivalis-clade 

of which one includes all parasitic isolates.  

 

Morphological adaptations 

Pharyngeal glands, the stoma and gut, and the cuticular surface of parasitic nematodes 

are known to have adaptations related to host-parasite interactions (Jasmer et al. 2003). 
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Cuticular structures can facilitate attachment to host surfaces or function in the evasion 

of host defence systems and the suppression of immune responses (e.g., Meri et al. 

2002), whereas pharyngeal glands can secrete proteins that interact with the host (e.g., 

Harrop et al. 1995). None of these adaptations related to parasitism can be identified in 

H. gingivalis. However, a TEM study (Chapter 4) revealed thread-like and enlarged 

globular vesicles in the intestinal lumen of H. gingivalis, also found in the 

entomoparasitic species Hexatylus viviparus (Shepherd and Clark 1976) and in the 

vertebrate parasite Metastrongylus sp. (Jenkins and Erasmus, 1969). Although no 

function in relation towards an adaptation to parasitism is known, these aberrant types 

of secretion were to our knowledge only observed in parasitic nematode species and the 

apical surface of the parasite intestine is an interface for host-parasite interactions 

(Jasmer et al. 2003). Deviations from usual finger-like intestinal microvilli have arisen 

independently several times within the phylum, their occurrence always being in 

parasitic or in parasitism-related nematodes such as Ascaris suum (Kessel et al. 1961) 

and H. viviparus (Shepherd and Clark 1976). In H. gingivalis, both dichotomous and 

trichotomous branched intestinal microvilli were observed adjacent to regular cylindrical 

microvilli representing an increase of the surface area of the intestinal lumen needed to 

optimise the intake of nutrients when in the vertebrate parasitic phase. 

 

Biological adaptations 

H. gingivalis has a stunning temperature range of 4°C – 40°C and can be cultured in a 

wide variety of conditions (Discussion Chapter 3), including in human blood plasma 

(unpublished results). This temperature range also enables the species to cope with 

temperature differences between its free-living and parasitic stage. H. gingivalis has a 

predilection for warm environments as shown by its optimal culture temperature of 

30°C and its natural environment, which includes compost (Steel et al. 2010) and 

manure heaps (current study). When cultured at 38°C, which approximates the body 

temperature of horses and other mammals, its fecundity is lower compared to 30°C 

(table 7.2); however, the life cycle is faster (table 7.2) enabling rapid proliferation after 

entering the hosts body. Nematodes inhabiting decaying organic matter are usually able 

to withstand oxygen deprivation and can accommodate changing osmotic pressure in 

their environment, which are also adaptations necessary for surviving inside a host. H. 
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mephisto has been described from an oxygen poor environment (Borgonie et al. 2011) 

and H. similigaster has been found in decaying organic matter (Köhler 2011), thereby 

suggesting that species of the genus have these adaptations.  

 

Table 7.2. Comparison of life cycle of H. gingivalis isolate WB0801 when 

incubated at different temperatures. Values represent mean (n = 8) ± 

standard deviation. 

 30°C 38°C 
hatching (hrs) 13 ± 1 11 ± 1 

oviposition (hrs) 47 ± 1 38 ± 1 

fecundity 337 ± 116 147 ± 70,4 

reproductive faze (days) 12,7 ± 5,2 7,5 ± 1,4 

postreproductive faze (days) 1,2 ± 0,2 1,3 ± 0,5 

 

 

As described in Chapter 3, a study on both free-living and facultative parasitic 

isolates of H. gingivalis revealed an unseen high tolerance for both thiabendazole and 

ivermectin and showed that it is very unlikely that in vivo anthelmintic treatments are 

effective for infections with this facultative parasite. Further, the results showed a 

remarkable increase of tolerance from fully free-living towards horse associated isolates. 

However, these biological differences are not unequivocally related to their evolutionary 

history. The studied isolates with a range of anthelminthic tolerance belong to only one 

molecular lineage, i.e., H. gingivalis lineage I. 

Different animal parasitic nematodes live in symbiosis with intracellular bacteria, 

which have a possitive effect on their biology, and antibiotic treatment can cause 

inhibition of development, blocked embryogenesis and fertility, and reduced viability 

(Hoerauf et al. 2001; Foster et al. 2005). To investigate if intracellular bacteria facilitated 

the high anthelmintic tolerance of H. gingivalis, the MALDT-test described in Chapter 3 

was repeated with different concentrations of IVM or TBZ in combination with 

tetracycline at different concentrations. This resulted in no visible increase in the 

susceptibility of the Halicephalobus isolates, thus rejecting the presence of intracellular 

bacteria as a possible explanation of the extraordinary anthelmintic drug tolerance of H. 

gingivalis. 
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Parthenogenesis 

Parthenogenesis is very common among parasites and can be obligatory or cyclical (Price 

1980). It allows an increased reproductive capacity necessary to compensate the 

difficulty in finding suitable hosts (Sudhaus 2010). Its parthenogenetic reproduction 

enables H. gingivalis to rapidly invade and colonize the hosts’ tissue, but also results in a 

high mortality rate as it passes multiple generations inside its host, thereby suggesting 

that H. gingivalis is poorly adapted to a parasitic life style. 

 

Phylogenetic relationships 

A multiple gene phylogenetic analysis revealed the presence of two distinct evolutionary 

lineages within the H. gingivalis-clade. Only one of these lineages (i.e., lineage I) 

contains isolates from inside horses. Although, the presence of free-living isolates, i.e., a 

compost isolate and isolates from fresh dung suggests that this clade is not exclusively 

parasitic, it is not unlikely that horse associated H. gingivalis strains can reside in 

compost heaps as well due to their predilection for warm environments.  

Endoparasitic nematodes can be divided in gut-dwelling and tissue-dwelling 

parasites (Blaxter 2003). Gut-dwelling parasites can be seen as bacteriovores exploiting a 

rich food source in a warm environment, whereas tissue-dwelling parasites require 

further adaptations as they actively invade the hosts’ body and take up reproductive 

residence in organs and tissue (Blaxter 2003). Within Halicephalobus lineage I, the 

clinical isolates (SAN100 and CaseReportBelgium) are molecularly distinct from free-

living isolates and isolates obtained from rectal dung samples (WB1101 and WB1102) 

based on their D2D3 differences, i.e., a 5.8% sequence difference between the clinical 

isolates and free-living or rectal isolates, as opposed to an approximately 1% sequence 

difference between all free-living and rectal isolates (results not shown). This 

phylogenetic support of both clinical isolates may suggest the presence of a distinct 

subclade within lineage I which is able to invade the hosts’ tissue. 
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CONCLUSION 

The present study based on a multidisciplinary approach demonstrates that the 

facultative parasitic nematode H. gingivalis has several characteristics that enable it to 

opportunistically invade and colonize vertebrate hosts, i.e., a remarkable temperature 

range and parthenogenetic reproduction, and adaptations that are function of a 

parasitic life style, i.e., ultrastructural adaptations at the intestinal level and an unseen 

tolerance for commonly used anthelmintic drugs. Moreover, a phylogeny based on 

multiple genes revealed two distinct evolutionary lineages within H. gingivalis of which 

only one includes isolates obtained from inside a host and thus appears to be evolving 

towards vertebrate specific parasitism. 

 

SUGGESTIONS FOR FUTURE RESEARCH 

1. In retrospect, there are some indications for biological differences between the 

different isolates. For example, H. cf. gingivalis (WB0701) cultures appeared more 

difficult to optimize for experimental use by incubating at 30°C. This might be caused by 

a different optimal temperature for its life cycle in comparison to the optimal 

temperature of H. gingivalis isolates. Also, cultures of the termite isolates (RGD838 and 

892) appeared to thrive better when fungi were present on the culture plates. A more 

thorough investigation of isolates belonging to different evolutionary lineages might 

reveal biological differences, such as differences in optimal temperature, generation 

time, and feeding-type. 

2. Using laboratory animals such as mice to test different routes of infection for different 

isolates (intestine dwelling, tissue dwelling and free-living of both lineages) under 

controlled conditions and their subsequent ability for parasitism would determine if 

free-living and rectal dung isolates are also able to persist inside tissue of a vertebrate 

host or if the clinical isolates are unique in their ability to thrive inside host tissue. 

3. The present study revealed a high number of polymorphisms in the SSU rDNA gene. 

To fully understand the mechanisms underlying these polymorphisms, it is imperative to 

know the chromosomal status of H. gingivalis.  
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4. Since Diploscapter coronatus, which is also known as a facultative parasite (for an 

introduction to the species see Chapter 1), has often been found in the samples together 

with H. gingivalis throughout the present study, several isolates of D. coronatus from 

various origins (e.g., from manure, fresh dung, rectal dung samples, rotten wood, and a 

water well) were brought into culture. As opposed to H. gingivalis, D. coronatus has to 

date not been known to invade the tissue of its host. To investigate the biology of D. 

coronatus a comparable study could be performed to determine its general biology.  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX 

PHORESY IN DIFFERENT ISOLATES OF HALICEPHALOBUS GINGIVALIS 

 

 

 

 

 

 

 

 

 

 

Results concerning compost isolate of H. gingivalis partially published in: Steel H., Verdoodt F., 

Čerevková A., Couvreur M., Fonderie P., Moens T. and Bert W. (2013). Survival and colonization 

of nematodes in a compost process. Invertebrate Biology 132, 108-119. 
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INTRODUCTION 

The possible transference of H. gingivalis by flies has on occasion been forwarded as a 

possible infection route (refs). Although phoresy is known for other species of the genus, 

i.e., H. similigaster associated with ants, beetles and flies (Köhler 2011), H. limuli 

associated with chelicerates (Timm 1956), the possible role of phoresy in the distribution 

(both geographically and in case of infection) of H. gingivalis has never been 

investigated. This appendix reports on the phoretic ability of two isolates (from compost 

and horse dung) of H. gingivalis, which was tested under laboratory conditions with the 

blue bottle fly as possible vector. 

 

MATERIAL AND METHODS 

Calliphora vomitoria (blue bottle fly) was used as a possible vector to investigate the 

phoretic ability of H. gingivalis. The flies were obtained from mature maggots, which 

pupated into imagos after a few days. Two isolates of H. gingivalis from different 

habitats were included in the experiment, i.e., compost isolate WB0707 and isolate 

WB0801 from fresh horse dung.  

 

 

 

 

Figure A1. Experimental design for testing possible phoresy in Halicephalobus gingivalis by 

the vector Calliphora vomitoria. D=donor plate maintaining a culture of nematodes, 

R=nematode-free receptor plate. Dimensions of container are indicated in control 1. 

 



P H O R E S Y  I N  H .  G I N G I V A L I S  | 163  

 

 
 

Experiments were carried out simultaneously in several identical plastic 

containers, which were covered with an insect net and placed in a closed culture room 

with constant environmental conditions (22°C and 60% humidity). Each treatment 

contained 20 adult flies, a donor plate maintaining a monoxenic culture of nematodes, 

and a nematode-free receptor plate (fig. A1). Both donor and receptor plate contained 

2% bacteriological agar enriched with cholesterol at a final concentration of 1 µg ml-1 

and E. coli OP50 as a food source. The receptor plates were checked and replaced by a 

new plate every 48 hours for six days. Since at 20°C H. gingivalis has a generation time of 

approximately 8 days (results not shown), this allowed us to disentangle the actual life 

stage that was transferred by the vector, and avoided reproduction obscuring the 

results. Two controls were included in the experiment. The first served to verify the 

absence of nematodes associated with the flies prior to their introduction in the 

experiment, and contained two nematode-free receptor plates and 20 flies (fig. A1, 

control 1). A second control included a donor plate and a receptor plate without flies to 

test for non-fly-dependent transfer of nematodes (e.g., through any circulation of air 

inside the containers) (fig. A1, control 2). Since the aim of the experiment was merely to 

investigate to what extent different isolates of H. gingivalis are capable of phoresy and, 

if so, which life stages would be transferred by the vector, the experiment was only once 

replicated in time. 

 

RESULTS 

All donor plates contained a thriving culture with different life stages at a mean density 

of approximately 300 nematodes cm-2. Figure A2 represents the mean number of 

nematodes of both isolates of H. gingivalis, i.e., WB0708 from compost and WB0801 

from horse dung, that were transferred from the donor plate to the receptor plate, at 

each consecutive observation time. All controls remained empty for the entire period of 

the experiment. 

Several nematodes of both isolates had already been transferred to the receptor 

plate after 48h of incubation. Similar numbers of nematodes were found on the receptor 
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plate after 96h and 144h of incubation for both isolates, indicating that the capacity to 

use a fly as a vector was similar for both isolates.  

Mostly juvenile nematodes of different stages were transferred by the flies. Only 

a limited number of adults and very few eggs were found on the receptor plate. The 

eggs and immobile dauer8 stages were found only in the fly faeces, indicating the 

possibility that they were sucked up by the flies and subsequently excreted undigested, 

therefore suggesting that at least part of the phoresy was internal. No nictation (i.e., 

waving behaviour of nematodes) has been observed in any of the donor plates at any 

given observation moment during the treatment. 

 

Figure A2. Mean (of two replicates) number of nematodes transferred by Calliphora 

vomitoria after 48 h, 96 h and 144 h incubation for two isolates of H. gingivalis of different 

origin, i.e., compost isolate WB0707 and horse dung isolate WB0801. Error bars represent 

standard deviation. 

                                                           
8
 The dauer stage is the alternative L3 stage in which the larvae go into a kind of stasis enabling them to 

survive harsh conditions 
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DISCUSSION 

Due to their small size and inability to move long distances, terrestrial nematodes 

inhabiting ephemeral habitats are challenged to reach new habitats when these are no 

longer suitable due to crowding or habitat deterioration (e.g., Kruitbos et al. 2009). 

Therefore, larger and more mobile organisms, in most cases arthropods and other 

invertebrates, which share the same habitat or food preference, are used as vehicles for 

dispersal or migration (e.g., Timper and Davies 2004). Transport of the nematodes can 

occur internally or externally, passive or active, can be facultative or obligatory (Timper 

and Davies 2004), and very often are highly species specific (e.g., Krishnan et al. 2010). 

Phoresy is often considered a stepping stone to insect parasitism, such that parasites 

evolve from non-parasitic insect associates (e.g., Anderson 1984; Sudhaus 2010). 

Additionally, there appears to be an association between invertebrate and vertebrate 

parasitism since invertebrate-pathogenic and –parasitic clades are all placed sister to 

vertebrate-parasitic clades (Dorris et al. 1999). Phoresy is widespread among 

bacteriovorous nematodes which exploit ephemeral habitats such as dung (Kiontke 

1996; Kühne 1996). The formation of dauer juveniles has long been thought a 

prerequisite for phoresy (e.g., Timper and Davies 2004). Another adaptation towards 

phoresy displayed by dauer juveniles of some parasitic and phoretic nematodes is 

nictation, i.e., waving behaviour in which they ‘stand’ on their tails and wave their 

anterior ends above the substrate in an attempt to make contact with a potential carrier 

(e.g., Timper and Davies 2004).  

Chapter 6 revealed that two isolates of H. gingivalis originating from different 

habitats, i.e., from compost (WB0707) and from horse dung (WB0801), showed an 

equally pronounced capacity for phoresy under experimental conditions using Calliphora 

vomitoria (blue bottle fly) as a vector. This study also revealed that phoresy is not 

restricted to dauer juveniles as both juvenile and adult stages were transferred by the 

flies, hereby corroborating a study on other compost inhabiting nematodes (Steel et al. 

2013). And, comparable to Kruitbos et al. (2009), the absence of nictation in H. gingivalis 

juveniles demonstrated that this waving behaviour is not a prerequisite for phoresy. The 

most remarkable observation in H. gingivalis was that transferred dauer juveniles and 

eggs were found in the fly faeces, suggesting that flies sucked up these stages and 
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passed them without digestion, thus representing some form of passive, internal 

transport. Phylogenetic analyses further revealed that the used isolates were each 

placed in one of the distinct molecular H. gingivalis lineages, thereby suggesting that 

phoresy is a general trait for the entire H. gingivalis-clade. Other Halicephalobus species 

are also known from their association with insects: H. limuli has originally been 

described from an association with the chelicerate Limulus (Timm 1956), H. similigaster 

has been found in a phoretic association with ants, beetles and flies (Köhler 2012), and 

two other Halicephalobus isolates (RGD892 and RGD838) used in the current study 

originate from an association with termites (Giblin-Davis, personal communication; also 

see Kanzaki et al. 2012). However, information on the phoretic abilities of the other 

isolates is missing, including H. mephisto which is placed sister to all other 

Halicephalobus isolates.  
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