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Nederlandse samenvatting
–Summary in Dutch–

Mooi aan muziek is haar universeel karakter maar toch blijft het moeilijk
om muzikale belevenissen op een objective manier te beschrijven. Meestal
eindigt men ergens met subjectieve beschrijvingen zoals blijkt uit het veel-
vuldig gebruik van metaforen om muzikale ervaringen te beschrijven (vb.
muziek is licht, muziek is zonnig, . . . ).

De theorie van muzikale lijfelijkheid van Prof. Marc Leman [1] biedt
hiervoor echter een praktische oplossing. Het begint met de vaststelling dat
mensen wanneer ze muziek horen ook de neiging hebben om te bewegen met
deze muziek. Het idee is nu om deze bewegingen te bestuderen en aan de
hand van deze bevindingen een indirect maar objectief oordeel te kunnen
vellen over hoe mensen muziek ervaren.

Hoewel deze benadering objectief is, is ze daarom niet altijd eenvoudig.
Een groot probleem bij het bestuderen van deze muzikale bewegingen is
namelijk de hoge dimensionaliteit. Die hoge dimensionaliteit ontstaat uit
het opmeten van lichaamsdelen (zoals handen, benen, hoofd, romp, ...) in
drie dimensies voor verschillende subjecten maar ook in het meten van ge-
gevens die indirect met beweging te maken hebben en dan denken we in
eerste instantie aan biometrische gegevens (hartslag, ademvolume, tot zelfs
het meten van bloedstromen in de hersenen met behulp van fMRI). Al deze
metingen leveren een gigantische hoeveelheid data op en we kunnen hier
terecht verwijzen naar de tegenwoordig zeer populaire term big data. De
uitdagingen van big data liggen niet alleen bij het verzamelen van gegevens
of de opslag van gegevens maar vooral ook bij de analyses en methodes van
visualizatie.

Voor methodes van analyse en visualizatie doen we hierbij vooral beroep
op ideeën uit de wereld van het Machinaal Leren (Machine Learning). Daar
wordt er onderscheid gemaakt tussen drie types van methodes:

1. Gesuperviseerd Leren (Supervised Learning) : Hierbij wensen we sco-
res toe te kennen aan een object en dit gebaseerd op een aantal meet-
waarden. Deze scores kunnen nominale waarden zijn (zoals bijvoor-
beeld ”type1”, ”type2”, ...) en dan spreken we over classificatie. Deze
scores kunnen echter ook continue grootheden zijn (zoals bijvoorbeeld
lengte) en dan spreken we over regressie. Fundamenteel is dat we een
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model bouwen dat deze scores kan voorspellen op basis van metin-
gen. Dit model wordt gebouwd aan de hand van trainingsvoorbeelden
waar we een set hebben van metingen en een set van corresponderende
scores. Methodes van Gesuperviseerd Leren worden voornamelijk ge-
bruikt in hoofdstuk 2 (Towards E-Motion Based Music Retrieval) en
hoofdstuk 4 (Beating-Time Gestures: Imitation Learning for Huma-
noid Robots).

2. Ongesuperviseerd Leren (Unsupervised Learning) : Meestal zijn er
geen kant-en klare trainingsvoorbeelden met metingen én scores ter
beschikking of is het opstellen daarvan een titanenwerk. In deze om-
standigheden biedt Unsupervised Learning een alternatief. Unsuper-
vised Learning is een set van technieken met als doel het brengen
van structuur in data. Dit kan zijn door de data eenvoudiger voor
te stellen, door bijvoorbeeld naar een lagere dimensie over te schake-
len. Denk bijvoorbeeld aan twee dimensionale wegenkaarten die een
reductie zijn van wat er in dree dimensies gebeurt op de wereldbol.
Een andere manier van structuur aanbrengen, is clustering, het groe-
peren van data in groepen van gelijken. Deze methodes vormen de
basis voor de analyses in hoofdstuk 3 (Expressive Body Movement
Responses to Music are Coherent, Consistent, and Low Dimensional)
en in hoofdstuk 5 (The Surprising Character of Music. A search for
sparsity in music evoked body movements).

3. Ondersteund Leren (Reinforcement Learning) : Hierbij gaat een robot
leren hoe hij, vertrekkende vanuit een aantal waarnemingen, te werk
moet gaan om een doel (maximale winst) te bereiken door het uit-
voeren van een aantal acties in een bepaalde volgorde. Deze tak van
Machinaal Leren is vooral belangrijk voor de robotica wat niet direct
tot het onderzoeksgebied van deze thesis behoort en daarom wordt er
in deze thesis van ondersteund leren geen gebruik gemaakt. De ideeën
zouden echter wel nuttig kunnen zijn voor muzikale opvoedingsspel-
len [2].

Om te kunnen werken met Machinaal Leren hebben we gegevens (data)
nodig. Helaas zijn de gegevens niet altijd direct beschikbaar in de vorm
die we wensen. Voor muziek is bijvoorbeeld periodiciteit heel belangrijk,
maar periodiciteit is niet iets dat we zomaar kunnen meten. Het wordt
meestal afgeleid uit andere (ruwe) gegevens, bijvoorbeeld met behulp van
een Fourier analyse. Het proces van omzetten van ruwe gegevens naar groot-
heden die rechtstreeks bruikbaar zijn voor de gewenste analyse noemen we
voorverwerking. Voorverwerking (preprocessing) van de gegevens speelt een
belangrijke rol in deze thesis.

Met voorverwerking bedoelen we dus meer dan enkel het filteren van
ruis uit de signalen, of het wegwerken van uitschieters, het betekent ook de
gegevens omzetten in andere gegevens die dan weer nuttig zijn voor verdere
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analyses. Zo waren voor ons werk onder andere de grootheden volume,
dimensionaliteit, nabijheid, en richting van beweging heel belangrijk, ook
al omdat ze verband houden met de emotionele intentie van muziek. Deze
grootheden werden afgeleid uit de plaatscoordinaten.

De vorige paragrafen benadrukten vooral de individuele belevenis van
muziek, maar muziek is ook een sociaal gebeuren. Als we enkel naar de
bewegende massa’s kijken op popconcerten begrijpen we dat ook dit aspect
zeer belangrijk is. Ook hier levert ons onderzoek een bijdrage. We hebben
namelijk de begrippen coherentie en consistentie gëıntroduceerd om deze
fenomenen te beschrijven. Met coherentie bedoelen we dat een groep men-
sen gelijkmatig beweegt in één aaneensluitend tijdsinterval. Consistentie
definiëren we als gelijkmatigheid over tijdsintervallen die uit elkaar liggen.
Deze begrippen zijn dan weer sterk verankerd met expressiviteit. Expressi-
viteit is eigenlijk een verhaal van min of meer en kunnen we daardoor enkel
meten door te vergelijken met een referentie, bijvoorbeeld het gemiddelde
van een groep. Het onderzoek naar deze begrippen staat in hoofdstuk 3 (Ex-
pressive Body Movement Responses to Music are Coherent, Consistent, and
Low Dimensional).

Alle methodes en technieken hebben één ding gemeen en dat is dat het
gaat over het nemen van beslissingen gebaseerd op het maken van verge-
lijkingen. Beslissingen: wat is het beste model, de beste voorspelling, ...?
en vergelijkingen: Hoe definiëren we best? Belangrijk hierbij, zijn definities
voor gelijkheid en afstanden. Er bestaat een grote hoeveelheid aan definities
en in onze thesis gebruiken we slechts een beperkte set van probabilistische
en niet-probabilistische definities. Hier is een overzicht :

• niet-probabilistisch:

– tussen twee verhoudingen (mixtures) : cosinus afstand
– tussen twee data punten : euclidische afstand

• probabilistisch:

– tussen twee data samples : verschil in probabiliteit volgens een
probabilistisch model

– tussen twee probabiliteitsdistributies : f-divergenties (waaronder
Kullback-Leibler divergentie)

Ten slotte leggen we nog kort uit hoe deze thesis is gestructureerd : Hoofd-
stukken 2, 3, 4 and 5 zijn uitgebreide versies van artikels die opgestuurd
zijn naar internationale collegiaal getoetste tijdschriften. Hoofdstuk 6 is
dan weer een beetje apart omdat we daar vooruitkijken naar de toekomst
en dit in het licht van de recente ontwikkelingen in de wereld van Machinaal
Leren. We bespreken die ontwikkelingen in functie van hun impact naar
onderzoek in het muzikale vakgebied.

Hierna volgt nog een bondige samenvatting van de inhoud van hoofd-
stukken 2, 3, 4 and 5 :
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• Hoofdstuk 2 Towards E-Motion Based Music Retrieval.
Dit hoofdstuk schetst een nieuw mechanisme om luistermuziek te se-
lecteren. Het idee bestaat er uit om met armbewegingen de muziek te
kiezen. Dit is nu praktisch haalbaar omdat nieuwe mobiele toestellen
(zoals smartphones en MP3 spelers) sensoren bevatten die bewegingen
kunnen detecteren. In onze set-up leiden we emotionaliteit af uit de
armbewegingen en die emotionaliteit gebruiken we dan om een selec-
tielijst van muziek samen te stellen. Het gebruik van emotionaliteit
als tussenliggende stap laat grotere flexibiliteit toe, te vergelijken met
het gebruik van een marshalling panel.

• Hoofdstuk 3 Expressive Body Movement Responses to Music are
Coherent, Consistent, and Low Dimensional.
De gevonden resultaten tonen aan dat met een laag-dimensionaal mo-
del de expressiviteit van een groep dansers kan beschreven worden.
Het model is laag dimensionaal omwille van een grote coherentie en
consistentie tussen de dansers. Een directe toepassing van dit model
ligt bijvoorbeeld in het selecteren van een groep dansers uit een grote
groep dansers met als criterium het hebben van dezelfde expressiviteit.

• Hoofdstuk 4 Beating-Time Gestures: Imitation Learning for Huma-
noid Robots.
Dit hoofdstuk beschrijft hoe we uit een aantal dirigeerbewegingen
(weliswaar beperkt tot de maat slaan op een metronoom), eerst een
veralgemeende beweging kunnen destilleren, die dan verder kan ge-
bruikt worden om de maat aan te geven op willekeurig gekozen mu-
ziek.

• Hoofdstuk 5 The Surprising Character of Music. A search for sparsity
in music evoked body movements.
Dit hoofdstuk bevat toepassingen van het type Ongesuperviseerd Le-
ren (Unsupervised learning). Door het gebruik van clusteringstech-
nieken op zowel positionele data als op richtingsdata, kunnen we de
resultaten van een dansuitvoering niet alleen beter beschrijven maar
ook beter begrijpen in functie van de muziek. Dit wordt gevisualizeerd
in een directogram dat kan worden gebruikt als een beschrijving van
een muziekstuk. De gebruikte clusteringstechnieken kunnen voorts
ook helpen om weinig voorkomende bewegingen te ontdekken, als mo-
gelijke indicatoren voor verrassingselementen in de muziek.
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English Summary

Across the globe, many people, being composers, performers, dancers or
listeners, experience and enjoy music on a daily basis. Still, it is challenging
to describe musical experiences in an objective way. Commonly, descriptions
make use of metaphors: music is aggressive, music is sunny, . . . but these
descriptions are subjective and are no good starting point for a systematic
research of music.

The theory of musical embodiment from Leman [1] offers not only a
practical but also an objective solution to this problem. A first thing he
notices is that when listening to music people tend to move along with the
music. His idea is then to study movement in order to understand how
people experience music. This leaves the subjective path of appreciation
and judgment and enters the world of exact science using measured data.
This solution is only possible thanks to recent advances in sensor technology
and increasing computing power.

Although the principle is very simple, the realization is not straightfor-
ward. One of the challenges of this method is the dimensionality of the
data. The high dimensionality of the data finds root in measurements for
several subjects, for several body parts (like hands, legs , heads, trunks,
. . . ) and also in the measurement of additional information indirectly re-
lated to movement. We think here for example about biometric data (heart
rate, inhalation and expiration volume, and cerebral blood flow (measured
by techniques like fMRI). All these measurements result in huge datasets,
hence using the hyped term big data might be appropriate. The challenges
for big data lay not only in collection and storage but especially in the
analysis and of visualization methods.

For handling analysis and visualization, inspiration can be found in the
realm of Machine Learning. Machine Learning groups methods in roughly
three categories:

1. Supervised Learning: the techniques that resort under supervised
learning are mainly Classification and Regression. These are tech-
niques that identify data models starting from a training data base
(with labeled data). The main purpose is to predict future values.
These techniques are used in chapter 2 (Towards E-Motion Based
Music Retrieval) and chapter 4 (Beating-Time Gestures: Imitation
Learning for Humanoid Robots).
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2. Unsupervised Learning: For many tasks there are no ready-made
training data bases available or setting-up such a training database
would require a huge effort. In these circumstances unsupervised
learning offers an alternative. The main purpose of unsupervised
learning is to discover structure in the data. This can be done by
dimension reduction and so reducing the complexity of the data set.
Think for example about road maps that are a two dimensional re-
duction of the three dimensional reality of the globe. Another way
of adopting structure, is clustering, grouping of data in groups of re-
semblance. These methods are at the base of chapter 3 (Expressive
Body Movement Responses to Music are Coherent, Consistent, and
Low Dimensional) and chapter 5 (The Surprising Character of Music.
A search for sparsity in music evoked body movements).

3. Reinforcement Learning: this part of Machine Learning was not em-
ployed in this thesis. It supports mainly applications in the world of
robotics. Nevertheless we would like to mention that ideas from rein-
forcement learning could be beneficial to musical education games [2].

Machine Learning techniques require data and that is not as straight-
forward as one might wish. Readily available data (like positional data) is
important but it does not stop there. For music, periodicity is very im-
portant but periodicity is not something we can just measure. Most of the
time it is deducted from other data with the help of a Fourier analysis. This
and other forms of preprocessing of the data play an important role in this
thesis.

With preprocessing we mean more than just the filtering or outlier han-
dling: data conversion to other (calculated) attributes like volume, dimen-
sionality, nearness and direction of movement is as important. Most of these
new attributes are of interest because of their direct link with the emotional
content of music.

Previous paragraphs stressed the role of the individual experience of
music, but music is not only an individual experience it is also a social
happening. Just think about the thousands of people watching a live pop
concert. Our research advances the state of the art on this topic as well..
We introduce the concepts of coherence and consistency to describe these
phenomena. With coherence we mean a group of people moving in a similar
way on music. With consistency we refer to similar movement in distant
time intervals. These concepts have a strong relationship with expressive-
ness. Expressiveness is something that can not be measured in absolute
terms, it is rather a story of less and more by comparing to a reference. An
obvious choice for reference is the group average as described in our research
in chapter 3 (Expressive Body Movement Responses to Music are Coherent,
Consistent, and Low Dimensional).

All the techniques and methods mentioned so far have one thing in com-
mon: It is about decisions and comparisons. It is about decisions: “What
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is the best model, the best prediction, . . . ?” and about comparisons: “How
do we quantify best?” Crucial hereby, are definitions for equality and/or
distances. The reader should be informed that many, many definitions ex-
ist. Our thesis uses just a small subset of the entire set of probabilistic and
non-probabilistic definitions for equality and here is an overview of what we
used:

• non-probabilistic:

– between two mixtures : cosine distance
– between two data points : euclidean norm

• probabilistic models:

– between two data samples : the difference in probability accord-
ing to a probabilistic model

– between two probability distributions : f-divergences
(i.e. Kullback-Leibler divergence)

To conclude this section, we summarize how this thesis is structured.
Chapters 2, 3, 4 and 5 are extended versions of articles submitted to in-
ternational peer-reviewed magazines. Chapter 6 is a little bit special as it
gives a glimpse of the future based upon recent developments in the world
of Machine Learning.

Hereafter follows a short summary of what can be found in chapters 2,
3, 4 and 5:

• Chapter 2 Towards E-Motion Based Music Retrieval.
In this chapter we explain a new mechanism to retrieve music from a
music library. The idea is to use arm movement to produce a playlist
of songs. Tracking arm movement is nowadays feasible as a lot of
mobile devices have movement sensors built in. The link between arm
movement and music is done via an intermediate step using the valence
and arousal plane. This intermediate step acts like a marshalling panel
and allows flexibility. Once movement is translated in terms of valence
and arousal, it is compared with an annotated (in terms of valence and
arousal) music library.

• Chapter 3 Expressive Body Movement Responses to Music are Co-
herent, Consistent, and Low Dimensional.
The results here allow to describe the expressiveness of spontaneous
dance movement in a low dimensional model. The low dimensional-
ity is due to the large coherence and consistency observed amongst
dancers. A direct application is the selection of a subgroup of dancers
having the same expressiveness out of a large group of dancers.
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• Chapter 4 Beating-Time Gestures: Imitation Learning for Humanoid
Robots.
In this chapter we deduct from a set of conducting gestures (on a
metronome) a generalized movement that can be diversified to a series
of conducting gestures suitable for any type of music.

• Chapter 5 The Surprising Character of Music. A search for sparsity
in music evoked body movements.
This chapter is the prototype of unsupervised learning. Clustering
techniques on positional and directional data give us a better under-
standing of a dance performance. This is formalized in a directogram
that can be used as a descriptor for a musical excerpt. The clustering
techniques help to identify sparse movement that can be understood
as an indicator for the surprising character of music.
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Without A Theory The Facts Are
Silent.
Friederich A. von Hayek, 1974

1
Introduction

The content of this thesis is perfectly summarized by its title, namely “The
analysis of bodily gestures in response to music”. Measurement and analysis
of music evoked body movement is indeed the central theme. This might
not be considered as a breakthrough but it gains importance if we place it in
a theoretical perspective. The theoretical framework used, is referred to in
the subtitle of this thesis, namely “Methods for embodied music cognition
based on machine learning”. So, prior to explaining experiments and results,
let us start with a brief introduction on cognition.

Heylighen [1] defines cognitive science as the modern science of the mind:
“Cognition derives from the Latin verb cognoscere, which means get to
know. This means that cognition focuses on knowledge, albeit not as a
static substance or thing, but as a process. More generally, when we speak
about cognition we are focusing on the mind as an information processor,
i.e. a system that acquires, uses and transforms information.”

The traditional, sometimes called the naive, view of cognition is best
understood by the theory of Descartes. Descartes understands cognition by
proposing two independent realms, namely mind and matter. While matter
follows the laws of mechanics, mind has a logic of its own that cannot be
reduced to mechanical principles. This philosophy is known as dualism.

A recent approach to cognition is called the embodied cognition. The
main argument is that cognitive systems need to have the equivalent of a
body through which they can interact with their environment [2, 3]. Enac-
tive cognitive science [4] is a closely related concept: thought or knowledge
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only becomes meaningful when it is implemented, “acted out”, or enacted
via interaction with the environment. Even perception can be seen as per-
ceptually guided action: We don’t perceive an apple but an apple-to-eat.
This is what is called by Gibson an affordance [5].

For readers who want more information about cognitive science in ge-
neral we refer to the vast amount of books on this topic. For detailed
information on music cognition we refer to the work of Leman [6]. Still,
because of its importance for this thesis, an overview of embodied music
cognition is given in the next section (Section 1.1).

Figure 1.1 on the next page explains how this Introduction Chapter is
structured. The Chapter starts with an overview of embodied music cog-
nition (Section 1.1), followed by an explanation of some of its concepts,
namely Gestural Descriptors, Key Points/Goal Points, and gestures in So-
cial Context (Section 1.2). Prior to analyzing these concepts we have to face
a number of data pre-processing challenges (Section 1.3). The analyses are
eventually realized by using a variety of Machine Learning methods which
are introduced in general in Section 1.4 and which are subsequently applied
in Section 1.5. The final section 1.6 discusses the results of the experiments.

1.1 Fundamentals of Embodied Music Cogni-
tion

The power of music as non-verbal expressive communication system is widely
recognized [6–9]. Yet, the mechanisms that support the encoding and de-
coding of musical expression are still poorly understood.

In recent work, it has been suggested that gestures play a central role
in the encoding and decoding of musical expression [6, 10]. Gestures are
believed to facilitate the non-verbal expression and communication of emo-
tions, feelings, ideas and intentions [11], both in music playing and music
listening. When playing music, the expressive patterns of a gesture are en-
coded into sound, typically through the use of a musical instrument. The
structural features inherent to a musical composition (e.g., melodic lines,
rhythm, etc.) combined with the expressive performance of a musician (e.g.,
timing, dynamics, etc.) create, what has been called “moving sonic forms”
[12] that reflect expressive gestural characteristics. When listening to mu-
sic, people can decode these expressive gestural characteristics through the
moving sonic forms back into actual movement patterns [10, 13, 14]. By
internal simulation and/or actual performance, these movement patterns
can be further connected to other modes with which actions are typically
associated, like emotions, situations, images. Correspondingly, music is ex-
perienced and understood as intentionally, expressively, and semantically
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Figure 1.1: Overview
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Figure 1.2: Brain in a vat

meaningful.
In this thesis, we focus exclusively on the decoding of musical expression,

leaving aside the encoding aspect. The goal of this thesis is to provide a way
of describing and modeling the way in which listeners decode this expression.
In particular, we are interested in (a) the description of the fine-temporal
structure of the decoding of musical expression through gestures and in
(b) extending the study of individual embodied music cognition to social
embodied music cognition, which implies a focus on what is common and
different among subjects.

The background of our approach is contained in the viewpoint that hu-
man interaction with music is embodied [3] [4]. We see the human mind as
the seat of our personal and musical experience and we adopt the idea that
these experiences are expressed in the peculiarities of the human body that
mediates information from and to the musical environment. In that sense
the body is more than just an interface with sensors and actuators in the en-
vironment (as stated in the traditional cognitive science). Instead, the body
is an expressive mediator of the interaction. This expressiveness is rooted
in an action-perception engine that draws upon a repertoire that makes in-
teraction effectively conveying and predictive. Owing to this engine, there
is a tight connection between music perception and body movement in the
sense that the perception of conveying properties of music can be straight-
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forwardly expressed into accompanying movements, or gestures.
Note that the above viewpoint stands in sharp contract with most of

traditional cognitive science, which, according to Heylighen [15], tends to
see the mind as separated from the outside world. He says [1]: “Even when
modern science admits that the mind cannot exist independently of the
matter in the brain, the assumption is that the brain alone is sufficient to
produce intelligent behavior. This leads us to envisage a theoretical dis-
embodied intelligence as a “brain in a vat”, a brain artificially kept alive
connected to some electrodes that stimulate it, but with no body attached
to it (Fig.1.2). Critics claim that such a brain would not be able to ex-
hibit intelligence, because intelligence evolved to pursuit interaction with
the world.”

To understand the theory of embodied music cognition, and the concept
of music gesture that forms a core part in the encoding and decoding of
music, we draw upon the work of our promotor Prof. dr. Marc Leman, in
particular [6]. According to Leman, interaction with music is embodied (i.e.
mediated by the body), situated (i.e. embedded in an environment), and
enacted (i.e. put into practice through action and gestures) [4] [16]. In The
Power of Music [17], he provides a dynamic model inspired by control theory
that serves us as a starting point for the modeling framework that will be
further developed in this thesis. He considers the study of the dynamics
of the action-perception coupling system a hot research topic in modern
cognitive science and his work forms a rich source of inspiration for this
thesis.

Figure 1.3 shows the basic scheme of embodied music cognition. The
figure represents an agent that acts in the environment and that receives in-
formation from that environment. Agents for spontaneous dance movement
require an additional entry in the basic scheme as their action is triggered by
the environment, i.e. by enactive (musical) perception (0). Enactive percep-
tion is due to the role of sensory-motor engagement in musical experience.
Music is namely perceived in terms of actions (affordances) [18].

When the agent decides to perform an action (e.g. the intended playing
of a note on a music instrument) it will rely on the action repertoire (1) to
launch an action pattern that gets executed (2). Along that pathway, a copy
of the action pattern and its predicted outcome (3) is made and compared
(4) with the actual action execution and the sensed outcome of the action
(the instrument’s sound) (5) and (6). Based on the perceived outcome of
the action the motor pattern can be adjusted. Leman makes a distinction
between two mechanisms for adjustment of body movements, called the
sensor-motor loop and the action-perception loop. The sensor-motor loop
(7) is a low-level circuit where the motor activity is basically driven by
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sensory input from the environment. In contrast, the action-perception
loop (8) is a high level-circuit that involves the action repertoire.

The model is linked with several concepts that play a role in the embo-
died music cognition paradigm. A core concept is the repertoire. According
to Leman a repertoire of actions and action consequences is called an action-
oriented ontology [17] (pg 22): “The action repertoire can be conceived as
the reservoir of experiences, including experiences of expressiveness. This
reservoir comprises connections between action commands, sensations of
the external world through our senses (exterioception), but also sensations
of our body movements (proprioception) and of our body state (interio-
ception). Moreover, as corporeal articulations and actions are carried out
in space and time, it seems natural to conceive the action repertoire as a
container of spatial-temporal patterns.”

The spatial-temporal patterns constitute the musical gestures and are
the main topic of this research. The action repertoire is considered a compo-
nent of a more complex mechanism that controls the interaction between en-
vironment and subjective experience. Leman [17] (pg 26): “This mechanism
is called the action-perception coupling system, or the action-perception en-
gine, and is responsible for prediction and for issues that involve musical
intentions. It is the circular flow of information that takes place between
the subject and the real world in the course of a sensory-guided sequence
of behavior towards a goal. Each action causes changes in the environment
that are perceived and that lead to the processing of further actions. The
latter cause new changes that are analyzed and lead to new actions, and so
the cycle continues.”

The dynamic model is about action-perception-based interactions with
the environment, which, from an observer’s viewpoint are called body move-
ments in response to stimuli. However, interactions with the environment
may filter gradually to the human mind of the agent, which is then able
to conceptualize these experiences and perhaps answer questions concern-
ing the intended nature of the observed movements. In his book Musical
Gestures - Sound, Movement and Meaning [19] Leman devotes particular at-
tention to the description of gesture-based subjective experiences (pg 139):
“With respect to the effect of gesture on experience, there are three types
of personal experience that deserve some particular attention: namely the
experience of flow, the experience of presence and the experience of cause-
effect. The experience of flow [20] can be characterized as an experience in
which the subject’s skills are fully preoccupied with a task. Presence can be
defined as the illusion of non-mediation [21]. This illusion may occur when
your musical instrument is no longer considered as an obtrusive object but
as an instrument that gives you a way of expressing yourself in music. The
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Figure 1.3: Action-Perception coupling system. See text for full explanation.
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perception of a cause-effect relationship, in the domain of music perception
and gesture, can be considered an experience of the cause of a sound from a
gestural perspective, rather than a conceptual understanding of the causal-
ity relationship as such. One hears the sound of moving feet, rather than
its acoustic properties.”

A major appeal of the embodied music cognition theory is that it pro-
vides a consistent way of linking experiences with body movement, music
perception and the musical environment. The theory is in agreement with
the idea that body movements (called gestures, see below) express core as-
pects of the expressions and intentions of perceived music. These body
movements can be measured in an objective way. To interpret these mea-
surements we can link them with verbal reports of experiences. Our con-
tribution in this thesis is to propose a way to describe how gestures evolve
over time and how gestures can be dealt with as a characteristic of groups
of people (rather than just an individual person).

1.2 Main Concepts for Musical Gestures Re-
search

The above fundamentals of the embodied music cognition paradigm provide
the background for understanding our approach. We now relate embodied
music cognition to a set of concepts that play a role in our research. These
concepts are subdivided into three categories called: (i) Laban descriptors
for gestures, (ii) key points and goal points as landmarks for musical ges-
tures, and (iii) descriptors for gestures in the social context.

Let us first define what we understand by gestures in general and by a
musical gesture in particular. There exist many definitions for gestures and
the definitions differ from the field where they are used. For our work we
use the definition of gesture from Leman and Godøy [22] , namely, that “a
gesture is a movement of part of the body with the goal to express an idea
or meaning”. Like Jensenius et al. state in [23]: “When speaking about
the musical activity of musicians and dancers it is tempting to call the
involved embodiment gestures rather than movements. The main reason
for doing so is that the notion of gesture somehow blurs the distinction
between movement and meaning. Movement denotes physical displacement
of an object in space, whereas meaning denotes the mental activation of an
experience”. Integrating movement (as a display of matter) and meaning
(as a display of mind) is exactly what is at the core of the embodied music
cognition. That makes research on musical gestures the main topic of this
thesis and descriptors for gestures can help here to give insight.

Consequently, we focus on concepts that facilitate the link (correlation)
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between the so-called second-person descriptions and third-person descrip-
tions. The first-person description is about the subjective experience of
intentions attributed to music, the second-person description about the cor-
poreal articulation of these intentions and the third-person is about objec-
tive measurements, either measuring musical signal properties or measuring
movement properties [6]. Main advantage of this focus is that it helps to
understand the link between movement and musical intentionality.

1.2.1 Laban descriptors for gestures
In this section, we present a set of descriptors, relevant to our empirical
research. The set is not exhaustive but it is rather a list of novel descriptors
generated in concertation with musicologists. For the reader’s convenience
we use the categorization from Laban’s Movement Analysis (LMA) [24],
even if we do not consider all categories in this thesis. LMA distinguishes
the following four categories:

• Body descriptors for structural and physical characteristics of the hu-
man body while moving, such as which body parts are moving, which
body parts are connected.

• Effort descriptors that handle the dynamics of movement and are
closely related to the energetic intention of the movement.

• Space descriptors that mark out the kinesphere (the area within which
the body is moving), the spatial intention (the directions or points in
space the mover is identifying or using) and the geometrical observa-
tions of where the movement happens.

• Shape descriptors that give an account of how the body changes shape
during the movement. It comprises the description of static shapes as
well as the description of the dynamics of these shapes.

To describe gestures in response to music, we focus in this thesis on
two categories that are readily feasible and measurable, namely space and
shape.

1.2.1.1 Descriptors for Space

The descriptors we discuss here are: concentration, volume, elevation and
dimensionality.

1. Concentration
Definition: Concentration describes the phenomenon that some loca-
tions and/or directions are more and longer frequented than others.
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Figure 1.4: Illustration of the concept “concentration”. Concentration is here
visualized as a small dedicated area (indicated by a circle) that is longer frequented
than others.

Musical Relevance: Concentration means that some positional areas
are more important than others. A first motivation could be found in
the gestural affordances of musical sound [18]. Godøy links musical
sound features with shapes that may be gesturally rendered. Among
examples of sound features he gives “accents and articulations”, hav-
ing very clear gestural requirements of energetic motions, and “cyclical
patterns”, i.e. grouping of sonic events, such as in meter, resulting in
recurrent gestures. A second motivation is found in the theory of goal
points [25] where gestures are considered as goal-directed. Musical
movement is then considered as a succession of clear discontinuous
postures and continuous motion between those postures. These pos-
tures are reference points for musical gestures what makes us suppose
that they occur in areas that are more or longer frequented.
Visualization : Fig. 1.4

2. Volume.
Definition: We define volume as the volume inside the convex hull or
convex envelope of the movement trajectories deployed in space.
Musical Relevance: The link between the volume of a gesture and par-
ticular musical characteristics is for example represented in Hodgins’
model [26], which is a model that points to a number of choreomu-
sical parallels between features in dance and music. The dynamic
parallel as he calls it relates the size and volume of dance movements
to dynamics in musical sound (such as intensity and loudness). An-
other link with music is found in LMA (Laban Movement Analysis).
LMA considers volume as a measurement of the kinesphere or per-
sonal space, the area around the body within reaching capabilities
of the limbs without changing place. Certain emotional affects can
be made visible by studying the kinesphere as demonstrated in the
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Figure 1.5: Illustration of the concept “volume”. Volume is visualized here as the
volume inside a convex hull made-up by consecutive right hand movement. In the
shown example, it is so that the four right hand poses make up a convex hull,
defining a volume (being a tetraeder in this case). All other intermediate poses
(not shown) fall inside this volume and are discarded for volume calculation.

Figure 1.6: Illustration of the concept “elevation”. It is here visualized as a height
difference between two right hand poses but it can also be expressed as difference
in height between any limbs, or as a difference between minima and maxima in
height taken over some time intervals.

work from Camurri [27]. Or as Ruud [28] says :“Listening to music or
playing an instrument seems to lead to an awareness of space within
oneself which is totally distinct and not accessible to other people.
Sometimes this is called the true-self which may be dramatically met
by a sudden mood in the music, or by a voice, or an artist.

Visualization : Fig. 1.5

3. Elevation.

Definition: Elevation refers to the spatial height of musical gestures.

Musical Relevance: Elevation of musical gestures links with musical
emotion and referring to literature (for example [29] [30]) it is found
that happiness is associated with higher elevation in the movement.
Beside happiness elevation correlates also with pitch. Pitch is classified
in many languages by using terms that have a spatial connotation
referring to elevation such as high and low (e.g. in Chinese, English,
French, German, Italian, Polish and Spanish) [31].

Visualization : Fig. 1.6
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Figure 1.7: Illustration of the concept “dimensionality” for musical gestures. The
musical gesture shown in the above figure nears a straight line and has consequently
a dimensionality of one.

4. Dimensionality.

Definition: With dimensionality of movement we have a measure that
indicates if movement merely goes along a line (one dimensional), or
in a plane (two dimensional) or if it covers the full three-dimensional
space. Although this definition is valuable, it can be broadened to
include movement in relation to other geometrical shapes, like circles
or surfaces of ellipsoids. A possible measure for dimensionality is
then to calculate the fractal dimension of the movement [32], which
is a measure of the number of active variables required to model the
dynamics.

Musical Relevance: The musical relevance of dimensionality is backed
up by previous research work [33] [30] [34] [35]. Results show for
example that sad music is reflected in rather simple movements of low
dimensionality.

Visualization : Fig. 1.7

1.2.1.2 Descriptors for Shape

We discuss two descriptors of shape, namely proximity and direction.

1. Proximity

Definition: Commonly, proximity is defined as nearness in space
(http://dictionary.com) but here, as a shape parameter, it refers to
all limbs, being folded on the body.

Musical Relevance: The shape category has a subcategory called shape-
forms that describes the static shapes a body takes, such as ball-like
or wall-like. Proximity is then described by changes in shape-forms,
e.g. when the body is currently opening (growing larger with more
extension) or closing (shrinking with more flexion). These changes in
shape-forms relate to musical intentions like intimacy. The link be-
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Figure 1.8: Illustration of the concept “proximity” for musical gestures. The two
pictures show the two extremes for proximity: a high degree of proximity where
every limb directs at the body-center and a low degree of proximity where all limbs
point away.

Figure 1.9: Illustration of the concept “direction” for musical gestures.The vertical
movement shown here is the embodiment for power.

tween emotional response to music and intimacy can be found in for
example work from Bicknell [36].

Visualization : Fig. 1.8

2. Direction

Definition: Firstly, in absolute terms we can define direction in terms
of vertical versus horizontal movement. Secondly, in relative terms
we interpret direction as convergent-divergent movement (towards or
away from one’s own body) versus equidistant movement (at same
distance of the body).

Musical Relevance: Horizontal/vertical movement is linked to con-
cepts of power [37] and musical style [38]. Convergent-divergent move-
ment is classified, according to Laban’s terminology (shape category),
respectively as Spoke-Like and Arc-Like. These movements are found
to be basic gestures of dance styles [39].

Visualization : Fig. 1.9
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1.2.2 Key Points and Goal Points, landmarks for mu-
sical gestures

A second category of descriptors that we use in this thesis relates to land-
marks for musical gestures. A first motivation for this new set of descriptors
is that gestures may reveal particular aspects of their intention, expression
and/or meaning at particular points (landmarks) in their deployment. A
second motivation lays in the ease of memorizing and comparing movement
trajectories: landmarks reduce movement trajectories to a set of frames of
reference (cfr [39] where this concept was introduced). In this sense land-
marks are key contributors to the “repertoire”-node and the “comparison”-
node in the action-perception coupling diagram (Fig. 1.3).

1.2.2.1 Spatial Landmarks - Key Points

Definition: Originally, a landmark literally meant a geographic feature
used by explorers and others to find their way back or through an area
(http://en.wikipedia.org). This definition comes very close to what we want
to achieve with our concept of key points, namely a distinct set of samples
that represents the essence of a musical gesture as it is deployed. These sam-
ples are based upon movement characteristics and we refer to them as key
points or spatial landmarks. Extrema (minima and maxima) are straight-
forward examples of such movement characteristics but other more complex
features like for example state changes (a combination of position and speed
changes) can be used as well.

Musical Relevance : The concept of key points reduces a movement tra-
jectory to its most simple form, namely a set of key points. This has as
advantage that it is easy to memorize movement trajectories and that it
helps comparing them, as they are reduced to a set of frames of reference
(cfr [39] where this concept was introduced).

Visualization: See Fig. 1.10

1.2.2.2 Temporal Landmarks - Goal Points

Definition: A second and also common definition for a landmark
(http://dictionary.com) associates a landmark with something used to mark
the boundary of land. Elaborating on this definition, we define now tem-
poral landmarks as indicators that chunk a gesture in time. Obviously, the
chunks are not arbitrarily chosen but are defined by musical events. We
define the time stamps of these events and the postures at these events as
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Figure 1.10: Illustration of the concept ’key points’ for a gesture. A gesture’s
trajectory and its key points (big dots) are displayed in a two-dimensional plane
at the top plot. The arrows indicate how the gesture progresses in time. The key
points in this simple example are determined by the minima and maxima over
time in the x- and y- coordinates (bottom plots). They reduce the gesture to a set
of 4 samples
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Figure 1.11: Illustration of the concept ’goal points’ for a gesture. A gesture’s tra-
jectory and its goal points are displayed in a two-dimensional plane at the bottom
plot. The arrows indicate how the gesture progresses in time. The goal points are
determined by temporal landmarks identified by musical characteristics, being here
the beat points of a musical fragment shown at the top.

goal-points or temporal landmarks.

Musical Relevance: Our definition of temporal landmarks links to the the-
ory of goal-points from Godøy [25]. Godøy interprets movement as a com-
bination of discontinuous postures and continuous motion between those
postures [40]. He suggests to take downbeats or other accented points in
the music as goal points. Naveda and Leman [39] adhere to this concept
projecting beats onto a dance gesture and using beat times as temporal
landmarks.

Visualization: See Fig. 1.11

1.2.3 Descriptors for gestures in social context
A third category of descriptors used in this thesis is related to the social
context. For this category we define concepts like expressiveness and coher-
ence/consistency.

1.2.3.1 Expressiveness

Definition: Traditionally, expressiveness is defined as a deviation from a
regular or neutral performance [41]. The terms deviation and regular have
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Figure 1.12: Illustration of expressiveness. We defined expressiveness as variation
around a reference. To illustrate we present here four snapshots for in total three
subjects taken from a dance performance. The snapshots are taken at identical
time stamps. If we take subject 9 as the reference then we see that subject 4 is less
expressive and subject 12 more expressive.

however negative connotations in the sense that they imply that regular is
the norm and expressiveness is the deviation. We believe that it is just the
other way around, namely, that expressiveness is the norm and therefore we
use the terms variation and reference instead. Summarized, our definition
for expressiveness is that it stands for variation around a reference.

Musical Relevance: The original definition for expressiveness comes from
music psychology pioneer Carl Seashore [41] and he described deviations
from the regular for sound properties such as loudness, tempo (rubato), ar-
ticulation and intonation. This idea has been followed by many researchers
since that time [42]. Davidson [43] added the idea that performances are
embodied. She argued that each movement type (for instance, the wiggle)
can be executed in a range of ways that give the potential for a range of ex-
pressiveness levels to be elicited. The findings from Seashore and Davidson
concern music performances but similar results are found in work on dance
performances. For example, Camurri et al. [44] studied expressive gestures
as gestures superimposing expressive content (deviation) to normal gestures
(regular).

Visualization: See Fig. 1.12
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1.2.3.2 Coherence and Consistency

We use coherence and consistency to describe the behavior of a group in
terms of levels of expressiveness. The description is based upon ordering
group-subjects and discovering how well this ordering is kept over time. It
allows to answer questions like: “Is the most expressive subject the most
expressive subject over a whole time interval ?”. Note that for ease of un-
derstanding we used the term “ordering”, whereas the mathematical correct
term is “correlating”.

Definition Coherence: Coherence stands for high correlations between lev-
els of expressiveness in a group at every two distinct time stamps in a
continuous time interval. We define then the performances as coherent in
this continuous time interval. It implies (1) synchronicity between subjects
within this continuous time interval and it requires (2) preserving the or-
dering of subjects in levels of expressiveness. For our research we define
coherence and consistency in conjunction with expressiveness. Changes to
the definition are obvious for research requiring other gestural characteris-
tics .

Definition Consistency: Consistency stands for high correlations between
time stamps in distinct coherent time intervals.

Musical Relevance: Music has an interesting relationship with social cogni-
tion. In fact, music has been compared with a virtual agent with whom the
listener dynamically and socially interacts [45] [6]. The neural mechanism
underlying this phenomenon (especially the action-perception coupling) has
been related to the mirror neuron system [46](see Sevdalis, V., & Keller, P.
E. [47] for an overview), whereas the behavioral study of the movement de-
ployment has been related to synchrony [48]. In social cognition, as in music
there is an important component of non-verbal communication that is based
on synchrony, which can be understood in relation to the action-perception
couplings that engage in the understanding of communicative signals and
social adaptation behavior [49]. Synchronization is also a basic principle of
musical entrainment, where two systems engaged in synchronization adapt
to each other [50].

Visualization: See Fig. 1.13
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Figure 1.13: Illustration of coherence for musical gestures. Coherence stands for
high correlations between subject performances at every two distinct time stamps
in a continuous time interval. It implies (1) synchronicity between subjects and
it requires (2) preserving the ordering of subjects in levels of expressiveness. The
most extrovert dancer is the most extrovert dancer over the whole time interval.

1.3 Challenges
1.3.1 Variability and Constraints
There exists some confusion in the literature between the use of the terms
variability and variation. Here we follow the vision of Van Belle [51] de-
scribing variability and uncertainty as two different categories of variation,
involving different sources and kinds of randomness. So, the term variability
refers to natural variation in some quantity whereas uncertainty refers to
the degree of precision with which a quantity is measured.

We do not discuss uncertainty in this thesis but it should be clear to the
reader that if there is a choice between measurement equipment, precision
(or less uncertainty) is an important decision maker. In this section we
focus primarily on variability.

Applying best practices needs some work upfront, namely before the ac-
tual execution of the experiment. Important tasks are the identification and
reduction of all sources of variability. To identify the sources of variability
we refer to the variability model of Desmet [52]. It distinguishes four main
sources and their interactions:

• Human variability: originates from neurological, skeletal, and muscu-
lar variability in people producing musical gestures.

• Device variability: this comes from devices used in the experiment.
Think for example about the markers fetched to the body of a dancer
for data collection: are they always fetched at the exact same spot in
longitudinal studies?

• Sonic variability: variability in the sonic forms can come from the
mediator (instrument or the intentions of a performer). So in a sense
it is part of human and device variability but the reason why we
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make a separate class for it is that here we focus on the intentionality.
Sonic variability stands for variability by intentionality. For example,
a single musical fragment can have a combination of fast and slow
tempo’s. This is variability intended by the composer.

• Environmental variability: with environmental variability we refer to
items like temperature in the experimentation rooms, presence or ab-
sence of daylight, organizing morning or evening sessions. All these
are factors that can have impact on the results of various experiments.

Interactions: all the above sources of variability are not necessarily inde-
pendent but can be inter- and intra-correlated. For example human-human
variability (intra-correlated human variability) is a factor to deal with in
experiments with a group of people (we refer for example to [53]).

In section 1.2.3.1 we defined expressiveness as variation (variability)
around a reference. It is clear that in research on expressiveness we do
not want to reduce this source of variability but we want to keep it to its
full extent. Constraints can hinder this process and have to be investigated
or removed:

• Human constraints: wearing a motion-capture suit can hinder certain
movements, hence reduce expressiveness.

• Device constraints: the equipment required for fMRI causes con-
straints for what experiments one can do (e.g. the use of metallic
music instruments is impossible).

• Sonic constraints: cochlear implants are designed for the 0-4KHZ
range (speech) but not for the high frequency range.

• Environmental constraints: the experimentation lab might have lim-
ited accessibility and availability.

• Data Analysis: some data models require lots of data, or need a min-
imum number of participants. Other restrictions can come from lack
of computing power or even from the current state of science having
no suitable data models for an envisioned experiment.

A major consequence of having these constraints is that it reduces the
relevance of the results or that it does not allow to generalize to an ecological
setting.
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1.3.2 Need for Data Pre-Processing
After an experiment we are confronted with a set of challenges that need to
be handled before an analysis can take place. A first challenge lays in the
quality of the measured data. The original signal can be blurred by noise,
measurement errors, ... and these problems have to be adequately handled.
A second challenge concerns methods to reduce complexity. The problem is
that an experiment gathers large amounts of data collected over considerable
time intervals from several sensors attached to different body parts of several
subjects. A third challenge is rather specific to our research of musical
gestures. Musical gestures experience two main sources of variation, namely
spatial and temporal variation and that makes it difficult to analyze. The
third challenge lays then in dealing with these sources of variation.

1.3.2.1 Quality of Data

The first major challenge concerns the representation and quality-checking
of the collected data. This includes data cleaning, normalization, transfor-
mation, feature extraction and feature selection, etc. [54]. Commonly used
techniques here, are outlier detection and handling and noise filtering. We
refer to the literature for more information on these topics.

1.3.2.2 Handling Complexity

The second challenge relates to the complexity of our process. A proven
method in analyzing complex problems with an abundant number of vari-
ables collected over considerable time intervals is breaking down the problem
into smaller, more manageable parts. For breaking down, two techniques
are used here, namely segmentation and decomposition. They can either be
applied separately or even jointly:

Complexity reduction by segmentation

Segmentation means time chunking of musical gestures in segments. This
leads to the concepts of elementary gestures, segment boundaries and transi-
tions that all can be studied individually and that eventually can be brought
together to understand the full picture.

Elementary Gestures

A musical gesture can be understood as a concatenation of gestural com-
ponents. The set of gestural components is not endless as some of the
components are recurring. These distinct components are called elemen-
tary gestures and constitute a gesture dictionary.
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Segment Boundaries

The result of the segmentation process is a set of distinct elementary ges-
tures. However, not only the elementary gestures are of interest but also
the segment boundaries can provide us with insights. Segment boundaries
can be linked to the previously discussed concepts of key points and goal
points.

Transitions

Transitions stand for smoothness at the segment boundaries. This is the
case where a subject adapts the end of an elementary gesture to prepare
for the beginning of the next elementary gesture, comparable to a cross-
fade effect used by DJ’s to move to a new song. Note that some authors
will refer to this effect as coarticulation and this because of the gestural
context (http://en.wikipedia.org/wiki/Coarticulation). From the viewpoint
of analysis, transitions blur the notion of segment boundaries. It is therefore
difficult to identify the exact location of segment boundaries.

All the above describes the results of a segmentation process (elemen-
tary gestures, segment boundaries, transitions). The process itself and more
precisely how the chunking is done is also worthwhile explaining. We distin-
guish basically two methods depending on the input used for segmentation:
either data external to movement data can be used as input for segmentation
or either the movement data itself can be used as input.

Segmentation using external data

Segmentation of musical gestures is in essence time chunking of the ges-
tures. An easy and obvious way to time chunk is by just dividing time into
small intervals of equal length. This results in the investigation of gestural
components that are of equal time duration. In a way this is analog to
a short-time Fourier transform (STFT) where also fixed time intervals are
analyzed.
A more advanced way starts with noticing that the timing of musical ges-
tures is highly determined by the music. This leads to using the musical
signal as another external source for segmentation. A straightforward solu-
tion is to use the beat time stamps from the musical signal as segmentation
input. An illustrative (one dimensional) example of this method of segmen-
tation is displayed in Fig.1.14.
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Figure 1.14: Example of segmentation of a one dimensional movement signal by
beat time stamps taken from a musical fragment. The bottom picture displays
the position of the time stamps of the beats in the musical fragment. The beat
time stamps are displayed on the spectrogram of the musical fragment and this
for the convenience of the reader. The top picture illustrates the segmentation
process using these beat time stamps. (Extension from one dimensional to multi
dimensional movement data is straightforward).
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Figure 1.15: Example of segmentation of a one dimensional movement signal by
taking information from the movement data itself. In the left picture the den-
sity of the movement data is displayed (rotated counterclockwise over 90◦). This
information is used in the right picture to segment the movement data. The seg-
mentation boundaries correspond with areas of low density. (Extension from one
dimensional to multi dimensional movement data is straightforward).

Segmentation using movement data

This type of segmentation uses the movement data itself to segment the
gestures. An example is to use spatial landmarks to define segment bound-
aries. This can be achieved for example by means of a heuristic algorithm
identifying local minima in the velocity signal or locating extreme ampli-
tudes. More advanced methods look at minima and maxima into the density
curves of the movement variables. An illustrative example of this method
is displayed in Fig.1.15.
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Musical Relevance of segmentation

Segmentation is a well known technique by musicologists. Segmentation
lays for example at the basis of the Labanotation (Kinetography) and it
is also strongly related to the concept of basic gestures introduced by
Van Noorden [55]. Understanding musical gestures as concatenations of
elementary gestural components is for example the starting hypothesis in
a study on guqin performance [56] and in a study on a clarinetist’s per-
formance [57]. Other examples are [44] [58]. These studies reveal that
sonic movement (identified in the music) reflects sound-producing move-
ment (hand movements), and that this movement can be understood as
concatenations of elementary gestural components.
Using music (i.e. time) to segment gestures can be linked to Godøy’s the-
ory about goal points. Godøy states that both sound-producing and sound-
accompanying movements are centered around certain salient events in the
music such as downbeats, or various accent types, or melodic peaks [25]
and which he calls goal points. In music performance, these goal-points are
reflected in the positions and shapes of the performers’ effectors (fingers,
hands, arms, torso, etc.) at certain moments in time, similar to what is
known as keyframes in animation. This idea is also found in the approach
followed by Leman and Naveda [39]. In their Samba dance study they seg-
mented movement signals using beat points as boundaries for segmentation
intervals. The method resulted in a spatiotemporal model, an important
aspect for the repertoire in the action-perception coupling system (Fig.1.3).

Complexity reduction by decomposition

Just like segmentation, decomposition reduces the complexity of an ana-
lysis. It does so not by time chunking but by decomposing a signal (gesture)
x(t) into a linear combination of other signals φk(t) (1.1). This approach
works for the entire gesture time interval but can also be applied to the
individual time chunks obtained after segmentation.

x(t) =
K�

k=1
ckφk(t) (1.1)

The signals φk(t) are called basis functions. To make analyses tractable
the number of basis functions must be limited. The number of basis func-
tions is usually calculated in a validation step. Further, there exists a wide
variety of basis signals and we will not discuss them all. Here, we limit the
discussion to a set of basis functions that are of interest to our research:
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Figure 1.16: Example of a decomposition of a signal in Fourier basis components.
The signal at the top plot can be approached by a linear combination of the 4
sine/cosine signals at the bottom plot.

Fourier Basis System

The basis functions are φ0(t) = 1, φ2k−1(t) = sinkωt, and φ2k(t) = coskωt.
They are periodic and smooth, as illustrated in Fig. 1.16. That makes the
Fourier basis decomposition useful for smooth functions that exhibit some
periodicity but inappropriate for functions with discontinuities or a-periodic
behavior.
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B-Spline Basis System

A spline is a polynomial specified over an interval and of order m. The order
m of the polynomial determines the number of parameters and is one more
than its degree, its highest power. Any function can be approximated by
splitting the function in intervals and approximating the function in each
interval by a spline. A way to improve this fit is to increase the number
of time intervals (breakpoints) or the order of the splines. The location of
breakpoints can be equally spaced (equal time intervals) or it can depend on
the complexity of the curve. For equally spaced intervals the term uniform
splines is used. An additional requirement can be that the fitted curve and
its derivatives must be continuous at the breakpoints and this will reduce
the degrees of freedom for the fit.
Now we discuss how this can be done in practice. In our research we used
the B-spline basis system developed by de Boor [59] to implement B-spline
decomposition. The system used by de Boor does not work with the individ-
ual splines but with basis functions. In his approach every basis function is
a linear combination of splines and is positive over no more than m adjacent
intervals. A basis function has also order m as it is a linear combination
of m order splines. B-spline decomposition means then approximating a
function by a linear combination of B-spline basis functions. An example
of the 13 B-spline basis functions for an order 4 spline with 9 breakpoints
is shown in Fig. 1.17. Spline functions are very common to approximate
non-periodic functional data.

Empirical Basis System

The recommendation of using Fourier bases for periodic data and B-splines
for non-periodic data underlines how important it is that basis systems
match the characteristics of the data. A logical question is then whether
we can build a basis system starting from the data. The answer is affir-
mative and usually this is constructed from a function principal component
analysis (FPCA) as illustrated in Fig. 1.18. The basis functions are then
eigenfunctions which usually lead to a compact function representation that
models the variance observed in the considered time interval. Because this
technique is a variance based technique it should be clear to the reader that
it requires multiple realizations of a function (either coming from many
subjects or either many realizations coming from one subject).
In practice the empirical basis system is combined with either a Fourier Basis
System or a B-Spline Basis System. That means that the original function
and also its eigenfunctions are expressed in terms of either a Fourier basis
system or either a B-spline basis system from which the empirical bases are
calculated. This has as immediate consequence that also the eigenfunctions
are smooth functions.
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Figure 1.17: As an example we show here 13 B-spline basis functions for an order
4 spline with 9 breakpoints. The breakpoints are displayed as vertical dashed lines.
These basis functions can be used in a linear combination to approximate any
function, given the values at the breakpoints.
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Figure 1.18: Example of decomposition in eigenfunctions. An individual signal,
here indicated by the dotted line, can be decomposed as a linear combination of an
average signal (gray area on plot) and a number of eigenfunctions. The average
signal and the eigenfunctions are calculated by FPCA from the complete set of
signals. Here we show a decomposition with three eigenfunctions (orange, green,
and blue areas) covering over 70% of the variance of the set of signals.
Note that this figure is a symbolic representation. For visualization purposes the
negative contributions of the eigenfunctions are not shown and are absorbed in the
positive contributions of other eigenfunctions.
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Other Basis Systems

We briefly mention here a number of other basis systems (for a detailed
overview we refer to [60]). There exists a wavelet basis system that combines
the periodic capabilities of the Fourier basis system with the time-localized
features of splines. Disadvantage is however that a wavelet basis system is
less handy when derivatives are required.
Exponential bases ( eλ1t, eλ2t, ..., eλit, ...) are useful because solutions of
linear differential equations with constant coefficients are sums of exponen-
tials.
In some cases there is no need to work with a sophisticated basis system.
A simple basis system like a polygonal basis system, a step-function basis
system or even a constant basis system can do the work. These simple basis
systems can also be considered as special cases of a B-spline basis system.
Noteworthy to mention as another example of gesture decomposition is the
so-called ’Periodicity Transforms’ [61], which is a technique to decompose
a data sequence into a sum of simple periodic sequences by projecting onto
a set of periodic subspaces, leaving residuals whose periodicities have been
removed.

Musical Relevance of decomposition

Musical signals show periodicity (think about beats per minute) and this
periodicity appears also in musical gestures. A decomposition in a Fourier
basis system therefore makes sense. Additionally, a decomposition in an
empirical basis system is also easily motivated by the definition of expres-
siveness (cfr section 1.2.3.1). Expressiveness is defined as a variation around
a reference. Empirical basis decomposition takes the group average as ref-
erence and the variation is then explained by the eigenfunctions.
Decomposition (except for Fourier basis system) is not so popular as seg-
mentation and less research work is done in this area. We refer here to work
of Vines [62] for an illustration of the empirical basis decomposition and Le-
man and Naveda [39] for using the periodicity transformation technique.

1.3.2.3 Handling Temporal Variability

Musical gestures experience variation in both amplitude and time (phase)
and confounding these two sources of variation may lead to problems. Han-
dling this is our third challenge. Ramsay [63] illustrates this problem with
an example taken from another discipline, namely the acceleration in chil-
dren’s height. Results show that an estimate of the average acceleration
does not resemble any of the observed curves. See Fig. 1.19 for an equiva-
lent illustration of this problem.

A solution lays in what some call registration of the data, involving
transformations of the argument t rather than the amplitude x(t). An



Introduction 1-31

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

x

Three samples (realizations) of a function

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08
Mean of the samples (realizations)

Time (s)

m
ea

n(
x)

Figure 1.19: Illustration of temporal variability. In the top figure we see three
realizations of a function that do very much resemble each other except that the
peaks occur at different time stamps. When averaging (bottom plot) we see that
much of the information (like alternation of a large and a small peak) is lost. This
illustrates the need for handling temporal variability prior to analysis. See also
Fig. 1.20)
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Figure 1.20: Illustration of handling temporal variability by dynamic time warping
(DTW). In the top plot we see the same three realizations from Fig. 1.19. The
bottom plot shows these realizations again but now time warped with reference to
the first one. We see that much of the information (like alternation of a large and
a small peak) is now preserved. This illustrates the need for handling temporal
variability prior to analysis.

easy and straightforward method to achieve this is by making use of land-
marks. In this case two musical gestures are aligned using the extrema of
the amplitudes of their signals. The intervals between the extrema are then
interpolated (i.e. linearly stretched or shrinked in time).

A more advanced method makes use of Dynamic Time Warping (DTW)
(Fig. 1.20). DTW is not limited to landmarks but uses every value of the
signal. In general, DTW is a method that allows an algorithm to find an
optimal match between two given sequences (e.g. musical gestures) with
certain restrictions. The sequences are “warped” non-linearly in the time
dimension by maximizing a measure of similarity independent of certain
non-linear variations in the time dimension. Further analyses can take the
warped signals as input.
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Musical Relevance of handling temporal variability

Temporal variability is not something that we find “by accident” in music
and musical gestures. No, think about Tempo Rubato (or Italian for stolen
time) [64] that refers to the rhythmic freedom by slightly speeding up or
slowing down the tempo of a musical piece. This is a form of expressiveness
(deviation from the regular) sometimes applied by a soloist or a conductor.

1.3.2.4 Dynamical Systems

We believe that a dynamical system approach for gestural data modeling
is in general part of best practices. A human subject, its environment, and
their interaction, is best modeled as a dynamical system that is determined
by a set of quantitative variables changing simultaneously and interdepen-
dently over time. A dynamical system is a model describing the temporal
evolution of a system. The evolution starts from an initial state and is usu-
ally formulated as a differential equation in the continuous domain (1.2) or
as a difference equation in the discrete domain (1.3). A dynamical system
relates present values with first and higher order derivatives. Derivatives
have to be calculated in advance, before actual analysis and that is the
reason why this section falls under data preprocessing.

δnx(t)
δt

= f(t, x(t), δx(t)
δt

,
δ2x(t)

δt
, ..,

δn−1x(t)
δt

) (1.2)

xn+1 = f(xn, xn−1, ..., x0) (1.3)

In our research we propose three proven methods of bringing the dy-
namical systems approach into practice :

1. Augmented Feature Space Construction

The first proven method is the construction of an augmented feature
space. This method combines positional data and its derivatives (e.g. ve-
locity, acceleration,..) in a what is then called an augmented feature space.
This solution is congruent with a multivariate data approach, where we ob-
serve and analyze the outcome of more than one variable. The augmented
feature space can then be used as input for many multivariate analyses
(e.g. Principal Components Analysis (PCA), Factor Analysis (FA), Canon-
ical Correlation Analysis (CCA), Cluster Analysis). Take caution however
as augmenting the feature space means that it becomes now a collection
of variables with very different units (m, m/s, m/s2...). Therefore it is
recommended to perform a normalization step prior to analysis. Normal-
ization puts all features on an even footing meaning that relative changes
in variables can be compared even if their original units are different.
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2. Sequential Data

Handling data as sequential data is a second proven method to bring
a dynamical systems approach in practice. This is conform equation (1.3)
where we notice that the value of a sample at time stamp tn depends on the
values of samples before time stamp tn. What this says is that the values at
different time stamps are not independent but dependent. In other words
an independent and identically distributed (i.i.d.) model does not hold for
our type of data. We need models for sequential data instead (for example
Markov models, Recurrent Neural Networks (RNNs), ... ).

3. Functional Data

All movement data that we collected is data sampled at discrete time
intervals and thus in essence sequential data. How can we now convert se-
quential data into functional data? The answer is smoothness. Sequential
data samples are considered as ’functional’ if they reflect the smooth curves
that we assume are at the origin [60]. Just like sequential data imply depen-
dencies between adjacent samples, smooth basis functions also imply such
dependencies. In fact, smooth functions can be interpreted as solutions of
a differential equation.

Musical Relevance of a dynamical systems approach

The approach leads to novel research methodologies for movement analysis
in relation to music. It allows the description of model parameters that
capture expression in terms of basic movement patterns that are extracted
from real movements, rather than in terms of single values that capture
a particular feature of a particular movement segment (e.g. [57] [38] [65]).
Such an approach has recently been explored by Leman and Navada [39],
who use periodicity analysis to capture spatiotemporal representations of
gestures, and by Camariaux et al. [66], who use gesture templates.
To our knowledge functional data analysis is not so often applied in mu-
sical research. Exceptions are for example work from Toiviainen [67] and
Almansa [68].

1.4 Methods and Goals
The essence is that we live in a complex world. To deal with this comple-
xity we can collect data, learn a model out of it and use this model as a
representation for the complex reality. The model is then used as a tool for
gaining insight and/or prediction.
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This vision is perfectly in line with the definition of Machine Learning
as given by Tom Mitchell [69] : “A computer program is said to learn from
experience E with respect to some task T and performance measure P, if
its performance at task T, as measured by P, improves with experience E.”
We just have to replace a computer program by a model, task T by gaining
insight and/or prediction and experience E by learning.

The above definition of Machine Learning dominates this section. In
the reminder, we give a summary of Machine Learning methods, followed
by a subsection that focuses on the task T and eventually we explain how
to express the performance measure P.

1.4.1 Machine learning methods

Machine Learning tools can be organized into the following taxonomy:

Supervised Learning

For Supervised Learning the training data consists of a set of input data
and the corresponding set of output data. The task of Supervised Learning
is to construct an algorithm or model that links input data with output
data. For continuous output data this is called regression, for discrete out-
put data the task is called classification. The major focus is on generalizing
from the training data to new, unseen data, in other words on predict-
ing. For completeness we have to state that nowadays in addition to black
box models (like Reservoir Computing, Support Vector Machines (SVM)
or Neural Networks) other models (e.g. Decision Trees, Bayesian Models,
. . . ) are used to allow the integration of process knowledge. In these cases
Supervised Learning combines prediction with gaining insight (insight in
process knowledge).

Unsupervised Learning

For Unsupervised Learning the training data is just one entire set of data.
We do not distinguish between output data and input data. The task of Un-
supervised Learning is to discover patterns and structure in a data set. The
most commonly used techniques are clustering (e.g. K-means clustering,
Gaussian Mixture Models (GMM’s)) and dimension reduction techniques
(e.g. Principal Component Analysis (PCA), Multi Dimensional Scaling
(MDS)). The major focus is on gaining insight in process knowledge.
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Reinforcement Learning

Reinforcement Learning is about taking actions (output) in an environment
that maximizes some notion of future cumulative reward. Because of the
presence of actions (output) Reinforcement Learning is much closer to Su-
pervised than Unsupervised Learning. It differs from standard Supervised
Learning in the sense that correct input/output pairs are never presented.
Further, there is a focus on on-line performance, which implies a trade-off
between discovery of new actions and execution of known actions.

1.4.2 Tasks - Goals

Although the subdivision of machine learning methods determines the basic
tasks (prediction, gaining insight, maximizing future reward), it is worth-
while to consider an extended set of tasks as this will determine what the
most appropriate model(s)/method(s) are.

Prediction

1. Classification is a technique to identify to which class (category) a
new data sample (item) belongs.
The set of classes can be anything that can be enumerated and that
can range from an easy to understand class set (dog, cat, horse, cow,
...) to complex sets where each member is a model on itself. In the
latter case classification is synonym for model selection.

2. Regression is a technique to estimate the relationship between a (con-
tinuous) dependent variable and one or more independent variables.

Representation

Representation (Modeling) is related to gaining insight by making a low
dimensional (compact) representation of the reality. The low dimensionality
helps understanding.
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Verification

Verification checks how well a set of observations fits a trained model. This
information can be used in a various number of ways. If a set of obser-
vations fits one model better compared to another model, we can use this
information for model selection.
Another use of verification is for data validation. This will tell how well a
model generalizes to unseen data. The base problem is that from a small
training set only simple models can be learned. In case a model is too
complex the model will also describe the random error or noise instead of
the underlying truth alone. This phenomenon is known as overfitting. To
avoid overfitting data validation offers a solution. Data validation sets a
part of the data aside for testing. This is the test data set. The remainder
is the learning data set. Both data sets should be large enough: the learning
data set to allow complex models and the test data to check the validity of
the model: The test data is used to indicate statistically significant model
improvement for minor model changes. In practice data sets are often too
small for having a separate test data set. For those cases an alternative
solution is k-fold cross validation.
k-fold cross validation partitions a data set in k parts. k − 1 parts are
used for learning and 1 part is used for testing (validating). This process
is repeated k times, with each of the k parts acting exactly once as a test
data set.

Generation

Generation is the process of generating a set of new observations in line with
a model or a training set. Generation usually involves some restrictions like
for example starting from an initial condition and quite often a process of
randomization is involved.

Rewarding

Optimizing future reward is a key element for Reinforcement Learning. Each
time the learner performs an action, he receives feedback (reward) about
the appropriateness of his response. For example think about a baby learn-
ing to walk by stumbling and falling. This makes Reinforcement Learning,
although not used in this thesis, of interest for musical research and more
specific for educational games [70]. For example the game-play of an edu-
cational musical game like the Music Paint Machine [71] could benefit from
it.

1.4.3 Performance measures
• A simple performance measure for the classification-task is to calcu-

late the number of misclassified samples divided by the total number
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of classified samples. This number can directly be used to compare
classification algorithms but in some cases it is better to assign dif-
ferent costs to different types of misclassification. Take for example
the binary classification case where the cost associated with a false
positive or a false negative can be different.

• For regression the performance measure is usually calculated as the
mean square of the residuals, with the residuals defined as the differ-
ence between the predicted and the observed value.

• For the representation task the same performance measures like for
classification and regression can be used. Instead of predicted values
one now uses the values as reconstructed from the low dimensional
model.

• For the verification task the goodness of fit can be calculated by many
criteria. These can also be the same criteria like for classification and
regression. However, if the trained model is a probabilistic model,
then in addition the goodness of fit can also be calculated by a measure
called the production probability. The production probability allows
to compare sets of observations in terms of their fit to a model and
additionally it can be used as discriminator for model selection (as
mentioned under classification).

• There exist no general performance measures for a generation task. It
requires dedicated algorithms and usually also human intervention to
judge its appropriateness.

1.5 Research methods for Musical Gestures
At the basis of this thesis are the analyses of four experiments, all set-up
serving a specific goal. These analyses are discussed in detail from Chapter 2
to Chapter 5. Here, in this section we explain and motivate why we used
some particular Machine Learning methods for the specific tasks (goals) we
wanted to accomplish.

1.5.1 Towards E-Motion Based Music Retrieval
Here, the purpose of the research is to extract valence and arousal informa-
tion from a musical gesture and to use this to retrieve music from a valence
and arousal annotated library. The goal is to develop a model that can cal-
culate from gestural data the values for valence and arousal (See Fig. 1.21).
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Figure 1.21: E-motion based music retrieval. The purpose of this research is to (1)
extract arousal and valence information from a musical gesture and (2) to retrieve
music from an arousal/valence annotated library using the extracted arousal and
valence information.

Verification of the model was the next important task and this was accom-
plished by setting data aside for the sole purpose of data validation. The
performance measure used for data validation was the mean square of the
residuals.

The research was set-up as a proof of concept. The step towards a
full working application would have required a more meticulous handling
of variability and constraints and this would have lead us away from the
fundamental research path. Handling variability means dealing with differ-
ent brands and types of sensing devices, dealing with calibration issues and
dealing with human variability. Constraints can come from lack of some
sensing devices, like lack of gyroscopes making it impossible to measure ori-
entation. The number of subjects (32) participating in this experiment was
also rather low, making a high dimensional model with lots of parameters
impossible.

The eventual choice was on a simple linear regression model for pre-
dicting valence and arousal figures using just a small number of explaining
variables (dependent variables). The explaining variables needed to have
a direct physical meaning (like e.g. speed) to facilitate the portability to
another setting.
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Major strength of our approach is that the valence/arousal plane acts as
a Marshalling panel between gestures and the music library (See Fig. 1.21).
This implementation allows to “solve” faulty maps not by making changes
to the model but by overriding annotations in the music library. In a real-life
application a music library will be annotated by an algorithm calculating
a valence/arousal value for every entry. We refer to these values as being
the default values. The default values will not have a 100% match for every
individual user. Our set-up can use the valence/arousal values calculated
from an individual’s gestures to overwrite these default values. This makes
it straightforward to tune the application to the individual’s needs.

Disadvantage of our approach is that valence and arousal are usually
measured on a continuous scale and in our case it is a 1-5 Likert scale. The
validity of handling the Likert scale as a continuous scale is in this context
debatable. For a discussion consult for example [72].

The chosen model is a simple linear regression model covering the whole
valence/arousal domain. An improvement could come from dividing the
valence/arousal plane in sub-areas with a dedicated model per sub-area.

1.5.2 Expressive Body Movement Responses to Music
are Coherent, Consistent, and Low Dimensional

The main task for this research topic is to represent music evoked body
movement data in a low dimensional datamodel (Fig. 1.22) and to evaluate
if there was a group difference between musically trained and musically
untrained subjects. We consider the collected data as functional data and
the variables can therefore be represented as f(1), f(2), ...f(t), ...f(N), with
N the number of samples in the time domain. We have in other words as
many variables as there are time stamps. For a 5 minute signal sampled at
100Hz this means 30.000 variables!

Working with all these variables means that we can use standard mul-
tivariate techniques like Principal Component Analysis (PCA), Analysis of
Variance (ANOVA), ... . That is a major asset as these methods are benefi-
cial to our envisioned tasks. PCA handles for example dimension reduction
with the average as a reference and this is in line with our definition of ex-
pressiveness. ANOVA allows to compare several groups of observations (in
our case two groups, namely the musically trained and musically untrained
group) with possibly a different mean for each group.

However there are some problems with this multivariate approach: (1)
The large number of variables makes computation on computers infeasible.
(2) It treats the function values f(t) and f(t + 1) as independent variables
and we know that this is not the case. The value of f(t + 1) does depend
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Figure 1.22: Low dimensional representation of expressiveness in music-driven
spontaneous dance movements. The purpose of this research is to generate a low
dimension model to describe a group of dancers. In the shown figure the model
allows to cluster subjects in three groups (low dimensional) based upon their level
of expressiveness: from low expressiveness(left) to high expressiveness(right).

on f(t).
To solve these problems we use the technique of Functional Data Ana-

lysis (FDA) as worked out by Ramsay and Silverman [60]. This technique
decomposes a signal into a number of basis functions. In our case we use B-
splines as basis functions because our signal (a low pass filtered speed signal)
was not periodic. Ramsay and Silverman adapted the standard multivariate
algorithms for PCA and ANOVA so that these methods work for decom-
posed signals. This makes the whole implementation feasible on an average
computer system. They labeled these new algorithms “functional PCA”
(FPCA) respectively “functional ANOVA” (fANOVA). Because of the de-
composition into continuous basis systems, the values f(t) and f(t+1) are
now also dependent as the bases are continuous.

Ramsay and Silverman enhanced the decomposition even further by pe-
nalizing decomposition solutions that are further away from an assumed
dynamical system. Our hypothesis is that a human subject, its environ-
ment, and their interaction, is best modeled as a dynamic system that is
determined by a set of quantitative variables changing simultaneously and
interdependently over time. This is mathematically translated into a differ-
ential equation. Common practice is to describe a human gesture as smooth
by having its second derivative as small as possible. In this case the second
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derivative is used as penalty term for decomposition.

1.5.3 Beating-Time Gestures: Imitation Learning for
Humanoid Robots

The work here builds further on findings from Maes et al. [73]. One of the
problems they faced was extracting a reference beating-time gesture out of
a series of performances. Underlying difficulty was the temporal variation
in a beating-time gesture: Sometimes a gesture arrived too fast at the first
beat but this got corrected by slowing down in the subsequent inter-beat
interval.

Our research provides a solution that handles this type of temporal vari-
ation as well as positional variation. The procedure creates a so-called gene-
ralized gesture, which is “optimal” with respect to the temporal and spatial
characteristics of a set of performances (Fig. 1.23). In this sense we can re-
fer to this task as a generation task. Additionally, we want this generalized
gesture to be suitable for use with humanoid robots. This means that the
gesture should be smooth and easily adaptable to all kinds of music.

Our solution is inspired by the Programming by Demonstration (PbD)-
solution from [74]. It handles spatial variation by cubic spline regression.
This has as additional advantage that it deals well with periodic boundaries.
A beating-time gesture is part of a continuously repeated sequence, and so
we want the beginning and the end of the generalized gesture to coincide.
Cubic spline regression is often done with a set of equidistant knots (uniform
splines). Then, extrema in the trajectory can or can not coincide with the
knots. If they do not coincide, the consequence is that the extrema of
the trajectory are flattened out resulting in a compressed shape. Because
beating-time gestures use the extrema to convey beat information, we do
not go that path and we choose for non-uniform splines instead.

We handle the temporal variation by adding a dynamical time warping
(DTW) step. This is achieved by warping all demonstrations non-linearly
in the time dimension to a reference signal. Here, the challenge comes from
the calculation of a reference signal.

We propose to handle the remaining issues by fitting an HMM. The
average timestamps of where the HMM state transitions happen are then
used (i) for setting the non-equidistant knots for cubic spline regression and
(ii) for the creation of a reference signal for DTW.

As we prefer to keep the set of demonstrations low we need a simple
model, in our case a HMM with few parameters. The number of HMM states
and the initial values for Baum-Welch training of the HMM parameters
follow from a Dirichlet Process Gaussian Mixture Model (DPGMM) that
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Figure 1.23: Beating-time Gestures. The task is to produce a single generalized
trajectory using all information (temporal and spatial) from a set of performances.
The spatial variation is shown at the left top. The temporal variation is shown at
the bottom left. The generalized trajectory is shown in a spatial dimension (top
right) and in a temporal dimension ( bottom right).
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we fit to the data. DPGMM is a Bayesian method using a Dirichlet process
as prior. The prior acts as a regularizer preventing overfitting and resulting
in models that usually generalize better. This is an asset, as in our case we
have few data and model fitting with few data is prone to overfitting. For
more information on DPGMM we refer to existing literature (e.g. Teh [75]
and El-Arini [76]) or appendix A.

A critique on the above solution is that the gesture is not human any-
more. This is correct, a human solution would revert to selecting one per-
formance out of a set. This would make that the generalized trajectory
is based upon the information of one single performance and it would not
take into account the temporal and spatial information that exists in all the
performances.

The calculated generalized trajectory lasts exactly one measure and the
beat points (metronomic ticks) are known for this trajectory. The beat
points can be used to adapt a generalized trajectory to any music provided
that the beat timestamps of the musical piece are identified.

1.5.4 The Surprising Character of Music. A search for
sparsity in music evoked body movements

The main task for this research topic is “representation”. We search for
a low dimensional model that helps in finding sparsity in movement data
(Fig.1.24). Sparsity is synonym for low density areas. A classical way to
model a density is by applying a mixture model. This is a model which
comprises a number of component functions (clusters). The component
functions are then combined to model the density as a multimodal den-
sity. As component functions we use Gaussians for modeling spatial data
and Multinomial distributions for modeling directional data. Spatial data
is represented in a 3 dimensional space, hence the use of 3D Gaussians. Di-
rectional data is represented as a directional mix over a time interval, hence
the use of Multinomial distributions.

For this research we use also the Dirichlet Process Mixture Models which
were introduced in the previous section: For the positional data we use a
Dirichlet Process Gaussian Mixture model (DPGMM) and for the direc-
tional data a Dirichlet Process Multinomial Mixture Model (DPMMM).

1.6 Results
So far we have provided the background, the concepts and the methods. In
this section we link the results of our empirical research to the previously
defined main concepts discussed in section 1.2. Additionally, we show that
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Figure 1.24: Sparsity in Spontaneous Dance Movement. The task is to model a
density and to identify low density areas. Low density areas can be an indicator
for “surprise”. The density shown in the picture here represents the spatial density
of the right hand movement. Visual inspection reveals an abnormal movement (in
a low density area) presented at the bottom left of the figure.

our results are in support of the dynamic model for the action-perception
coupling system (Figure 1.2) presented in section 1.1. For readers requiring
more information, we refer to the subsequent Chapters for in-depth results
and detailed information.

1.6.1 Gestural Descriptors
As specified in section 1.1, gestures play a core role in the encoding and
decoding of musical expressiveness [6]. Quite often, movement in response
to music is seen as a gestural expression of a particular emotion that is
assumed to be imitated by the music [77] [78] [79] [30].

Concentration.

The way we defined concentration (as locations and/or directions that
are more and longer frequented than others) makes that it correlates imme-
diately with spatial and directional density. We investigated this by means
of a spontaneous dance experiment on music of Johannes Brahms’ First
Piano Concerto Opus 15 in D minor (Chapter 5). The analysis of the ex-
periment showed that these densities can best be modeled by a mixture
model, resulting in multiple areas of high concentration (Fig. 1.25).
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Figure 1.25: The spatial representation of spontaneous right hand movement on
music of Johannes Brahms reveals three clusters of high density areas for the first
lyric fragment. For more details, we refer to Chapter 5.

Volume.

The descriptor volume was studied during the same experiment. Volume
was found to be a descriptor for the complexity of the dance movement. A
small volume stood for mainly repetitive movement, large volumes stood
for more variety in movement. This linked also to the musical style inter-
vals present inside the fragment. Higher volumes matched the heroic style
intervals and lower volumes matched the lyric style intervals. Additionally,
there was a difference between the musically trained group (labeled here as
the MTr-group) and the musically untrained group (MunTr-group). Within
a style fragment the MTr-group reached higher volumes than the MunTr-
group (Fig. 1.26). This correlated with more expressiveness of the dominant
hand for the MTr-group.
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Figure 1.26: Volume of dominant hand movement averaged for two groups of
dancers : in dark the musically trained group (MTr) and in light gray the mu-
sically untrained group (MunTr). The volume is expressed over time showing a
correspondence between volume and expressive style intervals in the music. Here,
we have three time intervals where the music is labeled as heroic and three time
intervals labeled as lyric. The higher volumes match with the heroic style inter-
vals, the lower volumes with the lyric style intervals.The group averages are also
different, the musically trained group reaching higher volumes.
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Figure 1.27: Elevation of right hand for the same dancer in two musical fragments,
respectively a heroic (left) and a lyric style (right) fragment. The origin is placed
at the shoulder. The elevation (z-axis) is found significantly higher in the heroic
style fragment compared to the lyric style fragment. See Chapter 5 for more details.

Elevation.

Elevation was also found to be a differentiator between the heroic and
lyric musical style intervals in that same experiment. The maximum in
absolute terms or the average maximum of the high density areas (clusters)
was found to be higher in heroic style intervals compared to lyric style
intervals (Fig. 1.27).

Dimensionality.

Dimensionality was found to be a good predictor for the emotional con-
tent of a musical fragment. Our research on emotion based music retrieval
(See Chapter 2 or [29]) revealed for example that speed (for arousal) and jerk
(for valence) were important. These were however no novel descriptors. The
properties of the descriptor dimensionality were less anticipated. Arousal
and valence did both correlate with dimensionality. High dimensionality
(more 3D movement) correlated with high arousal. Low dimensionality
(movement along a line) correlated well with low valence.

We also gained new insight in dimensionality from our research on a
spontaneous dance experiment on music of Johannes Brahms (Chapter 5).
The positional analysis revealed that all movement happened on the surface
of a three dimensional ellipsoid, centered at the body (Fig. 1.28). This is
interesting because the surface of an ellipsoid is a manifold of dimension two.
This low dimensionality partly finds its origin in physiological restrictions
of the body, being a chain of pendulums but here it is also due to the
lack of spoke-like (punching) movement. In modern dance styles as for
example hip-hop, we do encounter these spoke-like movements. This makes
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Figure 1.28: Example of dimensionality.

Visual inspection learns that the centers of high density areas of right hand
dance movement fit on the surface of an ellipsoid. These centers are represented
by blue dots. For more details on how these high density areas were found we refer
to Chapter 5. The shoulder was added as reference point. The dimensionality
of this movement is “two” as two coordinates suffice to identify a spot on the
ellipsoid. Size and shape of the ellipsoid are also of help for the descriptor
proximity.

dimensionality a key element in comparing the musical intentionality of
different musical styles.

Proximity.

The descriptor proximity was related to the ellipsoid mentioned in the
previous paragraph under “dimensionality”. The size of the semi-axes give
an indication of how close movement was to the body and changes in the
size of these axes could link to concepts like ’opening’ and ’closing’. As can
be learned from Chapter 5 the major problem is that fitting an ellipsoid is
not evident given the fact that all movement is concentrated on a limited
area of the surface of the ellipsoid. Future research should investigate other
approaches to deal with this concept.
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Figure 1.29: This figure visualizes the directional mixture of right hand dance
movement by means of the musical wav-file. The mixture is calculated over a three
second time interval. Clustering based upon these directional mixtures divided the
dance movement for this subject in 8 clusters. The lyric intervals (recognizable
by their small amplitude) are dominated by a single cluster, the heroic intervals
(large amplitude) do not show this behavior. See Chapter 5.

Direction.

In our research on emotion based music retrieval (See Chapter 2 or [29])
we evaluated observers’ findings describing the arm movement in their own
wordings. A discriminating indicator that was shared amongst all of the
observers was whether there was more horizontal movement compared to
vertical movement. This gave us the idea to define a directional mix over
a fixed time interval as gestural descriptor. We investigated this mix in a
music evoked body movement experiment using music of Johannes Brahms.
It was of particular interest to see how this mix evolved over the musical
fragment (Fig. 1.29). The analysis revealed that for all lyrical style frag-
ments the directional mixture was dominated by one and the same cluster.
This was not the case for the heroic style fragments. The link with the
surprising character of the music is there but needs more research. We refer
to Chapter 5 for more detailed information.

1.6.2 Key Points and Goal Points
The concept of key points and goal points was at the basis of our research
to produce a generalized conducting gesture from a set of demonstrations
(Chapter 4). This research is of major interest because it reveals a problem
immanent to all musical gesture research. The problem is that there exist
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two sources of variability, namely spatial and temporal variability. Spatial
variability can not be handled or studied without removing temporal varia-
bility. The results of our research on this topic are summarized below. For
more in depth information we refer to Chapter 4.

Key Points.

To remove temporal variability, we first reduced a performance of a con-
ducting gesture to a set of key points: spatial landmarks that are common
to all performances. This was done by fitting a continuous HMM. The key
points were set at the internal state transitions of the fitted HMM. The
HMM was fitted on an augmented feature space using beside the positional
variables also the velocity variables (Fig. 1.30).

The concept of key points reduces a gesture to a small subset of impor-
tant (key) samples. This facilitates for example the comparisons of gestures.
Our application however used this concept to remove temporal variance.
This was achieved by temporally aligning the key points of a gesture to a
reference gesture using Dynamic Time Warping (DTW).

Goal Points.

The concept of goal points was of high importance for the synthesis part
in our work on conducting gestures (Chapter 4). In the synthesis part we
adapted a generalized trajectory to match a real musical fragment using
goal points as anchor points (Fig. 1.31). The goal points were mapped to
the beat time stamps. For the generalized trajectory these time stamps
were at the metronome ticks. For a musical fragment these were the time
stamps at which the beats occurred. An initial solution for the synthesis
problem is to time stretch the generalized trajectory so that the goal points
(originally at the metronome ticks) match now the beat time stamps of the
musical fragment. More advanced solutions would use probabilistic models
(e.g. semi-Markov models) to achieve this.

1.6.3 Descriptors for gestures in social context
In this section we present the analysis results from a spontaneous dance
experiment on music of Johannes Brahms’ First Piano Concerto Opus 15 in
D minor. The data was analyzed by functional data analysis. The logarithm
of a low pass-filtered speed signal was a sufficient and relevant marker for
analysis and modeling. Considering this signal as a function was the only
assumption. No a priori segmentation of movement signals was required.
The analysis used decomposition with an empirical basis system instead of
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Figure 1.30: Trajectories of 38 performances of a conducting gesture reduced to
15 key points per trajectory. Key points coincide with the hidden state transitions
of a fitted cHMM model. Figure uses the positional variables (a) and the velocity
variables (b) to visualize the key points. (See also Chapter 4)
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Figure 1.31: An idealized trajectory of a conducting gesture with its goal points
(red dots). The goal points are mapped to the beat time stamps of a real musical
fragment (spectrogram shown) in a 4/4 measure. An initial and easy solution
towards solving the synthesis problem is to keep the shape (form) of the trajectory
and to adjust the speed in function of the goal points. More advanced solutions
make use of semi-Markov models. (See also Chapter 4).
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segmentation. The results are here discussed with respect to the concepts
of coherence/consistency and expressiveness. For additional detail we refer
to Chapter 3.

Expressiveness.

We formerly defined the concept of expressiveness (Section 1.2.3.1) as
“a variation around a reference”. In our study we looked at reference from
two different perspectives, namely (i) reference in relation to a number
of musical characteristics such as pure periodic movement in the tempo
of the music or as a musical amplitude, and (ii) reference as the average
expressive movement of a group of performers. In other words, variation
in body-movements is compared either with music, or either with a group
average.

Functional Principal Component Analysis (FPCA) is a tool that is sup-
portive to handling expressiveness. It allows to decompose a signal into a
linear combination of a group average (the reference) and a number of eigen-
functions (the variation). In our case three eigenfunctions sufficed to cover
70% of the variance present in a group of subjects dancing spontaneously
(not choreographed!) on music of Brahms. The decomposition for the right
hand movement is presented in Fig. 1.32.

Coherence and Consistency.

The low dimensionality of the FPCA based model is explained by the
presence of structure in the correlation matrix. This leads us to introducing
the concepts of coherence and consistency. In section 1.2.3.2 we defined
coherence as high correlation between subject performances at every two
distinct time stamps in a continuous time interval. Consistency was stand-
ing for high correlations between remote coherent time intervals. Coherence
and consistency are best visualized by means of a correlation diagram as in
Fig. 1.33.

Using the concepts of coherence and consistency, we conclude that the
musically untrained group focused on torso movement expressing the tempo
of the music whereas the musically trained group focused on the dominant
hand expressing additional structural elements as for example indicated by
the musical amplitude. For more details we refer to Chapter 3.

1.6.4 Action-perception coupling system
Beside results for descriptors, we present here three results that are in
support of our dynamic model for the action-perception coupling system
(Fig. 1.2).
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Figure 1.32: Dance movement (logspeed) of the dominant hand can be decom-
posed in an average (blue line on the three subplots) and a linear combination of
eigenfunctions. The eigenfunctions are calculated from a functional principal com-
ponent analysis and here three eigenfunctions are sufficient to cover over 70% of
the variance. Every subplot displays one eigenfunctions twice, once with a positive
offset (green) compared to the mean and once with a negative offset (red) to the
mean. The drawn offset for an eigenfunction is proportional to the square root of
its corresponding eigenvalue indicating its importance. The plots learn us for ex-
ample that the first eigenfunction is important in interval H1 (the first heroic style
interval) but not important in interval L1 (the first lyric style interval). Conse-
quently, subjects with a high positive score for the first eigenfunction will be highly
expressive in heroic style interval 1. For more details we refer to Chapter 3.
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Figure 1.33: Coherence and consistency. The plot shown here is a correlation plot
for the logspeed of the dominant hand and this for a group of musically untrained
dancers. Warmer colors (red) indicate a high correlation between two timestamps
(x-axis and y-axis). Cold colors (blue) indicate lack of correlation. We define then
coherence as high correlation areas along the diagonal. These areas link back here
to the different musical styles of the musical fragment. Musical style intervals
alternate between 3 heroic and 3 lyric style intervals and that is visualized by
means of the wav-file that is displayed below and to the right of the correlation
diagram axes. Intervals with high amplitude stand here for heroic style and low
amplitude intervals refer to lyric style intervals. Off-diagonal high correlation
areas represent areas of consistency between remote time intervals. For example
we identify high correlation (consistency) between the first and third heroic style
interval. See Chapter 3.
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The first result that confirms the existence of an action pattern repertoire
comes from an experiment on music evoked bodily movement (see Chap-
ter 5) where we found that the directional mix (amount of upward/down-
ward/left/right) of movement was not arbitrary but could be clustered in a
limited set (See Fig. 1.29). This endorses the existence of a distinct set of
action patterns and one way to identify these action patterns is by looking
at their directional mixture.

The second result comes from the same experiment where we noticed
a link between the musical style interval and the directional mixture. The
link is twofold: (i) Subjects change movement (in terms of directional mix)
when musical style changes and (ii) some distant intervals having the same
style (in our case lyric style intervals) reveal identical behavior. These
phenomenons are best visualized by means of a directogram, being a density
matrix (See Fig. 1.34) where the value of every cell (i, j) is calculated as
follows: If for one subject the directional mixture for time i (row index)
equals the directional mixture for time j (column index) the value of the
cell is augmented by one. The end result is that every cell indicates how
many subjects had “equal” behavior at the two time stamps given by the
indices of the cell. The density matrix portrays areas of high values for
the lyrical style intervals and low values elsewhere. This result back ups
the existence of the outer feedback loop (the action-perception loop) in our
model, where a change (comparison) in musical style (perception) causes a
change in movement direction mixture (action).

A third result that is in line with our model comes from that same
experiment where we identified common behavior within a group of mu-
sically untrained and within a group of musically trained dancers. The
common behavior was explained by the terms coherence and consistency.
The high degrees of coherence and consistency prove that a common under-
lying scheme must be at the basis. The difference between the two groups
can be explained by the musically trained group having a larger and/or
more complex repertoire that allows for a greater variety of action patterns.

1.7 Outline
This thesis is organized as follows. Chapters 2, 3, 4 and 5 are in essence
extended versions of articles submitted to international peer reviewed jour-
nals:

• Chapter 2 Towards E-Motion Based Music Retrieval.

• Chapter 3 Expressive Body Movement Responses to Music are Co-
herent, Consistent, and Low Dimensional.
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Figure 1.34: This directogram visualizes the directional mixtures (amount of up-
ward/downward/left/right) of bodily movement for a group of subjects. The direc-
togram is built by means of a density matrix where the value of every cell (i, j)
is calculated as follows: If for one subject the directional mixture for time i (row
index) equals the directional mixture for time j (column index) the value of the
cell is augmented by one. The end result is that every cell indicates how many
subjects had “equal” (equal in the sense of directional mix) behavior at the two
time stamps given by the indices of the cell. The density matrix portrays now
several areas of high density. High density areas correspond for example with the
lyrical style intervals (squares with black edges) in the musical fragment. Also
off-diagonal we notice high density areas revealing an identical directional mix in
distant lyric style intervals. For more in depth information we refer to Chapter 5.
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• Chapter 4 Beating-Time Gestures: Imitation Learning for Humanoid
Robots.

• Chapter 5 The Surprising Character of Music. A search for sparsity
in music evoked body movements.

Chapter 6 on the contrary, is a bit particular as we look there at recent
developments in machine learning. The challenge of this Chapter was to
go beyond a pure technical discussion of new techniques and to come with
an overview that suits also less-technically skilled readers. The main un-
derlaying idea was to provide the reader with an understanding of the new
developments in Machine Learning and this in perspective to the embodied
music cognition theory.
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Essentially, all models are wrong,
but some are useful.

George E. P. Box , 1987

2
Towards E-Motion Based Music

Retrieval
A study of Affective Gesture Recognition

Abstract

The widespread availability of digitized music collections and mobile music
players have enabled us to enjoy music during many of our daily activities,
such as physical exercise, commuting, relaxation. A practical problem that
comes along with the wish to listen to music is that of music retrieval, the
selection of desired music from a music collection. In this paper we pro-
pose a new approach to facilitate music retrieval. Modern smart phones
are commonly used as music players, and are already equipped with inertial
sensors that are suitable for obtaining motion information. In the proposed
approach, emotion is derived automatically from arm gestures, and is used
to query a music collection. We derive predictive models for valence and
arousal from empirical data, gathered in an experimental setup where iner-
tial data recorded from arm movements is coupled to musical emotion. Part
of the experiment is a preliminary study confirming that human subjects are
generally capable of recognizing affect from arm gestures. Model validation
in the main study confirmed the predictive capabilities of the models.
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2.1 Introduction

The widespread availability of digitized music collections and mobile music
players has enabled us to listen to music during many of our daily activities,
such as physical exercise, commuting, relaxation, and many people enjoy
this. A practical problem people face when they want to listen to music is
the selection of desired music from a music collection. The bibliographic,
text-based interface to music-collections that is prevalent in mobile music
players today, is not an optimal solution to this problem for two major
reasons. Firstly, bibliographic indices to music, such as artist and album
names, are only useful when the user is familiar with the music he/she
is looking for. Secondly, a text-based visual interface on small screens of
mobile devices is often impractical to use. It requires a lot of attention
and a fine motor control of the user, which can be cumbersome and even
dangerous in everyday life situations.

The basic tenet of affective computing, as stated by Calvo and D’Mello [1],
is that automatically recognizing and responding to a user’s affective states
during interactions with a computer can enhance the quality of the inter-
action, thereby making a computer interface more usable, enjoyable, and
effective. This may be particularly true in the context of interfaces for mu-
sic players, since music and affect are strongly related. Not only is it natural
for people to describe music in affective terms; studies have also suggested
that the most common purpose of musical experiences and in particular of
music listening is to influence emotions: People use music to influence their
emotions, to enjoy or comfort themselves, and to relieve stress [2].

Of the various forms an affection-based interface to music players might
take, motion-driven approaches seem especially promising. One reason for
this is that there is ample evidence that corporal gestures are a very effective
way of communicating affect among people (see section 2.2). Another, more
pragmatic reason is that many smart phones that people use as music players
nowadays, are equipped with inertial sensors that make it possible to capture
movements of the user. This opened a whole new world of applications and
we refer to Synch’n’Move [3] as being just one example.

In our envisioned interface, users can search through music collections
based on the affective character of the music, where the character of the
desired music is expressed through corporal gestures. In this way we aim
to implement the conceptual framework of embodied music cognition and
mediation technology [4], and reduce the gap between the fundamentally
corporeal aspects of music and the disembodied, bibliographical way of in-
teracting with music collections that is common practice today.

The work presented in this paper is intended as the foundation for such
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a motion based affective user interface for music retrieval. We present a
linear regression model that predicts the affective character of music, based
on the arm movements of people expressing that character. The model
is derived from empirical data that is gathered from an experiment, as
described in section 2.3. A motion based interface can employ this model to
interpret arm movements of the user in terms of affective character, so that
the movement can be matched to the affective character of music. For this,
it is also necessary to have a music collection that is annotated in affective
terms. Automated affective description of music is beyond the scope of this
paper, but this is an active field of research in its own right (see e.g. [5–7]).

It is commonly acknowledged that the notion of affect, and subsumed
notions such as emotion, and mood, are notoriously intricate. The study of
affect in combination with music is by no means less intricate and controver-
sial. First of all, some studies question whether the emotions music evokes
should be considered as basic emotions [8], whereas others consider this view
mislead [2]. There is also some disagreement about the question whether
music is more adequately described as inducing mood (a relatively vague
and long-lasting form of affect), or emotion (more instantaneous and fo-
cused forms of affect) [2]. Furthermore, perception of music has been shown
to influence neuroaffective processes [9]. Other studies show, however, that
the strength of emotions induced by music is relatively low compared to
emotions induced by personal memories [10].

In light of these controversies, it is useful to clarify our use of notions
of affect in this paper, and the corresponding assumptions we make. To
begin with, we focus on the affective character of the music, as expressed
by the listener. We will also refer to this as the emotional character of
the music, because of the instantaneous and concrete nature of the music.
More specifically, we adhere to the valence-arousal model [11] to represent
the emotional character of music, in line with other studies about emotion
in music [5]. Although extended versions of this model, including a third
dimension representing tension, have been proposed there is evidence that
the three-dimensional model does not account better for music related emo-
tions [12]. Our focus is on expressed emotions, expressed emotions being
the embodiment of emotions through movement. Expressed emotions can
find their origin in perceived or induced emotions but are by nature distinct
as the link between perceived and expressed emotions or between induced
and expressed emotions is not always transitive [13].

The next section contains a brief review of related work on both human
and automated affect detection from human movement. In section 2.3, we
describe the experiments carried out to gather the movement data for affect
recognition. In section 2.4, we present the data-modeling process, and the
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results of the model validation. A discussion of the results is presented
in section 2.5, followed by conclusions and directions for future work, in
section 2.6.

2.2 Related Work

A natural way for humans to express affect is by corporal gestures [14, 15].
Communication of affect through gestures (both static and dynamic) is ar-
guably an intrinsic part of social behavior. This is reflected in numerous
studies showing the capability of humans to recognize affect from the cor-
poreal behavior of others. To a large extent, movement seems to convey
affective information. For example, to recognize emotion from gait, a small
number of features describing joint angles and spatial trajectories is suffi-
cient for humans to recognize emotions in animated avatars [16]. Further-
more, Atkinson et. al [17] show that even with very reduced visual repre-
sentations of the body, such as point-light displays, recognition of emotion
by human subjects is still possible (though to different degrees for different
emotions). Point-light displays of arm movements of actors expressing affect
in everyday movements, like drinking and knocking, also enable observers to
recognize the expressed affects [18]. Pollick et al. also found that movement
features such as average velocity, peak velocity, acceleration, and jerk were
all correlated with the level of activation.

Music-related body movement, such as that of dancers, and the per-
forming musicians, also conveys affect. Brownlow and Dixon [19] state that
observers easily can judge happy dances as happier and stronger than sad
dances. Again, the observers in their experiment based their judgment solely
upon point-light displays of dance, thus excluding recognition of affect by
facial expression or other cues. Successful automatic recognition of emo-
tions of dance movements has been reported [20]. Vines and Wanderley [21]
analyzed gestures from professional clarinet performers. They confirm that
the visual component (body movement) of the performance carries much of
the same structural information as the audio. In some conditions, removing
the visual component decreases the judgment of tension (emotion).

These studies strengthen the view that affect can be effectively com-
municated through human body movement, and therefore, that automatic
affect recognition from human motion, even if it is a challenging problem
(see [1] for a survey of current research), is feasible.
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2.3 Experimental Set-Up
An experiment was carried out with the goal of building a data set of arm
movements expressing the affective character of different pieces of music.
The design of the experiment is oriented towards the use case of gesture
based music retrieval in mobile devices, in the sense that arm motion is
captured using a wireless handheld device equipped with 3D inertial sensors,
comparable to the motion-capture technology available in smart phones.

The following setup was designed to link movements to affective de-
scriptions of music: Participants were asked to listen to a musical fragment.
Then, they were asked to listen to the music again, and simultaneously ex-
press the emotional character of the music as clearly as possible through
the movement of their arm (either the left or right arm, depending on pref-
erence). Eventually they were asked to describe the emotional character
of the music, in terms of valence and arousal. The movement of the arm
was observed by three other participants, who had to guess the emotional
character of the music being expressed, judging only on the arm movement.
One reason for including observing participants in the setup is to encourage
the observed participants (called performers henceforth) to communicate
the intended emotion through the movement, rather than making just any
movements associated with the music. A second reason is that the degree
of agreement between the intended emotion and the emotion recognized
by observers serves as an indicator of how clearly the intended emotion is
expressed by the movement.

The rest of this section describes the experimental setup in more detail.

Participants

In total 32 persons participated in the experiment. Among these partici-
pants, five groups of four persons were made who participated in the main
part of the experiment. The remaining 12 persons participated individu-
ally. Their responses were used to validate the model derived from the data
obtained in the main experiment, as described below.

Stimuli

The musical material was selected from a pre-existing library of 30 second
musical excerpts [22]. In total 24 musical fragments (table 2.1 and 2.2) were
selected divided over four similar sets of six fragments. The sets are sepa-
rated by a double line in both tables. Similarity of the sets was controlled
after the experiment. From the results shown in table 2.3 it can be verified
that the sets were indeed homogeneous and that they spanned the whole



2-6 Towards E-Motion Based Music Retrieval

Performer - Title Arousal Valence

New Zealand Symphony Orches-
tra - Many Meetings 1.4±0.5 3.6±0.5

Midori/Berliner Philharmoniker
/ Claudio Abbado - Canzonetta.
Andante (Concerto for Violin and
Orchestra in D major op. 35)

2.6±0.9 2.0±0.7

Tam Echo Tam - One Step 4.2±0.4 4.4±0.5

L’ Arpeggiata / Christina Pluhar
- Ah, vita bella 1.6±0.9 1.8±0.8

Blur - Song 2 4.8±0.4 4.4±0.9

DJ Tiësto - Traffic 4.6±0.5 3.4±1.1

Metallica - St. Anger 4.0±0.7 2.8±0.8

De Nieuwe Snaar - Achterbank 3.8±0.8 5.0±0.0

Enya - Orinoco Flow 2.2±0.8 3.4±0.5

The Cleveland Orchestra/Pierre
Boulez - Le Sacre du Printemps 5.0±0.0 2.4±1.1

Alberto Gilberto - The girl from
Ipanema 1.6±0.9 3.8±1.1

New Philharmonia Orchestra/Sir
John Barbirolli - Adagietto, Sehr
langsam Symphony No. 5 in C
sharp minor

1.4±0.5 1.8±0.8

Table 2.1: Musical Fragments (part 1) and their average Arousal/Valence appraisal
scores as given by the Performers. (Scores ± SD are on a 1 to 5 scale)

valence/arousal range. The arousal and valence scores mentioned in both
tables are average appraisal scores collected from the performers.

Each of the 24 musical fragments was rated once in each of the five
participant group, resulting in 120 ratings in total, and five ratings per
fragment.

Material

For capturing arm movement, a Wii Remote was used. This is a wireless,
handheld device commercially available as a gaming interface from Nin-
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Performer - Title Arousal Valence

Esa-Pekka Salonen / Philharmo-
nia Orchestra - Car Horn Prelude
(Le Grand Macabre)

4.0±1.0 1.4±0.5

Bob Marley - Corner stone 3.0±0.7 5.0±0.0

Beyoncé - Naughty Girl 3.8±0.4 3.8±0.4

Astor Piazzolla - Oblivion 1.2±0.4 1.8±0.8

Metallica - My World 4.8±0.4 1.6±0.9

Manu Chao - Mr. Bobby 2.4±1.1 4.6±0.5

Novastar - Never back down 2.6±1.1 3.4±1.5

David Hill / Westminster Cathe-
dral Choir - Motectum (Requiem,
Officium defunctorum)

1.2±0.4 1.2±0.4

Usher - Usher 4.6±0.5 4.2±0.8

Vladimir Ashkenazy - Nocturne
in F major op.15 No.1 1.4±0.5 2.8±1.3

St. Germain - Land of ... 3.8±0.4 4.4±0.5

Collegium Vocale & La Chapelle
Royale/Orchestre des Champs
Elysées/Philippe Herreweghe -
Dies Irae (Requiem KV 626)

4.4±0.5 1.6±0.5

Table 2.2: Musical Fragments (part 2) and their average Arousal/Valence appraisal
scores as given by the Performers. ( Scores ± SD are on a 1 to 5 scale )

tendo. It transmits 3D inertial sensor data in realtime via Bluetooth at a
sample rate of 100Hz. Musical material was played to the participants from
a computer, using wired headphones. Visual recordings of arm movements
were transmitted in real-time, using a digital video camera. Judgments of
emotional character were obtained from participants through printed ques-
tionnaires.

Procedure

Within a group of four participants, one set of six musical fragments was
assigned to each participant, such that each fragment was uniquely assigned
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Set Arousal : mean ±
stdev

Valence : mean ±
stdev

1 3.2 ± 1.5 3.3 ± 1.1

2 3.0 ±1.5 3.2 ± 1.1

3 3.2 ± 1.3 3.0 ± 1.6

4 3.0 ± 1.5 2.9 ± 1.3

Table 2.3: Sets of fragments and their statistical Arousal/Valence dispersion.
(Scores on a 1 to 5 scale)

Figure 2.1: Video capture of performance as monitored by the observers

to a participant within the group. Every participant was asked in turn to
listen to each of the fragments assigned to him/her and to express this char-
acter by arm movements while listening to the fragment again, and judge
its emotional character (dealing with one fragment at a time). The arm
movements were made while holding the Wii Remote, in front of a camera
that was positioned in such a way that only the arm was monitored, as
illustrated in figure 2.1. A small shield was used to prevent the performers’
faces from occasionally appearing on the screen.

The instructions for the performer were as follows:

1. Listen to a short musical fragment

2. While listening a second time, express the emotional character of the
music as accurately as possible through the movements of your arm

3. Rate the emotional character of the music on the provided form

We focus on expressed emotions (being the embodiment of emotions
through movement). By instructing the performers to rate the emotional
character of the music immediately following the performance, we antici-
pated that the performers would rate expressed emotions. In our experi-
ment, this was confirmed by having observers validate performers’ rating
scores. It is worthwhile mentioning that for experiments on induced or per-
ceived emotions where verification by an external source is unachievable
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a more thorough instruction set is required : we would like to refer, for
example, to the instruction set used by GEMS [23].

The emotional character of musical fragments was rated in terms of va-
lence and arousal on a 1 to 5 scale. Rather than using the terms valence and
arousal directly, the semantics of the two scales was indicated by labeling the
extremes of the scales with corresponding adjectives. The adjectives were
given in Dutch: kalm, vermoeid (calm, tired) versus energetisch, gespannen
(energetic,tense) to label the low and high extremes of arousal respectively,
and droevig, kwaad (sad, angry) versus blij, tevreden (happy, pleased) for
valence. It was explained to the participants that a single matching adjec-
tive was sufficient to rate a musical fragment correspondingly. For example,
it is sufficient for either kalm or vermoeid to apply, in order to choose that
rating.

The three other participants, referred to as observers, watched the arm
movements of the performer via a monitor in a separate space (figure 2.1).
They did not hear the music fragments the performer heard.

The observers were instructed as follows:

1. Monitor the (arm movement of the) performer.

2. Rate the emotions expressed by the arm movement.

3. Describe any cues in the motion that helped you to make your rating
(free text)

The remaining 12 subjects participated in the role of performer, as described
above. Each subject was assigned again a group of six fragments. This time,
no observers were present. The arm movements and the subject’s rating of
the emotional character of the fragments was recorded as before. The data
obtained in this way is used for validation, as described in section 2.4.

2.4 Results
The data obtained in the experiment was used to create a regression model
for predicting the expressed arousal and valence from arm movements as
captured by the 3D inertial sensors of the Wii remote. We aim at a general
data model that can easily be ported to other devices, possibly using other
sensing technologies. Therefore only predictor variables with a relatively
straightforward relationship to movement were considered. This preference
of general validity over a fine-tuned model leads us to consider only models
with at most five predictor variables.
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The Wii Remote measures the acceleration of the device in the direction
of three perpendicular axes, relative to the device. Since the way of holding
the device was not constrained, similar arm movements may lead to different
data, as an effect of the Wii Remote being held in different ways. To
compensate for this, the acceleration data for each fragment was projected
onto its three principal components by performing a principal component
analysis (PCA). In figure 2.2 we show acceleration data collected from two
different subjects performing on the same musical fragment. In this figure an
acceleration value of 25 corresponds with 1G (gravity). From this figure it
is very difficult to see similarities between the two performances. When the
data is translated and rotated to the PCA-axes, the similarity between these
two performances becomes more apparent (Figure 2.3). Apart from making
data from different subjects easier to compare, an advantage of the PCA
transform is that it reveals the intrinsic dimensionality of the movement.

To determine a set of candidate features to compute from the accelerom-
eter data, we made an inventory of the free text responses in which subjects
reported useful cues for judging the emotional character of the movements.
The cues can be roughly grouped into five complementary aspects of the
movement:

1. Roughness: gracefulness, multiple short moves

2. Rhythm: tempo of the music

3. Speed: high speed, low speed, and acceleration

4. Size: large versus small movements

5. Location of the arm: high = happy

Ideally, each of the cue categories should be represented by at least one
predictor variable.

We extract various features that describe various properties of the distri-
bution of acceleration data, in terms of geometry and density (Figure 2.3).
The same was done for jerk (derivative of acceleration) and speed (integral
of acceleration). Beside these spatial features we calculated also a number
of time related features such as peak-rates, zero crossings and randomness
(runs test). Summarized the following features were extracted :

• Distribution properties for acceleration, jerk and speed along the 3
PCA axes : mean, range, standard deviation, kurtosis, skewness.

• Distribution properties for direction: circular standard deviation, con-
centration parameter kappa ( Von Mises distribution: κ).
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Figure 2.2: Raw acceleration data from accelerometer : Performances of two
subjects on the same musical fragment (set 1, fragment 4)
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Figure 2.3: Acceleration data translated and rotated to PCA-axes : For same
performances as shown in Figure 2.2.
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Directional data is analyzed by means of unit length vectors. All
angular representations of the acceleration vector are converted to
vectors on the unit sphere setting their radius to one. From these rep-
resentations the mean resultant length (r̄) is calculated. The sample
circular standard deviation s is then calculated as s =

�
−2 ∗ ln(r̄).

The concentration parameter κ is calculated by solving the equation
ρ = coth(κ) − 1/κ substituting r̄ for ρ [24].

• Volume (convhull) of acceleration point cloud.
We define volume as the volume inside the convex hull or convex
envelope of the acceleration trajectories deployed in space.

• Time related variables: speed peak rate, zero crossing rate, random-
ness (runs test).
Starting from a peak detection algorithm, the local minima and max-
ima in a signal are detected. The number of peaks over a time interval
is then the peak rate. Zero crossing checks the number of alternations
between a positive and a negative signal value. The number of cross-
ings divided by the time interval results in the zero crossing rate. The
runs test is a test based on the number of runs of consecutive values
above or below the mean of x. Too few runs indicate a tendency for
high and low values to cluster. Too many runs indicate a tendency for
high and low values to alternate. The number of runs is taken here as
a feature variable.

These features (149 in total) can be linked to the cue categories identified
before, with the exception of location cues1.

• Roughness (total: 18): all jerk related features

• Rhythm (total: 16): time related variables

• Speed (total: 75): Speed and acceleration features

• Size (total: 40): Direction parameters, volume of acceleration point
cloud.

To remove any transient effects due to subjects starting or stopping to
move, the features are extracted after removing the first and last 5 seconds of
each data stream. The remaining stream spanned 20 seconds (corresponding
to 2000 samples).

1
Although the position of the Wii Remote can in principle be estimated by assuming

an initial position and tracking acceleration over time, this estimation is unusable in

practice, due to cumulative estimation errors.
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Because we are faced with a large number of features, the next step
comprised feature selection or Feature Subset Selection (FSS) and aimed
at selecting a subset of relevant features for use in model construction.
FSS methods belong to two categories: filters and wrappers. In the filter
approach, features are selected based upon data properties independent of
the learning 2 algorithms. In the wrapper approach, feature selection does
use the learning algorithms. Our approach uses both methods: first a filter
algorithm, followed by a wrapper algorithm.

For the filter algorithm, we correlated the extracted features with valence
and arousal. There were strong correlations between some features and
arousal ( |r| > 0.6) but in general weaker correlations with valence (all
|r| < 0.4). Using the nomenclature from Bell [25] filtering should look for
what he calls relevant features. These are features that have an influence
on the output and their role can not be assumed by the rest. The criterion
we used for relevance, was to discard all uncorrelated features ( |r| < 0.2)
from the analysis. Technically spoken, this is not 100% correct as also a
linear combination of two uncorrelated features still might correlate but it
was sufficient for our goal: a good model that validates.

Dropping these irrelevant features, we are still left with a number of
features that are highly inter-correlated ( |r| > 0.9). Therefore it was also
necessary to take precautions against multicollinearity.

Using all (the remaining) features in a least squares estimate as a re-
gression model would present us with two problems [26]. The first problem
is prediction accuracy: the least squares estimates often have low bias but
large variance. Prediction accuracy can however sometimes be improved by
shrinking or setting some coefficients to zero. By doing so we sacrifice a lit-
tle bit of bias to reduce the variance of the predicted values, and hence may
improve the overall prediction accuracy. The second problem is interpreta-
tion. With a large number of predictors, we often would like to determine
a smaller subset that exhibits the strongest effects.

Because of our restriction to models of maximally five predictor vari-
ables, the method of ’best subset selection’ was used. By retaining a subset
of the predictors and discarding the rest, subset selection produces a model
that is interpretable but has a possibly higher prediction error than the full
model. Best subset selection also gives a hard threshold on how many pa-
rameters to keep. Other shrinkage methods ( like lasso or ridge regression )
may give less variability but the number of parameters is soft-thresholded.
The choice for least squares estimates and for best subset selection implied
the need of a data validation step to check the generalization capabilities of
the calculated data model.

2
In our case: a regression algorithm
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The filtering algorithm reduced the set of variables to a smaller subset. It
is this smaller subset that was presented to SPSS for calculating a regression
model using the stepwise method. This method is in essence a wrapper
method: Each variable is entered in sequence and its value assessed. If
adding the variable contributes to the model then it is retained, but all other
variables in the model are then re-tested to see if they are still contributing
to the success of the model. If they no longer contribute significantly they
are removed. In this way this method ensures that the smallest possible set
of predictor variables is included in the model [27].

From now onwards we will make a distinction between data modeling
for arousal and data modeling for valence.

2.4.1 The Regression Model for Arousal

Set-Up of the Arousal Model

The regression model for Arousal was derived from 97 performances out of
a total of 120 performances. 23 cases where performer and observers did
not agree (Difference > 1) were discarded . In other words, in over 80% of
the cases there was an agreement between performer and observer. We use
SPSS and the stepwise method to enter the predictor variables, resulting in
a model with three predictor variables. The variables (listed in their order
of contribution importance) are the following (beta-values in table 2.4):

SpeedPeakrate: The number of local maxima and local minima for speed
(integral of acceleration) divided by the time interval. Speed is calculated
as an Euclidean norm.

KurtPCA1Speed: Kurtosis of the distribution of speed along the first
(main) principal axis. This variable is negatively correlated with arousal.
A high value means that intermediate values have become less likely and
the central (higher peak) and extreme values (fat tails) have become more
likely. In other words low arousal corresponds with long periods of low
speed (central values) and other periods of high speed (extreme values).
High arousal corresponds with periods of nearly constant speed or where
the variation in speed is not huge (intermediate values).

PCA3Std: Standard deviation of the distribution of acceleration along
the third principal axis. A small value indicates that the acceleration mainly
happens in a plane formed by the two main principal axes.

The regression analysis did not reveal any outliers. (Criterion used:
more than three standard deviations difference). There was however one
influential case (group 5 subject 3 fragment 5) that ended up with a high
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Model B SE B Beta Sig.

(Constant) 2.096 0.410 0.000

Speedpeakrate 0.560 0.056 0.680 0.000

PCA3Std 0.043 0.014 0.213 0.002

kurtPCA1Speed -0.585 0.149 -0.212 0.000

R = 0.854 (R2 = 0.730 adjusted R2 = 0.721)

Table 2.4: Regression analysis for Arousal (Training Data).
- B = Parameter values of the regression model
- SE B = Standard Error for the parameters
- Beta = Standardized version of the B-values. Tells us the number of standard
deviations that the outcome will change as a result of one standard deviation
change in the predictor.
- Sig. = if < 0.05 the B-value is significant different from zero and the parameter
contributes to the model.

value for DFFit (Difference in Fit). In order to preserve the general char-
acter of our model we removed this case and recalculated our regression
model. An overview of the recalculated model can be found in table 2.4.

Because of the correlations between features, the following assumptions
were checked:

1. Multicollinearity: VIF (variance inflation factor) average was close
to 1 (1.4) and indicated absence of multicollinearity between the 3
predictor variables.

2. Normality for distributed errors: Probability plot for the residuals
confirmed normality.

Validation of the Arousal model:

Model validation was done using the data gathered from the 12 individual
subjects, who did not participate during the main part of the experiment.

Explanatory capabilities of the model: The variance of the validation
data explained by the model : R = 0.754 (R2 = 0.568). Compared to R =
0.854 (R2 = 0.730) for the original data, this means a shrinkage with 16%.

The predictive capabilities are presented in Fig. 2.4. We see that the
average prediction from the model deviates most for low arousal values. For
other arousal values, the prediction is in line with the target value, although
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Figure 2.4: Validation data.
X-axis: Arousal values as judged by the performer (Likert scale 1 to 5).

Y-axis: Predicted arousal values using the model from table 2.4

Residuals Minimum Maximum Mean StdDev

Model -1.553 1.880 0 0.740

Validation -4.888 1.506 -0.494 1.083

Table 2.5: Residual statistics.

the variation is higher for high arousal values. We checked for sparsity in
the training database as a possible explanation but this was not the case.
A part of the effect is explained by the censoring mechanism due to cutoff
limits at arousal value 1 (minimum) and at arousal value 5 (maximum). It
was also in these areas that we spotted most of the disagreement between
performers and observers.

Further investigation was done by having a closer look at the residuals.
The results of this analysis are mentioned in table 2.5. The large residual
value of -4.888 is due to an out of scale prediction of 9.888 for an arousal
value of 5. Allowing non-linearity by replacing values outside the boundaries
of 1 and 5 with their respective boundary values, reduces the error, and the
explanatory value of the model is increased (R2 = 0.685). This leads to a
reduction of only 4.5 % compared to the original data model.
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2.4.2 The Regression Model for Valence
The regression model for valence was derived from 88 out of a total of
120 performances. 32 cases where performer and observers did not agree
(Difference > 1) were discarded. We discarded considerably more samples
(27 %) than for arousal (19 %).

As was the case with the arousal model, we started with the stepwise
method to add variables to the model. In a first step we obtained a model
with five predictor variables. There were no outliers but there was one in-
fluential case. Group 2 Subject 3 Fragment 5 ended up with a high value for
DFFit. In order to preserve the general character of our model we removed
that case and recalculated our model. Recalculation led to the removal of
two more predictor variables that had no significant contribution. The fi-
nal result was a model with again three predictor variables. The variables
are hereafter listed according to the importance of their contribution(beta-
value), see table 2.6:

stdPCA1Jerk: Standard deviation of the derivative of the acceleration
(jerk) of the first PCA component. This variable correlated negatively with
valence. If acceleration changes nearly have a random pattern (high stan-
dard deviation), this will result into a lower valence.

SpeedPeakrate: See subsection 2.4.1.
PCA2std: Standard deviation of the second principal component. A

small value means that acceleration/movement happens mainly along the
axis of the first principal component rather than in a plane. This variable
correlated positively with valence. In other words : for low valence, the
movement is rather one dimensional (1D).

A complete overview of the model can be found in table 2.6.
Assumptions checked:

1. Multicollinearity: (VIF variance inflation factor). The VIF never ex-
ceeded 10, but the average over all variables is situated well above 1
(4.4). So there might be some moderate bias in the model.

2. Normality for distributed errors: Probability plot indicates that the
distribution is slightly skewed left.

The R2 value of 0.367 for valence is relatively low compared to a value of
0.730 for arousal. A possible reason for this is that the model contains no
predictor variable representing location, although observers reported this
cue as indicative for valence. Even if location cannot be estimated directly
from the accelerometer data, an estimate of position can be made indirectly:
Because of the fact that the Wii Remote device is ergonomically designed for
one particular way of grasping, in practice subjects held the Wii Remote all
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Model B SE B Beta Sig.

(Constant) 1.083 0.354 0.003

Speedpeakrate 0.751 0.116 1.018 0.000

StdPCA1Jerk -0.238 0.046 -1.148 0.000

PCA2Std 0.058 0.021 0.461 0.008

R = 0.606 (R2 = 0.367 adjusted R2 = 0.344)

Table 2.6: Regression analysis for Valence (Training Data).
- B = Parameter values of the regression model
- SE B = Standard Error for the parameters
- Beta = Standardized version of the B-values. Tells us the number of standard
deviations that the outcome will change as a result of one standard deviation
change in the predictor.
- Sig. = if < 0.05 the B-value is significant different from zero and the parameter
contributes to the model.

in the same position. Additionally, it is reasonable to assume that raising
the arm leads to a different angle of the hand than lowering it, due to
physiological constraints. By making these extra assumptions, location can
be estimated as the rotation of the device along its pitch axis, comparable
with nose up (pitch>0) or nose down (pitch<0) for a plane.

The contribution of the pitch variable to the regression model was slightly
below the contribution of the strongest variables. Because the pitch vari-
able did not explain more or additional variance, we did not include it in
the model here.

Validation of the Valence model:

Model validation was done again on the validation set.
Explanatory capabilities of the model: The variance of the validation

data explained by the model : R = 0.532 (R2 = 0.284). Compared with R
= 0.606 (R2 = 0.367) for the original data, this means a shrinkage with 8.3
%.

The predictive capabilities of the model are presented in Fig. 2.5. As
expected with the lower R2 values, the predicted (main) values for valence
are closer to the mean. Most variation in prediction is found for low valence
values.

Further investigation was done by having a closer look at the residuals.
The results are in table 2.7.
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Figure 2.5: Validation data.
X-axis: Valence as judged by the performer (Likert scale 1 to 5).

Y-axis: Predicted valence values using the model from table 2.6.

Residuals Minimum Maximum Mean StdDev

Model -2.031 2.203 0 0.970

Validation -3.394 1.901 -0.255 1.073

Table 2.7: Residual statistics.

Standard Deviation for residuals is 1.073 and that is close to the standard
deviation of the model. There is one residual with an excessive value of -
3.394. This case is associated with a low valence value (value = 2).

2.5 Discussion
The data model for arousal explains 73 % (R2-statistic) of the variance
for the original sample and 68.5 % (R2-statistic) of the variance for the
validation samples. These are high values and endorse the good predicting
capabilities of the model. The small shrinkage (4.5 %) from the original
sample to the validation data confirms the generalization capability of this
model. The data model for valence resulted in a value for the R2 statistic
of 36.7 % for the original sample and of 28.4 % for the validated data. This
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is a shrinkage with 8.3 %. The generalization of the valence model is clearly
less than for arousal and its predicting capabilities are also clearly less.

We have tried to remedy a possible cause for this, namely that the ac-
celerometer data do not allow for a good estimate of location to be made.
However, an post hoc heuristic to estimate location indirectly did not im-
prove results.

Another explanation for the lower prediction results of valence is that
valence related aspects of movement are ambiguous, in the sense that hu-
man observers are also less successful in recognizing valence accurately. This
is reflected in the fact that for valence, a larger proportion of the experi-
mental data was discarded due to lack of agreement between intended and
observed valence. The higher ambiguity of valence compared to arousal is
also on a par with the findings of Pollick et al. who stated that the second
dimension of affect, pleasantness, was less correlated with any of the con-
sidered movement features [18]. A possible explanation is that sad music is
not systematically associated with negative valence [28] [29]. Although sad-
ness is generally considered to be an unpleasant emotion, the classification
is not straightforwardly applied to music. Sad music is often considered
beautiful, and therefore it may be difficult to perceive sadness in music as
unpleasant [12].

The models presented here are based upon motion data from arm ges-
tures as input. To our knowledge, experiments attempting to detect musical
affect from movement using inertial sensors are as of yet very scarce. What
has been done before is affect detection from music audio signals. Lie Lu [30]
obtained classification results from the four quadrants of the arousal-valence
space with a resulting accuracy of 76-94 %. The results of a classification
study (containing 4 classes) can not be compared directly with a regression
study but they do confirm the feasibility of an affect based music retrieval
system. Another reference is for example made to the study of Yi-Hsuan
Yang [31]. In his research a support vector regression model was used based
on timbral texture features (spectral centroid, spectral rolloff, spectral flux
and MFCC) and MPEG-7 features.

They obtained an R2-statistic of 79.3 % for arousal, and 33.4 % for
valence, which corresponds well to the results presented here (68.5 % for
arousal and 28.4 % for valence).

Apart from the accuracies obtained for predicting arousal and valence,
the cue categories identified in observers’ responses are likewise similar to
those reported in other studies, such as a study on dance movements, where
full-body movement was judged [20]. Similar movement cues (irregular-
ity, fluency, speed, amount) were also identified in a study on the visual
perception of expressiveness in musicians’ body movements [32].
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The data regression models for predicting arousal and valence are the
key building blocks to form the envisioned application of an affect based
music retrieval system. The data models project arm movement data into
a point onto the valence/arousal plane used to describe emotion. What
is missing for a complete affect based music retrieval system is the anno-
tation of a music library and the construction of playlists. For automatic
mood-annotation, there are several applications possible such as the model
of Yi-Hsuan Yang [31] mentioned before. However, all these applications
can not capture the possibly idiosyncratic relation between the expressed
emotions and the music. The models we developed can overcome this is-
sue because they allow annotation of music collections by movement, rather
than by textual annotation. As this is potentially a tedious task, a realistic
implementation will start with a default library that is automatically anno-
tated and will personalize the annotations by movement as per requirement.
A straight-forward method for constructing a playlist is to select songs that
come close to the projected point in the valence/arousal plane. Such a
method could possibly reflect more differences in valence than in arousal, to
compensate for the lesser quality of the data model for valence. This, how-
ever, is an issue of playlist-creation, and what constitutes a ”good” playlist
also depends on the expectations of the end-user. An end-user study would
be required to gain more insight in this domain.

The regression models were derived from movement data limited to data
streams of 20 seconds. For a music retrieval system, requiring 20 seconds
of movement to retrieve music is probably unacceptably long. Therefore
it is worthwhile to investigate the impact of reducing the query duration.
We simulated a shorter query time by reducing the analysis interval from
2000 samples (20 seconds) to 500 samples (5 seconds) and investigating the
prediction errors at every step. In figure 2.6, the impact of using shorter
retrieval intervals is visualized. The data set used for this investigation is
the validation data set. The impact on the prediction errors was measured
by the normalized root mean square error (NRMSE):

NRMSE =

��n

i=1(Ŷi−Yi)2

n

(Y max − Y min)
(2.1)

With Ŷi being the value for valence/arousal calculated from the models
and Yi being the real valence/arousal value (appraisal by the performer).
Reducing the retrieval time clearly results in less accurate predictions. The
loss of precision is however rather small. A usability study should determine
the right ratio between retrieval time duration and precision. These findings
are valid for the arousal model as well as for the valence model.
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Figure 2.6: NRMSE for varying retrieval/analysis intervals. (For convenience of
the reader polynomial regression lines were added.)

The data models for valence and arousal were derived from an exper-
iment where subjects could hear the music. This differs from the typical
situation of musical playlist creation, where the user does not hear music
while making an arm gesture. Instead, he or she must “think” music. Most
people intuitively understand what it means to hear a tune in your head.
This can be considered as a form of musical (auditory) imagery. Converging
evidence indicates that auditory cortical areas can be activated even in the
absence of sound and that this corresponds to phenomenological experience
of imagining music [33]. Auditory imagery preserves many structural and
temporal properties of auditory stimuli, and generation of auditory imagery
appears to involve activation of many brain areas involved in perception
of auditory stimuli [34]. We hypothesize that gestures made by subjects
to emotionally express the music they hear is triggered by activating these
brain areas. As a consequence, we expect arm movements made in absence
of music but triggered by musical imagery, will be essentially similar to
movements that would have been made when the imagined music would
have been physically audible. In particular, we assume here that musical
emotion can be transmitted through movement independent of the actual
presence of the music.

Additional research is needed to gain insight into the role of musical
imagery for our application. One important research question is: What is
the impact of arousal and valence on musical imagery ? In a study with
words, emotional words were consistently better recalled than the neutral
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words [35]. Does this also apply to music imagery? Can we more easily
imagine music that triggers extreme values for valence and arousal?

2.6 Conclusions and Future Work
The work presented in this paper is intended as a foundation for a motion
based affective user interface for music retrieval. We have derived predic-
tive models for valence and arousal from empirical data, gathered in an
experimental setup where inertial data recorded from arm movements is
coupled to emotion ratings. This experiment firstly extends previous find-
ings that state that human subjects are generally capable of recognizing
affect by means of arm gestures to the capability of recognizing affect by
means of gestures originated by the mood of a musical fragment. Secondly,
model validation in the main study confirmed the predictive capabilities of
the model, regressing musical emotion ratings to arm movement. In line
with previous studies, we find that arousal is more directly related to arm
movement than is the case for valence.

To our knowledge, attempts to detect affect from movement using iner-
tial sensors are as of yet very scarce3. The use of inertial sensors for affect
recognition has the crucial advantage that such sensors are readily available
in mobile devices nowadays, which makes the use of the developed method
in commercial applications a viable option.

Several improvements to the models can be made. A first improvement
would be an individual calibration of the model. Movement on music is
an individual expression. Although our general model works, fine-tuning to
individual traits of users may increase its accuracy. Studies revealed indeed
that for example gender, age, musical expertise, active musicianship, broad-
ness of taste and familiarity with music have an influence on the semantic
description of music [37].

A second improvement would be the use of other more sophisticated
statistical models. In this study, we used linear regression models, but
more complex models like support vector regression [38] or reservoir com-
puting [39] may achieve higher prediction accuracies.

A last improvement can result from other and/or more sensing devices.
The observers in the experiment indicated that the physical location where
the arm movement takes place plays an important role for the determination
of the valence. Arm movement performed at higher locations are indicators
of joy and consequently of high valence values. Since accelerometer data
alone are not sufficient to accurately estimate position, additional sensing
techniques (e.g. gyroscopic sensing) will be required.

3
The exception that proves the rule is [36].
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The world is its own best model.
Rodney A. Brooks, 1990

3
Expressive Body Movement Responses
to Music are Coherent, Consistent, and

Low Dimensional

Abstract

Embodied music cognition stresses the role of the human body as mediator
for the encoding and decoding of musical expression. In the present study
we set up a low dimensional functional model that accounts for 70% of
the variability in the expressive body movement responses to music. With
Functional Principal Component Analysis (FPCA) we modeled individual
body movements as a linear combination of a group average and a number
of eigenfunctions. The group average and the eigenfunctions are common
to all subjects and make up the commonalities. An individual performance
is then characterized by a set of weights (the individualities), one per eigen-
function. The model is based on experimental data which finds high levels
of coherence/consistency between participants when grouped according to
musical education. This shows an ontogenetic effect. Participants without
formal musical education focus on the torso for the expression of basic mu-
sical structure (tempo). Musically trained participants decode additional
structural elements in the music and focus on body parts having more de-
grees of freedom (such as the hands). Our results confirm earlier studies
that different body parts move differently along with the music.
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3.1 Introduction

THE power of music as a non-verbal expressive communication sys-
tem is widely recognized [1–4]. Yet, the mechanisms that support the

encoding and decoding of musical expression are still poorly understood, es-
pecially in social contexts (e.g., pop concerts, joint action, etc.). Embodied
approaches to music have defined the human body and body movements
as core aspects of these encoding-decoding mechanisms [1, 5]. In general,
body movements are considered to facilitate the non-verbal expression and
communication of emotions, feelings, ideas and intentions [6].

In the context of music production, expressive movements can be en-
coded into sound (e.g. [5, 7–15]), typically through the use of a musical
instrument. Accordingly, the structural features inherent to a musical com-
position (e.g., melodic lines, rhythm, etc.) combined with the expressive
performance of a musician (e.g., timing, dynamics, etc.) create, what has
been called, “moving sonic forms” (cf. [1]). When listening to music, peo-
ple can mirror the expressive aspects of moving sonic forms back into actual
movement patterns. Synchronization of movement to the musical beat is
known to be based on brain regions that associate sounds with motor ac-
tivity [16]. However, people are also capable of generating smoother body
movement patterns that go along with the musical expression [15, 17–19].
These movement patterns can be further connected to other modes with
which actions are typically associated, like emotions, situations, and im-
ages. By mirroring sound to movement, music can be experienced and
understood as intentional, expressive, and semantically meaningful [1].

A successful and effective communication of musical expression requires
that human expressive movement responses to music are at least partly co-
herent and consistent. Therefore, the study of patterns of coherence and
consistency in music-evoked body movements is important in order to pro-
vide deeper insights into musical signification processes in a social context.
In addition, we want to be able to define what is common in the expres-
sive response of a population (commonality), as well as what is different in
the expressive responses of the individuals of this population (individuality).

So far, only a small number of studies have addressed coherence/consis-
tency in expressive movement responses to music. Leman et al. [18] used
a regression model to study the coherence of listeners’ movements in re-
sponse to Guqin music. It was shown that there was a trend depending
on learning. Desmet et al. [20] applied dynamic time warping (DTW) and
cross correlation to estimate group coherence of spontaneous movements
to music. Based on recurrence analysis, Varni et al. [21] calculated the
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level of synchronization established among the affective behaviors of each
single subject in the group on the basis of a generalized autocorrelation
function. Several other studies have tried to capture the coherence/consis-
tency of group movements [22]. However, in several of the recent studies
that consider music-related experiments in relation to expressiveness [9, 23],
measurements of movement deployment are often reduced to single-value
measures, and less attention is devoted to the particular dynamic features
of the expressive movement. As a result, the commonality and individuality
of the expressive responses of a population have remained hard to define.

3.2 Aim of study
The aim of this study is to develop a dynamic approach to analyze coherence,
consistency, commonality and individuality in how people mirror musical
expression in their free and spontaneous body movement in response to
music.

Because we anticipate that people will mimic the musical expression
in their movement, we study movement also in terms of expressiveness.
Although we do not define this concept until section 3.4, we assume that
the reader’s intuitive knowledge about this concept will be sufficient here.

Coherence is a group effect and describes how well individual subjects
correlate in terms of expressiveness at two distinct timestamps. Coherent
time intervals are then continuous time intervals where we see high coher-
ence for every pair of timestamps. Consistency means high correlations
between distant coherent intervals. Commonality stands for what is com-
mon in the expressive response of a population and individuality stands
for what is different in the expressive responses of the individuals of this
population. Analyzing the music in terms of these concepts poses some
challenges:

• Firstly, since body movement synchronization to music is a dynamic
phenomenon, the method should allow for describing model parame-
ters in terms of basic movement patterns extracted from real move-
ments, rather than in terms of single values that capture a particular
feature of a particular movement segment. Such an approach has re-
cently been explored by Leman and Naveda [24] and Fan et al. [25],
who use periodicity analysis to capture spatiotemporal representations
of gestures. Their approach however, still requires a segmentation
step using periodicity (beats) to determine segment boundaries. Our
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newly proposed method avoids the cumbersome segmentation process
and focuses directly on the process dynamics.

• Secondly, it has been shown that people do not synchronize all their
body parts to the music at all frequency levels at any given time
[26, 27]. We may assume that parts of the human body (such as the
hands) are better suited for capturing expressiveness than, say, a leg
[28–31]: (i) There is the known privileged role of hand gestures in
reasoning and conveying emotion and expressivity [19, 32–34]. (ii)
The human body can be modeled as a chain of rigid bodies connected
at joints that provide a number of degrees of freedom (DOFs). Chest
has few DOFs and hands have many DOFs. (iii) Hands make up
the personal space, i.e. the space within reach of the performer’s
body [35] whereas the chest belongs to the intimate space, i.e. the
space occupied by the performer’s body.
All this makes it challenging to find out the role of individual body
parts in movement to music. We provide results for all individual
body parts, but the focus will be on hands and chest as they contrast
for the explanations just mentioned.

• Thirdly, there may be a considerable degree of inter-individual and
intra-individual variability among peoples’ movements. We believe
that it is possible to capture this aspect by extracting a common model
from the population. Starting from this model we can then rebuild the
individual responses with some additional parameters that character-
ize each individual. The number of parameters needed for rebuilding
the individual expressive responses to music defines the dimensional-
ity of the expression space for the population. We assume that the
expression space is low-dimensional because otherwise, populations
would have more difficulties in mirroring the musical expression.

To cope with the aforementioned challenges, we developed a statistical
method that captures the essential functional features of human expressive
movements as a dynamic model. We assumed that coherence and consis-
tency in these movements subsume a low-dimensional model of expressive-
ness. Such a model would support the theory that expressive embodiment
of music has a firm social foundation. The method followed is based on
functional data analysis, in particular correlation analysis and functional
principal component analysis. It enables us to capture free body movement
responses to music as a dynamic phenomenon with a focus on basic over-
all model parameters. Thereby, we hypothesized that movement speed is
a sufficient and relevant marker for measuring the coherence/consistency
of free human movement responses to music. It makes abstraction of the
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position and focuses on the rate of change of the movement position. No
further assumptions are made about segmentation of gestures. Instead, we
believe that the analysis should come up with the segmentations from the
bottom-up [36].

The presented method will be validated on a data set originating from an
experiment assessing people’s free body movement responses to music (i.e.,
The First Piano Concerto of Brahms). The participants of the experiment
consisted of a group of musically trained people and a group of musically
untrained people. Applying our statistical method, we investigate patterns
of coherence/consistency within the groups of participants and investigate
the role of individual body parts in how participants synchronize their move-
ments to the music. Accordingly, based on this case study, we demonstrate
how our statistical method can contribute to advances in knowledge on so-
cial aspects of embodied music cognition. We believe that such an approach
may lead to a novel research methodology for movement analysis in relation
to music. Moreover, we believe that the method may be useful for other
domains (e.g. dance) where coherence/consistency of non-verbal communi-
cation and human movement is studied.

3.3 Experimental set-up

3.3.1 Participants

Distinct groups of participants were formed on the basis of their musical
background. A first group (i.e., musically trained MTr group) was com-
posed of 18 participants (10 male, 8 female) with a mean age of 23.83 years
(SD=3.71). A second group (i.e., musically untrained MunTr group) was
composed of 18 participants (10 male, 8 female) with a mean age of 24.60
(SD=4.81). Subjects from the MTr group declared to have had music edu-
cation with a mean number of years of 9.7 (SD=5.4) and declared to play
a musical instrument. Musical education refers here to additional lessons
compared to the obligatory courses in primary and secondary school that
are taught from the age of 6 till 14 (1 hour/week). The additional lessons
comprise solfège, instrument learning, ensemble playing and take up more
than 3 hours a week. The MunTr group declared to have received only the
obligatory courses.

A Big Five Inventory test [37] revealed no significant difference between
the rate of extraversion/introversion between the MTr group (M=3.49,
SD=0.62) and the MunTr group (M=3.51, SD=0.67), t(34)= −0.099,
p>.05 (p=.92).
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Figure 3.1: Musical excerpt: Johannes Brahms’ First Piano Concerto, Opus 15
in D minor. Dashed lines separate Heroic (Hx) and Lyric style (Lx) intervals.

Moreover, we asked how familiar participants were with the type of music
used in the experiment. This question was rated on a five-point Likert scale,
with 1 as not at all familiar, 3 as somewhat familiar, and 5 as extremely
familiar. Familiarity for the MTr group (Mdn=4) was significantly higher
than for the MunTr group (Mdn=2), U=0, z=−5.45, p<.001, r=−.91.

Participants also filled in a questionnaire based on the semantic differen-
tial method [38] to test the emotional experience of musical fragments (e.g.,
[39–44]). No differentiation in responses was found related to the musical
background of the participants. This finding is in line with studies of Bi-
gand et al. [45, 46] indicating that emotional responses to music are stable
and only weakly influenced by musical expertise.

3.3.2 Musical stimulus
The musical stimulus is based on the first 6 minutes and 10 seconds of the
Maestoso movement of Johannes Brahms’ First Piano Concerto, Opus 15 in
D minor from 1858 (in a recording by Krystian Zimmerman and the Berlin
Philharmonic Orchestra, conducted by Simon Rattle). The musical piece
is characterized by passages that articulate extreme contrasts in physical
acoustic energy, reflecting two contrasting expressions, namely a Heroic and
Lyric expression. In the stimulus three Heroic passages were alternately
presented with three Lyric passages. Because the first Lyric passage is
relatively long in comparison with the other we deleted some portion of that
passage (1 min 56 s - 2 min 46 s of the recording) in a way that was not
audible for people that do not know the musical piece well. The remaining
musical stimulus had a duration of approximately 5 min (See Fig. 3.1).

The contrasts between the Heroic and Lyric passages were checked on the
basis of a (psycho-)acoustical analysis. The properties that were extracted
from the audio signal encompassed an energy property (i.e., amplitude), a
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Figure 3.2: Marker settings for Motion Capture System.

rhythm property (i.e., onset likelihood), and spectrum properties (i.e., ir-
regularity, spectral flatness, spectral kurtosis, spectral sharpness, spectral
variance) (See [47] for further details). To statistically test the differences
between the heroic and lyric fragments on the various acoustic properties, we
applied nonparametric Mann-Whitney U tests (normality was violated). In
summary, the results show that the levels of amplitude, onset likelihood, ir-
regularity, spectral sharpness, and spectral variance were significantly higher
(p < .001) in the heroic fragments. In contrast, the levels of spectral flat-
ness and spectral kurtosis were significantly higher (p < .001) in the lyric
fragments.

3.3.3 Procedure

Participants were invited individually to take part in an experiment where
their movements were recorded. The participants received the task of mov-
ing spontaneously to the music. This was formulated as: “Translate your
experience of the music into free full-body movement. Try to become ab-
sorbed by the music that is presented and express your feelings into body
movement. There is no good or wrong way of doing it. Just perform what
comes up in you.” They could thereby use the space indicated by a round
carpet with a diameter of 4 meters. Furthermore, we made the room com-
pletely dark, as the pilot study had indicated that this made the participants
more comfortable and less constrained to execute their task.

3.3.4 Measurement

The data for this experiment was collected by a Motion Capture System
(Optitrack infrared optical system with Arena motion capture software)
at a sampling rate of 100 Hz. Markers were attached to the upper body
(hips-chest-neck-head-collarbones-shoulders-elbows-wrists) (See Fig. 3.2).
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Figure 3.3: From movement data we calculate a speed signal and run this through
a low pass filter to obtain the speed envelope. Analyses are done with reference to
musical tempo and musical amplitude. A third analysis correlates speed at different
timestamps which leads us to the concepts of coherence and consistency. The speed
envelope is also used as input for the modeling process.

3.3.5 Block-diagram
Fig. 3.3 shows the structure of this chapter using data processing as the
leading thread. For our data pre-processing steps we used the movement
data to calculate a speed signal and ran this through a low pass filter to
obtain the speed envelope. Subsequent analyses use these signals as input
and have musical tempo and musical amplitude as points of reference. A
third analysis correlates speed at different time stamps which leads us to
the concepts of coherence and consistency. Eventually the speed envelope
is used as input for the modeling process.

3.4 Analysis of Expressiveness
Music psychology pioneer Carl Seashore [48] introduced the idea that ex-
pressive performance consists of deviation from the regular in sound proper-
ties such as loudness, tempo (rubato), articulation and intonation. David-
son [8] adds the idea of embodiment to it saying that each movement type
(for instance, the wiggle) can be executed in various ways giving the poten-
tial for a range of expressivity levels to be elicited. Their findings concern
music performances but similar results are found in work on dance perfor-
mances. For example, Camurri et al. [49] studied expressive gestures as
gestures superimposing expressive content (deviation) to normal gestures
(regular).
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Figure 3.4: New axis system used for the analysis of elbows and hands(wrists)
movement.

However, the terms “deviation” and “regular” may have negative con-
notations. Regular stands for normal behavior and deviation for abnormal
behavior. This is the connotation we want to avoid. We do not want an
association between music-evoked body movement and abnormal behavior.
Therefore, we will use the terms variation and reference instead. As points
of reference we consider various social norms. In Section 3.4.2 the reference
is defined as the tempo of the music while in Section 3.4.3 we use the musical
amplitude as reference. Tempo and amplitude are examples of conventional
social norms describing normal, anticipated behavior. In section 3.4.4, we
define the reference as being the group average of the log of the speed of
the movement.

Let us start, however, by explaining how to pre-process the data.

3.4.1 Pre-processing of the data
Data collected from the markers of the Motion Capture System are con-
verted to Cartesian coordinates referencing a fixed axis system with the
origin located on a fixed spot on the floor. In such a system movement
of the torso (translations and rotations) has influence on the speed of con-
nected limbs like arms. To eliminate this influence a new axis system was
defined for the analysis of the elbow and wrist markers. The origin of this
new axis system was placed on the shoulder as shown on Fig. 3.4. Axis 1
was defined as the line going through the clavicle (shoulder-neck). Axis 2
was defined by the projection of the up-position (chest-neck) onto a plane
perpendicular to axis 1 and eventually axis 3 was determined as the cross
product of axis 1 and axis 2. All calculations and findings in this paper use
this coordinate system for hands and elbows unless otherwise stated.

Samples were collected for 315 seconds corresponding to the duration of
the musical fragment. The data from one subject in the MTr group were dis-
carded due to technical problems during the recording. Bodily movements
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were free (no imposed choreography) and resulted in individual movements
that were not directly comparable from subject to subject. Therefore, we
decided not to compare the positional coordinates. Instead, we compared
the speed of the bodily movements with as underlying motivation that speed
is closely related to kinetic energy (Ek = 1

2 mv
2 for every body part follow-

ing Dempster’s human body model [50]). But even then timing differences
among subjects hindered the analysis. We solved this by (low-pass) filtering
the speed signal with filter parameters set in line with musical characteris-
tics (see below). The selected music of Brahms has measures varying from
1.6 to 1.7 s and the time interval for filtering was set to 5 s approximating
three measures. The 5 s window was also checked with respect to Pöppel’s
theory of the 3 s window of temporal integration [51]. Using a 5 s window
made sure that we captured this phenomenon.

Ultimately, the calculation of the speed signal was handled in two steps.
Firstly, the speed signal was calculated from the Motion Capture positional
coordinates and secondly it was low-pass filtered.

The first step, calculation of the speed signal, used a linear regression
based derivation filter with a regression window of 0.175 s. The value of
0.175 s corresponds with a linear response of the derivation filter in the
useful frequency band of 0-4 Hz. The useful frequency band was derived
from spectrograms (an example for subject 1 is shown in Fig. 3.5). This
derivation filter was applied to all coordinates of all subjects. Eventually the
speed signal was set equal to the L2-norm of the derivatives. The regression
filters used are identical to first order Savitzky-Golay smoothing filters [52].
Our motivation for using regression filters is that features of the temporal
speed pattern, such as minima, maxima and slopes, are better preserved by
filters having a clear temporal interpretation than by filters having a clear
spectral interpretation.

In the second step we calculated from this speed signal a slowly varying
speed signal (the speed envelope) using a moving average filter with a win-
dow of 5 s as explained above. The resulting speed envelope is presented in
Fig. 3.6.

3.4.2 Motor-mimesis of musical tempo
Here, we investigate in what ways the periodicity of expressive movement
responses to music equals or differs from the tempo of the music. The
tempo of the music is used as reference here. It is calculated from the
manually annotated inter-beat time intervals for the different musical style
fragments. This is discussed in Subsection 3.4.2.1. To analyze periodicity
in the bodily movement, the dominant frequencies are extracted by means
of Fourier analysis (Subsection 3.4.2.2). In Subsection 3.4.2.3 we compare
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Figure 3.5: Spectrogram for the x-coordinate of the right hand (subject 1)
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Figure 3.6: Speed and Speed Envelope for subject 1. Speed envelope is the result
of running the speed signal through a moving average filter with a window of 5 s.
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musical tempo with periodicity in movement.

3.4.2.1 Manual analysis of the musical signal

The time signature of the music is 6/4 with an emphasis on the first and
fourth beat. The beat times of the musical piece were manually annotated
using Audacity [53]. From the annotation we learn that the inter-beat
time intervals slightly vary during the musical piece. In order to better
estimate the varying tempo, we split the entire musical excerpt into six style
fragments labeled respectively as Heroic 1-2-3 and Lyric 1-2-3. The inter-
beat time intervals are considerably longer in the lyric fragments compared
to the heroic fragments, pointing to a lower tempo. In addition, owing to
the musical articulation, the inter-beat time intervals are not equally spaced
resulting in a different time gap from beat 1 to beat 4 in the same measure
compared to the time gap from beat 4 to beat 1 of the next measure (See
Table 3.1). When the beat 1-4 time interval differs significantly from the
4-1 interval, one can expect a frequency peak at the “measure”-frequency
compared to a peak at the double “measure”-frequency otherwise.

3.4.2.2 Fourier Analysis of the Speed Signal

Because the tempi differ from style fragment to style fragment, we do not
make a Fourier analysis on the entire time interval of the speed movement
signal but on the different style fragments. Given our interest in differences
between the two groups, we apply a Fourier analysis twice, once for the MTr
group and once for the MunTr group.

The Fourier analysis is done in two stages. Firstly, we analyze every indi-
vidual subject (and every marker) and secondly we consolidate these results
to end with one spectrum per group. The consolidation process consists of
a normalization step followed by an averaging step. The normalization step
is required to compensate for subjects performing at different speed levels.

For all groups and most markers we observe dominant frequency peaks
in the range from 0.68 to 0.87 Hz (±0.02 Hz) matching a period from 1.47
to 1.15 s. These periods indicate a half measure and correspond to tempi
between 122 and 157 BPM. To illustrate we show the spectra for chest and
dominant hand in the second heroic style fragment (H2) for both groups
(Fig 3.7 and Fig 3.8).

The coordinates of the dominant hand are relative to the shoulder and
are as such not influenced by movement of the torso, as previously explained
(Section 3.4.1). Still, a peak frequency corresponding to the tempo is clearly
visible. (The frequency resolution depends on the number of samples in a
fragment and is approximately equal to 0.02 Hz).
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Figure 3.7: Amplitude Spectrum of Chest Speed for Heroic Style Fragment 2 (H2)
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Figure 3.8: Amplitude Spectrum of Dominant Hand for Heroic Style Fragment 2
(H2)
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F ragm.

Annotated
Beat 1-4
Interval

Annotated
Beat 4-1
Interval

Fourrier
Chest
PeakPeriod

Fourrier
Dom Hand
PeakPeriod

Musically T rained Group

H1 1.19 ± 0.06 1.23 ± 0.07 1.23 1.22

L1 1.41 ± 0.12 1.52 ± 0.07 1.47(1.39) −−

H2 1.16 ± 0.04 1.18 ± 0.05 1.15 1.15

L2 1.32 ± 0.06 1.37 ± 0.15 1.37 1.37

H3 1.20 ± 0.05 1.22 ± 0.07 1.22 1.15(1.22)

L3 1.25 ± 0.05 1.28 ± 0.06 1.29 1.29

Musically Untrained Group

H1 1.19 ± 0.06 1.23 ± 0.07 1.22 1.22

L1 1.41 ± 0.12 1.52 ± 0.07 1.35(2.00)

H2 1.16 ± 0.04 1.18 ± 0.05 1.18 1.15

L2 1.32 ± 0.06 1.37 ± 0.15 1.37 −−

H3 1.20 ± 0.05 1.22 ± 0.07 1.41(1.15) 1.18

L3 1.25 ± 0.05 1.28 ± 0.06 1.29 1.29

Table 3.1: Annotated Beat Interval versus Measured (Fourier) Peak Period
expressed in seconds. The values inside brackets () represent a second, slightly

smaller peak.

3.4.2.3 Musical Tempo versus Speed Spectrum

In Table 3.1 we compare for both groups the annotated beat-intervals with
the dominant peak frequency found in the spectra from chest and dominant
hand. We see that in general the measured (Fourier) peak frequency (ex-
pressed as a period) corresponds with the annotated beat intervals of the
music. Note that the annotated beat 1-4 interval and the annotated beat
4-1 interval sum up into one measure. If the two intervals are similar in
duration, we discover a clear peak at a half measure. For intervals hav-
ing an unequal duration (for example the first lyric style fragment L1) the
situation is less clear and the link with the musical tempo is blurred.

Overall, the above shows that the movements mimic the tempo of the
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musical signal. The tempo followed is the half measure tempo and not the
full measure tempo which can be linked to the fact that the half measure
tempo is closer to the natural resonance frequency (2 Hz or 120 BPM) of
the human body [54]. Further, as a qualitative finding we notice clear peaks
for the chest of the MunTr group in all fragments (except for the first lyric
style fragment L1). For the MTr group, on the contrary, the peaks are
less distinguishable as exemplified in Fig 3.7. The dominant hand shows
a different picture. Here we discover clear peaks for both groups in all
fragments (except now for the first and second lyric style fragment). This is
illustrated in Fig 3.8 for heroic fragment 2. This finding hints at differences
in expressiveness between chest and dominant hand and between the two
groups.

3.4.3 Motor mimesis of musical amplitude
In this section we use another acoustical feature, namely the musical ampli-
tude (an energy property) as a reference. Initially, we inspect the mean and
standard deviation functions of movement (Section 3.4.3.1), followed by the
coefficient of variation (Section 3.4.3.2). Further on we correlate movement
with our reference, the musical amplitude (Section 3.4.3.3).

3.4.3.1 Mean and Standard deviation of speed amplitude

Here we look at the variation between the speed signals of the motor-mimetic
responses and investigate if these reflect structural properties of the music.
The speed signals used in this and subsequent sections are the envelope
signals as calculated in Section 3.4.1. The mean function is calculated not as
an average over time but as an average over subjects. Otherwise stated: we
calculate a mean value over subjects at every distinct timestamp. The same
applies for the standard deviation function. Both functions are displayed in
Fig. 3.9 (MTr group) and Fig. 3.10 (MunTr group).

We see that for the dominant hand the ratio between speed in the heroic
parts and speed in the lyric parts largely exceeds the ratio between their
tempi and this is confirmed by Fig. 3.11. For the chest there is no noticeable
difference. The ratio between the tempi is calculated from Table 3.1. This
indicates that the dominant hands show more expressiveness in the heroic
parts. So, apart from differences between subjects we find that expressive-
ness is also linked to body parts and musical style. Additionally, note also
the variation in the speed ratio: for the Musically trained group (Mtr) the
largest variation is in the hands, for the Musically untrained group (MunTr),
it is in the chest. This explains where both groups put their focus on for
expressiveness.
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Figure 3.9: Mean and Standard Deviation of Speed for the musically trained
group (MTr group)
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Figure 3.10: Mean and Standard Deviation of Speed for the musically untrained
group (MunTr group)

3.4.3.2 Coefficient of Variation

At first glance, the ratio between standard deviation and mean appears to be
constant. This ratio is defined as the coefficient of variation (CV). To esti-
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Figure 3.11: Ratio between the speed in heroic style parts compared to the speed in
lyric style parts for the 35 subjects splitted up per group (Musically Trained (MTr)
and Musically Untrained (MunTr)). The ratio between the tempi of heroic and
lyric parts is added as reference. For the dominant hand the heroic style is more
expressive as the speed ratio largely exceeds the tempi ratio. For the chest there is
no noticeable difference between the two ratios.
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mate the CV one could use the ratio of the sample standard deviation to the
sample mean. However, this is not good practice since estimation depends
highly on the distribution for small to moderately sized samples [55–58].
Therefore we investigate the distribution of the speed values across sub-
jects at all moments in time. We do this by fitting a Weibull distribution.
The shape parameter of the fitted Weibull distribution parameter discloses
the underlying distribution. Values in the range of [1.25-2.75] hint at a
lognormal distribution whereas values between [3-4] suggest a normal dis-
tribution [59, 60]. In our case, averaged over all timestamps the Weibull
shape parameters for Chest and for Dominant Hand are 1.73 ± 0.38 and
2.08 ± 0.27 respectively. This points to a lognormal distribution as the
best fitting distribution for the chest and dominant hand movements. For a
lognormal distribution the estimation of the CV is given by equation (3.1)
with s

2
log

the sample standard deviation after a natural log transforma-
tion [55–58].

ĈV =
�

e
s2

log − 1 (3.1)

The estimated CV is now presented per group and per marker in Fig. 3.12.
The CV for the dominant hand is nearly constant or tends to just slightly
decrease over the whole timeframe. The CV for Chest does not show this
constant behavior. We see sudden CV increases at the start of the heroic
style intervals. The CV increase is due to a proportionally higher increase
in the standard deviation and points to a sudden variation in expressiv-
ity amongst the subjects. After that the CV slopes down to end up quite
constant during the lyric style intervals. The negative slope within a style
interval could be explained by a learning effect. Or, otherwise stated, the
variation in expressiveness fades away together with the surprising character
of the music.

3.4.3.3 Correlation between movement and musical amplitude

The speed envelope signals for the dominant hand and to a lesser extent
for the chest show intervals of higher amplitude alternated with intervals of
lower amplitude (Fig. 3.9 and Fig. 3.10). Based on a rough visual inspec-
tion, these intervals seem to correspond with the heroic and lyric fragments,
respectively. As the heroic intervals coincide with high amplitude in the mu-
sic, it is worthwhile investigating the correlation between the speed envelope
signal, as an indicator of expressiveness, and the amplitude of the music.
As we learned in section 3.4.3.2, the speed envelope signal is not normally
but lognormally distributed. Therefore we correlate the logSpeed with the
logAmplitude of the music.
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Figure 3.13: Histogram of correlation coefficients. The correlation coefficients are
calculated per subject between the log(Music Amplitude) and the log(Chest Speed)

To calculate the logAmplitude of the music signal we use the same
method as for the logSpeed. The absolute value of the music amplitude
is run through a moving average filter with the same window size (5 s) as
used for the calculation of the speed signal.

The logAmplitude is then correlated with the logSpeed signals from all
subjects. A Wilcoxon rank sum test (p < .05) confirms that the correlation
coefficients for the chest (Fig. 3.13) are lower than those for the dominant
hand (Fig. 3.14). Further on, the distribution for chest seems to point to an
individual difference in chest use with some subjects correlating and some
that choose not to do so. This is different from the dominant hand where all
seem to correlate to some degree. Here, the distributions are concentrated
around high values (0.6-0.7). Additionally, the correlation coefficient values
are higher for the MTr group than for the MunTr group. A Wilcoxon rank
sum test indicates a marginally significant difference between the two groups
(Mdn=0.702, Mdn=0.578, p=.08). So, the dominant hand correlates to the
musical amplitude (our reference in this section) and this phenomenon is
more apparent with subjects that are musically trained.

3.4.4 Motor-mimesis of syntax and semantics in music
The Pearson correlations between logSpeed over participants at times t1
and t2 yield the entries of a correlation matrix PC(t1,t2). We use logSpeed
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Figure 3.14: Histogram of correlation coefficients. The correlation coefficients
are calculated per subject between the log(Music Amplitude) and the log(Dominant
Hand Speed)

(log of the speed envelope signal) due to reasons of normality as discussed
in Section 3.4.3. Furthermore, because of hypothesis testing, we run the
analysis twice, once for the MTr group and once for the MunTr group. Using
a correlation matrix implies that the group’s mean movement is considered
as the reference.

3.4.4.1 Analysis of Chest movement

The correlation matrix PC for chest is displayed as a density plot, once for
the MTr group (Fig. 3.15(a)) and once for the MunTr group (Fig. 3.15(b)).
The shown density plot is not the original full resolution plot but a low
resolution version (this because of displaying and printing reasons). The
resolution lowering was achieved by local averaging (over a 5 s surrounding
square) and down-sampling to end with a 100x100 matrix. The same pro-
cedure is applied to all correlation density diagrams in this article. Results
and discussions are however based on the original high resolution plots.

In a correlation density diagram, the diagonal running from lower left
to upper right contains the unit values that are the correlation between
identical or very close time values [61]. Directions perpendicular to this
ridge of unit correlation indicate how rapidly the correlation falls off as the
two timestamps separate. This finding is at the source of our definition for
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(a) Musically Trained (MTr) Group.

(b) Musically Untrained (MunTr) Group.

Figure 3.15: Correlation Density Plots for Chest.
(Next to the time line is the musical signal shown as in Fig. 3.1)
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Figure 3.16: Correlation Density Plot for Chest with Intervals of Coherence for the
Musically Trained (MTr) Group. The intervals of coherence stand for high corre-
lations between levels of expressiveness in a group at every two distinct timestamps
in a continuous time interval. The borders of these intervals can be determined
by a user customized heuristic.

coherence. Coherence is identified by “squares of high correlation” along
the diagonal (Fig. 3.16). Coherence stands for high correlations between
levels of expressiveness (here, logSpeed is used) in a group at every two
distinct timestamps belonging to a continuous time interval. It implies (i)
synchronicity between subjects within this continuous time interval and (ii)
preserving the ordering of subjects in levels of expressiveness (users with
high expressiveness keep high expressiveness over the whole interval).

If required, the borders of these coherent intervals (the fall-off points) can
be determined by a user customized heuristic: To determine these fall-off
points we propose the following heuristic: for every timestamp we calculate
the largest square centered on the diagonal where 90% of the correlation
coefficients are above a value of 0.60. To locate the fall-off points we plot
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Figure 3.17: Chest Coherence : Correlation FallOff

then the size of these largest squares versus time (actually we plot the half
of the length of a side). High peaks point to the middle of a period of high
coherence and the height of the peak tells exactly how many seconds this
period extends to the left and to the right. Low values correspond with
drops in coherence and help in determining the fall-off points. For the chest
we see in Fig. 3.17 that the MunTr group shows coherent behavior over
the whole duration of the musical fragment. For the MTr group however,
we distinguish four intervals of coherence (labeled C1,C2,C3 and C4). The
most prominent fall-off points are displayed versus the music amplitude at
the bottom of Fig. 3.17. It is clear that there is a certain match with the
structural elements in the music like transitions of style (heroic-lyric).

Beside coherence we notice “squares of high correlation” in off-diagonal
areas for the MTr group. This leads us to define consistency. Consistency is
the phenomenon of having high correlation between remote coherent time
intervals (Fig. 3.18).

Using the concepts of coherence and consistency, we notice an appar-
ent difference between the MTr group and the MunTr group (Fig. 3.15).
Coherence (of chest) for the MTr group is in line with the musical style
(heroic/lyric) elements and this is less the case for the MunTr group. The
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Figure 3.18: Correlation Density Plot for Chest illustrating some consistent in-
tervals for the Musically Trained (MTr) Group. Consistency is the phenomenon
of having high correlation between remote coherent time intervals.
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Figure 3.19: Histograms of correlation coefficients (Chest)

MunTr group keeps coherence over almost the whole musical fragment.
Consistency refers to coherent intervals in its definition and this de-

pendency between consistency and coherence makes it difficult to compare
performances from different groups. Therefore we introduce a new measure
that combines coherence and consistency in one single value. We lose, in
this case, the view on the individual components (coherence and consis-
tency) but the advantage is that the new measure allows for comparison of
group performances. The combined measure originates from an alternative
view on the correlation density diagram: we look at it as being a histogram
of correlation coefficients even if the link with time is lost in this represen-
tation. We display these results in Fig. 3.19 for the two conditions: the
results for the MTr group at the top and the results for the MunTr group at
the bottom. Here we see that the correlation coefficients for the MTr group
(top) are indeed lower on average. A Wilcoxon rank sum test confirms that
the correlation coefficients for the MTr group (Mdn=0.622) are significantly
(p<.001) different from the MunTr group (Mdn=0.782). This convinces us
to use the median of these distributions as a combined measure to compare
performances from different groups.

At this stage we have only two groups, hence we can not make further
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traditional statistical inferences. However permutation tests for comparing
two populations [62] offer an alternative. In our case we have 17 subjects
in the MTr group and 18 subjects in the MunTr group. We can now make
permutations of subjects between the two groups and assume that there is
no group effect if none of these permutations yield an effect that is much
larger than the one found for the initial group division. In our setting we
calculate the effect between the two groups as the difference between the
two medians (of the histograms of correlation coefficients). We permute
then the 35 (17+18) subjects between the two groups (MTr and MunTr) so
that there are always 17 subjects in the MTr group and 18 in the MunTr
group. The number of permutations is given by formula (3.2). With a num-
ber that exceeds 109, handling all permutations is not feasible and therefore
we limit ourselves to 2000 random permutations. For the permutation test
we compute the significance (p-value) as the proportion of differences that
are greater than our initial observation. The calculated p-value is .14, not
low enough to talk about a significant effect (> 5%) and the null hypoth-
esis would not be rejected by a frequentist approach. However, what this
value says is that if there was no difference between the two groups (null
hypothesis) there is 14% chance that based on our test we would wrongly
reject the null hypothesis (=making a type I error) and this value although
not significant is worthwhile mentioning [63]. The 14% value is graphically
depicted in Fig. 3.20 where the black bars indicate the values we would
wrongly reject by making the null hypothesis. The red line indicates the
decision border and is set to the difference between the two groups in their
original composition.

�
35
17

�
=

(35)!
18! 17!

(3.2)
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Figure 3.20: Chest : Permutation Tests to reveal MTr or MunTr Group Effect.
The figure shows the histogram of the differences in coherence/consistency between
the two groups. The subjects are randomly permuted between the two groups.

3.4.4.2 Analysis of Dominant Hand movement

As mentioned before, hand movement is analyzed against a new axis system,
eliminating all influences of the torso (Section 3.4.1). Additionally, literature
(e.g. [64, 65]) makes a distinction between dominant and non-dominant
hand and that discrimination is included in our analysis as well.

Correlation diagrams for the dominant hand (Fig. 3.21) reveal different
patterns compared to chest (Fig. 3.15) and consequently suggest motor-
imitation of other structural elements in the music (e.g. changes in musical
style lyric/heroic).

Let us first discuss coherence (squares of high correlation along the diag-
onal). Visual inspection demonstrates that the total length of the coherence
intervals does not differ much for both groups. An exact value can be calcu-
lated by some customized heuristic and the results using the same heuristic
as for chest are displayed in Fig. 3.22.
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(a) Musically Trained (MTr) Group.

(b) Musically Untrained (MunTr) Group.

Figure 3.21: Correlation Density Plots for Dominant Hand.
(Next to the time line is the musical signal shown as in Fig. 3.1)
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Figure 3.22: Dominant hand Coherence : Correlation Fall-Off

The main difference between both groups however, is not explained by
coherence but by consistency. Consistency is characterized by high off-
diagonal correlation areas. The MTr group has clearly more areas of con-
sistency: Fig. 3.21 shows off-diagonal warmer colors for the MTr group
than for the MunTr group. As the values for coherence are similar for
both groups this difference in consistency should also pop-up in the pre-
viously defined combined coherence/consistency measure. This measure
is the median of the distribution of the correlation coefficients shown in
Fig. 3.23. A Wilcoxon rank sum test confirms that this measure is signi-
ficantly (p<.001) different for the MTr Group (Mdn=0.491) than for the
MunTr group (Mdn=0.395).

To check if there is a group effect, we repeat the permutation tests
previously done for the Chest. The calculated p-value is now .27, not low
enough to talk about a significant effect and the null hypothesis would
not be rejected by a frequentist approach. However, this value says that
if there was no difference between the two groups (null hypothesis) there
is 27% chance that based on our test we would wrongly reject the null
hypothesis (=making a type I error) and this value although not significant
is worthwhile mentioning [63]. The 27% value is graphically depicted in
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Figure 3.23: Histograms of correlation coefficients (dominant hand)

Fig. 3.24 where the black bars indicate at what values we would wrongly
reject the null hypothesis. The red line indicates the decision border and is
set to the difference between the two groups in their original composition.
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Figure 3.24: Dominant Hand : Permutation Tests to reveal MTr or MunTr Group
Effect. The figure shows the histogram of the differences in coherence/consistency
between the two groups. The subjects are randomly permuted between the two
groups.
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Figure 3.25: Here we show per marker the combined measure for Coherence/Con-
sistency. (higher is more - dominant hand is shown left)

3.4.4.3 Summary

The results of all markers are summarized in an overview figure (Fig. 3.25).
For every marker we calculated the single measure combining coherence and
consistency. The results show different behavior for the torso (including
chest) and for the arms (especially for the dominant hand).

The combined measure for chest reaches the highest value (0.78) for
the MunTr group and the main contribution comes from a higher level of
coherence. This can be explained by the simplicity of their movement. From
Section 3.4.2.2 we know that chest movement tracks the tempo of the music
and that this is even more apparent for the MunTr group. This phenomenon
can be described as ’metronomic movement’, periodic movement with the
main focus on the tempo of the music. Movement for the MTr group is
more complex, hence lower values for the combined measure (0.62). The
presence of aperiodic movement is one cause for the higher complexity of
movement.

To show the impact of aperiodic movement we ran all positional signals
through a high pass filter (actually we removed the low frequency content
with a low pass moving average filter having a 20 s window) (See Fig. 3.26).
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Figure 3.26: Chest : positional x-coordinate Original Signal (top) and High Pass
Filtered Signal (bottom) where aperiodic displacements are removed.

We then used the filtered signals from all subjects as input to our analysis
and we found indeed a significant increase for the MTr group in the combined
measure (Wilcoxon rank sum test p < .05) where the value raised to 0.64
from 0.62. For the MunTr group there was no significant difference.

The combined measure for the dominant hand shows a different picture.
The high value for this measure is mainly due to a higher level of consistency
for the MTr group and this despite the use of more complex movement. The
fact that the movement is more complex can be understood from a study
of the movement volume, defined as the volume within a convex hull made-
up by positional coordinates over a fixed time period. A constant volume
suggests a basic rhythmic movement. A higher volume stands for more
expressiveness. The results are presented in Fig. 3.27.

How does it come that despite its utilization of more complex movements
the MTr group reaches higher levels of consistency? We believe that this
is due to the existence of some kind of absolute reference system. From
section 3.4.3 we know that the MTr group correlates better with the musical
amplitude. So using musical amplitude as a reference system could be an
explanation for the high levels of consistency in the MTr group. However,
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Figure 3.27: Dominant Hand : Difference in Complexity between MTr and MunTr
group. The used complexity measure is the volume of the convex hull of the po-
sitional coordinates averaged over all subjects in the group. A constant volume
suggests a rhythmic movement. A higher volumes means more expressivity.

more in depth research is required to confirm this.

3.5 Modeling expressiveness
In this section, we describe the process of modeling movement of a group
of subjects. We discuss the models for the MTr group for both chest and
dominant hand. We hereby use the log of the speed envelope signal as
the input signal. The modeling process is based upon Functional Principal
Component Analysis (FPCA). FPCA uses the correlation matrix as input
and consequently the group’s mean movement as the reference.

In our experiment we have 315 seconds of bodily movement sampled at
100 Hz which results in an equivalent multivariate data set of 31,500 vari-
ables. The advantage of a multivariate approach is that algorithms like PCA
can be applied directly but this is computationally intricate. This means
for example that a PCA analysis has to find the eigenvalues (called eigen-
functions) of a 31500x31500 (nxn) covariance matrix. The computational
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Figure 3.28: (dominant hand) Model error (MSE) versus number of basis
functions. MSE is calculated as the sum of squared errors of a realization

(signal) averaged over the subjects.

cost involved for most algorithms is O(n3). This is a high cost.
Therefore we adopt a functional data analysis (FDA) approach that is

based on one additional assumption and that is that adjacent samples are
correlated. We handle this requirement by decomposing our data set in a set
of basis functions as a mean of reducing the dimensionality of the problem.
Uniform Cubic B-spline basis functions were chosen as the logSpeed signals
lack periodicity. The number of basis functions is determined by means of a
cross-validation exercise which calculates the error (MSE = Mean Squared
Error) between model and signal for a different number of basis functions.
The number of basis functions is set to 100 as can be understood from
Fig. 3.28. This setting is valid for chest and dominant hand. Working with K
basis functions reduces the computational cost for calculating eigenfunctions
to O(K3) [61], a considerable improvement.

FPCA calculates a set of eigenfunctions using a least square algorithm.
In addition we place a penalty on the second order derivative of the eigen-
functions to favor smooth functions as suggested by Ramsay [61]. Smooth-
ness is considered as a characteristic of human movement. All calculations
were performed with the help of his matlab toolbox ’fda’. FPCA allows us to
write a signal as the sum of an average signal ¯f(t) plus a linear combination
of functions ξk(t) (3.3).

fi(t) = ¯f(t) +
K�

k=1
αikξk(t) (3.3)

The functions ξk(t) are the eigenfunctions that we have to calculate. The
objective of FPCA is to explain as much of the variance as possible with as
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few eigenfunctions as possible. There exist multiple criteria to determine
the number of eigenfunctions to retain. The criterion we use is that the
number of eigenfunctions has to explain at least 70% of the variance.

3.5.1 Modeling Chest Movement
For the chest data of the MTr group, one eigenfunction already accounts
for 73% of the variability (Fig. 3.29), which means that the variance among
subjects can to a large extent be captured by one single dimension. On
this figure the blue line represents the mean logSpeed and an eigenfunction
is displayed as a positive and a negative offset to the mean. The offset
used here is plus or minus the square root of the corresponding eigenvalue.
This allows to visually compare the contributions coming from different
eigenfunctions.

Given these results, we can express the performance of every subject
(index i) as in equation (3.3). For the chest, the logSpeed exists out of an
average function (common to all subjects=commonality) plus a factor (an
individual attribute=individuality) times one eigenfunction (common to all
subjects=commonality). The individual performance is characterized by a
single factor. The factor is calculated as the functional principal component
score for the first eigenfunction. Note that the retained eigenfunction has
the same sign over the whole time range. This always makes subjects with
a positive factor perform higher than average regardless of the time.

This simple model backs up the idea that chest movement (in terms of
speed) is determined by simple musical characteristics. From Section 3.4.2.2
we know already that chest movements reflect the tempo of the music.
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Figure 3.29: Three eigenfunctions for the Chest-Marker. The blue line represents
the mean logSpeed and every eigenfunction is displayed twice, once as a positive
(green) and once as a negative offset (red) to the mean. The used offset is plus or
minus the square root of the corresponding eigenvalue.
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Figure 3.30: Three eigenfunctions for the dominant hand after varimax rotation.
The blue line represents the mean logSpeed and every eigenfunction is displayed
twice, once as a positive (green) and once as a negative (red) offset to the mean.
The used offset is proportional to the amount of variance explained. Note that
when an eigenfunction is zero in an interval it will coincide with the mean.

3.5.2 Modeling Dominant Hand Movement

FPCA conducted for the dominant hand reveals that we need three eigen-
functions to cover more than 70% of the variance (Picture not shown).
Hands have more degrees of freedom (DOF) than a torso and consequently,
the eigenfunctions will be more complex.

Similar to factor analysis for multivariate datasets, we might consider
rotation of the functional principal component axes to reveal an underly-
ing structure. One method that does so is the Varimax rotation, although
other rotation techniques are possible. Varimax seeks a basis of eigenfunc-
tions that most economically represents each individual in a way that each
individual can be well described by a linear combination of only a few basis
functions. If we apply a Varimax rotation to our data we get three eigen-
functions explaining 25%, 27% and 24% respectively or in total 76% of the
total variance (Fig. 3.30).

We can proceed the same way as in traditional factor analysis and assign
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a label to every eigenfunction. The first eigenfunction (top in Fig. 3.30)
shows four time intervals where the eigenfunction values deviate from zero.
Three intervals with a positive deviation coincide with the first heroic part
and the second and third lyric part respectively. The negative deviation
coincides with the second heroic part. Subjects that score high on this
eigenfunction will have higher logSpeed levels than average in the positive
deviation parts and lower than average in the negative. 25% of the variance
can be explained by this phenomenon and it is interesting to note that there
is a relationship in expressiveness between the first heroic part and some
lyric parts (part 2 and part 3). The second eigenfunction is positive in the
first half of the musical excerpt, covering the first and second heroic fragment
together with the first lyric fragment. This accounts for 27% of the variance.
The third eigenfunction has a dominant positive contribution in the second
and third heroic part. It has a mixed contribution to the second lyric part:
first a negative contribution and afterwards a positive contribution when
the music goes crescendo. It is remarkable that the eigenfunctions relate so
well to the style intervals.

We calculate, for every subject, a component score (individuality) per
eigenfunction. Three values suffice to model a subject’s performance (domi-
nant hand). The scores for the subjects in the MTr group are made visible
in a 3D plot on Fig. 3.31. This representation offers new opportunities for
interpreting dance performances : Dance ensembles or choreographers can
use this representation to select dancers for a performance by picking out
dancers that have equal scores. The tool offers also possibilities for remedial
actions in the sense that out-of-line scores on a principal component can be
related to a particular time interval. Eventually clustering algorithms can
help to categorize the dancers.

As example we show the results of a K-means clustering with K set to
three clusters (see Fig. 3.31). A first cluster groups subject 2,8,12 and 16
having high positive scores on all components. Let’s label this the highly
energetic group. A second group is formed by subjects 1,4,5,11,13,14 and
17. They score high on at least two components and neutral on a third. Let
us call this the energetic group. The third group (low-energy) comprises
the other subjects and is characterized by low logspeed levels. Interesting
information is that subjects numbered from 1 to 10 are all male dancers and
that they make up the majority (83%) of the low-energy group. We come
back on this finding in Section 3.6.

3.5.3 Summarized
With a multivariate approach a subject’s performance is represented by
31,500 variables. Using FDA and FPCA we can reduce this to 3 variables
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for the dominant hand and to 1 variable for the chest. These variables
are the principal component scores, which we can also interpret as weights
of eigenfunctions. The mean function and eigenfunctions are identical to
all subjects and this is what defines the commonality of this population of
subjects. The weights are the variables that define the individuality of the
subjects.

There is an interesting relationship between the coherence/consistency
analysis and the FPCA. FPCA uses the correlation matrix as input and the
strong dimension reduction is only possible because of high correlations due
to coherence and consistency (see section 3.4.4). However, it is not always
that obvious to understand coherence and consistency in terms of eigenfunc-
tions. In simple cases coherent intervals show up as time intervals of equal
signs in eigenfunctions. Consistency appears when one eigenfunction has
multiple of these coherent intervals. A simple case is when a time interval
is dominated by only one eigenfunction.

3.6 Functional ANOVA to model Gender ef-
fects

We noticed in section 3.5.2 that the low-energy cluster for the dominant
hand had 83% of its subjects being male. A logical question that arises from
this finding is: “Do we see here a gender effect and if yes is it significant?”.
We use Functional Analysis of Variance or FANOVA to investigate this.
FANOVA partitions the functional response according to the main effects
and interactions of factors. In our example the functional response is the
logspeed signal and we have only one factor (gender) with two levels (male-
female). All this can be written down in a functional linear model for
subject i as in equation (3.4).

logspeedig(t) = µ(t) + αg(t) + �ig(t); (3.4)

The function µ(t) is the grand mean function of the log(speed) across
all male and female dancers. The term αg refers to a same effect for all male
dancers (in which case g=male) or a same effect for all female dancers (in
which case g=female). Note that these effects are now functions as well. To
uniquely identify these functions they are required to satisfy the sum-to-zero
constraint (3.5).

αmale(t) + αfemale(t) = 0 , ∀ t (3.5)



3-42 Chapter 3

The posed problem can be solved similar to the multivariate case as
a least squares problem with the parameters (µ(t),αg(t)) to estimate now
being function of time. Because the parameters are functions we decompose
them in basis functions using a smoothing penalty. The smoothing penalty
parameter is determined by cross validation.

The analysis was run for all subjects irrespective of the group they belong
to. The results were not significant neither for the dominant hand neither
for the chest but nevertheless they are worthwhile discussing. First thing to
know is that there is an effect when a parameter function αg(t) has values
different from zero. To understand if the effect is point-wise significant we
add confidence intervals to express uncertainty. For the chest (Fig. 3.32) the
contribution of αmale(t) to the logspeed signal is for men positive over the
whole time-interval but it is significantly different from zero in only a very
small area (around time=175 s). What we conclude is that the logspeed
(and consequently also the speed) for moving the torso tends to be higher
for men than for women. For the dominant hand (Fig. 3.33) the trend is
opposite. Men tend to move their hands with less speed (αmale(t) < 0)
than women but again this is not point-wise significant. The above findings
suggest a gender trend and even more interesting is that the found trend
works in opposite directions for Chest compared to Dominant Hand.

A consequence is that if we have a mixed gender group and we order the
subjects in terms of their chest logspeed then the ordering will most probably
be different from their ordering in terms of the dominant hand logspeed. In
other words there is no correlation between chest logspeed and dominant
hand logspeed. This can easily be verified from a Cross Correlation diagram
(Fig. 3.34) where we plot the correlation between chest and dominant hand
at all timestamps. Striking is the absence of a ridge along the positive
diagonal, confirming that there is no correlation over subjects between these
two body parts. This is most apparent in the lyric parts.
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Figure 3.32: Regression coefficient function for Gender(male) in a model predict-
ing logspeed of Chest. The cross-hatched area is the point-wise 95% confidence
region for the function.
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Figure 3.33: Regression coefficient function for Gender(male) in a model predict-
ing logspeed of the Dominant Hand. The cross-hatched area is the point-wise 95%
confidence region for the function.
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Figure 3.34: Cross Correlation density plot between Chest and Dominant Hand
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3.7 Discussion

The aim of this study was to develop a dynamic approach to analyze co-
herence, consistency, commonality and individuality in how people mirror
musical expression in their free and spontaneous body movement responses
to music.

With Functional Principal Component Analysis (FPCA) we modeled
every subject’s bodily movement as a linear combination of a group average
and a number of eigenfunctions. The group average and the eigenfunctions
are common to all subjects and make up what we call the commonalities.
An individual performance is then modeled by a set of scores (the individ-
ualities), one score per eigenfunction.

The model consist of one eigenfunction for chest and three eigenfunc-
tions for the dominant hand, which covers more than 70% of the variance.
Therefore the models require only few individualities which means that mu-
sic is perceived and embodied in similar ways and this facilitates interaction
and social effects.

FPCA uses the correlation matrix (correlating movement of subjects
at distinct timestamps) as input. The low dimensionality of our models
is due to the high correlations found in this correlation matrix. These
high correlations are described by the concepts coherence and consistency.
Coherence and consistency are interrelated and therefore we grouped them
into one combined measure.

Using this combined measure we investigated differences in body parts
(chest and dominant hand) and in musical background (the musically un-
trained (MunTr) group and the musically trained (MTr) group). The MunTr
group has for the chest the highest value for this combined measure. This
explains that chest movement is mainly driven by a simple musical charac-
teristic. Our assumption is that this must be the tempo of the music and
this is supported by Fourier analysis. Thus, the MunTr group focuses on
periodic movements in the tempo of the music (metronomic movement).

As we move further in the kinematic chain, additional DOFs are used
to express higher hierarchical structural elements in the music. The case of
the dominant hand illustrates this. It still tracks the tempo as indicated by
Fourier analysis, but in addition we discover especially for the MTr group
a high correlation with the amplitude of the music. The MTr group focuses
on additional musical characteristics (like musical amplitude) and uses the
dominant hand for this.

Summarized, this confirms earlier findings [26, 27] that humans are ca-
pable of interpreting musical syntax and semantics in their movement res-
ponses to music, using different body parts.
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3.8 Conclusions and Future Work
In this experiment, we analyzed two groups of subjects moving sponta-
neously and individually to music. One group had received formal musical
education and the other group had not. The results of the study show that
differences between the two groups can be largely quantified by the terms
coherence and consistency. The existence of coherence and consistency leads
to low dimensional models for expressiveness.

Using a combined measure for coherence and consistency, we conclude
that the musically untrained group focuses on torso movement expressing
the tempo of the music and that the musically trained group focuses on the
dominant hand expressing additional structural elements such as musical
amplitude.

Eventually, these models could also be directly applicable to analyze
group movement in a diverse set of human activities, such as ensemble mu-
sic playing, group dancing. Dance ensembles or choreographers can use this
representation to select dancers with similar individuality scores for a col-
lective performance. The models could also be applied in the rehabilitation
of movement deficiencies such as for example, gait analysis in Parkinson
patients.
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Statistics may be defined as a body
of methods for making wise deci-
sions in the face of uncertainty.

W.A. Wallis, 1912-1998

4
Beating-Time Gestures: Imitation

Learning for Humanoid Robots

Abstract

Beating-Time Gestures are movement patterns of the hand that sway along
with the music, thereby indicating musical pulses in time while performing
a particular spatial conducting pattern. The spatiotemporal configuration
of these patterns makes it difficult to analyze and model them. In this paper
we present a modeling approach that is based upon imitation learning or
programming by demonstration (PbD). PbD derives a generalized trajec-
tory from a set of demonstrations to use as target for humanoid robots. Our
procedure uses a Dirichlet Process Mixture Model as front end for a contin-
uous Hidden Markov Model to characterize every beating-time gesture by
a set of non-equidistant key points. Dynamic Time Warping is our solution
for handling the temporal variation of these key points. Eventually, we pro-
duce a smooth generalized trajectory by means of non-uniform cubic spline
regression. The regression step accounts for the spatial variation in the set
of demonstrations. The parametric form of the generalized trajectory makes
it suitable for use with any musical fragment.
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4.1 Introduction

Body movements having a particular goal-directed component in relation
to music are called musical gestures [1]. For example, musicians may move
their fingers on a string in order to play notes with a particular expressive
quality. In a similar way, listeners may perform learned repetitive movement
patterns while listening to music. In both cases, the movements follow some
intended spatial trajectory within timely boundaries, which is a sufficient
reason to call them gestures.

Most studies of musical gestures reduce the broad multifaceted aspect of
musical gestures by focusing on particular gestures, or particular movement
tasks that constrain the gestures. In this paper, we constrain the multi-
faceted nature of musical gestures by defining a movement task related to
conducting, that is, movement patterns of the hand that sway along with
the music, thereby indicating musical pulses while performing a particular
spatial conducting pattern. These gestures are what we call beating-time
gestures.

Conducting movements have been studied from different perspectives,
including recognition for conducting systems (See [2] for an overview), ex-
pressiveness [3], synchronization with musicians [4]. However, the spa-
tiotemporal account has not often been explored in this context. Systems
are typically restricted to either the temporal domain or the spatial domain.
One exception is [5], where spatiotemporal motion templates are used.

Dealing with variance in the spatial and in the temporal domain is chal-
lenging and it constitutes the main part of this chapter. Our approach
starts from a set of demonstrations and as such our technique is called PbD
(also known as learning by imitation). This technique is well known in the
robotics industry. It allows a robot to learn a skill through demonstrations
and thus without explicitly programming each detail. Our work is inspired
by [6] but adapted to the specificities of beating-time gestures.

The paper is structured as follows. Section 4.2 provides the necessary
definitions and gives an overview and motivation of the methodology used.
Section 4.3 describes the experiment that lays at the basis of our research.
Data processing makes up the core of our research and is handled in sec-
tion 4.4. The results are then benchmarked against other methods in sec-
tion 4.5. Eventually an application for music is introduced in section 4.6.
This is followed by a discussion in section 4.7 and conclusions are drawn in
section 4.8.
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4.2 Background
4.2.1 Definitions
Beating-time gestures indicate both the musical beats and the higher level
metrical-structure (here the 4/4 meter) that is defined by the accentuation
of these beats. The obvious method for describing these gestures is by
looking at the shape of their trajectories. The classical trajectory shows a
movement where the right hand goes down to reach the first beat, left to
reach the second beat, right to the third beat and up for the forth beat,
shown as model 1 in Fig. 4.1. Obviously, other patterns exist and in this
paper we present different four-beat patterns as the ones shown in Fig. 4.1.

!"#$%&'&!&()*+$,-"). !"#$%&'&!&()*+$,-"). !"#$%&'&!&()*+$,-").

!"#$%&'&!&()*+$,-"). !"#$%&'&!&()*+$,-").

Figure 4.1: Spatial configuration of beating time gestures with time-structure
(4/4 meter)

Fig. 4.1 shows for every model a, what we call, basic gesture. A basic
gesture characterizes one single accentuated beat pattern that is extracted
from a single performance containing recurrent movements [7]. A basic
gesture is performed in exactly one measure (bar).

4.2.2 Goal and methodology
The goal of the study is to create a template for a robot to allow a perfor-
mance of subsequent basic beating-time gestures in a continuous manner.

There exist many implementations (hardware and software) for robots
but a common principle is that force is applied to accomplish a positional
and/or velocity target [6]. Force is normally expressed as an acceleration
command (4.1) and it is used to track the desired velocity and position using
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a proportional-derivative (PD) controller.

ẍ = κv(ˆ̇x − ẋ) + κp(x̂ − x) (4.1)

κv and κp are gain parameters similar to damping and stiffness factors. x

is a vector representing positional information in line with the degrees of
freedom (DOF) of a robot. x can hold Cartesian coordinates as well as angle
coordinates. We follow here the conventional notation for derivatives being
ẋ for speed and ẍ for acceleration. The hat-symbol is used for indicating
the target values: x̂ stands for the target position and ˆ̇x for the target
velocity.

Equation (4.1) explains the main interest of this paper. We assume that
a robot can determine its current position (x) and its current velocity (ẋ).
We do not discuss the details of tuning a robot (κv, κp). The focus of this
paper lays completely on the calculation of x̂ and ˆ̇x or, in other words on
calculating a target trajectory for a beating-time gesture.

Our solution proposes PbD for generating the target trajectory. PbD
calculates a generalized gesture from a set of demonstrations. Obviously,
this could be done by selecting one of the demonstrated basic gestures us-
ing some criterion. This solution however, although tempting, does not
take into consideration the spatial and temporal variation that exists in all
demonstrations.

Our solution handles the spatial variation by cubic spline regression.
This has as additional advantage that it deals well with periodic boundaries.
A beating-time gesture is part of a continuously repeated sequence, and so
we want the beginning and the end of the generalized gesture to coincide.
Cubic spline regression is often done with a set of equidistant knots (uniform
splines). Then, extrema in the trajectory can or can not coincide with the
knots. If they do not coincide, the consequence is that the extrema of
the trajectory are flattened out resulting in a compressed shape. Because
beating-time gestures use the extrema to convey beat information, we do
not go that path and we choose for non-uniform splines instead.

We handle the temporal variation by adding a dynamical time warping
(DTW) step. This is achieved by warping all demonstrations non-linearly
in the time dimension to a reference signal. Here, the challenge comes from
the calculation of a reference signal.

We propose to handle the remaining issues by fitting an HMM. The
average timestamps of where the HMM state transitions happen are then
used (i) for setting the non-equidistant knots for cubic spline regression and
(ii) for the creation of a reference signal for DTW.

As we prefer to keep the set of demonstrations low we need a simple
model, in our case a HMM with few parameters. The number of HMM states
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and the initial values for Baum-Welch training of the HMM parameters
follow from a Dirichlet Process Gaussian Mixture Model (DPGMM) that
we fit to the data. DPGMM is a Bayesian method using a Dirichlet process
as prior. The prior acts as a regularizer preventing overfitting and resulting
in models that usually generalize better. This is an asset, as in our case we
have few data and model fitting with few data is prone to overfitting. For
more information on DPGMM we refer to existing literature (e.g. Teh [8]
and El-Arini [9]). Fig. 4.2 gives an overview of the complete PbD procedure
we propose.

The resulting template has a number of features that make it easy for
further applications. The form of the template is parametric what makes it
easily adjustable in amplitude as well as in time. In this way it can be easily
adjusted to match the beats of any musical fragment. Additionally, because
of the spline representation, it is also easy to calculate the derivatives.

Figure 4.2: Flow Chart of the followed procedure for PbD. (i) DPGMM, as front-
end for a continuous HMM, is used to calculate its number of hidden states and
to set its initial emission values. (ii) a cHMM defines the key points which are
used to create a reference signal for (iii) DTW. Eventually (iv) non-uniform cubic
spline regression on the warped gestures produces a smooth generalized gesture.

4.3 Experimental Set-Up
Subjects + Task. Four subjects having no musical background and aged
between 18 and 20 were asked to perform repetitive cycles of beating-time
gestures. The gestures were defined upfront and were selected out of five
different conducting models as depicted in Figure 4.1. Every subject per-
formed 40 basic gestures of a particular model but did not perform on all
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five models. The assignment of conducting models to subjects was random
with the restriction that every subject had to perform on the commonly
known conducting model (labeled as model 1) and two more conducting
models. More particularly, Subject 1 performed on conducting models 1, 2
and 3. Subject 2 performed on conducting models 1,2 and 4. Subject 3 and
4 performed on conducting models 1,3 and 5. This meant that in total 480
basic beating-time gestures (120 per subject) were generated.

Stimuli. The stimuli consisted of 40 bars of a repetitive metrical pattern
exhibited by metronome ticks at a tempo of 120 BPM using a 4/4 time
signature. A basic conducting gesture lasted 2 s.

Data. The data from the movements of the hand was collected by an
OPTITRACK infrared optical system consisting of 12 synchronized cameras
with related ARENA motion capture software (http://www.naturalpoint.
com). Recordings were made at a sample rate of 100 Hz. Participants were
asked to put on two sets of three infrared reflecting markers, each set defin-
ing a rigid body that can be easily identified by the motion capture software.
One set was placed at the hand and one set at the chest. The set at the
chest was meant for positional reference.

4.4 Data Processing
Initial inspection of the data showed that in a series of performances usually
the first ones and the last ones were outliers comparable to a warming-up
and cooling-down effect. These were excluded from the analysis.

Beating-time gestures are simple geometric movements and most of them
can be studied by projection of the positional coordinates onto the frontal
(coronal) plane. In our set-up the coronal plane is defined by the recorded
chest markers. The coordinates of the hand markers, making up the con-
ducting gesture, were then orthogonally projected onto this coronal plane.
This three to two dimensional reduction permits a better visualization. For
the envisioned application (robot) full dimensional data should be used in-
stead.

In addition to the positional coordinates we calculated the velocity as
the derivative of the positional data. A local (linear) regression filter was
applied to calculate smooth derivatives. The size of the regression window
was set to 0.100 s corresponding with a linear frequency response of the
derivation filter in the useful frequency band of 0-6 Hz. The 0-6 Hz range
was derived from spectrograms. This regression filter was applied to all
coordinates.

In the course of a demonstration, we spotted that position and scaling
changed from measure to measure. To overcome this issue we implement



Beating-Time Gestures 4-7

a normalization step. We consider two different methods for normaliza-
tion giving slightly different results (Fig. 4.3). One method interprets the
entire set of demonstrations as one long lasting gesture. Normalization is
then equal to high pass filtering (detrending) followed by scaling. Another
method views the entire set as a sequence of separate individual basic ges-
tures and normalizes per basic gesture by subtracting the basic gesture’s
average values. Visual inspection learns that the latter fits better reality.
That is particularly visible at sample 7200-7400 where we see that an entire
basic gesture shifts up. So we choose for the second method by normalizing
the individual basic gestures.
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Figure 4.3: Differences between 2 normalization methods. Method 1 uses the
detrending signal (black) for normalization. Method 2 uses the average per basic
gesture (red) for normalization .

The normalized variables are then stored in a four-dimensional data vec-
tor: Xm,n = [posxm,n posym,n velxm,n velym,n] where m is the basic
gesture index (in our case a value from 1 to 40) and n the sample index in
our basic gesture (in our case n ranges from 1 to 200, the number of samples
per gesture). We then use the notation Xm to refer to all samples from one
basic gesture. In Fig. 4.4 we display the variables posx, posy, velx, vely

representing the normalized versions of the horizontal position, respectively
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the vertical position, the horizontal velocity and the vertical velocity.
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Figure 4.4: Normalized trajectories. Left, positional coordinates, right, velocity
coordinates. The trajectories for 37 basic gestures are shown.

The challenge now, is to handle two sources of variation that are cor-
related namely, the spatial and the temporal variation. To that end we
extract information from all the demonstrated basic gestures, rather than
just smoothing an average basic gesture. In this way we follow the methods
explored by Vakanski et al. [10] and Aleotti et al. [11] but with adaptations
to our specific needs. Our gestures are beating-time gestures and as such
they are subject to temporal constraints.

The procedure breaks down in three major steps: First (i) we do key
point extraction using HMMs and (ii) secondly we apply DTW followed
by (iii) the generation of a generalized trajectory via non-uniform B-Spline
regression.

4.4.1 Key point extraction.
The key points constitute the fingerprint of a gesture, the minimum amount
of information to reconstruct a trajectory. Our approach places the key
points at the hidden state transitions of a continuous HMM (cHMM).

To fit an HMM we consider our movement trajectories in an augmented
feature space of four dimensions (4D), having two-dimensional (2D) position
variables, and 2D velocity variables. Remember from (4.1) that we need a
target trajectory for position and velocity.

The number of internal HMM states and the initial values of the HMM
parameters are calculated from a DPGMM. The DPGMM is similar to a
Gaussian Mixture Model (GMM) except that the number of clusters is de-
termined directly from the data and not from an additional data validation
step. The DPGMM clusters are shown in Fig. 4.5 using two separate 2D
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representations, one for the positional coordinates and one for the velocity
coordinates. The cluster assignment reveals that the performance can be
understood as a chain of single Gaussians. We therefore propose as model
a Bakis left-to-right HMM with single Gaussian emissions.
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Figure 4.5: Cluster assignment (based upon positional coordinates and velocity
coordinates ).

The exact number of states is derived from a single basic gesture m
∗

which is selected via some criterion. Our criterion is the maximum log-
likelihood of the gesture given the DPGMM (4.2-4.3).

p(x|θ) =
K�

k=1
πkN (x|µk, Σk) (4.2)

m
∗ = argmaxm(log(P (Xm|θ)))

= argmaxm(
200�

n=1
log(

K�

k=1
πkN (xm,n|µk, Σk))) (4.3)

Note that x stands here for a 4D data vector (including position and
velocity), K for the number of clusters, πk for the mixing weight of cluster
k and (µk,Σk) are the mean and the covariance matrix of cluster k. Xm

stands for the x-vectors of basic gesture m. The number of states is set
equal to the number of segments (vectors with the same winning Gaussian)
in the best basic gesture m

∗.
Besides the number of hidden states we need to learn the other HMM

parameters as well. HMM parameters are usually denoted as λ = (π, A, E)
with π the vector of initial state probabilities, A the matrix of the transition
probabilities and E representing the emission probabilities.

For a cHMM, E consists of a set of parameters describing a density. Our
choice for Gaussian densities was based on the observation that one cluster
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dominates p(x|θ) at all times. This choice also helps to reduce the number
of HMM parameters.

Without loss of generality we can set π = [1 0 ... 0] meaning that we
always start at hidden state 1. The other parameters (A,E) are learned
from the data by means of the Baum-Welch algorithm. The Baum-Welch
algorithm needs initial values for the transition probability matrix (A) and
for the emission densities (E). The transition probabilities are set to al-
low only self-transitions and forward transitions to the next state and to
the second next state. Their initial settings are calculated from the state
assignments implied by the best basic gesture m

∗ found before. Here τi

represents the duration of the segment corresponding to state i. According
to the recommendations of [10], the transition probabilities are set to

Ai,i = 1 −
1
τi

Ai,i+1 =
1
τi

Ai,i+2 =
1

4τi

(4.4)

and eventually normalized so that
�

j
A(i, j) = 1. As explained earlier

on, every cluster (segment) of m
∗ corresponds with one hidden state. In

the initial emission structure we store the mean and the covariance matrix
of the corresponding Gaussian cluster.

All initial parameters are set now and the HMM is ready for training
using the Baum-Welch algorithm. Once the HMM is trained, an obvious so-
lution [12] would be to select the basic gesture with the highest log-likelihood
given the HMM. This straightforward solution might look attractive at first
sight but it fails to handle the temporal variation in an appropriate way.
This is because HMM’s exhibit some degree of invariance to local warping
of the time-axis [13].

We propose to calculate and to define for every basic gesture the most
likely hidden state sequence using the Viterbi algorithm and to define the
HMM key points where the hidden state transitions occur. However, as
shown in Fig. 4.6, they suffer from positional and temporal variation and in
order to solve that problem we apply DTW.

4.4.2 DTW
Our DTW approach consists of two steps. In the first step we calculate a
reference signal, in the second step we align each basic gesture with that
reference signal.



Beating-Time Gestures 4-11

3 2 1 0 1 2 3
3

2

1

0

1

2

3

Normalized X Position

N
or

m
al

iz
ed

 Y
Po

si
tio

n

Model 3    37 Performances

3 2 1 0 1 2 3
3

2

1

0

1

2

3

Normalized X Velocity

N
or

m
al

iz
ed

 Y
Ve

lo
ci

ty

Model 3    37 Performances

Figure 4.6: HMM Keypoints for all basic gestures and their positional variation

The procedure followed is basically the procedure from [10] but adapted
to accommodate the temporal constraint that all gestures must complete
in one measure. To incorporate temporal information from all gestures a
new time vector is calculated: Firstly, we determine the average duration of
every hidden state using key point information from all basic gestures and
secondly, we use that information to fraction the period of one measure. It
are these fractions that make-up the new time vector, which is referred to
as the set of DTW key points timestamps.

Now, we use the basic gesture with the highest log-likelihood given the
HMM and align this gesture to the previously produced time vector by
linear temporal interpolation. This means linear stretching or shrinking of
the corresponding state intervals. The resulting signal is the reference signal
used for DTW.

Next, we warp all other basic gestures to this reference signal. DTW is
preferred here over linear temporal interpolation as it handles the spatial
distortion of the signals more efficiently [10].

The DTW procedure requires for every basic gesture a (dis)similarity
matrix (D). The task of DTW is to find herein an optimal path. Every
element of the dissimilarity matrix (Di,j) is calculated as the Euclidean l2-
norm between a 4D sample i of the reference signal sref and a 4D sample
j of the basic gesture sbas (See equation 4.5). Note that some authors
recommend a shape preserving time constraint while calculating the optimal
path [14].

Di,j = �sref (i) − sbas(j)�2 (4.5)

The similarity matrix is then used to find the sequence of pairs (i, j)
forming a path along which the sum of distances D(i, j) is minimal. This
path represents a time warping. A comparison of the original gestures and
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Figure 4.7: The original signals are shown in the left figure. The warped signals
together with the time stamps of the DTW key points (red lines) are shown in the
right figure (for conducting model 3).

the time warped gestures is displayed in Fig. 4.7. It is clear that the bundles
from the warped signals are more compact what confirms that our procedure
takes some of the variance away. The actual DTW implementation was done
via a Matlab program from D. Ellis [15].

4.4.3 Generalized trajectory
As a result from DTW we have a set of time warped basic gestures and we
have their values (DTW key points) at the newly created time vector. The
time vector defines the (non-equidistant) knots for cubic spline regression
and the DTW key points are input to the regression. The whole procedure
is visualized in Fig. 4.8. Here the non-equidistant knots (time vector) are
symbolized by a red line and the DTW key points are represented by blue
dots. The resulting regression line is shown in black.

The regression lines for all coordinates make up the generalized trajec-
tory of a beating-time gesture. This is presented for model 3 in Fig. 4.9.
The red dots correspond here with the calculated time vector used for the
DTW key points. The generalized trajectories of the other models can be
found in Fig. 4.10.

4.5 Benchmarking
We benchmark the results of our method against two more methods. A first
other method is where we produce a generalized trajectory directly from all
basic gestures in the demonstration. For this uniform cubic splines (hav-
ing equidistant knots) are used. A second other method uses a Gaussian
Mixture Regression (GMR) [16]. We set the number of Gaussian compo-
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Figure 4.9: Generalized trajectory and its key points for conducting model 3.

nents in this method equal to the number of components discovered by our
DPGMM. Eventually, we compare our proposed solution of a key point-
based generalized trajectory with the two other methods in Fig. 4.11.



4-14 Chapter 4

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
Model 1 − Generalized Trajectory

Normalized X−Position

N
o

rm
a

liz
e

d
 Y

−
P

o
si

tio
n

 

 
Gen.Traject
Keypoints

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
Model 2 − Generalized Trajectory

Normalized X−Position

N
o

rm
a

liz
e

d
 Y

−
P

o
si

tio
n

 

 

Gen.Traject

Keypoints

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
Model 3 − Generalized Trajectory

Normalized X−Position

N
o

rm
a

liz
e

d
 Y

−
P

o
si

tio
n

 

 
Gen.Traject
Keypoints

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
Model 4 − Generalized Trajectory

Normalized X−Position

N
o

rm
a

liz
e

d
 Y
−

P
o

si
tio

n

 

 
Gen.Traject
Keypoints

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
Model 5 − Generalized Trajectory

Normalized X−Position
N

o
rm

a
liz

e
d

 Y
−

P
o

si
tio

n

 

 
Gen.Traject
Keypoints

Figure 4.10: Generalized trajectory and key points of all conducting models.

The main difference is that the extrema are more pronounced for our
keypoint-based method compared to the two other methods. The preserva-
tion of the extrema is due to the removal of the temporal variance by using
DTW. This step should therefore be part of best practice [6].

A next topic is whether we can define quantitative performance indi-
cators to benchmark these various solutions. This proves to be a difficult
point.

In literature we often find the Root Mean Square Error (RMSE) as
metric for benchmarking [6, 10]. RMSE evaluates how well a gesture x

matches another gesture y using equation 4.6.

RMSE =

�����
N�

i=1
�x(i) − y(i)�2

N
(4.6)

The major concern with this metric is that it completely overlooks the
temporal variation and that makes it useless for our application. An im-
provement, namely time warped RMSE, calculates the RMSE values not
for the original but for the time warped basic gestures. Although this han-
dles temporal variation there is now the additional question of what signal
should be used as reference for DTW alignment. Selecting one or another
reference strongly biases the RMSE results.

These issues make us consider other performance indicators that re-
late to the ultimate application. Beating-time gestures use the extrema to
convey beat information, so preserving the extrema is an important per-
formance indicator. Other indicators we propose, measure how suitable a
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Figure 4.11: Benchmark of our proposed solution (Keypoint-Based) against an
uniform-splines solution and a GMR solution for model 3. For the uniform-splines
solution the knots are set equidistant, this opposed to our Keypoint-Based solution.
The GMR-solution uses the same number of Gaussian clusters as discovered by
our DPGMM method. For visibility reasons this figure zooms in on the top left
part of the gesture. For convenience of the reader we added solid circles to all
solutions indicating the position of the trajectories at the fourth beat. We notice
that the Keypoint-Based solution excels in handling the temporal variation as it is
better in preserving the extrema.
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target trajectory is for a robot. Candidate indicators are jerk (derivative of
acceleration) of robot movement and also the required on-line computation
time.

4.6 An Application

Beating-time gestures indicate the musical beat, meaning that these gestures
have temporal targets. This is a peculiarity not found in many day-to-day
gestures. Therefore, to explain our application we firstly introduce the
theory of goal points from Godøy. Godøy defines goal points as certain
salient events in the music such as downbeats, or various accent types, or
melodic peaks where sound-producing and sound-accompanying movements
are centered [17]. Goal points link gestures with time and for beating-time
gestures, the goal points of interest are the beat times. Note that the goal
points are different from the previously discussed key points. Goal points
relate to timing whereas key points reflect the shape of a trajectory.

The concept of goal points is useful for our application where we want
to generate a sequence of beating-time gestures that fit to music. Fitting to
music means adapting the gestures in terms of musical tempo and musical
amplitude.

For the metronome performance the goal points are known as they coin-
cide with the timestamps of the metronome ticks. For music the goal points
must coincide with the beat points in the music. These beat points can
for example be retrieved by some beat tracker program like BeatRoot [21].
Check McKinney [22] for an overview of beat tracker programs.

To adapt a generalized gesture to music we map the intervals between
the goal points from the generalized gesture to the intervals made up by
the beat points of the music (Fig. 4.12). This can be done by stretching
and shrinking of the time intervals and the easiest way to achieve this is by
linear temporal interpolation as is shown in Fig. 4.13.

This works well for positional data but for velocity data an additional
step is required. Remember from (4.1) that a robot needs a target for
position and velocity. For velocity data we do linear temporal interpolation
as well but in addition all velocity values have to be changed proportionally
to the stretch of the time interval. If the time interval doubles (i.e. music
has a slower tempo than the metronome), the velocity should be set to half.

We recall that the generalized trajectory for our conducting gesture is
made from a set of normalized performances. That makes the generalized
trajectory also normalized and easily scalable. Scales can be chosen in
accordance with musical amplitude.
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Figure 4.12: An Application: A beating-time gesture for music is made by mapping
the goal points (beat times) of a generalized trajectory to the beat points of the
music. This is achieved by linear temporal interpolation. The time progress bar
shows the actual time stamp of the music and the actual position of the gesture
(between beat two and three). This operation changes the run-through speed of the
generalized gesture. Additionally the amplitude of the generalized gesture can be
changed in accordance with the musical amplitude.
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Figure 4.13: Making a beating-time gesture for music (Music X,Music Y) from a
generalized trajectory (Gen X,Gen Y). The general trajectory is labeled Gen X for
its X-coordinate and Gen Y for its Y coordinate, the synthesized gesture Music X
and Music Y. All horizontal-axes express time in seconds. The procedure maps the
goal points (metronomic ticks) of the generalized trajectory onto the goal points
(beat points) of the music. The goal points are visualized by vertical red lines, the
mapping by green lines. The synthesized beating-time gesture (Music X,Music Y)
is calculated by linear temporal interpolation.

4.7 Discussion

Our solution is in essence a dynamic time warping solution that focuses on
the construction of a reference signal for time warping. The reference signal
holds temporal information coming from all basic gestures and is calculated
from the hidden state transitions of a fitted HMM. This calculation involves
an averaging step and as such it is outlier sensitive. Care should be taken
to remove outlying basic gestures prior to the analysis.

The whole procedure has quite some similarities to methods used for
speech recognition and speech synthesis. As such it follows the ideas of
a vocoder being an analysis/synthesis system, used to reproduce human
speech.

For analyzing speech, HMMs are the de-facto standard. Using HMMs
might look like an interesting alternative to our solution but in our setting
it has also some disadvantages. Most HMM based applications require large
data sets for training. For speech recognition this is no problem but for robot
PbD it renders the solution infeasible. We want to work there with a low
number of demonstrations. Hence for the modeling phase, we we inserted
prior knowledge in the HMM [19] choosing a topology with few parameters.
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Additionally, an HMM does not perform well for synthesis since the duration
model (hidden state self transitions) is rather simplistic [18]. In this case a
better duration model is required and we do no longer talk about a HMM
but about a HSMM, a Hidden Semi-Markov Model.

The location of the goal points for our calculated generalized trajectories
contradicts the intuitive understanding of a conducting gesture that most of
us have. Most people anticipate the beats to occur at the extremities of the
conducting gesture movement. For example for model 1 this is at the top,
bottom, left and right position. Our research learns however that there is a
lag of approximately 0.25s (compared to the 2s for the bar) between these
positions and the actual beat points. Although our study was limited to four
subjects and generalization is impossible, this result is in line with a previous
study from Luck and Toiviainen [4]. In their study Luck and Toiviainen
found that an ensemble’s performance, executed in an ecological setting with
a conductor, tended to be most highly synchronized with periods of maximal
deceleration along the trajectory, in second place followed by periods of high
vertical velocity.

Main criticism of our method is that the synthesized beating-time ges-
ture is not human. During the production process of a generalized trajectory
we focused on timing, resulting in an artificial trajectory, rather than on the
human factor, what would mean selecting one performance out of a set. Our
artificial gesture was eventually humanized by making it smooth through
cubic spline regression.

4.8 Conclusion and Future Work
The present study provided a method to produce a synthesized beating-time
gesture for use with a humanoid robot. From a set of demonstrated beating-
time gestures on metronome ticks a generalized trajectory in parametric
form was calculated. As such the followed method is called programming
by demonstration (PbD) or imitation learning. The calculation used two
probabilistic models namely a DPGMM and a HMM together with a DTW
algorithm to cope with the spatial and temporal variation of the demon-
strated conducting gestures. Using the concept of goal points (temporal
targets) it was easy to adapt the generalized gesture, to make it suitable for
music.

Our work is an initial but important step towards a fully automated
conducting system. Our present implementation is now limited to beating-
time gestures. A next step could be to move to a more extended set of
gestures. Our system is still off-line: We extract the beat points off-line and
up-front and we use them to generate a synthesized beating-time gesture
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also off-line and up-front. Moving from an off-line beat detection algorithm
to an on-line beat detection algorithm would make it possible for a conductor
to adapt the timing of his gestures to what the orchestra is actual playing.
We suggest using an adaptive learning approach, based on a maximum a
posteriori (MAP) estimation, and integrating the propagated knowledge
from previous time intervals.
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Without music, life would be a mis-
take.

F. Nietzsche

5
The Surprising Character of Music.

A search for sparsity in music evoked body movements.

Abstract

The high dimensionality of music evoked movement data makes it difficult
to uncover the fundamental aspects of human music-movement associations.
However, modeling these data via Dirichlet Process Mixture (DPM) Models
facilitates this task considerably. In this paper we present DPM models to
investigate positional and directional aspects of music evoked bodily move-
ment. In an experimental study subjects were moving spontaneously on a
musical piece that was characterized by passages of extreme contrasts in
physical acoustic energy. The contrasts in acoustic energy caused surprise
and triggered new gestural behavior. We used sparsity as key indicator for
surprise and made it visible in two ways. Firstly as the result of a positional
analysis using a Dirichlet Process Gaussian Mixture Model (DPGMM). Sec-
ondly as the result of a directional analysis, where a Dirichlet Process Multi-
nomial Mixture Model (DPMMM) unveiled a dominant direction mix for
the low energetic acoustic parts but random directional behavior in the high
energetic acoustic parts. The results show that gestural response follows the
surprising or unpredictable character of the music.



5-2 Chapter 5

5.1 Introduction

Several authors have suggested that humans perceive something as aesthet-
ically interesting when there is a balanced mixture between recognition and
surprise [1]. In 1933, Birkhoff was one of the first to present a mathematical
theory for aesthetic measures, which he defined as the ratio of O (order)
to complexity (C) [2]. The idea that surprise is related to aesthetic feel-
ing fully resonates with known theories of music processing and emotional
arousal [3–5].

Surprise is often intended and in music it has a strong power to arouse
listeners. Mayer [6] drew an analogy between musical structures and re-
currence structures in chaotic systems. He stated that : “Perceived order
and disorder, recurrence and complexity are common features observed in
both chaos and music. These features can be perceived in music because the
music has been intentionally designed to reveal them.” An extreme example
is the famous Symphony No. 94 in G major (Hoboken 1/94) written by J.
Haydn, also known as the Surprise Symphony. Haydn was reputed for this
type of surprises, and the Surprise Symphony is exemplary in that it con-
tains a sudden fortissimo chord at the end of a piano opening theme in the
variation-form second movement. The music then returns to normal and
subsequent movements do not repeat the surprise. And this brings us to a
key indicator of surprise and that is sparsity. Sparsity is a major attribute
of many descriptions of surprise (e.g. [5, 7–9]).

Based on the key insights that cognition is necessarily situated and em-
bodied [10, 11] we assume that the surprising character of the music gets
embodied in the movement idiosyncrasies of subjects. A cognitive system,
such as the human mind, is always interacting with its environment via its
sensors that perceive, and effectors that produce actions. The complexity of
the real world is dealt with not by manipulating abstract internal represen-
tations, but by interacting with the world itself, i.e. by performing actions
and monitoring their results via perceptions. There are theories that state
that music perception is built on a bidirectional action-perception coupling
[12]: “In one direction, incoming sensory information is transformed into
corresponding motor representations on the basis of a direct-matching or
mirroring [13]. It explains why so many people tend to move along with
the expressive patterns they hear in music. In the other direction, sensory
outcomes are predicted based on planned or executed actions [14]. This ex-
plains why the perception of ambiguous musical patterns can be influenced
by movements, as movements prompt people to impose - at least temporarily
- certain anticipated structures (e.g., rhythm, melody, dynamics, phrasing
etc.) or affective qualities onto the music. The two directions are cou-
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pled in the sense that the mere activation of one representation (action or
perception) results in the activation of the other (perception, action).”

Given the tight coupling between perception and action, musical sur-
prises can be called gestural affordances [15]. For listeners and dancers,
these surprises, or failures to anticipate, afford new opportunities to move
along with the music [15, 16]. The movement idiosyncrasies are assumed
to result from two control mechanisms which we call the action-perception
loop and the sensory-motor loop [17]. Fig. 5.1 shows the overview taken
from [17] page 27. The action-perception loop is rooted in an action reper-
toire that contains previously learned associations between perception and
action. For example, it contains representations that associate perceived
sounds with gestures, and it also contains representations that allow the
generation of actions in function of desired perceptive outcomes in response
to music. The sensory-motor loop is rooted in the environment and it allows
corrections of executed actions in response to input from the environment.
The hypothesis is that music offers affordances with which listeners interact
on the basis of their action repertoire and interaction with the environment.

Figure 5.1: Schema for an action-perception coupling system.

The goal of the present paper is to provide a set of methods to iden-
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tify sparse expressive behavior, hence the link with the unpredictable and
surprising character of music. The provided methods are objective, ana-
lytically tractable and keep a direct link with time as music is a function
over time. Just like a Short-Time Fourier Transform allows to investigate
a basic movement characteristic like periodicity, our methods also focus on
basic movement characteristics, being position and direction. Position and
direction are known to have strong relationship with musical valence and
arousal (e.g. [18] [19]). Position is the coordinate of an optical marker at-
tached to the body of a subject and is measured either in an absolute or in
a relative reference coordinate system. Direction reflects the direction this
optical marker is moving (left/right and up/down) and is here expressed as
a mixture over a time interval (viz. it quantifies concepts like more up/down
than left/right movement).

The paper is organized as follows. In section 5.2 we describe the experi-
ment that is at the basis of our research. Section 5.3 describes the methods
of analysis used: how to preprocess the data and what feature space to use.
The results are in section 5.4, a section that is split-up in two parts: the first
part handles the results for positional analyisis, the second part concerns
directional analysis. Eventually a discussion can be found in section 5.5.

5.2 Experimental set-up
At the basis of our research lays an experiment in which subjects moved
spontaneously on music. The music for the experiment was selected for
its extreme contrasts in physical acoustic energy, symbol for the surprising
character of the music.

• Subjects + Task.
Thirty-six subjects participated in a music evoked body movement
experiment. They were chosen from a pool of students enrolled in
various academic disciplines and they volunteered freely. The group
was composed of 20 males and 16 females with a mean age of 24,2
year (SD=4,2). The experiment was set-up on a per individual basis,
having one subject performing at a time. Before the actual execu-
tion of the experiment, the participants received the task of moving
spontaneously to the music. This was formulated as: “Translate your
experience of the music into free full-body movement. Try to become
absorbed by the music that is presented and express your feelings into
body movement. There is no good or wrong way of doing it. Just per-
form what comes up in you.” The actual motor-attuning experiment
took place in a motion capture space: an octagonal space enclosed by
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black curtains in order to separate the participants from the experi-
menters. The participants could thereby use the space indicated by
a white, round carpet with a diameter of 4 meter. Furthermore, we
made the room completely dark, as a pilot study had indicated that
this made the participants more comfortable and less constrained to
execute their task. The music was played through a stereo setup
formed with two Behringer B2031A Truth Active Studio Monitors at
a predefined volume which was esteemed as agreeable by the experi-
menters.

• Stimuli.
The music was part of Johannes Brahms’ First Piano Concerto, Opus
15 in D minor from 1858 (in a recording by Krystian Zimmerman
and the Berlin Philharmonic Orchestra, conducted by Simon Rattle).
The musical piece is characterized by passages articulating extreme
contrasts in physical acoustic energy. Based on this, we define two
contrasting musical style categories which structure the main outline
of the composition, namely a Heroic and Lyric style category. In the
stimulus three Heroic passages are presented in alternation with three
Lyric passages. Because the first Lyric passage is relatively long in
comparison with the other we deleted some portion of that passage (1
min 56 s - 2 min 46 s of the recording) in a way it was not audible
for people that do not know the musical piece well. The remaining
musical stimulus had a duration of 5 minutes and 12 seconds (Fig. 5.2).

• Data recording.
Registration of movement data for the complete upper body was re-
alized with an OPTITRACK infrared optical system consisting of 12
synchronized cameras with related ARENA motion capture software
(http://www.naturalpoint.com). Participants were asked to put on
a special jacket and cap on which markers were attached with Velcro.
A default human upper body skeleton model provided in the ARENA
software was constructed from the 22 infrared reflecting markers that
were attached to jacket and cap in a predefined manner: four markers
for hip, three markers each for head, chest, upper arms, and hands. Af-
terwards, the performances of all participants were exported into Bio-
Vision Hierarchy (BVH) files. With the help of the MATLAB motion
capture toolbox (http://www.cs.man.ac.uk/˜neill/mocap), we cal-
culated the three-dimensional position (at a sample rate of 100 Hz)
for all “joints” making up the upper body and head. Although we
collected data from multiple markers, we focused for this analysis on
the data of the right hand.
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Figure 5.2: Johannes Brahms Opus 15 in D Minor - subdivided in Heroic Parts
with high acoustic energy and lyric Parts with low acoustic energy.
(Dark Grey = Heroical Parts. Dark Blue = Lyric Parts. Light Grey = Transi-
tional or Not classified)

5.3 Analysis Method
The analysis employs clustering techniques. For the positional analysis we
fit a Dirichlet Process Gaussian Mixture Model (DPGMM) to the data.
This model divides the feature space in a number of Gaussian clusters
with the particularity that the number of clusters is learned from the data.
For the directional analysis a Dirichlet Process Multinomial Mixture Model
(DPMMM) is applied. This models the feature space as a mixture of (di-
rectional) mixtures. For readers not familiar with Dirichlet Process Models
we refer to the existing literature (see e.g. Teh [20] and El-Arini [21]) or
for a brief introduction to appendix A.1. Let us first explain how we pre-
processed the data and how we set-up the respective feature spaces.

5.3.1 Pre-processing of the data
The data from one subject were discarded due to technical problems during
the recording.

The main focus of the experiment was on the movement data from the
hand as it is a body part that experiences the highest degree of freedom
(DOF). To eliminate the influences from other body parts (like translations
and rotations of torso and/or shoulders) a new three dimensional axis sys-
tem was defined as in Fig. 5.3: Axis 1 was defined as the line going through
the clavicle (shoulder-neck). Axis 2 was defined by the projection of the up-
position (chest-neck) onto a plane perpendicular to axis 1 and eventually
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axis 3 was determined as the cross product of axis 1 and axis 2. All calcu-
lations and findings in this paper are based on this new relative coordinate
system.

Eventually the positional data was translated to a new origin being the
mean of the data points of one subject. This step served no specific goal
except that it was required for the chosen implementation of the DPGMM
algorithm.

Figure 5.3: Relative Axis System used for hand representation.

The data for the directional analysis is based upon the velocity signals,
which were calculated as derivatives from the positional data. To calculate
these derivatives a local (linear) derivation filter was applied to the posi-
tional data. The size of the filter window was set to a value of 0.175 s
corresponding with a linear frequency response of the derivation filter in
the useful frequency band of 0-4 Hz . The 0-4 Hz range is in line with the
information coming from the spectrogram in Fig. 5.4. This derivation filter
was applied to all coordinates to calculate the first derivative. The sole
purpose of this filter was to remove noise while calculating the derivatives.

Figure 5.4: Spectrogram of hand positional data
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5.3.2 Feature Space

The feature space for positional analysis consists of the positional coor-
dinates (Cartesian coordinates x-y-z). The feature space for directional
analysis is calculated from the velocity vectors (section 5.3.1). Velocity
vectors were first converted to spherical coordinates (radius, elevation and
azimuth). Afterwards, the spherical coordinates were used to categorize
directional information. Categorization was done with the help of the fol-
lowing two indicators: A first indicator came from the elevation ([ −π

2 ,
π

2 ])
and divided the elevation range in four quadrants of π

4 . A second indicator
was derived from the azimuth ([−π, π]) dividing its range in eight octants
of again π

4 . The combination of these two indicators resulted in total in 32
(4 times 8) categories. In addition, we created one extra category labeled
“lack of movement”. The criterion for lack of movement was based on low
speed as indicated by the radius of the velocity vector. The decision bor-
der for low speed values was set per subject in such a way that 5% of the
values having the lowest radius values would always be categorized as lack
of movement. Eventually every velocity sample got assigned to a category.
The category information made up the feature space for the directional
analysis.

Because of the degree of randomness or should we say chaos [22] in music
evoked body movement, we do not look at directional data at distinct time
stamps but at mixtures of directional categories over a limited time interval.
We are rather interested in the amount of up-down movements or left-right
movements in a particular time interval.

To calculate the mixtures we use time intervals of three seconds conform
Pöppels’ theory of the 3 s window of temporal integration [23]. At a sample
rate of 100 Hz this means that we have 300 samples (3*100) of the velocity
vector for every 3 s time interval. Every single sample of these 300 samples
is then classified into one of the 33 classes as we explained earlier on. The
entire 3 s time interval is then described by its mix of classes. This mix
is modeled as a sample of a multinomial distribution with N=300 and 33
categories (classes). Our musical fragment lasts approximately 5 minutes
and 12 seconds and can be divided in 104 of these 3 s time intervals. To avoid
artifacts we work with an overlap window of 50% to end with 208 samples of
multinomial distributions. DPMMM clusters these multinomial samples by
assigning samples that have a large probability to originate from the same
multinomial distribution to the same cluster. Eventually, the result of the
DPMMM analysis is a mixture (clusters) of mixtures (directional classes).
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5.3.3 Dirichlet Process Models
For the analysis we use Dirichlet Process Mixture (DPM) models (See also
Appendix A.1). By using a Dirichlet Process mixture (DPM) model we
target at modeling the dataset with a limited number of clusters and still
preserving its most important features. DPMs have the advantage that
they learn the number of clusters from the data. This is in contrast with
algorithms like K-means clustering or Gaussian Mixture Models (GMMs)
where the number of clusters has to be specified upfront or has to be de-
termined by additional validation steps. The practical implementation was
done in Matlab with the help of the demo programs from Yee Whye Teh
(http://www.stats.ox.ac.uk/∼teh/) .

5.4 Results
In what follows, we first discuss the results for the positional analysis using
DPGMMs. Then we discuss the results for the directional analysis using
DPMMMs.

5.4.1 DPGMM for Positional Analysis
The musical excerpt of Brahms was split-up in six fragments, namely, three
heroic style fragments alternating with three lyric fragments as illustrated
in Fig. 5.2. The DPGMMM analysis was performed for every combination
of subject and fragment. By way of example Fig. 5.5 shows the data points
collected for subject 2 fragment 2 (a lyric fragment) on the left hand side.
The result of the DPGMM clustering (same subject, same lyric part) is
displayed on the right hand side. We see that for this particular case the
movement in terms of position can be described by a three clusters system.
Every cluster stands for a three dimensional Gaussian and is uniquely de-
fined by its mean and its 3x3 covariance matrix. In other words, the model
allows to describe the dataset for subject 2 fragment 2 containing 5000 data
samples by only 26 parameters (three means, three covariance matrices and
two parameters for the cluster mixture). All subsequent analyses are based
on these model parameters.

5.4.1.1 Analysis of small data clusters

Small clusters stand for sparse movement and therefore they might link to
surprising, salient events in the music. For our analysis we defined a small
cluster as a cluster having a maximum of 300 data points. This corresponds
to a three second time interval if all the data points in that cluster are
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Figure 5.5: Hand Movement : a. Raw Data and b. Clustered Data

adjacent in time. Our assumption is that because these points are close to
each other in space (belonging to the same cluster) they are also close to
each other in time, as human movement is continuous and smooth. That
means that most of these small clusters represent small abnormal moves.

An interesting question is whether subjects did make of these abnormal
movements at the same time. That would point to some effect in the music
that triggers these sudden (surprising) events. Fig. 5.6 summarizes the
findings and depending on the threshold used we see that there are four
moments in time where five subjects or more concurrently made such short
abnormal moves. These moves took place at 5.2 s - 57.1 s - 102.4 s - 300.6 s.
For 5.2 s (warm-up?) and 57.1 s we find no obvious explanation in the
music but intriguing is that we notice a similar event at 102.4 s and 300.6 s.
There we localize a change in the harmonic structure of the music with a
major cord (happy) changing into a minor chord (sad). This happens at
time stamp 102.4 s in the orchestra part and at 300.6 s in the solo part for
piano.

50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9

10

X: 102

Y: 5

Small Clusters : Subject Count versus Time

Time (s)

S
u

b
je

c
t 

C
o

u
n

t

Figure 5.6: Small Clusters : Subject Count. The bars represent how many subjects
had their positional coordinates in a small cluster at a particular time.
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5.4.1.2 Analysis of large data clusters

To understand sparsity we must also understand what is common. Therefor
it is instructive to study the large clusters as well. We defined clusters
as large clusters if they contained at least 10 % of the data points of a
particular fragment. Let us first study the positions of the means of these
large clusters, and next we investigate their covariance matrices.

In our experiment, the means (positions) of these clusters can be influ-
enced by two conditions (heroic or lyric). A first analysis checks the position
of these clusters with respect to the planes of motion namely the sagittal
plane (medial-lateral), the frontal plane (anterior-posterior), and the trans-
verse or horizontal plane (superior-inferior). For every subject we calculate
the average cluster location in the lyric and heroic condition. Paired T-tests
reveal then the following:

• On average the cluster locations in lyric fragments (M=0.95, SE=0.40)
are significantly more medial compared to the clusters in heroic frag-
ments (M=-1.93, SE=0.53) t(34)=-4.48, p<.05, r=.6. The paired
difference between lyric and heroic clusters for the average cluster
distance to the sagittal plane is significantly normal (D(35)=0.09,
p>.05). This means that lyric movements happen more in front of
the body (or towards the heart) compared to heroic movements that
happen more aside.

• On average heroic clusters (M=5.69, SE=0.57) lay significantly higher
than lyric clusters (M=-3.96, SE=0.63) t(34)=9.72, p<.05, r=.9. The
paired difference in height between the two cluster types is significantly
normal (D(35)=0.10, p>.05).

• On average heroic clusters (M=0.89, SE=0.37) lay significantly closer
to the frontal plane than lyric clusters (M=-1.38, SE=0.37) t(34)=3.86,
p<.05, r=.6. The paired difference in this position between the two
cluster types is however not significantly normal (D(35)=0.18, p<.05).
The latter result despite its non-normality may seem surprising at
this point. We expect lyric movements closer to our body and heroic
movements further away. The main reason why this result seems not
to match our intuition is because of the definition of close. We defined
“close” as the distance to the frontal plane. If you stretch your arm
and raise your arm straight-up, your hand lays in the frontal plane
and the distance to the frontal plane is zero. So distance to the frontal
plane has nothing to do with the intuitive concept of close to the body.

Visual inspection learns us that the movement mainly happens on the
surface of an ellipsoid. We used a least square fitting algorithm made avail-
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able by Dr. Y. Petrov (Northeastern University, Boston, MA) to fit an
ellipsoid through the cluster locations. Unfortunately the cluster locations
are concentrated on a limited area of the ellipsoid surface what makes the
fitting algorithm not always successful for all subjects. Nevertheless for
some subjects, like subject 2, the fit is quite good as can be understood
from Fig. 5.7(a). If movement happens on the surface, then we need only
two coordinates to specify it. According to the mathematical definition of
dimension, this movement is then two dimensional and not three dimen-
sional. It is our hypothesis that surprises in music cause movement to
suddenly enter a higher dimension. However with the fitting problems of
ellipsoids other methods have to be sought to back-up this hypothesis.

After investigating the cluster means, we can have a look now at the
cluster covariance matrices. For every covariance matrix we calculate the
eigenvalues and the eigenvectors. The size of a cluster can be approximated
by the volume of an ellipsoid with semi-principal axes (a,b,c) set equal to
the square root of the eigenvalues as shown in Formula (5.1). Note that
calculating the volume using eigenvalues makes the volume a measure for
the density of a cluster. High volumes are then synonym for low density.

V =
4
3

∗ π ∗ a ∗ b ∗ c (5.1)

On average heroic clusters (M=2458.38, SE=189.41) have a significantly
higher volume than lyric clusters (M=1589.92, SE=176.24), t(34)=8.49,
p<.05, r=.8. The difference in volume of the clusters is significantly normal
distributed (Shapiro-Wilk) W(35) = 0.97, p>.05. What this says is that
movement in lyric fragments is more concentrated (denser) than movement
in heroic fragments. Additionally we see that one eigenvalue is always con-
siderably lower than the two other eigenvalues. Averaged per subject we see
that the smallest eigenvalue explains only about 8% of the variance (M =
8.10, SD=1.20). In other words the movement of the hand is locally (cen-
tered at the cluster) rather two dimensional rather than three dimensional.
The orientation of this two dimensional plane can be visualized by looking
at the orientation of the eigenvector that goes together with the smallest
eigenvalue as the two dimensional plane is perpendicular to this eigenvec-
tor. In Fig. 5.7(b) we see that the direction of these eigenvectors points to
a central point near the shoulder. Variance in that direction corresponds
with punching movements (from the body away and back). As this is the
direction with the lowest variance (smallest eigenvalue) we can say that this
type of movement was almost absent in our experiment.

Summarized, large cluster research revealed that hand movement mainly
happened on two dimensional manifolds and that these manifolds are tan-
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(a) Fitting an ellipsoid through the (large) cluster locations. The light blue dots indicate

locations above the ellipsoid. The dark blue dots indicate locations below the ellipsoid.

The shoulder was added as reference point.
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Figure 5.7: Both figures explain that hand movement mainly happens on two di-
mensional manifolds and that these manifolds are tangent to the surface of an
ellipsoid.
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Figure 5.8: Cluster assignment for subject 15, visualized on top of the musical
amplitude. Each cluster stands for movement with the same directional mix.

gent to the surface of an ellipsoid. Any movement that violates these “rules”
can be classified as sparse and is a possible indicator of surprise.

5.4.2 DPMMM for Directional Analysis
In section 5.3.1 we explained how to calculate the directional mix (viz. the
amount of left/right and up/down movement) for every three second inter-
val. We did the calculation for in total 208 of these three second intervals
allowing them to overlap by 50%. All the calculated directional mixtures
can be understood as samples coming from many multinomial distributions.
The task of a DPMMM is to cluster mixtures that are likely to come from
the same multinomial distribution. Fig. 5.8 shows the clustering result for
subject 15. As our interest lays in the relationship with music, the cluster
assignment is displayed with the help of the musical amplitude.

For this particular subject, DPMMM assigned the intervals to in total 8
different clusters. This means that the subject’s movement style can be re-
duced to 8 different ways of moving (direction-wise). We further notice that
the lyric style fragments are dominated by the same cluster what basically
tells us that lyric style fragments have the same directional mix. Heroic
intervals on the contrary have a less distinct dominant cluster and show
also different cluster patterns. In particular, the first and second heroic
fragment show what we call sparse behavior. The clusters alternate there
in a fast sequence. The third heroic interval however does not show this
behavior and gives the impression that the subject is not anymore surprised
by the music.
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Figure 5.9: Visualization of the directional mix for Subject 15 Cluster 7 (the
dominant cluster of Fig 5.8 ). The prevailing direction is horizontal.

We visualize now for subject 15 the directional mix of his/her dominant
cluster in Fig. 5.9. There the red color stands for dominant directions and
the blue color for directions that are not present. From this figure we learn
that (for this subject) the lyric intervals are dominated by a prevailing
horizontal (left/right) movement.

The above findings were based upon the results for a single subject. Can
we generalize some of the results? A paired T-test confirms that the time
fraction of the dominant cluster is indeed higher for lyric intervals (M =
0.56, SE = 0.03) than for heroic intervals (M = 0.42, SE = 0.02)
t(34) = −5.23, p < .05, r = .7. The paired difference in time fraction
between the two styles is significantly normal (D(35) = 0.19, p > .05).

Another way of consolidating is to bundle the results of all subjects
in a single diagram, in a what we call a directogram. A directogram is a
visual representation of the gestural affordances (direction-wise) in a musical
excerpt. It represents a square matrix calculated as follows: If for example
interval 17 and interval 24 belong for one subject to the same cluster we
increase the value of element (17,24) of the square matrix by one. We loop
then over all subjects and display the resulting matrix in a kind of density
plot (Fig. 5.10). This plot is what we define as a “directogram”.

Warmer colors indicate that more subjects were moving their hand simi-
larly (intra-subject!) at the timestamps given by the horizontal and vertical
index. The directogram learns that the musical excerpt is splitting into five
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Figure 5.10: Directogram: reveals ’directional movement’ characteristics of a mu-
sical excerpt. Persistency, along the diagonal, answers questions like how long do
we move similarly (in terms of direction). Consistency, off-diagonal, compares
remote intervals: do we move the same way (direction wise) in remote lyrical
intervals?
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time intervals as indicated by the black rectangles. This subdivision resem-
bles the subdivision of the music into heroic and lyric fragments but it is
not exactly identical in terms of duration of the segments. Major differences
come from the absence of the first heroic interval, the second lyric interval
that seems to last longer and from the third heroic interval that seems to
start later. If we look to the music (Fig. 5.8) for a possible explanation
we see that the build up for the third heroic part is gentle and rather an
extension of the previous lyric part.

The subdivision in intervals is based on a characteristic that we define
as persistency. Persistency refers here to a continuous time interval where
for every subject a particular (direction) cluster dominates. This causes the
high values near the diagonal in the density plot. The persistency effect
is clearly highest for lyric time intervals and corresponds with what we
anticipated from the individual analyses as made in Fig. 5.8, namely, that
lyric parts have a highly dominant cluster.

Further we discover also something what we define as consistency. Con-
sistency is visible as off-diagonal high density areas and appears only at
time intervals corresponding with the lyric time intervals. This reveals that
all lyric time intervals are not only dominated by one single cluster but that
this cluster is also identical to all lyric intervals. In other words the domi-
nating cluster of lyric time interval 1 is also the dominating cluster of lyric
time intervals 2 and 3. Consequently, as far as direction is concerned, sub-
jects move the same way in all lyric fragments. The lack of consistency for
the heroic intervals is clearly visible by the lack of off-diagonal high density
areas at the heroic time intervals. Subjects move (direction-wise) differently
in the three heroic time intervals and this supports the viewpoint of link-
ing surprise in music to new gestural affordances as surprise is dominantly
present in the heroic intervals.

5.5 Discussion
The methods we propose in this paper identify sparsity in the positional and
directional data of music evoked body movement. As there is a correlation
between sparsity and surprise we expect to obtain a better understanding
of the unpredictable character of music. Our findings confirm that sparse
movement arises for some subjects at identical time intervals pointing to a
single cause, being music. Sparse movement emerges in outlying positional
data and also in movement direction data.

To come to the findings for positional data we subdivided the movement
space in areas of high density by modeling this space as a mixture of Gaus-
sians. Using the Bayesian statistical framework, a Dirichlet Process prior is
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used to learn the number of clusters directly from the data. Small clusters
stand for sparse movement and are correlated with the sparse moments of
surprise in the music. Large clusters reveal other interesting effects. Al-
though more research is required, in our case (with music from Brahms)
the large clusters appear to lay on the surface of an ellipsoid. The surface
of an ellipsoid can be described by two parameters giving it a dimension of
two. Leaving this ellipsoid or otherwise stated changing the dimensionality
of the movement could also be an indicator of surprise in a musical excerpt.

The directional analysis used a multinomial mixture model with a Dirich-
let Process as prior. This analysis clustered a set of fixed time intervals
(having a duration of 3 s in our case) with respect to similar directional
content. This led to the discovery of percentage wise larger clusters in the
lyric style intervals. Eventually, the results from multiple subjects were
consolidated in a directogram used to visualize the directional content of
the gestures over the whole musical excerpt. This directogram is a powerful
visualization tool as it allows to derive the directional information in terms
of persistency (directional content stays unchanged) and consistency (same
directional movement at different times in the music).

Future work could avoid the categorization process during directional
analysis and work directly with the variables azimuth and elevation. Note
that these variables should be handled by circular statistics and that should
result in clusters of bivariate von Mises distributions. We refer for example
to work of Lennox et al.[24] where this approach was followed, although in
a completely different field.

From the directogram we understand that the directional content of
movement follows the different musical styles: In the lyrical style fragments
(low acoustic energy) it was highly persistent, meaning it was direction-wise
similar for a long period and it showed also consistency between remote lyric
fragments. In the heroic style fragments (high acoustic energy) the picture
was different. Persistency was lower, meaning more novice gestures and
hence the link with surprise. Consistency between heroic style intervals was
low to completely absent, underlining the new gestural affordances found in
each heroic style interval.

A major recurring element in many definitions for surprise is the failure
to anticipate. To understand how this can be placed in practice, we would
like to start this discussion by citing Itti and Baldi [8]: “In the Bayesian
framework, we develop the only consistent theory of surprise, in terms of the
difference between the posterior and prior distributions of beliefs of an ob-
server over the available class of models or hypotheses about the world. We
show that this definition derived from first principles presents key advan-
tages over more ad-hoc formulations, typically relying on detecting outlier
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stimuli.”
Itti and Baldi tested their theory on humans directing their gaze towards

surprising items while watching television and video games. Abdallah and
Plumbley [25] elaborated on these principles and worked out an advanced
model for surprise detection in the perception of music. Fundamental to
their theory are the Bayesian approach and measures like entropy and mu-
tual information.

Although we consider the theory from Abdallah and Plumbley as very
valuable, we miss the aspect of embodiment. Abdallah and Plumbley con-
sider their disembodied approach even as a feature as it makes their model
more generic: “the model operates at a level of abstraction removed from
the details of the sensory experience”. Another comparable experiment with
also a disembodied approach is from Eerola et al. [26]. where listeners had
to continuously rate how easy it is to predict (continue) a melody. There,
the authors suggest as future work to include an aspect of embodiment by
letting subjects to sing along and investigate what happens. Including em-
bodiment is in line with our vision and follows the ideas of Leman [11], who
states that music cognition can not be understood loose from an embodied
approach. This makes the implementation of a Bayesian model consider-
ably more difficult and that is why we left that path and why we applied
a secondary descriptor of surprise, namely sparsity. Note that we prefer to
use the term sparsity compared to other terms like outliers or novelties, as
often used by other authors (e.g. [8]).

5.6 Conclusion
In this experiment, we analyzed a group of subjects dancing spontaneously
and individually to music. The idea was to search for sparsity, sparsity being
a secondary indicator of surprise in music. The followed method made use
of Dirichlet Process Mixture (DPM) models and allowed to identify sparsity
in positional and directional attributes of movement data. The time stamps
of sparsity could be linked to suspected moments of surprise in the music.

An additional result was the development of a new type of graph, namely
a directogram that can be used as a summary descriptor for a musical
excerpt. A directogram explains a musical excerpt in terms of the directional
content of evoked body movement and has in some perspective analogies
with a correlation diagram.

The present experiment was executed with subjects moving on music of
Brahms. It would be interesting to apply our method to other, even modern
musical styles.

Our methods are not limited to only music evoked body movement but
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can in principle be extended to other fields were sparsity (in movement) has
to be measured. We think for example of applications in sports analysis
and rehabilitation.
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Elephants Don’t Play Chess.
Rodney A. Brooks

6
Outlook - A glimpse of the future

The world of machine learning is in full evolution. What is new today
might be outdated tomorrow. Nevertheless in this chapter we would like to
discuss some of the recent developments and give our opinion on what can
be important for future musical gesture research.

Research on musical gestures is hindered by high dimensionality of the
data and by complex ecological settings, making it difficult to deal with
large groups of participants. Think for example about experiments with
motion capture data: Just putting on a mocap suit can easily take five
minutes making it impossible to work with a huge number of participants.

Unfortunately large groups are required to estimate probabilities because
an obvious method to estimate, is to calculate the frequency of something
happening. This brings us to the realm of statistics that is usually said to
exist out of two camps : the Frequentists and the Bayesians.

6.1 Are you a Frequentist or a Bayesian?
For a Frequentist, a probability is asymptotically linked with the frequency
with which one expects to observe the data, given some hypothesis about
the world. It answers the natural question: What is the chance that I see
this data given a hypothesis, P (D|H)?

Bayesians focus on another quantity P (H|D), namely the probability
of the hypothesis given the data. The link between both quantities is made
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by Bayes’ theorem (6.1). The term P (H) in the numerator is referred
to as the prior and expresses the knowledge before the actual data was
collected. This is the main strength of a Bayesian approach as it allows
to integrate expert knowledge in the analysis but it is also its weakness as
expert knowledge is judged to be subjective. Because of this subjectiveness
the term probability is often replaced by belief.

P (H|D) =
P (D|H) ∗ P (H)

P (D)
(6.1)

What is the chance that Belgium wins the world soccer championship
in Brasil in 2014? That is a question that a Baysian can answer and a
Frequentist not because it clearly concerns a belief here and not a probabi-
lity. We can’t let Belgium play thousands of finals to calculate the rate of
success.

This explains also why a Bayesian is called an optimist and a Frequen-
tist a pessimist [1]. A Bayesian is an optimist, not because he believes in
Belgium winning the title, but because he can give solutions based (condi-
tioned) upon even little data. For a Bayesian, statistical inference must be
understood in the context of the decisions that will be made on the basis
of the inferences. Bayesian decision theory is a formal theory of decision
making under uncertainty. Frequentists on the contrary are pessimists and
will not take any decisions before they have seen large amounts of data,
because they do not condition on the data. Their decisions should hold in
all circumstances.

What we see now is that, compared to the previous century, Bayesian
statistics is experiencing a revival and becomes a standard element in the
machine learning toolkit. It lets us make the best possible use of a so-
phisticated inferential tool [1]. One of the major reasons for the revival of
Bayesian statistics is that with the advent of Markov Chain Monte Carlo
(MCMC) tools calculations became analytically tractable. The frequentist
approach however is still out there and stays also valid: For testing new
medication we prefer the pessimistic frequentist approach that guarantees
a new medicine will perform well in all circumstances for all people and not
just conditioned on a small group of people.

An example of using a Bayesian approach related to our experiments is
the prediction of the timestamp of the next beat for making a conducting
avatar. Given knowledge (prior) about the beats per minute (BPM’s) a
Bayesian model can predict the next beat. The more data we collect, the
less important the a priori knowledge becomes and the more we will rely
on the data. A frequentist would handle the same problem by expressing
the information held in a Bayesian prior into a constraint. This could be
achieved by limiting the beat time intervals to a certain fixed range.
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Figure 6.1: HMM visualized as a Bayesian Network. Variables (nodes) are pre-
sented as circles, conditional dependencies are displayed as arrows. The Xi rep-
resent the hidden nodes (categorical variables) and the Yi represent the observed
nodes (continuous or discrete variables).

6.2 Probabilistic Independence
Loose from a Bayesian or a Frequentist approach we see that new types
of probabilistic models are emerging in music research. In our thesis we
used for example GMMs, HMMs , DPMs,... Common to most of these new
models is that they factorize the joint probability over a set of variables
in a product of probabilities where just a few variables appear per factor.
This is achieved by exploiting independencies between variables. There exist
basically two ways of doing so: (1) Bayesian Networks a.k.a. Belief Network
(visualized by directed acyclic graphs) and (2) Markov Networks or a.k.a.
Markov Random Fields (visualized by undirected graphs).

6.2.1 Bayesian Network
A Bayesian Network has nothing to do with Bayes formula or with following
a Bayesian approach but is simply a way to express a joint probability as
a product of conditional properties. For example an HMM is a Bayesian
Network (Fig. 6.1) and its joint probability can be expressed as in (6.2), a
product of probabilities. This modularity facilitates model fitting.

P (X1, X2, X3, ...Y 1, Y 2, Y 3) =
P (X1) ∗ P (Y 1|X1) ∗ P (X2|X1) ∗ ...P (Y n|Xn) (6.2)

Bayesian networks have an implicit causal interpretation, even if techni-
cally spoken this is not always correct. The reason is that the joint proba-
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bility is factorized in a product of conditional probabilities which are often
associated with causality.

Consider the following case where we have three binary variables in-
dicating respectively the condition of the lawn (wet/dry), the status of a
sprinkler system (on/off) and the weather conditions (rain/dry). Now our
finding is that the lawn is wet because it either rains or because either the
sprinklers are on. This points to causal conditioning. Causality is here
obvious as no one will assume that the sprinklers will activate because the
grass being wet.

6.2.2 Markov Network

There are circumstances where a causal interpretation is not appropriate.
Take for example an application in image handling where two variables
representing adjacent pixels in an image are correlated but have no causal
relationship. In other words it is not the left pixel that triggers the right
pixel. In this case we talk about correlations (or associations) and not about
causal relationships. Dealing with correlations is the strength of a Markov
Network.

For a Markov Network the joint probability of all variables is factorized
in a product of joint probabilities of subsets of variables. Variables inside
these subsets are probabilistic dependent and describe associations. Han-
dling associations is the strength of a Markov Network. It represents these
associations (or correlations) in terms of mutual energy between variables.
Low probability corresponds with high mutual energy, high probability cor-
responds with low mutual energy.

A Markov network is usually represented as an undirected graph. As
example we present the so called Ising model in Fig. 6.2. An Ising model is a
mathematical model originating from the world of physics (ferromagnetism)
where every variable is binary (representing magnetic dipole moments of
atomic spins that can be in one of two states (+1 or -1)). In an Ising model
every binary variable (Yij) is only influenced by its directly adjacent nodes
(called a cliqué C). The joint probability of all binary variables p(y) can
then be expressed as in (6.3). Here Z is the partition function that ensures
the distribution sums to 1 and EC is the energy function of a cliqué C.
High energy values correspond with low probability states.

p(y) =
1
Z

exp−
�

C
EC(YC) (6.3)

The difficulty with Markov networks lays in inference because of the
partition function Z. The partition function Z requires a summing over a
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Figure 6.2: Ising model as example for a Markov Network. Every (binary) node
(represented by a circle) depends only on the adjacent nodes (being the node above,
the node under, the node left and the node right). The node and its adjacent nodes
form a cliqué (C). The cliqué makes by definition a node independent of other
nodes not belonging to the cliqué. The dependency between nodes in a cliqué is
described by an energy function EC . Dependency is shown by connecting lines
without arrows.
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Figure 6.3: RBM : Restricted Boltzmann Machine. v nodes are the visible nodes
and refer to observed data. The visible nodes do not depend on other visible nodes.
h nodes are the hidden nodes and refer to an an underlying bot not observed
structure. The hidden nodes are also independent of other hidden nodes.

potentially high number of variable states. Various solutions exist and usu-
ally they handle this complexity by limiting the general architecture of the
Markov Networks. Particular successful is the Restricted Boltzmann Ma-
chine (RBM) (Fig. 6.3). The RBM is a generative stochastic neural network
with an architecture that exists out of a bipartite graph : having no con-
nections between hidden nodes and having no connections between visible
nodes. RBM’s can be learned using contrastive divergence algorithm [2].

An example of an application for RBM’s in a musical context can be
found in a collaborative filtering system, a technique used by some recom-
mender systems. Here, a visible (observed) variable corresponds to users
liking or disliking a particular song. But in reality beneath the visible vari-
ables lives a lower dimensional space of hidden variables. Users liking song
A will usually also like song B, but dislike song C. A hidden variable could
then represent ’liking song A and B, but disliking C’. Determination of the
hidden variables can help to predict a user’s appreciation over songs he
never has heard of. If a new user likes A and dislikes C, we predict he will
probably also like song B.
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Figure 6.4: Deep Learning shifts the focus from modeling phenomena to modeling
the human (brain).

6.3 Deep Learning
So far we focused on probabilistic models for various phenomena: We built
models for understanding the directional content of musical gestures. We
built models for understanding the emotional content of musical gestures.
We built models for conducting gestures. For every phenomenon we built
or could build models. Most of these models emulate how a human being
makes sense of a phenomenon. Dimension reduction, feature extraction, hi-
erarchical clustering, correlation analysis, ... are all amongst the techniques
used by a human to get an understanding of a natural phenomenon. So an
obvious question is whether is not feasible to model the ’reasoning’ capabil-
ities of a human in order to supersede all individual phenomenon dependent
models (Fig. 6.4). That is the approach of ”Deep Learning”.

Deep Learning is according to MIT Technology Review one of the 10
breakthrough technologies for 2013 : ”With massive amounts of computa-
tional power, machines can now recognize objects and translate speech in
real time. Artificial intelligence is finally getting smart.”

Humans interfere with the real world using associations and predicting
(causal) outcome. Outcome is something inherent to Bayesian Networks
(conditional probabilities) and modeling associations is the main strength
of a Markov network (joint probabilities). The idea of Deep Learning is to
make up a layered structure with sigmoid belief nets (a type of Bayesian
Network) at the bottom and a Restricted Boltzmann Machine (a type of
Markov Network) at the top (Fig. 6.5). The layers in such models corre-
spond to distinct (hidden) levels of concepts, where higher-level concepts
are defined from lower-level ones, and the same lower-level concepts can
help to define many higher-level concepts [3].
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Figure 6.5: Deep Belief Network. h stands for hidden nodes. v for visible nodes.
(Figure based upon[4])

One of the reasons for the impressive results of Deep Learning obtained
in several areas is that the supervised learning task (e.g. digit recognition)
involves an unsupervised learning component, usually in an unsupervised
pre-training phase. [5].

In mathematical terms: Determining the parameters of a model requires
to solve an optimization function over a high dimensional feature space.
Usually this is solved by some gradient descent approach to find the opti-
mum. This procedure starts with a search from some random defined point
and continues until a optimum is found. Usually this is a local optimum.
To improve the algorithm an unsupervised pre-training can define a better
area to start. The descent is then so to speak to fine-tune. That is the
mathematical explanation for the success of this method.
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A more intuitive explanation is illustrated in Fig. 6.6 for a musical ges-
ture labeling task. Unsupervised pre-training (Fig. 6.6.b) means that first
we try to rebuild music from gestures. This is equivalent to an unsupervised
feature detection step. The found features will eventually help to determine
the labels. This procedure is closer to how a human brain works with col-
lected information. If a human has to identify a dog on a picture, he does
not look at every pixel but first he tries to identify features of a dog (like
legs, ears, ..). This is analog to rebuilding music from gestures, namely the
reconstruction of the originating source (here a dog) from some data (here
a picture).

Figure 6.6:

Shaded node (Gestures) is the observed data. Unshaded nodes are not ob-
served. The illustration is for a classification (supervised) problem.

a. P (Label|Gestures) is independent from Music given the Gestures.
Labels are learned directly from the gestures without considering their cause.

b. P (Label|Gestures) requires information over Music : We have first
to rebuild Music from the observed data (Gestures). This step is what we call
unsupervised pre-training.

(The above figure is a customized figure. Original figure was shown at Ma-
chine Learning Summer School (MLSS), Cambridge 2009 and is from author:
Geoffrey E. Hinton, Department of Computer Science, University of Toronto)
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6.4 A Critical Note
Deep Learning triggered a revival of Artificial Intelligence. From the past we
learned that despite some initial successes artificial intelligence so to speak
stagnated. Will it be different this time? Anyway it is a good moment
to refresh our memory by citing Rodney A. Brooks [6]: ”The traditional
A.I. approach has emphasized the abstract manipulation of symbols, whose
grounding, in physical reality has rarely been achieved.”

Therefore he suggests a research methodology which emphasizes ongo-
ing physical interaction with the environment as the primary source of con-
straint on the design of intelligent systems. As such Brooks stresses the
importance of embodiment in an approach to artificial intelligence.

My personal opinion is that the success of ”Deep Learning” will greatly
depend on the presence of an embodiment component as ... elephants don’t
play chess [6] .

Figure 6.7: Elephants don’t play chess.
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A
Appendix - Technical Background

A.1 Dirichlet Process Mixture model

A.1.1 Introduction

A Dirichlet process is just like the more familiar Gaussian process a stochas-
tic process. Unlike a Gaussian process where every sample path is a func-
tion, for a Dirichlet process every sample path is a distribution function. A
Dirichlet process can therefore be understood as a distribution over distribu-
tions. For a random distribution G to be distributed according to a Dirich-
let Process, its marginal distributions have to be Dirichlet distributed [1].
Let G0 be a distribution over Θ and α be a positive number. If for any
measurable partition A1, A2... An of Θ the relation

G(A1), G(A2), ..., G(An) ∼ Dir(αG0(A1), αG0(A2), ..αG0(An))
(A.1)

holds, we say G is Dirichlet distributed with base distribution G0 and
concentration parameter α, written G ∼ DP(α,G0) [2]. The parameter α

is the concentration parameter and tells how concentrated the distribution
is around the Base distribution G0. G0 can also be understood as the
average distribution for a Dirichlet process.

This is symbolically illustrated in Fig. A.1 where we have a Gaussian
unimodal distribution G0 as basis. G is then a random sample (i.e. a distri-
bution function) from the Dirichlet Process with G0 as basis (as explained
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by equation A.1). Note that although GO is a pdf (probability density
function), G is not. G is a pmf (probability mass function) having all its
probability mass concentrated in a discrete number of parameter values.
In the presented example G was generated by the so called stick-breaking
method, a method that is also used as proof for the existence of a Dirichlet
Process [3].

The most common application of the Dirichlet process is in clustering
data using mixture models [4] [5]. Here the nonparametric nature of the
Dirichlet process translates to mixture models with a countably infinite
number of components. Let us model a set of n observations {y1, ..., yn} us-
ing a set of latent parameters {θ1, ..., θn}. Each θi is drawn independently
and identically from G, while each yi has distribution F(θi) parameterized
by θi :

yi|θi ∼ F (θi)
θi|G ∼ G

G|α, G0 ∼ DP (α, G0) (A.2)

The predictive distribution for θn+1|θ1, ..., θn is :
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θn+1|θ1, ..., θn ∼
1

α + n

�
αG0 +

n�

i=1
δθi

�
(A.3)

The sequence of predictive distributions (A.3) for θn+1|θ1, ..., θn is
called the Blackwell-MacQueen urn scheme [6]. It tells that a new sam-
ple for θ comes from a new random sample of the base distribution G0 or
that it is equal to an existing θ and this proportional to the point mass that
exists in that θ (empirical distribution). The unique values of
θ1, ..., θn induce a partitioning of the set [n] = 1,..., n into clusters such
that within each cluster, say cluster k, the θ’s take on the same value θk.
The distribution over partitions is called the Chinese Restaurant Process
(CRP) due to a different metaphor [2].

A.1.2 Practical Implementation
The most direct approach to sampling for model (A.3) is to repeatedly draw
values for each θi from its conditional distribution given both the data and
the θj for j �= i (written as θ−i). This conditional distribution is obtained
by combining the likelihood for θi that results from yi having distribution
F(θi), which will be written as F(yi, θi), and the prior conditional on θi,
which is given by (A.3). When combined with the likelihood, this yields the
following conditional distribution for use in Gibbs sampling [7]:

θi|θ−i, yi ∼
�

i�=j

qi,jδθi + riHi. (A.4)

Here, Hi is the posterior distribution for θ based on the prior G0 and
the single observation yi with likelihood F(yi, θ). The values of the qi,j

and of ri are defined by

qi,j = bF (yi, θj)

ri = bα

�
F (yi, θ)dG0(θ) (A.5)

where b is such that
�

j �=i
qi,j + ri = 1. This algorithm (A.4)(A.5) is

known as algorithm 1 for Dirichlet Process Models. For this Gibbs sampling
method to be feasible, computing the integral defining ri and sampling
from Hi must be feasible operations. This will generally be so when G0
is the conjugate prior for the likelihood given by F. The conjugate prior
distribution for a multivariate Gaussian in which both the mean µ and the
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precision Σ−1 are unknown is the Gaussian-Inverse Wishart distribution.
The conjugate prior for a multinomial distribution is a Dirichlet distribution.
Since the algorithm (A.5) cannot change the θ for more than one observation
simultaneously, a change to the θ values for observations in such a group
can occur only rarely, as such a change requires passage through a low-
probability intermediate state in which observations in the group do not all
have the same θ value [7].

This problem is avoided [7] if Gibbs sampling is instead applied to the
model formulated as in (A.6), with the mixing proportions p integrated
out. When K goes to infinity, we cannot, of course, explicitly represent
the infinite number of φc. We instead represent, and do Gibbs sampling
for, only those φc that are currently associated with some observation.
Gibbs sampling for the ci is based on the following conditional probabilities
(with φci here being the set of φc currently associated with at least one
observation).

yi|ci, φ ∼ F (φci)
ci|p ∼ Multinomial(p1, .., pK)
φci ∼ G0

p ∼ Dirichlet(α/K, ..., α/K); (A.6)

In a conjugate context, we can often integrate analytically over the φc,
eliminating them from the algorithm. The state of the Markov chain then
consists only of the ci, which we update by Gibbs sampling using the fol-
lowing conditional probabilities :

If c = cj for some j �= i :

P (ci = c|c−i, yi, φ) = b
n−i,c

n − 1 + α

�
F (yi, φc)dH−i,c(φ)

P (ci �= cj for all j �= i|c−i, yi, φ) = b
α

n − 1 + α

�
F (yi, φ)dG0(φ)

.(A.7)

This algorithm (known as algorithm 3) is presented by MacEachem for
mixtures of normals [8] and by Neal for models of categorical data [7].
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