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SUMMARY 

 

Neuroblastoma (NB), a childhood tumor arising from immature sympathetic nervous system cells, is 

a heterogeneous disease with prognosis ranging from excellent long-term survival to high-risk with 

fatal outcome. In order to determine the most appropriate treatment modality, patients are 

stratified into risk groups at the time of diagnosis, based on combinations of clinical and biological 

parameters, namely age of the patient, tumor stage, histology, grade of differentiation, MYCN 

oncogene amplification, chromosome 11q aberration and DNA ploidy. However, use of this risk 

classification system has shown that accurate assessment of NB prognosis remains difficult and that 

additional prognostic markers are warranted. Therefore, we aimed to identify prognostic tumor DNA 

methylation biomarkers for NB. 

 

To find new biomarkers, we profiled the primary tumor DNA methylome using methyl-CpG-binding 

domain (MBD) sequencing, i.e. massively parallel sequencing of methylation-enriched DNA fractions, 

captured using the high affinity of MBD to bind methylated cytosines. As proof of principle, we 

applied this technology to 8 NB cell lines, and in combination with mRNA expression studies, this led 

to a first selection of 43 candidate biomarkers. Next, methylation-specific PCR (MSP) assays were 

designed, to allow candidate-specific methylation analysis in a primary tumor cohort of 89 samples. 

As such, we identified new prognostic DNA methylation biomarkers, and delineated the technological 

aspects and data analysis pipeline to set up a more extended biomarker study. In this follow-up 

study, the DNA methylome of 102 primary tumors, selected for risk classification and survival, was 

characterized by MBD sequencing. Differential methylation analyses between the prognostic patient 

groups put forward 78 top-ranking biomarker candidates, which were subsequently tested on two 

independent cohorts of 132 and 177 samples, adopting the high-throughput MSP pipeline of our 

pilot study. Multiple individual MSP assays were prognostically validated and through the 

implementation of a newly developed statistical framework, a robust 58-marker methylation 

signature predicting overall and event-free survival was established. This study represents the largest 

DNA methylation (biomarker) study in NB so far. 

 

The MBD sequencing data were shared with the research community through the format of a data 

descriptor. As such, these data are fully available to others, ensuring its reusability for other research 

purposes. To illustrate how these data can be applied to gain new insights into the NB pathology, we 

characterized the DNA methylome of stage 4S NB, a special type of NB found in infants with 

widespread metastases at diagnosis that paradoxically is associated with an excellent outcome due 

to its remarkable capacity to undergo spontaneous regression. More specifically, we compared 

promoter methylation levels between stage 4S, stage 1/2 (localized disease with favorable prognosis) 

and stage 4 (metastatic disease with dismal prognosis) tumors, and showed that specific 

chromosomal locations are enriched in stage 4S differentially methylated promoters and that specific 

subtelomeric promoters are hypermethylated in stage 4S. Furthermore, genes involved in important 

oncogenic pathways, in neural crest development and differentiation, and in epigenetic processes 

are differentially methylated and expressed in stage 4S. 

 

In conclusion, by exploring the DNA methylome of NB, we have not only demonstrated that DNA 

methylation patterns are intimately related to NB biology, but also found additional clinically 

relevant prognostic biomarkers. 
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SAMENVATTING 
 

Neuroblastoom (NB) is een kindertumor die ontstaat uit immature sympathische zenuwcellen en 

wordt gekenmerkt door een grote klinische heterogeniteit met een prognose variërend van zeer 

gunstig tot fataal. Bij diagnose worden de patiënten ingedeeld in een specifieke risicogroep, een 

classificatie die gebaseerd is op combinaties van specifieke klinische en genetische karakteristieken 

(leeftijd van de patiënt, tumorstadium, histologie, differentiatiegraad, MYCN-oncogenamplificatie, 

chromosoom 11q-afwijkingen en DNA-ploïdie), om zo voor elke patiënt de meest geschikte therapie 

te bepalen. Follow-up studies hebben echter aangetoond dat exacte prognosebeoordeling voor NB 

moeilijk blijft en dat bijkomende prognostische merkers noodzakelijk zijn. Vandaar dat in dit 

onderzoek werd getracht prognostische tumor-DNA-methylatiebiomerkers te identificeren. 
 

Hiertoe werden de DNA-methylatiepatronen van primaire NB-tumoren op een genoomwijde manier 

in kaart gebracht met behulp van methyl-CpG-binding domain (MBD)-sequenering. Deze techniek is 

gebaseerd op de verrijking van gemethyleerd DNA, gebruikmakend van de hoge affiniteit van MBD 

om te binden met gemethyleerde cytosines, gevolgd door sequeneringsanalyse van deze verrijkte 

DNA-fractie. Ter optimalisatie van de analyseprocedure werd deze techniek initieel toegepast op 8 

NB-cellijnen, wat in combinatie met mRNA-expressiestudies leidde tot een eerste selectie van 43 

kandidaatbiomerkers. Vervolgens werd methylatie-specifieke PCR (MSP) geïmplementeerd om deze 

merkers verder te evalueren in 89 primaire NB-tumoren. Zo werden verscheidene nieuwe 

prognostische DNA-methylatiebiomerkers geïdentificeerd en werden de technologische aspecten en 

data-analysepijplijn voor een meer uitgebreide biomerkerstudie vastgelegd. In deze vervolgstudie 

werd het DNA-methyloom van 102 primaire NB-tumoren, die geselecteerd werden op basis van 

risicoclassificatie en overlevingsstatus, geprofileerd met MBD-sequenering. Differentiële 

methylatieanalyses tussen de prognostische patiëntengroepen lieten toe 78 kandidaatbiomerkers te 

prioriteren, die vervolgens op twee onafhankelijke cohortes van 132 en 177 stalen werden getest 

met behulp van de MSP-pijplijn uit de pilootstudie. De prognostische waarde van verscheidene 

individuele MSP assays werd gevalideerd en via de implementatie van een nieuw ontwikkeld 

statistisch kader werd een robuuste prognostische methylatiesignatuur bestaande uit 58 merkers 

ontwikkeld en gevalideerd. Dit is de grootste DNA-methylatie(biomerker)studie in NB dusver. 
 

De MBD-sequeneringsdata werd publiek beschikbaar gemaakt onder de vorm van een data 

descriptor. Hierdoor kan de data ook voor andere onderzoeksdoeleinden worden aangewend en 

kunnen zo nieuwe mechanismes in de NB-pathologie worden ontrafeld. Ter illustratie hiervan werd 

het DNA-methyloom van stadium 4S-NB gekarakteriseerd. Dit tumorstadium komt enkel voor bij 

jonge kinderen en wordt getypeerd door metastasen die doorgaans spontaan regresseren, met een 

gunstige prognose tot gevolg. Differentiële promotormethylatie-analyses tussen stadium 4S, stadium 

1/2 (gelokaliseerde ziekte met gunstige prognose) en stadium 4 (metastatische ziekte met 

ongunstige prognose) toonden aan dat specifieke chromosomale regio’s rijk zijn aan promotoren 

differentieel gemethyleerd in stadium 4S, en dat dit tumorstadium gekenmerkt wordt door 

hypermethylatie van specifieke promotoren in subtelomeren. Verder bleek dat genen die een 

belangrijke rol spelen in kanker, in neurale kamontwikkeling en -differentiatie, en in epigenetische 

processen differentieel gemethyleerd zijn in stadium 4S.  
 

Samengevat kon door exploratie van het NB-DNA-methyloom niet alleen worden aangetoond dat 

DNA-methylatieprofielen de NB-biologie bepalen, maar konden eveneens bijkomende klinisch 

relevante prognostische biomerkers worden gevonden. 
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1.1 DNA methylation: inherited information beyond the DNA sequence 

 

Deoxyribonucleic acid (DNA) occurs as a double helix of which each strand is made up of a sequence 

of nucleotides consisting of a phosphate and a sugar linked to one of the four following bases: 

cytosine (C), thymine (T), adenine (A) or guanine (G). Hydrogen bonds between the A-T and C-G base 

pairs (bp) hold the two strands together. The DNA is further intimately complexed with various 

specialized proteins, which together form chromatin. Nucleosomes form the fundamental repeating 

units of chromatin and consist of 147 bp of DNA wrapped around a histone octamer (Figure 1). 

Additional levels of higher-order chromatin organization lead to further packaging into chromatin 

fibers, larger looped chromatin domains and eventually to the formation of chromosomes. The 

human genome is organized into two sets of 23 chromosomes, of which one set is inherited from 

each parent.  

 

 

 

 
Figure 1. Various epigenetic mechanisms contribute to modulation of the chromatin structure. me: DNA 
methylation; mod: histone modification; ncRNA: non-coding RNA. Based on [1]. 

 

 

 

Chromatin is a dynamic molecule existing in many configurations, ranging from highly condensed 

chromatin (heterochromatin) to a less compacted type (euchromatin) where genes are typically 

expressed. These chromatin variations are established through various so-called epigenetic 

mechanisms (Figure 1), including the dynamic shuffling of histone variants in and out of 

nucleosomes, chromatin remodeling resulting in nucleosome repositioning, the addition of chemical 

flags to histone proteins, the targeting role of non-coding ribonucleic acids (ncRNAs) and DNA 

methylation. In concert with transcription factor regulation, these epigenetic mechanisms 

collectively effectuate different patterns of gene expression and silencing from the same genome, 

creating different cell types [1]. Importantly, this epigenetic machinery needs to be well orchestrated 

to avoid that cellular identity gets lost, leading to malignancies such as cancer. Epigenetics have 

therefore heralded a new era of cancer research, in which it has become clear that something 

beyond the DNA sequence can be inherited and disrupted. These epigenetic alterations can be 

identified and used both in a diagnostic and therapeutic setting. 
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 Principles and functions of DNA methylation 1.1.1

 
1.1.1.1 DNA methylation and demethylation 

 

DNA methylation is the addition of a methyl group (CH3) to the C5 position of cytosines in CpG 

dinucleotides (the ‘p’ refers to the phosphodiester bond between the cytosine and the guanine) and 

occurs in 60-80% of the 56 million CpG dinucleotides in the human genome, which corresponds to 4-

6% of all cytosines. CpG dinucleotides are underrepresented in relation to other dinucleotides, 

because of the hydrolytic deamination of 5-methylcytosine to thymine during molecular evolution, 

and are unequally distributed across the genome. Depletion of CpGs is observed in intergenic and 

intragenic regions, whereas repetitive DNA and CpG islands are CpG-rich [2]. CpG islands are defined 

as regions of at least 200 bp that have a GC content of 50% and an observed/expected CpG ratio of 

more than 0.6 [3]. For comparison, the observed/expected CpG ratio in the bulk of the genome is 

0.1-0.2. DNA methylation is achieved by DNA methyltransferases (DNMTs), that catalyse the transfer 

of the methyl group from S-adenosyl-l-methionine (SAM) to the cytosine C5 position. The initial DNA 

methylation pattern is set during embryonic development (Figure 2) by the de novo DNMT3A and 

DNMT3B DNA methyltransferases. After each round of DNA replication, hemimethylated DNA is 

obtained, in which only the parental strand carries methylation marks. The newly synthesized 

daughter strand, which is initially devoid of methylation, then gets methylated by the maintenance 

DNA methyltransferase DNMT1. The preference of DNMT1 for hemimethylated sites prevents 

methylation of previously unmethylated sites and thereby preserves the DNA methylation pattern 

through cell division [2].  

 

 
Figure 2. DNA methylation levels change dynamically during human development. Primordial germ cells 
(PGCs) emerge in embryos at embryonic day 7.25. Concomitant with their proliferation and migration towards 
the genital ridge, DNA methylation is globally erased. Following sex determination, new DNA methylation 
landscapes are established in the germ cell precursors of the male or female embryo. In males, this de novo 
DNA methylation is completed before birth. In females, de novo DNA methylation is established after birth, 
during the follicular/oocyte growth phase. Following fertilization, a new wave of DNA demethylation takes 
place that is distinct on the parental genomes. In the zygote, DNA methylation of the paternal genome is 
rapidly erased by an active mechanism. Demethylation of the maternal genome is slower and dependent on 
DNA replication (passive demethylation). During blastocyst implantation and cell lineage determination, new 
methylation landscapes are established, associated with cellular differentiation. Based on [4]. 

 

Although DNA methylation has been viewed as a stable epigenetic mark, recent studies have 

indicated that it is more dynamic than originally thought. DNA demethylation has been observed in 
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specific contexts, for example during specific developmental stages (Figure 2), and can occur through 

passive or active mechanisms. If DNMT1 is inhibited or absent when cells divide, the newly 

synthesized DNA strands will not be methylated and successive rounds of cell division will result in 

passive DNA demethylation. Additionally, several modes of active DNA demethylation have been 

described, which include enzymatic DNA demethylation, (deamination of 5-methylcytosine to 

thymine followed by) base excision repair, nucleotide excision repair and mechanisms influencing the 

availability or biochemical features of SAM [5]. Key players in the enzymatic DNA demethylation 

processes are the Ten-eleven translocation proteins TET1, TET2 and TET3. These enzymes generate 

5-hydroxymethylcytosine from existing 5-methylcytosine, which they can further process to 5-

formylcytosine and 5-carboxylcytosine (Figure 3) [6]. Subsequently, these oxidation products are 

recognized by thymine-DNA glycosylase and excised through base excision repair to install an 

unmodified cytosine [7, 8]. Alternatively, 5-hydroxymethylcytosine can also be converted to 5-

hydroxymethyluracil by the AID/APOBEC family of cytidine deaminases, and 5-hydroxymethyluracil is 

then excised through base excision repair (Figure 3) [9, 10]. Apart from their role as intermediates in 

this active DNA demethylation pathway, several studies have also indicated direct functions of 5-

hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine. As a consequence, these 

epigenetic marks are increasingly being studied, also in cancer [6, 9, 11–16].  

 

1.1.1.2 DNA methylation regulates gene expression  

 

Gene expression is regulated by a sophisticated interplay between transcription factors (reviewed 

elsewhere [17]) and numerous epigenetic actors, in which the precise role of DNA methylation has 

proved to be challenging to unravel, as its function seems to vary with genomic context [18]. Initial 

DNA methylation studies focused on CpG islands at promoters and postulated that active promoters, 

characterized by nucleosome-depleted regions (NDRs) upstream of their transcription start sites 

(TSSs), normally lack DNA methylation. These promoters are further marked by the presence of 

specific histone modifications, such as H3 trimethylation at lysine 4 (H3K4me3) and lysine 

acetylation, and histone variant H2A.Z. On the other hand, genes of which the promoter lacks H2A.Z 

and has nucleosomes positioned over the TSS harbouring repressive histone marks 

(H3K27me3/H3K9me2/H3K9me3), can be stably silenced by DNA methylation [19]. Nevertheless, 

most promoters remain unmethylated and the transcriptional level of these genes is regulated by 

transcription factors [17]. Importantly, about 40% of human genes does not show CpG islands at 

their promoters, and because of the long-standing focus on CpG islands, the role of promoter 

methylation in controlling transcription of these genes is not yet fully understood. Recent studies 

further indicate that methylation of CpG island shores and shelves, i.e. regions of relatively low CpG 

density that flank CpG islands, as well as methylation of gene bodies and regulatory sites, such as 

enhancers and insulators, also play a role in fine-tuning gene expression. Although the majority of 

the gene bodies is CpG-poor, they are extensively methylated and, in contrast to promoter 

methylation, this is generally positively correlated with gene expression. However, the detailed 

mechanism by which DNA methylation of these different genomic regions orchestrates transcription 

regulation remains to be elucidated [18]. Systematic investigation of DNA methylation patterns at 

genome-wide level has been hampered by the presence of a large number of epigenomes; each 

individual has essentially one genome, but each cell type in each individual is believed to have a 

distinct epigenome. Therefore, in analogy to the Human Genome Project, several large-scale 

epigenomics projects have been initiated (Box 1), to produce a public resource of epigenome data 
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that includes maps of DNA methylation, histone modifications, chromatin accessibility and RNA 

expression of cell types and tissues relevant to important biological processes and diseases. These 

genome-wide data will indisputably improve our understanding of gene expression regulation and 

the role of DNA methylation herein [20, 21]. 

 

 
Figure 3. Enzymatic DNA demethylation occurs via multiple intermediates. DNMT proteins are responsible for 
the methylation of cytosines. Two pathways of active demethylation have been described. Most evidence 
exists for a pathway in which TET proteins convert 5-methylcytosine into 5-hydroxymethylcytosine, 5-
formylcytosine and 5-carboxylcytosine through three consecutive oxidation reactions. Subsequently, 5-
formylcytosine and 5-carboxylcytosine are recognized by thymine-DNA glycosylases (TDGs) which activate the 
base excision repair pathway. In addition, evidence exists for a pathway in which AID/APOBEC proteins 
deaminate 5-hydroxymethylcytosine to 5-hydroxymethyluracil, followed by TDG-mediated base excision repair. 
Based on [9]. 

 

Box 1. Several large-scale epigenomics projects have been initiated [20, 21]. 
 
The International Human Epigenome Consortium (IHEC) was launched in 2010 to offer a forum for coordination 
of other initiatives, with the objective of avoiding redundant research efforts, implementing high data quality 
standards and thus maximizing efficiency among scientific research centers. Several projects have been 
initiated, each contributing to the IHEC’s major goal - mapping 1,000 epigenomes by 2020 (www.ihec-
epigenomes.org). The BLUEPRINT project is a European initiative focusing on distinct types of hematopoietic 
cells from healthy individuals and their malignant leukemic counterparts (www.blueprint-epigenome.eu). The 
German epigenome project DEEP analyzes cell types connected to complex diseases, such as metabolic diseases 
and inflammatory diseases of the joints and the intestine (www.deutsches-epigenom-programm.de). The 
following categories of human cell and tissue types are studied by the Canadian Epigenetics, Environment and 
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Health Research Consortium (CEEHRC): stem and differentiated cell types relevant to complex diseases 
(including cancer), placental tissue and tissues relevant to disorders of genomic imprinting, central nervous 
system tissues, tissues relevant to cancer heterogeneity, breast cancer, tissues relevant to cardiovascular 
diseases and tissues related to human immune function (www.cihr-irsc.gc.ca/e/43602.html). The Core Research 
for Evolutional Science and Technology (CREST)/IHEC, Team Japan aims to produce reference epigenomes of 
gastrointestinal epithelial cells, vascular endothelial cells and cells of reproductive organs (www.crest-
ihec.jp/english/index.html). The National Institutes of Health (NIH) Roadmap Epigenomics Program in the US, 
which was already launched in 2008, now also contributes to the IHEC (www.roadmapepigenomics.org), and 
also the Encyclopedia of DNA Elements (ENCODE) Consortium maps epigenomes (www.encodeproject.org). 

 

 DNA methylation in normal cellular processes   1.1.2

 

1.1.2.1 Subtelomeric and pericentromeric repeat silencing 

 

Telomeres are nucleoprotein structures at the ends of chromosomes and consist of TTAGGG tandem 

repeats bound by a multiprotein complex known as shelterin. Telomeres are essential for 

chromosome end protection and chromosomal stability. Subtelomeres, located proximal to 

telomeres, are also enriched in repetitive DNA and are further characterized by a low gene density 

and the presence of CpG dinucleotides, that are absent in telomeres. Pericentromeres flank 

chromosome centromeres and are involved in kinetochore function and sister chromatid cohesion 

during cell division. These three types of repeat-rich chromatin regions exhibit histone modifications 

commonly found in heterochromatin, such as H3K9me3 and H4K20me3, and are enriched in 

heterochromatin protein HP1. Additionally, subtelomeres and pericentromeres are also typified by 

DNA methylation. These heterochromatic marks have important functions in chromosome 

segregation, act as a negative regulator of homologous recombination in these regions, and suppress 

telomere elongation [22]. 

 

1.1.2.2 Transposon silencing 

 

The human genome is strewn with transposons, also called transposable elements, DNA sequences 

that can migrate (‘transpose’) within the genome. Depending on their mechanism of transposition, 

transposons are grouped into two categories: DNA transposons and retrotransposons. While DNA 

transposons move around by a cut-and-paste mechanism, retrotransposons are spread by a copy-

and-paste mechanism, which involves transcription into an RNA intermediate and integration of the 

reverse-transcribed cDNA copy at a new locus. Active transposons are highly mutagenic and can 

influence neighbouring genes by altering splicing and polyadenylation patterns, or by functioning as 

enhancers or promoters. To prevent transposon-induced damage to the genome, defense 

mechanisms have been developed, including suppression of transcriptional activity of transposons by 

DNA methylation and chromatin modifications, such as H3K9 methylation [23, 24].  

 

1.1.2.3 X chromosome inactivation 

 

Dosage compensation for X-linked gene products between the sexes is achieved by X-inactivation in 

females, which involves multiple levels of epigenetic modifications. X-inactivation is initiated at the X-

inactivation center (XIC) which contains the long non-coding RNA X-inactive-specific-transcript (XIST). 

During early differentiation, XIST is monoallelicly expressed and binds to high affinity sites on the 
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chromosome from which it is transcribed, resulting in XIST RNA coating of the future inactive X 

chromosome. Although the precise mechanisms underlying the repressive effect of XIST RNA are 

unknown, XIST RNA coating is followed by loss of euchromatic histone marks (H3K4me2/3, H3K9Ac 

and H4Ac). During this time window, X-linked gene silencing initiates by accumulation of the PRC2 

and PRC1 complex proteins, causing enrichment of repressive histone modifications (H3K27me3, 

H3K9me2, H2Aub1 and H4K20me1). At the final differentiation stage, in the maintenance phase, the 

PRC2 and PRC1 complexes no longer appear to be present and macroH2A becomes associated with 

the imprinted X chromosome. Finally, DNA methylation marks the promoters of X-linked genes [25]. 

 

1.1.2.4 Genomic imprinting 

 

Genomic imprinting is an epigenetic phenomenon that results in monoallelic gene expression 

according to parental origin. Most of the approximately 80 known imprinted genes (e.g. DLK1, GNAS, 

GRB10, IGF2 and SNURF) occur in clusters that contain 2 to 15 genes and that vary in size from less 

than 100 kilobase to several megabases [26]. The parent-specific expression of these gene clusters is 

under the overall control of a cis-acting imprinting control region (ICR), which shows parental allele-

specific DNA methylation and chromatin modifications. DNA methylation of the ICR is acquired in 

either maternal or paternal germ cells and is resistant to the extensive reprogramming of the 

genome that occurs in the embryo after fertilization (Figure 2). Imprinted genes have major effects 

on prenatal and postnatal development, survival and growth, as well as on metabolism, and neural 

and behavioural processes. Alterations of DNA methylation in imprinted regions may lead to disease. 

For example, lack of maternal GNAS methylation imprinting results in pseudohypoparathyroidism 

type 1b [26]. 

 

 Cancer: when DNA methylation goes awry  1.1.3

 

It is now generally accepted that epigenetic aberrations, next to genetic lesions, contribute to cancer 

initiation and progression. Cancer cells present a profoundly distorted epigenetic landscape in which 

multiple epigenetic players can be affected, including DNA methylation [27]. Since DNA methylation 

alterations are commonly observed in benign neoplasms and early-stage tumors, epigenetic 

deregulation has been considered an early event in tumorigenesis which may precede the classical 

genetic changes [28]. Of note, DNA methylation patterns are directly affected by a person’s diet and 

exogenous stimuli such as viruses and bacteria, which may initiate cancer formation [29]. However, 

recent evidence indicates that deregulation of epigenetic and genetic mechanisms are not separate 

events in cancer, but that they intertwine and take advantage of each other; genetic alterations of 

the epigenome may contribute to tumorigenesis and epigenetic processes may cause point 

mutations and disable DNA repair functions [30].  

 

1.1.3.1 Hypomethylation 

 

One of the first epigenetic alterations found in human cancer is the presence of massive global loss 

of DNA methylation. This global DNA hypomethylation contributes in several ways to the 

development of cancer (Figure 4). It mainly occurs at repetitive sequences of subtelomeric and 

pericentromeric regions, promoting chromosomal instability and rearrangements, mitotic 

recombination and aneuploidy. Additionally, DNA hypomethylation can lead to reactivation of 



 introduction 

- 13 - 
 

transposons. An example hereof is the LINE-1 retrotransposon, which is silenced in normal cells, but 

becomes hypomethylated and transcriptionally reactivated in breast, lung, bladder and liver tumors. 

Also, loss of imprinting due to DNA hypomethylation increases the risk of cancer. Loss of imprinting 

of IGF2, for example, is accompanied by an increased risk for colorectal cancer and contributes to the 

development of Wilm’s tumor. Finally, DNA hypomethylation can activate aberrant expression of 

alternative transcripts from a gene, due to loss of DNA methylation in coding regions and introns, 

and can induce the expression of oncogenes [27, 29, 31].  

 

 
Figure 4. DNA methylation alterations contribute to carcinogenesis via several mechanisms. A. Lollipop 
diagram of a normal and tumor cell. DNA methylation states are indicated as white (unmethylated) or black 
(methylated) lollipops (CpG dinucleotides). B. These alterations can lead to deregulated expression (of onco- 
and tumor suppressor genes), transposon reactivation, chromosomal instability and telomeric deregulation. 
TSS: transcription start site. Based on [32]. 

 
1.1.3.2 Hypermethylation 

 

Another common epigenetic feature of human cancers is hypermethylation at CpG islands of 

promoters (Figure 4). Remarkably, only specific promoters become hypermethylated, while others 

remain unmethylated, and this hypermethylation pattern is tumor-specific. Transcriptional 

inactivation caused by promoter hypermethylation frequently affects tumor suppressor genes and 

genes involved in the main cellular pathways: DNA repair (MLH1, MGMT, WRN, BRCA1), vitamin 
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response (RARB, CRBP1), RAS signaling (RASSF1, RASSF5), cell cycle control (CDKN2A, CDKN2B, RB1), 

TP53 network (TP73, HIC1) and apoptosis (PYCARD, DAPK1, WIF1, SFRP1). Recent findings further 

indicate that aberrant DNA methylation of CpG island shores (e.g. at HOXA2 and GATA2) also 

frequently occurs in cancer [27]. Importantly, monoallelic DNA methylation silencing may act as one 

of the two hits in addition to a genetic lesion to fulfill Kundson’s two-hit hypothesis, which states that 

disruption of gene function requires loss of both copies of the involved gene. An example of this 

close epigenetic-genetic cooperation is observed in the colon cancer cell line HCT116, in which one 

allele of MLH1 and CDKN2A is genetically mutated, whereas the other is silenced by DNA 

methylation. Finally, DNA methylation can induce the generation of disease-causing mutations, due 

to the spontaneous hydrolytic deamination of 5-methylcytosine to thymine [30].  

 

1.1.3.3 Genetic lesions of the DNA methylation machinery 

 

Next to mutations in histone-modifying enzymes, also enzymes involved in the DNA methylation 

machinery can be genetically perturbed in cancer. DNMT3A mutations have been reported in acute 

myeloid leukemia and are associated with poor prognosis, and DNMT1 mutations are detected in 

colorectal cancer [30].  

 

 A plethora of technologies to illuminate DNA methylomes 1.1.4

 

As 5-methylcytosine and cytosine roughly have the same base pairing characteristics, standard 

sequence detection technologies cannot discriminate between them. To overcome this, several DNA 

modification and preparation steps have been introduced to enable DNA methylation analysis. The 

most frequently applied methodologies are based on the use of (methylation state) restriction 

enzymes, precipitation of methylated DNA fragments and/or DNA bisulfite treatment (Table 1). 

 

Restriction enzyme-based DNA methylation analyses make use of methylation-sensitive restriction 

enzymes, of which the endonuclease activity is influenced (in most cases inhibited) by methylation of 

the CpG(s) in the recognition site of the enzyme. Subsequent analysis of the restriction pattern then 

reveals DNA methylation information. The most widely used methylation-sensitive restriction 

enzymes are HpaII (recognition sequence C˅CGG) and SmaI (recognition sequence CCC˅GGG), 

because they each have an isoschizomer (MspI for HpaII) or neoschizomer (XmaI for SmaI) that is not 

inhibited by CpG methylation. The very first analysis methods used gel electrophoresis or Southern 

blots, but later on, more advanced technologies, such as (quantitative) polymerase chain reaction 

((q)PCR), arrays and sequencing, were combined with methylation-sensitive restriction enzymes 

(Table 1) [33]. It should be noted that some methylation-sensitive restriction enzymes are also 

sensitive to hydroxymethylation (§1.1.1.1), possibly confounding DNA methylation analyses [34]. 

 

Bisulfite conversion-based methods rely on the detection of chemically induced methylation-specific 

nucleotide changes in the DNA sequence, making use of a difference in reaction kinetics between 

cytosine and 5-methylcytosine with bisulfite. Deamination by bisulfite proceeds by three steps 

(Figure 5). The process begins with the nucleophilic addition of HSO3
- to the C6 of the pyrimidine ring 

(sulfonation step), which can only occur at (5-methyl)cytosines not involved in base-pairing, as in 

double-stranded DNA the bases are locked in the anti-conformation in which C6 is sterically 

impeded. The amino group at position 4 is destabilized by this sulfonation, so that hydrolytic 



  

 
 

Table 1. Multiple DNA methylation detection methodologies, making use of restriction enzymes, affinity enrichment and/or bisulfite conversion, have been developed. 

method ref. 
year of 

publication 

Google Scholar 
citations 

(d.d. 01/07/2016) 

analysis strategy detection technology 

restriction 
enzyme 

bisulfite 
conversion 

affinity 
enrichment 

PCR and/or 
gel/ 

electrophoresis 
array sequencing 

RLGS [35] 1991 388       

MS-AP-PCR [36] 1997 229       

MSRF [37] 1997 149       

MCA-RDA [38] 1999 513       

AIMS [39] 2002 121       

MS-MLPA [40] 2005 314       

DMH [41] 1999 470       

McrBC/array [42] 2004 67       

MethylScope [43] 2005 119       

MMASS [44] 2006 43       

MSNP [45] 2006 60       

MCAM [46] 2007 128       

CHARM [47] 2008 337       

HELP assay [48] 2006 348       

high-resolution 
HELP assay  

[49] 2009 113       

MSDK [50] 2006 29       

Methyl seq [51] 2009 211       

MSCC [52] 2009 617       

Methyl-MAPS [53] 2010 102       

MRE seq [54] 2010 809       

(continues) 
Note. This overview is limited to methods making use of restriction enzymes, bisulfite conversion and/or affinity enrichment, in combination with PCR and/or 
gel/electrophoresis, array and/or sequencing. Technologies indicated with * are discussed in more detail in §1.1.4.1, §1.1.4.2, §1.1.4.3 and §1.1.4.4. AIMS: amplification of 
intermethylated sites; CHARM: comprehensive high-throughput arrays for relative methylation; DMH: differential methylation hybridization; HELP: HpaII tiny fragment 
enrichment by ligation-mediated PCR; MCAM: methylated CpG island amplification microarray; MCA-RDA: methylated CpG island amplification with representational 
difference analysis; Methyl-MAPS: methylation mapping analysis by paired-end sequencing; MMASS: microarray-based methylation assessment of single samples; MRE seq: 
methylation-sensitive restriction enzyme sequencing; MS-AP-PCR: methylation-sensitive arbitrarily primed PCR; MSCC: methyl-sensitive cut counting; MSDK: methylation-
specific digital karyotyping; MS-MLPA: methylation-specific multiplex ligation-dependent probe amplification; MSNP: methylation-sensitive single nucleotide polymorphism 
chip analysis; MSRF: methylation-sensitive restriction fingerprinting; PCR: polymerase chain reaction; RLGS: restriction landmark genomic scanning.  



  

 
 

Table 1. Multiple DNA methylation detection methodologies, making use of restriction enzymes, affinity enrichment and/or bisulfite conversion, have been developed. 
(continued) 

method ref. 
year of 

publication 

Google Scholar 
citations 

(d.d. 01/07/2016) 

analysis strategy detection technology 

restriction 
enzyme 

bisulfite 
conversion 

affinity 
enrichment 

PCR and/or 
gel/ 

electrophoresis 
array sequencing 

COBRA [55] 1997 1139       

RRBS* [56] 2005 436       

scRRBS* [57] 2013 79       

RRMAB seq [58] 2016 0       

MB-PCR [59] 2006 57       

MSP* [60] 1996 6032       

MS-DGGE [61] 1999 131       

MethyLight* [62] 2000 1151       

MS-MCA [63] 2001 168       

Ms-SNuPE [64] 2002 65       

MS-SSCA [65] 2002 18       

HeavyMethyl* [66] 2004 131       

MS-HRM [67] 2007 316       

MethyLight ddPCR [68] 2015 4       

HT-TREBS [69] 2014 6       

BisPCR
2 

[70] 2015 2       

MSO [71] 2002 334       

GoldenGate assay* [72] 2006 510       

Illumina 27 K 
array* 

[73] 2009 338       

(continues) 
Note. This overview is limited to methods making use of restriction enzymes, bisulfite conversion and/or affinity enrichment, in combination with PCR and/or 
gel/electrophoresis, array and/or sequencing. Technologies indicated with * are discussed in more detail in §1.1.4.1, §1.1.4.2, §1.1.4.3 and §1.1.4.4. COBRA: combined 
bisulfite restriction analysis; ddPCR: digital droplet PCR; HT-TREBS: high-throughput targeted repeat element bisulfite sequencing; MAB seq: methylation-assisted bisulfite 
sequencing; MB-PCR: methyl-binding PCR; MS-DGGE: methylation-specific denaturing gradient gel electrophoresis; MS-HRM: methylation-sensitive high-resolution melting; 
MS-MCA: methylation-specific melting curve analysis; MSO: methylation-specific oligonucleotide; MSP: methylation-specific PCR; Ms-SNuPE: methylation-sensitive single 
nucleotide primer extension; MS-SSCA: methylation-sensitive single strand conformation analysis; PCR: polymerase chain reaction; RRBS: reduced representation bisulfite 
sequencing; RRMAB seq: reduced-representation MAB seq; scRRBS: single cell RRBS. 

  



  

 
 

Table 1. Multiple DNA methylation detection methodologies, making use of restriction enzymes, affinity enrichment and/or bisulfite conversion, have been developed. 
(continued) 

method ref. 
year of 

publication 

Google Scholar 
citations 

(d.d. 01/07/2016) 

analysis strategy detection technology 

restriction 
enzyme 

bisulfite 
conversion 

affinity 
enrichment 

PCR and/or 
gel/ 

electrophoresis 
array sequencing 

Illumina 450 K 
array* 

[74] 2011 533       

TAB-array [75] 2014 8       

MSBE [76] 2005 8       

BS seq [77] 2008 1211       

scBS seq* [78] 2014 112       

scWGBS* [79] 2015 35       

µWGBS* [79] 2015 35       

MethylC seq* [80] 2008 1430       

BSPP [81] 2009 396       

LHC-BS [82] 2011 15       

LD-BSP [83] 2015 1       

MAB seq [58] 2016 0       

MeDIP chip [84] 2005 1335       

MeCP2 chip* [85] 2006 1129       

MBD2 chip* [86] 2006 166       

MIRA [87] 2010 40       

MeDIP seq [88] 2008 474       

MethylCap seq* [89] 2010 134       

MiGS* [90] 2010 239       

Note. This overview is limited to methods making use of restriction enzymes, bisulfite conversion and/or affinity enrichment, in combination with PCR and/or 
gel/electrophoresis, array and/or sequencing. Technologies indicated with * are discussed in more detail in §1.1.4.1, §1.1.4.2, §1.1.4.3 and §1.1.4.4. BSPP: bisulfite 
sequencing padlock probes; BS seq: bisulfite sequencing; LD-BSP: limiting dilution bisulfite pyrosequencing; LHC-BS: liquid hybridization capture-based bisulfite sequencing; 
MAB seq: methylation-assisted bisulfite sequencing; MBD2: methyl-CpG-binding domain protein 2; MeCP2: methyl-CpG-binding protein 2; MeDIP: methylated DNA 
immunoprecipitation; MethylC seq: cytosine methylome sequencing; MiGS: MBD-isolated genome sequencing; MIRA: methylated CpG island recovery assay; MSBE: 
methylation-specific single base extension; scBS seq: single cell BS seq; scWGBS: single cell WGBS; TAB-array: TET-assisted bisulfite conversion with array analysis; WGBS: 
whole-genome bisulfite sequencing; µWGBS: WGBS in very small cell populations. 
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liberation of NH3 takes place, the rate-limiting key deamination step. On treatment with alkali, HSO3
-

is then again released to regenerate the 5,6-double bond (desulfonation step). In this way, both 

cytosine and 5-methylcytosine can be converted to either uracil or thymine, respectively, but the fact 

that the deamination reactions of sulfonated cytosine and 5-methylcytosine proceed at very 

different reaction rates, such that the deamination of cytosine will be complete before substantial 5-

methylcytosine deamination has occurred, allows distinguishing these two bases in DNA. Namely, 

under specific reaction conditions, bisulfite treatment only converts cytosines to uracils, while 

methylated cytosines remain unchanged. These methylation-specific induced single nucleotide 

changes can subsequently be analyzed using various molecular techniques (Table 1) [91, 92]. 

Importantly, bisulfite-based methods cannot distinguish between 5-methylcytosine and 5-

hydroxymethylcytosine, as 5-hydroxymethylcytosine is also resistant to bisulfite conversion [34, 93]. 

 

 
Figure 5. Bisulfite converts cytosine to uracil. The conversion process proceeds in three steps: sulfonation, 
deamination and desulfonation.    

 

Methodologies making use of affinity enrichment are based on enrichment of methylated DNA using 

antibodies specific for 5-methylcytosine or using methyl-binding proteins with affinity for methylated 

genomic DNA. The most frequently used proteins to precipitate methylated DNA are methyl-CpG-

binding domain protein 2 (MBD2) and methyl-CpG-binding protein 2 (MeCP2). After enrichment, the 

DNA fraction is analyzed using array or sequencing technology (Table 1).  

 

1.1.4.1 Methylation-specific PCR  

 

Historically seen, methylation-specific PCR (MSP) was developed to encounter disadvantages of 

earlier established DNA methylation detection methodologies, such as Southern blotting and PCR-

based approaches after digestion of the DNA with methylation-sensitive restriction enzymes. 

Namely, these methods could only shed light on CpG methylation in the restriction sites of the used 

enzymes and only assess the overall methylation status of CpG islands. In 1996, Herman et al. 

introduced the first MSP method, applicable to any block of CpG sites in the genome, allowing site-

specific methylation analysis. Principally, their method relies on the bisulfite-mediated conversion of 

cytosines to uracils, followed by PCR with specific primer pairs designed on the resultant modified 

DNA, and polyacrylamide gel electrophoresis [60]. In order to render a more quantitative format 

suitable for clinical settings where high-throughput is required, many other researchers soon started 

to adapt this MSP methodology. The most important adjustments made are the use of fluorescence-

based real-time PCR technology (MethyLight) [62], and methylation-specific oligonucleotide blockers 

and probes for the analysis of very low concentrations of methylated DNA (HeavyMethyl) [66] (Figure 

6). Although careful attention should be paid to MSP primer design, the method is relatively easy to 

perform.  
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Figure 6. Methylation-specific PCR (MSP) allows site-specific DNA methylation analysis. First, the DNA is 
treated with bisulfite, converting unmethylated cytosines (white) to uracil. Methylated cytosines (dark) remain 
as cytosines. MSP primer pairs are designed to only amplify the bisulfite-converted target region and do not 
anneal to genomic DNA. For simplicity, only one primer and its template are depicted. As each primer contains 
at least two CpG sites, this means that only if the template is methylated, a PCR product will be generated. 
qPCR: quantitative polymerase chain reaction. 

 

1.1.4.2 Methylation microarrays 

 

Over the past decade Illumina has developed several DNA methylation analysis technologies that are 

based on genotyping bisulfite-converted DNA using arrays. First, the GoldenGate Assay for 

Methylation, implemented on a BeadArray platform, was introduced to investigate the methylation 

status of 1,536 specific CpG sites in 96 samples simultaneously [72]. Later on, this technology was 

replaced by the Infinium HumanMethylation27 BeadChip Kit (Illumina 27 K array [73]), that allows a 

more genome-wide screening of DNA methylation patterns by interrogating approximately 27,000 

CpG sites. This kit makes use of a pair of bead-bound probes (Infinium I Assay) per CpG locus to 

detect the presence of an ‘unmethylated’ T or ‘methylated’ C by hybridization, followed by single-

base extension with a labelled nucleotide. Then, the array is fluorescently stained, scanned and the 

intensities of the methylated and unmethylated bead types measured. Afterwards, the methylation 

status of each CpG site is quantified in a β-value, which represents the ratio of the intensity of the 

methylated bead type to the combined locus intensity (0 is completely unmethylated; 1 is completely 

methylated) [74]. Subsequently, the Infinium HumanMethylation450 BeadChip (Illumina 450 K array 

[74]) and Infinium MethylationEPIC BeadChip Kit were developed, expanding the number of 

interrogated CpG sites to approximately 480,000 and 850,000, respectively, by making use of an 

additional assay type (Infinium II Assay). This assay type uses only one bead-bound probe per CpG 
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locus, of which the 3’ terminus complements the base directly upstream of the queried CpG site, 

allowing hybridization to both ‘methylated’ and ‘unmethylated’ alleles. Here, the single-base 

extension depends on the methylation status of the hybridized allele and results in the addition of a 

labeled G or A, complementary to either the ‘methylated’ C or ‘unmethylated’ T, respectively. As the 

G and A are differently labeled, β-values can then be calculated by using a dual-color readout for 

intensity measurement [74, 94].    

 

1.1.4.3 Methyl-CpG-binding domain precipitation 

 

Affinity enrichment-based strategies making use of methyl-CpG-binding domain precipitation rely on 

the natural ability of methyl-binding proteins, such as MBD2 and MeCP2, to bind methylated CpGs. 

Methodologically, fragments of sonicated double-stranded DNA are exposed to MBD capture. 

Methylated fragments are bound, precipitated and subsequently analyzed using array (MeCP2 chip 

[85], MBD2 chip [86]) or sequencing technology (MethylCap seq [89], MiGS [90]; Figure 7). Since 

regions with a high density of methylated CpGs are preferentially or more effectively captured, these 

DNA methylation profiling approaches are biased towards CpG-dense regions, such as CpG islands 

[89, 90]. As such, when comparing DNA methylation levels of different genomic regions, MBD 

sequencing is less accurate for methylation quantification, as it measures the relative enrichment of 

methylated DNA rather than absolute DNA methylation levels. Another disadvantage is that it does 

not provide single-nucleotide resolution. Nevertheless, MBD sequencing has a higher genomic 

coverage (approximately 18%) than the Illumina 27 K and 450 K arrays (less than 4%) and can be used 

to identify differentially methylated regions (DMRs) between different samples (Box 2) [95, 96].  

 

1.1.4.4 Reduced representation and whole-genome bisulfite sequencing 

 

For reduced representation bisulfite sequencing (RRBS), the genomic DNA is first digested using a 

methylation-insensitive restriction enzyme, usually MspI which recognizes the sequence C˅CGG, 

followed by size selection using gel electrophoresis and band excision to select genomic regions with 

moderate to high CpG density [97, 98]. This reduced representation (or library) of the genome is then 

profiled using bisulfite sequencing. RRBS allows single-base resolution, but covers less than 4% of all 

CpG dinucleotides [96, 99]. In contrast, whole-genome bisulfite sequencing (WGBS) provides single-

base resolution and whole-genome coverage. The first human methylomes, originating from 

embryonic stem cells and fetal lung fibroblasts [100], were reported in 2009 (MethylC seq) and later 

on also cancer methylomes were determined [101, 102]. Yet, the number of studies using WGBS is 

still relatively limited, likely due to the high sequencing cost, as sufficient sequencing depth across 

the full genome is needed to accurately quantitate methylation of individual CpG sites, as well as due 

to the technical expertise and downstream computation requirements [96]. For example, accurate 

mapping of bisulfite sequencing reads is challenging, due to the lower sequence complexity and 

reduced GC content of bisulfite-converted DNA, and requires specific alignment tools [103]. Very 

recently, RRBS and WGBS that enables DNA methylation mapping in very small cell populations 

(µWGBS) and single cells (scBS seq, scWGBS, scRRBS) has been developed [57, 78, 79].  
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Figure 7. Methyl-CpG-binding domain (MBD) sequencing allows genome-wide DNA methylation analysis. 
Prior to MBD-based capture, the DNA is sheared or sonicated to create (methylated and unmethylated) DNA 
fragments. These DNA fragments are subsequently exposed to MBD proteins, which bind methylated DNA. 
Upon capture with magnetic beads, wash steps are performed to remove unbound (unmethylated) DNA 
fragments. Finally, the captured DNA fragments are eluted from the beads and can be sequenced. Based on the 
MethylCap Kit of Diagenode. 

 

Box 2. Differential methylation analyses based on MBD sequencing data make use of several bioinformatics 
tools.  
 
Differential methylation analyses based on MBD sequencing data make use of a bioinformatics pipeline, 
consisting of multiple consecutive steps: (1) quality control on the raw sequencing data, (2) read mapping, (3) 
peak calling, (4) data visualization, and (5) differential methylation analysis. For each of these steps, different 
bioinformatics tools can be used [104, 105].  
 
First, some quality control checks on the raw sequencing data are performed, for example by using FASTQC 
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), in order to detect potential sequencing errors. 
For example, the per base sequence quality scores and per sequence GC content can be evaluated. The per 
base sequence quality score reflects the probability that the corresponding base has been called incorrectly, 
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and can thus be used to check if the base calls are of good quality [106]. For MBD sequencing, evaluation of the 
per sequence GC content enables a first check of the presence of enrichment towards CpG-dense sequences. 
 
The following step is alignment of the sequences (reads) to the reference genome of the organism of interest, 
called read mapping. A wide variety of mapping tools exists, each with its own specific features. An extensive 
overview of the most commonly used alignment algorithms and software tools is given by Li et al. [104] and Su 
et al. [107]. Important aspects to take into account when selecting a mapping tool for MBD sequencing are the 
performance (speed/accuracy balance), the use of the quality information of the reads and the ability to map 
short paired-end sequencing reads. An example of a frequently used mapping tool suited for MBD sequencing 
analysis is Bowtie2 [108].  
 
Once the sequencing reads are mapped to the reference genome, genomic regions significantly enriched upon 
MBD capture need to be identified. The process of converting mapped sequencing reads to coverage vectors 
and the detection of enriched regions (peaks) is referred to as peak calling. Wilbanks et al. [105] have 
compared the performance of the most frequently used peak calling programs, including MACS [109], and 
measured their sensitivity, accuracy and usability. In addition to the location of the identified peaks and their 
significance scores, MACS also outputs files for data visualization, as exemplified in Decock et al. [110]. 
 
Differential methylation analyses between sample groups can be performed by using for example the R 
package DESeq [111], which uses raw counts of sequencing reads as input. For each region of interest included 
in the analysis, DESeq then yields the mean normalized counts per sample group, as well as the fold change 
between the sample groups, describing how much the methylation level differs between the two groups, and a 
p-value for the statistical significance of this difference. Also p-values adjusted for multiple testing with the 
Benjamini-Hochberg procedure, which controls false discovery rate (FDR), are reported [112].  

 

 DNA methylation as clinically useful biomarker 1.1.5

 

Biomarkers are molecular targets of which quantitative or qualitative analysis enables personalized 

tailoring of patient management. To be clinically applicable, biomarkers must be specific, sensitive 

(Box 3 and Table 2) and preferably detectable in specimens obtained through minimally invasive 

procedures. Several studies have shown that tumor-specific DNA methylation aberrations can be 

detected in blood or in body fluids that have been in physical contact with the site of the tumor, such 

as in urine for bladder cancer and in sputum for lung cancer. Additionally, several DNA methylation 

detection methodologies are applicable to formalin-fixed paraffin-embedded tumor samples. As 

such, DNA methylation might become the biomarker of choice for the clinical management of cancer 

patients. Until a few years ago, the search for DNA methylation biomarkers has mainly been focused 

on promoter-associated CpG islands, where methylation is in most cases inversely correlated to the 

transcriptional activity of the corresponding gene. However, also methylation of CpGs outside 

promoter regions should be investigated as potential biomarkers, given the increasing evidence on 

their involvement in cancer (§1.1.3) [113].  

 

DNA methylation biomarkers can be used in various clinical applications. For example, as changes in 

the DNA methylation pattern frequently occur early in tumorigenesis (§1.1.3), DNA methylation 

biomarkers can contribute to the detection of early-stage neoplasia [113]. A study by Palmisano et al. 

has demonstrated that aberrant DNA methylation of CDKN2A in smokers is detectable up to three 

years before the individuals are diagnosed with squamous cell lung carcinoma, and Scesnaite et al. 

showed that also never-smokers exposed to second-hand tobacco have a tendency of CDKN2A 

hypermethylation [113–115]. Besides early detection, DNA methylation biomarkers can also be used 

to characterize and classify cancers, as well as for prognosis prediction. One of the most 

quintessential examples hereof is the CpG island methylator phenotype (CIMP), described as the
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Box 3. Several statistical metrics can be used to evaluate biomarker performance [113, 116]. 
 
The performance of a biomarker can be evaluated by analyzing the test outcome in a population containing 
both individuals with and without the tested condition (e.g. the presence of cancer). As such, four groups of 
patients can be distinguished: cancer patients with a positive test (true positives; TP), cancer patients with a 
negative test (false negatives; FN), cancer-free patients with a positive test (false positives; FP) and cancer-free 
patients with a negative test (true negatives; TN). Using these four population parameters, following statistical 
metrics can be calculated (for calculations see Table 2):  
 
* The specificity or true negative rate is the percentage of cancer-free patients with a negative test. 
 
* The sensitivity or true positive rate or recall is the percentage of cancer patients with a  positive test.  
 
* The negative predictive value is the percentage of patients with a negative test result that is truly cancer-

free.  
 
* The positive predictive value or precision is the percentage of patients with a positive test result that truly 

has cancer. 
 
Other commonly used statistical tools are the accuracy or balanced accuracy (BAC; for imbalanced population 
cohorts) and the area under the Receiver Operating Characteristic (ROC) curve. This curve can be plotted as the 
sensitivity against 1-specificity, in which each point in the curve represents the fraction of cancer patients with 
a biomarker measurement above a specific threshold versus the corresponding fraction of cancer-free patients 
above the same threshold. The area under the ROC curve then represents the probability that a randomly 
chosen cancer patient is ranked as more likely to have cancer than a randomly chosen cancer-free patient. This 
value is a useful way to describe the performance of a biomarker with a continuous output variable, regardless 
of the threshold level. 

 

Table 2. Biomarkers can be evaluated by calculating several statistical metrics.  

 
condition 

 

 positive negative statistical metrics 

test 
outcome 

positive 
true positive false positive 

positive predictive value 
PPV 

TP FP = TP/(TP+FP) 

negative 
false negative true negative 

negative predictive value 
NPV 

FN TN = TN/(TN+FN) 

 
statistical 

metrics 

true positive rate 
TPR 

true negative rate               
TNR 

accuracy                              
ACC 

= TP/(TP+FN) = TN/(FP+TN) = (TP+TN)/(TP+FP+FN+TN) 

false negative rate 
FNR 

false positive rate                
FPR 

 
= FN/(TP+FN) = FP/(FP+TN) 

Note. Specificity is TNR; sensitivity or recall is TPR; precision is PPV. Balanced accuracy (BAC) is the arithmetic 
mean of sensitivity and specificity. 

 

aberrant and concordant hypermethylation of multiple promoter CpG islands, which can distinguish 

subgroups of colorectal cancer with different clinical, pathological and biological characteristics [113, 

117]. DNA methylation biomarkers can also help in predicting and monitoring a patient’s response to 

treatment, as illustrated by the DNA methylation markers ESR1 and ARH1 which are predictive 
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markers of response to tamoxifen treatment in breast cancer patients [113, 118]. Most of the studies 

so far mainly focused on promoter-associated CpG islands of single genes. However, it should be 

noted that apart from CIMP, also other panels of DNA methylation biomarkers have been described. 

In esophageal adenocarcinoma, methylation of four or more genes among APC, DAPK, CDH1, ESR1, 

MGMT, CDKN2A and TIMP3 was associated with higher risk for early tumor recurrence and poor 

survival when taken together as a panel, while none of the single genes was prognostic when used as 

a single marker [113, 119]. Additional examples of clinically implemented DNA methylation 

biomarkers are given in Figure 8.  

 

 

                                
Figure 8. DNA methylation biomarkers are used in many clinical applications. For the depicted markers, 
commercially available test have been developed and clinically implemented. Based on [120]. 

 
 DNA methylation as therapeutic target 1.1.6

 

Considering the crucial role of epigenetic alterations in cancer pathogenesis, there has been a 

growing interest in the utility of these changes in the development of strategies for cancer 

treatment. A plethora of epigenetic modulators of both DNA methylation and histone marks has 

been investigated and clinically implemented. The most important DNA methylation modulators are 

described in detail in the following sections. An overview of histone modulators is given in Box 4.  
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Box 4. Several classes of histone modulators have been developed and clinically implemented [121, 122]. 
 
An overview of the most important classes, subclassses and examples of histone modulators is given below. For 
detailed descriptions of their mechanisms of action and clinical trials using these drugs, the reader is referred 
to Nebbioso et al. and Juo et al. [121, 122].  
 
* histone deacetylase (HDAC) inhibitors 
  ° short-chain and aromatic fatty acids  
    valproic acid, phenylbutyrate, pivaloyloxymethyl butyrate 
  °  hydroxamic acids and derivatives  
  trichostatin A, pyroxamide, vorinostat, panobinostat, CHR-3996, tefinostat, pracinostat, 

 givinostat, belinostat, JHJ-26481585, dacinostat 
° benzamides   

  entinostat, mocetinostat, chidamide 
° cyclic peptides  

  trapoxin A and B, romidepsin, apicidin 
° sirtuin inhibitors 

    splitomicin, tenovins, AGK2, sirtinol, suramin, EX-257, salermide, UVI5008 
* HDAC activators 

° sirtuin activators 
    resveratrol 
* histone acetyl transferase (HAT) inhibitors 

° p300/CBP inhibitors 
    anacardic acid, garcinol, curcumin 
* HAT activators 

° p300 activators  
    N-(4- chloro-3-trifluoromethyl-phenyl)-2-ethoxy-6-pentadecyl-benzamide 
* histone methyltransferase (HMT) inhibitors 

° lysine methyltransferase (KMT) G9a inhibitors  
    chaetocin, BIX-01294, UNC0224 

° EZH2 inhibitors  
    3-deazaneplanocin A 

° protein arginine methyltransferase (PRMT) inhibitors 
    AMI-1 
* histone demethylase (HDM) inhibitors 
  ° LSD1 inhibitors 
    tranylcypromine 

 

1.1.6.1 Nucleoside analogues  

 

The most archetypal examples of epigenetic cancer drugs are azacitidine (Vidaza) and decitabine 

(Dacogen). After their cellular uptake, these drugs are metabolized to 5-aza-2’-deoxycytidine-

triphosphate (azacytosine), which is then incorporated into replicating DNA, where it substitutes for 

the naturally occurring cytosine. Azacytosine-guanine dinucleotides are recognized by the DNMTs as 

natural substrate and the enzymes will initiate the methylation reaction by a nucleophilic attack. This 

results in the establishment of a covalent bond between the C6 of the cytosine pyrimidine ring and 

the enzyme. Normally, this bond is then resolved by β-elimination through the C5 atom of cytosine 

(§1.1.4), but with azacytosine, where the C5 is substituted by N, this reaction is blocked and the 

DNMT is trapped. As a consequence, active DNMTs are depleted after several cell cycles, leading to 

loss of DNA methylation [123]. As azacitidine also gets incorporated into RNA, it also causes 

ribosomal disassembly, defective tRNA function and inhibited protein synthesis. Azacitidine exhibits 

greater cytotoxicity during S-phase, supporting the greater importance of its DNA effects [121]. The 
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Food and Drug Administration (FDA) approved azacitidine and decitabine for the treatment of the 

leukemia predisposition disorder myelodysplastic syndrome [123]. Importantly, these drugs need to 

be administered at nanomolar concentrations, as they become cytotoxic at higher doses. More 

recently, low doses of azacitidine/decitabine have also been tested in the management of solid 

tumors, both as a single drug treatment and in combination therapy, especially with HDAC inhibitors. 

In adults with metastatic non-small cell lung cancer, tumor responses improved gradually and 

progressively over several months of treatment with low doses of azacitidine in combination with the 

HDAC inhibitor entinostat, and this effect was sustained even after cessation of epigenetic therapy 

[124]. Azacitidine is also used to prime solid tumors for response to subsequent cytotoxic therapy 

[124, 125]. For example, it was shown that azacitidine partially reverses platinum resistance in 

patients with ovarian cancer [125].  

 

Another nucleoside analogue is zebularine, which also inhibits cytidine deaminase, the enzyme 

responsible for inactivation of azacitidine and decitabine. Zebularine is more stable and less toxic 

compared to azacitidine and decitabine. This allows oral administration of the drug and simplifies 

continuous low-dose therapy. Importantly, this drug also shows a higher selectivity for tumor cells 

than azacitidine and decitabine [126]. Also of note is SGI-110, a derivative of decitabine with 

improved pharmacokinetics and metabolic stability, which results from a decreased degradation by 

cytidine deaminase [122]. 

 

1.1.6.2 Small molecule inhibitors 

 

In efforts to circumvent the toxicity and instability of nucleoside DNMT inhibitors, non-nucleoside 

small molecule inhibitors of DNMTs have been developed, such as hydralazine, procainamide, 

RG108, SGI-1027 and MG98.  

 

Hydralazine and procainamide are FDA approved drugs for the treatment of hypertension and 

cardiac arrhythmia, respectively. Procainamide specifically inhibits the maintenance 

methyltransferase activity of DNMT1, mainly by reducing the affinity of the enzyme for both DNA 

and SAM [127]. The demethylating action of hydralazine is still under investigation, but some 

evidence indicates that it binds to CpG-rich sequences and interferes with translocation of DNMTs 

along the DNA strand [121]. Although both compounds are considered weak DNA methylation 

inhibitors, a clinical trial on patients carrying solid tumors refractory to conventional therapy has 

demonstrated that hydralazine in combination with the HDAC inhibitor valproate causes DNA 

demethylation and overcomes chemotherapy resistance [127, 128]. Further pharmacological 

exploitation of these drugs might lead to the development of more potent DNA methylation 

inhibitors, as currently high levels of these drugs are needed to induce DNA demethylation [129].   

 

Small molecule DNMT inhibitors that block the active site of DNMTs also have been identified. Based 

on a three-dimensional model of the human DNMT1 catalytic domain, a small-molecule database 

was screened in silico in order to find candidate DNMT inhibitors. This led to the identification of 2-

(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)-3-(1H-indol-3-yl)propanoic acid, later on renamed to RG108, 

which was predicted to strongly interact with the DNMT1 active site. In vitro work on HCT116 colon 

cancer cells further demonstrated that this compound efficiently blocked DNA methylation without 

the need to be incorporated into DNA and that the central carboxyl group of RG108 is responsible for 
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the specificity in the interaction between the inhibitor and the DNMT1 active site. These features 

make RG108 a promising DNMT inhibitor [130]. Another promising class of demethylating agents 

that inhibit DNMT activity represents synthetic small molecule inhibitors based on quinoline, a 

heterocyclic aromatic compound. Datta et al. have shown that one of these compounds, designated 

SGI-1027, effectively reactivates silenced tumor suppressor genes in colon cancer cells by 

demethylation of their respective CpG islands. SGI-1027 treatment also resulted in selective 

degradation of DNMT1 and exhibited minimal or no cytotoxic effect in rat hepatoma cells [131].  

 

Also antisense oligonucleotides (ASOs), synthetic nucleic acids that inhibit translation of specific 

messenger RNAs (mRNAs), or degrade them, by binding to a target region within the mRNA, are used 

to inhibit DNA methylation. The ASO MG98 specifically inhibits human DNMT1 mRNA, resulting in 

reduced DNMT1 protein levels and re-expression of silenced tumor suppressor genes. Clinical trials 

on patients with advanced solid tumors have demonstrated that MG98 treatment has antitumor 

activity and is generally well tolerated [132, 133].   

 

1.1.6.3 Natural compounds 

 

The DNMT inhibitory potency of naturally occurring molecules, such as psammaplin A and (–)-

Epigallocatechin-3-gallate (EGCG), have also been topic of investigation.  

 

Literature on the DNMT inhibitory effect of psammaplin A is controversial. Early studies indicated 

that this natural product isolated from marine sponges was an extremely potent inhibitor of both 

HDAC and DNMT, and showed cytotoxicity against human lung, ovarian, skin and colon cancer cell 

lines. Although more recent studies confirmed the antitumor activity of this compound, evidence of 

DNMT activity inhibition could not be demonstrated in these studies [134]. 

 

EGCG is a green tea polyphenol that has been shown to have antitumorigenic properties. 

Nandakumar et al. demonstrated that treatment of skin cancer cells with EGCG reduced the levels of 

DNA methylation and DNMT activity, resulting in re-expression of tumor suppressor genes. It also 

inhibited HDAC activity and increased levels of acetylated histones [135]. Additionally, also EGCG 

analogues have been developed. These molecules are currently being tested for different 

applications in cancer management [136]. 
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1.2 The quest for prognostic neuroblastoma markers 

 

In 1864, in a study on hyperplasia of the pineal and adrenal glands, Virchow described for the first 

time a child with an abdominal tumor which he denominated as glioma. Further examination of 

Marchand in 1891 showed histological similarities between tumors of the adrenal gland and the 

sympathetic nervous system [137]. Later on, in 1901, Pepper described a group of enigmatic adrenal 

sarcomas in infants associated with massive liver dissemination, of which the clinical and pathologic 

features closely resembled one another and a few years later, in 1907, Hutchison similarly reported 

on a separate group of adrenal sarcomas in older children with orbital and skeletal metastases [138, 

139]. In 1910, Wright pointed out that the adrenal tumors described by Pepper and Hutchison were 

mainly composed of an identical cell type, regardless their distinct patterns of spread. These cells had 

the same morphology as the cells from which the sympathetic nervous system and the medulla of 

the adrenal developed, and were regarded by embryologists as arising from migrated primitive nerve 

cells. Owing to their characteristic primitive neural cell origin, Wright collectively named these types 

of tumors ‘neuroblastoma’ [140, 141]. 

 

Today, neuroblastoma (NB) is appointed as a disease of the sympaticoadrenal lineage of the neural 

crest, a transient population of cells during embryonal development that arises at the border 

between the neural plate and the non-neural ectoderm (Figure 9 and Table 3). Precursors with the 

potential to form neural crest cells initially are contained within the dorsal portion of the neural tube. 

Subsequently, these premigratory neural crest cells emerge from the neural tube and start migrating 

along characteristic pathways to give rise to diverse and numerous derivatives. These migratory 

pathways are regionalized according to the original position of the neural crest cells along the neural 

axis, such that cells from a given axial level give rise to a characteristic array of progeny and follow 

distinct pathways from those arising at other axial levels (Table 3). For example, ventrally migrating 

trunk neural crest cells give rise to the peripheral nervous system (PNS) of the trunk, including the 

chain of the sympathetic ganglia and dorsal root ganglia, as well as chromaffin cells of the adrenal 

medulla. In addition to these neurons, these neural crest cells also generate glia of the peripheral 

ganglia, non-neural cells supporting and protecting neurons, including Schwann cells that ensheate 

and myelinate peripheral axons. Cessation of neural crest cell migration and subsequent 

neurogenesis in the developing peripheral nervous system (PNS) is not yet completely understood, 

but local environmental signals seem to critically control neural and glial cell fate. For example, bone 

morphogenetic proteins (BMPs) are essential for the development of the sympathetic nervous 

system. An interesting feature of the developing PNS is that migrating neural crest cells proliferate 

rapidly as they move. Even after exhibiting defined neural characteristics, some neural crest 

derivatives continue to divide. For example, in the developing sympathetic ganglia, neural-crest 

derived cells express neurotransmitters and other proteins characteristic of sympathetic neurons, 

but remain actively mitotic [142]. 

 

Clearly, the processes involved in the development of the sympathetic nervous system are very 

complex and alterations herein can initiate disease pathogenesis. Although the molecular aberrations 

that cause NB are not yet fully unraveled, it has been shown that these tumors develop from 

immature sympathetic nervous system cells, called neuroblasts. As such, NB can develop anywhere 

in this system, which contributes to the most important hallmark of this type of tumor: 

heterogeneity. The early reports of NB by Pepper and Hutchison, which today would have been 
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staged as MS and M respectively, perfectly illustrate this clinical heterogeneity. Stage MS and M 

tumors both represent metastatic disease, but where patients with stage M often show relentless 

progression, stage MS tumors usually regress spontaneously [143]. These extreme differences in 

disease course have triggered a quest for markers that allow prognosis prediction at the time of 

diagnosis, a still persisting effort with the ultimate goal to fine-tune the treatment protocol for each 

patient. 

 

 

 
Figure 9. The neural crest is a transient population of cells during embryonal development. At embryonic day 
17, the developing embryo consists of three primary germ layers (ectoderm, mesoderm and endoderm; top 
left). The notochord defines the body axis, i.e. the midline that divides the left and right side of the body, and is 
the site of the future vertebral column. The amniotic sac is filled with fluid and buffers the developing embryo 
from physical shock until the time of birth. The yolk sac will form part of the future digestive system. As the 
notochord develops, it signals the overlying ectoderm to start forming the spinal cord and brain, an event 
called neurulation (close-up views of the ectoderm at the right of the figure). Specifically, the ectoderm in the 
dorsal midline thickens into a neural plate, and then starts to fold inwards as a neural groove. This groove 
deepens until a hollow neural tube is pinched off into the body (at embryonic day 22). Complete closure of the 
neural tube occurs by the end of week 4. Neural crest cells originate from ectodermal cells on the lateral ridges 
of the neural plate, and are pulled into the body along with the invaginating neural tube. According to the 
original position of the neural crest cells along the neural axis, they will give rise to specific body structures 
(Table 3). Based on [144]. 
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Table 3. Different populations of neural crest cells arising along the neural axis give rise to distinct cell types. 

neural crest cell population derivatives 

cranial 
cranial sensory ganglia 

parasympathetic ciliary ganglia 
cartilaginous elements of the facial skeleton 

vagal enteric nervous system 

trunk 

melanocytes 
sympathetic ganglia 
dorsal root ganglia 

chromaffin cells of the adrenal medulla 
glia 

Schwann cells 

lumbosacral enteric nervous system 

Note. Neuroblastoma is appointed as a disease of the sympaticoadrenal lineage of the neural crest, a specific 
subset of trunk neural crest cells. Based on [142]. 

 

The prognostic value of a great diversity of parameters has already been investigated, including the 

primary tumor site and volume [145, 146], the metastatic site [147], the ratio of the amount of the 

catecholamine metabolite markers vanillylmandelic acid (VMA) and homovanillic acid (HVA) in urine 

[148, 149], the serum neuron-specific enolase (NSE) [150], ferritin [149, 151], lactate dehydrogenase 

(LDH) [149, 151], chromogranin A [152] and neuropeptide Y level [153], and many others. However, 

the best studied and widely used prognostic factors are the age of the patient at diagnosis, tumor 

histology and stage, MYCN oncogene amplification, DNA index and specific chromosome gains and 

losses. Additionally, during the last decades, the development of high-resolution and high-

throughput (epi)genome and transcriptome profiling methods has provoked the advent of new 

molecular prognostic markers, such as mRNA and microRNA (miRNA) signatures, as well as DNA 

methylation biomarkers. Widely used prognostic parameters have been combined into a 

pretreatment risk classification system [154].  

 

 Widely used prognostic markers  1.2.1

 

1.2.1.1 Age of the patient at diagnosis 

 

One of the most remarkable characteristics of NB is its age-specific incidence. According to the 

Surveillance, Epidemiology, and End Results (SEER) Program 1975-2012 of the National Cancer 

Institute, the incidence rate of NB is 10.1 per million children under 15 years of age, but this rate 

increases to 20.5 per million in the 1-4 years of age group and even to 49.2 per million during infancy 

(grouped category data of NB and ganglioneuroblastoma (GNB), a more differentiated variant of NB 

(§1.2.1.2)) [155]. Although NB is one of the most common cancers of infancy, it is also diagnosed in 

adolescents and adults. However, these cover less than 10% of all cases, as 90% is diagnosed by the 

age of 6 years (median age of diagnosis is approximately 20 months) [156]. 

 

It has long been observed that NB prognosis varies markedly with the age of the patient at diagnosis. 

More than 40 years ago, Breslow and McCann [157] found that survival probabilities (Box 5) 

decreased with increasing age of the patient during the first two years and that the age effect 

tapered off thereafter. These results suggest that days of age should be used for risk stratification as 

a continuous variable, but as this is not clinically practical to tailor therapy, a convenient age cutoff of 



 introduction 

- 31 - 
 

12 months was applied. Hereby, patients older than 12 months receive more therapy than younger 

patients [158]. In 2003, Schmidt et al. [159] showed that the survival rates of some patients slightly 

older than 12 months (between 12 and 18 months) were significantly better than those of older 

patients, although they received the same therapy. Two years later, in order to maximally lower the 

burden of therapy (and accompanying late-term side effects) for these patients, London et al. 

retrospectively analyzed the influence of age on outcome in 3,666 patients to identify a better, 

statistically optimal age cutoff. Their findings indicate that the optimal age cutoff was between 15 

and 19 months [158]. 

 

Box 5. Survival probabilities can be estimated using the Kaplan-Meier method [160].  
 
Kaplan-Meier curves and estimates of survival data are frequently used to analyze survival, as this method can 
be performed on patient data with differing survival times, i.e. times-to-event, as well as censored data. The 
time-to-event variable can be described as the clinical-course duration or follow-up time of a patient and the 
event may be any event of interest, for example death (when studying overall survival (OS)) or 
progression/relapse (when studying event-free survival (EFS)) of a specific disease. Survival studies are often 
performed to determine whether different patient groups, stratified according to a nominal variable of interest 
(for example age group of the patient), show statistically different survival rates. In such studies, each patient is 
characterized by three parameters: its clinical-course duration (time-to-event), its event status at the end of its 
clinical-course duration (i.e. event occurred or patient is censored), and its study group. Using these 
parameters, Kaplan-Meier curves can be constructed, as exemplified in Figure 10. Kaplan-Meier curves exist of 
horizontal lines, representing clinical-course duration intervals, and vertical lines, showing changes in the 
cumulative survival probability as the curve advances. Each event in the data set ends an interval and begins 
another interval. Censored patients do not demarcate intervals and their times-to-event are indicated with 
ticks. Importantly, these patients strongly effect survival rates and for this reason, it is recommended to 
indicate patient numbers at risk below the curves. The cumulative survival probability for an interval defines 
the probability of survival at the beginning and throughout the interval, and is calculated by multiplying the 
interval survival rates up to that interval. Kaplan-Meier curves of multiple study groups can be statistically 
compared by the log-rank test or by calculating Cox proportional hazards. The log-rank test calculates the chi-
square for each event time for each group and sums the results. The summed results for each group are added 
to derive the ultimate chi-square to compare the full curves of each group. Cox proportional hazards show the 
increased rate of having an event in one curve versus the other [160]. 
 

 
Figure 10. Kaplan-Meier curves are used to analyze survival data. Horizontal lines represent clinical-course 
duration intervals. Vertical lines represent changes in the cumulative survival probability. Censored patients are 
indicated with ticks and patient numbers at risk are shown below the Kaplan-Meier curves. Based on [160]. 
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1.2.1.2 Tumor histology and differentiation grade 

 

Tumors that belong to the heterogeneous group of neuroblastic tumors, such as NB, are typified by 

different morphologic characteristics. During the past, these differences in histological appearance 

have led to the development of several histopathologic grading systems that showed to be of 

prognostic importance [161]. The initial grading systems, proposed by Beckwith and Martin [162], 

Mäkinen [163], and Hughes [164], were based on the degree of differentiation of the neuroblasts 

into ganglion cells and Schwann cells (§1.2) by evaluating histologic signs of maturation. It was 

generally acknowledged that differentiated tumors had a more favorable prognosis than 

undifferentiated tumors. Shimada et al. took a new approach with their age-linked classification and 

divided neuroblastic tumors into Schwannian stroma-rich and -poor tumors. Further subdivisions 

depended on the grade of differentiation and nuclear morphology of the neuroblasts. The latter was 

quantified in the mitosis-karyorrhexis index (MKI), which reflected the percentage of neuroblasts in 

mitosis (demonstrating cell proliferation) and in the process of karyorrhexis (i.e. nuclear 

fragmentation, demonstrating cell death) [161, 165, 166]. Also Joshi et al. proposed an age-linked 

grading system based on tumor calcification and the mitotic rate, later on replaced by the MKI [167, 

168]. In 1994, the International Neuroblastoma Pathology Committee (INPC) was formed, which 

aimed at testing the prognostic significance of the different morphologic features and their 

combination. Based on detailed definitions of these features and statistical analyses of pathology 

review data, the International Neuroblastoma Pathology Classification was proposed, which largely 

adopted the Shimada classification (Table 4). In this classification, NB tumors are defined as 

neuroblastic Schwannian stroma-poor tumors (i.e. the proportion of tumor tissue with stroma-rich 

histology does not exceed 50%) and are further categorized in undifferentiated, poorly differentiated 

and differentiating subtypes. In the undifferentiated subtype (Figure 11A), the tumor tissue is 

composed of undifferentiated neuroblasts without identifiable neuropil or Homer Wright rosettes 

(Box 6). In order to establish the diagnosis, supplementary tests such as immunohistochemistry, 

electron microscopy, and/or molecular/cytogenetic analyses are usually required. Diagnosis of the 

poorly differentiated subtype (Figure 11B) is relatively easy, because of the presence of varying 

amount of neuropil and/or rosettes. Most of the tumor cells in this subtype are undifferentiated: less 

than 5% of the population has morphological evidence of differentiation. Tumors of the 

differentiating subtype (Figure 11C) usually have abundant neuropil. At least 5% of the tumor cells 

are differentiating neuroblasts, which are characterized by synchronous differentiation of the 

nucleus (enlarged, eccentrically located with vesicular chromatin pattern, and a single prominent 

nucleolus) and of the cytoplasm (eosinophilic/amphophilic (having affinity for both acid and basic 

dyes) with a diameter two or more times larger than the nucleus) [169]. 

 

1.2.1.3 Tumor stage 

 

The practice of dividing NB tumors into stages arose from the fact that patient survival rates differed 

between patients with localized disease and patients in which the disease had extended beyond the 

site of origin. As a result, multiple NB tumor staging systems have been proposed in the past to aid in 

estimating prognosis [170, 171]. These include that of James [172], Pinkel [173, 174], Cohen [175], 

and Thurman and Donaldson [176], which are based on the extent of the disease, the surgical 

resectability, the pattern of metastatic spread and, in some cases, the degree of histologic 

differentiation. The first internationally accepted staging schema though, was that of Evans (and the
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Table 4. The International Neuroblastoma Pathology Classification (Shimada System) stratifies 
neuroblastomas into favorable and unfavorable tumors, using the age of the patient and tumor 
differentiation grade.   

International Neuroblastoma Pathology Classification 
Shimada 

Classification 

NB  
(Schwannian 
stroma-poor)

 

favorable 
< 1.5 years 

poorly differentiated or 
differentiating and low or 
intermediate MKI tumor 

stroma-poor 
(favorable) 

1.5-5 years differentiating and low MKI tumor 

unfavorable 

< 1.5 years 
undifferentiated tumor

 

high MKI tumor 
stroma-poor 
(unfavorable) 1.5-5 years 

un- or poorly differentiated tumor 
intermediate or high MKI tumor 

≥ 5 years all tumors 

GNB, intermixed 
(Schwannian stroma-rich) 

stroma-rich, 
intermixed 
(favorable) 

GN  
(Schwannian stroma-dominant) 

maturing 
well differentiated 

(favorable) 

mature 
GN  

(favorable) 

GNB, nodular  
(composite Schwannian stroma-rich/stroma-dominant and stroma-poor) 

stroma-rich, nodular 
(unfavorable) 

Note. GN: ganglioneuroma; GNB: ganglioneuroblastoma; MKI: mitosis-karyorrhexis index; NB: neuroblastoma 
[161]. 

 

Box 6. The presence or absence of Homer Wright rosettes is used to determine the neuroblastoma 
differentiation grade. 
 

Rosettes consist of a halo or spoke-wheel arrangement of cells surrounding a central lumen or hub (Figure 
11B). Several types of rosettes are described in pathology literature. Typically, in NB the halo is formed by 

neuroblasts which enclose a central lumen or hub with a fibrillary collection of primitive neurites (neuropil). 
Although this type of rosettes was first described by Wright in NB, it also emerges in medulloblastoma, 
primitive neuroectodermal tumor (PNET) and pineoblastoma. The mechanism for the formation of the 
characteristic rosette pattern is not completely understood. The cell populations exhibiting neural 
differentiation are believed to secrete glycoproteins and glycolipids, which mediate cell-to-cell recognition and 
adhesion. One hypothesis is that these sticky cell surface markers cause the developing cell bodies to cluster or 
aggregate and their primitive neurites to tangle. As the cells grow, the neurite tangle remains centrally located 
and the cell bodies are squeezed to the periphery, explaining the rosette pattern [177].  

 

Children’s Cancer Study Group (CCSG)) [178, 179]. This staging system was based on lymph node 

involvement and used the anatomic midline of the body as a reference to describe the extent of the 

disease. Evans et al. also devised a special stage IV (IV-S) category, as it was recognized that a certain 

constellation of ominous findings did not have the grave prognosis usually predicted for other 

cancers under such circumstances (stage IV). More precisely, it was restricted to patients who would 

otherwise have been stage I or II (with localized primary tumors), but who had remote disease 

confined to liver, skin or bone marrow, and any combination of these, without involvement of the 

skeleton. Over the following years, two other major staging systems evolved in the management of 

NB: the tumor-node-metastases (TNM) system from the International Union against Cancer (UICC) 

and the American Joint Committee on Cancer (AJCC) [180, 181], and the system used by the St Jude 

Children’s Research Hospital (SJCRH) and the Pediatric Oncology Group (POG) [182, 183]. 
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Additionally, modifications of these systems have been proposed by the Italian Cooperative Working 

Group [184] and the Malignant Tumor Committee of the Japanese Society of Pediatric Surgeons [171, 

185]. 

 

 
Figure 11. Neuroblastoma tumors are categorized into undifferentiated, poorly differentiated and 
differentiating subtypes. A. Undifferentiated subtype. B. Poorly differentiated subtype. C. Differentiating 
subtype. Adapted from [169].  

 
Although each of these staging systems has its strengths, the plethora of diversiform systems made it 

difficult to compare the results of clinical trials and biological studies from different groups and 

countries. To aid in the development of a consensus system, a meeting was held in 1986 to address 

the problem of standardizing definitions for staging in NB. The resulting International Neuroblastoma 

Staging System (INSS) was published in 1988 [185] and revised (Table 5) in 1993 [186]. However, a 

major drawback of this system is that staging is based on the degree of surgical resection of the 

tumor and lymph node involvement, criteria that highly depend on the thoroughness and expertise 

of the physician. In 2009, the International Neuroblastoma Risk Group (INRG) Task Force [154] 

therefore proposed a new system, the INRG Staging System (INRGSS; Table 6), based on radiological 

risk factors for surgery, i.e. imaging characteristics (determined via computed tomography (CT), 

magnetic resonance imaging (MRI), iodine-123 meta-iodobenzylguanidine (123I-mIBG) scintigraphy 

and/or technetium-99m-methylene diphosphonate (99mTc-MDP) bone scintigraphy (Box 9)) which are 

associated with an increased risk of surgical complications. Staging based on these so-called image-

defined risk factors (IDRFs) is not only more robust and reproducible than one based on surgical 

findings, but also allows pretreatment risk stratification [143]. 

A. B. 

C. 
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Table 5. The International Neuroblastoma Staging System (INSS) stratifies neuroblastoma tumors into 
several tumor stages, based on the degree of surgical tumor resection and lymph node involvement. 

stage description 

1  
localized tumor with complete gross excision, with or without microscopic residual disease; 
representative ipsilateral lymph nodes negative for tumor microscopically (nodes attached to 
and removed with the primary tumor may be positive) 

2A 
localized tumor with incomplete gross excision; representative ipsilateral non-adherent lymph 
nodes negative for tumor microscopically 

2B 
localized tumor with or without complete gross excision, with ipsilateral non-adherent lymph 
nodes positive for tumor; enlarged contralateral lymph nodes must be negative microscopically 

3 

unresectable unilateral tumor infiltrating across the midline*, with or without regional lymph 
node involvement; or localized unilateral tumor with contralateral regional lymph node 
involvement; or midline tumor with bilateral extension by infiltration (unresectable) or by lymph 
node involvement 

4 
any primary tumor with dissemination to distant lymph nodes, bone, bone marrow, liver, skin 
and/or other organs (except as defined for stage 4S) 

4S 
localized primary tumor (as defined for stage 1, 2A or 2B), with dissemination limited to skin, 
liver, and/or bone marrow** (limited to infants < 12 months of age) 

Note. Multifocal primary tumors (for example bilateral adrenal primary tumors) should be staged according to 
the greatest extent of disease, as defined above, followed by subscript letter M. *The midline is defined as the 
vertebral column. Tumors originating on one side and crossing the midline must infiltrate to or beyond the 
opposite side of the vertebral column. **Marrow involvement in stage 4S should be minimal, that is, < 10% of 
total nucleated cells identified as malignant on bone marrow biopsy or on marrow aspirate. More extensive 
marrow involvement would be considered to be stage 4. The MIBG scan (if performed) should be negative in 
the marrow [186]. 

 

Table 6. The International Neuroblastoma Risk Group Staging System (INRGSS) stratifies neuroblastoma 
tumors into several tumor stages, based on image-defined risk factors. 

stage description 

L1  
localized tumor not involving vital structures as defined by the list of IDRFs and confined to one 
body compartment 

L2 locoregional tumor with presence of one or more IDRFs 

M distant metastatic disease (except stage MS) 

MS 
metastatic disease in children < 18 months of age, with metastases confined to skin, liver, 
and/or bone marrow 

Note. Detailed criteria and list of IDRFs in Box 7 and Box 8, respectively. Patients with multifocal primary 
tumors should be staged according to the greatest extent of disease as defined in the table. IDRFs: image-
defined risk factors [143]. 

 

Box 7. The International Neuroblastoma Risk Group Staging System (INRGSS) stratifies neuroblastoma 
tumors into several tumor stages, based on image-defined risk factors [143]. 
 
Stage L1 tumors are localized tumors that do not involve vital structures as defined by the list of IDRFs. The 
tumor must be confined within one body compartment, neck, chest, abdomen, or pelvis. The isolated finding of 
intraspinal tumor extension that does not fulfill the criteria for an IDRF is consistent with stage L1. 
 
Stage L2 tumors are locoregional tumors with one or more IDRFs. The tumor may be ipsilaterally continuous 
within body compartments (i.e., a left-sided abdominal tumor with left-sided chest involvement should be 
considered stage L2). However, a clearly left-sided abdominal tumor with right-sided chest (or vice versa) 
involvement is defined as metastatic disease. 
 
Stage M is defined as distant metastatic disease (i.e., not contiguous with the primary tumor) except as defined 
for MS. Non-regional (distant) lymph node involvement is metastatic disease. However, an upper abdominal 
tumor with enlarged lower mediastinal nodes or a pelvic tumor with inguinal lymph node involvement is 
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considered locoregional disease. Ascites and a pleural effusion, even with malignant cells, do not constitute 
metastatic disease unless they are remote from the body compartment of the primary tumor.  
 
Stage MS is metastatic disease in patient younger than 18 months (547 days) with metastases confined to skin, 
liver, and/or bone marrow. Bone marrow involvement should be limited to less than 10% of total nucleated 
cells on smears or biopsy. MIBG scintigraphy must be negative in bone and bone marrow. Provided there is 
MIBG uptake in the primary tumor, bone scans are not required. The primary tumor can be L1 or L2 and there 
is no restriction regarding crossing or infiltration of the midline. 

 

 

Box 8. The International Neuroblastoma Risk Group Staging System (INRGSS) makes use of a list of image-
defined risk factors (IDRFs) to determine the neuroblastoma tumor stage [143]. 
 
ipsilateral tumor extension within two body compartments    
 neck-chest, chest-abdomen, abdomen-pelvis 
 
neck  
 tumor encasing carotid and/or vertebral artery and/or internal jugular vein 
 tumor extending to base of skull 
 tumor compressing the trachea 
 
cervico-thoracic junction  
 tumor encasing brachial plexus roots 
 tumor encasing subclavian vessels and/or vertebral and/or carotid artery 
 tumor compressing the trachea 
 
thorax  
 tumor encasing the aorta and/or major branches 
 tumor compressing the trachea and/or principal bronchi 
 lower mediastinal tumor, infiltrating the costo-vertebral junction between T9 and T12 
 
thoraco-abdominal  
 tumor encasing the aorta and/or vena cava 
 
abdomen/pelvis  
 tumor infiltrating the porta hepatis and/or the hepatoduodenal ligament 
 tumor encasing braches of the superior mesenteric artery at the mesenteric root 
 tumor encasing the origin of the coeliac axis, and/or of the superior mesenteric artery 
 tumor invading one or both renal pedicles 
 tumor encasing the aorta and/or vena cava 
 tumor encasing the iliac vessels 
 pelvic tumor crossing the sciatic notch 
 
intraspinal tumor extension  
 whatever the location provided that more than one third of the spinal canal in the axial plane is invaded 
 and/or the perimedullary leptomeningeal spaces are not visible and/or the spinal cord signal is abnormal 
 
infiltration of adjacent organs/structures  
 pericardium, diaphragm, kidney, liver, duodeno-pancreatic block, and mesentery 
 
conditions to be recorded, but not considered IDRFs 
 multifocal primary tumors 
 pleural effusion, with or without malignant cells 
 ascites, with or without malignant cells 

 



 introduction 

- 37 - 
 

Box 9. Radiological imaging is used to evaluate the presence or absence of image-defined risk factors. 
 
Computed tomography (CT) and/or magnetic resonance imaging (MRI) with three-dimensional measurements 
and of sufficient quality to address image-defined risk factors (IDRFs) is mandatory for imaging the primary 
tumor. The presence or absence of each individual IDRF should be evaluated and recorded (Box 8). When 
possible, metastatic sites should also be measured by CT and/or MRI, as this information may be needed to 
evaluate treatment response [143]. 
 
The iodine-123 meta-iodobenzylguanidine (

123
I-mIBG) scintigraphy imaging procedure is essential for the 

detection of metastases and is based on the intravenous administration of the radiopharmaceutical 
123

I-mIBG, 
followed by recording the distribution of the radioactivity using a camera, here a device used to image gamma 
radiation emitting radioisotopes. Being an analogue of noradrenalin, 

123
I-mIBG enters cells expressing the 

noradrenalin transporter and is stored in neurosecretory granules, which results in a concentration of 
radioactivity in these cells. Therefore, 

123
I-mIBG scintigraphy is useful to image tumors of neuro-endocrine 

origin, particularly those of the neuro-ectodermal (sympatho-adrenal) system, such as NB [187]. Occasionally, 
false-positive readings may occur because of uptake in mature ganglioneuroma or other neuro-endocrine 
tumors, or because of physiological uptake that may be mistaken for tumor in the adrenal gland, salivary gland, 
nasopharynx, brown fat or excretion through renal pelvis and bladder. False-negative scans may be observed in 
approximately 10% of NB tumors that do not concentrate 

123
I-mIBG, owing to low expression of the 

noradrenalin transporter or owing to blood-brain barrier or large areas of scar or necrosis. In addition, very 
small amounts of bone marrow tumor will often not be detected, and therefore 

123
I-mIBG scintigraphy must be 

supplemented with bilateral bone marrow biopsy [188]. 
 
Technetium-99m-methylene diphosphonate (

99m
Tc-MDP) bone scintigraphy is used to trace metastatic NB in the 

skeleton. The radiopharmaceutical 
99m

Tc-MDP is a marker of bone perfusion and turnover, as it is adsorbed to 
the crystalline structure of hydroxyapatite, the mineral component of bone built of crystals containing mainly 
calcium and phosphate. Therefore, visualization of tumor lesions in the bone using 

99m
Tc-MDP and gamma 

radiation imaging is possible, as the presence of the tumor in the bone causes changes in the bone remodelling 
activity [189]. 

99m
Tc-MDP bone scintigraphy is only required when 

123
I-mIBG positivity of the primary tumor 

cannot be confirmed [143]. 

 

1.2.1.4 MYCN amplification 

 

Double minutes (DMs) and homogeneously staining regions (HSRs) are karyotypic abnormalities 

frequently seen in tumor cells and point towards amplification of cellular genes (Box 10). In this way, 

an increase in gene dosage is caused and amplification of proto-oncogenes leads to activation of 

their oncogenic potential [190]. In 1983, upon the discovery of amplification of MYC (the human V-

Myc Avian Myelocytomatosis Viral Oncogene Homolog) in colon carcinoma, Schwab et al. 

demonstrated that NB tumors showed cytogenetic evidence for amplification of a DNA domain that 

exhibited homology to MYC [191]. One year later, the locus of this gene, designated as the V-Myc 

Avian Myelocytomatosis Viral Oncogene Neuroblastoma Derived Homolog (MYCN), was mapped to 

the short arm of chromosome 2 (2p24). MYCN amplification in NB occurs in approximately 20-30% 

and copy numbers range from 10 to more than 500, but 50 to 100 copies are generally observed. 

Lower numbers are indicated as MYCN copy gain [190]. Normally, MYCN is only expressed during 

embryogenesis in pre-B cells, kidney, forebrain, hindbrain and intestine, with the highest expression 

in the developing brain. After embryonic development, the transcription factor is downregulated and 

in adult tissues it is no longer significantly expressed. The essential developmental role of MYCN is 

underscored by embryonic lethality of MYCN-null mice [192]. Additionally, it has been shown that 

enhanced expression of MYCN is a factor in tumorigenic cell conversion and that MYCN has multiple 

direct and indirect targets, including other important players in the NB pathogenesis such as ALK 

[193–195]. More recent mice experiments signify MYCN as an oncogenic driver gene in NB [196].  
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Box 10. Several technologies can be used to assess DNA gains and losses.   
 
Frequently applied technologies in NB molecular diagnostics are interphase fluorescence in situ hybridization (I-
FISH), PCR, array comparative genomic hybridization (aCGH) and multiplex ligation-dependent probe 
amplification (MLPA) [197].  
 
The MYCN amplification status is frequently determined via I-FISH, using a fluorophore-labeled probe in 2p24, 
and presents as extrachromosomal double minutes (DMs) or intrachromosomal homogeneously staining 
regions (HSRs; Figure 12) [198]. Usually, two color I-FISH is used, so that the MYCN signal can be compared with 
that of a reference probe located on chromosome 2q [197]. Other detection technologies are qPCR [199], and 
comparative genomic hybridization (CGH). For CGH, test DNA and normal reference DNA are hybridized 
simultaneously to normal chromosome spreads. As the hybridization is detected with two different 
fluorochromes, regions of gain or loss of DNA sequences are seen as changes in the ratio of the intensities of 
the two fluorophores along the target chromosomes [200]. Later on, these chromosome spreads were replaced 
by arrayed oligonucleotides, allowing fast and high-resolution measurements of DNA copy number changes. 
Furthermore, a NB-specific PCR-based MLPA kit was developed to analyze the prognostic impact of certain 
genomic changes in NB [201, 202].  
 
 

 
Figure 12. Fluorescence in situ hybridization of neuroblastoma cells depicts MYCN amplification as double 
minutes or intrachromosomal homogeneously staining regions. DMs: double minutes; HSRs: homogeneously 
staining regions. Adapted from [198]. 

 

Soon after its discovery, it was shown that MYCN amplification correlates with advanced disease 

stage and is associated with rapid progression and worse prognosis [203, 204]. Given its pronounced 

effect on survival rates, MYCN amplification became a key determinant in risk estimation and 

therapy stratification [154]. Also the mRNA and protein levels were tested on their prognostic 

significance, as it was noticed that tumors without MYCN amplification can still be characterized by 

high MYCN expression. Though, in literature controversy exists whether these factors have 

prognostic value or not [205–207]. Of note, in the absence of MYCN amplification, high-stage NB 

tumors frequently show high expression of MYC, and activated MYC signaling is associated with poor 

outcome [208, 209].  

 

1.2.1.5 Chromosome aberrations 

 
1.2.1.5.1 DNA hyperdiploidy 

 

Next to amplification of MYCN (§1.2.1.4), NB tumors often show a hyperdiploid chromosomal 

constitution. This means that the tumor cells gained extra chromosomal copies resulting in a higher 

DNA content (triploid, tetraploid,…) compared to normal cells (diploid). The ploidy status is clearly 

associated with the age of the patient at diagnosis and MYCN copy number. By flow cytometric 

determination of the DNA index, George et al. showed that the frequency of hyperdiploid tumors 

was the highest in infants and that a diploid DNA content was associated with MYCN amplification in 

children younger than 24 months [210]. It has been shown that a diploid DNA index and MYCN 

DMs HSRs 
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amplification confer a very high risk of treatment failure in infants with disseminated NB, while 

hyperdiploidy with non-amplified MYCN is associated with a very favorable outcome in infants 

younger than 18 months, even if the disease is widely disseminated at diagnosis. In older children, 

DNA ploidy measurements have no prognostic value [210]. 

 

1.2.1.5.2 Numerical and segmental chromosome aberrations 

 

Thoroughly screening the entire genome for DNA copy number gains and losses only became 

possible with the advent of comparative genomic hybridization (CGH; Box 10). NB tumors are 

typically characterized by gains and losses of various chromosomes and chromosome parts, coined 

numerical (NCAs) and segmental chromosomal aberrations (SCAs), respectively. Based on CGH data 

of 231 primary NB tumors, Vandesompele et al. demonstrated the existence of three clinicogenetic 

subgroups with distinct genomic aberration patterns and clinical variables. The first subgroup 

(subtype 1) represents predominantly near-triploid low-stage tumors with NCAs and favorable 

histology from infants with excellent outcome. The other two subgroups (subtype 2A and 2B) mainly 

contain near-diploid/tetraploid high-stage tumors with SCAs and unfavorable histology. Typically, 

subtype 2B is featured by MYCN amplification and 1p deletions (§1.2.1.5.2.1), while most of the 

tumors of subtype 2A have non-amplified MYCN and 11q loss (§1.2.1.5.2.2). Importantly, it was 

further shown that OS probabilities are worse for patients with subtype 2A or B tumors (with SCAs) 

compared to patients with subtype 1 tumors (without SCAs) [211]. Later on, several other studies 

confirmed that a genomic profile characterized by SCAs is associated with a higher risk of relapse 

[212–214]. In the study of Schleiermacher et al. analyses were focused on tumors of infants with 

MYCN non-amplified localized unresectable/disseminated NB, in order to determine whether 

profiling of SCAs is useful for therapeutic stratification in this specific patient group. As this study 

clearly showed that the presence of SCAs is associated with worse progression-free survival, it was 

decided to use SCA profiling results for therapy stratification in the SIOPEN Low and Intermediate 

Neuroblastoma European Study (LINES), in an attempt to lower treatment burden in this patient 

group [214]. 

 

1.2.1.5.2.1 Chromosome 1p 

 

One of the first discovered SCAs in NB is deletion of chromosome 1p [215]. In search of tumor 

suppressor genes, loss of heterozygosity (LOH) studies have mapped the smallest region of 

overlapping deletions (SRO) between tumors to 1p36 [216]. It occurs in approximately 25% of the 

cases and is associated with other adverse prognostic factors (age 12 months or older, INSS stage 4, 

MYCN amplification, unfavorable histology and diploidy). Attiyeh et al. showed that 1p36 LOH is 

highly associated with poor outcome and is independently predictive of worse EFS in patients 

without MYCN amplification [217].  

 

1.2.1.5.2.2 Chromosome 11q 

 

LOH of chromosome band 11q23 is detected in about 34% of NB tumors. These tumors are 

characterized by LOH of the entire chromosome 11 or by LOH of 11q with retention of 11p material 

(unbalanced 11q LOH). 11q23 LOH primarily occurs in tumors without MYCN amplification and 

chromosome 1p deletion, and is associated with the presence of INSS stage 4 and unfavorable 
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histology, as well as with the favorable prognostic factor of hyperdiploidy [217]. Of note, this 

aberration frequently appears with concurrent loss of 3p and gain of 17q [218]. Survival analyses 

indicate that 11q23 LOH is linked with a decreased probability of event-free survival (EFS). In patients 

without MYCN amplification, unbalanced 11q LOH leads to a decrease in both EFS and overall 

survival (OS) [217].  

 

1.2.1.5.2.3  Chromosome 17q 

 

Gain of material from chromosome 17 is the most frequent genetic abnormality of NB and may 

consist of an entire chromosome 17 or only the distal segment of 17q (17q21-qter; in approximately 

54% of NB tumors). The principal mechanism underlying gain of 17q is an unbalanced translocation 

with a variety of partner chromosomes (e.g. 1p). Gain of 17q is strongly associated with INSS stage 4, 

age of 12 months or more at diagnosis, 1p deletion, amplification of MYCN and diploidy or 

tetraploidy [219]. Vandesompele et al. have shown that patients with tumors with a normal 

chromosome 17 status (in conjunction with other defects) or with a 17q gain have a worse prognosis 

compared to patients whose tumors bear whole chromosome 17 gain [211]. 

 

 mRNA and miRNA-based prognostic markers 1.2.2

 

More recently, tumor mRNA expression profiling by microarray and qPCR analyses identified single 

gene prognostic markers (e.g. NTRK1 [220]), as well as prognostic multimarker mRNA signatures. For 

example, Oberthuer et al. designed a customized oligonucleotide microarray covering a high 

percentage of transcripts previously related to NB tumor behavior to profile 251 tumors, which 

allowed them to construct a prognostic 144-gene signature [221]. Vermeulen et al. developed a qPCR 

assay for 59 prognostic genes, identified by re-analysis of previously published studies, and showed 

that this signature is an accurate, independent predictor of outcome by profiling 579 NB tumors 

[222]. Additionally, also miRNAs, i.e. non-coding RNAs regulating mRNA expression, have been 

source of prognostic biomarker research and several miRNA-based signatures have been proposed 

[223, 224]. Importantly, these RNA-based prognostic signatures require independent validation and 

performance evaluation in prospective studies before they can be introduced into clinical settings.  

 

 DNA methylation-based prognostic markers 1.2.3

 

An overview of DNA methylation-based prognostic markers in NB is given in the following review 

paper, which summarizes the most important findings up until a few years ago.  
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Abstract 

 

Neuroblastoma (NB) is a childhood tumor originating from sympathetic nervous system cells. 

Although recently new insights into genes involved in NB have emerged, the molecular basis of NB 

development and progression still remains poorly understood. The best-characterized genetic 

alterations include amplification of the proto-oncogene MYCN, ALK activating mutations or 

amplification, gain of chromosome arm 17q and losses of 1p, 3p and 11q. Epigenetic alterations have 

been described as well: caspase 8 (CASP8) and RAS association domain family 1 isoform A (RASSF1A) 

DNA methylation are important events for the development and progression of NB. In total, about 75 

genes are described as epigenetically affected in NB cell lines and/or NB primary samples. These 

epigenetic alterations were either found using a candidate gene approach or based on the analysis of 

genome-wide screening techniques. This review gives an extensive overview of all epigenetic 

changes described in NB as of today, with a main focus on both prognostic use and the potential of 

genome-wide techniques to find epigenetic prognostic biomarkers in NB. We summarize the key 

findings so far and the state-of-the-art of the upcoming methods at a unique time frame in the 

transition towards combined genome-wide chromatin immunoprecipitation (ChIP) and DNA 

sequencing techniques. 

 

Keywords: epigenetics, apoptosis, DNA methylation, histone modifications, chromatin modification, 

neuroblastoma, review 

 

 

Introduction and background 

 

Neuroblastoma (NB) is a childhood tumor 

originating from sympathetic nervous system 

cells. The molecular basis of NB development 

and progression is still poorly understood. The 

best-characterized genetic alterations include 

amplification of the proto-oncogene MYCN, 

amplification and mutation of the ALK gene, gain 

of chromosome arm 17q and losses of 1p, 3p 

and 11q. Classical risk factors include the age at 

diagnosis, MYCN amplification status and stage 

of the disease. The last decade, DNA methylation 

research has been conducted in NB, revealing 

that silencing of caspase 8 (CASP8) and RAS 

association domain family 1 isoform A (RASSF1A) 

are important in the development and 

progression of the disease. Both genes are often 
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found to be methylated in primary NB samples 

and the methylation status of these genes is 

significantly associated with survival.  

The use of genome-wide screening techniques, 

such as re-expression analysis after treatment 

with 5-aza-2'-deoxycytidine (DAC), promoter 

assays after affinity-based capture (for instance 

using a 5-methylcytidine antibody), methylation 

microarrays after bisulfite treatment, and next-

generation techniques, has led to an immense 

increase in both throughput and genome 

coverage. In NB, as of today, about 75 different 

DNA methylation biomarkers are described in 

scientific literature using various detection 

techniques. A selection of these research papers 

has shown the potential to use epigenetic 

biomarkers for prognostic purposes (survival, 

risk classification). This review summarizes all 

available epigenetics data in NB, with a focus on 

the use of DNA methylation biomarkers in 

predicting prognosis. We present this review at a 

unique time frame in this post-genomic era 

where next-generation sequencing technologies 

have become feasible to be used for whole-

genome analysis at a reasonable cost. We will 

thus emphasize the potential of such genome-

wide detection technologies in the NB 

epigenetics perspective. 

 

DNA methylation markers in neuroblastoma: 

methodological approach 

 

A total of 61 publications on methylation in NB 

were included in this review. In these studies, 

DNA methylation is detected using (1) 

methylation-sensitive restriction enzymes or 

library enrichment towards methylated DNA 

using restriction enzymes recognizing CpG-rich 

sequences, (2) bisulfite treatment, converting 

unmethylated C to T or (3) affinity-based 

enrichment, using the 5-methylcytosine 

antibody (methylated DNA immunoprecipitation 

(MeDIP)) or proteins containing a methyl-CpG-

binding domain (MBD), such as MBD2 and 

MeCP2. In order to detect histone modifications, 

specific antibodies can be used. 

In addition, several studies make use of a 

pharmacologic unmasking strategy on NB cell 

lines. Using DAC, a cytosine analogue which will 

replace cytosine after several cell divisions, DNA 

methylation is inhibited, causing a 

demethylating effect. Combined with 

trichostatin-A (TSA), an inhibitor of histone 

deacetylases (HDACs) inhibiting the 

deacetylation of histone tails, this causes 

transcriptionally silenced genes (by DNA 

methylation and/or histone deacetylation) to 

become active again. These re-expression or 

reactivation events can be identified by 

comparing expression levels before and after 

treatment with DAC and/or TSA by making use 

of qPCR or expression microarrays. The latter 

approach can thus be used to identify possibly 

epigenetically silenced regions in NB cell lines in 

a genome-wide way. In contrast, most analyses 

on primary NB samples are candidate-based: the 

methylation status of the promoter regions of a 

rather limited number of genes (usually less than 

10-15) is tested. These candidates either arise 

based on the reactivation studies in NB cell lines 

or are chosen as they have shown to be involved 

in NB. The candidates are for instance reported 

as being significantly lower expressed in high-risk 

tumors versus low-risk tumors or are important 

in the NB biology. 

In total, about 75 different genes have been 

described as methylated (in varying degrees) in 

NB. These genes can be grouped based on their 

main function (cell cycle control, cell invasion 

and architecture, apoptosis-related genes, etc.). 

An overview of all reported genes and some 

summarizing information (range of methylation 

degree in cell lines and primary samples and 

associations with patient characteristics such as 

age at diagnosis, INSS stage and MYCN 

amplification status) is given in Supplemental 

Table 1. Very detailed information on each of 

these 75 genes, reported as being epigenetically 

modified in NB, is given in the supplements. All 

of these papers discuss DNA methylation; only 
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two papers describe histone modifications 

(PTGER2 and NSD1) as detected by ChIP [1,2]. 

 

Candidate gene case study: apoptosis and 

methylation in neuroblastoma 

 

As a case study to illustrate DNA methylation 

research in NB, the pathway of death receptors 

(DRs), decoy receptors (DcRs) and RASSF1A, and 

their relationship with apoptosis and caspases, is 

chosen and is depicted in Figure 1. Although 

methylation of caspase 8 (CASP8) in NB was first 

described in 2000 [3], only four years later it was 

already considered a key event in the biology of 

NB, next to MYCN amplification and other 

genetic factors [4]. From that first discovery on, 

other researchers soon started to investigate the 

methylation status of CASP8 and other genes 

implied in the apoptotic pathway in their NB 

sample sets. This so called candidate gene 

approach, where a limited number of genes are 

tested for their methylation status based on 

prior evidence, led to the further discovery of 

various methylated genes related to the extrinsic 

and intrinsic apoptotic route. In this perspective, 

methylation of RASSF1A was discovered and 

found to be frequently methylated in NB [5]. 

 

Caspase 8 pathway 

 

In most cases, the apoptotic process is 

characterized by the proteolytic activity of 

caspases. The two main apoptotic pathways in 

which caspase activation occurs, are the intrinsic 

mitochondrial pathway and the extrinsic 

receptor-mediated pathway [6]. 

The extrinsic pathway is initiated by binding of 

extracellular death signals with DRs on the 

surface of the target cells. These DRs belong to 

the tumor necrosis factor receptor (TNFR) 

superfamily and members of this family include 

TNFR1 (DR1, CD120a, p55 or p60), CD95 (DR2, 

APO1 or FASR), DR3 (also TNFRSF25, APO3, 

LARD, TRAMP or WSL1), TRAILR1 (DR4, APO2 or 

TNFRSF10A), TRAILR2 (DR5, KILLER, TRICK2 or 

TNFRSF10B), DR6 (TNFRSF21), ectodysplasin A 

receptor (EDAR) and nerve growth factor 

receptor (NGFR). These receptors are 

characterized by a specific cytoplasmatic domain 

of approximately 80 amino acids, the so called 

death domain (DD). By homotypic interaction, 

this DD recruits specific adaptor proteins 

depending on the type of the stimulated 

receptor. For CD95 for example, FAS-associated 

via death domain (FADD) is recruited. FADD 

carries a death effector domain (DED) which 

associates with the DED of procaspase 8. This 

clustering of proteins results in the formation of 

the death-inducing signaling complex (DISC), 

which leads to activation of procaspase 8. Once 

caspase 8 is activated, the execution phase of 

apoptosis is triggered. 

The intrinsic pathway is induced by cytotoxic 

signals such as DNA damage. These signals cause 

changes in the mitochondrial membrane, leading 

to an opening of the mitochondrial permeability 

transition pore (PTP), loss of the mitochondrial 

transmembrane potential and release of pro-

apoptotic proteins which are normally 

sequestered in the intermembrane space of the 

mitochondria such as cytochrome C. In the 

presence of (deoxy)adenosine triphosphate, the 

cytoplasmic cytochrome C clusters with the 

apoptotic protease activating factor 1 (APAF1). 

This adaptor protein contains a caspase 

recruitment domain (CARD) that allows binding 

with the CARD of procaspase 9. The formed 

apoptosome complex ultimately activates 

caspase 9, which then cleaves other targets. 

The extrinsic and intrinsic apoptotic pathways 

are also interlinked. Caspase 8 for example 

cleaves the BID protein, resulting in truncated 

BID (tBID) which inactivates BCL-2. This protein is 

an anti-apoptotic member of the B cell 

lymphoma 2 family which regulates the 

permeabilization of the mitochondria. Both 

pathways eventually merge into the same 

degrading execution phase. Here, execution 

caspases, such as caspase 3, are activated and 

cleave several cytoskeletal and nuclear proteins 
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Figure 1. Simplified schematic representation of the death receptors, decoy receptors and RASSF1A 
pathways related to apoptosis. Death receptor (DR) stimulation leads to the formation of the death-inducing 
signaling complex (DISC; indicated by the rectangle near the cell membrane). The intrinsic apoptotic pathway is 
characterized by the formation of the apoptosome (indicated by the rectangle near the mitochondrion). The 
genes coding for DcR1, DcR2, DR4, DR5, caspase 8 and RASSF1A are reported to be methylation biomarkers in 
neuroblastoma. APAF1: apoptotic protease activating factor 1; BAX: BCL-2 associated X-protein; BID: BH3 
interacting death domain; CNK1: connector enhancer of kinase suppressor of RAS; CytC: cytochrome C; DcR1: 
decoy receptor 1, TRAILR3, TNFRSF10C or TRID; DcR2: decoy receptor 2, TRAILR4, TNFRSF10D or TRUNDD; DD: 
death domain; DR4: TRAILR1, APO-2 or TNFRSF10A; DR5: TRAILR2, KILLER, TRICK2 or TNFRSF10B; FADD: FAS-
associated via death domain; MOAP-1: modulator of apoptosis-1; MST: mammalian sterile 20 like kinase; NFκβ: 
nuclear factor kappabeta; RASSF1A: RAS association domain family 1 isoform A; tBID: truncated BID; WW45: 
human Salvador homolog. 

 

 

 

 

mitogenic stimuli 

apoptosis 

survival 
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(structural and signaling proteins or kinases) like 

GDID4, PARP, GAS2 and Lamin-A, and thus cause 

apoptosis. 

Death ligands also interact with DcRs such as 

TRAILR3 (DcR1, TNFRSF10C or TRID), TRAILR4 

(DcR2, TNFRSF10D or TRUNDD), DcR3 

(TNFRSF6B, TR6 or M68) and osteoprotegerin 

(OPG). These receptors belong to the TNFR 

superfamily, but completely lack a DD or contain 

a truncated, non-functional DD. They can bind 

the extracellular death signals, but are unable to 

associate with the intercellular signaling 

molecules of apoptosis. They thus counteract 

the DRs. TRAILR3 and TRAILR4 compete with 

DR4 and DR5 for binding of APO2L/TRAIL. DcR3 

competes with CD95 for binding of FASL and 

with DR3 for binding of TL1A. DcR stimulation 

can activate the transcription factor NFκB that 

directs the transcription of anti-apoptotic genes, 

such as C-FLIP, BCL-XL and IAPs, promoting cell 

survival.  

In these pathways, the DRs TRAILR1 and 

TRAILR2, the DcRs TRAILR3 and TRAILR4, CASP8 

and APAF1 are described to be methylated in NB 

cell lines and primary tumors. Thus, DNA 

methylation affects the apoptotic pathways both 

at the receptor and downstream signaling level, 

and thereby inhibits apoptosis. The 

downregulation of the DcRs in NB is a puzzling 

feature, because it renders cancer cells more 

susceptible to TRAIL-induced apoptosis and, 

thus, would counteract tumorigenesis. According 

to van Noesel et al. this could be seen as a 

protective response against tumor formation or 

progression. In this view, TRAILR3 and TRAILR4 

downregulation represents a physiological 

response of the (pre)cancerous cell to a cellular 

state in which a higher level of apoptotic 

sensitivity is warranted [7]. Furthermore, in NB, 

increased levels of the anti-apoptotic BCL-2 and 

BCL-XL have been observed, and correlate with 

decreased apoptosis [8,9] and poor prognostic 

factors like MYCN amplification and unfavorable 

histology [10]. The methylation status of a 

selection of the reported genes is frequently 

described as being associated with prognostic 

factors (stage, survival, age, risk) and is 

described in prognostic methylation biomarker 

signatures. TRAILR2 is only described as being 

methylated in NB cell lines [7]. The fraction of 

NB patients that show methylation in specific 

regions of these genes and the relationship with 

methylation and clinical risk factors is given in 

Table 1. The gene coding for TMS1 (PYCARD), a 

member of a superfamily that mediates 

assembly of large signaling complexes in the 

inflammatory and apoptotic signaling pathways 

via the activation of caspases, is also reported 

methylated in NB and its methylation state is 

associated with MYCN amplification, stage and 

risk [11,12].  

 

RAS association domain family 1 isoform A 

pathway 

 

In addition to CASP8, another frequently 

methylated gene in NB is RASSF1A, a member of 

the RAS association domain family of proteins. 

Due to its interaction with multiple partners, 

RASSF1A influences a diversity of signaling 

pathways. Although this complex signaling 

network complicates unraveling the precise 

functional and biological relevance of RASSF1A, 

it is known to be implicated in the regulation of 

cell proliferation and apoptosis. As RASSF1A is 

characterized by a RAS association domain, one 

of the most obvious interaction partners of 

RASSF1A is the membrane-bound GTPase RAS. 

The interaction probably arises through 

heterodimerization of RASSF1A with RASSF5 

which directly binds activated RAS [23]. RASSF1A 

also interacts with the scaffold protein 

connector enhancer of kinase suppressor of RAS 

(CNK1) and the pro-apoptotic mammalian sterile 

20 like kinase (MST), through which these also 

contribute to the pro-apoptotic signaling 

initiated by activated RAS [24]. The MST kinases 

take part in a pro-apoptotic tumor suppressor 

kinase cascade via coupling with the adaptor 

protein WW45, which is also recruited by 
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Table 1. Methylation of death receptors, decoy receptors and CASP8 in neuroblastoma cell lines, primary and 
relapsed tumors. 

gene samples 
methylation 

clinical features reference 
number % 

CASP8 

cell lines 5/9 56  [7] 

cell lines 8/10 80  [11] 

cell lines 11/12 92  [13] 

primary tumor 24/60 40  [5] 

primary tumor 6/44 14  [14] 

primary tumor 25/41 60  [13] 

primary tumor 39/70 56 survival; signature with TNFRSF10D [15] 

primary tumor 17/45 38 stage [16] 

relapsed tumor 6/17 35  [16] 

primary tumor 20/36 56  [17] 

primary tumor 52/70 74 survival [18] 

primary tumor 10/11 91  [19] 

bone marrow 5/11 55  [19] 

primary tumor  52 
stage; infiltrated bone marrow; risk; 

survival; signature with other apoptotic 
genes 

[12] 

TNFRSF10D 
(DCR2) 

cell lines 6/9 67  [7] 

cell lines 10/10 100  [11] 

cell lines 14/14 100 signature with CASP8 [15] 

primary tumor 7/28 25  [7] 

primary tumor 13/31 42 
MYCN; signature with RASSF1A; SFN and 

TP73 
[20] 

primary tumor 31/70 44 survival [15] 

primary tumor 11/45 25  [16] 

relapsed tumor 5/17 29  [16] 

primary tumor 24/86 28 stage; MYCN; survival [21] 

TNFRSF10C 
(DCR1) 

cell lines 6/9 67  [7] 

cell lines 8/10 80  [11] 

primary tumor 6/28 21  [7] 

primary tumor 5/45 11  [16] 

relapsed tumor 3/17 18  [16] 

primary tumor 6/11 55  [19] 

bone marrow 4/11 36  [19] 

primary tumor  50 stage; age; risk [12] 

TNFRSF10A 
(DR4) 

cell lines 4/9 44  [7] 

cell lines 8/10 80  [11] 

cell lines 11/14 79  [15] 

primary tumor  51  [11] 

primary tumor 6/11 55  [19] 

bone marrow 4/11 36  [19] 

primary tumor  50 stage; age; risk [12] 

TNFRSF10B 
(DR5) 

cell lines 2/9 22  [7] 

APAF1 

primary tumor 6/11 55  [19] 

bone marrow 4/11 46  [19] 

primary tumor  29  [12] 

(continues) 
Note. The number and percentage of samples with methylation reported is given, next to the number of tested 
samples. Associations with clinical risk factors are given when reported significant. 
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Table 1. Methylation of death receptors, decoy receptors and CASP8 in neuroblastoma cell lines, primary and 
relapsed tumors. 

(continued) 

gene samples 
methylation 

clinical features reference 
number % 

PYCARD 
(TMS1) 

cell lines 8/10 80  [11] 

cell lines 13/14 93  [15] 

primary tumor  31 MYCN [11] 

primary tumor 32/70 46  [15] 

primary tumor 3/18 17  [22] 

primary tumor 3/11 27  [19] 

bone marrow 4/11 36  [19] 

primary tumor  25 stage; MYCN; risk [12] 

Note. The number and percentage of samples with methylation reported is given, next to the number of tested 
samples. Associations with clinical risk factors are given when reported significant. 
 

RASSF1A [25]. All these interactions are obvious 

examples that RASSF1A functions as a scaffold 

for assembly of an apoptotic complex. 

Furthermore, RASSF1A is also tightly linked with 

the extrinsic apoptotic pathway. Upon DR 

stimulation RASSF1A binds modulator of 

apoptosis 1 (MOAP1), which enables the 

association of MOAP1 with BAX, and subsequent 

BAX activation leads to permeabilization of the 

outer mitochondrial membrane and apoptosis 

[26]. 

RASSF1A is reported to be methylated in a very 

high fraction of NB patients. Table 2 shows the 

methylation status of RASSF1A in NB samples 

and the association of RASSF1A methylation with 

clinical risk factors. Only about 7 kb upstream of 

RASSF1A, another promoter region frequently 

reported to be methylated in NB is zinc finger, 

myeloid, nervy and DEAF1-type containing 10 

(ZMYND10 (BLU)), which is related to stage, age 

and risk [12,16,27]. 

 

Genome-wide DNA methylation profiling in 

neuroblastoma 

 

The candidate gene approach described in the 

above section is thus based on prior evidence: 

decreased expression in high-risk patients versus 

low-risk patients, reported methylation in other 

cancer types or involvement of the gene in NB 

biology. The number of promoter regions to be 

tested by such an approach is limited (usually 

less than 10-15). In order to identify DNA 

methylation biomarkers that can be used for 

better prognosis prediction, it may be needed to 

perform a whole-genome screening, followed by 

an analysis strategy to prioritize potential DNA 

methylation biomarkers and validation of the 

top-scoring candidates. 

During the last decades, a number of whole-

genome DNA methylation detection 

methodologies have been developed: on one 

hand re-expression analysis after a 

demethylating treatment using DAC, on the 

other hand promoter arrays or sequencing after 

affinity-based capture using MeDIP, and 

methylation-specific microarrays or deep-

sequencing after bisulfite treatment. So far, in 

NB research, whole-epigenome sequencing 

technologies have not been described. 

 

Re-expression experiments after treatment 

with DAC 

 

This pharmacologic unmasking strategy exists of 

expression profiling (using expression 

microarrays) before and after treatment with 

DAC. DAC is a cytosine analogue which cannot 

become methylated by the DNA 

methyltransferases (DNMTs). After several cell 

divisions, this causes a global demethylation of 

the genome. DAC can thus be considered a 

demethylating agent and an inhibitor of the 

DNMTs, which yields comparable results 
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compared to DNMT double knockout models, 

such as the DKO HCT-116 colorectal cancer cell 

line [30]. In addition, some studies use TSA in 

combination with DAC. TSA is an inhibitor of 

HDACs and will thus cause open chromatin 

structures. Genes that are highly re-expressed 

after treatment with DAC and/or TSA 

(reactivated) may be silenced due to DNA 

 

Table 2. Methylation of RASSF1A and ZMYND10 in neuroblastoma cell lines, primary and relapsed tumors, 
and serum. 

gene samples 
methylation 

clinical features reference 
number % 

RASSF1A 

cell lines 10/10 100  [11] 

cell lines 12/12 100  [13] 

primary tumor 37/67 55  [5] 

primary tumor 39/56 70 age; risk; survival [28] 

primary tumor 51/67 76  [5] 

primary tumor 26/31 84 
MYCN; signature with SFN; TP73; 

TNFRSF10D 
[20] 

primary tumor 34/41 83  [13] 

primary tumor 63/70 90  [15] 

primary tumor 42/45 93  [16] 

relapsed tumor 17/17 100  [16] 

primary tumor 29/41 71  [17] 

primary tumor 64/68 94  [29] 

serum 17/68 25 stage; MYCN [29] 

primary tumor 11/11 100  [19] 

bone marrow 8/11 73  [19] 

primary tumor  75 
stage; 1p deletion; infiltrated in bone 

marrow 
[12] 

ZMYND10 

cell lines 6/7 86  [27] 

cell lines 7/11 66  [13] 

cell lines 7/10 70  [11] 

cell lines 13/14 93  [15] 

primary tumor 20/49 41 stage [27] 

primary tumor 25/67 37  [7] 

primary tumor 3/35 8  [13] 

primary tumor 38/70 54  [15] 

primary tumor 15/45 34 stage [16] 

relapsed tumor 4/17 24  [16] 

primary tumor 6/40 15  [17] 

primary tumor 8/11 73  [19] 

bone marrow 10/11 91  [19] 

primary tumor  35 age; risk [12] 

Note. The number and percentage of samples with methylation reported is given, next to the number of tested 
samples. Associations with clinical risk factors are given when reported significant. 
 

methylation/histone modifications. This 

approach can only be applied on cell lines as 

demethylation occurs after several cell divisions. 

In NB, treatment with DAC and/or TSA is applied 

in more than half of the papers (over 30) 

describing epigenetics. However, only four 

publications perform a genome-wide expression 

study after a pharmacologic unmasking 

screening strategy [28,31,32,34]. In all four 

publications, this led to the discovery of 

previously undescribed DNA methylation 

biomarkers in NB. In all other research papers, 

reactivation is shown by (quantitative) PCR for a 

limited set of genes of interest, in order to 

demonstrate the link between DNA methylation 

and transcriptional silencing in NB cell lines. 
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MeDIP chip 

 

While the treatment with DAC and/or TSA leads 

to re-expression, this strategy is an indirect 

method to detect DNA methylation as the 

influence of the demethylating effect is 

measured at the transcriptional level. The last 

years, genome-wide detection techniques have 

been developed that are able to directly 

measure DNA methylation without the detour 

around (silenced) expression. 

One of these techniques is the use of the 5-

methylcytosine antibody (MeDIP) and combining 

this methylation-enriching immunoprecipitation 

with microarrays (MeDIP chip; tiling arrays or 

focused arrays such as promoter regions or CpG 

islands). This strategy is used by Murphy et al. 

[33] where the authors demonstrate that a large 

portion of methylated genes indeed shows 

reduced expression. In addition, the authors 

performed a ChIP experiment using MYCN and 

were able to define specific regions where 

MYCN-binding and DNA hypermethylation 

colocalize. 

 

Methylation-specific arrays 

 

Next to affinity-based methodologies to detect 

DNA methylation, bisulfite conversion has been 

used in all gold standard techniques such as 

methylation-specific PCR (MSP) and bisulfite 

sequencing. A frequently used high-throughput 

platform, making use of different probe types for 

methylated versus unmethylated bisulfite-

treated DNA is the Illumina Infinium 

HumanMethylation27 BeadChip. This technique 

with over 27,000 methylation-specific probes 

has recently been applied on NB primary 

samples [34] and has led to the identification of 

several novel methylation biomarkers that show 

potential for prognostic use. 

 

Next-generation sequencing techniques 

 

All three earlier described detection principles 

are also used in combination with next-

generation sequencing platforms (such as Roche 

454 and Illumina GAIIx) to detect DNA 

methylation in a genome-wide way. The 

complete honey bee and Arabidopsis thaliana 

methylomes have been determined by bisulfite 

sequencing [35,36]. As this technique would not 

be cost-efficient for larger genomes such as 

humans, one needs to decrease the fraction of 

the genome to be covered by sequencing. In 

order to enrich this limited library that is 

sequenced, restriction enzymes were used, 

making sure the retained fractions (based on 

sizing) cover the most dense CpG islands or 

regions, followed by deep bisulfite sequencing. 

Another methodology is to make use of the high 

affinity towards methylated cytosines of MBD-

containing proteins such as MBD2 and MeCP2 

[37,38] or by applying MeDIP [39], followed by 

(paired-end) sequencing.  

Some research groups, including our group, are 

at this moment in the process of using 

sequencing techniques to determine the 

methylome and/or to detect histone 

modifications in NB samples (cell lines and 

primary patients). The first results indicate the 

potential of epigenetic sequencing techniques: 

at a feasible cost, it becomes feasible to 

investigate the methylome or epigenome of a 

sample in great detail. Their findings will reveal 

the complexity of the epigenetic changes during 

development and progression of NB and 

eventually would allow assessment of the effect 

on the epigenome of diverse treatments, and 

which patients would be eligible for which type 

of treatment (prediction and personalized 

medicine). 

 

Epigenetics and neuroblastoma prognosis 

 

Despite advances in multimodal anticancer 

therapies, survival rates for children with NB 

remain disappointingly low. Although current 

risk assessment schemes have been significantly 

approved, inevitably undertreatment or 
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overtreatment will still occur for certain 

children. As a consequence, survival rates are 

suboptimal in the low-risk group, and a number 

of patients in the so-called high-risk group are 

unnecessarily put at risk for potential long term 

side effects of the toxic therapy. Clearly, a more 

objective and accurate classifier is needed for 

improved outcome prediction. Only then, 

 

Table 3. Overview of studies discussing DNA methylation biomarkers and their relationship with prognostic 
risk factors and survival. 

methylation biomarker 
(signature) 

risk factors survival 
reference 

age stage MYCN risk other overall 
event-

free 

RASSF1A        [40] 

TNFRSF10D        [21] 

HOXA9/RARB        [11] 

PCDHA/PCDHB/HLP/CYP26C1     
ploidy 
TrKA 

  [41] 

CASP8        [18] 

RASSF1A, SFN, TP73, 
TNFRSF10D 

       [20] 

EMP3        [42] 

PYCARD, MGMT, RARB        [19] 

CASP8, TNFRSF10D        [15] 

CASP8, ZMYND10        [16] 

NR1I2        [43] 

SFN, RASSF1A, CYP26C1, 
TNFRSF10D 

       [44] 

RASSF1A        [29] 

SCNN1A, PRKCDBP, KRT19        [34] 

apoptotic genes, such as 
TMS1, APAF1 and CASP8 

       [12] 

Note. Overall survival or event-free survival may be disease-free, relapse-free or progression-free. Only 
significant associations are reported (p-values according to the original publication). 
 

patients will receive the most appropriate 

therapy, can be monitored more intensively if 

needed, and become eligible for new 

experimental therapies. 

As briefly demonstrated in the death receptor 

pathway and for RASSF1A, several methylation 

biomarkers in NB are described to be associated 

with classical risk factors: MYCN amplification; 

age at diagnosis and stage. Several publications 

describe the use of (a combination of) DNA 

methylation biomarkers to show the effect of 

methylation on disease-free survival or overall 

survival. The power and potential of DNA 

methylation as non-invasive biomarkers is 

demonstrated by measuring DNA methylation of 

RASSF1A in serum of patients [40]. DNA 

methylation-based prognosis has the potential 

to be non-invasive, highly sensitive and specific. 

It can be detected using standard PCR or 

sequencing technologies. 

In many studies, the genes discussed in previous 

sections are used for prognostic purposes. 

However, more recently genome-wide screening 

methodologies are becoming more popular and 

feasible (re-expression analysis after treatment 

with DAC, promoter chips after capturing with 

MeDIP, methylation microarrays). This revealed 

a broader view on the NB methylome and 

allowed the identification of DNA methylation 

signatures that can be used for prognostic 

purposes. Table 3 lists all studies where the DNA 

methylation state demonstrates prognostic 

potential. The association with classical risk 

factors is indicated if significant, as well as the 

impact on survival. It can be noticed that, next to 

candidate genes previously described such as 
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CASP8 and RASSF1A, several novel methylation 

biomarkers that are related to prognosis, are 

described. 

 

Discussion and future perspectives 

 

As in other cancer types, it clearly has been 

shown that NB is a disease that is regulated by 

epigenetic mechanisms. Candidate gene 

approaches led to the discovery that frequently 

methylated regions in NB can be found in 

pathways related to apoptosis. Classical tumor 

suppressor genes do not show such a clear 

methylation signal in NB. 

Current technologies have the possibility to 

investigate the epigenetic changes in a genome-

wide way, and integrating these data with other 

data sources, such as mRNA and miRNA 

expression profiles and proteome data, would 

reveal the (epi)genomic landscape of NB. Such 

multidimensional and cross-species integrated 

information will be exploited using high-end 

bioinformatic tools and systems biology 

approaches in order to unravel the various 

implicated perturbed signaling pathways, 

complex interactions and cross-talk between 

critical nodes within these networks. 

Understanding such regulatory networks at play 

and in particular possible compensatory 

interactions may also be crucial for developing 

appropriate therapeutic strategies and to 

anticipate to and design strategies against new 

forms of therapy resistance. 

 

Supplemental materials  

 

Supplemental materials can be found at: 

www.tandfonline.com/doi/suppl/10.4161/epi.6.

8.16516?scroll=top  

 

Supplemental Table 1. DNA methylation in 

neuroblastoma cell lines and primary tumors. 

For each gene reported to be methylated in NB, 

the percentage of methylated samples is given 

(according to the original references) and 

associations with clinical risk factors are 

described. Below the table, detailed information 

(gene function and general information, features 

of the promoter region, and information related 

to DNA methylation analyses) on each of these 

genes can be found.  

 

Acknowledgments 

 

This study was supported by the Emmanuel Van 

der Schueren Foundation (scientific partner of 

the Flemish League Against Cancer (VLK)) and by 

the Fournier-Majoie Foundation (FFM).  

 

References 

 

[1] Berdasco M et al. (2009). Epigenetic 
inactivation of the Sotos overgrowth 
syndrome gene histone methyltransferase 
NSD1 in human neuroblastoma and glioma. 
Proceedings of the National Academy of 
Sciences of the USA; 106(51):21830-21835. 

[2] Sugino Y et al. (2007). Epigenetic silencing of 
prostaglandin E receptor 2 (PTGER2) is 
associated with progression of 
neuroblastomas. Oncogene; 26(53):7401-
7413. 

[3] Teitz T et al. (2000). Caspase 8 is deleted or 
silenced preferentially in childhood 
neuroblastomas with amplification of MYCN. 
Nature Medicine; 6(5):529-535. 

[4] van Noesel MM et al. (2004). Pediatric 
neuroblastomas: genetic and epigenetic 
“danse macabre.” Gene; 325:1-15. 

[5] Astuti D et al. (2001). RASSF1A promoter 
region CpG island hypermethylation in 
phaeochromo-cytomas and neuroblastoma 
tumours. Oncogene; 20(51):7573-7577. 

[6] Elmore S (2007). Apoptosis: a review of 
programmed cell death. Toxicologic Pathology; 
35(4):495-516. 

[7] van Noesel MM et al. (2002). Tumor-specific 
downregulation of the tumor necrosis factor-
related apoptosis-inducing ligand decoy 
receptors DcR1 and DcR2 is associated with 
dense promoter hypermethylation. Cancer 
Research; 62(7):2157-2161. 

[8] Ikegaki N et al. (1995). Relationship between 
bcl-2 and myc gene expression in human 
neuroblastoma. Cancer Letters; 91(2):161-168. 

[9] Ikeda H et al. (1995). Bcl-2 oncoprotein 
expression and apoptosis in neuroblastoma. 
Journal of Pediatric Surgery; 30(6):805-808. 



 introduction 

- 54 - 
 

[10] Castle VP et al. (1993) Expression of the 
apoptosis-suppressing protein bcl-2, in 
neuroblastoma is associated with unfavorable 
histology and N-myc amplification. American 
Journal of Pathology; 143(6):1543-1550. 

[11] Alaminos M et al. (2004). Clustering of gene 
hypermethylation associated with clinical risk 
groups in neuroblastoma. Journal of the 
National Cancer Institute; 96(16):1208-1219. 

[12] Grau E et al. (2010). Hypermethylation of 
apoptotic genes as independent prognostic 
factor in neuroblastoma disease. Molecular 
Carcinogenesis; 50(3):153-162. 

[13] Lazcoz P et al. (2006). Frequent promoter 
hypermethylation of RASSF1A and CASP8 in 
neuroblastoma. BMC Cancer; 6:254. 

[14] Gonzalez-Gomez P et al. (2003). Aberrant 
methylation of multiple genes in neuroblastic 
tumours relationship with MYCN amplification 
and allelic status at 1p. European Journal of 
Cancer; 39(10):1478-1485. 

[15] Yang Q et al. (2007). Methylation of CASP8, 
DCR2 and HIN-1 in neuroblastoma is 
associated with poor outcome. Clinical Cancer 
Research; 13(11):3191-3197. 

[16] Michalowski MB et al. (2008). Methylation of 
tumor-suppressor genes in neuroblastoma: 
The RASSF1A gene is almost always 
methylated in primary tumors. Pediatric Blood 
and Cancer; 50(1):29-32. 

[17] Hoebeeck J et al. (2009). Aberrant methylation 
of candidate tumor suppressor genes in 
neuroblastoma. Cancer Letters; 273(2):336-
346. 

[18] Kamimatsuse A et al. (2009). Detection of CpG 
island hypermethylation of caspase-8 in 
neuroblastoma using an oligonucleotide array. 
Pediatric Blood and Cancer; 52(7):777-783.  

[19] Grau E et al. (2010) Epigenetic alterations in 
dissemi-nated neuroblastoma tumour cells: 
influence of TMS1 gene hypermethylation in 
relapse risk in NB patients. Journal of Cancer 
Research and Clinical Oncology; 136(9):1415-
1421. 

[20] Banelli B et al. (2005). Distinct CpG 
methylation profiles characterize different 
clinical groups of neuroblastic tumors. 
Oncogene; 24(36):5619-5628. 

[21] Yagyu S et al. (2008). Circulating methylated-
DCR2 gene in serum as an indicator of 
prognosis and therapeutic efficacy in patients 
with MYCN nonamplified neuroblastoma. 
Clinical Cancer Research; 14(21):7011-7019. 

[22] Shahi MH et al. (2010). Expression and 
epigenetic modulation of sonic hedgehog-GLI1 
pathway genes in neuroblastoma cell lines and 
tumors. Tumour Biology; 32(1):113-127. 

[23] Ortiz-Vega S et al. (2002). The putative tumor 
suppressor RASSF1A homodimerizes and 
heterodimerizes with the Ras-GTP binding 
protein Nore1. Oncogene; 21(9):1381-1390. 

[24] Rabizadeh S et al. (2004). The scaffold protein 
CNK1 interacts with the tumor suppressor 
RASSF1A and augments RASSF1A-induced cell 
death. Journal of Biological Chemistry; 
279(28):29247-29254. 

[25] Guo C et al. (2007). RASSF1A is part of a 
complex similar to the Drosophila 
Hippo/Salvador/Lats tumor-suppressor 
network. Current Biology; 17(8):700-705. 

[26] Baksh S et al. (2005). The tumor suppressor 
RASSF1A and MAP-1 link death receptor 
signaling to Bax conformational change and 
cell death. Molecular Cell; 18(6):637-650. 

[27] Agathanggelou A et al. (2003). Epigenetic 
inactivation of the candidate 3p21.3 
suppressor gene BLU in human cancers. 
Oncogene; 22(10):1580-1588. 

[28] Yang Q et al. (2004). Methylation-associated 
silencing of the heat shock protein 47 gene in 
human neuroblastoma. Cancer Research; 
64(13):4531-4538. 

[29] Misawa A et al. (2009). RASSF1A 
hypermethylation in pretreatment serum DNA 
of neuroblastoma patients: a prognostic 
marker. British Journal of Cancer; 100(2):399-
404. 

[30] Schuebel KE et al. (2007). Comparing the DNA 
hypermethylome with gene mutations in 
human colorectal cancer. PLoS Genetics; 
3(9):1709-1723. 

[31] Margetts CDE et al. (2008). Evaluation of a 
functional epigenetic approach to identify 
promoter region methylation in 
phaeochromocytoma and neuroblastoma. 
Endocrine-related Cancer; 15(3):777-786. 

[32] Buckley PG et al. (2010). Genome-wide DNA 
methylation analysis of neuroblastic tumors 
reveals clinically relevant epigenetic events 
and large-scale epigenomic alterations 
localized to telomeric regions. International 
Journal of Cancer; 128(10):2296-2305. 

[33] Murphy DM et al. (2009). Global MYCN 
transcription factor binding analysis in 
neuroblastoma reveals association with 
distinct E-box motifs and regions of DNA 
hypermethylation. PloS One; 4(12):e8154. 

[34] Caren H et al. (2011). Identification of 
epigenetically regulated genes that predict 
patient outcome in neuroblastoma. BMC 
Cancer; 11:66. 

[35] Lyko F et al. (2010). The honey bee 
epigenomes: differential methylation of brain 
DNA in queens and workers. PLoS Biology; 



 introduction 

- 55 - 
 

8(11):e1000506. 
[36] Cokus SJ et al. (2008). Shotgun bisulphite 

sequencing of the Arabidopsis genome reveals 
DNA methylation patterning. Nature; 
452(7184):215-219. 

[37] Serre D et al. (2010). MBD-isolated Genome 
Sequencing provides a high-throughput and 
comprehensive survey of DNA methylation in 
the human genome. Nucleic Acids Research; 
38(2):391-399. 

[38] Rauch T et al. (2006). MIRA-assisted 
microarray analysis, a new technology for the 
determination of DNA methylation patterns, 
identifies frequent methylation of 
homeodomain-containing genes in lung cancer 
cells. Cancer Research; 66(16):7939-7947. 

[39] Ruike Y et al. (2010). Genome-wide analysis of 
aberrant methylation in human breast cancer 
cells using methyl-DNA immunoprecipitation 
combined with high-throughput sequencing. 
BMC genomics; 11:137. 

[40] Yang Q et al. (2004). Association of epigenetic 
inactivation of RASSF1A with poor outcome in 
human neuroblastoma. Clinical Cancer 

Research; 10(24):8493-8500. 
[41] Abe M et al. (2005). CpG island methylator 

phenotype is a strong determinant of poor 
prognosis in neuroblastomas. Cancer 
Research; 65(3):828-834. 

[42] Alaminos M et al. (2005). EMP3, a myelin-
related gene located in the critical 19q13.3 
region, is epigenetically silenced and exhibits 
features of a candidate tumor suppressor in 
glioma and neuroblastoma. Cancer Research; 
65(7):2565-2571. 

[43] Misawa A et al. (2005). Methylation-associated 
silencing of the nuclear receptor 1I2 gene in 
advanced-type neuroblastomas, identified by 
bacterial artificial chromosome array-based 
methylated CpG island amplification. Cancer 
Research; 65(22):10233-10242. 

[44] Banelli B et al. (2010). Outcome prediction and 
risk assessment by quantitative 
pyrosequencing methylation analysis of the 
SFN gene in advanced stage, high-risk, 
neuroblastic tumor patients. International 
Journal of Cancer; 126(3):656-668. 



  

 
 

  



 introduction 

- 57 - 
 

 Established prognostic markers are combined into a pretreatment risk classification system 1.2.4

 

Combinations of prognostic variables are used for risk group assignment and treatment stratification. 

Given the rare occurrence of NB, cooperative pediatric oncology groups have been established in the 

past to be able to conduct large-scale analyses and in this way to fully optimize the stratification 

procedures. These include both national and international groups, such as the Children’s Oncology 

Group (COG; North America and Australia), the German Pediatric Oncology and Hematology Group 

(GPOH), the Japanese Advanced Neuroblastoma Study Group (JANB), the Japanese Infantile 

Neuroblastoma Co-operative Study Group (JINCS) and the International Society of Pediatric Oncology 

Europe Neuroblastoma Group (SIOPEN). However, these cooperative groups initially selected 

different prognostic factors to tailor stratification, still complicating comparison of clinical trials 

performed throughout the world. In 2004, a task force of investigators from these cooperative 

groups, the so-called International Neuroblastoma Risk Group (INRG) Task Force, was set up to 

develop a consensus approach for pretreatment risk stratification of NB [154]. This effort led to the 

construction of the INRG classification system, next to the INRG Staging System (INRGSS; §1.2.1.3) 

and recommendation reports on the detection and evaluation of disseminated disease [143, 154, 

188, 197, 225]. 

 

In total, the statistical and clinical significance of 13 potential prognostic factors were analyzed in a 

cohort of 8,800 patients, and using survival tree regression analysis (Figure 13) the INRG classification 

system was built. Currently, this system includes seven criteria (the INRG stage (INRGSS), age of the 

patient at diagnosis, histologic category, grade of tumor differentiation, MYCN amplification status, 

presence/absence of 11q aberrations and tumor cell ploidy) to stratify patients into sixteen 

pretreatment risk groups (lettered A through R; Table 7). Based on arbitrary cutoffs on the EFS data 

in the survival tree regression analysis, these pretreatment risk groups were further clustered into 

four categories: very low-risk (5-year EFS > 85%), low-risk (5-year EFS > 75 to ≤ 85%), intermediate-

risk (5-year EFS ≥ 50 to ≤ 75%) and high-risk (5-year EFS < 50%). The proportion of patients grouped 

in these categories was 28.2%, 26.8%, 9.0% and 36.1%, respectively [154]. Of note, the survival tree 

regression analysis was performed using the INSS stage (§1.2.1.3), as the sample size of patients with 

known surgical risk factors (IDRFs that define INRGSS; §1.2.1.3) was too small relative to patients 

with known INSS stage [143]. However, the INSS stage is not suitable for pretreatment risk 

classification. For that reason, also posthoc analyses using the INRGSS were performed, which found 

both INSS stage and INRGSS highly prognostic of survival. This supports the translation of the survival 

tree regression analysis (in terms of INSS stage) into the INRG classification system (in terms of 

INRGSS) [143, 154]. To test the predictive ability of age, a consensus cutoff of 18 months was 

selected based on previous findings (§1.2.1.1). For patients with diploid, MYCN non-amplified stage 

M tumors, clinical justification was used to split patients younger than 12 months from 12 months 

and older to younger than 18 months of age [154]. 

 

Although the INRG Task Force recognized that genome-wide studies had identified powerful 

predictors of outcome, only MYCN amplification, chromosome 11q aberration and DNA ploidy status 

were included in the INRG pretreatment risk stratification, as microarray analyses of DNA copy 

number alterations and gene expression were not widely available at the time the classification was 

established. It is anticipated that the next-generation INRG classification system will incorporate 

profiles of the NB genome, transcriptome and epigenome to further improve prognostication [226]. 



 introduction 

- 58 - 
 

Table 7. Using the International Neuroblastoma Risk Group (INRG) consensus pretreatment classification, 
neuroblastoma patients are stratified into risk groups. 

INRG 
stage 

age 
(months) 

histologic 
category 

grade of tumor 
differentiation 

MYCN 
11q 

aberration 
ploidy 

pretreatment 
risk group 

L1/L2 
 

GN maturing; 
GNB 

intermixed 
    

A very low 

L1 
 

any, except 
GN maturing 

or GNB 
intermixed 

 

MYCN0 
  

B very low 

MYCN1 
  

K high 

L2 

< 18 

any, except 
GN maturing 

or GNB 
intermixed 

 
MYCN0 

no 
 

D low 

yes 
 

G intermediate 

≥ 18 
GNB nodular; 

NB 

differentiating MYCN0 

no 
 

E low 

yes 

 
H intermediate poorly 

differentiated or 
undifferentiated 

MYCN0 
 

 
MYCN1 

  
N high 

M 

< 18 
  

MYCN0 
 

hyper-
diploid 

F low 

< 12 
  

MYCN0 
 

diploid I intermediate 

12 to < 18 
  

MYCN0 
 

diploid J intermediate 

< 18 
  

MYCN1 
  

O high 

≥ 18 
     

P high 

MS < 18 
  

MYCN0 

no 
 

C very low 

yes 
 

Q high 

MYCN1 
  

R high 

Note. For INRG stage, see Table 6. 12 months: 365 days; 18 months: 547 days; blank field: any; diploid: DNA 
index ≤ 1.0; hyperdiploid: DNA index > 1.0 and includes near-triploid and near-tetraploid tumors; EFS: event-
free survival; GN: ganglioneuroma; GNB: ganglioneuroblastoma; MYCN1: MYCN amplified; MYCN0: MYCN non-
amplified; NB: neuroblastoma [154]. 



   

 
 

 
(continues) 

Figure 13. Using cutoffs on the event-free survival data in the survival tree regression analysis of the International Neuroblastoma Risk Group (INRG) cohort, four 
pretreatment risk group categories were determined: very low-risk, low-risk, intermediate-risk and high-risk. A split occurs for the most highly statistically significant 
factor as identified using a Cox proportional hazards regression model. A. Top levels of the overall tree. B. Subtree for NB and GNB-nodular, non-stage 4 MYCN0 patients. 
The split of stage 2, 3 from stage 4S patients was a clinical decision and not the result of statistical significance. EFS: 5-year event-free survival; GN: ganglioneuroma; GNB: 
ganglioneuroblastoma; INSS: International Neuroblastoma Staging System; MYCN0: MYCN non-amplified; MYCN1: MYCN amplified; NB: neuroblastoma; OS: overall survival. 
Based on [154].  

overall 
(n = 8800) 

EFS 63% ± 1% 
OS 70% ± 1% 

INSS stage 1, 2, 3, 4S 
(n = 5131) 

EFS 83% ± 1% 
OS 91% ± 1% 

INSS stage 4 
(n = 3425) 

EFS 35% ± 1% 
OS 42% ± 1% 

GN maturing;  
GNB intermixed 

(n = 162) 
EFS 97% ± 2% 
OS 98% ± 2% 

NB and GNB, nodular  
(n = 4970) 

EFS 83% ± 1% 
OS 90% ± 1% 

MYCN0 
(n = 3926) 

EFS 87% ± 1% 
OS 95% ± 1% 

MYCN1 
(n = 349) 

EFS 46% ± 4% 
OS 53% ± 4% 

MYCN0 
(n = 3926) 

EFS 87% ± 1% 
OS 95% ± 1% 

11q normal  
and diff-ing 

(n = 18) 
EFS 80% ± 16% 

OS 100% 

stage 2, 3 
(n = 1889) 

EFS 82% ± 1% 
OS 92% ± 1% 

1p normal 
(n = 457) 

EFS 94% ± 2% 
OS 99% ± 1% 

age < 547 days 
(n = 732) 

EFS 88% ± 1% 
OS 97% ± 1% 

age ≥ 547 days 
(n = 260) 

EFS 69% ± 3% 
OS 81% ± 2% 

11q normal 
(n = 62) 

EFS 87% ± 7% 
OS 97% ± 4% 

1p aberration 
(n = 38) 

EFS 78% ± 10% 
OS 100% 

11q aberration 
(n = 19) 

EFS 60% ± 20% 
OS 84% ± 14% 

11q aberration  
or p/u diff 

(n = 49) 
EFS 61% ± 11% 
OS 73% ± 11% 

11q normal 
(n = 176) 

EFS 83% ± 5% 
OS 98% ± 2% 

11q aberration 
(n = 8) 

EFS 38% ± 30% 
OS 63% ± 38% 

stage 1 
(n = 1556) 

EFS 93% ± 1% 
OS 98% ± 1% 

stage 4S 
(n = 481) 

EFS 82% ± 2% 
OS 91% ± 2% 

EFS 

intermediate risk 

high-risk 

low-risk 

very low-risk 

A. B. 
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Figure 13. Using cutoffs on the event-free survival data in the survival tree regression analysis of the International Neuroblastoma Risk Group (INRG) cohort, four 
pretreatment risk group categories were determined: very low-risk, low-risk, intermediate-risk and high-risk. A split occurs for the most highly statistically significant 
factor as identified using a Cox proportional hazards regression model. C. Subtree for NB and GNB-nodular, non-stage 4 MYCN1 patients. The split of stage 1 from stage 2, 3, 
4S patients was a clinical decision and not the result of statistical significance. LDH in U/l. D. Subtree for INSS stage 4 patients. The split of age 0 - < 365 days from age 365 - 
< 547 days was a clinical decision and not the result of statistical significance. Ferritin in ng/ml. DI: DNA index; EFS: 5-year event-free survival; LDH: lactate dehydrogenase; 
MYCN0: MYCN non-amplified; MYCN1: MYCN amplified; OS: overall survival. Based on [154]. 
  

MYCN1 
(n = 349) 

EFS 46% ± 4% 
OS 53% ± 4% 

stage 2, 3, 4S 
(n = 302) 

EFS 46% ± 4% 
OS 50% ± 4% 

LDH < 587 
(n = 44) 

EFS 67% ± 9% 
OS 72% ± 8% 

LDH ≥ 587 
(n = 10) 

EFS 40% ± 22% 
OS 58% ± 22% 

LDH ≥ 587 
(n = 169) 

EFS 43% ± 5% 
OS 47% ± 5% 

stage 4 
(n = 3425) 

EFS 35% ± 1% 
OS 42% ± 1% 

age < 547 days 
(n = 1019) 

EFS 63% ± 2% 
OS 68% ± 2% 

EFS 

intermediate-risk 

high-risk 

low-risk 

very low-risk 

C. D. 

stage 1 
(n = 47) 

EFS 49% ± 12% 
OS 75% ± 9% 

LDH < 587 
(n = 22) 

EFS 55% ± 15% 
OS 85% ± 10% 

MYCN0 
(n = 149) 

EFS 48% ± 5% 
OS 53% ± 5% 

MYCN0 
(n = 596) 

EFS 83% ± 2% 
OS 89% ± 2% 

MYCN1 
(n = 241) 

EFS 26% ± 4% 
OS 29% ± 4% 

ferritin < 92 
(n = 250) 

EFS 43% ± 4% 
OS 47% ± 4% 

ferritin ≥ 92 
(n = 1005) 

EFS 20% ± 2% 
OS 27% ± 2% 

DI > 1 
(n = 254) 

EFS 85% ± 3% 
OS 93% ± 2% 

age 365 -  
< 547 days 

(n = 14) 
EFS 75% ± 17% 
OS 82% ± 16% 

MYCN1 
(n = 43) 

EFS 28% ± 9% 
OS 27% ± 9% 

DI ≤ 1 
(n = 73) 

EFS 71% ± 10% 
OS 79% ± 9% 

MYCN0 
(n = 513) 

EFS 21% ± 2% 
OS 30% ± 2% 

age 0 -  
< 365 days 

(n = 59) 
EFS 71% ± 12% 
OS 80% ± 10% 

MYCN1 
(n = 232) 

EFS 19% ± 3% 
OS 22% ± 3% 

age ≥ 547 days 
(n = 2406) 

EFS 23% ± 1% 
OS 31% ± 1% 
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Unfortunately, the quest for prognostic NB markers has not yet come to an end, as accurate outcome 

prediction of patients remains challenging (§1.2.4). During the past years, the Center for Medical 

Genetics Ghent, which acts as the Belgian reference center for the genetic diagnosis and study of NB, 

has set up several projects to establish additional RNA- and DNA-based biomarkers, based on the 

study of copy number changes, and mRNA and miRNA tumor levels [211, 222, 224, 227]. In this 

setting, I have explored DNA methylation as an alternative target of prognostic biomarker research in 

NB.  

 
Up until a few years ago, the NB tumor DNA methylome was relatively unexplored and few 

prognostic DNA methylation biomarkers were described, as thus far most studies were candidate 

gene-based (§review paper; §1.2.3; [228]). Therefore, I started genome-wide screening efforts using 

methyl-CpG-binding domain (MBD) sequencing (§1.1.4.3) to identify new biomarkers.  

 
In a first discovery phase, the MBD sequencing workflow was optimized on 8 NB cell lines, whereby 

through data integration with mRNA expression, candidate biomarkers were selected. To evaluate 

these candidates, a high-throughput semi-automated methylation-specific PCR (MSP) pipeline was 

developed and used to test 43 biomarker MSP assays on an independent cohort of 89 primary 

tumors selected for risk classification and survival. This successfully led to the identification of 

putative prognostic methylation biomarkers (§paper 1; [229]). 

 
Subsequently, I set up a more extensive discovery by mapping the DNA methylome of 87 primary NB 

tumors using MBD sequencing. Differential methylation analyses between prognostic patient groups 

were applied to prioritize new candidate biomarkers. In total, 78 MSP assays were designed for top-

ranking differentially methylated regions and tested on two independent cohorts of 132 and 177 

primary tumors, respectively. Further, a new statistical framework was developed to identify a robust 

set of MSP assays of which the percentage of methylated assays allows accurate outcome prediction. 

As such, multiple prognostic single-gene methylation biomarkers were identified and validated, as 

well as a prognostic 58-marker methylation signature, predicting overall and event-free survival. This 

study encompasses the largest DNA methylation biomarker study in NB so far (§paper 2; [230] and 

§paper 3; [110]). 

 
Along with the 87 primary tumors (stage 1, 2, 3 and 4) of our biomarker validation study, also 15 

stage 4S tumors were profiled by MBD sequencing, creating DNA methylation maps of 102 

heterogeneous primary NB tumors. This unique resource of methylation information was shared with 

the NB research community through an open access data descriptor, making the MBD sequencing 

data easily reusable (§paper 3; [110]).  

 
Finally, I characterized the promoter DNA methylation portrait of stage 4S NB (§1.2.1.3), by 

performing differential methylation analyses between MYCN non-amplified stage 4S, stage 4 and 

stage 1/2 tumors, using the MBD sequencing data of 41 primary tumors. I showed that specific 

chromosomal locations are enriched for stage 4S differentially methylated promoters and that stage 

4S tumors show characteristic hypermethylation of specific subtelomeric promoters. Additionally, 

our MBD sequencing data illustrated that important oncogenic pathways, neural crest development 

and differentiation, and epigenetic processes are differentially regulated in stage 4S tumors. These 

findings open new avenues for further research, to gain more insights in the NB pathology in general 

and stage 4S specifically (§paper 4; [231]). 
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Anneleen Decock*1, Maté Ongenaert*1, Jasmien Hoebeeck1,2, Katleen De Preter1, Gert Van Peer1, 

Wim Van Criekinge3,4,5, Ruth Ladenstein6, Johannes H Schulte7, Rosa Noguera8, Raymond L 

Stallings9,10, An Van Damme11, Geneviève Laureys12, Joëlle Vermeulen13, Tom Van Maerken1,14, 

Frank Speleman1 and Jo Vandesompele1 

 

*Contributed equally. Correspondence to joke.vandesompele@ugent.be. 
1Center for Medical Genetics, Ghent University Hospital, Medical Research Building, De Pintelaan 185, 

Ghent, Belgium. 2Faculty of Education, Health and Social Work, University College Ghent, Ghent, 

Belgium. 3Department of Mathematical Modelling, Statistics and Bio-informatics, Ghent University, 

Coupure Links 653, Ghent, Belgium. 4MDxHealth, Tour 5 GIGA, Avenue de l’Hôpital 11, Liège, Belgium. 
5NXTGNT, Ghent University, De Pintelaan 185, Ghent, Belgium. 6Children’s Cancer Research Institute, 

St Anna Kinderkrebsforschug, Zimmermannplatz 10, Vienna, Austria. 7University Children’s Hospital 

Essen, Hufelandstraße 55, Essen, Germany. 8Department of Pathology, Medical School, University of 

Valencia, Blasco Ibañez 17, Valencia, Spain. 9National Children’s Research Centre, Our Lady’s 

Children’s Hospital, Crumlin, Dublin 12, Ireland. 10Department of Molecular and Cellular Therapeutics, 

Royal College of Surgeons in Ireland, York House, York Street, Dublin 2, Ireland. 11Department of 

Pediatrics, Brussels University Hospital, Laarbeeklaan 101, Brussels, Belgium. 12Department of 

Pediatric Hematology and Oncology, Ghent University Hospital, De Pintelaan 185, Ghent, Belgium. 
13Pédiatrie, Hôpital de Jolimont, Rue Ferrer 159, La Louvière (Haine-Saint-Paul), Belgium. 
14Department of Clinical Chemistry, Microbiology and Immunology, Ghent University Hospital, De 

Pintelaan 185, Ghent, Belgium. 

 

Contribution of AD: In a joint effort, AD drafted the manuscript and took part in data generation and 

analysis, including collecting and preparing samples for the high-throughput methylation-specific 

PCR, testing the candidate biomarkers, performing MSP analyses (testing associations between 

biomarker methylation and NB risk factors and survival analyses), and analyzing the mRNA 

expression data.  

 

Abstract 

 

Accurate outcome prediction in neuroblastoma, which is necessary to enable the optimal choice of 

risk-related therapy, remains a challenge. To improve neuroblastoma patient stratification, this study 

aimed to identify prognostic tumor DNA methylation biomarkers. To identify genes silenced by 

promoter methylation, we first applied two independent genome-wide methylation screening 

methodologies to eight neuroblastoma cell lines. Specifically, we used re-expression profiling upon 5-

aza-2’-deoxycytidine (DAC) treatment and massively parallel sequencing after capturing with a 

methyl-CpG-binding domain (MBD sequencing). Putative methylation markers were selected from 

DAC-upregulated genes through a literature search and an upfront methylation-specific PCR on 20 

primary neuroblastoma tumors, as well as through MBD sequencing in combination with publicly 

available neuroblastoma tumor gene expression data. This yielded 43 candidate biomarkers that 

were subsequently tested by high-throughput methylation-specific PCR on an independent cohort of 
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89 primary neuroblastoma tumors that had been selected for risk classification and survival. Based 

on this analysis, methylation of KRT19, FAS, PRPH, CNR1, QPCT, HIST1H3C, ACSS3 and GRB10 was 

found to be associated with at least one of the classical risk factors, namely age, stage or MYCN 

status. Importantly, HIST1H3C and GNAS methylation was associated with overall and/or event-free 

survival. This study combines two genome-wide methylation discovery methodologies and is the 

most extensive validation study in neuroblastoma performed thus far. We identified several novel 

prognostic DNA methylation markers and provide a basis for the development of a DNA methylation-

based prognostic classifier in neuroblastoma. 

 

Keywords: DNA methylation, neuroblastoma, biomarker, prognosis, MBD sequencing, methylation-

specific PCR (MSP), 5-aza-2'-deoxycytidine (DAC) 

 

 

Background  

 

Neuroblastoma (NB) is a neuroectodermal tumor 

that originates from precursor cells of the 

sympathetic nervous system and represents the 

most common extra-cranial solid tumor of early 

childhood. NB displays a highly variable clinical 

course, ranging from spontaneous regression to 

life-threatening disease [1].  

Despite advances in multimodal anticancer 

therapies, survival rates for children with 

aggressive NB remain disappointingly low. 

Survival rates vary widely, depending on clinical 

features, such as age at diagnosis and tumor 

stage, as well as biological characteristics of the 

tumor. Amongst the latter, MYCN amplification 

has been used for many years as a genetic 

marker for therapy stratification [1]. More 

recently, a subset of high-risk tumors with non-

amplified MYCN and 11q deletions was 

identified, while absence of segmental 

aberrations upon genome-wide DNA copy 

number analysis was found to be associated with 

excellent survival [2,3]. In order to facilitate the 

comparison of risk-based clinical trials, a new 

consensus approach for pretreatment risk 

classification has been designed including 

genetic parameters [1,4]. Despite this progress, 

additional markers for therapeutic stratification 

are warranted in order to avoid under- or 

overtreatment and to improve selection of ultra-

high-risk patients for new experimental 

therapies. Recently, prognostic mRNA and 

microRNA (miRNA) signatures were developed 

to accommodate this need [5–7]. Here, we 

propose that the use of DNA methylation 

markers is a new and promising method for 

prognostic classification. 

DNA methylation is the addition of a methyl 

group to carbon 5 of the cytosine within the CpG 

dinucleotide. Dense clusters of CpG 

dinucleotides, termed CpG islands, are often 

present in gene promoters and methylation of 

those regions typically results in transcriptional 

silencing of the gene. As such, abnormal DNA 

methylation in cancer cells leads to aberrant 

expression patterns [8]. In NB, the most 

described epigenetic alterations are DNA 

methylation of CASP8 [9] and RASSF1A [10], both 

associated with risk factors, such as MYCN 

amplification, age at diagnosis and tumor stage 

[11–15]. Recently, a few genome-wide 

methylation screening methodologies have been 

applied in NB, including re-expression analysis 

after treatment with 5-aza-2’-deoxycytidine 

(DAC), DNA methylation promoter arrays after 

capturing with methylated DNA 

immunoprecipitation (MeDIP) and methylation 

microarrays. These studies indicate that aberrant 

DNA methylation makes an important 

contribution towards NB tumor biology by 

downregulating specific genes and show the 

potential of using DNA methylation in future 

patient therapy stratification protocols [16–18]. 
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Furthermore, the power of DNA methylation as a 

non-invasive, sensitive and specific biomarker 

has been demonstrated by measuring DNA 

methylation of RASSF1A in serum of primary NB 

patients [15] (for a detailed review see [19]). In 

order to improve the outcome prediction of NB 

patients, this study aims at establishing robust 

DNA methylation biomarkers that can identify 

patients with unfavorable prognosis.  

 

Results  

 

Discovery and integrated analysis: genome-

wide methylation screening for selection of 

candidate biomarkers  

 

The experimental setup of the study is 

summarized in Figure 1. In order to identify DNA 

methylation biomarkers in NB, we first applied 

two genome-wide methylation screening 

methodologies on eight NB cell lines: microarray 

after re-expression analysis and massively 

parallel sequencing after capturing with a 

methyl-CpG-binding domain (MBD sequencing). 

The genome-wide assessment of gene 

expression reactivation upon DAC treatment is 

an indirect method to detect DNA methylation 

as the influence of the demethylating effect is 

measured at the transcriptional level using 

oligonucleotide chips. Out of 54,675 probes, a 

total of 3,624 were upregulated after DAC 

treatment compared to untreated controls 

(RankProd false discovery rate (FDR) < 5%), of 

which 1,665 were upregulated at least twofold in 

at least one cell line. Using a cutoff of at least a 

twofold difference between the DAC-treated 

and the untreated sample, 989 probes were re-

expressed in at least 2 cell lines. In order to 

select specific and sensitive methylation 

biomarkers from this high number of reactivated 

probes, an integrated bioinformatics approach 

was applied. The 1,665 upregulated probes 

identified by RankProd analysis were further 

filtered using a genome-wide promoter 

alignment strategy, referred to as the ‘broad 

approach’ in Hoque et al. [20]. This strategy 

consists of a genome-wide multiple alignment of 

promoter regions, where similar sequence 

regions thus cluster together and where the 

‘distance’ (the number of nodes in the 

hierarchical alignment model) is shown to be 

able to predict novel biomarkers. Such 

approaches using DAC re-expression data have 

previously been successfully applied to enrich 

towards truly methylated genes [20,21]. We 

selected 150 genes that were either in the 

‘neighborhood’ (less than 8 nodes away) of a 

known methylation marker or that clustered 

together in the promoter sequence alignment 

with a high number of reactivation events (at 

least two genes in the cluster showed at least 

three reactivation events). Integration with (NB) 

literature, using an in-house developed text-

mining-based approach (using NCBI E-Utils to 

query PubMed, using all known gene aliases in 

combination with either DNA methylation-

related or NB-related search terms), and 

selection for genes located in genomic regions 

reported as recurrently affected by DNA copy 

number changes in NB, eventually led to the 

selection of 120 candidate biomarkers, 

comprising 30 novel candidate markers and 90 

known methylation markers in other tumor 

types. To obtain direct evidence for DNA 

methylation and to further select prognostic 

biomarkers, the selected 120 candidate 

biomarkers were tested on the DAC-treated and 

untreated NB cell lines CLB-GA, LAN-2, N206, SH-

SY5Y and SJNB-1, and primary NB samples (9 

low-risk survivors (LR-SURV) and 11 high-risk 

deceased (HR-DOD) patients; for details see 

Material and methods), using high-throughput 

methylation-specific PCR (MSP). In the NB cell 

lines, the DAC-treated samples show less 

methylation calls in comparison to untreated 

samples (130 MSP assays (64%) are more 

frequently methylated in the untreated 

samples), and taking all MSP assays into account 

the average number of methylated samples per 

assay is 0.39 for the DAC-treated cell lines versus 
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Figure 1. Combining genome-wide methylation discovery and validation, several novel prognostic DNA 
methylation markers were identified in neuroblastoma (NB). Starting points are a microarray based re-
expression study after treatment with 5-aza-2’-deoxycytidine (DAC) and a next-generation sequencing 
experiment using an enrichment strategy towards methylated DNA (methyl-CpG-binding domain (MBD) 
capture). Both were performed on the same panel of eight NB cell lines. Applying a bioinformatics and text-
mining-based approach on the re-expression data, 120 candidate genes were selected and tested using an 
initial high-throughput methylation-specific PCR (MSP) screen. The MBD sequencing data were combined with 
public mRNA expression studies to enrich for potential prognostic biomarkers. Using a rank-based scoring 
system, a final selection of 43 candidates was made, which were then tested using MSP on 89 primary NB 
samples (in the following subgroups: HR-DOD: high-risk patients that die of disease; HR-SURV: high-risk 
patients with long follow-up; LR-SURV: low-risk patients with long follow-up). Finally, mRNA expression levels 
of seven DNA methylation biomarkers were determined. qPCR: quantitative polymerase chain reaction. 

 

1.47 for the untreated cell lines (p = 0.0002), 

revealing dense methylation in genes 

upregulated upon DAC treatment and efficient 

demethylation by DAC (data not shown). The 

complete results of the initial high-throughput 

MSP screening on the primary NB samples can 

be found in Additional file 1.  

The second genome-wide DNA methylation 

screening methodology we applied, to the same 

eight NB cell lines, was MBD sequencing: 

massively parallel sequencing of methylation-

enriched DNA fragments, whereby the 

discovery and integrated analysis 

enrichment 
methylated 

genes 

enrichment                
prognostic 

genes 

6 available mRNA expression studies 

 
microarray platforms 

380 primary NB tumors 

initial high-throughput MSP 

 
120 genes (212 MSP assays) 

DAC samples, 9 LR-SURV and 11 HR-DOD 

MBD sequencing 

 
4.4 - 8.6 million paired-end reads 

8 NB cell lines 

re-expression analysis 

 
54675 microarray probes 

8 NB cell lines 

broad approach and (NB) literature 

 
1665 upregulated probes 

peak calling 

 
70816 - 112412 peaks  

validation 

high-throughput MSP 

 
43 genes (48 MSP assays) 

31 LR-SURV, 30 HR-SURV and 28 HR-DOD 

mRNA expression profiling 

NB cell lines 

 
2 genes (2 qPCR mRNA assays) 

31 NB cell lines 

SIOPEN/GPOH cDNA library 

 
5 genes (5 qPCR mRNA assays) 

366 primary NB tumors 
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enrichment is based on the capture of 

methylated sheared DNA using the high affinity 

of the methyl-CpG-binding domain (MBD) of the 

protein MBD2 towards methylated cytosines. 

Sequencing yielded 4.4 to 8.6 million paired-end 

reads, depending on the cell line, and after peak 

calling 70,816 to 112,412 peaks were detected, 

representing genomic regions methylated in the 

corresponding cell line. Between 7,612 and 

11,178 of these peaks (around 10% of all 

identified peaks) are located in promoter regions 

of annotated genes (-1,500 bp to +1,000 bp 

around the transcription start site (TSS)). These 

‘methylation peaks’ were visualized in the 

Integrative Genomic Viewer [22], showing that 

promoter regions that are well known to be 

heavily methylated in NB were confirmed - for 

example, the protocadherin β (PCDHB) family 

cluster (Additional file 2) [23,24]. In some 

regions (for example, in the promoter regions of 

HIST1H3C and ACSS3) it was also possible to 

distinguish different DNA methylation profiles 

between MYCN amplified (IMR-32, LAN-2 and 

N206) and MYCN non-amplified (SH-SY5Y, SK-N-

AS, CLB-GA and SJNB-1) NB cell lines (Additional 

file 2). Using the R/BioC package DESeq [25], 510 

regions were identified as differentially 

methylated between MYCN amplified and non-

amplified cell lines, of which 95 are in close 

proximity to an annotated TSS (-1,500 bp to 

+1,000 bp). Also, some miRNAs appeared to be 

methylated in their promoter region.  

After peak calling, we also performed gene set 

enrichment analysis [26], using a custom, ranked 

list of genes with at least one MBD peak present 

in a region -1,500 bp to +500 bp around its TSS, 

in order to explore whether promoter regions 

that are enriched after MBD capture are often 

re-expressed as well upon DAC treatment. This 

analysis clearly showed a high enrichment score 

for each cell line (enrichment scores from 0.32 

to 0.36; FDR q-value < 0.01), demonstrating that 

a large portion of methylated regions (captured 

by MBD) are indeed reactivated upon DAC 

treatment. The overlap between the two 

genome-wide datasets can be further explored 

by intersecting them. In total, 183 genes are 

both reactivated upon DAC treatment (at least 1 

log2 difference after and before treatment) and 

have an MBD peak in their promoter regions (-

1,500 bp to +1,000 bp around the TSS) in at least 

2 of the 8 investigated NB cell lines. Of these 183 

genes, 46 are both re-expressed and methylated 

in 3 cell lines, 9 in 4 cell lines and 5 in at least 5 

cell lines.  

As we feared that only using cell lines in the 

selection phase of potential prognostic DNA 

methylation biomarkers would lead to the 

identification of methylated markers not 

necessarily related to prognosis, six publicly 

available mRNA expression studies [27–34] were 

included in the analysis. In these studies, which 

comprise mRNA expression data of 380 primary 

NB tumors, identifying differentially expressed 

probes (genes) between prognostic groups 

would allow us to pinpoint potential prognostic 

methylated promoter regions in our methylome 

maps. Finally, a rank-based scoring system was 

used to prioritize genes that show methylation, 

re-expression after DAC treatment and 

differential expression (related to risk) across the 

prognostic groups. This score scheme uses the 

individual ranks of each analysis. In brief, DAC 

reactivation is ranked according to FDR rate (as 

determined by RankProd analysis), MBD 

sequencing data are ranked according to peak p-

values and expression data are ranked according 

to FDR (determined by RankProd analysis). Each 

data source is given the same weight and a 

combined rank is calculated (for details, see 

Materials and methods). This scoring system 

combined all generated data and allowed us to 

select 43 top-ranking and thus strong prognostic 

methylation candidate genes without the need 

to use rather artificial threshold values for the 

different datasets.  

 

Validation: determining the prognostic power 

of DNA methylation biomarkers 
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For these 43 genes, 48 MSP assays were 

designed and tested on 3 NB cell lines (IMR-32, 

SK-N-AS and SH-SY5Y) and the HCT-116 DKO cell 

lines, along with an independent cohort of 89 

primary NB samples. Within the 89 primary NB 

sample set all three prognostic groups (LR-SURV, 

HR-DOD and high-risk survivors (HR-SURV); for 

details see Material and methods) were 

approximately equally represented. The 

complete matrix with all MSP results of all 

samples and a global overview of the MSP 

results per assay can be found in Additional file 

3. Over 60% of the designed assays indeed 

detected methylation for the respective marker 

in at least 10% of the selected NB tumors. Ten 

MSP assays (COL6A3, miR-1225, miR-3177, 

PCDHA6, PLXNC1, ANKRD43, ADRB2, APOE, miR-

671 and QPCT) revealed methylation in at least 

75% of the patient samples, and the MSP assays 

for KCND2, PRPH, KRT19 (assay 83159) and 

TNFRSF10D were methylated in 50% to 75% of 

the patient samples. We could also detect DNA 

methylation in the promoter region of miR-1225, 

miR-3177, miR-671 and miR-663, methylated in 

99%, 99%, 79% and 4% of the patient samples, 

respectively.  

Unique in this study is the use of three discrete 

prognostic patient groups, which allowed us to 

assess differential methylation across all these 

prognostic groups. Therefore, we performed 

hierarchical cluster analysis on the methylation 

data of all 48 MSP assays on the entire NB tumor 

cohort, revealing two clusters with a separation 

between high-risk (HR) and low-risk (LR) patients 

(heatmap in Additional file 3). Furthermore, the 

overall methylation pattern in the primary NB 

tumor samples was compared by calculating the 

number of methylation events for each sample. 

This indicates that HR patients show, on average, 

more methylation events compared to LR 

patients (p < 0.001; HR-DOD, 17.21 methylation 

events (95% confidence interval (CI) 15.62 to 

18.81); HR-SURV, 17.13 methylation events (95% 

CI 15.81 to 18.46); LR-SURV, 13.00 methylation 

events (95% CI 11.86 to 14.14)). Also on the 

individual marker level, some MSP assays are 

differentially methylated across the prognostic 

patient groups: KRT19 and ACSS3.These genes 

are more frequently methylated in HR patients 

compared to LR patients (Table 1). Within the HR 

group, HIST1H3C shows a tendency to be more 

frequently methylated in HR-DOD compared to 

HR-SURV samples (21% in HR-DOD versus 7% in 

HR-SURV), while KRT19 (32% versus 48%) and 

ACSS3 (25% versus 47%) show the inverse 

pattern. 

Some individual MSP assays were also associated 

with one or more NB risk factors (stage, MYCN 

status and age at diagnosis), and are thus 

potential prognostic biomarkers in NB (Table 1). 

In this analysis, the age at diagnosis was tested 

using two different age cutoffs. The 12 months 

cutoff was chosen as it was used for therapy 

stratification and as a criterion in the sample 

selection. The more recently established cutoff 

of 18 months [1,35,36] was also taken into 

account. Newly discovered methylated markers 

are FAS, PRPH, CNR1, QPCT, HIST1H3C, ACSS3 

and GRB10, methylation of which is associated 

with at least one of the NB risk factors. Table 1 

further indicates that the difference in the 

methylation status of HIST1H3C and ACSS3 

between MYCN non-amplified and amplified NB 

cell lines as detected by MBD sequencing is 

reflected in the MSP results of the primary 

tumors as well, as HIST1H3C and ACSS3 are 

almost exclusively methylated in MYCN 

amplified samples. 

Survival analysis using the complete MSP data 

set indicates that patients with less methylation 

events showed better survival rates than 

patients with a high number of methylation 

events (p = 0.01; Additional file 3), as this 

analysis principally discriminates HR and LR 

patients. In order to assess to what extent our 

MSP data set is able to predict overall survival 

(OS) in HR-SURV versus HR-DOD patients, leave-

one-out decision tree analysis was performed 

and repeated 58 times (the number of HR 

patients). For this analysis, we only included the 



   

 
 

Table 1. Several individual markers are differentially methylated between the prognostic groups and neuroblastoma risk factors. 

type subtype 
KRT19 FAS PRPH CNR1 QPCT HIST1H3C ACSS3 GRB10 

number % number % number % number % number % number % number % number % 

prognostic 
group 

LR-SURV 0/31 0 1/31 3 14/31 45 2/31 6 18/31 58 0/31 0 0/31 0 6/31 19 

HR-SURV 14/30 48 8/30 27 24/30 80 10/30 33 25/30 83 2/30 7 14/30 47 13/30 43 

HR-DOD 9/28 32 6/28 21 19/28 68 10/28 36 24/28 86 6/28 21 7/28 25 11/28 39 

INSS stage 

stage 1 0/21 0 0/21 0 8/21 38 1/21 5 13/21 62 0/21 0 0/21 0 4/21 19 

stage 2 1/12 8 2/12 17 8/12 67 2/12 17 8/12 67 0/12 0 1/12 8 3/12 25 

stage 3 9/17 53 4/17 24 13/17 77 9/17 53 15/17 88 3/17 18 9/17 58 8/17 47 

stage 4 13/39 33 9/39 15 28/39 72 10/39 26 31/39 80 5/39 18 11/39 28 15/39 39 

MYCN 
amplification 

status 

MYCN  
non-amplified 

7/50 14 2/50 4 24/50 48 5/50 10 31/50 62 0/50 0 2/50 4 14/50 28 

MYCN 
amplified 

16/39 41 13/39 33 33/39 85 17/39 44 36/39 92 8/39 21 19/39 49 16/39 41 

age at 
diagnosis 

> 12 months 21/53 40 14/53 26 37/53 69 18/53 34 46/53 87 8/53 15 21/53 40 24/53 45 

< 12 months 2/36 6 1/36 3 20/36 56 4/36 11 21/36 58 0/36 0 0/36 0 6/36 17 

> 18 months 20/45 44 13/45 29 33/45 73 17/45 38 40/45 89 8/45 18 19/45 49 23/45 51 

< 18 months 3/44 7 2/44 5 24/44 55 5/44 11 27/44 61 0/44 0 2/44 5 7/44 16 

overall total  23/89 26 15/89 17 57/89 64 22/89 25 67/89 75 8/89 9 21/89 24 30/89 34 

statistics on type (Fisher’s exact p-value) 
 KRT19 FAS PRPH CNR1 QPCT HIST1H3C ACSS3 GRB10 

prognostic group <0.001 0.151 0.112 0.068 0.165 0.0624 <0.001 0.405 

MYCN amplification status 0.0594 0.008 0.008 0.008 0.017 0.0146 <0.001 0.708 

INSS stage 0.007 0.287 0.221 0.059 0.683 0.448 0.008 0.700 

age cutoff 12 months 0.008 0.045 0.579 0.138 0.059 0.123 <0.001 0.059 

age cutoff 18 months 0.002 0.045 0.326 0.059 0.045 0.0594 0.0015 0.012 

Note. The number (percentage) of methylated samples in each stratum is given. P-values according to Fisher’s exact test, corrected for multiple testing (Benjamini-
Hochberg). HR-DOD: high-risk deceased patients; HR-SURV: high-risk patients alive for at least 1,000 days follow-up; INSS: International Neuroblastoma Staging System; LR-
SURV: low-risk patients alive for at least 1,000 days follow-up. P-values in bold indicate significant associations. 
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data from MSP assays (un)methylated in at least 

three samples. Comparison of the 58 generate 

decision trees showed that 4 DNA methylation 

biomarkers (CNR1, ACSS3, HIST1H3C and PRPH) 

are included in at least 50% of the resulting 

classifiers. Then, leave-one-out decision tree 

analysis was redone, but this time using only the 

methylation data of CNR1, ACSS3, HIST1H3C and 

PRPH. Afterwards, the predictions for all 58 HR 

samples were visualized in a Kaplan-Meier plot 

(Figure 2). This analysis indicates that the 

combined methylation status of CNR1, ACSS3, 

HIST1H3C and PRPH has the potential to 

discriminate between HR-SURV and HR-DOD 

patients (p = 0.058). 

 

 
 

Figure 2. The combined methylation status of CNR1, ACSS3, HIST1H3C and PRPH can potentially discriminate 
high-risk patients. The Kaplan-Meier plot shows overall survival in the high-risk samples of the high-throughput 
MSP screening according to their predicted overall survival status based on leave-on-out decision tree analysis 
using the methylation data of CNR1, ACSS3, HIST1H3C and PRPH. Group 1 is predicted to survive, group 2 to die 
of disease. The p-value is determined using log-rank test (Mantel-Cox). 

 
Survival analysis was also performed on the 

individual marker level. We first tested 

differences between the HR-DOD and LR-SURV 

groups using the univariate log-rank test (with 

multiple testing correction). This first analysis 

indicates that six genes (KRT19, FAS, CNR1, 

HIST1H3C, ACSS3 and GNAS) are significantly 

related to survival when comparing these 

patient groups. As we also want to discriminate 

the HR patient groups (HR-DOD and HR-SURV), 

we then used the entire dataset (all samples) to 

assess which of these six genes were associated 

with survival (in a specific stratum only, such as 

only in MYCN non-amplified samples). These 

results are shown in Table 2. According to log-

rank tests, HIST1H3C methylation is associated 

with both OS and event-free survival (EFS), while 

GNAS methylation is associated with EFS. As NB 

is a heterogeneous disease, these biomarkers 

may be suited to a specific subgroup of patients 

for predicting survival. For example, HIST1H3C 

methylation only occurs in high-stage tumors 

with MYCN amplification (6/17 (35%) in HR-DOD 

patients versus 2/22 (9%) in HR-SURV patients). 

Figure 3 shows the Kaplan-Meier plots for 

HIST1H3C and GNAS methylation (OS or EFS and 
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OS in specific strata related to one of the risk 

factors).  

 

mRNA expression profiling: determining 

transcriptional silencing of DNA methylation 

biomarkers 

 

As it is known that promoter methylation may 

cause transcriptional silencing of the gene, we 

further measured the mRNA expression levels of 

five promising DNA methylation biomarkers that 

were methylated in a substantial fraction of HR 

patients (CNR1, GRB10, KRT19, PRPH and QPCT). 

Quantitative RT-PCR assays were developed and 

tested on 366 primary NB tumor samples. Table 

3 displays the results of the comparisons of the 

expression levels of each DNA methylation 

biomarker between the different NB tumor 

stages, MYCN non-amplified and amplified 

tumors, the two age groups (using both the 12 

and 18 months cutoff), and surviving and 

deceased patients. As an example, the mRNA 

expression levels of these genes across the NB 

tumor stages are depicted in Additional file 4. 

Out of the 366 primary NB tumors, 245 could be 

assigned to one of the prognostic groups defined 

in this study (Additional file 4), which allowed us 

to asses differential mRNA expression between 

these groups as well. For all genes mRNA 

expression levels were significantly higher in the 

LR group compared to the HR groups. As 

methylation of these genes was mainly detected 

in the HR groups, this suggests that methylation 

may contribute to the transcriptional silencing of 

these genes. 

 

Table 2. Several individual DNA methylation markers are associated with survival.  

statistics KRT19 FAS CNR1 HIST1H3C ACSS3 GNAS 

HR-DOD versus LR-SURV (p-value OS) 0.037 0.028 0.043 0.002 0.002 0.012 

HR-DOD versus LR-SURV (p-value EFS) 0.039 0.049 0.039 0.039 0.079 0.039 

HR-DOD versus LR-SURV and  
HR-SURV (p-value OS) 

0.687 0.639 0.423 0.039 0.691 0.221 

HR-DOD versus LR-SURV and  
HR-SURV (p-value EFS) 

0.665 0.467 0.414 0.041 0.939 0.041 

HR-DOD versus LR-SURV and  
HR-SURV (p-value OS (stratum)) 

  
age < 12 
months 
0.035 

stage 4 
0.033 

 
MYCN0 
0.033 

HR-DOD versus LR-SURV and  
HR-SURV (p-value EFS (stratum)) 

 
age < 12 
months 
0.014 

   
MYCN0 
0.001 

Note. Log-rank test statistics (Mantel-Cox) are given (multiple testing correction by Benjamini-Hochberg) for 
comparison between the ultra-high-risk group (HR-DOD) versus the low-risk group (LR-SURV), and between the 
ultra-high-risk group (HR-DOD) and all survivors (LR-SURV and HR-SURV). If a significant association (p < 0.05) 
was found in a particular stratum (associated with risk factors), this stratum is shown (multiple testing 
correction for the different comparisons by Benjamini-Hochberg). EFS: event-free survival; MYCN0: MYCN non-
amplified; OS: overall survival. P-values in bold indicate significant associations. 
 

Table 3. The mRNA expression level of several markers associates with neuroblastoma risk factors, 
prognostic groups and survival. 

grouping variable statistics CNR1 GRB10 KRT19 PRPH QPCT 

stage Kruskal-Wallis p-value <0.001 0.008 0.118 0.010 <0.001 

MYCN amplification status Mann-Whitney p-value <0.001 <0.001 <0.001 <0.001 <0.001 

age cutoff 12 months Mann-Whitney p-value <0.001 0.609 <0.001 0.005 <0.001 

age cutoff 18 months Mann-Whitney p-value <0.001 0.810 <0.001 0.003 0.006 

overall survival status Mann-Whitney p-value <0.001 0.003 0.023 <0.001 <0.001 

prognostic group Kruskal-Wallis p-value <0.001 0.002 0.005 <0.001 <0.001 

The statistical test used is shown and p-values (corrected for multiple testing using Benjamini-Hochberg) are 
indicated. P-values in bold indicate significant associations. 



 results  

- 78 - 
 

 
Figure 3. Methylation of HIST1H3C and GNAS is associated with worse survival outcome. Kaplan-Meier plots 
on the left show overall survival or event-free survival for all 89 primary neuroblastoma samples, those on the 
right overall survival in a specific stratum based on one of the risk factors only. Survival curves indicated with 
‘M’ are the methylated samples, survival curves associated with the unmethylated assay are indicated with ‘U’. 
The numbers of patients are indicated (n) and p-values are determined using log-rank test (Mantel-Cox; 
multiple testing correction by Benjamini-Hochberg). Time is censored to 2,000 days. MYCN0: MYCN non-
amplified. 

Survival analysis using Cox proportional hazards 

further shows that low mRNA expression levels 

of CNR1 (hazard ratio 0.768; 95% CI 0.619 to 

0.953; p = 0.028), GRB10 (hazard ratio 0.613; 

95% CI 0.433 to 0.866; p = 0.015) and PRPH 

(hazard ratio 0.714; 95% CI 0.566 to 0.922; p = 

0.015) were significantly associated with poor 

survival. After dichotomization of the mRNA 

expression data, using the median relative 

mRNA expression value as a cutoff, Kaplan-

Meier survival curves were plotted (log-rank 

test; Additional file 4).  

An interesting observation in our MBD 

sequencing and MSP data is the fact that 
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HIST1H3C and ACSS3 are differentially 

methylated between MYCN non-amplified and 

amplified NB cell lines and primary tumors 

(Table 1; Additional file 2). To further explore 

this finding, the HIST1H3C and ACSS3 MSP assays 

were tested on 31 NB cell lines, of which 10 

were MYCN non-amplified and 21 MYCN 

amplified (Additional file 5). In addition, we also 

profiled HIST1H3C and ACSS3 mRNA expression 

levels in these cell lines, in order to assess the 

direct relationship between promoter 

methylation and mRNA expression and to 

compare this relationship between MYCN non-

amplified and amplified cell lines. The significant 

differential methylation status of HIST1H3C and 

ACSS3 between MYCN non-amplified and 

amplified samples was confirmed in the NB cell 

lines (HIST1H3C, methylated in 15/21 (71%) 

MYCN amplified cell lines and in 2/10 (20%) 

MYCN non-amplified cell lines, p = 0.018; ACSS3, 

methylated in 20/21 (95%) MYCN amplified cell 

lines and in 3/10 (30%) MYCN non-amplified cell 

lines, p < 0.001). Moreover, expression of 

HIST1H3C mRNA was significantly lower in 

methylated samples compared to unmethylated 

samples, both in MYCN amplified (p = 0.005) and 

MYCN non-amplified (p = 0.044) cell lines (Figure 

4). These data support the idea that HIST1H3C 

promoter methylation contributes to 

transcriptional silencing of the gene. Figure 4 

further indicates that the MYCN status itself is 

not significantly associated with HIST1H3C mRNA 

expression levels (p = 0.204). As ACSS3 is 

expressed at very low mRNA levels, we could not 

correlate its mRNA expression data with the 

methylation data (data not shown).  

 

 
 

Figure 4. HIST1H3C has lower mRNA expression levels in neuroblastoma cell lines in which the HIST1H3C 
promoter is methylated. Thirty-one neuroblastoma cell lines were categorized according to their MYCN 
amplification and HIST1H3C methylation status. The relative HIST1H3C mRNA expression level of each of these 
cell lines is indicated. P-values according to Mann-Whitney test are also indicated. MYCN0: MYCN non-
amplified; MYCN1: MYCN amplified. 

Discussion  

 

Thus far, most of the studies analyzing DNA 

methylation patterns in NB have been candidate 

gene-based, with the methylation status of the 

promoter region for only a limited number of 

genes being tested. These candidate genes were 

selected based either on prior knowledge of NB 

tumor biology or on the fact of being methylated 

in other tumor types. As a consequence, only 

few DNA methylation biomarkers, such as 

KRT19, TNFRSF10D, CASP8, ZMYND10 and 

RASSF1A, were previously related to NB risk 

factors or survival [11,13–15,18,37–41]. In order 

to identify new DNA methylation biomarkers in 

NB, we applied a multilevel experimental 

approach. In the discovery phase we established 

a genome-wide methylome map of eight NB cell 

lines. These cell lines were profiled using gene 

expression microarrays before and after DAC 

treatment, and using MBD capture followed by 

next-generation sequencing (NGS). The 

combination of both methodologies enabled the 

identification of regions that are both 

methylated and undergo re-expression upon 

DAC treatment. So far, only MeDIP chips were 
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used in whole promoter profiling studies on NB 

[9], making this study the first one using NGS for 

unbiased and more sensitive assessment of 

genome-wide DNA methylation patterns in NB. 

Our results emphasize the potential of this 

epigenetic sequencing technique, as it enables 

the investigation of the methylome or 

epigenome of a sample in great detail at a 

feasible cost.  

Integration of these methylome maps with 

genome-wide gene expression profiles led to a 

selection of 43 candidate biomarkers that were 

tested on 89 primary NB patient samples. All 

samples were assigned to one of three discrete 

prognostic patient groups (low-risk survivors (LR-

SURV), high-risk deceased (HR-DOD) and high-

risk survivors (HR-SURV)). While most NB 

methylation studies did not discriminate 

between HR-SURV and HR-DOD patients, we 

believe this is an important clinical question, as 

both prognostic groups are currently considered 

high-risk and uniformly treated, making the 

present study unique in its concept. As we make 

use of amplified bisulfite-converted DNA, only 

limited amounts (100 to 200 ng) of tumor DNA 

are required to test over 100 MSP assays. The 

MBD sequencing results greatly help in designing 

the assays in the most informative regions, 

which is important as the assay location is 

critically important, again confirmed in this study 

for a number of genes for which multiple assays 

were designed (for example, TGFBI and KRT19). 

The combination of the number of samples and 

assays used in this study further makes it the 

most comprehensive methylation study in NB. 

Furthermore, the high-throughput validation 

pipeline allows fast and accurate follow-up 

validation of potential candidate DNA 

methylation biomarkers for large numbers of 

patients. Indeed, PCR-based detection 

methodologies are robust and can thus be used 

in a wide range of laboratory settings for a low 

price without the need of special equipment 

other than for qPCR and (microfluidic) 

electrophoresis, both present in most molecular 

laboratories. The presented DNA methylation 

screening and validation methodology can thus 

easily be adapted by (cancer) researchers 

addressing similar questions in other research 

fields.  

In this study, several novel biomarkers were 

established in addition to known DNA 

methylation biomarkers in NB, such as KRT19, 

TGFBI, TNFRSF10D and TNFRSF10A 

[14,18,37,42,43]. Interestingly, some of these 

novel genes were previously reported to be 

important in NB biology (without reference to 

their epigenetically altered status) or were 

described as epigenetic biomarkers in other 

tumor entities, such as FAS, which encodes a 

member of the tumor necrosis factor receptor 

(TNFR) superfamily [44–50]. Several other novel 

methylation biomarkers were also shown to be 

differentially methylated between HR and LR 

patients, and many of these were associated 

with NB risk factors or with survival. However, 

discriminating HR-DOD and HR-SURV patients is 

challenging. While only a few individual MSP 

designs (HIST1H3C, KRT19 and ACSS3) were 

moderately discriminatory between these two 

HR subgroups, the combined methylation data 

analysis of CNR1, ACSS3, HIST1H3C and PRPH 

indicates the potential of DNA methylation 

biomarkers in stratifying HR NB patients. In this 

study, the difficulty of identifying individual 

biomarkers that differentiate between HR-DOD 

and HR-SURV patients may be explained by the 

fact that NB cell lines were used in the discovery 

phase, thus enriching for genes discriminating 

between HR and LR patients as NB cell lines can 

be considered models for aggressive HR tumors. 

To accommodate this, we plan to perform a 

large-scale discovery using MBD capture 

followed by NGS on primary NB tumors equally 

distributed over the three prognostic groups 

used here.  

PRPH is one of the novel biomarkers identified 

and is differentially methylated across the 

prognostic patient groups. This gene encodes 

the cytoskeletal protein peripherin found in 
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neurons of the peripheral nervous system, and is 

probably associated with maturation of the 

neural phenotype and hence serves as a 

differentiation marker for tumors derived from 

the neural crest [51]. In our study, PRPH 

methylation was mainly detected in more 

advanced tumor stages. Since promoter 

methylation may cause transcriptional silencing 

of the gene and advanced NB tumor stages are 

less differentiated [52], this is in line with the 

idea that high levels of peripherin contribute to 

more differentiated tumor stages. As 

demonstrated in this study, this idea is further 

strengthened by the fact that PRPH mRNA 

expression levels gradually decreased with 

increasing aggressiveness of the tumor. As whole 

genome sequence analysis recently showed that 

genes involved in neuritogenesis are recurrently 

affected in high-stage NB [53], the identification 

of PRPH methylation opens new research 

perspectives regarding NB therapy. 

Next to protein-coding genes, some MSP assays 

were designed in the promoter region of 

miRNAs. Aberrant miRNA expression contributes 

majorly to NB tumor biology and has been 

extensively studied during the past few years. 

Most of these studies used miRNA microarrays 

or high-throughput RT-qPCR to analyze the 

miRNA expression patterns in primary NB tumor 

samples [54–56]. Although a broad deregulation 

of the miRNA expression profile in NB has been 

described, miRNA promoter hypermethylation is 

relatively unexplored. Up until now, the only 

miRNA for which the promoter region is known 

to be methylated in NB is miR-200b [57]. 

Interestingly, miR-1225, miR-3177 and miR-671 

were found to be methylated in their promoter 

region in more than 75% of the NB tumors in our 

study. Currently, little is known about the 

putative function of these miRNAs, as they are 

not well described or not described at all in the 

literature [58,59]. 

Another interesting finding is that MYCN non-

amplified and amplified samples show 

differential promoter methylation of HIST1H3C 

and ACSS3. Currently, little is known about the 

association between MYCN and DNA 

methylation of certain genes in NB, nor about 

the underlying molecular mechanisms. 

Previously, Teitz et al. [9,60] showed that DNA 

methylation of CASP8 is almost exclusively 

associated with MYCN amplification in both NB 

cell lines and primary tumors. They further 

noticed that CASP8 was hemimethylated (only 

one allele) in stage 1, 2 and 3 NB, which may 

indicate that complete methylation of CASP8 

may be coupled to another event, such as 

amplification of the MYCN gene. While this 

suggests that MYCN amplification is functionally 

linked to complete methylation of both CASP8 

alleles, it is not clear if these two events occur 

concurrently, or if one event leads to the other. 

Obviously, genes differentially methylated 

between MYCN non-amplified and amplified 

samples need to be further functionally 

characterized, as this may lead to new insights 

into NB biology.  

 

Conclusions  

 

Although international collaboration in the field 

of NB has invested tremendous effort in 

optimizing patient stratification and therapy 

protocols, OS rates remain low. This study shows 

that DNA methylation biomarkers have the 

potential to refine current risk assessment 

schemes. In contrast to most NB methylation 

studies that are candidate gene-based, we 

applied two genome-wide detection 

methodologies to discover hypermethylated 

regions in NB: re-expression analysis after 

demethylating DAC treatment and NGS after 

MBD capture. Furthermore, we present a high-

throughput and semi-automated MSP pipeline, 

which was used to test the candidate DNA 

methylation markers on a large patient tumor 

cohort. We have identified novel aberrant 

promoter hypermethylation of protein coding 

genes and miRNAs in NB. Some of these DNA 

methylation biomarkers are associated with NB 
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risk factors and/or survival, emphasizing the 

prognostic value of these markers and their 

potential to be used in a DNA methylation-based 

prognostic classifier in NB. The use of such a 

DNA methylation signature, discriminating HR 

patients, is demonstrated here by the combined 

methylation data analysis of CNR1, ACSS3, 

HIST1H3C and PRPH. Furthermore, some DNA 

methylation biomarkers showed low levels of 

mRNA expression in patient groups with high 

methylation levels. This suggests that promoter 

methylation may contribute to transcriptional 

silencing of these genes, which may be 

important in the pathogenesis of NB. 

Encouraged by these results, we will now 

extensively further validate these DNA 

methylation biomarkers and refine the 

methylome map of different prognostic NB 

patient groups.  

 

Materials and methods  

 

Neuroblastoma cell lines and primary tumors  

 

In total, 33 well-characterized NB cell lines, 

authenticated using array comparative genomic 

hybridization and short tandem repeat 

genotyping, were included in this study 

(Additional files 2 and 5). DNA was isolated using 

the QIAamp DNA Mini Kit (Qiagen, Venlo, The 

Netherlands). In addition, 109 primary tumor 

samples of NB patients were collected prior to 

therapy at the Ghent University Hospital (Ghent, 

Belgium), the University Children’s Hospital 

Essen (Essen, Germany), Our Lady’s Children’s 

Hospital Dublin (Dublin, Ireland) or the Hospital 

Clínico Universitario (Valencia, Spain). Informed 

consent was obtained from each patient’s 

guardian and the study was approved by the 

ethical committee of the Ghent University 

Hospital (approval number B67020109912). 

Clinical characteristics of the patients are shown 

in Additional files 1 and 3. All NB patient samples 

were assigned to one of three defined risk 

groups based on risk parameters (tumor stage, 

MYCN status and age at diagnosis) and disease 

outcome. First, HR patients that died of disease 

(HR-DOD) as defined by stage 2/3, MYCN 

amplified, DOD; stage 4, age at diagnosis < 12 

months, MYCN amplified, DOD; or stage 4, age at 

diagnosis > 12 months, DOD (n = 39). Second, HR 

patients alive (HR-SURV) after follow-up time > 

1,000 days (n = 30). Third, LR patients alive (LR-

SURV) defined by stage 1/2, MYCN non-

amplified, follow-up time > 1,000 days; stage 3, 

MYCN non-amplified, age < 12 months, follow-

up time > 1,000 days (status at last known 

follow-up is alive; n = 40). The clinical data of the 

366 primary NB tumors (SIOPEN/GPOH cDNA 

library [6]), used to test the mRNA expression 

levels of the most promising DNA methylation 

biomarkers, can be found in Additional file 4. 

 

Microarray after re-expression analysis  

 

Eight NB cell lines (CHP-902R, CLB-GA, IMR-32, 

LAN-2, N206, SH-SY5Y, SK-N-AS and SJNB-1) 

were grown in the presence of 3 µM DAC (Sigma, 

Bornem, Belgium)) for 3 days, as previously 

described, and untreated controls were also 

prepared [61]. After harvesting, RNA was 

extracted with the RNeasy Mini kit (Qiagen), 

accompanied by RNase free DNase treatment on 

column (Qiagen). After RNA quality check on the 

Experion (Bio-Rad, Nazareth, Belgium), sample 

preparation, hybridization to Affymetrix Human 

Genome U133 Plus 2.0 oligonucleotide chips and 

scanning were carried out according to the 

manufacturer’s protocol at the VIB MicroArray 

Facility. Standard quality metrics (simpleaffy 

BioC package [62] boxplots, visual inspection of 

the slides, 5’-3’ degradation plot) demonstrated 

that the oligonucleotide chip data were of good 

quality. The BioC affy package was used to 

normalize (gc-RMA normalization) the 

expression levels and to obtain present/absent 

(expression/no expression) MAS 5.0 calls for 

each probe set. For all cell lines and for each 

probe set, the number of reactivation events 

was counted (absent in untreated cells and 
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present in treated cells). Expression data (before 

and after DAC treatment) have been deposited 

into the Gene Expression Omnibus [GEO: 

GSE31229], according to the MIAME guidelines.  

 

MBD sequencing  

 

DNA samples (1 µg DNA) of the eight NB cell 

lines were sheared (Covaris S2) to an average 

length of 200 bp. Fragment distribution was 

determined by the Agilent 2100 Bioanalyzer and 

the concentration was determined using the 

Quant-iT PicoGreen dsDNA HS Assay Kit 

(Invitrogen, Ghent, Belgium). Starting from 200 

ng sheared DNA, the MethylCollector Kit 

(ActiveMotif, La Hulpe, Belgium) was used to 

enrich for methylated fragments. Library 

preparation for multiplex Illumina sequencing 

was done by combining the DNA Sample Prep 

Master Mix Set 1 (New England Biolabs, 

Frankfurt am Main, Germany) and the 

Multiplexing Sample Preparation Oligo Kit 

(Illumina). Size selection of the library was done 

on a 2% agarose gel. Fragments of around 300 

bp (±50 bp) were excised and purified. Illumina 

library amplification (21 cycles) was performed 

and concentration was determined. Paired-end 

sequencing was used for high confidence 

mapping of captured fragments (2 × 45 bp 

sequencing - Illumina GAIIx, NXTGNT). Paired-

end reads were mapped on the human 

reference genome (GRCh37) using Bowtie 0.12.7 

and peaks were called using MACS 1.4beta. For 

differential methylation analysis, PCR duplicates 

were removed and sequence tags counted by 

using the BioC packages Short-Read and 

rtracklayer [63,64]. Sequence tag counts per 

sample were used to compose a count matrix 

that could be processed by the BioC package 

DESeq [25]. Sequencing data (raw sequence files, 

WIG files for visualization of the mapping results 

and the BED peak files as determined by MACS) 

have been deposited into GEO [GEO:GSE31353].  

 

Selection of candidate biomarkers  

Initial high-throughput MSP  

In total, 212 MSP assays (Additional file 1) were 

designed in the promoter region of 120 

corresponding genes re-expressed after DAC 

treatment, and tested on both the DAC-treated 

and untreated NB cell lines, 9 LR-SURV patients 

and 11 HR-DOD patients (Additional file 1). A 

total of 500 to 1,000 ng DNA of these samples 

was bisulfite-treated (EZ DNA Methylation Kit, 

Zymo Research, Irvine, CA, USA), eluted in 30 µl 

elution buffer and then tested on the BioTrove 

OpenArray (Life Technologies, Ghent, Belgium). 

Beta actin (ACTB) was used as a control and to 

normalize samples. The in vitro methylated HCT-

116 DKO cell line (treated with SssI, Zymo 

Research) was used as a positive control. The 

methylation status for each MSP assay was 

determined, and called methylated if the melting 

temperature (Tm) of the amplicon was within a 

specific interval as defined by the positive 

control sample. These methylation calls were 

further analyzed by determining specificity and 

sensitivity of the HR-DOD samples versus LR-

SURV samples.  

 

Publicly available mRNA expression studies  

Six publicly available mRNA expression studies 

[27–34] [GEO:GSE19274, GEO:GSE16237, 

GEO:GSE14880, GEO: GSE12460, GEO:GSE13136, 

GEO:GSE3960] were analyzed using RankProd 

analysis (BioC package [18]), to identify 

differentially expressed probes between 

prognostic groups (high-risk versus low-risk, 

high-stage versus low-stage, and MYCN 

amplified versus MYCN non-amplified).  

 

Scoring system  

Each analysis score of a promoter region (for 

example, RankProd FDR-value and p-value for 

differential expression between risk groups, and 

p-values of the peak after MBD sequencing) was 

ranked and given a score, ranging from tan (1) to 

0 according to their rank. These individual scores 

were then summed and 43 top-ranking genes 

were selected for further analysis.  
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High-throughput MSP  

 

MSP assays were designed to only amplify the 

bisulfite-converted target region of interest and 

do not anneal to genomic DNA. As each primer 

contains at least two CpG sites, this means that a 

PCR product will only be generated if the 

template is methylated. We choose not to 

design the according U primers (that would 

amplify the non-methylated bisulfite-converted 

DNA) as we do not assess methylation in a 

quantitative way. After in silico assay evaluation, 

48 selected MSP primers (including the ACTB 

control; Additional file 3) were empirically 

validated on the Roche LightCycler 480 (LC480) 

using the in vitro methylated HCT-116 DKO 

(positive control), the HCT-116 DKO (negative 

control) and NB cell lines. Based on melting 

curve and amplicon size analysis, all assays were 

considered amplicon-specific. The MSP assays 

were tested on 89 samples, selected from the 

previously described patient groups (31 LR-SURV 

patients, 28 HR-DOD patients and 30 HR-SURV 

patients; Additional file 3). A no template control 

(NTC) sample was loaded as well. For all 

samples, 500 to 1,000 ng DNA was bisulfite-

treated (EZ DNA Methylation Kit, Zymo 

Research) and eluted in 40 µl elution buffer. 

Prior to MSP, bisulfite-treated DNA (BT-DNA) 

was amplified using the EpiTect Whole 

Bisulfitome Kit (Qiagen), starting from 100 ng BT-

DNA. After amplification, the yield was 

determined by the Qubit 2.0 fluorometer in 

combination with the Quant-iT PicoGreen dsDNA 

BR Assay Kit (Invitrogen). The MSP was 

performed on the LC480 and plates were 

prepared using the Tecan freedom Evo robot, 

using a design that assures that all samples were 

tested for the same assay in the same run [65]. 

MSP amplifications were performed in 10 µl 

containing 5 µl LC480 SYBR Green I Master Mix 

(2×; Roche, Vilvoorde, Belgium), 1 mg/ml bovine 

serum albumin (Roche), 1 mM MgCl2 (Roche), 

125 nM forward and reverse primer (IDT, 

Leuven, Belgium), sample (20 ng amplified BT-

DNA) and nuclease-free water (Sigma). MSP 

conditions were as follows: activation for 10 

minutes at 95°C, 45 amplification cycles (10 s at 

95°C, 30 s at 60°C and 5 s at 72°C), followed by 

melting curve analysis (5 s at 95°C - melting 

curve from 60 to 95°C) and cool down to 45°C. 

Afterwards, the size of the amplicons was 

determined using the Caliper LabChip GX. A MSP 

assay was considered methylated if (1) its Cq-

value < 35 (calculated by the LC480 software 

using the second derivative maximum method), 

(2) its melting temperature (Tm) differed no 

more than 2°C from that of the positive control 

sample, and (3) the amplicon length differed no 

more than 10 bp from the band size of the 

positive control sample. In addition, the band 

height, as determined by the LabChip GX 

software, was required to be higher than 20.  

 

mRNA expression profiling  

 

The mRNA expression levels of CNR1, GRB10, 

KRT19, PRPH and QPCT were profiled on the NB 

SIOPEN/ GPOH cDNA library generated from 366 

primary NB tumor samples (Additional file 4) [6]. 

For each DNA methylation marker a qPCR mRNA 

assay was designed and validated in silico and in 

vitro (Additional file 4) [66]. PCR plates were 

prepared as described in the previous section 

and RT-qPCR was performed on the LC480 as 

described in [6]. Relative gene expression levels 

were then normalized using the geometric mean 

of five reference sequences (HPRT1, SDHA, UBC, 

HMBS and AluSq) [67]. For HIST1H3C and ACSS3, 

a qPCR mRNA assay (Additional file 5) was 

designed and tested on 31 NB cell lines on which 

the corresponding MSP assay was tested as well. 

Here, qPCR amplifications were performed in 5 

µl containing 2.5 µl SsoAdvanced SYBR Green 

Supermix (2×; Bio-Rad), 0.25 µl forward and 

reverse primer (5 µM each) and 2 µl cDNA 

sample (corresponding to 5 ng cDNA). Relative 

gene expression levels were normalized using 

the geometric mean of the reference sequences 

SDHA, UBC and AluSq. All RT-qPCR data analysis 
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was done in qbase-PLUS version 2.0 (Biogazelle, 

Ghent, Belgium) [65]. Logged and normalized 

qPCR data can be found in Additional file 4 and 

5. 

 

Statistical analysis  

 

Statistical analyses were performed using IBM 

SPSS software version 19.0. All statistical tests 

were two-sided and p-values < 0.05 were 

considered statistically significant. Differential 

methylation across the prognostic groups was 

determined by the Chi square test. The 

relationship between the methylation status and 

NB risk factors was determined using Fisher’s 

exact test. Univariate survival analysis was 

performed with the Kaplan-Meier method and 

log-rank statistics (Mantel-Cox) to determine the 

impact of methylation status on EFS and OS. EFS 

was defined as the time between initial 

diagnosis and relapse or death of disease, or 

time between diagnosis and last follow-up if no 

event had occurred. OS is the time to disease-

related death or last follow-up. Hierarchical 

clustering and leave-one-out decision tree 

analysis were performed using R 2.13.0 (rpart 

package). The relationship between logged 

mRNA expression levels and the prognostic 

groups, OS status and NB risk factors was 

determined using the non-parametric Kruskal-

Wallis test or Mann-Whitney test. Hazard ratios 

between logged mRNA expression data and 

survival were estimated using the Cox 

proportional hazard model. Kaplan-Meier curves 

were created by dichotomizing the logged mRNA 

expression data, using the median mRNA 

expression value as a cutoff. For HIST1H3C, the 

relationship between logged mRNA expression 

levels and the methylation status of the gene, 

and the MYCN status, was determined using the 

Mann-Whitney test. For all the above mentioned 

statistical tests, multiple hypothesis testing 

correction was performed (Benjamini-Hochberg 

method by using the R function p.adjust). 

 

Additional materials  

 

Additional files can be found at: 

http://genomebiology.biomedcentral.com/articl

es/10.1186/gb-2012-13-10-r95 

 

Additional File 1. Clinical patient annotation, 

MSP assays and results on the BioTrove 

discovery platform. Part BioTrove clinical 

annotation. Patient characteristics of the 

samples used for the initial high-throughput MSP 

screening on the BioTrove OpenArray. PatientID 

is a unique patient number, the group indicates 

the risk. Clinical characteristics given are the age 

at diagnosis in months, International 

Neuroblastoma Staging System (INSS) stage, 

MYCN amplification status (0 is non-amplified 

and 1 is amplified), follow-up time (FU) in days 

after diagnosis, and overall survival (OS) and 

event-free survival (EFS) time in days after 

diagnosis. OS indicates whether the patient was 

alive (0) at the last known FU or died of disese 

(1). Similar for EFS, indicating events, such as 

relapse or progression. Empty cells represent 

missing values. Part BioTrove assays. MSP 

assays used in the initial high-throughput MSP 

screening on the BioTrove OpenArray. For each 

tested gene, the assay name(s) and 

corresponding forward and reverse primer(s) (5’ 

to 3’) are indicated, as well as the genomic 

location of the amplicon on the hg19 reference 

genome. Part BioTrove results. Results of the 

initial high-throughput MSP screening on the 

BioTrove OpenArray. For each assay and sample, 

the methylation call (dark blue is methylated, 

green unmethylated) is given. Samples are 

subdivided into two prognostic groups (HR-DOD 

and LR-SURV). The specificity and sensitivity of 

the assays is indicated as well. Assyas selected 

for further testing are indicated in yellow. HR-

DOD: high-risk deceased patients and LR-SURV: 

low-risk patients alive for at least 1000 days 

follow-up. 

 

Additional File 2. Visualization of the 
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protocadherin beta gene cluster and the 

HIST1H3C promoter region in the Integrative 

Genomic Viewer. First panel. Visualization of a 

part of the protocadherin β (PCDHB) gene family 

cluster in IGV. For each NB cell line (SK-N-AS, 

CLB-GA, SH-SY5Y, SJNB-1, CHP-902R, IMR-32, 

LAN-2 and N206), the number of sequencing 

tags at each position is shown and the location 

of detected peaks is indicated with a red bar. 

The captured sequences clearly overlap with 

CpG islands in each individual member of this 

gene cluster. Second panel. Visualization of the 

promoter region of HIST1H3C in IGV. The four 

NB cell lines at the bottom (CHP-902R, IMR-32, 

LAN-2 and N206) are MYCN amplified. Three of 

these cell lines clearly show sequence tags in the 

CpG island, while the four NB cell lines on top 

(SK-N-AS, CLB-GA, SH-SY5Y and SJNB-1), which 

are MYCN non-amplified cell lines, do not show 

any signal.  

 

Additional File 3. Clinical patient annotation, 

summary of clinical characteristics, MSP assays, 

results and summarized results (per clinical 

parameter) on the LC480 platform for 89 NB 

patient samples. Assays differentially 

methylated between prognostic groups and 

between NB risk factors are discussed in detail, 

as well as extended analyses on the MSP data 

(hierarchical clustering (heatmap) and survival 

analysis according to the number of methylation 

events (Kaplan-Meier plot)). Part LC480 clinical 

annotation. Patient characteristics of the 

samples used for the high-throughput MSP 

screening on the Roche LC480. PatientID is a 

unique patient number, the group indicates the 

risk. Clinical characteristics given are the age at 

diagnosis in months, International 

Neuroblastoma Staging System (INSS) stage, 

MYCN amplification status (0 is non-amplified 

and 1 is amplified), follow-up time (FU) in days 

after diagnosis, and overall survival (OS) and 

event-free survival (EFS) time in days after 

diagnosis. OS indicates whether the patient was 

alive (0) at the last known FU or died of disease 

(1). Similar for EFS, indicating events such as 

relapse or progression. Segmental aberrations 

for chromosome 1p, 11q and 17q are indicated 

with normal, partial loss (PL), whole loss (WL), 

partial gain (PG) or whole gain (WG). Empty cells 

represent missing values. Part LC480 overview 

annotation. Summary of the clinical 

characteristics of the 89 primary NB samples 

used in the high-throughput MSP screening. Part 

LC480 assays. MSP assays used in the high-

throughput MSP screening on the Roche LC480. 

For each tested gene, the assay name(s) and 

corresponding forward and reverse primer(s) (5’ 

to 3’) are indicated, as well as the genomic 

location of the amplicon on the hg19 reference 

genome. Part LC480 results. Results of the high-

throughput MSP screening on the Roche LC480. 

For each assay and for each sample, the 

methylation call (dark blue is methylated, green 

unmethylated) is given. The patient samples are 

subdivided into three prognostic groups (LR-

SURV, HR-DOD and HR-SURV). CL: cell line; Neg: 

negative control (HCT-116 DKO cell line); NTC: 

no template control. Part LC480 overview 

results. Summary of the MSP results of the high-

throughput study. The number of methylated 

samples for a particular MSP assay within each 

prognostic group and for the entire sample set is 

given (percentage of methylated samples 

between brackets). Assays are ranked 

descending on the number of overall methylated 

samples. Assays discussed in more detail in the 

results section are indicated in grey. Part Group 

associations. Detailed information on a selection 

of assays, differentially methylated between 

prognostic groups (per prognostic group and per 

combination of risk factors). The number 

(percentage) of methylated samples in each 

stratum is given. Part Risk factor associations. 

Detailed information on a selection of assays, 

differentially methylated between NB risk 

factors (per (combination of) risk factors). The 

number (percentage) of methylated samples in 

each stratum is given. Part Heatmap. 

Hierarchical clustering based on the MSP data of 
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the 89 primary NB tumor samples. This analysis 

reveals two clusters, indicated with group 1 and 

group 2, which predominantly distinguish high-

risk and low-risk NB patient samples. Each 

sample is assigned to a prognostic group (LR-

SURV, HR-DOD and HR-SURV). Part KM number. 

Kaplan-Meier plot: overall survival in the 

samples of the high-throughput MSP screening 

according to the number of methylation events. 

The purple line indicates patients with 0 to 16 

methylation events, the red line patients with 16 

to 27 methylation events. This 16 methylation 

events cutoff was used, as the average number 

of methylation events in one sample is 16. The p-

value is determined using a log-rank test 

(Mantel-Cox). Time is indicated in days, starting 

from diagnosis. HR-DOD: high-risk deceased 

patients; HR-SURV: high-risk patients alive for at 

least 1000 days follow-up; INSS: International 

Neuroblastoma Staging System; LR-SURV: low-

risk patients alive for at least 1000 days follow-

up. 

 

Additional File 4. Clinical annotation, summary 

of clinical characteristics, qPCR assays and 

results of qPCR experiments on 366 NB patient 

samples (SIOPEN/GPOH cDNA library). Boxplots 

of the expression levels for CNR1, GRB10, KRT19, 

PRPH and QPCT in each of the five different NB 

stages (stages 1, 2, 3, 4 and 4S). A Kaplan-Meier 

plot shows overall survival according to the 

relative mRNA expression levels of CNR1, GRB10, 

KRT19, PRPH and QPCT. Part SIOPEN clinical 

annotation. Patient characteristics of the 

samples of the NB SIOPEN/GPOH cDNA library. 

PatientID is a unique patient number, the group 

indicates the risk. Clinical characteristics given 

are the age at diagnosis in months, International 

Neuroblastoma Staging System (INSS) stage, 

MYCN amplification status (0 is non-amplified 

and 1 is amplified), overall survival (OS) and 

event-free survival (EFS) time in days and 

months after diagnosis, respectively. OS 

indicates whether the patient was alive (0) at the 

last known follow-up or died of disease (1). 

Similar for EFS, indicating events, such as relapse 

or progression. Empty cells represent missing 

values. Part SIOPEN overview annotation. 

Summary of the clinical characteristics of the 

366 primary NB samples of the SIOPEN/GPOH 

cDNA library. Part SIOPEN assays. qPCR mRNA 

assays used in the mRNA expression profiling of 

the DNA-methylation biomarkers CNR1, GRB10, 

KRT19, PRPH and QPCT. For each tested gene, 

the assay name and corresponding forward and 

reverse primer (5’ to 3’) are indicated, as well as 

the genomic location of the amplicon on the 

hg19 reference genome. Part SIOPEN results. 

Results of the mRNA expression measurement of 

the DNA-methylation biomarkers CNR1, GRB10, 

KRT19, PRPH and QPCT. The Cq values were 

converted to relative quantities and log2 values. 

Relative gene expression levels were then 

normalized using the geometric mean of five 

reference sequences (HPRT1, SDHA, UBC, HMBS 

and AluSq). These logged and normalized qPCR 

data are given. Part Expression. Relative mRNA 

expression distribution of CNR1, GRB10, KRT19, 

PRPH and QPCT in each of the five different NB 

tumor stages (stage 1, 2, 3, 4 and 4S). In the box 

plots, the right and left hinge of the boxes 

represents the 75th percentile and 25th 

percentile, respectively. Whiskers, lines that 

extend from the box to the highest and lowest 

values, indicate the data range. Significant p-

values according to the Kruskal-Wallis test 

(corrected for multiple testing using Benjamini-

Hochberg) are indicated. Part Survival. Kaplan-

Meier plots: overall survival in the NB 

SIOPEN/GPOH samples according to the relative 

mRNA expression levels of CNR1, GRB10, KRT19, 

PRPH and QPCT. Survival curves indicated with 

‘High’ and ‘Low’ are the samples assigned to the 

high and low mRNA expression group, 

respectively, using the median relative mRNA 

expression value as a cutoff to create the 

groups. Significant p-values according to the log-

rank test (Mantel-Cox; corrected for multiple 

testing using Benjamini-Hochberg) are indicated. 

Time is indicated in days, starting from diagnosis 
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and censored to 4000 days (censored samples 

are indicated with vertical lines crossing the 

overall survival curves). HR-DOD: high-risk 

deceased patients; HR-SURV: high-risk patients 

alive for at least 1000 days follow-up; INSS: 

International Neuroblastoma Staging System; LR-

SURV: low-risk patients alive for at least 1000 

days follow-up. 

 

Additional File 5. Quantitative PCR and MSP 

assays for HIST1H3C and ACSS3 and matched 

results (expression levels - methylation call) for 

a panel of 31 NB cell lines. Part HIST1H3C and 

ACSS3 qPCR mRNA assay. qPCR mRNA assays 

used in the mRNA expression profiling of the 

DNA-methylation biomarkers HIST1H3C and 

ACSS3. For each gene, the assay name and 

corresponding forward and reverse primer (5’ to 

3’) are indicated. Part HIST1H3C - ACSS3 MSP 

cell lines. Results of the HIST1H3C and ACSS3 

MSP screen on 31 NB cell lines. The methylation 

call (dark blue is methylated, green 

unmethylated) of each cell line is indicated, as 

well as the MYCN amplification status. Part 

HIST1H3C qPCR cell lines. Results of the mRNA 

expression measurement of the DNA-

methylation biomarker HIST1H3C. The Cq values 

were converted to relative quantities and 

converted to log2 values. Relative gene 

expression levels were then normalized using 

the geometric mean of the reference sequences 

SDHA, UBC and AluSq. These logged and 

normalized qPCR data are given. 
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Abstract 

 

Accurate assessment of neuroblastoma outcome prediction remains challenging. Therefore, this 

study aims at establishing novel prognostic tumor DNA methylation biomarkers. In total, 396 low- 

and high-risk primary tumors were analyzed, of which 87 were profiled using methyl-CpG-binding 
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domain (MBD) sequencing for differential methylation analysis between prognostic patient groups. 

Subsequently, methylation-specific PCR (MSP) assays were developed for 78 top-ranking 

differentially methylated regions and tested on two independent cohorts of 132 and 177 samples, 

respectively. Further, a new statistical framework was used to identify a robust set of MSP assays of 

which the methylation score (i.e. the percentage of methylated assays) allows accurate outcome 

prediction. Survival analyses were performed on the individual target level, as well as on the 

combined multimarker signature. As a result of the differential DNA methylation assessment by MBD 

sequencing, 58 of the 78 MSP assays were designed in regions previously unexplored in 

neuroblastoma, and 36 are located in non-promoter or non-coding regions. In total, 5 individual MSP 

assays (located in CCDC177, NXPH1, lnc-MRPL3-2, lnc-TREX1-1 and one on a region from 

chromosome 8 with no further annotation) predict event-free survival and 4 additional assays 

(located in SPRED3, TNFAIP2, NPM2 and CYYR1) also predict overall survival. Furthermore, a robust 

58-marker methylation signature predicting overall and event-free survival was established. In 

conclusion, this study encompasses the largest DNA methylation biomarker study in neuroblastoma 

so far. We identified and independently validated several novel prognostic biomarkers, as well as a 

prognostic 58-marker methylation signature. 

 

Keywords: neuroblastoma, prognosis, DNA methylation, biomarker, biomarker signature 

 

 

Introduction 

 

Neuroblastoma (NB), a childhood tumor that 

originates from precursor cells of the 

sympathetic nervous system, is a heterogeneous 

disease with prognosis ranging from excellent 

long-term survival to high-risk with fatal 

outcome. In order to determine the most 

appropriate treatment modalities for each 

patient, patients are stratified into risk groups at 

the time of diagnosis, based on combinations of 

clinical (age of the patient, stage of the tumor) 

and biological (MYCN amplification status, DNA 

index, histopathology) parameters [1]. Use of 

this risk classification system has shown that 

patients characterized by the same 

clinicobiological parameters can have different 

disease outcomes, indicating that accurate 

assessment of prognosis of NB patients still 

remains difficult [2–4]. Therefore, additional 

prognostic markers are warranted, allowing a 

more accurate risk estimation and more rapid 

identification of those patients who will not 

benefit from current treatments. 

Molecular alterations of the epigenome, 

especially DNA methylation, have emerged as 

alternative targets of biomarker research. DNA 

methylation biomarkers potentially have great 

clinical value due to the stable nature of DNA. 

For this reason, there are many relevant 

applications of DNA methylation biomarkers in 

cancer. For example, they could be used for 

early tumor detection, tumor classification, 

stratification of treatment, tumor recurrence 

and patient prognosis, as well as predicting and 

monitoring a patient’s response to treatment 

(detailed review in reference [5]). In NB, several 

prognostic single-gene methylation biomarkers 

have been reported, e.g. promoter methylation 

of TNFRSF10D, CASP8, ZMYND10, RASSF1A, 

KRT19, GNAS, HIST1H3C, RB1 and TDGF1 [6–11]. 

Furthermore, a CpG island methylator 

phenotype (CIMP), described as the aberrant 

and concordant methylation of multiple 

promoter CpG islands, has been shown to be of 

prognostic significance [12–16].  

In this study, we aim to assess the primary NB 

tumor methylome in a genome-wide manner to 

identify differentially methylated regions (DMRs) 

between the prognostic patient groups, and to 
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use these DMRs to establish and validate new 

and valuable biomarkers. 

 

Results 

 

Methyl-CpG-binding domain (MBD) sequencing 

of primary tumors prioritizes differentially 

methylated regions (DMRs) between patient 

subgroups 

 

The study design is schematically represented in 

Figure 1. In the discovery phase, two 

independent cohorts of 42 (MBD cohort I) and 

45 (MBD cohort II) primary NB tumors, selected 

for risk classification and survival (low-risk 

survivors (LR-SURV), high-risk survivors (HR-

SURV) and high-risk deceased (HR-DOD)), were 

analyzed by methyl-CpG-binding domain (MBD) 

sequencing (Supplemental Table 1A and B). 

Sheared input DNA was enriched towards 

methylated fragments using the high affinity of 

the MBD of the MeCP2 protein towards 

methylated cytosines. These methylation-

enriched fractions, as well as the input (non-

MBD-enriched) DNA of MBD cohort II were then 

further studied by next-generation sequencing. 

After raw data analyses, differentially 

methylated regions (DMRs) between patient 

subgroups were detected using DESeq, which 

uses count data as input. The following patient 

subgroups were compared: HR-SURV versus HR-

DOD (on the entire cohorts, as well as on the 

high-risk MYCN amplified (HR-MYCN1) and non-

amplified (HR-MYCN0) cohorts only), LR-SURV 

versus HR-DOD, and HR-MYCN0 versus HR-

MYCN1 (Supplemental Table 2). The same 

analyses were performed on the input sample 

data in order to estimate the background signal 

and exclude falsely identified DMRs. The DESeq 

analyses yield for each region of interest the 

mean normalized counts per patient group, as 

well as the log2 fold change and p-value for the 

statistical significance of the difference. By 

calculating the π-value (π = -ln p-val * log2 fold 

change [17]) for each of these regions, a new 

significance score was defined, which was then 

used to rank the candidate prognostic DMRs. 

Hierarchical cluster analysis using normalized 

counts of the top-ranking DMRs yielded two 

sample clusters which mainly correspond to the 

patient groups used in the differential 

methylation analysis, highlighting the capability 

of our MBD sequencing analysis strategy in 

identifying biomarker candidates (examples 

shown in Supplemental Figure 1). 

 

Methylation-specific PCR (MSP) assays are 

designed and tested on two independent 

cohorts 

 

MBD sequencing data of the top-ranking DMRs 

(promoter regions and 5 kb windows) from the 

different prognostic comparisons were visualized 

in the Integrative Genomics Viewer (IGV; [18]) in 

order to locate the most informative 

(discriminative) region for MSP primer design 

(Figure 1). The importance of this step is 

illustrated by the promoter region of HNRNPH1, 

which was identified as differentially methylated 

between HR-SURV and HR-DOD patients, and LR-

SURV and HR-DOD patients (Supplemental 

Figure 2). MBD regions for which no clear 

discriminative region could be identified were 

excluded from further analyses and only DMRs 

hypermethylated in HR-DOD or HR-MYCN1 

samples were considered for further evaluation. 

In total, 78 MSP assays (Supplemental Table 2) 

were designed, analytically validated and tested 

on 19 NB cell lines (Supplemental Table 3), 

positive and negative controls (the (in vitro 

methylated) HCT-116 DKO cell line), along with 

two independent cohorts of 148 (MSP cohort I) 

and 202 (MSP cohort II) primary NB samples 

assigned to one of the three defined prognostic 

patient groups (Supplemental Table 4). Also the 

ACTB primer pair, a control assay that does not 

contain CpG sites and thus should always 

generate a PCR product, was tested on these 

samples to confirm successful DNA preparation 

(bisulfite treatment and amplification). In total, 
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Figure 1. Schematic representation of the study design. Differentially methylated regions (DMRs) between the 
prognostic patient groups are identified by methyl-CpG-binding domain (MBD) sequencing on MBD cohort I 
and II. For the top candidate prognostic DMRs, the MBD sequencing data were visualized in order to locate the 
most informative region for methylation-specific PCR (MSP) assay design. These assays were subsequently 
tested on MSP cohort I and II. By applying specific methylation calling criteria [10], a binary dataset for each of 
these cohorts was constructed, which was subsequently used for survival analyses. Cq: quantification cycle; h: 
height; Sz: size; Tm: melting temperature. The subscript pos refers to the data of the positive control sample. 

 

16 samples of MSP cohort I and 25 samples of 

MSP cohort II failed for this assay, probably due 

to low DNA quality, and were therefore excluded 

from the study. 

 

MSP confirms the validity of MBD sequencing in 

identifying candidate methylation biomarkers 

 

In both MSP cohort I and II, primary tumor 

samples of HR-DOD and HR-MYCN1 patients 

show more methylation events compared to 

either survivors (p = 0.001 for both cohorts; 

Supplemental Figure 3A and 3B) and HR-MYCN0 

patients (p < 0.001 for both cohorts; 

Supplemental Figure 3C and 3D), respectively. 

This again confirms the validity of MBD 

sequencing data in identifying candidate 

markers, as all MSP assays were designed in 

regions identified in the MBD sequencing data as 

being hypermethylated in HR-DOD or HR-MYCN1 

patients. To further strengthen MBD sequencing 

as a powerful technology for identification of 

genome-wide differential methylation, the 

genomic locations of the in-house designed MSP 

assays were compared to the genomic locations 

of the cytosines interrogated on the Infinium 

HumanMethylation450 BeadChip Kit (HM450 

array; Illumina). Of note, 58 MSP assays (74.36%) 

do not overlap with an interrogated cytosine on 

the HM450 array, and would thus not have been 

identified using this array technology (e.g. 

promoter region of UHRF2 in Supplemental
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Table 1. Survival analyses on the individual MSP assay level identify new biomarkers for overall and event-
free survival. 

 MSP cohort I MSP cohort II 

overall 
survival 

log-
rank 

univariable logistic regression 
log-
rank 

univariable logistic regression 

variable p p OR 95% CI p p OR 95% CI 

assay006  
(SPRED3) 

0.005 0.043 2.26 1.03 - 4.96 0.014 0.030 2.08 1.08 - 4.04 

assay008  
(TNFAIP2) 

0.008 0.009 3.13 1.33 - 7.40 0.025 0.020 2.28 1.14 - 4.57 

assay011 0.002 0.001 3.56 1.64 - 7.75 < 0.001 < 0.001 3.82 1.81 - 8.08 

assay062  
(NPM2) 

0.021 0.010 4.19 1.41 - 12.46 0.038 0.036 2.38 1.06 - 5.33 

assay087  
(NXPH1) 

0.014 0.043 2.26 1.03 - 4.96 0.003 0.004 2.60 1.37 - 4.95 

assay108  
(CYYR1) 

0.024 0.004 3.46 1.48 - 8.13 0.046 0.040 1.93 1.03 - 3.61 

assay111 
(CCDC177) 

0.002 < 0.001 3.68 1.71 - 7.89 0.020 0.022 2.11 1.11 - 3.99 

assay113  
(lnc-MRPL3-2) 

0.002 0.004 3.03 1.43 - 6.43 0.034 0.056 1.84 0.98 - 3.45 

assay116  
(lnc-TREX1-1) 

0.008 0.056 3.27 0.97 - 10.98 0.004 0.021 2.87 1.18 - 7.01 

event-free 
survival 

log-
rank 

univariable logistic regression 
log-
rank 

univariable logistic regression 

variable p p OR 95% CI p p OR 95% CI 

assay011 0.007 0.006 2.77 1.35 - 5.70 < 0.001 < 0.001 4.18 2.02 - 8.67 

assay087 
(NXPH1) 

0.018 0.017 2.58 1.19 - 5.62 0.003 0.004 2.56 1.35 - 4.83 

assay111 
(CCDC177) 

< 0.001 < 0.001 4.94 2.33 - 10.48 0.007 0.004 2.52 1.34 - 4.74 

assay113 
(lnc-MRPL3-2) 

0.035 0.040 2.12 1.04 - 4.32 0.038 0.030 1.98 1.07 - 3.67 

assay116 
(lnc-TREX1-1) 

0.022 0.060 3.33 0.95 - 11.70 0.019 0.055 2.38 0.98 - 5.80 

Note. For each individual MSP assay, the log-rank p-values, and the p-value, odds ratio (OR) and 95% 
confidence interval (CI) of the univariable logistic regression analyses are shown. Methylation of the individual 
markers is associated with worse overall and event-free survival. 
 

Figure 4). Also, 36 MSP assays (46.15%) are 

located in non-promoter or non-coding regions. 

 

Survival analyses on the individual MSP assay 

level identify new prognostic biomarkers 

 

Overall, the percentage of methylated samples 

per MSP assay ranges from 96.97% to 2.27% in 

MSP cohort I, and from 97.18% to 1.70% in MSP 

cohort II, and variable percentages between the 

prognostic patient groups are detected 

(Supplemental Table 4). The results of the 

survival analyses (log-rank test) on each 

individual MSP assay and the different patient 

(sub)cohorts are indicated in Supplemental Table 

2. Although the survival analyses on the high-risk 

subgroups did not yield significant results, 

analyses on the entire cohorts identified 9 

individual prognostic MSP assays for overall 

survival (OS) and 5 assays for event-free survival 

(EFS) that were significantly detected in both 

MSP cohort I and II (Table 1). For EFS, these 

assays are located in the promoter region or 

gene body of CCDC177 and NXPH1, and the long 

non-coding RNAs lnc-MRPL3-2 and lnc-TREX1-1. 

The additional prognostic assays for OS are



   

 
 

Table 2. The nine individual prognostic MSP assays are differentially methylated between patient groups with distinct neuroblastoma risk factors (MSP cohort I). 
MSP cohort I 

factor - number (percentage) 
assay006 
(SPRED3) 

assay008 
(TNFAIP2) 

assay011 
assay062 
(NPM2) 

assay087 
(NXPH1) 

assay108 
(CYYR1) 

assay111 
(CCDC177) 

assay113 
(lnc-MRPL3-2) 

assay116 
(lnc-TREX1-1) 

INSS stage 

stage 1  
(n =27) 

3 (11.11) 0 (0.00) 6 (22.22) 0 (0.00) 2 (7.41) 1 (3.70) 2 (7.41) 8 (29.63) 1 (3.70) 

stage 2  
(n = 18) 

1 (5.56) 1 (5.56) 7 (38.89) 1 (5.56) 1 (5.56) 0 (0.00) 5 (27.78) 4 (22.22) 0 (0.00) 

stage 3  
(n = 33) 

15 (45.45) 10 (30.30) 17 (51.52) 5 (15.15) 16 (48.48) 11 (33.33) 16 (48.48) 13 (39.39) 4 (12.12) 

stage 4  
(n = 54) 

18 (33.33) 17 (31.48) 35 (64.81) 10 (18.52) 18 (33.33) 17 (31.48) 32 (59.26) 28 (51.85) 7 (12.96) 

MYCN 
amplification 

status 

MYCN0  
(n = 96) 

11 (11.46) 11 (11.46) 39 (40.63) 5 (5.21) 12 (12.50) 13 (13.54) 29 (30.21) 28 (29.17) 2 (2.08) 

MYCN1  
(n = 36) 

26 (72.22) 17 (47.22) 26 (72.22) 11 (30.56) 25 (69.44) 16 (44.44) 26 (72.22) 25 (69.44) 10 (27.78) 

age at diagnosis 

≤ 12 months  
(n = 54) 

6 (11.11) 1 (1.85) 17 (31.48) 1 (1.85) 9 (16.67) 1 (1.85) 11 (20.37) 11 (20.37) 1 (1.85) 

> 12 months  
(n = 78) 

31 (39.74) 27 (34.62) 48 (61.54) 15 (19.23) 28 (35.90) 28 (35.90) 44 (56.41) 42 (53.85) 11 (14.10) 

≤ 18 months  
(n = 63) 

10 (15.87) 5 (7.94) 22 (34.92) 1 (1.59) 10 (15.87) 2 (3.17) 14 (22.22) 16 (25.40) 1 (1.59) 

> 18 months  
(n = 39) 

27 (39.13) 23 (33.33) 43 (62.32) 15 (21.74) 27 (39.13) 27 (39.13) 41 (59.42) 37 (53.62) 11 (15.94) 

factor - statistics (p) 
assay006 
(SPRED3) 

assay008 
(TNFAIP2) 

assay011 
assay062 
(NPM2) 

assay087 
(NXPH1) 

assay108 
(CYYR1) 

assay111 
(CCDC177) 

assay113 
(lnc-MRPL3-2) 

assay116 
(lnc-TREX1-1) 

INSS stage 0.002 < 0.001 0.003 0.056 < 0.001 < 0.001 < 0.001 0.085 0.302 

MYCN amplification status < 0.001 < 0.001 0.002 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

age at diagnosis (cutoff 12 months) < 0.001 < 0.001 0.001 0.002 0.018 < 0.001 < 0.001 < 0.001 0.027 

age at diagnosis (cutoff 18 months) 0.004 < 0.001 0.002 < 0.001 0.004 < 0.001 < 0.001 0.001 0.005 

(continues) 
Note. For each of the nine individual prognostic MSP assays the number (percentage) of methylated samples in each stratum of MSP cohort I is given. P-values are 
according to the Fisher’s exact test. INSS: International Neuroblastoma Staging System; MYCN0: MYCN non-amplified; MYCN1: MYCN amplified.  



   

 
 

Table 2. The nine individual prognostic MSP assays are differentially methylated between patient groups with distinct neuroblastoma risk factors (MSP cohort II). 
(continued) 

MSP cohort II 

factor - number (percentage) 
assay006 
(SPRED3) 

assay008 
(TNFAIP2) 

assay011 
assay062 
(NPM2) 

assay087 
(NXPH1) 

assay108 
(CYYR1) 

assay111 
(CCDC177) 

assay113 
(lnc-MRPL3-2) 

assay116 
(lnc-TREX1-1) 

INSS stage 

stage 1  
(n =27) 

2 (7.41) 1 (3.70) 7 (25.93) 0 (0.00) 3 (11.11) 10 (37.04) 11 (40.74) 10 (37.04) 1 (3.70) 

stage 2  
(n = 17) 

4 (23.53) 3 (17.65) 8 (47.06) 0 (0.00) 4 (23.53) 5 (29.41) 6 (35.29) 4 (23.53) 0 (0.00) 

stage 3  
(n = 27) 

7 (25.93) 6 (22.22) 14 (51.85) 5 (18.52) 9 (33.33) 12 (44.44) 9 (33.33) 14 (51.85) 6 (22.22) 

stage 4  
(n = 103) 

41 (39.81) 35 (33.98) 83 (80.58) 24 (23.30) 48 (46.60) 50 (48.54) 66 (64.08) 56 (54.37) 16 (15.53) 

MYCN 
amplification 

status 

MYCN0  
(n = 115) 

11 (9.57) 14 (12.17) 63 (54.78) 11 (9.57) 22 (19.13) 39 (33.91) 47 (40.87) 43 (37.39) 7 (6.09) 

MYCN1  
(n = 60) 

43 (71.67) 30 (50.00) 48 (80.00) 18 (30.00) 40 (66.67) 37 (61.67) 43 (71.67) 40 (66.67) 16 (26.67) 

age at diagnosis 

≤ 12 months  
(n = 53) 

1 (1.89) 1 (1.89) 14 (26.42) 0 (0.00) 8 (15.09) 12 (22.64) 10 (18.87) 11 (20.75) 3 (5.66) 

> 12 months  
(n = 124) 

53 (42.74) 44 (35.48) 99 (79.84) 29 (23.39) 56 (45.16) 65 (52.42) 82 (66.13) 73 (58.87) 20 (16.13) 

≤ 18 months  
(n = 74) 

10 (13.51) 4 (5.41) 27 (36.49) 2 (2.70) 14 (18.92) 23 (31.08) 22 (29.73) 22 (29.73) 8 (10.81) 

> 18 months  
(n = 103) 

44 (42.72) 41 (39.81) 86 (83.50) 27 (26.21) 50 (48.54) 54 (52.43) 70 (67.96) 62 (60.19) 15 (14.56) 

factor - statistics (p) 
assay006 
(SPRED3) 

assay008 
(TNFAIP2) 

assay011 
assay062 
(NPM2) 

assay087 
(NXPH1) 

assay108 
(CYYR1) 

assay111 
(CCDC177) 

assay113 
(lnc-MRPL3-2) 

assay116 
(lnc-TREX1-1) 

INSS stage 0.006 0.005 < 0.001 0.002 0.003 0.439 0.004 0.066 0.066 

MYCN amplification status < 0.001 < 0.001 0.001 0.001 < 0.001 0.001 < 0.001 < 0.001 < 0.001 

age at diagnosis (cutoff 12 months) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.085 

age at diagnosis (cutoff 18 months) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.006 < 0.001 < 0.001 0.505 

Note. For each of the nine individual prognostic MSP assays the number (percentage) of methylated samples in each stratum of MSP cohort II is given. P-values are 
according to the Fisher’s exact test. INSS: International Neuroblastoma Staging System; MYCN0: MYCN non-amplified; MYCN1: MYCN amplified. 
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located in the promoter region of SPRED3, 

TNFAIP2, NPM2 and CYYR1. For MSP assay011, 

which has prognostic value for both OS and EFS, 

the amplicon is located on chr8:143 498 349 - 

143 498 469 (flanking genes are TSNARE1 

(downstream on ± 14 kb) and BAI1 (upstream on 

± 47 kb on opposite strand)). The corresponding 

results of the univariable logistic regression 

analyses are also shown in Table 1, and 

associations between the prognostic DNA 

methylation biomarkers and established 

prognostic NB risk factors (MYCN amplification, 

age at diagnosis (both 12 and 18 month cutoff) 

and International Neuroblastoma Staging System 

(INSS) stage [19]) are shown in Table 2. 

 

A 58-marker methylation signature with 

accompanying methylation score cutoff of 25% 

predicts overall and event-free survival 

 

As all MSP assays were designed in regions 

identified as hypermethylated in HR-DOD or HR-

MYCN1 samples and as the MSP data show 

association with outcome (Supplemental Figure 

3A-3D), the possibility of establishing a robust 

and accurate multimarker signature for OS and 

EFS based on the number of methylation events 

was explored. To this purpose, a new statistical 

framework was developed, which allows 

identification of a robust set of MSP assays of 

which the methylation scores (i.e. the 

percentage of methylated assays in each sample) 

allow accurate outcome prediction (details in 

Materials and Methods and Figure 2). The 

signature was trained on MSP cohort I and 

tested on MSP cohort II. For the high-risk 

subgroups, the resulting signature was not 

prognostic, but using the entire sample cohorts, 

a set of 58 MSP assays (Supplemental Table 4) 

with a methylation score cutoff of 25% was put 

forward and shown to significantly predict OS (p 

< 0.001 for both cohorts, log-rank test) and EFS 

(p = 0.001 for MSP cohort I and p < 0.001 for 

MSP cohort II). For MSP cohort I, OS at 5 years of 

follow-up is 80.14% (95% confidence interval (CI) 

72.06 - 89.11) for the group of patients at 

methylation low-risk, compared to 47.74% 

(34.43 - 66.18) for the group of patients at 

methylation high-risk. The 5-year EFS is 80.54% 

(72.40 - 89.61) and 55.22% (40.92 - 74.51) in the 

methylation low- and high-risk groups, 

respectively. For MSP cohort II, OS at 5 years of 

follow-up is 86.67% (79.92 - 93.98) for the 

methylation low-risk group, compared to 44.20% 

(34.14 - 57.23) for the methylation high-risk 

group. Here, the 5-year EFS is 86.86% (79.86 - 

94.47) and 53.34% (42.06 - 67.65) in the 

methylation low- and high-risk groups, 

respectively. The corresponding Kaplan-Meier 

curves are depicted in Figure 3. Power analyses 

using these survival rates illustrate that the MSP 

cohorts contain sufficient numbers of samples to 

obtain 90% power at 5% significance level. The 

signature has a balanced accuracy (BAC) of 

70.12% for OS and 65.71% for EFS on MSP 

cohort I. On MSP cohort II, these values are 

71.28% and 67.97%, respectively. Univariable 

logistic regression analyses also illustrate that 

the signature predicts OS and EFS, and 

multivariable logistic regression analyses show 

that the signature is a significantly independent 

predictor of OS in MSP cohort II after controlling 

for known risk factors (Supplemental Table 5). 

Associations between the signature predictions 

and established NB risk factors are shown in 

Table 3. 

 

Discussion 

 

MYCN amplification was identified as first 

genetic prognostic marker, in addition to age at 

diagnosis and tumor stage, which is still used 

today in therapeutic stratification [1]. Further 

studies have attempted to explore additional 

parameters to improve prognostic classification. 

Most notably, these include large chromosomal 

imbalances as well as transcriptome-based gene 

signatures. Given the low mutation burden,
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Figure 2. A new statistical framework was developed to identify a robust multimarker signature for accurate 
outcome prediction. The framework consists of three major steps: (1) signatures construction, (2) evaluation of 
the performance and robustness of the constructed signatures and (3) the selection of the final signature. 
Details of every step are described in the materials and methods section. a: assay; BAC: balanced accuracy; 
s:sample; TNR: true negative rate (specificity); TPR: true positive rate (sensitivity).  
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Figure 3. A robust 58-marker methylation signature and methylation score of 25% predicts overall and event-
free survival. Kaplan-Meier curves and log-rank p-values for overall survival (MSP cohort I in A. and MSP cohort 
II in B.) and event-free survival (MSP cohort I in C. and MSP cohort II in D.) are shown. The numbers of patients 
at methylation low- and high-risk as predicted by the 58-marker signature are indicated. The numbers in 
parentheses in the plots refer to the number of patients that experienced an event (deceased of disease for 
overall survival, and relapse, progression or deceased of disease for event-free survival). *Missing follow-up 
time for two methylation low-risk patients and three methylation high-risk patients. **Missing follow-up time 
for five methylation high-risk patients, and event status and follow-up time for one patient. 

 

more recent sequencing efforts did not deliver 

significant novel tools for prognostic 

stratification [20], although ALK mutation status 

is of importance for including patients for 

targeted therapy with ALK inhibitors. Recent 

studies have shown that NB biology is also 

strongly determined by the epigenetic profile of 

the tumor, which has paved the way for 

prognostic DNA methylation biomarker research. 

During the past years, multiple prognostic single-

gene methylation biomarkers have been 

described in NB; also a so-called CpG island 

methylator phenotype (CIMP) was found to be 

of prognostic value [6–16]. Here, we studied the 

NB methylome in a genome-wide manner to 

establish and validate novel prognostic 

biomarkers for OS and EFS.  

Several features contribute to the novel and 

comprehensive aspect of our study. A first 

important feature is the number of analyzed 
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tumor samples. In total, 396 primary tumors 

were included, which is the largest series studied 

to date. Most reported studies only rely on NB 

cell lines or on a relatively limited number of 

tumors in the discovery phase and thus fall short 

in covering the NB heterogeneity, or lack 

independent validation on large sample cohorts. 

Of note, previous studies on mRNAs and 

microRNAs in NB have emphasized that 

biomarkers are of little or no utility if they are 

not validated on an independent patient cohort 

[21,22]. Here, MBD sequencing was applied to 

87 primary tumors, carefully selected for risk 

classification, allowing optimal biomarker 

discovery, and two independent cohorts of 132 

and 177 primary tumors were used to test the 

selected candidate biomarkers. Power analyses 

further emphasize that these large sample 

collections result in adequate power of the 

study. 

 

Table 3. The 58-marker signature predictions are associated with established neuroblastoma risk factors. 

MSP cohort I 

factor - number (percentage) OS signature prediction EFS signature prediction 

INSS stage 

stage 1 (n =27) 0 (0.00) 0 (0.00) 

stage 2 (n = 18) 1 (5.56) 1 (5.56) 

stage 3 (n = 33) 15 (45.45) 15 (45.45) 

stage 4 (n = 54) 28 (51.85) 28 (51.85) 

MYCN amplification 
status 

MYCN0 (n = 96) 17 (17.71) 17 (17.71) 

MYCN1 (n = 36) 27 (75.00) 27 (75.00) 

age at diagnosis 

≤ 12 months (n = 54) 5 (9.26) 5 (9.26) 

> 12 months (n = 78) 39 (50.00) 39 (50.00) 

≤ 18 months (n = 63) 8 (12.70) 8 (12.70) 

> 18 months (n = 69) 36 (52.17) 36 (52.17) 

MSP cohort II 

factor - number (percentage) OS signature prediction EFS signature prediction 

INSS stage 

stage 1 (n =27) 4 (14.81) 4 (14.81) 

stage 2 (n = 17) 4 (23.53) 4 (23.53) 

stage 3 (n = 27) 7 (25.93) 7 (25.93) 

stage 4 (n = 103*) 72 (69.90) 71 (69.61) 

MYCN amplification 
status 

MYCN0 (n = 115) 38 (33.04) 38 (33.04) 

MYCN1 (n = 60)* 47 (78.33) 46 (77.97) 

age at diagnosis 

≤ 12 months (n = 53) 1 (1.89) 1 (1.89) 

> 12 months (n = 124*) 86 (69.35) 85 (69.11) 

≤ 18 months (n = 74) 9 (12.16) 9 (12.16) 

> 18 months (n = 103*) 78 (75.73) 77 (75.49) 

Note. For both OS and EFS, the number (percentage) of methylation high-risk samples in each stratum of MSP 
cohort I and II is given. All associations are statistically significant (p < 0.001; Fisher’s exact test). *Missing EFS 
status for one patient. EFS: event-free survival; INSS: International Neuroblastoma Staging System; MYCN0: 
MYCN non-amplified; MYCN1: MYCN amplified; OS: overall survival.  
 

Another important feature is that we made use 

of MBD sequencing of primary NB tumors in the 

discovery phase to identify novel biomarker 

candidates. Compared to the Illumina 

methylation arrays, which were previously 

applied to NB tumors, MBD sequencing 

interrogates more CpGs (approximately 18% of 

all CpGs versus < 2% for the arrays [23]) and thus 

allows extension of the biomarker discovery 

phase to previously unexplored regions. MBD 

sequencing also has higher genomic coverage 

than methodologies based on antibodies 

(methylated DNA immunoprecipitation (MeDIP)) 

[24]. This genome-wide assessment of the DNA 
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methylation pattern is reflected in the final 

selection of MSP assays, as we have shown that 

most of the assays would not have been 

identified using the HM450 array and that a 

substantial part of the assays is located in non-

promoter or non-coding regions. These findings 

support previous studies in other cancer types 

that show that it is important to extend the 

search for potentially clinical applicable DNA 

methylation biomarker to the entire methylome 

rather than focusing on promoter CpG islands of 

which methylation is in most cases inversely 

correlated to their transcriptional activity [5].  

The prognostic relevance of the selected 

candidate biomarkers was further analyzed in 

two large independent cohorts using our 

previously established high-throughput and 

semi-automated MSP pipeline [10]. As these 

cohorts include a considerable number of both 

high-risk survivors and non-survivors, the 

candidates could not only be tested on the 

entire sample cohorts, but also on the high-risk 

cohorts only. This analysis is very valuable, for 

the reason that the need for prognostic 

biomarkers is the highest within this group of 

patients. However, although differential 

methylation analyses and hierarchical clustering 

on the MBD sequencing data illustrate that high-

risk survivors and high-risk non-survivors show 

different methylation patterns, the MSP screens 

did not identify markers that were significantly 

prognostic in both MSP high-risk cohort I and II. 

Importantly, this does not mean that high-risk 

DNA methylation biomarkers cannot be found. It 

only indicates that the methylation differences 

in the DMRs (of 2 kb or 5 kb) in the MBD 

sequencing data between these high-risk groups 

are too subtle to be easily translated in an MSP 

assay which only interrogates a few CpGs. 

Therefore, the possibility of establishing high-

risk methylation biomarkers based on genome-

wide bisulfite sequencing, which allows analysis 

of the methylome at the single CpG level, should 

be addressed in the future. These future studies 

might also benefit from focusing on more 

homogeneous high-risk patient groups, for 

example by only studying MYCN amplified or 

non-amplified samples, as the heterogeneity 

within our high-risk cohort might also have 

counteracted the possibility of establishing high-

risk DNA methylation biomarkers.  

Nevertheless, our validation efforts allowed 

robust identification of prognostic assays on the 

entire patient cohorts. Newly discovered 

individual prognostic methylation biomarkers for 

event-free survival (EFS) are CCDC177 and 

NXPH1, and SPRED3, TNFAIP2, NPM2 and CYYR1 

for overall survival (OS). Interestingly, some of 

these biomarkers are linked with neural 

processes and/or have already been described in 

other tumor types. For example, NXPH1 encodes 

the neurexophilin 1 protein that forms a very 

tight complex with alpha neurexins, a group of 

proteins that promote adhesion between 

dendrites and axons, and methylation of this 

gene was previously described as potential 

diagnostic biomarker for breast cancer [26]. 

TNFAIP2 (tumor necrosis factor, alpha-induced 

protein 2) was also found to be hypermethylated 

in colorectal cancer [27] and NPM2 

(nucleophosmin/ nucleoplasmin 2) in melanoma 

[28] and acute myeloid leukemia [29]. 

Alterations of sequence and expression of CYYR1 

(cysteine/tyrosine-rich 1) were previously 

observed in neuroendocrine tumors [30]. 

Remarkably, also three non-coding methylation 

biomarkers for OS and EFS were identified (lnc-

MRPL3-2, lnc-TREX1-1 and assay011). Assay011 

is located on chr8:143 498 349 - 143 498 469, 

but further annotation is not available for this 

region. These findings again underscore the 

importance of screening the entire methylome 

for biomarker discovery. Of note, the role of 

methylation of these non-promoter CpGs in NB 

is currently unclear and should also be topic of 

further investigation, as it has been shown that 

DNA methylation outside promoters may also be 

crucial for gene regulation [25]. Clearly, this 

might reveal new aspects of NB tumorigenesis.  

Finally, a new statistical framework was applied 
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to identify a robust set of MSP assays of which 

the methylation scores of the samples allow 

accurate outcome prediction. Both for OS and 

EFS, a 58-marker signature with a methylation 

score cutoff of 25% was selected based on the 

data of MSP cohort I. Survival analyses on both 

MSP cohort I and II indicate that the signature 

displays prognostic value for OS and EFS, and is a 

significant independent predictor of OS in MSP 

cohort II after controlling for established NB risk 

factors. All newly discovered individual 

prognostic methylation biomarkers are part of 

the signature and further inspection of the other 

assays included in the signature shows 

biomarkers previously described in other tumor 

types, as well as genes previously linked to NB, 

such as NAV2, which functions in axonal 

elongation and is required for all-trans retinoic 

acid to induce neurite outgrowth in human NB 

cells [31]. Also in this regard, the present study is 

unique, since combining multiple individual 

methylation assays into a single biomarker 

signature is not previously reported in NB, with 

the exception of testing the CpG island 

methylator phenotype (CIMP), but this assay 

panel was simply adopted from the colorectal 

cancer research field. Yet, it should be tested 

whether these established DNA methylation 

biomarkers can further improve the 

performance of our 58-marker signature.  

In conclusion, the applications of DNA 

methylation biomarkers in cancer management 

are versatile and these should definitely be 

further explored in the context of NB. During the 

past decades, many efforts have been made to 

identify prognostic DNA methylation biomarkers 

for NB, but currently no such biomarkers have 

made it to the clinic, as they lack comprehensive 

validation. In our study, we performed genome-

wide methylation profiling of primary NB tumors 

using MBD sequencing to discover novel 

prognostic methylation biomarkers and 

subsequently tested top candidates in two 

independent cohorts using MSP. As such, we 

comprised 396 patients in total, which greatly 

increases the validity of the study and makes it 

the largest DNA methylation biomarker study in 

NB to date. We robustly identified several novel 

individual biomarkers for OS and EFS, and could 

develop a prognostic 58-marker signature of 

which a methylation score cutoff of 25% allows 

accurate outcome prediction in the total patient 

cohorts. Furthermore, on the validation cohort, 

this signature was an independent predictor of 

OS after controlling for known NB risk factors, 

clearly indicating its clinical relevance. As such, 

this study forms a solid basis for further 

investigation of our biomarkers and signature in 

NB subgroups which could not be robustly 

examined in our cohorts (low-risk non-survivors 

and more homogeneous high-risk subgroups). 

Ideally, also the integration with other DNA 

methylation biomarkers and -omic data should 

be further explored to fully optimize the 

assessment of NB prognosis and appropriate 

stratification of patient treatment. 

 

Materials and methods 

 

Neuroblastoma cell lines and primary tumors 

 

In total, 437 primary NB tumor samples were 

used to establish four independent sample 

cohorts: MBD cohort I (n = 42), MBD cohort II (n 

= 45), MSP cohort I (n = 148) and MSP cohort II 

(n = 202). Also 19 NB cell lines (Supplemental 

Table 3) were included in the study. All primary 

tumor samples were assigned to one of three 

previously defined [10] risk groups based on NB 

risk parameters (INSS stage, MYCN amplification 

status and age of the patient at diagnosis) and 

disease outcome: (1) high-risk patients that died 

of disease (HR-DOD), (2) high-risk survivors (HR-

SURV), or (3) low-risk survivors (LR-SURV). 

Samples were collected at the Centre Léon 

Bérard (n = 125, Lyon, France), the Hospital 

Clínico Universitario (n = 86; Valencia, Spain), the 

Ghent University Hospital (n = 80; Ghent, 

Belgium), the Sydney Children’s Hospital (n = 48; 

Sydney, Australia), the Institut Curie (n = 37, 
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Paris, France), the Children’s Cancer and 

Leukemia Group (n = 29, Leicester, UK), the Our 

Lady’s Children’s Hospital Dublin (n = 13; Dublin, 

Ireland), the University Hospital Brno (n = 11, 

Brno, Czech Republic) and the University 

Children’s Hospital Essen (n = 8; Essen, 

Germany). Detailed clinical characteristics of the 

patients and a summary across the different 

subcohorts are given in Supplemental Table 1. 

The study was approved by the ethical 

committee of the Ghent University Hospital 

(approval number: B67020109912). 

 

Methyl-CpG-binding domain sequencing 

 

DNA fragmentation and MBD-based capturing of 

42 (MBD cohort I) and 45 (MBD cohort II) 

samples were performed as described in [32] 

and Decock et al., in preparation. Briefly, 200-

500 ng sheared DNA was used to enrich for 

methylated fragments using the MethylCap kit 

(MBD from MeCP2; Diagenode). For each 

captured fraction of the samples of MBD cohort 

I, DNA library preparation was performed using 

the NEBNext DNA Library Prep Master Mix Set 

for Illumina (New England Biolabs) in 

combination with the Multiplexing Sample 

Preparation Oligonucleotide Kit (Illumina) for 

paired-end adapter ligation. For the input and 

enriched fractions of the samples of MBD cohort 

II, library preparation was automated on an 

Apollo 324 Next Generation Sequencing Library 

Preparation System (IntegenX), making use of 

the PrepX ILM DNA Library Kit (IntegenX) in 

combination with the Multiplexing Sample 

Preparation Oligonucleotide Kit. Paired-end 

sequencing was performed on an Illumina GAIIx 

(MBD cohort I; PE 2 x 45 bp) and HiSeq2000 

(MBD cohort II; PE 2 x 51 bp). 

 

Methylation-specific PCR 

Experimental MSP conditions and methylation 

calling were done as previously described [10] 

and are shown in Figure 1. Here, 78 technically 

validated MSP primer pairs (and the 

methylation-independent ACTB control assay; 

Supplemental Table 2) were tested on amplified 

bisulfite-treated DNA from 19 NB cell lines and 

two independent cohorts of 148 (MSP cohort I) 

and 202 (MSP cohort II) patients, selected from 

the previously defined prognostic patient 

groups. 

 

Bioinformatics and statistical analyses 

 

Methyl-CpG-binding domain sequencing 

Raw MBD sequencing data were demultiplexed 

and converted to FASTQ files. Quality control 

was performed by FastQC, followed by paired-

end read mapping to the human reference 

genome (hg19) using Bowtie2 [33] and SAMtools 

[34]. PCR duplicates were marked by Picard and 

mapping quality control was done by SAMStat 

[35] and bamUtil. Peaks were called using MACS 

[36]. Data have been deposited into the Gene 

Expression Omnibus (GEO; GSE69224 and 

GSE69243). Count matrices for differential 

methylation analyses between the prognostic 

patient subgroups in DESeq [37] were 

constructed using the R ShortRead [38] and 

rtracklayer [39] packages. Here, for both MBD 

cohorts, two count datasets were constructed. 

The first one represents a table that reports for 

each MBD-enriched sample the number of 

mapped reads that are assigned to the promoter 

region (-1,500 bp to +500 bp around 

transcription start site (TSS)) of the different 

Ensembl Transcripts (release 68), and the second 

one to 5 kb genomic windows (2.5 kb 

overlapping moving windows). Hierarchical 

clustering was performed using the R gplots and 

RColorBrewer packages. 

 

Methylation-specific PCR 

For survival analyses on the MSP data, the 

Kaplan- Meier method was used to estimate 

overall and event-free survival (OS and EFS) 

probabilities, and survival functions were 

compared with the log-rank test (R survival 

package). OS time was defined as the time 
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between diagnosis and disease-related death or 

last follow-up. EFS time is the time between 

diagnosis and first occurrence of relapse, 

progression or death of disease, or last follow-

up. P-values < 0.05 were considered statistically 

significant. All individual assays were tested, as 

well as a multimarker signature that was 

established on MSP cohort I using a new 

statistical framework (Figure 2 and Cannoodt et 

al., in preparation). This framework involves 

three major steps: (1) the construction of 

signatures, (2) the evaluation of the 

performance and robustness of each 

constructed signature, and (3) the signature 

selection. The construction of signatures (step 1) 

is based on the performance of the individual 

assays, which is evaluated by determining the 

following statistical metrics: sensitivity (true 

positive rate (TPR)), specificity (true negative 

rate (TNR)) and balanced accuracy (BAC). Each of 

these metrics was subsequently used to rank the 

assays (from highest to lowest value) and a 

cutoff, defined by percentiles of the ranked list 

(from 0% to 100% with 5% increment; 21 

possible cutoffs), was applied to select a specific 

assay set. Then, the methylation score (i.e. the 

percentage of methylated assays) for each of the 

samples is calculated and used to rank the 

samples (from lowest to highest value). Again, a 

percentage cutoff is applied on the ranked list, 

which allows making risk predictions for each 

sample. Samples with a methylation score above 

the cutoff have a high risk. Samples with a 

methylation score below the cutoff have a low 

risk. Given the number of tested metrics to 

evaluate the individual assay performance (3 

possibilities), the number of possible cutoffs to 

select a specific assay set (21 possibilities), and 

the number of possible methylation score 

cutoffs (21 possibilities), 1,323 signatures were 

constructed and further evaluated on their 

performance and robustness (step 2). The 

performance of the constructed signatures was 

examined by determining the BAC, as well as a 

score that reflects how well the percentage of 

predicted samples with an event equals the true 

percentage of samples with an event (score of % 

event samples in Figure 2). The robustness of the 

constructed signatures was tested by performing 

100 bootstraps, creating a subcohort containing 

half of the samples. For each of these 100 

subcohorts, signatures were constructed as 

described above and for each combination of 

parameters the Jaccard similarity index [40] 

between the selected assay set on the entire 

cohort and the bootstrap cohort was computed. 

The robustness of the signature is then reflected 

in the mean Jaccard similarity of the 100 

bootstraps (R caret package). In order to select a 

final signature (step 3), the performance and 

robustness metrics are combined in a weighted 

harmonic mean, and the signature with the 

highest value is retained. Also power analyses 

(SAS Power and Sample Size), and univariable 

and multivariable logistic regression analyses (R 

survival package) were performed. Included 

factors in the multivariable analyses are: the 

MYCN amplification status (MYCN amplified 

versus non-amplified as reference), age of the 

patient at diagnosis (> 18 months versus ≤ 18 

months as reference [41]), INSS stage (stage 4 

versus not stage 4 as reference) and the 

signature prediction (methylation high-risk 

versus methylation low-risk as reference). 

Associations between the prognostic DNA 

methylation biomarkers and established NB risk 

factors (MYCN amplification, age at diagnosis 

(cutoff of 12 months and 18 months) and INSS 

stage) were determined using Fisher’s exact test. 
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Supplemental Figure 1. Hierarchical cluster 

analyses highlight the capability of the methyl-

CpG-binding domain (MBD) sequencing analysis 

strategy in identifying candidate biomarkers. A. 

Clustering using the top 500 hyper- and 

hypomethylated promoter regions in high-risk 

non-survivors (HR-DOD) compared to low-risk 

survivors (LR-SURV) in MBD cohort II. B. 

Clustering using the top 500 hyper- and 

hypomethylated promoter regions in high-risk 

non-survivors compared to high-risk survivors 

(HR-SURV) in MBD cohort II. C. Clustering using 

the top 500 hyper- and hypomethylated 

promoter regions in high-risk MYCN amplified 

(HR-MYCN1) samples compared to high-risk 

MYCN non-amplified samples (HR-MYCN0). 

 

Supplemental Figure 2. Visualization of the 

MBD sequencing data of the HNRNPH1 

promoter region allows identification of the 

most informative (discriminative) region for 

MSP assay design. The location of three 

different MSP assays in the HNRNPH1 promoter 

region is shown (blue bars in the upper panel), 

as well as the number of sequencing tags at each 

position for each primary tumor of MBD cohort II 

(lower panel). Assay 1 is located in the region 

that is most discriminative between high-risk 

non-survivors (red) and high-risk survivors 

(orange)/low-risk survivors (green), while assay 2 

and 3 are located in less informative regions 

(with fuzzy methylation patterns). 

 

Supplemental Figure 3. Methylation-specific 

PCR confirms the validity of methyl-CpG-

binding domain sequencing in identifying 

candidate methylation markers. Number of 

methylation events of 68 MSP assays (designed 

in regions identified in the MBD sequencing data 

as being hypermethylated in non-survivors) in 

survivors (LR-SURV and HR-SURV) and non-

survivors of MSP cohort I (A.; Mann-Whitney, p = 

0.001) and MSP cohort II (B.; Mann-Whitney, p = 

0.001). Number of methylation events of 23 MSP 

assays (designed in regions identified in the MBD 

sequencing data as being hypermethylated in 

high-risk MYCN amplified samples) in high-risk 

MYCN non-amplified and amplified samples of 
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MSP cohort I (C.; Mann-Whitney, p < 0.001) and 

MSP cohort II (D.; Mann-Whitney, p < 0.001). 

 

Supplemental Figure 4. Visualization of the 

MBD sequencing data of the promoter region of 

UHRF2 shows that the corresponding MSP 

assay would not have been identified using the 

HM450 array. The location of the in-house 

designed MSP assay (large blue bar in upper 

panel) and probes of the HM450 array (small 

blue bars in the upper panel) are shown, as well 

as the number of sequencing tags at each 

position for each primary tumor of MBD cohort II 

(lower panel). High-risk non-survivors are 

indicated in red, high-risk survivors in orange 

and low-risk survivors in green. 

 

Supplemental Table 1. In total, 437 annotated 

primary neuroblastoma DNA samples were 

collected and assigned to a specific study 

subcohort. A. Detailed characteristics. Each 

sample is characterized by a unique patientID 

and is assigned to a prognostic risk group (LR-

SURV, HR-SURV or HR-DOD) and subcohort 

(MBD cohort I, MBD cohort II, MSP cohort I or 

MSP cohort II). Clinical characteristics given are 

the age at diagnosis in months, International 

Neuroblastoma Staging System (INSS) stage, 

MYCN amplification status (0 is non-amplified 

and 1 is amplified), and overall survival (OS) and 

event-free survival (EFS) status and time after 

diagnosis in days. The OS status indicates 

whether the patient was alive (0) at the last 

known follow-up or died of disease (1). Similarly, 

the EFS status indicates events such as relapse, 

progression or death. NAs represent missing 

values. LR-SURV: low-risk survivors, HR-DOD: 

high-risk deceased patients, HR-SURV: high-risk 

survivors. B. Summary. Per subcohort an 

overview of the clinical characteristics is given. 

*Only samples with a positive ACTB call were 

included, as only these were used in the 

analyses. 

 

Supplemental Table 2. Seventy-eight MSP 

assays were designed, technically validated and 

tested for overall and event-free survival 

prediction. For each assay, if available, the gene 

annotation is shown, as well as the forward and 

reverse primer (5’ to 3’), and the genomic 

location of the amplicon on the hg19 reference 

genome. The corresponding region of interest in 

the methyl-CpG-binding domain sequencing data 

and the comparisons in which the region was 

identified as differentially methylated (indicated 

by yes, followed by the group that is 

hypermethylated) are indicated, as well as log-

rank p-values for overall and event-free survival 

in the corresponding test cohort. Furthermore, it 

is shown whether the assay is part of the 58-

marker signature or not. 

 

Supplemental Table 3. Nineteen neuroblastoma 

cell lines are included in the study. For each cell 

line, the MYCN amplification status is shown, as 

well as its corresponding number in the MSP 

screen. 

 

Supplemental Table 4. The LabChip GX size and 

height, and LC480 Cq and Tm value were 

combined to construct a dichotomous calling 

matrix. A. Results on MSP cohort I. For each 

assay and sample, the methylation call (dark 

blue (1) is methylated, yellow (0) unmethylated) 

is given. The patient samples are subdivided into 

three prognostic groups (LR-SURV, HR-DOD and 

HR-SURV). LR-SURV: low-risk survivors, HR-DOD: 

high-risk deceased patients, HR-SURV: high-risk 

survivors, CL: cell line, U-HCT: negative control 

(HCT-116 DKO cell line), M-HCT: positive control 

(in vitro methylated HCT-116 DKO cell line) and 

NTC: no template control. B. Results on MSP 

cohort II. C. Summary on MSP cohort I and MSP 

cohort II (only ACTB positive samples are taken 

into account). The number and percentage of 

methylated samples for a particular MSP assay 

within each prognostic group and for the entire 

sample cohorts is given. 

 

Supplemental Table 5. The 58-marker 
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methylation signature is an independent 

prognostic predictor of overall survival in MSP 

cohort II. For each variable, the p-value, odds 

ratio (OR) and 95% confidence interval (CI) of the 

univariable and multivariable logistic regression 

analyses are shown. The age at diagnosis cutoff 

is 18 months. 

 

Editorial note 

 

This paper has been accepted based in part on 

peer-review conducted by another journal and 

the authors’ response and revisions as well as 

expedited peer-review in Oncotarget. 
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Abstract 

 

Comprehensive genome-wide DNA methylation studies in neuroblastoma (NB), a childhood tumor 

that originates from precursor cells of the sympathetic nervous system, are scarce. Recently, we 

profiled the DNA methylome of 102 well-annotated primary NB tumors by methyl-CpG-binding 

domain (MBD) sequencing, in order to identify prognostic biomarker candidates. In this data 

descriptor, we give details on how this data set was generated and which bioinformatics analyses 

were applied during data processing. Through a series of technical validations, we illustrate that the 

data are of high quality and that the sequenced fragments represent methylated genomic regions. 

Furthermore, genes previously described to be methylated in NB are confirmed. As such, these MBD 

sequencing data are a valuable resource to further study the association of NB risk factors with the 

NB methylome, and offer the opportunity to integrate methylome data with other -omic data sets on 

the same tumor samples such as gene copy number and gene expression, also publically available. 

 

Subject categories: DNA methylation, pediatric cancer, next-generation sequencing 

 

 

Background and summary 

 

Neuroblastoma (NB), a neuro-ectodermal tumor 

that originates from precursor cells of the 

sympathetic nervous system, represents the 

most common extra-cranial solid tumor of early 

childhood and is considered a heterogeneous 

disease driven by genetic aberrations, as during 

the past decades mainly genetic factors have 

been described to influence the pathogenesis 

and disease course (including MYCN 

amplification, ALK amplification and mutation, 

hyperdiploidy, and gains and losses of specific 

chromosome arms (1p, 3p, 11q and 17q)) [1]. 

Also, recent comprehensive whole-genome 

sequencing studies of primary NB tumors 

pinpointed chromothripsis and defects in 

neuritogenesis genes as important tumor-driving 
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events in a subset of NB [2], and indicated that 

MYCN, TERT and ATRX alterations define major 

subgroups of high-risk NB [3,4]. However, also 

epigenetic mechanisms, such as DNA 

methylation alterations, seem to contribute to 

the NB biology and clinical behavior.  

As reviewed in Decock et al. [5], multiple DNA 

methylation alterations have been described in 

NB, but given the rare occurrence of the disease, 

the number of comprehensive genome-wide 

DNA methylation studies analyzing primary 

tumor samples is limited. Hence, most studies 

initially make use of NB cell lines and only 

validate the most obvious methylation 

alterations in primary NB tumors. For example, a 

frequently applied methodology to NB cell lines 

is assessment of gene expression reactivation 

upon 5’-aza-2’-deoxycytidine (DAC) treatment, a 

cytosine analogue that cannot be methylated, 

leading to progressive DNA demethylation upon 

cell division. However, major drawbacks of these 

studies are that their discovery phases fall short 

in covering the NB heterogeneity, as NB cell lines 

are considered models for aggressive high-risk 

tumors, and that DNA methylation detection is 

indirectly assessed, as the influence of the 

demethylating effect is measured at the 

transcriptional level [6–8]. To accommodate this, 

the Illumina 27 and 450 K methylation arrays, 

directly interrogating the status of 

approximately 27,000 and 485,000 methylation 

sites, respectively, recently were applied to 

primary NB tumors [6,9–12]. Yet, also this 

technology has important limitations: the design 

of the arrays is heavily biased to interrogation of 

CpG sites previously described in literature and 

covers less than 2% of all CpG sites in the human 

genome [13].  

Therefore, we generated a data set comprising 

of 102 primary NB tumors in which DNA 

methylation is assessed by massively parallel 

sequencing of methylation enriched DNA 

fragments. The applied method is based on the 

use of MeCP2, a member of the methyl-CpG-

binding domain (MBD) protein family which 

specifically binds to methylated cytosines and 

enables precipitation of methylated DNA 

fragments. This data set is unique in the NB 

research field, as it is the first sample cohort in 

which the full tumor heterogeneity is being 

assessed by genome-wide methylation analysis 

using next-generation sequencing (NGS); it was 

originally collected for the identification of 

prognostic biomarker candidates. Selected 

candidates were validated in independent 

cohorts using methylation-specific PCR and we 

showed that MBD sequencing allowed selection 

of valuable markers which would not have been 

identified using the Illumina methylation arrays 

[14]. 

Here, we provide a detailed description of the 

methodological approach and bioinformatics 

analyses, as well as easy access to the (analyzed) 

MBD sequencing data and analysis tools, 

allowing other researchers (inexperienced with 

MBD sequencing) to reuse it. Importantly, the 

analyzed samples are well annotated; besides 

overall and event-free survival data, also 

following NB characteristics are available: age of 

the patient at diagnosis, tumor stage according 

to the International Neuroblastoma Staging 

System (INSS) [15] and MYCN amplification 

status. As such, these data offer the opportunity 

to further explore the association of these risk 

factors with the NB methylome. Furthermore, 

integration of methylome data with other -omic 

data sets should be examined in order to fully 

map the NB biology on a genome-wide level. The 

present MBD sequencing data greatly facilitate 

these integration analyses, considering that for 

part of the profiled samples matching expression 

and array comparative genomic hybridization 

(aCGH) data are available [16–18] (see Methods 

for details). 

In summary, this data descriptor outlines details 

on the generation and analysis of MBD 

sequencing data of 102 primary NB tumors 

(Figure 1). As NB is a rare disease and 

comprehensive DNA methylation studies scarce, 

these MBD sequencing data are very valuable 
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Figure 1. The MBD sequencing data of 102 primary neuroblastoma tumors are processed using different 
analysis tools. Depicted are the available methyl-CpG-binding domain (MBD) sequencing data sets and 
downstream data processing and technical validation steps. These steps are represented as arrows and circles, 
respectively. For each step, the applied tool or analysis is indicated. For the technical validation steps, also the 
corresponding data descriptor figures and tables are indicated. DMA: differential methylation analysis; IGV: 
Integrative Genomics Viewer; PE: paired-end; RPKM: reads per kilobase CpG island per million. 

 

and permit further unravelling the role of DNA 

methylation in the NB biology. 

 

Methods  

 

DNA sample collection 

 

Two independent cohorts of 42 and 60 primary 

tumor DNA samples, respectively annotated as 

MBD cohort I and II, were sequenced. Samples 

of fresh frozen tumors were collected at the 

Ghent University Hospital (n =49; Ghent, 

Belgium), the Hospital Clínico Universitario 

(n=42; Valencia, Spain), the University Children’s 

Hospital Essen (n =8; Essen, Germany) and the 

Our Lady’s Children’s Hospital Dublin (n=3; 

Dublin, Ireland), according to previously 

published criteria [7,14], and stage 4S tumors 

were also included. Detailed clinical 

characteristics of the patients are given in Table 

1 (available online only). For samples 809 and 

912, DNA was extracted from different parts of 

the same primary tumor. Informed consent was 

obtained from each patient’s guardian and the 

study was approved by the ethical committee of 

the Ghent University Hospital (approval number 

B67020109912). Matching expression data 

[16,17] of 38 tumors are available through the 
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NCBI Gene Expression Omnibus (GEO) database 

(GSE21713 and GSE32664; sample IDs in Table 1 

(available online only)). Matching aCGH data [18] 

of 38 tumors are available through ViVar [19] 

(https://www.cmgg.be/vivar/; login: review, 

password: review, project: Kumps et al. 2013; 

sample IDs in Table 1 (available online only)). 

 

Methyl-CpG-binding domain (MBD) sequencing 

 

DNA fragmentation  

For each sample, between 400 to 1,000 ng DNA 

was sheared to obtain DNA fragments with an 

average length of 200 bp. The DNA was loaded 

in 120 μl TE buffer (1:5), transferred to a Snap 

Cap microTUBE (Covaris) and exposed to Covaris 

S2 Adaptive Focused Acoustics. Fragment 

distribution and concentration was determined 

on a High Sensitivity DNA chip (Agilent 

Technologies).  

 

Methylated DNA capturing  

Subsequently, capturing of methylated DNA 

fragments was done according to the MethylCap 

kit protocol of Diagenode using 200-500 ng DNA. 

Elution of the captured fraction was performed 

in 150 μl High Elution Buffer and DNA was 

purified using the MinElute PCR purification kit 

(Qiagen). For MBD cohort II, also input samples 

(10%) were prepared.  

 

Library preparation  

As MBD cohort I and II were profiled in a 

different time frame and NGS methodologies 

evolve at rapid pace, a different library 

preparation protocol and sequencing technology 

was applied to each of them. For MBD cohort I, 

DNA library preparation was performed using 

the NEBNext DNA Library Prep Master Mix Set 

for Illumina (New England Biolabs) in 

combination with the Multiplexing Sample 

Preparation Oligonucleotide Kit (Illumina) for 

paired-end adapter ligation. Size selection of the 

library is done on a 2% agarose gel (Bio-Rad). 

Fragments between 250 and 350 bp were 

excised and purified using a Qiagen Gel 

Extraction Kit. For MBD cohort II, library 

preparation was automated on an Apollo 324 

Next Generation Sequencing Library Preparation 

System (IntegenX), making use of the PrepX ILM 

DNA Library Kit (IntegenX). For paired-end 

adapter ligation the Multiplexing Sample 

Preparation Oligonucleotide Kit was used. Size 

selection was done with 1X AMPure XP beads 

(Agencourt) and PEG-Bead Solution. 

 

Library amplification  

PCR library amplification with appropriate Index 

Primers for each sample was performed using 

the Multiplexing Sample Preparation 

Oligonucleotide Kit and following PCR 

conditions: 30 s at 98 °C, 21 amplification cycles 

(10 s at 98 °C, 30 s at 65 °C and 30 s at 72 °C), 5 

min at 72 °C, and held at 4 °C. PCR product 

purification was done using the High Pure PCR 

Purification Kit (Roche). QC was performed on a 

DNA 1000 chip (Agilent) and concentration was 

determined by qPCR according to the qPCR 

Quantification Protocol Guide of Illumina. 

Samples were pooled and profiled on an Illumina 

GAIIx (PE 2 × 45 bp) for MBD cohort I and on an 

Illumina HiSeq2000 (PE 2 × 51 bp) for MBD 

cohort II. 

 

Data processing and analysis 

 

Sequencing data  

All crucial steps in the processing and analysis of 

the MBD sequencing data are summarized in 

Figure 1. Raw sequencing data were 

demultiplexed and converted to FASTQ files 

(with sequencing reads and quality scores). 

Quality control on the raw data was performed 

by FASTQC (version 0.9.2; 

http://www.bioinformatics.babraham.ac.uk/proj

ects/fastqc/).  

 

Read mapping  

Next, the sequencing reads were 

mapped/aligned to the human reference 
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genome (hg19), using the Bowtie2 [20] mapper 

(version 2.0.0 beta7) and FASTQ files as input. 

For each sample, two paired FASTQ files are 

available (as we performed paired-end 

sequencing), in which the data lines correspond 

to each other. To improve the mapping quality, 

reads were only taken into account if the 

sequences in both files could be mapped to the 

reference genome (maximum 500 bp between 

both paired ends). Also sequencing quality 

scores were used in the mapping process. The 

BAM format was used as output file type. PCR 

duplicates were marked with Picard (version 

1.79; http://broadinstitute.github.io/picard/) 

and the BAM files were sorted and indexed using 

SAMtools [21] (version 0.1.18) and index 

commands. These files have been deposited as 

raw data files in the NCBI Gene Expression 

Omnibus (GEO) database (Data Citation 1 for 

MBD cohort I; Data Citation 2 and Data Citation 

3 for MBD cohort II). FASTQ records can be 

extracted from the sequence alignments in the 

BAM files using the BEDTools bamtofastq 

conversion utility [22]. Starting from the SRA 

files, the NCBI SRA Toolkit (fastq-dump) can be 

used to generate the FASTQ files. Mapping 

quality was evaluated using SAMStat [23] 

(version 1.08) and BamUtil (version 1.0.2; 

http://genome.sph.umich.edu/wiki/BamUtil). 

Technical validation of MBD enrichment is 

performed by fragment CpG plot analysis [24] 

and by plotting the densities of the median 

numbers of mapped reads per kilobase per 

million (RPKM [25]) in all CpG islands (n=28,691) 

across the different subcohorts. 

 

Peak calling  

The process of converting mapped sequencing 

reads to coverage vectors and the detection of 

enriched regions (peaks) is referred to as peak 

detection or peak calling. Here, peak calling was 

done using the MACS [26] software tool (version 

1.4.0 beta) and BAM files as input. BED files 

were generated (Data Citation 1 for MBD cohort 

I; Data Citation 2 and Data Citation 3 for MBD 

cohort II), indicating the location and score 

(linked to the p-value) of the identified peaks. 

 

Visualization 

MACS is also used to output WIG files (Data 

Citation 1 for MBD cohort I; Data Citation 2 and 

Data Citation 3 for MBD cohort II), which are 

transformed to a binary format (TDF file; Data 

Citation 1 for MBD cohort I; Data Citation 2 and 

Data Citation 3 for MBD cohort II) by igvtools 

(https://www.broadinstitute.org/igv/igvtools) 

for visualization in the Integrative Genomics 

Viewer (IGV) [27]. An example IGV XML-session 

file for MBD cohort II and instructions on how to 

make use of this file are included in the GitHub 

repository (see Code availability). 

 

Differential methylation analyses 

Differential methylation analyses between 

sample groups are described in detail in Decock 

et al. [14]. Briefly, for each subcohort, two count 

data sets were constructed, in which for each 

sample the numbers of mapped reads in the 

promoter region of the different Ensembl 

Transcripts or 5 kb genomic windows are 

indicated. Here, we provide access to these 

count data sets (Supplementary Tables 3-8), 

which can directly be used for differential 

methylation analyses in DESeq [14,28]. 

 

Code availability 

All tools and code that are necessary to generate 

the described file types are provided in a Docker 

container (Docker Hub; 

https://hub.docker.com/r/mateongenaert/mbdt

oolbox/). More advanced analysis scripts can be 

found in the GitHub repository 

(https://github.com/mateongenaert/MBDToolB

ox). 

 

Data records 

 

An overview of the sample annotation and data 

outputs is given in Table 1 (available online 

only). The outputs of each step in the data 
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processing (read mapping: BAM files, peak 

calling: BED files, and visualization: WIG and TDF 

files) have been deposited in the GEO database. 

For MBD cohort I, the accession number is 

GSE69224 (Data Citation 1), for MBD cohort II, 

GSE69243 (Data Citation 2) and GSE69268 (Data 

Citation 3). In GEO, these data sets were 

submitted as SubSeries of the SuperSeries 

GSE69279 (Data Citation 4). We also provide a 

Docker container, made available through 

Docker Hub, that embeds all necessary tools to 

generate the data files and illustrates the 

analysis pipeline. More advanced analysis scripts 

are given in the GitHub repository (see Code 

availability). 

 

Table 2. Using BamUtil, basic sequencing statistics of MBD cohort I and II are computed.  

statistic 

MBD cohort I 
enriched samples 

MBD cohort II 
enriched samples 

MBD cohort II 
input samples 

range mean median range mean median range mean median 

total read 
number (e6) 

4.65 - 
18.20 

13.38 14.17 
29.74 - 
66.59 

45.09 44.41 
20.86 - 
59.51 

36.00 33.19 

duplicate reads 
(%) 

0.70 - 
72.00 

6.46 3.39 
2.55 - 
79.69 

31.04 19.89 
2.24 - 
10.47 

4.17 3.68 

properly paired 
reads (%) 

48.29 - 
94.51 

85.64 89.29 
86.86 - 
97.57 

95.33 95.72 
94.78 - 
97.55 

96.50 96.59 

Note. Total read number: the total number of reads in the two paired FASTQ files of a sample; duplicate reads 
as a percentage of the total read number; properly paired reads as a percentage of the total read number. 
 
Technical validation 

 

Validation of raw and mapped sequencing data 

 

The total read number and percentage of 

duplicate and properly paired reads in each 

sample are given in Supplementary Table 1, and 

a summary of these sequencing statistics across 

the different sample cohorts can be found in 

Table 2. 

To ensure raw data quality, FASTQC analyses 

were performed to determine the per base 

sequence quality which reflects the probability 

that a base has been called incorrectly [29]. 

Quality scores between 41 and 28, 28 and 20, 

and below 20 are considered base calls of very 

good quality, calls of reasonable quality and calls 

of poor quality, respectively. In order to obtain a 

general overview of the range of quality values 

across all bases at each position, the median 

quality score for each position in each FASTQ file 

was determined. Figure 2 shows the distribution 

of these median per base quality scores across 

the different sample cohorts. In general, the 

quality scores of both MBD cohort I and II are of 

reasonable to very good quality. Given the 

different sequencing technologies that were 

used for MBD cohort I (Illumina GAIIx) and II 

(Illumina HiSeq2000), it is expected that the read 

quality of MBD cohort II is higher than that of 

MBD cohort I. The steadily increase and 

subsequent decrease in quality along the read is 

also expected for Illumina-based experiments 

[29,30]. 

Mapping quality is ensured by analyzing the 

mapping quality scores of the alignments in each 

sample (Supplementary Table 2). In Figure 3, the 

distributions of the percentages of mapped 

reads across the different mapping quality 

ranges are shown. For all subcohorts, the reads 

are clearly mapped with high accuracy, as almost 

for every sample, more than half of the mapped 

reads has a MAPQ ≥ 30 [23]. 

 

Validation of MBD-based enrichment 

 

Over the past years several companies 

developed commercial kits for MBD-based
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Figure 2. The per base sequence quality scores indicate that the raw sequencing data are of good quality.  
Shown are the distributions of the median per base quality score (determined by FASTQC) of the enriched 
samples of MBD cohort I (A.), and of the enriched (B.) and input (C.) samples of MBD cohort II. In the boxplots, 
the lower and upper hinge of the boxes represents the 25th and 75th percentile, respectively. The whiskers 
extend to the lowest and highest value that is within 1.5 times the interquartile range. Data beyond the end of 
the whiskers are outliers and plotted as dots. 
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Figure 3. The mapping quality scores illustrate high mapping accuracy. Shown are the distributions of the 
percentages of mapped reads across the different mapping quality ranges, as determined by SAMStat (A. 
enriched samples of MBD cohort I, B. enriched samples of MBD cohort II and C. input samples of MBD cohort 
II). In the boxplots, the lower and upper hinge of the boxes represents the 25th and 75th percentile, 
respectively. The whiskers extend to the lowest and highest value that is within 1.5 times the interquartile 
range. Data beyond the end of the whiskers are outliers and plotted as dots.  
 

capturing of methylated fragments. Although all 

of them claim to be of high quality, differences 

in performance exist. Careful kit selection is thus 

of utmost importance [24]. Here, sheared tumor 

DNA was enriched towards methylated 

fragments using the MethylCap kit of Diagenode, 

that makes use of the methylCap protein, 

consisting of the MBD of human MeCP2 fused 

with gluthatione-S-transferase (GST) containing 

an N-terminal His6-tag. A previous evaluation 

assessed the quality of this kit for combination 

with NGS by comparison with four other 

commercially available kits [24]. This study also 

compared the MBD sequencing data with 

reduced representation bisulfite sequencing 

(RRBS) and Illumina 27 K methylation array data 
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of the same samples. Together, these analyses 

showed that the MethylCap kit outperforms the 

others, due to a consistent combination of high 

yield, sensitivity and specificity [24]. In order to 

demonstrate that the samples of MBD cohort I 

and II were enriched for methylated DNA 

fragments after MBD-based capturing, we made 

use of the fragment CpG plot [24]. As this plot 

depicts the CpG content of the mapped 

fragments and the MethylCap kit theoretically 

only captures methylated cytosines in a CpG 

dinucleotide context, the fragment CpG plot can 

be used to evaluate the MBD-based enrichment. 

An overview of the CpG content of the mapped 

fragments per sample cohort is depicted in 

Figure 4. This fragment CpG plot clearly 

illustrates that the MBD-enriched samples of 

MBD cohort I and II have a high fraction of CpG- 

dense fragments, while the input (non-MBD-

enriched) samples of MBD cohort II are not 

enriched in CpG content. Additionally, using the 

number of mapped reads per kilobase CpG 

island per million (RPKM) values [25], the 

methylation level of each CpG island across the 

different subcohorts was determined. The 

density plot in Figure 5 indicates that the MBD-

enriched samples have a higher fraction of CpG 

islands with an RPKM > 1 compared to the input 

samples of MBD cohort II. Based on these 

analyses, it can be concluded that the MBD-

based capture successfully led to the enrichment 

of methylated DNA fragments. 

 
Figure 4. Fragment CpG plots demonstrate that the MBD-enriched samples have a high fraction of CpG-dense 
sequencing fragments. Shown are the fractions of mapped MBD sequencing fragments with different CpG 
counts. Per cohort, 100,000 randomly selected fragments of each sample were used to construct the plots. 
 

Validation of methylated genes in 

neuroblastoma 

 

Finally, TDF and BED files, containing sequence 

coverage and peak locations respectively, were 

loaded into IGV to visually inspect genes 

previously described to be methylated in NB. As 

an example, the MBD sequencing data of the 

PCDHB gene cluster is shown in Figure 6. This 

gene cluster is frequently methylated in NB 

[5,31], which is confirmed by the MBD 

sequencing data of both MBD cohort I and II. 

Additionally, 78 regions identified in the MBD 

sequencing data as being methylated, were
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Figure 5. CpG island RPKM-values confirm enrichment towards methylated DNA fragments upon MBD 
capture. Shown are the densities of the median RPKM-values per subcohort. RPKM: reads per kilobase CpG 
island per million. 
 

validated in two independent patient cohorts 

using methylation-specific PCR (MSP) [14]. These 

data confirm the validity of MBD sequencing in 

identifying methylated regions in NB. 

 

Usage notes 

 

The MBD sequencing data can be downloaded 

from the GEO database via accession numbers 

GSE69224 (for MBD cohort I; Data Citation 1), 

GSE69243 and GSE69268 (for MBD cohort II; 

Data Citation 2 and Data Citation 3; SuperSeries 

GSE69279 (Data Citation 4)). The unique GEO 

sample accession IDs and clinical annotation can 

be found in Table 1 (available online only). This 

table also contains the accession IDs of the 

matching expression and aCGH data, which 

allows easy data access and facilitates 

integration analyses. 

All output files from the different steps in the 

MBD sequencing data processing are provided 

through GEO. Analysis tools and scripts have 

been embedded in a Docker container, to deliver 

an environment that runs on any supported host 

platform (Windows, MAC, Linux). This Docker 

container, and all instructions on how it is made 

and how analyses can be run on the data, are 

made available through Docker Hub and GitHub 

(see Code availability). This allows researchers to 

try out the analysis pipeline that was used to 

generate the publically available data, without 

the need of additional infrastructure or software 

versions. The Docker container guarantees that 

the provided commands work and allows 

researchers to start exploring the data at the 

level they are experienced with. 

Alternative processing tools can be tested for 

read mapping (e.g., BWA [32]) or identification 

of enriched regions (e.g., PeakRanger [33] or 

BALM [34]), or absolute methylation scores can 

be calculated (MEDIPS [35]; see Code 

availability). Researchers inexperienced with 

MBD sequencing can easily visualize their genes 

of interest by downloading the BED and TDF files 

(see Code availability). Downstream differential 

methylation analyses can be done with DESeq 

[28] (as described in Decock et al. [14]) using 

count data sets provided in Supplementary



 results  

- 127 - 
 

 
Figure 6. Visualization of the MBD sequencing data in IGV confirms methylation of the PCDHB gene cluster. In 
A. the data of MBD cohort I is shown, in B. the data of MBD cohort II. The upper panels show the genes in the 
cluster, the location of CpG islands and the GC percentage. In the lower panels, sequence coverage of 6 high-
risk patient samples is shown (peak pattern), as well as the location of identified peaks (horizontal bars). 
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Tables 3-8, or other software can be used, such 

as DiffBind [36] and edgeR [37]. Differences in 

absolute methylation scores can be used for 

RankProd [38] analyses. 
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Supplemental Table 1. Using BamUtil, basic 

sequencing statistics of each sample of MBD 

cohort I and II are computed. Given are the total 

read numbers, and the number and percentage 

of properly paired and duplicate reads of each 

sample of MBD cohort I (a) and II (enriched 

samples in (b); input samples in (c)). 

 

Supplemental Table 2. Using SAMStat, the 

mapping quality scores of each sample of MBD 

cohort I and II are analyzed. Given are the 

numbers and percentages of mapped reads 

across the different mapping quality ranges, as 

determined by SAMStat ((a) enriched samples of 

MBD cohort I, (b) enriched samples of MBD 

cohort II and (c) input samples of MBD cohort II). 

 

Supplemental Table 3. Promoter count data for 

the MBD-enriched samples of MBD cohort I. For 

each MBD-enriched sample of MBD cohort I, the 

number of mapped reads in each Ensembl 

Transcript promoter region (-1500 bp to +500 bp 

around TSS) is given. 

 

Supplemental Table 4. Promoter count data for 

the MBD-enriched samples of MBD cohort II. 

For each MBD-enriched sample of MBD cohort II, 

the number of mapped reads in each Ensembl 

Transcript promoter region (-1500 bp to +500 bp 

around TSS) is given. 

 

Supplemental Table 5. Promoter count data for 

the input samples of MBD cohort II. For each 

input sample of MBD cohort II, the number of 

mapped reads in each Ensembl Transcript 

promoter region (-1500 bp to +500 bp around 

TSS) is given. 

 

Supplemental Table 6. Window count data for 

the MBD-enriched samples of MBD cohort I. For 

each MBD-enriched sample of MBD cohort I, the 

number of mapped reads in each 5 kb genomic 

window (2.5 kb overlapping moving windows) is 

given. 

 

Supplemental Table 7. Window count data for 

the MBD-enriched samples of MBD cohort II. 

For each MBD-enriched sample of MBD cohort II, 

the number of mapped reads in each 5 kb 

genomic window (2.5 kb overlapping moving 

windows) is given. 

 

Supplemental Table 8. Window count data for 

the input samples of MBD cohort II. For each 

input sample of MBD cohort II, the number of 

mapped reads in each 5 kb genomic window (2.5 
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kb overlapping moving windows) is given. 
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Abstract 

 

Stage 4S neuroblastoma (NB) is a special type of NB found in infants with metastases at diagnosis and 

is associated with an excellent outcome due to its remarkable capacity to undergo spontaneous 

regression. As genomics have not been able to explain this intriguing clinical presentation, we here 

aimed at profiling the DNA methylome of stage 4S NB to better understand this phenomenon. To this 

purpose, differential methylation analyses between INSS stage 4S, stage 4 and stage 1/2 were 

performed, using methyl-CpG-binding domain (MBD) sequencing data of 14 stage 4S, 14 stage 4, and 

13 stage 1/2 primary NB tumors (all MYCN non-amplified in order not to confound results). Stage 4S-

specific hyper- and hypomethylated promoters were determined and further characterized for 

genomic localization and function by cytogenetic band enrichment, gene set enrichment, 

transcription factor target enrichment and differential RNA expression analyses. We show that 

specific chromosomal locations are enriched for stage 4S differentially methylated promoters and 

that stage 4S tumors show characteristic hypermethylation of specific subtelomeric promoters. 

Furthermore, genes involved in important oncogenic pathways, in neural crest development and 

differentiation, and in epigenetic processes are differentially methylated and expressed in stage 4S 

tumors. Based on these findings, we describe new biological mechanisms possibly contributing to the 

stage 4S-specific tumor biology and spontaneous regression. In conclusion, this study is the first to 

describe the highly characteristic stage 4S DNA methylome. These findings will open new avenues to 

further unravel the NB pathology in general and stage 4S disease specifically. 

 

Keywords: neuroblastoma, stage 4S (MS), DNA methylation, methyl-CpG-binding domain (MBD) 

sequencing, spontaneous regression 

 

  



 results  

- 134 - 
 

Introduction 

 

Neuroblastoma (NB) is a childhood tumor that 

originates from precursor cells of the 

sympathetic nervous system and is a 

heterogeneous disease with prognosis ranging 

from long-term survival to fatal outcome. NB 

tumor staging systems have been established, 

based on clinical and biological parameters (age 

of the patient, tumor stage, MYCN amplification, 

DNA index and histopathology), and are being 

used for therapeutic stratification. The special 

stage IV (IV-S) was first described in the staging 

system of Evans et al., introduced in 1971, and 

defined patients who would otherwise have 

been stage I or II (with localized primary tumors), 

but who had disseminated disease confined to 

liver, skin or bone marrow, or any combination 

of these, without involvement of the skeleton. 

Remarkably, these patients did not have the 

dismal prognosis of other metastatic NB, as most 

of these tumors are characterized by 

spontaneous regression without any therapeutic 

intervention [1,2]. Approximately twenty years 

later, the International Neuroblastoma Staging 

System (INSS) refined the criteria of this tumor 

stage, renamed as stage 4S, and limited it to 

children younger than 12 months of age at 

diagnosis [3]. In 2005, this age limit was 

extended to 18 months in the International 

Neuroblastoma Risk Group Staging System 

(INRGSS), as it was demonstrated that an age 

cutoff of 18 months resulted in a stratification 

that optimized the prognostic contribution of 

the age at diagnosis [4]. In the INRGSS, this 

special tumor stage is indicated as MS [5].  

Several genomic alterations have been identified 

in NB, but so far no specific changes, apart from 

hyperdiploidy and near-triploidy with numerical 

chromosome alterations common to localized 

tumors without MYCN amplification, have been 

associated with stage 4S NB. This indicates that 

other molecular mechanisms, such as epigenetic 

alterations, may play a role in stage 4S NB [6]. In 

this study, we therefore specifically focused on 

identifying patterns of DNA methylation that are 

characteristic of this particular NB tumor stage. 

 

Results 

 

Stage 4S tumors demonstrate a unique 

promoter methylation portrait 

 

In order to profile the stage 4S NB methylome, 

we re-analyzed methyl-CpG-binding domain 

(MBD) sequencing data of 41 MYCN non-

amplified primary NBs [7,8], including INSS stage 

1 (n = 7), stage 2 (n = 6), stage 4 (n = 14) and 

stage 4S (n = 14) tumors. As patients with stage 

4S NB, in sharp contrast to stage 4 patients, 

show excellent outcome despite widespread 

metastases at diagnosis, we first performed a 

differential methylation analysis between these 

tumor stages. In total, 5,914 and 10,974 

promoters were identified as being hyper- or 

hypomethylated in stage 4S tumors, respectively 

(Supplemental table 1). Next, stage 4S tumors 

were also compared to stage 1/2 tumors, which 

are also associated with a favorable patient 

outcome, but patients with stage 1/2 tumors do 

not present with metastatic disease. Here, 1,288 

and 3,854 promoters were hyper- and 

hypomethylated in stage 4S tumors, respectively 

(Supplemental table 1). Subsequently, we 

determined the number of stage 4S-specific 

hyper- and hypomethylated promoters by 

determining the overlap between these two 

differential methylation analyses and by 

excluding promoters differentially methylated in 

the stage 1/2 versus stage 4 comparison. As 

such, we identified 393 hypermethylated and 

1,150 hypomethylated promoters that typify the 

stage 4S methylome (Figure 1A; Supplemental 

table 1). Similarly, also for stage 4 and stage 1/2 

NB, specific promoter methylation patterns were 

determined (Figure 1A; Supplemental table 1). 

Principal component analysis using the 

normalized read counts of the promoters 

included in Figure 1A visualizes the NB stage-

specific promoter methylation patterns (Figure 
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1B). A dense clustering is observed for stage 4S 

tumors and this tumor stage seems most similar 

to stage 1/2. 

 

Specific chromosomal locations are enriched in 

stage 4S differentially methylated promoters 

 

Next, we determined the chromosomal 

distribution of the promoters contributing to the 

specific stage 4S methylation portrait. The 

percentages of hyper- and hypomethylated 

promoters located on the different 

chromosomes is indicated in Figure 2A and 

Figure 2B, respectively. Importantly, as 

chromosomes differ in length and gene density, 

these chromosome percentages were calculated 

based on the number of identified promoters 

corrected for the total number of promoters 

located on the corresponding chromosome. 

Stage 4S hypermethylated promoters are 

overrepresented (p < 0.05) on chr17 and chr19, 

and underrepresented (p < 0.05) on chr1, chr3, 

chr4, chr5, chr7, chr10, chr11, chr14, chr15, 

chr18, chr20 and chr21 (Figure 2A). Stage 4S 

hypomethylated promoters are overrepresented 

(p < 0.05) on chr3, chr7, chr8, chr13 and chr18, 

and underrepresented (p < 0.05) on chr2, chr6, 

chr12, chr16, chr17, chr19 and chr22 (Figure 2B). 

To further pinpoint specific chromosomal 

regions enriched in stage 4S differentially 

methylated promoters, cytogenetic band 

enrichment analyses in WebGestalt [9,10] were 

performed (Figure 2C and Supplemental table 2). 

These analyses indicate that stage 4S hyper- and 

hypomethylated promoters are not randomly 

distributed across the genome, but that specific 

chromosomal cytogenetic bands are significantly 

enriched in stage 4S differentially methylated 

promoters (Figure 2). 

 

 
Figure 1. MBD sequencing analysis of MYCN non-amplified stage 4S, stage 4 and stage 1/2 tumors identifies 
stage-specific promoter methylation portraits. A. Diagram of the promoters identified as hypermethylated in 
the respective sample groups. For example, 393 and 1,150 promoters are specifically hyper- and 
hypomethylated in stage 4S, respectively. B. Principal component (PC) analysis using the normalized read 
counts of the promoters included in the diagram. Shown are the data for the first two PCs. PC1 explains 29.9% 
of the variability of the data and PC2 10.1%. 
 

Specific subtelomeres are enriched in stage 4S 

hypermethylated promoters 

 

Telomerase activity upregulation and alternative 

lengthening of telomeres are key mechanisms in 

counteracting telomere shortening in NB and 

contribute to tumor cell immortalization [11–

14]. As DNA methylation of subtelomeres 

represents an additional way to suppress 

telomere elongation [15,16] and as tumor 

regression (and thus loss of immortality) is a 

hallmark of stage 4S NB, we specifically analyzed 

the subtelomeric methylation patterns of the 

different NB tumor stages. To this purpose, we 

first determined the proportions of promoters of 

the different stage-specific methylation portraits
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Figure 2. Stage 4S differentially methylated promoters are not randomly distributed across the genome.  A. 

Percentage of stage 4S hypermethylated promoters per chromosome, based on promoter density corrected 

numbers. Significantly under- and overrepresented chromosomes are indicated with a dark dot. The vertical 

line represents the percentage if the stage 4S hypermethylated promoters would be randomly distributed 

across the genome (null hypothesis). B. Percentage of stage 4S hypomethylated promoters per chromosome, 

based on promoter density corrected numbers. Significantly under- and overrepresented chromosomes are 

indicated with a dark dot. The vertical line represents the percentage if the stage 4S hypomethylated 

promoters would be randomly distributed across the genome (null hypothesis). C. Significantly enriched 

cytogenetic locations of stage 4S hyper- and hypomethylated promoters. A list of genes located in the enriched 

regions can be found in Supplemental table 2. 
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that are located in subtelomeres (1 Mb or 2 Mb 

regions proximal to the telomeres). Figure 3A 

and B illustrate that stage 4S hypermethylated 

and stage 4 hypomethylated promoters have a 

significantly larger proportion of 1 Mb and 2 Mb 

subtelomeric promoters (p < 0.001), compared 

to stage 1/2 and stage 4 hypermethylated and 

stage 4S hypomethylated promoters. Stage 1/2 

hypomethylated promoters also comprise a 

larger proportion of 2 Mb subtelomeric 

promoters (p < 0.001; Figure 3B), compared to 

stage 1/2 and stage 4 hypermethylated and 

stage 4S hypomethylated promoters. Next, using 

the gene lists of the differential methylation 

analyses, gene set enrichment analyses (GSEA) 

were performed to evaluate whether specific 

subtelomeres are enriched in differentially 

methylated promoters (Table 1). These analyses 

firmly demonstrate that multiple subtelomeres 

are enriched in stage 4S hypermethylated 

promoters compared to stage 4 and stage 1/2 

tumors. Remarkably, not a single subtelomere is 

enriched in stage 4 hypermethylated promoters. 

Table 1 further shows that the chr5p 1 Mb and 2 

Mb subtelomeres are enriched in promoters 

hypermethylated in stage 4S compared to both 

stage 1/2 and stage 4, and in stage 1/2 

compared to stage 4. TERT, the gene encoding 

the catalytic subunit of telomerase, is located on 

the chr5p 2 Mb subtelomere, and its promoter is 

hypermethylated in stage 4S compared to stage 

4 (Supplemental table 1). Using publically 

available mRNA expression data [17], we could 

further demonstrate that TERT is expressed at 

lower levels in stage 4S compared to stage 4 (p < 

0.001; log2 fold change = 0.82). 

 

 
Figure 3. Stage 4S hypermethylated, and stage 4 and 1/2 hypomethylated promoters are frequently located 
on subtelomeres. Depicted are the percentages of the stage-specific differentially methylated promoters 
located in the 1 Mb (A.) and 2 Mb (B.) subtelomeres. Stage 4S hypermethylated and stage 4 hypomethylated 
promoters have a significantly larger proportion of 1 Mb and 2 Mb subtelomeric promoters, compared to stage 
1/2 and stage 4 hypermethylated and stage 4S hypomethylated promoters. Stage 1/2 hypomethylated 
promoters also comprise a larger proportion of 2 Mb subtelomeric promoters, compared to stage 1/2 and 
stage 4 hypermethylated and stage 4S hypomethylated promoters. 

 

Genes involved in important oncogenic 

pathways, neural crest development and 

differentiation, and epigenetic processes are 

differentially methylated and expressed in 

stage 4S tumors 

To functionally characterize the stage 4S 

differentially methylated promoters, we first 

examined whether these promoters share 

common DNA motifs, by analyzing transcription 

factor target enrichment in WebGestalt [9,10]. In
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Table 1. One third of subtelomeres are enriched in stage 4S hypermethylated promoters. 

comparison 

enriched 1Mb subtelomeres enriched 2 Mb subtelomeres 

ST NES 
nom     
p-val 

FDR      
q-val 

ST NES 
nom    
p-val 

FDR     
q-val 

stage 4S 
versus 
stage 4 

hypermethylated 
stage 4S 

chr4p 1.58 0.037 0.040 chr1p 2.21 < 0.001 < 0.001 

chr5p 2.29 < 0.001 < 0.001 chr4p 1.92 < 0.001 0.002 

chr10q 1.87 < 0.001 0.002 chr4q 1.47 0.041 0.045 

chr13q 2.12 < 0.001 < 0.001 chr5p 2.60 < 0.001 < 0.001 

chr16p 2.32 < 0.001 < 0.001 chr5q 1.49 0.011 0.042 

chr17q 1.68 0.006 0.022 chr8q 1.35 0.022 0.083 

chr19p 2.28 < 0.001 < 0.001 chr9q 1.58 < 0.001 0.029 

 

chr10q 1.78 < 0.001 0.003 

chr13q 1.97 < 0.001 0.001 

chr16p 2.50 < 0.001 < 0.001 

chr16q 2.17 < 0.001 < 0.001 

chr17q 1.65 < 0.001 0.020 

chr19p 2.80 < 0.001 < 0.001 

chr20q 1.83 < 0.001 0.004 

hypermethylated 
stage 4 

none none 

stage 4S  
versus 

stage 1/2 

hypermethylated 
stage 4S 

chr4q 2.04 < 0.001 < 0.001 chr4q 2.12 < 0.001 < 0.001 

chr5p 1.59 0.022 0.030 chr5p 1.81 < 0.001 0.006 

chr9q 2.30 < 0.001 < 0.001 chr5q 1.96 < 0.001 < 0.001 

chr12q 1.60 0.027 0.031 chr8q 1.79 < 0.001 0.006 

chr13q 1.72 < 0.001 0.013 chr10q 1.73 < 0.001 0.008 

chr17p 1.81 0.008 0.008 chr13q 1.75 < 0.001 0.009 

chr17q 2.22 < 0.001 < 0.001 chr20q 3.56 < 0.001 < 0.001 

chr20q 2.19 < 0.001 < 0.001 chr21q 1.64 < 0.001 0.018 

chr22q 1.53 < 0.001 0.044 chr22q 1.28 0.047 0.109 

hypermethylated 
stage 1/2 

chr1p 1.38 0.035 0.141 none 

stage 1/2  
versus 
stage 4 

hypermethylated 
stage 1/2 

chr5p 2.29 < 0.001 < 0.001 chr4p 1.49 0.023 0.054 

 
chr5p 1.92 < 0.001 < 0.001 

chr10p 1.49 0.035 0.059 

hypermethylated 
stage 4 

none none 

Note. For each of the three sample group comparisons, the subtelomeres (ST) significantly enriched for 
promoters hypermethylated in each of the sample groups are indicated, as well as their corresponding 
normalized enrichment score (NES), nominal p-value (nom p-val < 0.05) and false discovery rate q-value (FDR q-
val < 0.25). 

 

total, 24 and 320 motifs were significantly 

enriched for stage 4S hyper- and 

hypomethylated promoters, respectively 

(Supplemental table 3), of which the top 10 

(ranked based on the ratio of enrichment) are 

shown in Table 2. Motifs enriched in stage 4S 

differentially methylated promoters represent 

binding sites for transcription factors implicated 

in controlling cell cycle, apoptosis, neural crest 

development and neural differentiation (Table 

2). Further, we performed GSEA on the gene lists 

of the differential methylation analyses, using 

the oncogenic signatures database containing 

gene sets that represent signatures of cellular 

pathways dysregulated in cancer [18]. Enriched 

gene sets were only identified for promoters



   

 
 

Table 2. Specific transcription factor targets are enriched in stage 4S differentially methylated promoters. 

hypermethylated in stage 4S 

transcription 
factor target 

TF 

enrichment analysis differential expression analysis 

C E O genes R q 

stage 4S 
versus 
stage 4 

stage 4S 
versus 

stage 1/2 

q q 

CCGNMNNTNACG  75 0.28 3 HMG20B, HSPD1, FOSB 10.58 0.035 0.198 0.777 

NTNGCGTGNNN AHR 209 0.79 6 TSSK6, SLC9A5, FHOD1, FOSB, CIRBP, LPHN1 7.60 0.012 0.051 0.292 

TTCNRGNNNNTTC  150 0.57 4 MKNK2, HSPD1, FOSB, CCT4 7.06 0.034 0.225 0.944 

TAAWWATAG MEF2A 163 0.62 4 EIF5A, SLC9A5, ALDOA, JSRP1 6.49 0.036 < 0.001 < 0.001 

SGCGSSAAA 
E2F1 

TFDP1 
RB1 

167 0.63 4 MCM2, MCM7, SLC9A5, FHOD1 6.34 0.038 < 0.001 0.001 

TGAMCTTTGMMC
YT 

HNF4A 260 0.98 6 PRKRA, NDUFA3, PRKCSH, RTN2, C4A, ALDOA 6.11 0.017 0.033 0.147 

TTTSGCGS E2F1 228 0.86 5 GPN3, MCM2, MCM7, SLC9A5, FHOD1 5.80 0.034 < 0.001 0.001 

NCSCGCSAAAN 
E2F1 

TFDP1 
234 0.88 5 EIF5A, TNPO2, GPN3, MCM2, MCM7 5.65 0.034 0.053 0.044 

GCCATNTTN YY1 238 0.90 5 NCOR1, PIGL, PRKCSH, PTBP1, LPHN1 5.56 0.034 0.121 0.003 

NKCGCGCSAAAN 
E2F1 

TFDP1 
239 0.90 5 EIF5A, TNPO2, MCM2, MCM7, PRKCSH 5.54 0.034 0.053 0.044 

 (continues) 
Note. Shown are the top 10 significantly (q < 0.05) enriched transcription factor targets (motifs) in stage 4S hyper- and hypomethylated promoters. For each enriched motif, 
matching transcription factor (TF) annotation is shown (if available), as well as the number of genes in the category (C), the expected number in the category (E), the 
number of genes hyper- or hypomethylated in stage 4S in the category (O), the annotation for the genes in O, the ratio of enrichment (R) and the q-value. Global test q-
values of the differential expression analyses are also indicated. 

 

  



   

 
 

Table 2. Specific transcription factor targets are enriched in stage 4S differentially methylated promoters. 
(continued) 

hypomethylated in stage 4S 

transcription 
factor target 

TF 

enrichment analysis differential expression analysis 

C E O genes R q 

stage 4S 
versus 
stage 4 

stage 4S 
versus 

stage 1/2 

q q 

NNTGTTACTAAAA
ATAGAAMNN 

 25 0.32 3 SLCO5A1, PPARGC1A, MGST3 9.27 0.011 0.045 0.213 

NTGCGTGGGCGK EGR3 86 1.11 7 CELF4, GPR176, ATP6V1C1, EPHB1, KCNQ5, UBE2W, CLTC 6.29 < 0.001 < 0.001 < 0.001 

CARAACTAGGNCA
AAGGTCA 

PPARA 37 0.48 3 SS18, MARCH10, PPARGC1A 6.27 0.026 0.046 0.379 

KMCATNNWGGA  87 1.13 7 CELF4, PDE4D, ADAMTSL1, RUNX1T1, OSBPL6, ZFAT, ARNTL 6.22 < 0.001 0.530 < 0.001 

TGATTTRY GFI1 291 3.77 23 

RUNX1T1, FOXN3, WDPCP, AGR2, ALPK2, MYOT, SND1, 
CREB5, CDK14, IGF2BP3, FOXP2, NRXN3, MIR137HG, PTEN, 

C12orf42, ALDH1A2, JAZF1, ZNF521, MYBPC1, ZBTB20, 
PPARGC1A, MAPK10, RIMS2 

6.11 < 0.001 < 0.001 < 0.001 

NNGAATATKCAN
NNN 

POU2F1 211 2.73 16 
ADAMTSL1, NPAS3, RUNX1T1, PHLPP1, NRXN3, FOXP2, 

MARCH10, PPFIA2, ZNF521, ZBTB20, LPL, PDE4D, CACNA1D, 
PPARGC1A, RGS8, ARPP21 

5.86 < 0.001 < 0.001 < 0.001 

CTBATTTCARAAW CEBPG 252 3.26 19 
BRAF, RUNX1T1, NR6A1, FOXN3, PTK2, CREB5, WDR64, 
KCNQ5, CXCL9, FOXP2, SPAG9, PPFIA2, ALDH1A2, ST18, 

ZBTB20, C8orf46, SLIRP, PPARGC1A, PABPC1 
5.83 < 0.001 < 0.001 0.007 

NNNNNNKCTAW
AAATAGMNNNN 

 226 2.92 17 
LARS, SLC8A3, CELF4, ALPK2, CKMT2, KCNQ5, CACNA2D3, 
ARHGEF38, ARNTL, FBXO40, TSC22D1, TNNT2, PPARGC1A, 

C8orf46, ADRA1A, MLLT3, ARPP21 
5.81 < 0.001 0.040 0.067 

CNGTAWNTG MSX1 173 2.24 13 
FOXP2, BCAR3, KCNAB1, ADAMTSL1, ELMO1, C12orf42, 

RUNX1T1, NR6A1, ARNTL, CBLN2, SND1, INHBA, IGF2BP3 
5.81 < 0.001 0.340 0.010 

AGATAAGATAA EVI1 55 0.71 4 CREB5, CACNA1D, PPARGC1A, RUNX1T1 5.62 0.014 < 0.001 0.324 

Note. Shown are the top 10 significantly (q < 0.05) enriched transcription factor targets (motifs) in stage 4S hyper- and hypomethylated promoters. For each enriched motif, 
matching transcription factor (TF) annotation is shown (if available), as well as the number of genes in the category (C), the expected number in the category (E), the 
number of genes hyper- or hypomethylated in stage 4S in the category (O), the annotation for the genes in O, the ratio of enrichment (R) and the q-value. Global test q-
values of the differential expression analyses are also indicated. 



   

 
 

Table 3. Oncogenic signatures are enriched in stage 4S hypomethylated promoters. 

gene set 

enrichment analysis 
differential 

expression analysis 

description of gene set stage 4S versus stage 4 stage 4S versus stage 1/2 
stage 4S 
versus 
stage 4 

stage 4S 
versus 

stage 1/2 

NES 
nom   
p-val 

FDR 
q-val 

NES 
nom   
p-val 

FDR 
q-val 

q q 

BCAT_BILD_ET_AL_DN 1.38 0.033 0.053 1.47 0.002 0.026 0.002 0.205 
genes downregulated in primary epithelial breast cancer 

cell culture overexpressing activated CTNNB1 (PMID: 
16273092) 

BMI1_DN.V1_DN 1.30 0.025 0.088 1.30 0.002 0.102 0.002 < 0.001 
genes downregulated in DAOY medulloblastoma cells 
upon knockdown of BMI1 by RNAi (PMID: 17452456) 

CAHOY_NEURONAL 1.49 0.001 0.042 1.27 0.021 0.131 < 0.001 < 0.001 genes upregulated in neurons (PMID: 18171944) 

CRX_NRL_DN.V1_DN 1.38 0.006 0.056 1.23 0.030 0.182 < 0.001 < 0.001 
genes downregulated in retina cells from CRX and NRL 

double knockout mice (PMID: 17653270) 

EGFR_UP.V1_DN 1.40 0.001 0.056 1.26 0.007 0.131 < 0.001 < 0.001 
genes downregulated in MCF7 breast cancer cells positive 

for ESR1 and engineered to express ligand-activatable 
EGFR (PMID: 11888208) 

EIF4E_DN 1.31 0.035 0.076 1.42 < 0.001 0.036 < 0.001 < 0.001 
genes downregulated in HMEC primary mammary 

epithelium cells upon overexpression of EIF4E (PMID: 
17638893) 

ERB2_UP.V1_DN 1.25 0.041 0.145 1.41 < 0.001 0.038 < 0.001 0.005 
genes downregulated in MCF7 breast cancer cells positive 

for ESR1 and engineered to express ligand-activatable 
ERBB2 (PMID: 11888208) 

KRAS.AMP.LUNG_UP.V1_UP 1.37 0.006 0.063 1.30 0.006 0.113 0.003 < 0.001 
genes upregulated in epithelial lung cancer cell lines 

overexpressing KRAS (PMID: 19847166) 

KRAS.KIDNEY_UP.V1_UP 1.66 < 0.001 0.004 1.50 < 0.001 0.021 < 0.001 < 0.001 
genes upregulated in epithelial kidney cancer cell lines 

overexpressing an oncogenic form of KRAS 

MEK_UP.V1_DN 1.47 < 0.001 0.044 1.37 < 0.001 0.054 < 0.001 < 0.001 
genes downregulated in MCF7 breast cancer cells positive 
for ESR1; MCF7 cells stably overexpressing constitutively 

active MAP2K1 (PMID: 16585219) 

(continues) 
Note. For each gene set significantly enriched in promoters hypomethylated in stage 4S compared to stage 4 and stage 1/2, the corresponding normalized enrichment score 
(NES), nominal p-value (nom p-val < 0.05) and false discovery rate q-value (FDR q-val < 0.25) are shown. Global test q-values of the differential expression analyses are also 
indicated, as well as a description of the gene set (with PubMed ID of the source publication; as described in the Molecular Signatures Database [18]).  



   

 
 

Table 3. Oncogenic signatures are enriched in stage 4S hypomethylated promoters. 
(continued) 

gene set 

enrichment analysis 
differential 

expression analysis 

description of gene set stage 4S versus stage 4 stage 4S versus stage 1/2 
stage 4S 
versus 
stage 4 

stage 4S 
versus 

stage 1/2 

NES 
nom   
p-val 

FDR 
q-val 

NES 
nom   
p-val 

FDR 
q-val 

q q 

MEL18_DN.V1_DN 1.36 0.004 0.062 1.20 0.040 0.244 < 0.001 0.006 
genes downregulated in DAOY medulloblastoma cells 

upon knockdown of PCGF2 gene by RNAi (PMID: 
17452456) 

PIGF_UP.V1_UP 1.31 0.009 0.076 1.38 < 0.001 0.053 < 0.001 0.005 
genes upregulated in HUVEC endothelium cells by 

treatment with PIGF (PMID: 15516835) 

PRC2_EDD_UP.V1_DN 1.30 0.014 0.088 1.32 < 0.001 0.106 < 0.001 < 0.001 
genes downregulated in TIG3 fibroblast cells upon 

knockdown of EED (PMID: 16618801) 

PRC2_EZH2_UP.V1_DN 1.33 0.003 0.071 1.21 0.034 0.209 0.021 < 0.001 
genes downregulated in TIG3 fibroblast cells upon 

knockdown of EZH2 (PMID: 16618801) 

RAF_UP.V1_DN 1.39 < 0.001 0.056 1.30 < 0.001 0.105 0.002 < 0.001 
genes downregulated in MCF7 breast cancer cells positive 
for ESR1; MCF7 cells stably overexpressing constitutively 

active RAF1 (PMID: 16585219) 

RAF_UP.V1_UP 1.33 0.007 0.068 1.25 0.009 0.139 0.002 < 0.001 
genes upregulated in MCF7 breast cancer cells positive for 

ESR1; MCF7 cells stably overexpressing constitutively 
active RAF1 (PMID: 16585219) 

STK33_NOMO_UP 1.21 0.040 0.204 1.27 < 0.001 0.127 0.007 < 0.001 
genes upregulated in NOMO1 acute myeloid leukemia 

cells after knockdown of STK33 by RNAi (PMID: 19490892) 

STK33_SKM_UP 1.27 0.007 0.115 1.28 < 0.001 0.120 0.002 < 0.001 
genes upregulated in SKM1 acute myeloid leukemia cells 

after knockdown of STK33 by RNAi (PMID: 19490892) 

STK33_UP 1.33 < 0.001 0.070 1.31 < 0.001 0.109 0.004 0.004 
genes upregulated in NOMO1 and SKM1 acute myeloid 

leukemia cells after knockdown of STK33 by RNAi (PMID: 
19490892) 

Note. For each gene set significantly enriched in promoters hypomethylated in stage 4S compared to stage 4 and stage 1/2, the corresponding normalized enrichment score 
(NES), nominal p-value (nom p-val < 0.05) and false discovery rate q-value (FDR q-val < 0.25) are shown. Global test q-values of the differential expression analyses are also 
indicated, as well as a description of the gene set (with PubMed ID of the source publication; as described in the Molecular Signatures Database [18]). 
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hypomethylated in stage 4S compared to stage 

4, in stage 4S compared to stage 1/2 and in stage 

1/2 compared to stage 4 (Supplemental table 4). 

Of note, 19 gene sets (Table 3) were specifically 

enriched in promoters hypomethylated in stage 

4S compared to both stage 1/2 and stage 4, 

including gene sets involved in downstream 

signaling of important oncogenes and epigenetic 

actors. Transcription factor target gene sets 

(Table 2) and the leading edge genes of the 

oncogenic signatures gene sets (Table 3) 

significantly enriched in stage 4S differentially 

methylated promoters were further tested for 

differential expression, using the global test [19] 

and publically available mRNA expression data 

[17]. In total, 25 of the 39 (64.10%) gene sets 

were identified as differentially expressed in 

stage 4S compared to both stage 4 and stage 1/2 

(Table 2 and Table 3). Finally, using covariates 

plots [19] and differential gene expression 

analyses on the individual gene level, we 

evaluated which genes contributed the most to 

the significant global test results (Supplemental 

table 5 and Table 4). 

 

Discussion 

 

Genome-wide characterization studies in NB 

often combine patients with stage 4S or other 

low-risk tumors into one group for comparison 

to high-risk patients, as low-risk patients 

generally have an excellent outcome, which is in 

sharp contrast to high-risk patients who often 

show fatal progression. Patients with stage 4S 

tumors demonstrate a typical pattern of 

metastatic spread at diagnosis and have the 

capacity to undergo spontaneous regression, 

and these characteristics are not exhibited by 

stage 1/2 tumors. As genomics alone have not 

been able to explain this intriguing clinical 

presentation [6], we aimed to characterize the 

DNA methylation pattern of stage 4S NB, in 

order to reveal new biological insights into this 

special type of NB.  

By performing differential methylation analyses 

between stage 4S and stage 1/2 and stage 4, we 

could clearly define a unique stage 4S promoter 

methylation portrait. We further showed that 

stage 4S-specific hyper- and hypomethylated 

promoters are located on specific chromosomal 

locations. Non-random chromosomal 

distribution of regions differentially methylated 

between tumor and normal samples [20,21], and 

between different tumor stages [21,22], has 

been previously reported for other cancer types. 

In this study, we show that specific chromosomal 

cytogenetic bands are enriched in stage 4S 

differentially methylated promoters, and most 

importantly, that stage 4S tumors show 

characteristic hypermethylation of specific 

subtelomeric promoters. Telomere length and its 

regulatory mechanisms are well-studied in NB 

[11–14,23–25]. Most stage 4S tumors have low 

telomerase activity or short telomeres 

[11,12,23], and it has been suggested that the 

association between stage 4S and spontaneous 

regression might be related to differences in 

telomere length regulation [6]. While 

subtelomeric DNA methylation has been shown 

to suppress telomere elongation in other cancer 

types [15,16], such telomere length regulatory 

mechanism is unexplored in NB. In this study, we 

have shown that specific subtelomeric 

promoters are hypermethylated in stage 4S 

tumors compared to stage 1/2 and stage 4 

tumors, which suggests that subtelomeric DNA 

methylation may represent an additional 

mechanism by which telomere length and 

spontaneous regression are controlled in NB. 

Therefore, the role of DNA methylation in 

telomere length regulation in stage 4S NB should 

definitely be further explored. 

Further, we have shown that multiple 

transcription factor target gene sets are enriched 

in stage 4S differentially methylated promoters. 

Methylation of cytosines within transcription 

factor recognition motifs has been shown to 

cause structural changes influencing DNA-

protein interactions (either in a positive or 

negative manner) and transcription 
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Table 4. Multiple stage 4S differentially methylated genes are also differentially expressed. 

hypermethylated in stage 4S 

enriched gene set gene 

stage 4S versus stage 4 stage 4S versus stage 1/2 

q logFC 
over-

expression 
in 

q logFC 
over-

expression 
in 

E2F1, E2F1_TFDP1_RB1 and 
MEF2A 

SLC9A5 < 0.001 0.833 stage 4 0.002 0.500 stage 1/2 

hypomethylated in stage 4S 

enriched gene set gene 

stage 4S versus stage 4 stage 4S versus stage 1/2 

q logFC 
over-

expression 
in 

q logFC 
over-

expression 
in 

CAHOY_NEURONAL 

DYNC1I1 0.010 1.035 stage 4 < 0.001 1.517 stage 1/2 

HS3ST2 0.021 0.680 stage 4 0.031 0.589 stage 1/2 

NSF 0.006 0.470 stage 4 < 0.001 0.538 stage 1/2 

GPR22 < 0.001 1.272 stage 4S 0.016 0.847 stage 4S 

CALB1 < 0.001 1.718 stage 4S 0.048 0.850 stage 4S 

CRX_NRL_DN.V1_DN 
GPR124 0.011 0.471 stage 4S 0.050 0.344 stage 4S 

PVRL3 < 0.001 1.153 stage 4S 0.009 0.719 stage 4S 

EGFR_UP.V1_DN 
C9orf3 < 0.001 0.833 stage 4S 0.011 0.574 stage 4S 

DERA < 0.001 0.897 stage 4S 0.023 0.451 stage 4S 

EGR3 

ATP6V1C1 0.002 0.380 stage 4 < 0.001 0.444 stage 1/2 

CLTC 0.008 0.391 stage 4 0.002 0.419 stage 1/2 

GPR176 0.031 0.184 stage 4 0.018 0.185 stage 1/2 

UBE2W 0.048 0.177 stage 4 0.031 0.177 stage 1/2 

EIF4E_DN 

CLTC 0.008 0.391 stage 4 0.002 0.419 stage 1/2 

NPEPPS 0.002 0.348 stage 4 0.004 0.305 stage 1/2 

TP53BP1 0.027 0.287 stage 4 0.010 0.304 stage 1/2 

LMO7 0.001 0.490 stage 4S 0.028 0.323 stage 4S 

SH3YL1 0.004 0.428 stage 4S 0.049 0.282 stage 4S 

ERB2_UP.V1_DN 

NPEPPS 0.002 0.348 stage 4 0.004 0.305 stage 1/2 

C9orf3 < 0.001 0.833 stage 4S 0.011 0.574 stage 4S 

LAMB1 < 0.001 0.690 stage 4S 0.022 0.354 stage 4S 

KRAS.AMP.LUNG_UP.V1_UP 

DYNC1I1 0.010 1.035 stage 4 < 0.001 1.517 stage 1/2 

C8B 0.038 0.340 stage 4S 0.006 0.408 stage 4S 

GCKR 0.027 0.240 stage 4S 0.032 0.215 stage 4S 

KRAS.KIDNEY_UP.V1_UP 

DYNC1I1 0.010 1.035 stage 4 < 0.001 1.517 stage 1/2 

ESRRG 0.021 0.475 stage 4 0.018 0.449 stage 1/2 

CALB1 < 0.001 1.718 stage 4S 0.048 0.850 stage 4S 

MEK_UP.V1_DN 

NPEPPS 0.002 0.348 stage 4 0.004 0.305 stage 1/2 

C9orf3 < 0.001 0.833 stage 4S 0.011 0.574 stage 4S 

TCF12 0.001 0.370 stage 4S 0.015 0.261 stage 4S 

MEL18_DN.V1_DN DIO2 0.048 0.460 stage 4 0.019 0.497 stage 1/2 

PIGF_UP.V1_UP LRRC17 < 0.001 0.568 stage 4S 0.031 0.283 stage 4S 

PRC2_EDD_UP.V1_DN CBX8 < 0.001 0.815 stage 4 0.002 0.588 stage 1/2 

(continues) 
Note. For each gene set differentially expressed in stage 4S compared to stage 4 and stage 1/2 (Table 2 and 
Table 3), differentially expressed individual genes are shown. Q-values are indicated, as well as the log2 fold 
change (logFC) and the group in which the gene is overexpressed.  
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Table 4. Multiple stage 4S differentially methylated genes are also differentially expressed. 
(continued) 

hypomethylated in stage 4S 

enriched gene set gene 

stage 4S versus stage 4 stage 4S versus stage 1/2 

p logFC 
over-

expression 
in 

p logFC 
over-

expression 
in 

RAF_UP.V1_DN 

C9orf3 < 0.001 0.833 stage 4S 0.011 0.574 stage 4S 

PALLD 0.042 0.330 stage 4S 0.019 0.347 stage 4S 

TCF12 0.001 0.370 stage 4S 0.015 0.261 stage 4S 

RAF_UP.V1_UP 
CABYR 0.003 0.462 stage 4 < 0.001 0.589 stage 1/2 

GATA2 0.032 0.711 stage 4S 0.012 0.760 stage 4S 

STK33_NOMO_UP 

KIAA1467 < 0.001 0.560 stage 4 0.002 0.447 stage 1/2 

NPEPPS 0.002 0.348 stage 4 0.004 0.305 stage 1/2 

UBE2W 0.048 0.177 stage 4 0.031 0.177 stage 1/2 

STK33_SKM_UP 
UBE2W 0.048 0.177 stage 4 0.031 0.177 stage 1/2 

PALLD 0.042 0.330 stage 4S 0.019 0.347 stage 4S 

STK33_UP UBE2W 0.048 0.177 stage 4 0.031 0.177 stage 1/2 

Note. For each gene set differentially expressed in stage 4S compared to stage 4 and stage 1/2 (Table 2 and 
Table 3), differentially expressed individual genes are shown. Q-values are indicated, as well as the log2 fold 
change (logFC) and the group in which the gene is overexpressed. 

factor activity [26]. As such, DNA methylation 

serves as a regulatory mechanism for 

transcription factor activity. Therefore, the 

transcription factor target gene sets enriched in 

stage 4S differentially methylated promoters 

may indicate differential activity of the 

respective transcription factors in stage 4S 

tumors compared to stage 1/2 and stage 4 

tumors. Of note, this assumption is reinforced by 

the fact that several of the identified 

transcription factors of which multiple target 

genes are differentially methylated in stage 4S 

show proven dependency on the DNA 

methylation status of the binding site for 

transcription factor- DNA interaction. For 

example, DNA methylation inhibits the binding 

of E2F1 and CEBPG [26–28]. Additionally, the 

differentially methylated target gene sets are 

differentially expressed in stage 4S NB, further 

strengthening the possibility that DNA 

methylation affects the activity of these 

transcription factors. Of note, E2F1 also binds to 

the TERT promoter [29], which is 

hypermethylated in stage 4S compared to stage 

4, and TERT is expressed at lower levels in stage 

4S compared to stage 4. This indicates that TERT 

DNA methylation might also regulate telomerase 

activity in stage 4S NB.  

Furthermore, our transcription factor target 

enrichment analyses particularly demonstrate 

that the DNA methylation portrait of stage 4S NB 

is dominated by differential methylation of 

target genes of transcription factors involved in 

neural crest development and (sympathetic) 

neural differentiation (MSX1 [30,31], EVI1 

[32,33], EGR3 [34], AHR [35,36], MEF2A [37,38], 

YY1 [39], PPARA [40], POU2F1 [41] and GFI1 

[42,43]). These findings suggest that differences 

in the pathogenic mechanisms between stage 4S 

and stage 1/2 and stage 4 tumors are at least in 

part related to differences in transcriptional 

activity during neural crest development and 

differentiation, which might indicate that stage 

4S, stage 1/2 and stage 4 tumors arise during 

different phases of neural crest cell 

development. This is in line with the previous 

postulation that stage 4S NB originates from 

defective premigratory neural crest cells, which 

explains its clinical symptomology, as stage 4S 

tumor sites mirror developmental neural crest 

cell migration [44].  

One of the genes contributing the most to the 

significant differential expression of the target 

genes of E2F1 and MEF2A is SLC9A5. The SLC9A5 
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promoter is hypermethylated in stage 4S and 

these tumors show low SLC9A5 expression levels 

compared to stage 4 and stage 1/2 tumors. 

SLC9A5 is a member of the Na(+)/H(+) exchanger 

family and is abundantly expressed in neurons. 

In rat pheochromocytoma, a neuroendocrine 

tumor of the adrenal medulla, Diering et al. have 

shown that SLC9A5 modulates trafficking of TrkA 

between recycling endosomes and the plasma 

membrane, neurotrophin signaling and neural 

differentiation [45]. The authors demonstrate 

that upon knockdown of SLC9A5 in these tumor 

cells, there is no difference in the total 

abundance of TrkA compared to control cells, 

suggesting that reduced expression of SLC9A5 

has little effect on TrkA degradation or synthesis. 

However, although the overall TrkA protein 

levels did not change, the cell surface abundance 

of TrkA was reduced upon knockdown of SLC9A5 

[45]. Stage 4S NB tumors generally show high 

levels of TrkA, and depending on the presence or 

absence of nerve growth factor (NGF) in the 

tumor microenvironment, the tumors undergo 

neural differentiation or spontaneous 

regression, respectively. Therefore, 

neurotrophin deprivation (TrkA without NGF) 

and activation of apoptosis have been proposed 

to explain the phenomenon of spontaneous 

regression in NB [6]. Given the crucial role of 

SLC9A5 in regulating the cellular distribution of 

TrkA and NGF signaling [45], our findings suggest 

that over time stage 4S tumor cell surfaces might 

get depleted of TrkA (with an accompanying 

intracellular accumulation of TrkA) due to the 

low expression levels of SLC9A5, ultimately 

leading to apoptosis and regression. 

Our gene set enrichment analyses also highlight 

differential methylation of genes involved in 

important oncogenic pathways, especially of 

genes implicated in EGFR and RAS signaling. 

Although the exact mechanisms by which DNA 

methylation contributes to differential 

regulation of these pathways in stage 4S 

specifically cannot be determined in our study, 

our findings indicate that it is crucial to separate 

stage 4S tumors from other low-stage (stage 

1/2) tumors in studies focusing on NB biology, as 

this might reveal new insights into the stage 4S 

NB pathogenesis. The importance hereof is 

highlighted by the fact that all but one 

differentially methylated oncogenic signatures 

are also differentially expressed in stage 4S NB, 

confirming differential regulation of these 

oncogenic pathways in stage 4S on the one hand 

and stage 4 and stage 1/2 on the other hand. 

Finally, the enrichment analyses also illustrate 

that stage 4S tumors present differential activity 

of important epigenetic players, such as BMI1, 

PCGF2, EED and EZH2. Potentially, differential 

regulation of epigenetic mechanisms might also 

contribute to the regression phenotype of stage 

4S NB, as epigenetic alterations can more easily 

be reversed. Clearly, these epigenetic 

mechanisms need to be further studied in NB.  

In conclusion, this study is the first to describe 

the stage 4S DNA methylome and demonstrates 

that stage 4S NB tumors show characteristic 

DNA methylation patterns compared to stage 

1/2 and stage 4 tumors. Genomic localization 

and functional characterization analyses of this 

stage 4S DNA methylation portrait suggested 

new mechanisms that may contribute to the 

stage 4S-specific tumor biology and spontaneous 

regression. Future studies must confirm these 

observations and hypotheses. 

 

Materials and methods 

 

Neuroblastoma primary tumors 

 

Sample collection for MBD sequencing (n = 41) 

and expression profiling (n = 180) is described in 

Decock et al. [7] and Oberthuer et al. [17], 

respectively. All tumor samples were assigned to 

one of the three following subgroups, based on 

the INSS tumor stage [3] and MYCN amplification 

status: (1) MYCN non-amplified stage 4S (MBD 

sequencing: n = 14; expression profiling: n = 28), 

(2) MYCN non-amplified stage 4 (MBD 

sequencing: n = 14; expression profiling: n = 46) , 
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or (3) MYCN non-amplified stage 1 or 2 (MBD 

sequencing: n = 13; expression profiling: n = 

106). Detailed criteria for patient inclusion in the 

study are described in Decock et al. [8,46]. MYCN 

amplified tumor samples were excluded. 

Detailed clinicobiological characteristics of the 

different sample cohorts are shown in 

Supplemental table 6. The study was approved 

by the ethical committee of the Ghent University 

Hospital (approval number: B67020109912). 

 

DNA methylome and transcriptome profiling 

 

A detailed description of the generation and raw 

data analysis of the MBD sequencing data is 

provided in Decock et al. [7] Data can be 

accessed through the Gene Expression Omnibus 

numbers GSE69243 and GSE69268. For the 

mRNA expression analyses, microarray data of 

180 NB tumors were used [17]. 

 

Bioinformatics and statistical analyses 

 

Differential methylation analyses on the MBD 

sequencing data were performed as described in 

Decock et al. [8], using DESeq [47] and promoter 

region count matrices with data on all Ensembl 

transcripts (release 68). Promoters located on X 

and Y chromosomes were excluded to avoid 

gender-related confounding. To estimate the 

background signal and to be able to exclude 

possible falsely identified differentially 

methylated regions (DMRs) in the DESeq 

analyses, a filtering procedure based on two 

correction steps was applied on the resulting 

DMR lists. A first correction step consisted of 

excluding DMRs which were also significantly 

identified in the same comparison on the input 

(non-MBD-enriched) sample data (input 

correction) [8]. Secondly, computational 

simulation analyses were performed, in which 

100 random patient annotation swaps were 

executed to create two artificial sample groups 

on which the same statistics were applied as on 

the biologically relevant groups. Only biologically 

relevant DMRs with a π-value (= -ln p-val * log2 

fold change) [48] that equals or outperforms the 

π-value of the corresponding simulation DMR 

were considered for further evaluation (swap 

correction). DESeq normalized read counts of 

the stage-specific DNA methylation portraits 

were used for principal component analysis in R 

(package factoextra). 

Cytogenetic band enrichment analysis and 

transcription factor target enrichment analysis 

were performed using WebGestalt [9,10] with 

gene symbols as input list. The entire human 

genome was used as reference list. Benjamini-

Hochberg multiple testing correction was 

applied [49] and only statistically enriched terms 

(q < 0.05) with at least two genes were 

considered. 

Non-corrected transcript lists, including all 

transcripts included in the differential 

methylation analyses (preranked on the π-value) 

were used for GSEA [18,50]. To this purpose, 

Ensembl transcript IDs were converted to gene 

symbols. For genes with multiple transcripts, the 

data of the Ensembl transcript with the highest 

absolute π-value was retained. Tested gene set 

databases are the oncogenic signatures (version 

5.1) of the Molecular Signatures Database [18] 

and two in-house created subtelomere gene set 

lists. These two subtelomere gene set lists 

contain all genes in the 1 Mb or 2 Mb 

subtelomeres, which are defined as the 1 Mb or 

2 Mb genomic regions [24] proximal to the 

telomeres (10 kb chromosomal ends; hg19). 

GSEA was also performed on the input data to 

exclude falsely identified enriched gene sets. 

The sets of differentially methylated 

transcription factor targets and the leading edge 

genes of the enriched oncogenic signature gene 

sets were further tested for differential 

expression using the globaltest R package [19] 

and publically available mRNA expression data 

[17]. For significantly differentially expressed 

gene sets, covariates plots [19] were generated 

to inspect the contributions of each gene to the 

test result. Differential expression analyses on 
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the individual gene level were performed using 

the R package limma [51]. Benjamini-Hochberg 

multiple testing correction was applied [49]. 
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Supplemental table 1. Neuroblastoma tumors 

are characterized by a stage-specific DNA 

methylation pattern. For each Ensembl 

transcript ID, gene and promoter annotation is 

given, as well as the corresponding p-value, log2 

fold change and π-value (= -ln p-value * log2 fold 

change) of the differential methylation analyses. 

For transcripts considered differentially 

methylated upon input and swap correction (see 

materials and methods), it is indicated which 

sample group is hypermethylated and whether 

the transcript is part of a stage-specific DNA 

methylation portrait.  

 

Supplemental table 2. Specific chromosomal 

cytogenetic bands are enriched in the stage-

specific differentially methylated promoters. 

Shown are the significantly (q < 0.05) enriched 

cytogenetic bands in stage 4S, stage 4 and stage 

1/2 hyper- and hypomethylated promoters. For 

each enriched gene set, the differentially 

methylated genes are indicated. C: the number 

of reference genes in the category (cytogenetic 

band); E: the expected number in the category; 

O: the number of genes hyper- or 

hypomethylated in the corresponding stage in 

the category; genes: annotation for the genes in 

O; R: ratio of enrichment.  

 

Supplemental table 3. Specific transcription 

factor targets are enriched in stage 4S 

differentially methylated promoters. Shown are 

the significantly (q < 0.05) enriched transcription 

factor targets (motifs) in stage 4S hyper- and 

hypomethylated promoters. C: the number of 

reference genes in the category (transcription 

factor target); E: the expected number in the 

category; O: the number of genes hyper- or 

hypomethylated in stage 4S in the category; 

genes: annotation for the genes in O; R: ratio of 

enrichment.  

 

Supplemental table 4. Gene set enrichment 

analyses identify oncogenic signatures in stage-

related differentially methylated promoters. 

Shown are the gene sets significantly (nom p-val 

< 0.05 and FDR q-val < 0.25) enriched in 

promoters hypomethylated in stage 4S 

compared to stage 4, in stage 4S compared to 

stage 1/2 or in stage 1/2 compared to stage 4. 

Gene sets also identified in the corresponding 

input data comparisons are excluded. NES: 

normalized enrichment score; nom p-val: 

nominal p-value; FDR q-val: false discovery rate 

q-value.  

 

Supplemental table 5. Transcription factor 

target and oncogenic signatures gene sets are 

differentially expressed between stage 4S and 

stage 4 and stage 1/2. For each gene set 

significantly differentially expressed (q < 0.05; 

global test) between stage 4S and stage 4 and/or 

stage 1/2, data extracted from the covariates 

plots (p-values and sample group associations of 

individual genes) is shown. For each of the genes 

in all gene sets, also the results (q-value, log2 

fold change and sample group with 
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overexpression) of the differential expression 

analysis on the individual gene level (limma) are 

shown.  

 

Supplemental table 6. In total, 221 annotated 

primary neuroblastoma samples were included 

in the study. A. Detailed characteristics. Each 

sample is characterized by a unique patientID 

and is assigned to a biological subgroup (stage 

4S, stage 1/2 or stage 4) and subcohort (MBD 

sequencing or expression). Clinical 

characteristics given are the age of the patient at 

diagnosis in months, International 

Neuroblastoma Staging System (INSS) stage, and 

overall survival (OS) and event-free survival (EFS) 

status and time after diagnosis in days. The OS 

status indicates whether the patient is alive (0) 

at the last known follow-up or died of disease 

(1). Similarly, the EFS status indicates events 

such as relapse, progression or death. All 

samples are MYCN non-amplified. NAs represent 

missing values. B. Summary. Per subcohort an 

overview of the clinical characteristics is given.  
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4.1 Defeating pitfalls and limitations in biomarker research: the successful establishment of a 

prognostic DNA methylation signature for neuroblastoma 

Aiming at personalized medicine, molecular biomarker research is extremely important, especially 

for diseases showing a high degree of clinical heterogeneity such as NB. Revolutions in molecular 

characterization of NB tumors have led to the identification of a large amount of putative prognostic 

biomarkers, but only very few have shown clinical validity and utility; only MYCN oncogene 

amplification (§1.2.1.4), chromosome 11q aberration (§1.2.1.5.2.2) and DNA ploidy (§1.2.1.5.1) 

status are standardly used in patient stratification (§1.2.4) [154]. One of the main reasons for this is 

that many discovery studies suffer from pitfalls and limitations, such as an inadequate study design, 

insufficient sample numbers and lack of biomarker validation. In our search for prognostic DNA 

methylation biomarkers for NB, we aimed to defeat these issues. An overview of the research results 

is given in Figure 14. 

At the time of project initiation, most DNA methylation biomarker studies in NB were candidate 

gene-based; only few made use of whole-genome DNA methylation detection methodologies (re-

expression profiling upon treatment with DAC, MeDIP chip and Illumina 27 K methylation array 

analysis (§review paper; [228]); Figure 14). Though, whole-genome sequencing technologies had not 

yet been applied to study DNA methylation patterns in NB. By the start of our project, the 

implementation of the Illumina HM450 array (§1.1.4.2) was not yet fully optimized and whole-

genome bisulfite sequencing (§1.1.4.4) was not yet cost-efficient. Therefore, given the expertise of 

the UGent sequencing reference center NXTGNT (www.nxtgnt.ugent.be) in MBD sequencing 

(§1.1.4.3), this NGS-based technology was selected as the method of choice for DNA methylation 

biomarker discovery in our project. As proof of principle, we set up a pilot study (§paper 1; [229]; 

Figure 14) in which eight NB cell lines were profiled using microarray re-expression analysis and MBD 

sequencing. Using these cell line data, a bioinformatics pipeline for the analysis of MBD sequencing 

data was developed and methylated promoters were identified. To further select candidate 

prognostic biomarkers, these data were integrated with publically available primary tumor 

expression data and locus-specific DNA methylation analysis in a limited number of primary tumors. 

Subsequently, fast and accurate validation of the candidate prognostic biomarkers was obtained 

through the implementation of a semi-automated, high-throughput MSP pipeline [229]. Through the 

successful establishment of this validation technology, we ensured the possibility to translate the 

identified biomarkers into a clinically useful assay, as at present, MSP is still considered the gold 

standard methodology for measuring DNA methylation in clinical assays [120]. Although NGS may 

hold the future for clinical assay testing, NGS-based methodologies are currently immature to be 

clinically implemented for DNA methylation biomarker testing [120, 232–234]. Encouraged by the 

results of these initial experiments [229] and having specified the technological aspects of our study 

design, we set out a more profound DNA methylation biomarker discovery, verification and 

validation trajectory, a valorization project supported by the Fournier-Majoie Foundation 

(www.fournier-majoie.org). 

In the extended discovery phase, MBD sequencing was applied to 87 primary tumor DNA samples, to 

allow differential methylation analysis between prognostic patient groups and candidate biomarker 

prioritization (§paper 2; [230]; Figure 14). Next, more than 350 primary tumor DNA samples were 

collected for biomarker verification and validation. It should be noted that such large numbers of 
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samples are unprecedented in NB DNA methylation biomarker research. For rare diseases such as 

NB, one of the bottlenecks biomarker research faces, is the small number of available biospecimens. 

Consequently, our biomarker project depended on the establishment of international collaborations, 

in order to collect sample sizes that were large enough to be of statistical significance. During the

 

           
Figure 14. The research project resulted in five publications. At the start of the project, the literature on 
prognostic DNA methylation biomarkers in neuroblastoma (NB) was reviewed [228]. The first original research 
paper represents a pilot study in which the technological aspects of the project were specified [229]. The 
second paper describes the results of the more profound discovery, verification and validation trajectory [230]. 
The methyl-CpG-binding domain (MBD) sequencing data that were used in this second paper were also 
described in detail in a data descriptor [110]. Finally, a fourth paper was written on the characterization of the 
stage 4S NB methylome [231]. MSP: methylation-specific PCR. 
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project, multiple research centers and biobanks across the world were contacted, sample request 

applications were filed, material transfer agreements were set up, biospecimens were moved across 

national borders and sample annotation was gathered. In total, nine national biobank resource 

centers and reference centers for the study and diagnosis of NB contributed to sample collection for 

this biomarker project and enabled access to biospecimens: the Ghent University Hospital (Belgium), 

the Centre Léon Bérard (Lyon, France), the Hospital Clínico Universitario (Valencia, Spain), the Sydney 

Children's Hospital (Australia), the Institut Curie (Paris, France), the Children's Cancer and Leukemia 

Group (Leicester, UK), the Our Lady’s Children’s Hospital Dublin (Ireland), the University Hospital 

Brno (Czech Republic) and the University Children’s Hospital Essen (Germany). Of note, the 

investments it took to build up this sample collection prolonged the project’s time frame to a 

considerable degree, especially due to administrative hurdles that needed to be tackled. To speed up 

NB biomarker studies in the future, it is important to intensify the effort and resources put in 

expanding the infrastructure of international biobanks and databases, such as the interactive 

International Neuroblastoma Risk Group database (iINRGdb) [154]. Such repositories of high quality 

samples with updated clinical and treatment annotation should remarkably facilitate sample 

application and collection procedures for research projects.  

 

Partly as a consequence of difficulties in sample collection, validation of the clinical significance of 

the identified biomarkers is often overlooked in NB studies, especially in relatively new and rapidly 

evolving research fields such as epigenetics. Unfortunately, this is a general trend in cancer 

biomarker research and has far-reaching consequences researchers often do not take into account 

when publishing unvalidated results [235, 236]. For example, publication of a new, high-profile 

biomarker is frequently accompanied by press releases generating high expectations about the new 

biomarker. However, follow-up reports demonstrating that the same biomarker failed to be 

validated for clinical use are generally ignored by the media, leaving the general public with skewed 

information. To improve biomarker research, it might be appropriate not to call a molecule a 

biomarker until it has passed at least one independent validation study, avoiding misinterpretations 

and highly misleading conclusions [235]. In our project, the DNA methylation biomarker candidates 

identified by primary tumor MBD sequencing were additionally tested on independent tumor cohorts 

using MSP, allowing to validate their clinical significance (§paper 2; [230]; Figure 14). Importantly, we 

also reported in detail on patient and biospecimen characteristics, the assay methods, study design 

and statistical analysis methods [110, 230]. This is extremely important, as in addition to lack of 

independent validation, inadequate reporting also hinders biomarker research progress [237].  

 

As such, we were able to identify and validate multiple individual prognostic MSP assays (located in 

CCDC177, NXPH1, lnc-MRPL3-2, lnc-TREX1-1, SPRED3, TNFAIP2, NPM2, CYYR1 and one on a region 

from chromosome 8 with no further annotation), as well as a robust prognostic 58-marker 

methylation signature of which a methylation score cutoff of 25% allows accurate OS and EFS 

prediction in the global NB patient cohort. Importantly, in the validation cohort, this signature was an 

independent predictor of OS after controlling for known NB risk factors, clearly indicating its clinical 

relevance. Further investigations must confirm these results and integration with other biomarkers 

should be explored [230] (Figure 14). 
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4.2 Finding prognostic biomarkers for high-risk neuroblastoma: a tough nut to crack 

 

Having collected a considerable number of both high-risk survivors and high-risk non-survivors for 

our study, we also tested the prognostic relevance of the selected MSP assays within the high-risk 

cohorts (§paper 2; [230]). This analysis is very valuable for the reason that the need for prognostic 

biomarkers is the highest within this group of patients. Ideally, high-risk prognostic biomarkers would 

allow pretreatment identification of ultra-high-risk patients, i.e. patients currently dying of the 

disease although intensively being treated. Recent comprehensive whole-genome sequencing 

studies have shown that high-risk NB tumors can be genetically subdivided into three major 

subgroups, based on the presence of MYCN amplification, TERT rearrangements and ATRX 

alterations, but currently these findings have not shown utility as prognostic biomarker [238, 239]. 

Previously, our center developed a 59-mRNA [222] and 25-miRNA signature [224] using RNA from 

fresh frozen tumors, each enabling identification of patients with increased risk in the current risk 

groups (§1.2.4), including the high-risk patient group, but these signatures await further validation on 

formalin-fixed paraffin-embedded tumor samples. Next to tumor mRNAs and miRNAs, also tumor 

DNA methylation patterns have been searched for prognostic biomarkers for high-risk NB [240, 241]. 

However, these DNA methylation studies could not validate the biomarkers [241] or incorrectly 

included low-risk samples in the so-called validation cohort [240]. Unfortunately, also in our project 

we could not validate prognostic high-risk biomarkers using MSP, although differential methylation 

analyses on the MBD sequencing data illustrated that high-risk survivors and high-risk non-survivors 

show different methylation patterns. Importantly, this does not mean that high-risk DNA methylation 

biomarkers cannot be found. It only indicates that the methylation differences in the differentially 

methylated regions (of 2 kb or 5 kb) in the MBD sequencing data between these high-risk groups are 

too subtle to be easily translated in an MSP assay which only interrogates a few CpGs. Therefore, the 

possibility of establishing high-risk methylation biomarkers based on genome-wide bisulfite 

sequencing, which allows analysis of the methylome at the single CpG level, should be addressed in 

the future. These future studies might also benefit from focusing on more homogeneous high-risk 

patient groups, for example by only studying MYCN amplified or non-amplified samples, as the 

heterogeneity within our high-risk cohorts might also have counteracted the possibility of 

establishing high-risk DNA methylation biomarkers [230]. 

 

4.3 Sharing is caring 

 

Along with the 87 tumors in our prognostic biomarker project, also 15 stage 4S NB tumors were 

profiled by MBD sequencing. The MBD sequencing data of these 102 primary NB tumors are unique 

in the NB research field, as it represents the first sample cohort in which the full tumor heterogeneity 

is being assessed by genome-wide methylation analysis using NGS. Given the rare occurrence of NB, 

we are therefore convinced that this data set is a valuable resource of methylation information and 

that other researchers must be able to use it. Although there is a growing international agreement 

on the need of sharing research data, especially for rare diseases, open science is not the standard 

[242, 243]. Next to ethical and legal frameworks hindering open science, also researchers themselves 

are sometimes not that keen on sharing, as they fear that the valuable work they have put into their 

sample collection and data generation will not be recognized. As a consequence, researchers often 

hold on to data until they have extracted every last possible publication from it. Fortunately, things 

are changing and particularly scientific publishing is at a turning point [242, 243]. This is evidenced by 
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the growing number of scientific journals specifically focusing on data sharing, for example Matters 

(www.sciencematters.io), Genomics Data (www.journals.elsevier.com/genomics-data) and Scientific 

Data (www.nature.com/sdata). To make our data more discoverable, interpretable and reusable for 

other researchers (inexperienced with MBD sequencing), the MBD sequencing data were published 

as a data descriptor in Scientific Data (§paper 3; [110]; Figure 14). In this data descriptor, we provide 

details on sample annotation (including accession IDs to matching expression and aCGH data), 

methodological approach and bioinformatics analyses, as well as easy access to the (analyzed) MBD 

sequencing data and analysis tools and scripts [110]. Additionally, this data descriptor is 

accompanied by an ISA-Tab metadata file, providing a machine readable overview of the study, 

which allows exploration via the ISA-explorer tool (http://scientificdata.isa-explorer.org). Shortly 

upon publication of our data descriptor we were contacted by another research group willing to 

make use of the MBD sequencing data to analyze the methylation status of a certain gene [244]. This 

request clearly illustrates the opportunities data sharing has to offer and why every researcher 

should embrace it.  

 

4.4 The stage 4S DNA methylome sheds light on mechanisms contributing to spontaneous 

regression 

 

To further exemplify the possibilities of reusing our MBD sequencing data, we characterized the DNA 

methylome of stage 4S NB (§1.2.1.3). This NB tumor stage is a very intriguing clinical presentation; 

despite patients present with metastatic disease, they usually have a favorable prognosis, often 

caused by spontaneous tumor regression. Previous studies have shown that most stage 4S NB 

tumors are MYCN non-amplified and hyperdiploid (near-triploid with whole chromosome gains), and 

demonstrate characteristic mRNA and protein expression patterns [245–248]. For example, Bénard 

et al. have developed a stage 4S NB classifier by comparing mRNA expression levels of stage 4S and 

stage 4 NB tumors [246], and Lavarino et al. have shown that distinct gene expression profiles 

correlate with distinct genomic abnormalities between these two NB tumor stages [247]. Based on 

these characterization studies, several mechanisms have been proposed to explain the regression 

phenotype of stage 4S NB (summarized in [245]), but the precise molecular determinants underlying 

this phenomenon remain to be elucidated. This is partly caused by the fact that recent genome-wide 

characterization studies in NB have combined patients with stage 4S or other low-risk tumors with 

favorable prognosis (stage 1/2) into one group for comparison to high-risk patients with unfavorable 

prognosis (stage 4), hindering the opportunity to gain new insights into the stage 4S NB biology. By 

comparing MBD sequencing data of MYCN non-amplified stage 4S tumors to data of MYCN non-

amplified stage 1/2 and stage 4 tumors, we described for the first time stage 4S-specific hyper- and 

hypomethylated promoters, which were characterized for genomic location and function (§paper 4; 

[231]; Figure 14). As such, we found that stage 4S tumors show characteristic hypermethylation of 

specific subtelomeric (§1.1.2.1) promoters and based on the literature we suggested that 

subtelomeric DNA methylation might represent an additional regulatory mechanism by which 

telomeres are shortened and spontaneous regression is induced in stage 4S NB. One of the first 

studies describing a link between subtelomeric DNA methylation and telomere length homeostasis is 

published by Gonzalo et al. [249]. Using mice embryonic stem cells, they showed that Dnmt1 or 

Dnmt3a and Dnmt3b knockdown leads to a global decrease in subtelomeric DNA methylation levels, 

and demonstrated that dramatic telomere elongation is present in these DNMT deficient cells. 

Furthermore, they prove that loss of DNA methylation leads to increased telomeric sister-chromatid 
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exchange events at telomeres, possibly resulting in telomere lengthening. As such, subtelomeric DNA 

methylation can be considered a negative regulator of telomere recombination and telomere length 

[249]. Later on, this has been confirmed by Vera et al. in human cancer cells [250]. Nevertheless, the 

effect of subtelomeric DNA methylation on telomere length might also directly result from altered 

expression of other telomere length regulators located in subtelomeres. For example, in humans, the 

TERT and TERRA promoters are located in subtelomeric regions, more specifically on chr5q and 

chr20q [251], respectively. TERT is hypermethylated in stage 4S NB compared to stage 4 NB, and this 

might lead to downregulation of telomerase levels, contributing to telomere shortening in stage 4S 

NB. Although no differential methylation of the TERRA promoter between the different NB tumor 

stages could be detected in our study (data not shown), this telomere length regulator should 

definitely be further analyzed in NB, as it has been shown that TERRA plays a crucial role in 

alternative lengthening of telomeres (ALT) [252], a process which is also described in NB [253]. 

Additionally, we also found differential methylation and expression of genes involved in important 

oncogenic pathways, neural crest development and differentiation, and epigenetic processes. One of 

these genes is SLC9A5, modulating the cellular distribution of TrkA (NTRK1) and nerve growth factor 

(NGF) signaling [254]. Importantly, TrkA expression and NGF signaling have been suggested to play an 

important role in NB spontaneous regression [245]. As such, hypermethylation and lower expression 

levels of SLC9A5 in stage 4S NB might also contribute to the stage 4S regression phenotype. 

Importantly, it should be stressed that this study is the first to describe the stage 4S DNA methylome 

and thus that independent validation of stage 4S-specific differential methylation (of individual 

genes) is needed. Nevertheless, exploring the DNA methylome of stage 4S tumors has opened new 

avenues to further unravel its intriguing biology.  

 

4.5 Latent mysteries in neuroblastoma epigenetics may decipher the clinical enigma 

 

In contrast to the impressive amount of knowledge that has been acquired on the NB genome and 

transcriptome during the last decades, profound DNA methylation studies in NB have lagged behind. 

Nevertheless, recent findings have triggered the NB research field to dig deeper into this relatively 

unexplored discipline.  

 

Our project mainly focused on the establishment of prognostic tumor DNA methylation biomarkers. 

However, applications of DNA methylation biomarkers in cancer management are versatile (§1.2.3) 

and these should definitely be further explored in the context of NB. For example, the possibilities of 

identifying DNA methylation biomarkers for minimal residual disease monitoring should be further 

examined and methylation detection methodologies should be further optimized to allow non-

invasive biomarker measurement in blood. It has previously been shown that methylation of 

RASSF1A in bone marrow samples can be used for minimal residual disease testing in NB [255] and 

methylation of this gene was detected in pretreatment serum of NB patients [256]. Therefore, using 

the recently described MethyLight digital droplet PCR technology [68], it is worthwhile to test 

whether serum RASSF1A methylation can be used for minimal residual disease monitoring, as well as 

to investigate whether our identified prognostic DNA methylation biomarkers can also be detected in 

the blood of NB patients.  

 

Additionally, the link between MYCN and DNA methylation needs to be further clarified. Literature 

suggests an important function of MYCN in regulating the NB epigenome (and vice versa), as it 
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directly interacts with important epigenetic factors, such as DNA methyltransferases DNMT1 and 

DNMT3A and the MBD protein MeCP2, and colocalizes with them at certain gene promoters, of 

which some are known to be hypermethylated in NB, for example RASSF1A [257, 258]. Additionally, 

it has been shown that BMI1, encoding a member of the Polycomb group family that effectuates 

chromatin modifications, is a direct target of MYCN [259, 260]. Furthermore, we and others have 

shown that MYCN non-amplified and amplified NB cell lines and primary tumors show differential 

methylation patterns [229, 240, 261]. For example, in our pilot study, we have demonstrated that the 

HIST1H3C and ACSS3 promoter is specifically hypermethylated in MYCN amplified NB [229]. 

Nevertheless, more in-depth analyses are needed to truly characterize the complex interplay 

between MYCN and the different epigenetic actors. 

 

Other epigenetic players frequently deregulated in cancer but unexplored in NB are the 5-

hydroxymethylcytosine base (and its oxidation products 5-formylcytosine and 5-carboxylcytosine) 

and the TET enzyme family (§1.1.1.1) [9]. 5-hydroxymethylcytosine is present in high levels in neural 

cells and therefore might have a crucial role in the pathogenesis of NB tumors, which originate from 

precursor cells of the sympathetic nervous system. So far, it has only been shown that hypoxia in NB 

cells results in transcriptional activation of TET1, leading to an accumulation of 5-

hydroxymethylcytosine density at hypoxia-responsive genes [262], and that TET proteins negatively 

regulate neural differentiation in NB cell lines [263], but more exhaustive studies are currently 

lacking. Clearly, possible mechanisms deregulating the levels of the oxidation products of 5-

methylcytosine in NB should be further examined. 

 

Finally, given that epigenetic processes are highly influenced by environmental factors, it needs to be 

determined whether DNA methylation differences between primary tumors, metastases and relapse 

tumors can be detected. An initial study of 16 matching primary and relapse NB tumors showed that 

primary tumor DNA methylation patterns are globally preserved in relapse tumors, but differential 

methylation analyses were not assessed [264]. Nevertheless, these analyses might unravel new 

aspects of NB metastasis and tumor evolution, and might offer new possibilities for treatment [121]. 

 

4.6 Conclusions 

 

By exploring the NB DNA methylome using MBD sequencing and by validating site-specific DNA 

methylation using MSP, we successfully established new prognostic DNA methylation biomarkers for 

NB. Nevertheless, the quest for prognostic NB markers did not yet come to an end, and especially in 

the high-risk patient group, the need for additional markers persists. To speed up NB (biomarker) 

research, sharing data should become the standard. To contribute to the policy of open science, the 

MBD sequencing data were made available via a data descriptor and its reusability was 

demonstrated by portraying the stage 4S NB DNA methylome. As such, we discovered new biological 

mechanisms possibly contributing to the NB pathology. Further exploration of the NB DNA 

methylome and other epigenetic factors will unravel new aspects of NB biology and will open new 

horizons in NB biomarker research. 
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