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Summary 
Leaves are one of the most important organs of the plant, providing energy and 

carbon for all plant organs during photosynthesis. Leaf growth is a tightly regulated 

process interconnecting genetic signaling pathways, developmental status and 

environmental signals. Diverse studies have demonstrated a close interaction 

between photosynthesis, sugar production, and leaf development. Several sugar-

mediated signaling pathways regulating plant growth have been identified but how 

sugar signals control leaf growth is still unknown. Besides sugars, multiple other 

organic compounds are known to regulate plant growth. Strobilurins are 

agrochemical fungicides that also exert positive effects on plant physiology and 

growth. However, the underlying mechanisms responsible for the strobilurin-

dependent growth promoting effects are still poorly understood.  

First, to investigate how sugars regulate early leaf growth, we designed an 

experimental assay in which the sugar status is altered at a specific developmental 

stage during growth of Arabidopsis seedlings. At this stage, the third leaf is still fully 

proliferating and acts as a sugar-importing sink tissue. We found that sucrose 

increased final leaf size by promoting cell proliferation and postponing the transition 

to cell expansion. In addition, transfer to sucrose resulted in repression of plastome 

expression and chloroplast differentiation. A critical role for GLUCOSE-6-

PHOSPATE/PHOSPHATE TRANSPORTER2 (GPT2) in the sucrose-mediated 

effects on early leaf growth was demonstrated. gpt2 mutant seedlings showed no 

stimulation of cell proliferation and no repression of chloroplast-encoded transcripts 

when transferred to sucrose.  

Transcriptome analysis of the young growing leaves after transfer to sucrose not only 

resulted in a general repression of chloroplast transcription, but several other 

nuclear-encoded genes were affected and we selected nine for further 

characterization. Loss- and gain-of-function lines were generated and were 

preliminary screened for potential leaf phenotype. Interestingly, we found two genes, 

DRM2 and AT5G26260, potentially involved in leaf growth regulation as their mutants 

produced larger and smaller mature leaves, respectively.  
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It is generally accepted that sugars are not only involved in primary metabolism but 

they can also act as signaling molecules, triggering important protein regulators to 

affect transcription or translation controlling growth. HEXOKINASE1 (HXK1) is a 

highly conserved glucose-signaling protein important for both growth promotion or 

inhibition depending on the environmental conditions, developmental status and plant 

species. A hxk1 mutant in the Arabidopsis Col-0 background was selected and 

phenotyped in detail. We found that HXK1 plays a role both in cell proliferation and 

expansion during early development of young leaves. hxk1 leaves contained more 

cells in early developmental stages and were less sensitive to sucrose to induce cell 

proliferation. In addition, we attempted to broaden the HXK1 protein complex by 

performing tandem affinity purification experiments from cell cultures continuously 

grown in the presence of sucrose, from sucrose-starved cells and from cells shortly 

after re-supplementation of sucrose. Surprisingly, proteins with diverse functions and 

subcellular localizations co-purified with HXK1 and we selected KINɣ1 for further 

investigation. 

Finally, we used a commercial available fungicide, Stroby, to study the positive effect 

of strobilurins on Arabidopsis plant growth. Stroby treatment resulted in larger 

rosettes and leaves due to an increase in cell proliferation. Furthermore, RNA 

sequencing analysis revealed differential expression of several sugar transporters, 

iron-related genes and the subgroup Ib basic helix-loop-helix (bHLH) transcription 

factors in Stroby-treated rosettes. One of these transcription factors, bHLH039, was 

found to be a key player in mediating Stroby-induced plant growth.  
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Samenvatting 
Bladeren behoren tot de belangrijkste organen van planten. Ze zorgen voor energie 

en koolstof voor alle andere plant organen tijdens de fotosynthese. Bladgroei is een 

nauwkeurig gereguleerd proces dat genetische pathways, ontwikkelingsstadia en 

omgevingssignalen integreert. Verschillende studies hebben aangetoond dat er een 

nauwe interactie is tussen fotosynthese, suiker productie, en blad ontwikkeling. 

Verschillende suiker-gemedieerde signaleringswegen die de groei van planten 

reguleren, werden reeds geïdentificeerd maar het is nog steeds onbekend hoe 

suikers exact bladgroei controleren. Naast suikers zijn er tal van andere organische 

componenten die plantengroei kunnen reguleren. Zo bijvoorbeeld zijn strobilurins 

agrochemische fungiciden die de fysiologie en groei van planten positief kunnen 

beïnvloeden. 

Om te bestuderen hoe suikers bladgroei reguleren, hebben we een experimentele 

assay ontwikkeld waarbij de suikerstatus kan gewijzigd worden gedurende een 

specifiek ontwikkelingsstadia van de Arabidopsis zaailing. Op dit tijdstip is het derde 

blad nog volledig aan het prolifereren en wordt het beschouwd als een ‘sink’ blad dat 

suikers importeert. We hebben aangetoond dat sucrose de uiteindelijke grootte van 

een blad kan doen toenemen door celproliferatie te promoten en de transitie naar 

celexpansie uit te stellen. Daarnaast resulteert de transfer naar sucrose in een 

algemene repressie van chloroplast expressie en differentiatie. GLUCOSE-6-

PHOSPATE/PHOSPHATE TRANSPORTER2 (GPT2) speelt een essentiële rol in de 

sucrose-gemedieerde effecten op vroege bladgroei. Mutante gpt2 zaailingen 

vertoonden noch een stimulatie in de cel proliferatie noch een repressie van 

chloroplast-gecodeerde transcripten wanneer ze getransfereerd werden naar 

sucrose. 

Transcriptoom analyse van jonge blaadjes na transfer op medium met sucrose 

resulteerde niet alleen in een algemene repressie van chloroplast transcriptie maar 

ook verschillende andere nucleair-gecodeerde genen worden beïnvloed. Hiervan 

werden negen genen geselecteerd voor verdere karakterisatie. Overexpressie lijnen 

en mutanten werden gegenereerd en preliminair gescreend voor een blad fenotype. 

Twee genen werden geïdentificeerd, DRM2 en AT5G26260, die potentieel betrokken 

zijn in de regulatie van bladgroei aangezien hun mutanten respectievelijk grotere en  
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kleinere finale bladgroottes vertonen. Deze genen coderen voor eiwitten met een 

ongekende functie en waarvoor er nog geen rol in bladgroei regulatie is beschreven. 

Tot op heden wordt het algemeen geaccepteerd dat suikers niet alleen betrokken zijn 

in primair metabolisme maar dat ze ook kunnen werken als signaal moleculen die 

belangrijke eiwit regulatoren activeren, en transcriptie en translatie beïnvloeden om 

groei te controleren. HEXOKINASE1 (HXK1) is een sterk geconserveerd glucose-

signalerend eiwit dat belangrijk is in zowel groei-bevordering als groei-inhibitie 

afhankelijk van de omgevingscondities, ontwikkelingsstadia en plantensoort. We 

introduceerden een nieuwe hxk1 mutant in de Arabidopsis Col-0 achtergrond en 

toonden aan dat HXK1 een centrale rol speelt in zowel celproliferatie als expansie 

tijdens de vroege ontwikkeling van jonge bladeren. hxk1 blaadjes bevatten meer 

cellen vroeg in de ontwikkeling en zijn minder gevoelig aan sucrose in de stimulatie 

van celproliferatie. Vervolgens hebben we geprobeerd de eiwit complexen rond 

HXK1 verder te karakteriseren door ‘tandem affinitiy purification’ experimenten uit te 

voeren op celculturen die continu in de aanwezigheid van sucrose groeiden, die 

sucrose-gestarveerd werden en kort na sucrose toevoeging. Een groot aantal 

verschillende eiwitten werd geïsoleerd samen met HXK1 met verschillende functies 

en subcellulaire lokalisaties. We selecteerden daarvan KINɣ1 voor verder onderzoek. 

In het laatste project maakten we gebruik van een commercieel verkrijgbaar 

fungicide, Stroby, om het positief effect van strobilurins op Arabidopsis plantengroei 

te bestuderen. Stroby behandeling resulteert in grotere rozetten en bladeren door 

een toename in cel proliferatie. Met behulp van ‘RNA-sequencing’ analyse vonden 

we dat verschillende suiker transporters, ijzer-gerelateerde genen en de subgroup Ib 

van de ‘basic helix-loop-helix (bHLH)’ transcriptiefactoren verschillend werden 

geëxpresseerd in Stroby-behandelende rozetten. Vervolgens konden we aantonen 

dat een van deze transcriptiefactoren, bHLH039, een sleutelrol speelt in de Stroby-

gemedieerde bevorderende werking op plantengroei. 

Samenvatting 
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Scope and outline of the thesis 
Leaf growth is a very complex process that is controlled by its genetic factors but also 

has to adjust to the environment which continuously changes the availability of water, 

nutrients and light. Many different molecular mechanisms regulating leaf growth have 

been characterized, demonstrating the involvement of a broad leaf growth-regulating 

network integrating environmental signals with development. The photosynthesis 

process in leaves produces one of the major energy sources as well as metabolic 

building blocks of plants: sugars. Sugars trigger conserved key regulators to signal 

the sugar status to the cell and monitor cellular homeostasis to modulate plant 

growth. However, still little is known about these sugar-responsive mechanisms and 

especially those that integrate the sugar status in a developmental context, such as 

the growth of young leaves. These so-called sink leaves depend on other leaves as 

sugar sources.  

The sink-to-source regulation was one of the first questions we wanted to address 

during my PhD. I developed an experimental setup in which the availability of sucrose 

can be altered during the growth of the third leaf of Arabidopsis and this setup was 

used throughout my sugar-related research. Furthermore, one of the first indications 

that sugars can act as signaling molecules came from the glucose insensitive2 (gin2) 

mutant, impaired in HEXOKINASE1 (HXK1) expression. HXK1 is a conserved 

glucose phosphorylating enzyme and is also known to act as glucose sensor. Major 

growth defects have already been described for the gin2 mutant but it is still not clear 

how HXK1 exactly regulates plant growth. The second goal of my PhD was to further 

study the role of HXK1 during early leaf development. Finally, we selected from our 

transcriptome datasets several sucrose-responsive genes to find novel potential leaf 

growth regulators to broaden the growth-regulatory network. 

Besides sugars, multiple other compounds are known to regulate leaf growth. We 

started a side project on different kinds of molecules, the strobilurin compounds. 

These compounds are worldwide used as agrochemical fungicides but also exert 

some interesting physiological effects resulting in enhanced crop yield. However, 

these positive effects on growth have only been reported in crops and the mode-of-
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action was never investigated in detail. This triggered us to study the strobilurin-

induced growth-promoting effects in Arabidopsis both at the cellular and molecular 

level to find genes putatively involved in the strobilurin-regulated control of plant 

growth.  

The first part of this PhD thesis consist of three introductory chapters. In the first 
chapter, I present a general introduction of sugars explaining the basic biochemistry 

processes by which sucrose is formed, how it is transported from source-to-sink 

organs and the transcriptional and translational responses known to be triggered by 

sugars to regulate plant growth. The second chapter is a review that highlights the 

important role of nuclear-encoded organellar proteins during plant development and 

the need of a more in depth characterization of these proteins at the cellular level. I 

finalize this introducing part with Chapter 3, which gives an overview of the current 

knowledge of strobilurins as fungicides and growth-enhancing compounds. 

In the second part, my research on sugars and strobilurins is compiled in four result 

chapters:  

In Chapter 4, we introduce an experimental in vitro setup in which sucrose can be 

altered during leaf development. We found that sucrose stimulates cell proliferation to 

increase final leaf size. Additionally, we demonstrated a central role of chloroplast 

differentiation, chloroplast transcription as well as the chloroplast-localized 

GLUCOSE-6-PHOSPHATE TRANSPORTER2 (GPT2) during the sucrose-induced 

leaf growth.  

In Chapter 5, nine sucrose-responsive genes were selected from the transcriptome 

analyses in Chapter 4, in which transcriptional responses induced or repressed by 

sucrose were determined in growing leaves, 3 hours and 24 hours after transfer to 

sucrose. Gain- and loss-of-function lines were generated and preliminary screened 

for a leaf phenotype.  

We focus on the role of HXK1 during early leaf development in Chapter 6. A hxk1 

mutant in the Col-0 background is phenotyped at the rosette, leaf and cellular level. 

We demonstrate that hxk1 is less sensitive to sucrose and HXK1 probably regulates 

sucrose-induced leaf growth independently from GPT2. To further elucidate sugar-

dependent HXK1 protein partners tandem affinity purification experiments were done 

resulting in the identification of several interesting candidates.  
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Finally, in Chapter 7 we investigated the effect of strobilurin application on the growth 

of Arabidopsis plants in soil. For this, we used the commercially available strobilurin, 

Stroby. Stroby treatment resulted in an significant increase in rosette size and 

transcriptome analysis on rosettes demonstrated a key role for the subgroup Ib basic 

HELIX-LOOP-HELIX transcription factors in the Stroby growth-promoting effect. Next, 

we further investigated how Stroby and loss-of-function of bHLH039 affects the 

development of young leaves and studied the underlying transcriptional responses 

during growth. 

In the last part of this thesis, general conclusions and hypotheses are discussed. 

Future experiments are suggested to complete and elaborate the understanding of 

the function of GPT2 and HXK1 as well as the effects of strobilurins during plant 

growth.  
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Part 1: 
Introduction 
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Sugar signaling  
during Arabidopsis Leaf growth 

CHAPTER 1 
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Leaves as important photosynthetic sources 

Leaf development in Arabidopsis thaliana 
When plants are growing, the timely formation of leaves is crucial as they are the 

major source of carbon and energy that drives the growth of all other plant parts. In 

addition, leaves are the major sites of oxygen production fueling the atmosphere for 

all higher organisms on Earth. Leaves convert the energy from sunlight to chemical 

energy which is further processed to form carbohydrates from carbon dioxide during 

photosynthesis. Source leaves are the leaves that are actively performing 

photosynthesis producing their own energy (autotrophic) to grow and that also 

provide the energy for sink tissues (heterotrophic), such as flowers, roots and young 

proliferating leaves.   

Arabidopsis dicot leaves arise as small cellular outgrowths from the shoot apical 

meristem (SAM) called leaf primordia. First, these primordia exclusively grow by cell 

proliferation (primary morphogenesis) leading to an exponential increase in the 

number of cells through cell division. Cell division or cell cycle progression is a strict 

time and space regulated process resulting in the correct separation of the genetic 

information in two daughter cells. The cell cycle consists of an S-phase during which 

DNA is replicated and the M-phase or mitosis to segregate the chromosomes. Both 

phases are preceded by G-phases that serve as control points and preparatory 

phases (Dewitte & Murray, 2003). The major regulators of the different cell cycle 

phases are the CYCLIN-DEPENDENT KINASES (CDKs) that interact with their 

regulatory cyclins (CYCs). The CDK/CYC complexes composition and activity is 

phase-specific, with A-type and D-type CYCs mainly involved in the G1-to-S 

transition and B-type CYCs mainly controlling the G2-to-M phase (De Veylder et al, 

2007). In parallel, CDKAs are essential at both G1-to-S and G2-to-M phases and 

CDKBs mainly control the G2-to-M phase. Few days after emergence from the SAM, 

cells from the leaf primordia stop dividing and start to expand at the tip of the leaf. 

This progression has been well described for the third true leaf in the model organism 

Arabidopsis thaliana (Andriankaja et al, 2012). In optimal growth conditions all cells 

of the third leaf proliferate and remain relatively constant in size until nine days after 

stratification (9 DAS). At that time point cells at the tip of the leaf lose their capacity to 
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divide and a cell cycle arrest front moves down the leaf until 13 DAS, and, 

consequently, abruptly disappears around 14 DAS (Fig. 1). The leaf then enters its 

secondary morphogenesis phase and mainly grows by cell expansion (Andriankaja et 

al, 2012). Cell expansion is mainly driven by turgor pressure through enlargement of 

the vacuole and is also accompanied by endoreduplication (De Veylder et al, 2011). 

During this latter process, cells undergo endocycles in which their DNA is still 

duplicated but without subsequent cell division, increasing the nuclear ploidy levels. 

Next to these two major cellular processes driving growth, proliferation and 

expansion of the pavement cells (Fig. 2A), also the asymmetric division of 

meristemoids results in the formation of epidermal pavement cells and thus 

participates to final size control of the leaf. Besides generating pavement cells, 

meristemoids, dispersed in the leaf, are precursor cells for stomata guard cells 

(Geisler et al, 2000).  

During development, leaf size is monitored to maximize the capacity to capture 

sunlight. Interestingly, the transition from cell proliferation to cell expansion in the 

third leaf was found to coincide with greening of the leaf, and, thus, the establishment 

of the photosynthetic machinery and chloroplast differentiation (Andriankaja et al, 

2012). Just before the onset of cell expansion transcripts involved in photosynthesis 

are upregulated which is preceded by a strong upregulation of genes involved in 

chloroplast-to-nucleus or retrograde signaling (Andriankaja et al, 2012). Furthermore, 

inhibition of chloroplast differentiation was shown to affect the onset of the transition 

to cell expansion. These findings suggest the existence of a yet unknown signal from 

the chloroplasts that regulates the transition to cell expansion during leaf 

development. 

9         10        11   12       13    DAS 

Figure 1. Expression pattern of CYCB1;1-D-box:GUS translational fusion 
protein during the transition phase of leaf development. Movement of the cell 
cycle arrest front from 9 until 13 days after stratification (DAS). Blue staining marks 
the dividing cells. From Andriankaja et al, 2012. 
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The basics of photosynthesis 
Higher plants are able to fixate carbon through three different variants of the 

photosynthetic process. These variants are mainly distinguished by the different 

carbon intermediates that are formed. Arabidopsis, rice, barley and wheat perform 

C3 photosynthesis that results in the formation of a three-carbon molecule. In 

contrast, C4 photosynthesis resulting in a four-carbon photosynthetic product 

happens in maize, sorghum and sugarcane and crassulacean acid metabolism, or 

CAM photosynthesis, also resulting in a four-carbon product, is common for plants 

living in arid areas. A central enzyme for these distinct photosynthetic processes is 

the ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco) which generally 

catalyzes the reaction between ribulose-1,5-biphosphate (RuBP) and CO2 but can 

also react with O2. The C4 and CAM photosynthetic variants have developed specific 

strategies to improve the affinity of Rubisco to CO2, by concentrating CO2 in specific 

cells (bundle sheet cells versus mesophyll cells) or by opening the stomata 

apparatus only at night, respectively. 

C3 photosynthesis in Arabidopsis leaves takes place in the chloroplasts of mesophyll 

cells, and consists of two types of reactions, the light-dependent reactions at the 

thylakoid membranes and the so-called dark reactions, the Calvin cycle or the 

reductive pentose phosphate cycle in the chloroplast stroma (reviewed by Stitt et al, 

2010; Fig. 2B and C). During the light-dependent reactions, sunlight is converted in 

the chemical energy-storage molecule, adenosine triphosphate (ATP), and in 

nicotinamide adenine dinucleotide phosphate (NADPH), storage molecule of 

‘reducing’ power, which are subsequently used in the Calvin cycle to fixate carbon 

dioxide to form 3-phosphoglycerate. The net photosynthesis reaction can be 

chemically described as follows: 6CO2 + 6H2O  C6H12O6 + 6O2.  

The light-dependent reactions involve different protein complexes. In the first protein 

complex, photosystem II (PSII), light energy is used to convert water into oxygen and 

energized electrons (Barber 2012). This protein complex contains a photosynthetic 

reaction center to capture photons, consisting of two homologue proteins D1 and D2 

and a special chlorophyll a pair (P680). Besides this center, PSII also contains a 

light-harvesting complex (LHC) with accessory light-harvesting 
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proteins or antenna molecules with additional pigments, such as chlorophylls and 

carotenoids, to collect more light. The excited electrons are then transferred to PSI 

through the electron transport chain (ETC) resulting in several redox reactions. This 

occurs via a second protein complex, the cytochrome b6f complex. The electrons are 

transported through a membrane soluble and mobile electron carrier, plastoquinone 

(PQ) for the transfer of electrons from PSII to cytochrome b6f complex, and the 

luminal plastocyanin (PC) responsible for the transfer of electrons from the later 

complex to PSI (Fig. 2C). The cytochrome b6f complex has an oxidoreductase activity 

and the transport of electrons establishes a proton gradient across the thylakoid 

membrane by pumping protons in the thylakoid lumen (Tikhonov, 2014). PSI also 

captures light to bring the electrons in a higher energy level to reach a 2Fe-2S-

containing protein located in the chloroplast stroma, ferredoxin. The PSI complex 

consists of significantly more antenna proteins than PSII and also harbors a reaction 

center with special chlorophyll dimer that absorbs light at a higher wavelength 

(P700). Finally the electrons are transferred from ferredoxin to ferredoxin-NADP+ 

reductase (FNR) to produce NADPH. The fourth and last protein complex that is part 

of the light-dependent reactions is the ATP synthase enzyme that generates ATP by 

using the energy from moving protons from the thylakoid lumen to the chloroplast 

stroma. Next, the reducing power of NADPH and the energy of ATP are used in the 

Calvin cycle (Fig. 2C). In the first step, CO2 is incorporated in the five-carbon 

molecule RuBP by Rubisco to generate 3-phosphateglycerate (3-PGA). 

Consequently, ATP and NADPH from the light reactions are used to convert 3-PGA 

into the triose phosphate glyceraldehyde-3-phosphate (GAP). GAP is then used for 

other biosynthetic pathways or is used to regenerate RuBP to further fuel the Calvin 

cycle by many different enzymatic reactions and conversions. Many of these Calvin 

enzymes are post-translationally regulated by thioredoxin-dependent redox 

regulation (Buchanan & Balmer, 2005). In light, thioredoxin is reduced by the 

ferredoxin/thioredoxin reductase (FTR) when electrons are transferred from 

ferredoxin in the ETC. Consequently, the reduced thioredoxin can activate Calvin 

cycle enzymes and other enzymes by an interchange of reduced disulfide bridges 

that have stabilizing as well as regulatory roles. 
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From photoassimilate to starch and sucrose 
The primary end product of photosynthesis is GAP which can be converted in 

sucrose in the cytosol or starch, as storage compound, in the chloroplast (reviewed 

by Stitt & Zeeman, 2012; Fig. 3). In both cellular compartments, GAP is converted in 

dihydroxy acetone phosphate (DHAP) by triose phosphate isomerases and both 

molecules are combined into a fructose-1,6-biphosphate (F1,6BP). F1,6BP is 

metabolized to fructose-6-phosphate (F6P) by F1,6BPase and then to glucose-6-

phosphate (G6P) by phosphoglucoisomerase, PGI (Fig. 2). Next, G6P is reformed to 

glucose-1-phosphate (G1P) by phosphoglucomutase, PGM. G1P can be seen as the 

central carbohydrate precursor in both starch and sucrose biosynthesis pathways.  

During the day or when enough sucrose is available, G1P reacts with ATP in the 

chloroplast to form ADP-glucose (ADPG). This rate-limiting step of the starch 

biosynthesis pathway is catalyzed by ADPG pyrophosphorylase (ADG) and liberates 

inorganic pyrophosphate (PPi). Consequently, ADPG is attached to the 

polysaccharide α-amylose by starch synthases and branching enzymes to form 

starch (Fig. 3). ADG is allosteric activated by 3-PGA and inhibited by inorganic 

phosphate (Pi) by which starch synthesis is therefore strictly coupled with the 

photosynthetic activity of the cell (Kleczkowski, 1999). Higher photosynthetic carbon 

fixation changes the production of the primary photoassimilates, such as 3-PGA, 

which on its turn can regulate ADG activity and thus coordinates photosynthesis with 

starch biosynthesis. Additionally, ADG is also redox-dependent post-translationally 

activated by light and sucrose through the reduction of a cysteine bridge (Hendriks et 

al, 2003). In the last decade, the classical model of starch biosynthesis in which ADG 

plays the essential role in producing ADPG from G1P, has been questioned. An 

alternative starch biosynthesis pathway has been suggested wherein sucrose 

synthase can also produce ADPG in the cytosol which is subsequently imported in 

the chloroplast (Bahaji et al, 2014; Munoz et al, 2005). Sucrose synthase is mainly 

involved in catabolizing sucrose into UDP-glucose (UDPG) and fructose.  

At night, starch is degraded through a series of enzyme activities that phosphorylate 

the glucosyl residues of the starch polymers. The most important starch breakdown 

enzymes are β-amylases and debranching enzymes, and the main end products are 
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Figure 3. Starch and sucrose biosynthesis in leaves. During the day, triose phosphates GAPs are formed 
by the Calvin cycle in the chloroplast stroma. GAPs are converted by consecutive enzymatic reactions into 
starch in the chloroplast or are transported via triose phosphate/phosphate translocator to the cytosol where 
they are converted into sucrose. Sucrose is transported via the phloem to sink tissues, metabolized to its 
hexose products by cytosolic invertases, generating fructose and glucose, or sucrose synthase, generating 
fructose and UDP-glucose, or is stored in the vacuole, where it is also converted into its hexose products. 
GAP, glyceraldehyde-3-phosphates; DHAP, dihydroxy acetone phosphate; F1,6BP, fructose-1,6-biphosphate; 
F6P, fructose-6-phosphate; G6P, glucose-6-phosphate; G1P, glucose-1-phosphate; GPT, glucose 
phosphate/phosphate transporter; UDPG, UDP-glucose; ADPG, ADP-glucose; Sucr6P, sucrose-6-phosphate. 

maltose and glucose. However, the major transported sugar is sucrose which can be 

synthesized from the starch breakdown products or is directly formed from G1P in 

the cytosol (Fig. 3). For the latter reaction, GAP has to be exported in the cytosol via 

triose phosphate/phosphate translocator (TPT) in exchange of Pi, where it will be 

converted to G1P. G1P is first transformed into UDPG by UDP-glucose 

pyrophosphorylase and, then, combined with F6P to produce sucrose-6-phosphate 

(Sucr6P) by sucrose phosphate synthase (SPS). Finally, sucrose is formed by 

sucrose-6-phosphatase and is loaded into the phloem or imported in the vacuole 

where it is converted by vacuolar invertases to glucose and fructose for storage. 

Sucrose can also be further metabolized to its hexose products in the cytosol (Fig. 3). 
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Loading in the phloem ensures sucrose transport to sink tissues, such as flowers, 

roots or immature leaves that do not produce their own sugars. As in the starch 

synthesis pathway, sucrose biosynthesis is strictly regulated by two central enzymes, 

F1,6BPase and SPS (Huber & Huber, 1996). F1,6BPase is inhibited by the 

metabolite fructose-2,6-biphosphate (F2,6BP) which is formed when 3-PGA/Pi levels 

increase. SPS is allosterically activated by G6P and inhibited by Pi. 

Photorespiration 
The photorespiration process is a scavenging process of the plant to recover carbon 

and remove waste products when Rubisco interacts with O2 instead of CO2 

(Peterhansel et al, 2010). The oxygenase activity of the enzyme is increased by 

warm temperatures that raise the O2/CO2 ratio and leads to the formation of 2-

phosphoglycolate. This molecule can inhibit different enzymes involved in the Calvin 

cycle and therefore has to be metabolized by the cell. Three different organelles, 

chloroplast, peroxisome and mitochondria, are involved in the photorespiration 

pathway that converts 2-phosphoglycolate to glycolate and finally into glycerate 

which can again be used in the Calvin cycle. Glycolate is transported to the 

peroxisome where it is converted to glyoxylate by glycolate oxidase and 

subsequently to glycine by aminotransferases. Subsequently, glycine is imported in 

mitochondria were it gets decarboxylated and deaminated by glycine decarboxylase, 

and further processed to serine. Serine then goes back to the peroxisome and is 

converted to hydroxypyruvate and, finally, glycerate that is phosphorylated into 3-

PGA in the chloroplasts. The respiration process therefore results in a net loss of 

some of the energy produced by photosynthesis. However, this process helps the 

plant cell to recycle phosphoglycolate, a harmful waste product generated by the 

oxygenation of RuBP and which cannot be used by the Calvin cycle.  
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Chloroplasts, the photosynthetic factories of the cell 

Chloroplast structure and composition 
Photosynthesis occurs in specialized cellular organelles, chloroplasts (Fig. 2B). 

Meristematic cells usually contain 10-20 colorless proplastids and light is needed to 

convert them to functional chloroplasts, with the synthesis of chlorophyll from its 

precursor, protochlorophyllide. If no light is available the proplastid will develop in an 

etioplast with accumulation of protochlorophyllide and the formation of a prolamellar 

body, i.e. a crystalline membranous structure. During leaf development, the number 

of chloroplasts per mesophyll cell increases to several hundred (Sakamoto et al, 

2008). This number is positively correlated with light quantity, and, thus, with sugar 

production, and also with cell area during cell expansion, as shown in isolated 

spinach leaf discs (Possingham & Smith, 1972; Pyke & Leech, 1992). A mature 

chloroplast is typically lens-shaped and surrounded by an envelope consisting of two 

membranes: a permeable outer membrane and a more impermeable inner 

membrane separated by an inter-membrane lumen. The fluid inside the chloroplasts 

is called stroma and contains the necessary enzymes for the Calvin cycle, 

chloroplast ribosomes and the chloroplast DNA (cpDNA) or plastome. In addition, the 

stroma also contains starch granules and plastoglobuli, i.e. small lipid vesicles. 

Besides the envelope, chloroplasts also contain a third membrane structure called 

the internal thylakoid membranes organized in unstacked stromal thylakoid 

membranes or stroma lamellae and in stacked discs called grana (Fig. 2B). PSI is 

mainly located in the stromal thylakoid membranes, whereas PSII is located in the 

grana (Pribil et al, 2014). This different distribution of the PSs allows for a correct 

absorption of light during changes in light conditions. PSII has higher excitation 

energy than PSI and absorbs more light under high light conditions resulting in 

phosphorylation of specific components of the LHCII by the kinase THYLAKOID 

ASSOCIATED KINASE STATE TRANSITION 7 (STN7) (Bellafiore et al, 2005; Kouril 

et al, 2005). Phosphorylated LHCII will be decoupled from PSII and migrate to the 

PSI. Under low light conditions PSI absorbs photons faster than PSII, LHCIIs are not 

phosphorylated and move to the grana where they interact with PSII.  
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Photosynthetically-active chloroplasts contain 2000 to 3000 different proteins which 

are in majority encoded by the nucleus. However, most of the core components of 

the photosynthetic complexes are encoded by the cpDNA. Table 1 gives an overview 

of the major photosynthetic complexes and where their proteins are encoded. cpDNA 

is arranged together with DNA-binding proteins in complexes called nucleoids, as in 

prokaryotes, which are normally attached to the chloroplast envelop. A full developed 

chloroplast contains around 100 copies of its chloroplast DNA and this number of 

cpDNA copies remains stable during leaf development, although some contrasting 

results have been reported suggesting a decrease in cpDNA copy number during 

development (Golczyk et al, 2014; Oldenburg & Bendich, 2015; Zoschke et al, 2007). 

The Arabidopsis cpDNA is 154 Kbp in size and harbors 130 genes, from which 54 

genes encode photosynthesis-related proteins, 45 encode rRNAs or tRNAs that 

mediate chloroplast translation and 31 are involved in chloroplast transcription 

(Lopez-Juez & Pyke, 2005; Sato et al, 1999). Besides these proteins, the plastome 

also encodes the large subunit of Rubisco, RBCL, whereas the small subunit, RBCS, 

is encoded by the nuclear genome. Because most of the chloroplast proteins are 

encoded by the nuclear genome, the nucleus and chloroplasts need to communicate 

to coordinate their gene expression. Nuclear control of chloroplast differentiation is 

called anterograde signaling, whereas chloroplast signaling to the nucleus to link 

nuclear gene expression with the chloroplast developmental state and/or activity is 

referred to as retrograde signaling (Inaba et al, 2011). To date, many different 

retrograde pathways have been found to affect nuclear expression, involving 

intermediates of the tetrapyrrole biosynthesis, Reactive Oxygen Species (ROS) and 

redox state changes during the light-dependent reaction of photosynthesis (Inaba et 

al, 2011). Furthermore, plastid gene expression and several metabolites, such as 

methylerythritol cyclodiphosphate, involved in isoprenoid biosynthesis, have been 

described to act as retrograde signals under stress conditions (Inaba et al, 2011). 

Interestingly, also sugars have been hypothesized to act as important signals during 

acclimation to high light (Hausler et al, 2014). A central player of all retrograde 

signaling processes is the ABA-INSENTIVE 4 (ABI4) transcription factor, involved in 

many different aspects during plant growth and tightly interconnected with sugar 

signaling during seedling development (Leon et al, 2012). 
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Chloroplast transcription 
As in prokaryotes, genes on the cpDNA are organized in operons, i.e. several genes 

are co-transcribed from one promoter. Transcription of the plastome genes depends 

on two RNA polymerases, a bacterial type polymerase which is encoded by the 

plastome, the plastid-encoded polymerase (PEP) and a bacteriophage type 

polymerase which is encoded by the nuclear genome, the nucleus-encoded 

polymerase (NEP; Table 1). PEP consists of four core subunits, rpoA, rpoB, rpoC1 

and rpoC2, encoded by the chloroplast and an additional sigma factor (SIG) encoded 

by the nucleus. NEP consists of one subunit encoded by three different genes: 

RpoTp for chloroplasts, RpoTm for mitochondria and RpoTmp targeted to both 

organelles (Hricova et al, 2006). Generally, early during chloroplast development, 

NEP is mainly active resulting in the expression of the rpoB operon encoding the 

PEP subunits rpoB, rpoC1 and rpoC2, next to house-keeping genes (such as clpP 

and accD) and proteins involved in plastid translation (ribosomal proteins and RNAs). 

Subsequently, PEP is formed and is mainly involved in the transcription of genes 

encoding photosynthesis-related proteins. However, recently, NEP and PEP were 

described to be active at all stages during leaf development (Börner et al, 2015). SIG 

factors determine which genes are transcribed by PEP and several specific and 

redundant roles for individual SIG factors have been described (Chi et al, 2015). The 

Arabidopsis genome encodes six SIG factors (SIG1-6) which facilitate promoter 

specificity (Kanamaru & Tanaka, 2004). SIG1 and SIG5 transcripts are induced by 

red and blue light (Onda et al, 2008). SIG1 was shown to accumulate during seedling 

development, primarily binds to the psaA promoter and is suggested to be involved in 

the acclimation of PSI and PSII to changes in light intensities (Hanaoka et al, 2012). 

SIG5 mediates blue-light induced transcription of the psbD/C operon by binding the 

blue-light responsive promoter and is activated upon various stresses, such as high 

light, salt and low temperature (Nagashima et al, 2004; Onda et al, 2008). sig5 

mutants are embryo lethal and a pivotal role of SIG5 in reproduction has been 

reported (Yao et al, 2003). Additionally, it has been shown that SIG5 mediates the 

circadian regulation of plastome expression (Noordally et al, 2013). SIG2 is involved 

in the basic transcription of the large (atpI/H/F/A) and the small (atpB/E) operons 

coding for the subunits of ATP synthase (Malik Ghulam et al, 2012). sig2 mutants 

exhibit a chlorophyll deficient phenotype with pale green leaves due to impaired 
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chloroplast differentiation demonstrating a central role of SIG2 during chloroplast 

development (Kanamaru et al, 2001; Privat et al, 2003).  

Protein complex Function Genes DNA 
PHOTOSYSTEM II Reaction Center psbA C 

psbD-F C 
psbI C 

psbL-N C 
Assembly psbJ C 

psbK C 
ycf9 C 

Oxygen splitting psbO-R N 
LHC psbB-C C 

Lhcb1-6 N 
PHOTOSYSTEM I Reaction Center psaA-C C 

psaD-H N 
psaI-J C 
psaK-L N 
psaO N 

LHC Lhca1-4 N 
Assembly ycf3-4 C 

Ferredoxin/FNR petG N 
petH-I N 

Plastocyanin petF N 
Cytochrome b6/f Cyt f petA C 

Cyt b6 petB C 
Fe-S cluster petC N 
quinone-binding protein petD C 
quinone function petE C 

ATPase α-subunit atpA C 
β-subunit atpB C 
γ-subunit atpC N 
δ-subunit atpD N 
ε-subunit psaE C 
Additional subunits atpF-I C 

atpG-H N 
atpI C 

NADH complex NADH dehydrogenase ndhA-J C 
psbG C 

RuBisCO Small subunit rbcS N 
Large subunit rbcL C 

PEP Transcription rpoA-B C 
rpoC1-C2 C 

NEP Transcription N 
Ribosomal RNA Translation rrn4.3-rrn23 C 
tRNA Translation trnA-V C 
Ribosomal proteins Translation rps2-19 C 

rpl2-36 C 
Others Intron splicing matK C 

Protease clpP C 
Acetyl-CoA carboxylase subunit accD C 
? ycf1-2 C 
? ycf5-6 C 
? ORF77 C 

Table 1. Major protein complexes involved in photosynthesis, chloroplast transcription or 
translation encoded by the nuclear genome (N) or chloroplast DNA (C). 
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Furthermore, transcript levels of several tRNA genes were reduced in the sig2 

mutant and one of these genes, tRNAGLU, is involved in the first steps of tetrapyrrole 

biosynthesis (Hanaoka et al, 2003; Privat et al, 2003). SIG2-dependent regulation of 

tRNAGLU is also suggested to function in the NEP-to-PEP transcriptional switch 

because of the tRNAGLU-mediated inhibition of NEP transcription (Chi et al, 2015; 

Hanaoka et al, 2005; Kanamaru et al, 2001). T-DNA insertion lines disrupting SIG3 or 

SIG4 function revealed regulation of psbN and ndhF transcription, respectively 

(Favory et al, 2005; Zghidi et al, 2007). The last and sixth sigma factor, SIG6, is 

involved in early chloroplast development in cotyledons (Ishizaki et al, 2005) as well 

as in retrograde signaling together with SIG2 (Woodson et al, 2013). SIG6 interacts 

with the pentatricopeptide-repeat (PPR) protein DELAYED GREENING 1 (DG1) (Chi 

et al, 2010). PPR proteins are part of a huge family of 450 proteins in Arabidopsis 

and are mainly involved in post-transcriptional regulation of chloroplast RNAs, i.e. 

splicing, cleavage and editing of the single-stranded mRNAs. Some PPRs also have 

a role in translation (Schmitz-Linneweber & Small, 2008). 

In conclusion, a correct transcription of chloroplast genes is essential for normal plant 

growth and any changes in the function of the major chloroplast transcription 

regulators result in severe growth problems.  

Sugars as metabolites and signaling molecules 

Sugar transporters during source-sink translocation 
The major end products of photosynthesis are triose phosphates which are converted 

to the disaccharide sucrose, transported via the phloem to sink tissues that do not 

photosynthesize or  are photosynthetic  active but still need a net import of 

sugars to sustain their growth. First, sucrose has to be translocated through 

apoplastic transport, via plasmodesmata and/or through sucrose transporters from 

the mesophyll cells to the phloem parenchyma cells and, finally into the phloem 

companion cells and to sieve element complexes from the phloem where the actual 

long-distance transport happens (Fig. 2D). Several sugar and sugar phosphate 

transporters exist on the chloroplast envelop and plasma membrane to facilitate 
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translocation of metabolites in the cytosol and loading of sucrose in the phloem for 

long-distance transport (Fig. 4).  

During the day, sucrose is formed from triose phosphates that are exported in the 

cytosol via the triose phosphate/ phosphate translocator (TPT; Schneider et al, 

2002), whereas at night sucrose is produced from the starch degradation products, 

glucose and maltose, which are exported via the plastidic glucose transporter pGlcT 

and a maltose exporter MEX1 (Cho et al, 2011; Niittyla et al, 2004). Interestingly, tpt-

2 and pglct single and pglct/tpt-2 double mutants do not exhibit a growth phenotype, 

whereas mex1, pglct-1/mex1 and tpt-2/mex1 mutants are severely reduced in growth 

(Cho et al, 2011). This reduction in growth can be rescued with sucrose treatments, 

indicating that the export of starch breakdown products is essential for plant growth. 

In accordance, tpt mutants combined with starch biosynthesis mutants (adg1-1, 

pgm1 and pgi1-1) also show growth retardation when grown under high light which 

could also be recovered by sucrose or glucose treatments (Heinrichs et al, 2012; 

Schmitz et al, 2014; Schmitz et al, 2012). These observations suggest the existence 

of redundantly acting sugar phosphate translocators and/or involvement of sugar 

signaling pathways. Interestingly, a strong induction of the GLUCOSE-6-

PHOSPHATE/PHOSPHATE TRANSPORTER2 (GPT2) was found in the starch 

biosynthesis single mutants and in the adg1-1/tpt-1 double mutant (Kunz et al, 2010). 

However, the adg1-1/tpt-2/gpt2-1 triple mutant demonstrated a similar growth 

recovery upon sugar treatment as the double mutants, ruling out the involvement of 

GPT2 in rescuing the growth retardation after sugar treatments (Heinrichs et al, 

2012). GPT2, together with its homologue GPT1, belongs to a class of phosphate 

translocators localized at the inner membrane of chloroplasts and involved in the 

G6P/Pi transport between the cytosol and chloroplast stroma (Flugge, 1999; Knappe 

et al, 2003). These glucose phosphate translocators were originally suggested to act 

as the main transporters involved in the import of G6P in non-green plastids of 

heterotrophic tissues as start product of the oxidative pentose phosphate pathway 

(Kammerer et al, 1998). This pathway is the major source of NADPH used in several 

biosynthetic pathways such as the fatty-acid and amino acid biosynthesis as well as 

in maintaining the cellular redox homeostasis in tissues that do not photosynthesize 

(Kruger & von Schaewen, 2003). The essential function of GPT1 in providing G6P for 

NADPH production was indeed demonstrated by the impaired embryo development 

of gpt1 RNAi and T-DNA insertion knock-out mutants (Andriotis et al, 2010; 
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Niewiadomski et al, 2005). Contrastingly, under optimal growth conditions gpt2 T-

DNA insertion mutants are undistinguishable from wild type plants in growth, 

germination and seed yield (Athanasiou et al, 2010; Niewiadomski et al, 2005). 

However, gpt2 mutants are unable to undergo dynamic acclimation, i.e. changing 

their photosynthetic capacity when light conditions are altered (Athanasiou et al, 

2010). Furthermore, it was suggested that GPT2 functions as a buffer for changes in 

carbon metabolite contents during this photosynthetic acclimation. Mature gpt2 

mutant plants were found to accumulate less starch but synthesize the same amount 

of sucrose during photosynthetic acclimation (Dyson et al, 2015). Furthermore, 

mature leaves of gpt2 mutants strongly induce the expression of photosynthesis-

related genes and plastid-encoded genes and also the levels of trehalose-6-

phosphate (T6P) are increased compared with wild-type plants (Dyson et al, 2015). 

Besides these findings, gpt2 seedlings were also found to be delayed in cotyledon 

greening during seedling development (Dyson et al, 2014). 

Recently, two members of a novel class of sucrose transporters, the SWEET 

transport family, were shown to facilitate the export of sucrose in the apoplast of the 

mesophyll or phloem parenchyma cells (Chen et al, 2012; Eom et al, 2015). 

SWEET11 and SWEET12 act redundantly because only the double mutant showed 

reduced growth, enhanced levels of starch, sucrose and hexoses in the leaves as 

well as defects in root growth.  

Figure 4. Sugar and sugar phosphate transporters in source leaves and transport of sucrose to 
phloem. 1, triosephosphate/phosphate translocator (TPT); 2, glucose-6-phosphate transporter (GPT); 3, 
plastidic glucose transporter pGlcT; 4, maltose exporter MEX1; 5, sucrose/H+ symporter SUC2/SUT1; 6, 
SWEET transporter; 7, sucrose/H+ symporter SUC2/SUT1. GAP, glyceraldehyde-3-phosphate; G6P, glucose-
6-phosphate; Glc, glucose; Sucr, sucrose.
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Next, the apoplastic sucrose has to be actively taken up by the phloem companion 

cells to be loaded in the phloem. This active transport across the plasma membrane 

is accomplished by the sucrose/H+ symporter SUC2/SUT1. Similar to the sweet11 

sweet12 double mutant, the suc2 mutant is dwarfed and accumulates sugars in the 

leaves (Srivastava et al, 2008; Truernit & Sauer, 1995). In Arabidopsis, there are nine 

putative sucrose transporters (SUC1-9) located on the plasma membrane, vacuole or 

chloroplast membranes, but SUC6 and SUC7 were suggested to be non-functional 

pseudogenes (Kuhn & Grof, 2010; Sauer et al, 2004).  

Finally, sucrose has to be transported from the phloem to enter the sink cells. How 

this transport is facilitated remains unknown, but both a role of the active SUC/H+ 

symporters and complete symplastic transport have been suggested (Srivastava et 

al, 2008). Thus, when arriving to the sink tissue, sucrose enters the sink cell via 

plasmodesmata or it is first relieved in the apoplast through sucrose transporters. In 

the apoplast, sucrose is converted to glucose and fructose by cell wall invertases and 

these hexoses are subsequently imported via hexose transporters in the sink cells. 

When arriving in the sink cell, sucrose or its hexose products, glucose and fructose, 

can influence transcription, translation, cell division and expansion to coordinate 

growth and development with the environment. 

Sugar-mediated transcriptional responses 
Besides their role as carbon building blocks of primary and secondary metabolism in 

both source and sink cells, sugars have been widely accepted to act as signaling 

molecules (Lastdrager et al, 2014; Rolland et al, 2006; Smeekens et al, 2010). Plants 

have to adjust their growth with a changing environment and sugars can act as 

endogenous signals to link plant development with carbon and energy availability. 

Extensive efforts have been done in unravelling the sugar-mediated regulation of 

gene expression depending on environmental and developmental influences.  

Generally, it is well-established that low sugar levels induce the transcription of 

photosynthesis-related and sugar metabolizing genes, whereas sugar accumulation 

triggers sugar storage and utilization, through increased expression of genes 
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encoding key enzymes in starch biosynthesis and sucrose metabolism (Koch, 1996; 

Pego et al, 2000; Sheen, 1990). Furthermore, it is well-known that high sugar levels 

repress photosynthesis genes encoded by the nuclear genome as well as by the 

cpDNA (Krapp et al, 1993; Paul & Foyer, 2001; Sheen, 1994). However, it remains 

challenging to decipher whether the transcriptional effects are a consequence of the 

changing cellular metabolite levels or are due to sugars as signaling molecules. In 

the last decade, numerous studies have been analyzing the short-term transcriptional 

responses in Arabidopsis with different sugar starvation protocols or short-term sugar 

treatments. As illustrated in Table 2, a wide variety of sugars, sugar concentrations, 

plant material, growth conditions, duration of the treatment were tested. The sugar-

mediated transcriptional responses are generally involved in the same cellular 

processes. Sugar treatment commonly results in the repression of genes involved in 

the light-dependent reactions and the Calvin cycle of photosynthesis, of starch 

degradation, plastid protein synthesis, autophagy, and sucrose metabolism, such as 

invertases. Oppositely, sugar treatment generally induces expression of genes 

involved in respiration and major synthetic pathways (such as nucleotide, amino acid, 

protein, starch and cell wall synthesis), sucrose breakdown and cell cycle. 

Additionally, also chloroplast specific sugar-responsive effects were demonstrated. 

Usadel and co-workers reported a decreased expression of genes involved in 

chloroplast biogenesis, chlorophyll biosynthesis and photosynthesis in the light when 

sucrose is produced (Usadel et al, 2008). Other studies demonstrated specific 

repression of plastid gene expression upon different sucrose and glucose treatments 

(Gonzali et al, 2006; Osuna et al, 2007; Price et al, 2004).  

In conclusion, irrespective of the used tissues, sugars and concentrations, sugar 

treatment always elicits major transcriptional responses in which repression of 

photosynthesis-related gene is commonly found, highlighting the importance of 

sugar-mediated feedback regulation of photosynthesis. 
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Table 2. Studies reporting sugar-mediated transcriptional responses using different tissues, sugars, 
sugar concentrations and treatment conditions. 

Sugar-mediated translational control 
Besides carbon sources, cells also need to synthesize novel proteins to be able to 

grow. Several links between the cellular sugar status and mRNA translation or 

protein synthesis have been reported. Price and colleagues found that treatment with 

cycloheximide, a protein synthesis inhibitor, impaired part of glucose-mediated 

upregulation of gene expression (Price et al, 2004).  

One of the best characterized translational control systems by sugars is the sucrose-

induced repression of translation of S1-type basic region-leucine zipper (bZIP) 

transcription factors (Rook et al, 1998). This repression is facilitated by the presence 

of a conserved upstream open reading frame (uORF) in the 5’ untranslated region of 

the S1-class of bZIP genes (bZIP1/2/11/44 and 53) (Wiese et al, 2004). The uORF 

encodes an attenuator sucrose-control peptide that probably arrests the ribosome 

and stops further translation when sucrose levels accumulate (Hummel et al, 2009; 

Rahmani et al, 2009). 

Plant material Sugar treatment 
Harvesting 
time point 

Ref. 

Whole seedlings grown in liquid 
culture for 7 d 

2 days C-starvation, + 
15 mM sucr 30 min, 3 h Osuna et al (2007) 

5-weeks old rosettes Dark 
End of night, 
4-8-24-48 h 

extended night 
Usadel et al (2008) 

Whole seedlings grown in liquid 
culture for 7 d 

2 days C-starvation, + 
100 mM glc 3 h Blasing et al (2005) 

Whole seedlings grown in liquid 
culture for 7 d – continuous 
light 

1 d C-starved, + 167 
mM glc 2, 4, 6 h Li et al (2006) 

Whole seedlings grown in liquid 
culture for 5 d 

1 d C-starved in dark, + 
167 mM glc 3 h Price et al (2004) 

Leaf segments of 6-weeks old 
plants 100 mM sucr 16 h Muller et al (2007) 

Stem-cell-like cell suspension 
culture 1 mM glc/sucr/fru 1 h Kunz et al (2014) 

Whole seedlings grown in liquid 
culture for 4 d - dark 90 mM sucr 6 h Gonzali et al (2006) 

Cell suspension cultures Sucr-starvation 48 h Contento et al (2004) 

Whole 14 d-old seedlings 
grown on plates  

Dark for 48 h, + 30 mM 
sucr 8 h Thum et al (2004) 
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Besides translation initiation, also control of translation termination has been 

suggested through glucose-induced expression of the eukaryotic RELEASE 

FACTOR1-2 (eRF1-2). Seedlings overexpressing eRF1-2 are hypersensitive to high 

glucose concentrations, resulting in altered germination and seedling development 

compared to wild-type plants (Zhou et al, 2010).  

Another interesting link between sugars and translation comes from studies where 

polysomal mRNA and total mRNA were extracted and compared to distinguish 

between translational and transcriptional control. In a first study, sucrose-starved cell 

suspension cultures were used and polysomal and total mRNA were hybridized to 

oligonucleotide microarrays (Nicolai et al, 2006). This analysis revealed a general 

translational repression after sucrose starvation. Furthermore, it was shown that 

cytosolic polysome loading correlates well with the sucrose content of Arabidopsis 

rosettes (Pal et al, 2013). A more recent study demonstrated that sucrose treatment 

of Arabidopsis seedlings in the light increased the polysomal occupancy of ribosomal 

protein mRNAs (Gamm et al, 2014). 

Taken together, although an obvious interconnection between sugar status and 

protein synthesis is suspected, still little is known about which proteins are affected 

by sugars and how sugars exactly control de novo protein synthesis. At least part of 

the sugar-induced transcriptional responses might indirectly result from prior sugar-

induced regulation at the mRNA translational level. 

Sugar regulation of cell division and expansion 
When sucrose enters the sink cell, it can also be metabolized to its hexose products 

by cytosolic invertases or sucrose synthases, or it is stored in the vacuole, where it 

can also be converted into its hexose products via vacuolar invertases. These 

metabolic steps are essential in providing the carbon and energy sources for primary 

and secondary metabolism. When enough carbon is available, cells can divide and 

molecular mechanisms signal the carbon status to the cell cycle machinery. Sugar-

mediated regulation of the cell cycle was reported both during the primary cell cycle 

control point, the G1 phase as well as during the G2-to-M phase. An induction of the 

expression of CYCD2s and its partner CDKA;1, and of CYCD3s was seen 2 h and 

6 h, respectively, after addition of sucrose or glucose to sugar-depleted Arabidopsis 
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seedlings grown in liquid growth medium (Riou-Khamlichi et al, 2000). Expression of 

CYCD3;1 is associated primarily with proliferating tissues and its repression might be 

an important factor in mitotic cell cycle exit and onset of cellular expansion and 

differentiation (Dewitte & Murray, 2003). Furthermore, sucrose was found to induce 

CYCP2;1 expression (Peng et al, 2014). P-type cyclins are mainly active in 

proliferating tissues mediating the G2-to-M transition (Torres Acosta et al, 2004).  

Next to its role in cell cycle control, sugars are main metabolic building blocks of the 

cell wall as well as storage compounds in the vacuole and therefore important in 

regulating cell expansion (Wang & Ruan, 2013). In the vacuole, sucrose is converted 

to its hexose products which are osmotically active components that lowers the 

osmotic potential. When the osmotic potential in the vacuole is lower than the 

osmotic potential outside the vacuole, water is imported, increasing cell turgor 

pressure, which leads to cell expansion by cell wall extension (Sturm & Tang, 1999). 

Also during the latter process, sucrose plays an important role by delivering UDP-

glucose for cellulose biosynthesis via sucrose synthase enzymes (Baroja-Fernandez 

et al, 2012). 

 

In summary, sugars are important determinants of cell division and expansion. 

However, the exact mechanisms how sugars are signaled are still poorly understood 

but in the last decades several master regulators have been characterized in more 

detail. 

 

Key sugar signaling regulators and plant growth 
To elicit the sugar-mediated transcriptional and translational responses, sugars have 

to be sensed by specific proteins that can link the environmental conditions with plant 

development. Several conserved regulatory networks have been described that can 

couple the cellular sugar status with growth, to adjust organ development depending 

on the fluctuations in the environment resulting in changing nutrient and energy 

sources. To date, three conserved sugar signaling mechanisms with partially linked 

and independent signaling pathways are considered to be central in this cellular 

sugar responsive network: i) the Sucrose Non-Fermenting1 (SNF1) - Related Kinase 

(SnRK1), which is inhibited when sugars accumulate, and its inhibitor trehalose-6-

phosphate (T6P), ii) the Target Of Rapamycin (TOR) protein kinase and iii) the 
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glucose sensor Hexokinase1 (HXK1). SnRK1, TOR and HXK1 are independently 

regulated by glucose. 

i) SnRK1/T6P-mediated signaling and growth

Arabidopsis SnRK1 and its orthologues, existing in all eukaryotes, exhibit a 

conserved heterotrimeric structure consisting of one catalytic α-subunit and two 

regulatory ɣ- and β-subunits. In yeast and animals these orthologues are called 

SNF1 and AMPK, respectively. AMPK is allosterically activated by binding of AMP to 

the energy-sensing ɣ-subunit under stress conditions (Xiao et al, 2011). Also in 

higher plants, SnRK1 is known to be activated by different stresses such as 

darkness, hypoxia, sugar depletion or energy deficiency, but like yeast SNF1, SnRK1 

is not responsive to AMP (Baena-Gonzalez et al, 2007; Ramon et al, 2013; 

Emanuelle et al, 2015). Upon activation, SnRK1-mediated signaling triggers an 

enormous amount of transcriptional and post-transcriptional responses, such as 

phosphorylation of transcription factors, to maintain cellular homeostasis. SnRK1 will 

enhance energy-producing catabolic processes and prevent energy-consuming 

biosynthetic pathways, resulting in a change in the metabolism to monitor plant 

development. For example, SnRK1 signaling regulates sucrose and starch 

biosynthesis through phosphorylation, and thereby inactivation, of sucrose phosphate 

synthase in vitro (Sugden et al 1999) and through redox activation of ADG via 

trehalose-6-phosphate (T6P) (Kolbe et al, 2005). 

In Arabidopsis, different genes encode the α-, ɣ- and β-subunits of the SnRK1 

complex (Polge & Thomas, 2007; Emanuelle et al, 2016). Two homologous genes 

encode the catalytic subunits, AKIN10 and AKIN11, which contain a conserved 

serine/threonine kinase and a C-terminal domain for interaction with its regulatory 

subunits (Fig. 5) (Baena-Gonzalez et al, 2007). T subgroups of ɣ-  

are described in Arabidopsis based on the structure similarity with ɣ-subunits of yeast 

SNF1 and mammal  AMPK: AKINβɣ AKINɣ . These 

proteins contain highly conserved cystathionine β-synthase 

(CBS) domain  (Fig. 5). nly the AKINβɣ was shown to function in the 

heterotrimeric complex, whereas the AKINɣ regulatory subunit cannot interact 

with the β-subunits and does not affect expression of typical SnRK1 target genes, 

such as the dark-induced SEN1/DIN1, DIN6 and DIN10 (Emanuelle et 
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Ramon et al, 2013). AKINβγ has a conserved CBS tandem repeat domain but also a 

glycogen-binding domain (GBD), which is one of the three domains that specifies β-

subunits. The other two domains of the β-subunits are an internal kinase-interacting 

domain (KIS) and an ASC (association with SNF1 complex) domain to interact with ɣ-

subunits (Fig. 5). Plants have two groups of β-subunits, AKINβ1 and 2 proteins that 

contain all three GBD, KIS and ASC domains and an atypical AKINβ3 protein with a 

truncated structure, i.e. no GBD domain (Fig. 5).  

Interestingly, the subunits of SnRK1 have distinctive roles in growth regulation. 

Overexpression of the catalytic α-subunit KIN10 confers enhanced tolerance to 

nutrient starvation, and delayed flowering and onset of senescence, whereas kin10 

kin11 double mutants exhibit severe growth defects (Baena-González et al, 2007). 

 homologous  and  in reproductive

development during male gametogenesis and pollen tube formation (Fang et al, 

2011). Expression of both PV42-members is reduced in a mutant for HISTONE 

ACETYLTRANSFERASE 1 (HAC1). hac1 mutants are insensitive to high sugar 

concentration, show delayed flowering and produce less siliques and seeds (Heisel 

et al, 2013).  

Trehalose-6-phosphate (T6P) is synthesized from UDP-glucose and G6P by the T6P 

synthase1 (TPS1) enzyme in the first step of trehalose biosynthesis. Subsequently, 

T6P can be further converted to trehalose by T6P phosphatase (TPP). Trehalose is a 

glucose disaccharide present in low micromolar concentrations in the cell. In 

Figure 5. Structure and domain composition of the plant SnRK1 
subunits. The GBD (light grey) in the β subunits (KINβ1 and KINβ2) 
overlaps with the kinase-interacting sequence (KIS) domain (dark 
grey). Taken from Ramon et al, 2013. 
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Arabidopsis, 11 genes are encoding for proteins with TPS or TPS-like structures and 

10 genes are encoding TPPs (Delorge et al, 2015; Vandesteene et al, 2012). It has 

long been suggested that only TPS1 is enzymatically active, but this has recently 

also been demonstrated for TPS2 and 4 (Delorge et al, 2015). High concentrations of 

trehalose inhibit growth and this effect is attributed to an accumulation of T6P and a 

decrease in cellular G6P levels (Schluepmann et al, 2012; Schluepmann et al, 2004). 

Contrastingly, T6P is also indispensable for growth as tps1 mutants show a 

developmental arrest during embryo maturation, i.e. impairment in the transition of 

cell division-to-expansion (Eastmond et al, 2002). Plants that overexpress TPS1, 

have increased T6P levels (and decreased G6P levels) and can make better use of 

the exogenously supplied sugars resulting in increased shoot branching, small dark 

green leaves and early flowering (O'Hara et al, 2013; Schluepmann et al, 2003). In 

accordance, reduced T6P levels (and increased G6P levels) through TPP 

overexpression, result in growth repression in vitro because the exogenously 

supplied sugars are not efficiently used. So, T6P acts as a sugar signal that monitors 

the utilization of sugars during plant growth and development (Paul,

2008). T6P  T6P acts

both as a signal of sucrose availability and as a negative feedback regulator of 

sucrose levels optimal sucrose concentrations for the cell and 

the developmental stage of the plant  (Yadav et al, 2014; Lunn et al,

2014). 

To date, it is known that T6P and SnRK1 signaling closely interact to regulate sugar 

metabolism and plant growth (Baena-Gonzalez, 2010; Emanuelle et al; Lastdrager et 

al, 2014; O'Hara et al, 2013). T6P, and also G6P, appear to inhibit SnRK1 activity, 

although, the exact mechanism is still not known (Nunes et al, 2013; Toroser et al, 

2000; Zhang et al, 2009). In potato tubers, T6P activates ADP-glucose 

pyrophosphorylase (ADG), involved in the rate-limiting step of starch biosynthesis, in 

a SnRK1-dependent manner (Kolbe et al, 2005). Furthermore, Arabidopsis double 

kin10 kin11 mutants are unable to mobilize their starch at the end of the night 

(Baena-Gonzalez et al, 2007). These findings suggest a role of both SnRK1 and T6P 

during starch biosynthesis and remobilization. However, recently it was shown that 

increased T6P levels in plants expressing T6P synthase gene (otsA) under control of 
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an ethanol-inducible promoter did not influence the redox state of ADG, whereas 

strach degradation was repressed (Martins et al, 2013).  

Interestingly, also a connection between SnRK1 and the S1-class of bZIP 

transcription factors has been demonstrated in growth regulation. Expression of both 

KIN10 and the bZIP transcription factors synergistically activated the expression of 

overlapping target genes indicating that they partially mediate SnRK1-signaling 

(Baena-Gonzalez et al, 2007; Tome et al, 2014). In addition, both KIN10 and bZIP11 

overexpression lines are resistant to high growth-inhibitory trehalose concentrations 

(Delatte et al, 2011). Furthermore, SnRK1 is also able to phosphorylate bZIP63, a 

member of the C-class bZIPs which forms dimers with S1-class bZIP members  (Mair 

et al, 2015). 

T6P has been reported to also directly influence growth. A direct link between T6P 

and cell growth was demonstrated by the transcriptional analysis of transgenic potato 

plants with reduced T6P levels, showing down-regulation of genes involved in cell 

proliferation and growth as well as up-regulation of a transcript corresponding to a 

CDK inhibitor (p27KIP1; Debast et al, 2011). Contrastingly, SnRK1-dependent 

phosphorylation of two other cell-cycle inhibitors and p27KIP1 homologs, KIP-

RELATED PROTEIN6 (KRP6) and KRP7, resulting in inactivation and maintained 

cell proliferation, has been described (Guerinier et al, 2013). 

In conclusion, SnRK1 and T6P play essential and contrasting roles in regulating plant 

growth and development. Increased sugar levels result in higher T6P levels which 

inactivate SnRK1s to promote growth, whereas low sugar levels induces SnRK1-

signaling to mediate growth inhibition and energy conservation.  

ii) Glucose-activated TOR signaling

In animals, AMPK interacts with another conserved regulator TOR that is activated 

by hormones, nutrients and energy to coordinate growth with environmental signals. 

The direct connection between SnRK1 and TOR is not yet elucidated in plants, 

although similar target genes are oppositely affected. Unlike animals that contain two 

TOR complexes, mTORC1 and mTORC2, only one gene in Arabidopsis encodes for 

a TOR protein which forms the TOR complex with additional proteins that are 

however still not fully characterized (Xiong & Sheen, 2014; Xiong & Sheen, 2015). In 
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Arabidopsis, TOR contains a conserved C-terminal serine/threonine kinase and can 

associate with REGULATORY ASSOCIATE PROTEIN OF TOR1/2 (RAPTOR 1/2) 

and LETHAL WITH SEC-13 PROTEIN8 1/2 (LST8 1/2) (Xiong & Sheen, 2014). The 

importance of TOR in plant growth has first been demonstrated by the embryo 

lethality of T-DNA insertion mutants disrupting TOR expression (Moreau et al, 2012). 

TOR is mainly expressed in proliferating tissues, such as meristems, but not in 

differentiated cells. Knock-down mutants of TOR via RNA interference also show 

reduced growth, whereas TOR overexpression increases growth and seed 

production (Deprost et al, 2007). Downregulation of TOR also resulted in 

accumulation of starch, amino acids and lipids, indicating a central role of this protein 

in primary metabolism. Also disruption of one of the putative LST8 genes, LST8-1, 

leads to arrested growth with increased levels of starch and amino acid (Moreau et 

al, 2012). In root meristems, TOR is activated by photosynthesis-derived glucose to 

mediate root growth (Xiong et al, 2013).  

Glucose-induced TOR activity mediates many different transcriptional responses to 

stimulate biosynthetic pathways and inhibit catabolic processes to sustain growth. 

The TOR-activated processes are protein synthesis, DNA synthesis, cell cycle, 

primary and secondary metabolism, whereas TOR-inactivated processes are 

autophagy and protein degradation (Xiong & Sheen, 2014). TOR affects different 

aspects of protein synthesis, such as rRNA expression, the expression of ribosomal 

proteins and polysome loading of the mRNAs (Deprost et al, 2007; Rexin et al, 

2015). TOR signaling thus controls cell proliferation both at the transcriptional as well 

as translational level. In animals, TOR regulates protein synthesis by phosphorylating 

the ribosomal protein S6 kinase1 (S6K1) that, on its turn, phosphorylates the 

ribosomal protein S6 (RPS6) to promote mRNA translation  (Magnuson et al, 2012). 

Also in Arabidopsis, RAPTOR1 interacts with TOR as well as with S6K1 to activate 

the latter protein (Mahfouz et al, 2006). Furthermore, upon activation by auxin, TOR 

phosphorylates S6K1, which phosphorylates an eukaryotic initiation factor (eIF3h) to 

promote initiation of translation and polysome loading (Schepetilnikov et al, 2013). At 

the transcriptional level, glucose-induced TOR and E2Fa target genes largely 

overlap. E2Fa is a conserved transcription factor that, upon release of the 

RETINOBLASTOMA-RELATED1 (RBR1) protein induces the expression of S-phase 

specific genes involved in cell cycle progression and DNA replication (Polyn et al, 
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2015). Moreover, TOR phosphorylates E2Fa directly and e2fa mutants are 

compromised in the glucose-induced activation of root meristems (Xiong et al, 2013).  

In conclusion, TOR is a master regulator of cell proliferation, growth and metabolism 

regulating transcription and translation in response to environmental signals. 

iii) Glucose-mediated signaling through HXK1

In Arabidopsis, the HXK1 protein belongs to a family of six members with three HXKs 

(HXK1-3) that have the capacity to phosphorylate glucose, and three HXK-Like 

proteins (HXL1-3) that lack this catalytic function and show around 50% amino acid 

sequence similarity with HXK1 (Karve et al, 2008). All these members are 

ubiquitously expressed in different plant organs except for HXL3, which only shows 

expression in flowers. Five of the six proteins, HXK1-2 and HXL1-3, have a predicted 

N-terminal mitochondria anchor domain, and this localization was confirmed with C-

terminal GFP fusion proteins in different plant species, such as in Arabidopsis, 

tobacco, pea and tomato (Balasubramanian et al, 2007; Granot, 2008; Karve et al, 

2008). HXK3 is predicted to have a chloroplast transit peptide and chloroplast 

stromal localization of other HXK orthologues has also been verified in moss (Olsson 

et al, 2003), tobacco (Giese et al, 2005), tomato (Kandel-Kfir et al, 2006), rice (Cho et 

al, 2006a) and Arabidopsis (Granot, 2008).  

HXK1 is a conserved enzyme responsible for the phosphorylation of glucose in the 

first step of glycolysis but it is already known for a long time to also have glucose-

sensing capacity (Jang & Sheen, 1994). Interestingly, this dual functionality of HXK1 

has recently been structurally explained (Feng et al, 2015). The glucose-sensor role 

was first suggested by HXK1 antisense and overexpression lines

 hyposensitivity and hypersensitive growth responses to high glucose

concentrations, respectively (Jang et al. 1997). Later, the glucose insensitive2 (gin2) 

mutant  can grow on high concentrations of glucose  wild type plants are

developmentally arrested display repression of cotyledon expansion  chlorophyll

accumulation a  anthocyanin production

(Fig. 4; Moore et al, 2003). Furthermore, in the gin2 mutant,

glucose does not repress the expression of nuclear-encoded photosynthesis-related 

genes, such as chlorophyll a/b binding proteins (CAB), the small subunit of Rubisco 
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(RBCS), carbonic anhydrase (CAA) and sedoheptulose-biphosphatase (SBP) (Moore 

et al, 2003). To exclude that these effects were metabolic, inactive HXK1 alleles, 

which lack the catalytic phosphorylation domain, were expressed in the gin2 mutant 

background (Moore et al, 2003). When grown under high light, the gin2 mutant 

normally displays general growth defects such as small and dark green leaves with 

delayed senescence, a shorter root system and inflorescences with fewer flowers. 

The leaf expansion as well as the glucose-mediated repression of gene expression 

was restored by the HXK1 mutant alleles not affecting glucose phosphorylation 

activity and, thus, G6P levels, suggesting a HXK1-mediated signaling effect on 

growth (Moore et al, 2003). Contrastingly, over-expression of HXK1 in Arabidopsis 

and its orthologues in tomato and rice (Cho et al, 2009; Dai et al, 1999; Kelly et al, 

2012; Kelly et al, 2014) led to growth inhibition with reduced chlorophyll accumulation 

and accelerated senescence, supporting a role of HXK1 in growth promotion as well 

as growth inhibition depending on the environmental conditions.  

The essential role of HXK1 in mediating the repression of photosynthesis genes 

suggests that at least part of the HXK1 proteins have to be present in the nucleus. A 

nuclear HXK1 complex has been isolated by proteomics based on nuclear fractions 

(Cho et al, 2006b). Two unconventional HXK1-interacting proteins, the vacuolar H+-

ATPase B1 (VHA-B1) and the 19S regulatory particle of proteasome subunit 

(RPT5B), were found in the nucleus in a complex together with HXK1 to regulate 

CAB expression. Similar to the gin2 mutant, the vha-b1 and rpt5b mutants are 

insensitive to the repression of cotyledon expansion, chlorophyll accumulation, true-

leaf development and root elongation by high glucose concentrations and showed 

the same growth defects as gin2 when grown in soil (Cho et al, 2006b). 

Figure 4. Arabidopsis HXK1 has a predominant role in 
glucose signaling. Arabidopsis gin2-1 mutants and wild-type 
(WT) in the Ler background. Plants were grown on 6% glucose. 
Picture taken from Moore et al, 2003. 



Sugar signals and Leaf Growth 

47 

Glucose-mediated HXK1 signaling is closely linked with hormonal signaling, 

highlighted by the glucose hyper- and hyposensitive responses of many different 

hormone biosynthesis and signaling mutants (Leon & Sheen, 2003; Rolland et al, 

2006). Glucose and ethylene signaling act antagonistically as shown by the glucose 

hypersensitivity of the ethylene signaling mutants, etr1 and ein2 (Zhou et al, 1998) 

and by the glucose-mediated and HXK1-dependent degradation of ETHYLENE-

INSENSITIVE3 (EIN3), a key transcriptional regulator in ethylene signaling 

(Yanagisawa et al, 2003). Also abscisic acid (ABA) synthesis and signaling mutants 

(abi) are insensitive to glucose, and could not be restored by HXK1 expression, 

indicating that ABA signaling works downstream of the HXK1-dependent signaling 

(Arenas-Huertero et al, 2000). Furthermore, clear interaction with auxin and cytokinin 

during shoot induction has been shown (Moore et al, 2003) and, recently, HXK1-

signaling was reported to depend on the presence of brasissinosteroids during lateral 

root development and hypocotyl elongation (Zhang & He, 2015). 

This close interconnection of the HXK1-mediated signaling pathway with hormones 

and the HXK1-dependent regulation of photosynthesis gene expression emphasizes 

a pivotal but yet unclear role of HXK1 in monitoring plant organ development.  

Conclusions 
Sugars are essential and central players during plant growth and development. They 

not only act as structural components of the cell wall, of DNA, RNA and proteins but 

are also the major energy storage molecules of the cell. Sugar metabolism has been 

an important target in metabolic engineering to enhance yield. Several efforts have 

been made in improving source-to-sink regulation, the photosynthetic carbon fixation 

by Rubisco, simplifying the photorespiration pathway and increasing photosynthesis 

to boost crop productivity and yield (Raines, 2011). However, sugars also elicit 

cellular signaling pathways integrating environmental conditions with plant 

development. Sugar signaling pathways closely interconnect with hormonal signaling 

and plant growth-regulatory networks in controlling and fine-tuning growth. 

Substantial progress has been made to understand the molecular mechanisms but it 

still remains challenging to uncouple their metabolic and signaling functions. This is 
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because the sugar status is tightly linked with the environment continuously changing 

the photosynthetic capacity of source leaves which also alters the sugar allocation to 

sink tissues. Different master regulators involved in sugar signal transduction have 

been identified involved in reprogramming gene expression and protein synthesis to 

maintain growth. However, the sugar-responsive underlying molecular mechanims 

are still poorly understood, especially those integrating development such as early 

leaf growth and the sink-to-source transition. Obviously, a better understanding of 

these pathways and how they exactly affect development is necessary to further 

unravel the complexity of plant growth. 
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ABSTRACT 

Chloroplasts and mitochondria are indispensable for plant development. They not 
only provide carbon sources and energy to cells, but have evolved to become major 
players in a variety of processes such as amino acid metabolism, hormone 
biosynthesis and cellular signalling. As semi-autonomous organelles, they contain a 
small genome that relies mostly on nuclear factors for its maintenance and 
expression. An intensive cross-talk between the nucleus and the organelles is 
therefore essential to ensure proper functioning and the nuclear genes encoding 
organelle proteins involved in photosynthesis and energy production are obviously 
crucial for plant growth. Organ growth is determined by two main cellular processes, 
i.e. cell proliferation and subsequent cell expansion. To date, the role of the nuclear-
encoded organelle proteins in plant growth has not been investigated in much detail.
Here, we review how Arabidopsis plant growth is affected in mutants involved in
organelle biogenesis and physiology. Our findings indicate a clear role for organellar
proteins in plant organ growth, primarily during cell proliferation. We therefore
encourage researchers to extend their phenotypic characterisation beyond
macroscopic features in order to get a better view on how chloroplasts and
mitochondria regulate the basic processes of cell proliferation and expansion,
essential to drive growth.

Introduction 

Plant growth and development are complex and multifactorial traits, intensively 

studied from the molecular to the whole plant level. Plant organ growth relies on two 

main processes, cell proliferation and cell expansion, which are influenced by specific 

and interconnected regulatory networks. Many regulators of root, leaf, flower or seed 

growth have been functionally characterized (for reviews, see Gonzalez & Inze, 

2015; O'Maoileidigh et al, 2014; Satbhai et al, 2015). In particular genes have been 

studied that, when mutated or ectopically expressed, positively affect plant growth.   

During plant growth, cellular energy is provided as sugars and ATP by two key 

organelles in plant cells, chloroplasts and mitochondria. Both organelles are 

surrounded by an external and internal envelope membrane and also contain 

characteristic internal membranes, called thylakoids in chloroplasts and cristae in 

mitochondria. The latter membranes harbour the protein complexes necessary for 

photosynthesis and oxidative phosphorylation to produce sugars and energy in 

chloroplasts and mitochondria, respectively. Next to these indispensable cellular 
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functions, both organelles are involved in many other essential metabolic functions, 

such as amino acid and hormone biosynthesis (Berkowitz et al, 2016; de la Torre et 

al, 2014). Both chloroplasts and mitochondria contain an organelle genome that is 

largely dependent on nuclear factors for their organisation and expression. It is clear 

that a correct communication between nucleus and organelles is necessary to ensure 

proper organelle functioning. The proteins encoded by the nucleus but having a 

function in the organelles have strict transport mechanisms, and nucleus and 

organelles interact with each other by nucleus-to-organelle (anterograde) and 

organelle-to-nucleus (retrograde) signalling. 

Organ growth is a tightly controlled process and a correct number, size, distribution 

and differentiation of chloroplasts and mitochondria is necessary at any 

developmental stage to support growth. The effect of disturbed organelle 

biosynthesis, division, function or physiology on cell proliferation and expansion 

during organ growth has not been studied intensively. A major hurdle is that 

generating mutations in organelle genomes is challenging, although feasible (Chuah 

et al, 2015; Daniell et al, 2002), and inducing these mutations is likely to be lethal. On 

the other hand, many nuclear-encoded organelle proteins have been characterised 

for their roles in organelle functioning and further knowledge on how the mis-

expression of these proteins affects plant development is instrumental to understand 

the role of mitochondria and chloroplasts in organ growth.  

In this review, we highlight how dysfunctional organelles affect growth at the organ 

and cellular level. First, we evaluate the differential expression of nuclear genes 

encoding organellar proteins during leaf and root development to illustrate their 

potential role during cell proliferation or expansion. We then compile available mutant 

phenotypic data on genes involved in organelle biogenesis and gene expression as 

well as in organellar carbon or amino acid biosynthesis, hormonal regulation of 

organelles and organelle-nucleus signalling. Since the functions of mitochondria and 

chloroplasts are broad, we restricted this review to studies addressing growth 

phenotypes at the cellular level, with a focus on leaf and root development in 

Arabidopsis. Finally, we plead for a more thorough evaluation and characterisation of 

growth phenotypes in order to get a better grasp on the involvement of organelle 

function on growth. 
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Differential Expression during Organ Development 

Plant growth can be improved or compromised when cell proliferation and/or cell 

expansion is affected during development due to mutation in genes expressed 

specifically during these developmental phases (Gonzalez et al, 2012). The 

expression pattern of nuclear genes encoding organelle proteins has been analysed 

to some extent over different plant developmental phases or upon treatments 

(Andriankaja et al, 2012; Berkowitz et al, 2016). During development the expression 

pattern varies and subsets of these genes appear to be specifically more expressed 

in leaf, root or flower or at specific time points. For example, it is well established that 

during germination most nuclear genes encoding mitochondrial proteins are 

upregulated (Howell et al, 2007). On the other hand, transcript levels of nuclear 

genes encoding photosynthesis-related proteins are generally upregulated during 

early leaf development (Andriankaja et al, 2012). The establishment of the 

photosynthetic machinery and chloroplast differentiation happens just before the 

onset of cell expansion during early leaf development (Andriankaja et al, 2012), 

suggesting that a plastid-derived retrograde signal is necessary for triggering cells to 

stop dividing and start to expand.  

In order to get a better view on how genes encoding organellar proteins are 

expressed during organ development, we investigated how their transcript levels 

change in publicly available developmental datasets. We used two datasets, one 

during leaf and one during root development, allowing to follow the expression profile 

of these genes in proliferative, transitioning and differentiating or expanding tissue 

(Andriankaja et al, 2012; Birnbaum et al, 2003). The expression profiles were 

obtained from samples harvested over six consecutive days during early leaf 

development and three stages of root development, and differentially expressed 

genes (DEGs) were identified (Fig. 1, Supplemental Table S1). The nuclear genes 

encoding organellar proteins chosen for this analysis were selected with SUBA3 

software and were either experimentally confirmed by GFP fusions or correspond to 

an organellar protein identified by MS/MS analysis of organelles (Tanz et al, 2013). 

Although these selection criteria are stringent, we are aware that some false 

positives, not specifically located in chloroplast or mitochondria, might be included in 

this list since the organelle localisation of some of the genes is based on a prediction. 
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Figure 1. Expression profiles of nuclear genes encoding organellar proteins during Arabidopsis leaf 
and root development. A, Relative expression of genes encoding proteins localized to mitochondria (M), 
chloroplasts (C) or both (C+M). For leaf development, we selected a microarray analysis performed over six 
consecutive days during early development of the third true leaf, i.e. 8 to 13 days after stratification (DAS) 
(Andriankaja et al, 2012). This dataset encompasses the developmental phases during which the third leaf 
exclusively grows through cell proliferation (8-9 DAS) and a transitioning phase (10-11 DAS) to a cell-
expansion based growth (12-13 DAS). For the expression patterns during root development, a microarray 
analysis of a total of 15 different zones of the root corresponding to different tissues and developmental stages 
was used (Birnbaum et al, 2003). The expression profile in the different root tissue types were averaged for 
each gene and correspond to three zones (Z) of root development: Z1 corresponding to the root tip where 
cells are proliferating, Z2 in which cells are transitioning to expansion and Z3 consists of fully expanded and 
differentiated cells. The expression profile of DEGs was normalised using MeV software (www.tm4.org) and 
subsequently CAST clustered (Cluster Affinity Search Technique, using Pearson correlation at a threshold of 
0,8) according to their specific profile over the developmental zones. Each line represents the expression 
pattern of group of DEGs and thickness of line correlates with the number of DEGs. B, Venn
diagrams illustrating the amount of DEGs presented in (A) and their overlap over leaf (L) and root (R) 
development of genes encoding proteins localized to mitochondria (M), chloroplasts (C) or both (C+M).
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Currently, in Arabidopsis, a total of 1095 proteins are annotated to localize in 

mitochondria and 2720 proteins in chloroplasts, of which 381 proteins are assigned 

to both organelles. 

54% (596 out of 1095) of the genes encoding mitochondrial proteins are differentially 

expressed in the leaf dataset compared to 28% (307 out of 1095) in the root dataset. 

For genes encoding plastid proteins, 59% (1475 out of 2511) are differentially 

expressed in the leaf dataset and 25% (615 out of 2511) in the root dataset. The 

genes encoding proteins targeted to both organelles are included in these 

percentages, but taken separately 56% (203 out of 364) are differentially expressed 

in the leaf dataset and 27% (99 out of 364) in the root dataset (Fig. 1).  

In both the leaf and root developmental dataset a general decrease in expression of 

nuclear genes encoding mitochondrial proteins was found when cells transition from 

cell proliferation to cell expansion (83% and 68% of DEGs, respectively; Fig. 1). 

Conversely, the major trend for genes encoding plastid proteins was an increase in 

expression when cells enter the expansion phase in leaves (63% of DEGs; Fig. 1), 

but most DEGs in roots had a decrease in expression during development (57% of 

DEGs; Fig. 1). Furthermore, several genes encoding proteins targeted to both 

organelles show a decrease in expression over development both in the leaf and root 

dataset (63% and 69% of DEGs). A considerable amount of DEGs shows a similar 

expression profile during leaf and root development. GO enrichment of the 

differentially expressed genes in both leaves and roots reveals an important role of 

mitochondrial gene expression regulation during organ development (Supplemental 

Table S1). For the gene sets encoding chloroplast proteins that are upregulated 

during development a clear enrichment is seen for GO categories related to 

photosynthesis and water transport. Water transport through chloroplast membranes 

is necessary for differentiation of proplastids in meristematic tissue to have fully 

functional chloroplasts in expanding and maturing tissue. For the genes encoding 

chloroplast proteins downregulated during development several categories related to 

enzymes involved in amino acid metabolism, such as glutamine, aspartate and 

lysine, are enriched (Supplemental Table S1). Finally, also genes encoding proteins 

involved in redox reactions were repressed or upregulated during development.  
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In total, 449 genes showed similar expression profiles during root and leaf 

development, being up-or downregulated in the same direction when proliferating 

cells gradually start to expand. A literature survey revealed that for 80 of these genes 

a mutant growth phenotype has been reported. For example, the GENOMES 

UNCOUPLED5 (GUN5) gene, is upregulated during leaf development, and encodes 

a subunit of the Mg-chelatase involved in the first steps of chlorophyll biosynthesis. 

gun5 mutants are small, pale green and impaired in chloroplast-to-nucleus signalling 

(Mochizuki et al, 2001). The increase in expression during development is indicative 

of the onset of photosynthesis in leaves and underlines the importance of retrograde 

signalling during plant development. In contrast, the expression level of several 

genes is downregulated when transitioning from cell proliferation to cell expansion. 

For example, the gene encoding the PENTATRICOPEPTIDE REPEAT (PPR) protein 

known as RNA-EDITING INTERACTING PROTEIN1 (RIP1), involved in 

mitochondrial and chloroplast RNA editing, is down-regulated. rip1 plants are 

dwarfed and sterile (Bentolila et al, 2012). A second example of a gene exhibiting 

downregulation over development encodes the DNA gyrase protein A (GyrA), 

homologous to the bacterial topoisomerase that induces topological changes to DNA 

during replication and transcription (Wall et al, 2004). gyrA plants are embryo lethal 

illustrating the importance of this protein in plant development.  

In summary, a large amount of nuclear encoded genes encoding organellar proteins 

are differentially expressed over development. Except for genes encoding 

photosynthesis-related and chloroplast proteins in leaves, the majority of genes are 

downregulated when cells transition from cell proliferation to cell expansion. This 

trend points towards an important role of organellar proteins in the support of cell 

proliferation during early organ development. At the same time, the onset of 

photosynthesis when cells start expanding and differentiating in leaves highlights the 

active role of chloroplasts in cell expansion (Andriankaja et al, 2012).  

Organelle Biogenesis, Division and Gene Expression 

When organ primordia develop, chloroplasts differentiate from proplastids in the 

shoot meristems in the light (Fig. 2). Light triggers in the proplastid the formation of a  
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preliminary thylakoid structure, the prolamellar body, which further develops in the 

typical thylakoid membranes of a differentiated chloroplast. 

The protein complexes necessary to perform the light reactions of photosynthesis, 

photosystem I and II (PSI and PSII) with their respective light-harvesting complexes I 

and II (LHCI and LHCII), are localized in specific regions on these thylakoid 

structures (Eberhard et al, 2008). To absorb efficiently light energy, a coordinated 

formation of the photosynthetic pigments, chlorophyll and carotenoids, with the 

photosynthetic complexes is needed. In contrast, mitochondria are formed 

independent from light through binary fission of pre-existing ones (Millar et al, 2008) 

(Fig. 2) and do not exhibit drastic morphological and functional changes, except in 

shoot apical meristem (SAM) and leaf primordial meristematic cells. In these cells, a 

large and complex mitochondrial mass exists around the nucleus that undergoes 

structural changes during the cell cycle (Seguí-Simarro et al, 2008). Still, their 

differentiation is strictly regulated. The inner mitochondrial membrane forms 

structures, termed cristae, holding the electron transport chain (ETC) complexes and 

necessary for generating a proton gradient to drive ATP synthesis. To exert their 

Figure 2. Overview of the mitochondria and chloroplast characteristics. Schematic representation of 
chloroplast differentiation from proplastid stage and the mitochondrial fission process. Different aspects of the 
organelle biogenesis and physiology that will be discussed in this review are highlighted. 
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cellular functions chloroplasts and mitochondria depend on the correct expression of 

their organelle genome encoding the core components of photosynthesis and 

respiration. Mutations in genes involved in organelle biogenesis, expression or 

physiology results in diverse growth defects and an overview of all mutants that will 

be discussed in this review can be found in Supplemental Table S2, with their 

corresponding plant, organelle and cellular phenotype.  

Biogenesis 
Disturbing differentiation into photosynthetic active chloroplasts through incorrect 

biosynthesis of the thylakoid structures, chlorophyll or carotenoids has major effects 

on the photosynthetic capacity of the leaves, and thus affects leaf development. The 

majority of mutants with improper chloroplast development are typically pale green, 

variegated or albino (Aluru et al, 2006; Yu et al, 2007). Variegated mutants produce 

green leaves with white sectors that contain abnormally formed or less chloroplasts. 

In all these mutants disrupted chloroplast development results in an impaired 

chloroplast-to-nucleus signalling which affects cell differentiation. Therefore, most of 

these mutants have pleiotropic plant growth defects (Aluru et al, 2006; Sakamoto, 

2003; Yu et al, 2007). In the immutans (im) mutant, for example, the white sectors of 

the leaf consist of heteroplastidic cells containing both normal and abnormal 

chloroplasts without internal thylakoid structures (Wetzel et al, 1994). IM encodes a 

protein associated with the thylakoid membranes in chloroplasts and acts as a 

cofactor in phytoene desaturation in the first steps of the carotenoid biosynthesis 

during early chloroplast development (Carol et al, 1999; Foudree et al, 2012) Plants 

lacking a functional IM have a delay in shoot and root growth compared to wild type 

plants and their leaves are thicker due to larger cells and more intercellular spaces in 

their mesophyll layers (Aluru et al, 2001). Another example of variegated mutants 

with characterized cellular effects are the var2 and var3 mutants (Chen et al, 2000; 

Kato et al, 2009; Naested et al, 2004; Sakamoto et al, 2002; Takechi et al, 2000). 

VAR2 encodes the ATP-dependent chloroplast metalloprotease known as 

FILAMENTATION TEMPERATURE SENSITIVE2 (FtsH2) (Chen et al, 2000; 

Sakamoto et al, 2002; Yu et al, 2005). var2 mutants have more and smaller cells in 

both white and green sectors compared to wild type leaves (Sakamoto et al, 2009). 

VAR3 encodes a zinc-finger protein that interacts with NINE-CIS-
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EPOXYCAROTENOID DIOXYGENASE4 (NCED4), a protein similar to carotenoid 

deoxygenase and consequently var3 mutant has reduced chlorophyll and carotenoid 

levels (Naested et al, 2004). var3 mutant produces yellow instead of white sectors in 

the green leaves and have a severe reduction in palisade mesophyll cells in these 

yellow sectors (Naested et al, 2004). Finally, anu10 mutants are also impaired in 

thylakoid biogenesis and grana formation but these exhibit small, pale green leaves 

due to less but larger cells with small chloroplasts (Casanova-Saez et al, 2014). 

ANU10 or ANGULATA10 encodes a protein of unknown function localized to 

chloroplasts and is required for chloroplast and mesophyll cell development. 

In contrast to the chloroplast differentiation mutants, the phenotypes of mutants in 

mitochondrial differentiation related genes have not been described in much detail. In 

general, the mitochondria of these mutants are characterised by a reduction in 

cristae development and are swollen and less electron-dense (Teardo et al, 2015). 

The RETARDED ROOT GROWTH (RRG) gene encodes a mitochondrial membrane 

protein of unknown function and root growth is disturbed when RRG is mutated 

(Zhou et al, 2011). In the rrg mutant, the size of the root meristem is much smaller 

due to a decrease in cell number. The cells in the meristem are however larger, and 

mature root cells are similar in size to wild-type, suggesting that cells enter expansion 

and differentiation earlier. The difference in root size arises after embryogenesis and 

is probably due to aberrant mitochondrial structure. Two mitochondrial proteins 

belonging to the Type I PROHIBITIN (PHB) class, PHB3 and PHB4, are also 

involved in the biogenesis of mitochondria (Van Aken et al, 2007). Growth of phb3 

plants is markedly reduced and a developmental delay was observed both in roots 

and shoots. phb3 root meristem contains fewer cells, which are smaller initially but 

attain wild-type size later in development, similar to the rrg mutant. phb3 mutant 

plants exhibit swollen, rounder mitochondria compared to the wild-type. The double 

phb3 phb4 mutant is lethal, suggesting that both genes are essential for meristematic 

cell production.  

Although a correct differentiation of organelles seems crucial for cell growth, the 

cellular phenotypes of the important players of organelle differentiation is not 

reported. Usually, the effect on organelle morphology is generally described and 

linked to macroscopic phenotypes (Teardo et al, 2015; Yua et al, 2014). However, 

from the examples presented here, disruption of chloroplast biogenesis-related 
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proteins generally results in less but larger mesophyll cells, indicating a primary effect 

on cell proliferation, which likely is compensated by an increase in cell size and/or an 

early onset of differentiation. Similarly, the few examples of mutants involved in 

mitochondrial biogenesis show clear defects in cell proliferation.  

Division and Fission 
When cells divide, not only the nuclear but also the organellar genetic information 

needs to be distributed equally among the daughter cells. Therefore, organelles also 

undergo a division cycle, comparable to the binary fission in bacteria. In the centre of 

the bacterial cell, a contractile ring, made by a polymer of the tubulin homolog 

FILAMENTING TEMPERATURE-SENSITIVE MUTANT Z (FtsZ) anchored to the 

membrane, is formed and the correct positioning of this division midpoint is 

monitored by the intracellular localisation of three MIN proteins (MinC, MinD and 

MinE). Chloroplasts are surrounded by two membranes and need the formation of 

both a stromal FtsZ ring and an external/cytosolic ring composed of a dynamin-like 

protein (DRP) for their division. Mitochondria of several eukaryotes including higher 

plants lack FtsZ, and fission is governed solely by an external DRP ring (Margolin, 

2005). Several nuclear-encoded homologs of the prokaryotic division-genes work 

together with eukaryote-specific proteins to form the organellar dividing machinery.  

In Arabidopsis, several mutants with defects in chloroplast division have been 

described (Osteryoung et al, 1998; Yoder et al, 2007). Both loss- and/or gain-of 

function of MinD1, MULTIPLE CHLOROPLAST DIVISION SITE1 (MCD1) or 

ACCUMULATION AND REPLICATION OF CHLOROPLASTS3 (ARC3) result in 

asymmetric chloroplast divisions forming fewer but enlarged chloroplasts with 

different sizes and shapes (Colletti et al, 2000; Maple et al, 2007; Nakanishi et al, 

2009; Shimada et al, 2004). Interestingly, transgenic lines with perturbed plastid 

division do not show clear plant growth defects, since the total ratio chloroplast 

area/mesophyll area is always maintained since the reduction in chloroplast number 

is compensated by an increased chloroplast area (Pyke & Leech, 1994). In the SAM, 

proplastid division positively correlates with the cell cycle, similarly to other 

organelles (Segui-Simarro et al, 2008; Segui-Simarro & Staehelin, 2009), whereas 

plastids generally divide nonsynchronously (Miyagishima, 2011). In addition, 
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expression of FtsZ is cell-cycle dependent (El-Shami et al, 2002) and some proteins 

seem to be involved in both plastid and cell division processes. CDC TARGET1a 

(CDT1a) facilitates, together with other proteins, the assembly of the pre-replication 

complex to the DNA in order to initiate DNA replication. At the transition from G1 to S 

phase, CDT1 is degraded after phosphorylation by cyclin-dependent kinases to 

permit DNA replication (Blow & Dutta, 2005). The CDT1a protein is localised both in 

the nucleus and plastids, where it interacts with the chloroplast division 

ACCUMULATION AND REPLICATION OF CHLOROPLASTS6 (ARC6) protein. The 

simultaneous down-regulation of CDT1a and CDT1b in RNAi plants leads to the 

formation of small pale green leaves. At cellular level, these leaves consist of less 

and smaller cells that contain less but enlarged chloroplasts. Disturbing the function 

of another nuclear-encoded protein, CRUMPLED LEAF (CRL), located on the outer 

membrane of chloroplasts, results in severe growth inhibition in shoot and root. All 

the organs of the crl mutant contain cells with discontinuous and unorganized cell 

division planes. Leaves of crl mutant plants have less and smaller cells and also root 

growth is negatively affected. Additionally, several important cell cycle genes such as 

the cyclin CYCD3;1 are downregulated in the crl mutant, whereas the cell-cycle 

inhibitor SIAMESE-RELATED5 is upregulated. As a consequence, crl cells 

differentiate earlier and endoreduplication is enhanced in both shoot and root (Asano 

et al, 2004; Hudik et al, 2014).  

In contrast to plastids, mitochondria undergo massive fusion-fission events during the 

cell cycle (Mitra, 2013). The occurrence of large sheet or cage-like structures of 

fused mitochondria around the nucleus during the cell cycle has been observed in 

certain cell types of plants (Segui-Simarro et al, 2008; Segui-Simarro & Staehelin, 

2009). During G1/S, this fusion of mitochondria is hypothesized to occur in response 

to the high demand for energy needed for nuclear DNA replication and cell division 

as well as to ensure proper mixing and recombining of the mitochondrial DNA 

(mtDNA). During mitosis, two important proteins involved in mitochondrial fission, 

DRP3A and DRP3B, are activated through phosphorylation and, when cells are 

treated with an inhibitor of CDKB/CYCB and related kinases, fission is compromised 

(Wang et al, 2012). From these evidences, it is clear that the regulation of 

mitochondrial and cell division must involve common players. When mitochondrial 

fission is perturbed due to the mutation of one or more of the most important 



Organellar proteins and development 

71 

members of the division apparatus (DRP3A, DRP3B, DRP5B and ELONGATED 

MITOCHONDRIA1 (ELM1)), a reduction in plant growth is observed (Arimura et al, 

2008; Aung & Hu, 2012; Fujimoto et al, 2009; Mano et al, 2004). To our knowledge, 

only the friendly mutant, which displays clusters of mitochondria, has been 

characterised at the cellular level. FRIENDLY is member of the CLUSTERED 

MITOCHONDRIA (CLU) superfamily and is involved in mitochondrial fussion (Zawily 

et al 2014). friendly produces smaller shoots, hypocotyls and roots. In friendly roots, 

an increase in cell number was observed, accompanied by an important reduction in 

cell size (El Zawily et al, 2014). 

In conclusion, the division of mitochondria and chloroplasts needs to be coordinated 

with cell division during organ development. For both chloroplast and mitochondria, 

clear molecular and/or morphological links between factors involved in organelle 

division machinery and the cell cycle have been revealed.  

Genome Organization and Expression 
Although the genomes of chloroplasts and mitochondria contain relatively few genes, 

they encode key proteins involved in organelle gene expression, photosynthesis or 

electron transport and the correct expression of these organelle genes is crucial for 

plant development. In Arabidopsis, the mitochondrial genome (mtDNA, 366 kb) 

encodes three rRNAs and 57 proteins, mainly subunits of the ETC and ribosomal 

proteins (Unseld et al, 1997). The 154 kb chloroplast genome (cpDNA) contains 45 

RNA- and 87 protein-coding genes (Sakamoto et al, 2008; Sato et al, 1999). The 

proteins encoded by the cpDNA are mainly involved in transcription, translation and 

photosynthesis. Organelle DNA copies are organised in protein complexes called 

nucleoids. Arabidopsis rosette leaves harbour hundreds to thousands cpDNA copies 

per cell and less than hundred mtDNA copies (Draper & Hays, 2000; Preuten et al, 

2010). Curiously, some mitochondria only contain a fraction of the mtDNA or no 

genome at all (Preuten et al, 2010). Generally, the number of organelle DNA copies 

per cell increases with cell size but there is some controversy regarding the decline 

of the amount of cpDNA copies during proplastid-to-chloroplast conversion and 

during leaf development (Oldenburg & Bendich, 2015; Rowan & Bendich, 2009; 

Zoschke et al, 2007). Mitochondrial DNA copy number remains low and constant 
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during development and the highest copy number is found in root tips containing 

several hundred copies per cell.  

Two homologs of the bacterial DNA polymerase I (PolI), PolIA and PolIB, are 

encoded by the Arabidopsis nuclear genome and responsible for organelle DNA 

replication. Mutation in PolIA does not affect plant growth, but roots and shoots of 

polIb mutant lines develop slowly compared to the wild-type probably due to a defect 

in cell elongation (Cupp & Nielsen, 2013; Parent et al, 2011). At the subcellular level, 

the polIB mutant has an increase in the number of mitochondria compensated by a 

decrease in mitochondrial area density, but chloroplast ultrastructure is not affected. 

WHIRLY2 (WHY2), a nucleoid-binding protein localized in mitochondria and 

belonging to the plant-specific Whirly protein family, also plays an important role in 

maintaining mtDNA copy number (Cai et al, 2015). Overexpression of WHY2 in 

pollen vegetative cells, normally harboring extremely low mtDNA copy numbers, 

results in decreased mitochondrial division, increased mtDNA levels and reduced 

pollen tip growth. DNA replication depends on a sufficient supply of deoxyribose 

nucleotide triphosphates (dNTPs). Ribonucleotide reductase (RNR) determines the 

last step in de novo formation of dNTPs in the cell. In Arabidopsis, RNR is formed by 

two large subunits (R1) and two small subunits (R2). A mutation in CRINKLED 

LEAVES8 (CLS8), encoding RNR1, leads to the production of rough and uneven 

green leaves with white regions as well as reduced root growth (Garton et al, 2007). 

Mesophyll cell size is not affected but both green and white regions of cls8 leaves 

contain less chloroplasts, which are enlarged in green areas and smaller in white 

areas. The reduction in dNTP level also causes lower plastome copy numbers. 

Single or double mutants of the three redundant R2 genes (TSO2, RNR2A, RNR2B) 

display similar effects on plant growth  (Wang & Liu, 2006) and mesophyll cells are 

small and form large intercellular spaces, whereas epidermal cells are clustered and 

enlarged on the surface of the leaf causing the rough leaf phenotype. A reduced and 

imbalanced dNTP pool probably underlies these developmental defects, which result 

in a block of organelle DNA replication and chloroplast-deficient cells in the white 

sectors.  

Mutants involved in organelle genome maintenance generally also exhibit plant 

growth defects. MUTS HOMOLOG1 (MSH1) is a plant-specific mitochondrial- and 

plastid-targeted protein homologous to the bacterial mismatch repair protein MutS, 
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involved in organelle genome stability. Suppression of MSH1 results in numerous 

phenotypes, such as leaf variegation, enhanced branching, dwarfism and delayed 

maturity of the vegetative and reproductive structures (Xu et al, 2011; Xu et al, 2012). 

Also, partial transition to perennial growth on short days is observed and the stems of 

msh1 are thicker due to an increase in secondary xylem and accumulate much more 

lignin compared to the wild-type (Xu et al, 2012). Interestingly, several genes 

encoding important regulators of cell division and expansion, such as CDKB2;1, 

CYCB1;4 and CYCD3;1, EXPA8 and EXPA11, are downregulated in msh1 mutants, 

indicating defects in both processes (Xu et al, 2012).  

Organelle gene expression also is under nuclear control. In Arabidopsis chloroplasts, 

two types of RNA polymerases are responsible for the transcription of specific 

plastid-encoded genes, the phage-type nuclear-encoded RNA polymerase (NEP) 

and a multi-subunit plastid-encoded polymerase (PEP). NEP is responsible for the 

transcription of the different core subunits of RNA polymerase (rpoA, rpoB, rpoC1 

and rpoC2) of the PEP, which is responsible for the transcription of photosynthesis-

related genes. Arabidopsis encodes three NEPs, RPOTp, RPOTm and RPOTmp 

targeted to plastids, mitochondria and both organelles, respectively (Borner et al, 

2015). Knock-out of the mitochondria-localized RPOTm is lethal and heterozygous 

plants have a reduction in male and female gamete fitness (Kuhn et al, 2009). Roots 

and rosettes of the single rpoTmp mutants grow slower compared to the wild-type 

(Baba et al, 2004; Courtois et al, 2007; Kuhn et al, 2009). Mutations in SCABRA3 

(SCA3), encoding RPOTp, lead to the production of reticulate leaves that are round, 

reduced in size and have deep serrations (Hricova et al, 2006). Reticulate mutants 

show reticulation pattern of dark green veins on a green or pale green lamina. The 

sca3 leaf surface is wrinkled to crumpled but does not exhibit changes in epidermal 

cell size or morphology. However, mesophyll cells are less dense and more 

irregularly shaped making it impossible to distinguish between palisade and spongy 

layers. The growth defects in sca3 mutant, as in most reticulate mutants, are not 

solely attributed to defects in cell proliferation or expansion, but also result from an 

incorrect development of the distinctive tissue layers. Since the mesophyll layer in 

leaves is the most important site of photosynthesis, a link between plastid gene 

expression and mesophyll differentiation can be proposed. However, most known 

reticulated mutants have roles in primary plastid metabolism, and some hypotheses 
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have been put forward to explain the defects in mesophyll development in light of 

impaired metabolism (see below and reviewed in (Lundquist et al, 2014)).  

In chloroplasts and mitochondria, primary transcripts undergo posttranscriptional 

processing, which has been proposed as an important determinant of organelle gene 

expression (Colas des Francs-Small & Small, 2014; Sakamoto et al, 2008). For all 

mitochondrial protein complexes of the electron transport chain (ETC), except the 

nuclear-encoded Complex II, so-called surrogate mutants have been characterized 

(reviewed in (Colas des Francs-Small & Small, 2014); (Colas des Francs-Small et al, 

2014; Hsieh et al, 2015; Hsu et al, 2014)). These mutants are disturbed in nuclear-

encoded genes encoding proteins involved in various steps of posttranscriptional 

regulation in the mitochondria: RNA processing, stabilization, splicing, editing or 

translation. A large number of these surrogate mutants displays pleiotropic 

phenotypes due to a reduction in accumulation and/or activity of ETC complexes, 

such as a reduced germination capacity, slow development of roots and shoots and 

fertility problems. However, many of these surrogate mutants have no apparent 

macroscopic phenotype under normal conditions, indicating that a threshold level of 

the organelle protein complex abundance or activity exists above which plants can 

develop and grow normally (Colas des Francs-Small & Small, 2014). With the 

exception of mutants affecting posttranscriptional processing of nad genes, encoding 

subunits of complex I of the ETC, only few surrogate mutants have been described at 

cellular level. The slo3 mutant, for example, defective in splicing of nad7, germinates 

late and displays delayed root and shoot development due to a reduction of cell 

proliferation (Hsieh et al, 2015). Cell proliferation is a process requiring high amounts 

of energy; in slo3 mutants a decline in ATP production caused by a reduction in the 

major subunits of the ETC leads to growth defects. Also, the slg1 mutant, defective in 

editing of nad3, displays slower development of roots and leaves (Yuan & Liu, 2012). 

This mutant has a reduction in root meristem cell number due to a lower cell division 

activity as well as a reduction in epidermal cell size in the maturation zone. slg1 

mutant shows reduced complex I activity and ATP content, and activation of the 

alternative respiratory pathway. A third surrogate mutant, abo8 (aba overly 

sensitive8), is defective in splicing of nad4 and also has reduced complex I 

abundance and activity, resulting in decreased ATP production and increased ROS 

production (Yang et al, 2014). abo8 plants produce smaller roots, due to a reduction 
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in root meristem cell number which is partially compensated by an increase in cell 

size.  

Finally, also organelle translation is important for normal organ development. In the 

regulator of fatty acid composition 3 (rfc3) mutant, a nuclear-encoded plastid-

localized S6-like ribosomal protein is mutated, resulting in low levels of unsaturated 

fatty acids and impaired lateral root development (Horiguchi et al, 2003; Horiguchi et 

al, 2011). The lateral roots of the mutant do not develop in a distal direction when 

grown on high sucrose levels and do not have a quiescent center. 

In conclusion, strict regulation of organelle genome copy number, maintenance, 

expression and translation is important for sustaining normal organ growth, at the 

cellular and macroscopic level. This plethora of phenotypic consequences can be 

explained since the organellar genome encodes solely proteins implicated in its core 

functions, photosynthesis in chloroplasts and energy production in mitochondria. Mis-

expression of these proteins, if not lethal, has pleiotropic consequences on plant 

growth. 

Physiology 

The key function of the organelles is to generate enough carbon sources and energy 

during the growth of plant organs. Additionally, organelles are important hubs for 

various interconnected metabolic pathways such as amino acid metabolism, fatty 

acid and secondary metabolite production, vitamin, hormone biosynthesis and 

signalling.  

Carbon metabolism 
During the day, chloroplasts of leaves actively performing photosynthesis (source 

leaves) convert light energy into chemical energy stored in carbohydrates. The 

primary end products of photosynthesis are triose phosphates which are 

subsequently used to form starch, as storage compound, in the chloroplast, or 

sucrose in the cytosol (Stitt & Zeeman, 2012). Sucrose is then used as a long-

distance transport molecule to other parts of the plants that act as sink tissues, such 
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as roots and young growing leaves that do not yet photosynthesize. The inner 

membrane of the chloroplast contains different phosphate translocators (PT), 

necessary for the exchange of important metabolites between the cytosol and plastid 

stroma (Flugge, 1999; Flugge et al, 2011). One of the major translocators is the 

antiporter Triose Phosphate/PT (TPT), involved in exporting triose phosphates into 

the cytosol in exchange for Pi. tpt mutant does not display a growth phenotype, 

probably because of the presence of redundant phosphate translocators, but has 

larger chloroplasts (Hausler et al, 2009; Schneider et al, 2002). The starch 

biosynthesis mutant adg1-1, impaired in ADP-glucose phosphorylase, only displays 

severe growth retardation when grown under short-days or high light and has smaller 

chloroplasts (Kunz et al 2010; Lin et al, 1988). The double mutant adg1-1/tpt exhibits 

severe growth arrest under high light and produces thick pale green leaves due to 

less but larger mesophyll cells (Hausler et al, 2009; Heinrichs et al, 2012; Schmitz et 

al, 2012). When TPT exports triose phosphates into the cytosol for sucrose 

biosynthesis, Pi is imported in the chloroplast stroma. As Pi is an important regulator 

of chloroplast enzymes and Pi homeostasis has to be maintained in the cell, it has to 

be exported into the cytosol through specific Pi transporters. In Arabidopsis, two sink-

specific plastid-localized Pi translocator family proteins have been identified, PHT2 

and PHT4. One of these proteins, PHT4;2, is mainly localized in roots and pht4;2 

mutant rosettes produce more biomass compared to the wild type under short-day 

conditions. This increase in size is due to an increase in epidermal cell number but 

the exact mechanism is unclear (Irigoyen et al, 2011). 

Following transport to the sink tissues, sugars are used for glycolysis in the cytosol 

and in the citric acid cycle (TCA) in mitochondria to generate ATP. Glycolysis and the 

TCA have to work together efficiently and perturbing this interaction has phenotypic 

consequences. An example is related to the functionality of a multi-enzyme pyruvate 

dehydrogenase complex, responsible in the mitochondria for converting pyruvate 

imported from the cytosol into acetyl-CoA and NADH. When one subunit, the E2 

dihydrolipoyl acetyltransferase, is downregulated, reduced influx in the TCA cycle 

leads to an increase in TCA intermediate metabolic products and amino acids. The 

reduced metabolic flux reduces ATP production, leading to severe growth penalties 

in the roots and the shoot. The extreme reduction in primary root length and mature 
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leaves size is due to a reduction in cell proliferation but also cell differentiation is 

impaired in this mutant (Yu et al, 2012).  

Mitochondria and chloroplasts play in C3 plants an important role during the 

photorespiration pathway, which scavenges toxic waste products that are made 

when RUBISCO interacts with oxygen instead of carbon dioxide. The pathway 

involves a network of enzymes exchanging metabolites between three subcellular 

compartments: chloroplasts, peroxisomes and mitochondria. The main mitochondrial 

step involves the conversion of glycine into serine, catalyzed by the glycine 

decarboxylase complex (GDC) and a serine hydroxymethyltansferase (SHMT) 

(Eisenhut et al, 2013; Kuhn et al, 2013; Lawand et al, 2002). The mitochondrial 

carrier A BOUT DE SOUFFLE (BOU) plays a role in this pathway although its 

substrate has not been identified yet. bou mutant plants have a reduced GDC activity 

and accumulate glycine. The mutant of SHMT, shm1-1, displays a similar metabolic 

phenotype. As a consequence, both bou and shm exhibit a photorespiratory 

phenotype as they grow normally at high CO2 but fail to develop photoautotrophically 

under ambient CO2 levels due to a sucrose and CO2-dependent reduction in cell-

cycle activity in the root and shoot apical meristem.  

Many proteins involved in respiration and photosynthesis contain Fe-S clusters as 

important cofactors in redox reactions. Fe-S cluster assembly mainly occurs in the 

cytosol, but also in mitochondria and plastids (Balk & Pilon, 2011). The ATP-

BINDING CASETTE TRANSPORTER OF MITOCHONDRIA3 (ATM3) transports 

mitochondrial glutathione persulfide (GS-S0-SG) to the cytosol where the sulfur is 

used in Fe-S cluster assembly (Chen et al, 2007; Kim et al, 2006; Schaedler et al, 

2014; Teschner et al, 2010). Mutants of ATM3 germinate less efficiently on medium 

without sucrose and produce small roots and shoots (Bernard et al, 2009; Kushnir et 

al, 2001). atm3 leaves are chlorotic and thicker due to less but enlarged cells, and 

produce a poorly developed mesophyll layer (Kushnir et al, 2001).  

In summary, photosynthesis and mitochondrial respiration are tightly coupled and 

need different transporters for shuttling metabolites from one organelle to another to 

maintain cellular homeostasis. When this transport is impaired cell proliferation is 

mainly affected. 
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Amino acid biosynthesis 
Chloroplasts and mitochondria have a central position in the biosynthesis of amino 

acids. The aromatic amino acids (AAAs) tryptophan, tyrosine and phenylalanine are 

synthesized via the shikimate pathway that starts with the import of 

phosphoenolpyruvate in the chloroplasts via a phosphate transporter, the 

phosphoenolpyruvate translocator (PPT) (Maeda & Dudareva, 2012). Interestingly, 

the correct biosynthesis of AAAs and functional PPT proteins are crucial for plant 

growth since all mutants in chloroplast amino acid biosynthesis produce reticulated 

leaves (Lundquist et al, 2014; Knappe et al, 2003; Li et al, 1995; Streatfield et al, 

1999). cue or chlorophyll a/b binding protein (CAB) underexpressed mutants, 

impaired in PPT expression, produce small reticulate leaves when grown on medium 

with an external carbon source (Li et al, 1995). The palisade mesophyll cell layer in 

the pale green sections of the leaf is underdeveloped with less cells and larger 

intercellular spaces, whereas the number and size of epidermal and spongy 

mesophyll cells are unaffected (Streatfield et al, 1999). Furthermore, chloroplasts are 

smaller in cue1, while their number is not changed. Treatment of the cue1 mutants 

with a cocktail of AAA, rescues the reticulated leaf phenotype but not the reduced 

shoot growth (Staehr et al, 2014; Streatfield et al, 1999). These treatments restore 

the reduced mesophyll cell density, but further reduce cue1 root growth. A distinct 

role for PPT1 was suggested in shoot and root, working as an importer in 

chloroplasts in leaves and as an exporter in the root (Staehr et al, 2014). Most 

reticulate mutants described have clear effects on the number of cells, but in the 

small organ1 (smo1/trp2) reticulate mutant, mutated in the gene encoding the β-

subunit of tryptophan synthase (TBS1) smaller leaves are produced due to a 

decrease in the average size of the palisade mesophyll cells. In addition, chloroplasts 

are under-developed and contain less starch granules and thylakoid structures (Jing 

et al, 2009). Also mutants with a defect in the biosynthesis of other amino acids have 

been described. venosa3 (ven3) and ven6 reticulate mutants are impaired in arginine 

biosynthesis due to a loss-of-function of the large and small subunit of the 

chloroplast-localized carbamoyl phosphate synthase, required for the conversion of 

ornithine into citrulline in the arginine pathway. Both mutants produce small leaves 

that contain less and smaller palisade mesophyll cells as well as large intercellular 

spaces (Molla-Morales et al, 2011).  
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In summary, the reticulate phenotype highlights the importance of proper amino acid 

biosynthesis in chloroplasts for correct establishment of the palisade mesophyll cell 

layer and, thus, for normal leaf development. Although it is not sure how this 

reticulated phenotype arises, it represents a good model to study mesophyll 

development. 

 

Hormone biosynthesis and regulation 
Since chloroplasts and mitochondria are involved in plant development, their function 

is connected to several hormones which steer plant growth. The plant hormones 

auxin, gibberellin (GA), cytokinin (CK) and brassinosteroids (BR) are hormones that 

are predominately defined as regulating growth and development, while abscisic acid 

(ABA), salicylic acid (SA), jasmonates and ethylene (ET) are traditionally involved in 

the responses to abiotic and biotic stresses. Chloroplasts play an important role in 

the biosynthesis of several plant hormones. The first biosynthetic steps of ABA, CK, 

GA, BR and other phytohormones take place in (pro)plastids (Pfannschmidt & 

Munné-Bosch, 2013). Mitochondria are not directly involved in hormone biosynthesis, 

but recent studies indicate that mitochondrial function and the hormonal regulation of 

growth are coupled (Berkowitz et al, 2016).  

ABA is an important hormone in plant physiology having roles in the response to a 

variety of stress conditions. One of the consequences of plant stress is the increase 

in reactive oxygen species (ROS), generated by mitochondria and chloroplasts, and 

ABA promoted ROS in mitochondria are involved in retrograde signaling. Two 

PENTATRICOPEPTIDE REPEAT (PPR) proteins, SLG1 and ABO8, with roles in 

posttranscriptional regulation of nad genes, encoding subunits of mitochondrial 

complex I of the ETC, and plant growth have been implicated in ABA responses 

(Yuan & Liu, 2012; Yang et al, 2014). The slg1 mutant is more responsive to ABA 

and displays an increased tolerance to drought stress. Cell-cycle activity is 

diminished in abo8 roots, which can be further enhanced by ABA treatment and 

rescued by addition of the reducing agent glutathione (GSH). The mutant contains 

lower transcript levels of the auxin-inducible PLETHORA (PLT) genes, illustrating a 

connection between ABA-mediated ROS production in mitochondria and auxin 

homeostasis in developing organs (Yang et al, 2014).  
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Auxin is involved in both cell proliferation and cell expansion and plays a role in all 

different stages during plant development, such as apical dominance, root initiation 

and growth tropisms. A mitochondrial tetratricopeptide protein, SHORT AND 

SWOLLEN ROOT1 (SSR1), is involved in auxin polar transport during root 

development (Zhang et al, 2015). When SSR1 is mutated, the expression of several 

PIN proteins is downregulated and auxin levels are reduced in roots. As a 

consequence, the roots of the ssr1 mutant have a compromised stem cell niche, 

which causes a reduction in both the number and the size of cells in the primary root 

(Zhang et al, 2015). In addition to the root phenotype, the vegetative rosettes and 

inflorescences of ssr1 are smaller compared to the wild-type.  

The phenotype of BR biosynthesis and signalling mutants corresponds typically to 

dwarfed plants with dark-green round leaves (Zhu et al, 2013). Most of these mutants 

also exhibit de-etiolation, i.e. short hypocotyl and expanded cotyledons in the dark, 

because they express light- and photosynthesis-related genes in the dark (Azpiroz et 

al, 1998; Chory et al, 1991; Chory & Peto, 1990). The first BR mutants isolated are 

the so-called det (de-etiolated) mutants, det1 and the less severe det2. Both DET 

genes encode reductases involved in the first steps of BR biosynthesis (Fujioka et al, 

1997). det1 root cells are small and contain a large number of green chloroplasts, 

instead of amyloplasts, whereas det2 does not show major differences in chloroplast 

programming (Chory et al, 1991; Chory & Peto, 1990). All these characteristics 

clearly demonstrate an important role of BR in chloroplast differentiation and in 

photosynthesis. A role for mitochondria in BR signalling has been reported as well, 

although, no steps of BR signalling occur inside this organelle. The Brz-insensitive-

long hypocotyls 2-1D (bil2-1D) mutant, insensitive to brassinazole (Brz) an inhibitor of 

BR biosynthesis, is defective in a mitochondrial DnaJ/Heat shock protein 40 

(DnaJ/Hsp40) (Bekh-Ochir et al, 2013). This mutant produces outward-curled leaves 

with long petioles similar to plants overexpressing the BR receptor BRI1 (Gonzalez et 

al, 2010). When BIL2 is overexpressed, an increase in biomass is observed. The 

roots of this gain-of-function mutant are longer and have more lateral roots. Although 

the cellular composition of these organs was not investigated, it is assumed that BIL2 

plays a role in the induction of cell elongation during BR signalling (Bekh-Ochir et al, 

2013).  
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Also CK are involved in a variety of developmental processes such as cell division, 

shoot development, leaf senescence and photomorphogenic development. CK play a 

role in regulating cell proliferation in shoots but also promote cell differentiation in the 

roots (Schaller et al, 2014). Several genetic studies with mutants of the different 

components of the CK signalling revealed a clear link between CK and chloroplast 

development (reviewed by (Cortleven & Schmulling, 2015)). Loss-of-function of both 

the ARABIDOPSIS HISTIDINE KINASES (AHKs) and ARABIDOPSIS RESPONSE 

REGULATORS (ARRs) results in reduced chlorophyll content in the shoot as well as 

reduced shoot growth (Argyros et al, 2008; Riefler et al, 2006). Leaves are smaller 

due to less but enlarged epidermal cells in the ahk mutants, and less but similar 

epidermal cell sizes in arr mutants. Furthermore, disturbing organelle-localized 

ATP/ADP and isopentenyltransferases (IPTs) involved in CK biosynthesis, results in 

decreased levels of the CK isopentenyladenine (iP) and trans-zeatin. These reduced 

CK levels cause several plant developmental phenotypes such as reduced shoot 

growth, reduction in leaf number, SAM and stem size but also an increase in primary 

and lateral root length have been observed (Miyawaki et al, 2006). Moreover, when 

plants are treated with CK, chloroplast transcripts are commonly upregulated and 

chloroplast division is promoted (Brenner et al, 2005). Also endogenous increase in 

CK levels through overexpression of CYTOKININ RESPONSE FACTOR2 (CRF2) 

induces PLASTID DIVISION PROTEIN2 (PDV2) which stimulates chloroplast division 

(Okazaki et al, 2009). Finally, overexpression of the transcription factor GROWTH 

REGULATING FACTOR5 (GRF5) also stimulates chloroplast division and acts 

synergistically with CK to promote the cell proliferation phase during leaf 

development (Vercruyssen et al, 2015). Transgenic plants overexpressing GRF5 

produce larger and dark green leaves due to more and smaller cells (Gonzalez et al, 

2010).  

The last phytohormone linked to organelles is GA, involved in many different 

processes during plant growth, such as germination, vegetative growth, and floral 

induction (Gupta & Chakrabarty, 2013). GA responses are mediated through the 

degradation of DELLA proteins, transcriptional regulators that negatively influence 

these responses in absence of GA. In Arabidopsis DELLA proteins are encoded by 

five genes: RGA, GAI, RGL1, RGL2 and RGL3. GA deficient mutants are known for 

their semi-dwarf phenotypes (Claeys et al, 2014a) and are affected in both cell 
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proliferation and cell expansion. In addition, these GA deficient mutants are darker 

green compared to wild type plants. The GA-deficient mutant ga1-3, for example 

produces small leaves containing less and smaller mesophyll cells that contain more 

chloroplasts compared to the wild type (Jiang et al, 2012). Furthermore, GA 

treatment increases chloroplast number per cell, chloroplast division frequency, cell 

division rate and mesophyll cell area in the ga1-3 mutant (Jiang et al, 2012). Also the 

GA-response mutant rga-24 gai-t6 leaves contain more chloroplasts, whereas 

chloroplast number of the della pentuple mutant is similar to wild-type, suggesting 

additional factors responsible for chloroplast division exist next to the DELLA 

regulators.  

In conclusion, organelle functioning and hormone biosynthesis and signalling are 

closely connected. This link has important consequences on plant growth, depending 

on the organelle that is involved and the regulated hormone. Strong interconnections 

between hormonal regulation, organelle function and plant growth have only recently 

been uncovered. 

 

Signaling –adaptations to changing conditions 
Many metabolic signals and proteins have been proposed to be involved in 

retrograde signaling, generating a complex and intertwined network of signals that 

are sensed by the nucleus to control gene expression and organelle development. 

This crosstalk between the nucleus and organelles is crucial for cell functioning under 

normal but also stress conditions. Indeed, when chloroplasts or mitochondria function 

is affected through application of chemicals or due to mutations in genes encoding 

organellar proteins, changes in the nuclear gene expression is observed, indicating a 

general response to organelle dysfunction. Furthermore, mitochondria and 

chloroplasts are also responsible for specific responses to stress conditions 

(Schwarzlander et al, 2012; Van Aken & Whelan, 2012).  

Chloroplasts signal their developmental status to the nucleus to adapt to 

environmental conditions and maintain the necessary carbon and energy for the plant 

to grow. Efforts has been made to identify these signals and the responses they 

elicit, but for most of these signaling pathways the effect on cell proliferation and cell 

expansion during organ growth is not characterized (Reviewed by (Chi et al, 2015; 
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Chi et al, 2013; Kleine & Leister, 2013; Pogson et al, 2008)). The best known 

retrograde signals are derivatives of the tetrapyrrole, carotenoid and isoprenoid 

biosynthetic pathways. These factors have essential roles in the regulation of 

photosynthesis in coordination with the nucleus. For example, the chloroplast 

biogenesis5 (clb5) mutant is impaired in ζ-CAROTENE DESATURASE (ZDS), 

involved in the biosynthesis of an apocarotenoid of yet unknown nature. clb5 mutant 

exhibits severe defects in leaf development, with no clear leaf differentiation, 

translucent and irregular leaf surfaces. Most of the mesophyll tissue is absent in clb5 

and the expression of nucleus- and chloroplast-encoded genes is impaired, resulting 

in a lack of chloroplast development (Avendano-Vazquez et al, 2014).  

In mitochondria, several nuclear-encoded proteins are targets of retrograde signaling 

for which expression is induced upon mitochondrial dysfunction. Most of the genes 

encoding these proteins share a CTTGNNNNNCA[AC]G cis-regulatory motif and are 

termed the Mitochondrial Dysfunction Stimulon (MDS) (De Clercq et al, 2013). 

Several NO APICAL MERISTEM/ARABIDOPSIS TRANSCRIPTION FACTOR 

ACTIVATION FACTOR/CUP-SHAPED COTYLEDON (NAC) transcription factors 

have been shown to bind this motif in the promoter of MDS genes, and for ANAC13 

and ANAC17 a role in oxidative stress tolerance has been shown through the 

activation of the MDS genes (De Clercq et al, 2013; Ng et al, 2013). When plants are 

subjected to stress conditions, they actively reprogram their growth (Claeys et al, 

2014b). Typically, reports on stress response score the phenotype on growth media 

containing ABA or stress-inducing chemicals such as mannitol, sorbitol, NaCl or 

H2O2. However, the severity of the stresses applied is often extreme and only 

measurements of germination efficiency or survival are tested. In contrast, the 

developmental response to mild stress is more subtle and allows deciphering the 

molecular networks involved in the active regulation of the growth arrest (Skirycz et 

al, 2011). As such, a role of mitochondria in adaptation to mild stress conditions has 

been elucidated. When grown on mild osmotic stress conditions (25mM mannitol), a 

clear induction of MDS gene expression, including ALTERNATIVE OXIDASE1a 

(AOX1a), is observed in young leaf primordia which grow exclusively through cell 

proliferation (Skirycz et al, 2010). The proposed role of these MDS genes is to 

preserve mitochondrial morphology and function during adverse conditions (De 

Clercq et al, 2013). AOX1A mediates the plant-specific alternative oxidase pathway, 
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transferring electrons directly to O2 as a shortcut for the ETC (Berthold et al, 2000). 

Upregulation of this protein leads to a reduction in the amount of harmful ROS, but 

also ATP production. As a result, plants have a growth penalty but are able to 

support the energetically demanding process of cell proliferation in a normal way 

under mild stress conditions. Plants overexpressing AOX1A are more tolerant to mild 

drought stress from early developmental time points onwards, indicating that AOX1A 

is necessary to maintain a normal cell proliferation phase under stress conditions. 

Contrastingly, aox1a mutant plants exhibit an increase in leaf area under normal 

conditions indicating that the mitochondrial ETC is the preferably energy source 

under control conditions, whereas alternative oxidase is preferred under stress 

conditions (Skirycz et al, 2010).  

In summary, the interaction between nucleus and organelles ensures that plants are 

able to grow and develop even under adverse conditions. Organelles generate both 

general and specific retrograde signals which feed information to the nucleus, upon 

which the nucleus can anticipate through the induction of, for example, stress 

response genes. When this signaling is impaired, plants are unable to respond to 

environmental cues and display growth penalties. 
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Conclusion and Future Perspectives 
 

In this review, we present a resource of mutant phenotypes for nuclear genes 

encoding proteins localised in chloroplasts, mitochondria, or both organelles. Based 

on the genetic evidences we find that most of these mutants are affected in cell 

proliferation (Fig. 3). Since chloroplasts mainly deliver carbon sources and 

mitochondria cellular energy, it is not surprising that compromising their function 

leads to a reduction in cellular energy needed for cell division. Furthermore, most 

mutants analysed at cellular level either exhibit a specific defect on cell proliferation 

or reduction in cell number compensated by an increase in cell expansion. This 

compensation effect is often insufficient to completely rescue the decrease in cell 

numbers and therefore these mutants still display growth phenotypes (Horiguchi et 

al, 2006). This phenomenon is commonly observed in mutants of cell-cycle proteins 

(Blomme et al, 2014). Furthermore, the number of chloroplasts per mesophyll cell 

normally correlates positively with the cell area during cell growth (Pyke & Leech, 

1992) and chloroplast proliferation is enhanced in compensation mutants 

(Andriankaja et al, 2012; Kawade et al, 2013). So, although the genetic evidence 

presented in this review proposes a strong involvement of organellar proteins mainly 

in cell proliferation, their role in the regulation of cell expansion and differentiation 

cannot be ignored but largely remains to be elucidated.  

The involvement of chloroplasts and mitochondria in the cellular processes driving 

organ growth is undisputable. Many nuclear genes encoding organellar proteins are 

differentially expressed during organ development, and growth phenotypes have 

been described for several gain- or loss-of function mutants of these genes. Although 

still many genes have not been characterised at the phenotypical level, they seem 

interesting candidates to further elucidate the role of chloroplast and mitochondrial 

proteins in cell proliferation, the transition to cell expansion and/or differentiation. 

Moreover, based on the expression profiles, some of these genes could encode 

proteins with organ-specific roles.  
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Figure 3. Summary of the genes reported to have a plant, cellular and organelle phenotype when 
disturbed or overexpressed. Genes are subdivided according to the effect on the cellular level when 
mutated or overexpressed. Three developmental zones can be distinguished. Bottom of the leaf or the root tip 
mainly contains proliferating cells. In the middle of the root or leaf, cells are transitioning from dividing to 
elongation or from cell proliferation to cell expansion, respectively. At the tip of the leaf cell expansion starts 
and in the upper part of the root most cells are elongated and differentiated. Genes are ordered next to the 
organ in which a phenotype has been described upon loss- or gain-of-function; if both a root and shoot 
phenotype was reported genes are central. Genes are color-coded according to the subcellular localization of 
the encoded protein: green for chloroplasts, blue for mitochondria, yellow for both and black for any other 
localization.

Looking beyond the number or size of cells composing a leaf or root, several mutants 

display a more complex reticulated or variegated phenotype where the development 

of palisade mesophyll tissue is hampered. It is still not understood how these 

complex phenotypes arise, although some hypotheses have been put forward 

(Lundquist et al, 2014). These mutants represent excellent genetic tools to better 

understand how chloroplasts regulate the development of specific cell layers such as 

mesophyll and how this can be connected to other tissues such as the epidermal 

layer.  

Unfortunately, the majority of studies reporting growth phenotypes of organelle 

proteins only discuss the macroscopic defects in shoot and root growth. Organellar 

proteins exert crucial functions during plant development, but for a lot of proteins the 

direct or indirect regulation of plant growth remains uncharacterised or has not been 
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characterised at the cellular level. The additional investigation of the cellular effects 

of a mutant of interest would allow to better understand the growth phenotype 

(Gonzalez et al, 2012). Therefore, we plead for a more thorough cellular 

characterisation of mutants affected in growth.  

SUPPLEMENTAL DATA 
Supplemental tables are listed below and can be found at the end of this chapter. 

Supplemental Table S1. Gene Ontology (GO) categories of nuclear genes encoding 
organellar proteins differentially expressed over development. 

Supplemental Table S2. Genes involved in organelle function and plant growth. 
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Strobilurins on Crops: 
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The Origin of the Strobilurin Fungicides 
Strobilurins were originally discovered as naturally occurring fungicidal compounds 

produced by the Basidiomycetes fungi species (Balba, 2007; Bartlett et al, 2002). 

These fungi mainly live on decaying wood material and produce fungicidal products 

to eliminate other fungi and yeasts from competing for nutrient resources. The name 

strobilurins comes from the first identified natural derivative Strobilurin-A, isolated 

from liquid cultures of Strobilurus tenacellus (Anke et al, 1977), which grows on 

rotting pine cones (Fig. 1). The identification of these natural strobilurins, which are 

very unstable in light, volatile and have rather weak activity, initiated the development 

of synthetic strobilurins (Beautement et al, 1991). Different companies started 

research programs to chemically modify the natural strobilurins to improve their 

photostability and activity (Balba, 2007; Bartlett et al, 2002). Most attempts have 

been focusing on the modification of the toxophoric group or (E)-methyl β-

methoxyacrylate structural group, which is the fungicidal active part of the molecule 

(Fig. 1). The first strobilurin fungicides were simultaneously released by Syngenta, 

which discovered azoxystrobin, and BASF, which generated kresoxim-methyl (KM; 

Fig. 1). Nowadays, many different synthetic strobilurin formulations are on the 

worldwide market for use in agriculture and all exhibit diverse physical and biological 

properties due to their structural differences.  

Strobilurin A 
kresoxim-methyl 

azoxystrobin 

Figure 1. Strobilurins originate from the natural fungicide Strobilurin A produced by Strobilurus 
tenacellus. Image of S. tenacellus commonly found to grow on pine cones. Structures of the natural 
occurring strobilurin A and two synthetic strobilurin fungicides used in agriculture: azoxystrobin 
(Syngenta) and kresoxim-methyl (BASF). Red square highlights the toxophoric group. Modified from Liu 
et al, 2013.
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Fungicidal Mode-Of-Action 
Strobilurins are nowadays one of the most widely used fungicides in the world 

because of their broad-spectrum disease control against all four major groups of 

plant pathogenic fungi, i.e. Ascomycetes, Basidiomycetes, Deuteromycetes and 

Oomycetes as well as their use on a wide variety of plant species. Based on field 

trials, KM has been shown to facilitate protection against scab in apples and pears, 

downy and powdery mildew in apples, grapevines, cucurbits, sugar beet, and several 

fungal diseases in cereals and rice (Ammermann, 1992). Strobilurins are particularly 

efficient as preventive fungicide to eliminate spore germination and mycelium 

formation of the fungi.  

Strobilurins exert their fungicidal effect by inhibiting the fungal mitochondrial 

respiration through their binding on the Quinone (Qo) site of the electron transport 

chain (Fig. 2). By this binding, electron transfer between cytochrome b and c 

(Complex III) is blocked, the fungus is not able to oxidize nicotinamide adenine 

dinucleotide (NADH) and to produce ATP and eventually dies (reviewed by Leroux, 

1996). Hence, strobilurins belong to a general fungicide class named Quinone 

outside inhibitors or QoI. Unfortunately, this highly specific single-site inhibition made 

Qo inhibitor fungicides easy targets to acquire resistance and different examples of 

resistant fungi have been reported (Fernandez-Ortuno et al, 2008).  

Intermembrane space 

Matrix 

Figure 2. Schematic representation of the mitochondrial electron 
transport system. Different complexes of the electron transport chain are 
indicated with I, II, III, IV and V. Arrows indicate direction of the electron flow. Q 
is the ubiquinone pool and the Quinone-binding sites on Complex III are 
indicated with Qo, the Quinol oxidation site, and Qi, the Quinone reduction site. 
Red circle represents binding site of QO inhibitor fungicides. Taken from 
Fernández-ortuño et al, 2010.  
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Since the proteins of the mitochondrial respiration are highly conserved in 

eukaryotes, it could be expected that strobilurins also target mitochondria of plants or 

other eukaryotic species. Target activity of KM was evaluated in maize, rat and fly, 

and it was shown that KM is also active on mitochondria of these species (Roehl & 

Sauter, 1994). However, the toxicity effect depends on the biokinetic properties of 

this compound, such as uptake, transport and metabolism in these species, and is 

most effective against yeasts and fungi. In addition, also the developmental stage of 

the organism might affect the toxicity effect. In other words, whether the 

mitochondrial respiration is of major importance for the organism at the moment of 

application.  

Strobilurins are commonly used as foliar fungicides. However, leaf uptake 

characteristics differ between the strobilurin structures and depend on the treated 

plant, the environmental conditions and the formulation since surfactants or other 

compounds can be added. Generally, strobilurins are not easily absorbed by the leaf 

and only few of them are systemically transported via the xylem. Azoxystrobin and 

picoxystrobin are systemic since they control powdery mildow in wheat leaves at 

regions distant from the application site (Bartlett et al, 2002). KM, trifloxystrobin and 

pyraclostrobin, on the other hand, are not systemic since application of these 

compounds did not result in a systemic disease control in wheat leaves. Strobilurins, 

with the exception of azoxystrobin and pyraclostrobin, are also transferred via air, in a 

process called vapor phase molecular distribution. In addition, all strobilurins are 

translaminar compounds since they are capable to diffuse across the leaf, leaking 

into the underlying plant cells (Reddy, 2012). Generally, strobilurin fungicides are 

rapidly metabolized in soil or are degraded by soil-grown bacteria (Howell et al, 

2014). However, several studies have been reporting the toxicity for non-target water 

organisms demonstrating a risk in the use of strobilurins for the aquatic ecosystem 

(Liu et al, 2013; Liu et al, 2015). 
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Plant Physiological Benefits of the Strobilurins 
Interestingly, in the absence of diseases, strobilurins were also found to be growth-

promoting compounds by affecting multiple physiological pathways of the plant (Fig. 

3), which sometimes, but not always, result in yield improvement. It has been 

hypothesized that the observed positive effects result from a general inhibition of all 

micro-organisms in the soil, by which the plant does not have to put energy in its 

defense response. On the other hand, it has also been suggested that strobilurins 

might transiently inhibit plant mitochondrial respiration by which photosynthetic 

carbon fixation might be favored (Bartlett et al, 2002; Grossmann & Retzlaff, 1997). 

The first positive effects of strobilurins were reported in wheat (Ammermann et al, 

1992; Grossmann & Retzlaff, 1997; Noon, 1997) but other studies demonstrated a 

general strobilurin-induced yield-enhancing effect in diverse plant species (Bartlett et 

al, 2002; Reddy, 2012). Multiple field trials independently reported an increase in 

wheat yield and grain size when treated with different strobilurins and strobilurin 

combinations (Beck et al, 2002; Bertelsen et al, 2001; Bryson et al, 1999; Gerhard, 

1999). One of these positive effects was termed the ‘greening’ effect of strobilurins. 

Treatment with strobilurins led to a prolongation of the leaf greenness and, thus, to a 

delay in leaf senescence, which results in a longer grain-filling period and, 

consequently, more yield. This visible ‘greening’ effect has been confirmed by 

measurements of the photosynthetic activity by gas exchange and of the chlorophyll 

content of wheat plants grown under field conditions and treated with different 

strobilurin mixtures (Beck et al, 2002). 

Azoxystrobin and pyraclostrobin treatment of wheat and barley plants also resulted in 

higher antioxidative enzyme activities, such as superoxide dismutase, catalase and 

peroxidase, in elevated hydrogen peroxide and lower superoxide levels accompanied 

with an increase in yield (Wu & von Tiedemann, 2001; Wu & von Tiedemann, 2002; 

Zhang et al, 2010). Recently, pre-treatment of seeds with KM was also found to 

protect Medicago truncatula plants against abiotic stresses, such as drought and salt 

stress (Filippou et al, 2015). 
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However, bioassays with KM demonstrated contrasting growth effects depending on 

the plant species studied and the concentrations used (Grossmann & Retzlaff, 1997). 

Treatment with KM at a concentration of 10-4 M, inhibited growth of maize suspension 

cells, of Lemna (or duckweed) and germination of cress seeds but these inhibitory 

effects decreased with lower KM concentrations (Grossmann & Retzlaff, 1997). The 

inhibitory effects on Lemna were found to be accompanied with intensive greening. 

Remarkably, KM at a concentration of 10-7 M was able to induce shoot and root 

regeneration of tobacco explants, similarly as the auxin indol-3-acetic acid (IAA) at a 

concentration of 10-8 M (Grossmann & Retzlaff, 1997). This observation led to the 

hypothesis that KM could mimic the effect of auxin in plants. Additional studies with 

wheat leaf discs demonstrated that treatment with higher concentrations of KM 

(between 10-4 and 10-5 M) also affects ethylene and cytokinin levels, similarly as 

auxin signaling. Reduced aminocyclopropane-1-carboxylic acid (ACC) levels as well 

as a reduction in ACC synthase activity, involved in ethylene biosynthesis in 

converting S-adenosyl-methionine to ACC was found together with increased 

cytokinin levels. Chlorophyll content was also increased (Grossmann et al, 1999; 

Grossmann & Retzlaff, 1997). Similar results were obtained after pyraclostrobin foliar 

treatment of both barley and wheat which resulted in decreased ACC synthase 

activity and ACC levels (Köhle, 2002; Wu & von Tiedemann, 2002). Furthermore, IAA 

STROBILURINS 

NR activity/NO-release 

Antioxidative capacity 

GREENING

Hormone balance 

NO-signaling 

Delayed senescence D l d
Chlorophyll content 

ABA 

Ethylene 
CK 

GROWTH 

STRESS TOLERANCE 

GROWTH (1) (2) (4) (7) (9) (10) 

(1) (2) (3) 

(1) (2) (5) (9) (10) (11) 

y
CK(1) (2) (6) 

(1) (5) (7) (8) (10) 

Figure 3. Physiological effects of strobilurins in plants. Summary of the reported physiological 
effects of strobilurin treatment in different plant species: (1) wheat, (2) barley, (3) Medicago, (4) 
duckweed, (5) tobacco, (6) grapevine, (7) spinach, (8) soybean, (9) rapeseed, (10) lettuce, (11) potato, 
(12) corn. NO, nitric oxide; NR, nitrate reductase; CK, cytokinin; ABA, abscisic acid.  
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and ABA levels were increased in wheat leaf discs and less chlorophyll degradation 

was observed (Köhle, 2002). Also in grapevine, pyraclostrobin resulted in increased 

ABA levels (Diaz-Espejo et al, 2012). Together with the increased antioxidative 

effects, these shifts in hormone levels, could explain the delayed leaf senescence 

phenotype and the improved stress tolerance after strobilurin treatment.  

Several studies reported an interesting link between strobilurins and nitric oxide (NO) 

signaling which can regulate diverse physiological functions (Yu et al, 2014). KM 

treatment was found to induce nitrate reductase activity in spinach leaf discs (Glaab 

& Kaiser, 1999). The same effect was shown for treatment of wheat plants with 

pyraclostrobin, in its commercial formulation F500 (BASF), which increased nitrate 

reduction and uptake as well as fresh weight (Köhle, 2002). The positive effects on 

wheat plant physiology and growth was proposed to be a consequence of a possible 

increase in NO levels and subsequent NO signaling. Later, it was confirmed that 

pyraclostrobin treatment at a concentration of around 10-6 M induces NO-release in 

soybean cells and tobacco leaves (Conrath et al, 2004). Furthermore, field 

experiments with different strobilurins, including azoxystrobin, in wheat demonstrated 

improved grain yield, biomass and harvesting index due to increased nitrogen in the 

above-ground biomass and in the grains (Ruske et al, 2003). 

More recent reports on azoxystrobin-induced advantages in other crops include an 

increase in chlorophyll content without an effect on yield of baby spinach (Conversa 

et al, 2014), an increase in grain number in barley (Bingham et al, 2012), higher seed 

yield and greening of field grown-rapeseed (Ijaz & Honermeier, 2013), and higher 

yield, reduced nitrate content and less chlorophyll degradation during storage in 

lettuce (Bonasia et al, 2013). Moreover, field trials with both azoxystrobin and 

pyraclostrobin resulted in increased potato tuber yield (MacDonald et al, 2007). 

Whilst many advantages on plant growth have been reported, several studies also 

demonstrated no effect or even negative effects on plant physiology after treatment 

with strobilurins as well as location-dependent positive effects. Growth of unicellular 

algae Chlorella vulgaris was reduced by azoxystrobin application. Treatment with 

azoxystrobin resulted in a reduction in photosynthesis as measured by chlorophyll 

content and photosynthesis-related gene expression as well as an increase in 

reactive oxygen species (ROS) production (Liu et al, 2015). Field experiments with 

four different soybean varieties treated with pyraclostrobin in the absence of diseases 
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did not result in changes in yield measured by seed mass, seed number, pod number 

and harvest index (Swoboda & Pedersen, 2009). Also in dry bean, no difference in 

seed weight or yield was observed after spraying with azoxystrobin or pyraclostrobin 

(Mahoney & Gillard, 2014). Foliar treatment of corn with pyraclostrobin increased 

grain yield on two of three research locations tested, probably because of the 

differences in environmental conditions during time of application (Shetley et al, 

2015). Also spraying of orchards on two different locations (South Carolina and 

California) with pyraclostrobin did not result in increased fruit quality, size or yield of 

peach (Schnabel & Crisosto, 2008). 

Taken together, these findings show that strobilurins are important class of fungicides 

used throughout the world on a wide variety of crops, vegetables and fruits, against a 

wide variety of fungal diseases. They are extremely popular not only for their broad-

spectrum disease control, but also because they often contribute to higher yield and 

biomass. However, these positive effects on growth are not always present and do 

depend on the plant species, the treatment and environmental conditions. Several 

paths and hypotheses have been reported (Fig. 3) to explain these positive effects, 

but it remains largely unclear how strobilurins work. Hence, further research is 

necessary and will be of major interest to unravel the underlying effects of strobilurin 

treatment on plant growth and development. 
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ABSTRACT 

Leaves are the plant’s powerhouses, providing energy for all organs through sugar 
production during photosynthesis. However, sugars do not only serve as metabolic 
energy source for sink tissues, but also as signaling molecules, affecting gene 
expression through conserved signaling pathways to regulate plant growth and 
development. Here, we describe an in vitro experimental assay, allowing to alter the 
sucrose availability during early Arabidopsis (Arabidopsis thaliana) leaf development, 
with the aim to identify the affected cellular and molecular processes. The transfer of 
seedlings to sucrose-containing medium showed a profound effect on leaf growth by 
stimulating cell proliferation and postponing the transition to cell expansion. 
Furthermore, rapidly after transfer to sucrose, mesophyll cells contained less and 
smaller plastids which are irregular in shape and contain less starch granules 
compared with control mesophyll cells. Short-term transcriptional responses after 
transfer to sucrose revealed the repression of well-known sugar-responsive genes 
and multiple genes encoded by the plastid on the one hand, and up-regulation of a 
GLUCOSE-6-PHOSPHATE/PHOSPHATE TRANSPORTER, GPT2, on the other 
hand. Mutant gpt2 seedlings showed no stimulation of cell proliferation and no 
repression of chloroplast-encoded transcripts when transferred to sucrose, 
suggesting that GPT2 plays a critical role in the sucrose-mediated effects on early 
leaf growth. Our findings therefore suggest that induction of GPT2 expression by 
sucrose increases the import of glucose-6-phosphate into the plastids that would 
repress chloroplast-encoded transcripts, restricting chloroplast differentiation. 
Retrograde signaling from the plastids would then delay the transition to cell 
expansion and stimulate cell proliferation. 

INTRODUCTION 

The energy needed for plant growth and development is produced by photosynthesis 

in leaves, capturing and converting light into chemical energy, which is stored into 

sugars and transported to all other plant organs to meet their energy demands.  

Arabidopsis leaves arise from the shoot apical meristem as leaf primordia, which 

initially grow exclusively by cell proliferation. Subsequently, cell proliferation ceases 

at the tip of the leaf and gradually the cells start to expand in a tip-to-base direction 

(Andriankaja et al, 2012; Donnelly et al, 1999). After a few days, this cell cycle arrest 

front abruptly disappears at the base of the leaf and further leaf growth is driven by 

cell expansion (Andriankaja et al, 2012; Kazama et al, 2010) and the asymmetric 

division of meristemoids, i.e. precursors of stomata in the epidermis (Geisler et al, 

2000; Gonzalez et al, 2012; Kazama et al, 2010).  
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Leaves, which actively perform photosynthesis, so-called source leaves, produce 

their own energy and carbon sources for growth and development. Contrastingly, 

plant tissues that are unable to photosynthesize, such as roots, flowers and young 

growing leaves, depend on these source leaves for carbon supply to grow (Turgeon, 

1989). The primary end-products of photosynthesis are triose phosphates, which are 

rearranged into glucose-6-phophate (G6P) and used for the formation of starch as 

storage molecules or transported into the cytosol to form sucrose. In the source 

leaves, sucrose can be metabolized to its hexose products, i.e. glucose and fructose, 

it can be stored in the vacuole, or it can be transported through the phloem to the 

sink tissues (Lemoine et al, 2013). Sucrose is either imported directly in the sink cells 

via active sucrose transporters located at the plasma membrane (Kühn & Grof, 2010) 

or via plasmodesmata, or it is first cleaved to its hexose products by cell wall 

invertases in the apoplast (Ruan et al, 2010; Sturm, 1999). In the sink cells, hexoses 

are imported in the plastids for starch biosynthesis or for the oxidative pentose 

phosphate pathway. The main glucose transporters in photosynthetically inactive sink 

cells are the plastid-located G6P transporters, i.e. GPT1 and GPT2, which import 

G6P in exchange for phosphates (Kammerer et al, 1998). GPT1 is expressed 

throughout plant development (Niewiadomski et al, 2005). However, GPT2 

expression is limited to certain tissues, such as senescing leaves, and is induced 

under different conditions, such during relief of seed dormancy (Finch-Savage et al, 

2007), during acclimatization to high light (Dyson et al, 2015), during glucose-induced 

senescence (Pourtau et al, 2006), in starch-free mutants (Heinrichs et al, 2012; Kunz 

et al, 2010) and when sugar levels increase (Gonzali et al, 2006; Müller et al, 2007; 

Osuna et al, 2007; Price et al, 2004). Chloroplasts are the central organelles 

performing photosynthesis and producing sugars. Photosynthetic active chloroplasts 

are derived from proplastids present in the meristematic cells (Charuvi et al, 2012; 

Sakamoto et al, 2009). Functional chloroplasts contain about 3,000 different proteins 

mainly involved in photosynthesis, transcription and translation, of which most are 

encoded by the nuclear genome. However, plastids also have their own DNA, the so-

called plastome, consisting of 133 genes in Arabidopsis, of which 87 encode proteins 

with different functions, such as photosynthetic and ribosomal proteins (Sato et al, 

1999; Wicke et al, 2011). Genes of the plastome are transcribed by two different RNA 

polymerases, i.e. a nucleus-encoded polymerase (NEP) and a plastid-encoded 
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polymerase (PEP) (Liere et al, 2011; Shiina et al, 2005). PEP consists of the 

plastome-encoded core subunits rpoA, rpoB, rpoC1 and rpoC2, and one of the six 

nucleus-encoded sigma-factors which define promoter specificity (Lerbs-Mache, 

2011). Besides this core PEP complex, some non-core subunits have been identified 

to exhibit additional transcriptional functions, the so-called polymerase-associated 

proteins (PAPs; Steiner et al, 2011). During leaf development, both the NEP and PEP 

actively transcribe their specific target genes (Zoschke et al, 2007), of which most are 

organized in operons and transcribed into polycistronic mRNA from one single 

promoter, such as their bacterial ancestors (Wicke et al, 2011).  

Obviously, the nucleus and chloroplasts have to exchange information to regulate 

photosynthesis in function of environmental conditions. To date, different signals 

have been described to be involved in this chloroplast-to-nucleus or ‘retrograde’ 

signaling (reviewed by Kleine & Leister, 2013). The best-known retrograde signals 

are the intermediates of tetrapyrrole synthesis, i.e. the precursors of chlorophyll, 

which have been identified through the analysis of genomes uncoupled (gun) 

mutants, in which nuclear photosynthesis-related gene expression is maintained 

when chloroplast differentiation is perturbed by norflurazon (NF) treatment (Susek et 

al, 1993; Terry & Smith, 2013). Furthermore, reactive oxygen species, the redox state 

of the plastoquinone pool of the chloroplasts and of redox components such as 

glutathione and ascorbate (Oelze et al, 2012; Pfalz et al, 2012; Shapiguzov et al, 

2012), as well as different hormone signals and the plastid gene expression itself 

(Tiller & Bock, 2014) have been reported to exert signals from chloroplasts to 

regulate nuclear gene expression. Additionally, sugars can act as signals in 

retrograde and other signaling pathways, integrating environmental and 

developmental changes during plant growth (Häusler et al, 2014; Smeekens & 

Hellmann, 2014). For example, sugars can modulate nuclear gene expression, 

especially the repression of nucleus-encoded photosynthesis genes, such as 

CHLOROPHYLL A/B BINDING PROTEIN (CAB) and the small subunit of RUBISCO 

(RBCS), to control feedback regulation of photosynthesis (Krapp et al, 1993). 

However, our knowledge of sugar-regulated transcripts comes from studies using a 

wide variety of plant organs and tissues, developmental stages, treatments with 

different sugars and growth conditions. Furthermore, in most studies, sugars are 

applied to cell suspension cultures, detached leaves or liquid cultures (Kunz et al, 
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2014; Li et al, 2006; Müller et al, 2007; Osuna et al, 2007; Price et al, 2004; Usadel et 

al, 2008), highlighting the need for more targeted experimental designs to study the 

effect of sucrose on organ growth such as leaves. In addition, most sugar-feeding 

experiments make use of high, non-physiological glucose or sucrose concentrations 

(Gonzali et al, 2006; Heinrichs et al, 2012; Li et al, 2006; Müller et al, 2007; Price et 

al, 2004). 

During leaf development, it has been observed that the transition from cell 

proliferation to cell expansion occurs simultaneously with the onset of photosynthesis 

(Andriankaja et al, 2012). Furthermore, an up-regulation of transcripts encoding 

proteins involved in tetrapyrrole synthesis has been observed in leaves just before 

the start of the transition to cell expansion. These findings suggest a role for 

differentiation of the photosynthetic machinery and associated retrograde signaling in 

the transition to cell expansion. Contrastingly, in a recent study using the crumpled 

leaf mutant deficient in chloroplast development, it has been demonstrated that 

impaired chloroplast differentiation affects cell proliferation and induces an early 

onset of cell differentiation (Hudik et al, 2014). Young proliferating leaves first depend 

on the supply of sugars, produced by photosynthetically active source leaves, to 

grow. Reduced photosynthetic activity of source leaves or reduced sugar availability 

triggers young, proliferating leaves to produce their own sugars and energy for further 

growth (Li et al, 2006). To do so, chloroplasts need to differentiate to start 

photosynthesis, producing sugars and other retrograde signals, which could trigger 

the transition to cell expansion. Hence, it is obvious that a cross talk exists between 

sugars, chloroplasts and leaf growth, but which process, i.e. cell proliferation or 

expansion, is affected by sugars and how sugars are sensed during leaf growth still 

need to be investigated in detail.  

Here, we exogenously supplied sucrose during growth of Arabidopsis seedlings and 

found that sucrose increases final leaf size by promoting cell proliferation and 

postponing the transition to cell expansion. Furthermore, transcriptome and 

microscopic analyses of the growing leaves revealed a central role for chloroplast 

differentiation and GPT2 during the sucrose-induced promotion of leaf growth. 

Transfer of seedlings to sucrose resulted in reduced plastome transcription and 

smaller chloroplasts per mesophyll cell, which were irregular in shape and less 

differentiated compared with control seedlings. Also, in gpt2 mutant seedlings, cell 
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proliferation was not stimulated and chloroplast transcription was not repressed upon 

transfer to sucrose. 

RESULTS 

Development of an Experimental Setup to Analyze the Influence of 
Exogenously Supplied Sucrose on Final Leaf Size 
To investigate in detail how sugars regulate early leaf growth, we designed an 

experimental assay in which the sugar status is changed at a specific developmental 

stage during growth of Arabidopsis seedlings, and in which the impact of this change 

on leaf growth can then easily be monitored.  

We first tested the effect of three different sucrose and glucose concentrations (6 

mM, 15 mM and 30 mM) and found none of the glucose concentrations to 

reproducibly increase the third leaf size at 21 days after stratification (DAS) 

(Supplemental Fig. S1). On the other hand, when plants were germinated and grown 

under a 16-h day/8-h night cycle on sucrose-containing medium, a clear effect could 

be measured at 21 DAS both on rosette and individual leaf areas (Fig.1, A and B). 

The three concentrations tested, i.e. 6 mM, 15 mM, and 30 mM, resulted in a 

significant average increase in rosette area (40%, 56% and 44%, respectively; P < 

0.05) compared with plants grown on medium without sucrose (Fig. 1A). The 

measurements of individual leaf area showed that all leaves (with the exception of 

the cotyledons and the two first leaves) of the plants grown on sucrose-containing 

medium were larger (P < 0.05) compared with control plants (Fig. 1B). Because a 

concentration of 15 mM sucrose resulted in the largest significant increase in size 

both of the whole rosette and of the third true leaf (P < 0.0001), it was retained for 

further characterization at the cellular level. 

We also tested two different light intensities to optimize the effect of the 

supplemented sucrose on the final leaf size, because different light intensities may 

change the photosynthetic capacity and, consequently, the endogenous sugar 

production in the leaf. At a light intensity of 65±5 μmol m-2 s-1, germination on 

medium containing 15 mM sucrose resulted at 21 DAS in an increase in the third leaf 

size of on average 16% as compared with control plants germinated on medium 

without sucrose (Fig. 1C).  



Sucrose-induced early leaf growth 

121 

However, when plants were grown at a lower light intensity (50±5 μmol m-2 s-1), 15 

mM sucrose resulted in an on average 28% increase of the third leaf size (Fig. 1C). 

Additionally, to study the short-term effects of sucrose during early leaf growth, 

seedlings were first grown on a mesh (see Material and Methods) covering a sugar-

free medium, and subsequently transferred to medium supplemented with 15 mM 

sucrose. Transfer was done at 9 DAS, the time point at which the third leaf is fully 

proliferating (Andriankaja et al, 2012), demonstrating a similar increase of the third 

leaf area at 21 DAS of on average 18% and 29% at both light intensities (65±5 μmol 

m-2 s-1 and 50±5 μmol m-2 s-1, respectively), compared with the control plants 

transferred to medium without sucrose (Fig. 1C). Statistical analysis revealed a 

significant average increase in the third leaf area upon sucrose supplementation 

independent of the use of meshes or not as well as the different light intensities (P < 

0.05). 

In conclusion, we developed an experimental assay, in which transfer of plants grown 

at a light intensity of 50±5 μmol m-2 s-1 at 9 DAS to a growth medium with 15 mM 

sucrose, reproducibly increases the size of the third leaf at 21 DAS. This setup, using 

the meshes, was used in all following experiments to study the underlying cellular 

and molecular mechanisms by which sucrose affects plant growth. 
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Figure 1. Rosette and individual leaf area increase upon sucrose treatment. A-B, Plants were germinated 
on different sucrose (sucr) concentrations (0 (control), 6, 15 or 30 mM), and the average rosette area (A) and 
average individual leaf area (B) were measured at 21 DAS. Cot = cotyledons; Lx = leaf position x in the order 
of appearance on the rosette. Values are the means of three biological repeats with their SE. Rosette and leaf 
area was measured for 6 to 10 plants in each repeat. C, Third leaf area of plants germinated on 15 mM 
sucrose or germinated on sucrose-free (control) medium (no transfer) and transferred at 9 DAS to 15 mM 
sucrose or control medium, measured at 21 DAS at a light intensity of approximately 65 μmol m-2 s-1 or at a 
lower light intensity of 50 μmol m-2 s-1. Values are the means of three biological repeats with their SE. Leaf 
area was measured for 4 to 33 leaves in each repeat. *, adjusted P < 0.05 for log-transformed values in (A), 
mixed models (see Supplemental Methods).
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Sucrose Positively Affects Leaf Growth by Promoting Cell Proliferation  
To identify the cellular process involved in the sucrose-induced enlarged leaf size, 

the pavement cell number, cell size and stomatal index were measured at 21 DAS, 

twelve days after transfer of seedlings to medium with or without 15 mM sucrose (at 

50±5 μmol m-2 s-1). Transfer of plants to sucrose resulted in a significant average 

increase of the third leaf area of 47% (P < 0.05) (Fig. 2A) due to a significantly higher 

total pavement cell number (37%; P < 0.05), whereas the cell size remained 

unchanged (P = 0.11) (Fig. 2B). Also the stomatal index, i.e. the fraction of guard 

cells in the total population of epidermal cells, was slightly but significantly increased 

compared with the control (7%; P < 0.05) (Fig. 2B). Thus, sucrose increases the final 

third leaf size mainly by promoting cell proliferation. 

To analyse the effect of sucrose on cell proliferation in more detail, a time-course 

experiment was performed by harvesting the third leaf daily after transfer, from 10 

DAS until 21 DAS, and measuring its leaf area. At 12 DAS (3 days after transfer), the 

third leaf size of sucrose-transferred plants was significantly larger than that of control 

plants with an average increase of 39% (Fig. 2C; P < 0.05). Additionally, the relative 

leaf growth rate of sucrose-grown plants was slightly, but not significantly, higher, 

whereas later during development, the growth rates remained unchanged compared 

with control plants (Supplemental Fig. S2). Because sucrose significantly increased 

the third leaf area within three days after transfer, cellular measurements were 

performed on early time points during leaf growth (10-16 DAS; Fig. 2D-F). The total 

pavement cell number was significantly increased by 35% (P = 0.02; Fig. 2E), 

already 24 h (10 DAS) after transfer (Fig. 2D), whereas the cell area did not change 

(P = 0.32; Fig. 2F). The total pavement cell number remained higher until 16 DAS 

(Fig. 2D). No consistent changes in the average cell size were found between control 

and sucrose-transferred plants at early time points during leaf growth (10-16 DAS; 

Fig. 2F). 
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Figure 2. Cellular changes upon transfer to sucrose. Seedlings were first grown on medium without 
sucrose (sucr) and, at 9 DAS, transferred to medium supplemented with or without 15 mM sucrose. A, Third 
leaf area at 21 DAS. B, Ratio of the pavement cell number, cell area and stomatal index of the third leaf of 
plants transferred to 15 mM sucrose relative to the control (0 mM sucr), at 21 DAS. C, Leaf area from 10 DAS 
until 21 DAS. The inset is a close-up of 10 DAS until 14 DAS. D, Pavement cell number from 10 DAS until 16 
DAS. E, Ratio of the pavement cell area and number of the third leaf of seedlings, 24 hours after transfer to 15 
mM sucrose (sucrose) relative to the control (0 mM sucr). F, Cell area from 10 DAS until 16 DAS. G and H, 
GUS-stained third leaves at 13 DAS of pCYCB1;1::CYCB1;1-D-box:GUS seedlings transferred to control or 
sucrose-containing medium (G) and the GUS intensity plot of these leaves (H). GUS staining was in a defined 
region from the base to the tip of each leaf as indicated by the black rectangle in G. The dotted lines indicate 
the cell cycle arrest front. Above this front is the division zone, below is the expansion zone. Red arrow 
indicate the position of the average cell cycle arrest front of control leaves. Values in (A), (B) and (C) are the 
means of three biological repeats with their SE. Leaf area was measured for 5 to 20 leaves in each repeat. 
Cellular data are from five leaves in each repeat. Values in (D), (E) and (F) are the means of four to five 
leaves with their SE. Values in (H) are the means of two biological repeats with their SE. GUS intensity was 
measured for 8 to 10 leaves in each repeat. *, adjusted P < 0.05 for log-transformed values in (A) to (F), mixed 
models (see Supplemental Methods). 
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To further analyze the effect of the transfer to sucrose on cell proliferation and the 

transition to cell expansion, the pCYCB1;1::CYCB1;1-D-box:GUS (Eloy et al, 2012) 

reporter line, which allows visualizing actively dividing cells, was used. After 9 days of 

growth without sucrose, pCYCB1;1::CYCB1;1-D-box:GUS seedlings were transferred 

to control and sucrose-supplemented medium and grown for four additional days until 

13 DAS. Subsequently, the third leaf was harvested, and stained with 5-bromo-4-

chloro-3-indolyl-β-glucuronide. The GUS intensity was measured in a defined region 

from the base to the tip of each leaf, as indicated in Figure 2G. At 13 DAS, control 

leaves showed a cell cycle arrest front positioned closer to the leaf base (Fig. 2H, 

dotted line) compared with sucrose-transferred leaves. Hence, a large number of 

third leaf cells of plants grown for four days on sucrose were still proliferating, 

whereas cell expansion was initiated in most cells of the control leaves at 13 DAS. 

Taken together, above results indicate that addition of sucrose to the medium 

promotes early leaf growth by stimulating cell proliferation. Although the positive 

effect of sucrose on leaf size was only clear after three days of growth on sucrose, a 

significant underlying effect on the cell number was observed already after 24 h. 

Short-Term Effects of Sucrose on the Transcriptome 
To gain more insight into the molecular mechanisms driving leaf growth upon 

exogenous sucrose application, short-term transcriptional responses were analyzed 

using RNA-sequencing (RNA-seq). Because sucrose solely affects cell proliferation, 

we micro-dissected the third leaf very early during development (at an average size 

of 0.04 mm2) and extracted RNA to be used for RNA-seq. Nine-day-old plants were 

transferred to medium with or without sucrose for 3 and 24 h. Only 19 genes and 69 

genes were found to be differentially expressed 3 and 24 h after transfer, respectively 

(Log2FC of > 0.58 and a FDR < 0.05) (Fig. 3A, Supplemental Table S1).  
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At three hours, only three of the 19 differentially expressed genes were found to be 

induced: AT3G49110 and AT5G58390, encoding peroxidase proteins, and 

GLUCOSE-6-PHOSPHATE/PHOSPHATE TRANSPORTER2 (GPT2), which was the 

highest up-regulated gene with a Log2FC of 2.04. Six of the 16 repressed genes at 

3 h (DIN6, SEN1, AT2G05540, DRM2, BT2, AT3G15630) remained repressed 24 h 

after transfer (Fig. 3A). Two of these genes, i.e. SEN1 and DIN6, belong to the so-

called DARK INDUCED class of genes (Fujiki et al, 2000), both well-known as sugar 

starvation markers, and showed highly reduced transcript levels at 3 h with a Log2FC 

of -2.34 and -3.49, respectively (Fig. 3A). The remaining four genes, which were 

repressed both at 3 h and 24 h, encode a protein with telomerase activity (BT2), a 

glycine-rich protein (AT2G05540), a dormancy/auxin associated protein (DRM2) and 

a protein with unknown function (AT3G15630). The other ten genes, which were 

down-regulated at 3 h but regained normal expression levels at 24 h, encode three 

hydrolase superfamily proteins (AT2G32150, AT2G39400 and AT1G04280), an 

unknown protein (AT1G68440), an aluminium-induced protein (AT3G15450), an 

oxidative stress protein (OXS3; AT5G56550), another glycine-rich protein 

(AT2G05380) as well as another dormancy-associated protein (DRM1), a 

Figure 3. Sucrose-induced transcriptional responses in growing leaves. A, Overlap between 
differentially expressed genes in the third leaf, micro-dissected at 3 h and 24 h of seedlings transferred to 15 
mM sucrose or control medium, and log2 fold-changes (Log2FC) at 3 h and 24 h of the six common genes.
Data are from a RNA-sequencing analysis. B, Pie chart of differentially expressed transcripts 24 h after 
transfer to 15 mM sucrose. C, MAPMAN representations of enriched genes differentially repressed 24 h after 
transfer to 15 mM sucrose in the third leaf.
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chloroplast-targeted DnaJ protein J8 (AT1G80920) and PV42a (AT1G15330). PV42a 

was the second highest repressed gene at 3 h and encodes a protein belonging to 

the class of γ-subunits of the plant-specific Sucrose Non-Fermenting1 (SNF1)-related 

Protein Kinase 1 (SnRK1) complexes, which are central metabolic sensors activated 

when environmental stress conditions deplete carbon and energy supply and which 

are known to link the sugar status with organ growth (Baena-González et al, 2007; 

Fang et al, 2011; Gissot et al, 2006).  

The transcript levels of 69 genes were significantly changed 24 h after transfer to 

sucrose, of which the vast majority (66) showed a decrease in expression compared 

with the control. The three up-regulated genes encode a cytochrome P450 protein, 

i.e. CYP710A2 (AT2G34490) with C22-sterol desaturase activity, a pentatricopeptide 

repeat (PPR) superfamily protein (AT5G06400) and a stearoyl-acyl-carrier-protein 

desaturase family protein (AT1G43800). Surprisingly, of the 66 (6 also at 3 h and 60 

only at 24 h) repressed genes, 30 were encoded by the nuclear genome, while 29 

were located on the chloroplast DNA and 7 on mitochondrial DNA (Fig. 3B). A list of 

the sucrose-repressed, chloroplast-encoded transcripts at 3 h and 24 h is shown in 

Table 1. From the genes encoded by the nuclear genome, several have been 

reported to be induced by sugar starvation and were here found to be repressed by 

short-term sucrose treatment, e.g. genes encoding anhydrases, oxygenases and 

hydrolases, as well as DIN genes (Fujiki et al, 2000; Lee et al, 2007). Sucrose-

repressed genes located on mitochondrial DNA encode subunits of the electron 

transport chain complexes and mitochondrial ribosomal proteins. The repressed 

genes located on chloroplast DNA represented a mixture of genes belonging to 

different operons and coding for photosynthesis-related proteins involved in the light 

reactions, such as photosystem I and II proteins (psa and psb), proteins part of the 

cytochrome b6f complex (pet), and subunits of NADPH dehydrogenase and ATP 

synthase (atp) (Fig. 3C). Furthermore, genes encoding proteins involved in 

photosystem I and II assembly and stability (ycf), chloroplast ribosomal proteins (rps), 

a maturase involved in intron splicing (matK), an acetyl-CoA carboxylase subunit 

(accD), the large subunit of ribulose-1,5-bifosfate carboxylase oxygenase (Rubisco, 

rbcL) and one gene encoding the β-subunit of the plastid-encoded RNA polymerase 

(PEP, rpoC2), were found to be down-regulated. These transcriptional changes were 
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confirmed by quantitative reverse transcription (qRT)-PCR analysis for a set of 

selected chloroplast genes (Supplemental  

Fig. S3).  

Table 1. Log2 fold changes and corresponding P-values for the 29 sucrose-repressed chloroplast-
encoded transcripts 3 h and 24 h after transfer to sucrose. 

Furthermore, because not all genes encoded by the plastome were found to be 

significantly differentially expressed by sucrose at 24 h, the effect of sucrose on the 

complete plastome was studied by a gene set enrichment analysis, in which all 

chloroplast-encoded transcripts were analyzed together as a single gene set. We 

found that the chloroplast gene set was significantly down-regulated compared with 

all other genes (21,481 genes, P = 0), 24 h after transfer to sucrose. The repression 

of plastome expression upon transfer to sucrose can result from either a reduced 

Gene ID Name Description 
3 h 24 h 

Log2FC P-value Log2FC P-value 
ATCG01090 ndhI Subunit of the chloroplast NAD(P)H dehydrogenase complex -0.54 0.47 -3.57 2.42E-04 
ATCG00360 ycf3 Protein required for photosystem I assembly and stability 0.10 0.72 -3.38 3.42E-05 
ATCG00020 psbA photosystem II reaction center protein A -0.14 0.93 -3.37 2.28E-09 
ATCG00730 petD Subunit IV of the cytochrome b6/f complex -0.18 0.94 -3.27 3.06E-07 
ATCG00340 psaB D1 subunit of photosystem I and II reaction centers -0.09 0.81 -3.14 1.85E-08 
ATCG00280 psbC CP43 subunit of the photosystem II reaction center -0.16 0.96 -3.12 2.67E-08 
ATCG00520 ycf4 Protein required for photosystem I assembly and stability -0.23 1.00 -3.07 8.37E-06 
ATCG00720 petB Cytochrome b(6) subunit of the cytochrome b6f complex -0.23 0.89 -3.03 1.38E-07 
ATCG01100 ndhA NADH dehydrogenase ND1 -0.09 0.89 -3.02 4.18E-05 
ATCG00490 rbcL Large subunit of RUBISCO -0.18 0.95 -2.99 5.49E-08 

ATCG00350 psaA Protein comprising the reaction center for photosystem I along 
with psaB protein -0.13 0.92 -2.93 1.09E-07 

ATCG00540 petA Cytochrome f apoprotein -0.31 0.65 -2.89 9.87E-07 
ATCG00650 rps18 Chloroplast ribosomal protein S18 -0.50 0.38 -2.76 1.89E-04 
ATCG01040 ycf5 Hypothetical protein -0.49 0.31 -2.76 3.72E-04 
ATCG00140 atpH ATPase III subunit 0.10 0.77 -2.68 2.23E-04 
ATCG00040 matK Maturase located in the trnK intron in the chloroplast genome -0.32 0.68 -2.55 8.28E-08 
ATCG00160 rps2 Chloroplast ribosomal protein S2 -0.39 0.65 -2.55 2.03E-04 
ATCG00270 psbD Photosystem II reaction center protein D -0.05 0.74 -2.54 4.03E-06 
ATCG00680 psbB Photosystem II reaction center protein B -0.11 0.87 -2.52 5.41E-07 
ATCG00330 rps14 Chloroplast ribosomal protein S14 0.20 0.55 -2.48 5.54E-05 
ATCG00420 ndhJ NADH dehydrogenase subunit J -0.31 0.63 -2.46 6.86E-05 

ATCG00500 accD Carboxytransferase βsubunit of the Acetyl-CoA carboxylase 
(ACCase) complex -0.70 0.18 -2.32 3.90E-04 

ATCG01050 ndhD Subunit of a NAD(P)H dehydrogenase complex -0.11 0.90 -2.26 8.12E-05 
ATCG00380 rps4 Chloroplast ribosomal protein S4 -0.07 1.00 -2.19 2.25E-04 
ATCG00120 atpA ATP synthase subunit alpha -0.20 0.92 -2.13 5.70E-06 
ATCG01110 ndhH 49KDa plastid NAD(P)H dehydrogenase subunit H protein -0.52 0.28 -2.08 3.45E-04 
ATCG00170 rpoC2 DNA-directed RNA polymerase β' subunit-2 -0.16 0.98 -1.87 8.94E-05 
ATCG01130 ycf1.2 Hypothetical protein -0.35 0.60 -1.81 2.03E-05 
ATCG00150 atpI Subunit of ATPase complex CF0 -0.36 0.59 -1.78 3.43E-04 
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plastome copy number or less chloroplasts per cell. However, quantitative PCR 

(qPCR) on total cellular DNA demonstrated no differences in chloroplast DNA copy 

number in the third leaf, 3 h and 24 h after transfer to sucrose-supplemented or 

control medium (Supplemental Fig. S4).  

In conclusion, transfer to sucrose resulted in repression of plastome transcription, 

while plastome copy number was not affected, which suggests reprogramming of 

chloroplasts upon transfer to sucrose. 

Blocking Chloroplast Differentiation Also Induces Cell Proliferation 
To investigate if changes in chloroplast differentiation affect the sucrose-induced 

cellular processes, seedlings were treated with norflurazon (NF), a herbicide that 

inhibits phytoene desaturase by competition with the cofactors. Phytoene desaturase 

is involved in carotenoid biosynthesis and treatment of plants with NF inhibits 

chloroplast development (Koussevitzky et al, 2007).  

Seedlings were transferred at 9 DAS to Murashige and Skoog (MS) medium with or 

without sucrose (MS±S), and medium with or without sucrose supplemented with 5 

μM NF (MS±S+NF). Three days after transfer to NF with or without sucrose (12 

DAS), smaller seedlings with bleached leaves could be observed, indicating a clear 

effect on chloroplast differentiation (Fig. 4A). At 10 DAS, or 24 h after transfer, the 

third leaf area was significantly increased by sucrose with 42% (P < 0.05; Fig. 4B), 

and with 16%, although not significantly, when transferred to sucrose-containing 

medium supplemented with NF (P = 0.65; Fig. 4B). To study the underlying cellular 

processes induced by sucrose, the relative increases in cell size and pavement cell 

number on sucrose-containing medium supplemented with NF or not were 

determined. Sucrose did not result in an altered cell size, and addition of NF did not 

change this, whereas the pavement cell number was significantly increased by 

sucrose with 32% (P < 0.05) and with 34% by addition of NF, albeit not significantly 

(P = 0.10) compared to control seedlings (Fig. 4C). Furthermore, cell size was 

significantly decreased when NF was added to the medium, and this reduction was 

equal between leaves of seedlings grown on sucrose and without sucrose in the 

medium (P < 0.05; Fig. 4D, left). Remarkably, third leaves of seedlings grown without 

sucrose, but with NF, had a similar average increase in total pavement cell number 
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(27%; P = 0.10) as seedlings grown with sucrose and without NF (34%; P < 0.05) 

compared with control seedlings on MS medium (Fig. 4D, right). Moreover, 

combination of both sucrose and NF resulted in significant increase in pavement cell 

number of 62% (P < 0.05) compared with control leaves, which was equal to the sum 

of the effects of NF and sucrose separately (61%; Fig. 4D, right). We therefore 

hypothesize that NF and sucrose act additively on cell number. 
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Figure 4. Cellular effects of sucrose with or without NF. Seedlings were transferred at 9 DAS 
to normal MS medium with sucrose (MS+S), MS medium without sucrose (MS-S), and MS±S 
supplemented with 5 μM norflurazon (MS±S+NF). A, Image of seedlings, 3 days after transfer to 
MS+S or MS+S+NF. B, Third leaf area, 24 hours after transfer to MS±S or MS±S+NF. C, Relative 
increase of cell area and pavement cell number of the third leaf, 24 h after transfer to MS±S or 
MS±S+NF. D, Cell area and pavement cell number of the third leaf of seedlings transferred to 
MS±S or MS±S+NF. Values are the means of three biological repeats with their SE. Leaf area 
was measured for 4 to 15 leaves in each repeat. Cellular data are from three to five leaves in 
each repeat.*, adjusted P < 0.05 for log-transformed values in (B), mixed models (see 
Supplemental Methods). 
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Transfer to Sucrose Results in Fewer, Smaller and Less Differentiated 
Chloroplasts  
Because sucrose rapidly represses chloroplast-encoded transcripts, on the one hand, 

and cell proliferation can be stimulated by blocking chloroplast differentiation by NF, 

on the other hand, we set out to study the effect of sucrose on chloroplast number 

and morphology by transmission electron microscopy.  

Leaves were harvested 24 h (10 DAS) after transfer to sucrose-containing or control 

medium and, subsequently, transverse sections were made to examine differences in 

chloroplast thylakoid structure, chloroplast size and number. For each leaf, 17 to 87 

mesophyll cells of the tip and the base of the leaf, representing the cell expansion 

and proliferation region, respectively, were analysed. A clear difference in thylakoid 

structure and organization, as well as chloroplast shape, could be observed between 

leaves of control and sucrose-transferred seedlings (Fig. 5). Generally, in control 

leaves, chloroplasts seem to be more differentiated compared with leaves of 

seedlings transferred to sucrose. Some chloroplasts already start to form starch 

granules, they generally have more thylakoid membranes and start to form typical 

lens-shapes of mature chloroplasts (Fig. 5A). In contrast, the chloroplasts of sucrose-

transferred seedlings are generally more irregular in shape and less starch formation 

could be observed. To quantify the difference in starch formation, starch grains were 

counted in transverse sections of mesophyll cells of the control and sucrose-

transferred leaves. In general, leaves of sucrose-transferred seedlings contained on 

average 0.14 starch granules per mesophyll cell, whereas control leaves had 0.29 

starch granules (Fig. 5B). Similarly, increased starch accumulation was seen by 

Lugol’s staining at 12 DAS in control leaves compared with leaves of sucrose-treated 

seedlings (Supplemental Fig. S5). Mesophyll cell area, chloroplast number and 

chloroplast size were measured and statistically analyzed, taking into account the 

differences between the tip and base of the leaf. The average mesophyll cell area did 

not differ significantly between leaves of control and sucrose-transferred seedlings 

(Fig. 5C). Chloroplasts were significantly larger at the tip compared with the base of 

the leaves in control seedlings (44%, P < 0.05; Fig. 5D). In sucrose-transferred 

leaves, the chloroplast areas were not significantly different between the tip and the 

base (P = 0.45). Additionally, chloroplasts were significantly larger in the tip of control 

leaves compared with the tip of sucrose-transferred leaves (50%, P < 0.05; Fig. 5D). 
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Furthermore, leaves of sucrose-transferred seedlings had less chloroplasts in 

transverse sections, although not significantly (P = 0.12; Fig. 5E). 

In conclusion, transfer of seedlings to sucrose resulted in fewer, smaller and less 

differentiated chloroplasts with limited formation of thylakoid membranes and less 

starch granules. 

 

 

Role of GPT2 in Sucrose-Induced Stimulation of Cell Proliferation 
The above-described results demonstrate a clear negative effect of sucrose on 

plastome transcription as well as chloroplast development, resulting in stimulation of 

cell proliferation. Remarkably, one of the three nucleus-encoded genes that was 

induced by sucrose three hours after transfer, encodes the glucose-6-

phosphate/phosphate transporter, GPT2. Recently, a central role of GPT2 in seedling 

development was described; gpt2 seedlings lacking GPT2 expression exhibit a 

delayed establishment and greening of the cotyledons (Dyson et al, 2014).  

Figure 5. Differences in chloroplast morphology, number and size in the tip and base of sucrose-treated 
and control leaves.  A, Transmission electron micrographs of tip and base of the 10-d-old third leaf, 24 hours 
after transfer to control or 15 mM sucrose (sucr) supplemented medium. Arrows point to starch granules. The 
bar represents 1 μm. B, Average number of starch granules per mesophyll cell counted in approximately 60 
cells of two leaves of control and sucrose-transferred seedlings. C and D, Average mesophyll cell area (C) and 
average chloroplast size (D) in the tip and base of the third leaf of control and sucrose-treated seedlings. E, 
Chloroplast number of the third leaf of control and sucrose-treated seedlings. Values are the means of two 
independent leaves with their SE. Chloroplast data are form 17 to 87 mesophyll cells in the tip and the base of 
each leaf. *, adjusted P < 0.05 for log-transformed values in (D), mixed models (see Supplemental Methods).
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To explore whether GPT2 also has a pivotal role in the sucrose-induced stimulation 

of cell proliferation, we subjected gpt2-1 mutant seedlings to the experimental 

sucrose assay. gpt2-1 seedlings were grown together with their corresponding wild-

type seedlings on control medium for nine days, after which they were then 

transferred to control or sucrose-supplemented media for 24 h, after which leaf area, 

cell size and pavement cell number were determined. Generally, third leaves of gpt2-

1 seedlings were significantly smaller than wild-type leaves at 10 DAS (P < 0.05; Fig. 

6A), due to a significant decrease in pavement cell number (P < 0.05; Fig. 6B). 

Sucrose significantly increased third leaf size with 20% in wild-type seedlings, also 

due to a significantly increased total pavement cell number (P < 0.05). Remarkably, 

gpt2-1 seedlings showed a completely insensitive cell proliferation response to the 

transfer to sucrose (P = 0.81; Fig. 6B), and no change of third leaf size (Fig. 6A). Cell 

sizes remained unchanged between both wild-type and gpt2-1 leaves, independent 

of the transfer to sucrose-containing or control medium (P = 0.44; Fig. 6C).  

In conclusion, GPT2 has an essential role in the short-term stimulation of cell 

proliferation by sucrose. Seedlings without functional GPT2 have less cells and 

completely abolish the expected cellular response to sucrose leading to growth 

promotion.  
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Figure 6. gpt2 mutant seedlings show an insensitive cell proliferation response to the transfer 
to sucrose. gpt2-1 mutant seedlings were grown together with their corresponding wild-type on 
medium without sucrose for nine days and, subsequently, transferred to medium supplemented with 
15 mM sucrose (sucr) or without sucrose (control). A-C, At 10 DAS, 24 hours after transfer, the third 
leaf area (A), pavement cell number (B) and cell area (C) were determined and compared. Values are 
the means of three biological repeats with their SE. Leaf area was measured for 9 to 40 leaves in each 
repeat. Cellular data are from three to fourteen leaves in each repeat. *, adjusted P < 0.05 for log-
transformed values in (A), mixed models (see Supplemental Methods).
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GPT2 is Required for the Sucrose-Mediated Repression of Plastome 
Transcription 
In the absence of GPT2, no stimulation of cell proliferation by sucrose could be 

observed. Subsequently, to investigate whether GPT2 expression is also required for 

the downstream sucrose-induced transcriptional responses, a comparative analysis 

was done between our transcriptomics dataset and the published micro-array dataset 

of Dyson et al (2015). In latter study, transcriptome analysis was performed on 

mature leaves of the gpt2.2 mutant and Ws-4 wild-type (Dyson et al, 2015). The 

dataset of Dyson et al (2015) was first filtered, using the same criteria as the 

transcriptome analysis described here (i.e. Log2FC > 0.58 and P < 0.05). 

Consequently, comparison between the differentially expressed genes in the gpt2.2 

mutant with the 66 sucrose-repressed genes 24 h after transfer to sucrose, revealed 

a significant overlap of 20 genes (P = 8.37E-8, Chi-square test; Supplemental Fig. 

S6A). Remarkably, 19 of the 20 overlapping genes were chloroplast-encoded 

transcripts, representing a mixture of genes coding for different photosynthesis-

related proteins, and only one mitochondria-encoded transcript, rpl16 (Supplemental 

Fig. S6B). Furthermore, 18 of the 20 transcripts demonstrated an opposite effect in 

gene expression, namely, up-regulated in the gpt2.2 mutant compared with the wild-

type, and down-regulated upon transfer to sucrose. The two transcripts that did not 

show this opposite effect were the mitochondria-encoded transcript, rpl16, and the 

chloroplast-encoded transcript, rps14.  

Consequently, this significant overlap between sucrose-repressed and gpt2.2 up-

regulated chloroplast-encoded transcripts, as well as the insensitivity of the gpt2-1 

mutant to stimulate cell proliferation upon transfer to sucrose, prompted us to test the 

expression of several sucrose-responsive genes with qRT-PCR in micro-dissected 

third leaves of wild-type and gpt2-1 mutant seedlings, 24 h after transfer to control or 

sucrose-supplemented medium. The expression levels of ten chloroplast-encoded 

genes (psbA, petD, psaA, psaB, ycf3, ndhI, atpH, rps18, rbcL and rpoC2) were 

determined and compared between sucrose-transferred and control leaves in the 

wild-type and the gpt2-1 mutant separately (Supplemental Fig. S6C). These ten 

chloroplast-encoded genes were selected based on the above-described 

transcriptome analysis and were also used for the confirmation of the sucrose-

responsive repression (Supplemental Fig. S3). Notwithstanding that no significant 
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differences for each gene could be detected (P > 0.05), a clear contrasting trend in 

relative expression levels was observed between wild-type and gpt2-1 seedlings. All 

chloroplast transcripts were expressed at lower levels upon transfer to sucrose in 

wild-type leaves, whereas 8 of 10 of these transcripts were up-regulated in gpt2-1 

mutant leaves (Supplemental Fig. S6C).  

Taken together, these results demonstrate that chloroplast DNA transcription is 

affected in the gpt2 mutant, but that this transcriptional response is opposite to wild-

type plants transferred to sucrose, suggesting a central role for GPT2 in mediating 

the sucrose-induced repression of chloroplast DNA transcription. 

DISCUSSION 

The aim of this study was to identify the underlying cellular and transcriptional 

mechanisms of sugars in regulating early leaf growth in Arabidopsis. For this, we 

developed an experimental setup in which the sugar status was changed during the 

proliferating phase of the third leaf, which normally depends on other 

photosynthetically active leaves for carbon and energy supply. This is in contrast with 

the two first leaves which probably mainly depend on carbon provided by the 

cotyledons for their growth. We showed that sucrose had a pronounced effect on the 

leaf pavement cell proliferation phase. This observation is in agreement with 

previously described roles of sucrose in cell cycle regulation. In higher plants, the cell 

cycle is controlled by cyclin-dependent kinases (CDKs) and their interacting cyclins 

(CYCs), which in turn respond to developmental and environmental signals (Inzé & 

De Veylder, 2006; Komaki & Sugimoto, 2012). A link between sucrose and the cell 

cycle was first demonstrated through the use of sucrose to synchronize Arabidopsis 

cell suspension cultures (Goetz & Roitsch, 1999). Sucrose-starvation induces a 

reversible arrest in the G1 or G0 phase of the cell cycle and after re-supplementing 

sucrose to the growth medium, the cell cultures are synchronized. Sucrose mainly 

regulates the expression of D-type CYCs involved in the G1-to-S phase progression 

(Riou-Khamlichi et al, 2000). However, none of these major cell cycle regulators were 

differentially expressed in our transcriptome analysis, 3 or 24 h after transfer of 
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seedlings to sucrose. Hence, these findings suggest that sucrose has no impact on 

the transcription of the cell cycle machinery during leaf growth stimulation. 

Nonetheless, at 13 DAS, we clearly observed a difference in cell proliferation 

between control and sucrose-transferred plants through staining of the 

pCYCB1;1::CYCB1;1-D-box:GUS reporter line. Sucrose-treated leaves demonstrated 

a cell cycle arrest front closer to the tip, which suggest an increase in cell 

proliferation. This effect on cell proliferation could result from (post-)translational 

regulation. Sucrose starvation-induced translational control of cell division and cell 

growth has already been described in Arabidopsis cell cultures (Nicolaï et al, 2006; 

Rahmani et al, 2009). Several transcripts involved in protein synthesis, cell cycle and 

growth were less abundant in polysomal RNA compared with their total RNA and, 

thus, translationally repressed by sucrose starvation.  

It is well known that sugars trigger conserved signalling systems regulating plant 

growth and development (Lastdrager et al, 2014; Smeekens et al, 2010). One of 

these major regulators is the conserved Sucrose Non-Fermenting1 (SNF1)-related 

Protein Kinases 1 (SnRK1s) in plants, SNF1 in yeast and AMP-activated kinase 

(AMPK) in animals, which are heterotrimeric serine/threonine kinases consisting of a 

catalytic α-subunit and two regulatory β- and γ-subunits (Ghillebert et al, 2011; 

Hardie et al, 2012; Polge & Thomas, 2007). These proteins act as metabolic sensors 

activated when environmental stress conditions deplete carbon and energy supply 

(Baena-González et al, 2007; Baena-González & Sheen, 2008). Interestingly, PV42a 

(AT1G15330), one of the cystathionine-β-synthase domain-containing proteins that 

belong to the γ-type subunits of SnRK1, was significantly repressed 3 h after transfer 

of seedlings to sucrose. Trehalose-6-phosphate (T6P) and glucose-6-phosphate 

(G6P) are known to inhibit SnRK1 activity (Nunes et al, 2013; Paul et al, 2008; 

Toroser et al, 2000; Zhang et al, 2009) and are tightly correlated with the cellular 

sucrose levels (Lunn et al, 2006). T6P is synthesized from G6P and UDP-glucose by 

trehalose-6-phosphate synthase 1 (TPS1) (Gómez et al, 2010), demonstrating a 

close link between G6P and T6P levels. G6P allosterically activates sucrose 

phosphate synthase (Huber & Huber, 1996), whereas inorganic phosphate (Pi) 

inhibits this enzyme, by which sucrose synthesis is buffered upon increased sucrose 

levels. T6P has been described to act as a sucrose signal, via the inhibition of 

SnRK1, in the regulation of many different aspects of plant development, such as 
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growth, flowering and senescence (reviewed by Lunn et al, 2014). Arabidopsis plants 

lacking TPS1 are embryo-lethal, due to an embryonic developmental arrest between 

the transition from cell proliferation to cell expansion (Eastmond et al, 2002). Plants 

overexpressing TPS1, and, thus, with a higher T6P content and lower G6P levels, 

have small dark green leaves, whereas plants overexpressing trehalose-phosphate 

hydrolase result in large pale green leaves due to low T6P and high G6P levels 

(Schluepmann et al, 2003). These phenotypes are in line with our results in which 

higher sucrose and, thus, G6P/T6P levels affect chloroplast differentiation.  

The effect of sugars during early leaf growth has not yet been investigated and 

understanding the molecular processes that regulate growth requires the micro-

dissection of these growing tissues. The use of whole young seedlings for 

transcriptome experiments mainly reveals differential gene expression in expanding 

tissues (Skirycz et al, 2010). To elucidate the sucrose-regulated transcriptional 

responses during growth of a young leaf, we developed a setup integrating plant 

developmental timing. Surprisingly, only 19 and 69 genes were differentially 

expressed in the developing leaf 3 and 24 h, respectively, after transfer of the 

seedlings to sucrose-containing medium, whereas previously published 

transcriptomics datasets generally resulted in approximately hundreds of sugar-

induced, differentially expressed transcripts (Gonzali et al, 2006; Müller et al, 2007; 

Osuna et al, 2007; Price et al, 2004; Usadel et al, 2008). This difference in the 

abundance of the differentially expressed genes might be explained by the 

differences in the harvested samples (micro-dissected proliferating leaves performed 

here compared with whole seedlings or mature plants in other studies) as well as 

differences in sugar concentrations. Nevertheless, similar sugar-responsive genes 

were found in our transcriptional analysis of micro-dissected third leaves. A 

significant repression of specific plastid-encoded genes was already reported in 

response to sugar treatment of whole seedlings grown in liquid cultures or whole 

rosettes (Price et al 2004; Osuna et al 2007; Gonzali et al 2006). However, we found 

that the complete plastome transcriptome was significantly repressed without a 

change in plastome copy number per cell. At 3 h after exposure to sucrose, most of 

these chloroplast-encoded transcripts were already down-regulated, albeit not 

significantly (FDR > 0.05). These findings clearly demonstrate an effect of sucrose on 

plastome expression. Almost all proteins that are present in the chloroplasts are 

encoded by the nuclear genome. These proteins assembly in large complexes, such 
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as the photosynthetic systems PSI and PSII, around core protein components 

encoded by the plastid (Jarvis & Lopez-Juez, 2013). Hence, repressing chloroplast 

transcription can disturb the establishment of these important complexes, and, 

consequently might impair further chloroplast differentiation. Indeed, transfer of 

seedlings to sucrose-supplemented medium resulted in significant differences in 

chloroplast morphology. Generally, the chloroplasts were smaller and showed less 

differentiated thylakoid membranes and starch granules compared with control 

leaves. Besides that, chloroplasts were significantly larger in the tip compared with 

the base of control leaves. It has been shown that before cells start to expand at the 

leaf tip, transcripts involved in photosynthesis and retrograde signaling are up-

regulated, which suggests a profound role of chloroplast differentiation in controlling 

the onset of cell expansion (Andriankaja et al, 2012). Moreover, leaves treated with 

NF, a chemical inhibitor of chloroplast differentiation, show a delay in the onset of cell 

expansion (Andriankaja et al, 2012). In concert, we found that leaves transferred to 

medium without sucrose, but with NF show a similar increase in total pavement cell 

number as seedlings transferred to media with sucrose. This phenotype was even 

more enhanced when both sucrose and NF were present, suggesting that both 

molecules would act additively to stimulate cell proliferation. NF directly acts on the 

chloroplasts itself, blocking chloroplast differentiation at an early stage, whereas 

transfer to sucrose affects plastome expression, which probably leads to less 

differentiated chloroplasts. By this, less retrograde signals are sent to stimulate the 

onset of cell expansion. Leaves of seedlings transferred to sucrose contained less 

chloroplasts in transverse sections compared with control leaves, showing that 

sucrose treatment not only results in smaller chloroplasts with reduced differentiation, 

but also negatively affects chloroplast division.  

Besides the effects of sucrose on chloroplast-encoded transcripts and chloroplast 

morphology, sucrose induced the expression of GPT2. GPT2, together with its 

homolog GPT1, acts as a plastid phosphate antiporter involved in the transport of 

G6Ps between the cytosol and plastids in exchange for Pi (Knappe et al, 2003). 

Mutants lacking GPT1 have been described to be embryo lethal (Andriotis et al, 

2010), whereas a disruption of GPT2 does not result in obvious growth defects in 

final growth stages (Niewiadomski et al, 2005). However, recently, several studies 
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identified GPT2 as an important regulator in seedling development and during 

acclimation to high light (Athanasiou et al, 2010; Dyson et al, 2014). In addition, 

micro-array analysis revealed higher transcript levels for photosynthesis-related and 

chloroplast-encoded genes in gpt2 mutants (Dyson et al, 2015). A significant overlap 

showing opposite gene expression profiles was found between this micro-array 

analysis and the sucrose-repressed chloroplast-encoded transcripts 24 h after 

transfer and almost all selected chloroplast-encoded genes were not repressed upon 

transfer to sucrose in the gpt2 mutant background. Furthermore, no increase in 

pavement cell number by sucrose could be observed in gpt2 mutant seedlings. 

These observations further indicate the involvement of GPT2 in the sucrose-induced 

promotion of cell proliferation as well as in mediating the sucrose-induced repression 

of the chloroplast-encoded transcripts. Sucrose could directly induce the transcription 

of GPT2 by which possibly more G6P, which is correlated with cellular sucrose levels 

(Lunn et al, 2006), is imported in the plastid. Alternatively, GPT2 expression could 

also be regulated by glucose, which is cleaved from sucrose and which is further 

converted in G6P. Metabolic regulation of GPT2 transcription has been reported in 

different studies. Microarray analysis of the pho3 mutant, impaired in the SUC2 gene 

encoding a sucrose transporter for phloem loading of sucrose, revealed a remarkable 

up regulation of both GPT1 and GPT2 expression, but the causative metabolic signal 

was not investigated in detail (Lloyd & Zakhleniuk, 2004). Another study analysing 

GPT2 expression in dark-grown Arabidopsis seedlings treated for 6 h with a broad 

range of different sugar concentrations (0–200 mM), showed that mainly sucrose 

induces GPT2 expression, whereas glucose treatment only affects its transcription 

moderately (Gonzali et al, 2006). Our results also show that low concentrations of 

glucose do not stimulate leaf growth, probably because glucose is not transported 

through the phloem (Liu et al, 2012). Whether intracellular conversion of sucrose to 

G6P in the sink tissue is needed to regulate GPT2 transcription, remains elusive. 

Further experiments using a different kind of experimental setup in which sugars can 

be directly supplied to the sink tissue, for example using plant cell cultures, would be 

interesting to identify the causative metabolic signal. 

Taken together, GPT2 imports G6P in the chloroplast, which signals the sucrose 

status of the cytosol to the chloroplasts to adjust their development and, thus, to 

regulate photosynthesis according to the carbon demand of the growing leaf. We 
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hypothesize that during early leaf development, exogenously applied sucrose or 

sucrose produced by source leaves, delays chloroplast differentiation in sink leaves, 

by which cell expansion is postponed and cell proliferation stimulated (Fig. 7). 

Conversely, when sucrose levels are limiting, a faster transition from sucrose-

requiring sink tissue to sucrose-producing photosynthetically active source tissue will 

ensure sufficient energy supply and proper plant development. In the sink cells, 

sucrose will be cleaved to fructose and glucose, which will result in higher levels of 

cytosolic G6P, which can then be transported into the chloroplasts by the sucrose-

induced plastid transporter GPT2. Furthermore, higher sucrose levels result in 

repression of chloroplast transcription, leading to a stop in chloroplast differentiation, 

which might be due to higher levels of G6P inside the chloroplast stroma. 

Consequently, less retrograde signals because of less differentiated chloroplasts 

could delay the transition to cell expansion, making it possible to use sugars for 

further stimulation of cell proliferation until the leaf becomes too large and needs 

autonomous sugar production to sustain growth.  

Figure 7 . Model of the central role of chloroplasts in the sucrose-induced stimulation of cell 
proliferation. Low sucrose levels in sink cells (right) trigger a rapid formation of photosynthetically active 
chloroplasts. Consequently, these chloroplasts sent retrograde signals to the nucleus to start the transition to cell 
expansion. However, higher sucrose levels in source cells (left) result in higher levels of glucose-6-phosphates 
(G6Ps)  that  are  transported into  the  chloroplasts  by  the  sucrose-induced  plastid  transporter  GPT2 (black 
square).  In  addition,  high  sucrose  levels  repress  chloroplast  transcription  (plastome  represented  by  white 
circles),  causing  the chloroplasts to stop differentiating and dividing. Consequently, less retrograde signals are 
sent to the nucleus, which postpones the onset of the transition to cell expansion and stimulates cell proliferation.
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MATERIALS AND METHODS 

Plant Material and Growth Conditions 
All experiments were performed on Arabidopsis thaliana (L.) Heyhn. ecotype 

Columbia (Col-0). Seedlings were grown in vitro on half-strenght MS medium 

(Murashige & Skoog, 1962) without sucrose for 9 days (9 DAS) under a 16-h day (50 

μmol m-2 s-1) and 8-h night regime, unless specified differently. Plates were overlaid 

with nylon mesh of 20-μm pore size. At 9 DAS, seedlings were transferred to plates 

containing control medium without sucrose or medium supplemented with different 

concentrations of sucrose and glucose (6 mM, 15 mM and 30 mM). In the norflurazon 

(NF) experiments, seedlings were transferred at 9 DAS to half-strenght MS medium 

with or without 15 mM sucrose supplemented with 5 μM NF. Homozygous seeds of 

the gpt2-1 mutant, a T-DNA insertion GABI-kat line in the Col-0 background (GK-

454H06-018837), were a kind gift of Dr. Giles Johnson (University of Manchester; 

Dyson et al, 2014). 

Growth Analysis 
For the leaf area analysis, leaves were cleared in 100% ethanol, mounted in lactic 

acid on microscope slides, and photographed. Leaf areas were measured with the 

ImageJ software (http://rsb.info.nih.gov//ij/). 

Abaxial epidermal cells of the leaves were drawn with a DMLB microscope (Leica) 

fitted with a drawing tube and a differential interference contrast objective. Drawings 

were scanned and analyzed using automated image analysis algorithms (Andriankaja 

et al, 2012). Subsequently, drawings were used to measure average pavement cell 

area, from which the total pavement cell number was calculated. The stomatal index 

was defined as the percentage of stomata compared with all cells.  

GUS Staining and Analysis 
Seedlings of two biological repeats were harvested at 13 DAS, four days after 

transfer to control or 15 mM sucrose-containing medium, incubated in heptane for 10 

min and subsequently left to dry for 5 min. Then, they were submersed in 5-bromo-4-

chloro-3-indolyl-β-glucuronide (X-Gluc) buffer [100 mM 2-amino-2-(hydroxymethyl)-

1,3-propanediol (TRIS)-HCl, 50mM NaCl buffer (pH 7.0), 2mM K3[Fe(CN)6], and 
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4mM X-Gluc], vacuum infiltrated for 10 min and incubated at 37°C overnight. 

Seedlings were cleared in 100% ethanol and then kept in 90% lactic acid. The third 

leaf was micro-dissected, mounted on slides and photographed under a light 

microscope. Leaf length and GUS staining was measured with the ImageJ software 

(http://rsb.info.nih.gov/ij/). The position of the cell cycle arrest front along the length of 

each leaf was calculated based on the color intensities between stained (proliferation 

zone) and non-stained (expanding zone) regions according to the method described 

by (Vercruyssen et al, 2014). The average cell cycle arrest front was determined by 

taking the average gray-scale intensities of the expansion zones of the control 

leaves. 

RNA Extraction and expression analysis by qRT-PCR 
Seedlings were harvested in liquid nitrogen, put in RNAlater ice solution and 

incubated at -20°C for at least one week, after which the third leaf was micro-

dissected under a binocular light microscope. Leaves were frozen in liquid nitrogen 

and RNA was extracted using Trizol (Invitrogen) and the RNeasy Plant Mini Kit 

(Qiagen). DNase treatment was done on columns with RNase-free DNase I 

(Promega). The iScript cDNA synthesis kit (Bio-Rad) was used to prepare cDNA from 

200 ng RNA and qRT-PCR was done on the LightCycler 480 with SYBR Green I 

Master (Roche) according to the manufacturer’s instructions. Normalization was done 

against the average of three housekeeping genes AT1G13320, AT2G32170, 

AT2G28390. Primer sequences are listed in Supplemental Table S2.  

RNA-Sequencing Analysis 
Library preparation was done using the TruSeq RNA Sample Preparation Kit v2 

(Illumina). Briefly, polyA-containing mRNA molecules were reverse transcribed, 

double-stranded cDNA was generated and adapters were ligated. After quality 

control using 2100 Bioanalyzer (Agilent), clusters were generated through 

amplification using the TruSeq PE Cluster Kit v3-cBot-HS kit (Illumina), followed by 

sequencing on an Illumina HiSeq2000 with the TruSeq SBS Kit v3-HS (Illumina). 

Sequencing was performed in Paired-End mode with a read length of 100 nt. The 

quality of the raw data was verified with FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/, version 0.9.1). Next, 
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quality filtering was performed using the FASTX-Toolkit 

(http://hannonlab.cshl.edu/fastx_toolkit/, version 0.0.13): reads where globally filtered, 

in which for at least 75% of the reads, the quality exceeded Q20 and 3’ trimming was 

performed to remove bases with a quality below Q10, ensuring a remaining minimum 

length of 90 nt. Re-pairing was performed using a custom Perl script. Reads were 

subsequently mapped to the Arabidopsis reference genome (TAIR10) using GSNAP 

(Wu et al, 2010, version 2012-07-20), allowing maximum five mismatches. These 

steps were performed through Galaxy (Goecks et al, 2010). The concordantly paired 

reads that uniquely mapped to the genome were used for quantification on the gene 

level with HTSeq-count from the HTSeq.py python package (Anders et al, 2015). The 

analysis was performed with the R software package edgeR ((Robinson et al, 2010), 

R core team (2014), R version 3.1.2).  TMM normalization (Robinson & Oshlack, 

2010) was applied using the calcNormFactors function. Differentially expressed 

genes were analyzed with the exact binomial test. False discovery rate adjustments 

of the P-values were done with the method described by Benjamini and Hochberg 

(1995).  

Next-generation sequence data from this article were deposited in ArrayExpress 

database (www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-4262. 

Gene Set Enrichment Analysis 
Gene set enrichment analysis was performed with the R package Piano  (Väremo et 

al, 2013) based on P-values and log2 fold changes. Three methods were compared: 

Fisher’s combined probability test, Stouffer’s method and the Tail strength method. 

Permutation-based null distributions were calculated by permuting the genes 1,000 

times. P-values were adjusted with the FDR method (Benjamini & Hochberg, 1995).  

Transmission Electron Microscopy 
Leaves were immersed in a fixative solution of 2.5% glutaraldehyde, 4% 

formaldehyde in 0.1 M Na-cacodylate buffer, placed in a vacuum oven for 30 min and 

then left rotating for 3 h at room temperature. This solution was later replaced with 

fresh fixative and samples were left rotating overnight at 4°C. After washing, samples 

were post-fixed in 1% OsO4 with K3Fe(CN)6 in 0.1 M Na-cacodylate buffer, pH 7.2. 
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Samples were dehydrated through a graded ethanol serie, including a bulk staining 

with 2% uranyl acetate at the 50% ethanol step, followed by embedding in Spurr’s 

resin. In order to have a larger overview of the phenotype, semi-thin sections were 

first cut at 0.5 μm and stained with toluidine blue. Ultrathin sections of a gold 

interference color were cut using an ultra-microtome (Leica EM UC6), followed by 

post-staining with uranyl acetate and lead citrate in a Leica EM AC20 and collected 

on Formvar-coated copper slot grids. Two leaves of control and three leaves of 

sucrose-treated seedlings were viewed with a JEM 1010 transmission electron 

microscope (JEOL, Tokyo, Japan), operating at 80 kV, using Image Plate Technology 

from Ditabis (Pforzheim, Germany). For each leaf, 17 to 68 mesophyll cells of the leaf 

tip and 21 to 87 mesophyll cells of the base of the leaf, representing, respectively, 

expanding and proliferating cells, were analyzed. 

SUPPLEMENTAL DATA 
The following supplemental materials are available at the end of this chapter. 

Supplemental Figure S1. Glucose treatment did not result in an increase in final leaf 
size increase. 

Supplemental Figure S2. Relative leaf growth rate. 

Supplemental Figure S3. Repression of chloroplast transcripts by sucrose. 

Supplemental Figure S4. Plastome copy numbers per cell of the third leaf upon 
sucrose transfer. 

Supplemental Figure S5. Increased starch accumulation in control leaves. 

Supplemental Figure S6. Transcriptional responses in gpt2 mutant. 

Supplemental Table S1. Differentially expressed genes 3 h and 24 h after transfer to 
sucrose.  

Supplemental Table S2. qRT-PCR primer sequences of selected chloroplast-
encoded transcripts. 

Supplemental Methods. Plastome copy number determination and Statistical 
analysis of growth experiments and chloroplast measurements 
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SUPPLEMENTAL DATA 
Supplemental Figure S1. Glucose treatment did not result in an increase in final leaf size. Plants were 
grown on MS media supplemented with four different glucose (Glc) concentrations (0 mM, 6 mM, 15 mM, 30 mM). 
At 21 DAS, the third leaf area was measured and compared between concentrations. Values are the means of 
three biological repeats with their SE. Leaf area was measured for 10 to 30 leaves in each repeat. 

Supplemental Figure S2. Relative leaf growth rate. Wild-type plants were subjected to the experimental 
sucrose setup and harvested daily after transfer to sucrose (sucr) and control medium. Relative leaf growth rate 
(RLGR) is expressed as the increase in leaf area (mm

2
) relative to the initial leaf area per unit of time (day).

Values are the means of three biological repeats with their SE. Leaf area was measured for 5 to 20 leaves in each 
repeat.

Supplemental Figure S3. Repression of chloroplast-encoded transcripts by sucrose. Relative expression of 
several chloroplast-encoded genes in leaves 24 h after transfer to sucrose compared with control medium. Values 
are the means of the ratios (sucrose/control) of three biological repeats with their SE.
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Supplemental Figure S4. Plastome copy numbers per cell of the third leaf upon sucrose transfer. Plastome 
copy numbers determined by qRT-PCR in the third leaf of seedlings before transfer (0 h), three hours (3 h) and, 
24 hours (24 h) after transfer to control or sucrose-supplemented medium. Values are the means of three 
biological repeats with their SE. 

Supplemental Figure S5. Increased starch accumulation in control leaves. Wild-type seedlings were 
transferred at 9 DAS to medium with or without sucrose (sucr)  and, after 3 days (at 12 DAS), the third leaf was 
stained with Lugol’s solution to  visualize starch. 

Supplemental Figure S6. Transcriptional responses in the gpt2 mutant. A, Overlap between gpt2-induced 
and sucrose-responsive genes. Values indicated in the Venn diagram represent the number of genes differentially 
expressed in gpt2.2 mutant compared to wild type Ws-4 from the dataset of Dyson et al., 2015 (FC > 1.5 and P-
value < 0,05) and the 66 repressed genes 24 hours after transfer to sucrose. B, List of the 20 overlapping genes 
with corresponding fold changes (FC) and P-values. C, Relative expression of  sucrose-responsive chloroplast 
transcripts in the third leaf of seedlings 24 hours after transfer to sucrose compared with control leaves, both in 
wild-type (black) and gpt2 (blue) seedlings. Values are the means of the ratios (sucrose/control) of five to six 
biological repeats with their SE.
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Supplemental Table S1. Differentially expressed genes 3 h and 24 h after transfer to sucrose. 

3 h 24 h 
GENE_ID GENE NAME LOGFC FDR GENE_ID GENE NAME LOGFC FDR 

AT1G61800.1 GPT2 2.04 0.05 AT2G33790.1 AGP30 -7.04 0.00 
AT5G58390.1 1.42 0.02 AT3G22235.1 -6.41 0.00 
AT3G49110.1 0.90 0.02 AT4G30170.1 -6.09 0.02 
AT3G15630.1 -0.64 0.00 AT2G41800.1 -6.00 0.03 
AT1G28330.5 DRM1 -0.64 0.00 AT1G66280.1 BGLU22 -4.95 0.00 
AT1G04280.1 -0.65 0.00 AT1G66270.1 BGLU21 -4.38 0.00 
AT1G68440.1 -0.70 0.00 ATMG01360.1 COX1 -3.66 0.00 
AT1G80920.1 -0.71 0.00 ATCG01090.1 ndhI -3.57 0.04 
AT3G48360.1 BT2 -0.78 0.00 ATCG00360.1 ycf3 -3.38 0.01 
AT2G05380.1 -0.78 0.00 ATCG00020.1 psbA -3.37 0.00 
AT5G56550.1 -0.80 0.03 ATCG00730.1 petD -3.27 0.00 
AT3G15450.1 -0.87 0.00 ATCG00340.1 psaB -3.14 0.00 
AT2G33830.2 DRM2 -1.69 0.00 AT5G26260.1 -3.12 0.00 
AT2G39400.1 -1.80 0.02 ATCG00280.1 psbC -3.12 0.00 
AT2G32150.1 -2.16 0.00 AT2G07698.1 -3.10 0.03 
AT2G05540.1 -2.25 0.02 AT1G54000.1 GLL22 -3.09 0.00 
AT4G35770.1 SEN1 -2.34 0.01 ATCG00520.1 ycf4 -3.07 0.00 
AT1G15330.1 PV42a -2.73 0.00 ATCG00720.1 petB -3.03 0.00 
AT3G47340.1 DIN6 -3.49 0.01 ATCG01100.1 ndhA -3.02 0.01 

ATCG00490.1 rbcL -2.99 0.00 
ATCG00350.1 psaA -2.93 0.00 
ATCG00540.1 petA -2.89 0.00 
ATMG00090.1 -2.79 0.00 
ATCG00650.1 rps18 -2.76 0.03 
ATCG01040.1 ycf5 -2.76 0.05 
ATCG00140.1 atpH -2.68 0.04 
ATMG00640.1 -2.67 0.02 
ATMG00160.1 COX2 -2.65 0.02 
AT4G35770.1 SEN1 -2.60 0.00 
ATCG00040.1 matK -2.55 0.00 
ATCG00160.1 rps2 -2.55 0.03 
ATCG00270.1 psbD -2.54 0.00 
ATMG00080.1 RPL16 -2.53 0.01 
ATCG00680.1 psbB -2.52 0.00 
ATCG00330.1 rps14 -2.48 0.01 
ATCG00420.1 ndhJ -2.46 0.02 
ATMG00060.1 NAD5 -2.35 0.05 
AT3G28550.1 -2.32 0.04 
ATCG00500.1 accD -2.32 0.05 
ATCG01050.1 ndhD -2.26 0.02 
AT2G01008.1 -2.24 0.01 
AT3G41762.1 -2.21 0.01 
ATCG00380.1 rps4 -2.19 0.04 
ATCG00120.1 atpA -2.13 0.00 
ATCG01110.1 ndhH -2.08 0.05 
AT1G49200.1 -1.91 0.03 
ATCG00170.1 rpoc2 -1.87 0.02 
ATCG01130.1 ycf1.2 -1.81 0.01 
ATCG00150.1 atpI -1.78 0.05 
AT3G47340.1 DIN6 -1.70 0.00 
AT2G33830.2 DRM2 -1.53 0.00 
AT2G05540.1 -1.51 0.00 
AT1G73830.1 BEE3 -1.50 0.02 
AT1G10070.1 BCAT-2 -1.42 0.03 
AT3G01500.2 CA1 -0.98 0.00 
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AT5G23010.1 MAM1 -0.83 0.04 
AT5G14740.1 CA2 -0.81 0.00 
AT4G26260.2 MIOX4 -0.81 0.00 
AT3G15770.1 -0.80 0.03 
AT5G27350.1 SFP1 -0.78 0.02 
AT5G03350.1 -0.77 0.00 
AT3G48360.1 BT2 -0.73 0.00 
AT3G15630.1 -0.72 0.00 
AT2G19800.1 MIOX2 -0.59 0.00 
AT1G23390.1 -0.59 0.00 
AT2G34490.1 CYP710A2 0.62 0.04 
AT5G06400.1 0.72 0.03 
AT1G43800.1 FTM1 0.87 0.02 

Supplemental Table S2. qRT-PCR primer sequences of selected chloroplast-encoded transcripts 

Gene ID Name Forward primer Reverse primer

ATCG01090 ndhI ACCCTACGAGCTGCAAGGTA CCAATCAACAACAGGCAAAT

ATCG00020 psbA TATCGCATTCATTGCTGCTC CATAAGGACCGCCGTTGTAT

ATCG00730 petD TGGTACCATTGCCTGTAACG CCGCTGGTACTGAAACCATT

ATCG00340 psaB TCTTGGCCCGGTGAATATAG CCCCGAATAGTCCTGACAAA

ATCG00490 rbcL CAAAGGACGATGCTACCACA CAGGGCTTTGAACCCAAATA

ATCG00350 psaA GGGCGGTGAGTTAGTAGCAG TCACAAGGGAAACGAAAACC

ATCG00360 ycf3 AAGGAAATTATGCGGAAGCA TGTGGTAAAAAGGGGTTTCG

ATCG00650 rps18 CAAGCGATCTTTTCGTAGGC TCGACTCACTTCTTTCAAATTGTT

ATCG00140 atpH ATCCACTGGTTTCTGCTGCT TGCTACAACCAGGCCATAAA

ATCG00170 rpoC2 AAAGCAATTTACGCGAAGGA ACCGAAATCCCTCGGATAGT
ATCG00920 rrn16S GCGTCTGTAGGTGGCTT GCCGTTGGTGTTCTTTCC

Supplemental Methods. Plastome copy number determination 

Total cellular DNA was extracted from micro-dissected third leaves using CTAB-protocol (Doyle and Doyle, 1997). 
DNA samples were diluted to 0.4 ng and chloroplast DNA copy number was calculated as described in Zoschke 
et al. (2007). Differences in nuclear DNA content were measured by CyFlow flow cytometer with the FloMax 
Software (Partec). Relative DNA content was analyzed by qRT-PCR for ndhI, psbA, rbcL, rpoC2 and rrn16S using 
the primer sequences listed in Supplemental Table S2. Data was normalized to the nucleur 18S rRNA gene 
(AT2G01010) using following primer pair 5’-AAACGGCTACCACATCCAAG-3’ and 5’-
ACTCGAAAGAGCCCGGTATT-3’.  

Supplemental Methods. Statistical analysis of growth experiments and chloroplast measurements 

All analyses were performed with SAS (Version 9.4 of the SAS System for windows 7 64bit. Copyright © 2002-
2012 SAS Institute Inc. Cary, NC, USA (www.sas.com).   

Growth experiments 

All growth experiments involved one, two or three factors and consisted of three independent biological repeats. 
For the representation of the ratios, measurements of the sucrose-treated leaves were compared to the 
measurements of the control leaves of the same repeat. Averages were then taken over the three independent 
repeats and represented in the graphs with their standard error. 

When needed, raw measurements were log-transformed to stabilize the variance prior to statistical analysis; this 
is specified in the figure legends. For all growth experiments, a linear mixed model was fitted to the variable of 
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interest with all main factors and their interaction, in case of two factors, as fixed effects using the mixed 
procedure. The biological repeat term was included in each model as a random factor to take into account the 
correlation between observations done at the same time. In the presence of a significant F-test (for the main 
effect in case of one factor, for the interaction term in the case of two factors), appropriate post-hoc tests were 
performed. When the interest was in comparison with a control, multiple testing correction was done according to 
Dunnett. When the interest was in all-pairwise comparisons, a Tukey adjustment was performed. For the time 
course experiment, simple tests of effects were performed at each day separately with the plm procedure. 

Leaf series experiment 

The area measurements of the leaf series experiment was analyzed with a linear mixed model taking into account 
correlations between measurements done on leaves originating from the same plant. Leaf data was available for 
both conditions  up and till leaf 8.  Model building started with a saturated mean model containing the main effects 
of the sucrose concentrations (6 mM, 15 mM, and 30 mM) and leaf, and, the interaction term and a random effect 
for the biological repeat. Several structures were tested for the variance-covariance matrix: unstructured, 
(heterogeneous) compound symmetry, (heterogeneous) autoregressive, and (heterogeneous) banded toeplitz. 
Based on the AIC values, an autoregressive structure was assumed. The main biological interest was in the effect 
of the transfer of seedlings to the sucrose concentrations on the sizes of the different leaves. Type III tests of fixed 
effects were calculated to verify that there was a significant interaction term at the 0.05 significance level. Simple 
F-tests of effect for the sucrose concentrations were carried out at each leaf separately. For the leaves that
showed a significant F-test (P < 0.05), pairwise comparisons were estimated between each concentration of
sucrose and the control level. At each leaf, correction for multiple testing was done, applying the Dunnett method.

Chloroplast number and area measurements 

A generalized linear mixed-effect model was fitted to the number of chloroplasts with the glimmix procedure of 
SAS assuming a Poisson distribution and a log-link function. The fixed effects were the treatment and leaf part 
and their interaction effect . A random effect was included in the model to take into account the correlations 
between observations originating from the same leaf. Significance of the random effect was assessed with the 
covtest statement and left out of the model whenever P < 0.05. Significance of the interaction effect was tested 
with a type 3 Wald test. Significance of the interaction effect was tested with a type 3 wald test at the 5% 
significance level. In the absence of a significant interaction term,  the significance of the main effects was 
subsequently tested. Differences in Least-Square means were calculated between groups of interest. 

A random intercept model was fitted to the mesophyll area data using the mixed procedure with the same fixed 
and random effects as for the chloroplast number.  

For the log-transformed chloroplast area data, a random intercept model was fitted using the mixed procedure. 
Two random effects were included in the model to take into account the correlations between observations 
originating from the same leaf, and originating from the same mesophyll cell within the leaf. The model with only a 
random intercept for mesophyll cell was preferred over a model with two random intercepts based on AIC values. 
All-pairwise comparisons between the factor level combinations of the factors, treatment and leaf part, were 
estimated. P-values were corrected for multiple testing with the Tukey adjustment method. 

In all analyses the Kenward-Roger method was used for computing the denominator degrees of freedom for the 
tests of fixed effects. For each analysis, residual diagnostics were carefully examined.  

Supplemental Literature Cited. 

Doyle, J.J. and J.L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. 
Phytochemistry Bulletin. 19:11-15.  
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SUPPLEMENTAL INFORMATION 
An additional experiment was performed in the period of submission of the paper. 

Because the manuscript was accepted as it is, I decided to not include the figure in 

the main chapter but will briefly discuss it here. 

RESULT 

The transfer of seedlings to sucrose-containing medium resulted in the formation of 

mesophyll cells with fewer, smaller and less differentiated chloroplasts with limited 

formation of thylakoid membranes and less starch granules. To further quantify the 

differences in chloroplast differentiation, the number of light harvesting chlorophyll 

proteins (LHCPs) per chloroplast was examined by transmission electron 

microscopy. LHCP are encoded by the nucleus and their synthesis was found to 

coincide with the progression of photosynthetic chloroplast development (Dekeyser et 

al, 1990; Jansson 1994). LHCPs are located at the thylakoid membranes and are 

necessary for the light-dependent reactions of photosynthesis. Transverse sections 

of leaves, 24 hours after transfer to control or sucrose-containing medium, were 

cross-reacted with antibodies against pea LHCP and subsequently treated with gold 

particles for visualization (Fig. SI1A; Dekeyser et al, 1990). The tip and the base of 

two leaves per condition were examined and chloroplast size and number of LHCPs 

per chloroplast were analyzed (Fig. SI1B and C). Similar results as described above 

(Fig. 5) were found, i.e. chloroplasts were smaller in sucrose-transferred leaves 

compared with control leaves independently of the tip or base (P < 0.05; Fig. SI1B). 

In general, chloroplasts were larger at the tip compared with the base of the leaves in 

both control and sucrose-transferred leaves (P < 0.05; Fig. SI1B). Furthermore, 

chloroplasts of sucrose-transferred leaves contained on average less LHCPs 

compared with control leaves (P < 0.05; Fig. SI1C) and chloroplasts in the tip of the 

leaf contained more LHCPs compared to the base, independently of the condition (P 

< 0.05; Fig. SI1B). These findings further demonstrate that chloroplasts of sucrose-

transferred leaves are less differentiated than control leaves. Sucrose-treated leaves 

have smaller chloroplasts with less LHCPs.  
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Supplemental Information Figure SI1. Differences in chloroplast differentiation in the tip and the base of 
sucrose-transferred and control leaves. A, Transmission electron micrographs of tip and base of the 10-d-old 
third leaf, 24 hours after transfer to control or 15 mM sucrose (sucr) supplemented medium. Transverse sections 
were cross-reacted with antibodies against pea LHCP and treated with protein A-gold. The bar represents 500 
nm. B, Average chloroplast size in the tip and base of the third leaf of control and sucrose-treated seedlings. C, 
Average number of LHCPs per chloroplast counted in approximately 15 chloroplasts of two leaves of control and 
sucrose-transferred seedlings. Values are means ± SE from 15 chloroplasts of the tip and the base of two 
independent leaves. *, P < 0.05, mixed models. 
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METHOD 

Leaves were cut into small pieces and immersed in a fixative solution of 2,5 % 
paraformaldehyde and 0,3% glutaraldehyde in 0.1 M NaCacodylate buffer, pH 7.2. 
Samples were dehydrated through a graded ethanol series and infiltrated stepwise 
over 3 d at 4°C in LR-White, hard grade (London Resin), followed by embedding in 
capsules. Polymerization was done by UV illumination for 24 h at 0°C followed 
gradually by 24 h at 20°C ending at 37 °C for 72 h. Ultrathin sections of gold 
interference colour were cut with an ultramicrotome (Leica EM UC6) and collected on 
formvar-coated copper slot grids. All steps of immunolabeling were performed in a 
humid chamber at room temperature. Grids were floated upside down on 25 μl of 
blocking solution 5% (w/v) bovine serum albumin (BSA), for 30 min followed by 
washing five times for 5 min each times with 1% BSA in PBS. Incubation in a 1:50 
dilution (1% BSA in PBS) of primary antibodies anti-Cab (rabbit, 1:20000) for 60 min 
was followed by washing five times for 5 min each time with 0.1% BSA in PBS. The 
grids were incubated with PAG10 nm 1:50 dilution (1% BSA in PBS) (Cell Biology, 
Utrecht University, The Netherlands) and washed twice for 5 min each time with 0.1% 
BSA in PBS, PBS, and double-distilled water. Sections were post-stained in a Leica 
EM AC20 for 40 min in uranyl acetate at 20°C and for 10 min in lead citrate at 20°C. 
Grids were viewed with a JEM 1400plus transmission electron microscope (JEOL, 
Tokyo, Japan) operating at 60 kV.  

LITERATURE CITED 
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Jansson S (1994) The light-harvesting chlorophyll ab-binding proteins. Biochemica et Biophysica Acta 
(BBA) - Bioenergetics 1184: 1-19 
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ABSTRACT 

Leaf growth is a tightly controlled and complex process that strongly depends on the 
environmental conditions. In our previous study presented in Chapter 4, we studied 
young proliferating leaves from Col-0 after transfer to sucrose, at phenotypic and 
molecular level. Upon transfer to sucrose, final size of the third leaf was increased 
and we demonstrated an essential function of the GLUCOSE-6-
PHOSPHATE/PHOSPHATE TRANSPORTER2 (GPT2) in this response to sucrose. 
Here, we selected nine sucrose-responsive genes from the transcriptomic datasets to 
further characterize their function in leaf growth regulation. Knock-out and knock-
down mutants of these nine genes as well as constitutive overexpression lines of 
several of the candidate genes were evaluated for leaf size phenotype in vitro and in 
soil. Preliminary data show that mutants of DRM2 and AT5G26260 have increased 
and reduced leaf sizes, respectively, suggesting that these genes might act as a 
negative and positive regulator of leaf growth. In conclusion, this study highlights that 
still additional genes can be found to expand the leaf growth regulatory network.  

INTRODUCTION 

Global demand and prices for food and feed are rising dramatically and more 

extreme climate conditions are likely to aggravate the situation. To be able to cope 

with this, crop yield and productivity will have to increase (Edgerton, 2009). 

Therefore it is important to unravel the underlying regulatory mechanisms controlling 

plant growth. Plant growth is a highly complex process regulated at the cellular, 

organ and whole organism level integrating the inherent genetic signaling pathways 

with environmental signals (Gonzalez et al, 2010; Gonzalez & Inze, 2015; Skirycz et 

al, 2010). 

Leaves are important plant organs since they are the primary source of 

photosynthesis providing the energy for nearly all living organisms. Currently the 

question on how leaves control their size is far from resolved. Leaf growth is 

determined by two spatial and temporal overlapping processes, cell proliferation and 

cell expansion (Andriankaja et al, 2012; Beemster et al, 2014; Donnelly et al, 1999). 

In Arabidopsis, leaf primordium originates from the peripheral zone of the shoot 

apical meristem as a group of undifferentiated cells rapidly dividing. In the 

proliferating phase, young leaves develop by cell growth and division. Next, during 

the secondary morphogenesis phase, leaf growth is mainly sustained by cell 
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expansion. The transition between both phases is tightly coordinated and during this 

period, a cell cycle arrest front progresses in a basipetal (from the tip to the base) 

direction (Kazama et al, 2010). This transition to cell expansion was shown to 

proceed in a non-gradual manner since the cell cycle arrest front abruptly disappears 

(Andriankaja et al, 2012). Besides these two main processes, also division of 

meristemoids, stomatal precursor cells in the epidermis, results, after several round 

of asymmetric divisions, in the production of additional pavement cells contributing to 

final leaf size (Peterson et al, 2010).  

The characterization of mutants and transgenic lines exhibiting increased or 

decreased leaf sizes helped with the identification of different genetic factors involved 

in the regulation of leaf growth and acting on one or several of the cellular processes 

during leaf development (Gonzalez et al, 2012; Hepworth & Lenhard, 2014). 

However, leaf growth is not solely regulated at the genetic level; environmental cues 

have to be integrated in the developmental program to control growth. By using 

forward genetic screens important environmental triggered pathways controlling plant 

growth might be missed because mostly optimal growth conditions are used. 

Photosynthesis in the leaf is one of the processes that strongly depends on 

environmental growth conditions and which has a major impact on how plants grow if 

altered (Schurr et al, 2006). Indeed, changes in the photosynthetic capacity of the 

leaf alters the endogenous sugar status of the plant which affects different aspects of 

growth and development. Sugars not only act as major structural components of the 

cell but they can also elicit sugar signalling pathways which are strongly 

interconnected with plant growth regulatory mechanisms (Lastdrager et al, 2014; 

Sheen, 2014).  

In this study, we selected nine sucrose-responsive genes from the transcriptome 

analyses described in Chapter 4 (Van Dingenen et al, 2016). Transcriptional 

responses were determined in young growing leaves, 3 hours and 24 hours, after 

transfer of seedlings to sucrose-supplemented media. Eight of the nine selected 

genes were repressed upon transfer to sucrose and one gene was upregulated by 

sucrose, i.e. the GLUCOSE-6-PHOSPHATE/PHOSPHATE TRANSPORTER2 

(GPT2). As wild type plants transferred to sucrose showed an increased final rosette 

and leaf size, the sucrose-repressed genes were good candidates to screen for their 
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potential involvement in leaf growth linking sugar signals with the leaf growth 

machinery.  

RESULTS  

Selection of Sucrose-responsive Genes 

Candidate genes were selected from the RNA-sequencing datasets described in 

Chapter 4 (Van Dingenen et al, 2016). Briefly, transcriptome profiling was done on 

RNA extracted from proliferating third leaves 3 and 24 hours after transfer of nine-

day-old Col-0 seedlings to sucrose-supplemented or control (without sucrose) media. 

Nineteen genes and 69 genes were found to be differentially expressed 3 and 24 

hours after transfer to sucrose, respectively, from which the majority was repressed 

(Supplemental Table 1, Chapter 4). To find novel genes involved in leaf growth 

regulation, we chose several genes based on the following criteria: (1) significant 

repression by sucrose both at 3 and 24 hours or strong down- or up-regulation 

independent of the time point, (2) genes involved in different metabolic processes (3) 

genes with a yet unreported or detailed plant growth phenotype based on literature 

search and (4) availability of transfer DNA (T-DNA) insertion mutants. This resulted in 

the selection of nine sucrose-responsive genes for which potential involvement in leaf 

growth regulation was then determined (Table 1).  

Gene ID Name Description 3h 24h 
Log2FC FDR Log2FC FDR 

1 AT3G47340 DIN6/ASN1 Dark-inducible gene/glutamine-
dependent asparagine synthetase -3.490 0.006 -1.702 0.003 

2 AT4G35770 DIN1/SEN1 Dark-inducible gene/Senescence-
associated gene -2.342 0.011 -2.599 0.000 

3 AT2G33830 DRM2 Dormancy/auxin associated family 
protein -1.690 0.000 -1.525 0.000 

4 AT3G48360 BT2 
BTB and TAZ domain protein 2, 

essential component of the TAC1-
mediated telomerase activation 

-0.778 0.001 -0.730 0.000 

5 AT2G05540 GRP3 Glycine-rich protein family -2.158 0.000 -1.514 0.000 

6 AT1G61800 GPT2 Glucose-6- hosphate/Phosphate
Transporter 2 2.037 0.049 0.494 0.839 

7 AT3G15630 / unknown protein -0.643 0.000 -0.722 0.000 

8 AT5G26260 / TRAF-like family protein 1.241 0.894 -3.125 0.002 

9 AT3G22235 / unknown protein -0.334 1.000 -6.413 0.003 

Table 1. Selected sucrose-responsive genes in young growing leaves for functional 
characterization. FC = fold change, FDR = false discovery rate 
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Six of these nine genes (AT3G47340, AT4G35770, AT2G33830, AT3G48360, 

AT1G61800, and AT3G15630) were previously described as sugar-responsive genes 

(Fujiki et al, 2000; Gonzali et al, 2006). Five of these six genes were repressed upon 

transfer to sucrose in our datasets. AT3G47340 encodes a glutamine-dependent 

asparagine synthase and its expression is controlled by sugars and nitrogen levels 

(DIN6/ASN1; Lam et al, 1994). Initially, DIN6/ASN1 was identified as a DARK-

INDUCIBLE gene, induced by sugar-starvation (Fujiki et al, 2000). AT4G35770 or 

DIN1/SEN1 has also been identified as a DARK-INDUCIBLE gene (Shimada et al, 

1998) and is regulated by different nutrient stress conditions and senescence, hence 

its second name SENESCENCE-ASSOCIATED GENE, SEN1 (Chung et al, 1997; 

Oh et al, 1996; Yu et al, 2005). The third selected gene encodes a dormancy-

associated/auxin-repressed protein DRM2 (AT2G33830), which was characterized, 

together with its homologue DRM1, to be involved in bud dormancy (Stafstrom et al, 

1998). DRM expression is rapidly repressed in pea axillary buds upon decapitation 

(Stafstrom et al, 1998). The expression of the fourth sucrose-repressed gene, BT2 

(AT3G48360), is regulated by a variety of hormones, nutrients, stresses and the 

circadian clock with a peak in the dark (Mandadi et al, 2009). The last sucrose-

repressed transcript is AT3G15630, encoding an unknown protein and found to be 

rapidly repressed after sucrose treatment in complete Arabidopsis seedlings (Osuna 

et al, 2007) and under zinc-deficiency conditions (van de Mortel et al, 2006). GPT2 

(AT1G61800) was the only gene selected that was significantly up-regulated upon 

transfer to sucrose. GPT2 expression is commonly found to be induced with 

increasing sugar levels (Gonzali et al, 2006) as well as in starch biosynthesis mutants 

(Kunz et al, 2010). Finally, the last three genes AT2G05540, AT5G26260 and 

AT3G22235, encode proteins of unknown function and are assigned to a glycine-rich 

family protein GRP3 (Mangeon et al, 2010), a TRAF (tumor necrosis factor receptor-

associated factor)-like family protein and a hypothetically protein. 

These nine genes were selected to be screened for their potential role in leaf growth 

regulation since no leaf growth phenotype was previously reported.  
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Selection of Loss-of-Function mutants and Screen for Sucrose-responsiveness 

To investigate the involvement of the nine selected genes in the regulation of growth, 

T-DNA insertion mutants were ordered from the SALK (Alonso et al, 2003) or GABI-

Kat collection (Kleinboelting et al, 2012). T-DNA insertions in the exons of DIN6 

(GABI_829B05), BT2 (SALK_002306) and GPT2 (gpt2, GABI_454H06) as well as in 

the first intron of SEN1 (SALK_020571) and in the 5’ untranslated region (UTR) or 

promoter of DRM2 (SALK_098437) completely abolished the expression of the 

targeted gene (Supplemental Fig.S1). Also the expression of AT5G26260 was 

strongly but not completely reduced in the SALK_107244 mutant line having an 

insertion in the second exon. Transcript levels of GRP3 (GABI_075G07, insertion in 

5’UTR) and AT3G22235 (GABI_893A09, insertion in 3’UTR) were only mildly 

knocked-down by T-DNA insertion since residual expression of 66% and 44% of the 

targeted gene was found, respectively. No line with reduced AT3G15630 expression 

was found (SALK_139803), although, harboring an insertion in the first exon, so this 

line was excluded from the analysis. 

The eight remaining mutants were grown in vitro using the experimental setup 

described in Chapter 4 (Van Dingenen et al, 2016), to study their potential 

importance during the sucrose-induced regulation of early leaf growth (Van Dingenen 

et al, 2016). Seedlings were first grown on meshes covering MS medium without 

carbon source under low light conditions (50 μmol/m-2s-1) for 9 days. At 9 DAS, 

seedlings were transferred to control medium without sucrose or to 15 mM sucrose-

supplemented medium. At 21 DAS, final rosette areas were calculated from the 

individual leaf areas obtained by making leaf series (Fig. 1). In almost all lines, 

transfer to sucrose resulted in a similar significant increase in rosette area compared 

to wild type plants (20 ± 10%; P < 0.05; Fig. 1A). In bt2 mutant plants, transfer to 

sucrose resulted in a significant larger increase in final rosette area of on average 

34% (P < 0.05) compared to 19% for WT (SALK) (P < 0.05). Furthermore, rosette 

size of the gpt2 mutant was not significantly increased (12%, P = 0,06), in line what 

has been shown before (Chapter 4). Interestingly, comparison of the rosette sizes of 

plants only transferred to control media showed that the drm2 and at5g26260 

mutants were significantly larger (25%, P < 0.05) and smaller (17%, P < 0.05), 

respectively, than their corresponding wild type plants, whereas the other mutants 

were indistinguishable from wild type (P > 0.05; Fig. 1B).  
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As GPT2 expression was found to be essential for the positive effect of sucrose on 

leaf growth (Van Dingenen et al, 2016), the growth phenotype of gpt2 plants was 

investigated in further details. The measurements of the individual leaf areas at 21 

DAS showed that all leaves of wild type and gpt2 seedlings transferred to control 

medium were equal in size (Fig. 1C). Transfer to sucrose resulted in an increase in 

size for all leaves (with the exception of the cotyledons and the two first leaves) of 

wild type plants, whereas gpt2 leaves were not or less affected (Fig. 1C). Detailed 

measurements of the third leaf area showed a significant increase of 36% (P < 0.05) 

by sucrose for wild type plants, and no significant increase for the gpt2 mutant (14 %, 

P = 0.41; Fig. 1C right). 

 

*

*

A * *
** *

* ***

Figure 1. Relative rosette and leaf sizes of loss-of-mutants grown in vitro. Seedlings were first grown on 
medium without sucrose (control) and, at 9 DAS, transferred to medium supplemented with or without 15 mM 
sucrose (sucr). A, Relative rosette area increase upon transfer to sucrose was compared to control plants at 
21 DAS. B, Control average rosette sizes were measured and normalized to the corresponding wild type, WT 
(SALK) for sen1, drm2, bt2 and at5g26260 or WT (GABI) for din6, grp3, at3g22235 and gpt2 lines, at 21 DAS. 
C, Average individual leaf area (left) and third leaf area (right) of control and sucrose-transferred wild type and 
gpt2 plants measured at 21 DAS. Cot = cotyledons; Lx = leaf position x in the order of appearance on the 
rosette. Values are means of three to four repeats with their SE. Rosette and leaf area was measured for 5 to 
7 plants in each repeat. *, P < 0.05, mixed models. 

B 

C 
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In conclusion, the bt2 mutant was found to be hypersensitive to sucrose and only one 

of the eight mutants, gpt2, was less sensitive to transfer to sucrose resulting in no 

significant increase in final rosette area at 21 DAS. These measurements further 

confirmed the essential role of GPT2 in sucrose-induced leaf growth as demonstrated 

in Chapter 4. Furthermore, two mutants, drm2 and at5g26260, produce larger and 

smaller rosettes, respectively, than wild type plants when grown on control medium, 

suggesting a role in leaf growth regulation.  

An in soil Phenotypic Screen further validates DRM2 and AT5G26260 as 
potential Leaf Growth Regulators 

In order to further investigate the involvement of SEN1, DRM2, BT2, AT5G26260, 

DIN6, GRP3, AT3G22235 and GPT2 in leaf growth regulation, independently from 

sugar addition, rosette size of the loss-of-function mutants was characterized in soil. 

Plants were grown in soil on the phenotyping platform ‘Multi Camera in vivo Rosette 

Growth Imaging System’ (MIRGIS, see Material and Methods), which allows daily 

measurements of the projected rosette area from 8 until 21 DAS. At 22 DAS, average 

rosette area, based on the sum of the individual leaf sizes, was calculated (Fig. 2A). 

At this time point, all mutants were indistinguishable from their corresponding wild 

type (P > 0.05; Fig.2A), with the exception of drm2 and at5g26260. Rosettes of drm2 

and at5g26260 mutants were 24% larger (P < 0.05) and 25% smaller (P < 0.05), 

respectively, with a consistent effect on all leaves (Fig. 2B). Projected rosette area 

measurement over time showed that at5g26260 mutant plants tend to grow slower 

compared to wild type as they are similar in size at early time points, i.e. 8-10 DAS, 

but have reduced rosette growth compared to wild type at later time points (Fig. 2C). 

Contrastingly, drm2 mutants already have larger rosettes at 8 DAS and remain larger 

until 22 DAS (Fig. 2C). In addition, we quantified drm2 seed weight and found a 

significant increase in average weight of 200 seeds (Fig. 2D). To further identify 

whether the positive growth phenotype was specific for DRM2, an insertion mutant 

with T-DNA inserted in the last exon of its homologues gene DRM1 (GABI_085G06) 

was ordered. Reduction in DRM1 expression was verified with qRT-PCR analysis 

(Supplemental Fig. S2A). Plants were grown in soil for 22 days as described above 
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and at this time point drm1 rosettes were not different from wild type plants 

(Supplemental Fig. S2B).  
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Figure 2. Rosette and individual leaf area of the loss-of-function mutants grown in soil. Plants were 
grown in soil under long-day (16-h day/8-h night) conditions for 22 days. At 22 DAS, average rosette and 
individual leaf areas were measured. A, Average rosette area of the eight selected mutants compared to their 
corresponding wild type, WT (SALK) for SALK and WT (GABI) for GABI-Kat T-DNA insertion mutants. At the 
left, pictures of the rosettes of WT (SALK), drm2 (SALK_098437) and at5g26260 (SALK_107244) at 22 DAS. 
B, Average individual leaf area of WT (SALK), drm2 and at5g26260 with representative pictures of leaf series. 
C, Rosette area over time of WT (SALK), drm2 and at5g26260 plants. Inset is a close-up of early time points 
8-11 DAS. D, Average seed weight measured by weighting 200 seeds of three independent seed stocks. Cot 
= cotyledons; Lx = leaf position x in the order of appearance on the rosette. Values are means from three 
independent repeats with their SE. Rosette and leaf area was measured for 8 to 12 plants in each repeat. *, P 
< 0.05, mixed models for (A) to (C) and Student’s t-test for (D). 
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Taken together, both in vitro and in soil experiments demonstrate that a mutation in 

DRM2 positively affects growth, whereas an impaired AT5G26260 expression results 

in smaller leaves. In addition, preliminary experiments suggest that this growth 

advantage is specific for a mutation in DRM2, and not in the DRM1 homolog. 

To uncover the underlying cellular mechanisms of the larger and smaller leaves of 

drm2 and at5g26260 mutants, pavement cell number and cell size of the third leaf of 

soil-grown plants were measured (Fig. 3). Third leaf area of drm2 plants was 

significantly increased with 15% (P < 0.05) and for at5g26260 leaves, decreased with 

18% (P < 0.05) compared with wild type plants (Fig. 3). The enlarged leaf size of the 

drm2 mutant was mainly due to more pavement cells with an average increase of 

11% (P = 0.06), whereas average cell size remained unchanged. Leaves of 

at5g26260 mutants were smaller due to smaller and less pavement cells presenting a 

reduction of 9% (P = 0.05) and 12% (P = 0.13), respectively (Fig. 3). 

Preliminary Screen for Rosette Growth phenotype of Overexpression lines 
grown in soil 

Gain-of-function lines were generated by overexpressing the gene of interest under 

the control of the 35S promoter of the cauliflower mosaic virus and were additionally 

N- or C-terminally fused to GFP. Homozygous lines for a single-locus insertion of the

transgene were selected and overexpression of the gene was verified in 10-day-old

seedlings with qRT-PCR analysis (Supplemental Fig. S2). We were able to generate

*

*

Figure 3. Cellular measurements of drm2 and at5g26260 T-DNA 
insertion lines. Average third leaf area and total pavement cell number 
and size of drm2 and at5g26260 mutants compared with wild type plants 
grown in soil for 22 DAS. Values are means from three independent 
repeats with their SE. Leaf area was measured for 5 to 7 plants in each 
repeat. Cellular data are from three leaves in each repeat. *, P < 0.05, 
mixed models. 
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overexpression lines for four candidate genes: 35S::GFP-DRM2, 35S::SEN1-GFP, 

35S::GRP3-GFP, 35S::GPT2-GFP and two independent lines of N-terminal GFP 

fused GPT2 overexpression line, 35S::GFP-GPT2 A and B. Segregation analysis 

was based on the Fluorescence-Accumulating-Seed Technology (FAST) by which 

homozygous transformed seeds can be selected based on fluorescence (Shimada et 

al, 2010). Interestingly, homozygous 35S::DRM2-GFP transgenic lines were not able 

to germinate and viable 35S::GFP-DRM2 transgenic lines did not demonstrate DRM2 

overexpression (Supplemental Fig. S3), suggesting that ectopic expression of DRM2 

might be embryo lethal. SEN1 and GRP3 expression was more than 10-fold 

increased in the 35S::SEN1-GFP and 35S::GRP3-GFP transgenic seedlings, 

respectively, whereas GPT2 was very strongly overexpressed with 500 to 2000 times 

higher transcript levels compared with wild type seedlings (Supplemental Fig. S3). 

To investigate the effect of overexpression of the genes of interest on rosette growth, 

all lines were grown simultaneously with their appropriate wild type plants, WT (OE) 

for 35S::SEN1-GFP and 35S::GRP3-GFP and WT (GPT2) for 35S::GPT2-GFP, 

35S::GFP-GPT2 A and B, in soil for 22 days using the MIRGIS platform. Similarly as 

for the mutant plants, rosette sizes were measured by making leaf series at 22 DAS. 

Rosettes of 35S::SEN1-GFP and 35S::GRP3-GFP were significantly larger than wild 

type with an average increase of 19% and 27% (P < 0.05), respectively (Fig. 4A). 

Contrastingly, 35S::GPT2-GFP and only one of the 35S::GFP-GPT2 lines  

(35S::GPT2-GFP B) were significantly smaller compared with their corresponding 

wild types with an average reduction of 9% and 29% (P < 0.05), respectively (Fig. 

4A). Projected rosette area over time from 8 until 22 DAS showed that 35S::SEN1-

GFP and 35S::GRP3-GFP plants are already larger at early time points, i.e. 8 to 11 

DAS and remained larger compared to wild type (Fig. 4B and inset). 

Taken together these data show that overexpression of SEN1 and GRP3 stimulated 

growth, whereas GTP2 overexpression results in growth repression. Interestingly, we 

were not able to generate transgenic lines with high DRM2 transcript levels. 
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DISCUSSION 

This study presents a preliminary screen aiming at identifying novel genes involved in 

the regulation of leaf growth. Candidate genes were selected from the differentially 

expressed genes in young proliferating leaves upon transfer of seedlings to sucrose-

supplemented media as described in Chapter 4. All selected genes, with the 

exception of GPT2, were repressed shortly after transfer to sucrose (Table 1). We 

screened mutant and overexpression lines of eight candidate genes in vitro as well 

as in soil. A role for these genes in sucrose-induced early leaf growth might be 

* 

* 

* 
* 

A 

B 

Figure 4. Rosette growth of overexpression lines of SEN1, GRP3 and GPT2. Plants were grown in soil under 
long long-day (16-h day/8-h night) conditions for 22 days. A, Average rosette size measured by making leaf series 
at 22 DAS of 35S::SEN1-GFP and 35S::GRP3-GFP plant with their appropriate wild type, WT (OE), and 
35S::GPT2-GFP, 35S::GFP-GPT2 A and B with their appropriate wild type, WT (OE GPT2). At the right, 
representative pictures of plants in graph. B, Rosette area over time of 35S::SEN1-GFP and 35S::GRP3-GFP 
plant with their appropriate wild type, WT (OE). Inset is close-up of early time points 8-11 DAS. Values are means 
from three independent repeats with their SE. Rosette area was measured for 8 to 12 plants in each repeat. *, P < 
0.05, mixed models. 
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suspected if the loss-of-function mutants would demonstrate a sucrose-induced 

hypersensitive response on leaf size, which was the case for bt2 plants. Furthermore, 

we identified DRM2 and AT5G26260 as negative and positive leaf growth regulator, 

respectively. These findings are solely based on the phenotype of one mutant line 

and should be verified with additional knock-out/transgenic lines to exclude effects 

due to the site of the T-DNA insertion in the genome.  

This said, we were not able to obtain transgenic lines strongly overexpressing DRM2 

C-terminally tagged to GFP, further indicating that DRM2 indeed plays a role as 

negative growth regulator. Moreover, homozygous lines of DRM2 under the control of 

the 35S promoter and N-terminally fused to GFP were even not able to germinate. 

DRM2 occurs in two splice isoforms in Arabidopsis with the presence or absence of 

an N-terminal Molecular Recognition Feature (MoRF) probably involved in protein-

protein interaction (Vacic et al, 2007). The phenotypes of the N-terminally GFP 

tagged DRM2 transgenic lines might thus suggest a yet unknown function of DRM2 

in embryo development and/or germination but, as the use of the 35S promoter might 

result in undesired pleiotropic effects as discussed in Vanhaeren et al, (2016), this 

phenotype should be first investigated with more care in future experiments. For 

example, the use of the endogenous DRM2 promoter to drive DRM2 expression 

could shed a more realistic image of the role of DRM2 during plant growth.  

In Arabidopsis, two homologues DRM genes share 60% of identity in amino acid 

sequence: DRM1 (AT1G28330) and DRM2 (Tatematsu et al, 2005). These 

homologues proteins are routinely used as dormancy release factors and are highly 

conserved between plant species (Rae et al, 2013). Expression of both DRMs has 

been previously reported to be induced by different abiotic stresses, such as cold, 

salt, drought and light (Lee et al, 2013; Park & Han, 2003; Rae et al, 2014) and 

repressed after sucrose treatment (Gonzali et al, 2006; Rae et al, 2013) in various 

plant species. Also in our transcriptome datasets described in Chapter 4, 

transcription of both DRM1 and 2 was repressed 3 hours after transfer to sucrose, 

while only DRM2 remained strongly repressed after 24 hours (Van Dingenen et al, 

2016). Arabidopsis DRMs were not previously reported to be linked with plant growth, 

whereas overexpression of the Brassica rapa orthologue of DRM1 in Arabidopsis 

resulted in reduced vegetative growth and lower seed yield, suggesting a role of the 
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DRMs in growth arrest (Lee et al, 2013). This is consistent with our results wherein 

we have shown that a mutation in the 3’UTR of DRM2 increases leaf growth and 

constitutive overexpression of DRM2 negatively affects plant growth. The enlarged 

leaf size of the drm2 mutant was due to more cells, suggesting a role for DRM2 in the 

inhibition of cell proliferation. In addition, rosettes of drm2 seedlings were already 

larger compared to wild type at early developmental time points and preliminary 

measurements of drm2 seed weight showed an increased average seed weight. 

These observations suggest that the increased final leaf size of the drm2 mutant 

might also be due to initial larger seeds. However, additional experiments are 

needed, such as quantifications of total seed yield, seed size and number. 

Contrastingly, insertion in the last exon of the DRM1 did not affected leaf growth. 

Alternative splicing of DRM1 has been shown to result in multiple splice variants with 

diverse C-terminal protein sequences which have different functions (Rae et al, 

2014). The T-DNA insertion mutant we used, was predicted to have an insert in the 

last intron/exon boundary, which might affect the formation of all splice variants, but 

this has to be further examined with splice variant specific primers. In addition, the 

multiple splice variants demonstrated different responsiveness to various treatments 

compared to DRM2 as well as different tissue-specific protein expression patterns in 

Arabidopsis seedlings. These findings further suggest that DRM1 and DRM2 have 

distinct roles during leaf growth.   

Besides DRM2, also a mutation in AT5G26260 was found to affect growth. 

AT5G26260 leaves were smaller because of less and smaller cells suggesting a role 

of this gene in cell proliferation and cell expansion regulation during leaf 

development. AT5G26260 is predicted to encode a protein with a domain homologue 

to the TRAF (tumor necrosis factor receptor-associated factor) domain in animals. 

TRAFs play a role in a wide variety of processes, such as cell survival, proliferation, 

differentiation and in numerous stress responses (Chung et al, 2002). Also here, we 

demonstrated that mutation in AT5G26260 influences different cellular processes, 

positively affecting cell proliferation and expansion.  

Finally, we further validated the essential role of the GLUCOSE-6-

PHOSPHATE/PHOSPHATE TRANSPORTER2 (GPT2) in the regulation of leaf 

growth by sucrose. Also at the final time point 21 DAS, both rosette size and third leaf 

area were not significantly increased for the gpt2 mutant transferred to sucrose-



Screen for leaf growth regulators 

173 

containing medium, further confirming the critical role of GPT2 during sucrose-

induced early leaf growth. Loss-of-function mutants of GPT2 were previously 

described to grow as wild types without obvious effects on plant growth and 

development (Niewiadomski et al, 2005). This is consistent with our results since 

rosettes of gpt2 mutants were unaltered compared to wild type plants both when 

grown in vitro and in soil. However, constitutive overexpression of GPT2 resulted in 

smaller plants. Transgenic potato plants overexpressing the PsGPT gene of pea in 

tubers was previously reported not to result in differences in tuber starch content and 

tuber yield (Zhang et al, 2008). Our findings suggest that GPT2 overexpression 

negatively affects growth and to further unravel its function it would be interesting to 

determine the underlying cellular mechanisms linking GPT2 with cell proliferation or 

expansion. 

In conclusion, leaf growth is a strictly regulated and complex process and, although 

multiple important players have been already characterized, a lot of additional 

regulators are still missing. Leaf growth is controlled by different molecular networks 

integrating developmental and environmental cues, such as sugars status. In this 

study, we started from sucrose-responsive genes and we were able to find additional 

molecular players with a potential role in cell proliferation and/or cell expansion 

during leaf development.   

MATERIALS AND METHODS 

Transgenic Lines and Mutants 

All experiments were performed on Arabidopsis thaliana (L.) Heyhn. ecotype 

Columbia (Col-0). Mutants for din6 (GABI_829B05), grp3 (GABI_075G07), 

at3g22235 (GABI_893A09) were obtained from the GABI-Kat collection 

(Kleinboelting et al, 2012). gpt2 mutant line was a kind gift of Dr. Giles Johnson 

(University of Manchester). bt2 (SALK_002306), sen1 (SALK_020571), drm2 

(SALK_098437) and at5g26260 (SALK_107244) mutants were ordered from the 

SALK collection (Alonso et al, 2003). Through Gateway cloning 35S::GFP-DRM2, 

35S::SEN1-GFP, 35S::GRP3-GFP, 35S::GPT2-GFP and 35S::GFP-GPT2 constructs 

were made using the pFAST-R06 and pFAST-R05 destination vectors (Karimi et al, 
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2007a; Karimi et al, 2007b) and transformed in Arabidopsis thaliana Col-0 by floral 

dip using the Agrobacterium tumefasciens strain C58C1 (pMP90). 35S::GFP-DRM2, 

35S::SEN1-GFP, 35S::GRP3-GFP and 35S::GPT2-GFP and 35S::GFP-GPT2 

constructs, were independently transformed and for each transformation pipeline a 

different segregating wild type was used for performing growth experiments, WT (OE) 

for the first three lines and WT (GPT2) for the GPT2 overexpression lines. 

Growth Conditions in vitro 

For the in vitro experiments, seedlings were grown on half-strenght MS medium 

(Murashige & Skoog, 1962) under a 16-h day (50 μmol m-2 s-1) and 8-h night regime. 

Seedlings were grown for 9 days (9 DAS) on nylon mesh of 20-μm pore size 

overlaying growth medium without sucrose. At 9 DAS, seedlings were transferred to 

plates containing control medium without sucrose or medium supplemented with 15 

mM sucrose.  

Growth Conditions in soil 

For the in soil experiments, plants were grown for 22 days at 21 ̊C under a 16-h day 

(80-100 μmol m-2 s-1) and 8-h night regime. For the in-vivo growth analysis, four 

plants per pots were sown on soil. After one week, the seedling with a projected 

rosette area closest to median area of that genotype was selected per pot. While the 

growth of these seedlings was followed during further development, the other 

seedlings were removed.  

Image acquisition, image processing and data analysis 

For the in-vivo growth analysis, image acquisition was performed using Canon EOS 

550D slr cameras equipped with a Canon EF 35mm f/2 objective. Pictures were 

automatically captured on a daily basis by a Perl script (www.perl.org) using the 

gPhoto2 library (www.gphoto.org). Image preprocessing and segmentation for the 

seedling selection and growth analysis was performed with C++ scripts using the 

OpenCV image analysis library (www.opencv.org). Parsing of quantitative 
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measurements and further data analysis was performed with Perl scripts 

(www.perl.org). Graphs of the calculated data were automatically plotted making use 

of the graphing utility gnuplot (www.gnuplot.info). More details on the image and data 

analysis procedures can be found elsewhere (Dhondt et al, 2014). 

Growth Measurements 

Leaf series were made by cutting each individual leaf of the rosette and ranking them 

from old to young on a square agar plate. Plates were photographed and pictures 

were subsequently analysed using ImageJ software (http://rsb.info.nih.gov/ij/) to 

measure the size of each individual leaf. 

For the leaf area analysis, leaves were cleared in 100% ethanol, mounted in lactic 

acid on microscope slides, and photographed. Leaf areas were measured with the 

ImageJ software (http://rsb.info.nih.gov//ij/). Abaxial epidermal cells of leaves were 

drawn with a DMLB microscope (Leica) fitted with a drawing tube and a differential 

interference contrast objective. Drawings were scanned and analyzed using 

automated image analysis algorithms (Andriankaja et al, 2012). Subsequently, 

drawings were used to measure average cell area, from which the total pavement cell 

number was calculated. The stomatal index was defined as the percentage of 

stomata compared with all cells.  

SUPPLEMENTAL DATA 
Supplemental figures are available at the end of this chapter. 

Supplemental Figure S1. T-DNA insertion mutants and expression of the nine 
selected candidate genes.  

Supplemental Figure S2. Phenotyping drm1 mutant plants. 

Supplemental Figure S3. Expression levels of DRM2, SEN1, GRP3 and GPT2 in 
overexpression lines.  
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SUPPLEMENTAL DATA 

Supplemental Figure S1. T-DNA insertion mutants and expression of the nine selected candidate genes. 
Loss-of-function mutants were ordered from the SALK or GABI-Kat collection. Table at the left represents the 
name of the gene, the insertion mutant and the region of the transfer DNA insertion. Homozygous plants were 
selected and the expression level of the specific genes was tested with qRT-PCR analysis in 10-day-old seedlings 
(right). Expression was normalized against the average of three housekeeping genes AT1G13320, AT2G32170, 
AT2G28390.

Supplemental Figure S2. Phenotyping drm1 mutant plants. A, DRM1 expression was tested with qRT-PCR 
analysis in 10-day-old wild type WT (GABI) and drm1 T-DNA insertion mutant (GABI_085G06) seedlings grown in 
vitro. Expression was normalized against the average of three housekeeping genes AT1G13320, AT2G32170, 
AT2G28390. B, Plants were grown in soil under long-day (16-h day/8-h night) conditions for 22 days. At 22 DAS, 
average rosette areas were measured for drm1 and appropriate wild type plants. Values in (A) are means of three 
biological repeats with their SE. 

Name  T-DNA mutant  Insertion

din6 GABI_829B05 exon

grp3 GABI_075G07 5' UTR

sen1 SALK_020571 intron

drm2 SALK_098437 5'UTR

bt2 SALK_002306 exon

at3g15630 SALK_139803 exon

at5g26260 SALK_107244 exon

at3g22235 GABI_893A09 3'UTR

gpt2 GABI_454H06 exon

A B 
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Supplemental Figure S3. Expression levels of DRM2, SEN1, GRP3 and GPT2 in overexpression lines. A, 
Expression of SEN1 and GRP2 was checked by qRT-PCR in 10-day old seedlings from homozygous transgenic 
lines expressing 35S::GFP-DRM2, 35S::SEN1-GFP or 35S::GRP3-GFP. B. Expression of GPT2 in 35S::GPT2-
GFP and two independent 35S::GFP-GPT2 (A and B) lines. Expression was normalized against the average of 
three housekeeping genes AT1G13320, AT2G32170, AT2G28390.

 



181 

The Role of HEXOKINASE1 
during Arabidopsis leaf development 

Judith Van Dingenen a,b, Mattias Vermeersch a,b, Liesbeth De Milde a,b, Nancy De 

Winne a,b, Wim Dejonghe a,b, Filip Rolland c, Jelle Van Leene a,b, Nathalie Gonzalez a,b, 

Stijn Dhondt a,b, Geert De Jaeger a,b and Dirk Inzé a,b  

a Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium 
b Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium 
c Laboratory of Molecular Plant Biology, KU Leuven Department of Biology, 
Kasteelpark Arenberg 31, B-3001 Leuven, Belgium 

AUTHOR CONTRIBUTIONS: J.V.D. performed experiments, analyzed data and is 
the main author of the chapter; J.V.L, N.D.W. and G.D.J. performed the TAP 
experiments; M.V., L.D.M. and N.D.W. assisted in experiments; W.D. performed 
confocal imaging; F.R., N.G., S.D. and J.V.L. were involved in discussions throughout 
the project; N.G. and S.D. contributed to the writing of the chapter. G.D.J. and D.I. 
supervised the project. 

CHAPTER 6 



Role of HXK1 in early leaf growth 

182 

ABSTRACT 

In the last decade, extensive efforts have been made to unravel the underlying 
regulatory mechanisms of the role of the conserved glucose sensor HEXOKINASE1 
(HXK1) in the control of plant growth. HXK1-signaling has been shown to exert both 
growth-promoting and growth-inhibitory effects depending on the environmental 
conditions as well as plant species. In a previous study we developed an 
experimental in vitro assay in which the sucrose availability can be altered during 
early Arabidopsis (Arabidopsis thaliana) leaf development we found that sucrose 
induced early leaf growth by stimulating cell proliferation. Here, we used a hxk1 
mutant in the Col-0 accession to investigate the role of HXK1 in early leaf growth in 
more detail. hxk1 knock-out mutants show similar growth defects and glucose-
insensitive responses as previously described for glucose insensitive2 (gin2) mutant 
deficient in HXK1 in the Ler accession. We found that hxk1 mutants are affected in 
both cell proliferation and cell expansion early during leaf development. Furthermore, 
hxk1 mutants were less sensitive to sucrose-induced cell proliferation with no 
significant increase in final leaf growth after treatment. Upon transfer to sucrose, 
GPT2 expression was still induced but chloroplast differentiation was not repressed 
by sucrose in the hxk1 mutant suggesting a GPT2-independent regulation of early 
leaf growth. Finally, we used tandem affinity purification of HXK1 protein complexes 
from cell cultures in the presence or absence of externally applied sucrose to identify 
novel HXK1-interacting proteins. We identified several putative HXK1 protein 
partners for which a role in growth-regulation can be postulated. 

INTRODUCTION 

Leaf growth is a strictly controlled and complex process that strongly depends on 

changing environmental conditions that can alter light, energy and nutrient 

availability. Leaves are the major energy factories of the plant using light during the 

photosynthetic process to produce the essential components necessary to sustain 

plant growth. Interestingly, different studies have illustrated a link between 

photosynthesis, and thus sugar production, and the cellular processes during early 

leaf growth (Andriankaja et al, 2012; Lastdrager et al, 2014; Van Dingenen et al, 

2016). 

Leaves first form at the shoot apical meristem as primordia and subsequently grow 

by cell proliferation and cell expansion (Donnelly et al, 1999). These two cellular 

processes occur simultaneously during the so-called transition phase in leaf 

development when cell expansion starts at the tip of the leaf and a cell division arrest 
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front moves in a tip-to-base direction (Andriankaja et al, 2012). Establishment of the 

photosynthetic machinery and chloroplast differentiation is coupled with the onset of 

cell expansion during early leaf growth (Andriankaja et al, 2012). In accordance, 

when sink leaves receive enough sugars, chloroplast differentiation is postponed and 

cell proliferation is stimulated (Chapter 4, Van Dingenen et al, 2006). GLUCOSE-6-

PHOSPHATE TRANSPORTER2 (GPT2) expression was found to play a central role 

in mediating this sucrose-responsive promotion of cell proliferation as well as the 

repression of plastome expression, probably resulting in the less differentiated 

chloroplasts when seedlings are transferred to sucrose-containing medium (Van 

Dingenen et al, 2016). Sugars are used as substrate in respiration and important 

biosynthesis pathways, such as the oxidative pentose phosphate pathway, cell wall 

biosynthesis and starch biosynthesis, but they can also act as signaling molecules to 

trigger major regulatory mechanisms controlling plant growth (Lastdrager et al, 2014; 

Rolland et al, 2006; Sheen, 2014). These sugar-mediated regulatory networks have 

to be integrated with the growth molecular networks to monitor and adjust plant 

development depending on the environmental conditions. 

Several proteins respond to changes in the cellular sugar status to monitor growth 

and development. One of these central regulators is the protein kinase 

SnRK1/SNF1/AMPK which is activated when carbon and energy sources are scarce. 

Its activation promotes energy-producing catabolic reactions and represses energy-

consuming biosynthetic processes through transcriptional and post-transcriptional 

regulation (Baena-Gonzalez, 2010; Baena-Gonzalez et al, 2007). SnRK1 has a 

conserved heterotrimeric structure comprising one catalytic α-subunit and two 

regulatory β- and ɣ-subunits (Ghillebert et al, 2011). T subgroups of ɣ-

 have been described in plants based on their structure: KINβɣ- KINɣ-

 proteins, and two classes of β-subunits have been reported (Polge & 

Thomas, 2007; Emmanuelle et al, 2016). However, only KINβɣ was found to take 

part in the canonical heterotrimeric complex and KINɣ could not interact with 

any other subunit (Ramon et al, 2013; Emannuelle et al, 2015). The plant catalytic α-

subunit, KIN10, plays a pivotal role in plant growth and development. Over-

expression of KIN10 confers enhanced tolerance to energy deprivation, delays 

senescence and flowering and promotes plant organ growth, whereas the kin10kin11 

double mutant exhibits severe growth inhibition (Baena-Gonzalez et al, 2007).  
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Another important sugar sensing protein is HEXOKINASE1 (HXK1), a glycolytic 

enzyme involved in glucose metabolism in yeast, animals and plants, converting 

glucose to glucose-6-phosphate (Moore et al, 2003). The glucose insensitive2 (gin2) 

mutant is impaired in the HEXOKINASE1 (HXK1) protein and can survive on high 

concentrations of glucose, whereas wild-type plants exhibit developmental arrest, 

such as repression of cotyledon expansion and chlorophyll accumulation (Zhou et al, 

1998). HXK1-signaling mediates glucose-induced repression of photosynthesis-

related genes, such as CHLOROPHYLL A/B BINDING PROTEIN (CAB) and the 

small subunit of RUBISCO (RBCS) (Moore et al 2013). The gin2 mutant generally 

exhibits severe growth defects, such as small dark green leaves and a reduced root 

system when grown under high light conditions (Moore et al 2003). Based on the 

distance between neighboring trichomes it was proposed that the small gin2 leaves 

result from reduced cell expansion. Complementation of the gin2 mutant with 

catalytically inactive HXK1 alleles resulted in recovering of the susceptibility to high 

glucose concentrations as well as enlarged leaves when grown under high light. 

These findings further support a central role of HXK1 in regulating sugar signaling 

during plant growth (Moore et al, 2003). Remarkably, over-expressing HXK1 in 

Arabidopsis and its orthologues in tomato and rice plants also results in growth 

defects, with reduced chlorophyll accumulation and photosynthesis as well as early 

onset of senescence (Dai et al, 1999; Kelly et al, 2012; Kim et al, 2013). Furthermore, 

silencing of NtHXK1 in tobacco also leads to growth-inhibitory effects and pale 

bleached leaves due to degraded chloroplasts in the source leaves and starch 

accumulation in the sink leaves (Kim et al, 2013). Taken together, these observed 

growth defects of both the hxk1 mutants and HXK1-overexpression lines suggest 

that, depending on the environmental conditions and developmental stages, HXK1 

can exhibit growth-promoting as well as growth-inhibiting effects. Obviously, a better 

understanding of how HXK1 monitors growth as well as the underlying cellular 

mechanisms of HXK1-mediated signaling is necessary. 

Due to the presence of a N-terminal hydrophobic membrane anchor domain, the 

predominant localization of HXK1 is on the outer membrane of mitochondria where it 

exerts its metabolic function during glycolysis (Claeyssen & Rivoal, 2007; Granot, 

2008). Several GFP-fusion studies in Arabidopsis, tomato, spinach and tobacco 

revealed HXK1-association with the mitochondria and showed that a deletion of the 
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N-terminal domain resulted in localization in the cytosol (Balasubramanian et al, 

2007; Damari-Weissler et al, 2007; Heazlewood et al, 2004). Furthermore, to be able 

to regulate transcription, it has been suggested that a small portion of the HXK1 

proteins is translocated to the nucleus where it interacts with the vacuolar H(+)-

ATPase B1 (VHA-B1) and the 19S regulatory particle of the proteasome subunit 

(RPT5B) (Cho et al, 2006). However, how this nuclear HXK1 complex is exactly 

established and whether additional HXK1-interacting protein partners are involved in 

the HXK1-mediated regulation of transcription is still not well understood. 

In this study, we characterized a hxk1 mutant in the Col-0 background and studied 

the role of HXK1 in sucrose-mediated leaf growth. Furthermore, tandem affinity 

purification experiments allowed for the identification of several novel HXK1 

interacting proteins. 

RESULTS 

Characterization of a Sugar-Insensitive hxk1 mutant in the Col-0 genetic 
background 

To date, most of the studies on HXK1 in Arabidopsis used the gin2 mutant identified 

from a genetic screen of glucose insensitive mutants in the Landsberg erecta (Ler) 

background (Rolland et al, 2002; Zhou et al, 1998). To study the role of HXK1 during 

early leaf development, we selected a T-DNA mutant in the Col-0 background from 

the SALK collection (Alonso et al, 2003). This insertion mutant harbors a T-DNA at 

the end of the first intron of the HXK1 gene (SALK_018086; Supplemental Fig. S1A). 

Homozygous plants were selected and the HXK1 expression level was checked with 

qRT-PCR analysis which demonstrated a complete abolishment of HXK1 expression 

(Supplemental Fig. S1B). 

The shoot growth of the hxk1 mutant was studied by growing plants on soil exposed 

to high light intensity (≥100 μmol/m-2s-1) for 22 days after stratification (DAS). At this 

time point, hxk1 had a significant decrease of 77% in rosette area compared with 

Col-0 plants (P < 0.0001; Fig. 1A). Therefore, in general, the hxk1 mutant 

demonstrated a rosette growth defect as previously described for the gin2 mutant 

(Moore et al, 2003). All individual rosette leaves were significantly smaller and the 
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third leaf area of hxk1 was only 25% of the area of Col-0 plants (P < 0.0001; Fig. 1B). 

This decrease in leaf size was due to both a significant reduction of 61% in the 

number of pavement cells and significant smaller pavement cells being on average 

54% of the size of Col-0 cells (P < 0.0001; Fig. 1C).  

Figure 1. hxk1 plants exhibit growth defects and are insensitive to sugars. hxk1 mutant and Col-0 wild type 
plants were grown in soil for 22 days after stratification (DAS) under a high light intensity of approximately 100 
μmol/m-2s-1. A and B, Rosette area (A) and individual leaf area (B) were measured at 22 DAS. Cot = cotyledons;
Lx = leaf position x in the order of appearance on the rosette. C, Ratio of the third leaf size, pavement cell area 
and total cell number of hxk1 compared with Col-0. D, 8-day-old seedlings grown on MS medium supplemented 
with 6% glucose. E, 10-day-old seedlings grown on vertical plates without sucrose (-S) or 1% sucrose (+S). 
Values are means of three biological repeats with their SE. Rosette and leaf area was measured for 10 to 12 
plants in each repeat. Cellular data are from three leaves in each repeat. *, P < 0.05 compared to Col-0, mixed 
models. 

The sugar-insensitivity of the hxk1 mutant was verified at shoot and root level. First, 

hxk1 seedlings did not show a developmental arrest on Murashige and Skoog (MS) 

medium supplemented with 6% glucose, whereas Col-0 wild type seedlings exhibited 

reduced cotyledon expansion and root growth, and anthocyanin production under this 

growth condition (Fig. 1D; Moore et al, 2003). Secondly, sugar responsiveness of the 

primary root was checked based on sucrose-induced waving when plants are grown 

on vertical plates with MS media supplemented with 1% sucrose (+S; Fig. 1E; Oliva 

and Dunham 2007). The primary root of 10-day-old wild type seedlings showed a 

typical waving pattern which is not present when seedlings were grown without 

sucrose (-S; Fig. 1E). Sucrose addition did not result in waving of the primary root of 
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hxk1 seedlings (Fig. 1E). Besides this absence of waving, the hxk1 mutant seedlings 

generally had a reduced root system. 

Taken together, we show that the identified hxk1 mutant in the Col-0 background 

exhibits a decrease in shoot and root growth and insensitivity to sugars similar to the 

previously described gin2 mutant in the Ler accession. Furthermore, the decreased 

leaf size of hxk1 plants grown in soil is due to less and smaller pavement cells. 

hxk1 leaves have More Pavement Cells in the Young Leaves but undergo 
Faster Onset of Cell Differentiation compared with Wild type plants 

To investigate further the underlying cellular mechanisms responsible for the reduced 

leaf size of hxk1 plants and to study the potential role of HXK1 during sucrose-

induced early leaf growth stimulation, the in vitro experimental setup described in 

Chapter 4 (Van Dingenen et al, 2006) was used in all following experiments. In this 

setup, sugar status can be altered during the cell proliferation phase of the third leaf 

which allows for studying the function of HXK1 in a developmental context. Seedlings 

were first grown on meshes covering MS medium without carbon source under low 

light conditions (50 μmol/m-2s-1) for 9 days. At 9 DAS, seedlings were transferred to 

control medium without sucrose or to 15 mM sucrose-supplemented medium after 

which rosette size, leaf area, pavement cell number and cell area of the third leaf 

were measured from 9 to 16 DAS and at the final time point 21 DAS. In the following 

paragraph, we describe the phenotypes of the seedlings transferred to control 

medium without sucrose to determine the cellular differences between hxk1 mutant 

and Col-0 plants. 

Using above in vitro growth conditions, the average final rosette size and the third 

leaf size at 21 DAS were similar between the hxk1 mutant and wild type plants (Fig. 

2A and B). In accordance, no difference was observed in pavement cell area and cell 

number between hxk1 and wild type leaves grown on control medium (Supplemental 

Fig. S2). However, early during development, from 9 until 14 DAS, the third leaf area 

of hxk1 seedlings was significantly larger than Col-0 leaves (P < 0.05; Fig. 2C). At 10 

DAS, hxk1 leaf was 43% larger due to a significant increased number of pavement 

cells that were slightly smaller (69%, P < 0.05 and -13%, P = 0.21 respectively; Fig. 

2D).
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To further examine the underlying cellular effect, pavement cell number and size 

were calculated daily from 9 until 16 DAS (Fig. 2E and F). At 9 DAS, hxk1 leaf 

primordia already contained more cells than Col-0 (17%, P = 0.21; Fig. 2E inset). 

This increase in cell number was significantly different from wild type plants from 10 

DAS to 14 DAS (Fig. 2E). No difference in the average cell size was observed 

between Col-0 and hxk1. 

The positive effect on total pavement cell number was further investigated with the 

pCYCB1;1::CYCB1;1-D-box:GUS reporter that allows for the visualization of mitotic 

active cells, in Col-0 and hxk1 mutant backgrounds. At 9 DAS, seedlings were 

transferred to control medium and harvested for GUS staining at 14 DAS, five days 

after transfer. Almost no GUS staining could be detected for the 

pCYCB1;1::CYCB1;1-D-box:GUS/hxk1 mutant line, whereas pCYCB1;1::CYCB1;1-

D-box:GUS wild type seedlings demonstrated a strong staining at the base of the 

third leaf (Fig. 2G). The GUS intensity was quantified in a defined region from the 

base to the tip of the leaf as described in Chapter 4 and in Vercruyssen et al (2014). 

pCYCB1;1::CYCB1;1-D-box:GUS/hxk1 leaves showed weaker GUS activity as well 

as a cell cycle arrest front closer to the leaf base compared with 

pCYCB1;1::CYCB1;1-D-box:GUS/Col-0 control plants (Fig. 2G). These observations 

suggest that, at this time point, almost all cells of hxk1 have reduced cell divisions 

and/or stopped dividing, whereas Col-0 cells are still actively dividing at the base of 

the leaf. Similar GUS staining profiles were observed at earlier time point 12 DAS 

Figure 2. hxk1 leaves have more cells and undergo faster differentiation but are insensitive to sucrose 
early during leaf development. Col-0 and hxk1 mutant seedlings were grown on medium without sucrose 
and, at 9 DAS, transferred to medium without (control) or supplemented with 15 mM sucrose (sucr). A, 
Rosette area at 21 DAS of Col-0 and hxk1 control plants. B, Third leaf area at 21 DAS of Col-0 and hxk1 
plants transferred to control and sucrose. C, Third leaf area from 9 to 16 DAS of Col-0 and hxk1 control 
seedlings. D, Ratio of leaf area, pavement cell area and total cell number of the third leaf of hxk1 control 
seedlings compared with Col-0 seedlings 10 DAS. E, Pavement cell number and cell area (F) from 9 to 16 
DAS of Col-0 and hxk1 leaves from control seedlings. G, GUS-stained third leaves at 14 DAS of 
pCYCB1;1::CYCB1;1-D-box:GUS in Col-0 and hxk1 background seedlings transferred to control medium and 
GUS intensity quantification along the leaf. GUS staining was quantified in a defined region from the base to 
the tip of each leaf. The red line indicate the cell cycle arrest front. H and I, Leaf area from 10 DAS until 21 
DAS of Col-0 plants (H) transferred to control or sucrose-supplemented medium (from Chapter 4, Van 
Dingenen et al.,2016) and hxk1 plants (I). The insets are close-ups of 12 and 13 DAS. J, Ratio of pavement 
cell area, cell number and stomatal index of the third leaf of Col-0 (black) and hxk1 (blue) plants transferred to 
sucrose relative to the control, at 21 DAS. K and L, Ratio of epidermal cell number (K) and cell area (L) from 
10 until 16 DAS of the third leaf of Col-0 and hxk1 plants transferred to sucrose relative to the control. Values 
from (A) to (D) and (H) to (J) are the means of three biological repeats with their SE. Rosette and leaf area 
was measured for on average 12 leaves in each repeat. Cellular parameters were measured for four to five 
leaves in each repeat. Values in (E) and (F) are the means of four to eight leaves with their SE. Values in (G) 
are the means of two repeats with their SE. GUS intensity was measured for 8 to 10 leaves in each repeat. 
Values in (K) and (L) are the means from four to nine leaves.  *, P < 0.05 for log-transformed values in (B) to 
(D) for hxk1 compared to Col-0 and (H) to (L) for sucrose compared to control, mixed models and *, P < 0.05 
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corresponding to three days after transfer (Supplemental Fig. S3). To further examine 

cellular differentiation in hxk1 mutant leaves, ploidy levels were measured by flow 

cytometry in the third leaves of hxk1 and Col-0 seedlings harvested daily from 11 to 

17 DAS. hxk1 leaves had an increased endoreduplication index, i.e. the average 

number of endocycles a cell undergoes, between 11 and 13 DAS, which suggests 

that hxk1 cells have higher ploidy levels compared to wild type (Supplemental Fig. 

S4). In accordance, at the same time points decreased 2 C levels and increased 4 C 

levels were observed (Supplemental Fig. S4).  

In conclusion, early during development, leaves of hxk1 seedlings grown in vitro 

without sucrose are larger due to more pavement cells and hxk1 leaf cells stop 

dividing and start differentiating earlier than in wild type plants.  

hxk1 seedlings are Insensitive to the Sucrose-Induced Cell Proliferation during 
Early Leaf Development 

In Chapter 4 (Van Dingenen et al, 2016), we showed that transfer of young seedlings 

to sucrose-containing media stimulates cell proliferation and increases final leaf size 

in wild type plants. To investigate whether HXK1 plays a role in this process, hxk1 

and Col-0 seedlings were transferred at 9 DAS to 15 mM sucrose-supplemented 

medium or control medium and area, pavement cell number and cell size of the third 

leaf were measured.  

At 21 DAS, the third leaf area of Col-0 plants transferred to sucrose was increased by 

43% (P < 0.05) compared to control plants grown without sucrose, whereas leaf area 

of the hxk1 plants was not significantly increased by sucrose (11%, P = 0.57; Fig. 

2B). To further examine the partial sucrose insensitivity of hxk1 leaves, leaf sizes 

were measured at three consecutive time points, i.e. 20, 21 and 22 DAS. At these 

time points, addition of sucrose (at 9 DAS) resulted in a significant increase in the 

third leaf size of 30%, 45% and 39% (P < 0.05), respectively, for Col-0, whereas the 

leaf area of hxk1 mutant plants remained unaffected by sucrose (P > 0.05; 

Supplemental Fig. S5).  

Subsequently, a time-course experiment was performed by harvesting the third leaf 

daily after transfer, from 10 DAS until 21 DAS, and measuring its area. In Col-0 

seedlings, the third leaf of sucrose-transferred plants was significantly larger than that 
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of control plants starting from 12 DAS, corresponding to 3 days after transfer (37%, 

P < 0.05), and remained larger until 21 DAS (Fig. 2H). Also in the hxk1 mutant, leaf 

size was significantly increased by sucrose at 12 DAS (27%, P < 0.05) but this effect 

was less pronounced than in Col-0 plants and remained less pronounced until 21 

DAS (Fig. 2I). The increased leaf area of Col-0 plants at 21 DAS was mainly due to a 

significant higher number of pavement cells (37%, P < 0.05; Fig. 2H and 

Supplemental Fig. S6). In the hxk1 mutant, cell number was not significantly 

increased with 11% (P = 0.70; Fig. 2J and Supplemental Fig. S6). Average cell size 

of Col-0 and hxk1 leaves remained unchanged by sucrose (P > 0.05). Stomatal index 

was slightly increased by sucrose in Col-0 leaves (8%, P < 0.05) but did not change 

upon transfer to sucrose in the hxk1 mutant (P > 0.05). The positive effect of sucrose 

on cell proliferation was already found to be significant at 10 DAS, corresponding to 

24 hours after transfer, in Col-0 seedlings (41%; P < 0.05; Fig. 2K). In hxk1 mutant 

leaves, transfer to sucrose increased pavement cell number to a much lesser extend 

(16%; P = 0.13). At later time points no positive effect on cell number, such as was 

observed in wild type leaves, was found in hxk1 mutant leaves, except at 16 DAS 

(41%, P < 0.05; Fig. 2K). In addition, similar to Col-0 seedlings, no consistent effect 

in the average cell size was found between control and sucrose-transferred hxk1 

seedlings (10-16 DAS; Fig. 2L).  

As described previously, expression of GPT2 is necessary for the sucrose-induced 

stimulation of cell proliferation at 10 DAS (Chapter 4; Van Dingenen et al 2016). To 

examine whether GPT2 expression was compromised in hxk1 seedlings, transcript 

levels were determined with qRT-PCR analysis in shoots of sucrose-transferred and 

control seedlings 24 hours after transfer (Supplemental Fig. S7). Interestingly, shoots 

of Col-0 and hxk1 control seedlings had equal amount of GPT2 transcript levels and 

also upon transfer to sucrose, GPT2 expression was equally up-regulated in both 

lines. 

In conclusion, hxk1 seedlings are less sensitive to the sucrose-induced stimulation of 

cell proliferation at early time points. This effect was not due to a change in the 

sucrose-induced GPT2 expression.  
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hxk1 have Larger Chloroplasts compared with Wild Type Upon Transfer to 
Sucrose 

As described previously (see Chapter 4, Van Dingenen et al, 2016), transfer of wild 

type seedlings to sucrose-supplemented medium increases cell number and cells 

have fewer, smaller and less differentiated chloroplasts at 10 DAS. To examine the 

effect of sucrose on hxk1 seedlings, chloroplast number and size were determined by 

transmission electron microscopy. Transverse cross-sections of Col-0 and hxk1 

leaves of seedlings transferred to control or sucrose-containing media were made 

two days after transfer (11 DAS). Mesophyll cell area, chloroplast number and 

chloroplast size were measured taking into account the differences between the tip 

and the base of the leaf. 

 The average mesophyll cell size did not differ between Col-0 and hxk1 control leaves 

and in both lines cells were larger at the tip compared to the base of the leaf (P < 

0.05; Fig. 3A). Sucrose treatment led to a significant decreased mesophyll cell area 

of 26% (P < 0.05) in Col-0 leaves at the tip and to no change in hxk1 leaves (Fig. 

3A). No clear difference in chloroplast ultrastructure and shape could be observed 

between Col-0 and hxk1 seedlings and, sucrose and control conditions (Fig. 3B). 

However, chloroplasts at the tip of sucrose-transferred hxk1 leaves have slightly 

increased grana stacking compared to all other conditions (Fig. 3B). For both lines 

and conditions, chloroplasts were larger at the tip compared with the base of the 

leaves (P < 0.05; Fig. 3C). Furthermore, in hxk1 leaves, transfer to sucrose resulted 

in the formation of approximately 50% larger chloroplasts, although not significantly. 

Finally, chloroplast number per cell did not differ between Col-0 and hxk1 control 

leaves and transfer to sucrose resulted in significant less chloroplasts in both lines 

(Fig. 3D).  

In summary, transfer of seedlings to sucrose resulted in smaller mesophyll cells with 

less and smaller chloroplasts in Col-0 leaves, whereas no difference in mesophyll cell 

size but larger chloroplasts were found in hxk1 leaves after transfer to sucrose. 
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Expression of 35S::HXK1-GSgreen vector in hxk1 mutant plants restores growth 
and sugar-responsiveness 

To identify novel interaction partners of HXK1, tandem affinity purification (TAP) 

experiments were performed with the HXK1 GSrhino- or GSgreen tagged fusion 

proteins. These tags are derivatives of the TAP tag GS (Van Leene et al, 2008). 

GSrhino consists of the protein-G (G) tag and the streptavidin-binding peptide (S) 

separated by rhinovirus 3C protease cleavage sites (Van Leene et al, 2015). In the 

GSgreen TAP-tag, the protein-G tag in GSrhino has been replaced by GFP, allowing also 

Figure 3. Mesophyll cell area, chloroplast size and chloroplast number in Col-0 and hxk1 leaves upon 
transfer to sucrose. Col-0 and hxk1 leaves were grown on control medium without sucrose for 9 days, and 
subsequently transferred to control or 15 mM sucrose (sucr)-supplemented media for two additional days. 
Average mesophyll cell area (A), average chloroplast size (C) and chloroplast number (D) in the tip and base 
of the third leaf of control and sucrose-treated Col-0 (whit=base and grey=tip) and hxk1 (light green=base and 
dark green=tip) seedlings at 11 DAS. B, Transmission electron micrographs of tip and base of the 11-d-old 
third leaves of Col-0 and hxk1 seedlings after transfer to control or 15 mM sucrose (sucr) supplemented 
medium. The bar represents 1 μm. Values are means ± SE from 27-87 mesophyll cells of the tip and the base 
of two independent leaves. *, P < 0.05 for tip compared to base and a, P < 0.05 for sucrose compared to 
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in vivo visualization of the bait protein. Both tags were C-terminally fused to HXK1 

because the N-terminal domain contains a mitochondrion-anchor domain 

(Balasubramanian et al, 2007). Both constructs were expressed under the control of 

the 35S promoter. Prior to the TAP experiments, the functionality of the construct was 

tested by transforming hxk1 mutant plants with the 35S::HXK1-GSgreen vector. The 

abundance of the GSgreen-tagged HXK1 protein was tested in 9-day-old seedlings by 

western blot and showed to be high in two independent T2 transgenic lines (Fig. 4A). 

One of the lines was selected for further upscaling and in the next generation (T3), 

the overexpression of HXK1 was confirmed in 10-day-old seedlings with qRT-PCR 

analysis (Fig. 4B). Next, the effect of the gain-of-function of HXK1 in the hxk1 

background was verified (Fig. 4C and D).  

Figure 4. Complementation of hxk1 mutation with 35S::HXK1-GS
green

 fusion protein. A, Western blot of 9-
day-old T2 hxk1 seedlings expressing the 35S::HXK1-GSgreen fusion protein using primary antibody against 
GFP. +, positive control and -, negative control Col-0 seedlings. B, Relative HXK1 expression in 10-day-old 
35S::HXK1-GS

green
/hxk1 T3 seedlings. C, 22-day old Col-0, hxk1 and 35S::HXK1-GS

green
/hxk1 plants grown in

soil under high light intensity of approximately 100 μmol/m
-2

s
-1

. D, 8-day-old Col-0, hxk1 and 35S::HXK1-
GS

green
/hxk1 seedlings grown on vertical plates supplemented with 6% glucose. E, 10-day-old Col-0, hxk1 and 

35S::HXK1-GS
green

/hxk1 seedlings grown on vertical plates with 1% sucrose.

As described above, the average rosette size of the hxk1 mutant was reduced when 

grown under high light intensity. Interestingly, mutant plants expressing the 

35S::HXK1-GSgreen vector demonstrated a normal rosette growth which was similar to 

the rosette of Col-0 wild type plants (Fig. 4C). To investigate the sugar 
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responsiveness of the 35S::HXK1-GSgreen/hxk1 line, the seedlings were grown on 6% 

glucose. The transgenic line showed a hypersensitive response with almost complete 

inhibition of cotyledon expansion and chlorophyll accumulation, with high 

anthocyanin production and reduced root growth compared to hxk1 mutant seedlings 

which were insensitive to the high glucose concentrations (Fig. 4D). Finally, the root 

waving pattern of 10-day old seedlings grown on vertical plates with 1 % sucrose was 

checked. The typical waving pattern which was absent in the hxk1 mutants was 

partially rescued in the hxk1 mutant expressing the 35::HXK1-GSgreen vector (Fig. 

4D).  

Next, the localization of the HXK1-GSgreen fusion protein was verified in roots and 

cotyledons of 5-day old 35S::HXK1-GSgreen/hxk1 transgenic seedlings. Fluorescence 

was detected in both roots and cotyledons, with an apparent localization in 

mitochondria (Fig. 5A). Mitochondrial localization was confirmed by co-localization 

with the mitochondrial specific dye Mito tracker red (Fig. 5B, C). Interestingly, in the 

cotyledons the two signals of the HXK1-GSgreen fusion protein and the Mito tracker 

red, mainly merged in larger foci which were also described before in 

Balasubramanian et al. (2007), and probably represent aggregated mitochondria. 

Figure 5. Localization of the 35S::HXK1-GSgreen fusion protein in Arabidopsis seedlings. Confocal images of
5-day-old 35S::HXK1-GSgreen/hxk1 Arabidopsis seedlings grown on vertical plates on MS medium. A, HXK1-
GSgreen fluorescence in roots and cotyledons. B, Mitochondrial staining with Mito tracker red. C, Merged images of
A and B. Scale bar is 20 μm.
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In conclusion, expressing of the GSgreen-tagged HXK1 under the control of the 35S 

promoter in the hxk1 mutant background rescued the growth inhibition and the sugar 

insensitivity of the hxk1 mutant line and demonstrated normal HXK1 localization to 

the mitochondria. 

Finding Sucrose-responsive Interaction Partners of HXK1 

To identify novel and sugar-dependent HXK1 interactors, HXK1 was used as bait for 

tandem affinity purification (TAP) experiments and consecutive mass spectrometry 

analysis. As described above, HXK1 was C-terminally fused to the GSrhino TAP tag 

for expression in cell cultures and to the GSgreen TAP tag for expression in seedlings 

(Van Leene et al, 2008).  

TAP experiments were performed in two biological repeats from Arabidopsis cell 

suspension cultures grown in three different growth conditions. For the first condition, 

Arabidopsis suspension cells were continuously grown in the presence of 3% 

sucrose, for the second condition cell cultures were sucrose-starved for 24 hours and 

for the third condition the sucrose-starved cell cultures were resupplied with 3% 

sucrose for 15 minutes. From the three different growth conditions, a total of 23 co-

purified proteins could be retained after subtraction of aspecific background proteins 

based on the procedure described in Material and Methods (Table 1). Five proteins 

were pulled-down with HXK1 from cells continuously grown in the presence of 

sucrose but only in one experiment (Table 1). TAP performed on sucrose-starved cell 

cultures resulted in the purification of eleven other proteins, from which five were also 

found after re-supplementation of sucrose. Two of these five overlapping proteins are 

mitochondrial inner membrane proteins, the alternative oxidase 1A (AOX1A; 

AT3G22370) and a leucine zipper-EF-hand-containing transmembrane protein 

(LETM1; AT3G59820; Zhang et al 2012). A similar purification pattern was found for 

two plasma membrane proteins, a non-race-specific disease resistance (NDR)-like 

protein/tobacco hairpin-induced gene (HIN)-like protein (AT5G06320) and a 

senescence/dehydration-associated protein EARLY-RESPONSIVE TO 

DEHYDRATION7 (ERD7; AT2G17840). The fifth protein found to interact with HXK1 

in both conditions was a histone H2A protein, HTA6 (AT5G59870). Five of the six 

other proteins exclusively purified after sucrose starvation were only found in one 
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experiment (Table 1). KINɣ1 (AT3G48530) was the only protein isolated twice after 

sucrose starvation. Re-supplementation of sucrose for 15 minutes resulted in the 

identification of seven additional proteins, besides the five isolated in both conditions 

(Table 1). Six of these seven proteins were only purified once and were assigned to 

distinctive protein families (Table 1). However, one protein, a quinone reductase 

family protein (AT4G36750), was exclusively isolated after sucrose addition and 

found in both independent repeats. Finally, one TAP experiment was performed in 

planta on 35S::HXK1-GSgreen/hxk1 transgenic seedlings subjected to the 

experimental in vitro sucrose assay (Chapter 4, Van Dingenen et al, 2016). 

Unfortunately, interactors identified with TAPs from seedlings transferred for 1 hour to 

control or sucrose-supplemented media did not reveal any overlap with the proteins 

co-purified with HXK1 from cells. Nevertheless, several other interesting interaction 

partners were found which could be of interest for future research (Supplemental 

Table S1). 

Taken together, by using different sugar treatments on cell cultures, 23 different 

proteins could be purified together with HXK1. However, only two of these 23 

proteins were isolated twice independently in specific growth conditions, a quinone 

reductase family protein which was only isolated after re-addition of sucrose and 

KINɣ1 which co-purified with HXK1 from sucrose-starved cell cultures. 

Role of the Putative HXK1 Interaction Protein KINɣ1 in Sucrose-Induced 
Responses 

From the TAP experiment, we found that KINɣ1 is a possible interesting HXK1 

protein partner putatively involved in sugar responses (Table 1). KINɣ1 was, based 

on its structure, suggested to belong to the regulatory subunits of the heterotrimeric 

SnRK1 complex (Gissot et al, 2006), although no direct involvement in SnRK1 sugar-

mediated signaling was demonstrated (Ramon et al, 2013). We found that KINɣ1 

copurifies with HXK1 when cell cultures are sucrose-starved and it was not isolated 

when cell cultures were treated with sucrose (Table 1). 
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sucr 

starvation 

3% 

sucr 

cell 

cultures 

Gene ID Name Description 

AT3G48530 KINɣ1 SNF1-related protein kinase regulatory subunit 
gamma 1 2 

AT1G76850 SEC5A exocyst complex component sec5 1 

AT2G33040 ATP3 gamma subunit of Mt ATP synthase 1 

AT2G42790 CSY3 citrate synthase 3 1 

AT2G44530 Phosphoribosyltransferase family protein 1 

AT5G49830 EXO84B exocyst complex component 84B 1 

AT5G59870 HTA6 histone H2A 6 2 1 

AT4G36750 Quinone reductase family protein 2 

AT2G17840 ERD7 Senescence/dehydration-associated protein-
related 1 2 

AT3G22370 AOX1A alternative oxidase 1A 1 2 

AT3G59820 LETM1 LETM1-like protein 1 2 

AT5G06320 NHL3 NDR1/HIN1-like 3 1 2 

AT1G07180 NDI1 alternative  NAD(P)H dehydrogenase 1 1 

AT1G48900 Signal recognition particle 1 

AT2G26990 CSN2 Proteasome family protein/COP signalosome 
subunit 1 

AT4G20830 FAD-binding Berberine family protein 1 

AT4G23630 BTI1 VIRB2-interacting protein 1 1 

AT5G43900 MYA2 myosin 2 1 

AT3G08947 ARM repeat superfamily protein 1 

AT4G26110 NAP1;1 Nucleosome assembly protein1;1 1 

AT2G19480 NAP1;2 Nucleosome assembly protein 1;2 1 

AT5G58410 HEAT/U-box domain-containing protein 1 

AT1G68680 unknown protein 1 

Table 1. Proteins identified in the purification  with HXK1 in cell cultures grown in
three different growth conditions.  

* TAPs were performed on Arabidopsis cell cultures continuously grown in the presence of sucrose (cell
cultures), on cell cultures that were sucrose-starved for 24 hours (sucr starvation) and on sucrose-starved 
cells resupplied with 3% sucrose for 15 minutes (3% sucr). The numbers indicate the number of 
experiments in which the protein was identified. TAPs were performed in two independent repeats. 
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If HXK1 and KINɣ1 are part of the same complex, they should have similar cell 

localization. According to the webtool, SUBA3 

(http://suba3.plantenergy.uwa.edu.au/), localization of KINɣ1 is predicted to be in the 

cytosol. By transient expression of C-terminal and N-terminal RFP translation fusion 

proteins in tobacco leaves, we could confirm the cytosolic localization of KINɣ1 (Fig. 

6A). Transient co-expression of the HXK1-GSgreen fusion protein with either 

35S::KINɣ1-RFP or 35S::RFP-KINɣ1 did not reveal clear overlap, although, a 

possible co-localization at the outside of mitochondria might be possible (Fig. 6A).  

Figure 6. Localization of KINɣ1 fusion protein and growth phenotypes of kinɣ1 mutant. A, Transient co-
expression of KINɣ1-RFP or RFP-KINɣ1 with HXK1-GSgreen fusion proteins in leaves of Nicotiana benthamiana. 
Infiltrated leaves were imaged three days after Agrobacterium-mediated transformation in lower epidermal cells. 
B, Rosette size and images of Col-0 and kinɣ1 plants grown in soil for 22 days under a high light intensity of 
approximately 100 μmol/m-2s-1. C, Col-0 and kinɣ1 mutant seedlings were grown in vitro for 9 days without 
sucrose and transferred at 9 DAS to medium without (control) or with 15 mM sucrose (sucr). Leaf area was 
measured at 21 DAS. Values are means of three biological repeats with their SE. Leaf area was measured for 5
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To verify the direct interaction of HXK1 and KINɣ1, a Bimolecular Fluorescence 

Complementation (BiFC) experiment was performed in tobacco leaves, but failed to 

produce fluorescent signal (data not shown). Additionally, a Yeast-Two-Hybrid (Y2H) 

assay was done using yeast growth media supplemented with glucose or with 

galactose/raffinose to rule out a possible inhibitory effect of glucose on the protein 

interaction. However, transformation of yeast with KINɣ1 expressed in the pDEST32 

destination vector resulted in strong auto-activation and the HXK1-KINɣ1 interaction 

could not be confirmed (Supplemental Fig. S8). Localization and interaction was also 

checked in 8-days-old Arabidopsis cell cultures which were sucrose starved for 24 

hours. Similarly as shown before in tobacco leaves, GFP fluorescence of the HXK1-

GSgreen fusion protein was detected in small and large foci possibly representing 

mitochondria, whereas C- and N-terminal KINɣ1 fusion proteins were localized to the 

cytosol (Supplemental Fig. S9). No co-localization could be detected for HXK1-

GSgreen and KINɣ1-RFP fusion proteins, whereas RFP-KINɣ1 fusion protein co-

localized with HXK1-GSgreen in some cells.  

Finally, a BiFC experiment was performed in sucrose-starved cell cultures expressing 

HXK1 C-terminally fused to head GFP (hGFP) and KINɣ1 N-terminally fused to tail 

GFP (tGFP). Weak GFP fluorescence signal was detected, which was stronger than 

the background fluorescence signal of untransformed wild type PSB-L cell cultures 

(Fig. 7). Transformation with tGFP-KINɣ1 fusion alone or the BiFC combination 

before sucrose starvation did not result in a detectable fluorescence signal (data not 

shown). 

 

Figure 7. Bimolecular Fluorescence Complementation in sucrose-starved cell cultures demonstrates 
weak HXK1-KINɣ1 interaction. Arabidopsis cell cultures were stable co-transformed with HXK1-head GFP 
(hGFP) and KINɣ1-tail GFP (tGFP) fusions. Empty represents autofluorescence in untransformed wild type PSB-L 
cells. Scale bar represents 20 μm.
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To study whether KINɣ1 is involved in the regulation of growth, rosette size of 

homozygous kinɣ1 knock-out mutant plants grown in soil under high light intensity of 

approximately 100 μmol/m-2s-1 was measured. At 22 DAS, rosettes of kinɣ1 knock-out 

plants were significantly larger than wild type plants indicating a role of KINɣ1 in 

growth regulation under these environmental conditions (9%, P < 0.05; Fig. 6B). To 

explore whether KINɣ1 is involved in the sucrose-induced leaf growth stimulation, 

kinɣ1 knock-out mutant seedlings were subjected to the experimental sucrose assay 

developed previously (Chapter 4, Van Dingenen et al, 2016). At 21 DAS, the average 

third leaf area was significantly increased upon transfer to sucrose by 60% and 46% 

in Col-0 plants and kinɣ1 mutant plants, respectively (P < 0.05). However, no 

difference in the effect on final third leaf size could be observed between wild type 

Col-0 and kinɣ1 mutant plants (P = 0.74; Fig. 6C).  

DISCUSSION 

The gin2 mutant in the Landsberg erecta (Ler) genetic background was selected from 

a large ethyl methanesulfonate (EMS)-mutagenized seed collection as a mutant that 

can still grow on 6-7% glucose (Zhou et al, 1998). We found a similar glucose 

insensitive response for the T-DNA insertion mutant hxk1 in the Col-0 background. 

Furthermore, down-regulation of HXK1 expression results in inhibition of growth 

under high light intensities both in the Ler (Moore et al, 2003) and Col-0 background. 

Here we showed that the reduced leaf size of these soil-grown hxk1 plants was due 

to less and smaller cells. In order to explore whether HXK1 is important for the 

increase in leaf growth upon transfer of seedlings to sucrose, the previously 

described experimental setup was used (Chapter 4, Van Dingenen et al, 2016). 

Under the control growth conditions, i.e. a low light intensity of approximately 50 

μmol/m-2s-1 and no exogenously supplied carbon source, both final rosette size and 

third leaf area of the hxk1 mutant were not affected compared with wild type plants. 

Also other sugar metabolism related mutants exhibit these light-dependent 

phenotypes. For example, double mutants of the triose-phosphate/phosphate 

translocator (tpt) with starch-deficient or starch metabolizing mutants, exhibit severe 
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growth retardation under high light intensities but are indistinguishable from wild type 

plants under low light conditions (Schmitz et al, 2014; Schmitz et al, 2012).  

Since under the low light conditions without exogenously supplied sucrose, the hxk1 

mutant behaves as wild type in terms of growth, this creates an excellent condition to 

monitor the role of HXK1 during early leaf development without drastic metabolic 

disturbances. Differences in size between Col-0 and hxk1 control leaves were found 

at early time points (9-14 DAS), whereas no difference could be detected at mature 

stage (21 DAS). At the early developmental stages, i.e. 9-10 DAS, leaves mainly 

grow by cell proliferation and act as sink tissues (Andriankaja et al, 2012). hxk1 

mutants contained more cells compared to wild type plants, suggesting that HXK1 

might play a role in inhibiting cell proliferation in sink tissues to fine-tune growth. 

Increases in cell number are often accompanied by a delay in the transition to cell 

expansion (Gonzalez et al, 2012). However, hxk1 leaves showed decreased intensity 

and a shorter region of pCYCB1;1::CYCB1;1-D-box:GUS marker gene expression at 

12 and 14 DAS indicating a reduction in cell cycle activity. Furthermore, the 

increased endoreduplication index observed during the transition phase (12 -13 DAS) 

indicates that at least some cells of hxk1 leaves stop dividing and are triggered to 

differentiate earlier than in wild type plants. We indeed observed a shorter GUS-

stained length of the pCYCB1;1::CYCB1;1-D-box:GUS marker line in hxk1 sink 

leaves, although no concomitant increase in cell size was seen. The onset of the 

transition to cell differentiation and expansion was found to be preceded by the 

establishment of the photosynthetic machinery (Andriankaja et al, 2012). It is well 

known that HXK1 represses nuclear-encoded photosynthesis-related gene 

expression inhibiting photosynthesis (Jang et al, 1997; Moore et al, 2003). Because 

sugars are unable to repress the transcription of photosynthesis-related genes in the 

gin2 mutant (Moore et al., 2003), it is possible that sink leaves undergo an 

accelerated transition to cell expansion. In addition, no difference in chloroplast 

shape, size or ultrastructure was observed between wild type and hxk1 control 

leaves. These findings suggest that in sink cells, HXK1–mediated signaling does not 

affect the establishment of the photosynthetic machinery which, consequently, could 

affect the onset of cell expansion. Increased levels of sucrose, fructose and glucose 

are reported in rosette leaves of the gin2 mutant (Heinrichs et al, 2012). One 

possibility to explain the increased cell number at early time points could be that 
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higher glucose levels in hxk1 leaves stimulate cell cycle progression by inducing the 

expression of D-type cyclins as previously described (Riou-Khamlichi et al, 2000). 

Another possibility could be that the hxk1 mutant already has more cells during leaf 

primordium formation. Recruitment of more cells to the shoot apical meristem (SAM) 

has been demonstrated to be one of the mechanisms that can contribute to increase 

leaf size (Eloy et al, 2012; Gonzalez et al, 2012).  

At 9 DAS, when the third leaf was still fully proliferating, seedlings were transferred to 

sucrose-supplemented media. In wild type plants, these higher sucrose levels result 

in repression of transcription of the plastome, in a delay in chloroplast development 

and in stimulation of cell proliferation via the sucrose-induced expression of GPT2 

(Chapter 4, Van Dingenen et al, 2016). GPT2 transcript levels were similar in Col-0 

and hxk1 control shoots and GPT2 was equally induced by sucrose in both lines. 

Also in Ler background, sugar treatment did not result in a different response in 

GPT2 expression between wild type and gin2 plants (Heinrichs et al, 2012). These 

findings suggest that HXK1 does not play a role in the regulation of GPT2 

expression. Furthermore, sucrose was found to repress chloroplast differentiation in 

sink leaves since smaller chloroplasts with less differentiated thylakoid membranes 

and starch granules were observed (Chapter 4, Van Dingenen et al, 2016). 

Contrastingly, in hxk1 leaves, transfer to sucrose resulted in larger chloroplasts, 

particularly in the tip of the leaf. Higher sucrose levels in the cell might result in more 

glucose and glucose-6-phosphate (G6P) levels in both wild type and hxk1 leaves 

which can be imported in the chloroplasts via GPT2 and which might result in a 

repression of plastome transcription. It has been described that the gin2 mutant 

maintains half of the glucose phosphorylation capacity of wild type plants, but shows 

increased glucose-6-phosphate (G6P) levels (Moore et al, 2003). G6P can be 

generated by other HXKs, such as HXK2 and HXK3 (Karve et al, 2008), or can be 

formed from F6P by phosphoglucoisomerase (Fettke & Fernie, 2015). hxk1 mutants 

are known to induce nuclear-encoded photosynthesis gene expression independent 

of the presence of sugars (Jang et al, 1997). In addition, transfer to sucrose did not 

stimulate cell proliferation in the hxk1 mutant as much as in wild type which suggests 

that HXK-mediated inhibition of photosynthesis overrules the sucrose-induced 

repression of chloroplast differentiation through GPT2.  
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Interestingly, pavement cell number was found to be increased by sucrose at later 

time points in the hxk1 mutant. At these time points, most cellular divisions result 

from the stomatal lineage (Gonzalez et al, 2012). So, this late increase in cell number 

might point to an induction of asymmetric meristemoid division by sucrose. 

Meristemoids are stomatal precursor cells that divide asymmetrically resulting in the 

formation of additional pavement cells during leaf development (Geisler et al, 2000). 

In wild type plants, sucrose addition increases the stomatal index in leaves (Chapter 

4, Van Dingenen et al, 2016), which is not observed in the hxk1 mutant. Higher 

sucrose levels might trigger HXK1-signaling to generate stomata from meristemoids. 

Impairment in HXK1-signaling might result in more asymmetric divisions forming 

additional pavement cells instead of stomata at later time points. A detailed analysis 

of meristemoid division is required to test above hypothesis.   

Another goal of this study was to identify novel HXK1 protein interactors involved in 

sugar-mediated signaling to regulate growth. Recently, it was shown that glucose-

bound and unbound HXK1 exhibit structural differences explaining the dual functions 

of HXK1 and, thus, different protein-protein interaction possibilities depending on the 

sugar availability (Feng et al, 2015). A total of 23 different proteins were found to co-

purify with HXK1 in cell cultures. Because the proteins purified from cells 

continuously grown in the presence of sucrose were only found in one independent 

experiment and did not overlap with the sucrose-starved cell cultures and the cell 

cultures re-supplemented with sucrose, we only focus here on the proteins identified 

in the latter two conditions. Some of the putative protein interactors identified have a 

distinctive predictive localization (e.g. on plasma membrane, mitochondria or 

peroxisome) compared to the verified mitochondrial localization of HXK1 as 

determined in this study and the existence of a putative nuclear HXK1 complex (Cho 

et al, 2006). The different localizations suggest that some of these proteins might be 

false-positives possibly due to artificial interaction during the extraction procedure. 

However, two mitochondrial proteins, AOX1A and the LETM1-like protein, were found 

to interact with HXK1 when sucrose is supplemented to cell cultures. AOX1A is 

involved in the alternative respiration pathway to reduce ROS and ATP production 

(Millar et al, 2011). Different biotic and abiotic stresses are known to induce AOX1A 

expression and a role of AOX1A in mitochondrial retrograde signaling has been 

demonstrated (Van Aken et al, 2009). Recently, several studies have highlighted a 
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central role of AOX1A in optimizing photosynthesis (Gandin et al, 2012; Vishwakarma 

et al, 2014; Vishwakarma et al, 2015). LETM1 has been described to act redundantly 

with LETM2 in maintaining mitochondrial function (Zhang et al, 2012). Co-purification 

of these two mitochondrial proteins probably reflects the metabolic function of HXK1. 

Higher sucrose levels stimulate HXK1 to phosphorylate glucose and, subsequently, 

to generate pyruvate during glycolysis to fuel the mitochondrial respiration (Fernie et 

al, 2004). Another interesting protein which was purified twice together with HXK1, 

when sucrose was added, is ERD7. ERD7 was identified, together with 16 other 

ERDs, as an early dehydration-responsive gene (Kiyosue et al, 1994) and its 

expression is also induced by high light, drought, cold and salt stress (Kimura et al, 

2003). ERDs have been suggested to function in redistributing sugars to protect cells 

from biotic stresses (Kiyosue et al, 1998). Furthermore, ERD7 expression was up-

regulated in the sweetie mutant, a carbohydrate metabolism mutant which has 

elevated levels of trehalose, trehalose-6-phosphate and starch, and exhibits severe 

growth defects and early senescence (Veyres et al, 2008). HXK1 over-expression 

and gin2 mutant plants demonstrate an early onset and a delayed onset of 

senescence, respectively (Dai et al, 1999; Kelly et al, 2012). The interaction of HXK1 

with ERD7 when sugar levels rise in the cell might suggests a role for ERD7 in 

HXK1-mediated senescence. Finally, only one protein was exclusively found after re-

supplementation of sucrose, a quinone reductase family protein with oxidoreductase 

activity. Quinone reductase proteins are involved in the cyclic electron flow around 

photosystem I during the light reactions of photosynthesis (Joly et al, 2010).  

However, the identified quinone reductase protein was found to localize to the 

plasma membrane via GFP-fusion (Marmagne et al, 2004), suggesting a different 

biological function and indicating that the interaction with HXK1 might be artificial. 

Two other interesting proteins were only found to interact with HXK1 when cells are 

sucrose-starved, HTA6 and KINɣ1. The nucleus-localized HTA6 or H2A.W, one of 

the four histone 2A variants involved in compacting DNA in the chromatin 

(Kawashima et al, 2015). HTA6 is required for heterochromatin condensation, 

preventing accessibility of DNA and transcription (Yelagandula et al, 2014). Sucrose 

starvation induces the expression of photosynthesis genes via the HXK1-mediated 

signaling pathway and, in accordance, HXK1 mediates down-regulation of 

photosynthesis when sugar levels rise (Moore et al, 2003; Yu, 1999). Therefore, 
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HXK1 has been suggested to translocate to the nucleus to regulate transcription in a 

large nuclear complex, isolated from 18-days old soil-grown plants (Cho et al, 2006). 

Co-purification of HXK1 with HTA6 when sucrose levels are low, suggests that at 

least a fraction of the HXK1 proteins is localized in the nucleus to interact with HTA6, 

maybe resulting in suppression of heterochromatin formation at specific DNA regions, 

such as the ones harboring photosynthesis genes. When sucrose is added, the 

HTA6-HXK1 interaction was only found in one TAP experiment, suggesting a 

predominant localization of HXK1 to the mitochondria, which is in line with the co-

purified mitochondrial proteins (Table 1). Thereby HTA6 is free to induce 

heterochromatin formation and inhibit transcription. Finally, the other sucrose-

starvation specific interaction partner of HXK1 is KINɣ1. This protein is described as 

a regulatory ɣ-subunit of the SnRK1 heterotrimeric complex based on its structure 

(Ghillebert et al, 2011). The SnRK1 complex is activated by sugar and nutrient 

depletion and upon different stresses stimulates cellular metabolism and represses 

general biosynthetic pathways to sustain growth (Baena-Gonzalez et al, 2007). The 

ɣ-subunits have been suggested to act as energy-sensing proteins, similarly as for 

the mammalian orthologue of SnRK1, AMPK, which binds adenosine nucleotides 

(Xiao et al, 2011). Transcripts of Arabidopsis KINɣ1 were found to accumulate in the 

dark and KINɣ1 was unable to complement the snf4 mutant in yeast suggesting a 

different biological function (Bouly et al, 1999). Furthermore, KINɣ1 cannot interact 

with β subunits to generate the functional SnRK1 heterotrimeric complex (Ramon et 

al, 2013). In addition, kinɣ1 knock-out mutants demonstrate starvation responses and 

do not affect SNRK1 target gene expression (Ramon et al, 2013). Also in this study, 

kinɣ1 seedlings were still sensitive to sucrose when grown in vitro. Transfer to 

sucrose resulted in a similar increase in final leaf size as in wild type plants. Cytosolic 

interaction between HXK1 and KINɣ1 is possible because KINɣ1 is located in the 

cytosol and HXK1 at the outside of mitochondria as shown in tobacco leaves as well 

as in cell cultures. However, both proteins only co-localized in some cells and the 

direct interaction could not be confirmed by BiFC in tobacco leaves or by Y2H 

assays. This absence could be due to the fact that both systems have intrinsic high 

sugar content (tobacco leaves that perform photosynthesis and general carbon 

metabolism in yeast cells), whereas the interaction was only identified when cells 

were sucrose starved. In this study, we were able to show, a weak HXK1-KINɣ1 
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interaction by BiFC in sucrose starved cell cultures. KINɣ1 might act as an additional 

nutrient sensor which is activated when soluble sugar levels are low or upon different 

stresses, such as described for the SnRK1 complex (Baena-Gonzalez et al, 2007). 

The kinɣ1 mutant was slightly but significantly larger than wild type plants under the 

same environmental conditions that lead to a growth reduction of the hxk1 mutant. 

Hence, it is tempting to speculate that KINɣ1 and HXK1 act antagonistically, as 

growth inhibitor and growth promoter, respectively, under these environmental 

conditions. Increased light intensity or sucrose addition could inactivate KINɣ1 which 

results in release of the HXK1-KINɣ1 interaction. Consequently, HXK1 is free to 

sense glucose and triggers HXK1-mediated repression of photosynthesis to maintain 

growth. Furthermore, inactivation of KINɣ1 could result in further stimulation of 

biosynthetic processes, and, thus, also enhance growth. However, future 

experiments are needed to examine this putative HXK1/KINɣ1-mediated growth-

regulatory pathway in more detail. Because KINɣ1 is activated upon different 

stresses, its role might be only apparent under specific environmental conditions. To 

identify whether KINɣ1 and HXK1 could act together to regulate growth under 

suboptimal environmental conditions, double hxk1 kinɣ1 mutants as well as crosses 

between the 35S::HXK1GSgreen overexpression line and the kinɣ1 mutant are currently 

generated. The growth of these lines will be measured under different environmental 

conditions, such as extreme high light intensities and high glucose concentrations, to 

further elucidate how these proteins are interconnected.  
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MATERIALS AND METHODS 

Growth Conditions in vitro and soil 
For the in soil experiments, plants were grown for 22 days at 21 ̊C under a 16-h day 

(100 μmol m-2 s-1) and 8-h night regime. For the in vitro experiments, seedlings 

were grown on half-strenght MS medium (Murashige & Skoog, 1962) under a 16-h 

day (50 μmol m-2 s-1) and 8-h night regime. Seedlings were grown for 9 days (9 DAS) 

on nylon mesh of 20-μm pore size overlaying growth medium without sucrose. At 9 

DAS, seedlings were transferred to plates containing control medium without sucrose 

or medium supplemented with 15 mM sucrose. In the high glucose experiments, 

seedlings were grown for 8 days on MS medium with 6% glucose. For the root 

waving experiments, seedlings were grown on vertical plates without sucrose or 

supplemented with 1% sucrose.  

Transgenic Lines and Mutants 
All experiments were performed on Arabidopsis thaliana (L.) Heyhn. ecotype 

Columbia (Col-0). The hxk1 mutant was obtained from the SALK collection 

(SALK_018086). The kinɣ1 mutant was described by Ramon et al. 2013 and was 

kindly provided by Prof. Fillip Rolland. The pCYCB1;1::CYCB1;1-D-box:GUS reporter 

line (Eloy et al, 2012b) was crossed with hxk1 to obtain homozygous 

pCYCB1;1::CYCB1;1-D-box:GUS/hxk1 lines. Through Multisite Gateway cloning the 

35S::HXK1-GSgreen and 35S::HXK1-GSrhino construct were made  (Karimi et al, 2007a; 

Karimi et al, 2007b). 35S::HXK1-GSgreen was introduced into pH7m34GW-FAST 

vector (Shimada et al, 2010) and transformed in Arabidopsis thaliana Col-0 by floral 

dip using the Agrobacterium tumefasciens strain C58C1 (pMP90).  

Growth Analysis 

For the leaf area analysis, leaves were cleared in 100% ethanol, mounted in lactic 

acid on microscope slides, and photographed. Leaf areas were measured with the 

ImageJ software (http://rsb.info.nih.gov//ij/). Abaxial epidermal cells of leaves were 

drawn with a DMLB microscope (Leica) fitted with a drawing tube and a differential 

interference contrast objective. Drawings were scanned and analyzed using 
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automated image analysis algorithms (Andriankaja et al, 2012). Subsequently, 

drawings were used to measure average cell area, from which the total pavement cell 

number was calculated. The stomatal index was defined as the percentage of 

stomata compared with all cells.  

GUS Staining and Analysis 
Seedlings of two to three biological repeats were harvested at 12 and 14 DAS, 

incubated in heptane for 10 min and subsequently left to dry for 5 min. Then, they 

were submersed in 5-bromo-4-chloro-3-indolyl-β-glucuronide (X-Gluc) buffer [100 

mM 2-amino-2-(hydroxymethyl)-1,3-propanediol (TRIS)-HCl, 50mM NaCl buffer (pH 

7.0), 2mM K3[Fe(CN)6], and 4mM X-Gluc], vacuum infiltrated for 10 min and 

incubated at 37°C overnight. Seedlings were cleared in 100% ethanol and then kept 

in 90% lactic acid. The third leaf was dissected, mounted on slides and photographed 

under a light microscope. 

RNA Extraction and expression analysis by qRT-PCR 
Seedlings or shoots were frozen in liquid nitrogen and RNA was extracted using 

Trizol (Invitrogen) and the RNeasy Plant Mini Kit (Qiagen). DNase treatment was 

done on columns with RNase-free DNase I (Promega). The iScript cDNA synthesis 

kit (Bio-Rad) was used to prepare cDNA from 500 ng μg RNA and qRT-PCR was 

done on the LightCycler 480 with SYBR Green I Master (Roche) according to the 

manufacturer’s instructions. Normalization was done against the average of three 

housekeeping genes AT1G13320, AT2G32170, AT2G28390.  

Western Blot 
Protein extraction was done as described before (Van Leene et al, 2007). Western-

blot was performed with primary rabbit anti-GFP antibodies (Santa Cruz; diluted 

1:4000) for 1 hours and secondary horseradish peroxidase conjugated donkey anti

rabbit antibodies (1:10000) for 1 hours. Proteins were detected by 

chemiluminescence (NEN Life Science Products). 



Role of HXK1 in early leaf growth 

210 

Yeast-two-hybrid assay 

HXK1 and KINɣ1 were N-terminal fused to the GAL4BD (DNA-binding domain, 

pDEST32) and to the GAL4AD (Activation domain, pDEST22) through Gateway 

cloning. GUS was fused to GAL4BD and GAL4AD as control. Fusion proteins were 

co-transformed in PJ69-4A competent yeast cells using poly-ethylene glycol lithium 

acetate-mediated transformation (Gietz & Schiestl, 2007). Individual co-transformed 

yeast colonies were selected through growth on solid Synthetic Defined (SD, 

Clontech) minimal media supplemented with an amino acid mix without leucine and 

tryptophan (DO supplement, Clontech). Four to five colonies were tested for 

interaction by growing them on SD selective medium (with glucose or with 

galactose/raffinose) without leucine, tryptophan and histidine and supplemented with 

0 mM, 2.5 mM, 5 mM, 7.5 mM or 10 mM Amino-1,2,4-triazole (Sigma). 

Flow Cytometry 

Leaves were chopped with a razor blade in CyStain UV Precise P Nuclei extraction 

buffer (Partec) according to the manufacturer’s instructions. Nuclei were analyzed 

with the CyFlow MB flow cytometer with FloMax software (Partec). 

BiFC and transient expression in tobacco leaves/PSB-L cell cultures 

35S::KINɣ1-RFP or 35S::RFP-KINɣ1 were made through Gateway cloning in 

K7RWG2 and K7WGR2, respectively. HXK1 was C-terminally fused to head GFP 

(hGFP) under control of the 35S promoter in pH7m34GW and KINɣ1 C-terminally 

fused to tail GFP (tGFP) and the 35S promoter through Multisite Gateway Cloning in 

pK7m24GW2. Tobacco (N. benthamiana) plants were used for transient expression 

of constructs by Agrobacterium tumefaciens-mediated transient transformation of 

lower epidermal leaf cells and addition of a P19 expressing Agrobacterium strain to 

boost protein expression. Stable transformation in Arabidopsis cell suspension 

cultures (PSB-L) was performed by direct transformation mediated through co-

cultivation as described before (Van Leene et al, 2007). 
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Confocal imaging 

Imaging of seedlings, tobacco leaves and cell cultures was performed with an 

Olympus FV10 ASW confocal laser scanning microscope using a 20X lens (NA 0.75) 

or 60x water immersion lens (NA 1.2) with up to 3x digital zoom for some images. 

Tandem Affinity Purification (TAP) 
Cloning of transgenes encoding GSrhino tag (Van Leene et al, 2015) fusions under 

control of the constitutive cauliflower mosaic virus 35S promoter and transformation 

of Arabidopsis cell suspension cultures (PSB-D) with direct selection in liquid medium 

were carried out as previously described (Van Leene et al, 2011). TAP experiments 

were performed with 100 mg of total protein extract from 3-day old cell cultures 

continuously grown in the presence of sucrose or from 8-day old sucrose starved cell 

cultures with or without supplementation of 3% sucrose and 30 mg of total protein 

extract (in planta) as input as described in Van Leene et al., 2015. Protein interactors 

were identified by mass spectrometry using an LTQ Orbitrap Velos mass 

spectrometer. Proteins with at least two matched high confident peptides were 

retained. Background proteins were filtered out based on frequency of occurrence of 

the co-purified proteins in a large dataset containing 543 TAP experiments using 115 

different baits (Van Leene et al, 2015). 

Transmission Electron Microscopy 
Leaves were immersed in a fixative solution of 2.5% glutaraldehyde, 4% 

formaldehyde in 0.1 M Na-cacodylate buffer, placed in a vacuum oven for 30 min and 

then left rotating for 3 h at room temperature. This solution was later replaced with 

fresh fixative and samples were left rotating overnight at 4°C. After washing, samples 

were post-fixed in 1% OsO4 with K3Fe(CN)6 in 0.1 M Na-cacodylate buffer, pH 7.2. 

Samples were dehydrated through a graded ethanol series, including a bulk staining 

with 2% uranyl acetate at the 50% ethanol step, followed by embedding in Spurr’s 

resin. In order to have a larger overview of the phenotype, semi-thin sections were 

first cut at 0.5 μm and stained with toluidine blue. Ultrathin sections of a gold 

interference color were cut using an ultra-microtome (Leica EM UC6), followed by 
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post-staining with uranyl acetate and lead citrate in a Leica EM AC20 and collected 

on Formvar-coated copper slot grids. Two leaves of control and sucrose-treated Col-

0 and hxk1 seedlings were viewed with a JEM 1010 transmission electron 

microscope (JEOL, Tokyo, Japan), operating at 80 kV, using Image Plate Technology 

from Ditabis (Pforzheim, Germany). For each line (Col-0 and hxk1), two leaves were 

analyzed per condition and chloroplast size and number of 27 to 87 mesophyll cells 

of the tip and the base of the leaf were measured. 

Statistical analysis 

All analyses were performed with SAS (Version 9.4 of the SAS System for windows 7 

64bit. Copyright © 2002-2012 SAS Institute Inc. Cary, NC, USA (www.sas.com).  

All growth experiments involved one, two or three factors and consisted of three 

independent biological repeats. For the representation of the ratios, measurements of 

the sucrose-treated leaves were compared to the measurements of the control 

leaves of the same repeat. Averages were then taken over the three independent 

repeats and represented in the graphs with their standard error. When needed, raw 

measurements were log-transformed to stabilize the variance prior to statistical 

analysis; this is specified in the figure legends. For all growth experiments, a linear 

mixed model was fitted to the variable of interest with all main factors and their 

interaction, in case of two factors, as fixed effects using the mixed procedure. The 

biological repeat term was included in each model as a random factor to take into 

account the correlation between observations done at the same time. In the presence 

of a significant F-test (for the main effect in case of one factor, for the interaction term 

in the case of two factors), appropriate post-hoc tests were performed. Multiple 

testing correction was done according with Tukey adjustment. For the time course 

experiment, simple tests of effects were performed at each day separately with the 

plm procedure. 

For chloroplast-related analysis, fixed effects were genotype, treatment, tip or base 

and all interaction effects. A random intercept model was fitted to the mesophyll area 

data and log transformed chloroplast data using the mixed procedure of SAS. The 

Kenward-Roger method was used for computing the denominator degrees of 

freedom for the tests of fixed effects. For mesophyll area, one random effect was 
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included in the model to take into account the correlations between observations 

originating from the same leaf. For chloroplast area, two random effects were 

included in the model to take into account the correlations between observations 

originating from the same leaf, and originating from the same mesophyll cell within 

leaf. The fixed part of the full model was reduced until all remaining factors were 

significant at the 0.05 significance level. For the mesophyll area data, the three-way 

interaction term was significant at the 0.05 significance level, and thus the model was 

not reduced. All-pairwise comparisons were calculated and p-values were adjusted 

using the Tukey adjustment method as implemented in SAS. For the chloroplast 

area, only TB had a significant effect. Least-square means estimates for both levels 

of TB were calculated as well as the difference between tip and base. A generalized 

linear mixed-effect model was fitted to the number of chloroplasts with the glimmix 

procedure of SAS assuming a Poisson distribution and a log link function. The 

Satterthwaite method was used for computing the denominator degrees of freedom 

for the tests of fixed effects. A random effect was included for leaf to take into 

account the correlations between observations originating from the same leaf. The 

fixed part of the full model was reduced until all remaining factors were significant at 

the 0.05 significance level. For the number of chloroplasts, only treatment had a 

significant effect. Least-square means estimates for both levels of treatment were 

calculated as well as the difference. 

SUPPLEMENTAL DATA 

All supplemental data is listed below and can be found at the end of this chapter. 

Supplemental Figure S1. Characterization of hxk1 mutant in Colombia-0 
background. 

Supplemental Figure S2. Cellular parameters of the third leaf of hxk1 mutant 
compared with wild type. 

Supplemental Figure S3. GUS staining of the third leaf of the pCYCB1;1::CYCB1;1-
D-box:GUS reporter line in Col-0 and hxk1 background. 

Supplemental Figure S4. Ploidy analysis of hxk1 and Col-0 leaves grown on control 
medium in vitro.  

Supplemental Figure S5. Third leaf size change upon transfer to sucrose of Col-0 
and hxk1 plants.  
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Supplemental Figure S6. Raw data of the cellular measurements shown in Figure 
2H. 

Supplemental Figure S7. Expression of GPT2 in Col-0 and hxk1 shoots. 

Supplemental Figure S8. Y2H assay between HXK1 and KINY1 proteins. 

Supplemental Figure S9. Localization of HXK1 and KINɣ1 fusion proteins in 
Arabidopsis cell suspension cultures. 

Supplemental Table S1. Tandem Affinity Purification from seedlings with 35::HXK1-
GSgreen as bait. 
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SUPPLEMENTAL DATA 

Supplemental Figure S1. Characterization of hxk1 mutant in Columbia-0 background. A, Structure of HXK1 
gene with indication of T-DNA insertion by red triangle. Black rectangles represent exons, grey rectangles 
represent 5’ and 3’UTR. Arrows represent forward primer (FP) and reverse primer (RP) used for qRT-PCR in (B). 
B, Relative HXK1 expression in 10-day old seedlings determined by qRT-PCR.  

Supplemental Figure S2. Cellular parameters of the third leaf of hxk1 mutant compared with wild type. 
Plants were grown in vitro without sucrose for 21 days. At 21 DAS pavement cell area and cell number was 
measured in third leaves of hxk1 and compared with Col-0. 

Supplemental Figure S3. GUS staining of the third leaf of the pCYCB1;1::CYCB1;1-D-box:GUS reporter 
line in Col-0 and hxk1 background. Seedlings were grown in vitro on MS medium without sucrose for 12 days. 
The scale bar represents 1 mm. 

Supplemental Figure S4. Ploidy analysis of hxk1 and Col-0 leaves grown on control medium in vitro. 
Ploidy levels were measured with flow cytometry. The endoreduplication index (E.I.) is calculated as % of 4C + 2 
× % of 8C + 3 × % of 16C. Black line represents Col-0, grey line is hxk1. *, P < 0.05 compared to Col-0, Students 
t-test. 
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Supplemental Figure S5. Size of the third leaf upon transfer of Col-0 and hxk1 seedlings to sucrose-
containing media. Seedlings were grown in vitro on MS medium without sucrose for 9 days. At 9 DAS, seedlings 
were transferred to media without sucrose (control) or 15 mM sucrose (sucr) supplemented media. At 20, 21 and 
22 DAS, third leaf size was measured. Values are averages of two to three independent repeats with their SE. *, 
P < 0.05 for sucrose compared to control, mixed models 

Supplemental Figure S6. Raw data of the cellular measurements shown in Figure 2H. Seedlings were grown 
in vitro on MS medium without sucrose for 9 days. At 9 DAS, seedlings were transferred to media without sucrose 
(control) or 15 mM sucrose (sucr) supplemented media. At 21 DAS, pavement cell area and total pavement cell 
number of third leaves of Col-0 and hxk1 plants, transferred to control or sucrose-supplemented media, were 
measured. Values are averages of three independent repeats with their SE. *, P < 0.05 of sucrose compared to 
control, mixed models 

Supplemental Figure S7. Expression of  GPT2 in Col-0 and hxk1 shoots. Seedlings were grown in vitro on 
MS medium without sucrose for 9 days. At 9 DAS, seedlings were transferred to media without sucrose (control) 
or 15 mM sucrose (sucr) supplemented media. 24 hours after transfer, shoots were harvested for RNA extraction. 
GPT2 expression was measured with qRT-PCR analysis and normalized against the average of three 
housekeeping genes AT1G13320, AT2G32170, AT2G28390. 
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Supplemental Figure S8. Y2H assay between HXK1 and KINɣ1 proteins. HXK1 and KINɣ1 were fused to 
GAL4AD (Activation domain, pDEST22) or GAL4BD (DNA-binding domain, pDEST32) and co-transformed in 
yeast cells. GUS-AD and GUS-BD were used as control. Four to five independent colonies were grown for 2-4 
days on non-selective medium (-Leucine –Tryptophan) or selective medium (-Leucine –Tryptophan – Histidine). 

Supplemental Figure S9. Localization of HXK1-GSgreen and KINɣ1-RFP (A) or RFP-KINɣ1 (B) fusion
proteins in Arabidopsis cell suspension cultures. Cell cultures were stable co-transformed with 35S:: HXK1-
GSgreen and KINɣ1-RFP or RFP-KINɣ1. The scale bar represents 20 μm.
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Supplemental Table S1. Tandem Affinity Purification from seedlings with 35::HXK1-GSgreen as bait. Seedlings were grown 
in vitro on MS medium without sucrose for 9 days. At 9 DAS, protein complexes were purified from seedlings transferred to 
media without sucrose (control) or 15 mM sucrose (sucr) supplemented media for 1 hour. The number indicates in which 
condition the protein is co-purified with HXK1, only one TAP experiment was performed in control and sucrose conditions. A list 
of non-specific background proteins was assembled by combining a previous  background list (Van Leene et al,
2010) with background proteins from control GS purifications on mock, GFP-GS, and GUS-GS cell culture extracts identified 
with LTQ Orbitrap Velos. To obtain the final list of interactors, these background proteins were subtracted from the list of 
identified proteins. 

Gene ID Description control sucr
AT4G29130 ATHXK1, GIN2, HXK1 | hexokinase 1 1 1 
AT4G04640 ATPC1 | ATPase, F1 complex, gamma subunit protein 1 1 
AT3G46780 PTAC16 | plastid transcriptionally active 16 1 1 
AT1G61520 LHCA3 | photosystem I light harvesting complex gene 3 1 
AT1G73110 P-loop containing nucleoside triphosphate hydrolases superfamily protein 1 1 
AT1G09340 CRB, CSP41B, HIP1.3 | chloroplast RNA binding 1 1 
ATCG00470 ATPE | ATP synthase epsilon chain 1 

AT4G18480 
CHLI1, CH42, CH-42, CHL11, CHLI-1 | P-loop containing nucleoside triphosphate hydrolases 

superfamily protein 1 1 
AT1G32220 NAD(P)-binding Rossmann-fold superfamily protein 1 1 
AT3G19390 Granulin repeat cysteine protease family protein 1 
AT5G08650 Small GTP-binding protein 1 1 
AT2G38040 CAC3 | acetyl Co-enzyme a carboxylase carboxyltransferase alpha subunit 1 
AT2G20890 PSB29, THF1 | photosystem II reaction center PSB29 protein 1 1 
AT1G56050 GTP-binding protein-related 1 
AT4G35250 NAD(P)-binding Rossmann-fold superfamily protein 1 1 
AT1G72150 PATL1 | PATELLIN 1 1 1 
AT1G62750 ATSCO1, ATSCO1/CPEF-G, SCO1 | Translation elongation factor EFG/EF2 protein 1 
AT1G67700 unknown protein 1 
AT5G55220 trigger factor type chaperone family protein 1 1 
AT3G10670 ATNAP7, NAP7 | non-intrinsic ABC protein 7 1 
AT1G64190 6-phosphogluconate dehydrogenase family protein 1 
AT1G16880 uridylyltransferase-related 1 
AT2G22250 ATAAT, AAT, MEE17 | aspartate aminotransferase 1 
AT4G26300 emb1027 | Arginyl-tRNA synthetase, class Ic 1 
AT5G67030 ABA1, LOS6, NPQ2, ATABA1, ZEP, IBS3, ATZEP | zeaxanthin epoxidase (ZEP) (ABA1) 1 
AT3G01500 CA1, ATBCA1, SABP3, ATSABP3 | carbonic anhydrase 1 1 
AT2G45770 CPFTSY, FRD4 | signal recognition particle receptor protein, chloroplast (FTSY) 1 
AT1G17220 FUG1 | Translation initiation factor 2, small GTP-binding protein 1 
AT5G45930 CHLI2, CHL I2, CHLI-2 | magnesium chelatase i2 1 
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ABSTRACT 

Strobilurins are an important class of agrochemical fungicides used throughout the 
world on a wide variety of crops to protect against a wide variety of pathogens. Their 
increasing popularity comes from the fact that, besides their protective role against 
pathogens, these compounds are reported to also positively influence plant 
physiology. In this study, we studied the effect of application of Stroby, a commercially 
available fungicide consisting of 50% (w/w) kresoxim-methyl as active strobilurin 
compound, on Arabidopsis plant growth. Treatment of seeds and seedlings with Stroby 
resulted in larger rosettes and leaves due to an increase in the number of pavement 
cells. Transcriptomic analysis of Stroby-treated rosettes demonstrated an increased 
expression of genes involved in redox homeostasis and iron- and sugar transport-
related genes. However, iron and sucrose content was not affected by Stroby 
application. This suggests that the Stroby-induced growth promotion is possibly not 
linked to increased accumulation of iron or sugars, but is rather a result of the 
optimized use of the available pools. Furthermore, Stroby treatment strongly induced 
the expression of the subgroup Ib basic helix-loop-helix transcription factors which are 
normally involved in iron homeostasis under iron-deficiency conditions. Single loss-of-
function mutants of three bHLHs and their triple bhlh039 bhlh100 bhlh101 mutant did 
not respond to Stroby treatment. We further focused on bHLH039 to unravel its role as 
a plant growth regulator downstream of Stroby treatment. Together, our data 
demonstrate that Stroby promotes Arabidopsis leaf growth by stimulating cell 
proliferation and that the iron-deficiency responsive bHLH transcription factors play a 
critical role in the Stroby-mediated positive effects on plant growth. 

INTRODUCTION 

With the rapidly growing population, global demand for food and bioenergy sources is 

continuously increasing. As a consequence, crop productivity and yield have to 

improve on the existing agricultural lands, minimizing deforestation with multiple 

negative effects on the ecosystem. It is therefore essential to understand how plants 

regulate their growth in order to improve crop yield.  

Plant growth is a complex process integrating genetic and environmental factors. 

Leaves are the main energy producing organs of plants providing the metabolic energy 

and chemical building blocks. Although leaf size and architecture have a profound 

effect on productivity, the mechanisms that regulate leaf growth are still not 

completely understood. Final leaf size is spatiotemporally regulated by two main 

processes that drive growth: cell division and cell expansion (Gonzalez et al, 2012). In 
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dicotyledonous plants, leaves first grow exclusively by cell proliferation. Subsequently, 

in the transition phase, cells stop dividing at the tip of the leaf and all cells exit the 

mitotic cell cycle and start to expand in a basipetal or tip-to-base direction (Andriankaja 

et al, 2012; Donnelly et al, 1999). In the final stage, leaf growth is mainly driven by cell 

expansion resulting in a large increase in cell size. Ultimately, cell expansion slows 

down and the leaf reaches its mature size. The transition phase from cell proliferation 

to expansion has been studied in detail at cellular and transcriptomic level in the third 

leaf of Arabidopsis thaliana (Andriankaja et al, 2012). This study showed that the cell 

cycle arrest front abruptly disappears and coincides with the differentiation of the 

photosynthetic machinery. Interestingly, all four members of the subgroup Ib of the 

basic helix-loop-helix transcription factors, bHLH038, bHLH039, bHLH100 and 

bHLH101, are strongly up-regulated during the transition. These transcription factors 

are well known regulators of iron homeostasis in roots in response to iron limitation 

(Wang et al, 2007). bHLH038 and bHLH039 physically interact with the FE-

DEFICIENCY INDUCED TRANSCRIPTION FACTOR 1 (FIT1) to induce the 

expression of the iron-uptake genes FERRIC REDUCTASE OXIDASE2, FRO2  and 

IRON TRANSPORTER, IRT1 (Yuan et al, 2008). Recently, a role of bHLH038, 

bHLH039, bHLH100 and bHLH101 in the regulation of iron metabolism during leaf 

development was suggested (Andriankaja et al, 2014). As the onset of cell expansion 

coincides with chloroplast differentiation, the newly differentiated chloroplasts could act 

as iron sinks resulting in iron-deficiency in other parts of the leaf, leading to the up-

regulation of the subgroup Ib bHLH transcription factors. However, no differences were 

observed in iron content and the expression of iron response genes during early leaf 

development (Andriankaja et al, 2014).  

Strobilurins are natural substrates that were isolated from the fungus Strobilurus 

tenacellus which produces a fungicide compound, called Strobilurin-A, to eliminate 

other fungi and yeasts growing in the same area (Anke et al, 1977). After their 

identification, a variety of synthetic strobilurins were produced by improving chemical 

features, such as stability and activity (Balba, 2007). Nowadays, many different 

strobilurins are commercially available (e.g. kresoxim-methyl, pyraclostrobin, 

azoxystrobin and trifloxystrobin) and used as fungicides on a wide range of crops 

throughout the world (Bartlett et al, 2002). The fungicidal mode of action of strobilurins 

is the inhibition of the fungal mitochondrial respiration by binding to a specific site of 
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cytochrome b (the ubiquinol site), which blocks the electron transfer between 

cytochrome b and cytochrome c (Ammermann, 1992; Earley et al, 2012). As a result, 

mitochondria cease production of energy and the fungus eventually dies. In addition to 

their protective role against pathogens, experimental findings suggest that strobilurins 

also exert positive effects on plant growth. Several studies have been reporting 

different physiological effects in wheat, barley and corn, as a result of strobilurin 

treatment. These include higher yield, increased photosynthetic activity, delayed 

senescence and shifting hormone balance by decreasing ethylene and increasing 

abscisic acid levels (Beck et al, 2002; Bertelsen et al, 2001; Grossmann et al, 1999; 

Ruske et al, 2003; Wu & von Tiedemann, 2001). In addition, strobilurin treatment 

results in increased antioxidative activity and tolerance to abiotic stress in Medicago 

(Filippou et al, 2015; Zhang et al, 2010). Contrarily, Mahoney and Gillard (2014) 

recently showed no differences in the final yield of dry bean after the application of 

azoxystrobin and pyraclostrobin (Mahoney & Gillard, 2014). Another study tested the 

effect of pyraclostrobin treatment on four soybean varieties and found no improvement 

in plant physiology or yield (Swoboda & Pedersen, 2009). Based on the available 

literature it is clear that positive effects of strobilurins strongly depend on the crop and 

environmental conditions. To date, the underlying mechanisms responsible for the 

strobilurin-dependent growth promoting effects still remain largely unclear. 

Furthermore, the use of these growth promoting compounds, could be another 

approach to identify genes involved biomass production and crop yield. 

This study aimed to decipher the effect on growth of Stroby® WG (BASF), a 

commercially available strobilurin consisting of 50 % (w/w) kresoxim-methyl (KM; 

active ingredient) and 50 % surfactants, in Arabidopsis plants.  Stroby is used as a 

protectant fungicide on apples for the control of apple scab, strawberries and 

blackcurrants for powdery mildew control and roses for the control of mildew and 

blackspot. We found that application of Stroby by watering twice a week led to an 

increase in final rosette and leaf size. Cellular analysis of the third leaf showed that 

Stroby promotes leaf growth by enhancing cell proliferation. Furthermore, 

transcriptome analysis of 17-day-old rosettes showed, amongst other genes, a 

significant up-regulation of the bHLH subgroup Ib transcription factors (bHLH038, 

bHLH039, bHLH100), 24 hours after Stroby treatment. In addition, several iron and 

sugar-related genes were overrepresented in the differentially expressed genes of 
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rosettes treated with Stroby but no differences were found in total iron and sucrose 

content. By analyzing the growth response of single loss-of-function mutants of the four 

bHLHs and the triple bhlh039 bhlh100 bhlh101 mutant to Stroby application, we 

showed that bHLH039 is an essential player in regulating Stroby-induced growth 

promotion.  

RESULTS 

Application of Stroby at Low Concentrations Enhances Plant Growth 

To investigate whether strobilurins can exert a positive effect on the growth of 

Arabidopsis thaliana plants, Col-0 Arabidopsis plants were grown in soil for 22 days 

and watered twice a week with or without Stroby® WG (BASF). A scheme of the 

treatment protocol is presented in Supplemental Fig. S1A. Stroby was applied in a 

concentration gradient from 10-6 M to 10-11 M for KM and final rosette sizes were 

measured by making leaf series (Fig. 1A). Three from the six KM concentrations 

tested, 10-8 M, 10-9 M and 10-10 M, resulted in an increase in rosette area of 16%, 16% 

and 18% (P > 0.05), respectively, compared with untreated control plants at 22 days 

after stratification (DAS). Subsequently, these three concentrations (10-8, 10-9 and 10-10 

M) were chosen to further confirm the Stroby-induced growth promotion using the

same treatment protocol (Fig. 1B). Concentrations of 10-9 and 10-10 M KM, but not the 

concentration of 10-8 M, resulted in a significant average increase in rosette area of 

73% and 69%, respectively (P < 0.05; Fig. 1B). It was therefore concluded that a low 

concentration of Stroby is able to promote Arabidopsis rosette growth but that the 

range of increase is variable probably due to differences in environmental growth 

conditions. The concentration of 10-9 M KM in Stroby, hereafter simply called Stroby, 

was selected for all following experiments aiming at unravelling the mode of action of 

strobilurins during leaf growth and development. 
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Stroby Promotes Leaf Growth by Stimulating Cell Proliferation 

To explore the growth promoting effect of Stroby in detail, rosette and leaf size as well 

as cell number and size were determined in Col-0 plants treated with a Stroby solution 

containing 10-9 M KM using the same protocol as described above. Plants treated with 

Stroby produced significantly larger rosettes, with an average increase of 36% (P < 

0.0001), and had more biomass, as measured by fresh weight (32 %, P < 0.0001), 

compared with control plants (Fig. 2A). The measurements of individual leaf area at 22 

DAS showed that all leaves up to the tenth leaf, with the exception of the cotyledons 

and the two first leaves, of Stroby-treated plants were significantly larger (P < 0.05; Fig. 

2B). Remarkably, relative differences in leaf size between Stroby-treated plants and 

control plants were more pronounced for younger leaves, with a significant increase of 

87% and 112% (P < 0.0001) for the eighth and ninth leaf respectively, and 132% for 

the tenth leaf (P < 0.05). Considering that treatment of plants with strobilurins is 

frequently reported to be accompanied by increased greening of the plant (Beck et al, 

2002), photosynthetic pigments were determined in Stroby-treated and control 

rosettes of 22-day-old plants. However, no differences in chlorophyll a (Chla), Chlb 

and carotenoid levels per mg fresh tissue were observed (Supplemental Fig. S2).  
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Figure 1. Effect of a concentration gradient of KM in Stroby on rosette area. Average rosette area of 
22-days old plants (A) treated with Stroby in a range of  KM concentrations (10-6  M, 10-7  M, 10-8  M, 10-9 

M, 10-10 M and 10-11  M) and (B) treated with three KM concentrations (10-8  M, 10-9 M and 10-10 M) and
compared with control plants treated with water. Values are the averages of 5 to 12 plants of one 
biological repeat with their SE. *, P < 0.05, Students t-test. 
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To further investigate the effect of Stroby during leaf development, the growth of the 

third true leaf was followed over time. Seedlings were harvested daily from 10 until 22 

DAS, the third leaf was dissected and its area was measured (Fig. 2C). Third leaves of 

Stroby-treated plants were significantly larger as early as 10 DAS (80%, P < 0.0001; 

Fig. 2D) and remained larger compared with control plants throughout the time-course 

analysis (Fig. 2C). At 22 DAS, final size of the third leaf was significantly increased by 

23% after Stroby treatment (P < 0.05; Fig. 2D). To investigate the underlying cellular 

processes responsible for the Stroby-enhanced leaf growth, epidermal cell number and 

cell size were measured both at 10 and 22 DAS. At both time points, the larger leaf 

size of Stroby-treated plants was due to a significant increase in epidermal cell number 

by 71% and 26% (P < 0.05; Fig. 2D), at 10 and 22 DAS, respectively. Cell size was 

unaffected by Stroby (P = 0.86 for 10 DAS and P = 0.92 for 22 DAS; Fig. 2D). 

Furthermore, stomatal index was calculated at 10 and 22 DAS and no difference was 

found between Stroby-treated plants and control plants at both time points 

(Supplemental Fig. S3). Taken together, the above described results provide clear 

evidence that Stroby promotes Arabidopsis plant growth by stimulating cell 

proliferation. 
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Figure 2. Rosette, leaf and cellular parameters of plants treated with Stroby. Plants were grown in soil, 
stratified in the presence of Stroby in a concentration of 10-9 M KM, and subsequently watered twice a week
with Stroby or water (control). A, Average rosette area and fresh weight measured at 22 days after 
stratification (DAS). At the right, representative images of rosettes of Stroby-treated and control plants at 22 
DAS. B, Average individual leaf areas of rosettes in (A). X-axis represents the cotyledons (cot) and leaves in 
the order of appearance on the rosette (L1+2- L12). C, Third leaf area measured over time from 10 until 22 
DAS. The inset is a close-up of 10 until 15 DAS. D, Ratio of average third leaf areas, pavement cell area and 
cell number of wild type plants treated with Stroby compared with control plants at 10 DAS (left) and at 22 
DAS (right). Values are averages of three biological repeats with their SE. Rosette and leaf area data are from 
8 to 9 plants in each repeat. Cellular data are from three to five leaves in each repeat. *, P < 0.05, mixed 
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Transcriptome Analysis in whole rosettes upon Stroby treatment 

Transcriptome analysis of Stroby-treated and control plants was performed in order to 

identify the molecular mechanisms underlying Stroby-mediated plant growth 

enhancement. RNA-sequencing analysis was carried out on RNA extracted from a 

pool of four rosettes of control or Stroby-treated plants at 17 DAS, 24 hours after the 

fourth Stroby treatment (Supplemented Fig. S1A). Three biological repeats were 

analyzed using the general linear model (see Materials and Methods) and 111 genes 

were found to be differentially expressed after Stroby treatment: 81 genes were up-

regulated and 30 genes were down-regulated (FDR < 0.05; Supplemental Table 1).  

Gene Ontology enrichment analysis of the 111 differentially expressed genes using 

PageMan (Usadel et al, 2006) showed genes encoding proteins related to 

‘development’ and ‘redox homeostasis’ were significantly overrepresented 

(Supplemental Fig. S4). From the 12 enriched redox-related genes, five encode 

dismutase proteins, six encode thioredoxin superfamily proteins and one gene 

encodes a protein with a sequence similar to a 2-oxoglutarate and Fe-dependent 

oxygenase superfamily protein (AT1G06640). Four of the five genes encoding 

dismutases were suppressed after Stroby treatment: SUPEROXIDE DISMUTASE1 

(SOD1; AT1G08830) and SOD2 (AT2G28190), COPPER CHAPERONE FOR SOD1 

(CCS1; AT1G12520) and FE SUPEROXIDE DISMUTASE 2 (FSD2; AT5G51100). 

Contrastingly, FSD1 (AT4G25100) was slightly up-regulated (Log2FC of 0.47). The 

functional category ‘development’ includes a mixture of genes assigned to proteins 

involved in diverse developmental processes. Two genes belong to the so-called 

DARK-INDUCED class of genes repressed after sugar treatment, SEN1 and DIN11 

(Fujiki et al, 2000), one gene encodes an aspartyl protease family protein 

(AT5G19120) and one encodes a late embryogenesis abundant family protein 

(AT1G02520; Supplemental Table 1). Another developmental-related gene encodes a 

SQUAMOSA-PROMOTER BINDING protein-like (SPL) transcription factor, SPL5 

(AT3G15270). SPLs play a role in different plant developmental programs, such as 

vegetative phase change and flowering (Wang et al, 2009; Wu & Poethig, 2006). 

Besides SPL5, ten genes also encoding for (putative) transcription factors were 

differentially expressed after Stroby treatment (Table 1). Half of these genes was 

suppressed and the other half was induced after Stroby treatment. Three of the five 

Stroby-induced genes were basic helix-loop-helix (bHLH) DNA-binding superfamily 
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proteins, bHLH039 (AT3G56980), bHLH038 (AT3G56970) and bHLH100 

(AT2G41240). These bHLH transcription factors belong to the same subgroup Ib, 

together with a fourth member, bHLH101 (AT5G04150), and are well known regulators 

of genes implicated in iron-uptake under iron-deficient conditions (Yuan et al, 2008). 

The transcripts of bHLH038, bHLH039 and bHLH100, were significantly up-regulated 

in Stroby-treated plants compared with control plants with log2FC of 3.22, 3.39 and 

3.13, respectively. bHLH101 was not significantly up-regulated in the RNA-seq 

analysis (Log2FC of 1.27 and FDR of 0.80). Quantitative reverse transcription (qRT)-

PCR analysis confirmed its induction after Stroby treatment (Log2FC of 3.14 and P-

value of 0.22; Supplemental Fig. S5).  

Besides the bHLHs transcription factors, another gene known to be regulated under 

iron limiting conditions was found to be slightly up-regulated after Stroby treatment, 

the NICOTIANAMINE SYNTHASE gene, NAS1 (Log2FC of 0.42). NAS proteins are 

implicated in remobilization and redistribution of NA-Fe2+ complexes through the 

vascular system (Briat et al, 2007).  

Several genes encoding proteins involved in sugar transport were differentially 

expressed: genes encoding three SWEET sucrose transporters (SWEET2 and 

SWEET11/12; Eom et al, 2015), a sugar-porter family protein (SFP1; AT5G27350) 

which is induced upon senescense and and has a possible role in sugar transport 

Gene ID Log2FC FDR Gene Name Description 
1 AT2G21650 -0.94 0 MEE3 Homeodomain-like and MYB-related superfamily protein 

2 AT3G05690 -0.64 0.02 HAP2B CCAAT box binding factor family / NUCLEAR FACTOR 
Y, SUBUNIT A2 

3 AT1G68840 -0.47 0 EDF2 APETALA2/ETHYLENE RESPONSE DNA BINDING 
FACTOR 2 

4 AT1G22590 -0.39 0 AGL87 MADS box transcription factor family AGAMOUS-like 87 

5 AT1G20693 -0.36 0 HMGB2/NFD2 High mobility group B; NUCLEOSOME/CHROMATIN 
ASSEMBLY FACTOR GROUP 

6 AT3G48100 0.36 0.02 ARR5 Transcription repressor in cytokinin signaling / 
RESPONSE REGULATOR 5 

7 AT3G15270 1.06 0.02 SPL5 SQUAMOSA-PROMOTER BINDING protein-like (SPL) 
transcription factor 

8 AT2G41240 3.13 0 bHLH100 basic helix-loop-helix (bHLH) DNA-binding superfamily 
protein; subgroup Ib 

9 AT3G56970 3.22 0 bHLH38 basic helix-loop-helix (bHLH) DNA-binding superfamily 
protein; subgroup Ib 

10 AT3G56980 3.39 0 bHLH39 basic helix-loop-helix (bHLH) DNA-binding superfamily 
protein; subgroup Ib 

11 AT1G03790 5.43 0.04 SOM C3H zinc finger protein  

Table 1. Transcription factors down- or up-regulated after Stroby treatment. 
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(Quirino et al 2001) and a sucrose-proton-like symporter, SUC7.  The latter gene was 

one of the strongest up-regulated transcripts with a Log2FC of 4.82. The SUC7 gene is 

a member of a multigene family and has high similarity with SUC6 and SUC8 (Sauer et 

al, 2004), which were not differentially expressed after Stroby treatment. SWEET2, 

involved in glucose secretion in roots (Chen et al, 2015), was induced and SWEET 11 

and 12, two homologous proteins involved in phloem loading of sucrose (Eom et al, 

2015), were suppressed in Stroby-treated rosettes. Other transport-related genes 

were also up-regulated in Stroby-treated plants, such as one transcript encoding nitrate 

transporter NRT1.8 (AT4G21680). 

Nine genes were selected for gene expression verification analysis by qRT-PCR 

(Supplemental Fig.S5). Higher transcript levels were found for the subgroup Ib bHLH 

transcription factors (bHLH038, bHLH039, bHLH100 and bHLH101), OXIDATIVE 

SIGNAL INDUCIBLE1 (OXI1), UGT74E2 and NRT1.8 in Stroby-treated rosettes, 

whereas the transcripts of SUC7 and SPL5 were not changed. 

Because several genes related to iron absorption and remobilization were 

significantly induced after Stroby treatment, it was hypothesized that the Stroby-

induced plant growth may be linked with a difference in iron accumulation. Therefore, 

total iron was measured in rosettes and individual rosette leaves of 22 days-old 

Stroby-treated and control plants grown in soil (Fig. 3A and B). No significant 

differences were found in total iron contents between Stroby-treated and control 

rosettes (Fig. 3B). In addition, the abundance of ferritin, the iron storage form in the 

cell, was estimated by western blot, but no obvious changes in abundance were found 

(Fig. 3C). Furthermore, Stroby treatment resulted in the differential expression of 

sugar transport-related genes. Therefore, total sucrose content was analyzed in 22-

days old rosettes but no difference in sucrose levels was found between control and 

Stroby-treated plants (Fig. 3D). 

In conclusion, transcriptome profiling of 17-day-old rosettes demonstrated a significant 

induction of three members of the subgroup Ib bHLH transcription factors, as well as 

differential expression of eight sugar transporters.  
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Stroby treatment Enhances Leaf Growth in Wild Type Plants but Not in bhlh 
mutants   

In order to decipher the positive effect of Stroby on growth in a leaf developmental 

context, a modified application protocol was used. In this setup, seedlings were grown 

without Stroby for eight days. Plants were then watered twice a week with Stroby at a 

concentration of 10-9 M for KM from 8 DAS, time point at which the third leaf is still fully 

proliferating (Andriankaja et al, 2012), until 22 DAS. Control plants were watered twice 

Figure 3. Iron and sucrose levels in Stroby-treated and control rosettes. Plants were grown in soil and 
watered twice a week with water (control) or Stroby at a concentration of 10-9 M KM (Protocol B). At 22 DAS
total iron in rosettes (A) and individual leaves (B) was measured from six rosettes for (A) and 10-20 leaves for 
(B) in each biological repeat. DW = dry weight. Lx= leaf position x in the order of appearance on the rosette.
C, Western blot of 22-day-old rosettes of control (C1-3) or Stroby-treated plants (S1-3) using primary antibody 
against ferritin. D, Sucrose content was measured in three rosettes of control or Stroby-treated plants for each
biological repeat. Values in the y-axis are normalized fold-changes relative to the sucrose content in control
plants. Values in (A) and (D) are averages of three biological repeats with their SE. Values in (B) are averages 
of two biological repeats with their SE.
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Figure 4. Rosette, leaf and cellular parameters of plants treated with Stroby from 8 DAS. Plants were 
grown in soil without Stroby for 8 days. At 8 DAS, plants were watered with Stroby or water (control) for the 
first time after which they were treated twice a week. At 22 DAS, average rosette area (A) and average third 
leaf area (B) were measured for Stroby-treated and control plants. C, Ratio of the average leaf areas 24 hours 
(9 DAS) and 48 hours (10 DAS) after first Stroby application and cellular measurements at 10 DAS compared 
with control plants. Values are averages of three biological repeats with their SE. Rosette and leaf area data 
are from 8 to 9 plants in each repeat. Cellular data are from three to four leaves in each repeat. *, P < 0.05, 
mixed models. 
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a week with water during the complete growth period. A schematic representation of 

this application protocol is presented in Supplemental Fig. S1B. 

To evaluate the effect on growth of Stroby using the modified protocol, average rosette 

and leaf areas were measured at 22 DAS by making leaf series. Stroby treatment, 

starting at 8 DAS, resulted in significantly larger rosettes by 19% (P < 0.0001) as well 

as significantly larger third leaves (10%; P < 0.0001) compared with control plants (Fig. 

4A). To investigate whether Stroby already exerts its effect early during leaf growth, the 

third leaf was micro-dissected and its area measured 24 hours (at 9 DAS) and 48 

hours (at 10 DAS) after treatment. Interestingly, the third leaf area was increased by 

32% (P = 0.25) and significantly increased by 65% (P < 0.05), respectively, 24 and 48 

hours after Stroby treatment (Fig. 4B). Cellular analysis at 10 DAS confirmed that the 

increased leaf area was mainly due to more pavement cells (54%, P < 0.05; Fig. 4C).  

In order to further unravel the importance of the subgroup Ib bHLH transcription factors 

in Stroby-induced growth promotion, the effect of Stroby treatment on the rosette sizes 

of bhlh loss-of-function mutants was determined by making leaf series at 22 DAS. For 

this, single SALK T-DNA insertion mutants of bHLH039, bHLH100 and bHLH101 and a 

triple bhlh039 bhlh100 bhlh101 mutant were used (Andriankaja et al, 2014; Wang et al, 

2013). Transcript levels of bHLH039, bHLH100 and bHLH101 were determined in all 
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lines by qRT-PCR analysis and were found to be strongly down-regulated in the 

respective single and triple mutant (Supplemental Fig. S5).  

Wild type and the single and triple bhlh mutants were grown in the absence of Stroby 

for 8 days, treated with Stroby for the first time at 8 DAS and subsequently treated 

twice a week until 22 DAS. Under control conditions, rosettes of the bhlh039 and the 

triple mutant were significantly larger than wild type plants, with an average increase of 

23% and 24%, respectively (P < 0.05; Fig. 5A). Rosette sizes of bhlh100 and bhlh101 

single mutants were similar to those of wild type plants. Stroby treatment significantly 

increased wild type rosette area by 20 % (P < 0.05) compared with control plants (Fig. 

5C). The bhlh100 and bhlh101 single mutants did not show significant increase in the 

final rosette size when treated with Stroby, whereas average rosette size of the 

blhlh039 single mutant and triple mutant was reduced by 12% (P = 0.18) and 6% (P = 

0.08), respectively (Fig. 5B). Because single bhlh039 and triple bhlh mutants were not 

responsive to Stroby treatment and this seemed to be more pronounced for the single 

bhlh039 mutant, we further focused on this mutant. To determine whether the effect of 

Stroby was already absent at early time points in the bhlh039 mutant, the area of the 

third leaf and total pavement cell number was calculated 48 hours (10 DAS) after the 

first Stroby treatment (Fig. 5C). At this time point, the leaves of the bhlh039 mutant 

were already larger than wild type leaves and Stroby only positively affected the growth 

of wild type leaves (P = 0.07). The increased leaf size in wild type Stroby-treated plants 

was due to a significant increase in pavement cell number (77%, P < 0.05) which was 

not seen in the bhlh039 mutant (12%, P = 0.08; Fig. 5D).  

Treatment of Stroby starting at 8 DAS significantly enhanced leaf growth already after 

48 hours by increasing total pavement cell number. Loss-of-function of only bHLH039 

or of all three genes bHLH039, bHLH100 and bHLH101, in the triple mutant, resulted 

in larger plants, suggesting their involvement in the regulation of growth independently 

of Stroby. Furthermore, the positive effect of Stroby on leaf growth was abolished in all 

single and triple mutants, which suggests a central role of these transcription factors in 

Stroby-dependent regulation of growth.  
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DISCUSSION 

Strobilurins are one of the most important classes of agricultural fungicides used 

worldwide because of its broad-spectrum disease control and reported positive 

effects on plant yield and physiology (Bartlett et al, 2002; Dias, 2012). In the last 

decades, several studies aimed at unraveling how strobilurins influence plant 

physiology in the absence of pathogens but the mode-of-action remains unclear 

(Diaz-Espejo et al, 2012; Glaab & Kaiser, 1999; Grossmann et al, 1999). In this 
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Figure 5. Rosette size, leaf size and cellular parameters of wild types and bhlh039, bhlh100, bhlh101 
single and the triple mutant. Plants were first grown in soil without Stroby for 8 days and treated with Stroby 
for the first time at 8 DAS. Subsequently plants were watered twice a week with or without Stroby (control 
plants). A, Pictures of rosettes at 22 DAS and ratio of average rosette sizes at 22 DAS of bhlh101, bhlh100, 
bhlh039 single mutants and the triple mutant bhlh039 bhlh100 bhlh101 compared to wild type plants grown 
under control conditions. B, Ratio of the rosette area of Stroby-treated plants compared with control plants. C, 
Total pavement cell number of third leaves at 10 DAS. Values in (A) and (B) are averages of three biological 
repeats with their SE. Rosette sizes are measured for 8 to 9 plants in each repeat. *, P < 0.05, mixed models. 
Leaf area in (C) are averages of 9-12 leaves. Cellular data are from three leaves of each line and each 
condition. *, P < 0.05, ANOVA.
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study, we used the commercially available strobilurin Stroby consisting of 50% KM 

(Ypema & Gold, 1999), to test its effect on Arabidopsis plant growth and to study the 

underlying cellular and molecular mechanisms. Stroby was externally applied by 

watering and both long-term and short-term consequences of its application on 

developing leaves and final leaf size were determined. Interestingly, both germination 

on Stroby and treatment of Stroby later during leaf development resulted in a 

profound positive effect on Arabidopsis plant growth, which was consistent with the 

previously reported positive effects of KM on grain yield and dry biomass of wheat 

plants (Gold and Leinhos 1995). In both cases, cellular analysis revealed a Stroby-

induced promotion of cell proliferation.  

KM has been suggested to mimic the effect of auxin by stimulating shoot formation in 

different plant species and influencing other hormone levels, such as decreasing 

ethylene and cytokinin levels (Grossmann et al, 1999). Current findings showed that 

the tested concentration of KM in Stroby followed a hormone-like dose response 

curve (Purohit, 2012) with an optimum concentration resulting in the stimulation of 

growth and lower or higher concentrations acting as growth inhibitors. It is well-known 

that auxin can promote cell proliferation (Perrot-Rechenmann, 2010). However, no 

major transcriptional changes in hormone biosynthesis and signaling pathways were 

observed in Stroby-treated rosettes, with the exception of a down-regulation of EDF2, 

suggested to be involved in the repression of ethylene signaling (Licausi et al, 2013), 

and an up-regulation of ARR5 involved in cytokinin signaling (Kieber & Schaller, 

2014). Strobilurin-induced physiological effects have also been linked with nitric oxide 

(NO) signaling (Köhle, 2002) and NO is an important messenger that regulates 

growth by stimulating cell proliferation (Shen et al, 2013; Takahashi et al, 2014). KM 

increases nitrate reductase activity in spinach leaf discs (Glaab & Kaiser, 1999) and 

pyraclostrobin treatment induces NO-release in soybean and tobacco (Conrath et al, 

2004). Remarkably, in our transcriptomic results of Stroby-treated rosettes, two 

genes linked with NO were also up-regulated, a transcript encoding a nitrate 

transporter (NRT1.8) and to a lesser extent a transcript encoding a nitrate reductase 

(NR2). NR2 is responsible for the vast majority of NR activity in plants and several 

studies suggested a role for NR2 in the production of NO (Yu et al, 2014). NRT1.8 is 

induced by nitrate and probably involved in unloading nitrate from the xylem (Li et al, 

2010). Interestingly, NO signaling was found to induce many Fe-regulated genes, 
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such as those found in Stroby-treated rosettes: bHLH038, bHLH039, bHLH100, 

bHLH101 and NAS1, amongst others (Garcia et al, 2010), further suggesting that 

Stroby treatment might affect NO levels which elicit downstream transcriptional 

responses. 

A significant up-regulation was shown of all four members of the subgroup Ib bHLH 

transcription factors (bHLH038, bHLH039, bHLH100 and bHLH101) upon Stroby 

treatment. In addition, bhlh039 single and triple mutants were larger under control 

conditions. These four bHLHs are strongly induced in roots and leaves upon iron-

deficiency and act redundantly to promote iron uptake in roots (Wang et al, 2013; 

Yuan et al, 2008). The phenotypes of the single, double and triple bhlh mutants are 

highly dependent on the environment and contrasting phenotypes have been 

reported when grown on iron-limiting and normal conditions. Ling and colleagues 

(2007, 2008) reported no obvious growth effects of the single mutants when grown 

under optimal iron conditions (Wang et al, 2007; Yuan et al, 2008), whereas reduced 

rosette sizes and no effect on growth were observed when grown in soil under 

standard conditions and in vitro, respectively (Andriankaja et al, 2014). Furthermore, 

in iron-limiting and optimal conditions, the double mutants bhlh039 bhlh100 and 

bhlh039 bhlh101 show stunted growth and chlorosis linked with a reduced iron 

content of the shoots (Wang et al, 2013). Overexpressing bHLH039 leads to normal 

growth under optimal conditions and reduced growth with chlorosis under iron-limiting 

conditions (Yuan et al, 2008). Here, bhlh039 single and bhlh039 bhlh100 bhlh101 

triple mutants were larger compared with wild type plants under control growth 

conditions. In addition, young growing leaves of the bhlh039 mutant were larger than 

wild type because of an increase in cell number. These findings were rather 

surprising because of the previously reported reduced growth of all single mutants as 

well as the redundant role of the four bHLHs in the regulation of iron-deficiency 

responses (Wang et al, 2013), suggesting that bHLH039 plays a pivotal role in leaf 

growth. Indeed, bHLHs expression is up-regulated between 9 and 10 DAS, when 

cells start to expand during leaf development (Andriankaja et al, 2012). The 

increased number of cells in the bhlh039 mutant at 10 DAS also suggests a role of 

bHLH039 in restricting the duration of cell proliferation and/or allowing cells to start 

expanding and, thus, regulating the onset of the transition phase between cell 

proliferation and expansion. Moreover, Stroby did not affect growth of the bhlh039 
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mutant and triple mutant. Growth of the bhlh100 and bhlh101 was not or only slightly 

promoted after Stroby application. Different hypotheses could explain the absence of 

effect of Stroby on mutants without functional bHLHs transcription factors. On the one 

hand, a combination of a mutation in bHLH039 and Stroby treatment result in an 

increase in cell proliferation by which cell proliferation cannot be positively affected 

anymore, while on the other hand, a functional bHLH039 may be needed for Stroby 

to exert its growth effect by inducing downstream growth-regulatory responses. To 

further explore this, additional experiments are necessary, such as unraveling the 

transcriptional responses in growing leaves of bhlh039 mutant and wild type plants 

with and without Stroby treatment.   

Several transcripts involved in sugar transport were differentially expressed in Stroby-

treated plants pointing to a possible effect on sugar transport or accumulation. It was 

recently shown that sucrose promotes cell proliferation early during leaf development 

(Van Dingenen et al, 2016), and, thus, the positive effect of Stroby on epidermal cell 

number could also indirectly result from an accumulation of sucrose in growing 

leaves. SWEET11 and 12 that are normally involved in exporting sucrose in the 

apoplast of the mesophyll cells prior to phloem loading (Chen et al, 2012) were both 

repressed in Stroby-treated plants. SWEET2, which is localized at the vacuolar 

tonoplast and possibly plays a role in reducing the loss of sugars in root tissue (Chen 

et al, 2015), was induced after Stroby application. Double sweet11/12 mutants show 

increased endogenous levels of sucrose and hexoses and, oppositely, the sweet2 

mutants exhibit lower glucose accumulation. These observations suggest that 

application of Stroby could result in differences in sugar transport or sugar 

accumulation, although, no difference in sucrose content was found between rosettes 

of Stroby-treated and control plants. Additionally, Stroby treatment did not result in an 

increase in photosynthetic pigments which has been described in wheat (Beck et al, 

2002). These data suggest that Stroby does not affect photosynthetic activity, and, 

thus, sucrose production. The effect of Stroby was found to be more pronounced on 

the younger leaves that did not reach maturity yet and are probably still proliferating 

(8th until 12th leaf, Fig. 2B), suggesting that sugars might accumulate in actively 

growing leaves. Sucrose quantification experiments in these young leaves should 

shed light on the potential differences in sugar accumulation in the different leaves of 

Stroby-treated rosettes. 
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Another iron-related gene, NAS1, was up-regulated in Stroby-treated rosettes. NAS 

proteins are involved in the transport of iron from the phloem to sink organs (Schuler 

et al, 2012). Iron is important in many different processes during plant growth, 

especially because it acts as an essential cofactor in the major complexes of the 

photosynthetic electron transport chain. In addition, a rise in iron content can 

increase plant biomass (Briat et al, 2007). Treating plants with Stroby did not result in 

changes in rosette iron content, although a small decrease in iron levels was found in 

younger leaves (Supplemental Fig. 3B). Notwithstanding that this observation needs 

further experimental evidence, it is tempting to speculate that Stroby treatment 

stimulates cell proliferation, in a yet unidentified way, by which the cells are depleted 

in the necessary resources resulting in nutrient-deficiency conditions. This might lead 

to insufficient iron and sugars in young proliferating leaves, by which bHLH 

transcription factors are up-regulated as well as NAS1 to promote iron transport to 

these organs. In accordance, these cells will prevent export of the necessary sugars, 

by which the sugar transporters probably involved in phloem loading (SWEET11/12, 

SUC7, SFP1) are repressed and the sugar transporters involved in maintaining sugar 

levels high inside the vacuole (SWEET2) are induced.  

In conclusion, we clearly demonstrate that watering plants with low concentrations of 

kresoxim-methyl, in its commercial formulation Stroby, can promote Arabidopsis plant 

growth. Independently of the time of Stroby treatment, leaf growth was profoundly 

stimulated by an induction in cell proliferation. Transcriptome profiling of complete 

rosettes treated with Stroby demonstrated an interesting link with iron and sugar 

transport but no differences in iron or sugar content were found. Moreover, bhlh 

single and triple mutant plants were less sensitive or insensitive to Stroby suggesting a 

pivotal role of the subgroup Ib bHLH transcription factors in Stroby-induced growth. 

Further experiments are necessary to unravel the exact Stroby-induced downstream 

mechanisms specifically occurring in actively growing leaves. 

MATERIALS AND METHODS 
Growth conditions and plant material 

Plants were grown in soil for 22 days at 21 ̊C under a 16-h day (80-100 μmol m-2 s-1) 

and 8-h night regime. Four seeds per pot were sown on soil. After one week, the 
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seedling with a projected rosette area closest to median area of that genotype was 

selected per pot. In the first application protocol, seeds were stratified and 

germinated in presence or absence of Stroby® WG (BASF) after which they were 

watered twice a week until 22 days. In the second application protocol, plants were 

grown without Stroby for eight days. Plants were then watered twice a week with 

Stroby from 8 DAS until 22 DAS. Control plants were watered twice a week with 

water during the complete growth period. Stroby is used at a concentration of 10-9 M 

for KM, unless specified differently, dissolved in water. All experiments were 

performed on Arabidopsis thaliana (L.) Heyhn. ecotype Columbia (Col-0). 

Homozygous seeds of the bhlh039, bhlh100, bhlh101 mutant lines as well as the 

triple bhlh39 bhlh100 bhlh101 were described in (Andriankaja et al., 2014). 

Growth Measurements 
Leaf series were made by cutting each individual leaf of the rosette and ranking them 

from old to young on a square agar plate. Plates were photographed and pictures 

were subsequently analyzed using ImageJ software (http://rsb.info.nih.gov/ij/) to 

measure the size of each individual leaf. Represented rosette sizes are calculated by 

taking the sum of the average individual leaf areas. 

For the leaf area analysis, leaves were cleared in 100% ethanol, mounted in lactic 

acid on microscope slides, and photographed. Leaf areas were measured with the 

ImageJ software (http://rsb.info.nih.gov//ij/). Abaxial epidermal cells of leaves were 

drawn with a DMLB microscope (Leica) fitted with a drawing tube and a differential 

interference contrast objective. Drawings were scanned and analyzed using 

automated image analysis algorithms (Andriankaja et al, 2012). Subsequently, 

drawings were used to measure average cell area, from which the total pavement cell 

number was calculated. The stomatal index was defined as the percentage of 

stomata compared with all cells.  

RNA Extraction and expression analysis by qRT-PCR 
Seedlings were frozen in liquid nitrogen and RNA was extracted using Trizol 

(Invitrogen) and the RNeasy Plant Mini Kit (Qiagen). DNase treatment was done on 

columns with RNase-free DNase I (Promega). The iScript cDNA synthesis kit (Bio-
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Rad) was used to prepare cDNA from 500 ng-1 μg RNA and qRT-PCR was done on 

the LightCycler 480 with SYBR Green I Master (Roche) according to the 

manufacturer’s instructions. Normalization was done against the average of three 

housekeeping genes AT1G13320, AT2G32170, AT2G28390. Primer sequences are 

listed in Supplemental Table S2. 

Chlorophyll and carotenoid measurements 

Chlorophyll a (Chla), Chlb and total carotenoid levels were measured per mg fresh 

tissue of whole rosettes from six independent experiments. Pigments were 

determined spectrophotometrically in acetone extracts and quantification was done 

based on the equations described in (Porra, 2002). 

RNA-Sequencing Analysis 

Library preparation was done using the TruSeq RNA Sample Preparation Kit v2 

(Illumina). Briefly, polyA-containing mRNA molecules were reverse transcribed, 

double-stranded cDNA was generated and adapters were ligated. After quality 

control using 2100 Bioanalyzer (Agilent), clusters were generated through 

amplification using the TruSeq PE Cluster Kit v3-cBot-HS kit (Illumina), followed by 

sequencing on an Illumina HiSeq2000 with the TruSeq SBS Kit v3-HS (Illumina). 

Sequencing was performed in Paired-End mode with a read length of 50 nt. The 

quality of the raw data was verified with FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/, version 0.9.1). Next, 

quality filtering was performed using the FASTX-Toolkit 

(http://hannonlab.cshl.edu/fastx_toolkit/, version 0.0.13): reads where globally filtered, 

in which for at least 75% of the reads, the quality exceeded Q20 and 3’ trimming was 

performed to remove bases with a quality below Q10. Re-pairing was performed 

using a custom Perl script. Reads were subsequently mapped to the Arabidopsis 

reference genome (TAIR10) using GSNAP (Wu et al, 2010, version 2012-07-20), 

allowing maximum two mismatches. These steps were performed through Galaxy 

(Goecks et al, 2010). The concordantly paired reads that uniquely mapped to the 

genome were used for quantification on the gene level with HTSeq-count from the 

HTSeq.py python package (Anders et al, 2015). The statistical analysis was 
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performed with the R software package edgeR (Robinson et al, 2010, R core team 

(2014), R version 3.1.2). TMM normalization (Robinson and Oshlack, 2010) was 

applied using the calcNormFactors function. Variability in the dataset was assessed 

with a MDSplot. Trended negative binomial dispersion parameters were estimated 

with the default Cox-Reid method based on a model with a fixed treatment and  batch 

effect using the estimateGLMTrendedDisp function, followed by the estimation of the 

empirical bayes dispersion for each transcript. A negative binomial regression model 

was then used to model the overdispersed counts for each gene separately (27421 

genes) with fixed values for the dispersion parameter as outlined in McCarthy et al 

(2012) and as implemented in the function glmFit using the above described model. 

A likelihood ratio test (LRT) was performed for each gene to test for a treatment 

effect with the glmLRT function. False discovery rate adjustments of the p values 

were done with the method described by Benjamini and Hochberg (1995). All 

edgeRfunctions  were applied with default values. 

Iron and sucrose measurements 

Whole rosettes or individual leaves were harvested for total iron measurements. 

Plant iron measurements were conducted as previously described (Li et al, 2011). 

Iron concentration was determined using 0.05 % 1,10-phenanthroline and measuring 

the absorbance at 510 nm against an iron standard curve that was established with 

defined amounts of FeSO4·7H2O. The analysis was conducted for two to three 

biological repeats, per sample six rosettes or 10 to 20 leaves were pooled. Sucrose 

was measured with GC-MS analysis in three rosettes of Stroby-treated or control 

plants. 

Western blotting 

Protein extraction was done as described before (Van Leene et al, 2007). Western-

blot was performed with primary rabbit anti-ferritin antibodies (Santa Cruz; diluted 

1:10000) for 1 hours and secondary horseradish peroxidase conjugated donkey anti

rabbit antibodies (1:10000) for 1 hours. Proteins were detected by 

chemiluminescence (NEN Life Science Products). 
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SUPPLEMENTAL DATA 

The following supplemental figures and table are available at the end of this chapter. 
Supplemental Figure S1. Schematic representation of the Stroby application 
protocols. 
Supplemental Figure S2. Chlorophyll and total carotenoid measurements.
Supplemental Figure S3. Stomatal index of Stroby-treated and control plants at 10 
and 22 DAS. 
Supplemental Figure S4. Gene ontology enrichment analysis of Stroby-responsive 
genes using PageMan. 
Supplemental Figure S5. qRT-PCR analysis of selected Stroby-responsive genes 
Supplemental Figure S6. Transcript levels of bHLH039, bHLH100 and bHLH101 in 
the single mutants and triple bhlh mutant. 
Supplemental Table S1. Differentially expressed genes after Stroby treatment in 17 
day-old rosettes.  
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Supplemental Figure S1. Schematic representation of the Stroby treatment protocols. (A) Seeds were 
stratified and germinated in soil soaked with water (control) or Stroby. Subsequently, plants were treated twice a 
week with either water or Stroby until 22 days after stratification (DAS). RNA sequencing analysis was performed 
on rosettes harvested at 17 DAS. (B) Modified protocol to allow a more detailed study of the effects of Stroby on 
leaf growth. Seeds were stratified and germinated in soil soaked with tap water. The first Stroby treatment started 
at 8 DAS and from then plants were watered twice a week with water or Stroby. 

Supplemental Figure S2. Chlorophyll and total carotenoid measurements. Plants were grown in soil in the 
presence of Stroby from germination onwards for 22 days (Protocol A). Pigments were measured from the whole 
rosette at 22 DAS. Values are means of six independent repeats with their SE. 

Supplemental Figure S3. Stomatal index of Stroby-treated and control plants at 10 and 22 DAS. Plants 
were grown in soil and watered twice a week with water (control) or Stroby at a concentration of 10-9 M KM.
Values are means of three biological repeats with their SE. Cellular data are from three to five plants.  



 Stroby and plant growth 

252 

0
2
4
6
8

10
12
14
16
18
20
22

bH
LH

39

bH
LH

38

bH
LH

10
0

bH
LH

10
1

N
R

T1
.8

SU
C

7

O
XI

1

U
G

T7
4E

2

SP
L5

R
el

at
iv

e 
ex

pr
es

si
on

 
(S

tro
by

/c
on

tro
l) 

12 
2 

1 
3 

1 
1 

7 
1 

2 
3 

4 
5 

1 
2 

12 
11  * 

12 * 

0 2 4 6 8 10 12 14

RNA
secondary metabolism

PS
hormone metabolism

major CHO metabolism
glycolysis
transport

N-metabolism
minor CHO metabolism
amino acid metabolism

lipid metabolism
cell wall

S-assimilation
metal handling

misc
development

redox

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Col-0 bhlh039 bhlh100 bhlh101 bhlhtriple

R
el

at
iv

e 
ex

pr
es

si
on

 le
ve

ls
 

(m
ut

an
t v

s 
C

ol
-0

) 

bHLH039
bHLH100
bHLH101

Supplemental Figure S4. Gene ontology enrichment analysis of Stroby-responsive genes using PageMan. 
GO terms are summarized and represented in functional categories in Y-axis. X-axis represents the number of 
genes in each category. Misc = large enzyme families, PS = photosynthesis-related.  *, P < Bonferoni corrected 
P-value of 0.0004.

Supplemental Figure S5. qRT-PCR analysis of selected Stroby-responsive genes. Relative expression of 
nine Stroby-responsive genes selected from the 111 differentially expressed genes found by RNA-sequencing 
analysis of 17 day-old rosettes, 24 h after Stroby treatment. Values are the means of the ratios (Stroby/control) of 
three biological repeats with their SE.  

 

 

 

Supplemental Figure S6. Transcript levels of bHLH039, bHLH100 and bHLH101 in the single mutants and 
triple bhlh mutant. Expression levels were measured by qRT-PCR in 10-day-old seedlings and are presented 
relative to expression in wild type seedlings.  
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Supplemental Table S1. Differentially expressed genes after Stroby treatment in 17 day-old rosettes. 

Gene ID Name  Description  Log2FC  FDR 
UP-REGULATED TRANSCRIPTS 

AT2G29480 GST2 glutathione S-transferase tau 2 5.57 0.01 

AT1G03790 SOM Encodes SOMNUS (SOM), a nucleus-localized CCCH-type 
zinc finger protein. 5.43 0.04 

AT1G66570 SUC7 sucrose-proton symporter 7 4.82 0.00 

AT4G37990 CAD8 
Encodes an aromatic alcohol:NADP+ oxidoreductase whose 
mRNA levels are increased in response to treatment with a 

variety of phytopathogenic bacteria 
4.48 0.00 

AT1G52060 Mannose-binding lectin superfamily protein 3.95 0.03 

AT3G56980 bHLH39 Encodes a member of the basic helix-loop-helix transcription 
factor protein 3.39 0.00 

AT3G56970 bHLH38 Encodes a member of the basic helix-loop-helix transcription 
factor family protein.;basic helix-loop-helix protein 100 3.22 0.00 

AT2G41240 bHLH100 Encodes a member of the basic helix-loop-helix transcription 
factor family protein 3.13 0.00 

AT1G66700 PXMT1 S-adenosyl-L-methionine-dependent methyltransferases 
superfamily protein 2.85 0.02 

AT3G25250 OXI1 Arabidopsis protein kinase;AGC (cAMP-dependent, cGMP-
dependent and protein kinase C) kinase family protein 2.81 0.04 

AT1G66280 BGLU22 Glycosyl hydrolase superfamily protein 2.80 0.00 

AT4G22470 protease inhibitor/seed storage/lipid transfer protein (LTP) 
family protein 2.64 0.02 

AT1G05680 UGT74E2 Encodes a UDP-glucosyltransferase, UGT74E2, that acts on 
IBA (indole-3-butyric acid) and affects auxin homeostasis 2.44 0.02 

AT3G49620 DIN11 dark-inducible; encodes a protein similar to 2-oxoacid-
dependent dioxygenase 2.38 0.00 

AT2G14247 unknown 2.20 0.00 

AT4G21680 NRT1.8 Encodes a nitrate transporter (NRT1.8). Functions in nitrate 
removal from the xylem sap 2.15 0.02 

AT5G44620 CYP706A Encodes a member of CYP706A 2.15 0.00 
AT5G48000 CYP708A Encodes a member of the CYP708A 2.14 0.01 
AT1G13609 DEFL Defensin-like (DEFL) family protein 1.91 0.04 
AT4G15210 BAM5 beta-amylase 5 1.63 0.00 
AT4G15660 Thioredoxin superfamily protein 1.47 0.00 
AT3G28500 60S acidic ribosomal protein family 1.38 0.03 
AT4G15680 Thioredoxin superfamily protein 1.29 0.00 
AT2G30766 unknown protein 1.29 0.01 
AT2G38380 Peroxidase superfamily protein 1.28 0.02 
AT3G49580 LSU1 response to low sulfur 1 1.26 0.01 
AT1G47395 unknown protein 1.25 0.01 

AT3G22600 Bifunctional inhibitor/lipid-transfer protein/seed storage 2S 
albumin superfamily protein 1.20 0.02 

AT5G26260 TRAF-like family protein 1.14 0.01 
AT4G15670 Thioredoxin superfamily protein 1.14 0.01 
AT5G05250 unknown protein 1.12 0.00 
AT1G43800 Ferritin/ribonucleotide reductase-like 1.12 0.00 
AT4G15690 Thioredoxin superfamily protein 1.07 0.00 
AT4G15700 Thioredoxin superfamily protein 1.07 0.00 

AT3G15270 SPL5 Encodes a member of the SPL (squamosa-promoter binding 
protein-like)gene family 1.06 0.02 

AT5G35480 unknown protein 0.92 0.00 

AT5G37990 S-adenosyl-L-methionine-dependent methyltransferases 
superfamily protein 0.84 0.04 
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AT4G14130 XTR7 xyloglucan endotransglycosylase-related protein 0.78 0.05 

AT5G05960 Bifunctional inhibitor/lipid-transfer protein/seed storage 2S 
albumin superfamily protein 0.77 0.00 

AT1G06830 Glutaredoxin family protein 0.74 0.00 
AT4G34950 Major facilitator superfamily protein 0.73 0.00 
AT3G26200 CYP71B22 putative cytochrome P450 0.73 0.01 

AT1G07610 MT 1C one of the five metallothioneins (MTs) genes identified in 
Arabidopsis 0.62 0.00 

AT2G47180 GOLS1 galactinol synthase 1 0.59 0.05 
AT3G20100 CYP705A member of CYP705A;cytochrome P450 0.59 0.00 
AT1G08650 Encodes a phosphoenolpyruvate carboxylase kinase 1 0.57 0.00 
AT2G16660 Major facilitator superfamily protein 0.55 0.00 

AT1G06080 
Encodes a protein homologous to delta 9 acyl-lipid desaturases 

of cyanobacteria and acyl-CoA desaturases of yeast and 
mammals 

0.49 0.02 

AT3G19030 unknown protein 0.48 0.02 
AT3G56360 unknown protein 0.48 0.02 

AT3G54260 
Encodes a member of the TBL (TRICHOME 

BIREFRINGENCE-LIKE) gene family containing a plant-
specific DUF231 (domain of unknown function) domain. 

0.48 0.01 

AT5G24030 
Encodes a protein with ten predicted transmembrane helices. 

The SLAH3 protein has similarity to the SLAC1 protein involved 
in ion homeostasis in guard cells. 

0.47 0.00 

AT2G42610 LSH10 LIGHT SENSITIVE HYPOCOTYLS 10 0.47 0.00 
AT1G67865 unknown protein 0.47 0.00 
AT4G25100 FeSOD1 Fe-superoxide dismutase 0.47 0.00 
AT3G26960 Pollen Ole e 1 allergen and extensin family protein 0.47 0.00 
AT1G02820 LEA3 Late embryogenesis abundant 3 family protein 0.47 0.02 
AT1G76930 MLP28 MLP-like protein 28 0.46 0.05 
AT5G49480 Ca2+-binding protein 1 0.44 0.00 

AT2G34070 
Encodes a member of the TBL (TRICHOME 

BIREFRINGENCE-LIKE) gene family containing a plant-
specific DUF231 (domain of unknown function) domain 

0.44 0.00 

AT5G65010 ASN2 asparagine synthetase 2 0.43 0.01 
AT5G04950 NAS1 nicotianamine synthase 1 0.42 0.00 

AT4G30110 encodes a protein similar to Zn-ATPase, a P1B-type ATPases 
transport zinc 0.41 0.00 

AT1G63090 phloem protein 2-A11 (PP2-A11) 0.40 0.01 

AT2G24762 Encodes a member of the GDU (glutamine dumper) family 
proteins involved in amino acid export 0.39 0.04 

AT5G27350 SFP1 Encodes a sugar-porter family protein that is induced during 
leaf senescence 0.38 0.01 

AT1G37130 NR2 nitrate reductase 2 0.38 0.02 
AT3G48100 ARR5 cytokinin response regulator 5 0.36 0.02 
AT2G37460 nodulin MtN21 /EamA-like transporter family protein 0.36 0.00 
AT5G24660 LSU2 RESPONSE TO LOW SULFUR 2 0.35 0.02 
AT4G04830 MSRB5 methionine sulfoxide reductase B5 0.35 0.01 
AT3G14770 SWEET2 Nodulin MtN3 family protein 0.34 0.01 
AT4G30270 xyloglucan endotransglucosylase/hydrolase 24 0.34 0.00 
AT5G53450 OBP3-responsive gene 1 0.34 0.01 
AT1G07590 Tetratricopeptide repeat -like superfamily protein 0.34 0.00 

AT1G06640 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase 
superfamily protein 0.33 0.01 
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AT1G49500 unknown protein 0.32 0.02 
AT5G65660 hydroxyproline-rich glycoprotein family protein 0.29 0.04 
AT4G37800 XTH7 xyloglucan endotransglucosylase/hydrolase 7 0.28 0.02 
AT5G11790 NDL-2 N-MYC downregulated-like 2 0.28 0.02 
AT2G38170 cation exchanger 1 0.24 0.04 

DOWNREGULATED TRANSCRIPTS

AT3G47340 DIN6/ASN1 glutamine-dependent asparagine synthase 1 -1.18 0.00 
AT2G21650 MEE3 Homeodomain-like superfamily protein -0.94 0.00 
AT1G77960 unknown protein -0.86 0.00 

AT4G35770 SEN1 Senescence-associated gene that is strongly induced by 
phosphate starvation -0.84 0.01 

AT5G23660 SWEET12 homolog of the Medicago nodulin MTN3 -0.78 0.00 
AT3G55240 unknown function -0.73 0.00 

AT3G05690 HAP2B Encodes a subunit of CCAAT-binding complex;nuclear factor 
Y, subunit A2 -0.64 0.02 

AT2G38530 Involved in lipid transfer between membranes -0.48 0.00 
AT2G28190 SOD2 Encodes a chloroplastic copper/zinc superoxide dismutase 2 -0.48 0.00 

AT1G68840 EDF2 Rav2 is part of a comAPETALA2/ETHYLENE RESPONSE 
DNA BINDING FACTOR 2 -0.47 0.00 

AT1G12520 CCS1 COPPER CHAPERONE FOR SOD1 -0.47 0.00 
AT4G22513 Encodes a Protease inhibitor/seed storage/LTP family protein -0.46 0.02 
AT5G55930 oligopeptide transporter -0.46 0.01 
AT5G43780 sulfate adenylyltransferase -0.46 0.00 
AT5G10170 myo-inositol-1-phosphate synthase isoform 3 -0.42 0.03 
AT1G22590 AGL87 AGAMOUS-like 87 -0.39 0.00 
AT2G40610 EXP8 member of Alpha-Expansin Gene Family -0.37 0.01 

AT1G20693 HMGB2 Encodes a protein belonging to the subgroup of HMGB (high 
mobility group B) proteins t -0.36 0.00 

AT5G36910 Encodes a thionin that is expressed at a low basal level in 
seedlings and shows circadian variation -0.35 0.04 

AT3G48740 SWEET11 Nodulin MtN3 family protein -0.35 0.00 
AT1G64370 unknown protein -0.34 0.03 
AT4G26530 Aldolase superfamily protein -0.33 0.01 
AT4G34250 KCS16 3-ketoacyl-CoA synthase 16 -0.33 0.01 
AT5G51100 FSD2 FE SUPEROXIDE DISMUTASE 2 -0.32 0.01 
AT2G20670 Protein of unknown function -0.32 0.01 
AT2G33770 UBC24 Encodes a ubiquitin-conjugating E2 enzyme -0.31 0.05 
AT2G46600 Calcium-binding EF-hand family protein -0.31 0.02 
AT1G08830 SOD1 SUPEROXIDE DISMUTASE 1 -0.31 0.04 
AT2G29290 NAD(P)-binding Rossmann-fold superfamily protein -0.30 0.02 
AT5G19120 Eukaryotic aspartyl protease family protein -0.30 0.02 
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Supplemental Table S2. qRT-PCR primer sequences of selected Stroby-induced transcripts 

Gene ID Name Forward Primer Reverse Primer 

AT3G56970 bHLH038 TGAGCTTTACGATAAGCAGCAACC AGCCTAGTGGCAGAAACCGTTG 

AT3G56980 bHLH039 TGCCTCTGGCCAATCGAAGAAG TGTACTTCAAGCTTCGAGAAACCG 

AT2G41240 bHLH100 TTCCTCCCACCAATCAAACGAAG TGACCCGAAATTTGAAACGAGAGC 

AT5G04150 bHLH101 TCACAACGCAAGCGAACGAGAC AGAGGCAAGAGAGCACGAAGTG 

AT4G21680 NTR1.8 AGCAAGTTTCGTTGCAGGGTTG ACTCCACAACCACTTGGTTCAAGC 

AT1G66570 SUC7 ACAACAAACACAACCTCTAA CTATCCACAGTCGTCTCA

AT3G25250 OXI1 ACCGTCACTGTCTAAACCATCGC TGCAGAAACTGGTGAAGCGGAAG 

AT1G05680 UGT74E2 CGATGCTGACTGCAAATGAT CACAAGCTTTGGACCCATTT

AT3G15270 SPL5 AAGGCATCTGCTGCGACTGTTG TCTGGTAGCTCATGAAACCTGCTG 
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In this chapter, I discuss the major findings of this PhD. In the first part, focus is given 
to sucrose-induced early leaf growth and I present a model by which I integrate the 
sucrose effects mediated by the GLUCOSE-6-PHOSPHATE/PHOSPATE 2 
translocator (GPT2) and the glucose-signaling protein HEXOKINASE1 (HXK1). 
GPT2 expression was found to be essential for the sucrose-induced stimulation of 
cell proliferation as well as repression of chloroplast DNA transcription during the 
growth of young leaves that act as sugar-importing sinks. Furthermore, upon transfer 
to sucrose, chloroplast differentiation was restricted in these leaves which probably 
led to a delay in cell expansion. In addition, we found that HXK1 plays a role in 
regulating cell proliferation during early leaf growth and is less sensitive to sucrose-
induced promotion of cell proliferation. Our findings suggest that HXK1-signaling 
might act downstream and independent of GPT2. As described in Chapter 6, several 
novel protein partners of HXK1 were isolated via tandem affinity purification 
experiments and some of these are further discussed possibly opening the path for 
future research. In the second part of this chapter, I highlight several considerations 
about the use of strobilurins as growth-promoting compounds as well as future 
experiments which will be essential to further unravel the Stroby-induced positive 
effects on leaf growth.  

Sugars, Sugar Signaling and Leaf Growth 

As illustrated in Chapter 1, sugars play essential and diverse roles during plant 

growth and development. Leaves are the primary organs performing photosynthesis 

to fixate carbon into sugars that are used as major building blocks for the cell. Sugars 

are the essential backbones of DNA and RNA, are necessary for the formation of cell 

wall polysaccharides and are used as cellular energy. Some proteins also need the 

attachment of often complex sugar-trees for their functionality. The primary 

photosynthetic products are sugar phosphates that are used to form sucrose to 

facilitate long-distance transport or to form starch as an important storage compound 

to sustain growth at night (Stitt & Zeeman, 2012; Wind et al, 2010). Furthermore, 

sugars are able to directly influence the transcriptional and translational machinery of 

the cell, which highlights the important role of sugars as signaling molecules able to 

link development with genetic factors and environmental signals (Baena-Gonzalez et 

al, 2007; Lastdrager et al, 2014; Rolland et al, 2006; Xiong & Sheen, 2014). In the 

last decades, there has been large interest to unravel the downstream sugar 

signaling pathways but because of the high complexity and interconnection with 

many other molecular, hormonal, and environmental signals, their functions during 

growth are still far from resolved.  
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Preliminary Considerations: working with tiny leaves… 
One of the main objectives of my PhD was to gain more insight into the sucrose-

induced cellular and molecular changes during early leaf growth. For this, we 

developed an experimental setup in which the availability of sucrose can be altered 

during leaf development, as described in Chapter 4. Seedlings were grown at a low 

light intensity of 50±5 μmol m-2 s-1 on sugar-free medium for 9 days. At 9 DAS, the 

time point at which the third leaf is fully proliferating (Andriankaja et al, 2012), 

seedlings were transferred to medium with or without sucrose. We found that sucrose 

solely affects cell proliferation so the third leaf had to be micro-dissected very early 

during development for further characterization, which brought some preliminary 

considerations that are briefly discussed below. 

During leaf development, growing leaves first act as sugar-importing sinks until they 

become photosynthetically active and therefore act as source leaves. Although this 

sink-to-source transition of leaves is a well-known and old stated fact (Roitsch, 1999), 

it is still not completely understood when it occurs and how sugars can influence it. 

When enough sugars are available and photosynthesis is not needed to support 

growth, sugars are involved in feedback regulation to repress photosynthesis-related 

transcripts (Paul & Foyer, 2001; Paul & Pellny, 2003). These sugar-mediated 

transcriptional responses are well described and were investigated by many research 

groups as discussed in Chapter 1. Surprisingly, although it is obvious that sugars 

have different responses during organ development, most transcriptional studies 

performed so far, were using complete seedlings, mature leaves or cell cultures 

(Muller et al, 2007; Osuna et al, 2007; Price et al, 2004; Usadel et al, 2008). The use 

of entire seedlings for transcriptional experiments mainly reveals the expression of 

genes active in expanding and mature (but not dividing) cells (Skirycz et al, 2010). To 

understand how sugars affect specific developmental programs, such as the growth 

of young sink leaves, the different developmental stages of the organ have to be 

analyzed separately. At the start of my PhD, Andriankaja and colleagues (2012) 

characterized the development of the third leaf of Arabidopsis in detail at the cellular 

and transcriptional level and uncovered a close interaction between the 

establishment of the photosynthetic machinery and, thus, chloroplast differentiation 

and subsequent sugar production, and the transition to cell expansion. After 
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originating from the shoot apical meristem (SAM), the third leaf first exclusively grows 

by cell proliferation until around 9 days after stratification (DAS). Before this time 

point, the third leaf is not-photosynthetically active and to elucidate the underlying 

molecular and cellular mechanisms responsible for growth, it has to be micro-

dissected to separate it from the cotyledons and the first true leaves, which are 

already in expansion phase. However, at this stage, the leaf only measures around 

0.04 mm2 making it rather challenging to obtain enough input material currently 

needed to perform experiments such as metabolic profiling, hormone quantifications 

or protein-protein interaction studies (Dedecker et al, 2015; Kojima & Sakakibara, 

2012; Lisec et al, 2006). Nevertheless, techniques are evolving fast and becoming 

more and more sensitive. Currently, for RNA-sequencing (RNA-seq) methodologies 

less than 100 ng RNA is required (Wang et al, 2009). Obtaining this amount of RNA 

is feasible for young proliferating leaves and provided us with new insights in the 

sugar-mediated and developmental stage-specific molecular mechanisms as 

described in Chapter 4 (Van Dingenen et al, 2016).  

Sucrose-induced GPT2 expression in young proliferating leaves 
Studying the regulation of the sink-to-source transition in leaves was one of the first 

objectives of my PhD. For this, we developed an experimental setup in which the 

availability of sucrose can be altered during early leaf development in a condition that 

corresponds as much as possible to a physiological relevant situation. To do so, 

seedlings were grown on meshes, making that exogenously supplied sugars mainly 

enter the plant via the roots and are transported to the leaves via the phloem. 

Using this setup, we tested different concentrations of both sucrose and glucose and 

found that only sucrose was able to stimulate leaf growth. Sucrose is the main 

transported sugar that is translocated through the phloem from source leaves to sink 

tissues (Rennie & Turgeon, 2009), besides other carbon skeletons, such as polyols 

and raffinose oligosaccharides (Noiraud et al, 2001). Many research groups studied 

the effect of glucose on plant development (Gibson, 2005), mostly using high 

concentrations (2-6%) and during different developmental programs, such as seed 

germination (Osuna et al, 2015; Price et al, 2003), root growth direction (Singh et al, 

2014) and lateral root development (Gupta et al, 2015). Furthermore, Heinrichs and 

colleagues (2012) also demonstrated an increase in rosette growth using 50 mM of 
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glucose. Based on the above described findings, the absence of effect of glucose in 

our setup was rather surprising but could be easily explained by the fact that we used 

low concentrations (compared with the other studies) and because glucose is not 

transported via the phloem (Liu et al, 2012). Nevertheless, the effects of sucrose and 

glucose are tightly linked and it is not easy to elucidate their individual effects. When 

sucrose arrives at the sink tissue, it might enter the cell symplast via plasmodesmata, 

via apoplastic transport and transporters or it can be first converted into its hexose 

products, glucose and fructose, and then imported via hexose transporters (Williams 

et al, 2000). Inside the cytosol, sucrose can be cleaved to UDP-glucose and fructose 

by sucrose synthase or to glucose and fructose by cytosolic invertases. Glucose will 

then be converted to glucose-6-phospate (G6P) by hexokinases for further metabolic 

processing (Granot et al, 2014). To unravel the underlying molecular mechanisms 

responsible for the sucrose-induced stimulation of leaf growth, short-term 

transcriptional responses were analysed using RNA-seq which allowed us to 

discover rapid upregulation of GPT2 upon transfer to sucrose-containing medium. 

Induction of GPT2 expression by sugars has been reported in many different studies, 

using mature leaves and whole seedlings grown in liquid cultures, as well as with 

both sucrose and glucose treatments (Osuna et al, 2007; Price et al, 2004). It 

remains elusive whether sucrose, or its conversion to glucose and G6P are involved 

in GPT2 induction. One approach to tackle this could be the use of a non-

metabolizable sucrose analogue, turanose, which is still able to be transported 

through the phloem via the active sucrose/H+ symporter SUC2 (Chandran et al, 

2003) to elicit extracellular sucrose-signaling (Sinha et al, 2002). However, Gonzali et 

al. (2006) did not report induction of GPT2 expression by turanose possibly because 

it cannot be translocated inside the cell (Loreti et al, 2000).  

In our setup, sucrose was unable to stimulate cell proliferation or to repress 

chloroplast transcription in the gpt2 mutant 24 hours after transfer to sucrose (10 

DAS). These findings clearly suggest an essential role of the expression of GPT2 in 

both processes. However, at the final time point, leaf sizes of the gpt2 mutant were 

still slightly, but not significantly, increased by sucrose as described in Chapter 5. 

This could suggest that early during development GPT2 expression has a 

predominant function in the sucrose-induced effects on cell proliferation but that 

during leaf development sucrose might stimulate leaf growth through an independent 
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Figure 1. Model of sucrose-mediated responses in young proliferating leaves. When sucrose enters the 
sink cell it is converted to glucose and both sugars might rapidly trigger the expression of GPT2 (1) resulting in 
repression of chloroplast transcription that might result in less or more retrograde signals (2) that stimulate cell 
proliferation and/or repress the onset of cell expansion (5). In addition, part of the GPT2-induced retrograde 
signaling might also go through HXK1 (2). Also a GPT2-independent pathway exists via direct HXK1-signaling 
(3), which inhibits nuclear-encoded photosynthesis genes (4), also resulting in less chloroplast differentiation 
and retrograde signaling. HXK1 can inhibit cell proliferation early during development, when leaves are not yet 
performing photosynthesis (6). Sucrose can also directly inactivate SnRK1/bZIP signaling which also affects 
transcription, such as induction of their common target gene DIN6 (7). 

pathway like HXK1-mediated glucose signaling or other signaling pathways. Based 

on our findings, I propose a model of the sucrose-mediated responses in young 

proliferating leaves. The different paths are discussed below and schematically 

represented in Figure 1.  

It was previously reported that gpt2 seedlings show a delay in development which 

could not be rescued by exogenously supply of glucose (Dyson et al, 2014), which is 

consistent with our cellular data, i.e. less cells compared with wild type leaves. A 

kinematic analysis of cell size and cell number, similarly as described for the wild 

type and the hxk1 mutant in Chapter 4 and 6, should shed more light on the 

underlying cellular mechanisms resulting in the increase in the gpt2 mutant at the 

final stage. To further explore the downstream molecular players involved, it would 

be interesting to transcriptionally profile gpt2 mutant leaves. Furthermore, making 

double mutants between hxk1 and gpt2 might help in further unraveling their 

interconnection during sucrose-induced leaf growth. To provide further evidence for 
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the link between the repression of chloroplast transcription, the stimulation of cell 

proliferation and the inhibition of chloroplast differentiation upon transfer to sucrose, 

we are currently performing transmission electron microscopy (TEM) on the gpt2 

mutant. Chloroplast morphology, area and number of gpt2 mutant leaves, 24 hours 

after transfer to control or sucrose-supplemented media, as described for wild type 

seedlings in Chapter 4, will be analyzed. Transfer of wild type seedlings to sucrose-

containing medium resulted in less and smaller plastids which were irregular in shape 

and less differentiated, which possible led to less retrograde signals resulting in a 

delay in cell expansion. If GPT2 also plays a critical role during this process, 

chloroplasts of gpt2 seedlings are expected to not be affected by sucrose.  

Alternative Sugar-Responsive Pathways 
Diverse and conserved sugar-signaling pathways are involved in the regulation of 

transcription and translation during plant growth. However, it remains unclear which 

signaling path underlies the repression of chloroplast transcription by sucrose 

through GPT2 expression. GPT2 has been described to act as a buffer during 

acclimation to high light in the exchange of metabolites between the cytosol and the 

chloroplast (Dyson et al, 2015). The main substrate of GPT2 is G6P, although, it also 

has affinity for other sugar phosphates (Kammerer et al, 1998). In Chapter 4, we 

proposed one hypothesis in which high sucrose levels result in higher G6P levels 

which might be transported in the chloroplast resulting in a repression of chloroplast 

transcription (Van Dingenen et al, 2016). However, also other secondary and 

downstream signaling pathways might be involved in this inhibition. High sucrose 

levels positively correlate with G6P and trehalose-6- hosphate levels (Lunn et al,

2006), and can inhibit the SNF1-related protein kinase (SnRK1; Nunes et al, 2013; 

Zhang et al, 2009), resulting in stimulation of general cellular biosynthetic pathways 

and repression of energy-consuming catabolic reactions (Baena-Gonzalez & Sheen, 

2008). Three hours after transfer to sucrose, we found that PV42a, 

 regulatory subunit  of SnRK1, 

was strongly repressed (Chapter 4). kin10 plants mutated in the catalytic α-subunit of 

SnRK1, have higher transcripts of chloroplast biogenesis-related genes under 

phosphate starvation (Fragoso et al, 2009), suggesting a possible role of SnRK1-

signaling in the inhibition of chloroplast transcription during early leaf growth. 
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experiments with a kin10 T-DNA mutant which revealed 

a potential additional role of KIN10 in the sucrose-induced stimulation of leaf growth 

when seedlings were subjected to our experimental setup (data not shown). SnRK1 is 

inactivated by high sugar levels and, thus, sucrose might affect transcription via 

SnRK1-mediated signaling in young leaves to regulate growth. Interestingly, one of 

the highly repressed genes upon transfer to sucrose at 3 and 24 hours was DIN6/

ASN1, encoding asparagine synthetase, which is a known target of SnRK1 (Baena-

Gonzalez & Sheen, 2008). Furthermore, SnRK1-signaling is partially mediated 

through the S-group bZIP transcription factors (Baena-Gonzalez et al, 2007). 

Sucrose is able to repress bZIP translation directly (Wiese et al, 2005) and DIN6 

expression is also rapidly activated by the bZIP11 transcription factor (Fig. 1) 

(Hanson et al, 2008).   

The Mysterious Role of HEXOKINASE1 in Sink and Source Leaves 

In Chapter 6, we studied the role of HXK1 during early leaf development. For this, we 

used hxk1 mutant seedlings in the Col-0 background subjected to the experimental 

setup described in Chapter 4. By this, the role of HXK1 in sink tissue as well as in the 

transition from sink-to-source could be examined. 

HXK1 has been suggested to mainly act in photosynthetically active tissues as it is 

responsible for the repression of photosynthesis-related genes (Moore et al, 2003; 

Xiao et al, 2000), serving as a sensor to fine-tune the investment of the cell in 

photosynthesis with intracellular sugar levels. However, HXK1 is ubiquitously 

expressed in the plant, both in sink and source tissues (Karve et al, 2008). This 

expression reflects its main metabolic role as a central enzyme during glycolysis 

responsible for the phosphorylation of glucose to G6P but it can also reflect a 

possible signaling role in sink leaves. A role of HXK1 as a sink-tissue-specific 

glucose sensor has not been explored, although it is likely because of the defects in 

hypocotyl elongation and root growth in the gin2 mutant, the hxk1 mutant in the 

Landsberg erecta background (Moore et al, 2003; Xiao et al, 2000).  

In Chapter 6, we found that young proliferating leaves of hxk1 seedlings contained 

more pavement cells without exogenously supplied sucrose in the medium. One 

possibility that we discussed is that hxk1 leaves might already have more cells when 
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initiating from the shoot apical meristem (SAM) or have increased cell cycle 

progression. Further experiments are needed to quantify the leaf sizes prior to 9 DAS 

to have a clue on which of the two processes, leaf initiation or cell proliferation, are 

affected by HXK1 impairment. For this, we could make use of a technique developed 

in our lab, which is based on histological sections and 3D reconstruction to easily 

measure the size of small leaves initiating from the SAM (Vanhaeren et al, 2010).  

Leaf primordia are known to form at regions of high auxin and low cytokinin 

accumulation (Bar & Ori, 2014) and the HXK1-mediated pathway is tightly 

interconnected with different hormone signaling pathways such as auxin, cytokinin 

and abscisic acid (ABA) signaling. The gin2 mutant, is insensitive to auxin and 

hypersensitive to cytokinin (Moore et al, 2003). In addition, several aba deficient and 

aba insensitive (abi) mutants are also insensitive to high glucose concentrations 

similarly as the gin2 mutant (Arenas-Huertero et al, 2000; Rolland et al, 2006). These 

hormones are also involved in the regulation of cell division (Gutierrez, 2009) 

supporting a potential close interplay between HXK1 and hormonal signaling during 

leaf initiation and/or early leaf proliferation phases.  

Later during leaf development, hxk1 cells showed a faster onset of cell differentiation 

compared with wild type, while at the final time point hxk1 and wild type leaves did 

not differ in cell number or size. This observation could be explained by the fact that 

wild type plants undergo a longer cell proliferation phase by which the differences in 

cell number and size between wild type and hxk1 are compensated at the final stage. 

This developmental effect in the hxk1 mutant on the cellular processes further 

highlights the importance to characterize mutants not only at the macroscopic level 

but that a thorough analysis at the cellular level during development is necessary for 

a better and more correct understanding of the functions of the genes in growth 

regulation (Chapter 2). 

Upon transfer to sucrose, cell proliferation of hxk1 leaves was not stimulated as 

much as in wild type plants and this positive effect was not maintained throughout 

leaf development and therefore did not result in a significant increase in final leaf 

size. The remaining positive effect at the final stage might rather be due to an 

increase in total cell number at later time points. Meristemoids are stomatal precursor 

cells which are dispersed in the leaf and divide asymmetrically resulting in the 
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formation of additional pavement cells at later time points during leaf development 

(Andriankaja et al, 2012; Geisler et al, 2000). So, the late increase in cell number in 

hxk1 mutants might reflect a positive effect of sucrose on asymmetric division of 

meristemoid cells. GPT2 expression was still induced by sucrose in the hxk1 shoots 

and this induction might be responsible for the short-term positive effect on cell 

proliferation at 10 DAS. When entering the sink cell, higher sucrose levels might 

rapidly result in the induction of GPT2 both in wild type and hxk1 seedlings. In the 

cell, sucrose can be cleaved in its hexose products, glucose and fructose (Ruan et al, 

2010). The increased intracellular glucose levels might not be sensed by HXK1 in the 

hxk1 mutant seedlings and therefore probably not result in further inhibition of 

photosynthesis explaining the absence of the stimulation of cell proliferation at later 

time points (Fig. 1). Accordingly, this effect was also verified at the chloroplast level 

in the third leaf of hxk1 mutants at 11 DAS via TEM analysis. Chloroplasts of 

sucrose-transferred hxk1 seedlings were larger at the tip of the leaf and seem to 

have more grana and thylakoids but these observations need further quantifications. 

More differentiated chloroplasts in the hxk1 mutant probably result in more or less 

chloroplast retrograde signals, still unknown, that trigger the onset of cell expansion 

(Andriankaja et al, 2012). This effect might then overrule the sucrose effect on 

chloroplast transcription mediated through GPT2. At 10 DAS, sucrose-induced cell 

proliferation is completely abolished in gpt2 seedlings, whereas sucrose still partially 

increased cell number in hxk1 seedlings. These findings suggest that GPT2 acts 

upstream of HXK1 and that these two proteins independently affect chloroplast 

differentiation to regulate early leaf development.  

Furthermore, transfer to sucrose resulted in less and smaller chloroplasts which are 

less differentiated in young leaves. This restriction in chloroplast development might 

also result in the formation of less sugar phosphates, and, consequently, glucose 

during photosynthesis. By this, some of the sucrose-induced GPT2-mediated effects 

on chloroplast transcription and differentiation might also be sensed by the glucose-

sensor HXK1 later during development. Transcript levels are generally more rapid 

than changes in enzyme activities as studied during the diurnal cycle in Arabidopsis 

rosettes (Gibon et al, 2006). This observation might explain why sucrose is still able 

to shortly induce cell proliferation in hxk1 seedlings by the rapid induction of GPT2 

expression. However, previous reports demonstrate no clear role of GPT2 and HXK1 
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in retrograde signaling during acclimation to high light in mature leaves (Hausler et al, 

2014). 

Next to the signaling effects, we cannot ignore that the sucrose-mediated effects that 

we observe might be due to general changes in metabolite levels and it remains 

difficult to make a distinction between such dual effects. Several findings suggest that 

the hxk1 growth phenotype is mainly regulated through signaling as catalytically 

inactive alleles of HXK1 can rescue the reduction in leaf size of the gin2 mutant 

(Frommer et al, 2003; Harrington & Bush, 2003; Moore et al, 2003). In addition, in the 

in vitro conditions that we used, no clear differences could be found in rosette growth 

between wild type and hxk1 mutant plants, except at early time points during leaf 

development as discussed above. The similar growth phenotypes suggest that 

primary metabolism is possibly not heavily affected. Furthermore, GPT2 and HXK1 

are acting via a common metabolite G6P, by which there might be a link between 

both proteins. A metabolite-based hypothesis to explain the effects of sucrose on leaf 

growth is that a mutation in HXK1 might result in less formation of G6P, which is 

probably necessary for the inhibition of chloroplast transcription through GPT2. 

However, it has been demonstrated that the gin2 mutant still has half of the amount 

of glucose phosphorylation capacity as wild type plants and even increased glucose-

6-phosphate (G6P) levels (Moore et al, 2003). G6P can be produced by other HXKs, 

such as HXK2 and HXK3, which are highly expressed in sink tissues such as flowers 

and roots, probably resulting in no major differences in G6P levels between hxk1 and 

wild type leaves (Jang et al, 1997; Karve et al, 2008). Metabolomics would shed 

some more light on the changes in metabolite levels in young leaves of hxk1, gpt2 

and wild type seedlings but this technique is unfortunately not feasible because of the 

lack of enough input material due the fact that the we are studying the responses in 

small leaves that need to be micro-dissected to distinguish between expanding and 

proliferating tissues. 

The “Complex” HXK1 protein-protein Complex  
We performed several tandem affinity purification experiments (TAP) on cell cultures 

grown under a 16-h day and 8-h night regime to further unravel the protein 

complexes around HXK1 as well as to identify other HXK1-dependent players. TAP 
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has been shown to be a powerful technique to elucidate important protein complexes 

involved in diverse developmental pathways (Dedecker et al, 2015; Gadeyne et al, 

2014; Vercruyssen et al, 2014; ), but it remains challenging to uncover transient and 

weak protein interactions in signaling pathways. We used the C-terminal HXK1 TAP-

tagged fusion protein and Arabidopsis cell suspension cultures subjected to three 

different sugar treatments to distinguish between glucose-triggered and non-triggered 

HXK1 interactions. In Chapter 6 we only focused our discussion on the protein 

partners that were independently confirmed in two biological repeats. Here, I want to 

discuss on some of the other proteins that I think should be considered to be 

subjected to further research since they present some interesting features. Of 

course, additional experiments, such as reverse-TAP, bimolecular fluorescence 

complementation and yeast-two-hybrid assays, are needed to confirm that these are 

real interactors.  

In the first growth condition, cells were grown in the presence of sucrose and were 

photoautotrophic. Under these conditions, two nucleosome assembly proteins, 

NAP1;1 and NAP1;2, co-purified with HXK1. A role of these proteins in leaf 

development has been reported (Galichet & Gruissem, 2006), and the nap1;1 mutant 

line demonstrates a similar phenotype as the hxk1 seedlings that we observed. 

NAP1;1 also promotes cell proliferation and expansion depending on the 

developmental stage of the leaf. Galichet and Gruissem (2006) demonstrate a 

nuclear-localization of the protein during the cell proliferation phase to promote cell 

division and a subsequent cytosolic localization during cell expansion. Interestingly, 

recently an interaction between NAP1;1 and the ribosomal protein S6 (RPS6) was 

discovered (Son et al, 2015). RPS6 is phosphorylated by S6 kinase, a downstream 

effector of the TOR-signaling pathway (Ruvinsky & Meyuhas, 2006). TOR or target of 

rapamycin is one of the conserved glucose-signaling pathways that is activated by 

hormones, nutrients and energy to coordinate growth with environmental signals. 

Hence, these findings could suggest an interesting and yet unreported link between 

the HXK1 and TOR glucose-signaling pathway.  

Protein purifications were also done on cell cultures which were sucrose-starved and 

re-supplemented with sucrose for several minutes before protein extraction. This 

sucrose starvation probably induced a general stress response and many proteins 

that co-purified with the HXK1-GSgreen fusion protein had functions in primary 
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metabolism (Table 1, Chapter 6). Sucrose starvation commonly affects the 

expression of sugar metabolizing genes (Koch, 1996). Surprising, although, was the 

isolation of two other proteins the cytosolic KINɣ1 and the H2A histone variant HTA6 

when cells were sucrose-starved. Glucose-free HXK1 might be translocated to the 

nucleus to bind HTA2 to release its repression as discussed in Chapter 6. The other 

isolated protein was KINɣ1, which might also interact with HXK1 under certain stress 

conditions to further regulate growth.  

Finally, a preliminary in planta TAP experiment resulted in the additional identification 

of many more potential HXK1-interactors. Complete seedlings were harvested for 1 

hour after transfer to sucrose-added or control medium at 9 DAS. Again, harvesting 

complete seedlings reflects different cell types and tissues in diverse developmental 

stages making it difficult to link the unraveled protein complexes with developmental 

status of a particular leaf. Similarly as in cell cultures, many primary metabolism 

related proteins were identified (Supplemental Table S1, Chapter 6).  

Concluding remark 
In conclusion, during my PhD, we were able to develop an in vitro experimental setup 

in which the effect of sugars as signaling molecules can be further explored in a 

developmental context. The sugar-mediated effects during leaf growth as well as 

growth of the plant itself are very complex due to their integrated nature of regulation 

at the cellular, organ and whole organism level as well as the influence of diverse 

environmental, hormonal and developmental signals. Understanding the sugar-

mediated effects during growth regulation will clearly benefit from research objectives 

taking into account the development stage of the plant. 
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Strobilurins as Growth-promoting Compounds 
In the second project of my PhD, I focused on the potential growth promoting effects 

of strobilurins. Kresoxim-methyl (KM), azoxystrobin and pyraclostrobin have been 

previously reported to positively affect growth, greening and yield in the absence of 

fungal diseases. These strobilurin-induced physiological effects have been described 

in diverse plant species such as wheat, barley, duckweed, tobacco and corn 

(Kiersten & Daren; Klaus & Günter, 1997; Köhle, 2002; Ypema & Gold, 1999). 

However, these effects were not always consistent and it seems that treatment with 

strobilurins not always resulted in positive effects, especially in soybean, as 

discussed in Chapter 3. In this study, we demonstrated that watering Arabidopsis 

plants with Stroby, consisting of 50% KM, routinely used in the field, results in an 

increase in rosette and leaf size. Similarly as reported before, also in our hands, 

Stroby treatment did not always increase growth for a yet inexplicable reason. KM 

degrades very rapidly and has a very short half-life of only one day (PubChem 

Compound Database) which might explain some of the inconsistency that was 

observed. Another aspect which might explain this inconsistency is the fact that 

strobilurins are normally fungicides applied by spraying on the leaves. In addition, 

because of their independent structural modifications, different strobilurin compounds 

have different physical properties (Bartlett et al, 2002). In contrast to azoxystrobin, 

KM is non-systemic and is mainly distributed locally on the plant surface via the air or 

it moves translaminar into the leaves (Ypema & Gold, 1999). In our setup, Stroby is 

applied by watering the soil where Arabidopsis plants are growing. Both seeds and 

seedlings grown on soil soaked with Stroby resulted in a rapid and final increase in 

leaf area. These observations together with the above described characteristics of 

KM indicate that the main effect of Stroby would be on the roots triggering an 

unknown signal to stimulate shoot growth. In addition, because strobilurins have a 

highly specific mode-of-action in fungi and yeasts, i.e. blocking the electron transport 

chain of the mitochondrial respiration, which is a highly conserved process, it is 

possible that the positive effect on plants would also originate from an interaction with 

plant mitochondria (Diaz-Espejo et al, 2012). One attractive explanation as discussed 

in Chapter 7 is that production of NO signaling that might act as a secondary Stroby-

induced signal to stimulate the positive effects on growth. It has been reported that 

NO can be formed inside plant mitochondria through nitrite reduction mediated by 
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enzyme complexes of the mitochondrial electron transport chain downstream of 

quinone pool (Gupta et al, 2011; Moreau et al, 2010). Interestingly, we found that a 

nitrate transporter NRT1.8, upregulated by nitrate, and NR2 were induced in Stroby-

treated rosettes. The Stroby-induced positive effects on growth could also result from 

the general negative effect of Stroby on fungi in the rhizosphere allowing the plant to 

not spend energy into its defense response. However, this indirect Stroby response 

is rather unlikely because we previously demonstrated that Stroby treatment is still 

able to induce growth when using sterilized soil (data not shown).  

The transcriptome analysis of whole rosettes at 17 DAS provided us with a general 

view of the molecular pathways affected by Stroby. However, these transcriptional 

responses are probably reflecting a general steady-state response to the repeated 

Stroby treatments and are, thus, rather indirect long-term effects. These molecular 

responses do not provide further knowledge on how Stroby directly influences early 

leaf development. As demonstrated in Chapter 7, Stroby-treated seedlings at 8 DAS 

resulted in the stimulation of cell proliferation in young growing leaves already at 48 

hours. To understand the specific molecular pathways regulated by Stroby during the 

growth of a young leaf, we are planning to perform RNA sequencing on micro-

dissected third leaves harvested after Stroby treatment. Furthermore, including the 

bhlh039 mutant, which is insensitive to the Stroby-induced growth promotion, will 

further elucidate downstream bHLH039 regulators involved in the growth effect.  

Recently, another example of a plant growth-promoting compound, melatonin, which 

is a well-known animal hormone, was also found to improve growth of soybean 

plants (Wei et al, 2015). The existence of plant growth-promoting compounds opens 

the door for an exciting novel and direct approach to identify genes involved in leaf 

growth regulation. Chemical screens for compounds that are able to increase plant 

growth will be an interesting research field to further explore. 
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