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CHAPTER 1 

INTRODUCTION 

THE ADAPTIVE RELEVANCE OF PREDICTION ERRORS 

Throughout our lives we are shaped by our experiences and by the 

decisions we made in the past. Our prior experiences color how we view the 

world around us and direct where our curiosity will lead us next. Yet, we 

live our everyday life without realizing how our view of the world is shaped 

by the entirety of our accumulated experiences that keeps evolving over 

time. This is not only a semi-philosophical way of looking at our everyday 

lives; according to the predictive coding framework it is also a good 

description of how the brain works (Friston & Kiebel, 2009; Rao & Ballard, 

1999; Summerfield et al., 2006). Over time, we build up an understanding of 

the world that subsequently guides our perception and our actions.  

Each moment, the brain is tasked with processing a rich stream of 

(sensory) information and determining our next actions. Accomplishing this 

daunting task requires a large investment of energy. In order to function as 

efficiently as possible, the brain has therefore been hypothesized to construct 

an internal model of the world based on our previous experiences. This 

internal model allows us to infer what the future will look like. Next, the 

resulting predictions about the nearby future are cascaded down the 

processing hierarchy in the brain, e.g. from higher processing stages to the 

primary sensory cortex. There, the top-down predictions explain away most 

of the incoming (sensory) input. What remains to be processed is mainly 

limited to the unpredicted events. Thus, the brain can proactively anticipate 
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its (sensory) input before its actual occurrence, simplifying the processing 

requirements.  

The information that is not accounted for by the top-down predictions 

then enters the bottom-up processing stream. These bottom-up prediction 

errors (PEs) not only inform higher processing stages about the outside 

world, they also function as a teaching signal. Indeed, PEs signal a learning 

opportunity as the internal model was unable to predict the actual events and 

should be adjusted. Thus, by repeated adjustments based on the PE feedback, 

the brain learns and thereby optimizes its processing efficiency.  

Taken together, the predictive coding framework entails that on the 

short term top-down predictions steer perception. In addition, the bottom-up 

PEs serve as a teaching signal and hence result in learning on the long term. 

In the current dissertation we will explore both of these phenomena: the 

short term effect of PEs on perception and the long term effect of PEs on 

learning. However, before moving on to the specific research questions we 

first discuss our general research approach. 

Arguably, although the predictive coding framework mainly 

endeavors to characterize the fundamental principles and organization of the 

brain, it comes at the cost of limited specificity. In particular, it attempts to 

cover a wide variety of processes, encompassing the role of PEs on the scale 

of a single cortical column, as well as on the scale of a network that spans 

the entire cortex. Therefore, although the broad framework has been 

sketched, more specific mechanisms are needed to fill in how PEs guide 

perception and learning. 

Therefore, we aimed to explore more deeply how PEs determine 

perception and learning by using a systems approach (hence the subtitle of 
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this dissertation). In this systems approach, we drew upon formal models of 

how neural circuits perform a number of computations. In the first part of the 

dissertation, a formal model is applied to investigate how a perceptual 

decision can be influenced by prior information. In the second part, we 

formally quantified RPEs during a declarative learning task to probe their 

effect on learning. Below we will introduce both formal approaches 

separately and conclude with an overview of the dissertation outline. 

THE SHORT TERM EFFECT OF PES ON PERCEPTION 

We start by turning our attention toward the short term effect of PEs 

on perception. More specifically, we will investigate the effect of PEs on 

vision. Visual processing lends itself ideally for exploring the implications of 

the predictive coding framework. First, the visual processing areas and 

pathways belong to the most extensively studied structures in the brain. 

Also, the strong hierarchical organization of the visual processing stream is 

ideally fit to test the feedforward and feedback mechanisms described by the 

predictive coding framework. It therefore comes as no surprise that visual 

processing has been among the first empirical research lines established to 

test the effect of PEs on perception (Enns & Lleras, 2008; Rao & Ballard, 

1999; Summerfield et al., 2006). 

Exposure to prior information has long been known to influence 

subsequent perception. For example in priming studies, information that was 

presented subliminally (either through masking or by presenting it for only a 

few milliseconds) has been demonstrated to influence the reaction to 

subsequent stimuli (for a review, see Neely, 1991). Matching or related 
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stimuli are typically processed faster and more accurately. However, it is 

often difficult to differentiate between the impact of prior expectations on 

perception itself and the impact these prior expectations have on subsequent 

processing stages such as decision making and response execution. 

Interestingly, research on visual awareness has offered a number of 

paradigms that are specifically designed to focus on the earliest stages of 

visual processing. One of these paradigms of particular interest for 

examining the role of PEs on perception, is binocular rivalry (Clark, 2013; 

Dayan, 1998; Hohwy, Roepstorff, & Friston, 2008). As the name suggests, 

in this paradigm rivalry is created between both eyes by presenting each eye 

with a different picture. For example, a face could be shown to the right eye, 

whereas a house could be shown to the left eye. Instead of blending both 

pictures into one transparently overlaid image, perception alternates between 

the two pictures. Importantly, this bistable visual experience could be the 

result of the predictive mechanisms that try to explain away the conflicting 

input. When for instance the house is the dominant percept, a top-down 

prediction about the house is projected along the processing hierarchy 

toward the earliest processing stages. There, the top-down predictions 

explain away the perception of the house presented to the left eye. However, 

the face picture presented to the right eye will give rise to a bottom-up PE 

signal, accumulating over time. Once these accumulated PEs can no longer 

be ignored, the predictive mechanism switches to the face percept in an 

attempt to minimize PEs. Thus, the face becomes the dominant percept 

which is predicted in a top-down fashion, starting another cycle in the 

alternating perception sequence. 
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Taken together, these examples illustrate how research on visual 

awareness has already sparked a theoretical and empirical interest in the role 

of PEs in perception (Hohwy, 2012; Rauss, Schwartz, & Pourtois, 2011; 

Seth, Suzuki, & Critchley, 2011). We will build upon this research in the 

current dissertation, but before we introduce the current research question we 

will first discuss the role of PEs in learning. 

Probing the effect of PEs on perception through the drift diffusion 

model 

In order to determine how PEs influence perception on the short term, 

we used a formal model from the decision making literature: the drift 

diffusion model (DDM; Bogacz, 2007; Gold & Shadlen, 2007; Ratcliff & 

McKoon, 2008; Ratcliff & Rouder, 1998; Ratcliff, 1985). This model is 

typically applied to a two-alternative forced choice task in which a (visually) 

presented stimulus must be assigned to one of two categories. Participants 

are requested to respond as fast and as accurate as possible. This instruction 

creates a speed-accuracy trade-off: either a decision is made quickly and thus 

with higher error likelihood or the participant alternatively chooses to 

increase accuracy but at the cost of a less speeded response. 

Based on behavioral choices and the response times of these choices, 

the DDM disentangles how speed and accuracy are weighed against each 

other. To illustrate the DDM in analogy to our previous example, suppose 

that the picture of a house or a face is presented and that participants are 

asked to categorize the picture accordingly. From the onset of the stimulus 

presentation (e.g., a house), evidence in favor of each option accumulates 

over time until a decision threshold is reached. When the accumulated 

evidence reaches the decision threshold for the detection of a house first, the 
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participant will correctly report seeing a house. Alternatively, if the evidence 

accumulation accidently reaches the threshold associated with the face first, 

the picture will incorrectly be categorized as a face. 

The DDM contains a number of parameters that detail how the speed-

accuracy trade-off can be solved in different ways. Generally speaking, a 

(perceptual) decision can be reached faster by either lowering the decision 

threshold or by increasing the accumulation speed (i.e., the processing 

efficiency). Each of these adjustments has a distinct influence on the 

response times for the correct and incorrect categorizations. Thus, the model 

enables us to infer the parameter settings based on merely the reaction times 

and behavioral choices. 

In previous research, the DDM has been used succesfully to 

differentiate under what circumstances perception is influenced by either 

altered processing efficiency or threshold setting (Mulder, Wagenmakers, 

Ratcliff, Boekel, & Forstmann, 2012; Summerfield & de Lange, 2014; 

Summerfield & Egner, 2009). Thus, we will use the DDM to probe whether 

PEs influence visual awareness by altering the threshold setting or by 

changing the processing efficiency. 

THE LONG TERM EFFECT OF PES ON LEARNING 

A second component of this dissertation is the long term effect of PEs 

on learning. Based on our internal model of the world, the brain learns by 

comparing the rewarding value of the outcome it predicted to the actual 

reward feedback provided by the environment. This reward feedback is not 

only evaluated on its predictability (i.e., the size of the reward prediction 
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error; RPE), but also on its valence (i.e., is the outcome more positive or 

negative than expected). In that sense, any experience can be categorized as 

being more rewarding (positive RPE) or less rewarding than expected 

(negative RPE). These positive and negative RPEs subsequently serve as a 

teaching signal to optimize the accuracy of future predictions. Hence, 

research on learning has not just focused on PEs, but more specifically on 

RPEs (Rescorla & Wagner, 1972; Sutton & Barto, 1998). 

RPEs are known to be signaled by the dopaminergic reward system, 

encompassing midbrain structures such as the substantia nigra and the 

ventral tegmental area (VTA; Bayer & Glimcher, 2005; Schultz, Dayan, & 

Montague, 1997). Dopaminergic cells in these structures respond to the 

difference between the expected and received reward. Each time an event 

proves to be more rewarding than anticipated a phasic dopamine burst is 

elicited, lasting about 200 to 500 milliseconds. These dopaminergic bursts 

evoked by RPEs subsequently trigger the activation of a dopaminergic 

pathway with projection ranging across a wide variety of brain regions such 

as the hippocampus, the frontal cortex and the anterior cingulate cortex 

(ACC).  

The notion that any event can be valued as rewarding or unrewarding 

is supported by neuroscientific evidence and computational models. Of 

particular importance in this regard is the reward value and prediction model 

(RVPM) put forward by Silvetti, Seurinck, and Verguts (2011). Centered on 

the involvement of the ACC in various functions such as error detection and 

value estimation, the RVPM model states that any event (e.g., any stimulus 

or action) has its own predicted value (Sutton & Barto, 1998). This reward 

value evolves over time as the value of an event is updated each time this 
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event occurs. Again, the difference between the predicted and actual value of 

the event (i.e., the RPE) functions as a teaching signal and results in an 

updated value associated with that event. 

RPEs influence behavior on the long term by shaping stable 

adaptations to the environment through various forms of learning (for a 

historical overview, see Squire, 2004). A long research tradition has focused 

on the influence of RPEs on procedural learning. Typically, these 

experiments reveal how RPEs gradually shape the acquisition of for instance 

stimulus-response associations. In this type of trial-by-trial learning, 

associations are formed by integrating across all previous encounters with 

the stimulus material and extracting which response is on average preferable. 

The associative strength between the stimulus and the response is weakened 

when the outcome is less beneficial than expected (a negative RPE) and is 

enhanced when the outcome is better than expected (a positive RPE).  

Aside from procedural learning, much of our knowledge is acquired 

through declarative learning. Both types of learning differ in a number of 

ways. First, declarative learning mainly involves the acquisition of stimulus-

stimulus associations. Thus, the type of information being learned typically 

involves facts and events. Second, declarative learning is usually very fast as 

knowledge can be acquired based on a single encounter. Lastly, whereas 

procedural knowledge is often difficult to describe verbally, declarative 

knowledge can be probed through explicit recall or reporting. Also, this 

allows the acquired information to be describing in relation to other 

knowledge. 

Interestingly, although the influence of RPEs on procedural learning is 

well established, the empirical evidence for the impact of RPEs on 
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declarative learning remains remarkably absent in the literature. Therefore, 

in the second part of this dissertation we set out to test whether RPEs indeed 

serve as a teaching signal in declarative learning. 

Probing the effect of PEs on learning through the neoHebbian learning 

account 

In order to examine the long term effect of RPEs on declarative 

learning, we combined the well-established role of RPEs in procedural 

learning with a recent framework on declarative learning. To start, we drew 

upon the reinforcement learning literature to quantify RPEs as the difference 

between the obtained reward and the expected reward (Bush & Mosteller, 

1951a, 1951b; Rescorla & Wagner, 1972). This parametric quantification of 

RPEs is traditionally used as the teaching signal in procedural learning. 

Next, we combined these quantified RPEs with the recent neoHebbian 

learning framework put forward by Lisman, Grace, & Duzel (2011), 

detailing how RPEs can influence declarative learning.  

According to this neoHebbian account (Lisman et al., 2011), a large 

amount of information is temporarily stored by the hippocampus during 

initial memory encoding. However, not all of this information will be 

consolidated in long-term memory through long-term potentiation (LTP). 

Only those memory traces that were tagged as important during initial 

encoding will be engrained in long-term memory, a process that is known as 

the tagging and capture model (Frey & Morris, 1998). At the level of the 

individual synapses, a connection can be tagged as important by a concurrent 

dopamine burst. These tags have little influence on the strength of the 

synaptic connection on the short term. Instead, the tags trigger the synthesis 

of plasticity-related proteins through late LTP, thus strengthening the 
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synaptic connection on the long term. Notably, the tagging and capture 

model implies that the effect of dopamine bursts on memory performance 

will become more evident in a delayed memory test (e.g., after a week) 

compared to an immediate test (e.g., after twenty minutes). 

The neoHebbian learning framework thus asserts that dopamine plays 

a crucial role in the acquisition of declarative knowledge on the long term. 

Events that necessitate learning such as novelty, salience and reward give 

rise to dopamine-dependent tagging and thus determine what information 

will be stored through LTP and what will be forgotten (Lisman et al., 2011). 

As described previously, RPEs elicit such dopamine bursts in the substantia 

nigra and VTA, triggering a dopaminergic pathway with projections to the 

hippocampal area. Thus, RPEs are hypothesized to tag the information that is 

being encoded in the hippocampus at that time, resulting in enhanced 

declarative learning. 

In sum, we will calculate RPEs based on the reinforcement learning 

quantification and test whether this teaching signal predicts long term 

declarative learning, as described by the neoHebbian learning framework. 

OUTLINE OF THE DISSERTATION 

In chapter 2, we will use the DDM to investigate how PEs influence 

perception. More specifically, the brief presentation of a house or face 

picture will be cued with either an icon that correctly predicts the identity of 

the picture (congruent trials), an icon that predicts the alternative picture 

(incongruent or PE trials) or an icon that gives no prior information (neutral 

trials). In contrast to previous studies, participants were not asked to 



 

INTRODUCTION     25 

categorize the stimulus based on its identity (i.e., identification task); instead 

they indicated whether the picture was presented above or below fixation 

(i.e., individuation task). Thus, although the cue was informative about the 

identity of the upcoming picture, it was not predictive for the correct 

response in the individuation task. This allowed us to exclude a bias toward 

a specific motor response. Applying the DDM we compared the parameter 

estimates for the congruent, incongruent and neutral trials in order to test 

whether PEs (incongruent trials) influenced visual processing by modulating 

the processing efficiency parameter or the threshold setting parameter. 

In chapter 3, we turn our attention toward the effect of RPEs on 

declarative learning. During a declarative learning task, we parametrically 

manipulated the RPEs that participants experienced during the encoding of 

word pairs. Next, we tested declarative memory in a recognition task that 

was performed either immediately (i.e., after a brief filler task) or after a 

one-day delay. In our analysis, we probed how positive and negative RPEs 

influence declarative memory on the short term (immediate test) and on the 

long term (delayed test). In addition, we excluded alternative interpretations 

of the results such as the time-on-task. 

In chapter 4, we built upon the behavioral paradigm used in chapter 3 

to further explore whether RPEs have a direct influence on declarative 

learning or whether this influence is mediated by attentional modulations. In 

order to do so, the behavioral task was adapted to an electroencephalography 

(EEG) design suited for a time-frequency analysis. This allowed us to 

measure the oscillatory power in several frequency bands. Furthermore, we 

extracted these power estimates on a trial-by-trial basis. This approach 

allowed us to verify whether our quantification of the RPEs matches how 
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participants experience these teaching signals, by testing whether RPEs were 

reflected in the oscillatory power estimates during reward feedback. Next, 

we probed whether these RPE signatures directly predicted the enhancement 

of declarative learning, or whether they improved learning indirectly (e.g., 

through increased attention during encoding). 

Finally, in the general discussion, we will evaluate the implications 

of our findings for the literature on perception and learning. Also, we will 

discuss future perspectives on how our approach could further our current 

understanding of the influence of PEs on perception and learning. 
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CHAPTER 2 

PREDICTIVE INFORMATION SPEEDS UP VISUAL 

AWARENESS IN AN INDIVIDUATION TASK BY 

MODULATING THRESHOLD SETTING, NOT PROCESSING 

EFFICIENCY
1
 

Theories on visual awareness claim that predicted stimuli reach awareness 

faster than unpredicted ones. In the current study, we disentangle whether prior 

information about the upcoming stimulus affects visual awareness of stimulus 

location (i.e., individuation) by modulating processing efficiency or threshold 

setting. Analogous research on stimulus identification revealed that prior 

information modulates threshold setting. However, as identification and 

individuation are two functionally and neurally distinct processes, the 

mechanisms underlying identification cannot simply be extrapolated directly to 

individuation. The goal of this study was therefore to investigate how 

individuation is influenced by prior information about the upcoming stimulus. 

To do so, a drift diffusion model was fitted to estimate the processing efficiency 

and threshold setting for predicted versus unpredicted stimuli in a cued 

individuation paradigm. Participants were asked to locate a picture, following 

a cue that was congruent, incongruent or neutral with respect to the picture’s 

identity. Pictures were individuated faster in the congruent and neutral 

condition compared to the incongruent condition. In the diffusion model 

analysis, the processing efficiency was not significantly different across 

conditions. However, the threshold setting was significantly higher following an 

incongruent cue compared to both congruent and neutral cues. Our results 

indicate that predictive information about the upcoming stimulus influences 

visual awareness by shifting the threshold for individuation rather than by 

enhancing processing efficiency. 

                                                      
1
 De Loof, E., Van Opstal, F., & Verguts, T. (2016). Predictive information speeds up 

visual awareness in an individuation task by modulating threshold setting, not 

processing efficiency. Vision Research, 121, 104–112. doi:10.1016/j.visres.2016.03.002 
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INTRODUCTION 

Driving through an unfamiliar city, looking for the colleagues you 

promised to pick up, you might face a challenging visual perception task. 

Luckily, having some prior (i.e., predictive) knowledge about what your 

colleagues look like will facilitate becoming aware of them. Indeed, several 

consciousness theories have proposed mechanisms by which prior information 

modulates visual awareness. For example, according to Clark (2013) prior 

information is one of the key aspects to determine which stimuli reach visual 

awareness and at what speed. While the effect of prior information on visual 

perception has already been investigated extensively in paradigms that require 

stimulus identification, it remains unclear how it influences the distinct visual 

process of stimulus individuation (i.e., the spatial tagging of an object in a 

visual scene). The current study investigates whether and how prior information 

influences visual awareness in individuation. 

The influence of prior information on visual perception has typically been 

investigated in paradigms that require the identification of visual input. In these 

experiments, participants need to categorize a degraded or masked stimulus 

(e.g., distinguishing a face from a house picture masked by noise). Predicted 

stimuli are typically perceived faster and more accurately. In order to gain more 

insight into the modulations of identification by prior information, formal 

models such as the drift diffusion model (DDM) and signal detection theory 

(SDT) have been used to disentangle the underlying mechanisms (for a review, 

see Mulder, van Maanen, & Forstmann, 2014; Summerfield & de Lange, 2014). 

In the DDM (see Figure 1; Ratcliff & Rouder, 1998), evidence is accumulated 
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at a certain rate (i.e., drift rate) from a starting point toward an upper or lower 

criterion bound. The distance between the upper and lower bounds is called 

boundary separation. The total response time is the sum of this evidence 

accumulation time plus any cognitive processes preceding or following the 

decision process (i.e., non-decision time). Critically, the parameters of the 

decision process (e.g., drift rate, boundary separation and starting point) can be 

mapped onto distinct mechanisms by which expectations can influence the 

accumulation process. First, prior information can improve visual processing 

efficiency. This is reflected in increased drift rate (see Figure 1a). Second, prior 

information can reduce the required amount of accumulated information. This is 

reflected by the distance between the starting point and decision boundaries 

henceforth referred to as threshold setting (see Figure 1b). Importantly, 

threshold setting encompasses both starting point placement and boundary 

separation, although only the latter is relevant in the current experimental 

paradigm (see below). 
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a. Processing efficiency 

 
b. Threshold setting 

 

Figure 1: Prior information can influence visual perception by modulating processing 

efficiency (panel a) or threshold setting (panel b), respectively mapped onto the DDM 

parameters drift rate and boundary separation. The DDM is depicted including the non-

decision time and starting point parameter. Hypothetical reaction time (RT) 

distributions for the correct and error responses are plotted at the corresponding upper 

and lower boundary. Increased processing efficiency and more lenient boundaries are 

indicated in blue, while decreased processing efficiency and more conservative 

boundary settings are depicted in orange. 



PREDICTIVE INFORMATION AFFECTS INDIVIDUATION BY 

THRESHOLD SETTING, NOT PROCESSING EFFICIENCY    35 

Using these and related formal models, a number of studies have 

investigated how prior information influences stimulus identification. By 

manipulating the predictability of a shape in a shape discrimination task, 

Domenech and Dreher (2010) found using the LATER model (Reddi & 

Carpenter, 2000) that prior information influences threshold setting rather than 

processing efficiency. A cue predicting the movement direction in a random-dot 

motion paradigm influenced threshold setting but not processing efficiency 

(using the DDM: Mulder, Wagenmakers, Ratcliff, Boekel, & Forstmann, 2012; 

using a linear ballistic accumulator model: Forstmann, Brown, Dutilh, 

Neumann, & Wagenmakers, 2010). Using the DDM, Dunovan, Tremel, and 

Wheeler (2014) found that the identification of a house or face masked by noise 

was influenced by a house or face cue through the modulation of threshold 

setting. Interestingly, this modulation increased with the reliability of the cue 

(50, 70 or 90% accuracy) establishing a clear causal link between prior 

information and threshold setting. By contrast, using SDT Lupyan and Ward 

(2013) showed that cueing the word ‘circle’ or ‘square’ in a shape 

discrimination paradigm modulated processing efficiency (i.e., d’) but not 

threshold setting (i.e., response criterion).  

The results from these identification paradigms suggest that prior 

information influences visual awareness by modulating threshold setting. 

However, visual awareness studies usually require participants to report whether 

any item was perceived, irrespective of its identity (Baars, 1994; Overgaard & 

Sandberg, 2012; Sandberg, Timmermans, Overgaard, & Cleeremans, 2010; 

Sergent & Dehaene, 2004; Tononi & Koch, 2008). Interestingly, participants 

can often report where something was seen without knowing what was 

presented (Ramsøy & Overgaard, 2004). Similarly, to corroborate awareness 

reports, participants are commonly asked to report the location of a stimulus 
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(i.e., individuation) rather than its identity (e.g., Yang & Blake, 2012). 

Therefore, to investigate how prior information influences visual awareness, it 

is critical to probe its effect on stimulus individuation. According to the 

individuation-identification theory (Leslie, Xu, Tremoulet, & Scholl, 1998), the 

number of objects in a scene (i.e., individuation) and object identity are 

determined in two separate processes. This idea resonates with theories 

claiming that spatial information plays a unique role in visual processing, 

separate from the identification process (Sagi & Julesz, 1984). This notion is 

also supported in object file theory (Kahneman, Treisman, & Gibbs, 1992), 

where an object file is created based on spatial and temporal information, while 

its content is determined separately. As the individuation and identification 

stage are functionally and neurally different (Xu, 2009), prior information may 

influence perception via different mechanisms in these two visual processes. 

Indirect evidence for distinct mechanisms underlying stimulus 

identification and individuation comes from the spatial attention literature. First, 

while object-based attention (crucial for identification) is associated with the 

ventral processing stream, location-based attention (crucial for individuation) 

depends on the dorsal processing stream (Arrington, Carr, Mayer, & Rao, 2000; 

Chen, 2009; Chou, Yeh, & Chen, 2014). Second, in stark contrast to the 

modulation of threshold setting presented above, prior information about the 

location of the upcoming stimulus has been argued to enhance stimulus 

identification by increasing processing efficiency (Anton-Erxleben, Abrams, & 

Carrasco, 2010; Smith, Ratcliff, & Wolfgang, 2004; however, for an alternative 

interpretation see Schneider, 2011). So in similar identification paradigms, 

location cueing boosts processing efficiency while identity cueing modulates 

threshold setting. It could be argued that  as locating a stimulus is crucial to 

individuation  location cueing boosted processing efficiency in the 



PREDICTIVE INFORMATION AFFECTS INDIVIDUATION BY 

THRESHOLD SETTING, NOT PROCESSING EFFICIENCY    37 

individuation process and not in the identification process. However, this 

interpretation of the results remains to be tested as an identification task was 

used rather than an individuation task. 

To investigate how prior information affects visual awareness of stimulus 

location in an individuation paradigm, we developed a cued masking task 

analogous to the identification studies described above. The picture of a house 

or a face (i.e., the target) was briefly presented above or below fixation, 

followed by a masking stimulus. Prior to the target presentation, participants 

were presented with a house or face cue that predicted the target identity with 

80% accuracy, or with a cue that provided no prior information (a question 

mark). This manipulation generated three trial types: congruent, incongruent 

and neutral trials. Participants responded as fast and as accurate as possible to 

the location and not to the identity of the target picture by pressing an upper or 

lower response button. The visibility of the target picture was tailored to the 

individuation threshold of the individual participants in a staircase procedure. 

Furthermore, as the identity cues informed on target identity but were 

orthogonal to the target location that participants responded to, no motor 

response could be primed by the cue. Therefore, the starting point was restricted 

to be half the boundary separation. A DDM was fitted to compare drift rate and 

boundary separation estimates across the three trial types (i.e., congruent, 

incongruent and neutral trials), revealing how prior information influences 

individuation by modulating the processing efficiency (drift rate) or the 

threshold setting (boundary separation). 
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METHOD 

Participants 

Twenty Ghent University students were paid 20 euro for taking part in the 

current experiment combined with another experiment. The order of the 

experiments was counterbalanced across subjects and spread across two days. 

The experiment order and the results of the other experiment did not interact 

with the current experiment and will not be discussed further. The experiment 

lasted approximately one hour. All participants (5 male; on average 19 years old 

with a range of 18 to 25) had normal or corrected to normal vision. Prior to the 

experiment they gave their informed consent in accordance with the Code of 

Ethics of the World Medical Association (Declaration of Helsinki) and received 

a debriefing form afterwards. 

Stimuli and material 

The stimulus set consisted of ten pictures of Caucasian faces from the 

Face Database of the Park Aging Mind Laboratory (5 males, age raging from 19 

to 79; Minear & Park, 2004) and ten pictures of houses taken from the Scene 

Understanding Database from the Princeton Vision Group (Xiao, Hays, 

Ehinger, Oliva, & Torralba, 2010). The face, house and question mark cue were 

taken from the website of The Noun Project (www.thenounproject.com; Person 

designed by Alex Fuller, House designed by OCHA Visual Information Unit, 

Question designed by Vicons Design). Scrambled versions of the pictures were 

constructed by dividing the picture in a 7  7 grid and randomizing the location 

of its 49 cells. All pictures and cues were luminance scaled to the average 



PREDICTIVE INFORMATION AFFECTS INDIVIDUATION BY 

THRESHOLD SETTING, NOT PROCESSING EFFICIENCY    39 

luminance of all stimuli (mean HSV luminance of 0.62; mean Michelson 

contrast of 0.97) to avoid additional luminance-based variation in RTs. 

The experiment was run on a DELL Latitude E6430 laptop running 

Windows 7 Professional and an external DELL E2213 screen with a 1680 by 

1050 resolution. The refresh rate of the screen was set to 60 Hz. The stimulus 

presentation was programmed in MATLAB 2013a (Mathworks Inc.) with a 

Psychtoolbox extension (Brainard, 1997; Pelli, 1997). Answers were registered 

through a Cedrus RB-730 response box enhanced with four time-accurate push 

buttons (Cedrus Corporation, San Pedro, California). Participants were seated at 

approximately 60 cm from the screen. The display extended over a 41  28 

visual angle black background. 

Procedure and design 

Each trial started with the presentation of the cue (house, face or question 

mark; 3.8  3.8 visual angle) for two seconds (see Figure 2a). Next, a full and 

a scrambled version of a picture (the targets; 10.5 x 10.5 visual angle) were 

presented for 33 ms at opposite sides of the cue (above and below; note that the 

locations of the cue and pictures show no overlap). Another scrambled version 

of the same picture (the mask) was subsequently presented at both sides of the 

cue for 33 ms. Next, an empty display was presented until a response was given. 

Participants were instructed to respond as fast as possible by pressing the button 

that matched the location of the full picture. Their right index and middle finger 

were positioned in corresponding positions on the response box. The trial ended 

with the feedback message ‘correct’ or ‘wrong’ presented for one second. 
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a. Trial design 

 
b. Experimental design 

 

Figure 2: Trial design (panel a) and experimental design (panel b) of the experiment. At 

the start of the trial a cue (the icon of a face, house or question mark) is presented for 

two seconds. Next a full picture and a scrambled version are shown as targets (33 ms), 

and subsequently masked by another scrambled version (33 ms). An empty display is 

presented until a response is given, followed by accuracy feedback (1000 ms). The three 

possible cues can be followed by a picture of a house or a face. The combinations of the 

cues and target pictures results in three trial types: neutral, congruent and incongruent 

trials. The number of trials is indicated for each cell of the design. 
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The experiment started with a practice phase of 60 trials, consisting of 20 

neutral and 40 congruent trials. The remaining 600 trials consisted of 200 

neutral trials and 400 trials with an informative cue (see Figure 2b). Of the 400 

informative cue trials, 80% were congruent trials (320 trials) and 20% were 

incongruent trials (80 trials). There were an equal number of house and face 

pictures in the congruent, incongruent and neutral trials. The incongruent trials 

were randomly dispersed across the experiment with the restriction that two 

incongruent trials were always separated by at least two congruent or neutral 

trials. The position of the full picture on the screen (top versus bottom) was 

randomized across all trial types (congruent, incongruent and neutral trials) and 

picture types (house versus face). Participants were informed that the neutral 

cues had no predictive value, and that house and face cues would correctly 

predict the picture type in 80% of the trials. 

Accuracy staircase procedure 

In order to acquire sufficient error trials for the DDM analysis, the 

visibility of the target pictures was varied in a staircase procedure such that 

participants localized the full picture incorrectly in 30% of the trials. The 

visibility was manipulated on a trial-to-trial basis by varying the luminance of 

the pictures from 0% (not visible) to 100% (fully visible). If errors remained 

above 30% when the target pictures were at maximum luminance, the 

luminance of the masks would subsequently be lowered from 100% to 0%. The 

luminance of the target pictures and masks started at 50% and 100% 

respectively. The practice phase allowed the staircase procedure to reach a 

stable plateau at 30% errors. The staircase procedure was further applied 

throughout the experiment to sustain the 30% error rate (Busch & VanRullen, 

2010; Gilzenrat, Nieuwenhuis, Jepma, & Cohen, 2010). 
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A separate staircase was applied to the house and face picture trials. On 

each trial the average accuracy was calculated for the preceding ten house trials 

or ten face trials. When less than seven out of ten houses (faces) were 

individuated correctly, the luminance on the house (face) trials was increased 

with one percent. The luminance decreased with one percent when more than 

seven out of ten individuations were correct. To avoid unnecessary fluctuations 

in the staircase procedure, the less frequent incongruent trials were not taken 

into account for calculating this average accuracy. However, the luminance was 

adjusted on all trials, irrespective of the trial type (congruent, incongruent and 

neutral trials).  

Drift diffusion model 

The DDM parameters were estimated using the DMAT toolbox 

(Vandekerckhove & Tuerlinckx, 2007) running on MATLAB 2013a. The 

DMAT toolbox allows the estimation of seven parameters (see Figure 1) on a 

participant level: drift rate, boundary separation, starting point, non-decision 

time, drift rate variability, starting point variability, and non-decision time 

variability. The two parameters of interest (drift rate and boundary separation) 

were estimated separately for the three trial types (congruent, incongruent and 

neutral trials). In contrast to earlier work (Dunovan et al., 2014; Mulder et al., 

2012) the cue only informed participants about the identity of the upcoming 

stimulus. It did not inform on the to-be-reported location. Therefore, the starting 

point was restricted to half the boundary separation estimates as the cue (or 

indeed any other information) is unable to bias the starting point toward one or 

the other boundary when judging the stimulus location. All other parameters 

(the non-decision time and the three variability parameters) were estimated but 

not allowed to vary across trial types. The estimation method was set to 
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multinomial likelihood estimation based on percentiles with four percentile bins 

separated at the 20
th
, 50

th
 and 80

th
 percentile. The model was fitted for each 

participant individually, resulting in one drift rate and boundary separation 

estimate per trial type per participant. 

RESULTS 

Descriptive statistics 

The staircase procedure was successfully applied in all 20 participants. 

The average number of incorrectly individuated full pictures per participant 

ranged from 30% to 39% for the houses (mean = 33%, sd = 2.1%) and from 

28% to 34% for the faces (mean = 29%, sd = 1.3%). 

Trials on which the interval between target pictures and masks exceeded 

33 ms due to software slowing were excluded (0.12% of the trials removed 

because interval lasted for 48 ms). RTs in the individuation task were subjected 

to a lower cutoff of 200 ms and an upper cutoff of 4000 ms (0.09% and 0.06% 

of the trials removed respectively). The average RTs per participant ranged 

from 458 ms to 1266 ms (mean average = 695 ms). The remaining data were 

entered into the DDM and accuracy analysis; the RT analysis was performed 

separately for the correct and error trials.  

Accuracy and RT analysis 

Accuracies were entered into a generalized linear mixed effects model 

with a random intercept across participants and the trial type as a fixed effects 

predictor. There was no significant main effect of trial type, 
2
(2, N = 20) = 

1.03, p = 0.60 (see Figure 3a). 
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The RTs for the correct and error trials were entered into a separate linear 

mixed effects model with a random intercept across participants and the trial 

type as a fixed effects predictor. For the correct RTs, trial type was a significant 

predictor (average RT for correct congruent, incongruent and neutral trials was 

670 ms, 724 ms and 676 ms respectively; 
2
(2, N = 20) = 42.3, p < 0.001; see 

Figure 3b). Follow-up tests revealed that the RTs on the incongruent trials were 

significantly slower compared to the congruent and neutral trials (respectively 


2
(1, N = 20) = 40.9, p < 0.001, and 

2
(1, N = 20) = 27.5, p < 0.001). There was 

no significant difference in RTs between the congruent and neutral trials, 
2
(1, 

N = 20) = 1.10, p = 0.29. 

The trial type also significantly predicted the RTs on the error trials 

(average RT for error congruent, incongruent and neutral trials was 733 ms, 764 

ms and 717 ms respectively; 
2
(2, N = 20) = 11.0, p = 0.0040; see Figure 3c). 

Again, the RTs on the incongruent trials were higher compared to the congruent 

and neutral trials (respectively 
2
(1, N = 20) = 5.22, p = 0.022, and 

2
(1, N = 

20) = 11.3, p < 0.001), with no significant difference between congruent and 

neutral trials, 
2
(1, N = 20) = 2.51, p = 0.11. 
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  a. Accuracy: all trials 

 

  b. RT: correct trials          c. RT: error trials 

 

Figure 3: Accuracy (panel a) and RT analysis (panels b and c). The average accuracies 

and RTs are plotted with their 95% confidence intervals for all three trial types: 

congruent (blue), incongruent (orange) and neutral (gray) trials. The analysis revealed 

no significant effect of trial type on accuracy (p = 0.60). By contrast, RTs were 

significantly predicted by trial type on the correct trials (panel b; p < 0.001) and the 

error trials (panel c; p = 0.0040). Follow-up tests indicated that the RTs were higher on 

incongruent trials compared to neutral and congruent trials (* p < 0.05, ** p < 0.01, *** 

p < 0.001). 
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DDM analysis 

The drift rate and boundary separation estimates were entered into 

separate linear mixed effects models with a random intercept across participants 

and the trial type as a fixed effects predictor. There was no significant 

difference between the drift rate estimates across trial types, 
2
(2, N = 20) = 

3.08, p = 0.21 (see Figure 4a). Conversely, the boundary separation estimates 

were predicted significantly by the trial type, 
2
(2, N = 20) = 27.2, p < 0.001 

(see Figure 4b). Follow-up tests revealed an increased boundary separation in 

incongruent trials compared to neutral trials, 
2
(1, N = 20) = 12.14, p < 0.001, 

and congruent trials, 
2
(1, N = 20) = 18.79, p < 0.001. The boundary separation 

was not significantly different for the neutral and congruent trials, 
2
(1, N = 20) 

= 0.068, p = 0.79. 
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  a. Drift rate comparison   b. Boundary separation comparison 
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Figure 4: The drift rate estimates (panel a) and boundary separation estimates (panel b) 

are compared across the three trial types (congruent (blue), incongruent (orange) and 

neutral (gray) trials), with each point representing a participant. The analysis revealed 

no significant difference between the drift rate estimates (p = 0.21) but a significantly 

higher boundary separation for incongruent trials compared to congruent and neutral 

trials (all p < 0.01). 

Four validation tests were performed to assess the overall quality of our 

DDM implementation. First, a quantile probability plot (see Figure 5) 

demonstrates a good fit between the observed data and the data simulated by 

our model, with only in the highest quantile a (typical) overestimation of the 

RTs (Leite & Ratcliff, 2011). Second, a bottom-up model building approach 

was used to test whether the model fit of a null model with no condition-

specific parameter estimates (model 1; M1) would significantly benefit from 

adding a condition-specific estimate for the drift rate (M2), boundary separation 

(M3) or non-decision time parameter (M4). For each participant separately, all 

four models were fitted and the deviances of models M2 to M4 were subtracted 

from the deviance of the null model M1, resulting in a chi-square value with the 

difference between the number of estimated parameters as the degrees of 

freedom. A chi-square test across participants revealed that the model fit of M1 

was significantly improved by adding condition-specific boundary separation 

(M3) and non-decision time estimates (M4), but not by adding a condition-

specific drift rate (M2; see Table 1). Next, we tested whether model M3 could 

be significantly improved by adding a condition-specific drift rate (M5; the 

model reported in detail above) or non-decision time estimate (M6). Statistical 

tests revealed no significantly improved model fits (see Table 1). Importantly, 

in model M6 the non-decision time estimates were not significantly different 

across conditions, 
2
(2, N = 20) = 0.17, p = 0.92, while there was a significant 
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difference between boundary separation estimates, 
2
(2, N = 20) = 15.4, p < 

0.001, with a higher boundary separation for the incongruent trials compared to 

congruent trials, 
2
(2, N = 20) = 7.81, p = 0.0052, and neutral trials, 

2
(2, N = 

20) = 8.86, p = 0.0029, but no difference between congruent and neutral trials, 


2
(2, N = 20) = 0.20, p = 0.66. Thus, the bottom-up model building approach 

confirmed the results from the main DDM implementation: Only the boundary 

separation varies significantly across conditions. As a third validation test, the 

main model was fitted separately for the trials with house and face pictures to 

control for stimulus-specific effects or artifacts caused by the separate staircase 

procedure for house and face trials. Both models confirmed our main 

conclusion. Indeed, boundary separation estimates were higher for the 

incongruent trials compared to the neutral and congruent trials (all p < 0.001), 

while the trial type failed to significantly predict drift rate estimates. The fourth 

and final validation test considered that the estimation could be biased by the 

unbalanced design (320, 80 and 200 trials in the congruent, incongruent and 

neutral condition respectively). In a bootstrapping approach, an equal number of 

trials per picture type and trial type were randomly selected to fit the model and 

this procedure was repeated fifty times. The drift rate and boundary separation 

estimates per participant and trial type were subsequently entered in the linear 

mixed effects model with a random intercept across participants and the trial 

type as a fixed effects predictor. Confirming the results from the main model, 

there was no significant difference between the drift rate estimates, 
2
(2, N = 

20) = 2.47, p = 0.29, while the boundary separation estimates were significantly 

different, 
2
(2, N = 20) = 15.95, p < 0.001, with higher estimates in the 

incongruent trials compared to the neutral trials, 
2
(1, N = 20) = 10.7, p = 

0.0011, and congruent trials, 
2
(1, N = 20) = 15.4, p < 0.001. In sum, our 

validation tests demonstrate the quality of the model, and exclude a distortion of 
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the results due to the specific parameter restrictions, stimulus material, the 

staircase procedure or the unbalanced design. 

Table 1: Model comparisons 

M1: null ↔  M2: drift rate  
2
 (40, N = 20) = 35.7, p = 0.66 

 ↔  M3: boundary 
2
 (40, N = 20) = 82.9, p < 0.001 

 ↔  M4: non-decision time 
2
 (40, N = 20) = 80.1, p < 0.001 

M3: boundary ↔  M5: boundary + drift rate 
2
 (40, N = 20) = 41.8, p = 0.39 

 ↔  M6: boundary + non-decision time 
2
 (40, N = 20) = 42.8, p = 0.35 

 

 

 

Figure 5: The quantile probability plot for the DDM analysis is plotted for the observed 

(full lines) and simulated data (dashed lines). The average RTs across participants (y-

axis) are plotted separately for error/correct trials in the incongruent (blue), congruent 

(orange) and neutral condition (gray), divided in 5 quantiles. 



PREDICTIVE INFORMATION AFFECTS INDIVIDUATION BY 

THRESHOLD SETTING, NOT PROCESSING EFFICIENCY    51 

DISCUSSION 

In a cued individuation paradigm we investigated how visual awareness 

of location is affected by prior information. The results show that prior 

information had no impact on the individuation accuracy, but it was highly 

predictive for the RTs: Stimuli following incongruent cues were individuated 

slower compared to stimuli following congruent or neutral cues. A drift 

diffusion analysis revealed that prior information modulates visual awareness 

by shifting threshold setting (implemented as boundary separation) and not by 

the modulation of processing efficiency (i.e., drift rate). Thus, when a stimulus 

is unexpected more evidence needs to be accumulated before the threshold for 

individuation is reached. 

The current study is to our knowledge the first to investigate whether and 

how prior information modulates performance in an individuation task, the 

typical measure for visual awareness (Baars, 1994; Sergent & Dehaene, 2004; 

for implementations see e.g. research using the continuous flash suppression 

technique based on Tsuchiya & Koch, 2005). This is highly relevant as prior 

information is hypothesized to be one of the key elements that determine which 

input enters awareness and how fast (Enns & Lleras, 2008; Hohwy, Roepstorff, 

& Friston, 2008; Kouider, de Gardelle, Sackur, & Dupoux, 2010). The idea that 

prior information plays a pivotal role in the transition from unconscious 

processing to conscious perception has inspired a number of models on sensory 

awareness and visual awareness more specifically (Grossberg, 1999; King & 

Dehaene, 2014; Seth, Suzuki, & Critchley, 2011; Thilakarathne, 2015). In 

addition, it has spurred multiple lines of empirical research. For example, our 
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actions and their sensory effects  whether visual, auditory or proprioceptive  

are highly predictable. Research in this domain has produced valuable insights 

on how the predictability of proprioceptive and visual input produced by our 

own actions alters awareness, especially when the input is ambiguous (Desantis, 

Hughes, & Waszak, 2012; Moore & Haggard, 2008; Salomon, Lim, Herbelin, 

Hesselmann, & Blanke, 2013; Stenner et al., 2014). In the current study we add 

to this literature by demonstrating by what mechanism prior information 

influences individuation, namely threshold setting. 

The modulation of threshold setting in the current individuation task 

parallels the mechanism by which prior information about the upcoming 

stimulus influences stimulus identification (Domenech & Dreher, 2010; 

Dunovan et al., 2014; Forstmann et al., 2010; Mulder et al., 2012). Importantly, 

the modulation of threshold setting by identity cueing is measured differently 

when fitting a DDM to identification or individuation paradigms. Depending on 

the paradigm, identity cues can alter the required amount of evidence 

accumulation by influencing either the boundary separation or the starting point 

parameter (both contributing to the threshold setting; see our discussion on 

Figure 1). In the identification paradigm, the identity cue is directly relevant for 

(correlated with) the response options, leading to response priming. In that case, 

the boundary separation remains fixed and the starting point can be positioned 

closer to the boundary associated with the predicted identity response (Dunovan 

et al., 2014; Mulder et al., 2012). Conversely, in the current identification 

paradigm the cue is unrelated to the response options, causing no response 

priming. In this case, the starting point cannot be biased toward one boundary or 

the other. Instead, the required amount of evidence can be raised by increasing 

the boundary separation symmetrically. Thus, unlike in identification 

paradigms, we can exclude the possibility that the observed difference in 
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threshold setting reflects response priming. However, note that by excluding 

response priming we do not claim that the identity cue had no influence on the 

response mechanisms involved in the decision process (Schneider, 2011); 

threshold setting is part of the response mechanism. 

As discussed in the introduction, the question how prior information 

influences visual awareness has also been tackled by using location cueing, 

however still within identification paradigms (Anton-Erxleben et al., 2010; 

Smith et al., 2004). Information at cued spatial locations is identified faster and 

this effect is ascribed to the overlap between the frontoparietal network 

supporting visual awareness and the parietal orienting system (for a review see 

Chica & Bartolomeo, 2012). As individuation and location cueing are both 

embedded in the dorsal processing stream, we could have investigated how 

identification is influenced by location cueing rather than identity cueing. 

However, as consciousness theories mainly focus on how visual awareness is 

affected by prior information about the identity of an upcoming stimulus rather 

than prior information about its location (Clark, 2013), we applied identity 

cueing to the individuation task. It would be interesting to apply a formal model 

(e.g., DDM) to disentangle whether location cueing in an individuation 

paradigm would boost processing efficiency as in the identification paradigms 

(Anton-Erxleben et al., 2010; Smith et al., 2004) or threshold setting as in the 

current individuation paradigm. Using SDT, Chica et al. (2011) already 

demonstrated that location cueing mainly influences processing efficiency (i.e., 

d’). However, also some effects on threshold setting (i.e., response criterion) 

were observed. Using DDM, future research could expound upon these results 

by clarifying under what conditions location cueing can influence threshold 

setting in individuation paradigms. 
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Now that we have identified threshold setting as crucial in individuation, 

we can speculate about its neural basis. Whereas drift rate is associated with 

processing efficiency mechanisms such as neural gain and the tuning of 

response curves (Isaacson & Scanziani, 2011; Kok, Jehee, & de Lange, 2012; 

Liu, Larsson, & Carrasco, 2007; Martinez-Trujillo & Treue, 2004), shifts in 

threshold setting have been linked to altered baseline activation in regions 

coding for the predicted stimulus feature (Giesbrecht, Weissman, Woldorff, & 

Mangun, 2006; Langner et al., 2011; Macaluso, Eimer, Frith, & Driver, 2003). 

In the current study, face and house cues might trigger increased baseline 

activity in respectively the fusiform face area (FFA) and the parahippocampal 

place area (PPA). We propose that this boosted activity in relevant cortical areas 

will facilitate resonance with the parietal individuation areas (for a similar 

influence of stimulus-driven ventral processes on dorsal processes, see 

Macaluso & Doricchi, 2013). Correspondingly, Summerfield and colleagues 

demonstrated how increased baseline activation in FFA can cause a house to be 

misperceived as a face, activating the frontoparietal network for awareness 

(Summerfield, Egner, Mangels, & Hirsch, 2006). Functionally, this would lead 

to a lower threshold in the individuation process. Similarly, in our analysis 

lower thresholds were observed for the congruent trials compared to the 

incongruent trials, which would lead to faster but more error-prone stimulus 

individuation on congruent trials. Although no significant difference in error 

rate was found in the current paradigm higher error rates on congruent trials are 

possible. The latter could occur because the (task-irrelevant) target identity is 

quickly processed in the congruent condition, with the (task-relevant) target 

location processing lagging behind, potentially resulting in premature and 

incorrect localization responses. The exact neural basis of such a process 

remains to be studied. Interestingly, our study and those outlined above lay out 
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the empirical restrictions necessary for constructing more detailed neural 

models on how prior information influences visual awareness. 
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CHAPTER 3 

SIGNED REWARD PREDICTION ERRORS DRIVE 

DECLARATIVE LEARNING 
1
 

Reward prediction errors (RPEs) are thought to drive learning. This has been 

firmly established in procedural learning paradigms (i.e., classical and operant 

conditioning). However, empirical evidence on whether RPEs drive declarative 

learning – a quintessentially human form of learning – remains surprisingly 

absent. In this study, we used a declarative learning paradigm in which RPEs 

were coupled to the acquisition of Dutch-Swahili word pairs. The memory 

performance for these word pairs was subsequently tested in a recognition test, 

either immediate or after a one-day delay. The results demonstrate a causal effect 

of signed RPEs on declarative learning, with larger RPEs leading to better 

recognition on the immediate test and even stronger benefits on the delayed test. 

In addition, we demonstrate that classic declarative memory mechanisms such as 

time-on-task fail to explain the recognition performance. Importantly, these 

results offer a powerful reinterpretation of the testing effect, with key implications 

for education. 

                                                      
1
 De Loof, E., Naert, L., Van Opstal, F., & Verguts, T. (submitted). Signed reward 

prediction errors drive declarative learning. 
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INTRODUCTION 

Declarative and procedural learning are key assets of the human brain. 

Ever since Thorndike (Thorndike, 1932), it has been thought that reward is 

crucial for both forms of learning. Additionally, inspired by the phenomenon of 

blocking (Kamin, 1969), Rescorla and Wagner proposed and modeled the 

concept that reward prediction is crucial for learning, and that learning occurs 

mainly for unexpected reward outcomes (i.e., reward prediction errors, RPEs; 

Rescorla & Wagner, 1972). Their classic model foreshadowed many decades of 

work to come in the conditioning literature (Mackintosh, 1975; Pearce & Hall, 

1980). A recent surge of interest in this concept results from the remarkable 

synergy between dopaminergic recordings in the mammal brainstem (i.e., the 

neural signature of RPEs; Schultz, Dayan, & Montague, 1997) and the temporal-

difference RPE model (Montague, Dayan, & Sejnowski, 1996; Sutton & Barto, 

1998). Similar views on the role of RPEs in learning were developed in other 

prominent theoretical frameworks (e.g., predictive coding; Friston & Kiebel, 

2009; neoHebbian account; Lisman, Grace, & Duzel, 2011). In ensuing empirical 

research, the effect of RPEs has been amply demonstrated in procedural learning 

paradigms such as classical and operant conditioning (Fiorillo, Tobler, & Schultz, 

2003; Pagnoni, Zink, Montague, & Berns, 2002; Sevenster, Beckers, & Kindt, 

2013; Steinberg et al., 2013). However, in these procedural learning paradigms 

RPEs gradually shape the acquisition of stimulus-response contingencies over 

multiple encounters. This is distinct from the typically human ability to learn 

(verbal, stimulus-stimulus) information through a single encounter by declarative 

learning. This type of learning is, however, costly and subject to interference. The 
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brain must therefore decide what information to prioritize for storage. How it 

achieves this remains a critical gap in the literature. 

We investigated whether RPEs prioritize information during declarative 

learning. While RPEs have been demonstrated to enhance procedural learning, 

the current lack of evidence on the link between RPEs and declarative learning is 

a crucial gap in the literature as declarative learning is a quintessentially human 

form of learning that is important in everyday life (e.g., in education). 

Nevertheless, findings from procedural learning provide clear predictions on the 

role of RPEs in declarative learning. According to the neoHebbian learning 

framework (Lisman et al., 2011), dopamine bursts generated by the ventral 

tegmental area (VTA) and projected to the hippocampus amplify long term 

potentiation (LTP). As a consequence, phasic dopamine bursts during learning 

result in better memory, especially after a delay including sleep (O’Neill, 

Pleydell-Bouverie, Dupret, & Csicsvari, 2010). Rodent research has demonstrated 

that dopamine bursts enhance learning of spatial information, even through a 

single encounter (Bethus, Tse, & Morris, 2010). Given that dopamine is thought 

to implement RPEs (Cohen, Haesler, Vong, Lowell, & Uchida, 2012; Eshel et al., 

2015; Montague et al., 1996), it can be expected that RPEs enhance declarative 

learning. To date, however, there is no direct empirical evidence for a beneficial 

role of RPEs in declarative learning. 

In the current study we set out to experimentally manipulate RPEs in 

declarative learning. We administered Dutch-Swahili word pairs to participants 

by presenting them with a Dutch word accompanied by one, two or four possible 

Swahili translations to choose from (acquisition phase). By manipulating the 

number of available options, we manipulated the reward probability and hence 

the reward prediction (error). In this way, during feedback, positive and negative 
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RPEs of known and various sizes were coupled to the valid Dutch-Swahili word 

pairs (see Figure 1); allowing us to empirically test for the first time whether 

RPEs drive declarative learning. We subsequently probed recognition in an 

immediate or one-day delayed test (recognition phase). Forty participants 

performed the experiment (twenty in each group) after giving informed consent. 

To start, we tested the predictions from the classic time-on-task account. 

According to this account, longer deliberation on a particular Dutch-Swahili word 

pair would improve its retention. Next, we distinguished two possible RPE 

effects. A first possibility is that signed RPEs (SRPEs) (“better than expected” 

signals) determine learning. This account predicts that positive RPEs (i.e., 

receiving a higher reward than expected) improve learning while negative RPEs 

(i.e., receiving a lower reward than expected) abate learning. This would be 

consistent for example with how SRPEs are used to train Actors in Actor-Critic 

models, for example using the delta-rule (Rescorla & Wagner, 1972) or the 

temporal-difference model (Holroyd & Coles, 2002; Sutton & Barto, 1998). A 

second possibility is that unsigned RPEs (URPEs) (“different than expected” 

signals) drive learning, with large (both positive and negative) RPEs bolstering 

learning. This would reflect the established role of surprise in learning (Bryden, 

Johnson, Tobia, Kashtelyan, & Roesch, 2011; Hayden, Heilbronner, Pearson, & 

Platt, 2011). Hence, by testing whether negative RPEs enhance or abate learning 

we empirically disentangle two theoretical accounts on how RPEs can drive 

declarative learning. 
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Figure 1: Experiment overview (a) and experimental design (b). (a) Participants chose 

between one, two or four Swahili translations in the acquisition phase; the two-option 

condition with correct choice is illustrated. Recognition and certainty were probed 

immediately or after a one-day delay. (b) The 3 (number of options)  2 (accuracy of 

choice) experimental design, including number of trials and associated signed and 
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unsigned RPE (SRPE and URPE). SRPE was calculated by subtracting probability of 

reward from actual reward; URPE is the absolute value of SRPE. The feedback is 

illustrated assuming that the participant chose ‘kito’ as the translation for ‘worm’. 

METHODS 

Participants 

Forty participants (all university students; 8 male) enrolled in the study and 

were rewarded € 10 for their participation. All participants were naive to the 

purpose of the experiment, had no prior knowledge of Swahili and had not 

previously taken part in any experiment involving Swahili words. Half of the 

participants were randomly assigned to perform the recognition test immediately 

after the acquisition task and the other half performed the recognition test one day 

later. One gift voucher of € 20 was awarded to the participant with the best 

performance on the immediate recognition test and a second voucher was given 

to the participant with the best performance on the recognition test one day later. 

All participants signed an informed consent before the start of the experiment and 

were debriefed afterwards. 

Material 

The experiment was run on an Asus 1215N netbook running Eprime 

software (Schneider, Eschman, & Zuccolotto, 2012). For the declarative learning 

task, 60 Dutch and 240 Swahili words were selected (Table 1). 
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Table 1: Stimulus material 

Swahili words (240) 

adhabu chupi jeraha kioo maisha msitu nyundo surali 

adui daima jibini kisiwa maji msumari nyundu takatak 

afya dakika jikoni kisu mali mtawa nzuri tamasha 

aibu daraja jiwe kitanda mamba mtirka ofisi tanuri 

akili dari jokofu kitande mapafu mundamo osha tembo 

alizeti dizeli jua kiti mashua mungu panya trekta 

amani duka jumatu kito matumai mvringo petye tumbili 

asili elfu  juuya kitovu matumbo mvua picha tumbo 

baadaye farasi kaburi kofia maua mvuke pombe twai 

bafuni fedha kahawa kovuli mazishi mwanake punda uadui 

bahari filimbi kalamu kuacha mbolea mwanga punguza uchorai 

baharia funzi kamba kuandika mbuzi mwezi pwani ufagio 

baiski furaha kamwe kubale mbwa mzungu rafiki ugomvi 

bandari garisi kartasi kubwa mchanga nanga rangi uhuru 

barua geza katika kudhibi mchawi nchi rombus ukame 

basi godoro kawaida kuhesa mchuzi ndaniya sabuni ukweli 

bega goti kazi  kujenga mdudu ndege sahani umasijo 

bendi gundi kelele kukimba mechezo ndevu samaki uongo 

bilaska guruwe kemia kumba mekno ndizi sayari usiku 

bloke haki kengele kumbuka mfuko ndogo seesaw uyoga 

buli hamsi kesho kununa mgonjwa ndoora sehemu viatu 

bunifu hasira kiatu kunywa miaka ndugu seri wakala 

bustani hatua kichwa kupanda mkasi neyemba shimoni washia 

chaki hazini kidole kusanya mkate ngazi shule welder 

chombo hofu kifua kushoto mkoba ngono simu wengine 

choori ijayo kihozi kusikiza mkuu ngozi singizi wimbo 

chubani imani kijiko kuzama mlango nopya soko wingi 

chuki ishara kikapu kweli moyo nyange starehe wingu 

chuma ishiri kimysa leso mpishi nyeusi stork yatima 

chupa jansa kinywa mageho mraba nyota sufuria zeituni 
 

Dutch words (60) 

agent bord ezel kaas mest rijst stoel wolk 

anker brief fiets kassa nacht schat stoom wonde 

appel bril goud knie neus sjaal stuur worm 

bezem broek graf laken olijf slaap touw zomer 

bier brood hamer lamp oven slang trein  

bloem doos haven lepel paard slot tuin  

boer eend hond lijm poort stier verf  

boot emmer hoofd melk regen stift water  
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Procedure 

At the start of the experiment, participants were informed about the four 

parts of the study: the familiarization task, the acquisition task, the filler task and 

the recognition test (see below for a detailed description of each part). 

Participants knew they could earn at least € 8 but possibly more than € 10 during 

the acquisition task and could receive an additional gift voucher of € 20 if they 

had the best recognition performance. The gift voucher was shown to the 

participants at the start of the experiment and again at the start of the recognition 

test. Participants took part in the experiment in pairs to increase their involvement 

in the acquisition task and recognition test. 

Familiarization task. In order to familiarize the participants with the 

stimuli used in the experiment, all Dutch and Swahili words were presented in 

random order at the start of the experiment. Each word appeared at the center of 

the screen for two seconds. Participants were instructed to read the words in 

silence and push a response button when a Dutch word appeared. The 

familiarization task lasted about nine minutes. 

Acquisition task. At the start of the acquisition task, participants were 

informed that they were about to learn 60 Dutch-Swahili word pairs. During this 

task they would be able to gain at least € 8 and possibly more than € 10. In 

addition they were reminded of the recognition test that would follow the 

experiment and of the additional gift voucher of € 20 for the participant with the 

best recognition performance. 

At the start of each trial, one Dutch word was presented at the top of the 

screen with four Swahili words below (Figure 1a). All words remained on screen 

for four seconds and participants were instructed to read the options. Next, a 
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frame appeared around the possible Swahili translations for the Dutch word. In 

the one-option condition only one Swahili word was framed, thus immediately 

indicating the correct Swahili translation. In the two-option condition a frame 

appeared around two Swahili words so participants had a 50% chance of 

choosing the correct translation. Finally, in the four-option condition all four 

Swahili words were framed and the participant thus had a 25% chance of 

choosing the correct Swahili translation. Four response buttons were assigned to 

the four word positions and participants responded with the index and middle 

finger of their left and right hand. There was no time constraint on the decision 

but participants were encouraged to follow their first impression. 

After the participants chose a Swahili translation, feedback on the correct 

translation was given. The Dutch word, an equation sign and the correct Swahili 

word appeared at the center of the screen. If the chosen Swahili translation was 

correct, a green frame was presented around the Dutch word and the chosen 

Swahili word, while participants heard the sound of money tumbling in a cup 

(three seconds). Alternatively, if the chosen Swahili translation was incorrect, a 

red frame appeared around the Dutch word and one of the other possible Swahili 

word options, while an error buzz was played (three seconds). The words 

remained on the screen for five seconds and participants were instructed to use 

this time to learn the word pair by heart for the recognition test. Finally, the trial 

ended with a 2.5 seconds presentation of the total amount of reward collected 

thus far. Participants won € 0.28 on correct trials; no money was added on error 

trials. 

Filler task. A brief filler task was inserted to reduce recency effects in the 

immediate recognition test. In order to keep both versions of the experiment as 

similar as possible, the filler task was also presented to participants who would 
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perform the recognition test one day later. Participants categorized numbers 

between 1 and 9 (excluding 5) as being smaller or larger than 5 (left and right 

button presses respectively). A total of 400 numbers were presented and the filler 

task took about four minutes. 

Recognition test. At the start of the recognition test, participants were 

reminded about the additional gift voucher of € 20 for the participant with the 

best recognition performance. The display layout for the recognition test was 

similar to that of the acquisition task. The Dutch word appeared at the top of the 

screen with the same four Swahili words below. However, the order of the four 

Swahili words was randomized and participants were warned about this change. 

As soon as the words appeared, participants could choose between the four 

Swahili words by using the same four response buttons as in the acquisition task. 

No time constraints were imposed on their answer. After a Swahili word was 

chosen, participants indicated how certain they were about their answer: ‘very 

uncertain’, ’rather uncertain’, ’rather certain’ or ‘very certain’ (measured on a 

scale from 1 ‘very uncertain’ to 4 ‘very certain’). No feedback was given about 

the accuracy of their Swahili translation. 

Design 

Unbeknownst to the participants, the accuracy of the chosen translations in 

the acquisition task was determined in advance. More specifically, a fixed 

number of trials was assigned to each cell of the design and trials were 

predetermined to have one, two or four valid Swahili options and to be correct or 

incorrect (Figure 1b). Note that by predetermining whether a translation would be 

correct or not, participants did not necessarily learn the correct Swahili 

translations of the Dutch words. For example, if a trial had been determined to be 

a two-option trial with a correct answer, the participants would be rewarded 
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irrespective of their choice and this chosen word would be the translation they 

had to memorize for the recognition test. Moreover, for each Dutch word four 

randomly drawn Swahili words were presented, often not including the actual 

translation. Participants were informed about this manipulation afterwards. 

The SRPEs were calculated by subtracting the reward probability (i.e., 1, 

0.5 and 0.25 probability of a correct choice in the one-, two- and four-option 

condition, respectively) from the actual received reward (i.e., 1 reward on correct 

trials and 0 reward on incorrect trials). Thus a unique SRPE was calculated for 

each cell in the design, ranging from -0.50 to 0.75 (see Figure 1b for a full 

overview). The URPEs were calculated by taking the absolute value of the 

SRPEs. Note that this merely reverses the sign of the RPEs for the unrewarded 

word pairs. 

RESULTS 

Three participants were removed from the dataset because of technical 

failures during the experiment. Further analyses are performed on the data of the 

remaining 19 participants in the immediate recognition test group and 18 in the 

delayed recognition test group. All participants performed the acquisition task 

according to the instructions, choosing a valid option in 99.5% of the trials (trials 

with invalid choices were excluded from further analyses). As participants were 

free to deliberate on their answer in the recognition test without any time 

restriction, all further analyses will focus exclusively on recognition accuracies 

and certainty ratings. 



 

74     CHAPTER 3 

The effect of reward and number of options 

First, we probed how the reward and the number of options in the 

acquisition task influenced the recognition rate. Recognition accuracies were 

entered into a generalized linear mixed effects model with a random intercept 

across participants and the test delay, the number of options and the reward as 

fixed effects predictors. Recognition accuracy was significantly higher in the 

immediate test than in the delayed test, 
2
(1, N = 37) = 15.7, p < 0.001. 

Recognition accuracies ranged from 40% to 90% (M = 67.4%, SD = 14.4%) for 

the immediate test group and from 27% to 73% (M = 50.7%, SD = 11.6%) for the 

delayed test group. As Figure 2 reveals, there was a significant main effect of 

reward, 
2
(1, N = 37) = 24.5, p < 0.001, with rewarded choices being 

remembered more accurately. In addition, the recognition rate significantly 

increased with an increasing number of options, 
2
(1, N = 37) = 36.8, p < 0.001.  
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Figure 2: For the unrewarded (panel a) and rewarded word pairs (panel b) in the 

immediate test group and their equivalent in the delayed test (panels c and d), the 

recognition rate (y-axis) is plotted as a function of the number of options (x-axis). Note 

that in the one-option condition the chosen translation was always rewarded. Recognition 

performance was higher on the immediate test compared to the delayed test and a 

generalized linear mixed effects model revealed a significant increase in recognition rate 

with an increasing number of options and a better performance for rewarded word pairs 
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(black regression line with gray 95% confidence band). For each number of options and 

depending on the reward and delay, the average RT and 95% confidence interval was 

estimated and superimposed. 

Classic declarative learning mechanisms: time-on-task 

We verified whether variations in time-on-task could account for the 

positive effect of number of options on recognition. As participants were allowed 

an unlimited amount of time to choose between the Swahili word options during 

the acquisition task, variations in time-on-task could result in better recognition. 

However, the time-on-task account failed to explain the positive effect of the 

number of options as revealed by the following two additional tests.  

First, we tested whether longer deliberation on individual trials would lead 

to better recognition. To approximate the time devoted to each option (word) on a 

particular trial, we divided the time-on-task by the number of options. The 

resulting time-on-task per option (time-on-word) revealed that each option was 

examined longer when less options were available (the mean time-on-word on the 

one-, two- or four-option trials was 2880 ms, 1826 ms and 1169 ms, 

respectively). Next, we tested whether increased time-on-word would lead to 

better recognition. Recognition accuracies were entered into a generalized linear 

mixed effects model with a random intercept across participants and the test delay 

and time-on-word as fixed effects predictors. Counter to the predictions from the 

time-on-task account, there was no significant influence of time-on-word on 

recognition, 
2
(1, N = 37) = 1.48, p = 0.22. Follow-up tests for one-, two- or four-

option trials separately confirmed that recognition was not significantly 

influenced by the time-on-word (one-option trials, 
2
(1, N = 37) = 0.096, p = 

0.76; two-option trials, 
2
(1, N = 37) = 0.026, p = 0.87; four-option trials, 

2
(1, N 

= 37) = 2.52, p = 0.11). The result of the one-option trials is particularly 
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interesting as participant could already start learning the word pair during the 

deliberation time. Still, even in the one-option condition longer deliberation on 

the valid Dutch-Swahili word pair failed to result in better declarative learning. 

Second, we tested whether participants who deliberated longer recognized 

more word pairs. The recognition accuracies were entered into a generalized 

linear mixed effects model with a random intercept across participants and the 

test delay and average time-on-task per participant as fixed effects predictors. The 

results show that recognition was not significantly influenced by the average 

time-on-task across participants, 
2
(1, N = 37) = 0.0022, p = 0.96. The same 

analysis was repeated separately for trials with one, two or four options. None of 

these analyses revealed an influence of the average time-on-task across 

participants on the recognition accuracies (one-option trials, 
2
(1, N = 37) = 0.35, 

p = 0.55; two-option trials, 
2
(1, N = 37) = 0.57, p = 0.45; four-option trials, 

2
(1, 

N = 37) = 1.69, p = 0.19). Again, it is interesting to note that even in the one-

option trials, people who examined word pairs longer had no increased 

recognition accuracy. In sum, declarative learning was not accurately predicted 

by the time-on-task account, as allotting more time to the word pairs had no 

impact on subsequent recognition. 

The effect of positive and negative RPEs 

To further investigate the effect of RPEs on declarative learning, we 

disentangled the role of positive and negative RPEs by probing the interaction 

between the number of options and reward. Recognition accuracies were entered 

into a generalized linear mixed effects model with a random intercept across 

participants and the test delay, the number of options and the reward as fixed 

effects predictors. Contrary to the URPE account, but consistent with the SRPE 

account, there was no significant interaction between the number of options and 
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reward, 
2
(1, N = 37) = 1.42, p = 0.23. There were also no interactions with the 

test delay (all p > 0.20).  

The same pattern of results were obtained when the certainty ratings were 

entered into a linear mixed effects model with a random intercept across 

participants and the test delay, recognition accuracy, the number of options and 

the reward as fixed effects predictors. There was a main effect of the number of 

options, 
2
(1, N = 37) = 27.7, p < 0.001, a main effect of reward, 

2
(1, N = 37) = 

8.38, p = 0.0038, and no significant interaction between the number of options 

and reward, 
2
(1, N = 37) = 1.29, p = 0.26, or any other significant interactions 

involving the number of options or the reward (all p > 0.10). 

So far, the data failed to support the URPE account as there was no 

significant interaction between the number of options and the reward. Moreover, 

the positive effect of the number of Swahili word options on recognition rates in 

the unrewarded trials (Figure 2a and 2c) supports the SRPE account and refutes 

the URPE account. To pit the SRPE and URPE accounts against one another 

more directly, the recognition accuracies of the unrewarded trials were entered 

into a generalized linear mixed effects model with a random intercept across 

participants and the test delay and the number of options as fixed effects 

predictors. In line with the positive effect suggested in Figure 2a and 2c, there 

was a significant effect of the number of options, 
2
(1, N = 37) = 9.49, p = 

0.0021, with higher recognition rates for trials associated with more Swahili word 

options. There was also a significant main effect of test delay, 
2
(1, N = 37) = 

18.09, p < 0.001, but there was no significant interaction between the test delay 

and the number of options, 
2
(1, N = 37) = 0.25, p = 0.61. 
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SRPEs as a linear predictor of declarative learning 

To formally probe whether declarative memory performance increases 

linearly with SRPEs, recognition accuracies were entered into a generalized linear 

mixed effects model with a random intercept across participants and the test delay 

and SRPEs as fixed effects predictors. As Figure 3a and 3b illustrates, recognition 

improved significantly with increasing SRPEs, 
2
(1, N = 37) = 27.4, p < 0.001. 

The interaction between SRPEs and delay was not significant, 
2
(1, N = 37) = 

2.52, p = 0.11, and Figure 3a and 3b clearly illustrates a significant effect of 

SRPEs in the immediate test group, 
2
(1, N = 19) = 6.20, p = 0.013, and an even 

stronger effect in the delayed test group, 
2
(1, N = 18) = 23.6, p < 0.001. Note 

that the recognition in the delayed test is especially lower for negative RPEs but 

remains high for positive RPEs. 

The linear effect of SRPEs on declarative learning was further validated by 

the certainty ratings (Figure 3c and 3d). The certainty ratings were entered into a 

linear mixed effects model with a random intercept across participants and the 

test delay, recognition accuracy and SRPEs as fixed effects predictors. In line 

with the effect of SRPEs on recognition, there was a significant main effect of 

SRPEs on the certainty ratings, 
2
(1, N = 37) = 9.49, p = 0.0021, with higher 

SRPEs leading to higher certainty ratings. While there was no significant 

interaction between the effect of SRPEs and test delay, 
2
(1, N = 37) = 0.039, p = 

0.84, there was a significant interaction between SRPEs and recognition 

accuracy, 
2
(1, N = 37) = 4.56, p = 0.033, and a marginally significant three-way 

interaction, 
2
(1, N = 37) = 3.25, p = 0.071. Follow-up tests revealed that SRPEs 

had no significant effect on certainty ratings for the false recognitions (neither in 

the immediate test group, 
2
(1, N = 19) = 1.76, p = 0.18, nor the delayed test 

group, 
2
(1, N = 18) = 2.021, p = 0.16), but did significantly predict certainty 
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ratings for the correctly recognized word pairs in the immediate, 
2
(1, N = 19) = 

4.24, p = 0.039, and delayed test group, 
2
(1, N = 18) = 7.27, p = 0.0070. The fact 

that the SRPEs only influence certainty ratings for the correct recognitions and 

not for false alarms further corroborates our finding that SRPEs indeed drive 

declarative learning. 
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Figure 3: For the immediate and delayed test, the recognition (panel a and b; y-axis) and 

certainty ratings (panel c and d; y-axis) are plotted as a function of the SRPEs (x-axis). 

For the word pairs associated with each SRPE, the average recognition and certainty 

ratings and their 95% confidence intervals were superimposed. (a and b) Recognition 

increased significantly with SRPEs (black regression line with gray 95% confidence 

band). (c and d) Certainty ratings for the false recognitions (depicted in orange) were not 

significantly different across SRPEs, while higher SRPEs led to significantly higher 

certainty ratings for correctly recognized word pairs (depicted in blue). 
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DISCUSSION 

Our results provide the first empirical demonstration that RPEs prioritize 

declarative learning, in both immediate and delayed recognition. Positive and 

negative RPEs of known and various sizes were generated by manipulating the 

number of options available during word pair acquisition. Our analysis revealed 

that larger and more positive RPEs lead to better recognition and increased 

certainty of the word pairs, as evident in both an immediate and delayed 

recognition test. Thus, while the importance of URPEs (“different than expected” 

signals; Bryden et al., 2011; Hayden et al., 2011) has been shown in procedural 

learning paradigms (Pearce & Hall, 1980; Sevenster et al., 2013; Steinberg et al., 

2013) our analysis indicates that declarative learning is driven by SRPEs (“better 

than expected” signals). 

These results further our understanding of how motivational cues 

determine which information is prioritized for encoding in memory. As discussed 

previously, the neoHebbian learning framework (Lisman et al., 2011) describes 

how phasic dopamine bursts enhance hippocampal LTP by strengthened 

consolidation. Consolidation is thought to occur especially during sleep, which 

may explain why our effects were stronger after a night of sleep. Critically, these 

dopamine bursts can be caused by a variety of motivational cues such as RPEs, 

novelty and salience. Previous research has indeed demonstrated the effect of 

reward anticipation in declarative learning (Adcock, Thangavel, Whitfield-

Gabrieli, Knutson, & Gabrieli, 2006; Wittmann et al., 2005), the effect of 

exposure to novel environments (Fenker et al., 2008) and the effect of salient 

(emotional) stimuli more generally (Anderson, Wais, & Gabrieli, 2006). 
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Critically, we provide a first empirical validation of the effect of RPEs on 

declarative memory. 

In addition to an empirical validation of the effect of RPEs on declarative 

memory, our results also offer an alternative explanation for established learning 

strategies such as learning by testing (i.e., the testing effect; Gates, 1917). In a 

seminal publication, Karpicke and Roediger empirically manipulated the amount 

of study and test trials allotted to Swahili-English word pairs (Karpicke & 

Roediger, 2008). In a follow-up test one week later, the authors found that 

additional study trials during the acquisition session had no strong beneficial 

effect on retention. Conversely, recall was strongly enhanced by additional test 

trials during acquisition. Although this testing effect has consistently been 

observed to drive declarative learning and holds major educational implications 

(Howard-Jones, 2014), its origin has remained unclear. Based on our current 

findings, we argue that the testing effect could be ascribed to RPEs. Specifically, 

a test crucially involves making a prediction about what the correct answer might 

be and about the probability of success. These active predictions and their 

entailing RPEs may drive declarative learning (even in the absence of external 

feedback; Aarts, Houwer, & Pourtois, 2012; Schouppe et al., 2015). An 

interesting case in point is a study in which participants learned cue-target word 

pairs with a strong or weak semantic association (Carpenter, 2009). Whereas 

restudying the material equally improved the retention of strongly and weakly 

associated word pairs, repeated testing improved recall of weakly associated work 

pairs more compared to strongly associated words. Moreover, by the final test the 

recall for the weak semantic associations surpassed that of the strong semantic 

associations. Although counter-intuitive at first glance, these findings follow 

naturally from the beneficial effect of RPEs on declarative learning. More 

broadly, the natural occurrence of RPEs during learning might be why testing, 
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elaborative interrogation and self-explanation outperform other active learning 

strategies such as summarizing, keyword mnemonics and imagery (Dunlosky, 

Rawson, Marsh, Nathan, & Willingham, 2013). 

In sum, we demonstrate for the first time that SRPEs drive declarative 

learning, closing the gap between research on reward learning and declarative 

memory. Our results are in line with the neoHebbian learning framework and 

suggest new avenues to improve learning in both informal and educational 

settings. 
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CHAPTER 4 

THE MODULATION OF EEG OSCILLATIONS BY 

REWARD PREDICTION ERRORS DRIVES DECLARATIVE 

LEARNING 
1
 

The effect of reward prediction errors (RPEs) on learning has been well 

established, mainly in procedural learning paradigms. It is generally 

assumed that RPEs also drive declarative learning, a typically human form 

of learning widely used in everyday life (e.g., in education). However, little 

empirical evidence has validated this claim. In a previous study (chapter 3) 

we therefore provided the first empirical demonstration of enhanced 

declarative learning due to RPEs. By parametrically manipulating the RPEs 

experienced during reward feedback we were able to boost the acquisition of 

Dutch-Swahili word pairs. In the current time-frequency EEG study we 

verify whether participants experience RPEs during reward feedback and 

whether declarative learning is indeed driven by these RPEs, rather than by 

related acquisition processes. The behavioral results offer a full replication 

of the previous study: Word pairs associated with a large, positive RPE are 

recognized with higher accuracy and certainty. Additionally, our results 

confirm that RPEs modulate EEG oscillations during reward feedback, 

confirming the experience of a “better-than-expected” signal. Moreover, the 

alpha suppression during reward feedback was predictive for the 

recognition performance in the delayed recognition test. In sum, our results 

confirm that the neural mechanisms activated by RPEs during procedural 

learning are also activated during declarative learning. In addition, the 

activation of this reward mechanism predicted declarative recognition in a 

follow-up test. 

                                                      
1
De Loof, E., Ergo, K., Janssens, C., Van Opstal, F., & Verguts, T. (in preparation). 

The modulation of EEG oscillations by reward prediction errors drives declarative 

learning. 
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INTRODUCTION 

Reward is one of the most important arbiters to determine what 

information should be prioritized for learning. Research in reward learning 

(Rescorla & Wagner, 1972), computational modeling (Montague, Dayan, & 

Sejnowski, 1996) and single-cell recoding (Schultz, Dayan, & Montague, 

1997), has amply demonstrated that learning is not predominantly regulated 

by obtained rewards but mainly by the difference between the obtained and 

expected reward (the reward prediction error, RPE). However, this research 

has been largely restricted to procedural learning, probably because of its 

long tradition in animal research (Squire, 2004). In these procedural learning 

paradigms RPEs gradually shape the acquisition of stimulus-response 

contingencies over multiple encounters. This is distinct from the typically 

human ability to learn (verbal, stimulus-stimulus) information through a 

single encounter by declarative learning. Although it is often suggested that 

RPEs also boost declarative learning (den Ouden, Friston, Daw, McIntosh, 

& Stephan, 2009; Hyman, Malenka, & Nestler, 2006), this claim had not 

been verified in empirical research on humans. Interestingly, a number of 

well-established effects in declarative learning hint at an involvement of 

RPEs. One of these effects is the testing effect (Gates, 1917; Karpicke & 

Roediger, 2008) which entails that learned information is quickly forgotten 

after mere repeated practice but remains high when one is being tested on the 

acquired knowledge. From a reward learning perspective, this testing effect 

could be interpreted as the effect of RPEs, as especially during testing 

predictions may be generated and evaluated. 
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To bridge this gap, in a previous declarative learning experiment 

(chapter 3) we parametrically manipulated RPEs during the acquisition of 60 

Dutch-Swahili word pairs. By letting participants choose among one, two or 

four possible Swahili translations for a Dutch word, we varied the reward 

probability and hence the ensuing reward prediction (error). In this way, 

during feedback, RPEs of manipulated (and known) intensity were coupled 

to the Dutch-Swahili word pairs, allowing us to empirically test for the first 

time whether RPEs drive declarative learning. By probing word pair 

recognition in an immediate and delayed test we demonstrated that 

declarative learning was indeed boosted by RPEs. More specifically, word 

pairs that were accompanied by a large RPE resulted in better recognition in 

a follow-up recognition test, both in terms of accuracy and certainty ratings. 

In addition to providing a first experimental demonstration that RPEs 

indeed play a crucial role in declarative learning, we also excluded a number 

of alternative interpretations. To start, the alternative time-on-task 

interpretation (Hebb, 1949) was excluded by demonstrating that longer 

deliberation (e.g., caused by choosing among one, two or four options) failed 

to foster better recognition. We also formally differentiated between the 

influence of negative and positive RPEs on recognition. A first theoretical 

possibility we envisioned, was that only the size of the RPE matters and not 

its valence. These unsigned RPEs (URPEs) can be interpreted as “different-

than-expected” signals and their influence on learning parallels the role of 

surprise in learning (Bryden, Johnson, Tobia, Kashtelyan, & Roesch, 2011; 

Hayden, Heilbronner, Pearson, & Platt, 2011). In a second possible scenario, 

large positive RPEs would enhance learning while large negative RPEs 

hinder learning. These signed RPEs (SRPEs) can thus be interpreted as 

“better-than-expected” signals, reflecting how RPEs are used to train Actors 
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in Actor-Critic models (Sutton & Barto, 1998), for example using the 

temporal-difference model (Holroyd & Coles, 2002; Montague et al., 1996). 

The results of our previous study (chapter 3) clearly support the role 

of RPEs as “better-than-expected” signals, as recall was driven by SRPEs. 

Indeed, recognition accuracy and certainty ratings were mainly enhanced by 

large positive RPEs but not by large negative RPEs. These results were 

overall in line with the neoHebbian learning framework (Lisman, Grace, & 

Duzel, 2011) which details the way in which SRPEs can modulate memory 

formation. According to this framework, SRPEs cause the ventral tegmental 

area (VTA) to trigger a dopaminergic pathway with projections to the 

hippocampus. Memory traces in the hippocampus that were active when the 

dopaminergic pathway was activated are consolidated more strongly through 

long term potentiation (LTP) during sleep. This LTP account fits nicely with 

the data from our previous study, where the effect of SRPEs on learning was 

even more pronounced after a one-day delay. It is also consistent with the 

literature on the testing effect (Karpicke & Blunt, 2011; Karpicke & 

Roediger, 2008), where the advantages of being tested become more 

apparent in the recognition test as time progresses (e.g., after a delay of one 

week compared to an immediate test). 

However, to confirm that the experience of a SRPE is the actual driver 

of improved declarative learning, we need to demonstrate that participants 

are actually experiencing a SRPE; and second we need to demonstrate that 

these experienced SRPEs indeed predict improved recognition. To do so, we 

adapted our declarative learning paradigm (chapter 3) to an EEG design 

suited for time-frequency analysis. This EEG experiment not only allowed 

us to replicate the behavioral findings from our previous study, it also 
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offered a validation of the proposed neural underpinnings of the effect of 

SRPEs on declarative learning by detailing more thoroughly how reward 

feedback influences word pair acquisition. First, we hypothesized that 

SRPEs would modulate EEG oscillations during reward feedback, reflecting 

the experience of a “better-than-expected” signal. In line with previous 

research on the modulation of the oscillatory power due to RPEs, we 

expected to see the influence of RPEs reflected in the theta (4-8 Hz; Cohen, 

Elger, & Ranganath, 2007), alpha (8-12 Hz; Oya et al., 2005) or high-beta 

frequency band (20-30 Hz; HajiHosseini & Holroyd, 2015a). Second, we 

tested whether the oscillatory power during acquisition could predict the 

accuracy and certainty ratings during the recognition test. Importantly, 

compared to the previous study we differentiated the feedback during the 

acquisition task into three separate components: reward anticipation, reward 

feedback (correct versus incorrect) and word pair encoding. This allowed us 

to pinpoint in which phase SRPEs were reflected by oscillatory power 

modulations and in which phase these power modulations were predictive 

for improved performance in the recognition test. Based on the 

reinforcement learning framework, we hypothesized that SRPEs influence 

learning during reward feedback. Alternatively, the SRPEs could influence 

declarative learning in a more indirect fashion, e.g. through adaptive 

processes during word pair encoding (Ridderinkhof, Van Den Wildenberg, 

Segalowitz, & Carter, 2004). 
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METHOD 

Participants 

Forty-one Dutch speaking, right-handed participants were recruited 

for the study. All participants had normal color vision, were naive to the 

purpose of the experiment, had no prior knowledge of Swahili and had not 

previously been enrolled in any experiment involving Swahili words. A 

random selection of twenty participants (15 female, 25.6 years on average) 

performed the recognition test immediately after the acquisition task and the 

other twenty-one participants (18 female, 25.5 years on average) performed 

the recognition test one day later. The participants were rewarded € 25 for 

their participation. An additional gift voucher of € 20 was awarded to the 

participant with the best performance on the recognition test. All participants 

signed an informed consent at the start of the experiment and received a 

debriefing afterwards. 

Material 

For the declarative learning task, the same 60 Dutch and 240 Swahili 

words were used as in the previous study (Table 1). The experiment was run 

on a Dell Optiplex 9010 mini-tower running Eprime software (Schneider, 

Eschman, & Zuccolotto, 2012). Button presses were registered through a 

Cedrus RB-730 response box enhanced with four time-accurate push buttons 

(Cedrus Corporation, San Pedro, California). 
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Table 1: Stimulus material 

Swahili words (240) 

adhabu chupi jeraha kioo maisha msitu nyundo surali 

adui daima jibini kisiwa maji msumari nyundu takatak 

afya dakika jikoni kisu mali mtawa nzuri tamasha 

aibu daraja jiwe kitanda mamba mtirka ofisi tanuri 

akili dari jokofu kitande mapafu mundamo osha tembo 

alizeti dizeli jua kiti mashua mungu panya trekta 

amani duka jumatu kito matumai mvringo petye tumbili 

asili elfu  juuya kitovu matumbo mvua picha tumbo 

baadaye farasi kaburi kofia maua mvuke pombe twai 

bafuni fedha kahawa kovuli mazishi mwanake punda uadui 

bahari filimbi kalamu kuacha mbolea mwanga punguza uchorai 

baharia funzi kamba kuandika mbuzi mwezi pwani ufagio 

baiski furaha kamwe kubale mbwa mzungu rafiki ugomvi 

bandari garisi kartasi kubwa mchanga nanga rangi uhuru 

barua geza katika kudhibi mchawi nchi rombus ukame 

basi godoro kawaida kuhesa mchuzi ndaniya sabuni ukweli 

bega goti kazi  kujenga mdudu ndege sahani umasijo 

bendi gundi kelele kukimba mechezo ndevu samaki uongo 

bilaska guruwe kemia kumba mekno ndizi sayari usiku 

bloke haki kengele kumbuka mfuko ndogo seesaw uyoga 

buli hamsi kesho kununa mgonjwa ndoora sehemu viatu 

bunifu hasira kiatu kunywa miaka ndugu seri wakala 

bustani hatua kichwa kupanda mkasi neyemba shimoni washia 

chaki hazini kidole kusanya mkate ngazi shule welder 

chombo hofu kifua kushoto mkoba ngono simu wengine 

choori ijayo kihozi kusikiza mkuu ngozi singizi wimbo 

chubani imani kijiko kuzama mlango nopya soko wingi 

chuki ishara kikapu kweli moyo nyange starehe wingu 

chuma ishiri kimysa leso mpishi nyeusi stork yatima 

chupa jansa kinywa mageho mraba nyota sufuria zeituni 
 

Dutch words (60) 

agent bord ezel kaas mest rijst stoel wolk 

anker brief fiets kassa nacht schat stoom wonde 

appel bril goud knie neus sjaal stuur worm 

bezem broek graf laken olijf slaap touw zomer 

bier brood hamer lamp oven slang trein  

bloem doos haven lepel paard slot tuin  

boer eend hond lijm poort stier verf  

boot emmer hoofd melk regen stift water  
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Electrophysiological data were recorded using a Biosemi ActiveTwo 

system (Biosemi, Amsterdam, Netherlands) with 64 Ag-AgCl electrodes 

arranged in the standard international 10-20 electrode mapping, with a 

posterior CMS-DRL electrode pair. Two reference electrodes were 

positioned at the left and right mastoids. Eye movements were registered 

with a pair of electrodes above and below the left eye and two additional 

electrodes at the outer canti of both eyes. Because of the planned time-

frequency analysis, EEG signals were recorded at a 1024 Hz sampling rate.  

Behavioral task 

Analogous to the previous study (chapter 3), the experiment consisted 

of four parts: the familiarization task, the acquisition task, the filler task and 

the recognition test (either immediate or after a one-day delay). Due to the 

planned time-frequency analysis, the performance feedback in the 

acquisition task and recognition test was spaced out more widely in time (see 

below). Apart from these adaptations to the timing of the experiment to 

accommodate the analysis requirements, the current experiment provides an 

integral replication of the previous study. 

At the start of the experiment, participants were informed they could 

earn at least € 20 but possibly more than € 25 during the acquisition task. 

Furthermore, a gift voucher was presented that would be awarded to the 

participant with the best performance in the recognition test. One gift 

voucher of € 20 was awarded to the participant with the best performance on 

the immediate recognition test and a second voucher was given to the 

participant with the best performance on the recognition test one day later. 

The voucher was presented for a second time at the start of the recognition 

test to remind participants of this additional incentive.  
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Familiarization task. All Dutch and Swahili words were presented in 

random order at the start of the experiment. Each word was displayed for 

two seconds at the center of the screen and participants were asked to read 

the words in silence. To ensure task performance, a button press was 

required for each Dutch word. The familiarization task lasted about ten 

minutes. 

Acquisition task. During the acquisition task participants would learn 

60 Dutch-Swahili word pairs while gaining at least € 20 and possibly more 

than € 25. To encourage learning, participants were reminded of the 

additional gift voucher of € 20 that would be awarded to the participant with 

the best performance in the recognition test following the acquisition task. 

The trial started with the presentation of a fixation cue for two 

seconds. Next, one Dutch word and four Swahili words appeared on the 

screen for four seconds, allowing participants to read through the options 

(Figure 1a). Subsequently, one, two or four Swahili words were framed and 

participants could choose among the framed options to guess the Swahili 

translation matching the Dutch word. Depending on the number of available 

options, participants had a chance of respectively 100%, 50% or 25% of 

guessing the correct translation. Participants were encouraged to follow their 

first impression, although no response deadline was imposed. Responses 

were entered with the index and middle finger of the left and right hand, 

each placed on one of four response buttons assigned to the four Swahili 

word positions. 

When a Swahili translation was chosen, an ellipsis (…) was presented 

for three seconds followed by the reward feedback (‘correct’ or ’error’) 

presented for three seconds. The ellipsis was included in the design in order 
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to separate the reward feedback from the EEG response evoked by the 

preceding button press. Next, the Dutch word and its correct Swahili 

translation appeared for five seconds, to allow participants sufficient time to 

learn the word pair for the recognition test. The reward feedback and the 

word pair were presented in green on correct trials and in red on error trials. 

Lastly, participants were rewarded with € 0.70 on correct trials and € 0 on 

error trials, presented along with the cumulative monetary reward for 2.5 

seconds. 

Prior to the onset of the acquisition task, participants were informed 

that EEG recordings would be made and were asked to assume a 

comfortable position and to avoid unnecessary movements. 

Filler task. Recency effects in the recognition test were avoided by 

inserting a filler task: the categorization of 400 numbers between 1 and 9 

(excluding 5) as being smaller or larger than 5 (left and right button presses 

respectively). Participants who performed the delayed recognition test one 

day later were also presented with the filler task in order to keep both 

versions of the experiment as similar as possible. The filler task took about 

four minutes. 

Recognition test. The recognition test was performed either 

immediately or after a one-day delay. In the group performing the immediate 

test, EEG was recorded during the recognition test and participants were 

asked to assume a comfortable position and avoid unnecessary movements. 

At the start of the recognition test, participants were reminded about 

the additional gift voucher of € 20. The display layout in the recognition test 

paralleled that in the acquisition task. First, a fixation cross was presented 

for two seconds. Next, the Dutch word appeared on the screen, accompanied 
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by the same four Swahili words as in the acquisition task but in a 

randomized order. The Dutch word turned red after four seconds, indicating 

to participants that they could start making a choice by using the same four 

response buttons as in the acquisition task. Participants also rated their 

certainty: ‘very uncertain’, ’rather uncertain’, ’rather certain’ or ‘very 

certain’ (measured on a scale from 1 ‘very uncertain’ to 4 ‘very certain’). No 

response deadline was imposed on the recognition test and certainty rating. 

Next, an ellipsis was presented for three seconds, followed by a blank screen 

for half a second in order to separate the EEG response evoked by the button 

press from that of the ensuing accuracy feedback (the ellipsis was also 

presented to the participants who performed the recognition test after a one-

day delay although no EEG recordings were made in this group). The trials 

ended with the presentation of the accuracy feedback (‘correct’ or ’error’) 

for three seconds. 
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Figure 1: The trial design for the acquisition task and recognition test (panel a) and 

the experimental design of the acquisition task (panel b) are demonstrated. (a) A trial 

in the two-option condition is illustrated. Here, the participant correctly guessed the 

correct Swahili translation ‘kito’ for the Dutch word ‘worm’ in the acquisition task 

and accurately recognized the correct translation in the recognition test. (b) The 3 

(number of options) x 2 (reward feedback in the acquisition task) experimental 

design is illustrated, replicating the design from our previous study (chapter 3). The 

number of trials and the associated signed and unsigned RPE (SRPE and URPE) are 

indicated per cell. The RPE was calculated by subtracting the reward probability 

from the obtained reward. 
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Design 

The 60 Dutch-Swahili word pairs were arranged in the same 3 

(number of options) x 2 (reward feedback in the acquisition task) 

experimental design as in the previous study (chapter 3). Because a fixed 

number of trials was assigned to each cell of the design, we not only 

predetermined the number of options (one, two or four) on each trial of the 

acquisition task but also whether the chosen Swahili translation would be 

considered correct or incorrect. Thus, participants would learn a random 

pairing of Dutch and Swahili words instead of the actual translation. This not 

only made sure we had a fixed number of trials in each cell of the design 

(Figure 1b); it also excluded any linguistic regularities in Dutch-Swahili 

word pairs that could influence learning. Participants were informed about 

this manipulation at the end of the recognition test. 

The SRPEs were calculated by subtracting the reward probability (i.e., 

1, 0.5 and 0.25 probability of a correct choice in the one-, two- and four-

option condition, respectively) from the obtained reward (i.e., 1 reward on 

correct trials and 0 reward on incorrect trials). Thus a unique SRPE ranging 

from -0.50 to 0.75 was calculated for each cell in the design (see Figure 1b 

for a full overview). The URPEs were calculated by taking the absolute 

value of the SRPEs, thus reversing the sign of the RPEs for the unrewarded 

word pairs. 

Data analysis 

Behavioral data. In the familiarization task, accuracies ranged from 

99% to 100% (M = 99.6%, SD = 0.50%). Accuracies in the filler task ranged 

from 91% to 100% (M = 97.7%, SD = 1.84%). Participants chose a valid 
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option in 99.6% of the trials in the acquisition task, indicating that all 

participants performed the experiment according to the instructions and only 

0.4% of the trials had to be removed. 

Unless mentioned otherwise, all statistical analyses on the behavioral 

data were performed within the linear mixed effects models framework. A 

linear mixed effects model was applied for a continuous dependent variable 

(e.g., certainty ratings in the recognition test) and a generalized linear mixed 

effects model was applied for binary dependent variables (e.g., recognition 

accuracy). Each model contained a random intercept across participants and 

centered predictors (e.g., number of options, obtained reward and SRPEs 

during the acquisition task). All analyses were run in R (R Core Team, 

2014). 

EEG preprocessing. Although EEG recordings were made during the 

recognition test in the group who performed the test immediately, the current 

analysis is restricted to the EEG recordings made during the acquisition task 

(recorded in all participants, irrespective of whether they performed the 

recognition test immediately of after a one-day delay). Therefore, from here 

on we will only discuss the processing of the EEG data recorded in the 

acquisition task. 

The data were preprocessed in MATLAB (MATLAB R2013a, The 

MathWorks, Inc., Natick, Massachusetts, United State) by applying a custom 

EEGLAB preprocessing pipeline to the data of all participants (Delorme & 

Makeig, 2004). Because of the planned time-frequency analysis, the 1024 Hz 

data were not downsampled. The data were re-referenced offline to the 

average of the mastoid electrodes and visually inspected to remove stretches 

of data with excessive noise (e.g., large movement artifacts). Next, an 
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independent component analysis (ICA) was performed in order to remove 

the eyeblink artifacts. In preparation of the ICA procedure, the data were 

filtered with a 0.5-30 Hz band-pass Butterworth filter and the resulting 

filtered data were visually inspected for filtering artifacts. The filtered data 

were then entered into the EEGLAB ICA procedure with standard settings. 

Afterwards, the resulting ICA weights were added to the unfiltered (but re-

referenced and cleaned) EEG data. The ICA components representing 

eyeblinks and lateral eye movements were selected by taking into account 

the topographic map of the components as well as a comparison between the 

time course of the components and the time course of the frontal EEG 

channels and eye movement electrodes. After the removal of these 

components from the data, the resulting data were again visually inspected. 

Next, electrodes were interpolated when necessary: eleven participants 

required the interpolation of one electrode and one participant required the 

interpolation of two electrodes. Electrode P2 was particularly noisy and 

made up for ten of the thirteen electrode interpolations. The cleaned data 

were subsequently filtered with a 60 Hz low-pass filter. Finally, the data 

were epoched time-locked to the response in the acquisition task (i.e., the 

choice between one, two or four available Swahili translations). The epoch 

extended over 2000 ms before and 13000 ms after the response (including 

the reward anticipation phase, the reward feedback and the word pair 

encoding). 

Time-frequency analysis. The procedure for the time-frequency 

analysis was based on the code provided in chapter 16 of Cohen (2014). In 

order to extract the oscillatory power, a Hanning taper was first applied to 

the epoched EEG data and the tapered data were then subjected to a Fourier 

transformation. Because of the intended single-trial analysis on the power 



 

104     CHAPTER 4 

estimates a single Hanning taper was used (Cohen, 2014; Haegens et al., 

2011). The tapering and a fast Fourier transform were performed in a sliding 

time window of 600 ms which was advanced in steps of 100 ms between      

-1500 and 12500 ms relative to the choice of the Swahili translation. The 

oscillatory power was extracted in 18 frequency bands, spaced linearly 

between 1.67 and 30 Hz in steps of 1.67 Hz. Because we were mainly 

interested in the brain response to the reward feedback and during the word 

pair encoding (both during the acquisition task), a baseline correction of 300 

ms before the onset of the reward feedback was applied to the power 

estimates. Lastly, the baseline-corrected data underwent a decibel 

conversion. This time-frequency analysis procedure was performed 

separately for each participant and each electrode.  

The resulting baseline-corrected and decibel-converted oscillatory 

power estimates were coupled to the behavioral data on a trial-by-trial basis. 

In analogy to the behavioral analysis, trials were removed when an invalid 

Swahili translation was chosen in the acquisition task. Combined with the 

removal of EEG data during preprocessing this resulted in a removal of on 

average 1.63% of the power estimates per participant (ranging between 0% 

and 5%). 

Clustering procedure. The goal of the subsequent clustering analyses 

on the power estimates was twofold. First, we wanted to test whether 

oscillatory power in several frequency bands could be predicted by 

parameters from the experimental design (Figure 1b), such as the number of 

options, the obtained reward and the SRPE. Second, we tested whether the 

power estimates could predict learning outcomes in the recognition test such 

as recognition accuracy and certainty ratings. For both types of analyses, the 
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numerous comparisons available across all power estimates necessitated a 

multiple comparisons correction. For example, when performing these 

analyses in the reward feedback phase a comparison would be made in each 

cell of the frequency(18) x time(31) x channels(64) tensor of power 

estimates, resulting in 35712 elements (we will further refer to the cells of 

this tensor as voxels). The same was true for the analyses on the 

frequency(18) x time(51) x channels(64) tensor of power estimates in the 

word pair encoding phase. To tackle this problem, a non-parametric 

clustering procedure based on Maris and Oostenveld (2007) was tailored to 

our paradigm. The clustering procedure will be described for the power 

estimates from the reward feedback phase, but the same procedure was 

applied to the power estimates from the word pair encoding phase. 

For each participant, the power estimates in each voxel of the 

frequency(18) x time(31) x channels(64) tensor was standardized across all 

60 trials. By standardizing across trials, any differences in average power 

estimates across frequencies, time and channels were removed within a 

participant. In addition, differences in average power between participants 

were also removed by the standardization. In this way we simultaneously 

accounted for the difference in oscillatory power across frequencies (e.g., 

lower frequencies typically have higher power estimates) and for different 

noise levels across time, channels and participants. The standardized power 

estimates of all participants and trials (41 participants x 60 trials = 2460 

trials in total) were collected in a frequency(18) x time(31) x channels(64) x 

trials(2460) tensor, further referred to as the TF-tensor.  
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Next, five regressor tensors were constructed, each containing either 

one of the three predictive parameters from the experimental design (number 

of options, obtained reward or SRPE) or one of the two learning outcomes in 

the recognition test (recognition accuracy and certainty ratings). These 

regressor tensors had the same dimensions as the TF-tensor, with the 

regressor value of a particular trial repeated across all frequencies, time 

points and electrodes corresponding to that trial. In each of the five regressor 

tensors, the regressor values were standardized for each participant 

separately. In order to determine the predictive relation between the TF-

tensor and a particular regressor tensor, both tensors were multiplied in a 

voxel-by-voxel way. The resulting frequency(18) x time(31) x channels(64) 

x trials(2460) tensor of trial-level statistics was subsequently summed across 

all 2460 trials, resulting in a frequency(30) x time(31) x channels(64) tensor 

with the voxel-level statistics, further referred to as the VLS-tensor.  

Next a clustering analysis was performed on the VLS-tensor. In this 

clustering analysis, VLS-voxels with extremely high or low voxel-level 

statistics were clustered based on their proximity in frequency, time and 

space (for the spatial domain, the Euclidean distance between the electrodes 

was calculated). A separate clustering analysis was performed on the VLS-

voxels with the 0.5% highest positive statistics and an additional clustering 

was performed on the VLS-voxels with the 0.5% lowest negative statistics. 

In the clustering procedure, the selected VLS-voxels were considered 

neighbors when their electrode position was within 4 cm of one another (see 

Figure 2a) and when they were within one frequency step (1.67 Hz) and one 

time step (100 ms; see Figure 2b). When two selected VLS-voxels were in 

each other’s neighborhood in the frequency, time and spatial domain, they 

were grouped in the same cluster. All resulting clusters were ordered based 
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on the number of voxels in the cluster. For each of the clusters a cluster-level 

statistic was computer by multiplying the number of voxels in the cluster 

with the largest voxel-level statistic within that cluster (the highest positive 

statistic for the positive clusters and the lowest negative statistic for the 

negative clusters).  

  a. Proximity in space                          b. Proximity in frequency and time 

 

Figure 2: For three hypothetical data points in the clustering analysis (depicted in 

dark green, red and orange), their potential neighbors in (a) space as well as (b) 

frequency and time are depicted (in light green, red and orange, respectively). (a) 

Electrodes within 4 cm from the hypothetical data points were considered neighbors. 

Because of the unequal distance between electrodes, the number of spatial neighbors 

varies across hypothetical data points. (b) In addition, neighbors were required to 

fall within one step in the frequency and time domain. Each hypothetical data point 

thus has eight neighbors in the time-frequency domain. Note that although plotted 

separately, simultaneous proximity in frequency, time and space was required for 

being neighbors in the clustering analysis. 
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The resulting clusters were inspected in the frequency-time-space 

domain to confirm the quality of the clustering procedure. An exploratory 

analysis with less stringent criteria for the selection of the voxels based on 

their voxel-level statistic (e.g., selecting the voxels with the 1% highest or 

lowest statistics) or for the determination of the neighborhood (e.g., a wider 

frequency and time range, as well as a larger distance between neighboring 

electrodes) confirmed that the resulting clusters remained stable. 

Non-parametric permutation test. In order to determine the 

significance of the observed positive and negative clusters, a non-parametric 

permutation test was performed on the observed cluster-level statistics. In 

the permutation procedure, a randomized version of the regressor tensor was 

first constructed by randomizing the regressor values for each participant. 

More specifically, the regressor values of all 60 trials for each participant 

were randomized separately before they were entered into the regression 

tensor by repeating them across frequencies, time points and channels. This 

randomized regressor tensor was then multiplied with the empirical TF-

tensor and the resulting (randomized) VLS-tensor were calculated as before. 

This VLS-tensor was again clustered, resulting in a cluster-level statistic for 

each of the random positive and negative clusters. This randomization 

procedure was repeated 1000 times. The resulting random cluster-level 

statics from the randomization procedure were then used to determine the 

significance of the observed cluster-level statistics from the actual data. To 

do so, each observed cluster was matched to a comparable random cluster in 

each of the 1000 iterations in the randomization procedure. The comparable 

random cluster had to match the observed cluster in valence and in relative 

size (e.g., the second largest positive observed cluster was matched to the 

second largest positive randomized cluster within each iteration of the 



SRPE MODULATED EEG OSCILLATIONS  

DRIVE DECLARATIVE LEARNING     109 

randomization procedure). Thus, the cluster-level statistic from each 

observed cluster could be compared to the randomization distribution of the 

1000 matching random cluster-level statistics. A significance threshold of 

5% was applied to the resulting non-parametric p-values. 

The significant clusters were visualized in a time-frequency plot and a 

topographical plot (see Figure 5). For the time-frequency plot, the voxel-

level statistics pertaining to each significant cluster were summarized across 

channels for each time-frequency combination. The resulting statistics were 

log transformed before plotting. For the topographical plot, a separate plot 

was made per significant cluster. For each channel, the voxel-level statistics 

were summarized across all significant time-frequency combinations. Again, 

the resulting statistics were log transformed before plotting. Thus, a 

topographical plot was constructed for each significant cluster, with a white 

asterisk indicating the channels represented in the cluster. 

RESULTS 

Behavioral results 

Recognition performance on immediate and delayed test. 

Paralleling the results from the previous study (chapter 3), recognition 

accuracy was significantly higher in the immediate test than in the delayed 

test, 
2
(1, N = 41) = 18.6, p < 0.001. Recognition accuracies ranged from 

37% to 100% for the immediate test group (M = 73.3%, SD = 16.7%) and 

from 32% to 81% for the delayed test group (M = 51.5%, SD = 14.2%).  

Also, participants were significantly more certain of correctly 

recognized translations compared to false recognitions, 
2
(1, N = 41) = 471, 
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p < 0.001. Although there was no significant main effect of test delay on the 

certainty ratings, 
2
(1, N = 41) = 1.46, p = 0.23, there was a significant 

interaction between test delay and recognition accuracy, 
2
(1, N = 41) = 

26.1, p < 0.001. Follow-up tests revealed that whereas certainty about the 

false recognitions was not significantly different for the immediate and 

delayed test group, 
2
(1, N = 41) = 1.36, p = 0.24, certainty about correctly 

recognized translations was significantly higher in the immediate test group 

compared to the delayed test group, 
2
(1, N = 41) = 4.69, p = 0.030. In sum, 

the pattern of the recognition and certainty ratings across the immediate and 

delayed recognition test provides a full replication of the findings from our 

previous study. 

The effect of positive and negative RPEs. Next, we tested whether 

recognition performance was predicted by the number of options and the 

obtained reward in the acquisition task. Also, to test whether the recognition 

performance was again consistent with the SRPE account we compared the 

effect of positive RPEs (in rewarded trials) to that of negative RPEs (in 

unrewarded trials; see Figure 1b). 

Replicating our previous findings, the recognition rate significantly 

increased with an increasing number of options, 
2
(1, N = 41) = 24.0, p < 

0.001. Also, there was a significant main effect of obtained reward, 
2
(1, N = 

41) = 18.9, p < 0.001, with rewarded choices being remembered more 

accurately. There were no interactions with the test delay (all p > 0.30). Of 

importance for the comparison between positive and negative RPEs, there 

was a marginally significant interaction between the number of options and 

the obtained reward, 
2
(1, N = 41) = 3.44, p = 0.064. Although the effect of 

the number of options was thus remarkably different for rewarded and 
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unrewarded word pairs, there was still a marginally significant positive 

effect of the number of options in the unrewarded trials, 
2
(1, N = 41) = 

3.21, p = 0.073, as suggested in Figure 3a and 3c. In sum, these results again 

support the SRPE account and refute the URPE account for recognition in 

declarative learning, confirming our previous findings. 

A similar pattern of results was obtained for the certainty ratings. 

There was again a main effect of the number of options, 
2
(1, N = 41) = 

7.85, p = 0.0051, and an additional significant interaction between the 

number of options and the test delay, 
2
(1, N = 41) = 5.10, p = 0.024. 

Separate follow-up analyses on the data of the immediate and delayed test 

revealed that in the delayed test certainty ratings increased significantly with 

an increasing number of options, 
2
(1, N = 41) = 14.9, p < 0.001. However, 

in contrast to our previous study there was no significant effect in the 

certainty ratings of the immediate test, 
2
(1, N = 41) = 0.14, p = 0.71. Next, 

there was no replication of the main effect of reward, 
2
(1, N = 41) = 0.10, p 

= 0.75, but there was a significant interaction between reward and the test 

delay, 
2
(1, N = 41) = 6.72, p = 0.0095. Follow-up tests indicated that 

certainty ratings on the immediate test were higher for rewarded word pairs 

though the effect was marginally significant, 
2
(1, N = 41) = 3.19, p = 0.074, 

and this effect disappeared in the delayed test, 
2
(1, N = 41) = 2.52, p = 0.11. 

Interestingly, there was again no significant interaction between the number 

of options and reward, 
2
(1, N = 41) = 1.46, p = 0.23, confirming that the 

certainty ratings were in line with the SRPE account. All other interaction 

remained insignificant (all p > 0.10).  
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Figure 3: The recognition rate (y-axis) is plotted as a function of the number of 

options (x-axis) for the unrewarded (panel a) and rewarded word pairs (panel b) in 

the immediate test group and their equivalent in the delayed test (panels c and d). 

Note that in the one-option condition the chosen translation was always rewarded. 

Replicating our previous study, recognition increased significantly with an 

increasing number of options and reward (black regression line with gray 95% 

confidence band). Across the number of options, reward and delay, the average RT 

and 95% confidence interval was estimated and superimposed. Performance at 

chance level is indicated by the gray dashed line at 25% accuracy. 
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In sum, the analysis of the recognition accuracy fully replicates the 

findings from our previous study and supports the SRPE account for 

declarative learning. The same was true for the certainty ratings, although 

the differences between the immediate and delayed recognition test were 

more pronounced compared to the previous study. 

SRPEs as a linear predictor of declarative learning. In analogy to 

our previous study, we formally probed whether declarative memory 

performance increases linearly with SRPEs. Indeed, as Figure 4a and 4b 

illustrate, recognition improved linearly with increasing SRPEs. This 

relation was highly significant, 
2
(1, N = 41) = 24.5, p < 0.001. There was no 

significant interaction between SRPEs and delay, 
2
(1, N = 41) = 0.68, p = 

0.41. 

Concerning the effect of SRPEs on certainty ratings, the pattern of 

results found in the previous study was again more consistently replicated in 

the delayed test group compared to the immediate test group (Figure 4c and 

4d). As a consequence, there was no significant main effect of SRPEs on the 

certainty ratings, 
2
(1, N = 41) = 0.023, p = 0.88, but there was a significant 

interaction between the effect of SRPEs and delay, 
2
(1, N = 41) = 7.01, p = 

0.0081. Because in our previous study SRPEs predicted certainty ratings 

only for the correctly recognized word pairs in the immediate and delayed 

test, we performed a follow-up test to compare this effect across both test 

delays. These follow-up tests revealed that SRPEs had no significant effect 

on certainty ratings for the correctly recognized word pairs in the immediate 

test, 
2
(1, N = 20) = 1.15, p = 0.28, but resulted in significantly higher 

certainty ratings for correct recognitions in the delayed test, 
2
(1, N = 21) = 

3.90, p = 0.048. Thus, the linear effect of SRPEs on certainty ratings largely 
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replicates the pattern of findings from our previous study, mainly in the 

delayed test. 

So far, the behavioral data offer a replication of the previous study 

(chapter 3) and confirm that SRPEs predict declarative learning, with more 

pronounced effects on recognition after a one-day delay. To further validate 

these results, we will subsequently verify whether participants indeed 

experience a SRPE during the acquisition task. If such “better-than-

expected” signals are experienced, these SRPEs should be reflected by a 

modulation of the oscillatory power estimates (Cohen et al., 2007; 

HajiHosseini & Holroyd, 2015b; Oya et al., 2005). In addition, these power 

modulations during acquisition should predict the enhancement of the 

recognition performance. We will now turn to the analysis of the EEG data 

recorded during the acquisition task in order to test both predictions; and to 

pinpoint whether they only hold during the reward feedback phase or also 

extend into the word pair encoding phase (see Figure 1a). 
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Figure 4: The recognition (panel a and b; y-axis) and certainty ratings (panel c and 

d; y-axis) are plotted as a function of the SRPEs (x-axis) for the immediate and 

delayed test group. For the word pairs associated with each SRPE, the average 

recognition and certainty ratings and their 95% confidence intervals were estimated 

separately and superimposed. (a and b) Recognition increased significantly with 

higher SRPEs (black regression line with gray 95% confidence band). Performance 

at chance level is indicated by the gray dashed line at 25% accuracy. (c and d) 

SRPEs only predicted certainty ratings for correctly recognized word pairs (depicted 

in blue) in the delayed test (indicated with an asterisk), but not in the immediate test. 
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Oscillatory power modulations during acquisition reflect SRPEs  

To start, we examined the reflection of SRPEs in oscillatory power 

during reward feedback and word pair encoding. In analogy to the 

behavioral data analysis, we will first examine the separate modulating 

effects of the number of options and the obtained reward before proceeding 

to modulation by SRPEs. 

Oscillatory power modulated by number of options and obtained 

reward. During reward feedback, oscillatory power was modulated by the 

number of options and obtained reward in a number of partially overlapping 

clusters (see Figure 5a and 5b) as revealed by the cluster-based non-

parametric permutation test. A similar pair of partially overlapping clusters 

was found during word pair encoding (see Figure 6a and 6b). Because of the 

similarity of the clusters found in both phases of the acquisition task, they 

will jointly be discussed below. 

First, immediately after reward feedback onset a pair of overlapping 

clusters in the beta frequency band (12-30 Hz) showed increased power 

when fewer options were available (p = 0.000; see Figure 5a) and when 

positive reward feedback was received (p = 0.000; see Figure 5b). Of all the 

voxels in the beta cluster predicted by the number of options, 43.4% was 

represented in the beta cluster predicted by obtained reward. The reverse 

comparison revealed an overlap of 42.1%. These clusters extended over 

roughly 500 ms and were more pronounced over posterior electrodes 

although both had a broad topography. The combination of increased power 

in the beta band due to fewer options on the one hand and positive reward 

feedback on the other hand suggests that this beta band does not represent an 

SRPE. Indeed, SRPEs should be represented by either a simultaneous 
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positive effect of the number of options and reward, or alternatively a 

simultaneous negative effect of both predictors. Therefore, this initial beta 

cluster is not a likely representation of the experience of a SRPE (nor a 

URPE). A similar pair of overlapping clusters in the alpha/low-beta range 

(8-20 Hz) was found during word pair encoding. Like in the reward feedback 

phase, power estimates increased when fewer options were available (p = 

0.001; see Figure 6a) and when positive reward feedback was received (p = 

0.000; see Figure 6b). Thus, these clusters are highly reminiscent of the beta 

clusters observed during reward feedback (Figure 5a and 5b), mimicking 

their topography and their relation to the number of options and the obtained 

reward. Hence, the alpha/low-beta clusters found during word pair encoding 

are likewise no probable reflection of the experienced SRPEs. 

Second, the reward feedback evoked a positive cluster in the theta 

frequency band (4-8 Hz) with higher power as the number of options 

increased (p = 0.000; see Figure 5a). An overlapping but smaller negative 

cluster showed increased power in the theta band when error feedback was 

provided (p = 0.000; see Figure 5b). The small negative cluster showed an 

overlap of 88.7% with the large positive cluster. Both clusters peaked 

approximately 300 ms after feedback onset. The positive relation between 

the number of options and power estimates in the theta band was followed 

by a secondary cluster that demonstrated a reversed, negative relation (p = 

0.008; see Figure 5a). Taken together, activation in the theta cluster during 

reward feedback is mainly modulated by the number of options and not by 

the obtained reward. No such modulations in the theta frequency range were 

found during word pair encoding (see Figure 6). 
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Third, a cluster in the low-beta range (12-20 Hz) showed increased 

power estimates during error feedback (p = 0.000; see Figure 5b). The 

cluster extended from 500 ms to 1500 ms after feedback onset. No clear 

topography could be distilled from the channels represented in the cluster. 

Importantly, this cluster was uniquely related to the obtained reward as it 

showed no relation to the number of options during reward feedback (see 

Figure 5a). In addition, no equivalent cluster was found during word pair 

encoding (see Figure 6). 

In sum, the number of options and the obtained reward predicted 

oscillatory power modulations mainly during reward feedback and to a lesser 

extent during word pair encoding. During word pair encoding, the number of 

options and obtained reward only modulated oscillatory power in the 

alpha/low-beta band, though not likely reflecting the experience of a SRPE. 

During reward feedback, a similar modulation pattern was found in the beta 

band. This beta cluster was followed by a cluster in the theta band that was 

mainly modulated by the number of options, and a third modulation in the 

low-beta band specifically caused by the obtained reward. Thus, the separate 

effects of the number of options on the one hand and the obtained reward on 

the other hand are both reflected in the power modulations during the 

acquisition task. Taking these separate effects into account, we will now test 

whether SRPEs are likewise reflected during reward feedback and word pair 

encoding. 
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Figure 5: Oscillatory power during reward feedback is predicted by (a) the number 

of options and (b) the obtained reward. The significant positive (red) and negative 

(blue) clusters are plotted in the time-frequency domain, accompanied by their 

topographic representations (see p.109 for details). 
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Figure 6: Oscillatory power during word pair encoding is predicted by (a) the 

number of options and (b) the obtained reward. No further relations between 

oscillatory power and SRPEs or recognition performance were found in this phase. 

(For details on the graphical representation, see p. 109) 
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Oscillatory power modulated by SRPEs. The cluster-based non-

parametric permutation test on the relation between SRPEs and oscillatory 

power revealed no significant clusters during word pair encoding. 

Conversely, three significant clusters were found during reward feedback 

(see Figure 7) demonstrating that SRPEs were uniquely experienced when 

reward feedback was provided and not during the subsequent encoding 

phase. 

To start, the reward feedback evoked two clusters that highly resemble 

the theta and low-beta clusters described in the previous analysis (see 

above). A positive relation was found between SRPEs and power estimates 

in the theta band (p = 0.000; see Figure 7), again peaking at approximately 

300 ms. The relation in this theta cluster is likely based on the increased 

power estimates due to an increasing number of options, demonstrated in the 

analysis described above. Indeed, 52.5% of the voxels in the current theta 

cluster were also represented in the theta cluster in Figure 5a. Likewise, the 

increased low-beta power due to error feedback demonstrated in the previous 

analysis likely forms the basis for the negative relation between SRPEs and 

the current cluster of low-beta estimates (p = 0.000; see Figure 7), also 

peaking between 500 ms and 1000 ms after feedback onset. Half of the 

voxels in the current low-beta cluster were also present in the beta cluster 

predicted by the obtained reward (Figure 5b).  

Thus, although power oscillations in the theta range and low-beta 

range were both predicted by SRPEs these relations seem to rely on different 

underlying processes. To further demonstrate this point, we calculated the 

average power within each cluster on a trial-by-trial basis and attempted to 

predict activation in the low-beta band based on the activation in the theta 
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band by applying a linear mixed effects model with a random intercept 

across participants. This analysis clearly demonstrated the absence of a 

predictive relation between the activation in both clusters, 
2
(1, N = 41) = 

0.24, p = 0.63, further suggesting two different mechanisms. 

In contrast, there was a cluster in the high-beta range (20-30 Hz) 

showing a unique relation with SRPEs not previously found in the analyses 

with the number of options and obtained reward separately. The cluster also 

showed no overlap with any of the other clusters in the previous analyses. 

Oscillatory power in this high-beta cluster increased with increasing SRPEs 

(p = 0.008; see Figure 7), peaking around 500 ms post feedback onset. Its 

topography was relatively pronounced and showed a frontal mapping. In 

contrast to the absence of a predictive relation between activation in the theta 

and low-beta cluster, activation in the high-beta cluster was significantly 

predicted by the activation in the preceding theta cluster, 
2
(1, N = 41) = 

7.31, p = 0.0068, and in its turn predicted the power estimates in the 

subsequent low-beta cluster, 
2
(1, N = 41) = 12.22, p < 0.001.  

In sum, the high-beta cluster offers the main signature of the 

experienced SRPEs, not mainly accounted for by the separate effect of either 

the number of options or the obtained reward. Thus the clustering analysis 

confirms that participants experienced “better-than-expected” signals during 

the acquisition task, further supporting our claim that SRPEs drive 

declarative learning. This relation was uniquely found during reward 

feedback and did not extend into the word pair encoding phase. 
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Figure 7: The oscillatory power during reward feedback reveals a positive relation 

with SRPEs in the theta range (peaking at 300 ms post feedback onset) and a 

negative relation with SRPEs in the low-beta range (peaking between 500 ms and 

1000 ms post feedback onset). In addition, increasing SRPEs cause increased power 

in the high-beta range, peaking at 500 ms post feedback onset. (For details on the 

graphical representation, see p. 109) 
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Recognition performance predicted by oscillatory power  

So far we have demonstrated that SRPEs are indeed reflected in the 

modulation of oscillatory power during reward feedback. Next, we probed 

whether power modulations during the acquisition task could predict 

recognition accuracy in the subsequent recognition test. The cluster-based 

non-parametric permutation test revealed no significant clusters, indicating 

that variations in oscillatory power during acquisition could not predict 

subsequent recognition accuracy. This was true in the reward feedback phase 

and during word pair encoding. 

However, the recognition accuracy might not yield the most sensitive 

performance measure because of its dichotomous nature and because of its 

likely contamination by correct guesses (i.e., a 25% chance of guessing the 

correct translation). Therefore, in line with previous studies that 

demonstrated a link between electrophysiological activity during acquisition 

and subsequent confidence ratings (Johnson, 1995; Otten & Rugg, 2001; 

Sommer, Komoss, & Schweinberger, 1997), we also tested whether 

oscillatory power during reward feedback could predict the certainty ratings 

for the correctly recognized word pairs. We thus probed whether the pattern 

in the behavioral analysis (i.e., a significant effect of SRPEs on the certainty 

rating for the correctly recognized word pairs in the delayed test group; see 

Figure 4d) would be reflected by the power estimates. Indeed, in the delayed 

test group there was a large significant cluster in the alpha band (8-12 Hz) 

that predicted certainty ratings for correctly recognized word pairs (p = 

0.000; see Figure 8). More specifically, suppressed power in the alpha band 

during reward feedback resulted in higher certainty ratings. This alpha 

cluster extended from 500 ms to 1700 ms post feedback onset and had a 
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midline topography. The predictive relation between oscillatory power and 

certainty ratings was specific for the correctly recognized word pairs in the 

delayed test group (p > 0.26 for all other comparisons involving the 

immediate test group and/or the false recognitions), mirroring the specificity 

of the relation between SRPEs and certainty ratings in the behavioral 

analysis. 

Next, we probed the relation between the alpha band cluster predictive 

for recognition performance and the clusters related to the experience of 

SRPEs (see above). Confirming the overlap suggested on Figure 7 and 

Figure 8, 15.4% of the voxels in the current alpha cluster were also 

represented in the low-beta cluster predicted by SRPEs. In addition, activity 

in the alpha cluster was predicted by activation in the low-beta cluster 

(excluding overlapping voxels), 
2
(1, N = 20) = 376, p < 0.001, and activity 

in the upper-beta cluster, 
2
(1, N = 20) = 5.45, p = 0.020, but not by that in 

the theta cluster, 
2
(1, N = 20) = 0.0054, p = 0.94. Thus, these results 

confirm that the current alpha cluster predictive for memory performance 

(see Figure 8) and the clusters related to the experience of SRPEs (see Figure 

7) show a partial overlap and are functionally related. 

Finally, we probed whether the certainty ratings were uniquely 

predicted by power modulations during reward feedback or whether they 

were also influenced by activity in the subsequent word pair encoding phase. 

Therefore, we repeated the same tests outlined above on the power estimates 

during word pair encoding, but no significant clusters were found (all p > 

0.09).  

In sum, power estimates during reward feedback are predictive for 

certainty ratings, but only when declarative memory is probed after a one-
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day delay. The alpha band cluster predictive for these certainty ratings 

overlaps partially with the low-beta cluster (Figure 7) and its activity is 

predicted by both this low-beta cluster and the high-beta cluster that reflect 

the experience of SRPEs. Thus, there is a clear link between power 

oscillations during reward feedback and both the experience of SRPEs and 

the resulting enhancement of declarative learning. 

 

Figure 8: The certainty rating for correctly recognized word pairs in the delayed test 

group are predicted by oscillatory power during reward feedback. Lower alpha 

suppression (peaking from 500 ms to 1700 ms post feedback onset) was predictive 

for higher certainty ratings. (For details on the graphical representation, see p. 109) 
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DISCUSSION 

The current experiment offers a full replication of the behavioral 

results from the previous study (chapter 3) and confirms that SRPEs drive 

declarative learning. Word pairs associated with large, positive RPEs were 

recognized more often and with higher certainty. Also, this effect grew 

stronger after a one-day delay as predicted by the neoHebbian learning 

account (Lisman et al., 2011). As a further validation of the beneficial effect 

of SRPEs on declarative learning, we showed that participants actually 

experience these “better-than-expected” signals by uncovering their 

modulating effect on the oscillatory power in the theta, high-beta and low-

beta frequency band. Furthermore, a partially overlapping and functionally 

related cluster of activation in the alpha band was predictive for the 

recognition performance after a one-day delay, mirroring the pattern of 

findings in the behavioral analysis. Thus, the results from the EEG analysis 

confirm the experience of SRPEs and elucidate how these teaching signals 

influence declarative learning. The EEG analysis also revealed that both 

effects were uniquely found during reward feedback and did not extend into 

the ensuing word pair encoding phase.  

Overall, our results nicely tie in with established findings on the role 

of RPEs in procedural learning and bridge the gap with the literature on 

declarative learning. First, our findings demonstrate that the same reward 

mechanism involved in procedural learning is also activated by SRPEs 

during declarative learning. Second, the current experiment makes a timely 

contribution to a recent line of research on how neural activity prior to 
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encoding can influence declarative learning. Each of these points will be 

further unpacked below. 

RPEs modulate oscillatory power and influence both procedural and 

declarative learning 

The current results uncover the involvement of the classical RPE 

mechanisms typically found in procedural learning. In line with previous 

research we found activation in the theta, high-beta and low-beta band. This 

pattern of results echoes how RPEs are traditionally reflected in power 

oscillations during procedural learning, where they serve as a teaching 

signal.  

First, SRPEs were reflected by a power increase in the theta band (4-8 

Hz) during reward feedback, even if this relation was mainly driven by the 

number of options. Activation in the theta band has been associated with 

event-related potentials such as the feedback related negativity (FRN), as 

well as other components such as the error related negativity (ERN) and the 

correct related negativity (CRN). All of these components signal an 

evaluation of the (reward) feedback based on prior knowledge and current 

predictions (Cavanagh, Cohen, & Allen, 2009; Gehring, Liu, Orr, & Carp, 

2012; Luu, Tucker, & Makeig, 2004; Oliveira, McDonald, & Goodman, 

2007; Yordanova, Falkenstein, Hohnsbein, & Kolev, 2004). The source of 

these theta oscillations has been ascribed to the medial prefrontal cortex and 

the anterior cingulate cortex (Cavanagh, Figueroa, Cohen, & Frank, 2011; 

Cohen, Elger, & Fell, 2009; Holroyd & Coles, 2002; Luu et al., 2004) where 

they have been suggested to drive several adaptive processes such as 

cognitive control (Botvinick, Braver, Barch, Carter, & Cohen, 2001; 

Cavanagh & Frank, 2014; Ridderinkhof, Ullsperger, Crone, & Nieuwenhuis, 
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2004). Interestingly, because the hippocampal area is also dominated by 

theta oscillations, learning has been hinted at as one of these adaptive 

processes triggered by RPEs (Cavanagh & Frank, 2014). Indeed, based on 

the reinforcement learning account for the FRN (Cavanagh, Frank, Klein, & 

Allen, 2010; Holroyd & Coles, 2002; Holroyd, Pakzad-Vaezi, & Krigolson, 

2008; Silvetti, Seurinck, & Verguts, 2011), the theta oscillations have been 

hypothesized to function as a teaching signal and to reflect increased activity 

in the mesolimbic dopamine system. This complex interaction between the 

dopaminergic system and the theta oscillations in the prefrontal area and 

hippocampus (Fujisawa & Buzsáki, 2011) distinctively relates to the 

neoHebbian learning framework put forward in the introduction (Lisman et 

al., 2011). 

Second, SRPEs were also reflected in the high- and low-beta 

frequency band during reward feedback. Although (U)RPEs have 

predominantly been related to activation in the theta band, activation in the 

beta band has been implicated in the thalamic network that regulates 

memory formation based on prefrontal teaching signals (Ketz, Jensen, 

O’Reilly, & O’Reilly, 2015). According to this thalamic coordination 

account, the theta oscillations regulate episodic-like (declarative) memory, 

while the beta oscillations are predictive for familiarity-based recognition. 

This dissociation between the role of oscillatory activity in the theta and beta 

band might inform why in the current experiment oscillatory power in the 

beta band – but critically not the theta band – was predictive for the 

recognition performance. However, further research is necessary to elucidate 

whether both frequency bands have a distinctive influence on recall and 

recognition (Ketz et al., 2015; Merkow, Burke, Stein, & Kahana, 2014). 

Interestingly, our study not only revealed the predicted negative relation 
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between SRPEs and power in the low-beta band (12-20 Hz; Ketz et al., 

2015; Oya et al., 2005), it also revealed a positive relation with power in the 

high-beta band (20-30 Hz). RPEs have indeed been shown to evoke a power 

increase in the high-beta band (HajiHosseini & Holroyd, 2015a). These 

power modulations were source-localized to the dorsolateral prefrontal 

cortex, in keeping with the frontal topography of the high-beta cluster in the 

current experiment. In their procedural learning experiment, HajiHosseini 

and Holroyd (2015b) also probed whether activity in the high-beta band 

varied with reward valence and reward probability. Across separate blocks, 

reward probabilities were manipulated through a staircase procedure that 

determined the width of a response window resulting in either a 75% chance 

of positive feedback or a 75% chance of error feedback. However, counter to 

the current results, only the reward valence but not the distinct reward 

probabilities had a detectable influence on the oscillatory power estimates. It 

is unclear why the high-beta activity in the current experiment does reflect 

the reward probability, but we might speculate that the manipulation of the 

reward probability was more salient and task-relevant in the current study 

(i.e., varied on a trial-by-trial basis by choosing among one, two or four 

Swahili words).  

On the whole, the current results established that the parametrically 

manipulated SRPEs that drive declarative learning indeed activate the same 

dopaminergic reward system that has been demonstrated to drive procedural 

learning. Next, we will turn to the implications of the current findings for the 

literature on declarative learning. 
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Oscillatory power prior to encoding is predictive for declarative 

learning 

Recently, there has been a surge of interest in the contribution that 

reward mechanisms make to declarative learning (Hidi, 2016; Howard-Jones 

& Jay, 2016; Miendlarzewska, Bavelier, & Schwartz, 2016), with the goal of 

merging the gap between neuroscientific research on reinforcement learning 

and its application in everyday settings such as in education. This revived 

interest offers a fresh perspective on declarative learning as historically most 

research in this field has focused on neural activity during retrieval instead 

of during encoding (Wilding & Ranganath, 2011). In addition, studies that 

focused on encoding have largely been limited to the difference due to 

memory effect (Paller, 1990) and the subsequent memory effect (Paller & 

Wagner, 2002). In these paradigms, spontaneous variations in neural activity 

during encoding are retrospectively contrasted between subsequently 

recalled and forgotten items. Using electrophysiological recordings, 

oscillations in the theta frequency band have been shown to predict 

subsequent memory performance (Kleberg, Kitajo, Kawasaki, & 

Yamaguchi, 2014) and these oscillations have been ascribed to a network 

involving the prefrontal cortex and the hippocampal area (Cohen et al., 2015; 

Hsieh & Ranganath, 2014; Lisman & Jensen, 2013; Nyhus & Curran, 2010). 

A number of intracranial EEG studies have recently validated this claim by 

demonstrating how prefrontal and hippocampal theta oscillations – along 

with subsequent modulations in the alpha band – predicted successful 

memory encoding (Fell et al., 2011; Greenberg, Burke, Haque, Kahana, & 

Zaghloul, 2015; Haque, Wittig, Damera, Inati, & Zaghloul, 2015; Merkow et 

al., 2014; Sweeney-Reed et al., 2016).  
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Overall, these results are in line with the involvement of theta 

oscillations in procedural learning (see above) and the neoHebbian learning 

account (Lisman et al., 2011). However, because these studies are based on 

spontaneous neural activity it is hard to exclude alternative interpretations 

such as attentional processes and resource allocation (Wilding & Ranganath, 

2011). In order to test whether oscillatory power variations are causally 

related to subsequent memory improvement, a number of studies have tried 

to directly manipulate oscillatory power prior to encoding. To start, 

converging evidence from fMRI (Bollinger, Rubens, Zanto, & Gazzaley, 

2010; Galli, Bauch, & Gruber, 2011; Gruber, Gelman, & Ranganath, 2014; 

Loh et al., 2015) MEG (Garrido, Barnes, Kumaran, Maguire, & Dolan, 

2015) and behavioral experiments (Liu, Grady, & Moscovitch, 2016; Otten, 

Quayle, Akram, Ditewig, & Rugg, 2006; Oyarzún, Packard, de Diego-

Balaguer, & Fuentemilla, 2016) support the claim that prior knowledge and 

reward expectations are the actual driver of improved declarative learning. 

This was further confirmed in an EEG study, showing that reward 

expectations boost declarative learning through anticipatory theta activity 

over frontal regions (Gruber, Watrous, Ekstrom, Ranganath, & Otten, 2013). 

Interestingly, Gruber and colleagues only found this effect during the 

anticipation of large positive rewards, in accordance with the findings from 

the current study. It is likely that reward anticipation and SRPEs evoke 

similar power bursts in the theta band and increased dopaminergic activity 

that subsequently causes enhanced recognition performance. 

On an important note, the current study only provided support for a 

direct relation between activity in the alpha cluster and subsequent 

recognition performance. Therefore, we need to take into account that the 

observed clusters in the theta, high-beta and low-beta band were only 
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indirectly related to memory performance through their functional relation 

with activity in the alpha cluster. This sparks the intriguing question whether 

SRPEs have a direct impact on declarative learning or whether they 

influence encoding indirectly by triggering other adaptive processes. Indeed, 

not only activation in the theta band but also activation in the beta and alpha 

band has been shown to improve declarative learning. For example, alpha 

oscillations have been associated with enhanced semantic encoding 

(Klimesch, 1999) and with the gating of relevant items and suppression of 

irrelevant information (Ketz et al., 2015; Park et al., 2014). In the current 

study, the increased alpha activity on unrewarded trials (i.e., during negative 

RPEs) might thus reflect the suppression of the incorrectly guessed 

translation in anticipation of the correct translation. Next to the alpha 

activity, spontaneous activation in the beta band has also been shown to be 

predictive for successful encoding, both in a surprise recall test (Salari & 

Rose, 2016) as well as during intentional encoding (Schneider & Rose, 

2016). Still, the pattern of findings is highly variable across studies, 

especially when the analyses are based on spontaneous power fluctuations 

and various behavioral tasks. Also, the inconsistent pattern of findings across 

studies might be caused by insufficient statistical power (i.e., due to the low 

number of trials in declarative learning paradigms) or because of the variety 

of memory test used (e.g., planned or surprise recall, recognition accuracy 

and recognition certainty). By the parametric manipulation of RPEs, the 

current study provides a useful paradigm to help disentangle the involvement 

of several adaptive mechanisms that enhance declarative recall and 

recognition. 
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CONCLUSION 

In the current experiment we replicated the beneficial effect of SRPEs 

on declarative learning found in our previous study (chapter 3). During 

reward feedback, SRPEs were shown to modulate oscillatory power in the 

theta, high-beta and low-beta band; SRPEs thus triggered the same reward 

mechanisms also activated by RPEs in procedural learning paradigms. Also 

during reward feedback, activity in the alpha band was predictive for the 

recognition performance after a one-day delay. Together, these findings 

provide the first empirical demonstration of how SRPEs can enhance 

declarative memory and make a timely contribution to the application of 

insights from reinforcement learning to the field of declarative learning. 
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CHAPTER 5 

GENERAL DISCUSSION 

In this dissertation we have set out to investigate how prediction errors 

(PEs) influence perception and learning. Indeed, the prediction of upcoming 

events offers a double adaptive advantage. First, predictions facilitate 

perception on the short term, for instance by prioritizing what information 

enters our visual awareness. They thus determine the speed and accuracy 

with which matching and mismatching information is detected. Second, PEs 

serve as a teaching signal, allowing us to perfect our predictive model of the 

world on the long term. More specifically, reward prediction errors (RPEs) 

prioritize what information will be remembered and what information will 

likely be forgotten.  

Overall, the goal of this dissertation was to apply a systems approach 

to get a deeper insight into the mechanisms by which PEs influence 

perception and learning. In order to do so we drew upon formal models from 

perceptual decision making studies and the reinforcement learning literature, 

respectively. First, we investigated by what mechanism visual awareness is 

influenced by PEs. By applying a drift diffusion model (DDM; Ratcliff, 

1985) to a cued individuation task, we demonstrated that PEs influence 

visual awareness by modulating the threshold setting (but importantly not 

the processing efficiency). Second, we verified whether RPEs not only drive 

procedural learning but also enhance declarative learning. In a declarative 

learning paradigm, we therefore manipulated the size of positive and 

negative RPEs experienced during word pair encoding. The RPEs were 

quantified based on the reinforcement learning models typically used in the 
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literature on procedural learning. In addition, we probed memory 

performance in an immediate and delayed recognition test in order to verify 

whether the effect of RPEs on declarative learning became more evident 

over time as predicted by the neoHebbian learning framework (Lisman, 

Grace, & Duzel, 2011). Overall, the results of the behavioral and EEG 

experiment demonstrate that increasingly positive RPEs lead to enhanced 

declarative learning. In line with the neoHebbian account, this effect was 

more pronounced in the delayed test compared to the immediate test. 

Attesting the validity of our findings, the results from the time-frequency 

analysis further showed that experiencing these RPEs evokes the same 

neural response as typically observed for RPE during procedural learning. 

Also, oscillatory power during reward feedback was predictive for the 

recognition performance. 

Below, we will unpack the implications of the current results for the 

literature on visual awareness and declarative learning. Also, we will discuss 

future perspectives on how our approach can further deepen our 

understanding of the underlying cognitive mechanisms. 

THE SHORT TERM EFFECT OF PRIOR INFORMATION ON VISUAL 

AWARENESS 

In chapter 2 we investigated the short term effect of PEs on 

perception. More specifically, we aimed to clarify how PEs influence 

stimulus individuation, a process involving the spatial tagging of an object 

irrespective of its identity (Leslie, Xu, Tremoulet, & Scholl, 1998; Xu, 

2009). In an individuation task, participants were therefore asked to locate a 

picture above or below fixation. At the start of each trial, an icon appeared 
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which was congruent, incongruent or neutral with respect to the identity of 

the ensuing picture (i.e., a house or a face). Thus, participants were provided 

with prior information about the identity of the upcoming stimulus, without 

creating a bias toward the correct response on the individuation task (i.e., 

locating the picture above or below fixation). The results indicated that PEs 

(i.e., caused by incongruent icons) significantly delayed stimulus 

individuation but had no influence on individuation accuracy. 

In order to clarify by what mechanism PEs influence visual 

awareness, we applied a drift diffusion model (DDM; Ratcliff & Rouder, 

1998; Ratcliff, 1985) to the individuation task. This allowed us to 

disentangle whether PEs delayed individuation by altering either the speed 

of the evidence accumulation (i.e., the processing efficiency) or by 

modulating the amount of evidence accumulation needed before the location 

of a stimulus is detected (i.e., the threshold setting). The results revealed that 

PEs influence individuation by increasing the threshold setting. Importantly, 

the PE manipulation had no influence on the processing efficiency. 

Next we will discuss how our results feed into the ongoing debate in 

the consciousness literature on the role of prior information in early (visual) 

awareness. We will also provide some practical pointers on the use of formal 

models such as the DDM in future research on the mechanisms by which 

prior information influences visual awareness. 

Using the DDM to investigate visual awareness 

With this experiment we provide the first formal test on how prior 

information influences individuation by differentiating between its effect on 

the threshold setting and the processing efficiency. Although diffusion 
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models have already been deployed to investigate the effect of prior 

information in identification tasks (for a review, see Mulder, van Maanen, & 

Forstmann, 2014; Summerfield & de Lange, 2014), this was the first study to 

apply a DDM to an individuation task. As discussed in chapter 2, this is an 

important step forward as individuation is a typical measure for visual 

awareness in the consciousness literature (Baars, 1994; Sergent & Dehaene, 

2004; Tsuchiya & Koch, 2005). 

Using the DDM to investigate the role of prior information in visual 

awareness makes a timely contribution to the consciousness literature. 

Indeed, there is currently a great interest in the role that prior information 

plays in consciousness. Traditionally, conscious awareness has been 

characterized as a limited capacity system, accommodating only a select set 

of items (Baars, 1994; Dehaene & Naccache, 2001). In order to reach 

consciousness, concurrent items are hypothesized to compete for access to 

consciousness. This competition model has brought about a number of 

attempts to determine why certain stimuli will receive prioritized access to 

conscious perception while others are excluded. 

In one such line of research, we previously started to explore how the 

overlap between consciousness and working memory influences the 

threshold for visual awareness. In a first study, we demonstrated how 

increasing working memory load increases the threshold for visual 

awareness (De Loof, Verguts, Fias, & Van Opstal, 2013). Next, we also 

probed how different types of working memory load had distinct effects on 

the detectability of masked stimuli (De Loof, Poppe, Cleeremans, Gevers, & 

Van Opstal, 2015). Other studies have also demonstrated similar interactions 

between working memory and visual awareness (Gayet, Paffen, & Van der 
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Stigchel, 2013; Lupyan & Ward, 2013; Pan, Lin, Zhao, & Soto, 2014; Pinto, 

van Gaal, de Lange, Lamme, & Seth, 2015). Interestingly, some of these 

studies have probed the influence of the contents of working memory on 

conscious perception. Using a wide variety of stimuli and tasks, these studies 

indicated that stimuli that match the content of working memory typically 

reach awareness faster than mismatching items. These results are in line with 

the current findings and indicate that prior information on the upcoming 

stimulus facilitates the detection of related information. 

However, there are a number of studies that suggest that unexpected 

information reaches visual awareness faster, such as pictures depicting 

incongruent scenes (e.g., a woman placing a chess board in the oven; 

Mudrik, Breska, Lamy, & Deouell, 2011) or sentences containing semantic 

errors (Sklar et al., 2012). This has given rise to an ongoing debate in the 

literature on the extent to which prior information can influence visual 

awareness or whether these top-down effects are the result of confounds in 

the experimental design (Gayet, Van der Stigchel, & Paffen, 2014). 

Recently, Firestone and Scholl (2015) have given a detailed overview of the 

pitfalls that can occur when testing the effect of top-down expectations on 

visual awareness, such as the creation of a response bias or the unclear 

distinction between perception and judgment. 

With the DDM we offer a fresh approach to this ongoing debate. First, 

in addition to determining whether prior information will facilitate or delay 

visual awareness for matching and mismatching stimuli, it could be useful to 

map these effects onto their underlying mechanisms to differentiate between 

seemingly contradictory findings. Second, using diffusion models also 

provides a direct link with the established literature on the effect of prior 
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information on more general visual processing (Summerfield & de Lange, 

2014; Summerfield & Egner, 2009). Third, because of the link between the 

model parameters and their neural substrate, augmenting future studies with 

a formal framework such as the DDM might add to the call for a deeper 

understanding of the influence of prior information on visual awareness 

(O’Callaghan, Kveraga, Shine, Adams, & Bar, 2016) and the first steps 

recently taking in that direction (e.g. using MEG; Aru, Rutiku, Wibral, & 

Singer, 2016). 

Practical pointers for the use of diffusion models in research on visual 

awareness 

Below we will briefly discuss some practical insights gleaned from 

applying the DDM to classical paradigms used to measure visual awareness. 

A necessary adaptation to many classical visual awareness paradigms 

(e.g., continuous flash suppression and backward masking) will likely be to 

increase the number of error trials. That is to say, one of the potential 

drawbacks of the DDM is its reliance on a separate reaction time (RT) 

distribution for the correct trials as well as the error trials. This necessitates a 

sufficient number of error trials in order to reliably fit their RT distribution. 

In an earlier version of the experiment reported in chapter 2, we were unable 

to reliably fit the DDM due to a low number of error trials. To test the 

reliability of the parameter estimates, a randomization test was performed by 

pairing the RTs to the accuracy data in random order. By performing this 

randomization test on the parameter estimates, we found that the difference 

between the estimates across the conditions was a mere byproduct of the low 

number of error trials. More specifically, the low error rate had a particularly 

distorting effect on the parameter estimates for the incongruent condition 
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because of the low total number of incongruent trials in the design (i.e., only 

20% of the trials). Thus, because the low error rate distorted the parameter 

estimates more for the incongruent condition compared to the congruent 

condition, a spurious difference between conditions was created. 

A first possible solution to overcome a modest or insufficient number 

of error trials is to use a hierarchical form of the DDM. The hierarchical 

DDM (HDDM; Wiecki, Sofer, & Frank, 2013) allows to estimate the various 

parameters of the model across all participants instead of on an individual 

basis, as is the case in the traditional DDM. This reduces the detrimental 

effect of a low number of error trials in a subset of participants. Still, in line 

with the validations test performed in chapter 2, a thorough test of the model 

assumptions and possible confounds remains imperative.  

In cases where the number of errors is extremely low (as was the case 

in our earlier version of the experiment), the hierarchical model might still 

not suffice to solve the problem. As a second solution we therefore added the 

staircase procedure to the masked priming paradigm (see page 41 for a 

description). This staircase procedure guaranteed a sufficiently high error 

rate for each participant. Applying the randomization test to the data 

reported in chapter 2 indeed demonstrated that the number of errors was 

sufficiently high in order to yield reliable parameter estimates.  

A similar attempt to increase the number of error trials was made 

when applying the staircase procedure to the continuous flash suppression 

paradigm (CFS; Tsuchiya & Koch, 2005). During CFS, participants are 

presented with a continuous stream of colorful flashes to the one eye and a 

stationary image to the other eye. This causes a sustained suppression of the 

stationary image by the colorfull flashes, with the stationary image only 
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breaking through this suppression after several seconds or even minutes. By 

reducing the visibility of the stationary image (i.e., by increasing its 

transparacy) we tried to evoke more detection errors. However, after 

multiple attempts we failed to warrant a sufficiently high level of error trials. 

Probably the attempts failed because the CFS paradigm lacks a clear speed-

accuracy trade-off. That is, participants are asked to detect the stimulus as 

fast as possible but there is no response deadline. Also, because the RT 

distribution is characterized by a high variance and many extremely high 

RTs, there is no clear sense of an internal response deadline. Additional 

adaptations to the paradigm will thus be necessary before a diffusion model 

can be fitted to the CFS paradigm and related paradigms that lack a clear 

speed-accuracy trade-off. Overall, this case illustrates that any visual 

awareness paradigm will have to be tailored to the requirements of the 

applied diffusion model before it can be used to differentiate by what 

mechanisms prior information influences visual awareness. 

THE LONG TERM EFFECT OF “BETTER-THAN-EXPECTED” SIGNALS ON 

DECLARATIVE LEARNING 

After establishing how PEs influence visual awareness, we next 

probed how PEs guide behavior on the long term through their impact on 

learning. In the introduction of this dissertation, we discussed how the 

anticipation of reward and the ensuing reward prediction errors (RPEs; 

Rescorla & Wagner, 1972; Sutton & Barto, 1998) play a crucial role in 

learning. Ample empirical evidence confirms that RPEs are signaled through 

dopamine release in the substantia nigra and ventral tegmental area, 

triggering a dopaminergic pathway with wide projections to cortical and 



 

GENERAL DISCUSSION    151 

subcortical structures (Bayer & Glimcher, 2005; Eshel et al., 2015; 

Montague, Dayan, & Sejnowski, 1996; Schultz, Dayan, & Montague, 1997). 

In addition, a wide range of models have detailed the way in which the 

reward value of upcoming events is anticipated and evaluated (e.g. the 

reward value and prediction model; Silvetti, Seurinck, & Verguts, 2011) and 

how RPEs function as a teaching signal during procedural learning (Holroyd 

& Coles, 2002; Rescorla & Wagner, 1972; Sutton & Barto, 1998).  

Interestingly, although the effect of RPEs has been firmly established 

and validated in research on procedural learning, empirical evidence for the 

impact of RPEs on declarative learning remains surprisingly absent (Squire, 

2004). Importantly, a similar effect of RPEs on declarative learning could be 

expected based on the role of dopamine bursts in hippocampal long-term 

potentiation (LTP). According to the neoHebbian learning account (Lisman 

et al., 2011), dopamine bursts tag information that is concurrently encoded in 

the hippocampus, causing enhanced late LTP for these tagged memory 

traces. Thus, because RPEs trigger activation in a dopaminergic pathway 

with projections to the hippocampus, they likely enhance declarative 

learning. Also, because dopamine is hypothesized to enhance late LTP, the 

impact of RPEs on declarative memory should become more apparent on a 

delayed test (e.g. after a delay of a day or a week) compared to an immediate 

test (e.g., after twenty minutes). 

To test this hypothesis and fill this gap between the literature on 

procedural and declarative learning, we constructed a declarative learning 

paradigm in which RPEs were coupled to the acquisition of Dutch-Swahili 

word pairs. Based on the reinforcement learning literature, we quantified the 

RPEs as the difference between the obtained reward and the reward 
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expectancy (Bush & Mosteller, 1951a, 1951b; Rescorla & Wagner, 1972; 

Sutton & Barto, 1998). The reward expectancy was manipulated by letting 

participants guess among one, two or four Swahili words for each Dutch 

word. In addition, the obtained reward was manipulated by rewarding the 

correct guesses and giving no reward for incorrect guesses. Thus, 

participants experienced RPEs of various quantifiable sizes before the 

correct word pair was presented. Participants were encouraged to memorize 

these word pairs for a recognition test that they performed either 

immediately or after a one-day delay. 

The results reported in chapter 3 indeed demonstrate that word pairs 

that were coupled to large, positive RPEs during encoding were 

subsequently recognized with significantly higher accuracy and certainty. 

Thus, declarative learning was boosted by “better-than-expected” teaching 

signals (i.e., signed reward prediction errors; SRPEs). The experiment 

provided an internal replication of the results, as the SRPEs predicted 

memory performance in the immediate test group as well as the delayed test 

group. Interestingly, the effect of SRPEs on recognition performance was 

even stronger after a one-day delay, although this between-subjects 

comparison failed to reach significance. In addition, we ruled out alternative 

explanations such as the time-on-task account (Hebb, 1949): longer 

deliberation on the possible translations had no effect on the subsequent 

memory performance.  

Thus, the current experiment provides the first empirical 

demonstration of how RPEs influence declarative learning in humans. In 

order to further validate our findings, we performed a follow-up EEG study 

(reported in chapter 4). Apart from providing a replication of our previous 
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results (chapter 3), the first aim of this study was to test whether our 

quantification of SRPEs could actually account for the neural response to the 

reward feedback. If so, oscillatory power during reward feedback should be 

significantly modulated by the SRPEs. Second, we also tested whether 

SRPEs had a direct effect on declarative learning or whether they influenced 

learning indirectly (e.g., by increasing attention during encoding; 

Ridderinkhof, Van Den Wildenberg, Segalowitz, & Carter, 2004). Therefore, 

we tested whether SRPEs predicted oscillatory power only during reward 

feedback or also during word pair encoding. In addition, we also probed 

whether oscillatory power modulations during reward feedback and word 

pair encoding were predictive for the subsequent recognition performance.  

The results of the follow-up EEG study presented in chapter 4 

confirmed the findings from our previous study. SRPEs significantly 

predicted declarative learning and this effect was again more pronounced 

when recognition was probed after a one-day delay. The time-frequency 

analysis on the EEG data additionally allowed us to validate the neural 

underpinning we proposed for our findings. First, we confirmed that SRPEs 

significantly predict the oscillatory power in the theta, high-beta and low-

beta frequency band. Importantly, this modulating effect of SRPEs on power 

estimates was only found during reward feedback and did not extend into the 

word pair encoding phase. These results suggest that participants actually 

experience a “better-than-expected” signal during reward feedback. Also, the 

SRPEs evoked by our reward manipulation activated RPE mechanisms 

similar to those found during procedural learning (Cavanagh, Cohen, & 

Allen, 2009; Gehring, Liu, Orr, & Carp, 2012; Luu, Tucker, & Makeig, 

2004; Oliveira, McDonald, & Goodman, 2007; Yordanova, Falkenstein, 

Hohnsbein, & Kolev, 2004). Second, we probed whether SRPEs had a direct 
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influence on declarative memory or whether their influence was more 

indirect, for instance through increased attention during word pair encoding. 

The results showed that recognition performance was not significantly 

predicted by oscillatory power during word pair encoding. However, power 

oscillations in the alpha band during reward feedback did predict the 

certainty of the subsequently recognized word pairs, but only when the 

recognition test was performed after a one-day delay.  

Taken together, the results summarized above provide the first 

empirical evidence demonstrating that SRPEs reliably boost declarative 

learning. In line with the neoHebbian learning account (Lisman et al., 2011), 

the effect was more prominent on a delayed test. Also, we confirmed that 

participants actually experience SRPEs during reward feedback. Our results 

further suggest that SRPEs have a direct effect on declarative learning, and 

provide no evidence for an indirect effect through increased attention during 

word pair encoding. These results make a timely contribution to the 

literature on declarative learning in light of the recent debate on the 

application of reward mechanisms in educational settings (Hidi, 2016; 

Howard-Jones & Jay, 2016; Miendlarzewska, Bavelier, & Schwartz, 2016). 

Next, we will review what questions remain unanswered and how our 

current paradigm might provide a useful tool for future research.  

Reliability and generalizability of the current paradigm 

The reliability and replicability of our research findings deserves 

special attention as many studies on declarative learning suffer from low 

statistical power. That is, sample sizes are usually very low as a participant 

can only learn that many stimuli in a traditional one-hour experiment. Thus, 

studies often report on the results of paradigms that consist of as few as 48 
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learned items (Carpenter, 2009). This makes research in declarative learning 

significantly more challenging compared to procedural learning paradigms. 

To counter this potential pitfall, a number of initiatives are being taken to 

conduct large scale studies in educational settings and through (online) 

educational learning games (for a discussion, see Howard-Jones & Jay, 

2016). However, these large scale studies are rare as they require a 

coordinated, multidisciplinary approach. In the current paradigm (with 60 

trials per participant), we alternatively support the reliability of our findings 

by performing multiple replications. More precisely, SRPEs were a 

significant predictor for the recognition accuracies in the immediate and 

delayed group in both the behavioral and EEG experiment. Thus, the results 

were reliably replicated across four separate test groups, each consisting of 

approximately twenty participants. 

However, the current EEG study might still suffer from low statistical 

power when relating the trial-by-trial power estimates with the recognition 

performance. Although both the oscillatory power and the recognition 

accuracy were significantly predicted by the SRPEs, there was no direct 

relation between trial-by-trial power and the recognition accuracy. The 

absence of this relation has many possible causes. First, the relation between 

the SRPEs and the power estimates might be easier to detect, as the SRPEs 

were precisely calculated. In contrast, the recognition accuracies only 

provide a dichotomized measure of the memory performance, and are likely 

contaminated with correct guesses as participants had a 25% chance of 

selecting the correct answer in the recognition test. Second, the SRPEs are 

directly and immediately evoked by the reward feedback, whereas the 

oscillatory power fluctuations related to enhanced encoding cannot be time-

locked as accurately. Third, the trial-by-trial oscillatory power measured at 
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the scalp likely results in rather noisy estimates. In a paradigm with only 60 

trials per participant, the combination of these factors might have resulted in 

a type II error. By comparison, 160 and 240 stimuli were used in two 

comparable studies (i.e., studies with a similar number of subjects that also 

related oscillatory power during encoding with the subsequency recognition 

accuracy; Gruber, Watrous, Ekstrom, Ranganath, & Otten, 2013; Kleberg, 

Kitajo, Kawasaki, & Yamaguchi, 2014). In future experiments we should 

therefore take care to increase the statistical power by increasing the number 

of participants, the number of trials or the sensitivity of the memory test.  

Concerning the generalizability of the current findings, we considered 

whether the pattern of results might be tightly linked to the memorization 

instructions and the recognition test. First, one might wonder whether RPEs 

have an equal influence on intentional and incidental encoding. In the 

current paradigm, participants were clearly instructed to memorize the word 

pairs for the recognition test so the encoding was intentional. However, 

Lisman and colleagues (2011) point out that reward anticipation has been 

demonstrated to enhance learning during both intentional and incidental 

memorization (see also Stark & Okado, 2003). In line with these findings, 

we might argue that our results could be generalized to incidental declarative 

learning, especially as we found no evidence for a modulating effect of 

SRPEs on the neural response during word pair encoding. 

Second, although we clearly demonstrated the effect of SRPEs on 

recognition accuracy and certainty ratings, it is unclear whether the results 

would generalize to other tests such as free recall. Previous studies have 

already demonstrated distinct effects on recall and recognition (Ketz, Jensen, 

O’Reilly, & O’Reilly, 2015; Merkow, Burke, Stein, & Kahana, 2014; 
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Wilding & Ranganath, 2011). On a practical note, given the low statistical 

power of many declarative learning paradigms, it is quintessential to choose 

the outcome variable carefully. For instance, we based our paradigm on the 

testing effect (Gates, 1917; Karpicke & Roediger, 2008), which has been 

proven to result in a large memory enhancement. In the original study 

(Karpicke & Roediger, 2008), memory performance increased from 

approximately 35% accuracy to 80% accuracy, an effect size rarely observed 

in psychology. Testing the generalizability of the current findings to more 

stringent memory tests such as free recall, might therefore first require 

increased statistical power. 

Characteristics of the evoked RPEs 

A central question in constructing the current paradigm was how to 

evoke PEs that remained stable throughout the experiment. Indeed, it is hard 

to create a surprising environment that does not become predictable after a 

few trials. For example, pairing the presentation of the word pair with the 

infrequent presence or absence of a concurrent sound might lose its 

effectiveness after a few trials. With the current paradigm we managed to 

create stable RPEs, likely because the predictions remained task relevant 

throughout the experiment. Still, the specific construction of RPEs in the 

current paradigm highlights a number of characteristics that deserve further 

attention.  

First, in the current experiment, positive and negative RPEs of various 

sizes were generated by manipulating the obtained reward and the a priori 

chance of receiving a reward (i.e., by varying the number of response 

options). By doing so, we also needed to control for the separate effect of the 

number of response options and the obtained reward, as well as the 



 

158     CHAPTER 5 

interaction between both variables. Especially in the time-frequency 

analysis, the separate effect of the number of options and obtained reward 

was clearly detectable in the oscillatory power estimates during reward 

feedback. Alternative manipulations of the RPEs during declarative learning 

are needed to fully differentiate between the separate effects of the SRPEs, 

the number of trials and the obtained reward found in the current study. 

Second, our results demonstrated that increasingly negative RPEs 

have an increasingly negative effect on declarative learning. That is, memory 

performance was worse in the unrewarded two-option condition compared to 

the unrewarded four-option condition. This effect was significant in the 

behavioral experiment (see page 78) as well as the EEG experiment (see 

page 111). However, this effect should be interpreted with care as 

participants still performed better than chance on the recognition test (chance 

performance located at 25% accuracy). Overall, it would be interesting to 

focus more specifically on the effect of negative RPEs in subsequent studies, 

as also negative outcomes have been shown to elicit dopamine bursts 

(Bromberg-Martin, Matsumoto, & Hikosaka, 2010), which might reverse the 

currently observed effect. 

Third, in the discussion of chapter 3 we speculate that the testing 

effect is largely driven by the RPEs created during the recall tests. We 

argued that actively engaging in learning by making (reward) predictions 

might also explain why testing, elaborative interrogation and self-

explanation outperform other active learning strategies such as summarizing, 

keyword mnemonics and imagery (Dunlosky, Rawson, Marsh, Nathan, & 

Willingham, 2013). However, it mains to be tested empirically whether the 
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level of agency during prediction and the specificity of the generated 

predictions play a crucial role in whether RPEs enhance declarative learning. 

Lastly, in order to claim that the testing effect is largely driven by 

SRPEs, we need to address the importance of explicit (monetary) feedback. 

To start, the monetary reward was mainly provided to encourage participants 

to actively engage in the decision between the one, two or four Swahili 

options. After all, the participants had no prior knowledge that could guide 

them in their choice, so we gave them an additional incentive for 

deliberating on their guess. However, we don’t assume that a monetary 

incentive is necessary to evoke the SRPEs. More importantly, in the original 

study on the testing effect, no feedback was provided during testing. This 

raises the question whether SRPEs offer a valid explanation for the testing 

effect: How can SRPEs explain the testing effect when no feedback was 

provided during testing? However, research on the functions of the anterior 

cingulate cortex (ACC) indicate that both internal and external feedback 

result in similar teaching signals represented in the dorsal ACC (Holroyd et 

al., 2004). Thus, a similar internal evaluation of the test performance might 

have driven the original testing effect even in the absence of external 

feedback (see also Aarts, Houwer, & Pourtois, 2012; Carpenter, 2009; 

Schouppe et al., 2015). 

The temporal dynamics of the effect of SRPEs on learning 

Considering the temporal dynamics of the reported result, we will first 

consider the importance of a close temporal relation between the reward 

feedback and the presentation of the to-be-encoded items. It remains to be 

tested whether the influence of dopamine bursts on declarative information 

is limited to the stimuli that triggered the dopamine burst, or whether it 
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extends to events in the temporal proximity of the dopamine triggering 

event. Based on their review of the literature, Lisman and colleagues (2011) 

suggest that there is a time window (a penumbra) surrounding the dopamine 

burst and that all stimuli that fall within this penumbra benefit from the 

enhanced LPT. This penumbra is suggested to potentially span several 

minutes for events of large adaptive importance. This emphasis on the 

temporal relation between the reward feedback and the to-be-encoded 

material, may help elucidate why the SRPEs had a more pronounced effect 

on declarative learning in the study reported in chapter 3 compared to the 

study reported in chapter 4. Indeed, whereas the reward feedback and the to-

be-remembered word pairs were presented simultaneously in the behavioral 

study (see page 67), we separated the reward feedback from the presentation 

of the correct word pair in the EEG experiment reported in chapter 4 (see 

page 100). By delaying the presentation of the word pair with three seconds, 

we might have reduced the impact of the SRPE on declarative learning. 

Clearly, a follow-up study is needed to further elucidate this point. 

Next, we evaluate our results in light of the temporal dynamics of the 

late LTP hypothesized to implement the effect of SRPEs on declarative 

learning. In line with the neoHebbian learning account, the combined results 

of chapter 3 and 4 indicate that the effect of SRPEs on declarative learning 

was more pronounced after a one-day delay. Importantly, one might wonder 

whether it is odd that we also found a significant effect of SRPEs on 

declarative learning in the immediate test. For example, in their original 

demonstration of the testing effect, Karpicke and Roediger (2008) found that 

participant in the testing and studying condition showed no significant 

difference in their recognition performance at the end of the learning task. 

However, the absence of any difference might have been caused by the way 
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in which recognition performance was measured in this particular study (by 

calculating the accumulated recognition accuracy over multiple tests) and a 

ceiling effect (nearly 100% accumulated accuracy). Also, a number of 

studies have demonstrated that there can be immediate effects on declarative 

learning (Carpenter, 2009; Gruber et al., 2013; Kleberg et al., 2014). 

Finally, the driving effect of RPEs on declarative learning could also 

be used to refine reconsolidation through distributed rehearsal. Each time a 

stimulus is reencountered after some delay, the memory trace becomes 

plastic for a moment, opening a window of opportunity to enhance the 

strength of the memory trace (Lee, 2009; McGaugh, 1966). In line with the 

current results, a number of studies have demonstrated that PEs are needed 

to foster reconsolidation during stimulus rehearsal (Jarome, Ferrara, Kwapis, 

& Helmstetter, 2015; Sevenster, Beckers, & Kindt, 2012). Applying this 

reasoning to the testing effect (Karpicke & Roediger, 2008) might offer a 

more profound explanation of why bulk rehearsal is an inefficient way of 

learning (Dunlosky et al., 2013). That is, during bulk rehearsal the stimulus 

material quickly loses its novelty or surprising value, resulting in 

increasingly small dopamine bursts. Contrastingly, spreading out rehearsal in 

time allows the material to regain its relative novelty and cause larger 

dopamine bursts.  

Dopamine and declarative learning: beyond the RPE account 

Dopaminergic activity is not solely triggered by RPEs. There is a wide 

variety of other sources of dopamine bursts that might be of interest (Lisman 

et al., 2011). First, novelty is another classical trigger of dopamine bursts. In 

addition, novelty can be triggered by a specific stimulus at a specific time, 

but novelty might also be a characteristic of the environment, encompassing 
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a wider variety of stimuli over a longer time. For example, exploring a novel 

environment boosts memory for subsequently presented items, an effect that 

has been ascribed to the tonic increase of dopamine levels induced by the 

exploration (Li, Cullen, Anwyl, & Rowan, 2003). Second, a volatile 

environment in which the reward contingencies change over time has also 

been demonstrated to boost dopamine release and enhance procedural 

learning. Typically, a volatile environment leads to a higher learning rate, as 

demonstrated through modeling and neurophysiological research (Behrens, 

Woolrich, Walton, & Rushworth, 2007; Rushworth & Behrens, 2008; 

Silvetti et al., 2011). It would be interesting to test whether novelty and 

volatility can likewise be demonstrated to enhance declarative learning.  

Finally, although in the EEG study we try to confirm that SRPEs drive 

declarative learning through the activation of the dopaminergic reward 

system, a causal relation between the proposed neural mechanisms and the 

learning outcome can only be validated through interventional studies. 

Pharmacological interventions (e.g. by administering levodopa) can point 

out whether blocking/boosting the dopaminergic input indeed 

cancels/facilitates the effect of SRPEs on declarative learning. In addition, 

intracranial EEG (iEEG) data recorded in the hippocampal area during 

learning might further our understanding of the impact of SRPEs during 

declarative learning. Similar iEEG studies have demonstrated that 

hippocampal oscillatory activity was predictive for successful memory 

encoding (Fell et al., 2011; Greenberg, Burke, Haque, Kahana, & Zaghloul, 

2015; Haque, Wittig, Damera, Inati, & Zaghloul, 2015; Merkow et al., 2014; 

Sweeney-Reed et al., 2016).  
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CONCLUSION 

The overview presented above demonstrates how the current results 

add to our understanding of the role that PEs play in perception and learning. 

We have demonstrated the usefulness of a formal approach such as the DDM 

to disentangle how prior information influences visual awareness by 

differentiating between its impact on threshold setting and processing 

efficiency. Building upon this paradigm, future research could make a useful 

contribution to the current debate about the influence of prior knowledge and 

experiences on early visual processing. Also, based on combined insights 

from the literature on reinforcement learning and the neoHebbian learning 

framework, we provided the first empirical demonstration for the beneficial 

impact of SRPEs (“better-than-expected” signals) on declarative learning. 

The reliability of our paradigm and findings was validated in a follow-up 

EEG study that provided a full replication of our previous results. In 

addition, a time-frequency analysis on the EEG data confirmed that 

participants indeed experience a SRPE during reward feedback and that 

power modulations during reward feedback were predictive for the 

recognition performance. Thus, our declarative learning paradigm offers a 

dependable tool to further explore the interplay between the dopaminergic 

reward system and declarative learning. 
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CHAPTER 6 

NEDERLANDSTALIGE SAMENVATTING 

In dit doctoraatsproefschrift beogen we dieper te onderzoeken hoe 

onze verwachtingen een invloed hebben op perceptie en leren. We 

vertrekken daarbij in hoofdstuk 1 vanuit het predictive coding denkkader 

(Friston & Kiebel, 2009; Rao & Ballard, 1999; Summerfield et al., 2006). 

Dit theoretisch kader karakteriseert de hersenen als een voorspellend 

mechanisme dat constant voorspellingen maakt over de nabije toekomst. Het 

maakt daarvoor gebruik van een intern model van de wereld dat toelaat te 

anticiperen op binnenkomende informatie. Het enige wat achteraf nog 

verwerkt moet worden, is de niet-voorspelde input (i.e., de 

voorspellingsfouten). Op die manier stelt het voorspellend systeem de 

hersenen in staat informatie te verwerken op een energiezuinige wijze. In dat 

opzicht spelen voorspellingen en voorspellingsfouten een belangrijke rol bij 

het prioriteren van informatie binnen een breed scala van cognitieve 

processen. 

Dit voorspellend mechanisme heeft twee centrale gevolgtrekkingen 

die we in dit proefschrift verder onderzoeken. Ten eerste spelen de 

voorspellingen die we maken op korte termijn een bepalende rol in hoe we 

de wereld om ons heen percipiëren. We onderzoeken daarbij hoe visuele 

verwerking beïnvloed wordt door deze voorspellingen en de resulterende 

voorspellingsfouten. Ten tweede fungeren voorspellingsfouten als een 

leersignaal zodat we ons intern model van de wereld kunnen optimaliseren 

op lange termijn. Vooral voorspellingsfouten rond beloningsfeedback (i.e., 

reward prediction errors, RPEs; Bush & Mosteller, 1951a, 1951b; Rescorla 
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& Wagner, 1972) spelen een cruciale rol tijdens leren. Hoewel de invloed 

van RPEs op leren reeds uitgebreid onderzocht werd binnen procedureel 

leren is er opmerkelijk weinig empirische evidentie voor een soortgelijke 

invloed op declaratief leren (Squire, 2004). Daarom focussen we in het 

tweede deel van dit proefschrift op het langetermijneffect van RPEs op 

declaratief leren. 

Voor ons onderzoek kozen we bewust een systemische aanpak; 

vandaar de ondertitel van dit proefschrift, a systems approach. We 

vertrekken daarbij telkens van fundamenteel hersenonderzoek naar hoe 

neurale circuits informatie verwerken. Dit laat toe om de mechanismes 

waardoor voorspellingsfouten perceptie en leren beïnvloeden beter te 

begrijpen, met name door gebruik te maken van formele modellen. Deze 

formele modellen laten toe een onderscheid te maken tussen verschillende 

onderliggende processen. Dit kan door de verschillende processen te 

relateren aan unieke parameters die bovendien exact gekwantificeerd kunnen 

worden. 

Hieronder geven we een korte toelichting van ons onderzoek naar het 

kortetermijneffect van voorspellingsfouten op perceptie en het 

langetermijneffect van voorspellingsfouten op leren. We gaan daarbij in op 

de belangrijkste resultaten en bespreken deze in het kader van de formele 

modellen gekoppeld aan elke onderzoeksvraag. 

KORTETERMIJNEFFECT VAN VOORSPELLINGSFOUTEN OP PERCEPTIE 

In eerst instantie richten we ons op perceptie en meer bepaald op de 

rol die voorspellingsfouten op korte termijn spelen binnen visuele 
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gewaarwording. De invloed van voorspellingen op visuele gewaarwording 

gaf reeds aanleiding tot een aanzienlijke onderzoekstraditie en wordt 

eveneens onderbouwd door een aantal theoretische kaders (Enns & Lleras, 

2008; Hohwy, 2012; Rauss, Schwartz, & Pourtois, 2011; Seth, Suzuki, & 

Critchley, 2011; Summerfield et al., 2006). Zo zouden voorspellingen een 

belangrijke rol spelen bij het prioriteren van de input die we bewust 

waarnemen. Er is inderdaad heel wat evidentie die aangeeft dat voorspelde 

stimuli sneller en accurater worden waargenomen (Neely, 1991). Het 

specifieke mechanisme waardoor voorspellingen visuele gewaarwording 

beïnvloeden blijft echter betwist. 

In hoofdstuk 2 gingen we daarom na hoe de waarneming van een 

stimulus beïnvloedt wordt door voorafgaande informatie over de identiteit 

van die stimulus. Proefpersonen kregen de opdracht een stimulus te 

detecteren (i.e., de afbeelding van een huis of een gezicht) voorafgegaan 

door een icoon dat neutraal, congruent, of incongruent was met betrekking 

tot de identiteit van de afbeelding. De identiteit van de afbeelding was echter 

ongerelateerd aan het correcte antwoord, want proefpersonen werden enkel 

gevraagd de locatie van de stimulus te rapporteren (i.e., boven of onder het 

fixatiekruis) en niet de identiteit van de stimulus. Op die manier konden we 

het effect van voorspellingsfouten op visuele gewaarwording testen zonder 

een antwoord-bias te creëren. De resultaten van het experiment geven aan 

dat voorspellingsfouten met betrekking tot de identiteit van de stimulus (i.e., 

incongruente trials) leiden tot een tragere detectie van de stimuluslocatie. De 

voorspellingsfouten hadden echter geen invloed op de accuraatheid waarmee 

de detectietaak werd uitgevoerd. 
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Om de invloed van voorspellingsfouten op perceptie beter te vatten, 

maakten we gebruik van een diffusiemodel ( i.e., het drift diffusion model, 

DDM; Bogacz, 2007; Gold & Shadlen, 2007; Ratcliff & McKoon, 2008; 

Ratcliff & Rouder, 1998; Ratcliff, 1985). Dit model beschrijft hoe tijdens 

een beslissingsproces (i.e., in dit geval een detectieproces) evidentie voor de 

verschillende antwoordalternatieven accumuleert door de tijd heen. Eens de 

geaccumuleerde evidentie een beslissingsdrempel bereikt (i.e., in dit geval 

een detectiedrempel), wordt het bijhorende antwoord gegeven. 

Voorspellingen kunnen op verschillende manieren het visuele detectieproces 

beïnvloeden. Enerzijds kunnen voorspellingen de accumulatiesnelheid van 

de (on)voorspelde informatie verhogen of verlagen. Anderzijds kan een 

voorspelling beïnvloeden hoeveel evidentie er nodig is voordat een 

beslissingsdrempel wordt bereikt. 

De DDM-analyse wees uit dat voorspellingsfouten perceptie 

beïnvloeden via hun effect op de beslissingsdrempel; deze lag hoger op 

incongruente trials in vergelijking met congruente en neutrale trials. Met 

andere woorden, wanneer er een huis verschijnt terwijl je verwachtte een 

gezicht te zien, is er meer geaccumuleerde evidentie nodig vooraleer de 

afbeelding van het huis gelokaliseerd kan worden. De voorspellende 

informatie had echter geen effect op de snelheid waarmee evidentie in het 

detectieproces accumuleert. 

Met dit experiment brachten we twee stromingen in de literatuur rond 

voorspellingsfouten en visuele gewaarwording voor het eerst samen. 

Voorheen werden diffusiemodellen reeds frequent ingezet in experimenten 

waarbij proefpersonen gevraagd werden de identiteit van een stimulus te 

bepalen (Domenech & Dreher, 2010; Dunovan, Tremel, & Wheeler, 2014; 
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Forstmann, Brown, Dutilh, Neumann, & Wagenmakers, 2010; Mulder, van 

Maanen, & Forstmann, 2014; Mulder, Wagenmakers, Ratcliff, Boekel, & 

Forstmann, 2012; Summerfield & de Lange, 2014). Dit identificatieproces is 

echter verschillende van het proces dat in het huidige experiment onderzocht 

werd. We gingen namelijk voor het eerste na hoe voorspellingen de visuele 

gewaarwording beïnvloeden in een detectietaak waarbij het lokaliseren van 

een stimulus centraal staat. Dit onderscheiden individuatieproces (i,e., het 

lokaliseren van een stimulus in de ruimte; Leslie, Xu, Tremoulet, & Scholl, 

1998; Xu, 2009) staat centraal in onderzoek naar visueel bewustzijn (Baars, 

1994; Overgaard & Sandberg, 2012; Sandberg, Timmermans, Overgaard, & 

Cleeremans, 2010; Sergent & Dehaene, 2004; Tononi & Koch, 2008). Met 

het huidige experiment bieden we bijgevolg een antwoord op de vraag hoe 

voorspellingen bepalen welke informatie prioritair het bewustzijn bereikt 

(Enns & Lleras, 2008; Hohwy, Roepstorff, & Friston, 2008; Kouider, de 

Gardelle, Sackur, & Dupoux, 2010). Het diffusiemodel biedt bovendien een 

dieper begrip van de processen die deze prioritering sturen en reikt de nodige 

handvaten aan om de neurale basis van dit proces verder te specificeren. 

LANGETERMIJNEFFECT VAN VOORSPELLINGSFOUTEN OP LEREN 

In tweede instantie onderzochten we hoe voorspellingsfouten op lange 

termijn een invloed hebben op leren. Een lange onderzoekstraditie wijst uit 

dat leren voornamelijk gedreven wordt door voorspellingsfouten met 

betrekking tot de mate waarin een ervaring of uitkomst als belonend wordt 

ervaren (i.e., een reward prediction error, RPE). Een ervaring kan meer 

belonend uitdraaien dan verwacht (positieve RPE) of minder belonend dan 

verwacht (negatieve RPE). Deze RPEs worden typisch gekwantificeerd als 
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het verschil tussen de verkregen beloning en de verwachte beloning. Uit 

hersenonderzoek weten we ook dat (positieve) RPEs een invloed hebben op 

leren dankzij hun stimulerend effect op de tijdelijke vrijzetting van 

dopamine die plaatsvindt in de substantia nigra en het ventraal tegmentaal 

gebied (Bayer & Glimcher, 2005; Schultz, Dayan, & Montague, 1997). 

Hoewel het effect van positieve en negatieve RPEs uitgebreid 

onderzocht is in de literatuur rond procedureel leren (Squire, 2004), is er 

vooralsnog geen empirisch onderzoek naar de impact van RPEs op 

declaratief leren (bij mensen). Er is echter reeds heel wat evidentie uit 

onderzoek op dieren dat uitwijst dat dopamine een heel specifieke rol speelt 

bij consolidatieprocessen in de hippocampus. Zo stelt de neoHebbiaanse 

leertheorie van Lisman, Grace en Duzel (2011) dat een tijdelijke toename 

van dopaminevrijzetting bepaalt welke informatie door de hippocampus zal 

worden vastgelegd in het langetermijngeheugen en welke informatie zal 

worden vergeten. Gezien RPEs voor vergelijkbare toenames in 

dopaminevrijzetting zorgen, voorzagen we dat ook declaratief leren versterkt 

zou worden door RPEs. 

Om dit te onderzoeken ontworpen we een leerparadigma waarin 

proefpersonen Nederlands-Swahili woordparen memoriseerden. Elk 

woordpaar ging tijdens het memoriseren gepaard met een positieve of 

negatieve RPE van gekende grootte. Deze RPEs werden gecreëerd door 

proefpersonen bij elk Nederlands woord eerst te laten gokken tussen een 

aantal Swahili opties. Door in dit keuzeproces per trial het aantal 

beschikbare opties te variëren (i.e., één, twee of vier opties) bepaalden we de 

verwachte kans op beloning. Daarnaast varieerden we ook of de 

proefpersonen positieve of negatieve beloningsfeedback kregen (i.e., een 
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geldelijke beloning of geen beloning). Het verschil tussen de verkregen en 

verwachte beloning biedt een exacte kwantificatie van de RPE die de 

proefpersonen ervoeren tijdens het memoriseren van het correcte 

Nederlands-Swahili woordpaar. Vervolgens testten we het geheugen voor de 

woordparen in een herkenningstest. De proefpersonen werden daarvoor 

opgedeeld in twee groepen waarbij de helft van de proefpersonen de 

herkenningstest meteen uitvoerde en de andere proefpersonen de volgende 

dag terugkwamen voor de herkenningstest. Volgens de neoHebbiaanse 

leertheorie zou het versterkend effect van dopaminevrijzetting op 

consolidatie immers toenemen in de tijd, en daardoor beter waarneembaar 

zijn op een uitgestelde test (e.g., na een dag of een week) dan op een 

onmiddellijke test (e.g., na twintig minuten). 

In hoofdstuk 3 rapporteren we de resultaten van onze eerste studie 

naar het effect van RPEs op declaratief leren. Deze wees uit dat woordparen 

vaker en met grotere zekerheid herkend worden naarmate er toenemend 

positieve RPEs optraden tijdens het leren. Gezien de geheugenperformantie 

toenam naarmate de RPEs toenemend positief werden en afnam naarmate de 

RPEs toenemend negatief werden, interpreteren we de RPEs hier als “beter-

dan-verwacht” leersignalen (i.e., signed reward prediction errors, SRPEs). 

Bij procedureel leren daarentegen wordt leren frequent versterkt door zowel 

grote positieve als grote negatieve RPEs, gekend als “anders-dan-verwacht” 

leersignalen (i.e., unsigned reward prediction errors, URPEs). Zoals 

voorspeld door de neoHebbiaanse leertheorie was het effect van SRPEs op 

declaratief leren groter op de uitgestelde test dan op de onmiddellijke test. 

Bovendien gingen we na of de verbeterde herkenning ook verklaard kon 

worden door toegenomen verwerkingstijd (time-on-task) tijdens het 
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keuzeproces (i.e., kiezen tussen één, twee of vier opties). Dit bleek echter 

niet het geval te zijn. 

Met deze studie leverden we de eerste empirische evidentie voor het 

effect van SRPEs op declaratief leren. De stabiliteit van het effect werd 

bovendien onderlijnd door een interne replicatie: SRPEs voorspelden de 

geheugenperformantie zowel bij de groep proefpersonen die de geheugentest 

onmiddellijk uitvoerde als bij de proefpersonen die de test pas een dag later 

uitvoerden. Het blijft echter de vraag of SRPEs een rechtstreekse invloed 

hebben op declaratief leren (i.e., door de invloed van dopaminevrijzetting op 

consolidatieprocessen in de hippocampus) of leren onrechtstreeks 

beïnvloeden, bijvoorbeeld door toegenomen aandacht na positieve 

beloningsfeedback (Chun, Turk-Browne, Tanaka, & Watanabe, 2007; 

Kruschke, 2001; Pearce & Hall, 1980; Wills, Lavric, Croft, & Hodgson, 

2007).  

Om een dieper inzicht te krijgen in de impact van SRPEs op het 

memoriseren van de woordparen voerden we een vervolgexperiment uit 

waarbij we tijdens het leren de hersenactiviteit registreerden met behulp van 

elektroencefalografie (EEG). Eerst en vooral fungeerde dit experiment als 

een dubbele replicatiestudie, met ook deze keer een aparte groep 

proefpersonen in de onmiddellijke en uitgestelde testconditie. Verder gingen 

we na of proefpersonen tijdens de beloningsfeedback effectief een “beter-

dan-verwacht” leersignaal ervoeren. Om dit na te gaan pasten we een time-

frequency analyse toe op de EEG-data en gingen we na of SRPEs een 

significante voorspeller waren voor de oscillatorische amplitude (i.e., power) 

in verscheidende frequentiebanden. Bovendien gingen we ook na of de 

power tijdens het leren een significante voorspeller was voor de 



 

NEDERLANDSTALIGE SAMENVATTING    181 

performantie op de herkenningstest. We maakten hierbij een belangrijk 

onderscheid tussen de power tijdens de beloningsfeedback en de power 

tijdens de daaropvolgende memorisatie van het correcte woordpaar. Op die 

manier konden we nagaan of SRPEs een rechtstreeks effect hebben op 

declaratief leren (i.e., powermodulaties tijdens de beloningsfeedback zijn 

voorspellend voor de geheugenperformantie) of een indirect effect hebben 

via toegenomen aandacht tijdens het daaropvolgend memorisatieproces (i.e., 

powermodulaties tijdens de memorisatie zijn voorspellend voor de 

geheugenperformantie). 

In hoofdstuk 4 rapporteren we de resultaten van deze EEG-

vervolgstudie. Eerst en vooral boden de gedragsdata een volledige replicatie 

van de effecten die we in de eerste studie vonden: woordparen worden beter 

en met grotere zekerheid herkend naarmate een toenemend positieve RPE 

optrad tijdens het leren (i.e., “beter-dan-verwacht” leersignalen; SRPEs). Dit 

effect bleek opnieuw sterker te zijn in de uitgestelde test dan in de 

onmiddellijke test. De time-frequency analyse op de EEG data wees 

bovendien uit dat de proefpersonen effectief een SRPE ervoeren tijdens de 

beloningsfeedback aangezien de amplitude van de oscillaties in 

verschillende frequentiebanden significant voorspeld werd door de SRPEs. 

Dit bevestigt dat de kwantificatie van de SRPEs in onze studie overeenkwam 

met hoe proefpersonen de beloningsfeedback ervaren. Daarenboven kon de 

geheugenperformantie enkel significant voorspeld worden op basis van de 

power tijdens de beloningsfeedback en niet door de power tijdens de 

daaropvolgende memorisatiefase. Dit suggereert dat SRPEs een direct effect 

hebben op declaratief leren en biedt geen evidentie voor een indirect effect 

via toegenomen aandacht tijdens memorisatie. 
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Deze twee experimenten bieden de eerste empirische demonstratie van 

het effect van SRPEs op declaratief leren bij mensen. We toonden daarbij 

aan dat onze manipulatie van de SRPEs overeenkwam met de ervaring van 

de proefpersonen. Deze SRPEs bleken ook een zelfde neurale response uit te 

lokken (i.e., gelijkaardige powermodulaties) als typisch waargenomen 

tijdens RPEs in procedureel leren (Cavanagh, Cohen, & Allen, 2009; 

Gehring, Liu, Orr, & Carp, 2012; Luu, Tucker, & Makeig, 2004; Oliveira, 

McDonald, & Goodman, 2007; Yordanova, Falkenstein, Hohnsbein, & 

Kolev, 2004). Uit de resultaten bleek bovendien dat alternatieve processen 

zoals time-on-task tijdens het keuzeproces of toegenomen aandacht tijdens 

de memorisatiefase geen alternatieve verklaring kunnen bieden voor de 

toegenomen geheugenperformantie. Op deze manier biedt dit experiment een 

solide basis om verder te exploreren welke randvoorwaarden gelden bij het 

versterkend effect van SRPEs op declaratief leren. Hoe belangrijk is de 

temporele relatie of het causaal verband tussen de beloningsfeedback en het 

te leren materiaal? Wat is het precieze effect van negatieve RPEs? Gaat het 

versterkend effect van SRPEs op declaratief leren ook op voor andere 

bronnen van toegenomen dopaminevrijzetting zoals nieuwe informatie 

(novelty) of onzekerheid over het beloningsregime (volatility)? Ten slotte 

kan de voorgestelde neurale basis van het effect ook verder onderzocht 

worden door activatie in de hippocampale regio te registreren via 

intracraniale EEG of door de dopaminevrijzetting rechtstreeks te 

manipuleren in een farmacologische interventiestudie. 
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CONCLUSIE 

Samengevat gingen we in het huidige proefschrift na hoe 

voorspellingsfouten een effect hebben op perceptie en leren. Door gebruik te 

maken van formele modellen waren we in staat specifiek na te gaan hoe 

voorspellingen bepalen welke informatie er prioritair verwerkt wordt en op 

welke manier deze prioriteit geïmplementeerd wordt. In de algemene 

discussie gaan we dieper in op de implicaties van onze resultaten voor de 

literatuur rond voorspellingsfouten, visuele gewaarwording en declaratief 

leren. Tot slot, evalueren we hoe onze systemische aanpak toekomstige 

mogelijkheden biedt om een gedetailleerd inzicht te krijgen in de 

prioriterende mechanismes waardoor voorspellingsfouten een impact hebben 

op perceptie en leren. 
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