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1.1 ONCE UPON A TIME...LIFE  

 Preimplantation embryo development is a very complex period in which two highly 

specialized cells, called gametes, will combine and generate a new organism. During the first 

week of mammalian embryo development many important events take place, including the 

first cleavage, embryonic genome activation, compaction of the morula and differentiation 

with blastocyst formation (Lonergan et al. 2006). Despite its complexity, this process happens 

quite autonomously in mammals, and can be supported in vitro by assisted reproductive 

technologies (ARTs). The use of ARTs is of major importance for the treatment of human 

infertility and for livestock production, but it implies the exposure of gametes and embryos to 

suboptimal conditions during this crucial period. As consequence, the use of ARTs has led to 

increased incidence of particular syndromes, many of them related to epigenetic alterations.  

 In the following pages, the events that are taking place during preimplantation 

development, and the different ARTs will be described, with special focus on their use for 

bovine and horse embryo production. Additionally, an overview will be provided of the 

different techniques used for embryo quality determination, and the reported effects of ARTs.   

1.1.1 Preimplantation Embryo Development In vivo 

 In mammals, preimplantation embryo development is the series of events that takes 

place from the time of fertilization in the oviduct until the implantation in the uterus. For 

fertilization to be successful, a single capacitated spermatozoon needs to fuse with a mature 

oocyte. During ovulation, one or more mature oocytes arrested in metaphase of the second 

meiotic division (MII), are released in the oviduct. At that time they are surrounded by a 

glycoprotein matrix, called zona pellucida (ZP), and a few layers of cumulus cells. The number 

of oocytes released per ovulatory cycle is species-specific, with monovulatory species 

releasing typically one, and sometimes two oocytes, such as human (Fauser and Van Heusden 

1997), cattle (Adams 1999) and horse (Bergfelt and Adams 2000), and polyovulatory species 

releasing multiple oocytes, typically 10 or more, such as pig (Bazer et al. 1969), rat (Blandau 

1952) and rabbit (Boving 1956). At mating, more than 109 actively motile spermatozoa are 

delivered in the female genital tract, either in the vagina, cervix (cattle) or uterus (horse), 

depending on the species. However, this ejaculated sperm is not able to fertilize yet, even if 

placed in direct contact with the oocyte. Before they are able to fertilize, they need to undergo 
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a series of physiological changes called capacitation (Yanagimachi 1981). Only a small fraction 

of the ejaculated sperm will reach the utero-tubal junction (UTJ), where a sperm reservoir will 

be formed. Near the time of ovulation, a small population of the sperm within the reservoir 

will become capacitated, with a special type of vigorous motility, called hyperactivation 

(Yanagimachi 1981). These capacitated spermatozoa will be released from the reservoir and 

move towards the ampulla (Hunter 1993), which ensures that only a limited number of 

spermatozoa will reach the oocyte at the ampullary-isthmic junction. Here, capacitated sperm 

will meet the mature oocyte and bind to the ZP or to the cumulus-oocyte complex (Inoue et 

al. 2011b; Jin et al. 2011), where it will acrosome react, releasing hydrolytic enzymes, and 

enter the perivitelline space. Once in the perivitelline space, the sperm cell will fuse with the 

oolemma, and get incorporated in the oocyte (Figure 1.1).  

 The entrance of the fertilizing spermatozoon induces the cortical reaction, in which the 

content of the cortical granules (secretory granules just underlying the oolemma) is secreted 

in order to modify the properties of the zona ZP and the oolemma, thereby preventing the 

penetration of new spermatozoa and therefore, polyspermy (Austin 1956). The penetration 

of the spermatozoon also activates the oocyte, which finishes the second meiotic division, 

extruding the second polar body (pb). This leaves a haploid (n) maternal nucleus, forming a 

one-cell embryo called zygote. Subsequently, both the maternal metaphase plate and the 

paternal sperm head will decondense, and form the maternal and paternal pronucleus (PN) 

(Hyttel et al. 1988). This maternal and paternal pronuclei will increase their size and migrate 

towards each other (Figure 1.2). During this migration, recondensation of chromatin takes 

place, indicating that the prophase of the first mitotic division has begun. Therefore, at this 

stage, DNA replication has taken place. Soon after pronuclear encounter, the first mitosis will 

be finished, and a series of mitotic divisions will start (Hyttel et al. 1989).  
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Figure 1.1. Schematic representation of the fertilization of the mammalian oocyte. The 

capacitated spermatozoon binds either at the level of the cumulus layer (1) or at the zona 

pellucida (ZP) (2), which initiates the acrosome reaction (3). The exposure of the acrosomal 

content, which is capable to lyse extracellular matrices of the cumulus and/or the zona 

pellucida, and the hyperactivated motility are required for allowing a few spermatozoa to 

reach the perivitelline space (space between the ZP and the oolemma) (4). Subsequently, the 

spermatozoon adheres to the oolemma, fuses with it and thus fertilizes the oocyte (5). The 

fertilized oocyte immediately allows the cortical reaction, which avoids another spermatozoa 

to fuse and thus prevents polyspermic fertilization (6). The fertilizing spermatozoon brings the 

signal for oocyte activation and thus also causes polyspermy blockage. Adapted from Gadella 

and Luna 2014. 
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Figure 1.2. Schematic representation of pronuclear development. (a) The spermatozoon just 

entered the mature oocyte arrested in metaphase II, which induces the restart of meiosis II. (b) 

PN0, the sperm head is decondensing. Meiosis II is finished, with the extrusion of the second 

polar body (2 pb), and the chromosomes start to decondense. The nuclear envelope is starting 

to form. (c) PN1, The nuclear envelope is completed. There are two small round pronuclei one 

of maternal (mPN) and one of paternal (pPN) origin. (d) PN2, the PN have increased in size and 

are starting to migrate towards the center. (e) PN3, the PN have reached their maximum size 

and are in apposition. (f) PN4, there is a nuclear membrane break down. The S phase takes 

place between PN2 and PN3. ZP: zona pellucida. 

 

 The timing of the cleavage divisions varies depending on the species, with the first 

cleavage division taking place around 20h after the estimated time of fertilization (Betteridge 

1995) (Figure 1.3). Within the first mitotic divisions the nucleus/cytoplasm ratio increases, as 

the size of the embryo remains constant, producing with each cleavage division smaller 

blastomeres. After a species specific number of cleavage divisions, the embryo reaches the 

morula stage. Soon after, the compaction of the morula starts. In this process, the cells flatten 

and the contact between blastomeres increases by the establishment of adherent junctions, 

until the embryo appears as a uniform mass. This generates a cell contact-induced cell 
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polarization, which constitutes the first differentiation event. These differentiating cells are 

the precursors of the trophectoderm (TE) and the inner cell mass (ICM) (Watson and Barcroft 

2001). The time of compaction varies greatly among species (Betteridge 1995; Watson and 

Barcroft 2001). These events are essential for blastocyst formation, and by the late morula 

stage, the embryo acquires the remaining macromolecules necessary for cavitation.  

 The first step of blastocyst formation is the differentiation of the TE. It acquires the 

characteristics of an epithelium and it is involved in the transport of ions and water, forming 

one or several cavities that will fuse forming the so called blastocoel (Watson and Barcroft 

2001; Marikawa and Alarcon 2009). On the other hand, the ICM aggregates as a single mass 

attached to the basal surface of the TE. The cells from the ICM will produce all embryonic 

tissues and a part of the extra-embryonic membranes. The TE combined with the ICM-derived 

extra embryonic membranes, will form the fetal part of the placenta.  

 It is at the blastocyst stage that the size of the embryo increases, due to the expansion 

of the blastocoel, which can occupy up to 90% of the volume of the embryo. This expansion 

thins the ZP until the embryo frees itself by contraction and expansion cycles, in a process 

called hatching. In human and rodents, the embryo implants soon after hatching. In cattle, pig 

and horse, the implantation in the uterus is delayed. In ruminants, the embryo changes from 

a spherical to an ovoid structure and further to tubular and filamentous morphology, filling 

the uterine horn completely while finally attaching, which in cattle starts around day 18-21 

post insemination (Betteridge and Fléchon 1988). On the contrary, the equine blastocyst is 

surrounded by a glycoprotein capsule even after hatching, which prevents its expansion. 

Instead, the embryo moves from one horn to another until, around day 16, it is fixed at the 

base of one of the horns (Klein 2015). 

 

 

 

 



 

 
 

 

 

Figure 1.3. Schematic representation of the in vitro preimplantation development, and its timing in human, mouse, cattle and horse. The times 

are given in hours after insemination. ICM: inner cell mass; TE: trophectoderm. 
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2002; Catteeuw et al. 2015) 

Horse 15h 24h 24-48h 72h 8-16 cells 120h - - 168h (Betteridge 1995) 
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1.1.2 Assisted Reproductive Technology (ART) 

 Assisted reproductive technologies are a miscellaneous group of techniques that can 

be combined or used individually and aim to produce embryos and/or support their 

development until transfer. Since the development of ART, these techniques have been 

applied in many mammalian species for clinical, commercial and research purposes. These 

techniques have been developed progressively, becoming more sophisticated as the 

knowledge of gametes and embryo development has increased. They include four generations 

of technologies: 1) artificial insemination (AI), 2) multiple ovulation and embryo transfer 

(MOET), 3) in vitro embryo production (IVP) and 4) cloning and transgenesis (Thibier 2005).  

1.1.2.1    Artificial insemination (AI) 

 Artificial insemination consists in the deliberate introduction of sperm into a female´s 

uterus or cervix for the purpose of achieving a pregnancy, through in vivo fertilization by other 

means than sexual intercourse.  

 AI was developed as a hygienic measure to prevent disease transmission. Spallanzani 

is considered to be the first one to describe AI, since he reported in 1780 the successful use of 

AI in dogs. It was not until 1931, in Russia, that the first mass breeding of cows via AI was 

reported. Nowadays, it is vastly used in many species, especially in livestock, for practical and 

economic reasons.  

 Before AI can be performed, semen has to be collected, processed and stored, and 

then it can be introduced in the female reproductive tract (Webb 1992), which is normally 

combined with the detection of oestrus in females. For this reason, AI can maximize the use 

of semen of genetically valuable males, since from one ejaculate, many insemination doses 

can be obtained, e. g. with one ejaculate of a bull between 300 and 1,000 cows can be 

inseminated. When the semen is frozen, it can easily be transported worldwide.  

1.1.2.2    Multiple ovulation and embryo transfer (MOET) 

 Multiple ovulation and embryo transfer has been used in farm animals since the early 

eighties (Thibier 2005). It consists of the use of multiple hormone injections to induce the 

release of multiple oocytes from the ovaries (so called superovulation), followed by AI, 
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flushing of the embryos from the uterus and transfer of the resulting embryos into 

synchronized recipients. Therefore, this technique maximizes offspring from genetically 

valuable females, while reducing also the time between generations. The major disadvantage 

of MOET is the unpredictable response of the donor female to exogenous superovulation 

treatment. Horses, for instance, do not respond to the hormone treatment, and embryo 

transfer, without hormone treatment is used instead of the MOET.  

1.1.2.3    In vitro embryo production (IVP) 

 In vitro embryo production entails the combination of three steps that need to be 

performed following a strict timing. It covers all steps from the maturation and fertilization of 

the oocyte to the embryo development. The oocytes can be derived both from a living (by 

transvaginal ovum pick-up) or dead animal (slaughterhouse derived ovaries). It is also 

combined with embryo transfer in many species. 

 Ovum pick up (OPU)  

 Ovum pick up was first developed for human assisted reproduction. In the early 

eighties it was already a regularly performed procedure used in combination with hormone 

stimulation (Lopata et al. 1974; Lauritsen 1983). In 1987, bovine oocytes were successfully 

collected using transvaginal ultrasonography, for the first time in animals (Pieterse et al. 

1988). The technique has been refined over the years, but the basis remains the same. It 

consists in the retrieval of oocytes from living donors using ultrasound guided transvaginal 

aspiration of the contents of ovarian follicles (Bols 2005). It can be used in combination with 

gonadotrophin treatments to increase the size of smaller follicles.  

 Nowadays, it is commonly used in farm animals, including cattle and horses. However, 

the results of OPU are very variable depending on the donor, the moment and frequency of 

follicular aspiration with respect to the estrous cycle, the use of hormone stimulation, and the 

operator´s experience. 
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 In vitro oocyte maturation (IVM) 

 Immature follicles can be obtained by OPU, as explained above, or from slaughtered 

animals. In both cases, cumulus oocytes complexes (COCs) are aspirated from the follicles and 

incubated in maturation medium for a period of time that is species specific, e. g. ˜22h for 

cattle and ˜26-30h for horses. This time is necessary to acquire two types of maturation, 

nuclear and cytoplasmic. For the nuclear maturation, oocytes need to resume their meiotic 

division up to metaphase II (MII) and extrude the first polar body. The cytoplasmic maturation 

is more difficult to evaluate, but it involves accumulation of mRNA, proteins, substrates and 

nutrients (Watson 2007). To correctly achieve both types of maturation, the embryos are 

incubated in maturation medium, which is designed according to the specific requirements of 

the species, but it is based on a complex medium, such as tissue culture medium (TCM)-199, 

commonly supplemented with energy substrates (pyruvate), hormones (gonadotrophin 

and/or steroid hormones), growth factors (EGF, IGF, FGF), and complex mixtures such as fetal 

bovine serum (FBS) or serum replacement. Importantly, a tendency to reduce the use of FBS, 

and move towards the use of completely defined maturation medium is apparent in animal 

IVP, following the example of the practices in human.  

 In vitro fertilization (IVF) 

 The first species in which the birth of offspring was reported after in vitro fertilization 

were rabbits (Chang 1959), mice (Whittingham 1968), rats (Toyoda and Chang 1974) and 

human (Steptoe and Edwards 1978), with the birth of Louise Brown in 1978. IVF consists in 

the co-incubation of the mature oocytes with capacitated sperm, in a medium suitable for 

fertilization, for a number of hours that allow sperm penetration. It can be performed with 

fresh or frozen semen, which has been purified previously. The most commonly used 

purification method is the separation of motile sperm from dead cells over a discontinuous 

density gradient. Recently, the use of sex-sorted semen, that allows the production of 

embryos of a desired sex, has become more popular in farm animals. The separation is based 

on the differences in DNA content between the X and the Y chromosome, and it is performed 

by flow cytometry. It was implemented in 1989, and it has an accuracy of 90% (Seidel 2009). 

However, it has been reported to reduce the fertilization rates (Maxwell et al. 2004).  
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 Intracytoplasmic sperm injection (ICSI) 

 Conventional ICSI was initially developed in Belgium for the treatment of male factor 

infertility in humans in 1992 (Palermo et al. 1992), and it is an alternative to in vitro fertilization 

when sperm fails to penetrate when it is co-incubated with the oocyte. This technique consists 

of the injection of a single spermatozoon into the cytoplasm of a mature oocyte by a sharp 

injection pipette. Soon after its development, several upgrades were implemented to facilitate 

the perforation of the zona pellucida (ZP). The most commonly used upgrade is the piezo drill. 

This is a device that creates minute vibrations of a blunt-ended injection pipette. The piezo 

drill was applied in mice in 1995, resulting in the first ICSI mice offspring (Kimura and 

Yanagimachi 1995). It is commonly used now in many species, including the horse (Choi et al. 

2002) (Figure 1.4). Another alternative is the laser-assisted ICSI. By using a laser, a hole is made 

in the zona pellucida prior to sperm injection. This causes less oocyte disturbance than 

conventional ICSI, and, in human, has been shown to be beneficial for patients with fragile 

oolemma or with high rates of oocyte degeneration after conventional ICSI (Abdelmassih et 

al. 2002; Rienzi et al. 2004). ICSI has become the preferred method of in vitro fertilization in 

human and has been successfully used in many species, such as horse, mouse, cat (Pope et al. 

1998), pig (Nakai et al. 2011), rhesus macaques (Wolf 2004), cattle and sheep (reviewed by 

Garcia-Rosello et al. 2009). 

 

 

Figure 1.4. Piezo drill assisted ICSI. The injection pipette captures a spermatozoon (spz). The 

mature oocyte is immobilized with the polar body (pb) at the 6 or 12 o’clock position by 

aspiration with a holding pipette at 9 o’clock. The injection pipette drills the zona pellucida (ZP) 

at 3 o’clock, penetrates the oolemma, and deposits the immobilized spermatozoon in the 

cytoplasm of the oocyte.  
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 In vitro embryo culture (IVC) 

 The first successful culture of mammalian embryos in vitro was achieved in the fifties 

(Whitten 1956; Whitten 1957). IVC is intended to support embryo development until transfer. 

In farm animals, embryos are mostly transferred at the blastocyst stage. However, in humans, 

embryos can also be transferred earlier to the uterus, at the cleavage stages, to limit the time 

of exposure of the embryo to in vitro conditions. After fertilization, the remaining cumulus 

cells and sperm are removed from the presumptive zygotes, which are subsequently placed 

in culture medium for a variable time, depending on the species and the subsequent use of 

the embryos.  

 Three conditions are fundamental for IVC to be successful: 1) air and temperature, 2) 

composition of the culture medium, and 3) embryo/medium ratio. All these conditions are 

aimed to mimic as much as possible the in vivo situation.  

 Regarding air and temperature, an atmosphere with 5% O2, 5% CO2 is preferred for 

embryo culture (Smits et al. 2012; Li et al. 2014; Appeltant et al. 2015). It has been proven, 

that the reduction of the proportion of O2 from 20% to 5%, which is more similar to the oxygen 

tension in the oviduct, reduces the formation of reactive oxygen species (ROS) (Guerin et al. 

2001). In addition, most culture media are buffered to reach their optimum pH when the 

volume of CO2 is 5%, whereas the pH rises rapidly at the 0.04% CO2 in air. A 100% humidity is 

also necessary to avoid evaporation of the drops of culture media. The temperature of the 

incubator is also crucial for the correct embryo development, an increase of 1 degree above 

the optimal temperature can have a detrimental effect on the developmental competence 

(Hansen 2007). This optimal temperature is species specific, with 38.5˚C being the optimal 

temperature for bovine embryos and 38.2˚C for equine embryos. 

 The composition of the culture medium has also a major influence on embryo 

development. Since the development of IVP, many different medium formulations have been 

tried in order to best support embryo development and produce embryos that resemble their 

in vivo counterparts.  

 Historically, surrogate sheep oviducts were commonly applied for embryo culture of 

several species, as such improving embryo quality to near in vivo standards (reviewed by 
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Lazzari et al. 2010). However, in recent years it was abandoned for ethical and sanitary 

reasons. Subsequently, the co-culture of embryos with oviduct, cumulus and granulosa cells 

and BRL and Vero cell lines, as source of paracrine factors became popular (reviewed by 

Gordon 2003 and Wydooghe et al. 2015). Co-culture was later substituted by cell-free culture 

systems. Many different culture media are currently used in different species, such as KSOM, 

SOF, DMEM-F12, CR1 and Whitten, and many different media supplementations are used to 

support embryo development. Traditionally, the most commonly used supplement was fetal 

bovine serum (FBS). However, its use has declined in ruminants because it can induce large 

offspring syndrome (LOS). In horse, FBS is still frequently used since no cases of LOS have 

occurred until now. Human embryo culture has moved to completely defined culture 

conditions already for a long time, and this evolution has promoted the change towards semi-

defined culture conditions based on bovine serum albumin (BSA) or fatty acid-free BSA 

supplementation, in many species.  

 Embryo culture in group has been shown to improve developmental rates and embryo 

quality in many mammalian species, including mice, cattle, pigs, cats and humans (reviewed 

by Wydooghe et al. 2015). It is believed that it is due to the embryotrophic autocrine factors 

that are secreted by the embryos, and can act on the embryo itself and on its neighbors. This 

effect was observed for the first time when an increase in the embryo density of murine and 

bovine embryos led to an increased blastocyst development (Paria and Dey 1990; Odoherty 

et al. 1997). An embryo density of 1 embryo per 2 µL of media was found to be optimal in 

these two species. Unfortunately, besides in laboratory experiments, it is not common to 

reach the optimal number of embryos for culture. Fortunately, the development of the well-

of-the-well (WOW) system allows to culture individual embryos in very reduced amounts of 

culture medium, preventing the dilution of the autocrine factors (Vajta et al. 2000). This 

method has proven to improve embryo development in bovine, mouse, porcine, buffalo and 

human embryos (reviewed by Wydooghe et al. 2015). 

 Cloning by somatic cell nuclear transfer (SCNT) 

 The first time that a mammal was generated by nuclear transfer was in 1984, with the 

birth of three sheep (Willadsen 1986). However, the nuclear donors were early embryonic 

cells. The first time that a mammal was originated by SCNT was in 1996, producing the famous 
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sheep, Dolly. To this end, the nucleus of a mammary gland cell from an adult sheep was 

transferred to an enucleated oocyte (Wilmut et al. 1997). Nowadays, nuclear transfer in 

general, and SCNT in particular, has become routine practice in many laboratories worldwide 

for lab and farm animals. However, it is a complicated technique that requires dedication to 

master it. The protocols used today are still based on the one developed by Willadsen. First, 

mature oocytes need to be enucleated, then, the donor cell must be fused or injected in the 

enucleated oocyte. Finally, the reconstructed embryo needs to be activated, developed in 

vitro, and transferred into a surrogate mother (Galli et al. 2014). Many cell types have been 

used for SCNT with different degrees of success, and there is not a cell type that consistently 

performs better than others (Colleoni et al. 2005).      

1.1.2.4    ART in cattle 

 The use of ART in cattle is mainly motivated by the need of generating large numbers 

of embryos, preferably of predetermined sex and known genotype (with focus on milk or meat 

production). It has contributed to the improvement of the genetics of the animals, maximizing 

the use of highly valuable bulls by AI, and of highly valuable cows by the use of MOET. Bovine 

embryos are also used in research, to improve ART in cattle, but also as a model for human, 

to test the feasibility and safety of new techniques and culture media.  

 Embryo transfer in cattle began to grow in the late seventies following the introduction 

of non-surgical embryo recovery techniques. In the early years, embryos were transferred into 

recipients via flank surgical approach. However, by the mid-eighties, most of the embryos 

were transferred by non-surgical trans-cervical approach (Hasler 2006).  

 The birth of the first in vitro-produced calf was reported in 1981 (Brackett et al. 1982). 

It was born after in vivo maturation followed by in vitro fertilization. It was not until 1990 that 

the first completely in vitro produced calves were born (Fukuda et al. 1990). OPU was 

introduced for cattle in the Netherlands at the end of the eighties, by the adaptation of an 

existing technique in human assisted reproduction (Pieterse et al. 1988). It was first applied 

to cows that did not respond to superovulation treatments, but later it was applied on a wider 

scale, including pregnant cows and heifers, including prepubertal heifers (reviewed by Galli et 

al. 2014). 
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 In the early years, most of the embryos transferred were from in vivo origin. However, 

the use of IVP in cattle has increased more than 10 times in the last 15 years. Considering the 

data provided by IETS, in 2014, 44% of all the embryos transferred worldwide were produced 

in vitro and most of them were originated by OPU combined with IVP (Table 1.1). Still, these 

tendencies largely vary depending on the continent: Asia is an important producer of IVP 

embryos mainly originating from slaughterhouse donors. On the contrary, in Europe, the large 

majority of embryos transferred in 2014 were derived in vivo (Table 1.2). The extension of the 

use of AI in cattle, also largely varies depending on the continent. In 2005, in Europe, 

approximately 60% of the cows were fertilized by AI, while it was only used in 2% of the cows 

in Africa, and 1% in South America (Thibier 2005).  

 The MOET programs in cattle have been used commercially for more than 30 years, 

with an average of 5 embryos per cow per flush (van Wagtendonk-de Leeuw 2006). Using OPU, 

between 5 and 10 oocytes per donor cow (Bos taurus) can be collected per session, a number 

that can be increased by the use of hormonal stimulation (Bols 2005). Without the use of 

hormone stimulation, an average of two OPU sessions per week can be performed.  

 As mentioned above, the use of IVP for commercial purposes has greatly increased in 

the last years. Additionally, IVP is the main technique used for research purposes. 

Approximately 90% of the immature oocytes undergo nuclear maturation and about 80% of 

them will be properly fertilized (Lonergan et al. 2003a). Despite this fact, the rate of blastocyst 

development from an immature oocyte is limited to 30-40%. Therefore, many efforts have 

been made in order to improve the number and quality of the embryos obtained. Historically, 

bovine embryos were co-cultured with cumulus, oviduct or uterine cells, or BRL and Vero cell 

lines (Massip et al. 1996; Gordon 2003). With some exceptions (Goovaerts et al. 2009), the co-

culture was replaced by cell-free culture systems. Several culture media were tested for 

bovine embryo culture throughout the years, with synthetic oviduct fluid (SOF) being the one 

most commonly used in Europe. The supplements added to this medium to support embryo 

development vary depending on the laboratory. Traditionally, the supplementation with FBS 

for the culture of bovine embryos was the most popular, because it is increasing blastocyst 

rates, and because it is producing more consistent results in the laboratory (Gordon 2003). 

However, the increased risk of LOS (Farin et al. 2010) has stimulated the transition to semi-

defined culture media, based on the addition of BSA as protein source, for bovine embryo 
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culture. The combination of BSA with insulin, transferrin and selenium (ITS) is frequently used, 

leading to excellent blastocyst rates (George et al. 2008; Wydooghe et al. 2014) and improving 

embryo quality compared to BSA alone (Wydooghe et al. 2014). The use of BSA-ITS 

supplementation reduced the lipid content of the embryos, while increasing their freezability 

(George et al. 2008). However, FBS is still used in some laboratories for research, but not when 

embryos are being used for embryo transfer. 

 

Table 1.1. Number of bovine embryos produced worldwide in 2014 (Source: IETS, 2015). 

  In vivo (n) 

(Flushing) 

In vitro (n) 

(OPU) 

In vitro (n)  

(slaughtered donor) 

Collections 94,666 129,098 1,462 

Collected oocytes - 1,808,878 39,843 

Transferable embryos  614,464 590,359 2,091 

Transferred 

embryos 

Fresh 201,960 296,666 863 

Frozen 262,622 68,061 35 

 

Table 1.2. Number of bovine embryos produced in Europe in 2014 (Source: AETE, 2015). 

   In vivo (n) 

(Flushing) 

In vitro (n) 

(OPU) 

In vitro (n)  

(slaughtered donor) 

Collections 22,490 9,710 1,335 

Collected oocytes - 83,785 37,414 

Produced embryos 200,939 - - 

Transferable embryos  138,418 15,693 1,369 

Transferred 

embryos 

Fresh 59,546                       11,430                                  

Frozen 63,834                        2,992 
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1.1.2.5    ART in the horse 

 Artificial insemination is routinely used to increase the offspring of genetically valuable 

stallions. Additionally, embryo flushing from highly valuable mares combined with transfer to 

recipient mares is a common procedure to increase offspring from genetically valuable mares 

(Table 1.3 and 1.4). Instead, the use of IVP in the horse is mainly motivated to overcome 

fertility problems of mares and stallions of high economic value. Research in horse is limited 

by the low amount of oocytes that can be obtained from slaughtered mares. 

 In 1990, the birth of a foal produced after in vitro fertilization of an in vivo matured 

oocyte was reported (Palmer et al. 1991). In that case the sperm was treated with Ionophore 

A23187. Despite the fact that one more foal was born using this technique (Bezard et al. 1992), 

and that multiple attempts were tried to produce foals using different sperm treatments, no 

protocol producing reproducible results for equine in vitro fertilization is established yet (Choi 

et al. 1994; Dell'Aquila et al. 1997a; Dell'Aquila et al. 1997b; Alm et al. 2001; Hinrichs et al. 

2002). In addition, OPU combined with ICSI is gaining more acceptance in horse reproduction, 

with a growing number of groups performing it worldwide. The first pregnancy derived from 

an in vitro matured oocyte fertilized by ICSI was reported in 1996 (Squires et al. 1996). Since 

then, the results obtained with ICSI were inconsistent due to a heterogeneous and thick zona 

difficult to penetrate by conventional pipettes, especially of in vitro matured oocytes. The 

introduction of the piezo drill eliminated the inconsistency of the technique (Galli et al. 2014). 

To date, there are many laboratories that have reported the birth of foals from in vivo and in 

vitro matured equine oocytes (reviewed by Galli et al. 2014). Many different culture conditions 

have been tested for ICSI fertilized oocytes. Several defined media have been tested, including 

G1.2 (Choi et al. 2002), Dulbecco´s Modified Eagle Medium/Nutrient mixture F-12 

(DMEM/F12) and CZB (Choi et al. 2004), and modified synthetic oviduct fluid (Ritchie 2006). 

Furthermore, co-culture with Vero cells (Dell'Aquila et al. 1997b), oviduct epithelial cells  

(Battut et al. 1991), cumulus cells (Li et al. 2001), granulosa cells (Rosati et al. 2002), or culture 

in conditioned media (Choi et al. 2001) were also used. However, in most of these systems, 

only between 4 and 16% of blastocyst rates were achieved. Interestingly, when the early 

cleaved ICSI produced embryos were transferred to a mare´s oviduct or temporarily to the 

oviduct of a surrogate sheep, the blastocyst development increased to 36% (reviewed by Galli 

et al. 2014). Additionally, when the ICSI produced zygotes were cultured in a medium based 
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on DMEM/F12 combined with a mixed gas atmosphere, between 27 and 38% blastocysts rate 

was reached. Still, the cell number of the in vitro produced blastocysts was lower than that of 

their in vivo counterparts (reviewed by Galli et al. 2014). 

 The birth of the first mules cloned by somatic cell nuclear transfer (SCNT) was reported 

in 2003 (Woods et al. 2003). The same year, a foal was born after transfer of an adult somatic 

cell into an in vitro-matured oocyte (Galli et al. 2003). Since then, the use of this technique for 

cloning horses of high sporting value have become more popular. However, there are no 

scientific reports on the results of commercial laboratories.   

 

Table 1.3. Number of equine embryos produced and transferred in Europe in 2014. In vivo data 

from France, Portugal, Poland and Switzerland, and in vitro data from Italy (Source: AETE, 

2015). 

  In vivo (n) 

(Flushing) 

In vitro (n) 

(OPU-ICSI) 

Collections 654 195 

Collected oocytes - 2,050 

Produced embryos 380 141 

Transferred 

embryos  

Fresh 376 8 

Frozen 2 75 

 

Table 1.4. Number of equine embryos produced and transferred in worldwide in 2014. In vivo 

data from Argentina, Canada, France, Mexico, Poland, Portugal, South Africa, Switzerland and 

United States. In vitro data from Italy (Source: IETS, 2015). 

  In vivo (n) 

(Flushing) 

In vitro (n) 

(OPU-ICSI) 

Collections 2,222 195 

Produced embryos 1,575 141 

Transferred 

embryos  

Fresh 1,559 8 

Frozen 8 75 
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1.2 EVALUATION OF EMBRYO QUALITY 

 Embryo quality determination is essential to produce healthy offspring. Many 

techniques can be used to evaluate embryo quality, and each of them provides different 

valuable information. These techniques can be invasive or non-invasive. Invasive techniques 

mostly imply the death of the embryo, and the quality assessments made can only be 

extrapolated to other embryos produced under the same conditions. These techniques are 

mostly used in research, to test the safety and performance of ARTs, especially of new media 

formulations. Non-invasive methods (morphological evaluation) are always used in vitro and 

prior to embryo transfer. Traditionally, embryo quality determination was performed 

exclusively by morphological evaluation combined with determination of cell number and 

apoptotic cell ratio. Despite the valuable information provided by these traditional methods, 

they are blind to alterations in the transcriptome or epigenome of the embryos. As such, 

embryos evaluated as being of good quality were transferred and resulted in offspring with 

LOS. Therefore, the evaluation of the effects of ARTs on the transcriptome and the epigenome 

of the embryos is highly recommended before using the tested methods to produce embryos 

for transfer. However, embryo transfer and evaluation of the offspring´s health are the 

ultimate confirmation of the safety of new IVP procedures/media.  

1.2.1 Morphological evaluation 

 This is a non-invasive method of embryo quality evaluation that allows subsequent 

embryo transfer. It is performed by using a stereomicroscope. The parameters to evaluate 

embryo quality by visual evaluation are timing of the development, presence of extruded 

blastomeres, color and cytoplasmic granulation, and intactness of the ZP. The Manual of the 

International Embryo Transfer Society contains a guide for bovine embryo quality evaluation 

(Stringfellow and Givens 2010). Embryos are divided in codes: 1) code 1, embryos considered 

excellent or good, with at least 85% of the cellular material intact, 2) code 2 rated as fair, with 

at least 50% of the cellular material intact, 3) code 3, rated as poor, with at least 25% of the 

cellular material intact, and 4) code 4 for the dead or degenerated embryos (Figure 1.5). Only 

embryos assigned to codes 1 and 2 are selected to be transferred. 
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Figure 1.5. In vivo bovine embryos obtained by uterine flushing 6 days after insemination. 

Quality evaluation according to the IETS manual, (a) code 4 embryo (degenerated) arrested in 

16 cells; (b) code 2 embryo (fair) presenting some extruded blastomeres; (c) and (d) code 1 

embryos (excellent).  

 

 A big advantage of IVP is that timing of development can be followed closely during 

the complete embryo culture period. However, the use of group culture can obstruct this task, 

because of the difficulty of identifying single embryos in a group. This problem has been 

overcome by the development of the WOW system (Vajta et al. 2008), in which embryos are 

cultured in group but each of them in a small well, which allows individual follow up. This 

system can be combined with the time-lapse embryo monitoring system (Primo vision), which 

takes images of the embryo at regular intervals within the incubator, avoiding their 

disturbance (Catteeuw et al. 2015).  

1.2.2 Apoptotic cell rate and cell number 

 The evaluation of apoptosis ratio and embryo cell number belongs to the invasive 

methods that lead to the destruction of the embryo.  

 Cell number assessment is normally performed in blastocysts, where visual evaluation 

is not enough to determine the cell number. It is assumed that embryos of good quality will 

show a cell number similar to that of in vivo derived embryos of the same developmental 

stage. To count the cell number, DNA stains are regularly used to visualize the nuclei of the 

cells that then can be counted. Many DNA stains exist and can be used to this end. However, 

the traditionally most commonly used DNA dyes for cell number assessment are Hoechst 

(Figure 1.6) and DAPI, which stain the nuclei blue. Both of these dyes are cell-membrane 

permeable, so the embryo does not need to be permeabilized prior to incubation with the 
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DNA stains, simplifying the procedure. Another commonly used DNA dye is propidium Iodide 

(PI), which stains the nuclei red (Figure 1.6). This dye is cell-membrane impermeable, 

therefore the embryo needs to be permeabilized for cell counting. However, due to this 

condition, it can be used in combination with Hoechst or DAPI for determination of membrane 

integrity and for differentiation between ICM and TE. For the determination of the integrity 

of the membranes, the embryo is not previously permeabilized (Figure 1.6). Therefore, the 

cells that will be colored in pink are the ones with membrane damage, since PI was able to 

enter. On the other hand, blue cells be membrane intact.  

 

 

Figure 1.6. Double staining with Hoechst and propidium iodide (PI) for membrane integrity 

determination. The cells colored pink have the plasma membrane damaged, because PI and 

Hoechst were able to enter them, the cells colored blue have the membrane intact and only 

Hoechst was able to enter them.  

 

 For the differentiation between ICM and TE, a first short permeabilization step is 

necessary prior to incubation with both DNA dyes. With this short permeabilization step, the 

external cells (TE) will be permeabilized, so PI will be able to enter them, while the internal 

cells (ICM) will be not permeabilized, thus Hoechst will be the only dye to penetrate. In this 

way, the cells from the TE will be pink, while the cells from the ICM will be blue (George et al. 

2008). A more reliable technique to differentiate between ICM and TE is based on the 

immunostaining of CDX2, a transcription factor that is only expressed in the TE cells, combined 



Chapter 1 

23 
 

with a nuclear dye (Figure 1.7a,b) (Wydooghe et al. 2011). The assessment of the ICM/TE ratio 

constitutes also an important embryo quality parameter, by comparing to embryos derived in 

vivo from the same stage. 

 Apoptosis is a natural process that takes place in all cell types. Its function during 

embryo development is to eliminate cells that are abnormal, misplaced, not functional or 

potentially dangerous. However, a high increase in the apoptotic cell ratio can lead to embryo 

death (Levy et al. 2001; Fabian et al. 2005). Still, no threshold of apoptotic rate leading to 

embryo death has been established yet.  

 The most commonly used methods to assess apoptotic ratios are based on 

immunostaining. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay 

(Fabian et al. 2005) is based on the presence of nicks in the DNA that can be identified by the 

terminal deoxynucleotidyl transferase. This enzyme catalyzes the addition of dUTPs that are 

secondary labelled with a marker. An alternative is the use of the active caspase-3 

immunostaining (Wydooghe et al. 2011) (Figure 1.7c), which is an executioner caspase that 

plays a central role in all apoptotic pathways (Earnshaw et al. 1999).   

 

 

Figure 1.7. Simultaneous assessment of total cell number, TE cells and apoptotic cells in a 

hatching bovine blastocyst produced in vitro. (a) total cell number, by Hoechst (b) TE cells by 

immunostaining of CDX-2 indirectly labelled with Texas red (c) apoptotic cells by 

immunostaining of active caspase-3 indirectly labelled with FITC (d) overlay of the three 

images. By the combination of (a) and (b) the ratio between ICM and TE cells can be 

established. Embryo kindly provided by drs Lynn Vandenberghe-RBU Ugent. 
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1.2.3 Evaluation of gene expression patterns 

 Changes in mRNA transcription are amongst the first cell responses to developmental 

or environmental stimuli. Therefore, the analysis of the mRNA expression in oocytes and 

embryos allows to study their response to different ART. Even though the preimplantation 

embryo is known to be very plastic, the adaptation to certain challenging environmental 

conditions can result in aberrant embryonic development, eventually persisting in the adult 

life (Duranthon et al. 2008). Therefore, the study of changes of the mRNA expression pattern 

of embryos exposed to different conditions compared to in vivo derived embryos, gives an 

indication of how challenging these tested conditions are, and can help to improve the safety 

and performance of ART.  

 The sensitivity of transcriptomic techniques has greatly improved during the last years, 

and nowadays some of these techniques can even be used in single cells, and therefore also 

oocytes and embryos (Chitwood et al. 2013; Jiang et al. 2014). In the next pages, the most 

commonly used techniques in oocytes and preimplantation embryos will be described briefly.  

 Reverse transcription quantitative polymerase chain reaction (RT-qPCR) 

 RT-qPCR is a modification of the conventional PCR technique developed by Mullis in 

1983 that detects the targets during the exponential phase of amplification (Bustin 2000). It is 

based on the use of fluorescent reporters such as the SYBR Green dye or TaqMan probes. 

During the course of the reaction, fluorescence is generated, and it can be reliably quantified 

in the exponential phase of the amplification reaction (Bustin 2000).    

 This technique has been successfully applied to analyze gene expression in single 

oocytes, preimplantation embryos and even single blastomeres (Hartshorn et al. 2003; 

Lindeberg et al. 2004). 

 The principal advantage of RT-qPCR is that it has a high sensitivity, thus it can be used 

in low amounts of RNA input, which is the situation in oocytes and embryos. It also has a high 

reproducibility, and accurate quantitative comparisons can be performed. On the other hand, 

its limitations are mainly caused by the preceding RNA isolation method, by differences in 

reverse transcription (RT) and PCR efficiencies, and by the difficulty of proper normalization 
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and interpretation of the data. To overcome these issues, the Minimum Information for 

Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines were formulated 

(Bustin et al. 2009). In these guidelines, SOP design and data normalization are proposed to 

promote consistency between laboratories, helping to ensure the integrity of the scientific 

literature, and to increase experimental transparency. Another disadvantage of RT-qPCR is the 

high cost and labor intensity of the evaluation of multiple genes, which is partially overcome 

by digital PCR. Therefore, it is mainly used for the study of specific genes of interest, and, due 

to its accurate quantification, for validating of the results obtained by other techniques, such 

as microarray or RNA-sequencing.    

 DNA Microarray 

 Microarray hybridization is a technique that allows the analysis of the expression of a 

large number of genes simultaneously in a single action. It is based on the hybridization of a 

mRNA molecule to the DNA template adsorbed to a solid support. This DNA template can be 

oligonucleotide probes or cDNA clones, and thousands of them can be included in one array.  

 For the analysis of differential gene expression, the test samples are chemically tagged 

with different fluorochromes (usually Cy3 and Cy5) or chemical conjugates and then 

hybridized to the array (Figure 1.8). The intensity of the signal of each spot is due to retention 

of complementary labelled nucleic acid. The hybridization signals are quantitatively recorded 

and the amount of complementary nucleic acid at each point is calculated with respect to local 

background. This technique can be used to determine the sequence or to detect variations in 

a gene sequence, also to evaluate gene expression of one or two different samples 

simultaneously, and for gene mapping.   

 The disadvantages of the microarray are possible cross-hybridization artifacts, in which 

the cDNA of a gene will bind to the probe of another closely related gene, poor quantification 

of lowly and highly expressed genes, and that only the genes contained in the chip will be 

analyzed, leaving out possible important genes. Importantly, a reference genome and 

transcriptome needs to be available before the microarray itself can be designed. Another 

main issue of microarray data analysis is how to normalize the dataset in order to remove 

systematic variation (Quackenbush 2002). Certain standards described as minimum 
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information required for microarray experiments are essential to guarantee consistent and 

reproducible databases (MIAME) (Brazma et al. 2001).  

 This technique has been successfully applied to study gene expression patterns in 

embryos from different species (Sirard et al. 2003; Hamatani et al. 2006; Bermejo-Alvarez et 

al. 2010b; Orozco-Lucero et al. 2014; Dalto et al. 2015; Dufort et al. 2015). 

 

 

Figure 1.8. Schematic representation of the use of a DNA microarray to detect differential gene 

expression between two samples. Sample 1 is labelled in green and sample 2 in red during 

reverse transcription. Each dot constitutes a gene of interest.  (a) In both samples this gene is 

highly expressed, (b) this gene is mostly expressed in sample 1, (c) this gene is mostly expressed 

in sample 2, (d) this gene is equally low expressed in both samples, and (e) this gene is not 

expressed in either of the samples.  

Adapted from: http://www.ncbi.nlm.nih.gov/prove/docs/techmicroarray.   
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 RNA sequencing (RNA-seq) 

 RNA-seq uses next-generation sequencing (NGS), also known as high-throughput 

sequencing, to analyze the whole transcriptome of a given sample in one run. NGS includes 

several sequencing technologies, such as Illumina sequencing, Roche 454 sequencing, Ion 

torrent (proton/PMG) sequencing and SOLiD sequencing. For this process, RNA is extracted 

and either directly fragmented and then converted to cDNA or first converted to cDNA and 

then fragmented. RNA-seq focused on mRNA, small RNA, noncoding RNA or micro RNA can 

be achieved by including additional isolation or enrichment steps before fragmentation or 

cDNA synthesis. The length of the fragments depends on the particular sequencing machinery 

used. Subsequently, adaptors are ligated to one or both ends of this cDNA fragments, 

constituting the cDNA library. Each molecule is then sequenced in a high-throughput manner 

to obtain short sequences that can be originated from one end (single-end sequencing) or 

both ends (pair-end sequencing). The resulting reads are then aligned to a reference genome 

(Figure 1.9), to produce a genome-scale transcription map that consists of both the 

transcriptional structure and/or level of expression for each gene.  

 The main advantages of this technique are that it allows for identification and 

quantification of common and rare transcripts, it can be used in the study of SNPs and 

alternative splice variants, as well as detection of isoforms, novel transcripts and gene fusions. 

It can also be used in single cells. The drawbacks are the bias introduced by RNA/cDNA 

fragmentation for originating the libraries, the issues of handling non-unique and duplicated 

reads, and the bioinformatics challenges that encounters to handle and correctly analyze such 

a large amount of information (Wang et al. 2009).   

 In recent years, RNA-seq has been successfully applied to the study of the changes in 

gene expression during embryo development (Huang et al. 2010; Graf et al. 2014) and to study 

the effect of ART on gene expression (Chitwood et al. 2013) 
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Figure 1.9. Schematic representation of a typical RNA-seq experiment. mRNA are converted 

into a library of cDNA fragments through either RNA or DNA fragmentation. Subsequently, 

adaptors (blue and red) are added to each cDNA fragment and a short sequence is obtained 

from each cDNA using high-throughput sequencing technology. The resulting sequence reads 

are aligned to the reference genome and used to generate a base-resolution expression profile 

for each gene. From Wang et al. 2009. 
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1.2.4 Evaluation of epigenetic marks 

 Epigenetic marks are the changes in chromatin structure that occur independently of 

changes in the underlying DNA base sequence. They are the ultimate responsible of gene 

expression regulation and cell differentiation, since all cells within an individual contain the 

same DNA sequence. The pattern of the different epigenetic marks, or epigenome, changes 

to adapt to modifications in the environment. These changes in the epigenome can be 

transitory or can become permanent, and may lead to alterations in the individual, such as 

particular syndromes or cancer. Preimplantation embryo development is a critical stage for 

the epigenome, since, as it will be explained later, a global epigenetic reprogramming takes 

place. Therefore, changes in the epigenome induced by ARTs during this critical period can 

have consequences in the offspring because epigenetic marks can be inherited mitotically and 

meiotically. In 1953, the theory of “non-genetic transmission” was developed by Waddington 

based on the observation of genetic assimilation of phenotypic characteristics in the offspring 

of Drosophila exposed to heat. However, by that time, there was no insight in the underlying 

molecular mechanisms. This phenomenon, when phenotypic alterations are caused by 

transfer of chromosome/chromatin modifications other than DNA base sequence 

modifications through the gametes, is called transgenerational epigenetic inheritance (van 

Montfoort et al. 2012).  

 There are many different epigenetic marks, cytosine modifications, post translational 

histone tail modifications and RNA-mediated chromatin modifications, and it is shown that an 

interplay exists between them (van Montfoort et al. 2012) (Figure 1.10). However, the most 

studied is DNA methylation, which is involved in genomic imprinting, X chromosome 

inactivation, genome stability, silencing of retrotransposons and inactivation of genes in 

cancer (Dean et al. 2001). 

 Before describing the techniques that can be used to evaluate the effects of ARTs on 

the epigenome of the embryo, and therefore the quality of the embryos produced under these 

conditions, some important concepts will be briefly introduced.   

 



 

 
 

 

Figure 1.10. Schematic representation of the different epigenetic modifications and their localization. The histone tails can be post translationally 

methylated, acetylated, phosphorylated, ubiquitinated, crotonylated and sumoylated. On the DNA itself, the cytosines are frequently methylated 

on C5, but also hydroxymethylated, formylated and carboxylated in lesser extent. Finally, non-codding RNAs pay an epigenetic role. The 

combination of the different epigenetic marks determines the conformation of the chromatin, when it is condensed the genes are repressed, and 

when it is open the genes are active.  
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1.2.4.1    The epigenetic players 

 DNA methylation (5mC) represents the best studied epigenetic modification. It is a 

covalent modification consisting in the transfer of a methyl group to cytosine residues of 

mainly CpG dinucleotides (Shi and Wu 2009). The position of this epigenetic modification in 

the gene determines its expression or silencing. Methylation at promotor regions or CpG 

island shores (regions of lower CpG density that at ˜2kb of CpG islands) is associated with 

transcriptional inactivation. On the contrary, methylation in the gene body is linked with 

transcriptional activity, and it is intended to prevent aberrant transcriptional initiation inside 

the gene and therefore to help in avoiding the production of truncated mRNAs (reviewed by 

Portela and Esteller 2010 and Jurkowska et al. 2011) (Figure 1.11). Highly methylated CpG sites 

are also found in repetitive elements, where they are needed to protect chromosome integrity 

by preventing reactivations of endoparasitic sequences (reviewed by Portela and Esteller 

2010). DNA methyltransferase enzymes (Dnmts) are responsible for the establishment and 

maintenance of DNA methylation. Dnmts transfer methyl groups from s-adenosyl-L-

methionine onto the C5 positions of the cytosine primarily of CG dinucleotides, and only 

occasionally at non-CG sites (Young and Beaujean 2004; Jurkowska et al. 2011). The Dnmt3 

family (Dnmt3A and Dnmt3B), the so called de novo methyl transferases, is responsible for 

the establishment of the DNA methylation. On the other hand, Dnmt1 is responsible for 

maintenance of DNA methylation, by the methylation of hemi-methylated DNA resulting from 

DNA replication (Jurkowska et al. 2011). However, an active role of Dnmt1 in de novo 

methylation has also been documented (Athanasiadou et al. 2010). Finally, Dnmt3L lacks 

catalytic activity but it is essential for the establishment of genomic imprints in the oocytes, 

and for the silencing of dispersed repeated sequences in the male germ cells (Jurkowska et al. 

2011).   

 In 2009 another modified form of cytosine was discovered: 5-hydroxymethylcytosine 

(5hmC). At the same time, the family of enzymes responsible for oxidation of 5mC into 5hmC, 

the ten-eleven translocation family (TETs) was discovered (Kriaucionis and Heintz 2009; 

Tahiliani et al. 2009). Three members compose the TET family: TET1, TET2 and TET3. All three 

TETs can further oxidize 5hmC into 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) 

(Tahiliani et al. 2009). Initially, 5hmC, 5fC and 5caC, were believed to be mere intermediaries 

for DNA demethylation. However, now evidence is available that they play a specific role in 
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the epigenetic landscape, being involved in chromatin and transcription regulation (Salvaing 

et al. 2012; Yu et al. 2012; Iurlaro et al. 2013; Li and O'Neill 2013; Delatte et al. 2014).    

 Besides cytosine modifications, there are many other less studied epigenetic marks. 

Histone modifications constitute a miscellaneous group of epigenetic marks involved in gene 

expression regulation, DNA repair, DNA replication, alternative splicing and chromosome 

condensation (reviewed by Portela and Esteller 2010). The N- and C-terminal histone tails 

protrude from the nucleosome core and can interact with adjacent nucleosomes and linker 

DNA. All histones can be post-translationally modified, even at different sites simultaneously. 

The most common are covalent modifications of residues of histone tails including 

methylation, acetylation, phosphorylation, ubiquitination, crotonylation and sumoylation. 

These modifications can regulate chromatin structure directly, and frequently act as binding 

sites for the recruitment of other non-histone proteins to chromatin. Some histone 

modifications are associated with an active chromatin state and others with a repressive state 

(Figure 1.11). However, a single histone mark does not determine the outcome alone, it is the 

combination of all marks in a nucleosome or region that specifies the outcome. Active genes 

typically carry high levels of lysine acetylation on the H3 and H4 tails, tri-methylation of H3 

lysine 4 (H3K4me3), tri-methylation of H3 lysine 79 (H3K79me3), ubiquitination of H2B on 

lysine 120 (H2BK120ub1) and tri-methylation of H3 lysine 36 (H3K36me3). Marks associated 

with repressed genes include tri-methylation of H3 lysine 9 (H3K9me3), tri-methylation of 

lysine 27 (H3K27me3) and ubiquitination of H2A on lysine 119 (H2AK119ub1), (reviewed by 

Meehan et al. 2005; Quina et al. 2006; Zhang et al. 2015).  

 Histone modifications are recognized as an epigenetic code, since chromatin-mediated 

gene expression states can be heritable (Meehan et al. 2005). Interplay between DNA 

methylation and histone modifications exist whereby the acquisition of one may be 

dependent, or mutually exclusive with the other. In recent years, long non-coding RNAs 

(lncRNAs) and micro RNAs (miRNAs) have been proposed to constitute additional layers of 

epigenetic regulation. Many lncRNAs bind to chromatin-modifying proteins, and recruit them 

to specific sites in the genome, thereby impacting gene expression (Mercer and Mattick 2013; 

Rivera and Ross 2013). Several miRNAs, such as miR-29 and miR-26 families, can repress 

epigenetic regulatory enzymes (all TETs and TDG) (reviewed by Delatte et al. 2014).  

Additionally, sperm transfer RNA-derived small RNAs (tsRNAs) from mice feed with a high-fat-
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diet have been shown to induce metabolic disorders in the offspring (Chen et al. 2016). 

Therefore, sperm tsRNAs constitute a paternal epigenetic factor that can mediate 

intergenerational inheritance of diet-induced metabolic diseases.  

 

 

Figure 1.11. The different epigenetic modifications and their position in the gene determine 

the transcriptional activity. Adapted from Zhang et al. 2015. 
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1.2.4.2    Genomic imprinting 

 Genomic imprinting entails in parent-of-origin specific gene expression of a number of 

genomic loci. In this way, imprinted genes are transcribed from either the maternal or paternal 

allele while the other one is repressed.  

 Imprinted genes are usually arranged in clusters, with each cluster containing a local 

imprinting control region (ICR). Many factors are involved in the maintenance of this allele-

specific expression, including microRNAs and insulator proteins. However, all these factors 

depend on differential DNA methylation at ICRs. This sex-specific DNA methylation of ICRs is 

established in the germ line, conserved throughout development, and generally maintained 

in adult tissues (reviewed by Messerschmidt 2012). During the epigenetic reprogramming that 

takes place during embryo development, H3K9me2 recruits the protein STELLA to the 

maternal genome and a subset of paternal ICRs, preventing TET-mediated active 

demethylation at these loci. Additionally, a heterochromatin-inducing complex, of which 

TRIM28 is the central scaffolding component, confer reprogramming resistance to imprinted 

regions. The DNA binding specificity of the complex is provided by the binding of TRIM28 with 

ZFP57. Finally, Dnmt1 together with TRIM28 and ZFP57 are involved in the further 

maintenance of the methylation at the imprinted regions (reviewed by Messerschmidt 2012).  

 Importantly, in the germ line of the next generation, these imprints will undergo 

erasure and subsequent re-establishment based on the sex of the individual. This de novo 

establishment of all-paternal or all-maternal ICR methylation patterns at the germ line is 

mediated by Dnmt3A. This enzyme depends on the enzymatic inactive regulatory factor 

Dnmt3L, which enables binding and methylation of the DNA (Bourc'his and Proudhon 2008). 

The establishment of the sex-specific DNA methylation at ICR occurs during late fetal 

development in males, and postnatally in growing oocytes in females (Kaneda et al. 2004; 

Lucifero et al. 2004). 

1.2.4.3    Epigenetic reprogramming 

 The epigenetic reprogramming consists in the removal of the existing epigenetic marks 

in the nucleus, and the subsequent establishment of a different set of marks. Two major waves 

of epigenetic reprogramming of the genome are described to occur during normal mammalian 
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development; one during germ line differentiation and the other one during preimplantation 

development (Reik et al. 2001) (Figure 1.12). Epigenetic remodeling in these crucial stages 

includes cytosine modifications, histone modifications as well as other epigenetic marks 

(Meehan et al. 2005).  

 

 

Figure 1.12. Graphic representation of the two epigenetic reprogramming waves. In the first 

wave, primordial germ cells (PGCs) undergo a global erase of epigenetic marks, including 

methylation of imprinted genes during migration towards the genital ridge. The second wave 

of epigenetic reprogramming takes place during preimplantation development. Here, the 

paternal genome undergoes an active DNA demethylation before the first cleavage division, 

while the maternal genome undergoes a passive DNA demethylation, with the cleavages. In 

the second wave imprinted genes escape epigenetic reprogramming. GV, germinal vesicle; MII 

oocyte arrested in metaphase II; ICM, inner cell mas, TE trophectoderm.  From Smallwood and 

Kelsey 2012.  

 

 Germ line 

 The primordial germ cells (PGCs) are the precursors of the female and male gametes 

and arise from the epiblast during gastrulation. At that stage, PGCs show the same epigenetic 

marks as the rest of the cells from the epiblast, including significant levels of DNA methylation 

(Seisenberger et al. 2013). However, during their migration towards the genital ridge, PGCs 

will undergo a genome wide epigenetic reprogramming that will erase most of the DNA 
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methylation marks (Morgan et al. 2005) (Figure 1.12). This is the case for the imprinted genes, 

which lose their DNA methylation marks, for later on gain all-maternal or all-paternal sex-

specific marks (Seisenberger et al. 2013). This loss of DNA demethylation is also accompanied 

by a global erasure of histone modifications (Hajkova et al. 2008). Still, the DNA methylation 

marks of the most active retrotransposons will escape reprogramming. Interestingly, the 

acquisition of new epigenetic marks happens at different times in male and female 

(Messerschmidt 2012). The resulting DNA patterns are also different between male and 

female germ cells, with the male germ cells being heavily methylated with an 85% of global 

CG methylation, while oocytes are moderately methylated, with levels around 30% 

(Seisenberger et al. 2013). 

 Early development 

 The second wave of epigenetic reprogramming takes place during preimplantation 

development, between fertilization and formation of the blastocyst (Dean et al. 2001). 

 Soon after the formation of the pronuclei and the replacement of protamines by 

histones, the paternal genome undergoes an active DNA demethylation process. In mammals, 

it is believed that this active DNA demethylation of the paternal genome is important for 

reprogramming of subsequent embryonic development (Mayer et al. 2000; Oswald et al. 

2000; Dean et al. 2001). This active DNA demethylation is initiated by TET3, through the 

oxidation of 5mC into 5hmC (Iqbal et al. 2011). After its initiation, DNA demethylation can be 

completed through several routes: 1) in a replication-dependent way, with the 5hmC being 

diluted with the subsequent cell cycles, 2) by DNA repair enzymes (the base excision repair 

(BER) machinery), which enzymatically remove the modified base and replace it with a 

cytosine, 3) by the direct removal of 5fC and 5caC by the thymine-DNA glycosylase (TDG) 

followed by DNA repair, 4) by deamination of 5hmC to 5-hydroxymethyluridine (5hmU) by 

AIS/APOBEC enzymes followed by BER, and 5) by the dehydroxymethylase activity of Dnmt3A 

and Dnmt3B (reviewed by Delatte et al. 2014) (Figure 1.13).     

 On the contrary, the maternal genome is protected from this active demethylation by 

STELLA. This protein maintains normal DNA methylation levels in the maternal genome and 

imprinted genes by binding to H3K9me2 and repelling TET3 (Szabo and Pfeifer 2012). The loss 

of methylation of the maternal genome is associated with cell division (replication-



Chapter 1 

37 
 

dependent). In this way, the maternal genome will lose half of its methyl groups with each cell 

division, in a process called passive demethylation (Figure 1.12). This passive loss of 

methylation takes place between the 2-cell and morula stages, with somatic cell levels being 

re-established at or after the blastocyst stage when differential lineages are first formed 

(Mayer et al. 2000; Bourc'his et al. 2001; Dean et al. 2001). This methylation re-establishment 

is mediated by de novo methyltransferases (Dnmt3). 

 

 

Figure 1.13. Different cytosine modifications and their interactions. Cytosine (C) is methylated 

by the Dnmt enzymes at the 5´carbon position, generating 5-methylcytosine (5mC). TET 

enzymes can oxidize 5mC into 5-hydroxymethylcytosine (5hmC) and further to 5-

formylcytosine (5fC) and 5-carboxylcytosine (5caC). 5hmC can also be deaminated to 5-

hydroxymethyluracil (5hmU) by AIS/APOBEC enzymes, or directly be dehydroxymethylated by 

the dehydroxymethylase activity of Dnmt3A and Dnmt3B. The base excision repair machinery 

(BER) can convert 5mC, 5hmC, 5hmU, 5fC and 5caC into C. TDG can remove 5fC and 5caC, 

which are replaced by C by DNA repair. And finally, all cytosine modifications can be passively 

diluted through DNA replication. Adapted from Seisenberger et al. 2013.  
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 This pattern of epigenetic reprogramming was established in mouse (Oswald et al. 

2000; Santos et al. 2002), and assumed to be conserved in all mammalian species (Dean et al. 

2001). This assumption was supported by the results obtained in rat (Dean et al. 2001; Zaitseva 

et al. 2007) and human (Xu et al. 2005), which also showed this loss of methylation. However, 

the conservation of this active loss of methylation of the paternal genome was questioned 

when several other species, such as sheep (Beaujean et al. 2004a), goat (Hou et al. 2005), pig 

(Jeong et al. 2007), and rabbit (Reis Silva et al. 2011), failed to show it. Some other species, 

such as cow (Beaujean et al. 2004a), showed an intermediate pattern, with partial 

demethylation of the paternal pronucleus in the zygote. These findings suggest that active 

demethylation of the paternal genome is not an obligate requirement for normal early 

mammalian development. Controversially, in 2012, an article showing persistence of the DNA 

methylation in the paternal genome of the mouse zygote was released (Li and O'Neill 2012). 

By the use of a stronger epitope retrieval process, they were able to detect DNA methylation 

in the paternal pronuclei of mouse zygotes, which showed no differences in intensity with the 

maternal pronuclei.  

 Interestingly, an interspecific study of paternal DNA active demethylation showed that 

sheep sperm can be demethylated in mouse oocytes, and mouse sperm can also be 

demethylated to a limited extent in sheep oocytes (Beaujean et al. 2004c). Thus, the degree 

of demethylation of the male pronucleus is primarily determined by the oocyte environment. 

However, the fact that mouse sperm can be at least partially demethylated in all environments 

suggests that an undefined difference in the properties of the sperm also contributes to the 

demethylation process.  

 Furthermore, differences between species are also observed concerning subsequent 

passive demethylation. Sheep and rabbit embryos fail to show passive demethylation 

throughout preimplantation development (Beaujean et al. 2004a).  In these two species, high 

levels of methylation of the two parental genomes are present throughout preimplantation 

development and suggest that genome-wide demethylation is not necessary for normal 

development. The timing of re-methylation also differs among species. It is reported to occur 

at the 8- to 16-cell stage in bovine embryos (Dean et al. 2001), whereas in mouse, it occurs 

only at the blastocyst stage (Dobbs et al. 2013). Finally, higher levels of methylation are 

reported either in ICM or TE depending on the species. In mouse and sheep embryos, higher 
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levels of DNA methylation are found in the ICM compared to TE (Santos et al. 2002; Beaujean 

et al. 2004a). In contrast, it has been observed that in cattle, human and rabbit blastocyst the 

ICM is less methylated than the TE (Dean et al. 2001; Fulka et al. 2004; Dobbs et al. 2013). The 

biological significance of these interspecies differences is not known yet. 

 Importantly, some DNA regions, including imprinted genes and some 

retrotransposons, escape this second wave of reprogramming (van Montfoort et al. 2012). 

1.2.4.4    Techniques for the evaluation of epigenetic marks 

 There are many techniques developed in recent years for the study of epigenetics. 

These techniques can be divided in three groups: 1) affinity based strategies, such as 

immunofluorescent staining, techniques based on immunoprecipitation with 5mC antibodies 

(methylated DNA immunoprecipitation, MeDIP) and techniques based on proteins that bind 

to methylated CpG sequences (e.g. methylated-CpG island recovery assay, MIRA), 2) bisulfite-

based strategies, such as bisulfite sequencing, reduced representation bisulfite sequencing, 

reduced bisulfite sequencing (redBS-Seq), and oxidative bisulfite sequencing, and 3) 

restriction enzymes-based strategies, such as HpaII tiny fragment enrichment by ligation-

mediated PCR (HELP) and methylation sensitive cut counting (MSCC). With the exception of 

the immunofluorescent staining, the techniques are focused on the study of cytosine 

modifications, especially 5-methylcytosine. The most commonly used techniques in embryos 

and gametes are described below. A detailed description of all the available methods for the 

study of DNA methylation and hydroxymethylation is reviewed by Olkhov-Mitsel and Bapat 

2012.  

 Immunofluorescent staining 

 Immunofluorescent staining is the most frequently used technique for the study of 

epigenetics in embryos. It has several advantages: 1) it can distinguish between the various 

cytosine modifications by the use of specific antibodies, 2) it can detect 5mC and the other 

cytosine modifications throughout the whole genome, and it is not restricted to the CGI (CpG 

islands), and 3) the epigenetic status of single embryos can be studied. Moreover, in zygotes, 

the dynamics of the epigenetics status of the male and the female pronuclei can be followed 

independently. This is especially relevant for the study of the epigenetic reprogramming 
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processes. The main disadvantage of the immunofluorescent staining is that it does not 

provide sequence-specific data, and it is not readily quantifiable (Salvaing et al. 2014).   

 To perform the immunofluorescent staining, the embryo has to be incubated with a 

specific antibody against the epigenetic modification of interest, which is subsequently 

indirectly labelled. Antibodies targeting many epigenetic modifications have been developed 

in the last years. Antibodies against 5-methylcytosine (5mC) are the most commonly used, and 

have been successfully applied in many species, such as rabbit (Reis Silva et al. 2011), cattle 

(Rahman et al. 2014), human (Efimova et al. 2015), mouse (Li and O'Neill 2012; Salvaing et al. 

2012), sheep (Beaujean et al. 2004a), pig (Jeong et al. 2007), goat (Hou et al. 2005) and rat 

(Yoshizawa et al. 2010). The study of 5-hydroxymethylcytosine has gained more attention in 

the last years, and immunostaining of 5hmC has been successful in many species (Li and O'Neill 

2013; Efimova et al. 2015). In 2011, the specific antibodies against the other cytosine 

modifications, 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), were developed and 

applied in mouse embryos (Inoue et al. 2011a). Antibodies targeting many different histone 

modifications have also been successfully used in many species. Additionally to the use of 

histone modification labelling to study their epigenetic pattern, the labelling of several histone 

modifications, such as H3K9me3, is commonly used to determine the parental origin of the 

pronuclei in zygotes (Reis Silva et al. 2011; Heras et al. 2015). As such, it is commonly used in 

combination with 5mC and 5hmC immunostaining.  

 Importantly, for the immunofluorescent staining to be reliable and properly used, 

several steps need to be followed. First, a proper solvent exposure of the epitope is essential 

for its correct visualization and quantification. The characteristics of this process are epitope 

dependent and, in case of 5mC, a correct permeabilization of the embryo followed by a 

treatment with 2-4N HCL and trypsin are necessary for its correct exposure in the mouse (Li 

and O'Neill 2012). Additionally, the temperature and length of incubation with the primary 

antibodies need to be sufficient to reach thermodynamic equilibrium (i.e. saturation). Finally, 

a correct image acquisition and quantification are of major importance for the reliability of 

the results (Salvaing et al. 2014).  
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 Bisulfite sequencing 

 Besides the immunofluorescent staining, bisulfite sequencing is the most commonly 

used technique to study 5-methylcytosine patterns. This technique involves the treatment of 

the DNA with bisulfite (HSO3-). Bisulfite converts unmethylated cytosines into uracil, while 

methylated cytosines remain unchanged. Once converted, the methylation profile of the DNA 

can be determined by PCR amplification followed by DNA sequencing.  

 Its advantage over immunofluorescent staining is that it can be used to evaluate locus 

specific 5mC status, and its changes after different treatments. However, its main 

disadvantage is that it cannot distinguish between different cytosine modifications (Jin et al. 

2010). Therefore, cytosine modifications will always be assigned as 5mC, while they could be 

also 5hmC, which have a different biological meaning. This issue was addressed by 

modifications of the technique, as described below. Another concern about bisulfite 

sequencing is that incomplete denaturation or reannealing leads to incomplete conversion, 

since bisulfite converts single-stranded DNA. Thus, the presence of unconverted cytosines can 

also be a consequence of this artifact. Other potential problems are depurination, strand 

breakage and DNA degradation caused by the harsh reaction condition (Meissner et al. 2005). 

 Reduced representation bisulfite sequencing (RRBS) 

 This technique was developed in 2005 by Meissner (Meissner et al. 2005) and it 

combines the use of restriction enzymes with the bisulfite treatment. The advantage of the 

use of restriction enzymes is that areas of the genome with high CpG content can be enriched, 

reducing the amount of nucleotides that need to be sequenced for an entire genome coverage 

to 1% of the genome, which limits the costs. The fragments that comprise the reduced genome 

still include the majority of promoters, as well as regions such as repeated sequences that are 

difficult to profile using conventional bisulfite sequencing approaches. Still, this technique fails 

to discriminate between 5mC and 5hmC (Jin et al. 2010). 

 RRBS consists in the digestion of the genomic DNA with a restriction enzyme and the 

selection of fragments between 500-600 bp. After ligation with adaptors, the fragments are 

treated with bisulfite, amplified and sequenced. 
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 A disadvantage of these high covering techniques is the large amount of gDNA (5-100 

µg) necessary for the process, making them difficult if not impossible when working with 

embryos and gametes.  

 Oxidative bisulfite sequencing (oxBS-seq) 

 This technique was developed in 2013 by Booth (Booth et al. 2013). It is a modification 

of bisulfite sequencing that can quantitatively locate 5mC and 5hmC.  

 In oxBS-seq two DNA samples are prepared. One will directly be fragmented and 

bisulfite sequenced, while the other sample will be fragmented and oxidized to convert 5hmC 

into 5fC prior to bisulfite sequencing. During bisulfite sequencing, cytosine and 5fC will be 

converted to uracil, and so, the unconverted cytosines will correspond to 5mC. To determine 

the presence of 5hmC, data from the oxidation+bisulfite sequencing must be subtracted from 

the data from the single bisulfite sequencing (Figure 1.14).  

 The limitations of this technique are the high coverage needed to sequence 5hmC 

quantitatively. The reasons for that are the relative low levels of 5hmC in the genome, plus 

the fact that a subtraction is needed to obtain the actual levels of 5hmC, which increases the 

noise and so the need of a high number of replicates. Therefore, between 100 ng and 1 µg of 

gDNA are needed for this technique. 
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Figure 1.14. Representation of the oxBS-seq process. In the gDNA samples treated with 

bisulfite sequencing, cytosines will be converted to uracil while 5mC and 5hmC will remain as 

cytosine. However, after oxidation of gDNA 5hmC will be converted into 5fC, which can be 

converted to uracil by bisulfite treatment. Finally to determine the presence of 5hmC, data 

from oxidation+bisulfite sequencing needs to be subtracted from the data obtained from single 

bisulfite treatment.    

 

 HpaII tiny fragment enrichment by ligation-mediated PCR assay (HELP)  

 This technique is based on the use of restriction enzymes for the study of DNA 

methylation. One aliquot of gDNA is digested with the methylation-sensitive restriction 

enzyme HpaII, which cuts 5'-CCGG-3' sites when the central cytosine is unmethylated. In 

parallel, a second aliquot is digested with the methylation-insensitive isoschizomer MspI, 

which cuts at the same site irrespectively of its methylation status. The digestion products of 

both enzymes are ligation-mediated PCR amplified and analyzed by microarrays or by 

sequencing. 

 An application of this technique is the EmbryoGENE DNA methylation array. This array 

is used for the study of 5mC and 5hmC in bovine. It uses the same restriction enzymes as HELP 

but sequentially instead of in parallel. It starts with gDNA digestion using the MseI restriction 

enzyme, followed by a methylation-sensitive digestion and ligation mediated amplification 

PCR (LMA-PCR). To this end, adapters are ligated to the gDNA fragments previously obtained, 

which are then subjected to methyl-sensitive restriction enzymes (HpaII). Unmethylated 
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fragments are cut, and thus cannot be amplified in the following PCR (Figure 1.15). Finally, the 

products are analyzed by microarray hybridization. The disadvantage of this method is that it 

only gives a prediction of the methylated/unmethylated sites, since in each fragment several 

methylated and unmethylated sites can be present, leading to erroneous results. Therefore 

results obtained with this technique need to be confirmed (EmbryoGENE).  
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Figure 1.15. Diagram of the gDNA fragmentation and subsequent selection of the methylated 

fragments by methylation-sensitive digestion and ligation mediated amplification PCR (LMA-

PCR). The specific restriction enzymes used are Hpa II, Aci I and Hinp1 I. Adapted from de 

Montera et al. 2013. 
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1.3 EFFECTS OF ART ON EMBRYO DEVELOPMENT AND QUALITY 

 Since the development of ARTs, a large number of studies has been conducted to test 

the performance and safety of the different developed techniques. For the evaluation of the 

performance, cleavage and blastocyst rates are the main parameters, with higher cleavage 

and blastocyst rates denoting better performance. In the early days of ARTs, cleavage and 

blastocysts rates were the main evaluation parameters of each newly developed technique, 

with laboratories selecting the techniques and media composition that resulted in higher 

cleavage and blastocyst rates. However, throughout the years, it became evident that higher 

cleavage/blastocysts rates do not necessarily correlate with better quality of the produced 

embryos.  

 ARTs have proven to induce alterations in many embryonic characteristics. IVP 

embryos showed a darker cytoplasm due to their higher lipid content (Pollard and Leibo 1994), 

a more fragile ZP (Duby et al. 1997), differences in metabolism (Khurana and Niemann 2000), 

a reduced intracellular communication (Boni et al. 1999), higher incidence of chromosome 

abnormalities (Viuff et al. 1996; Lonergan et al. 2004), errors of imprinting (Doherty et al. 

2000), slower growth rate, higher thermal sensitivity, lower ICM/TE cell ratio (Van Soom et al. 

1997a; Van Soom et al. 1997b), and differences in gene expression compared to their in vivo 

counterparts (Driver et al. 2012). Additionally, higher apoptotic rates have been reported in 

IVP embryos compared to their in vivo counterparts (Gjorret et al. 2003), with an increased 

incidence of apoptosis as the culture time increases (Vandaele et al. 2006). Surprisingly, in 

cattle, some media used for in vitro culture are reported to have an influence on the sex ratio 

of the produced embryos, with a shift towards male embryos (Behboodi et al. 1996; Massip 

et al. 1996; Gutierrez-Adan et al. 2001). Superovulation is reported to induce changes in gene 

expression and DNA methylation patterns in several species. In addition, the use of high 

dosages of gonadotropins induced spindle and chromosomal abnormalities in bovine oocytes 

(Liu et al. 2011). However, not all ARTs perform the same, and some specific techniques were 

shown to have a more detrimental effect on the developing embryo than others. For instance, 

in humans, the rate of abnormalities at birth is higher for ICSI than for conventional IVF 

pregnancies (Kent-First et al. 1996; Hewitson et al. 2000; Terada et al. 2000).  
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1.3.1 Effects of ARTs on gene expression 

 A large amount of research has been conducted studying the influence of ARTs on the 

gene expression pattern of preimplantation embryos. Before the development of wide 

screening techniques (such as microarray and RNA-seq), the effort was focused on genes 

known to play important roles during pre- and post-implantation development.  

 The expression of Dnmt1, 3A and 3B was up-regulated in bovine oocytes after IVM 

compared to in vivo matured oocytes (Heinzmann et al. 2011). IVC was shown to have a major 

effect on gene expression, which is logical since embryos spend 7-8 days in that environment. 

A microarray study showed that approximately 85% of differentially expressed genes was 

down-regulated in IVP bovine blastocysts compared to their in vivo counterparts (Corcoran et 

al. 2006). Most of these genes are involved in transcriptional and translational events 

suggesting that a deficient machinery associated with transcription and translation is behind 

the inferior quality of IVP embryos (Corcoran et al. 2006). Furthermore, different culture 

media had a different impact on genes associated with transcription and translation (Corcoran 

et al. 2007). This is not a unique case, genes involved in blastocyst formation such as cell-to-

cell adhesion (E-cadherin, connexins, TJ genes), cell communication (gap junctions), 

differentiation marks (Boni et al. 1999; Lonergan et al. 2003b; Lonergan et al. 2003a; Miller et 

al. 2003) and genes related to apoptosis and oxidative stress (Bax, SOX, Hsp70) had different 

expression between different culture media (Rizos et al. 2002; Sagirkaya et al. 2006).  

 When comparing in vivo derived with IVP bovine embryos, genes related to 

metabolism, growth and differentiation (GLUT-5, CX43, IGF-II, LIF) were up-regulated in 

embryos derived in vivo, while genes related to stress (SOX, MnSOD, BAX, Hsp70, PRDX5) were 

up-regulated in IVP embryos. The significant increase in expression of those genes supports 

the hypothesis that current in vitro culture systems are associated with a considerable amount 

of oxidative stress (Lazzari et al. 2002; Rizos et al. 2003; Gutierrez-Adan et al. 2004). 

Additionally, in embryos produced in vitro in the absence of FBS, the expression of genes 

involved in the cholesterol biosynthesis pathway was up-regulated compared to in vivo 

derived embryos (Driver et al. 2012). In addition to culture media composition, culture 

conditions such as oxygen concentrations were shown to have an impact on gene expression 

(Harvey et al. 2004).  
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 Other ARTs also induce alterations on the transcriptome. Some studies reported 

differences in the mRNA expression profile of several genes between embryos produced with 

sex-sorted and unsorted semen (Morton et al. 2007), while other studies failed to find 

differences (Bermejo-Alvarez et al. 2010a). Nevertheless, offspring from sex-sorted 

spermatozoa did not display more abnormalities than the controls (Seidel and Garner 2002). 

Vitrification of mouse oocytes arrested at MII induced down-regulation of Dnmt1, 1o, 3A, 3B 

and 3L in MII and of Dnmt3B in blastocysts (reviewed by Anckaert and Fair 2015). 

Furthermore, blastocyst vitrification had impact on the microRNA transcriptome of mouse 

embryos (Zhao et al. 2015). Additionally, superovulation induced alterations in the gene 

expression of bovine oocytes (Chu et al. 2012).  

 Despite all this, a similar expression of developmentally important genes was observed 

between in vivo and IVP embryos carried to term (Ghanem et al. 2011).  

1.3.2 Effects of ARTs on epigenetic marks 

 The study of the effects of ARTs on the epigenetic pattern of the embryos and resulting 

offspring has gained more attention in recent years. The effects of ARTs on the global 

epigenetic status of preimplantation embryos has been observed in many species. IVP 

increased the levels of DNA methylation compared to embryos derived in vivo, in rats and 

mice (Zaitseva et al. 2007). In bovine blastocysts, IVP altered the DNA methylation profile, with 

longer in vitro culture being translated in higher alteration compared to in vivo derived 

embryos (Salilew-Wondim et al. 2015). Cloned embryos also showed aberrant DNA 

methylation patterns in several species, including cattle (Dean et al. 2003) and sheep 

(Beaujean et al. 2004b). However, in rabbits no differences in DNA methylation status were 

observed between cloned and IVP embryos (Shi et al. 2004).  

 Alterations of imprinting have been observed in embryos, placenta and offspring 

produced by ARTs. A loss of DNA methylation in Igf2R and Peg1, and a gain of methylation in 

H19 were found after IVM compared to in vivo maturation in mice. This gain of methylation in 

H19 was also reported in human after IVM in five out of 20 oocytes analyzed (reviewed by 

Ventura-Junca et al. 2015). 
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 In mouse, loss of DNA methylation was reported in H19, Snrpn and Peg3 in IVP embryos 

using different culture media (Doherty et al. 2000; Market-Velker et al. 2010a). These three 

genes and Peg1 also showed loss of DNA methylation in mouse blastocysts after 

superovulation, and this alteration was dose-dependent, with aberrant methylation more 

frequent at high hormone dosage (Market-Velker et al. 2010b). Importantly, the loss of DNA 

methylation of H19, Snrpn and Peg1, could be observed in the sperm of the mouse offspring 

during two generations (Stouder et al. 2009). Superovulation in mice also resulted in biallelic 

expression of Snrpn and H19 imprinted genes in the placenta (Fortier et al. 2008). In human, 

superovulation caused a loss of methylation of KCNQ1OT1 imprinted gene in immature 

oocytes (Khoueiry et al. 2008). Additionally, serum supplementation induced alterations on 

the DNA methylation pattern of various imprinted genes (H19, Igf2, Grb7, Grb10, and Peg1), 

faster rates of development and long-term behavioral consequences in mouse embryos 

(reviewed by Velker et al. 2012). Vitrification also altered the methylation status of imprinted 

genes, causing a loss of methylation in H19 in murine embryos (Wang et al. 2010). In mice, 

loss of DNA methylation in H19 and Snrpn was observed in SCNT blastocysts (Mann et al. 

2003). Moreover, altered allele specific DNA methylation and/or gene expression was found 

for H19 in liver tissue and for Peg3 in brain tissue in one and four out of 12 SCNT mice, 

respectively (de Waal et al. 2012).  

 The imprinting disorders, Beckwith-Wiedemann syndrome (BWS) and Angelman 

syndrome (AS), have been reported in human. BWS is characterized by highly variable clinical 

features such as prenatal and postnatal overgrowth, ear creases and predisposition to 

childhood tumors. AS is characterized by severe mental retardation, delayed motor 

development and absence of speech, among other features. Superovulation has been linked 

to BWS and AS in children conceived by ART (Denomme and Mann 2012). Many studies have 

reported an increased prevalence of IVP (IVF and ICSI) children among children with BWS 

compared with those in general population. Many of these BWS children display maternal 

KCNQ1OT1 loss of methylation. Similarly, AS children born after IVF and ICSI have a greater 

prevalence of SNRPN imprinting defects than AS children in general (reviewed by Denomme 

and Mann 2012). The absolute risk of developing a genomic imprinting disorder in children 

born through ART as a result of an epigenetic defect is low. However, the relative risk when 

compared with non-ART children is significantly higher (Market-Velker et al. 2010b).  
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 A similar condition of overgrowth can also be induced by ART in ruminants and is 

referred to as Large Offspring Syndrome (LOS). It is characterized by large size at birth, 

breathing difficulties, reluctance to suckle and sudden perinatal death (Young et al. 1998). LOS 

is caused by the exposure of pre-elongation ruminant embryos to unusual environmental 

conditions. It is not exactly clear what environmental changes are important but a major cause 

is the use of serum in the culture media (Sinclair et al. 1999). Recent studies provide evidence 

for epigenetic similarities between BWS and LOS as these syndromes share misregulation of 

several similar imprinted genes such as IGF2R, KCNQ1OT1 or CDKN1C (Chen et al. 2013; Chen 

et al. 2015). Furthermore, loss of maternal-specific SNRPN methylation was found in the 

placenta from in vitro fertilized and cultured bovine embryos, similar to AS in humans, 

(reviewed by Velker et al. 2012).   

 Finally, oxidative stress reduces the global hydroxymethylation level in mouse somatic 

cells in vivo and in vitro, this effect is hypothesized to be caused by the inactivation of TETs by 

hydrogen peroxide treatment (reviewed by Delatte et al. 2014). Similar studies are still lacking 

in gametes and embryos.  

 

 In conclusion, a lot of progress has been made in the last decades in the development 

and refinement of ARTs. However, these techniques still have negative effects on the 

produced embryos and even on the resulting offspring. As demonstrated before, special 

attention has to be paid to the medium used for embryo culture, since it has a major impact 

on the transcriptomics and epigenetics of the embryos, and in most cases having no effect on 

the parameters evaluated by the traditional methods. Therefore, there is still a need for 

further optimization of these techniques, and to this end, the evaluation of the transcriptome 

and the epigenome of the embryos produced under different conditions constitutes a valuable 

tool.  
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 The development of assisted reproductive technologies (ARTs) has represented a 

revolution for the treatment of human infertility and for livestock production, maximizing the 

offspring of genetically valuable animals. However, the use of ARTs implies that gametes and 

embryos are exposed to suboptimal conditions during a crucial developmental period, which 

can induce alterations in the embryo that can have consequences in the offspring. Indeed, an 

increased incidence of particular syndromes has been reported in human and animals, many 

of them related to epigenetic alterations. Traditional methods for embryo quality evaluation, 

which focus on rates and speed of development, cell number and incidence of apoptosis, are 

unable to detect if particular ARTs are inducing alterations in the transcriptome or the 

epigenome of the embryo. As such, the use of fetal bovine serum (FBS) as media 

supplementation for in vitro embryo production yields excellent results when evaluated by 

the traditional methods. However, its use has increased the incidence of an imprinting 

syndrome, the large offspring syndrome (LOS), in ruminants. So far, no cases of LOS have been 

reported in horses even though FBS is also used in the culture medium. Still, the use and study 

of in vitro embryo production in horses is much more limited by now than in ruminants.   

 Therefore, in order to improve ARTs to produce more in vivo-like embryos, the effect 

of these techniques on the embryos needs to be evaluated in terms of gene expression and 

epigenetic modifications, in addition to the traditional methods.  

The specific aims of this thesis were: 

 To evaluate the effect of in vitro embryo production on the gene expression of early 

bovine blastocysts, using two different culture conditions, i.e. serum-containing and 

serum-free medium. To this end, the whole transcriptome of in vitro produced 

embryos in both culture conditions was compared to the transcriptome of in vivo-

derived bovine embryos using RNA sequencing (Chapter 3).  

 

 To optimize an immunofluorescent staining to evaluate 5-methylcytosine (5mC) and 

5-hydroxymethylcytosine (5hmC) in bovine and equine embryos during 

preimplantation development (Chapter 4). To this end, we first assessed a proper DNA 

counterstaining that can be combined with the epitope retrieval treatment needed for 

5mC and 5hmC immunostaining (Chapter 4.1). Subsequently, marks to determine the 
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parental origin of the pronuclei were identified in equine (Chapter 4.2) and bovine 

(Chapter 4.3) zygotes. 

 
 To use the previously optimized immunostaining to determine the dynamics of 5mC 

and 5hmC in equine (Chapter 5) and bovine embryos, with focus on the zygote stage, 

and to evaluate the effects of ARTs on the 5mC and 5hmC patterns of equine and 

bovine in vitro produced embryos.  



 

 
 

 

 

 

 

 

 

 

EFFECT OF IN VITRO PRODUCTION ON THE GLOBAL GENE 

EXPRESSION PATTERN OF BOVINE BLASTOCYSTS 
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SUMMARY  

 Since the development of in vitro embryo production in cattle, different supplements 

have been added to culture media to support embryo development, with serum being the 

most popular. However, the addition of serum during embryo culture can induce high 

birthweights and low viability in calves (Large Offspring Syndrome). Analysis of global gene 

expression in bovine embryos produced under different conditions can provide valuable 

information to optimize culture media for in vitro embryo production.  

 We used RNA sequencing to examine the effect of in vitro embryo production, in either 

serum-containing or serum-free media, on the global gene expression pattern of individual 

bovine blastocysts. Compared to in vivo derived embryos, embryos produced in serum-

containing medium had five times more differentially expressed genes than embryos 

produced in serum-free conditions (1,109 vs. 207). Importantly, in vitro production in the 

presence of serum appeared to have a different impact on the embryos according to their sex, 

with male embryos having three times more genes differentially expressed than their female 

counterparts (1,283 vs. 456). On the contrary, male and female embryos produced in serum-

free conditions showed the same number (191 vs. 192) of genes expressed differentially; 

however, only 44 of those genes were common in both comparisons. The pathways affected 

by in vitro production differed depending on the type of supplementation. For example, 

embryos produced in serum-containing conditions had a lower expression of genes related to 

small molecule metabolism while embryos produced in serum-free conditions showed 

aberrations in genes involved in lipid metabolism.   

 Serum supplementation had a major impact on the gene expression pattern of 

embryos, with male embryos being the most affected. The transcriptome of embryos 

produced in serum-free conditions showed a greater resemblance to that of in vivo derived 

embryos, although genes involved in lipid metabolism were altered. Male embryos appeared 

to be most affected by suboptimal in vitro culture, i.e. in the presence of serum.  
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INTRODUCTION 

 Since the initial development of in vitro embryo production, the technique has been 

applied successfully to many species for clinical, commercial, and research purposes. In the 

early days, it was common practice to supplement culture media with serum to support 

embryo development in many species. But subsequently serum has been associated with fetal 

overgrowth in ruminants to give the so-called Large Offspring Syndrome at birth (Young et al. 

1998). In cattle, serum supplementation is still being used in many laboratories (Corcoran et 

al. 2006; Bermejo-Alvarez et al. 2010; Chitwood et al. 2013) probably because it increases 

blastocyst rates and generally gives more consistent results (George et al. 2008). We recently 

adopted a robust serum-free culture system, consisting of Synthetic Oviduct Fluid (SOF), 

bovine serum albumin (BSA), and insulin-transferrin-selenium (ITS), which yields comparable 

blastocyst rates (~ 40%) to media supplemented with serum (George et al. 2008; Wydooghe 

et al. 2014). However, bovine embryos produced in these serum-free conditions have a much 

lower hatching rate than embryos produced in serum-containing medium (George et al. 2008; 

Wydooghe et al. 2014). Nevertheless, in many other aspects, the quality of the embryos 

produced in serum-free conditions is superior to that of embryos produced in the presence of 

serum. Embryos produced in serum-free conditions showed increased freezability and, after 

transfer, the birthweight and incidence of abnormalities of the resulting calves was in line with 

that of in vivo derived embryos (Young et al. 1998; George et al. 2008). In addition, cattle 

embryos produced in serum-free conditions scored higher when using traditional parameters 

to evaluate embryo quality (George et al. 2008; Wydooghe et al. 2014). These quality 

parameters are based on blastocyst development, blastocyst cell number, ratios of inner cell 

mass (ICM) and trophectoderm cells, apoptotic cell ratios (Wydooghe et al. 2014), and also 

the gene expression pattern of a limited number of selected genes analyzed by RT-qPCR 

(Goossens et al. 2007; Market-Velker et al. 2010a). The selection of only a few genes to check 

embryo quality was based on the fact that the evaluation of expression of all the genes in the 

genome by RT-qPCR was a daunting task. However, this no longer represents an obstacle with 

recently developed RNA sequencing techniques, which have proven to be a very powerful tool 

for evaluating and comparing the global gene expression pattern of even single cells, and 

therefore also of single embryos (Chitwood et al. 2013; Jiang et al. 2014). This new technique 
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also allows the study of associated pathways that may ultimately be involved in affecting 

embryo quality.  

 We hypothesized that the similarities between embryos derived in vivo and those 

produced in serum-free culture conditions would also translate to the global gene expression 

pattern and, hence, embryos produced in serum-free conditions would resemble in vivo 

derived embryos more than embryos produced in the presence of serum. Nevertheless, when 

evaluating the global gene expression pattern of embryos, their sex needs to be taken into 

account, since embryos of different sexes can respond differently to stress situations (Perez-

Crespo et al. 2005) and this might be reflected in changes in their gene expression pattern. 

 Therefore, the aim of the present study was to evaluate the effect that in vitro 

production, either in serum-containing or serum-free conditions, might have on cattle 

embryos by comparing their global gene expression pattern to that of the gold standard; 

namely, embryos derived in vivo. Also, to determine which in vitro condition produces more 

in vivo-like blastocysts. Additionally, we wanted to assess the impact of in vitro culture on 

embryos depending on their sex.  

 To our knowledge, this is the first study that uses RNA sequencing to evaluate the 

effect of in vitro embryo production, both in serum-containing and serum-free conditions, 

while at the same time taking embryonic sex into account. The results provide insight into the 

effects that different supplementations used for in vitro production may have on cattle 

embryos, show clearly how male and female embryos respond differently to suboptimal 

culture conditions, and offer valuable information on how to improve serum-free culture 

systems.  

MATERIALS AND METHODS 

EXPERIMENTAL DESIGN 

 In this study, the transcriptome of 16 individual bovine early blastocysts produced in 

vitro under two different culture conditions (eight in serum and eight in serum-free 

conditions) was compared to the transcriptome of eight embryos derived in vivo. Each 

blastocyst constituted one replicate and its sex was determined by RT-PCR prior to RNA 
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sequencing. Blastocysts produced under each in vitro condition were only compared with the 

blastocysts derived in vivo. Three comparisons were made between the embryos derived in 

vivo, and those generated in vitro by the two different methods. First comparing all the 

embryos of both groups; second, comparing only the female embryos of both groups and 

third, comparing only the male embryos of both groups. In addition, male and female embryos 

of each condition were compared with each other. Consequently, a total of 9 comparisons 

were made (Figure 3.1).  

 

 

Figure 3.1. Graphic representation of the experimental design. The number of embryos present 

in the figure represent the number of embryos included in the study per sex and condition. The 

arrows symbolize the 9 comparisons performed: red arrows represent the comparisons 

between female embryos; blue arrows depict the comparisons between male embryos; empty 

arrows represent the comparisons which included all the embryos, male and female, together; 

finally, black arrows are used for the comparisons between the sexes within each condition. 
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IN VITRO EMBRYO PRODUCTION 

 Early bovine blastocysts (n=16) were produced by routine in vitro methods (Wydooghe 

et al. 2014). Briefly, ovaries were collected from Holstein cows at a local slaughterhouse and 

processed within 2h. Cumulus oocyte complexes were aspirated from follicles of 4–8 mm in 

diameter and matured in groups of 60 in 500 µL of maturation medium consisting of modified 

TCM-199 (GIBCO-BRL Life Technologies) supplemented, depending on the experimental 

design, with either 20 ng/mL EGF (Epidermal Growth Factor; Sigma E4127) and 50 µg/mL 

gentamycin (serum-free conditions) or 20% heat inactivated FBS (Fetal Bovine Serum; GIBCO, 

Invitrogen 10108-165), 50 µg/mL gentamycin, 0.4 mM L-Glutamine and 2 mM Na-pyruvate 

(serum conditions) for 22h at 38.5°C in 5% CO2-in-air. Frozen-thawed spermatozoa from the 

same Holstein bull of proven fertility used to obtain in vivo derived embryos (to minimize 

variation throughout the experiments) were passed through a discontinuous Percoll gradient 

(45 and 90% (v/v); VWR International). A final sperm concentration of 1x106 spermatozoa/mL 

was adjusted in IVF-TALP medium, consisting of bicarbonate buffered Tyrode solution 

supplemented with 6 mg/mL BSA (Sigma A8806) and 20 µg/mL heparin (Sigma). Matured 

oocytes were washed with WAS-TALP medium consisting of HEPES buffered Tyrode solution 

supplemented with 0.34 mg/mL BSA (Sigma A6003) before being incubated with the 

spermatozoa for 21h. Presumptive zygotes were vortexed for 3 min to remove the remaining 

cumulus cells and spermatozoa, washed with WAS-TALP and cultured in 50 µL drops of SOF 

supplemented with essential and non-essential amino acids and, depending upon the 

experimental design, 5% heat inactivated FBS (serum-containing conditions) or 4 mg/mL BSA 

(Sigma A9647) and ITS (5 µg/mL Insulin + 5 µg/mL Transferrin + 5 ng/mL Selenium; serum-free 

conditions). In both cases the embryos were held under mineral oil in groups of 25 at 38.5°C 

in 5% CO2, 5% O2 and 90% N2. Blastocysts were harvested, 6 and 7 days post insemination, 

from three independent in vitro experiments. 

IN VIVO EMBRYO COLLECTION 

 The 8 in vivo derived blastocysts were obtained from three Holstein cows. They were 

superovulated with a total of 480 µg of FSH (Follicle-stimulating hormone; Stimufol) 

administered in eight decreasing doses every 12h over 4 days. An injection of prostaglandin 

(37.5 mg; Enzaprost) was administered 48h after the start of the superovulatory treatment. 
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Two inseminations with frozen-thawed semen from the same Holstein bull of proven fertility 

used for the in vitro experiments were performed 12h apart starting 8–12h after the onset of 

the estrous behavior. Seven days after insemination, both uterine horns were flushed non-

surgically for embryo recovery. The study was approved by the Ethics Committee of the 

Faculty of Veterinary Medicine of Gent University (EC 2012/196 and EC 2013/161). 

EMBRYO COLLECTION AND RNA EXTRACTION 

 The developmental stage and quality of the blastocysts, according to IETS standards, 

was determined for all the embryos recovered by the same three trained individuals. Only 

early blastocysts of quality 1 were selected for the study. The blastocysts were washed three 

times in RNase-free PBS (Phosphate buffered saline; Ambion), placed individually in 2 µL of 

lysis buffer consisting in 5 mM DTT (DT-Dithiothreitol; Promega), 4 U/µL RNasin Plus RNase 

inhibitor (Promega), and 0.64 µM Igepal (Sigma) in RNase free water (Sigma) and immediately 

stored at -80°C. RNA was extracted using the RNeasy micro kit (Qiagen); DNase treatment was 

omitted in embryos used for RNA-seq, but not in embryos used for RT-qPCR. Manufacturer´s 

instructions were followed with a single modification performed in the elution step, when 14 

µL of RNase-free water was passed through the column twice.   

EMBRYO SEXING 

 Sexing of the embryos used for RNA-seq was performed as previously described by Li 

et al. (Li et al. 2014). For sexing purposes, 2 µL of the eluted total RNA were used. RNA was 

reverse transcribed with the iScriptTM cDNA Synthesis Kit. Next, the cDNA was amplified using 

the following primer pairs: DDX3Y_F, 5´-GGACGTGTAGGAAACCTTGG-3´; DDX3Y_R, 5´-

GCCAGAACTGCTACTTTGTCG-3´; HPRT1_F, 5´-TGCTGAGGATTTGGAGAAGG-3´; HPRT1_R, 5´-

CAACAGGTCGGCAAAGAACT-3´, and the following PCR parameters; initial denaturation at 

95°C for 3 min, 40 cycles at 95°C for 15s, 60°C for 15s and 72°C for 30s, followed by final 

elongation at 72°C for 5 min. PCR products were electrophoresed on 2% agarose gel 

containing ethidium bromide and visualized under UV illumination. The DDX3Y gene is present 

on the Y chromosome, while HPRT1 was used as the reference gene. Therefore, when one 

band was present, the embryo was classed as female while two bands denoted a male (Figure 

3.2).   



Chapter 3 

83 
 

 

Figure 3.2. PCR products of the transcripts used for sexing the blastocysts. For embryo sexing, 

DDX3Y, a gene present on the Y chromosome, and HPRT, as reference gene, were used. The 

embryos that expressed only the HPRT transcript were considered to be female, while those 

that expressed the two transcripts were considered to be males. 

 

RNA AMPLIFICATION AND PREPARATION OF THE SEQUENCING LIBRARY  

 Concentration and quality of the total RNA extracted were examined using a Quant-iT 

RiboGreen RNA Assay kit (Life Technologies) and an RNA 6000 Pico Chip (Agilent 

Technologies), respectively. Subsequently, 1 ng of RNA was used to start the library 

preparation. First, cDNA was synthesized using the “SMARTer Ultra low input RNA for the 

Illumina, High Volume Kit” (Clontech) mostly following the manufacturer's instructions. For 

the PCR reaction, 12 cycles were chosen. Second, the “Low Input Library Prep Kit” (Clontech) 

was used to prepare the libraries for sequencing. Libraries were prepared according to the 

manufacturer's instructions and 4+6 cycles were chosen during the PCR reaction, as in the 

protocol. Libraries were quantified by qPCR, according to the February 2011 Illumina's 

protocol “Sequencing Library qPCR Quantification protocol guide.” A high sensitivity DNA chip 

(Agilent Technologies) was used to control the size, distribution and quality of the libraries. 

Sequencing was performed by a rapid run on 2 lanes of the Illumina Hiseq-2500 sequencer 

using 2x100 bp paired-end reads; 12 samples were run per lane in equimolar quantities.  

READ ALIGNMENT AND DIFFERENTIAL GENE-EXPRESSION ANALYSIS 

 After quality trimming and trimming of 12 nucleotides from the 5' terminal end of the 

reads, the latter were mapped to the Bos taurus UMD 3.1.75 bovine genome build (Ensembl). 

Specific imprinted genes of interest were added: USP29 (NCBI Gene ID: 788661), PEG3 

(444864), APEG3 (100169896), MEG3 (100335527), H19 (100126192), and XIST (338325), 

using the CLC Genomics Workbench 7.0.4 software (CLC Bio). Introns and exons were defined 
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in the annotation. For protein-coding genes, introns and exons were distinct while the whole 

sequence of the ncRNAs was considered as an exon. In this study, only uniquely mapping exon 

reads were considered in the analysis. The quality trimming was performed based on the 

Phred base quality scores and a limit setting equal to 0.03. To determine if a gene was 

expressed, a reads per kilobase per million (RPKM) >0.4 threshold was used for normalization. 

To quantify gene expression, the RNA-seq Analysis Tool from the CLC software was used, 

employing standard settings and mapping to gene regions only. Differentially expressed genes 

in the comparisons described in the experimental design were determined using the empirical 

analysis of the DGE tool employing standard settings. This Tool implements the 'Exact Test' for 

two-group comparisons developed by Robinson and Smyth (Robinson and Smyth 2008) and 

incorporated in the EdgeR Bioconductor package (Robinson et al. 2010). The EdgeR package 

was used to validate the differential expression results obtained from the CLC software. To 

minimize false positives, within each two-group comparison, genes that did not have an exon 

read count of at least 15 for all the replicates in at least one of the groups under consideration 

were filtered out prior to differential expression analysis; this cut-off of 15 exon read counts 

corresponds to the inflexion point of the read frequency distribution for most samples. To 

assess the validity of the EdgeR´s assumption of similar library distributions, boxplots of the 

raw read counts were rendered for the genes withheld during the previous filtering step.  

Genes were considered to be differentially expressed if they had a Benjamini-Hochberg 

corrected p-value <0.05 (Benjamini and Hochberg 1995) and an absolute fold change (FC) of 

≥2.  

HIERARCHICAL CLUSTERING AND PRINCIPAL COMPONENT ANALYSIS 

 Heatmap and Principal component analyses were performed using trimmed mean of 

M-values (TMM) normalized read counts of genes differentially expressed (Benjamini-

Hochberg corrected p-value <0.05, absolute FC ≥2) in at least one of the comparisons. Both 

analyses were performed in the R statistical software package using the heatmap and prcomp 

functions respectively.  
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FUNCTIONAL ANNOTATION OF GENES  

 Ensembl gene IDs of differentially expressed genes (Benjamini-Hochberg corrected p-

value <0.05, absolute FC ≥2) were analyzed with the ClueGO 2.1.5 plugin (Bindea et al. 2009) 

of the Cytoscape 3.1.1 software (Shannon et al. 2003) to obtain functional annotation of the 

genes in terms of enrichment of gene ontologies (levels 3–8) related to biological process, 

molecular function, and cellular component. In addition, a KEGG pathway enrichment analysis 

was performed. Only Gene Ontology (GO)-terms or pathways that contained at least 5 of the 

queried genes were considered. In addition, at least 5% of all genes associated with a GO-term 

or pathway needed to consist of genes in the query. Finally, results were considered 

statistically significant when the Benjamini-Hochberg corrected p-value was <0.01.  

VALIDATION OF THE RNA-SEQ DATA 

 Reverse-transcription quantitative real-time PCR (RT-qPCR) was used to validate the 

differential expression of 4 selected genes in 10 individual early blastocysts from each 

condition. All RT-qPCR experiments were performed according to the Minimum Information 

for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines (Bustin et al. 

2009). 

 RNA from individual early blastocysts was extracted as described previously. A minus 

RT control was then performed with primers for GAPDH to check the removal of all the 

contaminating genomic DNA (Goossens et al. 2005). First-strand cDNA was generated from 

the total amount of RNA using the iScript cDNA synthesis kit (BioRad) which uses oligo(dT) and 

random hexamer primers, according to the manufacturer´s instructions. After reverse 

transcription, the cDNA was diluted 3-fold and used for downstream PCR. Combined with 

embryo sexing, cDNA quality control was performed based on Verbeke et al. (Verbeke et al. 

2015). For this assay, a primer pair of HPRT1 (reference gene) and a primer pair of DDX3Y 

(present in chromosome Y), which could amplify respectively 421 and 196 bp, were used. Only 

embryos that could amplify the 421 bp amplicon were included in the study. Good quality 

cDNA from male embryos showed two bands, one of the reference gene and one specific for 

the Y chromosome, while good quality cDNA from female embryos showed only the highest 

band, that of the reference gene. PCR reactions were performed in 10 µL reaction volumes 

with the following program: initial denaturation at 95°C for 5 min, 40 cycles at 95°C for 45s, 
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64°C for 45s and 72°C for 90s, followed by final elongation at 72°C for 5 min. PCR products 

were electrophoresed on 2% agarose gel containing ethidium bromide, visualized under UV 

illumination and sequenced for verification. 

 Reference genes used for normalization (GAPDH, YWHAZ, and SDHA) were selected 

according to previous studies (Goossens et al. 2005; Li et al. 2014) and confirmed by geNorm, 

with M-values ranging from 0.671 to 0.628, as described by Vandesompele et al. 

(Vandesompele et al. 2002). The primer pairs for the four selected genes (PHGDH, HMGCS1, 

IDI1, and SFN) and the specific primer annealing temperatures are given in Table 3.1.  

 

Table 3.1. Primer sequence, amplicon size, annealing temperature, and PCR efficiency of the 

primers of the genes used for RNA-seq validation by RT-qPCR, reference genes and genes used 

for the sexing and quality control assay. 

Gene Primer sequence 5´-3´ Amplicon 
size (bp) 

Annealing 
Ta (°C) 

PCR 
Efficiency 

HMGCS1 Forward: CCTCAGTGCATTAGACCGCTGCT  
Reverse: CTGAACCAGTTTACAATAGGGTGAGTGGA 

142 65 100% 

IDI1 
 

Forward: ACGCTAAGATTACCTTCCCAGGGTGT 
Reverse: CTCTGTGCTGCTCTTCTTACTCCAATAGC 

115 66 100% 

PHGDH  
 

Forward: AGGCCGCAACCAGAAAGGGCAT 
Reverse: TTCCGCTCCCACTTGCCATCCTT 

151 67 110% 

SFN  
 

Forward: AAAGTCGGGTCTTCTACCTGAAAATGAAG 
Reverse: GGCATCTCCTTCTTGCTGATGTCC 

145 66 100% 

GAPDH Forward: TTCAACGGCACAGTCAAGG 
Reverse: ACATACTCAGCACCAGCATCAC 

119 62 96% 

YWHAZ Forward: GCATCCCACAGACTATTTCC 
Reverse: GCAAAGACAATGACAGACCA 

120 60 104% 

SDHA Forward: GCAGAACCTGATGCTTTGTG 
Reverse: CGTAGGAGAGCGTGTGCTT 

185 60 108% 

HPRT1  
 

Forward: CCCAGCGTGGTGATTAGCGATG 
Reverse: AAGTCTGCATTGTCTTCCCAGTGTC 

421 64  

DDX3Y 
 

Forward: AAGGCAGTTCAGGGTGGAGTTGTA 
Reverse: CGCTCAAATCTGCCAAAGCCAGT 

196 64  
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 PCR reactions were performed in a 10 µL reaction volume on a BioRad CFX 96 PCR 

Detection system, including 5 µL Sso Advanced SYBR Green Supermix (BioRad), 600 nM of each 

primer (with the exception of SFN for which 60 nM was used) and 2 µL of diluted embryo 

cDNA. The PCR program consisted of an initial denaturation step at 95°C for 3 min, 40 cycles 

of denaturation for 5s at 95°C and a combined primer annealing-extension step for 30s at the 

specific primer annealing temperature, during which fluorescence was measured. A melting 

curve was produced afterwards by heating the samples from 70°C to 95°C in 0.5°C increments 

for 5s while fluorescence was measured. Each reaction was run in duplicate. PCR efficiencies 

were calculated by a relative standard curve of 5 points with ¼ dilution, derived from cDNA of 

pooled bovine blastocysts. All PCR efficiencies were between 90% and 110%, and the 

correlation coefficient (R2) between 0.990 and 1. The geometric mean of the reference genes 

was used to calculate the normalization factor. The mean of the duplicates and the exact PCR 

efficiencies were used to calculate the raw data, which, for each gene and sample was divided 

by the respective normalization factor to obtain a normalized value according to the method 

described by Hellemans et al. 2007). The normalized values were used to determine 

differential expression between in vivo vs. serum-containing and in vivo vs. serum-free 

conditions. Normality of the data was studied and a log transformation was applied when the 

data were not normally distributed. The normally distributed data, before or after log 

transformation and with homogeneity of variances, were analyzed by One-Way ANOVA 

combined with Hochberg Post Hoc correction. When data was not normally distributed, the 

non-parametric Mann-Whitney test was performed. Differences at p ˂0.05 were considered 

significant.  

RESULTS AND DISCUSSION 

GENERAL EXPRESSION PROFILE OF BLASTOCYSTS PRODUCED BY DIFFERENT CULTURE 

CONDITIONS 

 The global gene expression pattern of 24 early blastocysts was analyzed using the 

Illumina HiSeq 2500 system. Eight blastocysts produced in vitro in serum-containing medium 

and eight other blastocysts produced in vitro in serum-free medium were compared with eight 

blastocysts derived in vivo, each blastocyst constituting one replicate. In addition, between 

three and five blastocysts of each sex were represented in every culture condition, to avoid 
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the possibility that a sex bias could interfere with the interpretation of the results, as 

highlighted by Bermejo-Alvarez et al. who reported that the expression of about one third of 

the genes of a blastocyst are influenced by the sex (Bermejo-Alvarez et al. 2010).  

 On average, 28 million reads were generated per embryo. Of the total sequenced 

fragments, 51% (in vivo), 52.1% (serum-free) and 49.4% (serum-containing) could be mapped 

to the Ensembl UMD 3.1 reference genome and, of these, 94% (in vivo), 93% (serum-free) and 

92% (serum-containing) were uniquely mapped to specific regions in the bovine genome 

(Table 2, Table S1). All the uniquely mapped fragments corresponded to annotated genes and 

of, an average of 62% (in vivo), 67% (serum-free), and 71% (serum-containing) mapped to 

annotated exons; the remainder overlapped with annotated introns (Tables 3.2, S3.1 and 

Figure 3.3D). Only reads uniquely mapped to exons were considered in this study since focus 

was placed on the expression of known annotated genes. The higher prevalence of intronic 

reads (~30%) is not uncommon in bovine RNA-seq experiments, when both random priming 

and/or oligo-dT primers are used to prepare libraries. For instance, Chitwood et al. 2013 

(Chitwood et al. 2013) reported up to 40% intronic reads, Graf et al. 2014 (Graf et al. 2014) 

around 30%, and Huang and Khatib 2010 (Huang and Khatib 2010) some 20%. Moreover, these 

numbers are also in line with the 30-40% of intronic reads reported by Clontech Laboratories, 

manufacturers of the SMARTer Ultra Low RNA Kit-HV used for library preparation (Sara 

Gonzalez-Hilarionm Takara-Clontech, personal communication. A number of factors could 

explain the presence of intronic reads 1) the presence of pre-mRNA or unspliced RNA; 2) 

alternatively spliced forms, where an entire or partial intron sequence in one transcript may 

serve as an exon in another transcript, and 3) the presence of antisense non-coding RNAs 

overlapping the intronic regions; reads obtained with SMARTer Ultra Low Kits are not strand-

specific so that expression coming from each strand cannot be differentiated.    

 

 

 

 



 

 
 

Table 3.2. Summary of sequence read alignments to the reference genome. The numbers correspond to the mean ± standard deviation (SD) of all 

the replicates per condition. 

Sample In vivo derived embryos (mean ± 
SD) 

Serum-free produced embryos 
(mean ± SD) 

Serum-containing produced 
embryos (mean ± SD) 

Paired end reads 14,701,822.4 ± 1,066,098.2 x 2 12,731,192.8 ± 615,768.7 x 2 14,670,296.3 ± 2,890,016 x 2 

Total sequenced fragments 14,701,822.4 ± 1,066,098.2 12,731,192.8 ± 615,768.7 14,670,296.3 ± 2,890,016 

Total mapped fragments 7,508,158 ± 709,020.2 6,636,857.8 ± 552,752.8 7,240,822.8 ± 2,076,161.5 

Uniquely mapped fragments 7,028,287.1 ± 662,984.5 6,174,226.4 ± 523,270.2 6,691,366.4 ± 1,939,025.2 

Fragments mapped to annotated genes 7,028,287.1 ± 662,984.5 6,174,226.4 ± 523,270.2 6,691,366.4 ± 1,939,025.2 

Fragments mapped to annotated exons 4,353,683.6 ± 619,988.6 4,119,767.6 ± 760,316.3 4,730,978.5 ± 1,683,623.3 

Fragments overlapped with annotated introns 2,674,603.5 ± 157,817.1 2,054,458.8 ± 430,089.5 1,960,387.9 ± 465,486.1 
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Figure 3.3. Distribution of reads and transcripts among gene types and regions. Total reads belonging to, (A) highly represented RNA species and, 

(B) low represented RNA species per culture condition. The total reads correspond only to total exon reads in protein-coding genes, while for the 

rest of the RNA species correspond to the total reads of all the gene regions. The variability of the number of reads belonging to every RNA species 

among the different embryos of each condition was larger in the in vitro embryos, especially in the presence of serum, compared to in vivo 

embryos. (C) Transcript distribution among the different RNA species in the different conditions. (D) Distribution of reads uniquely mapped among 

gene regions in the different blastocysts (each blastocyst constitutes a replicate). 
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 The distribution of total reads among different RNA species per culture condition is 

depicted in figure 3.3A/B. In summary, an average of 6,359,679 (96.4%) of the total reads 

corresponded to protein-coding genes as a result of mRNA enrichment performed during 

library preparation. The next most represented RNA species was mitochondrial rRNA to which 

only 2.5% of the reads corresponded. Finally, the remaining 1.1% of the total reads was 

distributed among miscellaneous RNAs, including pseudogenes and different non-coding 

RNAs. The approximately 6 million total exon reads located in protein-coding genes 

corresponded to an average of 16,185 protein coding transcripts, with very similar values 

between the different culture conditions (Figure 3.3C). The total number of genes detected in 

the analysis ranged from 9,560 in a male embryo produced in serum-containing medium to 

11,290 in a male embryo produced in serum-free medium with an average of 10,717 genes all 

round (Table 3.3); this represents almost 50% of the 22,000 protein-coding genes estimated 

to be present in the cattle genome (Elsik et al. 2009). The results were also in line with those 

of Chitwood et al. using RNA sequencing in individual blastocysts (with 11,039 genes detected) 

(Chitwood et al. 2013). In contrast, they were lower than those found in other studies where 

11,924 (Jiang et al. 2014), 13,724 (Graf et al. 2014) and 17,634 genes were detected (Driver et 

al. 2012). This disparity might be due to technical differences such as: 1) the sequencing depth, 

which usually correlates with the number of genes detected, 2) the RPKM threshold used for 

normalization to determine when a gene is expressed and, 3) the alignment parameters that 

determine which reads were mapped and how non-uniquely mapping reads were dealt with.  

 

Table 3.3. Number genes expressed in each embryo with RPKM >0.4, each embryo constituting 

a replicate.   

Condition Replicate 

1 

Replicate 

2 

Replicate 

3 

Replicate 

4 

Replicate 

5 

Mean ± SD 

Male in vivo 11,022 10,750 10,414 10,370 10,654 10,642 ± 256.6 

Female in vivo 10,919 10,785 10,467 - - 10,724 ± 232.2 

Male serum 10,276 9,560 10,168 - - 10,001 ± 386 

Female serum 10,300 11,009 11,205 11,073 11,113 10,940 ± 364.8 

Male serum-free 10,733 11,115 10,451 11,290 10,776 10,873 ± 331.5 

Female serum-free 10,651 11,122 10,985 - - 10,919 ± 242.3 
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 To verify if the embryos produced within the same condition were more similar to each 

other than to those produced under different conditions, a hierarchical clustering and a 

principal component analysis (PCA) were performed (Figure 3.4). In the hierarchical clustering 

two clusters were formed thereby separating the embryos produced in the presence of serum 

from those embryos produced under the other two conditions. This cluster further divided 

into two minor clusters, which separated embryos derived in vivo from embryos produced in 

serum-free medium. Within each minor cluster the embryos were grouped by sex, except in 

serum conditions where female and male embryos were mixed. In the PCA, the first three 

principle components of the differentially expressed (DE) genes were represented and, here, 

blastocysts produced under the same conditions were plotted together. In the PCA, as had 

been already observed in the hierarchical clustering, embryos produced in serum-free 

conditions showed a pattern closer to in vivo derived embryos than to those produced in 

serum. It was also observed that the variability of gene expression within the embryos 

produced in serum-containing medium was greater than under the other two conditions, even 

though all the embryos selected for the study were early blastocysts with a score of 1 

according to the International Embryo Transfer Society (IETS) guidelines. A similar observation 

was made by Cote et al. who compared 10 different in vitro culture conditions and in which 

embryos produced in the presence of serum (in both maturation and culture) presented the 

largest variability in the pattern of gene expression among the replicates (Cote et al. 2011).  

 The results of the hierarchical clustering and the PCA confirmed the rigor of the study 

and showed that embryos produced under the same conditions were more similar to each 

other than to the rest. It also gave the first indication that the global gene expression pattern 

of embryos produced under serum-free conditions is more similar to embryos derived in vivo 

than those produced in vitro in the presence of serum.  

 

 

  



 

 
 

 

Figure 3.4. Hierarchical clustering and PCA of differentially expressed genes among the different blastocysts. (A) Heatmap including all the 

differentially expressed genes. The color spectrum, ranging from yellow through black to blue, represents TMM normalized expression values 

scaled between -4.5 and 4.5, indicating low to high expression. Two main clusters were formed, with embryos cultured in the presence of serum 

in one cluster and in vivo derived and serum-free embryos in the other. (B) PCA of the 24 embryos used in the study considering all the differentially 

expressed genes. Each dot represents one blastocyst.  
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GENE EXPRESSION DEVIATIONS COMPARED TO IN VIVO DERIVED EMBRYOS 

 The number of genes differentially expressed between in vitro produced, in vivo 

derived embryos, with a False Discovery Ratio (FDR) corrected p-value of <0.05 and an 

absolute fold change (FC) value of ≥2, were calculated. The aim was to determine if embryos 

produced in serum-free conditions showed a gene expression pattern closer to that of in vivo 

derived embryos than embryos produced in the presence of serum (Table 3.4, S3.2, S3.3, S3.4, 

S3.5, S3.6 and S3.7).  

 Considering female and male embryos together, those produced in serum-free 

conditions were more similar to in vivo derived embryos, having five times fewer DE genes 

(207) than embryos produced in serum-containing medium (1,109). Remarkably, this large 

difference was even greater when only male embryos were compared. In male embryos 

produced in the presence of serum, 1,283 genes were differentially expressed while the 

equivalent figure was only 191 in male embryos produced in serum-free conditions. When 

only female embryos were compared with in vivo derived embryos, the number of DE genes 

was drastically reduced for embryos produced in serum-containing medium, while it was 

maintained in embryos produced under serum-free conditions. Nevertheless, the number of 

DE genes in female embryos produced in serum-containing medium (456) was more than 

twice than that of female embryos produced in serum-free medium (192). These results 

indicated that serum supplementation had a greater impact on embryos than serum-free 

conditions, as was suggested by the clustering and PCA, with the greatest impact affecting 

male embryos.  
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Table 3.4. Number of differentially expressed genes and number of up- or down regulated 

genes in Group 1 vs. Group 2, with an FDR corrected p-value of <0.05 and an absolute fold 

change (│FC│) ranging from ≥0 to ≥100. 

Comparison FC0 FC2 FC5 FC10 FC20 FC50 FC100 

All in vivo vs. all 

serum-containing 

generated 

Total 

Up 

Down 

2,186 

1,080 

1,106 

1,109 

624 

485 

148 

78 

70 

51 

22 

29 

24 

5 

19 

8 

1 

7 

5 

1 

4 

All in vivo vs. all 

serum-free 

generated 

Total 

Up 

Down 

534 

223 

311 

207 

55 

152 

18 

1 

17 

3 

0 

3 

1 

0 

1 

0 

0 

0 

0 

0 

0 

Male in vivo vs. 

male serum-

containing 

generated 

Total 

Up 

Down 

1,801 

919 

882 

1,283 

760 

523 

329 

236 

93 

136 

91 

45 

68 

46 

22 

25 

15 

10 

11 

6 

5 

Male in vivo vs. 

male serum-free 

generated 

Total 

Up 

Down 

311 

124 

187 

191 

59 

132 

28 

4 

24 

6 

1 

5 

1 

0 

1 

1 

0 

1 

1 

0 

1 

Female in vivo vs. 

female serum-

containing 

generated 

Total 

Up 

Down 

458 

231 

227 

456 

229 

227 

203 

85 

118 

85 

24 

61 

41 

9 

32 

14 

2 

12 

7 

1 

6 

Female in vivo vs. 

female serum-free 

generated 

Total 

Up 

Down 

221 

80 

141 

192 

65 

127 

77 

21 

56 

27 

5 

22 

11 

3 

8 

2 

0 

2 

1 

0 

1 

Male in vivo vs. 

female in vivo 

generated 

Total 

Up 

Down 

225 

69 

156 

119 

40 

79 

25 

17 

8 

18 

14 

4 

13 

11 

2 

12 

11 

1 

11 

11 

0 

Male serum-

containing vs. 

female serum 

containing 

generated 

Total 

Up 

Down 

54 

17 

37 

54 

17 

37 

47 

15 

32 

35 

14 

21 

29 

12 

16 

17 

11 

6 

14 

11 

3 

Male serum-free vs. 

female serum-free 

generated 

Total 

Up 

Down 

54 

14 

40 

48 

14 

34 

19 

12 

7 

13 

10 

3 

9 

8 

1 

8 

8 

0 

8 

8 

0 
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 In murine embryos it was reported that, after exposure of morulae to heat stress in 

vitro for 24h followed by subsequent transfer to pseudopregnant recipients, only 28% of the 

fetuses obtained on day 14 were males, compared to 55% in the control group (Perez-Crespo 

et al. 2005). Also in humans, maternal stress during early pregnancy, or at the time of 

conception, led to a lower male-female ratio at term (Hansen et al. 1999). Therefore, it seems 

that male embryos are more susceptible to suboptimal environmental conditions than female 

ones and, as demonstrated in the present study, this susceptibility might be reflected in their 

gene expression pattern. Surprisingly, studies from previous decades repeatedly reported 

more male than female calves born after in vitro embryo production (using mostly media 

supplemented with serum) (Van Soom et al. 1994; Massip et al. 1996; Camargo et al. 2010), 

suggesting that more male than female embryos survive after in vitro production. To explain 

this apparent contradiction, it has been hypothesized that, in previous days, a bias towards 

more male calves was introduced by the practice of selecting fast cleaving embryos for 

transfer (Gutierrez-Adan et al. 2014). Since male embryos develop faster than female 

embryos, more males would therefore have been transferred (Gutierrez-Adan et al. 2014).  

 Not only male embryos produced in the presence of serum showed a more deviant 

transcriptome than their female counterparts compared to embryos derived in vivo; 

moreover, only 275 of their DE genes were also differentially expressed in females. Similarly, 

even though male and female embryos produced in serum-free conditions showed the same 

number of differentially expressed genes compared to embryos derived in vivo (191 and 192 

respectively), only 44 of those genes were common in both sexes. This generates additional 

evidence to support the concept that male and female embryos respond differently to the 

environment. However, for the two conditions, the common DE genes of both sexes were also 

equally up- or down-regulated. Moreover, 38 out of the 44 common DE genes in both sexes 

were down-regulated in in vivo derived embryos compared to those generated in serum-free 

medium. In the case of embryos generated in serum-containing medium, 127 out of 275 

common genes were down-regulated in vivo.   

 Interestingly, more DE genes (FC ≥2) were up-regulated in embryos produced in serum-

free conditions compared with in vivo derived embryos, irrespective of whether all embryos, 

male, or female, were compared. Surprisingly, more DE genes were up-regulated in in vivo 

derived embryos compared to embryos produced in serum-containing medium when all and 



Chapter 3 

97 
 

only the male embryos were considered. When all the embryos were considered, this 

tendency was reversed to give an FC ≥20, while when only male embryos were considered, 

the tendency was maintained for all FC. When female embryos were compared, the same 

number of DE genes were up-regulated in both groups with FC ≥2. From FC ≥5 onwards, more 

genes were up-regulated in embryos produced in serum-containing medium than in embryos 

derived in vivo (Table 3.4). 

 In a comparable study, Driver et al. reported that between embryos derived in vivo and 

those produced in vitro most of the DE genes were up-regulated in vivo for all the FC. Their 

study differed in a few important points from the present experiments. For example, they 

used a hybrid serum-IVM/serum-free-IVC in vitro conditions and in vivo derived embryos from 

non-superovulated cows, whereas we used superovulated cows. It is known that the 

superovulatory treatment can have an effect on the gene expression pattern of embryos 

recovered (Market-Velker et al. 2010b). Moreover, no replicates were performed in the study 

by Driver et al., in which only one pool of in vivo derived and one pool of in vitro produced 

embryos were compared (Driver et al. 2012). Therefore, whether the differences in the results 

between Driver et al. and the present study are due to the effect of the superovulation/in vitro 

production conditions on the gene expression pattern of the embryos, or to the lack of 

replicates in the Driver et al. study needs to be investigated further.  

GENES DIFFERENTIALLY EXPRESSED BETWEEN MALE AND FEMALE EMBRYOS 

 Only a few genes were differentially expressed when male and female embryos were 

compared under the same conditions (Table 3.4, S3.8, S3.9, and S3.10). In in vivo derived 

embryos, 119 genes were differentially expressed. Under in vitro conditions, the number of 

DE genes between male and female embryos decreased dramatically to less than half, with 

only 54 and 48 genes differentially expressed in serum-containing and serum-free medium, 

respectively. Of those, more genes (79, 37, and 34 respectively) were up-regulated in females 

than in males under all conditions.  

 The low number of genes found to be differentially expressed between male and 

female embryos contrasts with previous reports. Bermejo-Alvarez et al. showed one third 

(2,921) of the expressed genes to be differentially expressed between male and female bovine 

blastocysts produced in serum-containing medium (Bermejo-Alvarez et al. 2010). We found 
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only 225 DE genes between sexes in in vivo derived embryos and 54 in both serum-free and 

serum-containing in vitro conditions (Table 3.4), considering in both studies FDR corrected p-

value <0.05 and all fold changes. These differences may be due to the large sample size used 

in the Bermejo-Alvarez et al. study increasing the statistical power to detect smaller 

differences between groups. However, when only genes with absolute fold changes of ≥2 were 

considered, the results of both studies became very similar. Bermejo-Alvarez et al. found that 

55 genes were differentially expressed between male and female embryos produced in serum-

containing medium, which corresponds almost exactly with the 54 genes that we found to be 

different according to sex in embryos produced in serum-containing medium. Similarly, in our 

serum-free medium, the number of DE genes between the sexes was 48. Only in embryos 

derived in vivo did we find a larger number of DE genes (119). On the other hand, Chitwood 

et al. found 168 genes to be differentially expressed between male and female bovine 

blastocysts (p-value <0.05 and absolute FC ≥2) produced in vitro in a hybrid serum-free/serum 

containing culture system, in which serum was added to the medium after three days of 

culture (Chitwood et al. 2013). However, in this last study, only one female embryo was 

compared with four male embryos. Surprisingly, when comparing our present results with the 

list of DE genes provided by Bermejo-Alvarez et al., the similarities are very few. For example, 

out of the 85 genes with common identity to ours, 20 of them (24%) were common with those 

in in vivo derived embryos, 8 (9%) were common with embryos produced in serum-free 

conditions and only 2 genes (XIST and BDH2) with embryos produced in the presence of serum.    

 Furthermore, the chromosomal distribution of the DE genes between the sexes was 

studied (Figure 3.5). Here, a χ2 analysis was performed to test for significant differences in 

chromosome location between genes up-regulated in each sex and expressed genes. The only 

chromosome that displayed significant differences between DE genes up-regulated in female 

embryos (FDR corrected p-value <0.05 and absolute FC value ≥2) and expressed genes was the 

X chromosome under all conditions. It accounted for 54.4% in vivo, 62.2% in serum-containing, 

and 61.7% in serum-free conditions of the total up-regulated DE genes in female embryos, 

while only 3.6% in vivo, 4% in serum-containing, and 3.8% in serum-free embryos of the 

expressed transcripts were X-linked. This number of X-linked expressed transcripts is very 

similar to the 2.8% reported by Bermejo-Alvarez et al. 2010). However, the percentage of X-

linked genes among the up-regulated DE genes in female embryos was much higher in the 
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present study than the level of 18.1% noted by Bermejo-Alvarez et al. (Bermejo-Alvarez et al. 

2010). Moreover, in contrast to Bermejo-Alvarez et al., we found chromosome 17 to display 

significant differences between DE genes up-regulated in male embryos and expressed genes 

under all conditions. In fact, 12.5% for in vivo derived, 29.4% for serum-containing, and 35.7% 

for serum-free of the total up-regulated DE genes in male embryos belonged to chromosome 

17, while only 2.9% of the expressed transcripts were from chromosome 17 under all 

conditions. Surprisingly, the X chromosome also displayed significant differences between DE 

genes up-regulated in male embryos produced in serum-containing medium and expressed 

genes, with 23.5% of the DE genes up-regulated in males being X-linked.    

 

 

Figure 3.5. Chromosome distribution of the differentially expressed genes between male and 

female embryos. The bars represent the percentage of genes differentially expressed (FDR 

corrected p-value <0.05 and │FC│ ≥2) up-regulated (above) and down-regulated (below) in 

males vs. females belonging to each chromosome in each of the three conditions studied.  

 

RNA-SEQ DATA VALIDATION 

 RNA-seq data was validated by RT-qPCR using 4 genes (PHGDH, HMGCS1, IDI1, and 

SFN) in 10 individual early embryos per condition, performing a total of 8 comparisons. The 

values obtained were normalized with 3 stable reference genes (GAPDH, YWHAZ, and SDHA). 

Three genes, IDI1, HMGCS1, and PHGDH, showed higher expression in embryos produced in 
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serum-free medium compared to those derived in vivo, with averages of 4.02-,7.43-, and 3.31-

fold differences, respectively, using RNA-seq and 2.94- (p-value ˂0.1), 6.14-, and 3.47- fold 

differences, respectively, when measured using RT-qPCR, (p-value ˂ 0.05; Figure 3.6). HMGCS1 

showed higher expression in embryos produced in serum-containing medium than in those 

derived in vivo, with an average of 1.6-fold differences when using RNA-seq and 1.67-fold 

differences when measuring by RT-qPCR (p-value ˂ 0.1). Finally, SFN showed higher expression 

in embryos derived in vivo compared to those produced in serum-containing medium, with an 

average of 10.27-fold differences using RNA-seq, and 8.56-fold differences when measuring 

with RT-qPCR (p-value ˂0.05). The rest of the comparisons did not show significant 

differences, either when analyzed by RNA-seq, or by RT-qPCR, (p-values in all cases ˃0.2). 

Therefore, these 4 genes showed similar patterns of mRNA abundance in RNA-seq and RT-

qPCR. 

 

 

Figure 3.6. Comparison of the differential expression of 4 genes (SFN, HMGCS1, IDI1, and 

PHGDH) between in vivo derived vs. serum-containing produced (left) and in vivo derived vs. 

serum-free produced (right) embryos analyzed by RNA-seq (dark grey) vs. RT-qPCR (light grey). 

Only comparisons that showed differences at p-value ˂0.1 are depicted.  
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FUNCTIONAL ANALYSIS 

 The functional analysis of the differentially expressed genes between the groups was 

performed using the Cytoscape 3.1.1 software and considering significant only annotations 

with a Benjamini-Hochberg corrected p-value of <0.01.  

 When the gene ontology (GO) of the DE between all the embryos produced in serum-

containing medium and all the embryos derived in vivo was examined, 17 biological processes, 

such as “lipid metabolic process” and “DNA repair” (Figure 3.7, Table S3.11), 8 molecular 

functions, such as “anion binding” and “actin binding,” and 21 cellular components were over-

represented. Additionally, 6 KEGG pathways, including “lysosome” and “metabolic pathways” 

were over-represented. The vast majority of the genes included in the GO terms and KEGG 

pathways were up-regulated in in vivo derived embryos and only two biological processes 

(“DNA repair” and “histone ubiquitination”) and two cellular components (“organelle and 

intracellular organelle lumen”) had more genes up-regulated in embryos produced in serum-

containing medium than in in vivo derived embryos. A reduced number of terms and pathways 

were over-represented when only male embryos were taken into account. In particular, 10 

biological processes (Figure 3.7, for the full list of over-represented terms and pathways see 

Table S4 of the published version), 4 molecular functions, 28 cellular components, and 3 KEGG 

pathways were over-represented, most of them in common with the previous comparison, 

but with a few differences such as “alpha-amino acid metabolic process” biological process, 

“enzyme binding” molecular function, “mitochondrion” cellular component, and “cysteine 

and methionine metabolism” KEGG pathway. When only female embryos were considered, 8 

biological processes (Figure 3.7, for the full list of over-represented terms and pathways see 

Table S4 of the published version), 4 molecular functions, and “mitochondrial matrix” cellular 

component were over-represented. Surprisingly, only “oxidoreductase activity, acting on CH-

OH group of donors” molecular function was common in the comparison of all the embryos. 

When only male or female embryos were considered, most of the terms and all the pathways 

had more genes up-regulated in in vivo derived embryos. 
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Figure 3.7. GO biological processes enriched in genes differentially expressed in in vivo vs. 

serum. Enriched GO biological processes with Benjamini-Hochberg corrected p-value <0.01, 

genes per term/pathway ≥5, Goterm levels 3–8, in the genes differentially expressed (FDR 

corrected p-value <0.05, │FC│ ≥2) in, (A) all the embryos, (B) only male embryos and, (C) only 

female embryos. The analysis was performed with the ClueGO 2.1.3 plugin of the Cytoscape 

3.1.1. The size of the nodules represents their significance; orange nodules are only composed 

of genes up-regulated in vivo, grey nodules are composed of at least 5 genes up- and 5 genes 

down-regulated in vivo. 

 

 On the other hand, the study of the gene ontology of the DE genes between all the 

embryos produced in serum-free medium and all the embryos derived in vivo, led to 2 

molecular functions “oxidoreductase activity, acting on the CH-OH group of donors, NAD or 

NADP as acceptor” and “tetrapyrrole binding”, and 23 biological processes being over-

represented. These biological processes were related, among other things, to cholesterol and 

amino acid metabolism and biosynthesis (Figure 3.8, Table S3.12). Furthermore, 3 KEGG 
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pathways, such as the “p53 signaling pathway” and “glycine, serine, threonine metabolism” 

were also over-represented. If only male embryos were considered, 18 biological processes 

mostly common to the previous comparison (Figure 3.8, for the full list of over-represented 

terms and pathways see Table S4 of the published version), two molecular functions and two 

KEGG pathways were over-represented. Finally, when only the female embryos were 

considered, 10 biological process (Figure 3.8, for the full list of over-represented terms and 

pathways see Table S4 of the published version) and one KEGG pathway (“Glycine, serine, 

threonine metabolism”) were over-represented, all in common with the ones over-

represented when all the embryos were considered. In contrast to the situation observed 

when comparing in vivo-derived embryos with those produced in vitro in the presence of 

serum, all the GO biological processes and KEGG pathways contained mostly, or even only, 

genes down-regulated in in vivo-derived embryos, when compared to embryos produced in 

serum-free medium. 

 In the mouse, it has been reported that during the first days of pregnancy, the mother 

supplies most of the cholesterol needed by the embryo (Tint et al. 2006). Therefore, embryos 

derived in vivo will not have to synthetize cholesterol, in contrast to embryos produced in vitro 

in serum-free medium. Embryos produced in vitro in the presence of serum do not show over-

representation of these pathways, indicating that serum supplementation during embryo 

culture provides the lipids necessary for development. In addition, the over-representation of 

cholesterol biosynthesis and sterol synthesis in cattle embryos produced in vitro (with serum 

present during maturation but the subsequent culture in serum-free conditions) compared to 

in vivo derived embryos was described previously by Driver et al. (Driver et al. 2012). These 

results also suggest that the over expression of genes involved in lipid biosynthesis depends 

on the embryonic culture conditions, but is independent of the oocyte maturation conditions 

used, indicating that the oocytes matured in the presence of serum do not accumulate all the 

lipids needed for their development. Interestingly, biological processes involved in “DNA 

repair,” the “p53 signaling pathway” and “response to reactive oxygen species” had more 

genes up-regulated in embryos produced in vitro than embryos derived in vivo. This indicates 

that in vitro production is a source of stress for embryos regardless of culture conditions. No 

functional categories were over-represented when male and female embryos were compared.   
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Figure 3.8. GO biological processes enriched in genes differentially expressed in the in vivo 

derived embryos vs. those cultured in serum-free medium. Enriched GO biological processes 

with a Benjamini-Hochberg corrected p-value of <0.01, genes per term/pathway ≥5, Goterm 

levels 3–8, in the genes differentially expressed (FDR corrected p-value <0.05, │FC│ ≥2) in, (A) 

all the embryos, (B) male embryos only and, (C) female embryos only. The analysis was done 

with the ClueGO 2.1.3 plugin of the Cytoscape 3.1.1. The size of the nodules represents their 

significance; blue nodules are composed only of genes down-regulated in vivo, grey nodules 

are composed of at least 5 genes up- and 5 genes down-regulated in vivo.  
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CONCLUSIONS 

 Embryos produced under serum-free conditions showed gene expression patterns that 

were more similar to those derived in vivo than embryos produced in vitro in the presence of 

serum. This was true regardless of the sex of the embryos. Importantly, male embryos were 

most affected by suboptimal in vitro conditions, (i.e. serum supplementation) and they 

showed a more deviant gene expression pattern than their female counterparts. Embryos 

produced in the presence of serum showed reduced expression of genes related to small 

molecule metabolism, and an enhanced expression of genes related to DNA repair. However, 

embryos produced under serum-free conditions had a deviant lipid and amino acid 

metabolism gene expression pattern compared to in vivo derived embryos, indicating that the 

serum-free conditions used in this study require further optimization to fulfill the needs of the 

embryo during preimplantation development.  

 All the results of this study provide evidence for the strong and abnormal effects of 

adding serum to embryo culture medium. Therefore, the formulation of the culture media 

should move towards serum-free supplementations, even for research purposes, since 

experiments performed on embryos produced in the presence of serum may lead to 

erroneous conclusions.  
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SUMMARY 

 In this chapter, the immunofluorescent staining required to study the dynamics of 5-

methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) in horse and cattle embryos, with 

especial attention to zygotes, is optimized. Those two species were chosen because fetal 

bovine serum (FBS) is used as medium supplementation for in vitro embryo production in both 

cases. Interestingly, the use of FBS increases the incidence of large offspring syndrome, an 

epigenetic disorder, in cattle but not in horse. In future experiments, we want to determine 

the different effect of FBS, and other medium supplementations, on 5mC and 5hmC patterns 

of those two species, and to see if this effect could be observed by immunofluorescence.  

 First, several DNA dyes were first tested in order to select the best performing dye 

after the strong epitope retrieval treatments necessary to expose the 5mC and 5hmC epitopes 

(Chapter 4.1).   

 Subsequently, a proper technique to determine the parental pronuclear origin was 

optimized based on the asymmetric pattern of two histone 3 modifications. For equine 

zygotes, the asymmetric pattern histone 3 lysine 9 tri-methylation (H3K9me3) was studied 

(Chapter 4.2), while the pattern of H3K9me3 and histone 3 lysine 27 di-tri-methylation 

(H3K27me2-3) was described for bovine zygotes (Chapter 4.3). In both chapters, the possibility 

of combining the immunostaining of H3K9me3/H3K27me3 with the 5mC and 5hmC 

immunostaining was discussed as well, with focus on the epitope retrieval treatments. 

 In this chapter, we only used equine and bovine zygotes. Nevertheless, according to 

our observations, the best DNA counterstaining (Ethidium homodimer 2) can be used in every 

species, as the epitope retrieval treatments applied to bovine and equine zygotes are similar 

or even stronger to those used in other species. The immunofluorescent staining optimized 

here can also be applied to all preimplantation developmental stages in cattle and horse. 

However, since the asymmetric pattern of histone modifications is not completely conserved 

between species, it should be tested before applying it in other species. 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

DNA COUNTERSTAINING FOR METHYLATION AND HYDROXYMETHYLATION 
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SUMMARY 

 Immunostaining is the preferred technique to assess differences in methylation and 

hydroxymethylation status of both pronuclei in single zygotes. DNA counterstaining is needed 

to delineate the pronuclear area for quantification purposes. For a correct epitope retrieval of 

5-methylcytosine and 5-hydroxymethylcytosine in bovine zygotes, 1h denaturation with 4N 

HCl is needed. However, DNA stains are sensitive to denaturation. Therefore, four DNA stains 

were tested after 1h of denaturation with 4N HCl in this study. After this treatment, DAPI and 

Hoechst failed to bind DNA, but both Propidium Iodide and Ethidium homodimer 2 

successfully bound it and both pronuclei were stained. 
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INTRODUCTION 

 Immunofluorescent staining is a technique commonly used to evaluate the presence 

of 5-methylcytosine (5mC), and recently also 5-hydroxymethylcytosine (5hmC), in 

preimplantation embryos of different mammalian species. It is especially used in zygotes 

because at that stage differences between methylation and hydroxymethylation patterns in 

maternal and paternal pronuclei can be evaluated (Dean et al. 2001; Fulka et al. 2004; Reis 

Silva et al. 2011; Salvaing et al. 2012; Li and O'Neill 2013). This technique has been used to 

assess the dynamics of DNA methylation and hydroxymethylation in pronuclear stages (Fulka 

et al. 2004; Reis Silva et al. 2011; Salvaing et al. 2012; Li and O'Neill 2013) and to compare the 

effect of different Assisted Reproductive Technology (ART) conditions on the epigenetic status 

of zygotes (Dean et al. 2001; Abdalla et al. 2009). For revealing the dynamics of the 

methylation and hydroxymethylation pattern of bovine zygotes, correct epitope retrieval is 

essential and, as such, a “deep denaturation” step is needed. If the epitope retrieval is only 

partial, the results may be biased because of this technical drawback (Li and O'Neill 2012). At 

the same time, DNA counterstaining is essential to perform a correct analysis; it is necessary 

to assess the total pronuclear area in order to quantify the presence of methylation and 

hydroxymethylation. DNA dyes are very sensitive to denaturation because this step causes 

changes in the structure of the DNA that totally or partially hamper the binding of the dyes. 

For bovine zygotes, different DNA dyes have been used within different immunostaining 

protocols, producing controversial results (Dean et al. 2001; Beaujean et al. 2004; Park et al. 

2007). Therefore there is a need for evaluation of different DNA dyes to assess which is the 

superior stain for delimitation of the pronuclear DNA after the denaturation step. 

 In this study, four different fluorescent nuclear stains - Propidium Iodide (PI), Ethidium 

homodimer 2 (EthD-2), Hoechst and DAPI (4´,6-diamidino-2-phenylindole) - were tested as 

DNA counterstaining for methylation and hydroxymethylation immunostaining in bovine 

zygotes. PI and EthD-2 are orange-red fluorescent nuclear stains that bind to DNA by 

intercalating between bases with no sequence preference (Markovits et al. 1979; Suzuki et al. 

1997), while Hoechst and DAPI fluorescence in blue and bind to the minor groove of the DNA 

with preference for regions rich in adenine and thymine (Portugal and Waring 1988). DAPI can 

also bind to RNA by adenine-uracil selective intercalation. PI, Hoechst and DAPI are the DNA 



Chapter 4 

119 
 

stains most commonly used; EthD-2 has been previously used as DNA counterstaining for 

methylation immunostaining in rabbit zygotes (Reis Silva et al. 2011). 

MATERIALS AND METHODS 

EMBRYO PRODUCTION 

 Bovine zygotes were obtained by routine in vitro production methods (Wydooghe et 

al. 2014). Briefly, ovaries from Holstein cows were collected at a local slaughterhouse and 

processed within 2h. Cumulus oocyte complexes were aspirated from follicles between 4 and 

8 mm in diameter and matured in groups of 60 in 500 µL of maturation media consisting in 

modified TCM-199 medium (GIBCO-BRL Life Technologies) supplemented with 20 ng/mL EGF 

(Epidermal Growth Factor; Sigma E4127) and 50 µg/mL gentamicin for 22h at 38.5°C in 5% 

CO2-in-air. Frozen-thawed sperm from a Holstein bull was separated through a discontinuous 

Percoll gradient (45 and 90% (v/v); VWR International). The final sperm concentration of 1x106 

spermatozoa/mL was adjusted in IVF-TALP, consisting of bicarbonate buffered Tyrode 

solution, supplemented with 6 mg/mL BSA (bovine serum albumin; Sigma A8806) and 20 

µg/mL heparin (Sigma). Matured oocytes were washed and incubated with the sperm for 22h. 

Presumptive zygotes were collected 22h after fertilization, fixed in 4% paraformaldehyde for 

20 min at room temperature (RT) and kept in 2% paraformaldehyde at 4°C for a maximum of 

4 days until immunostaining was performed. 

 At least three replicates were performed, and a total of 296 zygotes were stained in 

this study, including test groups, negative controls and non-immune immunoglobulin controls. 

Of those, 64 zygotes were stained with PI, 92 with EthD-2, 95 with Hoechst and 45 with DAPI. 

IMMUNOFLUORESCENT STAINING 

 The collected zygotes were washed in phosphate-buffered saline (PBS, Gibco) 

containing 0.5% bovine serum albumin (Sigma-Aldrich) (PBS-BSA) for 1h at RT. After washing, 

the embryos were subsequently permeabilized with 0.5% Triton X-100 (Sigma-Aldrich) and 

0.05% Tween 20 (Sigma-Aldrich) in PBS for 1h at RT, and then washed 3 times for 2 min in PBS-

BSA. Epitope retrieval was performed by treating the embryos with 4N HCl for 1h at RT and 

with 100 mM TrisHCl (pH 8.5) for 10 min at RT, followed by washing three times with PBS-BSA 
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for 5 min. The zygotes were treated with 1 mg/mL RNase A (Affymetrix) for 30 min at 37°C to 

avoid the binding of PI, EthD-2 and DAPI to RNA (Suzuki et al. 1997) and were washed three 

times with PBS-BSA for 5 min. The zygotes were subsequently incubated with the nuclear stain 

- either PI (25 µg/mL) in PBS-BSA for 30 min at RT, EthD-2 (0.5 nM) in PBS-BSA for 30 min at 

RT, Hoechst 33342 (0.1 mg/mL) in PBS-BSA for 20 min at RT or DAPI (5 µg/mL) in PBS-BSA for 

20 min at RT and washed four times with PBS-BSA for 2 min. All nuclear stains were purchased 

from Molecular Probes. Unspecific binding of DAPI occurs when the pH is different from 7.0. 

Therefore, an equilibration step of 5 min with McIlvaine’s buffer (pH 7.0) was performed 

before the incubation with DAPI. After washing, the zygotes were incubated in 30% goat 

serum (Gibco) and 0.05% Tween 20 in PBS (blocking solution) at 4°C overnight. Embryos used 

as negative control remained in blocking solution until the time of incubation with the 

secondary antibodies. Before incubation with the antibodies, the zygotes were washed three 

times with PBS-BSA for 2 min. 

EVALUATION OF METHYLATION 

 After washing, test zygotes were incubated with 0.01 mg/mL mouse anti 5mC 

(Epigentek) in blocking solution overnight at 4°C. Part of the zygotes were incubated with 

mouse IgG1 (non-immune) control antibody (0.01 mg/mL; cat. no. M7894 Sigma-Aldrich) in 

blocking solution overnight at 4°C. After incubation with the primary antibodies, all of the 

zygotes, including negative controls were washed three times for 10 min in PBS-BSA and 

subsequently incubated with the secondary antibody goat anti-mouse FITC (9 µg/mL; Life 

technologies) for 1h at RT. 

EVALUATION OF HYDROXYMETHYLATION 

 After washing, the test zygotes were incubated with 1:150 rabbit anti 5hmC (Active 

Motif) in blocking solution overnight at 4°C. Part of the zygotes were incubated with rabbit 

IgG (non-immune) control antibody (0.01 mg/mL; cat. no. 011-0102 Rockland) in blocking 

solution overnight at 4°C. After incubation with the primary antibodies, all of the zygotes, 

including negative controls, were washed three times for 10 min in PBS-BSA and subsequently 

incubated with the secondary antibody goat anti-rabbit FITC (10 µg/mL; Molecular Probes) for 

1h at RT. 
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FLUORESCENCE MICROSCOPY 

 To avoid fading, evaluation of the embryos was performed the next day by 

fluorescence microscopy with a Leica DM 5500 B microscope with excitation filters of BP 

360/40 nm, BP 450/90 nm, BP 560/40 nm and a 100 W mercury lamp. The emission spectra 

were respectively detected by BP 470/40 nm (Blue), LP 515 nm (Green) and BP 645/75 nm 

(Red) filters. Images were acquired by Image Database program (Leica). The results were 

confirmed using a Nikon C1si confocal microscope (Nikon) using a Plan Apo VC 60X oil 

immersion objective (Nikon). On this system, laser lines of 408 nm SS, 488 nm SS, 561 nm DPSS 

or 636 nm SS were respectively combined with a BP 440/40 nm (Blue), BP 525/50 nm (Green), 

BP 596/50 nm (Orange) and LP 660 nm (Red) filters. For each wavelength digital optical 

sections were collected using Z-series acquisition every 0.35 µm. 

RESULTS AND DISCUSSION 

 The incubation with the DNA stains was performed before blocking since preliminary 

experiments showed that incubation with blocking solution was impeding the binding of PI 

and EthD-2 to the DNA. The HCl treatment was found to be critical for the immunostaining 

process. Different times of denaturation and different HCl concentrations dramatically 

affected the visualization of 5mC and 5hmC in bovine zygotes. Previous experiments (data not 

shown) revealed that treating the embryos with 2N HCl for 1h was not enough to achieve the 

complete epitope retrieval and hence 5mC and 5hmC could not be visualized. When HCl 

normality was increased to 4N, 1h of denaturation was found to be optimal. 

 Incubations with the non-immune immunoglobulins for both 5mC (mouse) and 5hmC 

(rabbit) were performed in all replicates, and no signal was observed, showing that the 

blocking step was enough to avoid unspecific bindings of the antibodies. 

 The binding of all the tested DNA stains was shown to be sensitive to denaturation 

treatment. After application of such a strong denaturation agent for 1h (Figure 4.1.1), DAPI 

and Hoechst were no longer able to bind DNA, and no staining of the pronuclei was observed 

in any zygote. The other two DNA stains tested, PI and EthD-2, could still bind to the DNA after 

the denaturation treatment, and although variation in the intensity of the counterstaining was 
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observed between zygotes, both pronuclei were stained and correctly visualized in all the 

zygotes. 

 The affinity of PI for the DNA after denaturation appears to be much lower than of 

EthD-2, with the latter showing a stronger signal that was more resistant to fading. This can 

be due to the fact that EthD-2 is also able to bind single-stranded DNA (ssDNA). Therefore, 

DNA intercalators appear to be superior for use as DNA counterstaining than dyes that bind 

to the minor groove of the DNA under these immunostaining conditions. Other commercial 

DNA stains such as YOYO-1, a bis-intercalator member of the TOTO family, have been used as 

counterstaining for 5mC in mouse embryos (Fabian et al. 2009; Santos et al. 2013). In mice, 

the denaturation conditions were different, with shorter incubation times and reduced HCl 

normality. If YOYO-1 is to be applied as counterstaining for 5mC and 5hmC in bovine zygotes, 

it needs to be properly tested under the conditions described in the current article. Anti ssDNA 

antibodies have been previously used as counterstaining for 5mC and 5hmC (Wossidlo et al. 

2011; Salvaing et al. 2012) and constitute an alternative to DNA stains. An advantage is that 

they can bind DNA after strong denaturation treatments, but an important disadvantage is 

that the immunostaining process takes longer to perform and the use of three antibodies 

simultaneously makes triple staining (5mC, 5hmC and ssDNA) more difficult. 

 In conclusion, for epitope retrieval in 5mC and 5hmC immunostaining of bovine 

zygotes, 1h of denaturation with 4N HCl is needed. In these conditions, both PI and EthD-2 can 

be used as DNA counterstaining because they still bind DNA, with EthD-2 being the preferred 

one because it gives the strongest signal. Importantly, DAPI and Hoechst cannot be used 

because they fail to bind DNA after the denaturation conditions needed for the correct 

visualization of 5mC and 5hmC. 
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Figure 4.1.1. Immunofluorescent localization of 5mC (a-b) and 5hmC (a’-b’) after 1h 

denaturation with 4N HCl in pronuclear stage bovine zygotes by confocal microscopy. Both 

5mC and 5hmC antibodies were indirectly labeled with FITC. DNA was counterstained with PI 

(1), EthD-2 (2), Hoechst (3) or DAPI (4). All the images were taken at the same magnification 

(600x). The scale bar represents 10 µm. 
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SUMMARY 

 Hoechst staining has traditionally been used to evaluate fertilization and parental 

origin of pronuclei. However, prevalence of parthenogenetic activation cannot be 

distinguished accurately by this protocol, and variation of relative pronuclear size and position 

makes it impossible to determine parental origin. We demonstrate that in equine zygotes, the 

epigenetic modification histone 3 lysine 9 tri-methylation (H3K9me3) shows an asymmetric 

pattern between maternal and paternal pronuclei. H3K9me3 immunostaining appears to be a 

robust technique to identify the parent of origin of equine pronuclei; it can be used in 

combination with 5-methylcytosine and 5-hydroxymethylcytosine immunostaining, and 

applied to evaluate fertilization.     
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INTRODUCTION 

 In many domestic mammals, including the horse, the traditional method to evaluate if 

fertilization has occurred is the presence or absence of pronuclei. Because the cytoplasm of 

domestic animals is too lipid rich and opaque to visualize the pronuclei, the DNA needs to be 

stained for pronuclear evaluation, with Hoechst being the most commonly used fluorescent 

DNA dye (Hinrichs et al. 2002; McPartlin et al. 2009). However, a major disadvantage is that 

this method is not able to differentiate between normal fertilization and parthenogenesis, 

after which two pronuclei are also formed. Furthermore, it does not allow to evaluate whether 

monopronuclear zygotes have a mono- or bi-parental origin (van der Heijden et al. 2009).  

 To evaluate DNA methylation and hydroxymethylation patterns in pronuclear stages, 

it is necessary to identify the parental origin of the pronuclei. The most commonly used criteria 

to distinguish between maternal and paternal pronuclei are the relative pronuclear size (with 

the paternal pronucleus being larger) and the relative distance to the polar body (with the 

maternal pronucleus being closer), but these criteria cannot be applied in all species (Young 

and Beaujean 2004; Jeong et al. 2007). As an alternative, the differential pattern of the 

epigenetic modification H3K9me3 between paternal and maternal pronuclei, in which 

H3K9me3 is only present in the maternal pronucleus while being absent in the paternal 

pronucleus, has been successfully used in several species, such as rabbit (Reis Silva et al. 2011), 

human (van der Heijden et al. 2009) and mouse (van der Heijden et al. 2009) to determine the 

parental origin of the pronuclei. In pigs (Jeong et al. 2007) and cattle (Park et al. 2007), this 

asymmetric distribution of H3K9me3 is present during the early stages of pronuclear 

development, where the paternal pronucleus displays a weaker H3K9me3 level, whereas with 

the progression of the pronuclear development, the levels of H3K9me3 increase until they are 

similar in both pronuclei.  

 The aim of the current study was to evaluate whether the differential pattern of 

H3K9me3 in the maternal and paternal pronuclei is conserved in the horse and ultimately to 

develop a robust system to determine the parental origin of the pronuclei, which can also be 

applied to evaluate fertilization. This is especially important in the horse because in this 

species conventional in vitro fertilization (IVF) is not successful and in vitro embryos are 

generated by means of intracytoplasmic sperm injection (ICSI). Differentiation between 
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fertilization and parthenogenesis is very useful to evaluate the effect of the injection process 

during ICSI or the effect of different capacitation and activation media while studying IVF. In 

order to combine H3K9me3 immunostaining with 5-methylcytosine (5mC) or 5-

hydroxymethylcytosine (5hmC), to determine the pattern of expression of 5mC and 5hmC 

between maternal and paternal pronuclei, we needed to test whether the H3K9me3 signal is 

present after the denaturation conditions required for 5mC and 5hmC epitope retrieval.   

MATERIALS AND METHODS 

EMBRYO PRODUCTION 

 Equine zygotes were produced in vitro by piezo drill-assisted ICSI as described 

previously (Smits et al. 2012). In brief, equine oocytes were matured in DMEM-F12 based 

medium for 24h. After maturation cumulus cells were removed, and only oocytes with a visible 

polar body were fertilized by ICSI. Equine mature oocytes were parthenogenetically activated 

by incubation with 5 µM Ionomycin (Sigma-Aldrich) in non-capacitation medium (McPartlin et 

al. 2008) for 5 min, holding in non-capacitation medium for 20 min followed by incubation in 

2 mM 6-DMAP (Sigma-Aldrich) in DMEM/F12 for 4h (Hinrichs, personal communication). 

Presumptive zygotes and parthenotes were cultured in DMEM-F12 with 10% fetal bovine 

serum in 90% N2, 5% CO2 and 5% O2 at 38.2°C, and collected 22-24h after production. 

 After collection, zygotes and parthenotes were fixed in 4% paraformaldehyde (PFA) for 

20 min at room temperature (RT) and kept in 2% PFA at 4°C for a maximum of 4 days until 

immunostaining was performed. 

 Three immunostaining replicates were performed using ICSI zygotes obtained in three 

independent experiments. A total of 50 equine ICSI zygotes and 10 parthenotes were stained 

in this study, including test groups, negative controls and non-immune controls.  

IMMUNOFLUORESCENT STAINING 

 The zygotes and parthenotes were subsequently washed in phosphate-buffered saline 

(PBS, Gibco) containing 0.5% bovine serum albumin (BSA, Sigma-Aldrich) (0.5% PBS-BSA) for 

1h at RT. After washing, they were permeabilized with 0.5% Triton X-100 (Sigma-Aldrich) and 

0.05% Tween 20 (Sigma-Aldrich) in PBS for 1h at RT, and washed three times for 5 min in 0.5% 

PBS-BSA.  
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 Zygotes and parthenotes were blocked in PBS containing 2% BSA (2% PBS-BSA) for 1h 

at RT and washed three times for 2 min in 0.5% PBS-BSA.  

 After washing, zygotes and parthenotes were incubated with the primary antibody 

rabbit anti-H3K9me3 (1:100, Active Motif) in 2% PBS-BSA overnight at 4°C. Part of them were 

incubated with the non-immune control antibody rabbit IgG control antibody (0.01 mg/mL; 

Rockland 011-0102) in 2% PBS-BSA overnight at 4°C. Zygotes that served as negative control 

remained in 2% PBS-BSA without the primary antibody.   

 Subsequently, all zygotes and parthenotes including the non-immune and the negative 

control were washed three times for 10 min in 0.5% PBS-BSA and treated with 1 mg/mL RNase 

A (Affymetrix) for 30 min at 37°C to avoid the binding of the nuclear stain Ethidium homodimer 

2 (EthD-2; Molecular Probes) to RNA (Suzuki et al. 1997). They were subsequently washed 

three times in 0.5% PBS-BSA for 5 min and incubated with the nuclear stain 0.5 nM EthD-2 in 

0.5% PBS-BSA for 30 min at RT. The zygotes and parthenotes were washed four times for 2 

min in 0.5% PBS-BSA and incubated with the secondary antibody goat anti-rabbit FITC (20 

µg/mL; Molecular Probes) for 1h at RT in 30% goat serum. 

 In order to combine H3K9me3 with 5mC or 5hmC immunostaining, we tested whether 

anti H3K9me3 antibody could be used in combination with the treatment necessary for 5mC 

and 5hmC epitope retrieval. Therefore, zygotes were incubated with the primary antibody 

rabbit anti H3K9me3, washed three times for 10 min with 5% PBS-BSA, postfixed with 4% PFA 

for 25 min and subsequently washed three times for 10 min in 5% PBS-BSA. It was observed 

that before the epitope retrieval treatment, a postfixing step was needed to correctly visualize 

H3K9me3. Epitope retrieval was performed by treating the zygotes with 4N HCl for 30 min at 

RT and 100 mM TrisHCl (pH 8.5) for 10 min at RT, followed by three times washing with 5% 

PBS-BSA for 5 min and 20s treatment with 0.25% (w/v) trypsin at 37°C (Sigma). Tryptic 

digestion was stopped by incubation with 30% goat serum in PBS for 3 min at RT (Heras et al. 

2014b). After epitope retrieval zygotes followed the protocol as described previously.  
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FLUORESCENCE MICROSCOPY 

 To avoid fading, evaluation of the embryos was performed the next day by 

fluorescence microscopy with a Leica DM 5500 B microscope with excitation filters of BP 

450/90 nm, BP 560/40 nm and a 100 W mercury lamp. The emission spectra were respectively 

detected by LP 515 nm (green) and BP 645/75 nm (red) filters. Images were acquired by Image 

Database program (Leica, Belgium). The results were confirmed using a Leica TSC SPE-II 

confocal microscope (Leica, Belgium) using an ACS APO 63X oil immersion objective (Leica). 

On this system, laser lines of 488 nm or 561 nm were respectively combined with a BP 525/50 

nm (green) and BP 596/50 nm (orange) filters. For each wavelength digital optical sections 

were collected using Z-series acquisition every 0.5 µm. 

RESULTS AND DISCUSSION 

 Incubations with the non-immune control were performed in all replicates, and no 

signal was observed, showing that the blocking step was enough to avoid unspecific bindings 

of the antibodies. No signal was observed in the negative control. 

 When no epitope retrieval step is performed, any DNA stain can be used as 

counterstaining, taking into account the label of the secondary antibody. However, when the 

epitope retrieval treatment was performed, the best DNA stain to be used as counterstaining 

was EthD-2, as demonstrated previously (Heras et al. 2014a).  

 In this study, late pronuclear stages were selected in equine zygotes since in bovine 

and pig zygotes, the difference in H3K9me3 pattern between parental origin is reduced in late 

stages until it finally disappears (Jeong et al. 2007; Park et al. 2007).  

 In parthenotes, H3K9me3 was present in both pronuclei as expected since both are 

from maternal origin (Figure 4.2.1). On the contrary, in ICSI produced zygotes, H3K9me3 was 

intensively present in the maternal pronucleus, whereas the presence of H3K9me3 varied 

from absent to slightly present in the paternal pronucleus (Figure 4.2.1). In all cases, the 

difference in H3K9me3 pattern between maternal and paternal pronuclei could be clearly 

observed.  

 It is also evident from figure 4.2.1, that the pattern of expression of H3K9me3 is evident 

no matter whether there was epitope retrieval or not. Epitope retrieval did not affect the 
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intensity of the H3K9me3 signal, but it slightly reduced the intensity of the counterstaining, as 

expected (Heras et al. 2014a). 

 In conclusion, equine zygotes display an asymmetric H3K9me3 pattern. The H3K9me3 

epigenetic modification is present in the maternal pronucleus, whereas it is absent or 

practically absent in the paternal pronucleus. H3K9me3 immunostaining therefore constitutes 

an easy and reliable tool to determine the parental origin of the pronuclei, with possible 

applications for evaluation of fertilization and in 5mC and 5hmC pronuclear pattern 

determination.  

 

 

Figure 4.2.1. Immunofluorescent localization of H3K9me3 in pronuclear stage ICSI zygotes and 

parthenotes by confocal microscopy. Parthenotes display two maternal pronuclei, while in ICSI 

zygotes one maternal and one paternal pronucleus are seen. Parthenotes were stained 

following the protocol without epitope retrieval whereas ICSI zygotes were stained following 

both protocols, with and without epitope retrieval. Rabbit anti-H3K9me3 antibody was 

indirectly labeled with goat anti-rabbit FITC. DNA was counterstained with EthD-2. All the 

images were taken at 630X. mPN, maternal pronucleus; pPN, paternal pronucleus; pb, polar 

body. The scale bar represents 20 µm. 
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SUMMARY 

 To study the dynamics of 5-methylcytosine and 5-hydroxymethylcytosine in zygotes, 

the parental origin of the pronuclei needs to be determined. To this end the use of the 

asymmetric distribution of histone modifications in pronuclei is becoming more popular. Here, 

we demonstrated that histone 3 lysine 27 di-tri-methylation shows a stable pattern being 

present in the maternal but not in the paternal pronucleus of bovine zygotes, even in late 

stages of pronuclear development. In contrast, the pattern of histone 3 lysine 9 tri-

methylation is very variable, and therefore cannot be used to reliably determine the parental 

origin of bovine pronuclei.  
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INTRODUCTION 

 The 5-methylcytosine (5mC) pattern in preimplantation embryos has become a topic 

of research since it was first determined in mouse zygotes in 2000 (Mayer et al. 2000). Changes 

in methylation patterns are important during the global epigenetic reprogramming that takes 

place during preimplantation development and leads to the establishment of totipotent state 

(Reik et al. 2001). Recently, this research has been extended to other 5-cytosine modifications 

(Inoue et al. 2011), especially 5-hydroxymethylation (5hmC) as they are believed to be 

intermediate stages to demethylation (Wossidlo et al. 2011; Zhang et al. 2012; Li and O'Neill 

2013). To study the dynamics of 5mC and 5hmC, particularly in the pronuclear stages, 

immunofluorescent staining is still the most common technique. Indeed, as only a limited 

amount of DNA can be obtained from a single embryo, a large number of embryos should be 

pooled to perform alternative techniques such as oxidative bisulfite sequencing (Booth et al. 

2013). Besides, a major advantage of immunofluorescent staining is that the dynamics of 5mC 

and 5hmC can be studied separately in the maternal (mPN) and paternal (pPN) pronucleus of 

the zygotes. Traditionally, the parental origin of the pronuclei is identified based on the 

relative distance to the polar body (with the mPN being closer) and the relative size (with the 

pPN being larger) (Dean et al. 2001). However, this method is not accurate in all species (Young 

and Beaujean 2004; Jeong et al. 2007). Alternatively, the asymmetric pattern of different 

histone modifications between the mPN and pPN is being applied more and more to 

determine their parental origin. To this end, histone 3 lysine 9 tri-methylation (H3K9me3) has 

been successfully used in horse (Heras et al. 2015), rabbit (Reis Silva et al. 2011), human (van 

der Heijden et al. 2009) and mouse (van der Heijden et al. 2009), in which it is consistently 

present only in the mPN. In pig (Jeong et al. 2007) and cattle (Park et al. 2007), this asymmetric 

distribution of H3K9me3 is only detected in the early pronuclear stages with the pPN 

exhibiting a weaker H3K9me3 signal. However, when the pronuclear development progresses 

the levels of H3K9me3 in the pPN increase until similar levels as in the mPN. The asymmetric 

pattern of histone 3 lysine 27 tri-methylation (H3K27me3) in human (van der Heijden et al. 

2009) and mouse (van der Heijden et al. 2005) zygotes, and of histone 3 lysine 27 di-

methylation (H3K27me2) in mouse zygotes (van der Heijden et al. 2005) have been used to 

determine the parental origin of the pronuclei, since both modifications are only present in 
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the mPN. To our knowledge, the pattern of these histone modifications has not been studied 

in bovine zygotes yet. 

 Therefore, the aim of the present study was to evaluate if H3K9me3 and H3K27me2-3 

are asymmetrically distributed in the mPN versus the pPN, also in late pronuclear stages, and 

as such, can be used to determine the parental origin of the pronuclei in bovine zygotes. 

Besides, it was evaluated if the H3K9me3 and H3K27me2-3 immunostaining, respectively, can 

be combined with the 5mC or 5hmC immunostaining considering the harsh epitope retrieval 

treatment which is necessary for the latter. 

MATERIALS AND METHODS 

EMBRYO PRODUCTION 

 Bovine zygotes were obtained by routine in vitro production methods (Wydooghe et 

al. 2014). Mature bovine oocytes were parthenogenetically activated by incubation with 5 µM 

Ionomycin (Sigma) for 5 min followed by 2 mM 6-DMAP (6-(Dimethylamino)purine; Sigma) in 

DMEM/F12 (Gibco) for 4h (Heras et al. 2015). Subsequently, they were cultured in SOF 

supplemented with 4 mg/mL BSA (bovine serum albumin; Sigma A9647) and ITS (5 µg/mL 

insulin + 5 µg/mL transferrin + 5 ng/mL selenium). Presumptive zygotes and parthenotes were 

collected 22h after fertilization or activation, respectively, fixed in 4% paraformaldehyde (PFA) 

for 20 min at room temperature (RT) and stored in 2% PFA at 4°C for a maximum of 4 days 

until immunostaining was performed.  

 Three immunostaining replicates with H3K27me2-3 and four with H3K9me3 were 

performed using bovine zygotes and parthenotes produced in independent experiments. A 

total of 150 zygotes and 35 parthenotes were stained, including test groups, negative controls 

(n=14 zygotes) and non-immune controls (14 zygotes and 7 parthenotes). Incubations with 

the non-immune and negative controls were performed in all replicates and no signal was 

observed.  

IMMUNOFLUORESCENT STAINING 

 Both zygotes and parthenotes were washed in phosphate-buffered saline (PBS, Gibco) 

containing 0.5% BSA (0.5% PBS-BSA) for 1h at RT. Subsequently, they were permeabilized with 

0.5% Triton X-100 and 0.05% Tween 20 in PBS for 1h at RT, and washed 3 times for 5 min in 
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0.5% PBS-BSA. Zygotes and parthenotes were blocked in PBS containing 2% BSA (2% PBS-BSA) 

for 1h at RT and washed 3 times for 2 min in 0.5% PBS-BSA. Subsequently, they were incubated 

with the primary antibody, i.e. rabbit anti-H3K9me3 (1:100, Active Motif) or mouse anti-

H3K27me2-3 (0.01 mg/mL; Abcam) respectively, in 2% PBS-BSA overnight at 4°C. In each 

replicate, 2 zygotes and 1 parthenote were incubated with the non-immune control antibody, 

i.e. rabbit IgG control antibody (0.01 mg/mL; Rockland 011-0102) or mouse IgG1 control 

antibody (0.01 mg/mL; M7894 Sigma-Aldrich) respectively, in 2% PBS-BSA overnight at 4°C. 

Zygotes used as negative control remained in 2% PBS-BSA without adding any primary 

antibody. Subsequently, all zygotes and parthenotes including non-immune and negative 

controls were washed 3 times for 10 min in 0.5% PBS-BSA and treated with 1 mg/mL RNase A 

(Affymetrix) for 30 min at 37°C to avoid binding of the nuclear stain Ethidium homodimer 2 

(EthD-2; Molecular Probes) to RNA (Suzuki et al. 1997). Next, they were washed 3 times in 

0.5% PBS-BSA for 5 min and incubated with the nuclear stain 0.5 nM EthD-2 in 0.5% PBS-BSA 

for 30 min at RT. EthD-2 was chosen as DNA counterstaining as we have previously 

demonstrated that it is the best dye to use in combination with the epitope retrieval treatment 

(Heras et al. 2014). After 4 washing steps for 2 min in 0.5% PBS-BSA, they were incubated with 

the secondary antibody, i.e. goat anti-rabbit Alexa fluor 488 (20 µg/mL; Abcam) or goat anti-

mouse Alexa fluor 488 (20 µg/mL; Abcam) respectively, for 1h at RT in 30% goat serum. 

To evaluate if H3K9me3 and H3K27me2-3 antibodies can be used in combination with 5mC or 

5hmC immunostaining in bovine zygotes, we tested these antibodies after the epitope 

retrieval treatment necessary for 5mC and 5hmC, as previously described (Heras et al. 2015). 

Briefly, zygotes were incubated with the respective primary antibody, washed 3 times for 10 

min with 5% PBS-BSA, post-fixed with 4% PFA for 25 min and subsequently washed 3 times for 

10 min in 5% PBS-BSA. For epitope retrieval, the bovine zygotes were first treated with 4N HCL 

for 30 min at RT and 100 mM TrisHCl (pH 8.5) for 10 min at RT, followed by 3 washing steps 

with 5% PBS-BSA for 5 min and 20s treatment with 0.25% (w/v) trypsin at 37°C (Sigma). Tryptic 

digestion was stopped by incubation with 30% goat serum in PBS for 3 min at RT. After epitope 

retrieval, zygotes followed the protocol as previously described.  
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FLUORESCENCE MICROSCOPY 

 The immunofluorescent staining of zygotes and parthenotes was evaluated the next 

day using a Leica TSC SPE-II confocal microscope using an ACS APO 63X oil immersion objective 

(Leica). Laser lines of 488 nm or 561 nm were combined with BP 525/50 nm (Green) and BP 

596/50 nm (Orange) filters, respectively. For each wavelength, digital optical sections were 

collected using Z-series acquisition every 0.5 µm. 

RESULTS AND DISCUSSION 

 In this study, we focused on late pronuclear stages as it has been demonstrated in 

bovine and porcine zygotes that the difference in H3K9me3 pattern between parental origin 

was reduced in late stages and even disappeared eventually (Jeong et al. 2007; Park et al. 

2007). As expected, H3K9me3 (Figure 4.3.1) and H3K27me2-3 (Figure 4.3.2) were present in 

both pronuclei in parthenotes, as both are from maternal origin. However, in zygotes, 

different expression patterns of H3K9me3 and H3K27me2-3 were observed. H3K9me3 was 

intensively present in the mPN while its presence in the pPN was very variable, from absent 

(in a few cases) to present at the same level as in the mPN. When H3K9me3 was present in 

both pronuclei though, the staining was in most cases more intense in the mPN. Nevertheless, 

it was not possible to reliably distinguish between both pronuclei using this staining, which 

confirms previous reports (Park et al. 2007) (Figure 4.3.1). In contrast, H3K27me2-3 showed a 

stable pattern, and was only present in the mPN (Figure 4.3.2). Rarely, a weak aspecific signal 

was observed in the pPN. In addition, the binding of both antibodies was not affected by the 

epitope retrieval treatment and could be visualized correctly in all the zygotes (Figures 4.3.1 

and 4.3.2). Interestingly, the signal of H3K9me3 was more intense in the mPN than of 

H3K27me2-3, in zygotes and parthenotes irrespective of the epitope retrieval treatment. Still, 

the intensity of H3K27me2-3 was sufficient to clearly identify the parental origin of the 

pronuclei. In case of polyspermy, H3K9me3 was present in the 3 pronuclei (albeit stronger in 

the mPN; Figure 4.3.1c) while H3K27me2-3 was only present in the mPN (Figure 4.3.2c).  

   

 



 

 
 

 

Figure 4.3.1. Immunofluorescent localization of H3K9me3 in bovine zygotes and parthenotes by confocal microscopy. Rabbit anti-H3K9me3 

antibody was indirectly labeled with goat anti-rabbit Alexa Fluor 488 and DNA was counterstained with EthD-2. In the parthenotes, H3K9me3 was 

present in the two mPN. However, in zygotes, H3K9me3 was present in the mPN while its presence in the pPN was variable (a-c). All the images 

were taken at 630X. The scale bar represents 20 µm. 
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Figure 4.3.2. Immunofluorescent localization of H3K27me2-3 in bovine zygotes and parthenotes by confocal microscopy. Mouse anti-H3K27me2-

3 antibody was indirectly labeled with goat anti-mouse Alexa Fluor 488 and DNA was counterstained with EthD-2. In the parthenotes, H3K27me2-

3 was present in both mPN. In contrast, in zygotes, H3K27me2-3 was present in the mPN but absent in the pPN. All the images were taken at 

630X. The scale bar represents 20 µm. 
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 In conclusion, H3K27me2-3 showed a stable pattern in all the zygotes analyzed being 

only present in the mPN. In contrast, the presence of H3K9me3 in the pPN, was variable 

between zygotes. Therefore, H3K27me2-3 immunostaining is the preferred tool to reliably 

determine the parental origin of the pronuclei in bovine zygotes. Additionally, this 

immunostaining can be used in combination with 5mC and 5hmC immunostaining to 

determine the dynamics of these two cytosine modifications in the pPN and mPN.  
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ABSTRACT 

 Global epigenetic reprogramming is essential during embryo development for the 

establishment of totipotency. In the classic model first described in the mouse, the genome-

wide DNA demethylation is asymmetric between the paternal and the maternal genome. The 

paternal genome undergoes TET-mediated active DNA demethylation, which is completed 

before the end of the first cell cycle. 5-hydroxymethylcytosine was postulated to be an 

intermediate stage towards DNA demethylation, since TET enzymes oxidize 5-methylcytosine 

to 5-hydroxymethylcytosine. In contrast, the maternal genome is protected from active 

demethylation and undergoes replication-dependent DNA demethylation. However, so far 

several species have failed to show the described DNA demethylation process, and 5-

methylcytosine and 5-hydroxymethylcytosine are present during the first cell cycle in both 

parental genomes. In this study, the patterns of both cytosine modifications were evaluated 

in in vitro produced horse zygotes. A significant reduction in the levels of 5-methylcytosine 

was reported between PN2 and PN4 in both parental genomes, and this reduction was 

replication-dependent. Despite this finding, 5-methylcytosine was obviously present in both 

parental genomes throughout pronuclear development. Additionally, no differences in 5-

hydroxymethylcytosine were observed between pronuclear stages regardless the parental 

origin of the pronuclei, and it was highly present during the complete first cell cycle. In 

conclusion, the horse is, together with rabbit, goat and sheep, one of the species that does 

not follow the classical genome-wide DNA demethylation process, at least during the first cell 

cycle.    
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INTRODUCTION 

 During mammalian development, two major waves of epigenetic reprogramming take 

place, one at the level of the germ cells and the other one during preimplantation embryo 

development. Epigenetic reprogramming during embryo development is found to be of major 

importance, because it has been suggested to be necessary for the establishment of a 

totipotent state (Reik et al. 2001). The methylation of the fifth carbon of cytosine, 5-

methylcytosine (5mC), was the first epigenetic modification discovered in the DNA, and is the 

best studied DNA epigenetic modification nowadays. It plays a key role in gene expression 

regulation, X chromosome inactivation, gene imprinting and the control of endogenous 

retrotransposons (Dean et al. 2001). The genome-wide DNA demethylation during embryo 

development was proposed to be asymmetric between the maternal and the paternal 

genome, based on studies in mouse embryos (Mayer et al. 2000; Oswald et al. 2000). The 

complete demethylation of the paternal DNA is achieved before the end of the first cell cycle 

by active demethylation (replication-independent). In contrast, the maternal DNA is protected 

from this active demethylation by STELLA (Szabo and Pfeifer 2012), and undergoes passive 

demethylation with the cell divisions (replication-dependent). However, this asymmetric 

demethylation pattern between the DNA from paternal and maternal origin is not conserved 

in all species, in the rabbit (Shi et al. 2004), the pig (Jeong et al. 2007), the goat (Hou et al. 

2005) and the sheep (Beaujean et al. 2004) no DNA demethylation has been observed during 

the first cell cycle, regardless of the parental origin of the genome.  

 In 2009, the existence of a new modified form of cytosine, 5-hydroxymethylcytosine 

(5hmC), was reported. This new modification is generated by the oxidation of 5mC by the ten-

eleven translocation (TET) enzymes (Kriaucionis and Heintz 2009; Tahiliani et al. 2009). The 

TET family is able to further oxidize 5hmC into to 5-formylcytosine (5fC) and 5-

carboxylcytosine (5caC) (Tahiliani et al. 2009). In this way, the TETs were proposed to be the 

initiators of active DNA demethylation in the paternal pronucleus, and 5hmC was considered 

a DNA demethylation transient. However, the high presence of 5hmC in several tissues, 

including the nervous system, indicates that this epigenetic modification of the DNA plays its 

own epigenetic role (Kriaucionis and Heintz 2009). Yet, the presence of 5hmC has been 

reported in preimplantation embryos of several species, including mice (Salvaing et al. 2012), 

rabbits (Wossidlo et al. 2011) and cattle (Wossidlo et al. 2011). Some studies support the 
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transient character of 5hmC to DNA demethylation (Wossidlo et al. 2011), while others 

indicate it plays its own epigenetic role, being involved in chromatin and transcription 

regulation (Salvaing et al. 2012; Li and O'Neill 2013). 

 As mentioned before, the dynamic patterns of 5mC and to a lesser extent, of 5hmC 

during the first cell cycle have been already described in many species but, to our knowledge, 

not yet in the horse. Therefore, the aim of the present study was to characterize for the first 

time the dynamics of 5mC and 5hmC throughout pronuclear development in both the 

maternal (mPN) and the paternal (pPN) pronucleus of the equine zygote, by using an 

immunofluorescent staining protocol optimized previously (Heras et al. 2014a; Heras et al. 

2015).   

MATERIALS AND METHODS 

IN VITRO EMBRYO PRODUCTION 

 Equine zygotes were produced in vitro by piezo drill-assisted intracytoplasmic sperm 

injection (ICSI) as described previously (Smits et al. 2012). Briefly, ovaries were collected from 

slaughtered mares and processed within 4h. Cumulus oocyte complexes (COCs) were 

aspirated from follicles larger than 5mm using a 16 gauge needle attached to a vacuum pump 

(-100 mm Hg) and matured in groups of maximum 30 in 500 µL of Dulbecco’s Modified Eagle 

Medium Nutrient Mixture F-12 (DMEM/F12) based maturation medium (Galli et al. 2007) for 

minimum 25h at 38.5°C in a humidified atmosphere of 5% CO2-in-air. After maturation, COCs 

were denuded by gentle pipetting in 0.05% bovine hyaluronidase diluted in HEPES buffered 

TCM199 medium. Only oocytes with an extruded polar body were used for piezo drill-assisted 

ICSI. Frozen and fresh sperm of two different stallions was used for ICSI; after Percoll, the 

sperm was washed and held in calcium-free TALP and manipulated in 9% polyvinylpyrrolidone 

in phosphate buffered saline (PBS). All manipulations were performed on the heated stage (37 

°C) of an inverted microscope; a progressively motile sperm was immobilized by piezo pulses 

and subsequently injected into the cytoplasm of a mature oocyte using a piezo drill. The 

injected oocytes were cultured in groups of 10 to 15 in 20 μL drops of DMEM-F12 

supplemented with 10% fetal bovine serum (FBS) at 38.2°C in a humidified atmosphere of 5% 

CO2, 5% O2 and 90% N2. Presumptive zygotes were collected after 8, 11, 15, 19 and 23h in 

culture in order to obtain all the pronuclear stages.  
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 The pronuclear stages were classified as follows; PN0: the sperm head is decondensing, 

meiosis II is finished, the second polar body is extruded and the chromosomes start to 

decondense, and the nuclear envelope of both pronuclei is starting to form; PN1: the DNA of 

the mPN and pPN are decondensed and the nuclear envelope is completed forming two small 

pronuclei; PN2: the pronuclei have increased sizes and are starting to migrate towards the 

center; PN3: the pronuclei have reached their maximum size and they are in apposition; PN4: 

there is a nuclear membrane break down. 

IMMUNOFLUORESCENT STAINING 

 After collection, presumptive zygotes were vortexed for 1 min to remove any 

remaining cumulus cell, fixed in 4% paraformaldehyde (PFA) for 20 min at room temperature 

(RT) and kept in 2% PFA at 4°C for a maximum of four days until immunostaining was 

performed. The zygotes were subsequently washed in phosphate-buffered saline (PBS, Gibco) 

containing 0.5% bovine serum albumin (BSA, Sigma-Aldrich) (0.5% BSA-PBS) for 1h at RT. After 

washing, they were permeabilized with 0.5% Triton X-100 (Sigma-Aldrich) and 0.05% Tween 

20 (Sigma-Aldrich) in PBS for 1h at RT, and washed three times for 5 min in 0.5% BSA-PBS. 

Zygotes were blocked in PBS containing 2% BSA (2% BSA-PBS) for 1h at RT and washed three 

times for 2 min in 0.5% BSA-PBS. After washing, they were incubated with the primary 

antibody rabbit anti-H3K9me3 (1:100, Active Motif) in 2% BSA-PBS overnight at 4°C. 

Simultaneously, 4 zygotes were incubated with the non-immune control antibody rabbit IgG 

(0.01 mg/mL; Rockland 011-0102) in 2% BSA-PBS overnight at 4°C. Zygotes which served as 

negative control remained in 2% PBS-BSA without adding any primary antibody. Next, all 

zygotes, including the non-immune and the negative control, were washed three times for 10 

min in 0.5% BSA-PBS, post-fixed in 4% PFA for 25 min and washed again three times in 0.5% 

BSA-PBS for 10 min. Epitope retrieval was performed as described previously (Heras et al. 

2015) by treating the zygotes with 4N HCl for 30 min at RT and 100 mM TrisHCl (pH 8.5) for 10 

min at RT, followed by 3 times washing with 5% BSA-PBS for 5 min and 20s treatment with 

0.25% (w/v) trypsin at 37°C (Sigma). Tryptic digestion was stopped by incubating the zygotes 

with 30% goat serum in PBS (blocking solution) for 2 min at RT and subsequently washing them 

with 0.5% BSA-PBS 3 times for 5 min. After epitope retrieval, zygotes were treated with 1 

mg/mL RNase A (Affymetrix) for 30 min at 37°C to avoid the binding of the nuclear stain 

Ethidium homodimer 2 (EthD-2; Molecular Probes) to RNA (Suzuki et al. 1997). They were 
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subsequently washed three times in 0.5% BSA-PBS for 5 min and incubated with the nuclear 

stain 0.5 nM EthD-2 in 0.5% BSA-PBS for 30 min at RT. After 4 washing steps of 2 min in 0.5% 

BSA-PBS, zygotes were incubated in blocking solution overnight at 4°C. Subsequently, zygotes 

previously incubated with rabbit anti H3K9me3 were incubated with either mouse anti 5mC 

(0.01 mg/mL; Gentaur) or mouse anti 5hmC (0.01 mg/mL; Active Motif) primary antibodies 

overnight at 4°C. At the same time, zygotes previously incubated with rabbit IgG control 

antibody were incubated with mouse IgG control antibody (0.01 mg/mL; Sigma-Aldrich) 

overnight at 4°C. Zygotes used as negative control remained in blocking solution. After 

incubation with the primary antibodies, zygotes were washed and serially incubated with the 

two secondary antibodies, for 1h at RT each. For the H3K9me3-5mC immunostaining, goat 

anti rabbit FITC (0.02 mg/mL; Life Technologies) and goat anti mouse Alexa Fluor 405 (0.02 

mg/mL; Abcam) secondary antibodies were used, respectively. For the H3K9me3-5hmC 

immunostaining goat anti rabbit Alexa Fluor 405 (0.02 mg/mL; Abcam) and goat anti mouse 

Alexa Fluor 488 (0.02 mg/mL; Abcam) secondary antibodies were used, respectively.  

 Specificity of the primary antibodies was tested by the providing companies, 5mC by 

MeDIP, 5hmC by dot blot and MeDIP, and H3K9me3 by dot blot and peptide array analysis.  

FLUORESCENCE MICROSCOPY AND IMAGE ANALYSIS 

 To avoid fading, evaluation of the embryos was performed 2 days after 

immunostaining was completed, using a Leica TSC SPE-II confocal microscope (Leica, Belgium) 

with an ACS APO 63X oil immersion objective (Leica) and laser lines at 405-, 488- and 561 nm 

wavelengths.  

 For each wavelength, single images were taken independently of the middle section of 

each pronucleus. Additionally, digital optical sections of the complete embryo were taken 

using Z-series acquisition every 0.5 µm. 

 Quantitative analysis was performed using the ImageJ software. The area of the middle 

section of each pronucleus was manually outlined, and the mean fluorescence intensity was 

measured for 5mC/5hmC and EthD-2. The mean fluorescence intensities were then multiplied 

by the pronuclear areas to obtain the total fluorescence of 5mC/5hmC and EthD-2. Finally, for 
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each pronucleus, the total fluorescence of 5mC/5hmC was divided by the total fluorescence 

of EthD-2 to obtain the normalized fluorescence.   

 It has to be noted that when a small part of the mPN and pPN was overlapping, the 

overlapping area was not measured. Additionally, when most of the area of the pronuclei were 

overlapping and the analysis of both pronuclei could not be made independently, these 

zygotes were excluded from the study.  

STATISTICAL ANALYSIS 

 Three replicates were performed for the study of 5mC and four for 5hmC. When the 

data were not normally distributed, a log10 transformation was performed. Additionally, the 

Levene´s Test for equality of variances was made. The dependent T-Test was used to compare 

the normalized fluorescence between the mPN and the pPN. On the other hand, ANOVA, 

combined with Bonferroni post Hoc test, was used to compare the total and normalized 

fluorescence between the different pronuclear stages, independently for the mPN and pPN, 

when the equality of variances was fulfilled. The non-parametric test Kruskal-Wallis was used 

when variances were not equal. All the analyses were performed with SPSS Statistics 23 and 

p-values ˂0.05 were considered significant.  

RESULTS AND DISCUSSION 

 We analyzed for the first time the dynamic patterns of 5mC and 5hmC independently 

for the pPN and the mPN during pronuclear development in in vitro produced equine zygotes. 

To this end, equine zygotes were produced and collected at five time points ranging from 8 to 

23h after ICSI to obtain zygotes in all pronuclear stages. Due to the lipid-rich cytoplasm of 

equine oocytes and zygotes, the determination of the pronuclear stages could only be 

performed after immunostaining. The distribution of the different pronuclear and cleavage 

stages among the time points of collection is illustrated in figure 5.1. Since the embryos were 

produced by ICSI, the timing after the penetration of the spermatozoon could be established 

precisely. There was a lot of variability in the stage of development of the embryos within each 

time point of collection, indicating that the activation of the oocyte and the further pronuclear 

formation is not following the same timing schedule in the individual embryos. The oocyte 

activation rate was increasing with the time in culture. The shortest activation rate was found 
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at 8h after ICSI, with only around 40% of the injected oocytes activated. The activation rate 

increased until 90% at 23h after ICSI, the last time point of collection. At 8h after ICSI, most 

zygotes were at PN1 and PN2 stages. The majority of zygotes collected at 11h after ICSI were 

at PN2 stage, while at 15h after ICSI, an increase of PN3 zygotes was found. At 19h after ICSI, 

zygotes were equally divided over PN2, PN3 and PN4 stages, while at 23h after ICSI, the most 

common pronuclear stages were PN3 and PN4. In the last two time points of collection, 19 

and 23h after ICSI, some embryos already reached the 2-cell stage. Furthermore, 23h after 

ICSI, some 4-cell embryos were collected. Only 2 embryos were collected at PN0, showing that 

this is a very transient stage, and after oocyte activation, the formation of the pronuclei 

happens quickly. In contrast, the PN2 stage, during which the pronuclei are increasing in size 

and migrating towards the center, seems to be the longest stage.  

 

 

Figure 5.1. Distribution of ICSI produced equine embryos among stages of development in each 

time point of collection. The time points of collection are measured in hours after ICSI (hpi). 

The oocytes in metaphase II (MII) did not activate after the injection of the spermatozoon, 

which was found intact in the cytoplasm of the oocyte. The number of oocytes used for each 

time point are indicated on the right. Degenerated oocytes and zygotes were excluded from 

the analysis. 
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 To differentiate between the mPN and pPN, the asymmetric pattern of Histone 3 lysine 

9 tri-methylation (H3K9me3) was used. This histone modification is only present in the mPN 

throughout pronuclear development in many mammalian species, and it has been successfully 

used in horse (Heras et al. 2015), rabbit (Reis Silva et al. 2011), human (van der Heijden et al. 

2009) and mouse (van der Heijden et al. 2009). In the mouse, the relative pronuclear size is 

used to determine the parental origin of the pronuclei (Santos et al. 2002; Li and O'Neill 2012). 

However, this is not possible in the horse because the relative size of the pronuclei is variable, 

and frequently both pronuclei have the same size (Figures 5.2 and 5.3). 

 

 

Figure 5.2. Patterns of 5-methylcytosine (5mC) in the maternal (mPN) and paternal (pPN) 

pronucleus during pronuclear development. 5mC was present throughout pronuclear 

development in both the mPN and the pPN. The parental origin of the pronuclei was 

determined by H3K9me3 immunostaining, with this histone modification only being present in 

the mPN. The DNA was stained by EthD-2. All the images were taken at 630X. The scale bar 

represents 20 μm. 

 



Chapter 5 

159 
 

 

Figure 5.3. Patterns of 5-hydroxymethylcytosine (5hmC) in the maternal (mPN) and paternal 

(pPN) pronucleus during pronuclear development. 5hmC was present throughout the 

pronuclear development in both the mPN and the pPN. The parental origin of the pronuclei 

was determined by H3K9me3 immunostaining and the DNA was stained by EthD-2. All the 

images were taken at 630X. The scale bar represents 20 μm. 

 

 Once the stage and parental origin of the pronuclei were determined, the patterns of 

5mC and 5hmC were studied. To this end, the total fluorescence of 5mC or 5hmC and of DNA 

was calculated for each pronucleus of each zygote, by multiplying the fluorescence intensity 

by the corresponding pronuclear area. Furthermore, the normalized fluorescence of 5mC or 

5hmC of each pronucleus was calculated by dividing the total 5mC or 5hmC fluorescence by 

the corresponding total DNA fluorescence, in order to correct for the DNA replication that 

takes place during pronuclear maturation (Hyttel et al. 1989). When comparing the total DNA 

fluorescence between the different pronuclear stages independently for the mPN and the pPN 

(Figure 5.4), a significant increase was found between PN2 and PN3 in both the mPN (p-value 

=0.002) and the pPN (p-value =0.005). This indicates that, in the horse, the DNA replication (S 

phase) takes place during PN2, which could be the reason for the long duration of the PN2 
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stage. In rabbit, the DNA replication was proven to occur during PN2 and PN3 by injecting DIG-

11dUTP in the zygotes (Reis Silva et al. 2011). In our study, no differences in the total DNA 

fluorescence were found between PN3 and PN4 nor in the mPN or pPN in equine zygotes, 

which indicates that the S phase is restricted to PN2. 

 

 

Figure 5.4. Total DNA fluorescence of the paternal (pPN) and the maternal (mPN) pronucleus 

in each pronuclear stage. Comparisons were made between the different pronuclear stages 

independently for the pPN and the mPN. Different superscripts indicate significant differences. 

In the pPN, significant differences were observed between PN1 vs. PN3-PN4, and PN2 vs. PN3. 

In the mPN, significant differences were found between PN1-PN2 vs. PN3-PN4. The data was 

analyzed with SPSS Statistics 23, for it, the data was log10 transformed to achieve normal 

distribution and analyzed by ANOVA combined with Bonferroni post Hoc test. p-values ˂0.05 

were considered significant. 

 

DYNAMICS OF DNA METHYLATION DURING PRONUCLEAR DEVELOPMENT 

 Throughout pronuclear development, 5mC was highly present in both the mPN and 

the pPN. Interestingly, its distribution in the pronuclei was not homogeneous, with higher 

concentrations in certain regions of the DNA (Figure 5.2).   

 When the dynamics of the normalized 5mC fluorescence between pronuclear stages 

was studied, a significant reduction was observed between PN2 and PN4 in both the pPN (p-

value =0.011) and the mPN (p-value =0.031) (Figure 5.5). This reduction was around 40% in 
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the pPN and around 30% in the mPN. No differences were found between mPN and pPN from 

the same stage. Remarkably, when looking to the total 5mC fluorescence, no differences were 

found between pronuclear stages independently of the parental origin of the pronuclei. On 

the contrary, as observed when all the zygotes of the study were taken together, DNA 

replication caused an increase of the total DNA fluorescence between PN2 and PN3-PN4 in 

both the mPN and the pPN. Considering all these, the loss of methylation (normalized values) 

observed between PN2 and PN4 in both mPN and pPN is likely to be caused by DNA 

replication, and not by an active demethylation processes, in which case, a reduction of the 

total 5mC should be observed.  

 Active demethylation (replication-independent) of the pPN during the first cell cycle 

was first observed by immunostaining in the mouse, and it resulted in complete DNA 

demethylation of the pPN as early as 8h after fertilization (Mayer et al. 2000). This active 

demethylation of the pPN of murine zygotes was soon confirmed by other groups (Santos et 

al. 2002; Beaujean et al. 2004; Xu et al. 2005), and believed to be conserved in all mammalian 

species (Dean et al. 2001). As such, active demethylation of the pPN was also found in human 

(Beaujean et al. 2004; Xu et al. 2005) and rat (Zaitseva et al. 2007; Yoshizawa et al. 2010) by 

immunofluorescent staining.  

 However, in bovine zygotes, only partial loss of methylation of the pPN during the first 

cell cycle was found (Beaujean et al. 2004). In the rabbit, a loss of methylation in the pPN was 

observed between PN1 and PN3, but methylation levels increased again by PN4, so no erasure 

of the methylation in the pPN was observed in the first cell cycle (Reis Silva et al. 2011). Other 

studies found no loss of methylation in any of the pronuclei of rabbit zygotes (Shi et al. 2004). 

Furthermore, in sheep (Beaujean et al. 2004), pigs (Jeong et al. 2007) and goats (Hou et al. 

2005), no loss of methylation was reported neither in the pPN or the mPN during the first cell 

cycle.  

 Surprisingly, in 2012, the use of a new method for 5mC epitope retrieval, which 

combined a short tryptic-digestion with the traditional acid-treatment, did not show active 

demethylation of the pPN of mouse zygotes, indicating that the previously reported 

asymmetric demethylation of the maternal and paternal DNA in zygotes might be due to an 

immunostaining artifact (Li and O'Neill 2012). Additionally, the use of round spermatid 
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injection (ROSI) to produce mouse embryos has demonstrated that active demethylation of 

the pPN is not necessary for normal embryo development in mouse. Since the embryos 

produced by ROSI showed similar high levels of methylation in pPN and mPN, and the zygotes 

developed to term (Polanski et al. 2008). 

 We compared the traditional acid-treatment (4N HCl) with the new epitope retrieval 

method (4N HCl + tryptic digestion) to evaluate the dynamics of 5mC in equine zygotes, and 

observed that both lead to the same results (Heras et al. 2014b). In the horse, using 

immunostaining, we found no evidences of active demethylation of the pPN in the zygotes 

analyzed, since the total levels of 5mC fluorescence remained constant in both pronuclei 

between the different pronuclear stages. However, when the total 5mC fluorescence was 

normalized against total DNA fluorescence to correct for DNA replication, a reduction in the 

normalized methylation levels between PN2 and PN4 was observed in both mPN and pPN. 

This indicates a loss of methylation by passive demethylation (replication-dependent) in both 

pronuclei, in the horse. This loss of methylation seems faster in the pPN (˜40%) than in the 

mPN (˜30%) in the horse, as it was observed in the mouse using reduced representation 

bisulfite sequencing (RRBS) (Guo et al. 2013). Recent studies using reduced representation 

bisulfite sequencing (RRBS) found active and passive DNA demethylation of both maternal and 

paternal genomes in the mouse zygote. Additionally, passive demethylation (replication-

dependent) was the major contributor to DNA demethylation of both genomes (Guo et al. 

2013; Guo et al. 2014; Shen et al. 2014).  

 The exclusion of Dnmt1 from the nucleus was postulated to be responsible for the 

passive demethylation (Howell et al. 2001). However, recent studies have shown methylation 

of the pPN in rabbit (Reis Silva et al. 2011) and bovine (Park et al. 2007), which indicates the 

presence of an active Dnmt.  

 In bovine, it was reported that the pattern of H3K9me3 was highly associated with the 

pattern of 5mC. Zygotes that presented high levels of 5mC in the pPN also had high levels of 

H3K9me3, while in embryos with low levels of 5mC in the pPN, the levels of H3K9me3 were 

also low (Park et al. 2007). This association was not found in horse, H3K9me3 was never 

present in the pPN, while the levels of 5mC remained high.  
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Figure 5.5. Dynamics of 5mC and DNA levels in the paternal (pPN) and the maternal (mPN) 

pronucleus during pronuclear development in in vitro produced equine zygotes. In both the 

pPN and mPN, a significant reduction in the normalized levels of 5mC (5mC/DNA) from PN2 to 

PN4 was observed. No differences in the total 5mC fluorescence between pronuclear stages 

were found either in the pPN or the mPN. However, an increase in the DNA levels was observed 

between PN2 and PN3-PN4 in both pPN and mPN. Additionally, no differences in normalized 

levels of 5mC were found between mPN and pPN within pronuclear stage. PN1 (n=2), PN2 

(n=18), PN3 (n=13) and PN4 (n=10). The analysis was performed with SPSS Statistics 23, 

different superscripts indicate significant differences, and p-values ˂0.05 were considered 
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significant. The data was log10 transformed to achieve normal distribution when required. 

ANOVA, combined with Bonferroni post Hoc test, was used to compare total 5mC, DNA and 

normalized (5mC/DNA) fluorescence between the different pronuclear stages, independently 

for the mPN and pPN. Only in the comparison of the normalized fluorescence between different 

pronuclear stages in the pPN, the non-parametric test Kruskal-Wallis was used since the 

variances were not equal. Finally, to compare the normalized levels of 5mC between mPN and 

pPN within pronuclear stage, the data was analyzed by dependent T-Test. Due to the low 

sample number (n=2), no statistical conclusions can be drown about PN1 stage. 

  

The embryos used in this study were produced by ICSI. In several species, such as rabbit (Reis 

Silva et al. 2011) and rat (Yoshizawa et al. 2010), the loss of methylation observed by 

immunostaining in the pPN of in vivo derived zygotes, was reduced after in vitro production, 

and especially after ICSI. However, in sheep (Beaujean et al. 2004) and cattle (Abdalla et al. 

2009) no differences in DNA methylation patterns were observed between in vivo and in vitro 

zygotes using the same technique. In mouse, reduced loss of methylation of the pPN was 

observed after IVF when the acid-based epitope retrieval was used for immunostaining. 

Instead, when the acid-tryptic-based epitope retrieval was used instead, no differences in the 

DNA methylation pattern were observed between in vivo-derived and in vitro-produced 

mouse zygotes, with both mPN and pPN showing high levels of DNA methylation (Li and O'Neill 

2012). Whether the observations made in this study truly reveal the dynamics of 5mC in 

equine zygotes or instead only the dynamics of in vitro produced equine zygotes, needs to be 

investigated further. The collection of equine zygotes in vivo is a daunting task, since the horse 

is a monovulatory species that does not respond to superovulation. The ICSI protocol used in 

this study yields 20% blastocysts rate, which is in line with the results obtained by other groups 

(Galli et al. 2007). Additionally, healthy foals have been born from embryos produced using 

the same in vitro production procedure of this study. Therefore, the active demethylation of 

the pPN during the first cell cycle does not seem to be essential for obtaining normal, healthy 

offspring in the horse.  

 No statistically relevant conclusions could be drawn from the PN1 stage, since the 

sample size was only two zygotes. However, 5mC was highly present in both pronuclei in the 

two zygotes analyzed.  
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DYNAMICS OF DNA HYDROXYMETHYLATION DURING PRONUCLEAR DEVELOPMENT 

 The pattern of 5hmC was evaluated in equine zygotes by immunostaining. The 

presence of 5hmC was found throughout pronuclear development in both the pPN and the 

mPN, and its distribution was very homogeneous (Figure 5.3). This contrasts with previous 

studies in the mouse reporting accumulation of 5hmC in partial rings around the nucleolar 

precursor bodies (Salvaing et al. 2012; Li and O'Neill 2013).  

 When first discovered, 5hmC was considered to be only an intermediate form for DNA 

demethylation through TET oxidation (Tahiliani et al. 2009). The inverse patterns between 

5mC and 5hmC reported in mouse, rabbit and bovine zygotes (Iqbal et al. 2011; Wossidlo et 

al. 2011), in which 5hmC was only present in the pPN, support this hypothesis. However, 

indications are raising that 5hmC has its own epigenetic role (Salvaing et al. 2012; Hahn et al. 

2013; Iurlaro et al. 2013; Li and O'Neill 2013). 

 In the present study, no significant differences were observed in the normalized 5hmC 

levels (5hmC/DNA) between pronuclear stages regardless the parental origin of the pronuclei 

(Figure 5.6). This indicates a constant level of 5hmC relative to DNA throughout pronuclear 

development. This persistent level of 5hmC relative to DNA throughout pronuclear 

development has also been reported in mouse (Li and O'Neill 2013). 

 Consequently, when studying the total 5hmC fluorescence between pronuclear stages 

independently in the pPN and the mPN, a significant increase was observed between PN1 and 

PN3 (p-value =0.022) in the pPN, and between PN1 and PN3-PN4 (p-value =0.017 and 0.019, 

respectively) in the mPN (Figure 5.6). Additionally, the total DNA fluorescence between 

pronuclear stages was significantly higher in the pPN and mPN between PN1 vs. PN3-PN4 (p-

value ˂0.01), and PN2 vs. PN3 (p-value ˂0.05). These results indicate that there is an increase 

in the 5hmC associated to the increase of DNA (replication). 
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Figure 5.6. Dynamics of 5hmC and DNA levels in the paternal (pPN) and the maternal (mPN) 

pronucleus during pronuclear development in in vitro produced equine zygotes. Different 

superscripts indicate significant differences. No differences in the normalized levels of 5hmC 

(5hmC/DNA) were observed between the developmental stages in pPN or the mPN. However, 

the levels of 5hmC were significantly lower in the maternal PN3 than the paternal counterpart 

(p-value =0.46). A significant increase in the levels of total 5hmC fluorescence was found in the 

pPN between PN1 vs. PN3, and in the mPN between PN1 vs. PN3-PN4. Additionally, a 

significant increase in the total DNA fluorescence was observed between PN1 and PN3-PN4, 

and PN2 vs. PN3 both in pPN and mPN. PN1 (n=12), PN2 (n=36), PN3 (n=20) and PN4 (n=13). 
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The analysis was performed with SPSS Statistics 23, different superscripts indicate significant 

differences, and p-values ˂0.05 were considered significant. The data was log10 transformed 

to achieve normal distribution when required. ANOVA, combined with Bonferroni post Hoc 

test, was used to compare total 5mC, DNA and normalized (5mC/DNA) fluorescence between 

the different pronuclear stages, independently for the mPN and pPN. Only in the comparison 

of the normalized fluorescence between different pronuclear stages in the mPN, the non-

parametric test Kruskal-Wallis was used since the variances were not equal. Finally, to 

compare the normalized levels of 5mC between mPN and pPN within pronuclear stage, the 

data was analyzed by dependent T-Test.  

 

 Significantly lower levels of normalized 5hmC were found in the mPN than the pPN in 

PN3, with a paternal/maternal ratio of 1.23 (p-value =0.046). This coincides with the significant 

increase of the paternal/maternal ratio of normalized 5hmC between pre- and early-

replication found in the mouse (Salvaing et al. 2012). In our study, DNA replication appears to 

take place between PN2 and PN3 stages based upon the significant increase in total DNA 

fluorescence observed. Therefore, the increase of paternal/maternal 5hmC ratio seems to be 

also associated with replication in the horse. However, we did not observe differences 

between the pPN and the mPN in any of the other pronuclear stages, as has been reported in 

the mouse, rabbit and bovine (Iqbal et al. 2011; Wossidlo et al. 2011; Salvaing et al. 2012). 

 The inverse behavior of 5hmC and 5mC, with 5mC being present only in the mPN and 

5hmC being present only in the pPN, as previously reported in mouse (Iqbal et al. 2011; 

Wossidlo et al. 2011; Zhang et al. 2012), was not observed in the present study conducted in 

the horse. Here, both 5mC and 5hmC were present in both the mPN and pPN throughout 

pronuclear development. Moreover, the pattern of distribution was totally different, with 

5mC more concentrated in some regions, while 5hmC was homogeneously distributed in the 

pronuclei. Additionally, the significant reduction in normalized 5mC levels observed between 

PN2 and PN4 stages in both mPN and pPN, was not translated into an increase of the 

normalized 5hmC levels that remained unchanged, which further reinforce the hypothesis 

that no active DNA demethylation takes place in the horse zygote. Studies in neurons have 

also reported an increase in 5hmC without reduction in the 5mC levels (Hahn et al. 2013). 

Additionally, other studies in mouse zygotes also failed to observe an increase of 5hmC paired 

with the 5mC decrease (Salvaing et al. 2012; Li and O'Neill 2013). 
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 In conclusion, in the present study the dynamics of DNA replication, DNA methylation 

and hydroxymethylation throughout pronuclear development are described for the first time 

in the horse. The significant increase in DNA observed between PN2 and PN3 in both the pPN 

and the mPN indicates that replication takes place at this time in equine zygotes. This 

coincides with a significant reduction of the normalized 5mC fluorescence (5mC/DNA) 

between PN2 and PN4 in both mPN and pPN, while the total 5mC fluorescence remains 

constant. There is no evidence of active DNA demethylation in the pPN but instead, it indicates 

a passive DNA replication-dependent loss of methylation in both the mPN and the pPN in the 

horse. On the other hand, an increase in the total 5hmC fluorescence was associated with the 

increase of DNA during replication. This resulted in constant normalized 5hmC fluorescence 

(5hmC/DNA) levels throughout pronuclear development in both the pPN and the mPN. 

Importantly, the disparity of results found in literature indicates that immunofluorescent 

staining protocols have a great impact on the results obtained. Therefore, a lot of caution 

needs to be taken into account before comparing different studies and drawing conclusions. 
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 When the general idea of this thesis was drafted in 2011, serum was the most 

commonly used medium supplementation for the support of in vitro development of cattle 

and horse embryos. In the nineties, an imprinting-related overgrowth syndrome, the so called 

large offspring syndrome (LOS), was reported in ruminants after the exposure of pre-

elongating embryos to unusual conditions in vitro and in vivo (Young et al. 1998). 

Unfortunately the causes of LOS are not completely elucidated yet, but the use of co-culture 

and serum supplementation has been associated with increased rates of this syndrome in 

sheep and cattle (Young et al. 1998; Vajta et al. 2010). Additionally, serum supplementation 

was also reported to induce developmental abnormalities in mice (Khosla et al. 2001). For 

sanitary reasons and because of its association with LOS, serum started to be gradually 

replaced by other supplements, mainly bovine serum albumin (BSA), for the culture of cattle 

embryos used for transfer. In research, the replacement of serum for the production of cattle 

embryos in vitro was slower due to the high blastocyst rates obtained with this 

supplementation, so much so that serum is still currently used in some laboratories for bovine 

embryo production (Lopera-Vasquez et al. 2016). In horses, serum is nowadays the 

supplement used for embryo culture both for research and for transfer, and so far, no cases 

of overgrowth syndromes have been reported (Johnson et al. 2010; Johnson and Hinrichs 

2015). In 2008, a serum-free culture medium for bovine in vitro embryo production, in which 

serum was replaced by BSA and insulin-transferrin-selenium (ITS), was applied with good 

blastocyst rates (George et al. 2008). Similar serum-free media intended for in vitro bovine 

embryo production were then introduced in several laboratories, including ours (Goovaerts et 

al. 2012; Wydooghe et al. 2014).   

 The first aim of this thesis was to evaluate the effect of this newly developed serum-

free medium on the gene expression of cattle embryos produced, respect to that of in vivo 

derived embryos, and to use these findings to gain insights on how to improve in vitro embryo 

production in cattle. Secondly, since several assisted reproductive technologies (ARTs) are 

reported to induce epigenetic disorders (such as LOS), we aimed to evaluate the effect of in 

vitro production (especially of serum supplementation) on the epigenetic patterns of equine 

and bovine embryos, by means of immunofluorescent staining. And additionally, to study the 

global epigenetic pattern of these two species.   
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6.1 INFLUENCE OF THE ENVIRONMENT ON THE TRANSCRIPTOME AND THE EPIGENOME 

OF THE BOVINE EMBRYO 

6.1.1 The in vivo environment: gold standard? 

 Physiologically, the embryo develops in the oviduct and the uterus and this maternal 

environment in vivo provides the optimal conditions to support the embryo. Therefore, in vivo 

derived embryos can be considered as a gold standard when embryo quality is assessed for 

embryos produced in vitro in different culture conditions. However, also in vivo, the embryos 

can be affected by changes in the environment, such as changes in nutrition and hormone 

treatments, which affect their transcriptomic and epigenetic fingerprint (van Montfoort et al. 

2012). 

 The in vivo embryos used in chapter 3 were obtained from superovulated cows for 

practical reasons. Initially we tested if it was possible to obtain sufficient embryos after natural 

(single) ovulation, since superovulation has been associated with alterations of imprinting in 

the mouse (Market-Velker et al. 2010b), and of gene expression in bovine oocytes (Chu et al. 

2012). However, after inseminating 16 cows, only 3 produced an embryo, each at different 

stages of development. In another study using single ovulating animals, 84 cows were 

necessary to obtain 5 grade 1 blastocysts of the same developmental stage, according to 

International Embryo Transfer Society (IETS) (Stringfellow and Givens 2010). This meant that 

a high number of animals would be necessary for our experiment, and it would take a long 

time so we decided to continue with superovulation. Most studies on transcriptomics using in 

vivo bovine embryos in literature have used superovulated cows (Kues et al. 2008; Vallee et 

al. 2009; Bermejo-Alvarez et al. 2010; Cote et al. 2011; Ghanem et al. 2011; Gad et al. 2012; 

Jiang et al. 2014). Nevertheless, we cannot exclude that superovulation could have influenced 

the results of this study. 

6.1.2 Serum versus serum-free bovine embryo culture 

 The replacement of serum by BSA-ITS, was mainly motivated by the increased 

incidence of LOS reported after the use of serum (Young et al. 1998). Additionally, despite the 

fact that using serum was yielding high blastocyst rates, with high reproducibility of the 

experiments, individual embryo culture did not work under this condition (Wydooghe et al. 
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2014). Therefore, the first experiments of this thesis were focused on the establishment of 

this serum-free culture system. Soon, similar blastocyst rates were obtained with serum-free 

to the ones obtained with serum supplementation. Additionally, individual embryo culture 

was successful under this condition, yielding excellent blastocyst rates (Wydooghe et al. 2014). 

The embryos produced in group under serum-free conditions were of higher quality than the 

ones produced in the presence of serum, showing similar total cell number (TCN) and 

apoptosis, and higher inner cell mass/trophectoderm (ICM/TE) ratio. However, embryo 

development was slower, and hatching rates were significantly lower (Wydooghe et al. 2014).  

 Traditional parameters (developmental timing, blastocyst rates, TCN, ICM/TE rate and 

apoptosis) are valuable but not sufficient for the evaluation of embryo quality, since different 

culture conditions are reported to induce aberrations in gene expression and in epigenetic 

patterns that cannot be determined with the traditional methods (Market-Velker et al. 2010a; 

Driver et al. 2012). Embryos are very plastic, and morphologically normal blastocysts can 

develop under suboptimal conditions (Purpera et al. 2009). However, this capacity of 

adaptation can result in aberrant embryonic development (Duranthon et al. 2008). Whether 

the changes in the transcriptome and the epigenome of the resulting in vitro produced 

embryos are temporary adaptations to the suboptimal conditions or whether they will lead to 

aberrant embryonic development and even to long term effects, such as LOS, needs to be 

elucidated further. In any case, a high deviation from the in vivo transcriptome and epigenome 

indicates how challenging the environment is for the developing embryos. Therefore, we also 

wanted to determine transcriptomic changes and eventual epigenetic modifications, as 

visualized by changes in expression of genes encoding for enzymes responsible for DNA 

methylation. We investigated these changes in embryos produced in both in vitro conditions, 

and compared them to their in vivo counterparts. 

 In chapter 3 we determined that the transcriptome of the bovine embryos produced 

in serum-free culture conditions resemble more that of in vivo embryos than that of the 

embryos produced in serum conditions, independently of the sex of the embryos. Still, the 

embryos produced in serum-free medium showed up-regulation of genes involved in the 

biosynthesis of many molecules, including cholesterol, steroid, isoprenoid and carboxylic acid, 

compared to in vivo derived embryos. The alterations in the lipid pathways of embryos 

produced in serum-free conditions were also previously reported (Driver et al. 2012). Instead, 
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in the embryos produced in serum, the up-regulated pathways were mainly related to DNA 

repair, which is an indication of the detrimental effect that serum supplementation has on 

these embryos.  

 The gene expression of the enzymes responsible for the establishment and the 

maintenance of the DNA methylation, the DNA methyltransferases (Dnmts), was also affected 

by both in vitro conditions. However the alterations were greater in serum (Chapter 3). Dnmt1, 

responsible for the maintenance of the DNA methylation, was 1.6 and 1.8 folds up-regulated 

in serum and serum-free, respectively. On the contrary, the de novo methyltransferases were 

down-regulated in vitro. Dnmt3A was 1.6 folds down-regulated in serum-free and 5.7 folds 

down-regulated in serum, Dnmt3B was 5.2 folds down-regulated only in serum. No differences 

on the gene expression of the TET family was observed between the embryos produced in 

vitro, in neither of the conditions, compared to in vivo derived embryos. This illustrates again 

how embryos cultured in serum deviate more from their in vivo counterparts than embryos 

cultured in serum-free conditions, and that these deviations at the level of the transcriptome 

might have further implications at the epigenetic level. Considering the classic model of global 

epigenetic reprogramming, in cattle global re-methylation starts at the 8-cell stage and it is 

completed by the morula stage (Dean et al. 2003). In chapter 3 we used early blastocyst, in 

which global re-methylation should be already completed. We could hypothesize that the 

reduction of expression of de novo methyltransferases observed in vitro could indicate that 

global re-methylation was completed earlier in vitro, especially in serum. However, it is 

important to consider that even though the different epigenetic marks (epigenome) regulate 

the gene expression (transcriptome), comparisons between epigenome and transcriptome 

are not straightforward. Changes in mRNA levels are not necessary translated into changes at 

the protein level, which is especially true for mRNAs that specify proteins that are part of 

multifunction protein complexes (Schmidt et al. 2007). Furthermore, gene expression 

regulation by epigenetic marks is multifactorial, and not only DNA methylation (which is 

mostly studied) is involved, the other cytosine modifications, histone modifications and non-

coding RNAs, and their interconnections, play also an important role.  

 Bearing in mind the dynamic character of the transcriptome in adaptation to the 

environment, most of the differences in gene expression observed in chapter 3 between in 

vivo derived and in vitro produced blastocysts are expected to be caused by in vitro culture 
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rather than by oocyte maturation. Supporting this hypothesis, in a comparable study, Driver 

et al. reported an over-representation of cholesterol biosynthesis and sterol synthesis in in 

vitro produced compared to in vivo derived blastocysts. In that study, they used serum 

supplementation for oocyte maturation and serum-free supplementation for embryo culture 

(Driver et al. 2012). Interestingly, in chapter 3, these two pathways were over-represented in 

the embryos produced in serum-free conditions compared to in vivo, but not in the embryos 

produced in serum conditions, showing the strong effect that embryo culture has on the 

transcriptome.  Additionally, in a previous study comparing the effect of serum and serum-

free supplementation for individual culture, in oocyte maturation or embryo culture, using the 

traditional methods, blastocysts rates were more similar according to the supplementation 

used for embryo culture. Higher blastocyst rates were obtained when serum-free 

supplementation was used for embryo culture, independently of the supplementation used 

for oocyte maturation compared to embryos cultured in the presence of serum, 

independently of the medium used for oocyte maturation (Wydooghe et al. 2014). 

 To gain further insight into the influence of the environment on the embryonic 

epigenome, we wanted to evaluate the global DNA methylation and hydroxymethylation 

status of embryos, of all developmental stages, produced in vitro in both conditions and to 

compare it to that of embryos derived in vivo. However, by that time, our laboratory did not 

have any experience with the study of epigenetics, and the optimization of a reliable 

immunofluorescent staining protocol was a time consuming task (Chapter 4.1 and 4.3). This 

left no time for the analysis of the effects of the two in vitro conditions on the methylation 

and hydroxymethylation status of the embryos, but it represents an interesting topic for 

further research.   

 Considering all this, serum-free culture is superior to serum for the production of 

bovine blastocysts with a transcriptome closer to that of in vivo and excellent embryo quality. 

Therefore, this strongly encourages the replacement of serum by serum-free conditions even 

for the production of bovine embryos intended for research. However, further optimization 

of this serum-free culture medium is still required.  
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6.2 IMMUNOFLUORESCENT STAINING FOR THE STUDY OF EPIGENETICS 

 Immunofluorescent staining and bisulfite sequencing are the most commonly used 

techniques for the study of epigenetics in gametes and preimplantation embryos (Stouder et 

al. 2009; Market-Velker et al. 2010a; Inoue et al. 2011; Salvaing et al. 2012; Li and O'Neill 

2013). Recently, reduced representation bisulfite sequencing (RRBS) has also been applied to 

study DNA methylation in preimplantation embryos (Smith et al. 2012; Guo et al. 2013).  

 Immunofluorescent staining is a very powerful tool for the study of epigenetics 

because 1) it is very specific, 2) many epigenetic marks can be studied with this technique, 

even some simultaneously; 3) the epigenetic marks can be studied in single embryos and even 

independently in the paternal and the maternal genome of individual zygotes, and 4) global 

changes in the epigenetic patterns can be determined, which is useful to study the epigenetic 

reprogramming that takes place during preimplantation development, and to study the effect 

of in vitro production on epigenetic marks. As a drawback, immunofluorescent staining cannot 

be used for the study of epigenetic marks in specific genes, and cannot detect small epigenetic 

changes induced by different conditions. Bisulfite sequencing can only be used to study 5-

methylcytosine (5mC), although, it cannot differentiate between 5mC and 5-

hydroxymethylcytosine (5hmC). Additionally, it can be used for the study of single genes, and 

therefore, it is commonly used to study the methylation status of imprinted genes (Stouder et 

al. 2009; Market-Velker et al. 2010a; Market-Velker et al. 2010b). Reduced representation 

bisulfite sequencing (RRBS) also fails to differentiate between 5mC and 5hmC, however, its 

genome coverage is larger than that of bisulfite sequencing. Other techniques such as 

oxidative-bisulfite sequencing or methylated DNA immunoprecipitation (MeDIP) require large 

amounts of DNA. For all these reasons, immunofluorescent staining was the technique chosen 

for the study of epigenetic patterns in horse and cattle, in this thesis. 
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 Despite all its advantages, the results obtained by immunofluorescent staining are 

highly influenced by the protocol used, and therefore, careful optimization of this protocol is 

required for its correct use and interpretation. In a recent paper, the technical requirements 

for the correct use of this technique were described (Salvaing et al. 2014), and special 

attention needs to be paid to three main steps.  

- Proper epitope exposure  

- Incubation length and concentration of primary antibodies 

- Image acquisition and quantification 

 

 The immunofluorescent staining of 5mC and 5hmC is a complex process composed by 

many steps that need to be performed in a specific sequence. In figure 6.1 the specific protocol 

optimized in chapter 4 for equine and cattle zygotes is described. The most critical steps, 

namely epitope retrieval, DNA counterstaining and determination of the parental origin of the 

pronuclei, are discussed further in the following pages. 

  

 

 

 

 

 

 

 

 



 

 
 

 

Figure 6.1. Schematic representation of the protocol optimized for the immunofluorescent staining of equine and cattle zygotes. On the left the 

immunostaining sequence is described. The effects of several important steps of the immunostaining at cellular, nucleosome or DNA levels are 

graphically represented on the right. 
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6.2.1 Epitope exposure and DNA counterstaining 

 Proper epitope exposure is essential for obtaining reliable results using 

immunofluorescent staining for the study of epigenetics. Unfortunately, the acid treatment 

required for it, completely or partially hampers the binding of DNA dyes. Therefore, the 

optimization of the epitope retrieval conditions required for each epigenetic mark in each 

species is necessarily associated to the optimization of the required DNA counterstaining.  

 The most commonly used epitope retrieval treatments are based on acid treatment 

and consist of 30 min to 1h incubation with 2 or 4N HCl (Santos et al. 2002; Yoshizawa et al. 

2010; Reis Silva et al. 2011; Kurotaki et al. 2015). Shorter acid treatments have also been used, 

especially in mice (Li and O'Neill 2013). Alternative epitope retrieval treatments include 

DNAseI treatment simultaneous with incubation of 5mC primary antibody for 1h at room 

temperature, used in rat and mouse zygotes (Zaitseva et al. 2007); denaturation with 70% 

formamide at 80˚C for 1 min, used in mice and human zygotes (Xu et al. 2005), and brief tryptic 

digestion combined with acid treatment, used in mice (Li and O'Neill 2013). 

 It has been observed that the paternal and the maternal genome of mouse zygotes 

have different sensitivities to the different epitope retrieval treatments (Li and O'Neill 2012; 

Li and O'Neill 2013). After the traditional acid treatment, 5mC could only be observed in the 

maternal genome of mouse zygotes. However, when a brief tryptic digestion was combined 

to the acid treatment, stable levels of 5mC could be observed in both paternal and maternal 

pronuclei. We have determined that a correct exposure of 5mC and 5hmC epitopes in cattle 

and horse zygotes is achieved after 1h treatment with 4N HCl or 30 min treatment with 4N 

HCl combined with 20s tryptic digestion (Chapter 4.1 and Heras et al. 2014). The addition of a 

brief tryptic digestion in cattle and horse did not change the observed 5mC and 5hmC 

patterns, as previously described in mice (Li and O'Neill 2013). However, only 20s of tryptic 

digestion could shorten in half the length of the acid treatment. For bovine zygotes both 

protocols can be used indistinctly, but in equine zygotes, 30 min treatment with 4N HCl 

combined with 20s tryptic digestion is preferred, because it preserves better the integrity of 

the zona pellucida (ZP). Interestingly, despite the fact that the ZP of equine embryos is thicker 

and harder to penetrate mechanically than that of bovine embryos, it is more sensitive to acid 
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treatment, and 1h incubation with 4N HCl dissolves it almost completely. This is not the case 

in cattle, where after 1h incubation with 4N HCl the ZP is only partially dissolved.   

 As determined in chapter 4.1, under these epitope retrieval conditions, only 

intercalators, and especially Ethidium homodimer 2 (EthD-2), can be used as DNA 

counterstaining. Under different epitope retrieval conditions, other DNA dyes have been 

successfully used in different species. DAPI was successfully used in mouse but after 

incubation with 4N HCl for only 10 min (Li and O'Neill 2013). Additionally, anti-single stranded 

DNA antibodies (Wossidlo et al. 2011; Salvaing et al. 2012) and the intercalating dye YOYO-1 

(Santos et al. 2002) have also been used.  

 The different requirements for epitope retrieval between species, and even between 

the maternal and the paternal pronuclei of the same zygote indicate different chromatin 

conformation between maternal and paternal pronuclei, and between different species 

(Salvaing et al. 2014). This chromatin conformation determines the different accessibility of 

antibodies to the DNA. The methyl group attached to 5-cytosine lies within the major groove 

of DNA, therefore, a linear conformation of the DNA is necessary for 5mC to be accessible to 

the antibodies (Salvaing et al. 2014).   

6.2.2 Incubation length and concentration of primary antibodies 

 For the antibodies to correctly reflect the localization and levels of their target, the 

immunostaining conditions have to allow the antibody-antigen reaction to reach 

thermodynamic equilibrium. A reduction in the concentration of 5hmC primary antibody to 

1:1000 resulted in a reduced signal at the mPN in mouse zygotes (Salvaing et al. 2014). 

Incubation with 5hmC primary antibody for longer than 1h at room temperature or shorter 

than 6h at 4˚C showed higher levels of 5hmC in the paternal than the maternal pronucleus; 

these differences disappeared when saturation binding conditions were used (Li and O'Neill 

2013). We have determined that the most stable results were achieved after 24h incubation 

with each primary antibodies in both equine and bovine zygotes.  
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6.2.3 Determination of the parental origin of the pronuclei 

 One of the main advantages of the use of immunofluorescent staining for the study of 

epigenetics is that epigenetic patterns can be independently determined in the maternal and 

the paternal genome during pronuclear development in single zygotes. This is essential for the 

study of the asymmetric global epigenetic reprogramming that is believed to take place during 

the first cell cycle. To this end, the parental origin of the pronuclei needs to be unequivocally 

determined. In mouse zygotes, the size (with the pPN being the larger) and the relative 

position (with the mPN being the closest to the polar body) of the pronuclei are enough to 

determine their parental origin (Li and O'Neill 2013). However, in many other species, such as 

cattle and horse, the size of both pronuclei is very similar and variable, and the position of the 

pronuclei changes during migration. Despite this fact, several studies have used relative size 

and position to determine the parental origin of the pronuclei in bovine zygotes with 

questionable results (Hou et al. 2005; Abdalla et al. 2009). The asymmetric pattern of some 

histone modifications, being allocated only in the mPN, is frequently used as an alternative for 

the determination of the parental origin of the pronuclei. In chapter 4.2 we demonstrated that 

histone 3 lysine 9 tri-methylation (H3K9me3) was only present in the mPN of the equine 

zygote, which was confirmed in chapter 5 during all pronuclear development. This asymmetric 

pattern has also been observed in rabbit (Reis Silva et al. 2011), human (van der Heijden et al. 

2009) and mouse (van der Heijden et al. 2009). In contrast, in the late pronuclear stages of 

bovine zygotes, H3K9me3 is also variably present in the pPN, as demonstrated in chapter 4.3, 

and therefore cannot be used for parental origin determination of the pronuclei. The same 

observations were made previously in pig zygotes (Jeong et al. 2007). Instead, histone 3 lysine 

27 two-tri-methylation (H3K27me2-3) is only present in the pPN of bovine zygotes, and 

therefore can be used for determination of parental origin. This asymmetric pattern is 

conserved in human (van der Heijden et al. 2009) and mouse (van der Heijden et al. 2005), 

and H3K27me2 in mouse (van der Heijden et al. 2005). The reason for the non-conservation 

of the pattern for histone modifications is not known.  

 In human, the asymmetric pattern of 5mC and 5hmC between the maternal and the 

paternal pronuclei has also been used to determine the parental origin of the pronuclei (Kai 

et al. 2015). However, one study conducted in human zygotes reported that only half of the 

zygotes showed an asymmetric pattern between the pPN and the mPN (Fulka et al. 2004). 
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In conclusion, several methods can be used to determine the parental origin of the pronuclei. 

Nevertheless, these methods cannot be applied to every species, and testing is required 

before their application to every new species.   

6.2.4 Image acquisition and quantification 

 Single image vs. z-stack. A z-stack consists in a series of images taken at different focal 

planes of a selected region of interest. It thus provides a better general idea of the region of 

interest, in this case the pronuclei. However, during z-stack acquisition, the intensity of the 

fluorescence gets reduced due to bleaching, introducing bias between the first and the last 

image acquired.  

 The choice of the secondary antibody for fluorescence quantification is also essential 

to reduce bias due to bleaching. As an example, fluorescein isothiocynate (FITC) is not 

recommended for immunofluorescence quantification because it is prone to photobleaching 

and its signal is sensitive to pH changes. Instead, derivatives of fluorescein such as Alexa fluor 

488 have a greater photostability.    

 Proper correction for pronuclear size and DNA content is also required. The size of each 

pronucleus in a zygote is often different. Therefore, lower fluorescence intensity in the larger 

pronucleus does not necessarily mean lower presence of the epigenetic mark, because it can 

be just distributed in a larger area. Similarly, correction for DNA content is essential for correct 

image quantification, as it was observed in chapter 5. DNA replication takes place during 

pronuclear migration. Therefore, an increase in the total fluorescence intensity of the 

epigenetic mark after DNA replication does not indicate an increase of the mark between 

pronuclear stages. Instead, it indicates that the levels of the epigenetic mark remain constant 

relative to the DNA content during pronuclear development, and that these levels are 

maintained after DNA replication.   

 All in all considered, it is fundamental to keep in mind that immunofluorescence 

quantification is not absolute but relative, and that it is subjected to technical issues, such as 

over-exposed areas in the region of interest, which is very frequent in heterogeneous targets 

such as DNA, and can lead to wrong conclusions.   
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6.3 GLOBAL EPIGENETIC REPROGRAMMING DURING PRONUCLEAR DEVELOPMENT, 

FACT OR ARTIFACT?  

 In the last part of this thesis, we used the 5mC and 5hmC optimized 

immunofluorescent staining for horse zygotes (Chapter 4) to evaluate if our species of interest 

followed the classic model of global epigenetic reprogramming (Chapter 5).  

 The classic model of global epigenetic reprogramming consists in a global erasure of 

epigenetic marks during preimplantation embryo development for the establishment of 

totipotency. The global loss of DNA methylation, excluding imprinted genes and 

retrotransposons, is asymmetric between the maternal and the paternal genome (Figure 6.2). 

The paternal genome undergoes active demethylation (replication-independent) before the 

onset of the first cell cycle. This active demethylation is initiated by the ten-eleven 

translocation 3 (TET3) enzyme that oxidizes 5-methylcytosine (5mC) into 5-

hydroxymethylcytosine (5hmC) (Kriaucionis and Heintz 2009; Tahiliani et al. 2009). Therefore, 

a reduction in the levels of 5mC, combined with a rise in the levels of 5hmC, which will reach 

their minimum and maximum, respectively, are observed during the first cell cycle in the 

paternal genome. In contrast, the maternal genome is protected from active demethylation 

and undergoes passive demethylation by the dilution of the DNA methylation marks with each 

cell division (replication-dependent). The protein STELLA protects the maternal genome from 

active demethylation by binding to the histone modification H3K9me3, excluding TET3 and 

thus avoiding the oxidation of 5mC to 5hmC (Szabo and Pfeifer 2012; Kang et al. 2013). 

Therefore in the maternal genome, a reduction of 5mC after DNA replication, and no 5hmC 

are observed during the first cell cycle. 

 This classic model was established based on studies conducted in the mouse (Mayer et 

al. 2000; Oswald et al. 2000) and at first, it was believed to be conserved in all species (Dean 

et al. 2001). However, several of the species studied did not follow this model, and three big 

groups of species were created according to their DNA demethylation behavior during the first 

cell cycle: 1) species that followed the classic model, showing a complete demethylation of 

the pPN, 2) species that did not show any demethylation of neither the paternal or the 

maternal pronuclei, and 3) species that showed only a partial demethylation of the pPN (Table 

6.1).  
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Table 6.1. Species belonging to each of the three groups according to their DNA methylation 

reprogramming model during the first cell cycle. When controversy in the literature was found, 

the species were assigned to the globally most accepted group. The controversy between the 

studies in rabbit and pigs made it impossible include them in any of the groups. Additionally, 

the observations found in horse in chapter 5 are also not compatible with any of the groups. 

Reprogramming model Species Reference 

Classic model: 

Asymmetric complete 

demethylation 

Mouse (Mayer et al. 2000; Santos et al. 2002) 

Rat (Zaitseva et al. 2007; Yoshizawa et al. 2010) 

Human  (Beaujean et al. 2004a; Xu et al. 2005; Guo et al. 2014b) 

Partial asymmetric 

demethylation 

Cattle  (Beaujean et al. 2004a; Hou et al. 2005; Abdalla et al. 

2009) 

No demethylation Sheep  (Beaujean et al. 2004a; Hou et al. 2005) 

Goat (Hou et al. 2005) 

 

 The mere fact that not all the species studied follow the classic epigenetic 

reprogramming model raises questions about the necessity of this epigenetic reprogramming 

for normal development, but it could be explained by species specific differences. However, 

the use of different techniques, and more importantly of different immunostaining conditions, 

data evaluation and processing has led to contradictory results, even within the same species. 

 In the mouse, the classic model has been confirmed in several studies by 

immunostaining (Barton et al. 2001; Santos et al. 2002; Beaujean et al. 2004a; Xu et al. 2005; 

Inoue et al. 2011; Iqbal et al. 2011; Wossidlo et al. 2011; Zhang et al. 2012; Kurotaki et al. 

2015) and reduced representation bisulfite sequencing (RRBS) (Smith et al. 2012). But other 

studies conducted in mice did not confirm the classical model. In 2012, Salvaing observed, 

using immunostaining, presence of 5mC and 5hmC in both pronuclei during pronuclear 

development, even though the levels of 5mC were lower in the pPN, and the levels of 5hmC 

were lower in the mPN. Additionally, no complementary pattern between 5mC and 5hmC was 

observed in the pronuclei (Salvaing et al. 2012). Furthermore, by changing the epitope 

retrieval conditions, Li observed the same levels of 5mC and 5hmC in both pronuclei during 

the entire pronuclear development (Li and O'Neill 2012; Li and O'Neill 2013). Passive 
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demethylation of the mPN and a combination of passive and active demethylation of the pPN 

was observed by single-cell RRBS (Guo et al. 2013). And a combination of passive and active 

demethylation in both pronuclei was observed by RRBS (Guo et al. 2014a; Shen et al. 2014) 

and hairpin bisulfite sequencing (DHBS) (Arand et al. 2015). Despite the assumption that 

human follows the classic model (Beaujean et al. 2004a; Xu et al. 2005; Guo et al. 2014b), in 

one study, in half of the zygotes 5mC remained at the same level in both pronuclei during 

pronuclear development (Fulka et al. 2004). In the rabbit, the observations ranged from the 

model proposed in the mouse (Wossidlo et al. 2011), to only partial demethylation of the pPN 

(Reis Silva et al. 2011) to no loss of methylation in any of the pronuclei (Beaujean et al. 2004a). 

In pigs, active demethylation of the pPN has been reported in some studies (Dean et al. 2001; 

Fulka et al. 2006), while in others no demethylation was observed (Jeong et al. 2007). Cattle 

is considered to display partial demethylation of the pPN. In the different studies, partial 

demethylation of the pPN (Beaujean et al. 2004a; Hou et al. 2005; Abdalla et al. 2009) but also 

partial active demethylation followed by immediate remethylation of the pPN (Park et al. 

2007) have been reported. The technique used in all these studies was immunofluorescent 

staining, however, in each study different protocols were used. In chapter 4.1 of this thesis, 

we demonstrated that the optimal epitope retrieval for 5mC and 5hmC exposure in bovine 

zygotes was 1h treatment with 4N HCl or 30 min treatment with 4N HCl combined with a brief 

tryptic digestion, both at room temperature. Only in one of these studies 1h treatment with 

4N HCl was used, but it was performed at 37˚C (Hou et al. 2005). Additionally, the 

determination of the parental origin of the pronuclei in two of the studies was based on 

relative pronuclear size and position (Hou et al. 2005; Abdalla et al. 2009), which is not reliable 

for bovine zygotes as it was established in chapter 4.3. Furthermore, in the mentioned studies, 

the guidelines proposed by Salvaing for image acquisition and analysis were not followed 

(Salvaing et al. 2014), and no corrections for pronuclear size and DNA content were applied, 

which we demonstrated in chapter 5 to be of major importance. Therefore, the results 

reported in cattle need to be interpreted with caution, and it is advisable to perform a re-

analysis using the protocol optimized in chapter 4. Unfortunately, time constraints prevented 

us to analyze the 5mC and 5hmC patterns in bovine zygotes with the optimized 

immunostaining protocol. Accordingly in chapter 5, equine zygotes also did not follow the 

classic model of global epigenetic reprogramming, and no asymmetric pattern of DNA 

demethylation during the first cell stage was observed (Figure 6.2). 



 

 
 

 

Figure 6.2. Epigenetic reprogramming at preimplantation embryo development. (A) Classic epigenetic reprogramming model established in the 

mouse. After fertilization, the paternal genome undergoes active demethylation that is completed before the end of the first cell cycle. 

Simultaneously, an increase in 5hmC is observed in the paternal genome, which reaches its maximum at the 2-cell stage, and decreases thereafter. 

In contrast, the maternal genome undergoes passive demethylation through DNA replication, losing half of its methyl groups after each cell 

division. The level of 5hmC remain low during preimplantation embryo development. (B) Epigenetic reprogramming in the horse. Both the paternal 

and maternal genomes undergo passive demethylation in the first cell cycle. The levels of 5hmC remain high in both genomes during the first cell 

cycle. (C) The active demethylation is mediated by the TET enzymes, which oxidize 5mC into 5hmC. (D) In the passive demethylation with the DNA 

replication, the DNA becomes hemi-methylated.    
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 Instead, passive demethylation of both pPN and mPN during the first cell cycle, 

combined with high levels of 5hmC in both pronuclei was demonstrated. Considering the 

observations found in the horse in chapter 5, this species cannot be included in any of the 

proposed reprogramming groups. No other studies have been conducted in the horse to 

compare with ours, but the careful optimization of the immunostaining conditions performed 

in chapter 4 makes us confident of our findings. Nevertheless, it has to be noted that the 

zygotes used in this study were produced after ICSI, which is a technique that has been 

reported to impair active demethylation in rat (Yoshizawa et al. 2010). However, no effects of 

ICSI on the epigenetic dynamics have been observed in mouse (Polanski et al. 2008; Kurotaki 

et al. 2015), sheep (Beaujean et al. 2004b) and cattle (Abdalla et al. 2009). Therefore, the 

effect of in vitro production on the epigenetic dynamics of equine zygotes needs to be further 

elucidated.   

 The controversial results of studies conducted in the same species point out the 

sensitivity of the immunofluorescent staining to technical variations. Clearly, the use of 

different immunostaining protocols and different data processing led to different results 

within the same species. This further questions the reliability of the studies, and makes further 

comparisons between studies very difficult, even within the same species.  

 All these results, together with the observation that mouse embryos which are failing 

to display global demethylation can develop normally to term (Polanski et al. 2008), suggest 

that the global epigenetic reprogramming during preimplantation embryo development is not 

essential for normal development. This indicates that the global epigenetic reprogramming 

during embryo development might not occur as such, or be only restricted to certain genes.   

6.4 SAMPLE SIZE: OPTIMAL VERSUS POSSIBLE 

 Finally, it is important to bear in mind that the use of the correct sample size in an 

experimental study is essential to draw valid conclusions.  

 Before performing any experiment in which the significance of the results will be 

established by statistics, it is essential to calculate the optimal experimental sample size, 

according to the magnitude of the expected differences between the groups. Differences that 

are actually biologically relevant may not be statistically significant if the sample size is too 
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small. On the contrary, if the sample size is too large, the opposite risk exists, meaning that 

significant differences will be found even when they do not have any biological meaning.  

 The absolute minimum number of biological replicates necessary for RNA sequencing 

to be able to perform reliable statistics is 3. In chapter 3, we used in total 24 embryos, 8 

originated from each culture condition, with each embryo constituting a biological replicate. 

Therefore, the number of replicates included in each comparison varied from 8, when 

embryos of both sexes were included in the comparison, to 3, when embryos were segregated 

by sex. Therefore, the number of replicates included in chapter 3 is in every case above the 

minimum, and when all the embryos were included in the comparison, it is higher than most 

of the studies using RNA sequencing (Driver et al. 2012; Chitwood et al. 2013; Graf et al. 2014). 

The main limitation to increase the number of replicates is the high cost of each replicate in 

RNA sequencing. 

 On the other hand, since each embryo constitutes a replicate, the number of embryos 

per comparison is low, especially when the embryos were compared by sex. In some studies, 

to increase the number of embryos without increasing the costs, pools of several embryos 

constitute each replicate (Driver et al. 2012; Graf et al. 2014). In our experiment, pooling was 

not an option due to technical reasons. We wanted to compare the embryos by sex, and hence 

pooling of the embryos could be performed either before or after RNA extraction. For pooling 

before RNA extraction, either sex-sorted semen, or embryo biopsy is required for sex 

determination, and both of these techniques can alter the transcriptome of the embryos. For 

pooling after RNA extraction and sex determination, an extra step of RNA concentration is 

necessary to reduce the volume for library preparation, which lead in RNA loss and reducing 

its quality.  

 Whether the low amount of embryos included in chapter 3 is representative of the 

whole population of embryos produced under those conditions is debatable. However, the 

consistency of the hierarchical clustering and the principal component analysis, and the fact 

that some of the results obtained in chapter 3 were previously reported in a similar study 

(Driver et al. 2012) indicates it is indeed so.  

 In chapter 5 the main limitation was the scarce amount of equine oocytes. Additionally, 

some pronuclear stages are very transitory, as PN1, which combined with the low activation 
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rates of the first time point of collection (only around 40% of the oocytes are activated 8h 

after ICSI), leads to a low number of embryos at PN1 stage, being only 2 when studying 5mC 

patterns. In that situation, no conclusions about the pattern of 5mC at PN1 can be achieved.   

 In experiments in which no statistics are required to draw conclusions, such as the 

evaluation of the presence and/or location of a specific epigenetic mark by 

immunofluorescent staining, the necessary sample size depends on the consistency of the 

observations. If they are very variable, as the pattern of H3K9me3 in bovine zygotes (Chapter 

4.3) a relatively high sample size is required to elucidate the real pattern of the mark. Instead, 

when the observations are consistent, as in chapter 4.2, once the pattern is established, and 

increase in the sample size will not increase the information obtained in the experiment. 

6.5 FURTHER CONSIDERATIONS 

The results obtained in chapter 3 constitute a first step towards the optimization of serum-

free culture medium for in vitro production of bovine embryos. Here we demonstrated that 

serum must be replaced by serum-free culture conditions for bovine embryo production. 

However, the serum-free culture medium used in the study is still not optimal, and many 

genes involved in the biosynthesis of many molecules, such as cholesterol, sterol and alpha-

amino acid, were up-regulated in the embryos produced in serum-free conditions compared 

to in vivo. This could be just a coping reaction of the embryo to this stressful environment, but 

also could indicate that in vivo these molecules are provided by the mother, while under these 

conditions the molecules had to be synthetized by the embryo. The addition of these 

molecules to the serum-free culture medium should be further tested for medium 

optimization. Additionally, the effect of in vitro production in serum-free conditions on the 

epigenetic pattern of bovine embryos during the complete embryo development, still needs 

to be assessed by using the immunostaining protocol optimized in chapter 4.  

Furthermore, the optimized immunofluorescent staining protocol can be applied to gain new 

insights in the epigenetic reprogramming of bovine preimplantation embryos, and to 

determine if, with this new optimized protocol, an asymmetric pattern between pPN and mPN 

is also observed.  
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In chapter 5, the dynamics of 5mC and 5hmC during pronuclear development were 

determined, but the study of the complete pre-elongation development is still lacking. 

Moreover, the 5mC and 5hmC patterns of in vivo derived equine zygotes and embryos need 

to be studied and compared to the pattern of in vitro produced embryos, to elucidate if IVP 

induces global epigenetic changes in equine zygotes.   

6.6 GENERAL CONCLUSIONS 

The conclusions of this thesis are: 

- The replacement of serum supplementation by bovine serum albumin and insulin-

transferrin-selenium (BSA-ITS) for bovine in vitro embryo production is advisable based upon 

the data obtained by means of transcriptomics. Nevertheless, further optimization of this 

serum-free culture medium is required, since the expression of genes involved in the 

biosynthesis of many molecules is up-regulated in embryos produced under this condition, 

compared to in vivo derived embryos. 

- The presence of serum during in vitro production appeared to have a different impact 

on the embryos according to their sex, with male embryos having three times more genes 

differentially expressed compared to in vivo derived embryos, than their female counterparts.  

- A robust immunofluorescent staining protocol was optimized for the study of 

epigenetic patterns of bovine and equine zygotes and embryos. The validity of this protocol in 

other species needs to be evaluated further.  

- For the correct exposure of 5mC and 5hmC epitopes in bovine zygotes, 1h denaturation 

with 4N HCl, or 30 min denaturation with 4N HCl combined with a brief tryptic digestion are 

essential. For equine zygotes, 30 min denaturation with 4N HCl combined with a brief tryptic 

digestion is optimal, since after 1h denaturation with 4N HCl, the fragility of the zygotes is 

highly increased.  

- Under these epitope retrieval conditions, the use of DNA intercalating dyes, especially 

Ethidium homodimer 2 (EthD-2), is required, since DNA dyes that bind to the minor groove, 

such as Hoechst, can no longer bind to the DNA after the denaturation process. 
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- The asymmetric pattern of H3K9me3 can be used to determine the parental origin of 

the pronuclei in equine zygotes. In contrast, the pattern of H3K9me3 is not consistent 

between the paternal and the maternal pronuclei in bovine zygotes. Instead, the asymmetric 

pattern of H3K27me2-3 is recommended for the determination of the pronuclear parental 

origin of bovine zygotes. 

- During pronuclear development in equine, a loss of DNA methylation associated with 

DNA replication (passive DNA demethylation) of both paternal and maternal pronuclei takes 

place. Additionally, the levels of 5hmC remain constant during pronuclear development 

regardless the parental origin of the pronuclei.  

- Taking into account recent literature and the findings of this thesis, there is enough 

evidence to warrant a revision of the classic model of epigenetic reprogramming during 

preimplantation embryo development as earlier described in the mouse. 
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Assisted reproductive technologies (ARTs) are routinely used to produce transferable embryos 

for treatment of infertility in human and for economic reasons in livestock. In recent years, 

ARTs have become more sophisticated, yielding higher blastocysts rates, as we gained more 

in-depth knowledge on embryo development. Despite this positive evolution, the increased 

use of ART is exposing gametes and embryos to suboptimal conditions during a developmental 

period in which they are very susceptible to genetic and epigenetic modifications. Changes in 

the transcriptome and epigenetic pattern of zygotes and embryos have been reported in many 

species, including human. Special attention needs to be paid to the composition of the media 

used for embryo culture, as this has a high impact, not only on blastocyst rates, but also on 

the quality of the produced embryos. 

 Therefore, the evaluation of the effects of ARTs on the produced gametes and 

embryos, in terms of inducing transcriptomic and epigenetic alterations, is fundamental to 

test their safety. Additionally, the knowledge gained with this evaluation can help improving 

ARTs, resulting in the production of more in vivo-like embryos. 

 In chapter 1, the events that take place during preimplantation embryo development, 

and the techniques used to support this development in vitro, the so called assisted 

reproductive technologies are described. Additionally, an overview is given of the effects of 

ARTs on embryo quality and the different techniques used to evaluate the latter.     

 The general aim of this thesis was to study the impact that in vitro production has on 

bovine and equine embryos (Chapter 2). The first aim was to evaluate the effect that two 

different culture conditions have on the transcriptome of bovine blastocysts. The second aim 

was to determine the epigenetic patterns of in vitro produced equine and bovine zygotes, and 

to evaluate if changes in the epigenetic patterns could already be detected at this early stages.   

 First, we used RNA sequencing to examine the effect of exposing embryos to different 

environments on the global gene expression pattern of bovine blastocysts (Chapter 3). To this 

end, we exposed bovine embryos either to a suboptimal environment known to induce 

alterations in the offspring, such as large and less viable calves (serum-containing medium), 

or to an optimized culture medium in which serum has been replaced by bovine serum 

albumin and insulin-transferrin-selenium (BSA-ITS; serum-free conditions). Then, we 

compared the transcriptome of the blastocysts produced under these two conditions to that 
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of in vivo derived blastocysts of the same stage. Serum supplementation had a major impact 

on the gene expression pattern of the embryos, with embryos produced in serum-containing 

medium expressing five times more genes differentially than embryos produced in serum-free 

medium, when compared to in vivo derived embryos (1,109 vs. 207). Importantly, the use of 

serum supplementation for in vitro production of bovine embryos appeared to have a 

different impact on the embryos according to their sex, with male embryos expressing three 

times more genes differentially than their female counterparts (1,283 vs. 456). In contrast, 

male and female embryos produced in serum-free conditions showed the same number (191 

vs. 192) of genes expressed differentially. The pathways affected by in vitro production 

differed depending on the type of supplementation. Embryos produced in serum-containing 

medium had lower expression of genes related to metabolism, while embryos produced in 

serum-free conditions showed up-regulation of pathways related to biosynthesis of different 

molecules, especially lipids. This indicates that further optimization of the serum-free culture 

is required. 

 We concluded that serum-free supplementation is preferred for in vitro embryo 

production in cattle. However, the impact of serum-free embryo culture on the epigenetic 

pattern of such embryos needs to be further evaluated.  

 In a second part of this PhD thesis, an immunofluorescence staining to the study 5-

methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) patterns was introduced in the 

laboratory and optimized (Chapter 4).  

 First, the optimal conditions for both 5mC and 5hmC epitope exposure, and the dye 

used as DNA counterstaining were determined (Chapter 4.1). Based on literature, several 

epitope retrieval treatments were tested. For bovine embryos, 1h denaturation with 4N HCl, 

or 30 min denaturation with 4N HCl combined with a brief tryptic digestion were found to 

yield the best results. In the horse, both treatments successfully exposed 5mC and 5hmC 

epitopes, though only the latter method maintained embryo integrity. Subsequently, the 

ability of binding to DNA after these epitope retrieval conditions of several DNA was tested. 

Intercalating dyes, especially Ethidium homodimer 2 (EthD-2) could successfully bind to DNA 

after these conditions, and therefore, they are the appropriate dyes to use to study of 5mC 

and 5hmC patterns.   
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 Next, a proper technique to determine the parental origin of the pronuclei in equine 

and bovine zygotes was optimized based on the asymmetric pattern of two histone 

modifications. In literature, it has been described in several species that histone 3 lysine 9 tri-

methylation (H3K9me3) and/or histone 3 lysine 27 di-tri-methylation (H3K27me2-3) are only 

present in the maternal pronucleus, while absent in the paternal one. However, these histone 

modification patterns are not completely conserved between species. In equine zygotes, 

H3K9me3 indeed showed an asymmetric pattern between the maternal and paternal 

pronucleus in all pronuclear stages (Chapter 4.2). Instead, in bovine zygotes, H3K9me3 

showed a variable pattern between the maternal and paternal pronucleus, while H3K27me2-

3 was only present in the maternal pronucleus in all pronuclear stages (Chapter 4.3). 

Additionally, the double immunofluorescent staining for 5mC or 5hmC combined with 

H3K9me3 and H3K27me2-3 for equine and bovine zygotes, respectively, was optimized.    

 Finally, the optimized double immunofluorescent staining was applied to study the 

dynamics of 5mC and 5hmC in in vitro produced equine zygotes during global epigenetic 

reprogramming (Chapter 5). A significant reduction in the levels of 5mC was reported during 

pronuclear development in both parental genomes, and this reduction was replication-

dependent. Nevertheless, 5mC was highly present in both parental genomes throughout 

pronuclear development. Additionally, 5hmC was highly present during the complete first cell 

cycle in both parental genomes, and the levels of 5hmC remained stable during pronuclear 

development. Therefore, the horse is one of the species, together with rabbit, goat and sheep 

that do not follow the classical genome-wide DNA demethylation model developed in mouse, 

at least not during the first cell cycle.   

The general discussion and the conclusions of this thesis are presented in chapter 6: 

- The replacement of serum supplementation by bovine serum albumin and insulin-

transferrin-selenium (BSA-ITS) for bovine in vitro embryo production is advisable based 

upon our data obtained by means of transcriptomics. Nevertheless, further 

optimization of this serum-free culture medium is required, since the expression of 

genes involved in the biosynthesis of many molecules is up-regulated in embryos 

produced under this condition, compared to in vivo derived embryos. 
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- The presence of serum during in vitro production appeared to have a different impact 

on the embryos according to their sex, with male embryos having three times more 

genes differentially expressed compared to in vivo derived embryos, than their female 

counterparts.  

- A robust immunofluorescent staining protocol was optimized for the study of 

epigenetic patterns of bovine and equine zygotes and embryos. The validity of this 

protocol in other species needs to be evaluated further.  

- For the correct exposure of 5mC and 5hmC epitopes in bovine zygotes, 1h 

denaturation with 4N HCl, or 30 min denaturation with 4N HCl combined with a brief 

tryptic digestion are essential. For equine zygotes, 30 min denaturation with 4N HCl 

combined with a brief tryptic digestion is optimal, since after 1h denaturation with 4N 

HCl, the fragility of the zygotes is highly increased.  

- Under these epitope retrieval conditions, the use of DNA intercalating dyes, especially 

Ethidium homodimer 2 (EthD-2), is required, since DNA dyes that bind to the minor 

groove, such as Hoechst, can no longer bind to the DNA after the denaturation process. 

- The asymmetric pattern of H3K9me3 can be used to determine the parental origin of 

the pronuclei in equine zygotes. In contrast, the pattern of H3K9me3 is not consistent 

between the paternal and the maternal pronuclei in bovine zygotes. Instead, the 

asymmetric pattern of H3K27me2-3 is recommended for the determination of the 

pronuclear parental origin of bovine zygotes. 

- During pronuclear development in equine, a loss of DNA methylation associated with 

DNA replication (passive DNA demethylation) of both paternal and maternal pronuclei 

takes place. Additionally, the levels of 5hmC remain constant during pronuclear 

development regardless the parental origin of the pronuclei.  

- Taking into account the recently published articles and the findings of this thesis, there 

is enough evidence to warrant a revision of the classic model of epigenetic 

reprogramming during preimplantation embryo development as earlier described in 

the mouse.
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 Geassisteerde voortplantingstechnieken worden routinematig gebruikt om embryo’s 

te produceren om onvruchtbaarheid te behandelen bij de mens of omwille van economische 

of foktechnische redenen bij rundvee. Met de toenemende kennis over de embryonale 

ontwikkeling werden de geassisteerde voortplantingstechnieken in de laatste jaren meer 

ontwikkeld en verfijnd en worden hogere percentages blastocysten bekomen. Ondanks deze 

positieve evolutie leidt het toegenomen gebruik van geassisteerde voortplantingstechnieken 

tot een verhoogde blootstelling van gameten en embryo’s aan suboptimale omstandigheden, 

en dat tijdens een periode in hun ontwikkeling waarin ze zeer vatbaar zijn voor genetische en 

epigenetische modificaties. Veranderingen in de genexpressie en in het epigenetisch patroon 

van zygoten en embryo’s zijn beschreven bij verschillende diersoorten, inclusief de mens. 

Belangrijk hierbij is de samenstelling van de media die gebruikt worden tijdens de cultuur van 

de embryo’s. Deze heeft niet alleen een grote impact op het percentage blastocysten, maar 

ook op de kwaliteit van de geproduceerde embryo’s.  

 Om de veiligheid van geassisteerde voortplantingstechnieken te testen, dienen 

daarom de effecten van deze technieken op eventuele veranderingen in de genexpressie en 

de epigenetica van de geproduceerde zygoten en embryo’s geëvalueerd te worden. Daarbij 

kan de kennis die opgedaan wordt bij deze evaluatie helpen bij de verbetering van de 

geassisteerde voortplantingstechnieken, zodat uiteindelijk embryo’s kunnen geproduceerd 

worden die meer lijken op embryo’s die in vivo ontwikkelen. 

 In hoofdstuk 1 worden de gebeurtenissen die plaatsvinden tijdens de vroege 

embryonale ontwikkeling en de technieken die gebruikt worden om deze ontwikkeling in vitro 

te ondersteunen, de zogenaamde geassisteerde voortplantingstechnieken, beschreven. 

Verder wordt een overzicht gegeven over de effecten van geassisteerde 

voortplantingstechnieken op de kwaliteit van het embryo en over de verschillende technieken 

die gebruikt worden om dit te bepalen. 

 De algemene doelstelling van deze studie was om de impact van in vitro productie op 

runder- en paardenembryo’s te bestuderen (hoofdstuk 2). De eerste specifieke doelstelling 

hierbij was om het effect van twee verschillende omstandigheden voor embryocultuur op de 

genexpressie van runderblastocysten te evalueren. De tweede specifieke doelstelling was om 

de epigenetische patronen van in vitro geproduceerde runder- en paardenzygoten te bepalen 
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en om na te gaan of veranderingen in epigenetische patronen tijdens deze vroege 

ontwikkelingsstadia kunnen worden vastgesteld. 

 In eerste instantie hebben we de techniek ‘RNA-sequenering’ gebruikt om het effect 

van de blootstelling aan verschillende cultuuromstandigheden op de globale genexpressie bij 

runderembryo’s te bestuderen (hoofdstuk 3). Hiervoor hebben we runderembryo’s 

blootgesteld aan ofwel een suboptimale omgeving waarvan men weet dat ze afwijkingen bij 

de nakomelingen veroorzaakt, zoals grote en weinig levensvatbare kalveren (medium met 

serum), ofwel werden de embryo’s gekweekt in een geoptimaliseerd cultuurmedium waarbij 

serum vervangen werd door boviene serum albumine en insuline, transferrine en selenium 

(BSA-ITS, serumvrije omstandigheden). Vervolgens hebben we de genexpressie van de 

blastocysten die onder deze twee omstandigheden gekweekt werden vergeleken met deze 

van blastocysten die in vivo ontwikkelden. Het toevoegen van serum had een zeer grote 

impact op de genexpressie van de embryo’s. Bij embryo’s die in medium met serum waren 

geproduceerd kwamen vijf maal meer genen differentieel tot expressie in vergelijking met in 

vivo embryo’s dan bij embryo’s die geproduceerd werden in serumvrij medium (1109 vs. 207). 

Van belang hierbij was dat het gebruik van serum tijdens de in vitro productie van 

runderembryo’s een andere impact bleek te hebben afhankelijk van het geslacht van de 

embryo’s. Bij de mannelijke embryo’s kwamen drie maal meer genen differentieel tot 

expressie dan bij hun vrouwelijke tegenhangers (1283 vs. 456). Mannelijke en vrouwelijke 

embryo’s die onder serumvrije omstandigheden werden geproduceerd daarentegen 

vertoonden gelijkaardige aantallen genen die differentieel tot expressie kwamen (191 vs. 

192). De metabole reactiepaden die door de in vitro productie werden beïnvloed, verschilden 

afhankelijk van de toevoegingen aan het cultuurmedium. Embryo’s die geproduceerd werden 

in medium met serum vertoonden een lagere expressie van genen die gerelateerd waren aan 

het metabolisme, terwijl embryo’s die geproduceerd werden in serumvrij medium een hogere 

expressie vertoonden van reactiepaden die gerelateerd waren aan de biosynthese van 

verschillende moleculen, voornamelijk vetten. Dit wijst erop dat een verdere optimalisatie van 

de serumvrije cultuuromstandigheden noodzakelijk is. 

 We concludeerden dat serumvrij medium verkiesbaar is voor de in vitro productie van 

rundsembryo’s, maar dat de impact van deze serumvrije cultuur op het epigenetisch patroon 

van deze embryo’s verder geëvalueerd dient te worden. 
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 In een tweede deel werd een immunofluorescente kleuring voor het bestuderen van 

de 5-methylcytosine (5mC) en 5-hydroxymethylcytosine (5hmC) patronen in ons laboratorium 

geïntroduceerd en geoptimaliseerd (hoofdstuk 4). 

 Hiervoor werden eerst de optimale omstandigheden voor de blootlegging van de 5mC 

en de 5hmC epitopen bepaald, evenals de kleurstof die gebruikt kan worden om het DNA te 

visualiseren (hoofdstuk 4.1). Op basis van de literatuur werden verschillende behandelingen 

voor de blootlegging van de epitopen getest.  Voor de runderembryo’s was 1 uur denaturatie 

met 4N HCl of 30 minuten denaturatie met 4N HCl gecombineerd met een korte digestie met 

trypsine optimaal. Bij het paard resulteerden deze beide behandelingen in een succesvolle 

blootlegging van de 5mC en de 5hmC epitopen, maar de laatstgenoemde behandeling hield 

eveneens de integriteit van het embryo in stand. Vervolgens werd voor verschillende DNA 

kleurstoffen geëvalueerd of ze nog aan DNA konden binden na blootstelling aan 

bovengenoemde behandelingen. Intercalerende kleurstoffen, voornamelijk ethidium 

homodimeer 2 (EthD-2), konden succesvol binden aan DNA na blootstelling aan deze 

omstandigheden en zijn daarom optimaal voor het bestuderen van 5mC en 5hmC patronen. 

 Daarna werd een techniek op punt gesteld om de parentale oorsprong van de 

pronuclei te bepalen bij paarden- en runderzygoten, een techniek die gebaseerd is op de 

asymmetrische verdeling van twee histonenmodificaties. In de literatuur is beschreven dat 

histone 3 lysine 9 tri-methylatie (H3K9me3) en/of histone 3 lysine 27 di-tri-methylation 

(H3K27me2-3) alleen aanwezig is in de maternale pronucleus, terwijl dit type van 

histonenmethylatie bij verschillende diersoorten afwezig is in de paternale pronucleus. Toch 

zijn deze patronen van histonenmodificatie niet volledig bewaard tussen diersoorten. Bij 

paardenzygoten vertoont H3K9me3 inderdaad een asymmetrische verdeling tussen de 

maternale en de paternale pronucleus tijdens de vorming van de pronuclei (hoofdstuk 4.2). 

Bij runderzygoten echter vertoont H3K9me3 een variabele verdeling tussen de maternale en 

paternale pronucleus, terwijl H3K27me2-3 alleen aanwezig is in de maternale pronucleus 

tijdens de vorming van de pronuclei (hoofdstuk 4.3). De dubbele immunofluorescente kleuring 

werd geoptimaliseerd voor 5mC of 5hmC in combinatie met H3K9me3 en H3K27me2-3 voor 

paarden- en runderzygoten  



Samenvatting 

214 
 

 Uiteindelijk werd deze dubbele immunofluorescente kleuring toegepast om de 

dynamiek van 5mC en 5hmC te onderzoeken bij in vitro geproduceerde paardenzygoten 

tijdens de globale epigenetische reprogrammering (hoofdstuk 5). Er werd een significante 

reductie in het gehalte van 5mC gerapporteerd tijdens de vorming van de pronuclei in beide 

parentale genomen, en deze reductie was afhankelijk van de replicatie. Ondanks deze 

bevinding was 5mC goed vertegenwoordigd in beide parentale genomen. Ook 5hmC was 

aanwezig tijdens de eerste celcyclus in beide parentale genomen en de gehalten ervan bleven 

stabiel tijdens de vorming van de pronuclei. Het paard is dus, samen met het konijn, de geit 

en het schaap, één van de diersoorten die het klassieke genoomwijde demethylatie model, 

dat eerst beschreven werd bij de muis, niet volgen, tenminste niet tijdens de eerste celcyclus.  

De algemene discussie en de besluiten van de thesis worden voorgesteld in hoofdstuk  6: 

- De vervanging van serum door boviene serum albumine en insuline-transferrine-

selenium (BSA-ITS) voor productie van runderembryo’s in vitro is een positieve 

evolutie, zeker wanneer men de embryo’s analyseert via  transcriptomics. Toch is een 

verdere optimalisatie van dit serumvrije cultuurmedium vereist, omdat er bepaalde 

genen die betrokken zijn bij de biosynthese van vele belangrijke molecules 

opgereguleerd zijn in embryo’s die onder deze omstandigheden geproduceerd 

worden.  

- De aanwezigheid van serum tijdens in vitro embryo productie heeft schijnbaar een 

verschillende impact op de embryo’s naargelang hun geslacht. Mannelijke embryo’s 

die in vitro geproduceerd werden brengen drie maal meer genen verschillend tot 

expressie dan in vivo embryo’s, in vergelijking met hun vrouwelijke tegenhangers. 

- Een robuust immunofluorescent kleuringsprotocol werd verfijnd voor de studie van de 

epigenetische patronen van runder- en paardenzygoten en -embryo’s. De 

bruikbaarheid van dit protocol bij andere diersoorten moet nog verder onderzocht 

worden.  

- Om de 5mC en 5hmC epitopen correct te kunnen blootleggen bij in boviene zygoten, 

is een denaturatie van 1 uur nodig met 4N HCl, of 30 minuten denaturatie met  4N HCl 

in combinatie met een korte digestie door middel van trypsine . Voor paardenzygoten 

is een denaturatie van 30 minuten met 4N HCl in combinatie met een korte digestie 
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door middel van trypsine optimaal; want na een denaturatie van 1 uur worden de 

zygoten te fragiel. 

- Onder deze voorwaarden van epitoopblootlegging, is het gebruik van intercalerende  

DNA kleurstoffen nodig, en meer bepaald is Ethidium homodimer 2 (EthD-2) ideaal, 

omdat DNA kleurstoffen die binden op de kleine groeve van DNA, zoals Hoechst, niet 

langer kunnen binden aan het DNA na het denaturatieproces. 

- Het asymmetrische patroon van H3K9me3 kan gebruikt worden om de parentale 

oorsprong van de pronuclei bij paardenzygoten aan te tonen. Dit patroon van 

H3K9me3 is niet consistent verdeeld tussen pronuclei bij runderzygoten en in plaats 

daarvan wordt het asymmetrische verdelingspatroon van H3K27me2-3 aanbevolen 

om de oorsprong van de pronuclei aan te tonen bij  runderzygoten. 

- Tijdens de vorming van de pronuclei bij het paard, wordt een verlies van DNA-

methylatie geassocieerd met DNA-replicatie (passieve DNA-demethylatie) en die vindt 

plaats bij zowel paternale als maternale pronuclei. Ook blijven de gehalten van 5hmC 

constant tijdens de vorming van de pronuclei, zonder dat de oorsprong van de 

pronucleus hierop een invloed uitoefent.  

- In het kader van de  recente literatuur en de bevindingen in deze thesis, is er voldoende 

bewijsvoering aangebracht om een revisie van het klassieke model van de 

epigenetische reprogrammering, zoals die eerder beschreven werd tijdens de 

preimplantatie-ontwikkeling van de muis, te eisen.  
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Table S3.1. Details of the sequenced reads, fragments, and their mapping to the reference genome per embryo and condition.  

In vivo embryos Female 1 Female 2 Female 3 Male 1  Male 2 Male 3 Male 4 Male 5 

Paired end reads 16,121,606 x2 14,409,617 x2 13,843,116 x2 13,620,506 x2 16,277,723 x2 15,350,609 x2 14,148,286 x2 13,843,116 x2 

Total sequenced fragments 16,121,606 14,409,617 13,843,116 13,620,506 16,277,723 15,350,609 14,148,286 13,843,116 

Total mapped fragments 7,610,073 7,446,981 7,090,972 6,480,699 8,769,114 8,209,054 7,367,399 7,090,972 

Uniquely mapped fragments 7,110,780 6,986,045 6,642,570 6,077,412 8,243,423 7,636,560 6,886,937 6,642,570 

Fragments uniquely mapped 

to annotated genes 

7,110,780 6,986,045 6,642,570 6,077,412 8,243,423 7,636,560 6,886,937 6,642,570 

Fragments uniquely mapped 

to annotated exons 

4,102,468 4,270,863 4,087,575 3,454,351 5,481,012 4,985,662 4,359,963 4,087,575 

Fragments uniquely 

overlapped with annotated 

introns 

3,008,312 2,715,182 2,554,995 2,623,061 2,762,411 2,650,898 2,526,974 2,554,995 

 

Serum-free embryos Female 1 Female 2 Female 3 Male 1 Male 2 Male 3 Male 4 Male 5 

Paired end reads 12,379,410 x2 12,271,016 x2 12,396,047 x2 13,699,027 x2 13,244,900 x2 12,986,278 x2 11,817,188 x2 13,055,676 x2 

Total sequenced fragments 12,379,410 12,271,016 12,396,047 13,699,027 13,244,900 12,986,278 11,817,188 13,055,676 

Total mapped fragments 7,030,434 6,702,281 5,852,157 7,537,374 6,697,231 6,225,558 6,103,602 6,946,225 

Uniquely mapped fragments 6,547,162 6,209,519 5,451,078 7,039,712 6,249,430 5,765,092 5,673,586 6,458,232 

Fragments uniquely mapped to 

annotated genes 

6,547,162 6,209,519 5,451,078 7,039,712 6,249,430 5,765,092 5,673,586 6,458,232 

Fragments uniquely mapped to 

annotated exons 

5,461,255 4,187,439 3,188,923 4,860,264 3,773,491 3,397,218 3,749,514 4,340,037 

Fragments uniquely overlapped 

with annotated introns 

1,085,907 2,022,080 2,262,155 2,179,448 2,475,939 2,367,874 1,924,072 2,118,195 
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Table S3.1. Continuation.  

Serum embryos Female 1 Female 2 Female 3 Female 4 Female 5 Male 1 Male 2 Male 3 

Paired end reads 11,062,303 x2 13,830,821 x2 14,529,681 x2 12,989,933 x2 13,951,124 x2 15,149,686 x2 21,084,638 x2 14,764,184 x2 

Total sequenced fragments 11,062,303 13,830,821 14,529,681 12,989,933 13,951,124 15,149,686 21,084,638 14,764,184 

Total mapped fragments 6,263,359 6,969,915 7,924,647 7,476,000 7,738,814 5,115,204 11,531,436 4,907,207 

Uniquely mapped fragments 5,721,258 6,335,832 7,367,133 6,936,042 7,205,318 4,750,391 10,691,683 4,523,274 

Fragments uniquely mapped to 

annotated genes 

5,721,258 6,335,832 7,367,133 6,936,042 7,205,318 4,750,391 10,691,683 4,523,274 

Fragments uniquely mapped to 

annotated exons 

4,268,748 3,968,231 4,809,020 5,015,515 4,884,879 3,345,415 8,500,472 3,055,548 

Fragments uniquely overlapped 

with annotated introns 

1,452,510 2,367,601 2,558,113 1,920,527 2,320,439 1,404,976 2,191,211 1,467,726 
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Table S3.2. List of the first 35 genes differentially expressed (p-value ˂0.05) between all the 

embryos derived in vivo and all the embryos produced in serum conditions, according to the 

absolute fold change. Positive fold change indicates DE genes up-regulated in in vivo and 

negative fold change DE genes up-regulated in serum conditions. For the full list see table S3 

of the published version. 

 

Gene symbol Fold-change FDR corrected p-value Chromosome 

ENSBTAG00000046720 -333.65 3.76 E-35 3 
ENSBTAG00000037644 -277.57 5.13 E-15 15 

GSTM3 -159.86 5.14 E-12 3 
SDS -137.03 1.46 E-09 17 
MFSD2 -76.20 9.91 E-12 3 
ENSBTAG00000007477 -73.91 1.19 E-23 27 
QPCT -70.40 1.52 E-12 11 
ENSBTAG00000047356 -44.37 4.19 E-07 15 
H2B_12 -38.82 5.57 E-08 23 
IL2RG -32.64 8.01 E-11 X 
ENSBTAG00000024700 -29.51 2.81 E-08 26 
ENSBTAG00000006093 -28.67 3.92E-13 15 

ENSBTAG00000020849 -25.82 5.13 E-15 7 
CT55 -24.76 1.84 E-18 X 
ZSCAN4 -23.69 7.05 E-12 18 
SLC28A2 -22.46 2.70 E-09 10 
HIST1H2BJ -22.19 7.87 E-12 23 
SPOPL -21.15 5.96 E-06 2 
ENSBTAG00000009440 -21.02 2.46 E-11 15 
ARL4D -19.66 4.95 E-05 19 
ARRDC2 -19.53 8.89 E-07 7 

ENSBTAG00000024947 -19.22 1.13 E-09 19 
SERPINA5 -18.30 3.17 E-05 21 

PLS1 12.81 4.05 E-07 1 
TMEM62 13.61 1.69 E-15 10 
FCGR2 14.30 4.16 E-08 3 
CRIP1 15.97 8.01 E-11 21 
GCM-1 16.04 8.91 E-13 23 
RPL12_2 16.53 1.72 E-08 11 
PAG2 16.67 2.09 E-04 29 
SH3YL1 22.97 1.82 E-14  
SLC28A3 32.85 5.13 E-15 8 
HKDC1 33.06 1.02 E-10 28 

DPEP1 34.02 5.92 E-10 18 
PRSS8 209.73 4.20 E-34 25 
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Table S3.3. List of the first 35 genes differentially expressed (p-value ˂0.05) between all the 

embryos derived in vivo and all the embryos produced in serum-free conditions, according to 

the absolute fold change. Positive fold change indicates DE genes up-regulated in in vivo and 

negative fold change DE genes up-regulated in serum-free conditions. For the full list see table 

S3 of the published version. 

 

Gene symbol Fold-change FDR corrected p-value Chromosome 

BTG4 -26.62 1.13 E-03 15 
ERP70 -12.26 6.67 E-08 4 

LAMA1 -11.01 5.79 E-08 24 
HMGCS1 -7.43 1.74 E-05 20 
MGC137030 -7.20 6.20 E-07 7 
GPX2 -6.48 1.51 E-03 10 
S100A2 -6.24 3.17 E-08 3 
DDX4 -6.21 2.85 E-04 20 
ASZ1 -6.06 5.07 E-06 4 
PCK2 -5.69 1.89 E-13 10 
ENSBTAG00000023007 -5.61 2.08 E-05 17 
FADS1 -5.59 2.80 E-05 29 

PGHS-2 -5.39 9.54 E-05 16 
FABP5 -5.22 1.32 E-04 14 
ENSBTAG00000009440 -5.13 2.39 E-06 15 
OOEP -5.05 9.62 E-07 9 
TM4SF1 -5.04 4.40 E-09 1 
MST4 -4.78 8.65 E-04 X 
DPYSL3 -4.74 5.65 E-05 7 
RNF17 -4.62 1.30 E-05 12 
MRGPRX2 -4.62 6.82 E-04 29 

S100A11 -4.51 1.41 E-04 3 
SLC28A2 -4.51 2.06 E-03 10 

MAPRE2 -4.50 1.14 E-05 24 
PSAT1 -4.49 6.23 E-08 8 
TCEAL8 -4.47 9.41 E-05 X 
ABCB1 -4.43 2.54 E-10 4 
FDFT1 -4.21 5.07 E-07 8 
IDI1 -4.02 2.06 E-03 13 

MT2 3.09 7.40 E-03 18 
SH3YL1 3.16 2.58 E-03  
KRTCAP3 3.18 7.12 E-03 11 
GGNBP1 3.37 8.81 E-03 23 

GARNL3 4.45 4.36 E-06 11 
ENSBTAG00000035959 9.01 6.34 E-04 23 
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Table S3.4. List of the first 35 genes differentially expressed (p-value ˂0.05) between male 

embryos derived in vivo and male embryos produced in serum conditions, according to the 

absolute fold change. Positive fold change indicates DE genes up-regulated in in vivo and 

negative fold change DE genes up-regulated in serum conditions. For the full list see table S3 

of the published version. 

 

Gene symbol Fold-change FDR corrected p-value Chromosome 

ENSBTAG00000046720 -205.60 1.35 E-49 3 
ENSBTAG00000013398 -151.86 3.30 E-13 29 

QPCT -145.74 1.47 E-15 11 
ACTA1 -121.00 3.48 E-07 28 
ENSBTAG00000037644 -100.06 4.10 E-10 15 
ENSBTAG00000047356 -83.55 1.17 E-07 15 
MFSD2 -75.06 6.65 E-11 3 
PRAME_2 -68.35 5.76 E-13 17 
ENSBTAG00000024700 -65.60 2.00 E-09 26 
ENSBTAG00000007477 -65.48 2.34 E-21 27 
AHSG -43.67 2.09 E-08 1 
H2B_12 -38.78 2.20 E-08 23 
ENSBTAG00000006093 -34.58 3.30 E-13 15 

MAB21L3 33.68 3.07 E-07 3 
A2M 33.94 1.08 E-07 5 
FHL2 34.54 7.71 E-07 11 
MGAT4A 35.89 2.77 E-07 11 
SFN 37.56 6.94 E-13 2 
SLC6A20 41.86 8.67 E-19 22 
FCGR2 43.15 5.13 E-13 3 
ANXA3 50.14 2.94 E-06 6 
LY6E 51.31 2.80 E-10 14 
PLS1 51.79 2.18 E-08 1 

TAPBP 62.24 2.49 E-07 23 
ANXA1 68.77 1.41 E-08 8 
GCM-1 75.68 3.56 E-09 23 
PFKL 83.19 7.27 E-21 1 
SLC28A3 85.39 1.24 E-19 8 
DPEP1 99.35 4.10 E-10 18 
HKDC1 218.04 1.01 E-21 28 
IFT172 349.04 3.35 E-09 11 
PRSS8 438.89 1.44 E-17 25 
VGLL1 471.66 2.67 E-09 X 

SLC16A7 602.17 5.78 E-09 5 
PAG2 1657.68 2.00 E-10 29 
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Table S3.5. List of the first 35 genes differentially expressed (p-value ˂0.05) between male 

embryos derived in vivo and male embryos produced in serum-free conditions, according to 

the absolute fold change. Positive fold change indicates DE genes up-regulated in in vivo and 

negative fold change DE genes up-regulated in serum-free conditions. For the full list see table 

S3 of the published version. 

 

Gene symbol Fold-change FDR corrected p-value Chromosome 

BTG4 -306.60 4.63 E-12 15 
ERP70 -16.43 4.52 E-05 4 

MGC137030 -10.84 8.86 E-06 7 
LAMA1 -10.74 1.01 E-06 24 
HMGCS1 -10.18 1.50 E-04 20 
GPX2 -9.56 5.11 E-04 10 
SYCP2 -8.33 6.77 E-04 13 
TM4SF1 -7.57 2.26 E-10 1 
ENSBTAG00000009440 -7.54 1.01 E-06 15 
FADS1 -7.32 9.83 E-04 29 
MRGPRX2 -7.17 9.90 E-04 29 
IDI1 -6.37 2.13 E-03 13 

ABHD4 -6.33 5.41 E-03 10 
FABP5 -6.26 2.13 E-03 14 
S100A11 -6.10 3.00 E-03 3 
DDX4 -5.95 0.027 20 
S100A2 -5.74 8.32 E-04 3 
PCK2 -5.69 6.46 E-13 10 
NR3C2 -5.38 3.00 E-03 17 
DDX58 -5.23 7.77 E-04 8 
FDFT1 -5.12 1.78 E-04 8 

ENSBTAG00000023007 -5.12 2.22 E-05 17 
TCEAL8 -5.09 2.24 E-04 X 

TPI1 -5.06 0.023 5 
PIM2 -4.83 8.32 E-04 X 
ADAM19 -4.82 6.16 E-03 7 
HRASLS -4.77 0.013 1 
UHRF1 -4.57 4.12 E-05 7 
PGHS-2 -4.54 0.017 16 
SC4MOL -4.52 4.21 E-03 17 

GARNL3 4.45 6.87 E-05 11 
SLC12A8 6.69 4.00 E-04 1 
FBXW9 7.14 1.99 E-04 7 

ZNF514 8.15 1.05 E-04 11 
ENSBTAG00000035959 12.46 3.09 E-04 23 

 

 



Addendum 

237 
 

Table S3.6. List of the first 35 genes differentially expressed (p-value ˂0.05) between female 

embryos derived in vivo and female embryos produced in serum conditions, according to the 

absolute fold change. Positive fold change indicates DE genes up-regulated in in vivo and 

negative fold change DE genes up-regulated in serum conditions. For the full list see table S3 

of the published version. 

 

Gene symbol Fold-change FDR corrected p-value Chromosome 

GSTM3 -3497.31 6.38 E-09 3 
ENSBTAG00000046720 -489.25 8.88 E-12 3 

ENSBTAG00000037644 -307.71 1.10 E-08 15 
SDS -286.31 9.73 E-05 17 
HSD3B -167.02 1.26 E-05 3 
ENSBTAG00000007477 -106.80 1.53 E-09 27 
H2B_12 -93.07 1.13 E-04 23 
ARL4D -86.81 2.39 E-03 19 
MGC148328_2 -73.36 3.16 E-03 X 
ENSBTAG00000034940 -68.98 4.32 E-04 29 
ENSBTAG00000046796 -62.29 6.59 E-04 X 
MFSD2 -55.35 3.29 E-04 3 

ENSBTAG00000024947 -42.78 4.04 E-08 19 
HIST1H2BJ -40.70 6.38 E-05 23 
MEST -38.88 4.86 E-05 4 
ENSBTAG00000020522 -38.41 1.58 E-04 X 
QPCT -37.52 2.96 E-04 11 
APOBEC3Z3 -34.54 1.94 E-03 5 
SLC28A2 -34.19 4.86 E-05 10 
MGC148328_1 -32.37 7.75 E-03 X 
SPOPL -29.93 0.019 2 
ENSBTAG00000039540 -28.06 4.86 E-05 3 
TRPM8 -27.55 1.34 E-06 3 

ENSBTAG00000020849 -27.44 3.64 E-05 7 
STAT5B -26.12 1.69 E-05 19 
ENSBTAG00000047356 -26.11 1.72 E-03 15 
PTGIS -25.51 2.59 E-04 13 
MAGEB16 -24.82 1.80 E-04 X 

ENSBTAG00000002355 23.98 1.17 E-05 5 
ENSBTAG00000018481 24.21 7.01 E-05 8 
RPL12_2 27.29 3.68 E-21 11 
AIM1L 27.89 6.11 E-06 2 
ENSBTAG00000047990 38.25 7.19 E-07 8 

TMEM125 99.27 3.57 E-09 3 
PRSS8 112.38 1.85 E-15 25 
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Table S3.7. List of the first 35 genes differentially expressed (p-value ˂0.05) between female 

embryos derived in vivo and female embryos produced in serum-free conditions, according to 

the absolute fold change. Positive fold change indicates DE genes up-regulated in in vivo and 

negative fold change DE genes up-regulated in serum-free conditions. For the full list see table 

S3 of the published version. 

 

Gene symbol Fold-change FDR corrected p-value Chromosome 

ENSBTAG00000021026 -216.36 1.17 E-06 X 
PPFIBP1 -65.74 1.19 E-05 5 

ENSBTAG00000046720 -41.40 7.99 E-06 3 
SYT4 -40.26 2.61 E-05 24 
STAT5B -32.23 3.38 E-05 19 
MEST -24.18 1.93 E-05 4 
ENSBTAG00000037644 -21.58 8.26 E-03 15 
PTGIS -21.15 7.16 E-06 13 
ENSBTAG00000047547 -18.42 4.34 E-04 X 
LUM -16.59 1.04 E-03 5 
ASZ1 -16.46 3.56 E-05 4 
PINLYP -15.63 2.69 E-06 18 

TBC1D19 -15.30 2.15 E-04 6 
SLC25A31 -14.78 4.05 E-04 17 
SERPINA5 -13.66 0.032 21 
LAMA1 -12.20 4.52 E-04 24 
APOA1 -12.14 4.83 E-08 15 
ENSBTAG00000017734 -12.12 1.17 E-03 8 
RPL15_1 -12.05 0.040 2 
MID1IP1 -11.12 0.021 X 
CD40 -10.31 3.60 E-03 13 

ARHGEF3 -10.22 1.67 E-03 22 
MBD5 -9.86 3.41 E-03 2 

DEPDC1 -9.03 7.95 E-03 3 
HMGN5 -8.75 8.24 E-03 X 
CYP51A1 -8.55 7.81 E-04 4 
ENSBTAG00000023007 -8.54 0.011 17 
QPCT -8.38 0.027 11 

DBNDD1 8.30 0.010 18 
KRT1 9.32 0.033 5 
CA6 10.02 5.25 E-03 16 
MGST1 11.34 6.00 E-09 5 
PRDM1 24.12 5.68 E-06 9 

SLC30A1 32.03 3.18 E-06 16 
RPL12_2 37.89 1.11 E-64 11 
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Table S3.8. List of the first 35 genes differentially expressed (p-value ˂0.05) between male and 

female embryos derived in vivo, according to the absolute fold change. Positive fold change 

indicates DE genes up-regulated in male embryos and negative fold change DE genes up-

regulated in female embryos. For the full list see table S3 of the published version. 

 

Gene symbol Fold-change FDR corrected p-value Chromosome 

TEX11 -54.01 7.21 E-13 X 
LPO -47.70 1.13 E-11 19 
XIST -13.99 9.08 E-26 X 

PIM2 -10.80 2.11 E-13 X 
ALAS2 -7.80 0.027 X 
PARP16 -7.46 3.19 E-04 10 
CPNE2 -6.85 3.76 E-03 18 
JAKMIP2 -5.52 2.15 E-04 7 
PRDM1 -4.86 8.29 E-03 9 
MGC127538 -4.85 3.88 E-10 2 

TXNIP -4.76 0.011 3 
ABHD4 -4.65 9.57 E-03 10 
GGNBP1 -4.31 5.00 E-09 23 

ACTB_1 -4.01 0.030 11 
HOP -3.95 0.025 6 

MGC142781 4.23 0.019 11 
MGC139228 4.43 0.015 11 
RBBP9 4.92 0.034 13 
PAG2 5.32 0.046 29 
ENSBTAG00000046301 5.49 5.52 E-03 22 
ARMC9 5.60 0.029 2 
IFT172 12.34 4.90 E-05 11 

UTY 12.87 1.82 E-09 Y 
ENSBTAG00000035959 13.85 5.83 E-03 23 

ENSBTAG00000033558 178.82 4.89 E-17 17 
ENSBTAG00000048102 238.41 2.64 E-10 X 
ENSBTAG00000035606 309.13 4.46 E-11 17 
ENSBTAG00000036115 385.48 8.73 E-14 19 
ENSBTAG00000036321 435.23 4.57 E-14 17 
ENSBTAG00000039769 564.45 7.50 E-48 17 
ENSBTAG00000048172 769.97 8.40 E-23 X 
ENSBTAG00000034761 773.63 3.25 E-76 17 
ENSBTAG00000045544 873.54 1.09 E-66 X 
ENSBTAG00000040363 2695.55 3.88 E-54 X 

DDX3Y 2935.13 1.05 E-51 Y 
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Table S3.9. List of the first 35 genes differentially expressed (p-value ˂0.05) between male and 

female embryos produced in serum conditions, according to the absolute fold change. Positive 

fold change indicates DE genes up-regulated in male embryos and negative fold change DE 

genes up-regulated in female embryos. For the full list see table S3 of the published version. 

 

Gene symbol Fold-change FDR corrected p-value Chromosome 

GALC -190.70 1.00 E-05 10 
ENSBTAG00000047709 -132.25 8.00 E-04 X 
CT47B1 -104.81 9.31 E-10 X 

BDH2 -74.51 9.04 E-06 6 
MST4 -64.86 2.03 E-06 X 
DMD -57.16 2.50 E-04 X 
MTMR8 -42.37 3.67 E-05 X 
ENSBTAG00000037496 -41.45 1.30 E-04 X 
ENSBTAG00000047804 -39.19 0.034 X 
ADAM19 -34.82 9.96 E-04 7 
TEX11 -31.55 0.016 X 
GPR4 -30.84 2.37 E-04 18 
TCL1B -28.80 9.66 E-04 21 
HSD3B -26.00 2.25 E-03 3 

L1CAM -25.97 9.96 E-04 X 
ENSBTAG00000046340 -23.71 0.012 X 
SPICE1 -18.18 2.00 E-04 1 
MBNL2 -18.04 5.07 E-04 12 
ELK1 -14.87 1.18 E-03 X 
ENSBTAG00000010463 -12.57 2.25 E-03 X 
ZNF165 -11.65 0.032 23 

ACTA1 17.96 2.88 E-03 28 
ENSBTAG00000036321 21.05 1.31 E-06 17 
ACTA2 33.15 4.75 E-05 26 

ENSBTAG00000048102 179.59 2.80 E-10 X 
ENSBTAG00000036115 217.68 2.37 E-09 19 
ENSBTAG00000033558 297.86 5.81 E-16 17 
ENSBTAG00000040363 299.78 1.83 E-16 X 
ENSBTAG00000045544 575.30 1.26 E-29 X 
DDX3Y 663.36 1.42 E-24 Y 
EIF1AY 736.75 6.40 E-15 Y 
ENSBTAG00000039769 749.42 4.91 E-33 17 
PRAME_2 910.07 1.34 E-14 17 
ENSBTAG00000048172 1307.40 5.09 E-21 X 

ENSBTAG00000034761 1442.32 9.62 E-48 17 
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Table S3.10. List of the first 35 genes differentially expressed (p-value ˂0.05) between male 

and female embryos produced in serum-free conditions, according to the absolute fold change. 

Positive fold change indicates DE genes up-regulated in male embryos and negative fold 

change DE genes up-regulated in female embryos. For the full list see table S3 of the published 

version. 

 

Gene symbol Fold-change FDR corrected p-value Chromosome 

XIST -20.26 5.14 E-14 X 
SLC6A14 -12.26 2.69 E-03 X 

PARP9 -10.60 5.22 E-03 1 
ZNF214 -7.18 0.019 15 
SPIN2 -6.02 0.027 X 
ENSBTAG00000037496 -5.41 5.56 E-03 X 
MAGEH1 -5.39 7.10 E-04 X 
YIF1B -4.98 4.96 E-03 18 
MMP14 -4.96 0.042 10 
WNK3 -4.57 0.042 X 
OTUB2 -4.16 0.042 21 
RNF128 -4.03 0.022 X 

AKAP6 -3.96 0.046 21 
LMO6 -3.56 0.039 X 
ATP1B2 -3.41 7.51 E-03 19 
TP53RK -3.39 0.021 13 
UBQLN2 -3.15 0.046 X 
MPP1 -2.92 0.014 X 
ENSBTAG00000048049 -2.85 3.03 E-03 21 
ENSBTAG00000001219 -2.76 4.16 E-03 8 
PRPS1 -2.55 0.014 X 

NT5DC2 3.84 0.042 22 
DONSON 4.21 0.038 1 

URB1 5.90 0.014 1 
KIF13A 6.22 0.027 23 
RPL12_2 12.38 0.022 11 
UTY 14.57 7.02 E-07 Y 
ENSBTAG00000039769 240.89 3.29 E-27 17 
ENSBTAG00000035606 351.97 7.67 E-10 17 
ENSBTAG00000040363 395.91 6.62 E-28 X 
ENSBTAG00000034761 399.38 1.00 E-37 17 
DDX3Y 440.18 1.33 E-38 Y 
ENSBTAG00000036321 446.61 1.88 E-10 17 

ENSBTAG00000033558 838.37 8.11 E-15 17 
ENSBTAG00000045544 916.62 2.98 E-37 X 

 



 

 
 

Table S3.11. GO biological processes, and genes up-regulated in each of them, enriched in genes differentially expressed (DE) (FDR corrected p-

value <0.05, │FC│ ≥2) between all in vivo derived embryos and all the embryos cultured in serum conditions. Enriched GO biological processes with 

Benjamini-Hochberg corrected p-value <0.01, genes per term/pathway ≥5, Goterm levels 3–8.  

GO Term p-value Genes up-regulated in vivo (%) Genes up-regulated in serum (%) 

Organic acid 
metabolic process 

4.88 E-03 (72.3) [AASS, ACADS, ACSS1, ALDH4A1, ALDH6A1, APLP2, ARRB1, ASL, ASRGL1, 
BCAT1, BRP44L, CBLC, CBS, CRTAP, CRYL1, CYP2D14, CYP2S1, DLAT, DPEP1, DTD1, 
ELOVL1, ENO1, ERBB3, ETFDH, FADS3, FASN, FH, GAPDH, GATA2, GATA3, GCAT, 
HADHA, HK1, HKDC1, IARS2, IDH3G, IL6ST, KIT, LONP2, LYN, MTHFR, MUT, MVP, 
NFE2, PDPN, PDXDC1, PECAM1, PEX7, PFKL, PPARGC1A, PRKCZ, PTGR1, PTGS2, 
PTPLB, SCD, SMAD7, SREBF1, ST6GAL1, SUCLG2, TP53]  

(27.7) [ACSL1, AFAP1L2, ALDOC, CD40, CRAT, 
CSF1R, DDIT4, DUOXA2, GFPT2, GLDC, HAL, IER3, 
IL6, KITLG, MSMO1, NANP, NR5A2, PTGES, SDS, 
SHMT2, STAT5B, TDH, UGDH] 

DNA repair 9.92 E-03 (41.2) [BRE, CDC45, DDB2, DTX3L, FANCC, FBXO6, KIAA0415, PRKCG, PSME4, RTEL1, 
SETMAR, TDG, TP53, TRPC2] 

(58.8) [ALKBH1, CETN2, CUL4B, DEM1, FANCI, 
IER3, MLH3, NPM1, RAD1, REV3L, SETMAR, SOD1, 
TEX12, TP53BP1, TRIP12, TRIP13, UBE2A, UHRF1, 
USP7, WRN] 

Lipid metabolic 
process 

3.45 E-03 (80) [ABCA1, ABHD12, ACADS, ALDH3A2, APLP2, ASAH1, CHKB, CLN6, CRYL1, CYB5R3, 
CYP2D14, CYP2S1, DEGS2, ELOVL1, EPHX2, ETFDH, FADS3, FASN, FECH, GDPD5, 
GM2A, GPLD1, HADHA, HINT2, HSD17B8, KIT, LONP2, LYN, MAP7, ORMDL2, PCYT2, 
PDGFRA, PDPN, PEX7, PGAP2, PGAP3, PI4KA, PIGU, PIGV, PLD2, PLD3, PNPLA6, 
PPAPDC1B, PPARGC1A, PRDX6, PSAP, PTDSS1, PTGR1, PTGS2, PTPLB, SCD, SCP2, 
SERAC1, SMPD1, SMPDL3A, SRD5A3, SREBF1, TAMM41, TIPARP, UGCG] 

(20) [ACSL1, ATG14, CSF1R, EPT1, FDFT1, FLT1, 
ID2, MSMO1, NR5A2, PI4KB, PTGES, RDH12, 
SOD1, STAT5B, TRPV1] 

Membrane lipid 
metabolic process 

2.86 E-03 (100) [CLN6, DEGS2, ELOVL1, GM2A, GPLD1, KIT, MAP7, ORMDL2, PGAP2, PGAP3, 
PIGU, PIGV, PSAP, PTPLB, SERAC1, SMPD1, SMPDL3A, UGCG] 

(0) 

Glycolipid 
metabolic process 

4.12 E-03 (100) [CLN6, GM2A, GPLD1, KIT, MAP7, PGAP2, PGAP3, PIGU, PIGV, SERAC1, UGCG] (0) 

Regulation of cell 
shape 

6.07 E-03 (68.8) [ANXA7, ARHGAP15, CDC42EP1, CDC42EP4, EZR, FBLIM1, FN1, KIT, MYH9, 
MYL9, VRK3] 

(31.3) [BRWD3, CSF1R, CSNK1G1, FMNL3, 
PRPF40A] 

Histone 
ubiquitination 

4.46 E-03 (33.3) [DDB2, DTX3L, KDM2B] (66.7) [CUL4B, PAF1, PCGF1, TRIP12, UBE2A, 
UHRF1] 

Carboxylic acid 
metabolic process 

8.70 E-03 (72.3) [AASS, ACADS, ACSS1, ALDH4A1, ALDH6A1, APLP2, ARRB1, ASL, ASRGL1, 
BCAT1, BRP44L, CBLC, CBS, CRTAP, CRYL1, CYP2D14, CYP2S1, DLAT, DPEP1, DTD1, 
ELOVL1, ENO1, ERBB3, ETFDH, FADS3, FASN, FH, GAPDH, GATA2, GATA3, GCAT, 
HADHA, HK1, HKDC1, IARS2, IDH3G, IL6ST, KIT, LONP2, LYN, MTHFR, MUT, MVP, 
NFE2, PDPN, PDXDC1, PECAM1, PEX7, PFKL, PPARGC1A, PRKCZ, PTGR1, PTGS2, 
PTPLB, SCD, SMAD7, SREBF1, ST6GAL1, SUCLG2, TP53] 

(27.7) [ACSL1, AFAP1L2, ALDOC, CD40, CRAT, 
CSF1R, DDIT4, DUOXA2, GFPT2, GLDC, HAL, IER3, 
IL6, KITLG, MSMO1, NANP, NR5A2, PTGES, SDS, 
SHMT2, STAT5B, TDH, UGDH] 
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Table S3.11. Continuation. 

GO Term p-value Genes up-regulated in vivo (%) Genes up-regulated in serum (%) 

Oxoacid metabolic 
process 

3.46 E-03 (72.3) [AASS, ACADS, ACSS1, ALDH4A1, ALDH6A1, APLP2, ARRB1, ASL, ASRGL1, 
BCAT1, BRP44L, CBLC, CBS, CRTAP, CRYL1, CYP2D14, CYP2S1, DLAT, DPEP1, DTD1, 
ELOVL1, ENO1, ERBB3, ETFDH, FADS3, FASN, FH, GAPDH, GATA2, GATA3, GCAT, 
HADHA, HK1, HKDC1, IARS2, IDH3G, IL6ST, KIT, LONP2, LYN, MTHFR, MUT, MVP, 
NFE2, PDPN, PDXDC1, PECAM1, PEX7, PFKL, PPARGC1A, PRKCZ, PTGR1, PTGS2, 
PTPLB, SCD, SMAD7, SREBF1, ST6GAL1, SUCLG2, TP53] 

(27.7) [ACSL1, AFAP1L2, ALDOC, CD40, CRAT, 
CSF1R, DDIT4, DUOXA2, GFPT2, GLDC, HAL, IER3, 
IL6, KITLG, MSMO1, NANP, NR5A2, PTGES, SDS, 
SHMT2, STAT5B, TDH, UGDH] 

Cellular catabolic 
process 

8.22 E-04 (54.6) [AASS, ABHD12, ACBD5, ALDH4A1, ALDH6A1, ANXA7, ARRB1, ARRB2, ASRGL1, 
BCAT1, BLVRA, CAPN1, CBLC, CLN6, CRYZ, CTSD, CYP2D14, CYP2S1, DAB2, DTD1, DUT, 
EDEM1, ENPP4, EPHX2, ETFDH, FBXL3, FBXO18, FBXO6, FOXRED2, GCAT, GM2A, 
GPLD1, HADHA, LONP2, NAALAD2, NBAS, NEDD4L, PEX7, PRDX6, PRICKLE1, PRKCG, 
PSME4, RNF146B, SAMHD1, SETMAR, SMAD7, SMPD1, SMPDL3A, SNX9, SRD5A3, 
TP53, UBR1, XBP1] 

(45.4) [ALKBH1, ATG14, AURKA, BNIP3, CCRN4L, 
CLPX, CSNK2A2, CUL4B, DDIT4, DEM1, DIS3L, 
FBXO5, GABARAPL1, GK, GLDC, GSTM3, HAL, 
IER3, KLHL8, LGMN, LOC614531, LSM1, NCBP2, 
NPM1, PLK3, POLR2G, PON2, SDS, SETMAR, 
SIAH1, SKP1, SOD1, SPOPL, SRPX, TCEB1, TDH, 
TOB1, TRIP12, UBE2A, UBE2J2, UBE2K, UHRF1, 
USP7, ZNRF1] 

Cellular lipid 
metabolic process 

3.35 E-03 (81.4) [ABHD12, ACADS, ALDH3A2, CHKB, CLN6, CRYL1, CYP2D14, CYP2S1, DEGS2, 
ELOVL1, EPHX2, ETFDH, FADS3, FASN, GM2A, GPLD1, HADHA, KIT, LONP2, LYN, 
MAP7, ORMDL2, PCYT2, PDGFRA, PDPN, PEX7, PGAP2, PGAP3, PI4KA, PIGU, PIGV, 
PNPLA6, PPAPDC1B, PPARGC1A, PRDX6, PSAP, PTDSS1, PTGR1, PTGS2, PTPLB, SCD, 
SERAC1, SMPD1, SMPDL3A, SRD5A3, SREBF1, TAMM41, UGCG] 

(18.6) [ACSL1, ATG14, CSF1R, EPT1, FDFT1, FLT1, 
MSMO1, PI4KB, PTGES, RDH12, STAT5B] 

Small molecule 
metabolic process 

2.75 E-04 (70.7) [AASS, ABCA1, ACADS, ACSS1, AHCYL2, ALDH2, ALDH3A2, ALDH4A1, ALDH6A1, 
APLP2, ARRB1, ASL, ASRGL1, ATP6V0A4, ATP6V1B1, ATPIF1, BCAT1, BRP44L, CBLC, 
CBS, CHKB, CLN6, CRTAP, CRYL1, CYB5R3, CYP2D14, CYP2S1, DCXR, DEGS2, DLAT, 
DPEP1, DTD1, DUT, ELOVL1, ENO1, ENPP4, EPHX2, ERBB3, ETFDH, FADS3, FASN, 
FECH, FH, GAPDH, GATA2, GATA3, GCAT, GDPD5, GMPS, GNAS, GPLD1, H6PD, 
HADHA, HK1, HKDC1, IARS2, IDH3G, IL6ST, KIT, LONP2, LRP2, LYN, MCEE, MTHFR, 
MUT, MVP, NADSYN1, NFE2, NME3, PDPN, PDXDC1, PECAM1, PEX7, PFKL, PNPLA6, 
PPARGC1A, PRKCZ, PTGR1, PTGS2, PTPLB, PTPMT1, SAMHD1, SCD, SCP2, SHPK, 
SMAD7, SMPD1, SMPDL3A, SRD5A3, SREBF1, ST6GAL1, SUCLG2, TP53, TP53RK] 

(29.3) [ACSL1, AFAP1L2, ALDOC, AMPD2, 
ATP6V0A1, BAD, CBR1, CD40, CRAT, CSF1R, 
DDIT4, DUOXA2, FDFT1, GART, GFPT2, GK, GLDC, 
HAL, IER3, IL6, KITLG, MSMO1, NAMPT, NANP, 
NR5A2, PNP, PPAT, PRPS1, PTGES, RDH12, SDS, 
SHMT2, SLC25A13, SOD1, STAT5B, TBPL1, TDH, 
UCK2, UGDH] 
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Table S3.11. Continuation. 

GO Term p-value Genes up-regulated in vivo (%) Genes up-regulated in serum (%) 

Organic substance 
transport 

9.17 E-03 (66.1) [ABCA1, ABCB6, ANXA1, ANXA4, AP1G2, AP1M2, AP1S3, AP2A2, APOM, 
ARRB1, ARRB2, BRP44L, CADM1, CD63, COG3, DAB2, DAG1, DSCR3, F2RL1, FLNA, 
FOLR1, GATA3, GPLD1, JUP, KRT18, LMBRD1, LONP2, LY6E, LYN, MFF, MFN2, MYH9, 
MYL9, MYO18A, NDFIP2, NEDD4L, OSBPL1A, OSBPL2, PEX7, PFKL, PGAP2, PKIA, 
PQLC2, PRICKLE1, PRKCZ, PTTG1IP, RAB15, RAB25, RAB27A, RAB34, RABGEF1, RASEF, 
SCP2, SERAC1, SERGEF, SFN, SLC17A5, SLC19A2, SLC1A1, SLC26A6, SLC28A3, 
SLC29A1, SLC38A2, SLC38A7, SLC4A2, SLC5A11, SLC6A20, SLC7A4, SLC7A7, SLC9A3R1, 
SNX17, SNX8, SNX9, SREBF1, STEAP3, TOM1, TP53, VPS26A, VPS33B, VPS36] 

(33.9) [ACSL1, ADRBK1, AQP3, ATP11C, BAD, 
BMP4, CD40, CRYM, CSF1R, DUOXA2, EIF5A, 
FKBP1B, FXC1, GGA3, GJA1, HPS4, IL18, IL6, 
KPNA6, MFSD2A, NCBP2, NDUFAF2, NXF1, PLIN2, 
PLK3, RANGRF, SAR1B, SEC61A1, SELK, SERPINA5, 
SLC1A5, SLC23A2, SLC25A13, SLC28A2, SLC33A1, 
SLC7A6, SLC7A6OS, TFRC, TIMM22, TOB1, TRPV1] 

Organonitrogen 
compound 
metabolic process 

7.62 E-03 (72.7) [AASS, ABCA1, ABCB6, ABHD12, AHCYL2, ALDH4A1, ALDH6A1, APEH, APLP2, 
ARRB1, ASL, ASRGL1, ATP6V0A4, ATP6V1B1, ATPIF1, BCAT1, BLVRA, CBLC, CBS, CHKB, 
CLN6, CRTAP, DCXR, DEGS2, DPEP1, DTD1, DUT, ELOVL1, ENPP4, ERBB3, FECH, 
GATA2, GATA3, GCAT, GM2A, GMPS, GNAS, GPLD1, H6PD, IARS2, IL6ST, KIT, LY6E, 
LYN, MAP7, MCEE, MTHFR, MUT, MVP, NADSYN1, NFE2, NME3, ORMDL2, PECAM1, 
PICALM, PNPLA6, PPARGC1A, PRKCZ, PSAP, PTDSS1, PTPLB, SAMHD1, SHPK, SMAD7, 
SMPD1, SMPDL3A, SMS, TMEM14C, TP53, TP53RK, UGCG, UROD] 

(27.3) [AFAP1L2, AMPD2, ATP6V0A1, BAD, CD40, 
CSF1R, DDIT4, DUOXA2, GART, GFPT2, GLDC, 
GSTM3, HAL, IL6, KITLG, NAMPT, PNP, PPAT, 
SAT1, SDS, SHMT2, SLC25A13, SOD1, STAT5B, 
TBPL1, TDH, UCK2] 

Organic substance 
catabolic process 

8.37 E-04 (57.8) [AASS, ABHD12, ALDH2, ALDH4A1, ALDH6A1, ARRB1, ARRB2, ASRGL1, BCAT1, 
BLVRA, CAPN1, CBLC, CLN6, DAB2, DTD1, DUT, EDEM1, ENO1, ENPP4, EPHX2, ETFDH, 
FBXL3, FBXO18, FBXO6, FLNA, FOXRED2, GAPDH, GCAT, GM2A, GPLD1, H6PD, 
HADHA, HK1, HKDC1, LONP2, NBAS, NEDD4L, PEX7, PFKL, PGM1, PLD2, PLD3, PRDX6, 
PRICKLE1, PRKCG, PSME4, PTPMT1, RNF146B, SAMHD1, SETMAR, SHPK, SMAD7, 
SMPD1, SMPDL3A, SNX9, SRD5A3, TIPARP, UBR1, XBP1] 

(42.2) [ALDOC, ALKBH1, AURKA, BAD, BNIP3, 
CCRN4L, CLPX, CSNK2A2, CUL4B, DDIT4, DEM1, 
DIS3L, FBXO5, GGA3, GJA1, GK, GLDC, HAL, IER3, 
KLHL8, LGMN, LSM1, NCBP2, NPM1, PLK3, 
POLR2G, SAT1, SDS, SETMAR, SIAH1, SKP1, SOD1, 
SPOPL, TCEB1, TDH, TOB1, TRIP12, UBE2A, 
UBE2J2, UBE2K, UHRF1, USP7, ZNRF1] 

Liposaccharide 
metabolic process 

4.75 E-03 (100) [CLN6, GM2A, GPLD1, KIT, MAP7, PGAP2, PGAP3, PIGU, PIGV, SERAC1, UGCG] (0) 

Negative 
regulation of 
neural precursor 
cell proliferation 

7.92 E-04 (71.4) [GATA2, ILK, KDM2B, LIMS1, TP53] (28.6) [ID2, KCTD11] 
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Table S3.12. GO biological processes, and genes up-regulated in each of them, enriched in genes DE (FDR corrected p-value <0.05, │FC│ ≥2) 

between all in vivo and all serum-free embryos. Benjamini-Hochberg corrected p-value <0.01, genes per term/pathway ≥5, Goterm levels 3–8.  

GO Term p-value Genes up-regulated 
in vivo (%) 

Genes upregulated in serum-free (%) 

Response to reactive oxygen species 5.40 E-03 (0) (100) [IL6, PARK7, PYCR1, SESN1, SOD1] 

Alcohol metabolic process 4.78 E-05 (0) (100) [DHCR24, FDFT1, FDPS, HMGCR, IDI1, MVD, NSDHL, PARK7, PCTP, RDH12, SOD1] 

Fatty acid biosynthetic process 6.24 E-03 (0) (100) [FADS1, GGT5, MSMO1, PTGES, PTGS2] 

Steroid biosynthetic process 1.54 E-05 (0) (100) [CYP17A1, FDFT1, FDPS, HMGCR, IDI1, MVD, NSDHL, SOD1] 

Cholesterol biosynthetic process 4.62 E-07 (0) (100) [FDFT1, FDPS, HMGCR, IDI1, MVD, NSDHL, SOD1] 

Isoprenoid metabolic process 6.36 E-06 (0) (100) [FDFT1, FDPS, HMGCR, HMGCS1, IDI1, MVD, RDH12] 

Sulfur compound metabolic process 4.88 E-05 (10) [MGST1] (90) [ADI1, CTH, GGCT, GGT5, MTR, MVD, PHGDH, SLC35D1, SOD1] 

Meiotic nuclear division 6.82 E-03 (0) (100) [ASZ1, DDX4, MAEL, PIWIL2, TEX12] 

Steroid metabolic process 3.02 E-05 (0) (100) [CYP17A1, DHCR24, FDFT1, FDPS, HMGCR, IDI1, MVD, NSDHL, PCTP, SOD1] 

Cholesterol metabolic process 7.25 E-07 (0) (100) [DHCR24, FDFT1, FDPS, HMGCR, IDI1, MVD, NSDHL, PCTP, SOD1] 

Isoprenoid biosynthetic process 3.53 E-07 (0) (100) [FDFT1, FDPS, HMGCR, HMGCS1, IDI1, MVD] 

Cellular amino acid biosynthetic process 3.92 E-07 (0) (100) [ADI1, ASS1, CTH, MTR, PARK7, PHGDH, PSAT1, PSPH, PYCR1] 

Serine family amino acid metabolic process 2.70 E-05 (0) (100) [CTH, PHGDH, PSAT1, PSPH, SHMT2] 

Organic acid biosynthetic process 3.92 E-07 (0) (100) [ADI1, ASS1, CTH, FADS1, GGT5, MSMO1, MTR, PARK7, PHGDH, PSAT1, PSPH, 
PTGES, PTGS2, PYCR1] 

Sterol metabolic process 9.17 E-07 (0) (100) [DHCR24, FDFT1, FDPS, HMGCR, IDI1, MVD, NSDHL, PCTP, SOD1] 

Sterol biosynthetic process 3.74 E-07 (0) (100) [FDFT1, FDPS, HMGCR, IDI1, MVD, NSDHL, SOD1] 

Sulfur compound biosynthetic process 2.73 E-03 (0) (100) [ADI1, CTH, GGCT, MTR, SLC35D1] 

Small molecule biosynthetic process 6.46 E-10 (0) (100) [ADI1, ASS1, CTH, FADS1, FDFT1, FDPS, GGT5, HMGCR, IDI1, MSMO1, MTR, MVD, 
NSDHL, PARK7, PHGDH, PSAT1, PSPH, PTGES, PTGS2, PYCR1, SOD1] 

Alcohol biosynthetic process 1.15 E-05 (0) (100) [FDFT1, FDPS, HMGCR, IDI1, MVD, NSDHL, PARK7, SOD1] 

Carboxylic acid biosynthetic process 3.92 E-07 (0) (100) [ADI1, ASS1, CTH, FADS1, GGT5, MSMO1, MTR, PARK7, PHGDH, PSAT1, PSPH, 
PTGES, PTGS2, PYCR1] 

Alpha-amino acid metabolic process 7.09 E-06 (0) (100) [ADI1, ASS1, CTH, GFPT2, MTR, PARK7, PHGDH, PSAT1, PSPH, PYCR1, SHMT2] 

Alpha-amino acid biosynthetic process 5.05 E-07 (0) (100) [ADI1, ASS1, CTH, MTR, PARK7, PHGDH, PSAT1, PSPH, PYCR1] 

Organic hydroxy compound biosynthetic process 1.97 E-04 (0) (100) [FDFT1, FDPS, HMGCR, IDI1, MVD, NSDHL, PARK7, SOD1] 

Oxidoreductase activity, acting on the CH-OH 
group of donors, NAD or NADP as acceptor 

5.43 E-03 (0) (100) [DHCR24, HMGCR, NSDHL, PHGDH, RDH12] 

Tetrapyrrole binding 3.74 E-03 (0) (100) [CYP17A1, FADS1, HBA, MTR, PGRMC1, PTGS2] 
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Whether you think you can, 

or think you can´t, you are right 

Henry Ford 

 

 

Tanto si piensas que puedes, 

como si piensas que no, estás en lo cierto 

Henry Ford 

 

 

 

 

 

 


