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“ANDY: You know what the Mexicans say about the Pacific?”

“RED: No.”

“ANDY: They say it has no memory. That’s where I want to live the rest of

my life. A warm place with no memory.”

– From Shawshank Redemption by Stephen King
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CHAPTER 1

Introduction

First came the idea, then implementation and simulations: the creative process that
gives rise to what might become a beautiful and useful outcome is very complex.

In this thesis we address the problem of detecting the information exchanged by
systems that might have different nature. In order to get more insights about how
those systems communicate with each other we developed an organic framework
that contains several approaches, several points of view according to which the
information exchanges can be retrieved. One of the most difficult problems when
we try to study a set of interacting systems is how to model it and its interactions. A
key role in understanding the system set is played by two scientific fields: complex
system analysis and information theory.

To fully grasp the meaning of the term “complex”, it needs to be grounded in
a particular discipline. Here we would like to address the word complex from the
point of view of the analysis of such systems that might be considered different
than the sum of its parts. The analysis turned to a new investigation field under the
name of complex systems analysis.

There is not a generalized agreement about the definition of what a complex
system is. We can try to understand what can be considered as a complex system
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by taking into account the varied approaches used to model systems composed of
several interacting parts that exhibit highly unpredictable behaviours.

The first approach we are going to mention is the one that takes into account
the structure of the system. The chief goal is to first determine an underlying, inter-
connecting structure, then to explore the relationships among the different elements
of such a system. As an example we can mention how biologists study structures
at different levels of hierarchical organization, ranging from molecular biology to
population mechanisms, not neglecting the brain as a complex systems consisting
of billions (in the case of the human brain) of subsystems called neurons. Therefore,
psychology, as well as social scientific fields such as linguistics and anthropology,
was the most natural field to which the study of the structure connecting the variable
involved could be applied.

A convenient way to provide a mathematical formalism to the analysis of the
structure is graph theory, according to which the elements of a system can be
modelled by nodes connected by edges that represent the interactions between
nodes, figure 1.1. Thus, graph theory can give insights about the topology of the
system under study. If a complex system could be thought as a graph, we would
simplify the object of our study too much because we would not take into account
the behaviour that a complex system usually shows.

Figure 1.1: Example of graph: the coloured dots are the nodes and the straight lines
are the edges structurally connecting the nodes.

Although the structure can give very useful insights about the nature of the
system set under study, it does not seem to provide a complete overview of the
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1
relationships connecting the systems.

We then come to the second approach that considers the dynamical evolution of
the systems with regard to temporal processes. The main assumption of the temporal
dynamical point of view is to consider past events as possibly the cause of future
events. In this sense, the temporal dynamical approach assesses a relationship
between cause and effect. The challenge is to distinguish the history of which
subsystems are responsible for the future evolution of the whole system. In order to
perform such a distinction the temporal dynamical effects can not be disentangled
by the topology of the system. One of the most prominent modern approaches to
look at reality is by explaining how things work in a mechanistic and deterministic
way. This vision implies that assuming some initial conditions as a starting point,
the time evolution of the model of whatever system is under study will lie in a
specific range of likely directions. Mathematical models can be accurate enough to
predict the behaviour of several systems, even if not as accurately as we wish. The
lack of accuracy is due to what we can name randomness, a sort of unpredictable
group of events that perturbs the surrounding environment.

The amount of unpredictability and the effects of randomness are then respon-
sible for the behaviour of a system: the more randomness is present, the more
unpredictable the system is, and the greater the effect on the system. When random-
ness can be taken into account as playing a marginal role in the dynamics of the
system, then we are able to develop models reliable enough to make predictions.
Accordingly, we are able to apply the mechanistic and deterministic approaches
with a consequent dismantlement and understanding of the mechanisms that create
the system. In this case we are dealing with a simple system.

A complete different scenario challenges scientists when randomness can not
be accounted for and effects can easily lead the model towards an unstable state.
The mechanistic and deterministic hypotheses no longer hold and even if scientists
are able do reproduce a small scale version of the entire system, the assumptions
are such that the model is very far from representing reality. We are then studying a
complex system that exhibits another very interesting feature: no matter what kind
of relations hold at the very fundamental scale (e.g. neurons in a brain), some other
properties are shown at the higher level scale (e.g. simple processes underlying
imagination in the human brain). Those properties are referred to as emergent. It is

3
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not yet clear how self organization of a complex system can lead to the appearance
of the emergent properties. An improvement in the comprehension of how a
complex system can be modelled has certainly come to light: the relationships
occurring between subsystems might be very simple assuming that they have a very
small range effect and they are the common among the interactions between the
whole set of subsystems. For instance, we can think about a bird flock forming
awesome shapes in the sky as a complex system. One of the reasons why the flock
does not disperse and it is capable of avoiding obstacles seems to be that each bird
follows three simple rules. The first one is to stay close, but do not bump into its
neighbours. The second rule is to fly as fast as its neighbours, implying that the
birds surrounding it should always be the same. Finally, according to the third rule
each bird should fly towards the centre of the flock. It is possible to simulate the
complex flying patterns of a bird flock merely by making each bird fly according to
the previous rules. There is not any bird that is in charge to lead the whole flock.
Therefore, when a bird changes position, the rest of the birds will do the same, thus
triggering the emergent flying patterns.

Nowadays, we can recognise complex systems in different fields such as eco-
nomics with the analysis of organizations made up of people, social and behavioural
science with the spread of epidemics and the analysis of swarming insects, biology
and physiology, ranging from the brain to the pacemaker cells in the heart tissue
to the entirety of mechanisms controlling human physiology, to name but a few
examples.

My contribution to this PhD project deals with the development of methods
able to better detect the dynamical influences occurring within a complex system.

This thesis is structured as follows: chapter 2 is an introduction to information
theory and the mathematical building blocks that will be further used in the sub-
sequent chapters. We will explain the reasoning that led to a formal mathematical
definition of concepts such as information and entropy. We will then link the
building blocks to the two measures that we will use throughout the whole thesis.
In this way, the reader will be gently introduced to the mathematical framework
adopted in this work.

In chapter 3 we are going to describe the Multivariate Transfer Entropy toolbox
(MuTE) and the first six methods implemented in it. We will provide an exhaustive

4



1
explanation of the methods from both theoretical and experimental points of view,
comparing the performances of the approaches, but not neglecting to mention the
pros and cons of each method in order to lead the user to best choose which method
will suit his needs.

Chapter 4 is devoted to the description of the artificial neural networks approach
that provides MuTE with two additional estimators. We will briefly describe
artificial neural networks from a general point of view in order to facilitate a basic
understanding of the relationship between machine learning and information theory.
We will stress the relevance of this chapter because it represents a completely new
bridge between two scientific fields with the hope that further efforts will be made
in closing the gap between machine learning and information theory.

Chapter 5 will deal with the multiscale approach applied to the model-based
method. We will explain the problems related to the two preprocessing techniques
of filtering and downsampling. A theoretical proof of how preprocessed signals
differ from the original signals is given. Furthermore, a possible way to overcome
the problems related to the preprocessing techniques is described.

Chapter 6 is devoted to summarizing the main ideas emerging from the thesis
and some suggestions regarding future directions for this research are made.

In Appendix A we will explain what we have done in order to promote MuTE
to a larger audience than that reached by traditional scholarly publications. We will
also describe the efforts to make MuTE more user-friendly in order to encourage
relatively inexperienced programmers to use it.
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CHAPTER 2

Information Transfers

Information theory can evaluate interactions in several ways providing directed or
indirected edges detected relying on the amount of information that a time series
is exchanging with another one. Thus, information theory offers a framework in
which it is possible to model and study the transmission, processing, utilization,
and extraction of information.

Every language is meant to address a communication task; whatever the lan-
guage is, its main purpose is to provide a reliable tool to exchange information.
The current spoken and written languages that are used nowadays adopt a sequence
of symbols that represents physical or non-physical objects1 in order to deliver a
message. In our everyday life we continually experience multiple languages such as
street art, advertisement, traffic signals and so on, thus experiencing different levels
of communication. If we stick with the example of the street signals we can say
that the physical object is the piece of matter arranged as signal. The non-physical
object might be the destination where we are headed. The message might eventually
be the direction to take in order to get a certain place. Communication is thus

1Here the terms physical and objects are meant to provide a simplified idea of the relationship
between whatever we can call “physical” and “object”. A rigorous detailed explanation of the two
terms is not addressed in this thesis and it is left to more exhaustive philosophical debates [1].
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possible only if whoever reads the signal is able to decode what is written on it.
The information carried by every message relies on the capability to effectively
relate encoding and decoding of a message. In the case of the street signal the
codification of the direction might be represented by an arrow, while the decoding
is the interpretation of the arrow: what would we think if an apple appeared on the
sign in place of the arrow?

Depending on the device used to deliver the message, the coding may change.
If we think about a telegraph the electromagnetic impulses can code a binary
representation composed by two levels of magnetizations thought of as the levels
0 and 1. Sequences of ones and zeros can model the letters of the alphabet and,
consequently, words. The same reasoning holds in order to obtain numbers, colors,
music and whatever we can think about that can be digitized.

Let us imagine an electrified wire that connects two villages. We would like
to send electrical pulses along the wire in order to transmit a message. As a start,
posit that we wish to send a list of 10 coin flips. We can develop several ways to
send that particular message, but we would like to define a method, a codification,
that will allow us to send any message with the shortest numbers of ones and zeros.
How can we accomplish this task? Let us think about the previous example in
order to answer the question. If we want to send the outcome of a coin flip we can
think about the two possible pulses, zero and one, as representing a “no” or a “yes”
answer asked in order to determine the outcome. We could ask “is the outcome
of the first coin flip head?”. To this question we can answer 0, meaning no, or 1,
meaning yes. Whenever we send 1, the decoding must interpret it as “head”, while
0 must be decoded as “tail”. So in our binary system we would only need one
answer to send one coin flip. We will consequently need ten questions to send ten
coin flips.

We then want to sent a message of six letters. Assuming that we are using
the English alphabet, we want to send the first letter of our message, let it be the
letter f. The challenging problem to solve is the following: how many questions
should we ask before we can completely be sure that the decoding will correctly
interpret our message? It turns out that the most effective strategy to ask the smallest
number of questions is to always divide the number of possible choices n in two
and check in which subset the letter is. If n is even we will have two subsets of
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exactly n/2 elements each. If n is odd we will have two subsets of n1 = (n+1)/2
and n2 = (n−1)/2 elements. We can start dividing the 26 letters of the English
alphabet in two subsets of 13 letters each. The first question would then be: is f in
the first subset containing letters from a to m? The answer is yes, represented by a
1. We then split the set of variables in two subsets containing letters from a to g
and from h to m respectively. Is f in the first subset? Yes, so the coding is 1 1 so far.
If we iterate the procedure we will end up with the following code for f: 1 1 0 1 0.
This code will uniquely identify the letter f. In figure 2.1 a visual explanation of
the algorithm used to code a letter is shown. As soon as we start asking questions,
we go down the binary decision tree until we are able to select the desired letter.
As depicted in Figure 2.1, the simple rule of thumb is that the code of a letter is
derived by going down the decision tree and assigning a 1 every time we choose
an arrow pointing to the left. We assign a 0 every time we go down choosing an
arrow pointing to the right. There is then a one-to-one correspondence between
each letter and its code.

We can now try to figure out whether we can have a clue about the average
number of questions that we should ask in order to select a letter. If we apply
the algorithm to whatever letter we want to select, we see that the depth of the
decision tree consists of either five questions in the worse case or four questions
in the best case. At every step the number of subsets is split in two. This means
that if the tree were full we would have 25 = 32 possible symbols that means 32
letters. Since we only have 26 letters and the tree is not full, the number of steps
may vary between four and five. To evaluate the average number of questions we
can apply the inverse function of the exponential: log2 26' 4.7, representing the
average length of symbols needed to code each possible symbol.

Ralph Hartley in his paper “Transmission of Information”, presented at the
International Congress of Telegraphy and Telephony in 1927, writes that “a quan-
titative measure of ‘information’ is developed which is based on physical as con-
trasted with psychological considerations”. He called information a quantity H

that is proportional to the logarithm of the number of possible symbol sequences:
H = n logs = logsn, where s is the number of possible states the system can take at
each question and n is the average number of states used to code a symbol. Taking
into account the previous example, we can notice that s = 2, n = 4.7.
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Figure 2.1: Binary decision tree explaining the algorithm used to find a letter asking
the minimum number of questions. Whenever we want to code a letter we can
ask whether the letter is in the first subset. If so we assign 1, otherwise 0, and we
continue until the letter is selected. We can easily see that “f” is coded as 1 1 0 1 0.

Hartley paved the way to what will become the topic studied by information
theory. One of the main purposes of information theory is to provide a model of
communication such that the amount of information exchanged can be evaluated.
Facing the problem of quantifying the information is not trivial. Claude Shannon in
his paper “A mathematical theory of communication”, 1948, derived a “measure
of how much ‘choice’ is involved in the selection of the event or of how uncertain
we are of the outcome” called entropy and represented by H. To understand his
idea we can consider an alphabet of four letters only, “a”, “b”, “c”, “d” and a
message transmitted. If we assume that the letters sent in a message are uniformly
randomly chosen we can arrange the decision tree as shown in figure 2.2I where
all the symbols need two questions to be selected. If the letters are not uniformly
distributed, then another way to arrange the decision tree is possible. We would
first need to evaluate the ratio between the number of occurrences of each symbol
in the message and the number of symbols contained in the message. We can think
about the ratio as the probability of occurrence of the symbol. Thus, we might have
pa = 0.5; pb = 0.125; pc = 0.125; pd = 0.25. The decision tree would be better
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2
built as shown in figure 2.2II.

Figure 2.2: In I a uniformly distributed tree is shown. In II the probability distribu-
tion changes and the number of questions to select a letter changes accordingly.

Shannon tried to find a measure that can give an idea about the amount of
“choice” involved in the selection of a letter or, in other words, about the amount of
uncertainty of the outcome.

If such a measure exists, let us call it H(pi), where i ∈ [1, · · · ,n] and n = 4 in
our example, then asking the following properties seems reasonable:

1. H should be continuous in the pi.

2. If all pi are equal then pi = 1/n and H is a monotonic increasing function of
n. This property represents the decreasing amount of choice, or uncertainty,
as some events become more possible than others.

3. If a choice is split into two successive choices then the original H should be
the weighted sum of the singular values of H.

It can be proven that the only function satisfying the three assumptions required
is of the form:

H =−K
n

∑
i=1

pi log pi (2.1)
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We can understand equation (2.1) thinking about the examples shown in fig-

ure 2.2. We showed that every time we build a binary decision tree the aver-
age height of the tree equals the logarithm in base two of the number of pos-
sible states (4.7 ' log2 26 questions to ask in order to select a letter). If we
want to know the height of the tree at the level i we should evaluate heightpi

=

log2 (number of choices at pi level) = log2 1/pi, where pi is the probability to oc-
cur of a choice at level i. Taking into account figure 2.2 we can notice that in
2.2I all the choices are on the same level so they have the same probability to
occur, satisfying the second assumption above. In II the probability distribution that
determines how often a letter is selected on average is not uniform. The entropy is
then the average summation of the contribution of each letter. This contribution can
be mathematically expressed as

H =
4

∑
i=1

(height of the tree at pi level× pi)

=
4

∑
i=1

pi log2 (1/pi) (2.2)

=−
4

∑
i=1

pi log2 pi

In I H = 4(pi log2 (1/pi)) = 4(0.25log2 (1/0.25)) = 2 while in II

H =(pa log2 (1/pa))+(pb log2 (1/pb))+(pc log2 (1/pc))

+(pd log2 (1/pd))

=0.5log2 (1/0.5)+(0.125log2 (1/0.125))

+(0.125log2 (1/0.125))+(0.25log2 (1/0.25))

=1.75

As we can see, the greater the uncertainty, figure 2.2 I, the higher the entropy. If
we consider the log2 (·) function then the entropy is expressed in “bits”. We can use
other bases for the logarithm, changing the unit of measure accordingly. Without
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loss of generality we will use the log(·) function from now on.

As Shannon went further in his reasoning we have other relations to play with.
In fact, he not only derived the entropy related to the joint occurrence of two states
i, j representing two different events x, y

H(x,y) =−∑
i, j

p(i, j) log p(i, j) (2.3)

where p(i, j) is the joint probability associated to the occurrence of i and j, but also
what he called conditional entropy.

Suppose we are dealing with the same events x, y and the same respective
individual states i, j. We can say that for any particular value i that x can assume
corresponds to a conditional probability p( j|i) that y has the value j expressed by
the following relation:

p( j|i) = p(i, j)
∑i (p(i, j))

(2.4)

The conditional entropy of y, H(y|x) is then defined as the average entropy of y

for each value of x, weighted according to the probability that a particular state of x

will occur:

H(y|x) =−∑
i, j

p(i, j) log p( j|i) (2.5)

The equations above give us an idea of what happens when a variable assumes a
particular value. Furthermore, we are interested in revealing the dynamics according
to which past events can affect the present state in order to (i) try to picture the
dynamical influences occurring over time and (ii) build a topology of the influences
by means of a graph. If we assume that past events can influence the present, then
we might assume that the past is causing the present when the former is helping
to predict the latter. In other words, we are interested in detecting whether and to
what extent past states can influence the present state. We then need to define what
influence means and how to measure it. In the following, we are going to introduce
two measures that can quantify the influence occurring within a time series and
among several time series.
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Complex systems can be studied by perturbing one part of the system and

investigating the outcome obtained in another part. A very different approach
consists of identifying causal relationships as the predictability of ongoing activity
in one as compared with that in another. A new method that was introduced by the
pioneering work of Wiener (1956) [2] and Granger (1969) [3] allowed this new
approach to be further investigated. The WienerGranger method does not require
direct intervention in the system. It relies on the estimation of causal statistical
influences between simultaneously recorded variables that can be represented by
time series. Causality in the WienerGranger sense (GC) is based on the statistical
predictability of one time series that derives from knowledge of one or more others.

The definition of “causality” is non-trivial for complex systems where cause and
effect are very difficult concepts to understand. In 1956 Norbert Wiener introduced
the idea that a time series could “cause” another if the prediction of the second
variable is improved by taking the information about the first into account [2].
However, the implementation of the Wiener’s idea was introduced only in 1969 by
the econometrician Clive Granger in the context of linear autoregressive models of
stochastic processes.

The basic idea of GC is straightforward. Let us assume that we have two
variables X , and Y , and we want the present state of X , Xt , using only past states
of X . We also want to predict Xt using past states of both X and Y . If the second
prediction is significantly more successful, then we can infer that the past of Y helps
in predicting Xt more than the past of X only. In this case, Y is said to G-cause X .
We can easily see that Y G-causing X does not necessarily imply X G-causing Y ,
GC resulting in an asymmetric measure that is able to detect directed information
transfers.

Because the values of a variable at one time are predicted by values of other
variables at earlier times, it is often said that GC depends on “temporal precedence”.
However, it is not sufficient that events in the other variables simply precede
similar events temporally in the first variable. For GC to be significant, statistically
significant predictability must be established. In other words, non-zero values
for GC can usually be obtained from any set of time series, but these values are
meaningless unless it is determined that they are statistically significant.

Another useful measure to detect directed dynamical links is called Transfer
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Entropy (TE). TE was defined by Schreiber [4] in the realm of information theory
and it permits an evaluation of the influences occurring within a system without
making any assumptions as to the nature of the influences. The relationships might
be linear or non-linear: TE does not need a model in order to detect whether the
past states are helping to predict the present state.

In order to give a qualitative description of what transfer entropy is, we can think
about a common scenario. Let us imagine that we listen to a completely unknown
song on the internet. A great amount of causal interactions take place in order
to transfer the music to our brain. For instance, the causal, physical interactions
occur between the data downloaded and the way the program that we are using to
browse the internet reassembles the data, all the processes occurring to turn that
stream of sorted data into the desired music and so on, up to the conversion of air
pressure into neural signals in the cochlea that finally triggers activity in our brain.
In this case, there is a clear information transfer from the driver that is represented
by the music and the target that is represented by the brain. If the sound track
contains repetitions, the brain can easily predict the melody. In this case the driver
is no longer able to transfer information. The neural activity might theoretically be
completely predictable by taking only the past of the neural activity into account. If
we estimated TE between the driver and the target, we would find a TE higher than
zero when the music is completely unknown, while we would find TE equal to zero
when repetitions are heard.

While GC needs a model in order to evaluate the directed dynamical influences,
TE is a model-free measure. They can be merged into the same framework if we
assume that the whole set of time series is drawn by the same Gaussian distribution.
According to this assumption, GC and TE are equivalent and they can be compared
[5].

15





3CHAPTER 3

MuTE: A MATLAB Toolbox to Compare Established

and Novel Estimators of the Multivariate Transfer

Entropy

Paper published on PLoS ONE; doi: 10.1371/journal.pone.0109462

A challenge for physiologists and neuroscientists is to map information transfer
between components of the systems that they study at different scales, in order
to derive important knowledge on structure and function from the analysis of the
recorded dynamics. The components of physiological networks often interact in
a non-linear way and through mechanisms which are in general not completely
known. It is then safer that the method of choice for analysing these interactions
does not rely on any model or assumption on the nature of the data and their
interactions.

Transfer entropy has emerged as a powerful tool to quantify directed dynamical
interactions. In this chapter we compare different approaches to evaluate transfer
entropy, some of them already proposed, some novel, and implement them in a
freeware MATLAB toolbox. Applications to simulated and real data are presented
in this chapter that might be considered as the first release of the toolbox.
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In the next chapter we are going to describe another estimator that has been
integrated in the toolbox. The performances of the new estimator will be compared
to the methods proposed in this chapter in order to better lead the reader toward the
comprehension of the pros and cons of the whole set of approaches.

Furthermore, we are going to extensively describe the toolbox itself further in
this thesis. The reader will have the opportunity to understand how to set MuTE
due to the detailed description of the parameters involved and the several examples
provided. We also implemented a graphical user interface to widely spread the
toolbox so that even users without a strong programming background can easily
use MuTE.

3.1 Introduction

Since its first introduction by Schreiber [4] transfer entropy (TE) has been recog-
nized as a powerful tool to detect the transfer of information between joint processes.
The most appealing features of TE are that it has a solid foundation in information
theory and it naturally incorporates directional and dynamical information. More-
over, the formulation of TE does not assume any particular model as underlying the
interaction between the considered processes, thus making it sensitive to all types
of dynamical interaction. The popularity of this tool has grown even more with the
recent elucidation of its close connection with the ubiquitous concept of Granger
causality [5], which has led to formally bridge information-theoretic and predictive
approaches to the evaluation of directional interactions between processes. Given
all these advantages, the TE has been increasingly used to assess the transfer of
information in physiological systems with several applications in neurophysiology
[6, 7, 8, 9]. It is worth noting that in this chapter when speaking of the transfer
of information measured by TE we refer to the “predictive information transfer”
intended as the amount of information added by the past (and present) states of a
source process to the present state of a target process.

The estimation of TE from time series data which constitute realizations of the
investigated physiological processes is complicated by a number of practical issues
that need to be addressed and that are contributing to the development of several
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recipes to compute this measure.

In this study we discuss three different approaches to evaluate the probability
distribution function which constitutes the basis for TE in multivariate systems. In
turn, each approach has to be paired with the choice of the time series past values
which contribute information to the knowledge of the present state of a given target
time series. The first choice is the classical Uniform Embedding framework (UE)
that considers a fixed amount of past terms for each series; the second approach is
quite recent and employs a Non-Uniform Embedding framework (NUE) [10, 11]
iteratively selecting the most informative terms through an optimization criterion.

These recipes, some of them already established, some novel, are accordingly
revisited or explained. Then, in order to contribute to the foundation of a common
framework for the application of TE, we describe their implementation in a modular
MATLAB toolbox. Several examples are presented allowing a critical comparison
of UE and NUE approaches for all the three entropy estimators.

The chapter is organized as follows. We first provide an overview of TE. We then
distinguish between UE and NUE approaches to the representation of the history
of the observed processes. We describe in detail the methods used to estimate the
probabilities involved in the evaluation of the TE and their implementation in the
toolbox. The approaches are then validated on synthetic time series and then tested
on real data: the electroencephalogram of an epileptic patient and cardiovascular
measurements in healthy subjects.

3.2 Materials and Methods

3.2.1 Transfer entropy

Let us consider a composite system described by a set of M interacting dynamical
subsystems and suppose that, within the composite system, we are interested
in evaluating the information flow from the source system X to the destination
system Y , collecting the remaining systems in the vector Z =

{
Zk}

k=1,...,M−2.
We develop our framework under the assumption of stationarity, which allows
to perform estimations replacing ensemble averages with time averages (for non-
stationary formulations see, e.g., [12] and references therein). Accordingly, we
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denote X, Y and Z as the stationary stochastic processes describing the state visited
by the systems X , Y and Z over time, and Xn, Yn and Zn as the stochastic variables
obtained by sampling the processes at the present time n. Moreover, we denote
X−n = [Xn−1Xn−2 . . .], Y−n = [Yn−1Yn−2 . . .], and Z−n = [Zn−1Zn−2 . . .] as the vector
variables representing the whole past of the processes X, Y and Z. In some cases
it can be desirable to take into account also the instantaneous influences of the
candidate drivers. In this case, the vectors X−n and Z−n defined above should contain
also the present terms Xn and Zn. Then, the multivariate transfer entropy from X to
Y conditioned to Z is defined as:

T EX→Y |Z = ∑ p
(
Yn,Y−n ,X−n ,Z−n

)
log

p(Yn|Y−n ,X−n ,Z−n )
p
(
Yn|Y−n ,Z−n

) (3.1)

where the sum extends over all the phase space points forming the trajectory of the
composite system. p(a) is then the probability associated with the vector variable a
while p(b|a) = p(a,b)/p(a) is the probability of observing b knowing the values
of a. The conditional probabilities used in (3.1) can be interpreted as transition
probabilities, quantifying to which extent the transition of the target system Y
towards its present state is affected by the past states visited by the source system X .
Specifically, the TE quantifies the information provided by the past of the process
X about the present of the process Y that is not already provided by the past of Y or
any other process included in Z.

The formulation presented in (3.1) is an extension of the original TE measure
proposed for pairwise systems [4] to the case of multiple interacting processes.
The conditional TE formulation, also denoted as partial TE [8, 11], rules out the
information shared between X and Y that is mediated by their common interaction
with Z. Note that the TE can be seen as a difference of two conditional entropies
(CE), or equivalently as a sum of four Shannon entropies:

T EX→Y |Z = H(Yn|Y−n ,Z−n )−H(Yn|Y−n ,X−n ,Z−n )

= H(Yn,Y−n ,Z−n )−H(Y−n ,Z−n )

−H(Yn,Y−n ,X−n ,Z−n )+H(Y−n ,X−n ,Z−n )

(3.2)

TE has a great potential in detecting information transfer because it does not
assume any particular model that can describe the interactions governing the system
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dynamics, it is able to discover purely non-linear interactions and to deal with a
range of interaction delays [7]. Recent research has proven that TE is equivalent to
Granger Causality (GC) for data that can be assumed to be drawn from a Gaussian
distribution, a case in which the data covariance is fully described by a linear
parametric model [5, 13]. This establishes a convenient joint framework for both
measures. Here we evaluate GC in the TE framework and compare this model-based
approach with two model-free approaches.

3.2.2 Reconstruction of the system’s past states and TE evalua-
tion

We will discuss here the crucial issue of how to approximate the infinite-dimensional
variables representing the past of the processes. This problem can be seen in terms
of performing suitable conditioned embedding of the considered set of time series
[14].

The main idea is to reconstruct the past of the whole system represented by the
processes X, Y, Z with reference to the present of the destination process Y, in order
to obtain a vector V = [VY

n ,V X
n ,V Z

n ] containing the most significant past variables
to explain the present of the destination. Once V is computed it is easy to evaluate
TE as the difference of two CEs or through the four entropies using the whole V or
convenient subsets of it according to equation (3.2).

Uniform embedding

The large majority of approaches applied so far to estimate TE implicitly follow
uniform conditioned embedding schemes where the components to be included
in the embedding vectors are selected a priori and separately for each time series.
For instance the vector Y−n is approximated using the embedding vector VY

n =

[Yn−mYn−2m . . .Yn−dm], where d and m are respectively the embedding dimension
and embedding delay (the same for X−n and Z−n , approximated by V X

n and V Z
n ). In

this way it is possible to distinguish between a first phase during which the past
states are collected and a second phase during which the estimate of the entropy, and
consequently of the CE, is evaluated by means of the chosen estimator, according
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to the following pseudo-code:

1. build the vector V = [VY
n ,V X

n ,V Z
n ];

2. use V and Yn to evaluate the last two entropies of (3.2) and, consequently, the
lowest CE term (CE2);

3. use V\V X
n to evaluate the first two entropies of (3.2) and, consequently, the

highest CE term (CE1);

4. compute TE as equal to the difference CE1 - CE2.

The obvious arbitrariness and redundancy associated with this strategy are
likely to cause problems such as overfitting and detection of false influences [14].
Moreover one should assess which TE values are significant. The significance
tests associated with TE estimation based on UE are different for model-based and
model free estimators, and are described in the respective following subsections.

Non-uniform embedding

Non-uniform embedding constitutes the methodological advance, with respect to
the state of art, that we implement as a convenient alternative to UE. This approach
is based on the progressive selection, from a set of candidate variables including
the past of X, Y, and Z considered up to a maximum lag (candidate set), of the
lagged variables which are most informative for the target variable Yn. At each
step, selection is performed maximizing the amount of information that can be
explained about Y by observing the variables considered with their specific lag
up to the current step. This results in a criterion for maximum relevance and
minimum redundancy for candidate selection, so that the resulting embedding
vector V = [V X

n VY
n V Z

n ] includes only the components of X−n , Y−n and Z−n , which
contribute most to the description of Yn. Starting from the full candidate set, the
procedure which prunes the less informative terms is described below:

1. Get the matrix with all the candidate terms
MC = [Xn−1 . . .Xn−lXYn−1 . . .Yn−lY Zn−1 . . .Zn−lZ ], with lX , lY , lZ representing
the maximum lag considered for the past variables of the observed processes;
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these matrices will contain also the terms Xn and Zn in case one wants to take
into account instantaneous effects.

2. Run the procedure to select the most informative past variables and the
optimal embedding vector:

(a) Initialize an empty embedding vector V (0)
n

(b) Perform a while loop on k, where k can assume values from 1 to the
number of initial available candidates, numC, in the MC matrix. At
the k-th iteration, after having chosen k−1 candidates collected in the
vector V (k−1)

n :
for 1≤ i≤ number of current candidate terms

• add the i-th term of MC , W (i)
n , to a copy of V (k−1)

n to form the
temporary storage variable V ′n = [W (i)

n V (k−1)
n ]

• compute the mutual information between Yn and V ′n, estimating the
probability density function according to the chosen estimator

(c) Among the tested W (i)
n , select the term Ŵn which maximizes the mutual

information

(d) if Ŵn fulfills a test for candidate significance, as described below, in-
clude it in the embedding vector, V (k)

n = [ŴnV (k−1)
n ], delete it from MC

and set k = k+1.

(e) else end the procedure setting k = numC+1 and returning V =V (k−1)
n

3. Use Yn and the full embedding vector V = [V X
n VY

n V Z
n ] to evaluate the third

and fourth entropy values of (3.2) and, consequently, the lowest CE term
(CE2)

4. Take the subset of V without the past states belonging to the source process,
[VY

n V Z
n ] to evaluate the first and the second term of (3.2) and, consequently,
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the highest CE term (CE1)

5. compute TE subtracting CE2 from CE1.

As described above, candidate selection is performed maximizing the mutual
information between the target variable and the vector of the candidates already
selected, incremented by the candidate under examination. As we will see in the
following sections, the practical implementation of this general criterion consists of
an optimization process (i.e., minimization of the conditional entropy or maximiza-
tion of the conditional mutual information, depending on the estimator chosen).
The performances of the processes mentioned above in the reconstruction of the
optimal embedding for an assigned target process are also discussed in [11].

The complexity of the algorithm concerns mainly step 2, in particular step 2(b),
involving a for loop nested inside a while loop: in the worst case the body of the
for loop is executed numC2 times resulting in a complexity O(numC2).

At step 2(d), the test for candidate significance is performed at the k-th step
comparing the conditional mutual information between the target variable and the
selected candidate given the candidates previously selected up to the (k− 1)-th
step, I(Yn;Ŵn|V (k−1)

n ), with its null distribution empirically built by means of a
proper randomization procedure applied to the points of Ŵn. The test for candidate
significance is fulfilled if the original measure I(Yn;Ŵn|V (k−1)

n ) is above the 100(1−
α)th percentile (where α is the desired significance level) of its null distribution.
In order to maximize detection accuracy, the adopted randomization procedure is
varied for each estimator, and is thus described in the relevant section.

Summarizing, the non-uniform embedding is a feature selection technique se-
lecting, among the available variables describing the past of the observed processes,
those who are the most significant - in the sense of predictive information - for the
target variable. Moreover, given the fact that the variables are included into the
embedding vector only if associated with a statistically significant contribution to
the description of the target, the statistical significance of the TE estimated with the
NUE approach results simply from the selection of at least one lagged component
of the source process. In other words, if at least one component from X is selected
by NUE, the estimated TE is strictly positive and can be assumed as statistically
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significant. If this is not the case, the estimated TE results exactly zero and is
assumed as non-significant. This latter case occurs also when the first candidate
(k = 1) does not reach the desired level of significance, meaning that none of the
candidates provides statistically significant information about the target variable.
In such a case, that is encountered for instance when the target process is a white
noise, the code returns an empty embedding vector and assigns a value of zero to
the TE.

3.2.3 Entropy estimators

Estimation of the TE, performed according to either UE or NUE presented above,
results from the application of estimators of entropy and CE to the various terms
in (3.2). The toolbox contains three of such estimators. The first is the linear
estimator (LIN) that assumes that data are drawn from a Gaussian distribution.
Under this assumption, the two CE terms defining the TE can be quantified by means
of linear regressions involving the relevant variables taken from the embedding
vector [5]. The second estimator is the classical binning estimator (BIN), which
consists of coarse-graining the observed dynamics using Q quantization levels,
and then computing entropies by approximating probability distributions with the
frequencies of occurrence of the quantized values [15]. The third estimator is based
on k-nearest neighbor techniques (NN) which exploit the statistics of distances
between neighboring data points in the embedding space to estimate entropy terms;
we adopted the bias-reduction method of estimating entropies through neighbor
search in the space of higher dimension and range searches in the subspaces of
lower dimension [16].

A problem that can arise dealing with UE and NUE procedures when we use
entropy estimators that does not assume any probability distribution concerns the
curse of dimensionality. Indeed the more candidates we work with, the more the
data points will be spread in the phase space, the more the probability density
function will assume a constant value. Consequently the NUE should be the most
apt method to avoid the curse of dimensionality because it reduces the dimension of
the phase space. We will prove this statement in the Results section when it will be
clear from the comparison between UE and NUE for the BIN and NN estimators in
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multidimensional spaces. We are now going to introduce each estimator in detail.

Linear estimator (LIN)

The linear estimator method works under the assumption that the overall process
{X ,Y,Z} has a joint Gaussian distribution. This assumption allows to work with
well-known expressions for the probability density functions. Under this assump-
tion, the two CE terms defining the TE in (3.2) are expressed by means of linear
regressions involving the past states of the systems collected in the vector variables
[17]. When the UE is implemented, X−n is approximated with the vector of length
p, V X

n = [Xn−1, . . . ,Xn−p], and the same for Y−n and Z−n which are approximated by
VY

n = [Yn−1, . . . ,Yn−p] and V Z
n = [Zn−1, . . . ,Zn−p] (here m = 1, p = d). When the

NUE is implemented, the embedding vectors will contain only the components
resulting from the selection procedure. Then, an unrestricted regression of Yn on
the full vector V (u) = [V X

n VY
n V Z

n ]T , and a restricted regression of Yn on the reduced
vector V (r) = [VY

n V Z
n ]T , are performed as follows:

Yn = A(u)V (u)+ ε
(u)
n (3.3)

Yn = A(r)V (r)+ ε
(r)
n (3.4)

where A(u) and A(r) are vectors of linear regression coefficients. The terms ε
(u)
n and

ε
(r)
n are scalar white noise residuals with variance σ (u) and σ (r). Under the joint

Gaussian assumption, it has been demonstrated [5] that the entropy of Yn conditioned
to the unrestricted or restricted regression vectors is, respectively, H(Yn|V (u)) =

0.5(logσ (u) + 2πe) and H(Yn|V (r)) = 0.5(logσ (r) + 2πe), from which follows
immediately that:

TEX→Y |Z =
1
2

log
σ (r)

σ (u)
(3.5)

In this study, the unrestricted and restricted regression models in (3.3) and (3.4) were
estimated by the least-squares method. In the UE implementation, the order p of
the regressions was selected by the Bayesian information criterion [18]; in the NUE
implementation, the order resulted implicitly from the selection procedure. In NUE,
maximization of the mutual information between the component Ŵn selected at the
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step k and the target variable Yn (step 2d) was obtained in terms of minimization of
the CE H(Yn|Ŵn,V k−1

n ) = 0.5(logσ (k)+2πe), where σ (k) denotes the variance of
the residuals of the linear regression of Yn on [Ŵn,V k−1

n ]. Here, the randomization
procedure applied to test candidate significance consisted time-shifting the points
of Ŵn by a randomly selected lag (of at least 20 lags, set to avoid autocorrelation
effects) [19].

The statistical significance of the TE estimated through the UE approach is
assessed by a parametric F-test for the null hypothesis that the p coefficients of A(u)

which weigh the past components of the driving process, collected in V X
n , are all zero

[20]. In this case, the test statistic is F = ((RSSr−RSSu)/p)/(RSSu/(N−Mp)),
where RSSr and RSSu are the residual sum of squares of the restricted and the
unrestricted model, and N is the time series length. The TE is considered statistically
significant if F is larger than the value of the Fisher distribution with (p,N− p)

degrees of freedom at the significance level α = 0.05.

Binning estimator (BIN)

Here we describe the estimator based on fixed state space partitioning. This ap-
proach consists of an uniform quantization of the time series followed by estimation
of the entropy approximating probabilities with the frequency of visitation of the
quantized states [15]. This is the classical approach adopted in the first definition of
TE [4]. A time series y, realization of the generic process Y, is first normalized to
have zero mean and unit variance, and then coarse grained spreading its dynamics
over ξ quantization levels of amplitude r = (ymax− ymin)/ξ , where ymax and ymin

represent minimum and maximum values of the normalized series. Quantization
assigns to each sample the number of the level to which it belongs, so that the
quantized time series yξ takes values within the alphabet A = (0,1, . . . ,ξ − 1).
Uniform quantization of embedding vectors of dimension d results in an uniform
partition of the d-dimensional state space into ξ d disjoint hypercubes of size r, such
that all vectors V falling within the same hypercube are associated with the same
quantized vector Vξ , and are thus indistinguishable within the tolerance r. The
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entropy is then estimated as:

H(Vξ ) =− ∑
Vξ∈Ad

p(Vξ )log p(Vξ ) (3.6)

where the sum is extended over all vectors found in the available realization of
the quantized series, and the probabilities p(Vξ ) are estimated for each hypercube
simply as the fraction of quantized vectors Vξ falling into the hypercube (i.e., the
frequency of occurrence of Vξ within Ad). According to this approach, the estimate
of TE based on binning results from the application of (3.6) to the four embedding
vectors defined in (3.2) and determined either by UE or by NUE.

In the NUE implementation, maximization of the mutual information between
the component Ŵn selected at the step k and the target variable Yn (step 2d) was ob-
tained in terms of minimization of the CE H(Yn|Ŵn,V

(k−1)
n ) = H(Yn,Ŵn,V

(k−1)
n )−

H(Ŵn,V
(k−1)
n ), with the two entropy terms estimated through the application of

(3.6) . As for the LIN estimator, the randomization procedure applied to test candi-
date significance consisted in time-shifting the points of Ŵn by a randomly selected
lag [19].

The statistical significance of the TE estimated through the BIN UE approach
exploited the method of surrogate data implemented by the time-shift procedure
proposed in [14, 21, 19]. Specifically, the estimated TE is tested against its null
distribution formed by the values of TE computed on replications of the original
series, where in each replication the source series is time-shifted by a randomly
selected lag, set to exclude autocorrelation effects.

Nearest Neighbor estimator (NN)

Since its first introduction in 1967 [22], the nearest neighbor method has been shown
to be a powerful non-parametric technique for classification, density estimation,
and regression estimation. This method can be used to estimate the entropy of a d-
dimensional random variable X, H(X), starting from a random sample (x1, . . . ,xn) of
N realizations of X. Following the reasoning in [16], if we consider the probability
distribution Pk(ε) for the distance between xi and its k-th nearest neighbor, the
probability Pk(ε)dε is equal to the chance that there is one point lying within a
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distance r ∈ [ε/2,ε/2+dε/2] from xi, that there are k−1 other points at smaller
distances from it, and that N− k−1 points have larger distances from xk. Let pi be
the mass of the ε-sphere centered at xi, pi(ε) =

∫
‖ξ−xi‖<ε/2 µ(ξ )dξ , where µ(ξ )

is the density of the variable ξ . Then, the expectation value of log(pi(ε)) is

E(log(pi)) =
∫ inf

0
Pk(ε) log(pi(ε))dε = ψ(k)−ψ(N) (3.7)

where Pk(ε) is evaluated through the trinomial formula and ψ(·) is the digamma
function. The expectation is taken here over the positions of all other N−1 points,
with xi kept fixed. An estimator for log(µ(x)) is then obtained by assuming that
µ(x) is constant in the entire ε-sphere. The latter gives

pi(ε)≈ cdε
d
µ(xi) (3.8)

where d is the dimension of x and cd is the volume of the d-dimensional unit sphere.
For the maximum norm one has simply cd = 1, while cd = πε/2/Γ(1+d/2)/2d for
the Euclidean norm. From (3.7) and (3.8) we can evaluate log(µ(xi)) and finally:

H(X) =−ψ(k)+ψ(N)+ log(cd)+
d
N

N

∑
i=1

log(ε(i)) (3.9)

The NN estimator faces the issue of the bias in the estimation of multiple
entropies for vector variables of different dimensions by computing entropy sums
through a neighbor search in the space of higher dimension, and range searches in
the projected sub-spaces of lower dimensions [16]. This approach can be fruitfully
exploited for the estimation of the TE, as previously done, e.g., in [6, 7]. To do this,
we first rewrite the expression for TE in (3.2) in terms of the components of the
embedding vector V = [VY

n ,V X
n ,V Z

n ] spanning a space of dimension (dX +dY +dZ):

T EX→Y |Z = H(Yn,VY
n ,V Z

n )−H(VY
n ,V Z

n )−H(Yn,V )+H(V )
(3.10)

The term H(Yn,V ) is estimated through neighbor search in the (dX + dY + dZ +

1)−dimensional space, while the three other terms are estimated through range
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searches in the spaces of dimension (dY +dZ +1), (dY +dZ) and (dX +dY +dZ).
Accordingly, adaptation of (3.9) to the four terms in (3.10) yields the equation for
TE based on the nearest neighbor estimator:

T EX→Y |Z = ψ(k)+
〈

ψ(NVY
n V Z

n
+1)−ψ(NYnVY

n V Z
n
+1)−ψ(NV +1)

〉
(3.11)

where NVY
n V Z

n
,NYnVY

n V Z
n

and NV are the number of points whose distance from
[VY

n ,V Z
n ], [Yn,VY

n ,V Z
n ] and V, respectively, is strictly less than the distance from

[Yn,V ] to its k-th neighbor, and < ·> denotes average over all n.
In the NUE implementation of the NN estimator, maximization of the mutual

information between the component Ŵn selected at the step k and the target variable
Yn (step 2d) was obtained in terms of maximization of the conditional mutual in-
formation I(Yn;Ŵn|V (k−1)

n ), which was computed as described above by estimating
the four relevant entropies through a neighbor search in the complete space, and
range searches in the projected sub-spaces of lower dimensions. Moreover, the
randomization procedure applied to test candidate significance consisted in shuf-
fling randomly and independently both the points of Ŵn and those of Yn. These
techniques have been recently shown to be optimal for the selection of candidates
in a non-uniform embedding approach using nearest neighbor entropy estimators
[11]. As for the BIN UE method, the statistical significance of the TE estimated
through the NN UE approach exploited the method of surrogate data implemented
by the time-shift procedure proposed in [14, 19, 21].

3.2.4 Toolbox structure

This section describes how the three TE estimators presented above are implemented
in the toolbox, exploiting either the UE or the NUE approach for system state
reconstruction.

The same main structure, consisting of the following steps, is common to all
methods:

1. normalize the data and perform quantization when needed;

2. evaluate the probability density function (PDF);
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3. evaluate CE2 (the second conditional entropy in (3.2)). This term, accounting
for the present state of the target series conditioned to the past of the remaining
series including the driver, is evaluated first since it is needed to obtain the
complete set of conditional terms including all the series;

4. evaluate CE1 (the first conditional entropy in (3.2)): this term accounts for
the present state of the target series conditioned to a vector including the past
of the target series and of the all other series except the driver; such a vector
is obtained subtracting the candidates belonging to the driver series from the
set of candidates evaluated in the previous step.

Keeping this general scheme in mind, specific steps will be performed for any
method of choice. For instance, when using the NUE with the BIN estimator, the
steps to be performed are:

1. data quantization;

2. estimation of the PDF, as described in Binning estimator section;

3. evaluation of the first and second transfer entropy terms according to Non-

uniform embedding section.

Given the modularity of the structure shown previously it has been possible
to build a user friendly toolbox that allows one to compare all the methods at the
same time. The toolbox is available at this link http://mutetoolbox.guru/
downloads/ The package also contains two existing MATLAB toolboxes which
are used in some of the calculations: ARFIT [23], a collection of modules for
modeling and analyzing multivariate time series with autoregressive models, used
for choosing the model order in LIN UE, and OPENTSTOOL [24], a software
package for signal processing with emphasis on nonlinear time-series analysis, and
used in searching for neighbor in NN. In order to optimize the toolbox for speed,
the routine evaluateEntropy, that estimates the entropy among variables according
to entropy =−∑ plog(p), has been converted in a .cpp executable substantially
reducing the computation time.

In the following we provide guidelines for the use of the toolbox. Let’s start
from a hypothetical main function and let’s explore how a user should set the
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parameters to chose which methods to use and, possibly, how to build a new method
to be inserted within the toolbox.

In the exampleMain file, included in the folder /MuTE/exampleToolbox, some
commented lines remind the method order that has to be kept in mind when setting
the parameters, and the parameters available for each method. A first part then
follows, devoted to setting the name of the folder that contains data as, for instance,
.mat files. Each file should contain a matrix with the time series as the rows. Then
the folders in which all the output files will be stored are defined. In the second part
the function parametersAndMethods is called.

The function parametersAndMethods requires the following inputs, as reported
in table 3.1

• the number of data realizations;

• the sampling rate;

• the subset of interest;

• a value to cut the series length if necessary

• a vector specifying whether each method will take into account all the pair-
wise combinations of chosen variables. By default the instantaneous effects
won’t be considered;

• a vector specifying whether the user will set by hand all the pairwise combi-
nations of the chosen variables. This vector will also be used for visualizing
the output. It is worth noting that in this case the user should provide as input
also the sequence of the destination series and the driver series;

• the folder in which results can be stored, previously defined;

• the folder in which data are stored, previously defined;

• the folder in which results can be eventually copied;

• the number of processors if the code can be run in parallel on several nodes;
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• the name of the method chosen and all the relevant parameters as shown in
the comments. Here attention should be paid in setting four parameters if the
instantaneous effects have to be considered. First of all the function choosing
the candidate terms should be set and consequently the variable usePresent:
generateConditionalTerm, and usePresent = 0 if the instantaneous effects do
not have to be taken into account, generateCondTermLagZero and usePresent

= 1 otherwise. Then, if one is interested in the action of more than one driver
on a target series, for each driver it can be specified whether its instantaneous
effect should be considered by writing twice in a row the number of the driver
series. One can also choose which variables belonging to the Z set can be
considered with their instantaneous effects, filling the vector idOtherLagZero,
table 3.2, third column.

For an example of how these parameters should be set, let’s consider 5 vari-
ables; a conditioned analysis and a vector idTargets = [12345] would result
in the situation shown in table 3.2, second column, in which no instantaneous
effect are set and the variable idDrivers contains on the columns the id of the
driver series only once and the variable idOtherLagZero is the null vector.
An example considering instantaneous effects is reported in table 3.2, third
column, when looking at how drivers 1 and 4 influence the target 2 and how
drivers 5 and 2 influence the target 3, with series 5 and 2 as conditioning
variables.

The input parameters, including the methods of choice, specified in the function
createNameMethodParams are stored in a structure called params by the function
parametersAndMethods. This function then computes TE according to the chosen
methods, via the function callingMethods, and stores the significant results through
the function storingOutput. In case of multiple realizations/data sets to analyze, the
computation can be performed in parallel on separate pools.

The description of the toolbox structure should take into account the structure
of the function callingMethods that receives in input the data matrix with the time
series points in row and the structure params. The function reads the names of the
methods stored in the params structure and computes the TE with all the chosen
methods (in parallel if the hardware architecture allows it). This function will return
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a cell array containing the output of each method.

The open structure of the toolbox allows users to integrate in it their own method.
The main function should in this case be modified with some comments showing
which parameters should be passed as an input to parametersAndMethods, and in
which order. Each new method should then be implemented following the steps
described above using all the necessary parameters conveniently grouped via the
function createNameNewMethodParams. The new method will be called by setting
the appropriate name in callingMethods.

The execution time for a single run of the system 3.14 ranged from 0.4 s for the
LIN UE to 90.4 s for NN NUE on a Dell Mini Tower Computer, OptiPlex 990 with
four Intel Core i5-2400 CPU at 3.10GHz, 16 GB of RAM.

One of the purposes of this toolbox is to provide a common framework for all
the researchers interested in the application of Transfer Entropy to their data. As
part of this effort, MuTE will soon be interfaced with the toolbox TRENTOOL [25].
Readers and users are invited to check periodically the webpages of both toolboxes,
that will announce when this interface has been set up.

3.2.5 Simulated data

The first set of simulated data, implemented to validate the simplest approach to
TE, BIN UE, consists of two coupled chaotic maps:

X1,n = 1−β b2
1 +d εn

X2,n = (1−C1)(1−β b2
2)+C1 (1−βb2

1)+d εn
(3.12)

where C1 = 0.2 is the coupling coefficient according to which X1 is influencing X2,
b1 = |mean(x1,n−1)|, b2 = |mean(x2,n−1)|, β = 1.8, d = 0.03 is the coefficient that
regulates the noise and ε is a Gaussian noise [26]. The function generating these
data is multichaoticmap available in the folder
/MuTE/commonFunctions.

In the second experiment we simulated five time series in two cases: linear
time series, for which we can assume a normal distribution of the variables, and
non-linear ones, both generated by an autoregressive (AR) model, equations (3.13),
(3.14) [27]. The following equations are for the linear Gaussian autoregressive
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model:

X1,n = 0.95
√

2X1,n−1−0.9025X1,n−2 +w1,n

X2,n = 0.5X1,n−2 +w2,n

X3,n =−0.4X1,n−3 +w3,n

X4,n =−0.5X1,n−2 +0.25
√

2X4,n−1 +0.25
√

2X5,n−1 +w4,n

X5,n =−0.25
√

2X4,n−1 +0.25
√

2X5,n−1 +w5,n

(3.13)

where w1,n,w2,n,w3,n,w4,n,w5,n are drawn from Gaussian noise with zero mean and
unit variance. The following are the equations for the non-linear model:

X1,n = 0.95
√

2X1,n−1−0.9025X1,n−2 + z1,n

X2,n = 0.5X2
1,n−2 + z2,n

X3,n =−0.4X1,n−3 + z3,n

X4,n =−0.5X2
1,n−2 +0.25

√
2X4,n−1 +0.25

√
2X5,n−1 + z4,n

X5,n =−0.25
√

2X4,n−1 +0.25
√

2X5,n−1 + z5,n

(3.14)

where z1,n,z2,n,z3,n,z4,n,z5,n are drawn from Gaussian noise with zero mean and
unit variance. A schematic representation of the simulated couplings, valid for
both systems, is reproduced in figure 3.1. The function generating these data is
generateTS available in the folder
/MuTE/commonFunctions.

3.2.6 Electroencephalogram in epilepsy

The second experiment is performed on intracranial electroencephalography (EEG)
measurements recorded from a patient with refractory epilepsy. The dataset consists
of time series from 76 contacts. The first sixty-four of these contacts were placed
on a 8x8 grid at the cortical level, while the other 12 were along two six-electrode
strips that were implanted in deeper brain structures. Eight sets of measurements
were taken on this patient, corresponding to eight different epileptic seizures. An
epileptologist, examining the data for each seizure, identified two key periods
relating to the seizure i.e., a pre-ictal period, just before the clinical onset, and an
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ictal one, corresponding to the seizure spread and to the clinical symptoms. Each
epoch contained 10 seconds of data recorded at 400 Hz. The data are available
at http://math.bu.edu/people/kolaczyk/datasets.html and de-
scribed in [28]. In order to reduce overfitting, in this application data were down-
sampled to 100 Hz.

3.2.7 Cardiovascular and Cardiorespiratory time series

We considered cardiorespiratory time series measured from 15 young healthy
subjects (25.7±2.7 years old) undergoing a standard head-up tilt testing protocol
[29]. The acquired signals were the surface electrocardiogram (ECG), the finger
arterial blood pressure, and the respiratory nasal flow, measured at 1 kHz sampling
rate for 15 minutes in the resting supine position, and 15 further minutes in the
60◦ position after passive head-up tilting of the bed table. From these signals, the
beat-to-beat variability series of heart period (RR interval), RR(n), systolic arterial
pressure (SAP), Sap(n), and respiratory activity, Resp(n), were offline measured
respectively as the temporal interval occurring between the n-th and the (n+1)-
th R waves of the ECG, as the local maximum of the systolic arterial pressure
signal inside the n-th heartbeat, and as the nasal flow taken at the onset of the n-th
heartbeat. The time series are available in the folder /MuTE/cardiovascular data.
This measurement convention allows instantaneous effects from Sap(n) to RR(n),
as well as from Resp(n) to Sap(n) and to RR(n), which were implemented using
the relevant feature of the toolbox. The subsequent data analysis was performed
on stationary windows of 300 beats taken in supine and upright body positions;
inside these windows, the series were normalized to zero mean and unit variance,
obtaining the dimensionless series resp(n), sap(n), rr(n).

3.3 Results

3.3.1 Simulated data

The aim of testing the BIN UE approach on the coupled maps of eq. 3.12 was to
show a simple case of applicability for this method, which constitutes the most
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basic approach to the model-free evaluation of TE. We generated 100 realizations
of eq. 3.12, each of 512 points, and performed the analysis setting 1 as maximum
lag for the candidates, 100 surrogates, α = 0.05 and 6 quantization levels. As
we can see in figure 3.2, the method detected correctly the information transfer
returning 100 significant realizations for the link X1→ X2 and an average TE much
higher than the average TE for the link X2→ X1 by means of the detection of only
2 significant realizations over 100. We tested also the other methods, which gave
similar positive results as the BIN UE, thus demonstrating the applicability of the
toolbox for simulations of bivariate systems with short memory.

Then we moved to a more challenging situation in terms of number of interacting
systems and lag of the interaction effects, considering the time series simulated
with equations 3.13 and 3.14, which involve five systems and contain influences up
to 3 points in the past. The experiments were run on 100 realizations of eqs. 3.13
and 3.14, of length equal to 512 points. We investigated the TE between each pair
of variables conditioned to the other three. The setup of the experiment was the
following: for all estimators, used either in the UE or in the NUE framework, the
maximum lag for the candidates was set as 5, the number of surrogates was fixed to
100 and α = 0.05. We set 6 quantization levels for BIN and 10 nearest neighbor
for NN estimator.

In order to check whether the methods were able to detect the right information
transfers, taking into account figure 3.1, we expect the estimators to find a TE
greater than zero with the highest significance at the following matrix elements:
(1,2), (1,3), (1,4), (4,5), (5,4). Figures 3.3 and 3.4 report the analysis results
obtained respectively for the linear system and the non-linear system. Looking at
Figure 3.3 one can notice that LIN UE has very good performances: this reflects
the fact that this approach is, in this case of a linear AR system, “by construction”,
the most likely to correctly detect information transfer. Its NUE version can detect
the same links between the variables, though with a slightly higher number of false
positives. The LIN estimator, therefore, is able to reveal the correct information
flows for this simulation. On the contrary, BIN UE suffers from the curse of
dimensionality mentioned in Entropy estimators section: evaluating the influences
up to the first 5 past points for all the series implies that the uniform embedding
procedure projects the data into a phase space of M×5 dimensions, where M is
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the number of time series, resulting in a phase space with 25 dimensions, with the
points spread enough to lose relevant information about the transfer entropies in
the system. As a consequence, no significant link is retrieved with this approach.
NN UE retrieves all the true links, but also detects a number of false interactions.
Its better performance compared with BIN UE reflects the ability of the nearest
neighbor approach to achieve bias compensation in the estimation of entropies of
variables of different dimension. Still, the performance of NN UE is not optimal
due to the curse of dimensionality. On the other hand, BIN and NN used in the
NUE framework are able to recover all the correct links, with only a few false
positives. Moving to Figure 3.4 depicting TE analysis for the non-linear systems,
one can notice that the LIN estimator cannot detect all the correct information
flows, returning in addition some false positives. Again, BIN UE cannot detect
any link because of the curse of dimensionality; conversely BIN NUE, in which
the dimensionality of the space is considerably reduced, has high specificity and
sensitivity. NN NUE can achieve almost the same performance as BIN NUE but its
specificity is lower, especially along the direction X2→ X4. NN UE this time is not
able to detect all the correct information transfers (X5→ X4 remains undetected)
and reveals some false positives (X2→ X4, X2→ X5).

To better clarify whether and how much the methods are able to distinguish
between the true information transfer links and the false ones, in Figures 3.5 and
3.6 we plotted the average TE with respect to the number of significant realizations
found by the methods. Each retrieved link is a point in this bidimensional space.
The true links should be in the upper right corner of the plot corresponding to high
TE and high number of significant realizations, and they should be apart from the
false links, whose natural location would be around the origin of the plot (low TE
and low number of significant links). Looking at figure 3.5 one can notice that for
all the methods, except BIN UE and partly NN UE, the two groups of links are
well separated and the false links with an averaged TE greater than zero in figure
3.3 can be neglected. The opposite reasoning holds for BIN UE that is not able to
distinguish between false and true links. For the non-linear system (figure 3.6) only
BIN NUE can separate well true positive from false positive links.

To understand how stable the performance of the methods is, in terms of
sensitivity and the specificity, with respect to the length of the analyzed data set, we
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computed the analysis varying the series length from 128 to 1024 points. Figures 3.7
and 3.8 depict, respectively for the systems 3.13 and 3.14, the Receiver Operating
Characteristic (ROC) curves obtained for all methods as a function of the series
length. Evaluating the amount of TP (true positives), TN (true negatives), FP (false
positives) and FN (false negatives) after grouping together all coupled directions
(positives) and all uncoupled directions (negatives), we computed sensitivity as
T P/(T P+FN) and specificity as T N/(T N +FP). In the case of the linear system
(Figure 3.7), all methods except the BIN UE provide good performance, with the
LIN estimator providing the best sensitivity and specificity. All methods provided
robust results with respect to the series length, with only a limited decay in the
performance observed for 128 points. In the case of the non-linear system (Figure
3.8), the performance was optimal for BIN NUE and NN NUE (with a slightly
lower specificity), while the methods implementing either the LIN estimator or the
UE approach were considerably less sensitive.

3.3.2 Electroencephalogram in epilepsy

In such high dimensional and redundant data, a non-uniform embedding approach is
intuitively the most appropriate to identify the patterns of information transfer spe-
cific to the onset and spread of the epileptic seizure. The aim of the experiment was
to use the NUE approach in order to characterize the dynamical interactions in the
epileptic brain by looking at the information transfer between the variables during
the pre-ictal and ictal phases. The embedding size in the embedding matrix (EM)
was set to eight. The results are reported in figure 3.9. The regions corresponding
to one of the depth strips (contacts 70 to 76) and the lower left corner of the grid
(contacts 1-4, 9-11 and 17) were resected during anterior temporal lobectomy as
they were identified by the epileptologists as the seizure onset zone. The Binning
approach to NUE seems to be the one which best identifies these areas as those most
influential at the start of the seizure and in the early phases of the spread, signature
of a putative seizure onset zone. The Binning approach is more selective with
respect to the target variables for each driver and less sensitive to the confounding
effect of volume conduction resulting in the diagonal patterns observed with the
other methods and probably due to conduction effects on the grid.
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3.3.3 Cardiovascular data

The analysis of the information transfer for cardiovascular and cardiorespiratory
time series was focused on the directions of interaction that are more studied from
a physiological point of view: the link from SAP to RR which is related to the
so-called cardiac baroreflex, and the links originating from Resp and directed either
to RR or to SAP, related respectively to cardiopulmonary or vasculo-pulmonary
regulation mechanisms [29]. The particular protocol considered allows to establish
a sort of verifiable ground truth. Indeed, in the studied protocol, the transition
from supine to upright is known to evoke an activation of the sympathetic nervous
system and a concurrent deactivation of the parasympathetic nervous system [30].
Accordingly, the two main physiological regulation mechanisms that are expected
to be solicited by this transition are: (i) a substantial increase of the baroreflex
regulation (direction sap→ rr), reflecting the necessity of the cardiovascular system
to react with changes in the heart rate to the higher fluctuations in the arterial
pressure induced by the sympathetic activation; and (ii) a substantial decrease
of cardiopulmonary regulation (direction resp→ rr), reflecting the dampening
of respiratory sinus arrhythmia consequent to the parasymphatetic deactivation
[31]. On the contrary, no known alterations of the vasculo-pulmonary regulation
(direction resp→ sap) are expected when moving from supine to upright [29]. In
our analysis all these trends are well reflected in terms of information transfer when
the multivariate TE is estimated using the BIN NUE and NN NUE methods. Figure
3.10 reports the distribution of the multivariate TE computed along these directions
using all methods, with subjects studied in the supine and upright body positions.
We observe in Figure 3.10 that BIN NUE and NN NUE reveal, moving from
supine to upright, a substantial increase of the TE from Sap to RR, a substantial
decrease of the TE from Resp to RR, and an unchanged TE from resp to SAP. These
trends were also observed, though with less evident differences, computing the
TE according to the LIN estimator. These results suggest the appropriateness of
model free TE estimators based on NUE for detecting the information transfer in
physiological time series. On the contrary, the BIN UE estimator shows different
trends of difficult physiological interpretation, thus suggesting also in experimental
data that the estimated TE may be unreliable due to the curse of dimensionality.
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3.4 Conclusions

In this work we have considered three entropy estimators able to reveal the informa-
tion transferred among variables represented by time series. We implemented the
estimators in two different ways according to UE and NUE approaches, resulting in
six methods, two of which are novel, BIN NUE and NN NUE. We compared all the
methods validating them on simulated data first and then on real data. We checked
whether and how the methods were affected by the number of variables and by the
time lag at which the series influenced each other. From the results obtained we
can conclude that the new methods introduced, not assuming any model to explain
the data and exploiting the NUE strategy for component selection, can detect the
correct information flows and are less affected by the number of involved processes
and by their interaction lags. The NUE approaches are indeed prone to work in high
dimensional spaces as well as in low dimensional spaces because of their ability to
reduce the effective dimension of the phase space, choosing only the right variables
at the specific time lag that are better able to explain the destination series. On the
contrary, BIN UE and NN UE suffer from the curse of dimensionality when several
time series and longer interaction delays are present. Finally, looking at LIN UE
and LIN NUE performances we can conclude that, even though the equivalence
between Granger causality and TE establishes a convenient joint framework for
these two measures, there are some drawbacks in having a predefined model to
explain the data when these are non-linear. The better performances obtained by
the new methods appear when looking at the ROC curves: BIN NUE and NN NUE
have high sensitivity and specificity both for linear and non-linear systems.

All the methods have been implemented in an organic toolbox in MATLAB,
allowing straightforward comparisons between the methods, and flexible enough to
allow other users to implement their own methods.
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Figures and Tables

Figure 3.1: Simulated system. Interactions between the variables of the simulated
system.

Figure 3.2: TE matrix representation for the BIN UE estimator applied to the system
3.12. The two bars depict the TE evaluated from X1 to X2 (up) and from X2 to
X1 (down). Each bar is color-coded according to the value of the mean TE over
100 realizations of the simulation, with the bar height representing the number of
realizations for which the TE was detected as statistically significant.
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Figure 3.3: TE matrix representation for all the methods with linear time series
of 512 points. Bars depict the TE evaluated for all the possible combinations of
pairs of variable, conditioned to the other three variables (source: index on the left;
destination: index on the right). Bars are color-coded according to the value of the
mean TE over 100 realizations of the simulation, with the bar height representing
the number of realizations for which the TE was detected as statistically significant



Chapter 3. MuTE: A MATLAB Toolbox to Compare Established and Novel
Estimators of the Multivariate Transfer Entropy

3

Figure 3.4: TE matrix representation for all the methods with non linear time series
of 512 points. Bars depict the TE evaluated for all the possible combinations of
pairs of variable, conditioned to the other three variables (source: index on the left;
destination: index on the right). Bars are color-coded according to the value of the
mean TE over 100 realizations of the simulation, with the bar height representing
the number of realizations for which the TE was detected as statistically significant.
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Figure 3.5: TE values versus the number of significant realizations. We plotted
each link with time series of 512 points, for the different methods, on system 3.13.
In red the five true links and in blue the other ones.
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Figure 3.6: TE values versus the number of significant realizations. We plotted
each link with time series of 512 points, for the different methods, on system 3.14.
In red the five true links and in blue the other ones.
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Figure 3.7: ROC curves for all methods for the system 3.13. We varied the series
length from 128 up to 1024 points.
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Figure 3.8: ROC curves for all methods for the system 3.14. We varied the series
length from 128 up to 1024 points.
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Figure 3.9: TE matrices for human EEG recordings. The pre-ictal (top) and ictal
phases (bottom) were obtained with three different approaches to nonuniform
embedding.
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Figure 3.10: Transfer entropy for the links of interests in the cardiovascular example.
In red the TE computed for the subjects in supine position, in blue the TE evaluated
for the subjects in upright position. The error bars represent the standard error.
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Table 3.1: How to set the input parameters: an example.

Name Parameter Description
dataDir folder containing data to be analysed
numProcessors number of processors used for the parallel session
dataType filename extension
resDirGenTS folder in which results will be stored
dataFileName data filename
channels vector containing the series id, among the avail-

able series, chosen for the analysis
samplingRate variable used to resample data
endPoint value to cut the series length if necessary
autoPairwiseTarDriv vector containing a 1 or a 0 for each cho-

sen method, reflecting whether TE has to be
computed among all the pairs or not. In
this latter case, the desired drivers and tar-
gets will be specified by idTargets and id-
Drivers. By default the instantaneous ef-
fects of the drivers are not considered. This
can be changed in parametersAndMethods,
by setting params nameMethod.idDrivers =
[tarDrivRows(2,:) ; tarDrivRows(2,:)].
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Table 3.2: Example of the parameters required to define the methods for an experi-
ment on 5 variables. In the second column the instantaneous effects are neglected
both for targets and conditioning. In the third column we set instantaneous effects
for some drivers and the respective targets. For example, when the target is 1, in-
stantaneous effects are taken into account for driver 2 (first two rows, right column,
parameter idDrivers) and conditioning variable 3 (first row, right column, parameter
idOtherLagZero).

Without Instantaneous Effects With Instantaneous Effects

Name Parameter Parameter Value Parameter Value
genCondTermFun generateConditionalTerm.m generateCondTermLagZero.m
usePresent 0 1
idTargets 1 2 3 4 5 1 2 3 4 5

idDrivers
2 3 1 1 3
5 1 0 2 0
0 4 0 0 0

2 3 1 1 3
2 1 0 1 0
5 1 0 2 0
0 4 0 0 0
0 4 0 0 0

idOtherLagZero 0 0 0 0 0
3 0 5 3 1
0 0 2 0 0
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CHAPTER 4

Neural Networks with Non-Uniform Embedding and

Explicit Validation Phase to Assess Granger

Causality

Paper published on Neural Networks; doi:10.1016/j.neunet.2015.08.003

A challenging problem when studying a dynamical system is to find the in-
terdependencies among its individual components. Several algorithms have been
proposed to detect directed dynamical influences between time series. Two of the
most used approaches are a model-free one (transfer entropy) and a model-based
one (Granger causality). Several pitfalls are related to the presence or absence of
assumptions in modeling the relevant features of the data. We tried to overcome
those pitfalls using a neural network approach in which a model is built without
any a priori assumptions. In this sense this method can be seen as a bridge between
model-free and model-based approaches. The experiments performed will show that
the method presented in this chapter can detect the correct dynamical information
flows occurring in a system of time series. Additionally we adopt a non-uniform
embedding framework according to which only the past states that actually help the
prediction are entered into the model, improving the prediction and avoiding the
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risk of overfitting. This method also leads to a further improvement with respect to
traditional Granger causality approaches when redundant variables (i.e. variables
sharing the same information about the future of the system) are involved. Neural
networks are also able to distinguish between dynamics which are drawn from the
same distribution of the training set and dynamics completely different from the
training set, as shown further in this chapter.

4.1 Introduction

A fundamental problem in the study of dynamical systems is how to find the inter-
dependencies among their individual components, whose activity is recorded and
stored in time series. Over the last few years, considerable effort has been dedicated
to the development of algorithms for the inference of causal relationships among
subsystems, a problem which is strictly related to the estimate of the information
flow among subsystems [32, 33]. Two major approaches to accomplish this task
are Granger causality (GC) [34, 35] and transfer entropy (TE) [4]. GC is based
on regression, testing whether a source variable (driver) is helpful to improve the
prediction of a destination variable (target) beyond the degree to which the target
predicts its own future. GC is a model-based approach, implying that the corre-
sponding statistics for validation can be derived from analytic models, resulting
in a fast and accurate analysis. A pitfall, however, is inherent to model-based ap-
proaches: the model assumed to explain the data often implies strong assumptions
and the method is not able to detect the correct directed dynamical networks when
these assumptions are not met. On the other hand non-parametric approaches, such
as transfer entropy, allow the pattern of influences to be obtained in the absence of
any guidance or constraints from theory; the main disadvantages of non-parametric
methods are the unavailability of analytic formulas to evaluate the significance of
the transfer entropy and the computational burden, typically heavier than those
required by model-based approaches.

Feed-forward neural networks, consisting of layers of interconnected artificial

neurons [36], are among the most widely used statistical tools for non-parametric
regression. Relying on neural networks, the proposed approach to Granger causality
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will be both non-parametric and based on regression, thus realizing the Granger
paradigm in a non-parametric fashion.

In this chapter we address the implementation of Granger’s original definition
of causality in the context of the artificial neural networks approach [37]. The
metrics used to validate the hypothesis of directed influence is the prediction error:
the difference between the network output and the expected target. The choice of
the correct prediction error, and consequently the choice of the past states of the
time series that will be fed to the model, has to be accompanied by a validation
phase. Only under optimization of the generalization error one can be sure that the
network is not overfitting.

In order to deal with an increasing number of inputs, each one representing
a specific candidate source of directed influence, we will adopt a non-uniform
embedding procedure [38] that is an iterative procedure to select only the most
informative past states of the system to predict the future of the target series among
a wider number of available past states. In line with this procedure the network
will be trained with an increasing number of inputs, each of them representing a
precise past state of the variables that are most helpful to predict the target. Also
this selection process will be implemented using the notions of prediction error
and generalization error, the former quantifying how well the training data are
reproduced, the latter describing the goodness of the validation on a novel set of
data.

It is worth stressing that a neural networks approach to GC has been already
proposed in [39], where neural networks with a fixed number of inputs, together
with other estimators of information flow, are used to evaluate GC. In [39] neural
networks are trained without a validation set and an empirical method to avoid
overfitting is adopted. To our knowledge the present approach is the first time that
non-uniform embedding and a regularization strategy by a validation set are used
together in the context of neural network approaches to detect dynamic causal links.
Moreover, the neural networks built by our approach will accomplish not only the
task of estimating information flows among variables, they may also be used for
dynamic classification task as well, as better explained in Subsection 4.6.6. The new
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method presented in this chapter has been integrated in MuTE MATLAB toolbox1

[40] and it will be compared here with the linear Granger causality as well as with
the Transfer Entropy, both implemented in the non-uniform embedding framework.

4.2 Introduction to neural networks

Artificial neural networks (ANN) are a very popular branch of machine learning.
Here we give a brief introduction to neural networks to make this chapter self-
consistent.

Neural networks can be represented as oriented graphs whose nodes are simple
processing elements called “neurons” handling their local input, consisting of a
weighted summation of the outputs from the parents nodes [36]. The input signal
is processed by means of a function, called “activation function”, and the corre-
sponding outcome, called “output”, is then sent to the linked nodes by a weighted
connection; the weight is a real number that represents the degree of relevance
of that connection inside the neural network. The most common architecture of
a neural network consists of neurons ordered into layers. The first one is called
“input layer” that receives the external inputs. The last layer is called “output layer”
that gives the result of the computations made by the whole network. All the layers
between the input and output layer are called “hidden layers”.

Neural networks with at least one hidden layer and activation functions as the
sigmoid function on the hidden nodes are able to adequately approximate all kinds
of continuous functions defined on a compact set from a d-dimensional input space
Rd , the domain, to a c-dimensional output space Rc, the codomain given a sufficient
number of hidden nodes: in this sense one can say that neural networks can perform
any mapping between two different vector spaces [37]. In order to allow a neural
network to find the correct mapping, a so-called “learning phase” is needed. For
our purposes, we use supervised learning, during which inputs are presented to the
network and its output is compared to a known output. The weights are adjusted by
the network that tries to minimize a cost function that depends upon the network
output and the known output. This kind of learning allows a network to discover

1MuTE is a freeware toolbox. A detailed explanation is available on www.mutetoolbox.guru
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hidden patterns inside the data.

We implement a growing neural network to study dynamical interactions in a
system made up of several variables, described by time series, interacting with each
other. The aim is not only to find a directional relationship of influence between a
subset of time series, the source, and a target time series taking into account the rest
of the series collected in a set, called conditioning, but also to determine the delay
at which the source variables are influencing the target. We will then see how the
neural networks approach can be useful to accomplish, under the same framework,
several tasks such as: finding the directed dynamical influences among variables
chosen at a certain delay; predicting a target series when the network is fed with
a novel realization of a dynamical system whose connectivity structure has been
previously learned; classifying a new data set, giving information about how close
the causal relationships are to those observed in data sets used during the learning
phase.

4.2.1 Mathematical framework

We deal with growing feed-forward neural networks to better infer the directed
dynamical influences in a composite system. Each stochastic variable at hand is
assumed to be zero mean (the mean of the data sample is subtracted from data),
hence we will deal with neural networks without bias terms. A classical feed-
forward neural network without bias is usually described by: a finite set of O nodes
S = 1,2, . . . ,O divided in d inputs, c output nodes and O− (d + c) hidden nodes; a
finite set of one way direction connections C each one connecting a node belonging
to the k-th layer to a node belonging to the h-th layer, with h> k. A weight whk is
associated with each connection from the node k ∈ k to the node h ∈ h. Each node
o is characterized by an input function so, an input value io, an activation function
fo, and an output value zo [37]. Let us now define wh as the weights vector of the
connections which leave the nodes of the k-th layer and reach the node h. Let us
define z as the output vector of a generic layer of nodes. The input ih is given by
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ih = sh(wh,z). Usually we have: ih = ∑k whk · zk. Each zh is given by

zh = fh

(
∑
k

whk · zk

)
(4.1)

To evaluate the output of a multilayer network, consecutive applications of (4.1)
are needed to activate all network nodes. Figure 4.1 depicts the schematic structure
of the feed-forward networks under discussion here.

Figure 4.1: Schematic representation of a feed-forward neural network.

To summarize: the output values of a network can be expressed as deterministic
functions of the inputs. Assuming that the network has only one hidden layer
h, we can say that the whole network represents a function, linear or non-linear
depending on the linearity or non-linearity of the fh, between the d-dimensional
input space and the c-dimensional output space, with parameters w given by the
network weights. The relation holding between inputs and outputs of the network
can be approximated in the multidimensional space spanned by the hidden nodes
by either an hyperplane if linear functions are used as activation functions of the
hidden nodes or by a smoother approximation when non-linear functions are set
as activation functions of the hidden nodes. Usually, the activation functions of
the output nodes are set to be the identity function that does not modify the input
values of the output nodes because the outputs of the network are not supposed
to be bounded in order to assume values as close as possible to the training target

58



4

4.2. Introduction to neural networks

values, assuming that overfitting is avoided.
So far we have shown how neural networks can process inputs and how they

can be mapped onto a parametric function F(x;w) : Rd → Rc.
We can now assume that there is a function f : x ∈ Rd → f (x) ∈ Rc to be

modelled and we know a finite set of N couples (xn, tn), where n ∈ [1, . . . ,N], tn

is the value of the function f (x) evaluated in xn plus an error ε(xn). We want to
approximate f using the parametric function F : w ∈ Rp,x ∈ Rd →F(x;w) ∈ Rc.
The function F can be found through the minimization of a certain error function
E(w). For instance a classical error function is the sum of squares function (4.2) to
minimize by means of an iterative procedure that requires the data to be presented
to the network several times through consecutive realizations called epochs:

E =
1
2

N

∑
n=1

d

∑
k=1

(yn
k− xn

k)
2 (4.2)

The training of the network is the process to determine, starting from a finite
set of couples (xn, tn), the weights w̃ that can better shape F to be as close as
possible to f. After each epoch of the training phase the weights in the network are
adjusted. At this point a definition of close is in order. Let us suppose a noisy dataset
consisting of xn and tn = f (xn)+ ε(xn) where ε is the noise term. If we train the
network until the input can be exactly reproduced then F is not only reproducing
f, but the noise too. It is easy to understand that the more specialized the network
the less it will be able to predict the right tn′ = f (xn′)+ ε(xn′) when a xn′ never
seen before is presented to the network. In this case we say that the network is not
able to generalize. To overcome this issue the validation phase is embedded in
the learning. The validation phase is paramount because it allows the network to
both model the function from which the data could have been drawn and to avoid
modeling fluctuations produced by noise in the training set. In order to accomplish
these two modeling tasks at the same time, the whole learning procedure is divided
into two well distinguished steps:

1. the whole data set is divided in two groups. One group is used for the training
step during which the weights are updated

2. the second group is used for the validation step. These data have not been
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used in the previous step. We used a maximum amount of training epochs and
a smaller number of epochs called validation epochs. The validation phase is
embedded in the learning phase: this combination of training and validation
avoids erroneous use of the training procedure, thus avoiding overfitting.

In the following section, we present the algorithm used for the learning phase:

1. training step: adjust the weights after a number of training epochs

2. validation step: evaluate the generalization error and store it in a vector
VEvect

3. repeat steps 1. and 2. continuing to train the network until one of the
following three stop conditions is verified:

• the relative error evaluated as

‖current VEvect entry−mean(previous VEvect entries)‖
current VEvect entry

is less than a validation threshold set to 10−3. Preliminary experiments
were performed. According to them, setting the value of previous

VEvect entries to 5 was a good compromise;

•

(current VEvect entry−mean(previous VEvect entries))
current VEvect entry

≥ 0

• the maximum number of training epochs is reached.

The previous VEvect and validation threshold values have been chosen taking into
account a cautious gradient descent implying small updating steps as the main
concern here is the risk of overfitting.

4.3 Granger Causality with neural networks

The aim we are going to address is to find directed dynamical influences among
variables, modeled as time series, using neural networks as a powerful tool to
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compute the prediction errors needed to evaluate causality in the Granger sense.
According to the original definition, Granger causality (GC) deals with two linear
models of the present state of a target variable. The first model does not include
information about the past states of a driver variable, while the second model
contains such information. If the second model’s error is less than that of the first
model in predicting the present state of the target, then we can safely say that the
driver is causing the target in the sense of Granger [3]. Here we introduce a new
Granger causality measure called Neural Networks Granger Causality (NNGC)

defined as

NNGC = errreduced− errfull (4.3)

where errreduced is the prediction error obtained by the network that does not take
into account the driver’s past states, while errfull is the prediction error evaluated
by the network that takes into account the driver’s past states.

Therefore, instead of fitting predefined models, (linear ones in the original
proposal by Granger) we train a neural network to estimate the target using only
the past states that can better explain the target series, by using the non-uniform
embedding technique. Such strategy leads to growing neural networks, with an
increasing number of input neurons, each input neuron representing a past state
chosen from the amount of past states available, considering all the variables in
the system. The architecture of the network and choice of the most suitable past
states, performed through the non-uniform embedding approach, are described in
detail in the next sections. Relying on neural networks, this method realizes the
Granger paradigm in a non-parametric fashion, like in [41, 42] where radial basis
function networks were employed. This article improves such previous work by (i)
using non-uniform embedding and (ii) employing training and validation phases
concurrently to ensure a more robust detection of dynamical interactions.

4.4 Non-uniform embedding (NUE)

We first introduce in this section the NUE approach which is the basis of the
algorithm used to build a neural network able to find the correct mapping between
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the input and the output spaces in an optimal way. The uniform embedding (UE)
approach relies on a predefined set of candidates making a strong assumption about
which past states are better able to explain the future of the target series. This
approach, lacking a specific criterion according to which the candidates are chosen,
is likely to cause problems such as overfitting and detection of false influences
[43, 26]. NUE framework, instead, is an iterative procedure aimed at detecting only
the time series’ past states that can effectively help to predict the target series. To
evaluate whether a new candidate should be chosen, an hypothesis and, eventually,
a significance test, should be satisfied. In this way of exploring causality, once
this hypothesis and significance test (when needed) are no longer satisfied, the
procedure is unable to find additional candidates to help predict the target.

Let us consider a composite system described by a set of M interacting dynami-
cal (sub) systems and suppose that, within the composite system, we are interested
in evaluating the information flow from the source system X to the destination
system Y , collecting the remaining systems in the vector Z =

{
Zk}

k=1,...,M−2.
We develop our framework under the assumption of stationarity, which allows
to perform estimations replacing ensemble averages with time averages (for non-
stationary formulations see, e.g., [12] and references therein). Accordingly, we
denote X, Y and Z as the stationary stochastic processes describing the state vis-
ited by the systems X , Y and Z over time, and Xn, Yn and Zn as the stochastic
variables obtained by sampling the processes at the present time n. Moreover, we
denote X−n = [Xn−1Xn−2 . . .], Y−n = [Yn−1Yn−2 . . .], and Z−n = [Zn−1Zn−2 . . .] as the
infinite-dimensional vector variables representing the whole past of the processes X,
Y and Z. In some cases, taking the instantaneous influences of the candidate drivers
into account as well may also be desirable. In such cases, the vectors X−n and Z−n
defined above should also contain the present terms Xn and Zn.

We will discuss here the crucial issue of how to approximate the infinite-
dimensional variables representing the past of the processes. This problem can be
seen in terms of performing suitable conditioned embedding of the considered set
of time series [14].

The main idea is to reconstruct the past of the whole system represented by the
processes X ,Y,Z with reference to the present of the destination process Y , in order
to obtain a vector V = [VY

n ,V X
n ,V Z

n ] containing the most significant past variables
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to explain the present of the destination.
Non-uniform embedding constitutes the methodological advance with respect

to the state of the art that we propose as a convenient alternative to UE. This
approach is based on the progressive selection, from a set of candidate variables
including the past of X , Y , and Z considered up to a maximum lag (candidate

set), of the lagged variables which are more informative for the target variable
Yn. At each step, selection is performed maximizing the amount of information
that can be explained about Y by observing the variables considered with their
specific lag up to the current step. This results in a criterion for maximum relevance
and minimum redundancy for candidate selection, so that the resulting embedding
vector V = [V X

n VY
n V Z

n ] includes only the components of X−n , Y−n and Z−n , which
contribute most to the description of Yn. Starting from the full candidate set, the
procedure which prunes the less informative terms is described below:

1. Get the matrix with all the candidate terms
MC = [Xn−1 . . .Xn−lXYn−1 . . .Yn−lY Zn−1 . . .Zn−lZ ], with lX , lY , lZ representing
the maximum lag considered for the past variables of the observed processes;
these matrices will contain also the terms Xn and Zn in case one wants to take
into account instantaneous effects. The values of lX , lY , lZ can be set by the
experimenter according to a known feature of the data, or set to a reasonably
large value for exploratory purposes. If values of lX , lY and lZ are set too low,
an incorrect estimation of Granger causality may result, but higher values
should not issues with non-uniform embedding.

2. Run the procedure to select the most informative past variables and the
optimal embedding vector:

(a) Initialize an empty embedding vector V (0)
n

(b) Perform a while loop on k, where k can assume values from 1 to the
number of initial available candidates, numC, in the MC matrix. At
the k−th iteration, after having chosen k−1 candidates collected in the
vector V (k−1)

n :
for 1≤ i≤ number of current candidate terms
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• add the i−th term of MC , W (i)
n , to a copy of V (k−1)

n to form the
temporary storage variable V ′n = [W (i)

n V (k−1)
n ]

• compute the information exchanged between Yn and V ′n

(c) Among the tested W (i)
n , select the term Ŵn which maximizes the infor-

mation exchanged

(d) if Ŵn satisfies a termination criterion, delete it from MC and set k =

k+1.

(e) else end the procedure setting k = numC+1 and returning V =V (k−1)
n

3. Use Yn and the full embedding vector V = [V X
n VY

n V Z
n ] and to evaluate errfull.

errreduced is obtained excluding from errfull the candidates belonging to
the variables considered as drivers. Both errors are evaluated as the root
mean squared error (RMSE) between the neural network output and Yn. If
the error resulting from the network that contains the inputs representing the
driver’s past states (errfull) is lower than the error resulting from the network
that does not take into account the driver’s past states (errreduced), then the
driver assessed is determined to help predict the target more than the network
that excludes the driver.

The complexity of the algorithm concerns mainly step 2, in particular step 2(b),
involving a for loop nested inside a while loop: in the worst case the body of the
for loop is executed numC2 times resulting in a complexity O(numC2).

Summarizing, the non-uniform embedding is a feature selection technique se-
lecting, among the available variables describing the past of the observed processes,
the most significant - in the sense of predictive information - for the target variable.
Moreover, given the fact that the variables are included into the embedding vector
only if associated with a significant contribution to the description of the target, the
significance of the NNGC estimated with the NUE approach results simply from the
selection of at least one lagged component of the source process. In other words, if

64



4

4.5. Non-uniform embedding using neural networks (NeuNet NUE)

at least one component from X is selected by NUE, the estimated NNGC is strictly
positive and can be assumed to be significant. If not, the estimated NNGC is exactly
zero and is assumed to be non-significant. This latter also occurs when the first
candidate (k = 1) does not reach the desired level of significance, meaning that
none of the candidates provides significant information about the target variable.
This may also be encountered, for instance, when the target process consists of
white noise: the code will return an empty embedding vector and assign a zero
value to the NNGC.

4.5 Non-uniform embedding using neural networks
(NeuNet NUE)

Here we want to investigate the opportunity to use neural networks to create the
two models needed to evaluate NNGC and, at the same time, to better choose the
right candidates to be considered as terms of the models. In this sense our method
is a model-free approach because we do not assume any model a priori that can
explain the data, but we allow the network to explore the parameters space in order
to find the model we need. The procedure will be able to model a function from the
input space, spanned by the time series’ past states, and the output space, spanned
by the present state of the target series: Yn = f (V ). It will be possible to estimate
a function F as close as possible to f . This will ensure a precise prediction of Y

from Y itself, X and Z. It is easy to see that from F it is possible to assess whether
for another data set Y ′,X ′,Z′, the same relation F holds: in this case the network
will be able to generalize.

In this study a three-layers feed-forward neural network is used [37], trained by
means of the resilient back propagation technique that is one of the fastest learning
algorithms [44]. Briefly, the resilient back propagation is an optimized algorithm to
update the weights of a neural network based on the gradient descent technique. Let
∆i j be the weight update value that only determines the size of the weight update
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and E the error function. Then the resilient back propagation rule is the following:

∆i j =


η+×∆

(t−1)
i j if ∂E

∂wi j

(t−1)× ∂E
∂wi j

(t−1)
> 0

η−×∆
(t−1)
i j if ∂E

∂wi j

(t−1)× ∂E
∂wi j

(t−1)
< 0

∆
(t−1)
i j else

(4.4)

where 0 < η− < 1 < η+. To summarize: every time the partial derivative of the
current weight wi j changes in sign, i.e. the error function slope changes indicating
that a local minimum has been avoided, the updated value ∆i j is decreased by the
factor η− allowing a reversal, or “coming back”, in the parameters space towards
the local minimum. If the derivative does not change sign, then the updated value
∆i j is increased by the factor η+ accelerating towards a local minimum.

Once the updated value is evaluated, the weight update is quite straightforward
as shown by the following equations:

∆
(t)
wi j =


−∆

(t)
i j if ∂E

∂wi j

(t)
> 0

+∆
(t)
i j if ∂E

∂wi j

(t)
< 0

0 else

(4.5)

so that w(t+1)
i j = w(t)

i j +∆
(t)
wi j . However, we should also take into account the case

when the partial derivative changes sign: the previous weight update is then reverted
as follows:

∆
(t)
wi j =−∆

(t−1)
wi j if ∂E

∂wi j

(t−1)× ∂E
∂wi j

(t)
< 0. (4.6)

Following the NUE scheme, each input corresponds to a candidate, while the
minimization criterion is the prediction error between the network output and Yn.
We should keep in mind that the core of the entire procedure lies in the choice of the
candidates that can actually help to predict the target series. Once the relative predic-
tion error, defined as (prediction errork−1−prediction errork)/(prediction error1−
prediction errork) where k can assume values from 1 to the number of initial avail-
able candidates, is greater than or equal to a threshold, the procedure stops and no
further candidates are chosen. To summarize: the hypothesis of Granger causality
evaluates how much information is introduced by adding a new input with respect
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to the information carried only by the inputs previously considered. Moreover, it
is worth stressing that in this case we do not rely on the comparison with a null
distribution in order to choose whether a given candidate must be chosen or not.
On the other hand, when a driver-response relationship among variables holds, the
algorithm will find, input by input, the candidate that will give the lowest prediction
error, this being a condition that can hold only if we ensure the network is not
overfitted. The risk of overfitting is the reason why a validation phase, described in
detail in the following sections, was implemented and the idea of a fixed amount
of training iterations was discarded. As soon as the error on the validation set,
called generalization error increases, the training of the network stops ensuring the
capability of the network to generalize, implying that it has not been overfitted.

To better explain the steps implemented to select the past states as a pseudo-
code we can say that a for loop is nested within a while loop. The while loop
condition, that takes into account the decrease of the prediction error during the
training phase, determines whether or not an additional input should be added to
the network. It is worth stressing that during the whole procedure of the candidates’
selection, the internal architecture of the network is kept fixed: the number of
hidden nodes is set up as a fraction of the maximum number of candidates available,
as shown in subsection 4.6.1, and it does not change. The for loop, instead, tests
each available candidate given the previous inputs already chosen. During this
test, at each iteration of the for loop, a network is trained taking into account the
current candidate and the validation phase takes place according to the procedure
explained in Subsection 4.2.1 point 3. Therefore, the validation error is taken into
account in order to allow the network itself to reach its best performance, in terms
of the generalization task, according to the current candidate. At the end of the for

loop the candidate which gives the minimum prediction error is selected. If the
prediction error satisfies the while loop condition, such that the relative prediction
error is smaller than a threshold, the candidate is chosen and deleted from the
set of the available candidates so that the procedure can continue. Otherwise, the
procedure will stop. The pseudo-code of the algorithm is shown in the following:
1: Initialize network parameters;
2: Initialize the embedded matrix EM = /0
3: Initialize the prediction error PE vector = /0
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4: Initialize the current prediction error CPE vector = /0
5: Initialize final candidate matrix FCM = /0
6: Initialize CS = [Xn−1 . . .Xn−lX ,Yn−1 . . .Yn−lY ,Zn−1 . . .Zn−lZ ]. The terms Xn and Zn should be

considered too in case the instantaneous effects should be taken into account.
7: k = 1
8: while CS 6= /0 do
9: if CS is full then

10: Initialize the network NN with one input, the number of chosen hidden nodes, one
output

11: else
12: Add to NNk−1 another input;
13: Initialize only the weights between the new input and the hidden nodes keeping all the

rest fixed;
14: end if
15: for i ∈ [1, . . . , length(CS)] do
16: while epoch ≤ maxTrainEpochs do

% Learning phase:
17: train the network, after 30 training epochs evaluate the prediction error;
18: validate the network evaluating the generalized error;
19: if remainder after division of epochs by valEpochs == 0 and epochs ≤ max-

TrainEpochs then
20: evaluate the relative validation error
21: if ‖relative validation error‖ ≤ validationThreshold or relative error ≥ 0 or

epochs == maxTrainEpochs then
22: Store the prediction error in CPE(i)
23: epoch = maxTrainEpochs + 1
24: end if
25: Store the prediction error in CPE(i);
26: epoch = epoch + 1
27: end if
28: end while
29: end for
30: NNk = neural network having in input the candidates that give the minimum prediction error

stored in CPE
31: PEk = min(CPE)
32: if relative prediction error ≤ trainThreshold then
33: NN = NNk−1

34: PE = PEk−1

35: CS = /0
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36: else
37: NN = NNk

38: add to FCM the candidate of CS that returns the minimum prediction error
39: delete from CS the candidate that returns the minimum prediction error
40: k = k + 1
41: end if
42: end while
43: return NN; FCM; PE

where the strings after the % symbol should be considered as non executable code.
In the following we will explain in more detail the algorithm showed above:

1. In the initialization phase it is worth noting that lX , lY , lZ represent the
maximum lag considered for the past variables of the observed processes. In
the following experiments we will set lX , lY , lZ to take into account more past
states than needed.

2. at the k-th step of the while loop at line 8, where k runs on the number of
inputs chosen, the network tests all the candidates available by means of
the for loop at line 15: there are k inputs. The first k-1 inputs are the ones
chosen so far and on the k-th input one candidate per time is considered. The
initial conditions are the same for each candidate: the weights have been
fixed so the ones departing from the k-1 inputs are the same found as the
result of the training at the (k-1)-th step and the weights departing from the
k-th input are the same at the beginning of each training session when the
RMSE between the network output and Yn is evaluated. Lines 19-27 take
care of whether to stop the training phase for the current candidate according
to the generalization error.

3. lines 32-41 check whether it would be worth adding candidates, or it is better
to stop the whole procedure because no further meaningful information can
be added to better predict the target. The generalization error is not relevant
at this stage, since it is only used to stop the training phase.

The network is finally trained to reproduce the best correspondence between the
space spanned by the terms of FCM and the space spanned by Yn. The network
is then the model that can be used to explain Yn, including the driver’s candidates.
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This model will give errfull. To evaluate errreduced the candidates belonging
to the source system should be removed from the network, so the corresponding
inputs and weights should not be considered. This configuration leaves the weights
between the hidden nodes and the output unchanged, so the network now won’t
be able to approximate Yn as well as during the evaluation of the previous term
if the causal hypothesis holds between the driver and the target. errreduced can
be computed projecting the information carried by the inputs representing the
candidates belonging to the target and the conditioning variables on the output
space and evaluating the RMSE between the network output and Yn. NNGC is now
immediately evaluated by the difference between the two terms. The significance of
the causality measure estimated with the neural network method embedded into the
NUE approach results simply from the selection of, at least, one lagged component
of the driver. In other words, if at least one component from the driver is selected,
the Granger causality is strictly positive and can be assumed as significant. If this is
not the case, the estimated causality that results is exactly zero and is assumed to
be non-significant.

NUE is used here as a feature selection algorithm. Other feature selection
algorithms can be used to select the most informative candidates; our choice is in
line with other approaches to detect dynamical interactions present in literature,
thus offering a coherent framework for all the estimators.

4.6 Applications to simulated data

Before applying the proposed method, the correct initialization parameters were
set (see Subsection 4.6.1). First of all, we wanted to prove that neural networks
implemented with the non-uniform embedding framework perform better than
neural networks implemented with the uniform embedding framework, Subsection
4.6.2. Then, several datasets were simulated to test NeuNetNUE in different
situations in order to explore its capability to detect the correct directed dynamical
links, see Subsections 4.6.3 - 4.6.4. During those three experiments we compared
the neural networks with a model-based approach and two model-free approaches,
as described in Subsection 4.6.3, to get a better idea of the performances obtained
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by our method. Furthermore, we wanted to check whether NeuNetNUE was both
robust with respect to redundant information (see Subsection 4.6.5) and able to
outperform an approach based on multivariate Granger causality analysis [45].
Finally we wanted to evaluate the capability of the networks to predict and classify
time series (see Subsection 4.6.6).

4.6.1 Choice of the parameters

One of the crucial aspects of neural networks approaches concerns the choice of
the optimal parameters. W are interested not only in the parameters involving the
architecture and the training of the network, but also in the parameters that are
responsible for the number of past states that can be chosen, allowing the approach
to be more or less conservative. The parameters can be listed as follows:

• the threshold according to which a certain number of past states are chosen
(th). This parameter is taken into account to stop the training of the network
and it consequently regulates the amount of past states chosen by the network:
for a lower th more past states are selected, see Section 4.5 pointed list 3

• the validation threshold, useful to not overfit the network (valTh). This pa-
rameter plays an important role in the validation phase, allowing the network
not to be overfitted, see Section 4.5 pointed list 2

• the number of hidden nodes (hidNodes), reported as percentage of the total
amount of the available past states

• the learning rates for the resilient back propagation, η+,η−.

The parameters mentioned above must be set so that the neural network ap-
proach is able to detect the expected information flow. The investigation of the best
parameters values was performed on linear and non-linear models with memory up
to 3 points in the past.

We considered 20 simulations of the systems for each combination of the
parameter values shown in table 4.1. We set lX = lY = lZ = 5. Values of η− and
η+, the parameters of the resilient back propagation, ranged as η− ∈ [0.4, . . . ,0.9]
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with step of 0.1 and η+ ∈ [1.1, . . . ,1.4] with step of 0.1. The threshold’s values
for the prediction error range between 2−8 and 0.3. According to this assumption,
it is then possible to consider whether the current candidate is significant or not.
Small values of the threshold, such as 2−8, represent a weakly conservative network.
On the other hand, high values of the threshold, such as 0.3, represent a strongly
conservative network. We first investigated how the network performed for higher
values of the threshold and we found that the networks were too conservative and,
consequently, NueNet NUE only found one candidate belonging to the target series
only. The same reasoning holds for the validation threshold that gives the range
of values within which the validation error can fall. The assumption on how wide
the range is, determines whether the network can be considered to have undergone
enough training. Finally the number of hidden nodes ranges between 0.1 and 2.5,
with step of 0.2, times the number of available past states. In this way, we allow
the network to have a number of hidden nodes so as to allow it to reach the best
performance with increasing number of inputs. It turned out that number of hidden

nodes = 1.3× number of available candidates was the best compromise.

For each combination of the parameters we evaluated how many times the
method was able to detect the right information flows, estimating the number of
true positives (TP), true negatives (TN), false positives (FP) and false negatives
(FN). We then evaluated sensitivity = TP /(TP+FN), specificity = TN / (TN+FP) and
F1score = 2 TP/(2 TP + FP + FN) and we checked how the performances changed as
the parameters varied. We found that neural networks obtained high performances
on both systems corresponding to different parameters values: parameters values
obtained on the linear system allowed NeuNet NUE to be less conservative with
regard to neural networks used with parameters values found on the non-linear
system. We finally chose the parameters in correspondence to which the network
would be considered less conservative: th = 8−3; valTh = 0.6; hidNodes = 0.3;
η−= 0.9; η+= 1.1. Figure 4.2 shows the performances of the network for different
values of th, keeping all the other parameters fixed. For a better visualization, only
five points out of the nine showed in the table were plotted. The other four points
have been omitted, being too close to the others in the figure: the resulting curve
is virtually unchanged. We can notice that for the minimum value of th, 2−8, the
network takes into account more past states than needed retrieving more FP and
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less TP than for higher values of th. Furthermore, the specificity is lower, almost
zero, than the sensitivity. For th = 8−3 the network’s performances give sensitivity
= specificity = 1, while for the maximum value of th, 0.3, the network is not allowed
to choose a lot of past states and, consequently, there are less TP and more TN than
for lower values of th, resulting in the sensitivity lower than the specificity.

Name Parameter Parameter values
th 2 ·10−8 2 ·10−6 2 ·10−4 2 ·10−3 5 ·10−3 8 ·

10−3 1 ·10−2 0.15 0.30
valTh 0.2 0.4 0.6 0.8 1
hidNodes 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1

2.3 2.5
η− 0.4 0.5 0.6 0.7 0.8 0.9
η+ 1.1 1.2 1.3 1.4

Table 4.1: Parameters values to initialize the network.

Figure 4.2: Sensitivity and specificity at varying of the threshold values.
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4.6.2 Reasoning behind our discarding of the uniform embed-
ding approach

Before explaining the experiments that we performed to test the proposed approach,
we would like to underline that the non-uniform embedding framework was chosen
because of its theoretical advantages with respect to the uniform embedding. Fur-
thermore, we wanted to check whether those advantages held in the case of the GC
neural networks estimator too. Neural networks estimator used with the uniform
embedding approach (NeuNet UE) only need one network to be trained when
errfull is evaluated. Each input of the network represents a past state, therefore the
number of inputs equals the number of available past states. The other network
parameters have the same values as in the case of neural networks estimator used
with the non-uniform embedding approach (NeuNet NUE). The validation phase
is still required. Once errreduced is evaluated by only removing the inputs corre-
sponding to the past states that belong to the driver whose influence to a specific
target is tested, we can obtain a value of NNGC whose significance still has to be
evaluated. This step is addressed using the surrogates technique as implemented in
the case of other estimators also used into the uniform embedding framework [40].
This means that for each surrogate another network with the same architecture has
to be trained resulting in a dramatic increase of the computational complexity.

We compared NeuNet NUE and NeuNet UE performing a multivariate analysis
on 100 realizations of a system composed of five coupled Hénon maps with a length
of 2500 time points, built according to the following equations:

X1,n = aV (1)− (0.5c(X4,t−1 +X5,t−1)+

(1− c)X1,t−1)
2 +aV (2)X1,t−2 +w1,n

X2,t = aV (1)− (0.5c(X3,t−1 +X5,t−1)+

(1− c)X1,t−1)
2 +aV (2)X1,t−2 +w2,n

X3,t = aV (1)−X2
3,t−1 +aV (2)X3,t−2 +w3,n

X4,n = aV (1)−X2
4,t−1 +aV (2)X4,t−2−0.02cX3,t−2 +w4,n

X5,t = aV (1)− (0.5c(X1,t−1 +X2,t−1)+

(1− c)X5,t−1)
2 +aV (2)X5,t−2 +w5,n

(4.7)
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where aV is the characteristic parameter tuned for chaotic behavior, the coupling
strength c = 0.4 and w is drawn from Gaussian noise with zero mean and unit
variance. In figure 4.3 the modeled links are shown.

Figure 4.3: Simulated system. Interactions between the variables of the simulated
Hénon maps system generated according to equations (4.7).

We performed the analysis setting lX = lY = lZ = 5 and using the rest of the
parameter values found in Subsection 4.6.1. Looking at sensitivity, specificity and
F1score, table 4.2, we can clearly notice that NeuNet NUE performs better than
NeuNet UE. Considering this result, the heavy computational complexity and the
lack of information about the only past states that can give information to the target
concerning the use of NeuNet UE, led us to only take into account NeuNet NUE
for further investigations.

4.6.3 Simulated data: Hénon maps

In the first experiment we generated 6 Hénon maps rearranging the system (4.7) as
shown in figure 4.4 setting the coupling strength c = 0.2. The equations are shown
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Sens Spec F1score
NeuNet NUE 0.86 0.80 0.80
NeuNet UE 0.69 0.93 0.77

Table 4.2: Sensitivity, specificity and F1score values obtained on the system (4.7)
by NeuNet NUE and NeuNet UE.

in the following

X1,n = aV (1)−X2
1,n−1 +aV (2)X1,n−2 +w1,n

Xm,n = aV (1)− (0.5cm(Xm−1,n−1 +Xm+1,n−1)+

+(1− cm)Xm,n−1)
2 +aV (2)Xm,n−2 +wm,n

X6,n = aV (1)−X2
6,n−1 +aV (2)X6,n−2 +w6,n

(4.8)

where aV is the vector of parameters for chaos, w is drawn from Gaussian noise
with zero mean and unit variance and m ∈ [2,5] is the identifier of the series.

Figure 4.4: Simulated system. Interactions between the variables of the simulated
Hénon maps system generated according to equations (4.8).
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We generated 100 realizations of the Hénon maps, performed a multivariate
analysis keeping the parameters found in section 4.6.1 fixed and setting lX = lY =

lZ = 5. We then evaluated the mean values of the NNGC for all the pairwise
combinations driver-target as shown in figure 4.5. We compared our method’s
performance with the binning, linear and nearest neighbor estimators implemented
in the non-uniform embedding framework (henceforth BIN NUE, LIN NUE and
NN NUE). These three estimators are already implemented in MuTE [40]. The
comparison with NeuNet NUE has been performed in terms of sensitivity, specificity
and F1score, as shown in table 4.3. We can notice that NeuNet NUE is the second
best method after NN NUE.

Figure 4.5: GC matrix representation for the NueNet NUE estimator applied to
the system (4.8). The color indicates the magnitude of the GC averaged over 100
realizations of the simulation. The targets are plotted on the x-axis while the drivers
are plotted on the y-axis.

Sens Spec F1score
BIN NUE 1 0.86 0.84
LIN NUE 0.99 0.74 0.73

NeuNet NUE 1 0.98 0.98
NN NUE 1 1 1

Table 4.3: Sensitivity, specificity and F1score values obtained on the system (4.8)
by the four estimators.

Furthermore, we wanted to investigate whether NeuNet NUE was robust enough
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with respect to the coupling strength involved in (4.8) using only 5 time series.
Again we performed a comparison with the estimators implemented in MuTE. In
figures 4.6 - 4.9 we can see the performances of the four methods, noticing that
NeuNet NUE is the only approach able to detect the expected information flows
even when the coupling is 0.8. NN NUE detects two false positive information
flows for the directions 4→ 2, 2→ 4 from coupling strength value equal to 0.6 on.
BIN NUE and LIN NUE obtain the worst performances detecting false positive
information flows even for coupling strength equal to 0.3, see figure 4.6 direction
2→ 4. Note the differing number of outliers in figure 4.6 versus figure 4.9, even
if the detection criterion is fixed: on each box, the central mark is the median,
the edges of the box are the 25th and 75th percentiles, the whiskers extend to the
most extreme data points not considered outliers. The four methods show different
fluctuations of the exchanged information values as remarked by the different
number of outliers.

In figures 4.10, 4.11 we compare the performances of the four methods showing
their ROC curves and F1score, respectively. NN NUE and NeuNet NUE ROC
curves report the highest sensitivity and specificity as soon as the coupling is
greater than zero. For high couplings the ROC curves denote a higher specificity of
NeuNet NUE. BIN NUE starts with low sensitivity and specificity, and its specificity
generally increases as the coupling increases. F1score curves belonging to NeuNet
NUE and NN NUE are very close. For couplings greater than 0.5 NeuNet NUE
F1score is higher than NN NUE F1score, but both lower than BIN NUE F1score
denoting once again how NeuNet NUE can be much closer to model-free than to
model-based approaches. Only at coupling = 0.6 NeuNet NUE has the highest
F1score.

Referring to the equations (4.7), we obtained the results shown in table 4.4 in
terms of sensitivity, specificity and F1score. This time NeuNet NUE detects causal
influences better than BIN NUE, even if it is still not able to perform better than
NN NUE.
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Figure 4.6: LIN NUE performances on Hénon maps at varying of the coupling
strength. GC values are plotted on the y-axis, while the coupling strength values
are plotted on the x-axis.

4.6.4 Simulated data: Lorenz system

In the third experiment we studied a system composed of five identical Lorenz
subsystems defined by the following equations:

ẋ1 =−10x1 +10x1, ẋi =−10xi +10xi +C(xi−1− xi),

ẏ1 =−x1z1 +28x1− y1, ẏi =−xizi +28xi− yi,

ż1 = x1y1−8/3z1, żi = xiyi−8/3zi,

(4.9)

where i ∈ [2,5]. The differential equations are solved by means of the Runge-Kutta
method implemented in MATLAB and the time series are generated at a sampling
rate of 0.01 time units. The subsystems, ranging from X1 to X5, influence each other
according to the following rule: i-th time series is influenced only by the (i−1)-th
time series except for X1 that only gives influence to X2. The coupling strength
C = 5 is the same for the whole set on influences.
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Figure 4.7: NeuNet NUE performances on Hénon maps at varying of the coupling
strength. NNGC values are plotted on the y-axis, while the coupling strength values
are plotted on the x-axis.

The nature of the Lorenz system results in a more challenging system than the
Hénon systems. The parameters set up have been kept the same as in the other
experiments. Even in this scenario NeuNet NUE can reach good performances with
both high sensitivity and specificity, as shown in table 4.5. Our method, on this
system too, reaches performances in the middle between the model-free approaches
and the model-based approach.

Another experiment on a chaotic Lorenz system was performed in order to
check how robust NeuNEt NUE could be with respect to influences occurring at
longer delays. We used 150 bidirectionally coupled Lorenz systems as in [46].
The delay at which series 1 influences series 2 was set at 45 points back, while
the delay at which series 2 influences series 1 was set at 75 points back. The
coupling constant was set as 0.1 for both series. We chose 90 candidates for each
series and checked how many times each candidate was chosen. As we can see in
figures 4.12-4.15 NN NUE can detect the right delays even if there are many other
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Figure 4.8: BIN NUE performances on Hénon maps at varying of the coupling
strength. TE values are plotted on the y-axis, while the coupling strength values are
plotted on the x-axis.

candidates chosen. NeuNet NUE was successful in retrieving the correct influences
at the corresponding delays, more often than NN NUE as it can be seen from the
height of the peaks. The other two estimators clearly failed in detecting the right
influences and delays.

4.6.5 Redundant data

An issue that complicates the correct detection of GC is the presence of redundant
variables. In this case the conditioning approach is misled and the analysis results
in false negatives (see [45] for a complete explanation of this phenomenon). We
applied neural networks Granger causality analysis to redundant data to check
whether the approach was able to detect the right information flows with an in-
creasing number of redundant variables. We used data generated by the following
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Figure 4.9: NN NUE performances on Hénon maps at varying of the coupling
strength. TE values are plotted on the y-axis, while the coupling strength values are
plotted on the x-axis.

equations:

tn = hn−2 + cεn

di,n = hn−1 + cϕi,n
(4.10)

where the process h and the noises ε,ϕ are drawn from a Gaussian distribution with
zero mean and unit variance. The coefficient c modulates the noise. The system
represent a chain of influences, for which redundancy arises when i≥ 3, (the first
two variables share information on the future of the third one), and so on.

We compared NeuNet NUE with the fully conditioned non-linear kernel Granger
causality as in [45]. The experiments were performed with lX = lY = lZ = 5 and
keeping the parameters found in Subsection 4.6.1 fixed. We generated 20 trials of
the system (4.10) varying the number of redundant variables from 1 up to 20, with
2500 time points. The analyses were performed taking into account the variable
t as targets and each variable di as driver, conditioning on the remaining d(i−1)
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Figure 4.10: ROC curves obtained on Hénon maps at varying of the coupling
strength.

variables, with i ∈ [1, . . . ,20]. We then evaluated GC for both methods averaging
over the number of trials, varying the number of redundant variables. According
to the results shown in figure 4.16, we can notice how GC detected by the neural
networks never drops to zero, as it happens for kernel GC. Table 4.6 reports the
number of false negatives given by NeuNet NUE. It is worth noting that the amount
of false negatives is zero up to 10 redundant variables. Conversely, due to the
different construction of the method, the values of kernel Granger causality are
always significant, albeit very low, at least for this system size.

4.6.6 Classification task

Our final goal was to test whether NeuNet NUE could correctly classify dynamics.
We trained NeuNet NUE on the system (4.8). We have randomly chosen one of the
networks trained to detect the causal influences towards a certain target. Then we
fed the network with 100 realizations of the system (4.8), never used in the learning
phase, and with 100 realizations of an autoregressive system, represented by the
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Figure 4.11: F1score obtained on Hénon maps at varying of the coupling strength.

Figure 4.12: BIN NUE performances on bidirectionally coupled Lorents system.

following equations:

X1,n = 0.95
√

2X1,n−1−0.9025X1,n−2 + z1,n

X2,n = 0.5X2
1,n−2 + z2,n

X3,n =−0.4X1,n−3 + z3,n

X4,n =−0.5X2
1,n−2 +0.25

√
2X4,n−1 +0.25

√
2X5,n−1 + z4,n

X5,n =−0.25
√

2X4,n−1 +0.25
√

2X5,n−1 + z5,n

(4.11)
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Sens Spec F1score
BIN NUE 0.85 0.68 0.73
LIN NUE 0.88 0.45 0.65

NeuNet NUE 0.86 0.80 0.80
NN NUE 0.87 0.91 0.87

Table 4.4: Sensitivity, specificity and F1score values obtained on the system (4.7)
by the four estimators

Sens Spec F1score
BIN NUE 0.94 0.91 0.82
LIN NUE 0.51 0.72 0.39

NeuNet NUE 0.70 0.95 0.74
NN NUE 1 0.86 0.77

Table 4.5: Sensitivity, specificity and F1score values obtained on the Lorenz system
by the four estimators.

Figure 4.13: LIN NUE performances on bidirectionally coupled Lorents system.

where z1,n,z2,n,z3,n,z4,n,z5,n are drawn from Gaussian noise with zero mean and
unit variance.

System 4.8 is considered, this time with only five variables to be consistent with
the size of the autoregressive model. We then evaluated the average RMSE for both
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Figure 4.14: NeuNet NUE performances on bidirectionally coupled Lorents system.

Figure 4.15: NN NUE performances on bidirectionally coupled Lorents system.

systems. We repeated the procedure for 30 different noise values, ranging from 0
to 0.7, and different couplings strength, ranging in the interval [0,0.8] with step
of 0.2. The results are shown in figure 4.17. We plotted the average RMSE with
respect to the different noise level for each coupling strength value. We can notice
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# RV 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# FN 0 0 0 0 0 0 0 0 0 0 3 4 14 13 17 29 41 49 57 79

Table 4.6: Number of false negatives, FN, returned by NeuNet NUE for 20 trials at
varying of the number of redundant variables, RV.

Figure 4.16: NeuNet NUE and multivariate GC performances on the redundant
system.

that the errors obtained when the two systems are given to NeuNet NUE as test sets
lie in linear separable portions of space. This represents an encouraging result as it
may be useful to classify systems, given that our approach has been trained with a
known system.

4.7 Conclusions

In this chapter we have implemented the Granger paradigm for detection of dy-
namical influences in the frame of feed-forward neural networks. The novelty of
the present approach arises from the use of non-uniform embedding for variable
selection and generalization error for the assessment of Granger causality. We have
demonstrated the theoretical and experimental advantages of implementing the
neural network approach with non-uniform embedding compared to the uniform
one. Due to the universal character of function approximation of neural networks,
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Figure 4.17: RMSE versus the noise level. The red curves are obtained testing
NeuNet NUE on the same kind of data with which it was trained. The blue curves
are obtained testing NeuNet NUE on the system (4.11). Each curve represents the
network trained to detect the influence towards a specific target with a different
coupling strength. The couplings C are shown in the legend.

the proposed approach is intermediate between the classical Granger linear im-
plementation and the non-parametric estimator corresponding to transfer entropy:
by means of several examples, we have shown that there are situations where our
approach outperforms both approaches. The proposed method differs from the
kernel Granger causality not only by providing a validation phase, but also by let-
ting the neural networks explore the parameters space and building the best model
to explain the information transfers among variables. Kernel Granger causality,
instead, is still a model-based approach, for which the type of kernel and the degree
of non-linearity have to be specified beforehand. We would like to remark that so
far neural networks have been used to detect GC only when combined with other
estimators. Furthermore the training phase was stopped only when a certain number
or training epochs was reached. This choice seems quite approximate because of
the lack of knowledge about the exact amount of training epochs needed to both
minimize the error function and to avoid overfitting the neural networks. Therefore,

88



4

4.7. Conclusions

the validation phase is necessary in our opinion to ensure that the network fully
explores the parameters space, converges to a minimum and avoids the risk of over-
fitting. We conclude remarking that other wrappers can be taken into account and
many deep learning architectures are built from artificial neural networks, therefore
we expect that further developments of our approach will be the implementations
of Granger causality both using other feature selection algorithms and in the frame
of deep learning [47].
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CHAPTER 5

Multiscale Analysis of Information Dynamics for

Linear Multivariate Processes

Paper published on ArXiv; arXiv:1602.06155 and presented at the 38th Annual

International Conference of the IEEE Engineering in Medicine and Biology Society.

In the study of complex physical and physiological systems represented by
multivariate time series, an issue of great interest is the description of the system
dynamics over a range of different temporal scales. While information-theoretic
approaches to the multiscale analysis of complex dynamics are being increasingly
used, the theoretical properties of the applied measures are poorly understood.
This study introduces for the first time a framework for the analytical computation
of information dynamics for linear multivariate stochastic processes explored at
different time scales. After showing that the multiscale processing of a Vector
Auto Regressive (VAR) process introduces a Moving Average (MA) component,
we describe how to represent the resulting VARMA process using State-Space
(SS) models and how to exploit the SS model parameters to compute analytical
measures of information storage and information transfer for the original and
rescaled processes. The framework is then used to quantify multiscale information
dynamics for simulated unidirectionally and bidirectionally coupled VAR processes,
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showing that rescaling may lead to insightful patterns of information storage and
transfer but also to potentially misleading behaviours.

5.1 Introduction

Several physiological systems, including the brain and the cardiovascular system,
coordinate their activity according to regulatory mechanisms operating across
multiple temporal scales [48, 49]. Due to this multiscale behavior, the output
signals of these systems (e.g., the EEG or cardiovascular variability time series)
need to be analyzed through scaling techniques to get full insight about the system
dynamics. A typical approach is to resample the originally measured physiological
time series at various temporal scales, yielding a collection of rescaled series from
which various dynamical measures can be calculated. Exploiting information-
theoretic functionals that may be subsumed within the framework of information
dynamics [50], this approach has been followed both to describe the individual
dynamics of single time series through the so-called multiscale entropy [51], and to
explore the joint dynamics of multiple time series through the multiscale transfer
entropy (TE) [52].

In spite of its potential, the computation of multiscale measures of information
dynamics may be complicated by theoretical and practical issues [53] [54]. These
issues arise from the procedure for the generation of the rescaled time series, which
essentially consists in a filtering step eliminating the fast temporal scales (usually
performed through averaging) followed by a downsampling step coarse-graining the
time series around the selected scale. While it is expected that these two steps may
be problematic, their impact on the computation of multiscale information dynamics
has never been investigated systematically. To fill this gap, the present study
introduces a framework for the analytical computation of information dynamics
for linear Gaussian dynamic processes subjected to averaging and downsampling.
The framework is based on the theory of state-space (SS) models, and builds on
very recent theoretical results [55] [56] to study the exact values of information
storage (storage entropy, SE) and information transfer (TE) for coupled processes
observed at different time scales. While this study concentrates on the theoretical
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formulation and analysis of simulated linear processes, future extensions will be
devoted to practical estimation, study of nonlinear dynamics and application to real
time series.

5.2 Multiscale Representation of Linear Processes

Let us consider a set of M time series of length N, ym,n,m = 1, . . . ,M;n = 1, . . . ,N,
as a finite length realization of the zero mean stationary vector stochastic process
Yn = [y1,n · · ·yM,n]

T . In the linear signal processing framework, the process is
classically described as a Vector Autoregressive (VAR) process of order p:

Yn =
p

∑
k=1

AkYn−k +Un (5.1)

where Ak are M×M matrices of coefficients, and Un = [u1,n · · ·uM,n]
T is a vector

of M zero mean Gaussian processes with covariance matrix Σ≡ E[UnUT
n ].

According to the traditional procedure for multiscale analysis [51], each scalar
process ym can be rescaled using an integer scale factor τ to get the process ȳm:

ȳm,n =
1
τ

τ−1

∑
l=0

ym,nτ−l,n = 1, . . . ,N/τ (5.2)

The change of scale in (5.2) corresponds to transform the original process Y

through a two step procedure that consists of the following averaging and down-

sampling steps, yielding respectively the processes Ỹ and Ȳ :

Ỹn =
1
τ

τ−1

∑
l=0

Yn−l,n = τ, . . . ,N (5.3a)

Ȳn = Ỹnτ ,n = 1, . . . ,N/τ (5.3b)

Now, substituting (5.1) in (5.3a), one can show that the averaging step yields
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the following process representation:

Ỹn =
p

∑
k=1

AkỸn−k +
τ−1

∑
l=0

BlUn−l (5.4)

where Bl = 1/τIM for each l = 0, . . . ,τ−1 (IM is the M×M identity matrix).
This shows that the change of scale introduces a moving average (MA) compo-
nent of order q = τ − 1 in the original VAR(p) process, transforming it into a
VARMA(p,q) process. As we will show in the next Section, the downsampling
step (5.3b) keeps the VARMA representation altering the model parameters.

5.3 State Space Models

5.3.1 Formulation of SS Models

The general linear state space (SS) model describing an observed vector process Y

is in form:

Xn+1 = AXn +Wn (5.5a)

Yn = CXn +Vn (5.5b)

where the state equation (5.5a) describes the update of the L−dimensional state
(unobserved) process through the L×L matrix A, and the observation equation
(5.5b) describes the instantaneous mapping from the state to the observed process
through the M×L matrix C. Wn and Vn are zero-mean white noise processes with
covariances Ξ≡ E[WnW T

n ] and Ψ≡ E[VnV T
n ], and cross-covariance ϒ≡ E[WnV T

n ].
Thus, the parameters of the SS model (5.5) are (A,C,Ξ,Ψ,ϒ).

Another possible SS representation is that evidencing the innovations En =Yn−
E[Yn|Y−n ], i.e. the residuals of the linear regression of Yn on its infinite past Y−n =

[Y T
n−1Y T

n−2 · · · ]T . This new SS representation, usually referred to as Innovations
State-Space (ISS) model, is characterized by the state process Zn = E[Xn|Y−n ] and
by the L×M Kalman Gain matrix K:

Zn+1 = AZn +KEn (5.6a)
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Yn = CZn +En (5.6b)

The parameters of the ISS model (5.6) are (A,C,K,Φ), where Φ is the covari-
ance of the innovations, Φ≡ E[EnET

n ]. Note that the ISS (5.6) is a special case of
(5.5) in which Wn = KEn and Vn = En, so that Ξ = KΦKT , Ψ = Φ and ϒ = KΦ.

Given an SS model in the form (5.5), the corresponding ISS model (5.6) can
be identified by solving a so-called discrete algebraic Ricatti equation (DARE)
formulated in terms of the state error variance matrix P:

P = APAT +Ξ

− (APCT +ϒ)(CPCT +Ψ)−1(CPAT +ϒ
T )

(5.7)

Under some assumptions [56], the DARE (5.7) has an unique stabilizing solution,
from which the Kalman gain and innovation covariance can be computed as

Φ = CPCT +Ψ

K = (APCT +ϒ)Φ−1
(5.8)

5.3.2 SS Models for Averaged and Downsampled Processes

Exploiting the close relation between VARMA models and SS models, first we
show how to convert the VARMA model (5.4) into an ISS model in the form of (5.6)
that describes the averaged process Ỹn. To do this, we exploit the Aoki’s method
[57] defining the state process Z̃n = [Y T

n−1 · · ·Y T
n−pUT

n−1 · · ·UT
n−q]

T that, together with
Ỹn, obeys the state equations (5.6) with parameters (Ã, C̃,K̃,Φ̃), where

Ã =



A1 · · · Ap−1 Ap B1 · · · Bq−1 Bq

IM · · · 0M 0M 0M · · · 0M 0M
...

...
...

...
...

...
0M · · · IM 0M 0M · · · 0M 0M

0M · · · 0M 0M 0M · · · 0M 0M

0M · · · 0M 0M IM · · · 0M 0M
...

...
...

...
...

...
0M · · · 0M 0M 0M · · · IM 0M
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Figure 5.1: Schematic representation of the parametric representation of linear
multivariate processes. See text for details.

C̃ =
[
A1 · · · Ap B1 · · · Bq

]
K̃ =

[
IM 0M×M(p−1) B−T

0 0M×M(q−1)

]T

and Φ̃ = B0ΣBT
0 , where Φ̃ is the covariance of the innovations Ẽn = B0Un.

Now we turn to show how the downsampled process Ȳn can be represented
through an ISS model directly from the ISS formulation of the averaged process
Ỹn. According to a very recent result (theorem III in [56]), we have that the process
Ȳn = Ỹnτ has an ISS representation with state process Z̄n = Z̃nτ , innovation process
Ēn = Ẽnτ , and parameters (Ā, C̄,K̄,Φ̄), where Ā = Ãτ , C̄ = C̃, and where K̄ and Φ̄

are obtained solving the DARE (5.7,5.8) for the SS model (Ā, C̄,Ξτ ,Φ̃,ϒτ ) with

ϒτ = Ãτ−1K̃Φ̃

Ξτ = ÃΞτ−1ÃT + K̃Φ̃K̃T ,τ ≥ 2

Ξ1 = K̃Φ̃K̃T ,τ = 1

(5.9)

5.4 Multiscale Information Dynamics

Fig. 5.1 depicts the relations and parametric representations of the original process
Y , the averaged process Ỹ , and the downsampled process Ȳ . As seen up to now,
the averaging (AVG) over segments of length τ applied to a VAR(p) process yields
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a VARMA(p,τ−1) process, which is equivalent to an ISS process [57], and the
subsequent downsampling (DWS) yields a different SS process, which in turn can be
converted to the ISS form by solving the DARE (Fig. 5.1). Thus, both the averaged
process Ỹn and the downsampled process Ȳn can be represented as ISS processes
with parameters (Ã, C̃,K̃,Φ̃) and (Ā, C̄,K̄,Φ̄) which can be derived analytically
from knowledge of the parameters (A1, . . . ,Ap,Σ) of the original process and of the
scale factor τ . In this section we show how to compute analytically the measures of
information dynamics starting from the ISS model parameters, thus opening the
way to the analytical computation of these measures for multiscale (averaged and
downsampled) processes.

Given a generic vector observation process Yn, let us consider the scalar sub-
process y j,n as the target, and the (M− 1)−dimensional vector Yi,n = Yn\y j,n as
the driver (i = {1 · · · ,M}\ j). In the framework of information dynamics [50], the
predictive information of the target of a multivariate process, Pj, measures how
much of the information carried by y j,n can be predicted from the knowledge of
Y−n . This amount can be decomposed as the sum of the information storage S j and
the information transfer Ti→ j, quantifying respectively the amount of information
carried by y j,n that can be predicted from its own past y−j,n and the additional amount
that can be predicted from the whole past Y−n . The information storage and transfer
are quantified by the so-called storage entropy (SE) and transfer entropy (TE) [58]
which, for linear Gaussian processes, are given by:

S j =
1
2

ln
λ j

λ j| j
(5.10a)

Ti→ j =
1
2

ln
λ j| j
λ j|i j

(5.10b)

where λ j = E[y2
j,n] is the variance of the target process, and λ j| j = E[e2

j| j,n] and
λ j|i j = E[e2

j|i j,n] are the partial variance of the target given its own past, e j| j,n =

y j,n−E[y j,n|y−j,n], and the partial variance of the target given the past of the whole
process, e j|i j,n = y j,n−E[y j,n|Y−n ].

Now we report how to compute the variances appearing in (5.10) from the
parameters of an ISS model in the form of (5.6). First, we note that the variance of
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e j|i j,n is simply the j− th diagonal element of the innovation covariance: λ j|i j =

Φ( j, j). The variance of y j,n corresponds to the j− th diagonal element of the
zero-lag autocovariance of the whole process Γ ≡ E[YnY T

n ]: λ j = Γ( j, j); for an
ISS process, the latter can be computed as Γ = CΩCT +Φ, where Ω = E[ZnZT

n ]

satisfies the discrete Lyapunov equation Ω = AΩAT +KΦKT . Computation of the
partial variance of the target given its past is less straightforward, involving the
formation of a subprocess of the original ISS process. Specifically, one needs to
consider the submodel with state equation (5.6a) and observation equation

y j,n = C( j)Zn + e j,n (5.11)

where C( j) is the j− th row of C. The submodel (5.6a, 5.11) is not in innovations
form, but is rather an SS model with parameters (A,C( j),KΦKT ,Φ( j, j),KΦT ( j)

).
As such, solving the DARE (5.7,5.8) it can be converted to an ISS model with
innovation covariance λ j| j.

5.5 Simulation Experiment

In order to study the multiscale patterns of information dynamics for linear interact-
ing processes, we analyze the bivariate VAR process with equations:

y1,n = a1y1,n−b1 + c1y2,n−d1 +u1,n (5.12a)

y2,n = a2y2,n−b2 + c2y1,n−d2 +u2,n (5.12b)

with iid noise processes u1,n,u2,n ∼ N (0,1) so that Σ = I2. The parameters in
(5.12) are set to generate autonomous dynamics with strength ai and lag bi for
each scalar process yi, and causal interactions with strength ci and lag di from
y j to yi (i, j = 1,2). We consider two parameter configurations: unidirectional
interaction y1 → y2, obtained setting c1 = 0 and c2 = 0.5,d2 = 2, where also
autonomous dynamics were generated for y1 (a1 = 0.25,b1 = 1) but not for y2

(a2 = 0); bidirectional interactions between processes with autonomous dynamics
(a1 = 0.25,b1 = 2;a2 = 0.25,b2 = 5) obtained setting c2 = 0.5,d2 = 7 (direction
y1→ y2) and c1 = 0.75,d1 = 3 (direction y2→ y1).

98



5

5.5. Simulation Experiment

Figure 5.2: Multiscale information dynamics for the unidirectionally coupled
VAR process (5.12). Plots depict the information storage (SE) and transfer (TE)
computed after averaging (AVG) and downsampling (DWS) the process at scale
τ; red-dashed: S1,T2→1, blue-solid: S2,T1→2. (a,b) parameter a1 = 0.25; (c,d)
parameter a1 = 0.95.
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Figure 5.3: Multiscale information dynamics for the bidirectionally coupled VAR
process (5.12). Plots and symbols are as in Fig. 5.2.
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The results of multiscale analysis of SE and TE performed for the two config-
urations are shown in Figs. 5.2, 5.3. The values of information dynamics for the
original processes, reported in the figures for τ = 1, indicate that the SE reflects
auto-dependencies in the target process (e.g., S1 > S2 in Fig. 5.2 where a1 > a2,
and S1 = S2 in Fig. 5.3 where a1 = a2), and that the TE reflects causal interactions
from driver to target (e.g., T2→1 = 0 in Fig. 5.2 where c1 = 0 and T2→1 > T1→2

in Fig. 5.3 where c1 > c2). The averaging procedure associated with the change
of scale always leads to a progressive increase of the information stored in each
individual process (Figs. 5.2a, 5.3a). Moreover, averaging does not alter the amount
of information transferred between the processes, as documented by the constant
values of the TE across scales observed in all configurations. The downsampling
step introduces more substantial alterations in the patterns of information dynam-
ics. The information storage is reduced substantially and reflects the multiscale
regularity of each individual process, with higher SE around the scales at which
the processes exhibit their lagged interactions (i.e., very low lags in Fig.5.2(b) and
higher lags in Fig. 5.3(b)). The information transfer reflects causal interactions
between the processes at different time scales, with the TE showing a peak at the
lags of the imposed causal interactions (i.e., τ = 2 for T1→2 in Fig. 5.2(b), τ = 7
for T1→2 and τ = 3 for T2→1 in Fig. 5.3(b)).

The behaviors described above are general, in the sense that they were observed
also for different parameter configurations. Nevertheless, some particular parameter
settings led to unexpected, potentially misleading results. An example is reported
in Fig. 5.4, showing the information transfer computed for the first configuration
(unidirectional coupling) but with stronger autonomous dynamics of y1 (a1 = 0.95).
In this case the TE T1→2 still shows a peak at the scale corresponding to the lag
of the imposed causal relation (τ = d2 = 2), but a significant TE emerges at large
scales along the uncoupled direction (T2→1 > 0 for τ > 2).

5.6 Conclusions

We presented a framework for the multiscale computation of the information stored
and transferred in multivariate linear processes, assessed respectively through the
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Figure 5.4: Multiscale information dynamics for the unidirectionally coupled VAR
process (5.12) with stronger driver autonomous dynamics. Plots and symbols are as
in Fig. 5.2.

SE and TE measures, starting from the parameters of the VAR model describing
the process and from the scale factor τ .

Our simulation results show that the first step of multiscale analysis, i.e. the
averaging of each individual process across τ consecutive points, introduces an
auto-correlation in the process that is reflected by the progressive increase with τ of
the SE. Moreover, as this step leaves the coefficients regulating the linear interaction
across the processes unchanged, the TE does not vary with τ; this result is related
to the invariance of Granger causality with filtering [53].

The second analysis step, i.e. the downsampling of the averaged process at
fixed time intervals τ , removes the autocorrelation of the innovations inflating the
SE, thus allowing a more informative evaluation of the multiscale complexity of the
individual time series [51]. Moreover, this step makes the TE scale-dependent, with
a peak shown at the time scale corresponding to the lags of the causal interactions
occurring between the processes. A negative behavior is the possible occurrence of
spurious TE at scales much higher than the true coupling delays.

These results suggest that the multiscale analysis of information storage and
information transfer can be useful to shed light on patterns of regularity and causality
of coupled dynamic processes which are not fully disclosed working at one single
time scale, but can also provide patterns with difficult physical interpretation.
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5.6. Conclusions
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CHAPTER 6

Conclusion and Future Research

This thesis is integrated into a wider scientific discussion that aims to understand
and model information transfers within a complex system. Several application
scenarios can be found in neuroscience [5, 59, 60, 61, 9], [62, 63, 64, 8, 7, 6],
physiology [65, 10, 66, 67, 68], climatology [69], complex system theory [70, 71,
72] and economics [73, 74]. Furthermore, this work can also be considered as an
attempt to unify different approaches in a user-friendly, modular framework. Other
toolboxes are present in the literature and they all have had a great scientific impact
[25, 75, 76].

In this thesis we provide a detailed explanation of eight estimators of the
influences that might occur within a system represented by time series. We were
interested in showing the pros and cons of each estimator in order to provide a
general overview of the implemented methods. In this way, the reader should
be able to easily choose which estimator he might need. We show that the best
performances are obtained by BIN NUE, NN NUE and NeuNet NUE, all of which
are able to detect both linear and non-linear relationships. It is worth noting that
the best estimators are the ones that do not need any a priori assumptions about the
model that can represent the data. Furthermore, the best performances are obtained
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in the framework of the non-uniform embedding, showing that the careful choice
of which past states have to be taken into account to evaluate TE or NNGC is not
a trivial problem. This issue can be overcome by non-uniform embedding, even
though this technique is not the only possible selection criterion that can be adopted.

One of the most important outcomes of this thesis is that we were able to
bring together the disciplines of information theory and machine learning by imple-
menting the neural networks estimator. We showed several advantages of the new
methods, such as the robustness of neural networks with respect to redundancy. We
would like to point out that the presence of redundant variables is a very important
problem to tackle because redundancy might lead to detecting several false influ-
ences. NeuNet NUE seems to not be strongly affected by the presence of redundant
variables. We showed neural networks’ performances in revealing influences from
each redundant variable considered as a driver to a certain target in the multivariate
framework. Another advantage of NeuNet NUE is its capability to detect long
range interactions when most of the proposed methods fails.

MuTE toolbox was implemented in order to provide a unique environment that
is able to handle all the methods. MuTE is meant to be a user friendly toolbox. We
decided to try to give people who are not so familiar with MATLAB the opportunity
to use our toolbox. We did so by building a graphical user interface that can easily
be set up to run MuTE for various analyses. The toolbox is modular and flexible
enough to allow other users to modify some steps in the estimation procedure by
replacing certain functions only. For instance, a new criterion to select the most
informative past states can be easily replaced, giving rise to a new estimator. The
performances of the new estimator can be immediately evaluated with respect to
the other methods. A detailed explanation of how to set MuTE and how to use the
graphical user interface are provided in Appendix A.

We are aware that there is plenty of room for improvements. Considering
the methods that have been implemented thus far, we propose to first introduce
a criterion based on the autocorrelation function in order to better optimize the
choice of the embedding. We can then apply a backward feature selection that will
be combined with the already existing non-uniform embedding feature selection.
This combination would allow one to discard erroneous past states that might be
chosen due to the fluctuation of the surrogate threshold. We can modify the criterion
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according to which we set the binning size by choosing the equiprobable binning
approach in order to better estimate the entropies. Several other improvements
will concern the optimization of the neural networks method such as a different
candidate selection criterion and different learning algorithms. Furthermore, we are
taking other machine learning approaches into account in order to both reinforce the
bridge between machine learning and information theory and improve the neural
networks estimator.

We would like to remark that MuTE has been successfully applied both by
groups internal to our current network [67, 68] and by groups that decided to
use the toolbox independently [77], Schulz et al., in preparation, presentation at
ESGCO2016 conference. Furthermore, several other groups are currently interested
in using MuTE. In the spirit of an open scientific collaboration, Dr. Andrea Brovelli
is collaborating with us in order to implement his Granger causality method within
MuTE.
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Efforts in Disseminating MuTE

We are going to better explain how to set MuTE in order to perform several analyses.
We will provide screenshoots and we will describe how to modify the code providing
several examples of possible settings scenarios trying to cover the most common
experimental set ups. Furthermore, the graphical user interface (GUI) is described.
Its implementation will allow an easier and more flexible use of MuTE.

The following description can be found on the following website: http:

//mutetoolbox.guru/. We spent several weeks to build a website that is
devoted to divulge MuTE in order to be a useful reference for whoever would like
to study the methods and get used to the toolbox. The web page is thought not
only to provide theoretical and practical explanations about MuTE, but also to
be a reliable source of news concerning the most recent publications in the field
of complex systems and information theory by means of a blog updated with the
abstracts of the most interesting articles. Furthermore, we strongly encourage other
scientists to integrate new methods in MuTE. Whoever feels like contributing in
expanding MuTE will take the credits of his work by creating a personal page on
the website where his curriculum and contribution to MuTE are shown.

http://mutetoolbox.guru/
http://mutetoolbox.guru/
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Figure A.1: Toolbox Structure.

A.1 Toolbox Structure

MuTE has a very simple structure as we can notice from A.1. The Main function
allows the user to define the preliminary settings and to call the parametersAndMeth-
ods function. parametersAndMethods simply wraps the parameters defined in Main,
calls the callingMethods function and calls the post precessing functions responsible
to store the most informative quantities. In A.1 the schematic representation of the
main toolbox’s parts and their relationship are shown.

In the following, the toolbox structure is illustrated in detail, step by step, in
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order to allow every user to use MuTE. The choice to show the function names in
bold is aimed to let the user keep track of the most important functions.

NB:

• From now on the user is kindly asked to look at MuTE/exampleToolbox/ex-
ampleMain.m function

• Parts of code will be showed either in blue boxes according to what is the
current set up or in green providing some examples of possible set up

• The % symbol is used for commented lines

A.2 Prerequisites

1. Data should be stored as files containing the field data. data should be a
matrix of (number of series × time points) dimensions. If the user wants
to perform an analysis across many trials it is possible to store data as 3D
matrices of (number of variables × number of points × number of trials)
dimensions. It is possible to find an example of data files in MuTE/example-
Toolbox/.

2. Create a folder in which the data are stored. Let us call this folder as
dataFolder from now on.

A.3 Main

The Main script is the only one that should be modified by the user. The analyses
can be set outside the specific functions. The examples will show how Main can be
customized according to the user needs. The Main gives the opportunity to set the
methods parameters, where to read the data, where to store the results. It is also
possible to concatenate experiments in order to run Main only once. As soon as
the set up is made, MuTE is ready to run and the user should not give any further
contribution until the end of the experiments.
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A.4 Preliminary Settings

A.4.1 Some Useful Comments

At the very beginning of exampleMain there are some useful comments. First of all
we can find the method order.

1: line 5: % Method order: please take the order into account because afterwards
2: line 6: % you should set autoPairwiseTarDriv or handPairwiseTarDriv that

need
3: line 7: % the precise order of the methods
4: line 8:
5: line 9: binue
6: line 10: binnue
7: line 11: linue
8: line 12: linnue
9: line 13: nnue

10: line 14: nnnue
11: line 15: neunetue
12: line 16: neunetnue

Afterwards the parameters for each method are listed. We explain them in detail
in parametersAndMethods.

A.4.2 Folders Set Up

The folder set up is the first step to take into account. It is necessary to add MuTE
to MATLAB path as follows:

1: line 185: % Set MuTE folder path including also all the subfolders, for instance
2: line 186: mutePath = (’/Users/alessandromontalto/Dropbox/MuTE/’);
3: line 187: cd(mutePath);
4: line 188: addpath(genpath(pwd));

Change according to where you decide to store MuTE

1: % Set MuTE folder path including also all the subfolders, for instance
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2: mutePath = ’/Users/.../Desktop/MuTE/’;
3: % Adjust according to your path→ just an example: mutePath = ’/home/a-

lessandro/Desktop/MuTE/’;
4: cd(mutePath);
5: addpath(genpath(pwd));

Then, the user should set up the folder where the data are stored.

1: line 190: nameDataDir = ’exampleToolbox/’
2: % Set the directory in which the data files are stored. In this directory the

outcome of the experiments will be stored too.
3: dataDir = [’/Users/alessandromontalto/Dropbox/MuTE/’ nameDataDir];

Change according to where your data are stored

1: nameDataDir = ’folder containing your data/’
2: % Set the directory in which the data files are stored. In this directory the

outcome of the experiments will be stored too.
3: dataDir = [’/Users/.../folder containing your data/’];
4: % Adjust according to your path→ just as example: dataDir = [’/home/alessan-

dro/Dropbox/Phd/MuTE/’ nameDaraDir];
5: cd(mutePath);
6: addpath(genpath(pwd));

A.4.3 Number of Processors

Set the number of processors you can use to run your experiments changing value
to the following variable

1: line 197: numProcessors = 1;

A.4.4 Loading Data

At this point two parameters should be set to load the correct data files:

• dataFileName takes the part of the name file common to all the files involved
in the analysis.
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• dataLabel is useful to distinguish files. If no label is required set dataLabel
as an empty string.

• dataExtension defines the file extension

Variable needed to load the data

1: line 207: % Defining the strings to load the data files
2: line 208: dataFileName = ’realization5000p’;
3: line 209: dataLabel = ”;
4: line 210: dataExtension = ’.mat’;

EXAMPLE 1
We have 100 trials named, for instance, realizations5000p(...).mat where (...)

can be a counter ranging from 1 to 100. In this case we do not to set dataLabel.

1: line 207: % Defining the strings to load the data files
2: line 208: dataFileName = ’realization5000p’;
3: line 209: dataLabel = ”;
4: line 210: dataExtension = ’.mat’;

EXAMPLE 2
We have 100 trials named, for instance, henonMaps circular(...).mat and other

100 trials named henonMaps sparse(...).mat where (...) can be a counter ranging
from 1 to 100. In this case we would set the parameters as follows to perform the
analysis taking into account henonMaps sparse(...).mat.

1: line 207: % Defining the strings to load the data files
2: line 208: dataFileName = ’henonMaps’;
3: line 209: dataLabel = ’sparse’;
4: line 210: dataExtension = ’.mat’;

A.4.5 General Parameters Set Up

Here we are going to describe the more general parameters useful to handle the
methods:

• channels is useful to select a subset of variables for a certain analysis. It is
highly recommended to enter the series id from sorted in ascending order
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from left to right.

• samplingRate should be greater than 1 if data should be downsampled

• pointsToDiscard allows to discard a certain amount of points, starting from
the last one. To better clarify samplingRate and pointsToDiscard, the
meaningful part of line 315 in parametersAndMethods function is shown:
data(channels,1:samplingRate:(end-pointsToDiscard))

• realization may be left unchanged because it stores the files defined in
dataFileName, dataLabel and dataExtension. It is worth taking a look at line
244 in exampleMain to get how realization is set: realization = dir([dataDir
[dataFileName ’*’ dataLabel ’*’ dataExtension]]);

• autoPairwiseTarDriv takes into account the opportunity to investigate all
the pair wise combinations of the variables chosen by means of channels.
autoPairwiseTarDriv is then a vector with either 0 or 1 entries. The methods
order shown at the beginning of this section has to be preserved.

• handPairwiseTarDriv is useful to when the user already know how many
targets is going to choose for the analysis. If the number of targets can be
reshaped in a square matrix then it is worth setting as 1 the entriy of hand-
PairwiseTarDriv corresponding to the method choosen. handPairwiseTarDriv
is then a vector with either 0 or 1 entries. The methods order shown at the
beginning of this section has to be preserved.

Variables useful to handle data

1: line 240: % Defining the string to get data files
2: line 241: channels = 1:5;
3: line 242: samplingRate = 1;
4: line 243: pointsToDiscard = 4500;
5: line 244: realization = dir([dataDir [dataFileName ’*’ dataLabel ’*’ dataExten-

sion]]);
6: line 245: autoPairwiseTarDriv = [0 1 0 1 0 1];
7: line 246: handPairwiseTarDriv = [0 0 0 0 0 0];
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EXAMPLE 1

Let’s say that we want to perform an analysis on henon*.mat files in MuTE/ex-
ampleToolbox/. Those files contain a matrix called data with 6 time series of 2500
points. For instance, we want to analyse all the pair wise combinations taking
into account only 3 variable out of the 6 available: variables 2, 5, 6. We also
want to consider the first 2000 points out of the 2500 available. Finally, we only
want to investigate binnue and nnnue performances. In this case we should set the
parameters as follows:

1: line 240: % Defining the experiment parameters
2: line 241: channels = [2 5 6];
3: line 242: samplingRate = 1;
4: line 243: pointsToDiscard = 500;
5: line 244: realization = dir([dataDir [dataFileName ’*’ dataLabel ’*’ dataExten-

sion]]);
6: line 245: autoPairwiseTarDriv = [0 1 0 0 0 1];
7: line 246: handPairwiseTarDriv = [0 0 0 0 0 0];

EXAMPLE 2

Taking into account the same data as ”Example 1”, we do not want to analyse
all the pairwise combinations, but we already know that we are going to choose
a number of targets that can be reshaped in a square and that will involve all the
variables. We want to downsample the time series at the half of the sampling
rate and we want to take into account all the time points. This time we want to
investigate binue, linue and linnue performances.

1: line 240: % Defining the experiment parameters
2: line 241: channels = [1:6];
3: line 242: samplingRate = 2;
4: line 243: pointsToDiscard = 0;
5: line 244: realization = dir([dataDir [dataFileName ’*’ dataLabel ’*’ dataExten-

sion]]);
6: line 245: autoPairwiseTarDriv = [0 0 0 0 0 0];
7: line 246: handPairwiseTarDriv = [1 0 1 1 0 0];
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A.5 Parameters And Methods

parametersAndMethods is the only function in the main script. It takes in input
the parameters seen so far and the list of the methods with their own parameters.
Inside parametersAndMethods the methods parameters are rearranged in only one
structure used by other functions handle the proper parameters and perform the
correct analyses.

It is worth seeing how parametersAndMethods is called in the exampleMain.

In the following the screenshot of the call to parametersAndMethods.

It is useful, then, to take a look in detail at the parameters that the user should
set for each method. The parameters can be devided into two big groups: the
common parameters that have to be set up for each of the 6 methods and the
particular parameters that are useful to a particulr method only. We will provide
some examples in order to make the meaning of the parameters as clear as possible.

A.5.1 Common Parameters

1. idTargets is a row vector with entries the series id chosen as targets of the
analysis. It may contain repeated indeces.

2. idDrivers is a matrix with columns the series id whose influence on the
corresponding target column wise in idTarget is going to be evaluated.

3. idOtherLagZero is a matrix with columns the series id chosen among the
conditioning variables for that analysis that should be taken into account with
the instantaneous effect.
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4. modelOrder can be a vector indicating how many past states should be taken
into account for each series chosen for the analisys by means of channels. If
modelOrder is an integer the same amount of past states is considered for all
the series in channels.

5. multi bivAnalysis is a string containing either ”biv” or ”multiv” according
to whether perform a bivariate or multivariate analysis respectively.

6. genCondTermFun is a pointer to function assuming either ”@generate-
CondTermLagZero” or ”@generateConditionalTerm” values. The first func-
tion, generateCondTermLagZero, takes into account the instantaneous effect
for the drivers and for the variables indicated in idOtherLagZero. The second
function, generateConditionalTerm, will not take into account the instan-
taneous effect, even if are explicitly mentioned in idOtherLagZero. This
parameters should be set in accordance with usePresent.

7. usePresent is an integer assuming 1 or 0 values according to whether gen-
CondTermFun is set to ”@generateCondTermLagZero” or ”@generateCon-
ditionalTerm” respectively.

EXAMPLE 1
Let us assume that we have a matrix of (10×3000) dimensions as data. We are

interested in evaluating the adjacency matrix of the 10 variables: this means that we
want to investigate all the pair wise combinations of the 10 time series taking into
account all the time points. The implication is that we set idTargets and idDrivers
as empy matrices.

Important: if we set an entry of autoPairWiseTarDriv as 1 idTargets and
idDrivers of the correponding method will not be taken into account because
autoPairWiseTarDriv has priority over idTargets and idDrivers.

Furthermore, we want a conditioned analysis taking 5 past states for all the
variables and we do not want to consider the instananeous effects. We select binnue,
linnue and nnnue methods. The parameters should be set as follows:

• channels = [1:10];

• samplingRate = 1;
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• pointsToDiscard = 0;

...

• autoPairwiseTarDriv = [0 1 0 1 0 1];

• handPairwiseTarDriv = [0 0 0 0 0 0];

• idTargets = []

• idDrivers = []

• idOtherLagZero = []

• modelOrder = 5

• multi bivAnalysis = ’multiv’

• genCondTermFun = @generateConditionalTerm

• usePresent = 0

EXAMPLE 2
Let us assume that we have a matrix of (10×3000) dimensions as data. We are

interested, for instance, in evaluating the adjacency matrix of 4 variables out of 10.
Important: assuming that we are choosing series 2, 5, 8, 9. the time series

chosen for the analysis will be extracted from the original matrix. In this way the
user should keep into account that idTargets and idDrivers will assume values from
1 to channels length. In this case they will assume values ranging from 1 to 4.

Furthermore, let us assume that we do not want to investigate all the pair wise
combinations. Instead, we only want to check whether there are information flows
between certain driver-target couples and we need to have an idea about the directed
dynamical links as soon as possible. Then we can use 500 points only. We also
want a conditioned analysis taking 8 past states for all the variables and we want
to consider the instantaneous effects of certain conditioning variables. We select
binnue, linnue and nnnue methods. The parameters should be set as follows:

• channels = [2 5 8 9];
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• samplingRate = 1;

• pointsToDiscard = 2500;

...

• autoPairwiseTarDriv = [0 0 0 0 0 0];

• handPairwiseTarDriv = [0 1 0 1 0 1];

• idTargets = [1 1 2 2 3 3 4 4 4]

• idDrivers = [2 4 1 3 1 4 1 2 3]

• idOtherLagZero = [3 0 0 0 2 0 0 1 2; 4 0 0 0 0 0 0 0 1]

• modelOrder = 8

• multi bivAnalysis = ’multiv’

• genCondTermFun = @generateCondTermLagZero

• usePresent = 1

As we can notice, we chose 9 targets so we could set a 1 in handPairwiseTarDriv
vector corresponding to the right method. To better explain the set up we can say
that we are going to take into account the instantaneous effects of the variables 3
and 4 (corresponding to the 5th and the 8th time series of the original matrix) when
investigating how 2 is influencing 1, conditioned to the other two variables. At this
point the instantaneous effects for the drivers are not taken into account.

EXAMPLE 3
In this example we still want to deal with a matrix of (10×3000) dimensions

as data. This time, we want a bivariate analysis including the instantaneous effects
for the drivers. The procedure is slightly different: the id of the driver should be
repeated. The explanation of the difference between the set up of the instantaneous
effects for the drivers and for the conditioning variables is that the conditioning
variables are taken into account setting multi bivAnalysis = ’multiv’ so it is easy
to arrange the specific instantaneous effects in another vector. We only want to
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use the first 5 time series without discarding any point. We want to use a vector to
set a specific model order for each time series. Binue, linue and linnue will be the
methods involved in the analysis.

• channels = [1:5];

• samplingRate = 1;

• pointsToDiscard = 0;

...

• autoPairwiseTarDriv = [0 0 0 0 0 0];

• handPairwiseTarDriv = [0 0 0 0 0 0];

• idTargets = [1 1 2 3 3 4 5]

• idDrivers = [2 4 3 1 4 2 3; 5 0 0 2 1 5 0]

• idOtherLagZero = []

• modelOrder = [4;3;5;3;3]

• multi bivAnalysis = ’biv’

• genCondTermFun = @generateCondTermLagZero

• usePresent = 1

There are 7 targets so it is better to have handPairwiseTarDriv = [0 0 0 0 0 0]
otherwise there will be an error when the results will be reshaped in a square matrix.
idOtherLagZero will never be taken into account when multi bivAnalysis = ’biv’.

EXAMPLE 4
Another example trying to combine the configurations that we have previously

seen in Examples 1-3. We are assuming that we have a matrix of (10× 3000)
dimensions as data. We will first show the set up and then we will provide some
comments about it.
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• channels = [1 3 4 7 8];

• samplingRate = 3;

• pointsToDiscard = 100;

...

• autoPairwiseTarDriv = [0 0 0 0 0 0];

• handPairwiseTarDriv = [0 0 0 0 0 0];

• idTargets = [1 2 3 4 5]

• idDrivers = [2 3 4 1 2; 3 0 5 0 4; 4 0 2 0 0]

• idOtherLagZero = []

• modelOrder = 8

• multi bivAnalysis = ’multiv’

• genCondTermFun = @generateCondTermLagZero

• usePresent = 1

We are performing an analysis taking into account series 1, 3, 4, 7 and 8
downsampled at one third of the original sampling rate. We are discarding the last
100 time points. We are investigating how:

1. variables 2, 3 and 4 are influencing 1 conditioned to 5. This is equivalent to
say that we are interested in detecting the information flow from variables 3,
4 and 7 towards variable 1 conditioned to variable 8 of the original matrix.
The same reasonining can be applied in the following;

2. variable 3 is influencing 2 conditioned to variables 1, 4 and 5;

3. variables 4, 5 and 2 are influencing 3 conditioned to 1;

4. variable 1 is influencing 4 conditioned to the variables 2, 3 and 5;

5. variables 2 and 4 are influencing 5 conditioned to 1 and 3.
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A.5.2 Particular Parameters LIN UE

We embedded “arfit” in linue in order to allow the user to look for the best model
order. For further references the user is kindly asked to read arfit documentation.

• minOrder→ integer: lower bound of the interval in which arfit can look for
the best model order able to fit the data

• maxOrder→ integer: upper bound of the interval in which arfit can look for
the best model order able to fit the data

• orderCriterion→ string: order selection criterion for arfit. If orderCriterion
is not set to ’bayesian’, the Akaike’s Final Prediction Error will be chosen as
selection criterion

• entropyFun→ pointer: pointer to the function that will evaluate the entropy

• firstTermCaseVect→ vector: the first position refers to idTargets, the second
one refers to idDrivers ([1 0]). Set 1 according to wich candidates you want
to take into account

• secondTermCaseVect → vector: the first position refers to idTargets, the
second one refers to idDrivers ([1 1]). Set 1 according to wich candidates
you want to take into account

A.5.3 Particular Parameters LIN NUE

• entropyFun→ pointer: pointer to the function that will evaluate the entropy

• secondTermCaseVect → vector: the first position refers to idTargets, the
second one refers to idDrivers ([1 1]). Set 1 according to wich candidates
you want to take into account

• numSurrogates → integer: number of surrogates necessary to asses the
statistical threshold

• alphaPercentile→ integer: significance level
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• numQuantLevels→ integer: number of quantum levels

• entropyFun→ pointer: pointer to the function that will evaluate the entropy

• preProcessingFun→ pointer: pointer to the function needed to pre-process
of the data

• firstTermCaseVect→ vector: the first position refers to idTargets, the second
one refers to idDrivers ([1 0]). Set 1 according to wich candidates you want
to take into account

• secondTermCaseVect → vector: the first position refers to idTargets, the
second one refers to idDrivers ([1 1]). Set 1 according to wich candidates
you want to take into account

• numSurrogates → integer: number of surrogates necessary to asses the
statistical threshold

• alphaPercentile→ integer: significance level

• tauMin→ integer: number of shifts to produce a surrogate

A.5.5 Particular Parameters BIN NUE

• numQuantLevels→ integer: number of quantum levels

• entropyFun→ pointer: pointer to the function that will evaluate the entropy

• preProcessingFun→ pointer: pointer to the function needed to pre-process
of the data

• secondTermCaseVect → vector: the first position refers to idTargets, the
second one refers to idDrivers ([1 1]). Set 1 according to wich candidates
you want to take into account

• numSurrogates → integer: number of surrogates necessary to asses the
statistical threshold
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• alphaPercentile→ integer: significance level

A.5.6 Particular Parameters NN UE

• firstTermCaseVect→ vector: the first position refers to idTargets, the second
one refers to idDrivers ([1 0]). Set 1 according to wich candidates you want
to take into account

• numSurrogates → integer: number of surrogates necessary to asses the
statistical threshold

• metric→ string: it is possible to set the metric (either euclidian or maximum)
used to evaluate the distance in the phase space

• numNearNei→ integer: number of nearest neighbors to compute

• funcDir→ string: mex files path

• homeDir→ string: MuTE path

• alphaPercentile→ integer: significance level

• tauMin→ integer: number of shifts to produce a surrogate

A.5.7 Particular Parameters NN NUE

• secondTermCaseVect → vector: the first position refers to idTargets, the
second one refers to idDrivers ([1 1]). Set 1 according to wich candidates
you want to take into account

• numSurrogates → integer: number of surrogates necessary to asses the
statistical threshold

• metric→ string: it is possible to set the metric (either euclidian or maximum)
used to evaluate the distance in the phase space

• numNearNei→ integer: number of nearest neighbors to compute
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• informationTransCriterionFun→ pointer: pointer to the function needed
to evaluate the conditional mutual information;

• surrogatesTestFun → pointer: pointer to the function that performs the
surrogates test;

• funcDir→ string: mex files path

• homeDir→ string: MuTE path

• alphaPercentile→ integer: significance level

A.5.8 Particular Parameters NeuNet UE

• secondTermCaseVect → vector: the first position refers to idTargets, the
second one refers to idDrivers ([1 1]). Set 1 according to wich candidates
you want to take into account

• eta 1 → real number: learning rate to update the weights with gradient
descent and gradient descent with momentum

• alpha 2→ real number: parameter required in gradient descent with momen-
tum 3

• actFunc→ cell array of pointers: it contains pointers to functions that are
used as activation functions. There must be (number hidden layers + output
layer) number of entries specifying the activation function for each layer

• numEpochs→ integer: number of training epochs

• bias→ integer: it allows to take into account the bias if it is set as 1. If bias
nodes are not required, bias has to be set as 0

1This parameter is not useful to set the method appeared in literature. Nonetheless, it might be
useful for further analyses considering a variation of the published method.

2This parameter is not useful to set the method appeared in literature. Nonetheless, it might be
useful for further analyses considering a variation of the published method.

3For further references [78]
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• candidateEpochs→ integer: number of maximum iterations needed to train
the network with the current candidate. It is used in the outer while of the
non-uniform wrapper

• dividingPoint→ real number: amount of points used to train the networks.
It is expressed as percentage of the data set number of points

• valStep → integer: number of iterations after which the validation phase
takes place

• valThreshold→ real number: threshold needed during the validation phase

• learnAlg→ pointer: points to the function used as learning algorithm

• rbpIncrease→ real number: η−, [44]

• rbpDescrease→ real number: η+, [44]

• rangeW→ real number: it represents the range of values assumed by the
weights when initialized. If rangeW is set as 1, the weights will be initialized
between -1 and 1

• coeffHidNodes→ real number: percentage of hidden nodes with respect to
the amount of available candidates

• numSurrogates → integer: number of surrogates necessary to asses the
statistical threshold

• tauMin→ integer: number of shifts to produce a surrogate

• alphaPercentile→ integer: significance level

A.5.9 Particular Parameters NeuNet NUE

• data→ matrix: data arranged differently with respect to data used by the
other methods. It might be useful to arrange data in order to line up the
realizations that the other methods would analyze separately
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• firstTermCaseVect→ vector: the first position refers to idTargets, the second
one refers to idDrivers ([1 0]). Set 1 according to wich candidates you want
to take into account

• secondTermCaseVect → vector: the first position refers to idTargets, the
second one refers to idDrivers ([1 1]). Set 1 according to wich candidates
you want to take into account

• eta 4 → real number: learning rate to update the weights with gradient
descent and gradient descent with momentum

• alpha 5→ real number: parameter required in gradient descent with momen-
tum 6

• actFunc→ cell array of pointers: it contains pointers to functions that are
used as activation functions. There must be (number hidden layers + output
layer) number of entries specifying the activation function for each layer

• numEpochs→ integer: number of training epochs

• bias→ integer: it allows to take into account the bias if it is set as 1. If bias
nodes are not required, bias has to be set as 0

• candidateEpochs→ integer: number of maximum iterations needed to train
the network with the current candidate. It is used in the outer while of the
non-uniform wrapper

• dividingPoint→ real number: amount of points used to train the networks.
It is expressed as percentage of the data set number of points

• valStep → integer: number of iterations after which the validation phase
takes place

• valThreshold→ real number: threshold needed during the validation phase
4This parameter is not useful to set the method appeared in literature. Nonetheless, it might be

useful for further analyses considering a variation of the published method.
5This parameter is not useful to set the method appeared in literature. Nonetheless, it might be

useful for further analyses considering a variation of the published method.
6For further references [78]
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• learnAlg→ pointer: points to the function used as learning algorithm

• rbpIncrease→ real number: η−, [44]

• rbpDescrease→ real number: η+,[44]

• rangeW→ real number: it represents the range of values assumed by the
weights when initialized. If rangeW is set as 1, the weights will be initialized
between -1 and 1

• coeffHidNodes→ real number: percentage of hidden nodes with respect to
the amount of available candidates

NB: we would strongly recommend to leave firstTermCaseVect and secondTerm-
CaseVect as they are. For a more exhaustive documentation of the nearest neighbor
parameters please take a look at the openTSTOOL documentation.

A.6 Wrapping Parameters

In parametersAndMethods lines 12-74 are devoted to convert the list of parameters
given in input to a list of variables that will belong a particular method. Lines 180-
288 are devoted to encapsulate the parameters of the chosen methods in a unique
structure. This step is the needed bridge between the interface of MuTE with the
user and the methods. To complete this step the function createNameMethodParams
that locks the input parameters in the method structure is needed. After that the
callingMethods is called.

A.7 Calling Methods

callingMethods function calls the chosen methods. The function only requires the
more general data structure built during the wrapping of the parameters and the
data. The output is a structure that groups the results of the methods.
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A.8 Storing and Visualization of the Results

Three functions are involved in this step, called in parametersAndMethods:

• storingOutput → rearrange and store callingMethods output creating a
different file for each realization and method. In this way each method
will have its performances stored according to the analyzed file. Each file
contains a structure named outputToStore. This is the most important post-
processing function: starting from its output (the fields of outputToStore) the
user can manage all the most useful informations in order to apply his own
post-processing.

• generateExpReport→ adds other fields to outputToStore structure such as
pValue, modelOrder, testThreshold and bestOrder if those fields belong to
the chosen method. The function, furthermore, generates the following files
in entropyMatrices folder:

– methodName matrixPValues

– methodName testThresholdMtx

– methodName transferEntropyMtx

• reshapeResults→ If either autoPairwiseTarDriv = 1 or handPairwiseTarDriv
= 1 and the number of targets can be reshaped in a square, the function
reshapes and stores the significance matrix and evaluates the mean values of
the transfer entropy with respect to the number of trials obtaining a vector the
same length as the number of targets. Then the mean transfer entropy values
are reshaped and stored as well.

A.9 Output Returned

Let us take a closer look at the output files stored during the post-processing phase.
We can find two folders where the outputs are stored, entropyMatrices and results
folders.

In entropyMatrices the following files can be found:
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• methodName transferEntropyMtx contains a first column with the id of
the data files. The other columns representing the entropy values: if the
user sets allPairWiseCombinatins = 1 and he is dealing with 5 time series,
he is going to evaluate 5 × 4 = 20 pairwise combinations not considering
each series as target of itself. This means that the number of targets is 20.
transferEntropyMtx will have 21 columns and as much rows as the number
of trials.

• methodName significanceOnDriv only contains as much columns as the
number of targets and as much rows as the number of trials. Each entry may
assume 1 or 0 values according to whether the link is significant or not.

• methodName reshapedSignificance contains the significance values reshaped
to form the adjacency matrix if the experimental set up allows the reshaping.

In results the following files are stored:

• methodName typeAnalysis patient idTrial contains the outputToStore struc-
ture. This is the basic file from which everything can be evaluated during the
post-processing phase.

• methodName meanReshapeMtx is provided in results folder. This file con-
tains the average of the values stored in transferEntropyMtx reshaped (if the
experimental set up allows the reshaping) in order to show the adjacency
matrix and be able to see the directed dynamical links.

NB: the user is kindly invited to develop his own functions to evaluate what
may be the most useful informations according to his particular experiment. The
post processing that we provide should be considered as an example of what can be
evaluated.

A.10 The GUI

The MuTE GUI has been developed to make the MuTE toolbox more user-friendly.
Please be aware that this tutorial only provides information on how to use the
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Figure A.2: MuTE GUI main window.

GUI. More information regarding the analysis methods can be found at the mute
website and references therein http://mutetoolbox.guru/. It is strongly
recommended to get familiarized with these methods before using the toolbox.
In order to use the GUI, the latest version of the MuTE toolbox must be down-
loaded and added to your MATLAB path (add with subfolders). The most recent
version of MuTE can be downloaded at the following address for free: http:
//mutetoolbox.guru/downloads/. To launch the GUI, type “mute” at the
MATLAB command prompt. The following window will appear in figure A.2.

A.11 How to use the GUI

The work flow can be separated into 3 parts: 1) Setting the general parameters and
data selection, 2) setting method specific parameters and 3) generate script/execute
the analysis.
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A.11. How to use the GUI

A.11.1 General Parameters and Data

The general parameters refer to those parameters that apply to all the methods used
(i.e. the methods selected in the 2nd step). These can be set by clicking the ’General
parameters and Data’ button on top of the main window. A new window will appear
where the data can be selected and general parameters can be set, figure A.3. In the
new window, all the relevant parameter that need to be specified are listed. Most of
the parameters have default values. In addition, every parameter is accompanied
with a info (“?”) button. More info regarding specific parameters can be obtained
by clicking on the info button. Once all the relevant parameters are set, you can
save the settings by clicking the ’Save settings’ button. The default values can be
restored by clicking the ’Restore default’ button.

The GUI does an automatic check with respect to the selected data. The number
of data files selected by the MuTE GUI will be displayed at the command prompt.
If for some reasons the GUI is unable to find the data files, an error will pop up. If
no data is found, it will be impossible to save the settings and thus also to generate
a script/execute the analysis. Once the correct general parameters are saved, the
general parameters window will be closed and the checkbox next to the ’general
parameters and data’ button in the main window will be checked.

As soon as the general parameters are saved, if everything is set up correctly
the following warning is printed on the workspace in order to remind the user to
wait until the computation is done and to not worry about the prompt shown in the
workspace: “WARNING: the computation is taking place in another workspace.
Please wait until ’...COMPUTATION DONE!’ is displayed.”

A.11.2 Method-specific Parameters

In the middle of the main window, there are 8 buttons listed vertically. Each of these
buttons will open a new window where you can specify method specific parameters,
figure A.4.

The methods listed from top to bottom are the following:

• Binue: Binning uniform embedding

• Binnue: Binning non-uniform embedding
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Figure A.3: The general parameters and data pop-up window.

Figure A.4: An example of a method specific pop-up window. Here the method
specific parameters can be specified. In figure, the linue method settings are
displayed.
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• Linue: Linear uniform embedding

• Linnue: Linear non-uniform embedding

• Nnue: Nearest neighbor, uniform embedding

• Nnnue: Nearest neighbor, non-uniform embedding

• Neunetue: Neural networks uniform embedding

• Neunetnue: Neural networks non-uniform embedding

The method specific window is similar to the general parameters window. All
the parameters have default values. It is recommended to keep the default values
for most parameters. Each parameter is again provided with a (“?”) info button.
The info button opens a window where more information regarding that specific
parameter can be obtained. Once the settings are saved, the window will be closed
and the checkbox next to the parameter will be checked. If one of the method
specific checkboxes is unchecked, then that method will not be performed during
the analysis.

A.11.3 Generate Script/Execute the Analysis

Once all the setting have been set, the user has two options: 1) generate a script or
2) execute the analysis. When clicking the “generate” button, a matlab scrip, a .m
file with the date and hour of generation in the name e.g.

mute analysis 2016 1 28 9h 56min.m

, will be generated in the data folder. The analysis can than be run by simply running
the script. When clicking the “execute” button, the same script will be generated
but now it will also be executed automatically. Our goal of generating a script is to
make the transition from point-and- click to command line analysis easier. The user
must specify at least one of the methods and the general parameters, otherwise an
error will pop-up and no script will be generated/executed. The analyses are done
once the main window is closed. The results can be found in a folder inside the
data directory.
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CHAPTER 7

Personal Contributions

7.1 Papers

• In “Lag-Specific Transfer Entropy as a Tool to Assess Cardiovascular and
Cardiorespiratory Information Transfer” [79] We performed some analyses
useful for the application part of the paper.

• In “MuTE: A new Matlab toolbox for estimating the multivariate Transfer
entropy in physiological variability series” [80] We implemented the first
version of MuTE, performed the analyses and actively contributed to write
the paper accepted at the Cardiovascular Oscillations (ESGCO), 2014 8th
Conference of the European Study Group where I also presented a poster to
show the paper outcomes.

• The paper “A linear approach for sparse coding by a two-layer neural network”
[81] was published in collaboration with the University of Naples taking
advantage of my Master’s Thesis. We contributed to the development of the
paper with the implementation of the approaches presented in the work based
on the neural network MATLAB package developed by the my supervisor in
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Naples and his staff and which I helped to improve.

• “Comparing model-free and model-based transfer entropy estimators in car-
diovascular variability” [82] was another application of the first version of
MuTE accepted at the Computing in Cardiology Conference (CinC), 2013
where I gave an oral presentation of the paper. I contributed by taking care of
the performed analyses and writing the paper.

• In “Cardiorespiratory Information Dynamics during Mental Arithmetic and
Sustained Attention” [67] I contributed by helping the setting of the methods
used to analyse the data and the interpretation of the results.

• In “Information dynamics in cardiorespiratory time series during mental
stress testing” [83] I contributed by helping the setting of the methods used
to analyse the data and the interpretation of the results.

• In “Information dynamics in cardiorespiratory analyses: Application to con-
trolled breathing” [84] I contributed by helping the setting of the methods
used to analyse the data and the interpretation of the results.

• In “Interictal cardiorespiratory variability in temporal lobe and absence
epilepsy in childhood” [68] I contributed by helping the setting of the methods
used to analyse the data and the interpretation of the results.

• Information decomposition of short-term cardiovascular and cardiorespiratory
variability [85]

• In “MuTE: A MATLAB Toolbox to Compare Established and Novel Estima-
tors of the Multivariate Transfer Entropy” [86], chapter 4, I was in charge of
the setting of the experiments making the comparison between the methods
as much clear as possible. I used some techniques usually adopted in classifi-
cation tasks so that the pros and cons of the methods could be easily detected.
I actively contributed to write the paper.

• “Neural networks with non-uniform embedding and explicit validation phase
to assess Granger causality” [87], chapter 5, was completely thought, imple-
mented, and developed by me. The co-authors gave a high impact contribution
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7.2. Conferences, Awards and Grants

in shaping the reasoning to that an organic framework could come out of my
idea.

• In “Multiscale Analysis of Information Dynamics for Linear Multivariate
Processes” [88], chapter 6, I actively worked with Dr. Luca Faes at the
University of Trento in order to pave the way for the future article. I took
care of the experiments too.

7.2 Conferences, Awards and Grants

• Computing in Cardiology Conference (CinC), 2013. I gave an oral presenta-
tion of the paper.

• ‘Workshop on Neural Information Dynamics, Causality and Computation
near Criticality”, 2014. I presented MuTE.

• 8th European Study Group on Cardiovascular Oscillations (ESGCO 2014);
Best Poster Prize

• FWO Grant For Long Stay Abroad
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CHAPTER 8

Nederlandse samenvatting

Voor wetenschappers blijft het een uitdaging om de transfer van informatie tussen
systeemcomponenten in kaart te brengen. Hierbij is het moeilijk om op basis van
systemen, die gebruik maken van verschillende schalen, kennis over structuren
en functie te infereren op basis van de geregistreerde dynamische gegevens. De
componenten van complexe netwerken interageren namelijk vaak op een niet-
lineaire manier en via mechanismen die algemeen genomen niet helemaal gekend
zijn. In die gevallen is het veiliger dat de gekozen analysemethode, om deze
interacties te bestuderen, niet op een model gebaseerd is en ook geen assumpties
maakt over de natuur van de data en de interacties.

De bijdrage van deze dissertatie bestaat uit de ontwikkeling van methodes die
in staat zijn om de dynamische invloeden beter te detecteren in dergelijke complexe
systemen. In wat volgt wordt de inhoud van de 6 hoofdstukken kort toegelicht.

Hoofdstuk 2 is een introductie tot ”information theory” en haar onderliggende
mathematische bouwstenen die doorheen dit werk gebruikt zullen worden. We
leggen er eveneens de rationale uit die geleid heeft tot de formele en mathematische
definitie van concepten zoals ”information” en ”entropy”. Vervolgens wordt de
relatie tussen deze bouwstenen en de twee relevante maten uitgelegd. Deze maten
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worden verder doorheen dit werk gebruikt.
In hoofdstuk 3 wordt de ”Multivariate Transfer Entropy toolbox” (MuTE)

besproken. Hiernaast worden ook zes methoden geı̈mplementeerd. Er wordt voor
elk van deze methoden een exhaustieve uitleg gegeven vanuit een theoretische en
experimentele invalshoek. Hierbij wordt de performantie eveneens vergeleken.
Tot slot worden ook de voor- en nadelen van elke methode besproken zodat de
eindgebruiker beter op de hoogte is welke methode het beste aan zijn/haar noden
tegemoet komt.

Hoofdstuk 4 is gewijd aan de beschrijving van de ”artificial neural networks”
benadering. Aan de MuTE toolbox werden twee schattingsmethodes toegevoegd.
We beschrijven kort deze benadering zodat een vergelijking kan gemaakt worden
tussen ”machine learning” en ”information theory”. In dit hoofdstuk wordt de
nadruk gelegd op de relevantie van de brug tussen ”machine learning” en ”infor-
mation theory”. Onze hoop is dat toekomstig onderzoek de kloof tussen deze twee
wetenschappelijke velden verder kan dichten.

In Hoofdstuk 5 wordt de ”multiscale” aanpak toegepast op een modelgebaseerde
methode. We geven uitleg over de problemen die rijzen bij pre-processing tech-
nieken zoals filtering en ”down-sampling”. Er wordt een theoretisch bewijs geleverd
voor de verschillen tussen enerzijds de signalen die ”preprocessing” ondergingen
en anderzijds de originele signalen die deze bewerking niet ondergaan hebben. In
dit hoofdstuk wordt ook een manier beschreven om problemen die gerelateerd zijn
aan ”preprocessing” technieken aan te pakken.

In Hoofdstuk 6 wordt een overzicht en samenvatting gegeven van de belangrijk-
ste ideeën en bevindingen van deze thesis. Het bevat bovendien een aantal paden
en suggesties voor toekomstig onderzoek.

In Appendix A beschrijven we de verschillende manieren waarop de MUTE
toolbox gepromoot werd met als doel om verder te reiken dan wat men typisch
bereikt bij het publiceren van een wetenschappelijk artikel. Hiernaast wordt ook
beschreven hoe de toolbox gebruiksvriendelijker gemaakt werd. Op die manier is
de toolbox ook toegankelijk voor gebruikers zonder programmeerervaring.
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[60] Mario Chávez, Jacques Martinerie, and Michel Le Van Quyen. Statistical
assessment of nonlinear causality: application to epileptic eeg signals. Journal

of neuroscience methods, 124(2):113–128, 2003.

[61] Matteo Garofalo, Thierry Nieus, Paolo Massobrio, and Sergio Martinoia.
Evaluation of the performance of information theory-based methods and
cross-correlation to estimate the functional connectivity in cortical networks.
PloS one, 4(8):e6482, 2009.
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