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Summary 
The interest in quantifying submarine sources of gas has increased since marine gas fluxes have been 

recognized as a potential source of atmospheric methane as well as a contributor to the ‘greenhouse 

effect’. Estimates of the contribution of natural seabed gas to the atmospheric methane budget have 

been undertaken, but they are still poorly constrained and highly controversial. To a large extent, these 

estimates are based on extrapolations from spatially small data sets resulting in a broad range of 

uncertainty. Consequently, it is necessary to minimize this uncertainty for coming greenhouse gas flux 

estimates from the ocean. Additionally, methods for detecting and quantifying gas leakage from 

industrial gas and oil exploitation sites are in demand to control industrial processes and to assess 

marine pollution that occur during normal operation and blow-out scenarios.  

Driven by this demand, several techniques have been developed to study gas emissions from the 

seabed. In general, these techniques can be divided into invasive and non-invasive methods. Examples 

of non-invasive methods include the inverted funnel technique, to capture bubbles in situ, and direct 

video observations at the seafloor. Both are used to physically describe bubble release and to quantify 

the amount of gas expelled. Both are highly precise methods, but they are less efficient in covering large 

areas in which seepages occur. Alternatively, hydroacoustic remote sensing techniques have become 

popular due to its non-invasive capability to detect, monitor and also quantify the emitted gas. 

Hydroacoustic systems can be divided in a) passive systems, which are able to ‘listen’ to the acoustic 

signature of bubbles when detached from a surface (e.g. sediments) and b) active systems, which send 

out an acoustic signal and record the sound backscattered from different targets  within the water. 

Passive systems are useful, as they allow detailed spectral analyses of the signal emitted by bubbles; but 

at the same time, they are limited to environments with high levels of background noise as these would 

mask/overprint the signal (e.g. oceans at strong weather conditions; ship noise, other artificial noise). To 

overcome this problem, passive devices are usually placed close to the sound source of interest, further 

limiting their ability to cover large seep areas. 

Active hydroacoustic techniques presented in this thesis, are very efficient in detecting free gas 

(bubbles) in the water column because sound is strongly scattered when it hits bubbles due to the high 

impedance change at the gas-liquid interface. The emitted signal, although it provides less spectral 

information due to the narrow bandwidth of the signal, is easy to be detected because its waveform is 

known. Unlike passive hydroacoustic methods and invasive techniques, devices such as singlebeam and 

multibeam echosounder systems (SBES and MBES respectively) are able to cover larger seep areas than 

it is possible by e.g. ROV-based visual observations. In addition, active systems can be seen as a 

directional antenna (or a group of antennas in case of using MBES) rendering them useful in accurately 

positioning detected targets within a 3D space or, at least, providing valuable information about the 

depth in which  targets are located in the water column. 

 



                                                                                                                                                                           Summary 
 

8 

The presented work attempts to reach two main objectives. The first is the development of a practical 

technique to evaluate gas flow rates of acoustically detected and mapped gas bubbles in the water 

column using SBES data. The second objective is the application of this method to the total methane 

emissions and the spatio/ temporal changes of a seep area located in the Arctic west of Spitzbergen. 

This study area has been chosen because it is considered a model area to eventually assess accelerated 

gas hydrate destabilization as a consequence of global warming induced by bottom water warming. 

Methane release at the study area has been hypothesized to be controlled by changes of the gas 

hydrate stability zone (GHSZ), which is vulnerable to changes of bottom-water temperature. 

Additionally, geochemical studies on methane-derived carbonates have shown that seepage is ongoing 

for at least 3000 years BP. In order to study seep activity changes, the seep area has been repeatedly 

hydroacoustically monitored since 2008. Hydroacoustic surveys in the seep area were carried out by 

different research groups (RCMG, GEOMAR, CAGE, NOCS and NIOZ) and the complete dataset presented 

in this thesis is the result of the cooperation between these groups.  

With regard to the first objective of this thesis, the used approach applies the theoretical relationship 

between bubble sizes and the total acoustical scattering cross-section of a bubble cloud when it is 

insonified by a monochromatic acoustic plane wave. A scattering model for single bubbles based on the 

monopole bubble theory is tested as fundamental part of this method. It is assumed that the 

backscattering produced by the bubble cloud is the sum of the backscattering as it would be contributed 

by individual spherical bubbles with a specific size distribution. For flow calculations, bubble rising 

speeds are an essential input parameter. In the case that no bubble rising speed values have been 

measured, the developed method considers different bubble rising speed models to determine 

ascending speeds of bubbles in relation to their size. In the frame of this thesis, the above, briefly 

sketched method has been applied and despite that a validation of the method is still missing, the 

results obtained show realistic flow rates compared to visual or direct sampling techniques. Together 

with the description of the flow rate estimating method, a procedure for evaluating the total flow rate 

of large seep areas is described, which is based on the clustering of neighboring ‘acoustic flares’ (i.e. the 

name derives from the fact that multiple gas bubbles that are released from a seep location at the sea 

floor and rise through the water column are imaged on echograms with a typical ‘flare’ shape). 

Because of the need to have an organized and rapid way to process hydroacoustic data, a software-

package composed of FlareHunter and the FlareFlowModule has been developed during this PhD 

project and is now available to the general research community. The software, a user-friendly GUI for 

post-processing SBES data, is a valuable tool for standardizing gas flow rate estimates from SBES data. As 

the development of these two software tools was driven by the research needs, it is believed that others 

can make use of it and that additional use linked to more research questions will lead to new 

functionalities and general improvements. 

With the quantitative method and the software-package in place it was possible to do comprehensive 

flow rate calculation of an entire large seep area based on complementary hydroacoustic dataset 

collected during 11 surveys (2008 - 2014). During these surveys 3145 acoustic flares were identified and 

the derived flow rates range from ~2500 to 4000 T CH4/yr when assuming continuous release and 

bubbles of 100 % methane.  From these estimates, the determination of bubble size distributions (BSDs), 
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estimates of bubble rising speeds (BRS) using different models and interferences of unwanted acoustic 

signals (noise and reverberation) are recognized as the main sources of uncertainties to the results. 

As part of the flow and flux investigations at the study area of Prins Karl Forland (PKF), the first attempt 

of identifying spatio/ temporal variations of methane release has been performed by using a complete 

hydroacoustic dataset available. Flux comparisons among surveys show no trend towards increased 

seepage for the time slots that the surveys were carried out. Results indicate that the important control 

mechanisms of methane emission namely the bottom water temperature and a possible migration of 

the top of the gas hydrate stability zone (TGHZ), pressure changes in the seabed due to tectonic stress or 

sea level change,  did not change significantly. A moderate correlation between the sea bottom 

temperature and fluxes has been observed; it is believed that seabed temperature is the main 

mechanism that controls the free gas emissions at the study area. Furthermore, there are no indications 

that the free gas supplying reservoirs are depleted and that short-term events, such as earthquakes or 

smaller micro-seismic events that would open new gas migration pathways happened. A displacement 

of the TGHZ was not detectable when analyzing the flare positions in the SBES dataset. One explanation 

for this might be that the study area was only partially and differently insonified during each survey. On 

the other hand, because of the misalignment between the acoustic flare distribution and the TGHZ it is 

believed that the occurrence of seafloor gas release is mostly controlled by tectonic/geological 

pathways in the seabed. As such, a future gradual migration of the gas vents accompanied with a 

downward displacement of the TGHZ is unlikely. However, an eventual acceleration of gas hydrate 

dissociation due to anthropogenic induced climate change, which could be a long term process, cannot 

be discarded.  

An alternation in flux magnitudes between two areas has been observed suggesting that both areas are 

connected and share a common gas source. Blocking and opening of gas conduits as a result of the 

formation and dissociation of shallow gas hydrates near the TGHZ is hypothesized as a possible 

explanation of this alternation.   

To better prove and quantify gas flow fluctuations, stationary observatories such as side-looking sonars 

are recommended for long-term deployments to visualize flux changes on short and longer time scale.  

To advise on improving the data quality for spatio/temporal analysis of gas emissions, a set of 

recommendations are presented at the end of the thesis. As the spatio/temporal evaluation of the gas 

emissions using SBES is challenging and until now present high uncertainties, future efforts should be 

made in solving some of the identified problems like SBES resolution, the reproducible acoustic coverage 

at the seafloor and mapping of a total area to make hydroacoustic data more easily comparable. 
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Samenvatting 
De wens om onderzeese gasbronnen te kwantificeren is toegenomen sedert bekend is geraakt dat 

mariene gasfluxen een mogelijke bron zijn van atmosferisch methaan en daardoor bijdragen aan het 

broeikaseffect. Schattingen van het aandeel van natuurlijk zeebodemgas in de atmosferische 

methaanvoorraad zijn reeds gemaakt, maar zijn nog steeds slecht onderbouwd en heel controversieel. 

Deze schattingen zijn voor een groot deel gebaseerd op extrapolaties van geografisch gezien kleine 

datasets en hebben dus een grote onzekerheid. Bijgevolg is het noodzakelijk deze onzekerheid 

aangaande broeikasgassen afkomstig van de oceanen te minimaliseren. Tevens zijn methodes voor de 

detectie en kwantificatie van gaslekken in industriële gas- en olie-exploitatiesites erg gegeerd, aangezien 

ze industriële processen beïnvloeden en mariene vervuiling, dat zowel tijdens normale operaties als 

tijdens een “blow-out” kan voorkomen, kunnen inschatten. 

Gedreven door deze vraag zijn meerdere technieken ontwikkeld die gas-emissies van de zeebodem 

bestuderen. Algemeen kunnen deze technieken onderverdeeld worden in invasieve en niet-invasieve 

methodes. Voorbeelden van niet-invasieve methodes zijn “geïnverteerde funnel technieken” die 

gasbubbels in situ opvangen en rechtstreekse videowaarnemingen van de zeebodem verrichten. Beiden 

worden gebruikt om opborrelende bubbels fysisch te karakteriseren en om de hoeveelheid van het 

uitgestoten gas te kwantificeren. Dit zijn heel precieze methodes, maar ze zijn minder efficiënt in 

grotere gebieden waar gas vrijkomt. Anderzijds zijn hydroakoestische teledetectietechnieken heel 

populair geworden omdat ze niet-invasief het vrijgekomen gas kunnen detecteren, bestuderen en 

kwantificeren. Hydroakoestische systemen kunnen onderverdeeld worden in a) passieve systemen die 

naar het akoestisch signaal van bubbels kunnen “luisteren” wanneer deze van een oppervlak (bvb. 

sediment) vrijkomen en b) actieve systemen die een akoestisch signaal uitzenden en het teruggekaatste 

signaal van verschillen doelwitten in de waterkolom opvangen. 

Passieve systemen zijn nuttig omdat ze toelaten om een gedetailleerde spectrale analyse van het signaal 

dat uitgezonden werd door de bubbels te maken. Maar tegelijkertijd zijn ze ook gelimiteerd aangezien 

ze niet kunnen gebruikt worden in gebieden met veel ruis want dit zou het signaal kunnen maskeren. 

Enkele voorbeelden van ruis zijn hevige weersomstandigheden, het geluid van het schip zelf of andere 

artificiële geluiden. Om dit probleem op te lossen worden passieve systemen meestal dicht tegen het 

studieobject geplaatst, wat hen tevens beperkt in geografische omvang. 

Actieve hydroakoestische technieken worden in deze thesis besproken worden. Ze zijn heel efficiënt in 

het detecteren van vrij gas (bubbels) in de waterkolom omdat geluid sterk verstrooid wordt als het 

bubbels tegenkomt. Dit komt door de hoge impedantie-verandering op de grens tussen gas en vloeistof. 

Het uitgezonden signaal (dat weinig spectrale informatie oplevert door de nauwe bandbreedte van het 

signaal) is gemakkelijke te detecteren door de gekende vorm van de golf. In tegenstelling tot passieve 

hydroakoestische systemen en invasieve technieken zijn systemen zoals “singlebeam” en “multibeam 

echosounders” (SBES en MBES respectievelijk) in staat om grote gebieden te bedekken in vergelijking 

met bijvoorbeeld visuele observaties gebaseerd op ROV. Bovendien kunnen actieve systemen gezien 

worden als een directionele antenne (of een groep van antennes, zoals bij MBES). Dit maakt hen nuttig 
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in het precies positioneren van gedetecteerde doelwitten in de 3D ruimte. Op zijn minst geven ze 

precieze informatie over de diepte waarop de doelwitten voorkomen in de waterkolom. 

Het gepresenteerde werk poogt twee grote doelen te bereiken. Het eerste doel is het ontwikkelen van 

een praktische techniek, gebaseerd op SBES data, die akoestisch gedetecteerde gasdebieten evalueert 

en gasbubbels ontdekt die zich in de waterkolom bevinden. Het tweede doel is de toepassing van deze 

methode op een Arctisch gebied, ten westen van Spitsbergen. In dit gebied zal de totale 

methaanemissie en zijn spatiale en temporele veranderingen gemeten worden. Dit gebied werd 

gekozen omdat het beschouwd wordt als een modelgebied dat toelaat om het mogelijks versneld 

vrijkomen van gedestabiliseerde gashydraten als gevolg van de wereldwijde opwarming van de aarde en 

bijgevolg de lokale bodemwatermassa, te bestuderen. Het vrijkomen van methaan in het studiegebied 

wordt geacht beïnvloed te zijn door veranderingen van de gashydraatstabiliteitszone die op zijn beurt 

gevoelig is voor temperatuursveranderingen van de bodemwatermassa. Tevens tonen geochemische 

studies van methaanafgeleide carbonaten aan dat sijpeling van methaan minstens 3000 jaar al gaande 

is. Om deze veranderingen te bestuderen, werd het studiegebied herhaaldelijk hydroakoestisch 

gemonitord sinds 2008. Hydroakoestische onderzoeken in het gebied werden uitgevoerd door 

verschillende onderzoeksgroepen (RCMG, GEOMAR, CAGE, NOCS en het NIOZ) en de volledige dataset 

die voorgesteld wordt in deze thesis, is het resultaat van de samenwerking tussen deze verschillende 

instituten. 

Voor de eerste doelstelling werd de theoretische samenhang tussen de grootte van de bubbels en de 

totale akoestische verstrooiingsdoorsnede van een bubbelwolk bestudeerd, wanneer deze 

geïnsonifieerd wordt door een monochromatische akoestische golftrein. Een verstrooiingsmodel voor 

de individuele bubbels, gebaseerd op “de monopool bubbel theorie”, werd getest als een fundamenteel 

onderdeel van deze methode. Er wordt verondersteld dat de verstrooiing die veroorzaakt wordt door de 

wolk van bubbels, de optelsom is van de verstrooiing van de individuele sferische bubbels met een 

specifieke grootteverdeling. Stijgsnelheden van bubbels zijn een essentiële inputparameter van 

stromingsberekeningen. Indien geen stijgsnelheden van bubbels konden worden berekend, beschouwt 

de ontwikkelde methode verschillende modellen om deze, afhankelijk van de grootte, te berekenen. 

Voor deze thesis werd bovengenoemde methode toegepast en ondanks dat de methode nog 

gevalideerd moet worden, vertonen de resultaten realistische debieten wanneer deze vergeleken 

worden met de resultaten van visuele en directe waarnemingstechnieken. Samen met de beschrijving 

van de methode om het debiet te schatten, werd een procedure beschreven om het totale debiet van 

een groot gebied te evalueren . Deze is gebaseerd op het clusteren van naburige akoestische “flares” 

(deze naam is afkomstig van het feit dat de talrijke gasbubbels die vrijkomen van een sijpellocatie op de 

zeebodem en door de waterkolom stijgen, weergegeven worden op de echograms met een typische 

“flare” vorm). 

Omwille van de noodzaak om op een georganiseerde en snelle manier hydroakoestische data te 

verwerken, werd een softwarepakket, bestaande uit FlareHunter en de FlareFlowModule, ontwikkeld 

gedurende dit doctoraat. Deze zijn nu vrij beschikbaar voor de onderzoeksgemeenschap. De software, 

een gebruikersvriendelijke GUI voor latere verwerking van SBES data, is een waardevol werktuig dat 

toelaat gasdebietschattingen, afgeleid van SBES data, te schatten. Aangezien de ontwikkeling van deze 
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twee programma’s gedreven werd door wetenschappelijke noodzaak, geloven wij dat derden hiervan 

gebruik kunnen maken en dat bijkomende wetenschappelijke vraagstellingen zullen leiden tot nieuwe 

invoegtoepassingen en algemene verbeteringen. 

Met de kwantitatieve methode en het softwarepakket is het mogelijk om uitgebreide 

debietberekeningen te maken van een groot sijpelgebied gebaseerd op hydroakoestische datasets die 

werden vergaard gedurende 11 campagnes (2008-2014). Gedurende deze campagnes werden 3145 

akoestische “flares” geïdentificeerd en afgeleide debieten gaan van ~2500 tot 4000 T CH4/jaar, 

veronderstellend dat er continu gas (100 % methaan) wordt vrijgegeven. Uit deze schattingen kunnen 

grootteverdelingen van bubbels, stijgsnelheden van bubbels gebruikmakend van verschillende modellen 

en inmenging van ongewenste akoestische signalen (ruis en weerkaatsing) herkend worden als de 

belangrijkste bronnen van onzekerheid aangaande de resultaten. 

Als een deel van de debiet- en fluxonderzoeken in het studiegebied Prins Karl Forland (PKF), werden 

initiële pogingen ondernomen om spatiale en temporele veranderingen van methaanemissie te 

identificeren door gebruik te maken van een complete hydroakoestische dataset. Het vergelijken van de 

flux van de verschillende campagnes toont geen trend van toenemende sijpeling gedurende de 

campagnes. De resultaten duiden wel aan dat de belangrijkste mechanismen van methaanemissie, 

zijnde bodemwatertemperaturen en de bijhorende mogelijke migratie van de TGHZ, drukveranderingen 

van de zeebodem door tektonische druk en zeespiegelveranderingen, niet significant veranderen. Een 

gemiddelde correlatie tussen zeebodemtemperaturen en debieten werd opgemerkt; er wordt 

aangenomen dat de zeebodemtemperatuur het belangrijkste mechanisme is dat beslist of vrij gas 

uitgestoten wordt in het studiegebied. Verder zijn er geen aanwijzingen dat vrij gas, dat de reservoirs 

bevoorraadt, uitgeput aan het raken is en dat gebeurtenissen zoals aardbevingen of kleinere micro-

seismische gebeurtenissen die nieuwe gasmigratiewegen kunnen openen, hebben plaatsgevonden. Een 

verplaatsing van de TGHZ kon niet worden gedetecteerd bij de analyse van de “flare” posities in de SBES 

dataset. Een mogelijke verklaring hiervoor is dat het studiegebied slechts gedeeltelijk geïnsonifieerd 

werd gedurende elke campagne. Anderzijds, door de “misallignment” tussen de akoestische “flare” en 

de TGHZ denkt men dat het voorkomen van zeebodemgas vooral gecontroleerd wordt door 

tektonische/geologische processen in de zeebodem en dat de toekomstige graduele migratie van gas, 

samengaande met een neerwaartse verplaatsing van de TGHZ, onwaarschijnlijk is. Echter, een eventuele 

versnelling van de gashydraatdissociatie door een antropogeen-geïnduceerde klimaatsverandering (wat 

een langdurig proces kan voorstellen) , kan niet uitgesloten worden. 

Een wisselwerking in debietmagnitudes tussen twee gebieden is geobserveerd, wat suggereert dat beide 

gebieden verbonden zijn en bovendien een gemeenschappelijke gasbron delen. Blokkering en opening 

van gasmigratiewegen als gevolg van de vorming en dissociatie van oppervlakkige gashydraten nabij de 

TGHZ, zou een mogelijke verklaring kunnen geven voor deze alternatie. 

Om de gasstroomfluctuaties verder te bewijzen en beter te kwantificeren zijn stationaire 

waarnemingen, zoals zijwaarts gerichte sonars, aanbevolen gedurende langdurig gebruik. Deze kunnen 

debietveranderingen op zowel korte als lange termijn visualiseren. Een advies om de datakwaliteit van 

spatiale en temporele analyses van gasemissies te verbeteren, werd geformuleerd op het einde van de 
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thesis. Aangezien de spatiale en temporele beoordeling van gasemissies op basis van SBES uitdagend is 

en tot op heden grote onzekerheden met zich meebrengt, zouden pogingen moeten ondernomen 

worden om de geïdentificeerde problemen aan te pakken. Deze problemen bestaan uit de SBES 

resolutie, de reproduceerbaarheid van de akoestische bedekking van de zeebodem en het karteren van 

volledige gebieden die toelaten datasets te vergelijken. 
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Nomenclature 
 

  : Amplitude of incident plane wave 

   : Cluster area [m
2
] 

   : Area with hydroacoustic data within the analyzed area [m
2
] 

   : Area of echosounder footprint of the source of an i-acoustic flare [m
2
] 

    : Pressure amplitude inside the bubble 

  : Function defined in Medwin (1977) 

  : Amplitude of scattered spherical wave multiplied by distance from center of 

Symmetry    : Resistive component of this impedance evaluated at the bubble surface 

   : Speed of sound in liquid [m/s] 

   : Constant in Wildt (1946) related to viscous damping 

  : Height of volume sample [m] 

   : Thermal diffusivity [m
2
/s] 

   : Gas diffusivity 

  
 
 : Incremental inner bubble pressure 

   : Incremental bubble volume;           

 

 
 : Function of    defined in Medwin (1977) 

 
    

 : Echosounder frequency [Hz] 

     : Probability density function of the bubble size distribution [1/m] 

     : External force over the bubble 

   : Inertial force at the bubble surface 

  : Acceleration of gravity [m/sec
2
] 

   : Incident intensity 

   : Scattered intensity 

  : Wave number             

  : Constant of linear relationship between bubble flux and scattering defined by Muyakshin and Sauter 
(2010)  

    : Thermal length 

  : Bubble effective mass 

   : Number of bubbles of radius     

   : Number of samples  

  : Total number of bubbles 

   : Total number of bubbles inside the sample volume V 

    : Bubble concentration 



                                                                                                                                                                  Nomenclature 

31 

   : Bubble size distribution of water bubbly volume 

       : Number of cells inside the cluster area  

   : Number of cells with flux values, CAC method 

   : Number of bubbles of i-size inside the sample volume V 

     : Distribution of bubbles in function of the radius size [1/m] 

  : Number of acoustic flares that belong to the cluster 

 
 
 : Incident pressure 

 
   

 : External pressure evaluated at the bubble surface  
   

  
 
  

 
 

 
 
 : Bubble internal pressure 

 
 
 : Scattered pressure 

   : Static surrounding pressure 

     : Inner bubble pressure 

   : Root mean square pressure of the incident wave 

    : Static pressure [Pa] 

     : Atmospheric pressure [Pa] 

    : Scattered pressure amplitude 

 
   

 : Flux at the i, j grid 

  : Bubble flux 

 
 

 : Mean gas flux TAF method 

 
 

 : Bubble mass flux  

 
  

 : Approximated representative flux (mean flux) of common area, CAC method 

  : Bubble radius (m) 

      : Lower and upper limit of the bubble size distribution 

   : Bubble resonant radius at echosounder frequency and specific static pressure [m] 

   : Bubble radius of i-size [m] 

    : Most frequent bubble radius BSD [m] 

         : Laplace radius 

   : Mechanical resistance of bubble 

  : bubble stiffness 

  : Water salinity [PSU] 

   : Volume backscattering strength 

    : Time necessary to fill the volume sample V with    bubbles of    radius [sec] 

  : Water temperature [°C] 

   : Time period of one cycle of bubble oscillation 

   : Target strength 

  ̅̅ ̅ : Geometrical average of target strength [dB] 

    : Target strength of different samples inside the (selected layer [dB] 



                                                                                                                                                                  Nomenclature 

32 

   : Average bubble rising speed of i-size bubble [m/sec] 

     : Bubble rising speed in function of the bubble radius [m/sec] 

   Bubble volume;   
 

 
    

   : Radial velocity of bubble 

      : cell size in x and y direction (here related to UTM coordinates) [m]  

  : Value associated to the bubble damping, bubble resonance and frequency of the incident wave 
(Thuraisingham, 1997) 

  : Average depth of layer at each acoustic flare [m bsl] 

  : Constant in Wildt (1946) related to thermal damping 

 
 

 : Function defined in Medwin (1977) 

  : Specific heat ratio of gas (dimensionless) 

  : Complex politropic index 

     : total backscattering cross-section [m
2
] 

  : Dimensionless damping 

   : Dimensionless damping at resonance 

      : Dimensionless re-radiation damping term 

       : Dimensionless re-radiation damping term at resonance 

         : Dimensionless thermal damping term 

         : Dimensionless thermal damping term at resonance 

        : Dimensionless viscous damping term 

        : Dimensionless viscous damping term at resonance 

 
 

 : Bulk viscosity [Pa][s] 

 
 
 : Shear viscosity [Pa][s] 

  : Phase lag between the plane wave and the surface displacement 

  : Bubble radial displacement 

 
 
 : Real radial displacement of bubble 

 
 
 : Amplitude of bubble displacement function  

   : Scattered power 

 
  

 : Atmospheric CH4 density [kg/m
3
] 

 
 

 : Gas density of the bubble at the respective water depth [kg/m
3
] 

 
 

 : Liquid density[kg/m
3
] 

  : Surface tension water[N/m] 

       : Acoustical backscattering cross-section of a single bubble (m
2
) 

     : Backscattering cross-section of a single bubble of i-size (m
2
) 

         : Summation of acoustical cross-sections of several bubbles 

    : Acoustical scattering cross-section 

   : Differential acoustical cross-section per unit of volume 

  : Sample interval [sec] 
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  : Dimensionless parameter related to the Laplace radius 

  : Angle of the radius vector measured from the direction of the incident beam 

   : Volumetric bubble flow rate [vol/time] 

   : Mass bubble flow rate [vol/time] 

    
  : Flow rate (volumetric or in mass) of an i-acoustic flare [vol/time] 

    
  : Cluster flow rate [vol/time] 

    
  : Total flow rate [vol/time] 

    
   

 : Flow rate (volumetric or in mass) of i-cluster or i-isolated flare [vol/time] 

    : Representative flow rate of common area [vol/time] 

  : Constant factor used to calculate flow rate (inverse method) 

  : Thermal diffusion ratio 

  : Angular frequency 

    : Adiabatic frequency 

   : Natural frequency of bubble system 

     : Isothermal frequency 

   : Minnaert frequency 

     : Exact resonance frequency 

       : Bubble resonance frequency corrected by Devin  

    
  : average bubble flux [(mass or vol)(time

-1
)(area

-1
)] 
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1. Introduction 
1.1. Methane in carbon cycle  

Carbon is regarded as an essential element because it is present in all life forms on Earth. In addition, it 

plays an important role in many biogeochemical processes as it is being exchanged between the 

biosphere, hydrosphere, atmosphere and lithosphere. In the atmosphere, carbon mainly exists in the 

form of carbon dioxide (CO2) or of methane (CH4). Both of them are considered greenhouse gases 

because of their capability to absorb and retain heat in the atmosphere. CO2 is more abundant in the 

atmosphere and has a longer lifetime than methane. Methane, however, is 28 times more efficient in 

trapping heat than CO2 over 100 years (Myhre et al., 2013) and therefore its greenhouse effect and its 

influence on climate is considerable. The main sink of atmospheric CH4 is through its reaction with the 

hydroxyl radical (OH) in the troposphere generated by the photodissociation of ozone, followed by the 

reaction with water vapor (Myhre et al., 2013). Additional sinks such as bacterial uptake in soils and 

halogen chemistry in the troposphere also contribute to the CH4 loss but on a minor scale (Myhre et al., 

2013). The average residence time of CH4 in the atmosphere with respect to OH is about one decade 

(Prather et al., 2012). Evidence of correlation between changes in atmospheric concentrations of 

methane and atmospheric temperature has been well studied from ice cores extending ca. 800.000 

years into the past (Fig. 1.2; e.g. Loulergue et al., 2008). Atmospheric methane concentration has more 

than doubled since pre-industrial times due to anthropogenic emissions. Reconstructions between 1850 

and the 1970s using air trapped in polar ice cores and firn have revealed an increase in atmospheric 

concentrations from 830 ppbv to 1500 ppbv (Buizert et al., 2012). Nisbet (2002) estimated the long-term 

variability in atmospheric methane concentration from the late glacial (0.35 ppmv = ∼800 Tg), over the 

early Holocene (0.65-0.8 ppmv = ∼1500 Tg) to 2002 (1.75 ppmv = ∼4000 Tg). Nowadays the globally 

averaged methane concentration is over 1.8 ppmv (Figs 1.1 and 1.3; Nisbet et al., 2014). Today, global 

CH4 atmospheric concentrations are well known and measurements are carried out using discrete and 

continuous air analyses at the surface of the troposphere (Blake et al., 1982; Cunnold et al., 2002; 

Brenninkmeijer et al., 2007; Wecht, et al., 2012), as well as remotely sensed measurements of 

atmospheric CH4 columns from the surface or from space (Crevoisier et al., 2009; Morino et al., 2011). In 

the past three decades the atmospheric methane concentration has increased but the rate of increase 

has slowed down in the 1990s (e.g. Dlugokencky et al., 2011), and from 1999 to 2006 the methane 

concentration was nearly constant. From 2007 onwards the methane concentrations have started to rise 

again (Fig. 1.3, Nisbet et al. 2014). Montzka et al. (2011) have suggested that the renewed atmospheric 

CH4 increase observed during 2007 and 2008 is the consequence of enhanced natural wetland 

emissions, as a result of high temperatures in the Arctic and higher than average precipitation in the 

tropics associated with a persistent La Niña (Dlugokencky et al., 2009). Causes of the continued rise of 

atmospheric CH4 from 2009 and 2010 could be also related to the strong La Niña that started in early 

2010. It is clear that although most sources and sinks of methane have been identified, their relative 

contributions to atmospheric methane budget are still highly uncertain (Kirschke et al., 2013). While this 

is still not known, also the anthropogenic influence in the global climate change remains uncertain. 
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Figure 1.1. Annual mean upper troposphere (359 Hpa) CH4 mixing ratio, 2011. Atmospheric Infrared Sounder (AIRS). Data 
source: http://daac.gsfc.nasa.gov/giovanni/. 
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Figure 1.2. Atmospheric temperature and methane concentration (Loulergue et al., 2008)  

 
 

 

Figure 1.3. Global averaged atmospheric methane concentrations from 1984 to the present. Ref: WMO Greenhouse Gas 
Bulletin No. 11 (http://www.wmo.int/pages/prog/arep/gaw/ghg/GHGbulletin.html). 

1.2. Atmospheric methane budget 

Although the individual contribution of sources and sinks is not precise, uncertainties of total global 

sources and sinks of CH4 are well constrained (Prather et al., 2012; Denman et al., 2007). Several 

assessments have been made in order to know the total annual input of CH4 in the atmosphere. 

According to the IPCC 2013 report (Myhre et al., 2013) bottom-up estimates of present CH4 emissions 

during the decade of the 2000s range from 542 to 852 TgCH4 yr–1, while top-down estimates range from 

526 to 569 Tg CH4 yr–1 (Table 1.1). During this decade, anthropogenic sources of CH4 account for 50% to 

60% of the decadal mean global emissions (Table 1.1; Ciais et al., 2013). Evaluations of the atmospheric 

methane budget show imbalances among the global sources and the global sinks of CH4. For instance, 

the IPCC 2013 report  (Ciais et al., 2013) show an imbalance of 14 Tg CH4 yr−1 (sources: 556 Tg CH4 yr−1, 

sinks: 542 Tg CH4 yr−1) for the CH4 atmospheric global budget of 2011 (Table 1.2), which is added to the 

atmosphere each year. The causes of the residual atmospheric CH4 can be evaluated only in case there is 

a correct individual assessment of the sources and sinks involved in the atmospheric methane budget. 
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1.2.1 Sources 
A classification of the different sources of methane, from the perspective of human influence on climate 

change, can be done (Table. 1.1; Ciais et al., 2013):        

 Natural sources: Contribution to the atmospheric methane from wetlands, termites, oceans and 
fresh water (anaerobic methanogenesis in the sediments and aerobic production in the water 
column),  wild ruminants, terrestrial and submarine permafrost thawing, natural forest fires and 
gas hydrate dissociation. 

 

 Anthropogenic sources: Contribution to the atmospheric methane coming from domesticated 

ruminants, rice agriculture, energy use, landfill and waste treatment, and biomass burning. 

Human emissions of CH4 are mainly generated by the use of fossil fuels (e.g. coal mining, 

petroleum, natural gas) or from biogenic origin (e.g. enteric fermentation in animals). 

 
Table 1.1. Top-Down and Bottom-Up estimates of the atmospheric methane budget for the last decade 

(2000-2009) (IPCC report 2013; Ciais et al., 2013) 

 
  Tg(CH4) yr

–1
 Top-Down Bottom-Up 

Natural Sources 218 [179–273] 347 [238–484] 

Natural wetlands 175 [142– 208] 217 [177–284] 
Other sources 43 [37–65] 130 [61–200] 

Freshwater (lakes and rivers)  40 [8–73] 
Wild animals  15 [15–15] 

Wildfires  3 [1–5] 
Termites  11 [2–22] 

Geological (incl. oceans)  54 [33–75] 
Hydrates  6 [2–9] 

Permafrost (excl. lakes and wetlands)  1 [0–1] 

Anthropogenic Sources 335 [273–409] 331 [304–368] 

Agriculture and waste 209 [180– 241] 200 [187–224] 
Rice  36 [33–40] 

Ruminants  89 [87–94] 
Landfills and waste  75 [67–90] 

Biomass burning (incl. biofuels) 30 [24–45] 35 [32–39] 
Fossil fuels 96 [77– 123] 96 [85–105] 

Sinks   

Total chemical loss 518 [510– 538] 604 [483–738] 
Tropospheric OH  528 [454–617] 
Stratospheric OH  51 [16–84] 
Tropospheric Cl  25 [13–37] 

Soils 32 [26–42] 28 [9–47] 

Global   

Sum of sources 553 [526–569] 678 [542–852] 
Sum of sinks 550 [514–560] 632 [592–785] 

Imbalance (sources minus sinks) 3 [–4–19]  
Atmospheric growth rate 6  
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Table 1.2. Top-Down estimate of the atmospheric methane budget for  year 2011 IPCC report 2013; Ciais et 
al., 2013) 

Global top-down   

Burden (Tg CH4) 4954±10 
Atmospheric loss (Tg CH4 yr

-1
) 542±56 

Atmos. increase (Tg CH4 yr
-1

) 14±3 
Total source (Tg CH4 yr

-1
) 556±56 

Anthropogenic source (Tg CH4 yr
-1

) 354±45 
Natural source (Tg CH4 yr

-1
) 202±35 

 

A second classification of the sources of atmospheric CH4 can be made according to their source origin. 

Methane in nature can be generated through different processes. Methane can be generated from 

organic matter (i.e. biogenic methane) or by processes that do not involve the presence of organic 

matter (i.e. abiogenic methane).  Biogenic sources can be further sub-divided in microbial, thermogenic 

and pyrogenic (Schoell 1988). Nowadays, the origin of atmospheric samples methane can be traced back 

to the source process based on the isotopic signature (e.g. Dawson and Siegwolf, 2011). A brief 

description of each source is given below.  

Abiogenic sources 

Abiogenic (or abiotic) methane is formed by chemical reactions which do not directly involve organic 

matter and is produced in much smaller amounts on a global scale (Etiope and Sherwood Lollar, 2013). 

Abiogenic methane can be produced by either high-temperature magmatic processes in volcanic and 

geothermal areas, or via low-temperature (<100°C) gas-water-rock reactions in continental settings, 

even at shallow depths (Etiope and Sherwood Lollar, 2013). In present-day Earth, there are three main 

sources of abiotic methane: water-rock interactions at mid-ocean ridges, volcanic activity and 

geothermal systems (Emmanuel and Ague, 2007). 

 

MIcrobial sources (biogenic) 

Microbial CH4 is generated by methanogenesis, a process carried out by microorganisms belonging to 

the group (or domain) of Archaea. These CH4 sources span anaerobic environments, such as natural 

wetlands and rice paddies, digestive systems of ruminants and termites, oxygen-poor water reservoirs, 

and organic waste deposits (e.g. Kirschke et al. 2013) and aerobic environments such as terrestrial 

plants, soils, marine algae and animals (e.g. Keppler et al., 2009). Most of the sources in the global CH4 

budget are the result of active biological processes (Kvenvolden and Rogers, 2005). 

Thermogenic or geological sources (biogenic)  

CH4 generated from fossil fuel formed over thousands of years through geological processes. Methane is 

expelled from the subsurface into the atmosphere through natural geological processes (e.g. natural 

seepage in terrestrial and marine environments, mud volcanism) and through the exploitation of coal, 

oil and natural gas. Estimates of the atmospheric methane budget just recently considered the 

contribution of geological methane sources, considering seeps as the possible major contributors. 

According to Etiope et al. (2008) these sources are estimated to be as large as 30 to 80 Tg CH4 yr−1 (Table 

1.3).  A summary of the estimates of geological methane sources, as proposed by different scientific 

groups is shown in Table 1.3 (Etiope et al., 2008) 
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Pyrogenic sources or biomass burning (biogenic) 

CH4 is produced by the incomplete combustion of organic (non-fossil) matter (e.g. wildfires and 

combustion of agricultural waste and biofuels). A recent estimate considers that pyrogenic sources of 

methane contribute in between 4% to 6% to the total atmospheric methane budget (Neef et al., 2010) 

Table 1.3. Global Emissions of Methane From Geologic Source Categories (Etiope et al., 2008) 
 

 Emission, Tg yr
−1

 References 

Mud volcanoes 5–10 Etiope and Klusman (2002)  

10.3–12.6 Dimitrov (2002)  

6 Milkov et al. (2003)  

6–9 Etiope and Milkov (2004)  

Other macro-seeps 3–4 Etiope et al. (2008) 
Marine seepage 18–48 Hornafius et al. (1999)  

10–30 (20) Kvenvolden et al. (2001)  

Microseepage >7 Klusman et al. (1998)  

10–25 Etiope and Klusman (2010)  

Geothermal/volcanic areas 1.7–9.4 Lacroix (1993)  

2.5–6.3
a
 Etiope and Klusman (2002)  

<1
b
 Etiope et al. (2008) 

Total
c
 30–70 Etiope and Klusman (2002)  

13–36
d
 Judd (2004)  

35–45
e
 Etiope and Milkov (2004)  

45
e
 Kvenvolden and Rogers (2005) 

40–60 Etiope et al. (2004); Etiope and Klusman (2010) 
42–64 Etiope et al. (2008)– best estimate 
30–80 Etiope et al. (2008) – extended range 

(a) Volcanoes not considered; (b) Only volcanoes; (c) Gas hydrates not considered; (d) Microseepage not 
considered.; (e) Included former microseepage estimate. 

 

1.2.2. Sinks 

The main sink for the atmospheric methane (90 % of the global CH4 sink) is the oxidation with hydroxyl 

radicals in the troposphere (Kirschke et al. 2013). Additional oxidation sinks are methanotrophic bacteria 

in aerated soils (~4 %, Simpson et al., 2012; Thoning et al., 1989), reactions with chlorine radicals and 

atomic oxygen in the stratosphere (~3 %, Crevoisier et al., 2009) and reactions with chlorine radicals 

from sea salt in the marine boundary layer (~3 %, Montzka et al., 2011). However, it is necessary to 

highlight that microbial oxidation processes on Earth play an important role in removing CH4 before it 

reaches the atmosphere. The reduction of CH4 carried out by methanotrophs located in aerobic and 

aerobic environments is considered to be more than the 50 % of the generated CH4 before it reaches the 

atmosphere (Reeburgh, 2007). An example of that is the ocean, which has the potential to produce 

largest quantities of CH4 but at the same time has effective oxidation processes (aerobic and anaerobic) 

in sediments and the water column that results in the ocean being one of the net global CH4 budget’s 

smallest terms (Reeburgh, 2007). In the same way, microbial oxidation has also an important effect on 

CH4 emissions from wetlands, rice production, landfills, and underwater leaks from methane distribution 

systems, such as pipelines (Reeburgh, 2007; Kvenvolden and Rogers, 2005). 

http://onlinelibrary.wiley.com/doi/10.1029/2008GL033623/full#grl24490-bib-0006
http://onlinelibrary.wiley.com/doi/10.1029/2008GL033623/full#grl24490-bib-0003
http://onlinelibrary.wiley.com/doi/10.1029/2008GL033623/full#grl24490-bib-0026
http://onlinelibrary.wiley.com/doi/10.1029/2008GL033623/full#grl24490-bib-0008
http://onlinelibrary.wiley.com/doi/10.1029/2008GL033623/full#grl24490-bib-0016
http://onlinelibrary.wiley.com/doi/10.1029/2008GL033623/full#grl24490-bib-0021
http://onlinelibrary.wiley.com/doi/10.1029/2008GL033623/full#grl24490-bib-0019
http://onlinelibrary.wiley.com/doi/10.1029/2008GL033623/full#grl24490-bib-0007
http://onlinelibrary.wiley.com/doi/10.1029/2008GL033623/full#grl24490-bib-0022
http://onlinelibrary.wiley.com/doi/10.1029/2008GL033623/full#grl24490-bib-0006
http://onlinelibrary.wiley.com/doi/10.1029/2008GL033623/full#grl24490-note-0002
http://onlinelibrary.wiley.com/doi/10.1029/2008GL033623/full#grl24490-note-0003
http://onlinelibrary.wiley.com/doi/10.1029/2008GL033623/full#grl24490-bib-0006
http://onlinelibrary.wiley.com/doi/10.1029/2008GL033623/full#grl24490-note-0004
http://onlinelibrary.wiley.com/doi/10.1029/2008GL033623/full#grl24490-bib-0018
http://onlinelibrary.wiley.com/doi/10.1029/2008GL033623/full#grl24490-note-0005
http://onlinelibrary.wiley.com/doi/10.1029/2008GL033623/full#grl24490-bib-0008
http://onlinelibrary.wiley.com/doi/10.1029/2008GL033623/full#grl24490-note-0005
http://onlinelibrary.wiley.com/doi/10.1029/2008GL033623/full#grl24490-bib-0020
http://onlinelibrary.wiley.com/doi/10.1029/2008GL033623/full#grl24490-bib-0009
http://onlinelibrary.wiley.com/doi/10.1029/2008GL033623/full#grl24490-bib-0007
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1.3. Arctic methane sources from the sediment to the water column 

The Arctic has a large potential to influence climate dynamics because it represents a large reservoir of 

methane stored in natural gas deposits, permafrost, and submarine gas hydrates (e.g. Walter Anthony 

et al., 2012; O’Connor et al., 2010; Sergienko et al., 2012; Shakhova et al., 2014). Methane stored in 

Arctic and sub-Arctic marine sediments has been estimated to be 30-9000 Gt CH4 stored in methane 

hydrates and 2–1400 Gt CH4 trapped beneath submerged permafrost either as hydrate, or as free gas 

(bubbles) (James et al., 2016). Moreover, methane emissions could easily increase with the rising of 

global temperatures because these reservoirs are highly vulnerable to temperature changes. Evidence 

shows that Arctic sea-ice coverage has decreased in recent decades (Maslanik et al. 2007) reaching a 

record low in ice extent in September 2012 (James et al., 2016). Furthermore, the Arctic has been 

prognosticated to be seasonally ice-free by 2050 (Stroeve et al. 2008; Wang and Overland 2009). As it 

has been hypothesized, this warming trend could cause the release of important amounts of CH4 coming 

from submarine reservoirs (clathrate gun theory, e.g. Maslin et al., 2004). In order to understand how 

influential Arctic warming over submarine reservoirs of methane could be, it is necessary to identify the 

different CH4 sources in marine sediments together with the mechanisms that control their possible 

release.  The aim of this section is to provide a brief description of the main methane sources from the 

sediment to the water column in the Arctic.  

1.3.1. Microbial methane production 

Microbial or biogenic methane is the methane derived by anaerobic, microbial degradation of organic 

matter within the sediment (Fleischer et al., 2011). Biogenic methane predominates within shallow 

subbottom deposits (Fleischer et al., 2011). Usually the biogenic methane production occurs in the top 

few meters of the sediment, however, evidence of bacterial activity hundreds of meters down in the 

sediment has also been found (e.g. Parkes et al., 1990). Biogenic gases are produced at temperatures 

comparable with their formational environments (< 50 °C; Stolper et al., 2014). Assuming an ‘average’ 

geothermal gradient of about 30 °C per kilometer, methanogenesis could continue to a depth of about 2 

km (Judd, 2004). Only some species of microorganisms are able to produce methane. They all belong to 

an ancient group called archaea. Methanogenic archaea are present in soils such as marshland, paddy 

fields, fresh water and marine muds, as well as the intestines of animals (Zeikus, 1977). Biogenic 

methane can be produced in the sedimentary column and migrate as free gas through permeable 

sediments often following lateral extensions of strata boundaries or vertical extension of faults (Rajan et 

al., 2012a). In the Arctic, microbial production of methane has been evidenced by several authors (e.g. 

Solheim and Larsson, 1987; Solheim and Elverhoi, 1985; Vogt et al., 1997; Knies et al., 2004; Sahling et 

al., 2014).  

1.3.2. Thermogenic gas production 

Thermogenic gas is produced from the breakdown of organic molecules at high temperatures and 

pressure, and therefore it is produced at depths greater than 1000 m (Floodgate and Judd, 1992). The 

formation of methane and other thermogenic gases is kinetically controlled by time, temperature, and 

organic matter composition (Seewald 2003). Thermogenic gas is generated from thermal cracking of 

both residual kerogen or/and oil (Tissot and Welte, 1984; Rooney et al., 1995). Methane and other 
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petroleum species may migrate towards the surface or be trapped in reservoirs (such as shallow gas 

accumulations or in form of gas hydrates). Thermogenic gases have formation temperatures ranging 

between 157 and 221 °C (Stolper et al., 2014). Most thermogenic hydrocarbons are formed in fine-

grained sedimentary rocks (mudstones, claystones, shales and certain limestones, e.g. algal limestones). 

In the Arctic, methane release coming from thermogenic sources has been reported by several authors 

(Knies et al., 2004; Shakhova et al., 2010; Walter Anthony et al., 2012; Smith et al., 2014). 

1.3.3 Abiotic methane production 

Abiotic  methane has been  recently  recognized  as  an  additional sub-seafloor  gas  source  generated  

in  slow  to ultraslow spreading  mid-ocean  ridge  environments (Proskurowski et al., 2008; Cannat et 

al., 2010). The formation of abiotic methane is the result of the interaction between the crust, mantle, 

and oceans causing the serpentinization of ultramafic rocks (Kelley et al., 2005; Vance et al., 2007; 

Proskurowski et al., 2008). Serpertinization, that is the hydration of olivine and/or pyroxene, produces 

H2 which may react with C-gases (CO2 or CO) to finally form CH4 (Etiope and Sherwood, 2013). Studies 

have demonstrated that the abiotic synthesis of hydrogen and hydrocarbons may occur in deep-sea 

environments in the presence of ultramafic rocks, water, and moderate amounts of heat by Fischer-

Tropsch-type reactions (Proskurowski et al., 2008). In the Arctic at the ultraslow spreading Knipovich 

Ridge offshore NW Svalbard, seismic evidence indicates the possibility of gas delivery for gas hydrates 

from an abiotic, serpentinized mantle source of methane. Rajan et al. (2012b) e.g. have shown evidence 

of bottom simulating reflectors (BSRs) that  indicate  the  base  of  the  gas  hydrate  stability zone 

(GHSZ), identified in seismic sections above  interpreted  serpentinized  ultramafic  diapirs on the 

sediment-covered eastern flank of Knipovich Ridge. Johnson et al. (2015) based on seismic evidence, 

describes the buildup of a 2 Myr gas hydrate and free gas–charged drift system that may be fed and 

maintained by an abiotic methane source at the Molloy Transform Fault located between the Knipovich 

and the Molloy ridges offshore Svalbard. Their study suggests that future scientific ocean drilling and 

isotopic characterization of the recovered gases is necessary to proof the existence of abiotic sources of 

gas stored in deep-water reservoirs.  

1.3.4. Dissociation of methane hydrates  

Methane (biogenic or thermogenic) can be stored in sediments as gas hydrates and remain stable at 

high pressures and low temperatures (Kvenvolden, 1993). A gas hydrate is a class of clathrate formed by 

an arrangement of complex cage-like structures of water molecules with gas molecules trapped within. 

Methane hydrates are the most common natural hydrates on Earth. Some researchers postulate that 

the amount of carbon stored in methane hydrates is larger than that stored in all other fossil fuels 

combined (Henriet and Mienert, 1998; Sloan and Koh, 2007). A theoretical GHSZ can be defined by 

assuming CH4 concentration, temperature and pressure (Fig. 1.6). 

It has been postulated that methane hydrates can be implicated in climate change (e.g., Dickens et al., 

1995; Kennett et al., 2000) and hence they are considered to play an important role in the 

present/future climate dynamics. The stability of the hydrate reservoirs is determined by temperature 

and pressure, and changes in ambient temperature and pressure conditions, e.g. due to changes in 

climate, may lead to dissociation of the hydrates, release of methane and an enhanced CH4 flux to the 

atmosphere. There is evidence that methane hydrate reservoirs may have destabilized in the geological 
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past. Kennett et al. (2000) found anomalies in the carbon isotopic signature of benthic and planktic 

foraminifera in sediment cores that sampled the Late Pleistocene deposits in Santa Barbara Basin. These 

anomalies were interpreted as resulting from the release of large amounts of CH4 from marine 

sediments caused by thermal dissociation of CH4 hydrates. Alternatively, methane hydrate dissociation 

has also been attributed to sea level falls (Maslin et al., 2004). On the other hand, the evidence from the 

isotopic signature (e.g. hydrogen) recorded in ice cores suggest that methane emission triggered by 

hydrate dissociation was not the cause of the rise in atmospheric methane concentration (e.g. Bock et 

al., 2010; Fischer et al., 2008). 

 

Figure 1.4. Illustration of the GHSZ related to (a) terrestrial permafrost, (b) shallow offshore regions, and (c) deep ocean 
(O’Connor et al., 2010) 

The scientific community is concerned that the ongoing global warming could in the future lead to global 

hydrate instability, which would give a positive feedback in the warming process because of an 

enhanced CH4 flux to the atmosphere (Kennett et al., 2003). Arctic regions are expected to be influenced 

more severely than the rest of the globe. Buffet and Archer (2004) estimate a reduction of 

approximately 15 % of the present-day hydrate reservoir if ocean temperatures would warm by 3 °C. 

Lamarque (2008) estimated the amount of methane that would be released by destabilizing hydrates in 

function of the increase in atmospheric greenhouse gases. He used the IPCC’s 4th assessment report 

1%-CO2 increase per year to estimate the potential destabilization of CH4 hydrates. His estimation gave a 

flux of 560-2140 Tg CH4 yr-1 into the ocean with a flux of 5-21 Tg CH4 yr-1 reaching the atmosphere.  

1.3.5. Subsea permafrost thawing 

Permafrost is a permanently frozen soil, rock or sediment below the freezing point of water 0 °C for two 

or more years. Permafrost can extend to a depth of 50 m in the “discontinuous” zone and may be 350–

650 m thick in the “continuous” zone (Schuur et al., 2008). Here, the continuous and discontinuous 

zones represent the permafrost with a lateral continuity and a lateral discontinuity beneath the exposed 

land surface throughout a geographic region, respectively (NRCC, 1988). The lower limit of the 

permafrost is defined by the Earth’s geothermal gradient, which causes a temperature increase with 

depth (Fig. 1.7).   
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A big concern lies in the possible degradation and thawing of this permafrost due to climate change 

within the coming decades. Permafrost thawing could result in the release of large amounts of carbon 

into the atmosphere (Goulden et al., 1998) and recent observations have demonstrated that this 

process has started to take place (Jorgenson et al., 2006). Permafrost can be formed in terrestrial and 

submarine environments. Here are discussed only the submarine permafrost formations and the 

methane release associated to their thawing. Subsea permafrost is created either in response to the 

negative mean annual seabed temperature or as the result of sea level rise, when terrestrial permafrost 

becomes covered by seawater. It is believed that there are large areas of subsea permafrost underlying 

the Arctic shelves down to a water depth of about 100 m (Rachold et al., 2007). 

 

Figure 1.5. Temperatures experienced at different depths in the ground during the year. The active layer above thaws in 
summer and freezes in winter, while the permafrost layer below remains below 0 °C (O’Connor et al., 2010) 

Subsea permafrost thawing can release methane to the water column in three different ways (Thornton 

and Crill, 2015): (a) freeze-locked organic carbon can become available for microbial degradation leading 

to biogenic methane production; (b) submarine permafrost may act as a cap on the upward diffusion of 

biogenic and/or thermogenic gas and permafrost degradation could facilitate the migration of this gas; 

(c) methane may be stored into the permafrost as gas hydrates and hydrate dissociation could happen 

when permafrost is thawing. It is known that subsea permafrost warming started in the early Holocene 

when this shelf was inundated by sea water (Soloviev et al., 1998; Romanovskii et al. 2005). Evidence of 

significant quantities of CH4 escaping from the East Siberian Shelf (Fig. 1.8) as a result of the degradation 

of submarine permafrost has been found by Shakhova et al. (2014). As is explained in this study, 

degraded permafrost leads to the formation of migration pathways for seabed gaseous CH4 and 
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increases the bubble-induced fluxes in annual atmospheric emissions. Hydroacoustic data have shown 

that acoustic flares extend upward from the seafloor, at water depths of < 50 m, to near to the sea 

surface. Shakhova et al. (2014) found that storms enhance the sea–air CH4 flux, suggesting that such 

events accelerate the ventilation process of CH4 bubbles released at the seafloor and dissolved in the 

water column producing high emission rates to the atmosphere. Based on their observations and 

measurements, Shakhova et al. (2014) calculated that 17 Tg CH4 yr-1 are released into the atmosphere 

over the East Siberian Shelf.  

1.4. Seabed surface anomalies associated to gas venting 

Migration of CH4 and other fluids through the sediments towards the seabed is mainly driven by the 

buoyancy of fluids, the overpressure generated at depth, and compaction-driven upward flow of pore 

fluids. When fluids are released at the seabed into the water column, the expulsion process can 

generate different features at the seafloor. At the same time the consumption of methane utilized by 

microorganisms at the seafloor can leave some evidence of methane release. The present section 

describes some of the seafloor anomalies historically associated to gas seepage in the water sediment-

interface. 

1.4.1. Seepages 

Submarine gas seeps are sources located on the seabed where gas, coming from sub-bottom reservoirs, 

is released. Gas seepage may occur with or without the formation of pockmarks (Judd and Hovland, 

2009). The submarine bubble release can be associated with shallow gas in the sediments or with 

underlying gas hydrate deposits. Gas/fluid migration towards the seabed can take place along several 

types of pathways, such as faults and so-called ‘chimneys’, and also along stratigraphically controlled 

pathways. Estimates of the total global methane contribution to the atmosphere from oceans are still 

poorly constrained, but 20 Tg CH4 yr-1 can be considered as the first realistic approximation (Judd, 2004). 

In Arctic regions, bubble release has been attributed to GHSZ displacement and submarine permafrost 

degradation, both caused by the rise in water temperature produced by the climate change (e.g. 

Westbrook et al. 2009, Shakhova et al., 2014).  
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Figure 1.6. a) Bathymetric map of the East Siberian Arctic Shelf (50 m bsl). The area studied by Shakhova et al. (2014) was 
located inside the dashed rectangle. The red line specifies the ship track of their multibeam survey referred also in b. b) 
Seepage intensity and spatial density distribution (specified in different colors and heights) in the study area. 

1.4.2. Submarine domes and pockmarks 

Past, actual and potential future release of gas and fluids can be associated to geomorphological 

expressions at the seafloor such as domes and pockmarks.  A seabed dome is a deformation of the 

seabed surface in a shape of a dome associated to shallow gas accumulations in near-seabed sediments. 

Seabed domes are formed when gas displaces water in the pore spaces of the upper sediments, causing 

a local volume increase (Judd and Hovland, 1992). Gas domes usually appear as minor topographic highs 

with diameters ranging from 10 m to 1000 m (Koch et al. 2015, Judd and Hovland, 2009; Hovland and 

Judd, 1988). Gas accumulation can lead to overpressure build-up, doming, and eventually gas break-

through, which might occur in dense clusters of individual gas bubble pathways (Haeckel et al., 2007). 

Seabed domes have been evidenced at different places around the world and have been interpreted as 

the result of focused fluid migration reaching the shallow sub-seafloor (Hasiotis et al., 1996; Lee and 

Chough, 2002). Methane seeps associated to submarine domes have been published by several 

researchers (e.g. Niemann et al., 2005; Naudts et al., 2006; Weber et al., 2014). 

The next stage after doming formation is the pockmark, a crater in the sediment surface produced by 

escape of gas and interstitial water from muddy and unconsolidated sediment (Hovland and Judd, 1988; 

Judd and Hovland, 1992). The conceptual model of Judd and Hovland (2009) that describes the 
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pockmark formation can be summarized as following: Fluids pressure builds in a shallow porous layer 

below a sealing layer and later the excess pressure is relieved by the doming formation at the seabed. 

Fluids erupt due to overpressure in the sediments, fluidising the sediments. Finally, gas, water, and 

sediment are ejected into the water column. Part of the suspended sediment is transported away by 

currents. 

Pockmarks size ranges from few meters to hundreds of meters in diameter and up to 30 m in relief 

(Kelley et al., 1994). Some examples in the Arctic are the seep-related pockmarks studied at the 

Vestnesa ridge (Fig. 1.9; Hustoft et al., 2009; Bunz et al. 2012; Smith et al, 2014). Presence of a non-

active pockmarks field at Prins Karl Forland  has been reported by Rajan et al. (2012a), who associated 

them to gas expulsion through older prograding glacigenic sequences or because they were fed from a 

yet unknown source area. 

  

Figure 1.7. a) Bathymetry at the Vestnesa Ridge visualized together with acoustic gas flares. b) Echogram showing an example of 
the acoustic flares that have been continuously active during the survey in 2010 (Bunz et al., 2012). 

1.4.3. Submarine Mud volcanoes 

Although the formation of mud volcanoes comprises a process more complex than only the upward 

migration of gas to the seafloor, gas seepage has been associated to this geomorphological feature (e.g, 

Sauter et al., 2006; Barnard et al., 2015). A submarine mud volcano is defined as a topographically 

expressed surface edifice from which solid material (at least mud, but generally also breccia comprising 

clasts of solid rock in a mud matrix) and fluids (water, brine, gas, oil) flow or erupt at the sea floor (Judd 

and Hovland, 2009). The large number of submarine mud volcanoes is considered to contribute 

significantly to the oceanic methane pool (Milkov et al., 2003). A special case in the Arctic is the Håkon 

Mosby Mud Volcano (HMMV), a structure of approximately 1.5 km in diameter, located at 1250 m water 

depth on the Norwegian–Barents–Spitzbergen continental margin. Sauter et al. (2006) presented hydro-

acoustic, visual, and geochemical evidence of the release of gas hydrate-coated methane bubbles and 

gas hydrate flakes that extend from 1250 m water depth (bottom) up to 750 m high into the water 

column (Fig. 1.10).  
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Figure 1.8. a) Picture of bubble release at the Håkon Mosby Mud Volcano b) Zoomed photograph showing released 
bubbles ∼1 m above the seafloor. c) Video image of sediments perforated by bubble release. e) and d) Bubbles at 18.5 and 
25.4 m above the seafloor (e) was thresholded to binary (Sauter et al 2006). 

1.4.4. Methane-derived carbonates 

The presence of methane near to the seafloor may be indicated by the presence of authigenic 

carbonates. These carbonates are the result of the anaerobic methane oxidation (AOM) coupled with 

sulfate reduction by consortia of methanotrophic archaea and sulphate-reducing bacteria (Greinert et 

al., 2001; Magalhães et al., 2012). As methane ascends is oxidized as CO2 that is then mostly precipitated 

as authigenic carbonates, which form carbon crusts within the anoxic sediments and above the seafloor. 

The analysis of authigenic carbonates isotopic signature is valuable information to reveal e.g. the origin 

and age of carbon incorporated during carbonate precipitation and to evaluate the temperature and 

origin of fluids from which authigenic carbonates are precipitated (Naehr et al., 2000; Loyd et al., 

2016).The occurrence of authigenic carbonates associated to methane release at the seafloor has been 

reported by many researchers at different regions around the world (e.g. Bohrmann et al., 1998; Sassen 

et al., 2004, Skarke et al., 2014; Berndt et al., 2014).  
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Figure 1.9. Photograph of authigenic carbonate crusts observed at Prins Karl Forland (HyBIS site, 385 m bsl, Berndt et al., 2014) 

1.4.5. Biological activity associated to methane release 

Seepage areas may be characterized by biological activity. Sulfide, methane and non-methane 

hydrocarbons are utilized by free-oxidizing bacterial mats and endosymbiotic thiotrophic and 

methanotrophic bacteria associated with tubeworms, clams and mussels (Gilhooly et al., 2007). 

Evidence of biological communities associated to methane release has been reported by several 

researchers (Fig. 1.12; e.g. Greinert et al., 2010; Niemann et al., 2005; Treude et al., 2007). When the 

rate of methane production and migration exceeds the rate of use, seepage occurs (Judd, 2004). 

Hovland (2002) has suggested that CH4 utilization increased over time because pathways are 

progressively being blocked by bacterial mats and authigenic carbonates.  

1.5. Fate of released CH4 from the seabed 

In order to evaluate if submarine sources of methane contribute significantly to the atmospheric 

methane budget, it is essential to understand the fate of methane released from the seabed. CH4 

solubility in seawater is considered to be low (~ 27 times less than CO2), increasing with increasing 

pressure (0.0263, 0.0400 and 0.0514 mol/kg at c.a. 24, c.a. 37 and c.a. 51 atm respectively in seawater 

at 25 °C; Stoessell and Byrne, 1982). At shallow depths (low pressure), CH4 dissolves in water, and if the 

CH4 concentration exceeds the solubility, the excess CH4 could become a bubble (O’Connor et al., 2010). 

On the other hand, at greater depth (high pressure) and inside the GHSZ excess of CH4 could be stored in 

the hydrate phase. Analyses have been made to verify if methane is released at the seafloor in gas or 

hydrate phase. Zhang (2003) suggests that methane released as hydrate, may rises through the water 

column depending on how much sediment is attached to it. If the admixture of sediment is small, 

hydrate blocks/flakes would ascend through the water column (due to the lower density than the 
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seawater) undergoing dissolution and dissociation on their path towards the surface. Zhang and Xu 

(2003) suggested that hydrates larger than 100 mm in radius would be able to survive dissociation over 

a 530 m long ascend.  

 

 

Figure 1.9. (a and b) Beggiatoa mats at the seafloor around seep sites. c) Bubble streams evidence a few tens of cm apart. 
(d) Inverted funnel technique over a bubble stream during flux measurements (Greinert et al., 2010). 

If methane is released as free gas, bubbles will experience expansion, as the static pressure decreases, 

but also dissolution as the bubble ascends towards the surface. Zhang (2003) has calculated that the 

critical radius for a bubble that originally contained methane to survive a 50 m rise is 0.9 mm. Bubbles 

could transport methane directly to the surface. The amount of methane released at the sea surface will 

depend on the release depth, the initial amount of methane in the bubble, bubble size, dissolved gas 

concentrations in the surrounding liquid, temperature, surface-active substances, and bulk fluid motions 

(Leifer and Patro, 2002). Additionally, if a methane bubble is released into the GHSZ, a hydrate coating 

forms around the bubble decreasing its rate of dissolution and therefore the bubble can survive longer 

distances (Rehder et al., 2009). Hydrate skin formation at the bubble-water interface has been 

evidenced in lab experiments for water saturated with methane (Maini and Bishnoi, 1981) and proved in 
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situ to slow down methane bubble dissolution in the undersaturated open ocean (Rehder et al., 2002). 

Large acoustic flares have been visualized in places where the GHSZ is located within the water column 

(e.g. Bunz et al. 2012; Smith et al, 2014; Greinert et al., 2006; Sauter et al., 2006). The highly extended 

bubble life time has been attributed to the formation of a hydrate-coating1 around the bubbles that 

decreases the mass transfer between the bubble and the surrounding water (approximately 10 times) as 

they rise through the GHSZ (Brewer et al., 2002; Rehder et al., 2002). 

Another important observation, included in the model of McGinnis et al. (2006) for bubbles rising in the 

water column, is the amount of methane transported by the bubble towards the surface. McGinnis et al. 

(2006) indicate that even though bubbles that reach the surface could be larger than their initial size, 

they will contain less CH4 than the initial amount due to partial pressure differences. Concentration 

differences between the methane in the bubble (gas) and in the sea water (dissolved) causes CH4 to 

“outflow” the bubble, while dissolved atmospheric gases (O2 and N2) “inflow” the bubble (Leifer and 

Patro, 2002). McGinnis et al. (2006) conclude that a significant contribution to the atmospheric methane 

is only possible, if free gas is released at shallow water depths.  

An increase in the rise velocity of bubbles can be caused if large numbers of bubbles create a plume in 

which upwelling water and gas bubbles rise together. Zhang (2003) has noted that a larger amount of 

bubbles would rise faster because bubbly water has a lower density than the surrounding seawater, 

which causes a rapid buoyant rise effect in the bubble cloud. This process considerably enhances the 

fraction of CH4 emitted at the seafloor to reach the ocean surface.  

In the same way that methane is reduced in the sediment due to microbial anaerobic oxidation (more 

than 50% of the production), it can also be consumed by microbial aerobic oxidation in the water 

column. Scranton and Brewer (1978) show a rapid decrease of CH4 concentrations with depth in the 

North Atlantic and North Pacific. They observed that CH4 consumption is very rapid in “young water” 

(shallow water depth) but in older water, e.g. 100 years after water mass formation (water mass 

isolated from the surface), this consumption almost cease. Mau et al. (2007) suggest that most of the 

dissolved methane seems to be transported and oxidized below the sea surface. 

1.6. Study Area 

1.6.1. Gas seepage offshore Prins Karl Forland 

Hydroacoustic data presented in this thesis have been collected offshore Prins Karl Forland (PKF; ~ 78 ° 

N) along the western continental margin of Svalbard, in an area prone to hydrocarbon seepage. The 

acoustically detected flares can be grouped into three main sub-areas according to their water depth 

(Fig.1.10): Area 1 (shelf break, ~200 m bsl); Area 2 (upper slope, 300-400 m bsl) and Area 3 (shelf, ~90 m 

bsl).  

                                                           
1
 The growth of hydrate on the gas-water interface requires the initial formation of a hydrate nucleus, and growth 

of hydrate after the nucleation site has formed (Rehder et al., 2002) 
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Figure 1.10. Study area located at PKF. The figure illustrates the flare positions found from EK60 echosounder data acquired on 
board R/V James Clark (orange dots) Ross and R/V Helmer Hanssen (red dots) during the 11 hydroacoustic surveys considered 
in this study. Seep site locations are grouped according to their depth: Area 1 (~200 m bsl), Area 2 (~300-400 m bsl) and Area 3 
(~90 m bsl). Additionally, the map shows the GPS track of both vessels during the complete set of surveys. 

Evidence of methane seepage in the area was first described by Knies et al. (2004).They observed 

sulfide-oxidizing bacterial mats, which profit from hydrogen sulfide associated with AOM in the shallow 

sediment. This is indicative of methane seepage at the sediment surface. The study area has received 

increased attention since it was observed that some of the gas seeps (Area 2) were located in the 

proximity of the current landward limit of the theoretical GHSZ (~400 m bsl). Because the Fram Strait is 

the gateway of Atlantic waters into the Arctic Ocean, it is expected that changes in global temperature 
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could affect the western margin of Svalbard more than elsewhere in the Arctic (Berndt et al., 2014). As 

such, seepage at the study area has been initially hypothesized to be a consequence of gas hydrate 

dissociation induced by ocean warming (Westbrook et al., 2009). Since then, several scientific groups 

have been investigating the area in order to reveal the origin of the gas, define sub-seabed pathway 

mechanisms of fluids, fate of gas released in the water column, transfer of gas to the atmosphere and 

the relationship of bubble release and ocean warming. Although evidence shows that methane seepage 

is occurring since at least 3000 yr B.P (Berndt et al., 2014) the hypothesis of a possible rising in amount 

of bubble release as a consequence of hydrate dissociation (triggered by ocean warming) is still debated. 

The area has been monitored hydroacoustically since 2008 when acoustic flares were recorded for the 

first time (Westbrook et al., 2009). Hydroacoustic evidence of methane seepage has been reported in 

several publications by different scientific groups (Berndt et al., 2014; Graves et al., 2015; Lund Myhre et 

al., 2016; Panieri et al., 2016; Rajan et al., 2012a; Sahling et al., 2014; Sarkar et al., 2012; Steinle et al., 

2015; Westbrook et al., 2009). The present research encompasses a large part of the hydroacoustic data 

collected during 11 ‘flarehunting’ surveys carried out between 2008 and 2014 by different research 

groups on board R/V Helmer Hanssen and R/V James Clark Ross. 

1.6.2. Geological setting 

The formation of the western Svalbard continental margin (Fig. 1.11) dates back to Early Eocene 

resulting from the continental breakup in the south of the Norwegian-Greenland Sea (Eldholm et al., 

1987; Sundvor and Austegard, 1990; Vanneste et al., 2007) followed by several rifting episodes in the 

Late Paleocene/Early Eocene (Eldholm et al., 1987; Mosar et al., 2002). The highly heterogeneous 

geomorphology of the western margin of Svalbard is mainly a result of glacial activity during the 

Pliocene and Pleistocene transition (Knies et al., 2009; Solheim et al., 1998). During this geological time, 

the Svalbard-Barents Sea ice sheet advanced and retreated repeatedly reaching the shelf break (Knies et 

al., 2009; Solheim et al., 1996). The analysis of prograding glacigenic sequences suggests that major 

glacier advances at the Svalbard continental margin happened at peak glaciations during the last 3.2 

million years (Chabert et al., 2011; Landvik et al., 1998; Rajan et al., 2012a; Solheim et al., 1998). The 

continental shelf was flooded as the ice sheet retreated 13,000 years ago (Landvik et al., 2005).The 

actual Svalbard continental shelf break marks the approximate maximum extent of Barents Sea ice sheet 

(Sarkar et al., 2012). 

The western continental margin of Svalbard is characterized by a narrow shelf and a steep slope with a 

gradient of 4° to 5° (Andersen et al., 1994). This shelf is cut by wide troughs resulting from the action of 

fast-flowing ice streams over the existent sediment (Ottesen et al., 2007). Two of these features are the 

Kongsfjorden and Isfjorden cross-shelf troughs (KT and IT respectively, Fig. 1.11), which are the 

respective northern and southern limits of the study area. Fast-flowing ice streams produced major 

erosion on the shelf and sediment deposition in prograding glacigenic sequences on the adjacent slope 

(Rajan et al., 2012a; Solheim et al., 1998). Till deposits are absent within troughs on the inner shelf but 

they are abundant on the shelf bank areas (Andersson et al., 2000; Solheim et al., 1998). Unlike the 

glacial dynamic influence in the sedimentation of the shelf and upper continental slope, the distal 

continental slope was highly influenced by bottom currents, originating the development of contourite 

deposits (Eiken and Hinz, 1993). 
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Figure 1.11. Geomorphological map of the West Svalbard continental margin and study area of research carried out by Sarkar 
et al. (2012). a) The figure illustrates the mid-oceanic ridge and the transform fault system constituted by the Knipovich Ridge, 
Molloy Transform and the Molloy Ridge. Vestnesa Ridge (VR; contouritic drift system) is also illustrated. Additionally, the 
currently known BSR area and the western cross-shelf troughs (Kongsfjorden troughs, KT; Isfjorden troughs, IT; Bellsund 
troughs, BT) are indicated in the figure. b) The BSR extent and depth map (s, Two Way Travel Time) displayed on shaded relief 
bathymetric image. 
 

The sub-sea geomorphological features of the study area have been well characterized and described by 

several authors (e.g. Rajan et al., 2012a; Sarkar et al., 2012) in order to detect possible spatial 

correlations between seeps and those features. From high resolution bathymetry, Sarkar et al. (2012) 

have reported the existence of a convex upward bulge in the northeastern part of the study area (Figs. 

4a and 4b). From seismic and morphological information this topographical expression has been 

interpreted as a slump. No gas seepage has been associated to this feature and seismic data suggest 

that the slump may inhibit rising of gas to the seafloor. In the same study, features such as furrows 

(ploughmarks), circular and elliptical crater-like depressions and small pits are also described (Fig. 1.12). 

Those features have been interpreted to be a consequence of the drifting of iceberg keels (Bass and 

Woodworth-Lynas, 1988; Sarkar et al., 2012). Gas seeps coincided with parts of ploughmarks in the 

inter-fan region and with some craters near to the shelf break (Fig. 1.12). A cluster of craters or 

pockmarks are also visible on the shelf eastward to the seeps of Area 1 located at ~200 m bsl. The 

formation of those features has been associated to past gas seepage (Rajan et al., 2012a). No 

morphological features associated to the current gas seepage have been found. 
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Figure 1.12. Geomorphology of the study area (Sarkar et al., 2012). The image illustrates different morphological features 
including e.g, ploughmarks and circular and elongated craters. Additionally, the location of the acoustic flares detected during 
the JR211 survey carried out in 2009 on board R/V James Clark Ross (hydroacoustic data also included in the presented thesis) 
are illustrated 

BSRs that are the seismically inferred expressions of the base of the GHSZ have been identified in several 

places at the continental slope of Svalbard (Figs. 1.11 and 1.13; e.g. Chabert et al., 2011; Vogt et al., 

1994; Westbrook et al., 2008). The currently known BSR distribution is confined to a region west of the 

seepage areas in a region of deeper water and it is limited by the Molloy Transform and the Vestnesa 

Ridge (Figs. 1.11a and 1.13a). The two recent studies carried out by Rajan et al. (2012a) and Sarkar et al. 

(2012) based on seismic observations have tried to explain the gas expulsion mechanisms describing the 

possible sub-seafloor fluid flow pathways. In both of these studies, the BSR is mapped down-slope at 

greater water depths (~ 700 m) than the seepage area. At shallower depths, where the GHSZ is still 

predicted to exist and pinch out at the seafloor, no BSR has been imaged. However, the absence of the 

BSR is not necessarily an indication of the absence of gas hydrates (e.g. Chabert et al., 2011; Holbrook et 

al., 2002). 
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Sarkar et al. (2012) reported the evidence of gas pockets right below the seepage area (Area 1 and 2) in 

form of negative-polarity bright spots, zones of low velocity and seismic attenuation and scattering. The 

major part of these gas pockets were found below the theoretical base of the GHSZ suggesting that gas 

has reached these pockets through permeable glacimarine strata and fractures.  Because the numerous 

seismic evidence of gas and the presence of BSR at deeper water depths it was concluded that gas is 

coming dominantly from deep sedimentary sections.  Though the existence of gas hydrates at shallower 

water depths has not been confirmed yet, their presence was inferred by comparing seismic anomalies 

such as bright spots between the actual GHSZ and the one from 30 years ago. Therefore the study 

supports the possibility that gas ebullition could be consequence of hydrate destabilization in response 

of bottom-water warming. Finally this study concludes that the uppermost slope is constituted by a 

mixture of low-permeable glacigenic sediments and more permeable marine sediment, that in 

combination influence the gas seeps locations, zones of gas hydrate formation, as well as the gas/fluids 

migration pathways. 

 
Figure 1.13. a) Bathymetric map of the study carried out by Sarkar et al. (2012) western PKF. The image illustrates the results 
obtained during the JR211 cruise on board R/V James Clark Ross (2009) including seismic lines, coring position and acoustic 
flares hydroacoustically detected (hydroacoustic data also used in the presented research). Additionally, the currently known 
BSR area and the  contour lines representing the landward limits of the theoretical GHSZ at 2 °C (

~
370 m bsl; c.a. 30 years ago) 

and 3 °C (~410 m bsl; actual) bottom water temperatures are also illustrated. b) and c) Profiles illustrating the different seismic 
anomalies found in the JR211-10 seismic line including bright spots, gas conduits, incoherent reflections and BSR. 
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Rajan et al. (2012a) built a conceptual model (Fig. 1.14) based on the analysis of high resolution 3D and 

2D seismic data that summarizes the geologically controlled gas/fluids migration and expulsion at the 

uppermost slope and the shelf break offshore PKF (Area 1 and 2). From seismic analysis it is deduced 

that thermogenic-gas migration is potentially coming from deep hydrocarbon reservoirs caused by 

diffusive processes. Seismic data show that the westward prograding shelf is constituted of spatially 

confined glacigenic sequences and glacial debris flow deposits. The model shows that fluids are trapped 

beneath a glacigenic sequences because of their low permeability and continue to migrate upslope 

along permeable layers. Subsequently, fluids reach the seafloor when the base of the prograding 

glacigenic sequence intersects the seabed. Because the static pressure decreases as fluids rise, part of 

this fluid is transformed to bubbles. 

 
Figure 1.14. Conceptual model of geological mechanisms at the sub-seafloor controlling the fluid migration and bubble release 
at the seabed into the water column (Rajan et al., 2012a). 

 

During a cruise in 2011 with the R/V James Clarke Ross, gas emissions (included in our hydroacoustic 

data set) were found at the Area 3 seep site area (Wright, 2012). A plausible explanation for the seepage 

on the shallow shelf (Area 3) is that during the last glaciation due to ice sheet loading, the pressure was 

high enough for gas hydrates to form in deep sediments. After the ice retreat, gas hydrates formed 

during high pressure conditions started to dissociate (Portnov et al., 2016). Age determination of 

authigenic carbonate collected at these sites (Berndt et al., 2014) indicates that methane seepage has 

been prevalent here for at least 3000 years B.P. and all collected carbonate crusts were older than 100 

years. 
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1.6.3. Oceanographic setting 

The study area is under the influence of two main water currents (Fig.1.15), the West Spitsbergen 

Current (WSC) and the Coastal Current (CC). The WSC is a shallow northward flowing branch of the 

North Atlantic Current that introduces warm and saline water into the Arctic Ocean (e.g. Graves et al., 

2015; Nilsen et al., 2016; Saloranta and Haugan, 2004). This current is responsible for keeping mean 

annual temperatures around 10 °C higher than locations at similar latitudes (e.g. Ślubowska-Woldengen 

et al., 2007). Both, the mean temperature and speed of the WSC increase towards the shelf break 

(Graves et al., 2015). The WSC can be sub-divided into 3 branches: the Return Atlantic Current (RAC) 

which is the westernmost branch, re-circulates the northward flowing Atlantic waters in the Fram Strait; 

the Yermak Branch (YB) which is dominantly baroclinic and circulates along the Yermak Plateau at the 

north of Svalbard; and the Svalbard Branch (SB) which is dominantly barotropic and circulates along the 

Svalbard Shelf edge (Nilsen et al., 2016). Part of the Atlantic waters flowing in the SB is forced to 

circulate into the western shelf and troughs off Svalbard. Nilsen et al. (2016) has named this flow the 

Spitsbergen Trough Current (STC) which represents a longer and slower route of Atlantic waters toward 

the Arctic Ocean. 

The contribution of fresher and colder Artic water in the surface layer on the West Spitsbergen Shelf is 

done by the CC also known as Spitsbergen Polar Current (SPC). The CC is a surface current associated 

with the West Spitsbergen Polar Front along the west coast of Spitsbergen carrying Arctic waters from 

Storfjorden and the Barents Sea (Nilsen at al., 2016). Additionally, this current is influenced by water 

discharge from glaciers and rivers at the fjords along the coast (Meredith et al., 2001; Nilsen et al., 

2016).  

Specifically, surface waters at the study area are mainly provided by the CC while the seafloor at the 

landward limit of the GHSZ is generally overlain by the warm saline Atlantic Water coming from the 

westward branch of the WSC.  Steinle et al. (2015) describe this process as an oceanographic switch, 

altering methane oxidation rates according to different methanotrophic microbial communities that are 

characteristic of the two water masses and the microbial capacity for oxidizing methane. In addition, 

seasonal events such as sea ice melting and formation, surface heating and cooling and storms influence 

the hydrography of the study area (Gentz et al., 2014). These local processes change the density 

stratification and subsequently control the vertical turbulent diffusion of dissolved methane. Strong 

vertical density stratification impedes diapycnal and favors isopycnal diffusion. Dissolved methane 

concentration gradients are thus much stronger in the vertical direction than in the horizontal, in the 

vicinity of local methane sources. This implies that dissolved methane is prone to flow along constant 

density surfaces at the velocity of the momentary current (Gentz et al., 2014). 

The variability of the water temperature at the study area has received increased attention since 

Westbrook et al. (2009) postulated a possible increase in gas release caused by hydrate destabilization 

in response to ocean warming. Multi decadal-scale records of ocean temperature variations during the 

past 2000 years derived from marine sediments off Western Svalbard show that the current Fram Strait 

ocean temperatures represent a maximum over the last 2000 years (Spielhagen et al., 2011). The latter 

accompanied to the warming trend of the WSC observed since 1975 in the historical temperature 

measurements (Ferré et al., 2012; Westbrook et al., 2009), supports a gas flux-rising scenario triggered 
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by hydrate destabilization. In addition, short term records from bottom-water temperatures at the 

landward limit of the GHSZ show high seasonal variability (0.6 °C to 4.9 °C) suggesting that methane 

seepage could also be affected by hydrate formation and dissociation caused by seasonally large lateral 

shifts of the GHSZ (Berndt et al., 2014) 

 
 
Figure 1.15. Dominating current systems on the western Svalbard continental margin (Nilsen et al., 2016). The continental 
margin is influenced by the WSC (red arrow) and the CC (blue arrow). The WSC can be sub-divided in three branches: the RAC, 
the YB and the SB. The figure also illustrates the STC which represents a longer and slower route of the SB. 

1.7. Motivation and outline of this thesis 

The need to identify the sources of atmospheric methane in order to evaluate the influence of human 

activities in climate change has become increasingly important. The IPCC (Intergovernmental Panel on 

Climate Change) established that global warming has been mainly induced by human activities (Stocker 

et al., 2013). A clear identification of all the sources that contribute to the atmospheric methane budget 

is the key to create a mitigation plan of anthropogenic greenhouse gas emissions and to stimulate the 

manufacturing of new clean technology to diminish the atmospheric greenhouse gases input.  

Underwater sources of natural methane (seawater and freshwater) are considered to be an important 

component of the atmospheric methane budget (Kvenvolden and Rogers, 2005). Moreover, methane 
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emissions from underwater sources could possible increase due to e.g. long-term hydrate dissociation 

process in response of an eventual ocean warming. A rise in methane release related to hydrate 

dissociation could lead ocean temperatures to rise, triggering the destabilization of a major amount of 

hydrates and therefore initiating an irreversible process (clathrate gun hypothesis; e.g, Maslin et al., 

2004). Additionally, in recent years the oil and gas industry has been confronted with the need to have 

better gas leak detection and monitoring systems in order to satisfy the regulations associated to marine 

environmental pollution (Veritas 2010). Consequently, there is an increasing need for monitoring and 

quantifying submarine sources of gas. 

In this thesis work, the main focus is the quantification of the flow rate of submarine methane in gas 

phase, from gas seep sites, within the water column, associated to climate change studies. The use of 

hydroacoustic techniques to detect and monitor methane venting has shown to be efficient by virtue of 

its non-invasive nature and the capability to scan remotely large seep sites areas (e.g. Nikolovska et al., 

2008; Greinert, 2008, Sahling et al., 2014).  

The aim of this thesis work is the creation of a consistent method for quantification of gas venting at the 

seafloor over large seep areas using hydroacoustic information of the release in the water column. 

Furthermore, this work intends to determine the gas emission changes (temporal and spatial) at the 

study area by using the hydroacoustic technique and hydroacoustic information from different surveys. 

The main objectives of this work can be defined as following: 

General objectives   

 Implement a hydroacoustic inverse method to quantify the emission of free gas in the water 

 Evaluate the methane emission over large seep site areas using the implemented method 

Specific objectives 

 Quantify the total flow rate of a large seep site area susceptible to global warming at the Arctic 

(PKF) using hydroacoustic data from a singlebeam echosounder system and the inverse 

hydroacoustic method. 

 Evaluate the spatial and temporal variability of methane release at the study area using a 

hydroacoustic dataset from different years. 

 Create an user-friendly software for echosounder data analysis including the implemented 

inverse hydroacoustic method. 

The presented work is a mixture between theoretical review chapters (chapter 1- chapter 3) and 3 

scientific articles (chapter 4 – chapter 6). Finally, a general conclusion and outlook is presented (chapter 

7). A brief description of each chapter is given below: 

Chapter 1 (Introduction) presents a theoretical background in which the main topic is methane as a 

greenhouse gas. The atmospheric methane sources and sinks of methane are presented. Because the 

study area where this work has been carried out is located in the Arctic, common submarine sources of 

methane in the Arctic coming from the seabed are defined. Finally, a literature review associated with 

the evidence of the methane release at the seafloor and the fate of this methane is presented. 
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Chapter 2 (Optic and hydroacoustic techniques for locating, monitoring and quantifying gas) presents a 

brief review about the optic and acoustic systems for detection, monitoring and quantification of gas 

released at the seafloor. 

Chapter 3 (Acoustic theory of bubbles) describes the theory of bubbles in liquid media in presence of an 

acoustic wavefront related to active acoustic systems. The chapter also presents an introduction of an 

inverse problem associated to the bubble flux quantification. 

Chapter 4 (Article 1 published at Limnology and Oceanography methods) shows the interpretation of 

hydroacoustic data coming from echosounders. Here is also presented a new inverse method for flow 

rate quantification of free gas, and a technique to quantify the flow rate a large seep site area located in 

the Arctic (PKF, Svalbard, ~78 N). 

Chapter 5 (Article 2, submitted at SoftwareX journal) describes the Graphical User Interface (GUI) for 

analysis and post-proccessing of hydroacoustic data (Flarehunter GUI) and the GUI with the 

implemented inverse method to quantify the flow rate (FlareFlowModule). The chapter shows some 

examples of the functionality of the GUI and the quantification of the flow rate coming from single 

acoustic flares. 

Chapter 6 (Article, to be submitted, Nature Geosciences) present a large dataset of hydroacoustic 

echosounder information from the study area coming from 11 surveys and the evaluation of the 

spatio/temporal variability of the methane fluxes at the study area. Results are shown together with the 

favorable and the unfavorable factors using hydroacoustic data coming from echosunder systems. 

Finally, recommendations are given in order to optimize a hydroacoustic survey. 

Chapter 7 (Conclusions) shows the main achievements, limitations and challenges of this work together 

with the proposed future work. 
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2. Optical and hydroacoustic techniques for locating, 

monitoring and quantifying gas  
 

Several techniques and methodologies have been developed to locate, monitor and quantify the 

released methane into the water column. These techniques have been shown to be useful for tracking 

methane gas bubbles in the water column and investigating the fate of the methane. Commonly used 

techniques are visual observations and hydroacoustic methods to detect gas bubbles in the water 

column. These were the main techniques used in this thesis. A brief description of these techniques is 

presented below: 

2.1. Photo-optical systems 

Optical imaging systems are commonly used in marine sciences in general and have been widely applied 

in gas seep studies. Video recording of seep sites has been focused on studying the dynamics of bubble 

release, gas quantification, characterization of microbial communities and seafloor classification. Visual 

evidence (photography and video) of gas release has been acquired by using underwater video-camera 

systems mounted on remotely operated underwater vehicles (ROV) or towed frames (Fig. 2.2; e.g. 

Greinert et al., 2006; Thomanek et al., 2010; Römer et al. 2012b; Sahling et al. 2014). Visual information 

of methane bubbles has been utilized to e.g. derive bubble size distributions (BSD; Römer et al., 2012b; 

McGovern, 2012; Ostrovsky et al., 2008; Leifer et al., 2002, Greinert and Nützel, 2004) which can be 

used to estimate/determine the amount of transported gas, bubble rising speeds values (e.g. see 

McGinnis et al., 2006) or to estimate the scattered sound produced by the bubble cloud (e.g. Medwin, 

1977). Image scaling is usually done by placing objects of known dimensions next to the bubbles. Visual 

observations of bubble sizes have been shown to be very consistent in different seep areas and release 

depth. Although one of the main goals is to determine the gas transport in the water column, which is 

mainly carried out by large bubbles, it is necessary to highlight the limitation in resolution of this 

technique in identifying microbubbles. Alternatively, hydroacoustic passive systems, which will be 

mentioned in the next section, could be a good option to improve the resolution problem.  

Bubble rising speeds (BRSs) are essential to establish the flow rate/flux of gas seeps. Observations of 

ascending bubbles using photo-optical systems have already been documented by several researchers 

e.g. Greinert et al., 2006; Römer et al. 2012b; Sahling et al. 2014). Results from visual bubble rising 

velocity studies have been used to validate bubble rising speed models (BRSMs) or create empirical 

relationships between BRS and bubble sizes (e.g. Mendelson 1967; Woolf and Thorpe 1991; Leifer and 

Patro 2002; Greinert et al., 2006). Using the optical information, bubble fluxes can be determined (e.g. 

Römer et al. 2012b; Greinert et al., 2010; Sahling et al. 2014). Usually flux measurements are 

accompanied by trapping bubbles with an inverted-funnel for direct flux measurements (Fig. 2.1) and 

gas sampling for later geochemical analyses. 
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Figure 2.1. a) Gas bubbles collected with the inverted funnel of a Gas Bubble Sampler. The figure shows the gas hydrate 
skin formation around the bubbles when they were trapped. b) Bubbles release through a thick mat of sulfide-oxidizing 
filamentous bacteria. c) Two gas bubble streams released at the seafloor (Roemer et al. 2012b). 

Several reports in the literature describe image-based and funnel-trapping measurements of bubbles. 

Leifer and Boles (2005) designed a diver operated device able to optically measure flow rates and 

bubble size distributions simultaneously for shallow water applications down to 30 m. Leifer and 

MacDonald (2003) employed a manned submersible to record image data at a seep field in the Gulf of 

Mexico. At Håkon Mosby mud volcano, optical flux estimation has been carried out using ROV cameras 

(Sauter, 2006). Sahling et al. (2009) estimated gas fluxes at the Vodyanitskii mud volcano in the Black 

Sea also using visual information collected with ROV cameras. Greinert et al. (2010) used the 

submersible JAGO to estimate fluxes of seep sites at a Black Sea shelf area. At Hydrate Ridge in situ flow 

rate estimations were carried out using the time required to displace the fluid inside the gas collector 

(Torres et al., 2002). Thomanek et al. (2010) presented a deployable system (‘Bubblemeter’) for in situ 

automated image processing and data management (Fig. 2.2). 
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Figure 2.2. Left: Bubblemeter positioned and ready to be triggered by the ROV manipulator. Right: Gas bubbles rising 
between the camera and the illumination device (Thomanek et al., 2010). 

 

 

Figure 2.3. Images of rising bubbles ranging from 1 to 3 mL showing the variability in shape (Ostrovsky et al., 2008). 

Optical observations of bubble allometry reported that ascending bubbles get more deformed as they 

increase their size (Fig. 2.3; Ostrovsky et al., 2008; Thomanek et al., 2010). Clift et al. (1978) classifies 

rising bubbles in a fluid of gravitational forces according to their sizes in three regimes: spherical, 

ellipsoidal, and spherical cap (see also Amaya-Bower and Lee, 2010). Their observations also show that 

the BRS is also affected by bubble deformation. 
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2.2. Hydroacoustics 

Visual estimates of bubble fluxes are precise but not practical when it is necessary to evaluate the flux 

from an entire seep field that covers a large area. A more efficient alternative for calculating fluxes but 

less precise due to errors introduced by e.g. the theoretical inversion or instrumental accuracy, is the 

use of hydroacoustics methods that are able to map larger areas in shorter time. Hydroacoustic systems 

used for monitoring/quantification of free gas released into the water column can be divided in active 

and passive systems. Active systems transmit a wavefront and receive the scattered signal while passive 

systems just listen without transmitting. A brief description of the use of these systems in bubble 

venting research is detailed below. 

2.2.1. Active systems 

Underwater acoustic systems have been used for detecting and analyzing free gas release into the water 

column for already some decades (e.g. Watkins and Worzel, 1978; Merewether et al., 1985). Among of 

them, hydroacoustic active systems such as singlebeam and multibeam echosounder systems (SBES and 

MBES respectively; Fig. 2.4) have the ability to map large areas without interfering with the dynamics of 

the bubble release itself (non-invasive method). The use of active hydroacoustic systems has mainly 

focused on localization, monitoring and flux quantification of gas seepage. Active systems are 

considered to be highly sensitive, detecting free gas in the water owing to the strong impedance 

difference between the free gas phase and the water. 

 

Figure 2.4. Visualization of the SBES (left) and MBES (right) curtains that contain acoustic flares (Colbo et al., 2014). 
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Figure 2.5. Acoustic flares detected at PKF detected with the EK60 split-beam echosounder. Echogram curtains have been 
located over the bathymetric surface. Acoustic flares are coming from the dataset presented in this thesis. 

SBES and MBES (Figs. 2.4 and 2.5) are usually mounted in the hull of the ship or in ROV (e.g. Nikolovska 

et al., 2008) with the beam axis oriented downward, or in deployable systems with the beam axis 

oriented horizontally to vertically insonify the bubble release path (e.g. Greinert a, 2008). Bubbles can 

produce strong scattering if they are insonified close to their resonance frequency (see chapter theory). 

Flux estimates can be inferred from the scattering produced by bubbles when they are insonified by a 

wavefront, produced by the system. There are several publications that report gas flux estimates from 

bubble release by using inverse hydroacoustics methods. Artemov et al. (2007) related the 

backscattering produced by bubble jets with bubble sizes and seep productivity (number of 

bubbles/vertical distance), estimating the emitted methane in an area located at the Black Sea. 

Ostrovsky et al. (2008) used an empirical method to establish a relationship between the volumes and 

acoustical backscattering cross-section of individual bubbles. They calculated the bubble fluxes emitted 

into the water column from a seep site area located at Lake Kinneret using a combination of established 

relationships and bubble rise velocity measurements. Nikolovska et al. (2008) estimated the gas flux of a 

seep area located at the eastern Black Sea using an inverse model based on the principle of finding the 

‘‘acoustic mass’’. Muyakshin and Sauter (2010) presented an inverse hydroacoustic method to calculate 

the flux emitted from bubble plumes. The method involves theoretical scattering from bubbles, volume 

backscattering strength (SV) values calculated in situ and BRS values (for more detail see chapter 3). The 

method was successfully applied to quantify the total convective methane flux at the HMMV at 1280 m 

water depth. Inverse methods are only applicable with data obtained from active systems that can be 

calibrated, because parameters such as transducer gain or equivalent beam angle are needed to 

calculate target strength (TS) or volume backscattering strength values (SV).  
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MBES just recently have started to be used in submarine gas seeps analysis, since initially they were 

designed to map the seafloor only. New system developments now allow extracting information from 

the water column as well (e.g. Fig. 2.6; e.g. Schneider et al., 2007). So far, MBES have been used 

commonly for the detection of seep sites, for determining seep field extent and for flare number 

estimations, for the analysis of the spatial and temporal variability of gas release, and for the final depth 

evaluation of bubbles in the water column (e.g. Nikolovska et al. 2008; Greinert, 2008, Schneider et al., 

2007). Additionally, extrapolated flux estimates of large seep areas have been carried out by using the 

combination of gas flow rates visually calculated and flare numbers extracted from MBES observations 

(e.g. Römer et al. 2012a, Sahling et al., 2014).  

 

Figure 2.6. MBES echogram showing bubble streams rising from the seafloor. (Nikolovska et al.2008) 

Improvements in the MBES technology have been triggered in response to the needs of the scientific 

community. An example of that is the lander-based system is the GasQuant system (Fig. 2.7) developed 

by J. Greinert in cooperation with ELAC Nautik in Kiel, Germany (Greinert and Nützel, 2004; Greinert, 

2008). GasQuant uses a modified SeaBeam 1000 MBES with a horizontally oriented swath (21 beams, 

63° swath angle, 180 kHz) to detect bubbles that rise through the swath from the seabed. The system 

has been designed to constantly monitor seep activity to understand the bubble release dynamics. 

Greinert and Nützel (2004) demonstrate by using a SBES, that bubble flux is proportional to the 

backscatter of the insonified volume at flow rates up to 20 L/min. The GasQuant lander has been 

deployed already at several places as the Black Sea (Greinert, 2008) and the North Sea (Schneider et al., 

2010).  
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Figure 2.7. a) Image of the GasQuant lander with launcher system ready for deployment. b) Size of the hydroacoustic 
swath showing the 21 beams and positions of the analyzed samples per beam (Greinert and Nützel, 2004). 

Kongsberg recently developed the Simrad ME70 system which groups EK60 split-beam echosounders to 

form a kind of MBES. Such a system allows obtaining both TS and SV values coming from scatterers in the 

water column as with normal SBES but with a much larger coverage. This enormously decreases survey 

time. Hydroacoustic data coming from this system could be used as an input of inverse hydroacoustics 

methods like the one presented in this thesis (chapter 4). 

Finally, Acoustic Doppler Current Profilers (ADCP) have been also used to describe the dynamics of 

bubble emissions from the seafloor. Data describe the temporal variability of bubble emissions and are 

used estimating BRSs (Fig. 2.8; Vagle et al. 2010; McGinnis et al., 2006; Linke et al., 2010; Salmi et al., 

2011; Kannberg et al., 2013; Schmidt et al., 2013). 

 

Figure 2.8. ADCP backscatter measurements from Iron Gate I dam on the Danube River (Romania). The strong backscatter 
data in the water column represent the bubble release from the sediment. Image taken from McGinnis et al., (2006).  
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2.2.2. Passive Systems 

In addition to all the different active acoustic methods discussed above, passive techniques have also 

been applied when studying bubble release from the seafloor. It is well known that bubbles oscillate at 

their natural frequency when they are formed (e.g. detached from the seafloor, produced at the sea 

surface by breaking waves), producing as a result a sound field in the surrounding media (Minnaert, 

1933; Leighton and Walton, 1987). Minnaert (1933) as a pioneer established the relationship between 

the resonance frequency of a bubble and its size (radius) assuming simple harmonic motion. The 

acoustic signature that bubbles leave when they are formed has been used in studies related with BSD 

and flux quantification of bubble release. Leighton and Walton (1987) developed an experiment to 

analyze the frequency, pressure amplitude, and decay characteristics during the formation of bubbles, 

by ‘listening’ to them with hydrophones. Their measurements agreed with the natural oscillation 

frequency of the bubble (Minnaert frequency) and theoretical bubble damping values (e.g. Prosperetti, 

1977). Nikolovska and Waldmann (2006) designed a passive hydroacoustic system to measure the gas 

flux from gas seepage. Their method was based on a Morlet wavelet analysis of the recorded sound 

signal series. Data were in agreement with their optical observations (see also Nikolovska et al., 2007). 

Leifer and Tang (2007) measured acoustical signatures at the La Goleta Seeps (Coal Oil Point; California) 

obtaining that bubble radii were lower than predicted by the Minnaert formula. They also observed 

frequency shifts attributed to coupling of neighboring bubbles and surfactants. Greene and Wilson 

(2011) presented a mathematical model for active hydroacoustic systems to study the behavior of 

natural gas bubbles emitted at the seafloor taking into account the physical ambient conditions (Fig. 

2.9).  

 

Figure 2.9. Example of passive acoustic recording of air-bubble release in water tank showing (a) first 6 s of recording; (b) 
zoomed-in plot of the first recorded bubble—exponential decay; and (c) FFT of recorded signal of first bubble (with zero-
padding) (Greene and Wilson, 2012). 

Maksimov et al. (2014) have recently proposed a new theoretical model for bubble volume pulsations at 

relatively small distances from the rigid-bottom boundary. They suggest that the model is more 
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appropriate to bubble releasing at the seafloor and that it has to be considered when using passive 

acoustic techniques in marine seep studies. Leighton and White (2012) describe a method for 

quantifying the gas flux and bubble size distribution injected into liquid from high flux leaks using their 

acoustic emissions. The method considers the signature overlapping produced by the release of a large 

amount of bubbles when they are released. Leighton and White (2012) suggest that the most important 

unknown is the acoustic energy released by an individual bubble. Berges et al (2015) have proven the 

accuracy and applicability of the method (Leighton and White, 2012) against experimental data, showing 

an agreement at a practically useful level for high flow rates. In summary, hydroacoustic techniques play 

an important role in the research field of submarine gas release, being even stronger when they are 

combined. 

The following table summarizes the applicability, advantanges and disadvantages of the techniques for 

locating, monitoring and quantifying gas seepage in underwater environments. 

Table 2.1. Summary of optical and hydroacoustic techniques 
 

Techniques   Applicability Advantages  Disadvantages 
Photo-optical 
systems 

  -Quantification of 
bubble flow rates 
-Determination  of BRSs 
and BSDs 
-Monitoring of gas 
seeps 

-Direct observations of the 
bubble release 

-Short range 
-Limitation in 
resolution to detect 
microbubbles 
-Limitation in 
coverage  
 

Hydroacoustic 
systems 

Passive  Hydrophones -Monitoring of gas 
seeps  
-Measurement of 
bubble flow rates 
through inversion 
 

-Non-invasive 
-Wide Bandwidth 
-Low energy 
-Portable 

-Short range 
-Received signal can 
be easily overlapped 
by background noise 

Active SBES -Location of seepage at 
the seafloor 
-Monitoring of gas 
seeps  
-Quantification of 
bubble flow rates 
through inversion 
-Determination  of BRSs  
 

-Non-invasive  
-Long range 
-Calibrated systems useful 
for quantification of bubble 
fluxes of large seep sites 
areas  
 

-Not able to identify 
the amount of bubble 
vents within the 
footprint 
-Narrow Bandwidth 
Limited in spatial 
coverage 

 MBES -Location of seepage at 
the seafloor 
-Monitoring of gas 
seeps  
-Determination  of BRSs 
  

-Long range 
-Large spatial coverage 

-Usually non-
calibrated systems 
(except Simrad ME70) 
-Narrow Bandwidth 

 ADCP -Evaluation of temporal 
variability of bubble 
emission (e.g., bubble 
periodicity and BRSs) 

-Long range 
-Able to locate targets in 
the water column 

-Non-calibrated 
system 
-Narrow Bandwidth 
-Limited in spatial 
coverage 
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3. Acoustic theory of bubbles 

3.1. Bubbles and acoustics 

The theoretical background of the acoustics related with bubbles has its origin in the early 1920’s, when 

physical concepts and properties (e.g. acoustical scattering cross-section, acoustical extinction cross-

section, resonance frequency, bubble damping) had been properly defined. Nowadays, the behavior of 

acoustic waves in liquids that either interact or are generated by bubbles is a topic of interest for several 

research fields. To name a few: medical applications such as ultrasound imaging, lithotripsy and 

histotripsy (e.g. Chen et al., 2009; Cleveland and McAteer, 2007; Maxwell et al. 2011); ultrasonic 

cleaning using cavitation (e.g. Niemczewski, 2007); fishery (e.g. MacLennan and Simmonds, 1992); oil 

industry (e.g. Pedersen et al., 2014); marine geology (e.g. Greinert et al. 2006). Because bubbles in 

liquids are considered to be strong scatterers due to the large difference in acoustic impedance across 

the liquid-gas interface (e.g. acoustic impedance of water is ~3500 times higher than that of air), bubbles 

located in liquid media can easily be sensed remotely. The acoustic scattering is strongly enhanced when 

the frequency of the acoustic field insonifying the bubble is close to its resonance. As a reference, 

acoustical cross-sections can reach values of three to four orders of magnitude greater than its 

geometrical cross-section.  

Hydroacoustic systems (active and passive) have recently been used to locate and monitor the release of 

bubbles from sources at the seafloor (see chapter 2). Experimental results have clearly shown a 

relationship between acoustical response and bubble flux rate intensities (e. g. Greinert and Nützel, 

2004; Ostrovsky et al. 2008). Using the theoretical formulations of bubble acoustic response and real 

acoustic data, inverse hydroacoustic methods for bubble flux estimation have been developed and they 

have proven to be reliable (e.g. Nikolovska et al., 2008; Artemov, 2007; Muyakshin and Sauter 2010). 

The theoretical inverted formulation used and implemented in this research work is based on the total 

backscattering as a product of the constructive interference of single targets (bubbles) when a bubble 

cloud is insonified.  

The goal of this chapter is to summarize the “foundations” of the acoustic theory involved in the 

hydroacoustic inverse method for bubble flux estimations presented in this thesis. Bubble resonance, 

damping and acoustical scattering cross-section of bubbles, which are the essential parts of this inverse 

method, are subsequently defined. Finally, the relationship between bubble flux and the backscattering 

produced by the bubble cloud is explained. 

3.2. Bubble resonance 

3.2.1. Minnaert resonance 

A first approximation to calculate the resonance frequency of a spherical bubble in a liquid can be done 

by assuming that damping is negligible, that there are no effects due to surface tension or thermal 
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conductivity and that      (which is the condition where the bubble is driven by the virtually uniform 

acoustic pressure over its surface). Here   represents the wave number and    the bubble radius.

The motion of a pulsating bubble can be represented with the mechanical equation of a mass-stiffness 

system: 

 

 
   

   
         (3.1) 

 
Where,  

 
 : Equivalent bubble mass 

 : Bubble stiffness 

 : Bubble radial displacement 

 
Equation [3.1] has the following solution, 

 

     
     (3.2) 

 
If equation [3.2] is substituted in [3.1], an expression for the system natural frequency    is obtained, 

    √
 

 
 (3.3) 

 
Considering that the compressions and rarefactions of the bubble inner gas follow the adiabatic 

relation    
           and differentiating this we obtain, 

 
   

  
  

   

 
 (3.4) 

 
Where, 

   : Inner bubble pressure  

   : Static surrounding pressure 

  : Ratio of specific heats 

  : Bubble volume;   
 

 
      

  : Incremental bubble volume;            

 : Bubble radius 
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The equation [3.4] can be rewritten in terms of the bubble radius, obtaining, 

 

                     (3.5) 

 

Equation [3.5+ has the form of Hook’s law, showing that the stress is proportional to the strain. Then, 

bubble stiffness   (proportionality constant) is expressed by, 

          (3.6) 

 

The equivalent bubble mass, which is related to the entrained water that surrounds the bubble, is 

calculated using the inertial force experienced by the radiating bubble. 

Let us consider the bubble as an isotropic source. Then the pressure emitted by this source   , which is 

the scattered pressure, can be represented by, 

   
    

 
           (3.7) 

 

Where   is the wave number and     is the pressure amplitude at    . 

In addition, the acoustic force equation (e.g. Medwin and Clay, 1998) for radial motion is defined by,  

 

  

   

   
  

   

  
 (3.8) 

 

Where    is the water density. 

Replacing equation [3.7] in equation [3.8], it is obtained, 

  

   

   
+
   

 
    

  
                 ]

   
 (3.9) 

 

Because     , Eq. [3.9] can be simplified, 
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]
   

 (3.10) 

  

Then, using Newton’s second law, the inertial force at the surface    can be obtained (Eq. 3.11) and the 

effective mass   identified (Eq. 3.12) 

                          

   

   
+
   

 (3.11) 

 

         (3.12) 

 

Replacing equation [3.12] and equation [3.6] in [3.3], an expression of the harmonic breathing frequency 

of a small bubble (    ) is obtained, 

 

    
 

 
√

    

  
 (3.13) 

 

This expression is also known as the Minnaert frequency, as Minnaert (1933) was the first to publish it.  

3.2.2. Exact resonance frequency of a spherical bubble 

Approximations for the exact resonance values have been described by Ainslie and Leighton (2010). The 

approximations have been developed using the concept of thermal diffusion length     and defining 

different regimes according to the rate between the bubble size and this term. The thermal diffusion 

length    is defined as following,  

         √
     

  
 (3.14) 

Where, 

  : Angular frequency  

   : Thermal diffusivity of the gas inside the bubble 

 

To define regimes of the different approximations of bubble resonance it is also necessary to introduce 

the thermal diffusion ratio, 
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 (3.15) 

 

Thermally large bubble 

For a bubble thermally large at resonance, its resonance frequency      can be approximated to the 

“adiabatic resonance”     (Fig. 1; Neppiras, 1980), defined by, 

      √  
        

 
(  

 

  
) (3.16) 

Where,  

         
  

  
 (3.17) 

 

         : Laplace radius 

  : Surface tension 

  
The          approximation is valid for            , which is approximately equivalent 

to           . 

 
Bubble with intermediate thermal size 

An exact solution for the resonance frequency      of bubbles with intermediate thermal size is given 

by the followed iterative solution (Chapman and Plesset, 1971; Prosperetti, 1977; Aislie and Leighton, 

2010), 

 

(
  

   

   
)

 

   (  
   (    

   )

 
)  (3.18) 

  Where, 
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       ⁄

           ⁄  
  }

       
  

 
(3.19) 
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(  

 
  

)

 (3.20) 

 

  : Complex polytropic index (Chapman and Plesset, 1971; Prosperetti, 1984; Prosperetti, 
1988) 

  : Dimensionless parameter related to the Laplace radius 

The exact value of the resonance frequency can be obtained by repeated application of equation [3.14] 

until it converges. The solution can be obtained by seeding equation [3.19] with the adiabatic resonance 

frequency (  
       ; Fig.1).  

Thermally small bubble 

For thermally small values (           ), the bubble is considered to pulsate isothermally at 

resonance, and the resonance frequency      can be approximated to the isothermal resonance 

frequency      (Fig. 3.1; Neppiras, 1980) defined by, 

     
  

√ 
√  

  

    
 

 
The approximation           holds for     values 

 

 

Figure 3.1. Illustration of different approximations of resonance frequency for bubbles near to the surface 
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3.3. Scattering cross-section of spherical bubbles 

The first expression of the acoustical scattering cross-section for a spherical bubble was published by 

Wildt (1946). The expression is limited for small bubbles in comparison to the wavelength of the sound 

in water     . 

3.3.1. Ideal bubble (scattering without absorption) 

Wildt (1946) considers a plane pressure wave    of amplitude   traveling toward to the bubble in the 

Cartesian    axis, 

               (3.21) 

 
and a bubble scattered field represented by a divergent spherical pressure wave    (see also Eq. [3.7]) 

whose amplitude is inversely proportional to distance   from the bubble center, 

 

   
  

 
          (3.22) 

 
Where, 

 : Angular frequency of incident plane wave 

 : Wave number of incident plane wave 

 : Amplitude of incident plane wave 

 : Amplitude of scattered spherical wave multiplied by distance from center of symmetry 

 
The root mean square (RMS) acoustic intensity of     and    are represented by the following equations, 

 

   
| | 

     
 (3.23) 

 
 

   
| | 

       
 (3.24) 

 
Where, 
 
  : Sound propagation in liquid media 

  : RMS acoustic intensity of incident sound field 

  : RMS acoustic intensity of scattered sound field 
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The acoustical cross-section    is defined as the total scattered power divided by the incident plane-

wave intensity (Medwin and Clay, 1998). Considering the bubble as an isotropic source, the total 

scattered power at    (bubble radius equilibrium) from the center of the bubble is represented by, 

 

   
  | | 

     
 (3.25) 

 
And then, 
 

    
  

  
   |

 

 
|
 

 (3.26) 

 
The ratio   ⁄  is obtained through the following steps. A mathematical expression for volume velocity is 

found by differentiating the ideal gas law with respect to time. In addition, Euler’s equation is applied to 

the scattered wave and the result evaluated at the bubble wall, yielding an equation for the volume 

velocity. Both of them are solved for the pressure in the interior of the bubble which is matched to the 

sum of incident and scattered pressures, evaluated at the bubble wall. 

Considering the vibrations are so rapid that there is no heat exchange between the bubble and its 

surroundings, bubble pulsations can be assumed to be adiabatic changes of state. 

Using the adiabatic relationship             , (where   is the pressure inside the bubble,   the 

Volume and   the ratio of the specific heats) denoting by    the average hydrostatic pressure in the 

water, by    and    the volume and radius of the bubble in equilibrium and, d  and    small departures 

from the equilibrium pressure and volume, the following relationships can be obtained,  

 
  

  
   

  

  
          

 

  

  

  
  

 

  

  

  
 (3.27) 

 
Expressing the bubble volume in terms of its radius, it is found that 

 

   
 

 
   

       
  

  
     

 
  

  
       

  

  
    (3.28) 

 
Where    is defined as the radial velocity of the bubble. If     represents the acoustic pressure and     

the pressure amplitude inside the bubble, the forced vibrations of the gas inside the bubble are 

described by,  
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           (3.29) 

 
The internal pressure    is associated to the excess of gas pressure inside the bubble    (Eq. [3.27]). 

Then, equations [3.29] and [3.28] can be substituted in [3.27], giving as a result, 

 

    
       

    
     (3.30) 

 
Amplitudes     and   are calculated from the given pressure amplitude   of the incident wave plane 

using boundary conditions. These boundary conditions require that the pressure    and the component 

   of the particle velocity normal to the surface have continuity at the surface. The first condition is 

given by, 

 
              or                    (3.31) 

 
Assuming that the bubble is small compared with the wavelength  , the term    in the equation [3.22] 

is much smaller than the unity in the vicinity of the bubble. Then,    and its derivate can be 

approximated to, 

 

   (
 

  
 

   

 
 )                  

   

  
   

 

  
     (3.32) 

 
Replacing equations [3.21], [3.29] and [3.32] in equation [3.31], the following relationship is obtained, 

 

  
 

  
 

   

 
        (3.33) 

 
The second condition is the continuity of the normal component of the velocity. The normal component 

of the fluid velocity inside the bubble is already known from equation [3.30]. In order to evaluate the 

normal component of the velocity outside the bubble, Euler's force equation (conservation of 

momentum; see also Eq. 3.8) is used, 

 

  

  
    

   

  
 (3.34) 
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Substituting equation [3.34] in the derivate of the scattered pressure in [3.32], with   set equal to    and 

integrating over   , it is obtained,   

 

    
  

     
      (3.35) 

 
The continuity of    now can be formulated using equations [3.30] and [3.35], obtaining the following 

relationship, 

 
 

     
  

      

    
 (3.36) 

 
 
From equations [3.33] and [3.36],     can be eliminated and a relation between   and   obtained. The 

variable    is substituted by   which is the bubble radius in equilibrium. From equation [3.13],    is also 

replaced. 

 

  
  

  
 

     
    

 

 
(3.37) 

 
Then,    is calculated by computing | |      and | |     , where    and    are the complex 

conjugates of   and   respectively. Then, using equation [3.26], the scattering cross-section of a 

spherical bubble    is obtained, 

 

    
    

[(
  
 )

 
  ]

 

      

 
(3.38) 

 
Where   represents the wave number (     ⁄ ) 

3.3.2. Real bubble 

A real bubble-water system must include the extraction of sound energy and dissipation into the 

surrounding water in the form of heat. To solve that, the continuity of pressures at the bubble surface 

(Eq. [3.31]) must include a frictional force term that modifies the behavior of the bubble.  
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or  (3.39) 

  
 

 
         

    

     
 

 

 
 
Where    represent a constant value related to the friction effect and the        ⁄ term represents the 

net pressure on the bubble. 

In addition, in order to include the heat transfer, the condition of continuity of velocities at the bubble 

surface (Eq. [3.36]) also has to be modified. This process involves the existent phase shift between the 

pressure and temperature in one hand and volume and radial velocity of the bubble on the other hand 

(Wildt, 1946). To include this process in the mathematical formulation, Wildt (1946) inserted a complex 

factor      in the right side of equation [3.36], where   is a positive constant much smaller than one. 

 
 

     
  

      

    

       (3.40) 

 
Relating equations [3.39] and [3.40], the following new expression is obtained, 
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(3.41) 

 
 
Because      

  
  

(
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(3.42) 

 
Where 

        
  

 

  
    

  

    
 (3.43) 

 
The term   is known as the dimensionless damping. Then, a scattering cross-section of a real bubble can 

be defined from equation [3.26] (Fig. 3.6),  
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(3.44) 

 

3.4. Damping 

The dimensionless damping depends on the physical parameters of the bubble gas, the host liquid and 

the interface between them. Medwin (1959) subdivided the dimensionless damping in three terms 

calculated by Devin (1967), the re-radiation term      , the damping associated to thermal conductivity 

        and the damping related to the viscosity       .  

 

                           (3.45) 

 
Each damping component was defined as follows (Fig. 3.2; Medwin, 1977), 

 

             (3.46a) 
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  (3.46b) 

 

       
   

     
 (3.46c) 

 
Where 

 
 

 
       *

                           

                                  
+   (3.47) 

 
and   is thermal diffusion ratio previously defined in equation [3.18] and    is the shear viscosity. Devin 

(1959) also gave a corrected expression of the resonance frequency taking into account that the 

oscillation of bubbles with small radii is nearly isothermal. The correction also includes the effect of 

surface tension, which becomes a significant additional restoring force for bubbles with small radii 

(Medwin, 1977). Then, some of the terms of the Minneart frequency    (Eq. [3.13]) were modified. The 

static pressure    is replaced by a term that includes the surface tension (    ) and the rate of specific 

heats   is replaced by the effective ratio of specific heats in the presence of thermal conductivity (  ). 

Then, the corrected expression        (Fig. 3.3) is defined by, 
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Where, 
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The most important values of the damping constants occur when the incident wave front of the sound 

wave has a frequency equal to the resonance frequency of the bubble at resonance,         . Then 

the damping term at resonance (Fig. 3.4) is defined by, 
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Figure 3.2. Dimensionless “Devin” damping (Medwin, 1977) for bubbles at the water surface. (sound speed=1500; specific 
heat ratio=1.3; sound frequency wave front: 38 kHz. 
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Figure 3.3. Correction constants for resonance frequency, for methane bubbles near to the water surface. 

 

 

Figure 3.4. Devin damping constants at resonance, for methane bubbles near to the water surface 

 

Simple approximations for damping   has been given by Ainslie (e.g. see Ainslie, 2010) valid for 

moderately large bubbles (radius exceeding 100  m), are presented in equations [3.48a-c] (Fig. 3.5). 

 
          ⁄  [3.53a] 
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[3.53b] 

      
        

      
 

[3.53c] 

Where, 

   : Bulk viscosity [Pa][s] 

   : Water density [kg/m3] 
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Figure 3.5. Approximated damping values for large bubbles near to the water surface 

 

3.5. Scattering cross-section for all    

Thuraisingham (1997) derived a new expression for the scattering produced by spherical bubbles 

insonified by a wave plane when the condition of      is not reached and therefore the lumped 

constant approximation cannot be used. 

Considering a plane wave of angular frequency   incident on a bubble of radius  , the motion of the 

bubble in the radius-force frame can be described by, 

 

 
   

   
   

  

  
           (3.54) 

 
Where   is the radial displacement;   is the effective mass (Eq. [3.12]);    is the bubble stiffness (Eq. 

[3.6]);      is the total external force applied on the bubble by the plane wave;    is the mechanical 

resistance equal to    , where   represents the dimensionless damping. 
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For     , the      has been replaced by      √       , where     represent the root mean square 

pressure of the incident wave, and the solution of equation [3.54], address to the classical mathematical 

expression of scattering for a spherical bubbles presented in equation [3.44]. 

Thuraisingham (1997) included the case for values      in order to obtain a scattering expression 

valid for all   , replacing      by, 

 

     ∫ √                     
 

 

                 (3.55) 

 
Where   represents the angle of the radius vector measured from the direction of the incident beam. 

Equation [3.55] is the integral of the force applied by the plane wave over a small elemental area of the 

bubble. The integral solution can be simplified to,    

             √       
         

      
 (3.56) 

 

Since    , 

         √       
     

  
 (3.57) 

 

For     , equation [3.57] reduces to     √        

Then, a solution of the radial displacement of the bubble   is obtained by replacing the equation [3.57] 

in [3.54]. The solution is given by, 

     | |          (53.8) 

 
Where   represents the phase lag between the plane wave and the surface displacement and | | is 

given by, 

| |  
      

  √ 
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) (3.59) 

 
Where, 
 

  [   (
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] (60) 

 

The real displacement    and the velocity  ̇  are given by,  
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   | |                      ̇    | |           (3.61) 

 
The resistive component of this impedance evaluated at the bubble surface was introduced by Leighton 

(1993) and defined as, 

 

           

     

         
 (3.62) 

 
The time average rate of energy loss due to scattering is the product of the radiative resistance    with 

the square of the velocity  ̇  over one cycle period (       ) which is given by,  
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 (63) 

 
As it is defined, the scattering cross-section of a single bubble     is the ratio of the time average rate of 

energy loss from scattering to the incident intensity (see also Eq. [3.26]). Then    is given by, 
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 (3.64) 

 
An equivalent form of    is obtaining replacing equations [3.59] and [3.62] in [3.64]. Then    is 

represented by, 
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(3.65) 

3.6. Bubble backscattering 

Underwater active acoustic systems are designed to send an acoustic signal and receive “echoes” from 

the target (Lurton, 2002).When the wave front impacts the target, energy is scattered in all directions of 

space and just a portion of this is captured by the system‘s transceiver. The energy sent back towards to 

the transceiver receives the name of “backscattering”. A spherical bubble pulsating in the “breathing” 

mode is considered to be an isotropic source of energy. Then, the acoustical “backscattering” cross-

section      can be defined as the scattering cross section per steradian (Medwin, 1977),  
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 (3.66) 

Additionally, the term of “target strength”   , which is commonly used in sonar active systems, can be 

defined  

            (3.67) 

 

 

 

Figure 3.6. Representation of target strength (TS) produced by bubbles obtained by using Wildt and Thuraisingham models 
of acoustical scattering cross-section. The acoustical responses represent bubbles located at 200 m below the sea level (m 
bsl) insonified by a sound field of 38 kHz. 

3.7. Backscattering from multiple bubbles 

If the backscattering is produced by multiple bubbles is possible to approximate the total scattering to 

the constructive interference of the bubble cloud. A simple approximation can be obtained by the sum 

of the contributions of each bubble, 
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     (3.68) 

Where,    represents the number of bubbles of a certain radius and          the total backscattering 

cross-section produced by the group of bubbles. Fig. 3.7, shows the total backscattering produced by a 

group of bubbles with different sizes.  

 

 

Figure 3.7. Representation of the TS produced by the contribution of 8 methane bubbles of different sizes (1x1 mm, 2x2 
mm, 3x3 mm, 2x4 mm) located at 200 m bsl using Thuraisingham model of acoustical scattering cross-section. Bubbles are 
insonified with a sound field at different frequencies. Frequencies of 18 kHz and 38 kHz (frequencies of echosunder system 
using to capture the data in situ, see chapter 4) gave TS values of -40 dB and -35 dB respectively.   

Considering a continuous distribution of bubbles inside a water volume full with bubbles, a new 

expression of the total backscattering normalized by the insonified sample volume , also known as a 

“volume backscattering coefficient” (MacLennan and Simmonds, 1992) can be defined as, 

   ∫                
  

  
  (3.69) 

Where       is the bubble size distribution inside the water volume and the total bubble concentration 

(number of bubbles per volume) is defined by, 
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    ∫        
  

  
 (70) 

Where     represents the bubble concentration. 

The amount         in equations [3.69] and [3.70] can be seen as the number of bubbles, with radius 

values between   and       , per unit volume (Medwin and Clay, 1998). Equation [3.60] can be found 

in the literature as the differential backscattering cross-section per unit of volume. A typical value that is 

used in active sonar systems is the “volume backscattering strength” defined as follows, 

           (3.71) 

 3.8. Relation between backscattering and bubble flux (inverse method) 

Bubbles released from the seabed rise upwards to the surface due to buoyancy. As it is known, bubbles 

with different sizes rise at different speeds. When considering a volume containing bubbles with a 

defined continuous bubble size distribution, the bubble flux can be defined as following, 

  ∫            
  

  
 (3.72) 

Where,   is the bubble flux and it represents the number of bubbles per unit of time and per unit of 

area and      is the bubble velocity function which depends on the bubble size. 

If the gas density    is known and bubbles are considered to be spherical an equivalent expression of 

the mass flux    can be defined, 

   
 

 
   ∫                

  

  
 (3.73) 

Where    is expressed in units of mass per time per square meters. 

If the bubble size distribution is assumed to be                with      as the probability density 

function of the bubble distribution and combining equations [3.69] and [3.73], a relationship between 

the mass flux of bubbles and the backscattering can be obtained (Muyakshin and Sauter, 2010), 
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         (3.74) 

Where, 

  

 
 

 ∫             
  
  

∫    
  
  

      
       (3.75) 

 
As it can be seen in equations [3.74] and [3.75], the mass flux of a bubble jet can be obtained by 

knowing differential backscattering cross-section per unit of volume   , the bubble gas density   , 

bubble rising speed      which is a function of the bubble radius and the probability density function of 

the bubble distribution       inside the bubbly water volume.  

The mathematical expression of mass flux (equation [3.73]) works only when the insonified sample 

volume is totally filled with bubbles, which is not the case in most of the studied areas where free gas is 

released. Places like the study area presented in this thesis, release methane in groups of bubble 

streams that can be separated by several meters between each other. As a result, bubble streams 

occupy only a narrow region within the echosounder beam. Then, the use of the backscattering 

coefficient is not appropriate because this value represent the normalization of the backscatter for the 

entire sample volume. 

Alternatively, a new inverse hydroacoustic method is introduced in chapter 4 which uses the total 

acoustical backscattering cross-section (equation [3.66]), or its equivalent logarithmic value (target 

strength, equation [3.67]) to derive the mass bubble flow rate (mass per time) of an insonified sample 

volume. Additionally, the calculated flow rate for of a large area using this mathematical inversion is 

presented. 
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4. A new methodology for quantifying bubble flow 

rates in deep water using splitbeam echosounders: 

Examples from the Arctic offshore NW-Svalbard 
Mario E. Veloso-Alarcón, J. Greinert, J. Mienert, M. De Batist 

(Published at L&O Methods) 

Abstract 

Quantifying marine methane fluxes of free gas from the seafloor into the water column is of importance 

for climate related studies e.g. in the Arctic, reliable methodologies are also of interest for studying 

man-made gas and oil leakage systems at hydrocarbon production sites. Hydroacoustic surveys with 

singlebeam and nowadays also multibeam systems have been proven to be a successful approach to 

detect bubble release from the seabed. A number of publications used singlebeam echosounder data to 

indirectly quantify free gas fluxes via empirical correlations between gas fluxes observed at the seafloor 

and the hydroacoustic response. Others utilize the hydroacoustic information in an inverse modeling 

approach to derive bubble fluxes. 

Here we present an advanced methodology using data from splitbeam echosounder systems for 

analyzing gas release water depth (> 100 m). We introduce a new MATLAB-based software for 

processing and interactively editing data and we present how bubble size distribution, BRS and the 

model used for calculating the backscatter response of single bubbles influence the final gas flow rate 

calculations. As a result we highlight the need for further investigations on how large, wobbly bubbles, 

bubble clouds and multi-scattering influence target strength. The results emphasize that detailed studies 

of bubble size distributions and rising speeds need to be performed in parallel to hydroacoustic surveys 

to achieve realistic mediated methane flow rate and flux quantifications. 

Contributions: The manuscript was written by MV and revised by JG, JM and MDB. Fieldwork was 

conducted by MV, JG and facilitated by JM. Discussion of results and interpretation were done by MV 

and JG. The formulation of the inverse method was done by MV. 

4.1. Introduction 

Because unique ecosystems thrive in direct proximity to methane release sites, but also because 

methane is a greenhouse gas that creates a positive climate warming feedback when reaching the 

atmosphere, methane release in the marine environment has been studied for several decades now. 

Recent publications about ‘massive’ methane releases from the Eastern Siberian Arctic Shelf (Shakhova 

et al., 2013) highlight the need for a standardized methodology for free gas flux quantifications.  
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This paper provides a brief review of how ‘large’ bubbles released from seep sites can be detected and 

analyzed with SBES and it presents an advanced methodology to quantify bubble flow rates.  

Reports on ‘flares’ seen on various hydroacoustic systems date back to the 1980s, sometimes not linking 

the ‘plumes’ clearly to their bubble origin (Merewether et al. 1985; Paull et al. 1995; Lewis and Marshall 

1996). Studies in the Black Sea (Polikarpov 1989; Naudts et al. 2006), the Sea of Okhotsk (Obzhirov et al. 

2004), Hydrate Ridge (Heeschen et al. 2003), the Barents Sea (Sauter et al. 2006, Chand et al., 2012), the 

Fram strait offshore NW Svalbard (Smith et al., 2014), Lake Baikal (Granin et al. 2012), the Gulf of Mexico 

(Solomon et al., 2009; Talukder et al., 2013; Weber at al., 2014) and the area offshore Santa Barbara 

(Hornafius et al. 1999; Leifer and Culling, 2010) underline the usefulness of SBES observations to find 

active seep sites, map their extent and even get an idea of their temporal variability (Quigley et al. 1999; 

Greinert et al. 2006). First attempts to quantify gas flow rates from SBES were difficult because of 

limitations of digital data storage capacity (Hornafius et al. 1999) and computer power for data 

processing. Today, this is not a problem anymore and singlebeam as well as multibeam water column 

data (Nikolovska et al. 2008; Lorenson et al., 2011; Weber et al., 2013) are commonly used to visualize 

gas release and increasingly more often to quantify gas flow rates and fluxes (Granin et al. 2012; Römer 

et al. 2012b). 

Successful attempts have been made to measure free gas flow rates at the seafloor and model the 

transport towards the sea surface or into the mixed layer (Leifer and Patro 2002; Greinert et al. 2010; 

Schneider Von Deimling et al. 2011), accounting for gas dissolution while bubbles rise (Leifer and Patro 

2002; McGinnis et al. 2006; Rehder et al. 2009). In those attempts, the amount of gas reaching the 

mixed layer (where it ultimately equilibrates with the atmosphere) was between 4 and 19 % of the 

initially released gas in water depths of less than 100 m. The total methane flux shows large variations, 

depending on seep area, bubble sizes and bubble release intensity. Flow rates range from 1.5 to 18.5 x 

106 mol/yr for the respective areas; much higher fluxes have been presented for the Eastern Siberian 

Arctic Shelf (Shakhova and Semiletov 2007; Shakova et al., 2014) or the Gulf of Mexico (Solomon et al. 

2008). 

Although the number of such research activities concerned with flow rate and flux estimates is currently 

increasing, the total amount of methane reaching the atmosphere from marine seep sources is far from 

being reliably determined. Also, estimates from basic modeling approaches have limited data for 

validation, particularly in Arctic areas (Archer et al. 2009; Biastoch et al. 2011). Extrapolations over large 

areas need to be made with great caution as local environmental conditions that are highly variable 

(temperature, depth, wind and wave activity, ice cover) is distinctly influencing flow rates.  

Here we present a methodology that allows SBES-based flow rate estimates in water depth of more than 

> 100 m, where no or a very limited release of single bubbles can be observed during ship-based SBES 

surveys. Our approach provides an easy-to-use methodology allowing a better comparison of data from 

repeated surveys and/or groups for analyzing long-term changes in methane flow rates and fluxes from 

the ocean floor through the water column. 
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4.2. Bubble detection in SBES echograms 

4.2.1. What bubbles look like in echograms 

The approach for detecting and quantifying free gas is based on SBE data recorded with a splitbeam 

system. For the correct detection of single bubbles and bubble clouds, the recognition and classification 

of different backscattering targets in the water column is essential. Slow sailing speed (< 5 kn) and a 

‘silent’ ship with additional acoustic sources being turned off (e.g. multibeam systems, sub-bottom 

profilers) significantly enhance the quality of data and the opportunity to discriminate bubbles from 

other signals such as fish, fish larvae, plankton or suspended sediment. The recognition of free gas 

release essentially depends on the pattern of the backscattering in echograms (Greinert et al., 2006; 

Judd and Hovland, 2007). Because of the typical “flare” shape in echograms (for non-single bubbles), 

these features are referred to as “flares” (Greinert at al., 2006; Römer at al., 2012), but the term ‘bubble 

plume’ or ‘hydroacoustic plume of bubbles’ is also used (e.g. Westbrook et al., 2008; Fig. 4.1 and 4.2).  

How bubbles (> 1 mm in diameter) in the water column can be identified and distinguished from other 

signal sources has been described previously (e.g. Judd et al. 1997; Greinert et al. 2006). The visual 

representation of bubbles in echograms strongly depends on vessel speed, water currents influencing 

the bubble rising path, and on how the bubbles have been insonified by the acoustic beam (Fig. 2). As 

echograms are usually displays of echo intensity per depth (y-axis) over time (x-axis) different vertical 

exaggeration might stretch fish schools in the y-axis that can result in false flare detection. ‘Rooted’ 

flares (Fig. 2 d and e) and the observation of single bubbles rising (Fig. 2 f) give ultimate proof. Side lobe 

effects specific to different transducers may clearly show in echograms if the backscattering of the 

target is strong enough. One example is given in Fig. 4.3; others have been presented by e.g. Nikolovska 

et al. (2008) and Schneider Von Deimling et al. (2011). 

In comparison to the flares in Fig. 3 that were recorded at sites that more or less continuously release 

bubbles, backscattering of single bubbles or small bubble clouds can be reasonably well detected at a 

slow vessel speed (< 2 kn) and low background noise. Such conditions existed for flow rate 

quantifications at shallow water depths, e.g. in lakes and shelf areas (Ostrovsky 2003; Delsontro et al. 

2011). A single bubble or an isolated bubble cloud appears as an almost straight line with a positive 

slope in echograms (Fig. 4.4). Unfortunately, in deeper water (> 100 m) observations of single bubble 

targets are very limited in the literature. This is most likely due to the lack of good quality data that 

could track bubbles inside the acoustic beam for a high enough number of pings (over time). Being 

stationary at one site or going slowly helps to acquire more information from the same target with the 

reduced ping rate in deeper water and the increased possibility of additional backscatteres in the larger 

insonified water volume. As a consequence, there is a lack of BRS measurements and bubble size 

estimates needed for flow rate quantifications. 

It should be pointed out that faster survey speeds (~10 kn) would cover larger areas giving a better 

regional view on the distribution of gas release sites. Choosing between coverage (fast and thus wider 

coverage, less data per seep, more noise from the ship or sea state) and high quality data (slow and thus 

less coverage, less noise, more data per seep) depends on the research question (overview mapping vs. 
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detailed flow rate and temporal variability studies), time and money constrains or commercial 

requirements. 

 
Figure 4.1. a) Echograms (38 kHz) showing flares as manifestation of rising bubbles and sources of noise (multibeam) and 
reverberation (fish). This complicates the identification of free gas fluxes as the interference of the different signal sources 
results in wrong backscattering values for bubbles, which again may result in flux overestimations. The image shows the effect 
of the vessel motion on the acoustic data i.e. the shape of backscatter signals of fish (wobbly shape). b) Echogram (120 kHz) 
showing the interference of hydroacoustic signals from bubbles (flares) and sources of reverberation (fish and plankton). Here, 
the plankton layer shows more distinctly because of the higher frequency used. The illustrated echograms are part of the 
hydroacoustic dataset acquired at the study area offshore PKF. 
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Figure 4.2. Three typical examples for how bubbles influenced and shifted by currents are depicted: a) current from the 
opposite direction of the ship’s movement; b) current from the same direction as the ship’s movement; c) current oblique to 
the ship’s movement, which can easily be misinterpreted as fish or vice versa. Almost all echograms will represent a mix of two 
of these possibilities. The illustrated information is part of the hydroacoustic dataset acquired at the study area, offshore PKF. 
 

4.2.2. Disturbance by noise 

Fish is the main source of disturbances/reverberation during hydroacoustic bubble studies and have 

been observed repeatedly to interfere with flow rate estimates (Ostrovsky 2009; Delsontro et al. 2011). 

To obtain “pure” backscattering from bubbles, signals from fish need to be clearly identified, separated 

and automatically or manually removed from the data prior to quantitative processing. Single fish can be 

recognized by their concave shape (Lefeuvre 2002) when the fish pass the acoustic beam, but they also 

show artifacts depicting the vessel motion as a ‘wobbly’ shape (see example Fig. 4.1a). Fish schools that 

show up as ‘clouds’ are sometimes difficult to discriminate from strong gas release, depending on the 

total number of fish and the distance between them (Fig. 4.1b). For unambiguous identification of fish 

shoals, the observer needs a good understanding of the local fish populations and their behavior 

(Simmonds and MacLennan 2005).  
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Figure 4.3. Side lobe effects when rising bubbles have been insonified with the current. The illustrated information is part of 
the hydroacoustic dataset acquired at the study area, offshore PKF. 

 
Small organisms as plankton and micronekton are another source of reverberation often accumulating 

in the deep scattering layer (Lurton, 2002). Large amounts of small organisms cause strong echoes that 

could interfere with the backscattering from free gas, making quantitative analyses impossible (see 

example Fig. 4.1b). Plankton often concentrates at density layers increasing the backscatter signal in a 

certain water depth range and can influence signals from bubbles in a similar way as seafloor multiples 

do. A good understanding of the daily vertical migration of these microorganisms and respective 

adjustment of the time for data acquisition will result in better data for gas flow rate estimates. 

However, this might contradict monitoring efforts to estimate the gas flow or flux over tidal cycles or 

longer periods. Once bubbles have been identified, data need to be cleaned from noise or unwanted 

backscattering. This can be done by ‘simple’ threshold filtering, speckle noise removal or manual editing 

in 3D space as used here.  

4.2.3. Bubble rising speed, terminal bubble rising height and water currents  

Gas flow rate estimates depend on several parameters such as initial gas composition, pressure and 

temperature conditions that affect gas density as well as bubble size and rising speed. BRSs depend on 

the bubble size and the amount and kind of surfactants on the bubble surface including a potential oil or 

gas hydrate coating (Leifer and Patro 2002; Rehder et al. 2009, Salmi et al., 2010). Further, the number 
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of bubbles rising together influences their rising speed, as they are forming a bubble plume in which 

water and bubbles are upwelling together (Leifer and Culling, 2010).  

To estimate the BRS of single bubbles the rise path needs to be identified from echograms. The quality 

of the results strongly depends on the resolution of the echogram, which is related to the sampling rate 

of the received echo signal, the pulse length of the transmitted signal and the bandwidth during receive. 

In short, longer pulses as needed in greater water depth give lower resolution in the y-axis (depth) but 

shorter pulses result in more noisy data. The resolution in the x-axis (time axis) depends on the ping rate 

as function of water depth (as deeper as slower the pin grate) and the relative speed between the 

bubble and the moving vessel. At slow-mode sampling (< 2 kn, Ostrovsky 2009), the number of pings on 

the bubble target is higher, improving identification and accurate measurements of the depth change of 

a bubble over time (pings) without a significant effect of distance/depth changes caused by position 

changes inside the acoustic beam (see Fig. 4.4).Such measurements have been successfully employed by 

several authors (Artemov 2006; Ostrovsky et al. 2008; Delsontro et al. 2011). However, in deep water 

the identification of single bubbles or bubble clouds is difficult and very often only the typical flares are 

seen, unless the ship stays stationary over one seep or is drifting very slowly (< 1 kn). This is due to the 

increasing foot print size of the insonified water volume and the increasing chance of recording several 

bubble streams simultaneously. Salmi et al (2011) present another mooring-based technique to monitor 

BRS and indirectly bubble sizes. The group deployed an upward-looking 200 kHz echosounder next to 

several bubble vents. They determined bubble size spectra from BRS measurements, assuming either 

clean or dirty bubble2 rise behavior. Such stationary observations certainly help to understand the 

temporal changes in released bubble sizes as well as the activity fluctuations. 

Bubbles are moved laterally by ocean currents as they rise through the water column. The horizontal 

displacement of a single target during a known time interval can be tracked using a splitbeam 

echosounder if motion, ship’s heading and ray tracing are considered appropriately, assuming the 

horizontal displacement equals the water current speed. Using the corrected locations of the 

backscattered signal geo-referenced provides the direction of the water current. Fig. 4.5a shows the 

horizontal current speed calculated from five bubble traces at similar water depths (Fig. 4.5b). In this 

example, all bubbles are displaced towards WNW with a speed varying from 0.5 to 0.72 m/s 

(independent of ship’s movement and heading).  

As bubbles gradually dissolve as they move upwards through the water column, most eventually 

disappear and do not reach the mixed layer or sea surface. The height at which this happens is the 

terminal rising height which is critical for estimating the amount of methane transported into the 

atmosphere/upper mixed layer. The terminal height is often derived from the height of the flare in an 

echogram (Römer et al. 2012a). The respective values must be used with caution because only a conical 

volume of the water column is insonified, due to the hydroacoustic beam pattern and the backscattering 

strength of bubbles decreases quickly when bubbles become smaller than the resonance frequency at a 

                                                           
2
 The terms clean and dirty refer to the assumption of a bubble surface to be liquid and solid respectively. 

Hydrodynamical conditions of the water surrounding a risingbubble change according to the bubble type. For 
example, the velocity field becomes equal to zero at a solid liquid interface, whereas only the normal component 
of the velocity tends to zero at a liquid-liquid interface (Memery and Merlivat, 1985) 
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particular depth (Medwin et al., 1998). A flare height should only be called “terminal” if all bubbles are 

definitely inside the acoustic lobe. Greinert et al. (2010) provide an example where transducers with 

different frequencies depict the terminal flare height very differently although the recording happened 

simultaneously. In shallow water, the chance that only parts of the rising bubble stream are insonified is 

high, in particular if ocean currents shift bubbles laterally away from their point of origin (Fig. 4.2f). 

Using multibeam systems overcomes this problem, but performing SBES surveys over the same seep site 

from different directions and comparing flare heights may also provide accurate information. Recording 

SBES water column data simultaneously with MBES would help to determine the terminal rising height. 

A disadvantage may be the introduction of additional noise in the SBES data. 

 

 
 

Figure 4.4. a) Echogram showing backscattering from a single bubble captured during slow-mode-sampling. b) Enlarged 
signal of the rising bubble; the slight wavy pattern is caused by the ship movements (pitch, roll, heave). Images c) and d) 
show two 3D views of the backscattering positions produced by a rising bubble in a latitude-longitude-depth coordinate 
system. Colors in images a), b), c), d) represent the target strength (TS). Image e) shows a top-down view of the spatial 
distribution in UTM coordinates (Zone 33). The image clearly shows the current effect that causes the horizontal 
displacement of the bubble for a certain time and depth interval (here ~0.5 m/s towards the NE). 
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Figure 4.5. Evaluation of current speed using hydroacoustic information of single bubbles captured by a splitbeam 
echosounder. a) Red spots represent the position of the backscattering produced by bubbles during a certain time interval 
(horizontal bubble displacement). Blue arrows show the displacement direction. The track of the vessel is shown as a line with 
green arrows indicating the vessel heading. The horizontal speed of each bubble is specified. b) Gas release in ~375 m water 
depth; the five bubble lines measured are indicated. Low angle lines that show increasing depth with ping number, are diving 
fish (e.g. inside dashed line) 
 

4.3. Study area  

The study area lies west of Prins Karls Forland (PKF) offshore NW Svalbard (Fig. 6), where two data sets 

have been recorded in July 2009 and 2012 onboard RV Helmer Hanssen from UiT (The Arctic University 

of Norway). Methane seepage offshore Svalbard has first been described by Knies et al. (2004) and later 

by Westbrook et al. (2009). Since then, the area has been annually revisited by several research groups. 
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Three distinct depth intervals of bubble release have been determined. The deeper area, at about 400 m 

water depth, appears to be associated with the top of the gas hydrate stability zone (TGHZ) and the 

dissociation of gas hydrate in response to increasing bottom water temperatures (Westbrook et al. 

2009). However, Berndt et al. (2013) have shown that methane release is not a short-term but a long-

term process, active for more than several thousands years that started after the last glacial period. At 

shallower water depth at 240 m, methane-charged fluids migrate along a sedimentologically defined 

permeable pathway beneath an impermeable glacial debris flow, a specific fluid-focussing mechanism 

for this area (Rajan et al. 2012). A third and very active area has been recently described by Sahling et al. 

(2014) on the shelf at only 90 m water depth. 

Data from the area at 240 m water depth are used here to present our quantification method and 

strategies for gas release monitoring. Hydrographically, the area is influenced by the WSC, which is a 

warm water branch of the North Atlantic Current (NAC) flowing northward together with the CC, which 

is a continuation of the East Spitsbergen Current (ESC; Fig. 4.6). The CC brings less saline water into the 

area. Seasonal driven ice formation impacts the hydrographical changes, influencing the water 

stratification and thus the transport of dissolved and gaseous methane through the water column.  

 

 
Figure 4.6. a) Bathymetric map of the Svalbard archipelago and dominating currents in the area (WSC; CC; East Spitsbergen 
Current ESC). b) Track of the hydroacoustic surveys carried out in 2009 and 2012. c) Distribution of detected seeps in the study 
region; yellow arrows indicate the migration of the TGHZ during the last 30 years from 370 m down to 410 m water depth 
(Westbrook et al, 2009) assuming a bottom water temperature increase from 2° to 3° C; the area densely covered with seeps 
at the shelf edge is the focus of our studies. Images d) and e) show a three-dimensional view of the “flare spines” in the study 
area. 
 

4.4. Methods 
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4.4.1. Data acquisition and processing 

The data presented here have been recorded with an EK60 scientific SBES which applies splitbeam 

technology; it was operated with three frequencies simultaneously (18, 38 and 120 kHz). In the 

following, we concentrate on the 38 kHz frequency data because the echogram quality was superior 

compared to the other frequencies (e.g. less artificial noise and unwanted reverberation, strong 

backscattering of bubbles); the beam width of this transducer is 6.7°. For data acquisition and online 

visualization, we used the ER60 software developed by Kongsberg. Post-processing is based on the FM-

Midwater tool of the Fledermaus software suite (QPS, now member of the SAAB Group) and a self-

written MATLAB-based software package called FlareHunter. FlareHunter calculates target strength TS 

and backscattering volume strength SV (Appendix 1) and allows three-dimensional visualization and 

analysis for each depth bin per ping using the mechanical angle information of the split-beam system. 

Ship motion compensation, static offset correction and where necessary ray-tracing needs to be carried 

out before further processing and interpretation can be done. This is implemented in FlareHunter. 

4.4.2. Seep localization 

Flares were identified based on the criteria presented above and manually selected in FlareHunter. The 

selected ping and depth interval was filtered by a user-definable threshold and cleaned manually to 

exclude unwanted signals from other sources (fish, plankton) and noise (seafloor multiple, other 

hydroacoustic systems). Seafloor signals were also excluded to derive a clean and undisturbed water 

column data set. Each depth bin value of this pre-cleaned data set was geo-referenced to receive the 

correct position in 3D volume. Static offsets between transducers and the GPS antenna, motion 

compensation (pitch, roll, yaw and heave) were considered during post-processing (Appendix 2: 

Workflow diagram). In addition, ray tracing has been implemented in FlareHunter to consider refraction 

of the acoustic wave with changing sound velocity in the water column. Because of the acquired sound 

velocity profiles (Appendix 3), the water depth of only 240 m at the chosen seep area and the rather 

small pitch and roll angles (< 9°), ray tracing was deemed unnecessary to achieve a better positioning 

accuracy for our specific data set. 

Backscattering recorded as a flare is usually caused by multiple targets/bubbles in the acoustic beam 

released from localized bubble releasing vents at the seafloor. Depending on the areal extend of these 

vents at the seafloor and current induced spreading of bubbles while rising, bubbles in most cases fill 

only a small portion of the beam volume at a certain depth (Fig. 4.7), in shallow water wide spread 

bubbling can fill the beam completely. To better pinpoint the center of the bubble release site on the 

seafloor, geometric averaging was applied to the edited and position-corrected data. The geometric 

mean is calculated for each set of backscatter values for a certain depth range, providing a line with only 

one position per depth range, the ‘flare spine’ (Fig. 4.7d). The lowermost point just at the seafloor can 

be seen as the center of the bubble release. This does not mean that each flare is the result of only one 

bubble vent at the seafloor, but that the centre of the seep site (which most likely consists of multiple 

bubble vents scattered over a certain area) is the base of the flare spine. 
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Figure 4.7. Processing steps for flare analysis. a) Identification of the acoustic flare in the echogram (38 kHz) and processing of 
the backscatter values inside the selected area above a specific threshold of SV. Images b) and c) show the 3D visualization of 
the backscatter data of un-cleaned and cleaned data. d) 3D representation of the geometric mean calculated flare-spine. 
Images e) and f) represent the athwart- and along-ship angle information respectively versus the depth of one selected ping 
(1334) inside the flare (see image (a)). Data inside the red boxes are from bubble backscattering; for both angles, the more or 
less linear trend shows that the system correctly identifies the position of the bubbles inside the beam. Spatial uncertainties 
have been further decreased by calculating the geometric mean over several pings. 

Video footage from seep sites in the study area shows little to moderate bubble release activity of single 

or multiple bubble chains or clouds being released over few to tens of square meters. This means that 

backscattering could have been produced by single and multiple targets (bubbles) in the beam. Because 

the splitbeam processing of the EK60 SBES was designed to locate single targets inside the beam, bubble 

positioning could be faulty due to signals from multiple targets. A faulty identification of multiple targets 

as single target would most likely result in a random distribution. However, when averaging the target 

positions by calculating the geometric mean from several consecutive pings, it was shown that the angle 

information from single targets (with a spatial tendency in the beam lobe) is predominant over 

randomly distributed data from multiple targets (see Fig. 4.7e, 4.7f). 

4.4.3. Inverse method and flow rate estimation  

Accurately calculating gas flow rates using hydroacoustic methods is needed but different research 

groups still use very different approaches (Artemov et al. 2007; Nikolovska et al.2008; Ostrovsky et al. 
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2008; Muyakshin et al., 2010; Jerram et al., 2014). To date, no standard methodology exists for analyzing 

free gas flow rates of large bubbles in deep water (> 100 m) with ship-based hydroacoustic systems 

alone. 

Gas flow rate calculations become even more complicated and uncertain if one lacks detailed 

information about the bubble size distribution. The method that we introduce estimates the bubble flow 

rate of a group of bubble streams by using the backscattering produced when insonified. The total 

acoustical backscattering received by the echosounder is assumed to be the contribution of single 

backscattering produced by several spherical bubbles of different sizes. The inversion relates the flow 

rate produced by the bubble streams inside the beam with the differential backscattering cross-section 

(e.g. see Medwin and Clay, 1988) produced by the group of bubbles. The final mathematical expression 

of the flow rate requires as inputs the target strength (TS) values of the acoustic flare at a pre-

determined depth; a probability density function of the bubble sizes that have been ideally observed at 

the respective seep site; BRSs; environmental properties (e.g. densities, sound speed); as well as a 

number of echosounder specific parameters.  

4.4.3.1. Inverse Method 

The insonified area of a singlebeam echosounder at the seafloor (the echosounder footprint) can cover 

several hundreds of square meters (a beam width of 7° covers ~760 m2 at 220 m bsl) and thus the 

backscattering signal collected can be produced by several bubble streams (Fig. 4.8).  

 

 
Figure 4.8. Illustration of bubble streams covered by the sample volume V of the echosounder at a specific depth. Here 
   represents the total number of bubbles inside the sample volume V;          represents the target strength of the 

sample volume V;      is the BRS as function of the bubble size; and   the height of the sample volume V. 

The available information obtained from the echosounder is given in terms of target strength (TS) which 

is the logarithmic version of the total backscattering cross-section      (also known as differential 

backscattering cross-section, e.g. see Medwin and Clay, 1988) of the scatterers in the insonified volume 

(Equation 4.1). 

 
             (4.1) 
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TS is calculated for each sample of each ping (e.g. Fig. 4) and therefore each TS value represents the 

backscattering produced by the targets located at the approximated truncated conical volume with a 

depth given by the time sample interval of the received signal (sample volume V; Fig. 4.8). 

If multi-scattering effects are neglected, the total backscattering cross-section of the sample volume can 

be simply assumed as the summation of single backscattering cross-sections produced by the scatterers 

within the sample volume V. If the scatterers are considered to be bubbles with different sizes, the total 

backscattering cross-section coming from a sample volume is given by, 

 

                           ∑      

 

 

 (4.2) 

 
Where      represents the backscattering cross-section of a single bubble of i-size and    the number of 

bubbles of i-size inside the sample volume. 

The equivalent of equation [4.2] in the continuous domain can be expressed as, 

     ∫             
  

  

 (4.3) 

where, 

   ∫       
  

  

 (4.4) 

 

   : Total number of bubbles inside the sample volume V 
     : Distribution of bubbles in function of the radius size [1/m] 
      : Lower and upper limit of the bubble size distribution 

 
In equation [4.3],     represents the theoretical backscattering cross-section of a single bubble. In this 

work, we use the equation given by Thuraisingham (1997; Fig. 4.9a) to calculate     as this expression is 

valid for all    values, where    represents the wave number, and   the bubble radius [4.5]. 
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where, 

   : Bubble resonant radius at echosounder frequency and specific static pressure [m] 
  : Wave number  

       

 
  

      : Echosounder frequency [Hz] 
  : Dimensionless damping 
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Expressions for the damping   (Ainslie, 2010) and the resonance frequency    (Minnaert, 1933) valid 

for moderately large bubbles (radius exceeding 100  m), are presented in equations [4.6] and [4.7a-c] 

and [4.8], respectively (Appendix 4). 
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(4.7c) 
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 (4.8) 

where, 

     : Re-radiation damping term (dimensionless) 
       : Thermal damping term (dimensionless) 
      : Viscous damping term (dimensionless) 
   : Minnaert frequency [rad/s] 
   : Speed of sound in the seawater [m/s] 
  : Specific heat ratio of gas (dimensionless) 
   : Thermal diffusivity [m

2
/s] 

   : Shear viscosity [Pa][s] 
   : Bulk viscosity [Pa][s] 
   : Water density [kg/m

3
] 

    : Static pressure [Pa] 

 
The value of r0 in [4.5] was calculated using the breathing frequency expression [4.9] developed by 

Minnaert (Minnaert 1933; Medwin and Clay 1998). Fig. 4.9b depicts r0 values at different depths for a 38 

kHz frequency, 
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 (4.9) 

where, 
  : Specific heat ratio of gas (dimensionless) 

   : Water density [kg/m
3
] 

      : Echosounder frequency [Hz] 
    : Static pressure [Pa] 
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Figure 4.9. a) Acoustic backscattering cross section σbs as function of the bubble radius using the mathematical expressions of 
Thuraisingham (1997) for a single bubble, considering bubbles at 220 m and using the Minnaert frequency (Minnaert 1933) 
as resonance frequency. b) Representation of the Minneart resonance radius at different depths for a pure methane bubble 
insonified with 38 kHz. 

As stated above, singlebeam echosounders can cover an area with several bubble streams. Therefore, 

the mathematical expression of the total flow rate linked to the obtained acoustical backscattering must 

represent the backscattering produced by these several bubble streams. If it is assumed that all the 

bubbles released are approximately spherical the volumetric bubble flow rate of a group of bubble 

streams can be defined as following,  

 

   
  

 
∑  

       

 

 

 (4.10) 

 
And its equivalent mass bubble flow rate as, 

 

     

  

 
∑  

       

 

 

 

 

(4.11) 

where, 

   : Bubble radius of i-size [m] 
   : Number of bubbles of i-size inside the volume sample V 
    : Time necessary to fill the volume sample V with    bubbles of    radius [sec] 
   : Gas density of the bubble at the respective water depth [kg/m

3
] 

 
In order to relate the flow rate with the volume sample (Fig. 4.8) we assume that the time     is 

necessary to fill the volume sample V with    bubbles of    radius. If we consider    as the average BRS 

of a bubble of    radius and D the vertical distance that the bubble needs to travel from the lower to the 

upper limit of the sample volume V, the massive flow rate (equation [4.11]) can be replaced by, 
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 (4.12) 

Where, 

   : Average BRS of i-size bubble (m/sec) 
  : Height of volume sample [m] 

 

The equivalent expression of equation [4.11] in the continuous domain can be expressed as following, 

     

  

  
∫             

  

  

 (4.13) 

Where, 
     : BRS in function of the bubble radius [m/sec] 

 

To obtain our inverted expression of the total mass flow rate    related to the backscattering 

    coming from the sample volume V, equations [4.3] and [4.13] are combined. The total mass flow 

rate of the bubble streams inside the sample volume is then given by: 
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∫             
  
  

 (4.13a) 

 

Or its equivalent using the TS value (equation [4.1])   
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∫             
  
  

 (4.13b) 

 
It can be assumed that the distribution of bubbles      inside the volume sample is equal to the total 

number of bubbles    multiplied by the probability density function      of the bubble size distribution. 

As we further know that   represents the depth of the volume sample which can also be expressed as a 

function of the sample interval   and the sound propagation speed   . in the water, equation [4.13b] 

can be re-written as: 

       
  
    (4.14) 

where, 

  
  

    

∫             
  
  

∫             
  
  

 (4.15) 

 
     : Probability density function of the bubble size distribution [1/m] 

  : Sample interval [sec] 
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4.4.3.2. Flow rate estimation 

TS average values were extracted from flares visualized in echograms using FlareHunter. All TS values in 

echograms were compensated for their position in the beam using the Simrad split-beam method 

described by Echoview (Echoview webpage: http://www.echoview.com/). 

Acoustic flares were identified within the TS echograms and TS average values (  ̅̅̅̅ ) of each flare at the 

source near the seafloor were stored together with additional information as e.g. water depth, footprint 

at the specific depth, geographic coordinates or sound speed. To decrease the effect of background 

noise, data below -70 dB were threshold filtered for the entire echogram (Fig. 4.10a). In order to isolate 

single flares, the backscattering surrounding the flare was manually removed (Figs. 4.10b and 4.10c). 

Backscattering coming clearly from fish (shape with stronger signal than the flare) was manually 

removed (edited in 3D using MATLAB functionality) in order to avoid overestimation of flow rates. To 

evaluate the flow rate of the flares the TS values coming from a 5 m thick layer with the lower boundary 

5 m above the seafloor were used (Fig. 4.10d). TS values coming from this layer of a single flare were 

geometrically averaged in order to obtain one representative   ̅̅̅̅  value for the strength of bubble 

release close to the source at the seafloor. We choose this layer from 5 to 10 m above the bottom to be 

as close as possible to the source (and with as little as possible changes in bubble size due to bubble 

dissolution while rise) but avoiding reverberation effects of the signals at the seafloor. The   ̅̅̅̅ value was 

calculated using the following mathematical equation, 

 

  ̅̅̅̅       

(

 
 

[∏  
   
  

  

   

]
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 (4.16) 

where, 
 
    : Target strength of different samples inside the (selected layer [dB] 
   : Number of samples  

 
 
 
The final flow rate (mass and volumetric) of each of the detected acoustic flares was estimated using 

equation [4.14].  

As defined in equation [4.14], the parameter   depends on f(r), U(r), r0 and δ. The probability density 
function f(r) was calculated from a polynomial fit of the bubble size distribution (BSD) visually obtained 
during the during surveys carried out in 2011 and 2012 (McGovern, 2012; solid green line in Fig. 4.11). 
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Figure 4.10. Acoustic flare detection and flow rate estimation processing using FlareHunter GUI; a) TS echogram (beam 
compensated) filtered with a lower threshold of -70 dB; b) Removal of ‘noise’ surrounding an isolate flare; c) Isolated flare 
with removed signals from the seafloor and below; d) Layer selection to calculate   ̅̅̅̅  at near the seafloor of the flare. The 
figure shows   value and the estimated flow rate using the Leifer model for clean bubbles to estimate BRS. 
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Figure 4.11. BSD from our video observations (green line with circles) in comparison to other published data. For our gas 
flow rate estimation we considered bubbles with a radius from 1 to 6 mm; none of them is resonant in 220 m water depth 
(Fig. 9b). 

U(r) was calculated for bubbles of 1 to 6 mm in diameter using a MATLAB-based script kindly provided 

by Ira Leifer (Fig. 4.12; Bubbleology Research International). This script considers bubble rise models of 

Mendelson (1967), Woolf and Thorpe (1991), Woolf (1993), Leifer et al. (2000), and Leifer and Patro 

(2002).  
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Figure 4.12. Representation of the BRS as function of the bubble radius (1 to 6 mm) using different published models 
(Mendelson 1967; Woolf and Thorpe 1991;Woolf 1993; Leifer et al. 2000; Leifer and Patro 2002). 
 

Temperature and salinity are necessary input parameters in those models. Based on CTD profiles, we 

used 4 °C and a salinity of 35 PSU at 220 m water depth (see profiles Appendix 3). Radii r0 for each flare 

were estimated using the corresponding average layer depth following equation [4.9]. The damping δ 

and Minnaert frequency   were calculated for bubble sizes between 1 and 6 mm using equations [4.6], 

[4.7] and [4.8], and the needed constants detailed in Table 4.1. The gas density ρG at different water 

depth for pure methane was calculated using the simplified equation given by (Medwin and Clay (1988), 

with atmospheric density of methane     of 0.66 kg/m3. 

      (  
  

      

)          (4.17) 

where, 

    : Atmospheric CH4 density  

  : Surface tension water[N/m] 

    : Most frequent bubble radius BSD (m) 

  : Average depth of layer at each acoustic flare 

 

A more precise density can be calculated using the SUGAR toolbox by Kossel et al. (2013). 
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Table 4.1. Constants values used to evaluate flow rates of each acoustic flare 

Constant Symbol Value 

Atmospheric CH4 density     0.66 [kg/m
3
] 

Surface tension water   0.074 [N/m] 

Most frequent bubble radius BSD     0.003 [m] 
Average sound velocity seawater    1467 [m/s](from sound speed profiles, Appendix 3) 
Specific heat ratio of gas   1.4 
Thermal diffusivity    9.19e-7 [m

2
/s

-1
] 

Shear viscosity    1.519e-3 [Pa/s] 
Bulk viscosity    2.2   [Pa/s] 
Water density    1028 [kg/m

2
] (derived from CTD casts)  

Echosounder frequency       38000 [Hz] 
Atmospheric pressure      101325 [Pa] 
Acceleration of gravity   9.8 [m/s

2
] 

Static pressure at bubble depth                [Pa] 
Water depth of bubbles   Average depth of layer at each acoustic flare 
Average temperature   4 °C (used in BRS models; from temperature profiles, 

Appendix 3) 
Salinity   35 PSU (used in BRS models; from salinity profiles, 

Appendix 3) 

 
To assign an average flow rate to a cluster of flares forming a seep site, flares were clustered if the 

footprints overlap (Fig. 4.13). Once the clustering is done, the average bubble flux     
  (volumetric or in 

mass) can be obtained using the following expression, 
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 (4.18) 

 

where, 
    

  : Flow rate (volumetric or massive) of an i-acoustic flare [dB] 

   : Area of echosounder footprint of the source of an i-acoustic flare [m
2
] 

  : Number of acoustic flares that belong to the cluster 

 
In order to evaluate the average flow rate of each cluster     

 , the average bubble flux     
  is 

multiplied by the area of the cluster    (Fig. 4.13c). The cluster area was calculated by gridding all 

footprints (Fig. 4.13c). The cluster flow rate     
 was then calculated as: 

 

    
      

        
            (4.19) 

where, 

   : Cluster area [m
2
] 

       : Number of cells inside the cluster area  
      : cell size in x and y direction (here related to UTM coordinates) [m] 

 



                                                                                                        Methodology for quantifying bubble flow rates 
 

129 

Finally, the estimation of the total flow rate     
 of the study area is done by adding the flow rates of 

the each cluster and isolated flares (flares without overlapping footprints). 

    
  ∑    

   

 

 (4.20) 

where,  

 

    
    : Flow rate of i-cluster or i-isolated flare 

 
 

 
Figure 4.13. Example of the clustering process of detected flares; a) Several clusters in the study area (different colors); 
sizes of circles are equivalent to the footprint of the echosounder at the layer average depth; b) Zoom in of one cluster 
example showing the overlap of the footprint; c) combination of the overlapping footprints to estimate the cluster area. 

4.5. Results 

4.5.1. Methane flow rates and fluxes  

During the surveys in 2009 and 2012, the same seep area was investigated. Unfortunately, we could not 

rerun the same survey lines because of time limitations; the very dense EW line spacing in 2009 was part 
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of a 3D-seismic survey. However, two slightly oblique surveys covered the main seep area in 2012; slight 

differences in coverage remain. Fig. 4.14 presents the final acoustic maps from both years of SBES 

mapping as well as a map where both surveys are merged (Fig. 4.14d).  

 
Figure 4.14. a-b) Acoustic maps of bubble induced backscattering (TS values) above the seafloor. c) Map of merged 
backscattering TS over 2 years. Grey areas in images (a) to (c) indicate the insonified area/footprint. d) Overlap of the 
insonified areas in 2009 and 2012. Areas covered once are dark blue, those covered twice are lighter blue. Colored circles 
represent target strength at the centre of the footprint in the selected depth layer. 
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Final flow rates and flux estimates (per volume and mass) per minute and extrapolated to one-year are 

shown in Table 4.2. They are based on the above mentioned inverse method to calculate     
  using the 

Thuraisingham model of acoustical backscattering cross-section of bubbles and applying different 

models for calculating BRS. We chose to present flow rates for a one-year period in order to provide 

data in the same unit as other authors (Judd et al. 1997; Hornafius et al. 1999; Sauter et al. 2006). We 

think that extrapolating flow rates to “one year” based on short-term one-day observations needs to be 

treated carefully as they most likely are not a valid representation for the entire year. However, 

repeated flow rate measurements of one-day or maybe one-hour period provide important information 

about short time flow variability.  

 

Table 4.2. CH4 flow rates and fluxes with respect to different BRS models (Mendelson 1967; Woolf and Thorpe 
1991; Woolf 1993; Leifer et al. 2000; Leifer and Patro 2002). The table also includes the mean, standard 
deviation, relative error using the different BRS models and the relative error produced by   1 dB of variation in 
the TS value of the source of the acoustic flare. 

Data period 2009 2012 2 years merged  

 Total covered area (m2)  

 101285.61 158632.36 231930.41  

BRS model        

Clean bubbles   
    (L/min) 

  
  

(T/yr) 
  

  
(L/min) 

  
  

(T/yr) 
  

  
(L/min) 

  
  

(T/yr) 
 

Leifer ‘clean bubble’ (mean=0.231 m/s) 36.58 300.48 42.83 354.38 64.76 534.50  

Mendelson ‘clean bubble’ (mean=0.249 m/s) 46.18 379.26 54.06 447.29 81.75 674.63  

Leifer&Patro ‘clean bubble’ ( mean=0.249 m/s) 45.61 374.65 53.40 441.86 80.76 666.43  

Mean 42.79 351.46 50.09 414.51 75.75 625.18  

Standard deviation 5.38 44.21 6.30 52.14 9.53 78.64  

Relative error, BRS models (%)   14.53  

Approximated relative error,  1dB TS value (%)   26.40 

 

 

  Mean Flux            
       

 0.42 3.47 0.32 2.61 0.33 2.70  

        

Dirty bubbles   
    (L/min) 

  
  

(T/yr) 
  

  
(L/min) 

  
  

(T/yr) 
  

  
(L/min) 

  
  

(T/yr) 
 

Leifer&Patro ’dirty bubble’ ( mean=0.190 m/s) 37.04 304.19 43.36 358.76 65.57 541.11  
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Table 4.2 (continued) 

Woolf & Thorpe ‘dirty bubble’ (mean=0.191 m/s) 39.79 326.79 46.58 385.41 70.44 581.29  

Woolf 93’dirty bubble’ (mean=0.249 m/s) 46.23 379.68 54.12 447.79 81.84 675.37  

Leifer ‘dirty bubble’ (mean=0.178 m/s) 30.15 247.60 35.29 292.02 53.37 440.44  

Mean 38.30 314.56 44.83 370.99 67.80 559.55  

Standard deviation 6.66 54.71 7.80 64.52 11.79 97.32  

Relative error, BRS models (%)   17.39  

Approximated relative error,   1dB TS value (%)   26.40 

 

 

  Mean Flux            
       

 0.38 3.11 0.28 2.34 0.29 2.41  

 
In addition to the uncertainty described in Table 4.2, another uncertainty is given by the bubble size 

distribution itself; it is necessary to measure accurate BSD in order to obtain realistic values of the flow 

rate. Table 4.3 shows an example of the differences of estimated flow rate values based on different 

published BSD (Ostrovsky et al. 2008; Sahling et al. 2009; Römer et al., 2011). We used an example flare 

and the average TS value at the source near the bottom to calculate the flow rates (Fig. 4.15). In addition 

the BSD from McGovern (2012) and a uniform bubble size of 6 mm in diameter were used. Uncertainties 

are given in Table 4.3 and with 60 % of relative error the BSD is more important than rising speed and 

uncertainties in the absolute TS value. 
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Figure 4.15. Acoustic flare used to evaluate the flow rate at the source using different BSD 

 

Table 4.3. Estimation of flow rates using different BSD 

BSD Flow rate (ml/min) 
BSD from our visual observations (McGovern, 2012) 181.02 
All bubbles same size (diameter: 6 mm, most frequent value of our BSD) 110.38 
BSD from Ostrovsky et al. 2008 108.42 
BSD from Sahling et al. 2009 412.61 
BSD from Römer et al., 2011 136.52 
Mean 189.79 
Standard deviation 127.95 
Relative error (%)   60.30 

 

4.6. Discussion 

The following discussion only deals with the presented methodology. We do not attempt to discuss or 

even answer the observed changes in fluxes between the two survey years. This will be part of another 

study where we compare fluxes from yearly surveys between 2008 and 2014 over the same area 

presented here. 

 
4.6.1. Limitations of the methodology 

Methods quantifying free gas flow rates in lakes and oceans using hydroacoustic measurements have 

recently undergone a series of developments that improved their reliability and accuracy. This is 

particularly true for shallow-water studies, e.g. in lakes as described by Ostrovsky et al. (2008) and 

Delsontro et al. (2011). In deep water (> 100 m), methodologies link visual observations and direct flow 

rate measurements (e.g. inverted funnels) with the larger-scale occurrence of seeps observed in single- 

or multibeam data (Nikolovska et al., 2008; Greinert et al., 2010; Römer et al., 2012b). Not always are 

links between the hydroacoustic backscatter intensity and direct flow rate measurements established. 

This could result in an empirical relationships that allows better extrapolations if applied to the 

measured acoustic data. Although the flow rate estimates presented still need to be validated using 

either discrete measurements, visual or high-frequency acoustic measurements by ROV deployments, 

we are confident that our flux estimates are reasonable and representative for the area at the time of 

the survey in July 2009 and 2012. 

Our approach follows the understanding that the received acoustic signal is generated by the 

contribution of the backscattering produced by several single targets (Artemov et al., 2006; Muyakshin 

and Sauter, 2010; Weber et al., 2014). As mentioned earlier, we use a set of assumptions on which our 

method is based. We assume that a) the targets are spherical bubbles of different sizes, each one being 

an isotropic scatterer. As the scattering of a single bubble can be related to its radius and therefore its 

volume (Wildt, 1946), it is b) also assumed that the scattering generated by multiple bubbles is related 

to the total volume of the bubbles within the insonified volume of water (Medwin, 1977). We are aware 

that assumptions a) and b) may have a large uncertainty because they “idealize” real conditions and a 
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purely summation of the backscattered energy coming from single targets has limited application 

validity. To our knowledge there is no finally validated and conclusive backscatter model for large 

wobbly bubbles or bubble clouds insonified with low frequency echosounders in water depth > 100 m 

where multiple backscattering (backscattering of energy that does not directly come from the 

transducer but from other bubbles, but which is also received by the transducer) might occur as well. 

Advanced models that describe the backscattering strength of large, none spherical and wobbly bubbles 

that travel in close distance to each other could easily be included in our methodology by replacing 

equations [4.5] to [4.9]. Despite the used simplification and the existing uncertainties about BSD and 

BRS, our results give reasonable approximations for methane flow rates that are in agreement with 

direct observations (McGovern, 2012; Sahling et al., 2014).  

4.6.2. Uncertainties of bubble size and rising speed 

Many optical observations at seep sites of different release intensities and in different water depths 

show that bubbles of 1 to 12 mm in diameter present the most common sizes with a mean diameter of 6 

mm that is frequently found (see references in Fig. 4.11). Larger bubbles are neither spheres nor 

ellipsoids but represent rather irregularly shaped oblate forms that change shape while rising in a 

wobbly fashion (Ostrovsky et al., 2008; Leifer and Culling, 2010). The shape of the bubble depends on 

the forces acting on it and only below a certain size where the surface tension force predominates so 

bubbles become spherical (Bhaga and Weber, 1981); the same is true for larger bubbles if they are gas-

hydrate skinned (Rehder et al., 2009). 

Flow rate estimates obviously strongly depend on the BSD and the bubble BRS. For our flow rates and 

flux calculations, the BSD obtained from our optical data was considered to be representative for the 

release within the study area although only 17 seep locations scattered over the entire area were 

observed for a very short time and only 641 bubbles in total have been analyzed (McGovern, 2012). The 

BSD as well as the mean bubble size agree well with results from similar seep settings (see references in 

Fig. 4.12). Nevertheless, more detailed visual observations are needed to assess the spatial and 

temporal variability of the BSD in the area to decrease uncertainties in our flow rate calculations. BSD 

estimates without visual verification leave uncertainties that ideally could be reduced. However, 

detailed measurements need large and expensive equipment as remotely ROVs and cannot always be 

conducted. We think that such uncertainties should be clearly stated in any publication.  

The final flow rate estimate is very sensitive to BRSs (see Table 4.2). BRSs are ideally obtained directly 

from optical or hydroacoustic measurements. We used BRSs from various models (see references in Fig. 

4.12) that have been verified by direct observations. However, until the BRS has been measured in the 

field, it remains uncertain if bubbles are ‘dirty’ or ‘clean’ or something in between. Environmental 

conditions e.g. ocean currents are equally important to measure. Bubble release intensity driven by 

plume dynamics (bubbles inducing upwelling of water) and thus faster rising speeds need to be 

considered as well. For our data, final flow rates show up to 53 % difference between the used BRSs 

(Table 4.2).  

4.6.3. Backscatter and resonance of bubbles and bubble clouds 
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We would like to emphasize the importance of choosing the best model for calculating the 

backscattering cross-section of natural bubbles. We are aware that our approach for calculating the free 

gas flow rate is idealized as we assume large, spherical bubbles. It is known that large bubbles deform 

while rising and assuming an isotropic radiation of the incoming pressure wave adds to the 

uncertainties. According to literature, rising bubbles can be classified into three main types based on 

their shape after reaching the terminal velocity: the spherical, ellipsoidal and spherical-cap types 

(Amaya-Bower and Lee, 2010). The bubbles in our working area belong to the ellipsoidal type (oblate 

bubbles, 2 to 12 mm in diameter; BRS (Leifer model; clean bubble) 0.19-0.24 [m/sec]; Weber number 

1.05-9.77 [dimensionless]); this shape is mainly determined by surface tension. Several theoretical 

studies give other models/equations to calculate the scattering cross-section and resonance values of 

non-spherical, especially oblate, bubbles (Strasberg, 1953; Stanton, 1989; Feuillade and Werby, 1994; 

Leblond et al., 2014). These can be included in future calculations to improve the accuracy of flow rate 

estimates with our given approach (replacing equation [4.5]).In this study, we considered a scattering 

cross-section model for spherical bubbles that is based on the monopole bubble theory. The model 

developed by Thuraisingham (2009) is valid for all kr values. The Thuraisingham model might be more 

appropriate than the one of e.g. Wildt (1946), but it has not been validated for both greater water 

depths and natural conditions where several bubbles might be very close to each other with clean or 

dirty surfaces. Multiple scattering effects (Foldy, 1945; Carey and Roy, 1993; Prosperetti et al., 1993) and 

the generation of a bubble-cloud specific resonance frequency have not been taken into account either, 

although this might have unforeseen implications. 

Apart from these mostly theoretical problems, it remains unclear how the final backscattering could be 

recorded with state-of-the-art SBES and MBES under natural conditions. Direct flow rate validations in 

the field would provide answers to some of the questions related to the present simplifications in 

calculating the scattering cross-section. However, our results show reasonable flow rate values. 

Improvements could be done by either very accurately observing the shape and behavior of natural 

bubbles by optical means or by producing bubbles artificially at the seafloor, exactly knowing the BRS 

and bubble shape from lab experiments (visual confirmation should be also given). The results of such 

studies would certainly enhance the accuracy of ship-based free gas flow rate quantifications and would 

help to find a widely accepted model to estimate free gas flow rates and fluxes from the ocean floor 

through the water column from both deep and shallow water.  
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Abstract 

Estimates of free gas flow rates (amount of gas per unit of time) and fluxes (flow rate per unit of area) 

from the seafloor into the water column using hydroacoustic systems are becoming a standard method 

for studying natural gas release and its potential impact on climate. The same methodology is used to 

evaluate the amount of unwanted gas release from gas/oil production areas. At the moment there is no 

agreed on methodology and software to estimate gas flow rates. 

We developed ‘FlareHunter’ and ‘FlareFlowModule’, two specialized Graphical User Interfaces (GUIs) 

built in MATLAB for quantifying free gas emissions using echosounder data. FlareHunter allows selecting 

and editing backscatter signals in echograms using a standard way of processing and thus allows 

comparisons between different surveys and users. Additionally, FlareHunter can be used to obtain 

physical properties of acoustic flares such as BRS values, terminal height and average target strength. 

‘FlareFlowModule’ applies an inversion method using backscattering data processed with FlareHunter to 

derive flow rates of the insonified bubbles. Flow rates of acoustic flares are calculated using bubble size 

distributions, BRSs (bubble size dependent) and ambient conditions (e.g. temperature, pressure, salinity) 

as input parameters. The software can easily be advanced to account for new relations between 

backscattering strength and bubble shape as well as multiple scattering effects once such new relations 

have been derived. 

5.1. Introduction 

The release of methane (CH4), a strong greenhouse gas, from the environment is receiving increasing 

attention as it has been identified to be a rather unconstrained natural atmospheric source (e.g. Clark et 

al., 2010; Malakhova et al., 2010; Mau et al., 2007; Solomon et al., 2009). In addition, unwanted gas 

release from pipelines and gas wells including blow out scenarios (e.g. Marshall, and Strahan, 2012) has 

further promoted the efforts to create new methods to estimate gas flow rates (volume/time) and gas 

fluxes (flow rate/unit of area). Different methods and approaches have been developed and used for gas 

leak detection and monitoring (e.g. Leighton and White, 2012; Murvay and Silea, 2012). One of the main 

goals of all these methods is to quantify the amount of gas being released from the seafloor as either 

dissolved or free gas. Furthermore the spatial distribution of gas seeps and the temporal variability of 

gas release on time scales from seconds to years and beyond are of great interest to better understand 

the mechanism controlling the gas emission from that type of environment. 

The presented software has been developed for post-processing hydroacoustic data containing signals 

of free gas in the water column and for quantifying gas flow rates using the processed information. To 

date four different methodologies are commonly used for this purpose. Possible the most accurate 

method is directly measuring free gas flow rates by trapping gas bubbles with an inverted funnel or 

similar device. Measuring the time a certain volume is filled or using a flow meter will provide the flow 

rate (e.g. Greinert et al., 2010; Leifer, 2005; Nikolovska et al., 2008). A more indirect methodology uses 

video observations and subsequent image analyses to derive the BSD and the amount of bubbles for 

calculating fluxes (e.g. Römer et al., 2012; Sahling et al., 2009). Optical observations are in general 
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important as they provide the bubble size distribution and BRSs that are also needed for the here 

presented flow rate calculations. The two other methods use passive and active hydroacoustic and thus 

are remote methodologies allowing for covering larger areas at once or in short time. The passive 

acoustic method inverts the recorded ‘sound’ produced when bubbles are detached from the seafloor. 

This inversion is based on the frequencies of the received signal (bubble spectrum) associating the 

frequency spectrum of the acoustic signal to the bubble size distribution and spectral magnitude of the 

acoustic emission to the bubble population (e.g. Bergès et al., 2015; Leighton and White, 2012). The 

active method sends an acoustic signal and uses the received backscattered energy to calculate gas 

fluxes. This last approach has been used by several groups for almost a decade (e.g. Artemov et al., 

2007; Muyakshin and Sauter, 2010; Ostrovsky et al., 2008) relying on singlebeam or splitbeam 

echosounders but no standard procedure or easily accessible software package exists. A number of 

software tools for processing of splitbeam echosounder data (EK60 or EK500) have been used to analyze 

the backscatter signal from ascending bubbles and to estimate gas flow rates and fluxes. Among them 

are WeaveLens from Artemov (2006) used e.g. by Malakhova et al., (2010), the commercial software 

package Sonar 5 Pro developed by Lindem Acquisition used by DelSontro et al., (2011) as well as the 

software code developed by Towler, (2010), e.g. used by Weber et al. 2014. The aim of this publication 

is to advance the existing capabilities and present a freely accessible software. 

The presented software contains two MATLAB-based (Matlab, 2015) modules (FlareHunter and 

FlareFlowModule) to display and edit hydroacoustic data as well as calculate gas flow rates using the 

inverse method developed by Veloso et al., (2015; chapter 4). FlareHunter has already been reported at 

Veloso et al., (2015; chapter 4), as a tool for post-processing hydroacoustic data from a seep site area 

located west of Prins Karls Forland (PKF) offshore NW Svalbard. The software can be improved and 

updated according to specific needs of the community and new hydroacoustic models could be easily 

implemented when they become available. 

The following two sections describe the functionality of each software module in detail. Section 4 gives 

an example of calculated flow rates from several acoustic flares, showing the capabilities of the 

software. In Section 5 we compare results obtained with the software with those obtained with 

direct/visual methods. 

5.2. FlareHunter 

FlareHunter is an interactive software for processing splitbeam echosounder data (EK60) recorded in the 

.raw format of Kongsberg (Simrad, 2012) The GUI can be called at the MATLAB interface using the 

FlareHunter.m file giving access to a set of functions. The flowchart in Fig. 5.1 summarizes the features 

of FlareHunter, the different inputs and outputs as well as the link to the FlareFlowModule. 
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Figure 5.1. Work flow of FlareHunter and the link to the FlareFlowModule. 

 
Input datagrams incorporated in the .raw file format (Simrad, 2012) should include position information 

(latitude, longitude), vessel orientation (heading in degrees) and motion (heave in meter, role and pitch 

in degrees). In case the recorded position information does not represent the location of the 

echosounder transducer but the GPS antenna, the actual transponder position is calculated by 

FlareHunter if correct offset values are given. Offset correction for motion data is currently not done in 

FlareHunter. 
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Figure 5.2. FlareHunter GUI (a) with an additional graph showing a 3D view of the selected flare (h). The screenshot shows a 38 
kHz target strength echogram (‘PFK-D20130719-T195019.raw’), collected with an EK60 echosounder system on a survey at 
Prins Karl Forland (PKF), offshore Svalbard (~78 N) the 19

th 
of July 2013 on board the RV Helmer Hanssen. The same echogram 

was used as an example (Fig. 10) in Veloso et al., (2015; chapter 4) describing the acoustic flare detection and flow rate 
estimation processing. 

 
The FlareHunter GUI displays single target strength (TS) and volume backscattering strength (SV) 

echograms (Fig. 5.2.a) of which the color palette can be adjusted by the user. Additionally, the GUI 

displays an echogram with compensated TS values according to the position of the target inside the 

beam using the method by Simrad (Appendix 1). The same method is also used and described by 

Echoview software (Echoview webpage: http://www.echoview.com/; see compensated target strength 

at user manual, section 7.5, supplementary material). EK60 echosounders are capable of running 

different frequencies simultaneously; the frequency to display and process can be selected. Input data 

as vessel heading, heave, roll, pitch and the ships track can be displayed separately to check for 

irregularities or data gaps (Fig. 5.3.a-e). FlareHunter performs its own bottom detection (Fig. 5.3.f) by 

finding the strongest return signal in each transmitted ping. 
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Figure 5.3. Corresponding information of TS echogram from Fig. 2 obtained with FlareHunter GUI. The images show vessel 
motion parameters (a to d), navigation data (e) and the detected water depth (f). 

 
The user can select a flare by drawing a rectangular area on the echogram (Fig. 5.2.a) and then plot the 

location and strength of the signals inside selected area as 3D point cloud using the alongship and 

athwartship angle information of the split-beam system (Fig. 5.2.b). Athwartship and alongship angles 

for each depth sample can also be displayed in the main echogram window. The 3D representation 

includes motion compensation (pitch, roll, heading/yaw and heave information) and considers the user 

given static offsets. Minimum and maximum thresholds can be set before the 3D visualization to use 

only backscatter values within a given backscattering strength range; this acts as a simple threshold 

filtering for the selected flare to eliminate unwanted noise and reverberation. 

Using the figure tools available in MATLAB, the user can delete backscatter signals coming from other 

sources of noise and reverberation, e.g. fish, bottom multiples, noise from other hydroacoustic systems. 

The resulting ‘pure’ information of individual acoustic flares can be obtained and saved as MATLAB data 

file for later processing. A more accurate localization of the actual bubble releasing spot at the seafloor 
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can be derived by geometrically averaging the cleaned flare signals using a moving window of a user 

definable size. This is best applied in case the footprint (insonified area by the echosounder at the 

seafloor) covers a single bubble stream. The result, the ‘flare spine’, shows the spatial tendency of the 

bubble distribution in the water column, indicating water current directions. Results can also be used for 

more accurate positioning of the release spot/active area at the seafloor. The flare-spine data can be 

saved as well as MATLAB data files. 

5.3. FlareFlowModule (FFM) 

The FlareFlowModule GUI (FFM, Fig. 5.4) can be launched from FlareHunter. The module calculates the 

gas flow rate of the processed (selected and cleaned) flare data using the inverse method published by 

Veloso et al. (2015; chapter 4). The method is based on calculating the flow rate of free gas based on the 

received compensated average target strength TS (Appendix 1) from bubbles when they are insonified 

with a wave front of certain frequency. The inverse method by Veloso et al., (2015; chapter 4) uses the 

acoustical scattering cross-section model of Thuraisingham (1997) for single bubbles. This model is valid 

for all kr values, where k is the wave number and r represents the bubble radius. At the moment, the 

inverse method included in FFM only considers bubbles without a hydrate skin. Therefore the user has 

to be aware that the final absolute flow rate might not be correct in case acoustic signals are used from 

within the gas hydrate stability zone (below a certain depth; e.g. Kvenvolden, 2003).  

The FFM uses the following mathematical expression to estimate the volume flow rate of free gas 

release coming from an acoustic flare. 

            
  ̅̅̅̅

    (5.1) 

where, 

  
  

    

∫             
  
  

∫                   
  
  

 (5.2) 

and, 
 

   : Volume flow rate (mL/minute) 

   : Gas density of the bubble at the respective water depth (kg/m3) 

  ̅̅̅̅  : Average target strength of selected backscattering (dB) 

  : Sample interval (s) 

   : Speed of sound in the seawater (m/s) 

     : Probability density function of the bubble size distribution (1/m) 

     : BRS in function of the bubble radius (m/s) 

       : Acoustical backscattering cross-section of a single bubble (m2) 

      : Echosounder frequency (Hz) 

  : Bubble radius (m) 

      : Lower and upper limit of the bubble size distribution (m) 
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Figure 5.4. a) FlareFlowModule GUI. b) Histogram of TS values of the selected layer. c) Three dimensional representation of 
flare selected for flow rate estimation (done by FlareHunter). The selected flare is the same flare shown at Fig. 5.2 after being 
manually cleaned. The 3D representation is done in UTM coordinates (Zone 33X).The color palette of image (c) represents 
target strength in decibels. d) BSD and polynomial fit. 

 
As shown by the equation [5.1], the flow rate can be evaluated using the average target strength value 

  ̅̅̅̅  of a selected area of the flare that was edited and saved with FlareHunter. The FFM reads the 

respective data file and lists the existing flares in a list field from which each flare can be selected and 

displayed in 3D. 

To obtain the average target strength value   ̅̅̅̅  of the flare at a specific water depth, FFM allows 

defining a depth layer by specifying its upper and lower limit. The   value as defined in Veloso et al. 

(2015; chapter 4) is calculated automatically using environmental and transducer specific input values 

from the respective text fields for temperature, salinity, sound speed, shear viscosity, water density, 
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surface tension, static pressure, acceleration, and echosounder frequency. Furthermore for calculating 

  the bubble size distribution (BSD) needs to be known as well as the bubble size specific rising speed. 

The BSD can be given as ASCII file containing a normalized BSD (maximum value = 1). Once the BSD file is 

loaded, a polynomial fit of the BSD is created based on a user-definable order. This polynomial fit is used 

as input for the inverse hydroacoustic modeling. The result of the polynomial fit as well as the original 

input data can be displayed (Fig. 5.3.e). The bubble size dependent BRSs can either be calculated based 

on several literature models for ‘clean’ and ‘dirty’ bubbles (Leifer et al., 2000; Leifer and Patro, 2002; 

Mendelson, 1967; Woolf, 1993; Woolf and Thorpe, 1991) or it can be given by an ASCII input file. A set 

of MATLAB scripts including the BRS models are embedded in the FFM GUI. These scripts have been 

kindly provided by Ira Leifer (Bubbleology Research International).The user needs to define the BRS 

model in order to obtain correct flow rate estimates. It has been shown that the presence of surfactants 

on the bubble surface influences the BRS (e.g. Leifer and Patro, 2002) and therefore the flow rates. 

Once all the needed data are loaded or entered, the flow rate of the currently selected flare and depth 

layer is calculated and displayed. The described procedure allows flow estimates on a flare by flare base. 

Veloso et al. (2015; chapter 4) also describe how the flow rate and flux can be calculated over larger 

areas and for different depth layers above the seafloor. 

5.4. Performance of the software (flow rate calculation examples) 

In order to describe the performance of the software, a data file containing several acoustic flares 

collected at PKF during a cruise in 2013 on board RV Helmer Hanssen was selected. The volumetric flow 

rates just above the seafloor (5 m thick, ranging from 5 to 10 m above the bottom) of 10 acoustic flares 

were estimated using different BRS models. The echogram in Fig. 5 shows the 38 kHz data collected with 

the EK60 echosounder system; the flow rates (Table 5.1) were calculated for both 38 kHz and 120 kHz 

backscattered signal using the described inverse method (equation 1). 

Flow rate values were calculated using the bubble size distribution given in McGovern (2012) from the 

study area and the available BRSM in the FFM GUI (Leifer et al., 2000; Leifer and Patro, 2002; 

Mendelson, 1967; Woolf, 1993; Woolf and Thorpe, 1991). Although it is assumed that there are no 

surfactants on the bubble surfaces in the study area, flow rates calculated with ‘dirty’ BRS models are 

presented as well to illustrate the FFM GUI performance. Flow rate results are shown in Table 5.1; 

water, gas and environmental constants are displayed in Table 5.2. A comparison between data from 

the 38 kHz and 120 kHz frequency are presented in Table 5.3. 
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Figure 5.5. Target strength echogram (38 kHz) example for volume flow rate evaluation (‘PFK-D20130719- T195019.raw’), 
collected on a survey at PKF, offshore Svalbard (~78 N) in July 2013 on board the RV Helmer Hanssen. The image shows 10 
acoustic flares chosen to calculate their volume flow rate above the seafloor. The color palette specifies the TS values in dB. 
Seafloor was detected and deleted. Upper and lower thresholds, 0 dB and -70 dB respectively, were applied to the image. 

 
 

Table 5.1. Volume flow rates estimates of 10 acoustic flares the using inverse hydroacoustic method from 
Veloso et al., 2015 (chapter 4). 
      Clean bubble Dirty bubble 

Flare  Lat Lon Time Bottom 
depth 
(m bsl) 

TS geometrical 
mean (dB) 

BRS Model Flow rate (mL 
/minute) 

BRS 
Model 

Flow rate (mL 
/minute) 

 N E   38  kHz 120 kHz  38 
kHz 

120 
kHz 

 38 
kHz 

120 
kHz 
 

S1 78.654490 9.428517 19:54:14 232 -35.78 -44.31 Leifer 423 468 Leifer 349 386 

       Leifer & 
Patro 

536 593 Leifer & 
Patro 

435 481 

       Mendelso
n 

543 600 Woolf93 543 601 

          Woolf & 
Thorpe91 

467 517 

S2 78.650238 9.431529 19:57:09 231 -44.48 
 

-52.44 
 

Leifer 56 72 Leifer 47 59 

       Leifer & 
Patro 

72 91 Leifer & 
Patro 

59 74 

       Mendelso
n 

73 92 Woolf93 73 92 

          Woolf & 
Thorpe91 

63 79 

S3 78.641884 9.435525 20:04:28 225 -52.94 
 

-61.04 
 

Leifer 8 10
  

Leifer 7 8 

       Leifer & 
Patro 

10 13 Leifer & 
Patro 

8 10 

       Mendelso
n 

10 13 Woolf93 10 13 
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          Woolf & 
Thorpe91 

9 11 

S4 78.651100 9.426933 20:12:08 233 -50.83 
 

-59.95 
 

Leifer 13
  

13
  

Leifer 11 11 

       Leifer & 
Patro 

18 16 Leifer & 
Patro 

14 13 

       Mendelso
n 

17 16 Woolf93 17 16 

          Woolf & 
Thorpe91 

15 14 

S5 78.654724 9.424883 20:14:32 232 -41.00 
 

-48.35 
 

Leifer 127
  

184
  

Leifer 104 152 

       Leifer & 
Patro 

161 233 Leifer & 
Patro 

130 190 

       Mendelso
n 

163 236 Woolf93 163 237 

          Woolf & 
Thorpe91 

140 203 

S6 78.657623 9.423307 20:16:27 238 -54.44 
 

-61.79 
 

Leifer 5 8 Leifer 5 7 

       Leifer & 
Patro 

7 11 Leifer & 
Patro 

6 9 

       Mendelso
n 

7 11 Woolf93 7 11 

          Woolf & 
Thorpe91 

6 9 

S7 78.659180 9.420930 20:26:57 245 -52.07 
 

-58.87 
 

Leifer 10
  

16 Leifer 8 13 

       Leifer & 
Patro 

13 21 Leifer & 
Patro 

10 17 

       Mendelso
n 

13 21 Woolf93 13 21 

          Woolf & 
Thorpe91 

11 18 

S8 78.649734 9.426115 20:33:45 233 -51.77 
 

-57.66 
 

Leifer 11
  

22
  

Leifer 9 18 

       Leifer & 
Patro 

13 27 Leifer & 
Patro 

11 22 

       Mendelso
n 

14 28 Woolf93 14 28 

          Woolf & 
Thorpe91 

12 24 

S9 78.644531 9.432934 20:44:37 229 -51.84 -58.10 
 

Leifer 11 20
  

Leifer 9 16 

       Leifer & 
Patro 

13 25 Leifer & 
Patro 

11 20 

       Mendelso
n 

14 25 Woolf93 14 25 

          Woolf & 
Thorpe91 

12 22 

S10 78.645874 9.432114 20:45:37 231 -44.25 -50.71 Leifer 60 107 Leifer 50 88 

       Leifer & 
Patro 

76 136 Leifer & 
Patro 

62 110 

       Mendelso
n 

77 137 Woolf93 77 138 

          Woolf & 
Thorpe91 

66 118 

 
Table 5.2. Water, gas and environmental constants values used as inputs in FFM GUI to estimate the flow rate 
of the acoustic flares.  
 
 

 
Constant Unit Value 

Average temperature water C° 4 

Static pressure at surface Pa 101325 

Water salinity psu 35 



                                                                                                                              FlareHunter and FlareFlowModule 

152 

Water density (Millero et al., 1980) kg/m
3
 1028,935 

Average sound speed in the water m/s 1468 

Water shear viscosity Pa∙s 0.0014 

Water surface tension N/m 0.074 

Gas density at the surface (CH4) kg/m
3
 0.66 

Static pressure at surface Pa 101325 

Acceleration of gravity m/s
2
 9.8 

Specific heat capacity gas J/(kg∙m
3
) 2191 

Specific ratio of gas dimensionless 1.4 

 

Table 5.3. Summary of estimated average flow rate of each acoustic flare. Averaging was done for the 
corresponding ‘clean’ flow rate estimations derived from the BRS models. Average was done for each 
frequency. Standard deviation (SD) and relative error are also shown.  
 38 kHz 120 kHz 

Flare  Flow rate mean 
(mL /minute) 

SD 
(mL /minute) 

Relative error (%) Flow rate mean (mL 
/minute) 

SD 
(mL /minute) 

Relative error (%) 

       

S1 501 67 16 554 74 15 

S2 67 10 16 85 11 15 

S3 9 1 14 12 2 17 

S4 16 3 19 15 2 13 

S5 150 20 16 218 29 15 

S6 6 1 21 10 2 20 

S7 12 2 17 19 3 17 

S8 13 2 14 26 3 14 

S9 13 2 14 23 3 14 

S10 71 10 16 127 17 16 

 

A comparison among the mass flow rates derived from 38 kHz and 120 kHz echosounder data using the 

inverse hydroacoustic method was done. This comparison uses the BRS model of Leifer for clean 

bubbles (Fig. 5.6). The very good agreement between the results of the two frequencies is shown in Fig. 

6, with a linear correlation coefficient R2of ~ 0.9917. 
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Figure 5.6. Comparison between flow rate results estimated with different frequencies (38 and 120 kHz). Image displays the 
comparison for estimations carry out with Leifer ‘clean’ bubble BRS model. 
 

5.5. Discussion 

The presented software tools FlareHunter and FlareFlowModule are the only software package that 

currently allows direct flow and flux calculation from singlebeam echosounder data. With MatLab as 

executing environment it is embedded in a powerful software that allows advances in processing and 

usability by adding new features as well as changing/adapting critical parts as the relation of bubble 

backscatter response and bubble size. We are aware of the fact that using the relation by Thuraisingham 

(1997) might not be valid for massive release of bubbles and that independent bubble size and rising 

speed measurements are crucial. Unfortunately, we do not have the optimum validation data set in 

hand. Such a data set would need an artificial bubble source, able to release different bubble size 

spectra with varying flow rates. The bubble release itself would need to be visually monitored and the 

same set of gas flow experiments would need to be performed in different water depth. However, this 

work does not aim to validate the methodology but to present the software tool to do so. Nevertheless 

the presented data as well as those presented in Veloso et al. (2015; chapter 4) can be compared to 

other bubble flow quantifying studies (Table 5.4). Sahling et al., (2014) worked in the same area as our 

example data set was recorded. Despite not all data are exactly from the same area, the comparison 

provides an idea about the order of magnitude of flow rates that single or multiple bubble streams can 

produce (Table 5.4).    
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Table 5.4 shows that flow rates of single bubble streams measured with visual/direct techniques can 

largely fluctuate (3 to 850 mL/minute) depending on the strength of the gas release. It is clear that flow 

rates from individual vents can also be comparable to several bubble streams, bubble stream clusters. 

To better appreciate the very good correlation with real-world flow rates, it should be highlighted that 

an acoustic flare in an echogram can be the result of one or several bubble streams within the insonified 

volume of water. Here we define a bubble stream as a more or less continuous chain of bubbles rising 

towards the surface. Because the footprint covered area increases with depth, it can easily insonify 

several bubble streams at the same time (e.g. with 7° of beam width, the footprint diameter is ~30 m at 

~240 m bsl; e.g. Römer et al., 2012). The amount of bubble streams producing a flare cannot be 

quantified using hydroacoustic single beam echosounder data. It can be assumed that our volume lower 

flow rates are representative for single bubble stream and those with higher flows might represent 

clusters as they have been observed by McGovern (2012). Then, we are confident to say that our results 

are within a realistic range of flow rates. 

FlareHunter and the FlareFlowModule were designed from a user perspective to allow an easy access to 

flare data also for people who are not as deeply into hydroacoustic and to speed up repetitive tasks. This 

led to a wide set of functions which grew over time with a focus on processing data and not on software 

Table 5.4. Summary of flow rate measurements of single bubble streams and bubble stream clusters using the 
invert funnel technique and visual observations at different study areas. The range of our flow rate estimates is 
also specified. 

 

 
 Study Area Water Depth (m bsl) Flow Rate (mL/minute) 

   
Bubble stream 

cluster 
Single bubble stream 

 
  Visual Visual Bubble catcher 

Sauter et al., (2006) 
Håkon Mosby MV Norwegian-
Barents-Spitzbergen Continental 
Margin 

1250-1270 ~1800 80-360  

Sahling et al., (2009) Black Sea, Vodyanitskii MV 2070  32-120  

Greinert et al., (2010) Black Sea 70-112  320-850  

Römer et al., (2012) Makran Continental Margin 575-2870 9-831   

Schneider von Deimling et al., 
[35] 

North Sea ~72  ~23.2 ~12.5 

Sahling et al., (2011) PKF  (Svalbard) 240-396  5.2-26.5 3-41 

   Hydroacoustics (single bubble stream or 
bubble stream cluster) 

 Our example PKF (Svalbard) ~230 6-501 
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architectural aspects. Thus FlareHunter and FlareFlowModule can still be considered prototypes, which 

need to be modularized and improved in the future. Because the software package has been evolved 

according to the needs of our research, it is believed that the use by others will lead to new 

functionalities performance improvements. We are aware that the tool still needs improvements such 

as algorithm optimization and implementation of tools associated with the digital image processing. One 

future task is the automated removal of artificial noise and reverberation without losing signal 

information. This is in general an important aspect in hydroacoustic data interpretation related to 

submarine gas release. This aspect has been highlighted by Veloso et al. (2015; chapter 4) as noisy data 

will increase the uncertainty and error margin of flow calculations. 

5.6 Conclusions 

FlareHunter and the FFM are tools allowing easy interaction with hydroacoustic data of gas release in 

the water column that have been recorded in the EK60 splitbeam echosounder specific format. 

Specialized tools for flare processing and interactive editing are implemented in FlareHunter, whereas 

the FFM allows for an easy evaluation of gas flow rates at different depth layers. Estimated Flow rates 

give realistic results compared with direct measurements (Greinert et al., 2010; Römer et al., 2012; 

Sahling et al., 2014, 2009; Sauter et al., 2006; Schneider von Deimling et al., 2011). 

We think that both software tools could be of great value to 1) standardize gas flow rate estimates 

based on singlebeam echosounder data and 2) give the increasing number of research groups involved 

in such measurements a functional software to quickly determine gas flow rates and investigate 

temporal changes. 
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6. Spatial and temporal variability of free gas emission 

inferred from repeated hydroacoustic surveys offshore 
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Greinert  

(To be submitted to Nature Geosciences in a highly modified version) 

Abstract 

The Svalbard continental margin is located in the main gateway of Atlantic waters flowing northward 

into the Arctic Ocean, the Fram Strait. As such, changes in global temperature can strongly affect this 

region. Furthermore, the seabed sediments of this area are considered to store large reservoirs of gas 

hydrates that could be potentially destabilized in response to global warming. A seepage area offshore 

Prins Karl Forland (PKF) has received particular attention because vent sites are distributed in the 

proximity of the landward limit of the GHSZ. The latter makes this seepage area an ideal natural 

laboratory for studying an eventual hydrate degradation scenario triggered by Arctic warming. As 

hydrate dissociation is thought to increase the gas emissions from the seabed and ‘turn on’ new seep 

sites, the spatiotemporal analysis of gas seepage seems to be a good tool to monitor the stability of gas 

hydrates. Particularly offshore PKF, hydroacoustic surveys have been carried out since the first acoustic 

flares were recorded in 2008.  Hydroacoustic data collected here have been used mainly to estimate the 

amount of gas released and the spatial distribution of seeps, but no attempt of spatiotemporal analysis 

of the seepage has been done mainly due to the lack of information. The present work aims to elucidate 

the possible fluctuations of seafloor bubble emissions. Hydroacoustic data were collected using an EK60 

SBES during eleven surveys on board R/V Helmer Hanssen (The Arctic University of Norway, Tromsø) and 

R/V James Clark Ross (National Oceanography Centre, Southampton) between 2008 and 2014. We used 

an inverse hydroacoustic method to derive flow rates from acoustic flares. From 2000 echosounder data 

files analyzed, a total of 3145 flares were detected. We applied three different comparison approaches 

and conclude that, for assessing variability, a common area comparison (CAC) is the method that best 

fits our dataset. The dataset itself, although extensive, is temporally and spatially sparse and some 

uncertainty is associated with the remote sensing method. Firm and final, conclusions can therefore not 

be drawn. Nevertheless, results show that the inverse method uncertainty is small compared to the 

observed flow rate variability, thus we believe that our method is adequate for a temporal and spatial 

comparison. Our analysis shows that the free gas flow fluctuates but it does not show a trend towards 

increasing flow rates with time. This implies that accelerating gas hydrate dissociation is not happening 

within the period of the undertaken surveys over seven years. We assume that gas release is governed 

by bottom water temperature but our time series is too short to show a clear trend towards increased 

gas emissions or the migration of the gas seepage areas downslope that can be linked to ocean 

warming.  
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Contributions: The manuscript was written by MV and PJ and revised by JG and MDB. Fieldwork was 

conducted by MV, JG, PJ, TM, GW, HP and SB during different surveys. Discussion of results and 

interpretation were done by MV, PJ and JG. Data processing was carried out by MV and PJ. 

6.1. Introduction 

Methane venting from the seafloor as free gas phase has been observed at many locations in the ocean; 

it is often detected as “flares” in echograms of single- or multibeam echosounder systems. These 

locations include the Black Sea (e.g. Artemov et al., 2007; Greinert et al., 2006; Naudts et al., 2006; 

Nikolovska et al., 2008), the southeastern United States Atlantic margin (Brothers et al., 2013), Hydrate 

Ridge, west of Oregon (e.g. Heeschen et al., 2005; Kannberg et al., 2013), the Gulf of Mexico (Weber et 

al.,2014), the Hikurangi Margin off New Zealand (Greinert et al., 2010), the North Sea (Schneider v. 

Deimling et al., 2007, 2011), the seas around Norway (Sauter et al., 2006; Sahling et al., 2014), the 

Laptev Sea (Shakova et al., 2014), and on the shelf and margin west of Svalbard (e.g. Fisher et al., 2011; 

Westbrook et al., 2009). It is speculated that, in some of these locations, the gas seepage is a result of 

gas hydrates dissociating as the GHSZ migrates further offshore as bottom water temperature increases 

due to global warming (Biastoch et al., 2011; Ferré et al., 2012). Since methane is by far the most 

abundant species in gas hydrates worldwide and its presence in the atmosphere is an important 

contributor to Earths greenhouse effect; methane release from the seafloor triggered by increasing 

bottom water temperature can represent a positive feedback mechanism on global warming. 

The amount of methane stored in sub-seafloor hydrate reservoirs globally is comparable to the sum of 

all fossil fuels (Milkov, 2004, Wallmann et al., 2012), therefore, scientists have speculated that an 

accelerating destabilization of hydrates has the potential to alter the atmospheric gas composition and 

trigger abrupt climate warming (Shakhova et al., 2010). Such a global methane hydrate dissociation 

event is recorded in sediments as a negative carbon isotope ratio excursion in foraminifera during the 

Pate-Paleocene thermal maximum (LPTM), 55 million years ago, when the global temperature was 4-8 

°C warmer than present (Dickens 2003).  

Regardless of the gas origin from dissociating hydrates or other sources, methane bubbles dissolve as 

they rise through the water column and dissolved methane becomes available to microbial oxidation. 

Thus, originally free gas released from the seafloor also represents sources for dissolved methane in the 

water column which can be oxidized by microbes. Methanotrophic microbes use dissolved methane as 

an energy source and convert it to carbon dioxide altering the seawater carbonate system. In other 

words, methane seeping from the seafloor, both in gas- and aqueous phase, has the potential to affect 

the oceanic carbonate system, lowering the pH, as well as fueling pelagic and benthic ecosystems.  

In order to understand the implications for the environment and climate it is important to monitor the 

spatial and temporal variability of these greenhouse gas emissions from the seafloor. Investigations of 

temporal variability of acoustically inferred gas venting shows that some bubbling seep areas are 

persistently and others more intermittently active (Greinert, 2008; Jerram et al., 2015; Kannberg et al., 

2013; Römer et al., 2012a; Schneider von Deimling et al., 2011). However, long-term monitoring of 

methane seeps over larger areas has not been conducted to date. 
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West of Prins Karls Forland (PKF; study area described in section 1.6) a significant number of methane 

seeps at the shallow shelf area (70-150 m; Area 3 from Fig, 1.10), along the shelf (Area 1 from Fig, 1.10) 

and along the shelf break at 450 and at 350 m water depth (Area 2 from Fig, 1.10) have been surveyed 

with single beam echo sounders since 2008 (e.g. see Rajan et al., 2012; Veloso et al., 2015, chapter 4; 

Westbrook et al., 2009; Wright and et al, 2012). The aim of the presented work is to characterize the 

spatiotemporal fluctuations of gas emissions at the seep site offshore PKF in order to elucidate a 

possible connection with ocean warming. We present a synthesis of 11 surveys (2008-2014) in order to 

evaluate spatio/temporal variability of bubble flow rates. To our knowledge, this is the first attempt to 

compare emission data between surveys that have been recorded by different groups and different 

research vessels over such a long period of time. A Simrad EK60 echosounder was used for acoustic data 

acquisition during all research cruises included in this study (Table 6.1). Calibration of instruments has 

been maintained, allowing for impartial comparison. We use a method for gas quantification developed 

by Veloso et al. (2015; chapter 4) to map and quantify rates and variability of free gas flow between the 

eleven surveys, focusing on flare hot spots on the shelf and margin west of PKF. Our acoustic records of 

gas release cover depths between 90 to 400 m bsl. In section 6.2 we present the underlying datasets and 

the methodology used for flow rate and flux calculations. Section 6.3 presents two different comparison 

approaches between surveys. A summary and discussion is given in section 6.4. 

6.2 Material and methods 

6.2.1. Surveys 

This study is based on 11 surveys carried out on the shelf and margin west of PKF, Svalbard on board of 

RV Helmer Hanssen and RV James Clark Ross. Studies were part of national and international research 

groups such as CAGE (Center for Arctic Gas Hydrates, Environment and Climate), ESONET (European 

Seafloor Observatory Network of Excellence) project that contributed to finance the AOEM demo 

mission (Arctic Ocean Esonet Mission), Pergamon (Permafrost and gas hydrate related methane release 

in the Arctic and impact on climate change: European cooperation for long-term monitoring), as well as 

student courses of the University of Tromsø.   

The 11 surveys are detailed in Table 6.1. For an easy comparison, a sequential survey number has been 

assigned to each survey. In the following, each survey will be referred with this survey number (S1 – 11). 

Table 6.1. List of hydracoustic surveys considered in this study 

Survey number Survey name Month-year  Vessel 

S1 JR211 August-2008 RV James Clark Ross 

S2 AOEM July-2009 RV Helmer Hanssen 

S3 AOEM October-2010 RV Helmer Hanssen 

S4 JR253 July-2011 RV James Clark Ross 

S5 JR269A August-2011 RV James Clark Ross 

S6 JR269B July-2012 RV James Clark Ross 

S7 Geo3144_2012 July-2012 RV Helmer Hanssen 

S8 HH_13-7 July-2013 RV Helmer Hanssen 
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Table 6.1. (continued) 

S9 HH_13-10 October-2013 RV Helmer Hanssen 
S10 CAGE_14-1 June-2014 RV Helmer Hanssen 

S11 CAGE 14_5 October-2014 RV Helmer Hanssen 

 

A SeaBird911plus CTD was used for oceanographic measurements during all the surveys. Data were 

processed with the Seabird software to obtain temperature, water density, salinity and sound speed 

profiles (Appendix 3). 

6.2.2. Visual observations 

During S2 and S3 an underwater video camera (built at the Netherlands Institute of Sea Research, NIOZ) 

was used for observing and recording bubble release at the seafloor. The system was self-powered and 

used DSL modem technology for data connection from the camera via the winch cable to a computer on 

the ship, showing real-time video footage. The video was recorded directly on a hard drive in the 

pressure housing so that it could be replayed and recorded to DVD after the dive. Data were used to 

obtain an average bubble size distribution in the study area at the 240 m site (McGovern, 2012). 

6.2.3. Hydroacoustic systems 

The hydroacoustic water column backscattering was acquired with a Kongsberg EK60 scientific 

echosounder during all 11 surveys. Gas release in the water column can be easily detected with this 

system because of the strong acoustic impedance change between the liquid to gas medium. The 

system has the capability to detect the position of single targets inside the beam using the split-beam 

technique. The EK60 system at RV Helmer Hanssen had three different operating frequencies, 18, 38 and 

120 kHz; while on board at RV James Clark the available frequencies were 38, 120 and 200 kHz. Data 

were recorded with the ER60 software and stored as *.raw files. 

6.2.4. Data processing 

Water column data were visualized with FMMidwater from the Fledermaus Software Suite (QPS, now 

member of SAAB Group) in order to select data files with acoustic flares. Final data processing was done 

using the Matlab-based Graphical User Interface FlareHunter (Chapter 5). FlareHunter was used to 

obtain target strength values (TS) coming from the source of the detected acoustic flares. The processed 

information was stored in *.mat files containing specific information of the selected backscattering. 

Flow rate estimates were processed using the FlareFlowModule GUI (Chapter 5) which applies the 

inverse hydroacoustic method by Veloso et al. (2015; chapter 4). Essential inputs to use the GUI are 

hydroacoustic information of the acoustic flares (*.raw files processed with FlareHunter); normalized 

bubble size distribution (BSD as a *.txt file); BRS (as a *.txt files or produced with the BRSMs included in 

the GUI); as well as gas, water, ambient property values (defined as a text input in the GUI). A modified 

version of the FlareFlowModule GUI able to calculate flow rates from a set of files in a folder was used.  

Maps showing bathymetry, flare positions, footprint covered area, flare clusters, acoustic maps were 

produced using the Generic Mapping Tools (GMT; Wessel et al., 2013). 



                                                              Spatial and temporal variability of free gas emission offshore Svalbard 

162 

6.3. Results 

6.3.1. Acoustic flare detection, processing and mapping 

EK60 *.raw data were visualized with FMMidwater (Fig.6.1) in order to detect files containing flares. 

From a total of 2101 examined *.raw files, 436 files showed flares in the echogram. Using FlareHunter 

3145 acoustic flares were detected (Fig.6.2) concentrated in 3 main areas highlighted in Fig.6.2. These 

areas are located on the shelf, on the shelf-edge and on the slope at 90, 200 m and between 350 and 

400 m water depth, respectively. 

 
Figure 6.1. Acoustic flares at PKF displayed in Fledermaus and FMmidwater. a) 3-dimensional image with sonar curtain of flares 

extracted from echogram (b) and bathymetry of the study area. Flares are located at ~200 m bsl (Area 1). b) 38 kHz echogram 

with acoustic flares visualized with FMMidwater. 
 

Fig.6.2 also shows the total covered area during all surveys (insonified seafloor based on the 

approximated beam footprint, blue lines). The footprint radius (assuming a circular footprint at the 

seabed) was obtained using the bottom detection tool implemented in the FlareHunter GUI. With noisy 

data, the automatic bottom detection sometimes gave wrong depth values, resulting in wrong values of 

footprint radius at the seafloor (see Fig. 6.2b). However, automatic bottom detection was used only to 

generate and visualize the ship track of all the surveys considered in this study and does not have any 

consequence in our flow rate calculations. For raw files containing flares, bottom detection was done 

manually. 

EK60 data contain hydroacoustic information of the water column backscattering at different 

frequencies. Because 38 kHz data show less artificial noise, and unwanted reverberation, and strong 

backscattering of the bubbles than 120 kHz data they were used as the common data set for all cruises. 
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Since the focus is on the release of methane at the seafloor, a 5 m thick layer in the water column 

ranging from 5 to 10 m above the seafloor was selected to extract TS for each acoustic flare (Fig. 6.3). TS 

values were compensated using the angle information of the split beam technique in the same way as 

described for the software package Echoview (http://support.echoview.com). As a result, *.mat files of 

the information of the processed data are created. 

 
Figure 6.2. Descriptive map of the total study area. The image shows the bathymetric data, real coverage of the echosounder at 
the seafloor and all the detected acoustic flares coming from the available data surveys. In the map are defined three important 
areas (Area 1, Area 2 and Area 3) where acoustic flares are concentrated. The map also shows the influence of the West 
Spitsbergen Current (WSC) and the Coastal Current (CC). In addition, image (b) shows the footprint errors produced due to 
wrong automatic bottom detection at the echograms. 

 



                                                              Spatial and temporal variability of free gas emission offshore Svalbard 

164 

 

 
Figure 6.3. Acoustic flare detection and processing. a) Acoustic flare in target strength echogram above defined threshold (-70 
dB). b) Edited acoustic flare showing the selected 5 m layer, starting 5 m above the seafloor. Image shows a geometrical 
average of the selection (-40.89 dB) which will be used to derive the flow rate using the inverse hydroacoustic method. 

 

6.3.2. Spatial flow rate calculations 

Flow rates of each acoustic flare were analyzed using the inverse hydroacoustic method described by 

Veloso et al. (2015; chapter 4). The essential information required are TS mean values obtained from the 

processed EK60 data, BSD obtained from visual observations (Fig. 4.11 and 6.4; McGovern, 2012) and 

BRS models (BRSMs). The inverse method is implemented in the FlareFlowModule GUI and flow 

calculations for each flare of the 11 surveys were done using this tool and the provided seven different 

BRSMs (Mendelson (1967), Woolf and Thorpe (1991), Woolf (1993), Leifer et al. (2000) and Leifer and 

Patro (2002)). Water, gas and environmental constants are detailed in Table 6.2. 
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Figure 6.4. Video footage examples from two bubble streams. These images have been used to define our BSD (Fig. 4.11; 

McGovern, 2012). The image shows the path of the bubbles when they rise. Additionally, the image indicates the presence of 

bacterial mats, which are organisms related to the methane seeps existence. 
 

 

Table 6.2. Water, gas and ambient constants used to evaluate flow rates of acoustic flares using the inverse 
hydroacoustic method. 

 
Constant Average  Unit Value 

Temperature water  C° From CTD profiles (Appendix 3) 

Static pressure at surface Pa 101325 

Water salinity  PSU From CTD profiles (Appendix 3) 

Water density  kg/m3 From CTD profiles (Appendix 3) 

Average sound speed in the water  m/s From CTD profiles (Appendix 3; DelGrosso eq.) 

Water shear viscosity Pa∙s 0.0014 

Water surface tension  N/m  0.074 

Gas density at the surface (CH4)  kg/m3 0.66 

Acceleration of gravity  m/s2 9.8 

Specific heat capacity, CH4 J/(kg∙m3) 2191 

Ratio of specific heat of gas dimensionless 1.4 
 

6.3.3. Temporal flow rate comparison 

As every survey has a unique combination of navigation, heave, pitch and roll data, each survey 

produces a unique insonified area at the seafloor. Even when navigation plans (waypoints) are identical, 

the surveyed/insonified part of the seafloor is slightly different from one survey to the other. Therefore, 

flow rates produced during one survey cannot be directly compared to flow rates of another survey. To 

derive spatio/temporal variations the question is how to interpolate data and assign flux values to a 
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certain area at the seafloor while avoiding over-estimation. Three different comparison methodologies 

are presented below focusing on Area 1 ~200 m bsl (78°38’, 78°40’, 9°20’ 9°30’; Figs. 1.10 and 6.2) and 

Area 2 ~370 m bsl (78°32’, 78°38’, 9°20’ 9°35’; Figs. 1.10 and 6.2). Area 3 was not considered for this 

comparison as it was only insonified during survey S4. 

6.3.4. Gas release variability, Total Average Flux Method (TAF Method) 

For each survey in Areas 1 and 2 the acoustic flares with overlapping footprint at the seabed were 

clustered  and a flow rate was assigned to each cluster (for more detail of the clustering see Veloso et 

al., 2015; chapter 4). To evaluate the spatio/temporal variability of the seafloor gas emission, a mean 

flux was calculated for each area. The mean flux was calculated by normalizing the summation of the 

cluster (or isolated flares) flow rates with the insonified area at the seafloor associated to the detected 

flares (Equation [6.1]). This calculation was done for Area1 and Area 2 separately. 

   
∑     

   
 

  
 

[6.1] 

 

    
    : Flow rate (volumetric or in mass) of i-cluster or i-isolated flare 

   : Area related to the hydroacoustic data with flares within the analyzed area 
   : Mean flux (volumetric or in mass) 

 

Results are shown in Tables 6.3-4 and 6.5-6 as well as in Figs.6.5 and 6.6. Flow rates and flux values have 

been calculated for the different BRSM included in the FlareFlowModule GUI. 

 

Table 6.3. Flow rates and flux values of Area 1 for surveys S1, S2, S3, S4, S7, S8, S9, S10 and S11 using different 

BRSM (M1C: “Leifer” clean; M2C: “Mendelson” clean; M3C: “Leifer & Patro” clean; M1D:”Leifer” clean; M2D: 

“Leifer & Patro” dirty; M3D: “Woolf93”; M4D: “Thorpe 91” dirty). 

 
  BRSM  

 

Survey S1 

Units clean bubble 

 

 

dirty bubble 

 

 

 

  M1C M2C M3C M1D M2D M3D M4D total area 

(m2) 

flow rate (vol) L/min 16.99 21.99 21.73 14.00 17.63 22.00 18.94 152286 

flow rate annual 

(mass) 

T/yr 141.32 182.88 180.76 116.45 146.61 182.99 157.50   

flux area (vol) mL/(min∙m2) 0.11 0.14 0.14 0.09 0.12 0.14 0.12   

flux annual (mass) kg/(yr∙m2) 0.93 1.20 1.19 0.76 0.96 1.20 1.03   

 

Survey S2 

 

          

flow rate (vol) L/min 51.67 66.55 65.77 42.58 53.36 66.60 57.32  206603 
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Table 6.3 (continued) 

flow rate annual 

(mass) 

T/yr 425.33 547.84 541.42 350.48 439.23 548.22 471.83   

flux (vol) mL/(min∙m2) 0.25 0.32 0.32 0.21 0.26 0.32 0.28   

Flux annual (mass) kg/(yr∙m2) 2.06 2.65 2.62 1.70 2.13 2.65 2.28   

 

Survey S3 

 

        

flow rate (vol) L/min 17.64 22.69 22.42 14.53 18.19 22.70 19.54  125661 

flow rate annual 

(mass) 

T/yr 145.89 187.66 185.46 120.22 150.46 187.80 161.64   

flux (vol) mL/(min∙m2) 0.14 0.18 0.18 0.12 0.14 0.18 0.16   

flux annual (mass) kg/(yr∙m2) 1.16 1.49 1.48 0.96 1.20 1.49 1.29   

Survey S4         

flow rate (vol) L/min 17.87 23.11 22.84 14.73 18.53 23.13 19.90 151935 

flow rate annual 

(mass) 

T/yr 150.40 194.52 192.26 123.93 155.94 194.64 167.52   

flux (vol) mL/(min∙m2) 0.12 0.15 0.15 0.10 0.12 0.15 0.13   

flux annual (mass) kg/(yr∙m2) 0.99 1.28 1.27 0.82 1.03 1.28 1.10   

 

Survey S7 

 

        

flow rate (vol) L/min 44.71 57.80 57.13 36.84 46.34 57.84 49.78  237936 

flow rate annual 

(mass) 

T/yr 394.79 510.42 504.48 325.32 409.20 510.74 439.58   

flux (vol) mL/(min∙m2) 0.19 0.24 0.24 0.15 0.19 0.24 0.21   

flux annual (mass) kg/(yr∙m2) 1.66 2.15 2.12 1.37 1.72 2.15 1.85   

 

Survey S8 

 

        

flow rate (vol) L/min 29.47 38.19 37.74 24.29 30.61 38.21 32.89  180101 

flow rate annual 

(mass) 

T/yr 277.37 359.57 355.41 228.56 288.25 359.78 309.67   

flux (vol) mL/(min∙m2) 0.16 0.21 0.21 0.13 0.17 0.21 0.18   

flux annual (mass) kg/(yr∙m2) 1.54 2.00 1.97 1.27 1.60 2.00 1.72   

 

Survey S9 

 

        

flow rate (vol) L/min 29.52 37.68 37.23 24.33 30.22 37.71 32.46 177399 

flow rate annual 

(mass) 

T/yr 276.78 354.13 349.93 228.07 283.96 354.42 305.06   

flux (vol) mL/(min∙m2) 0.17 0.21 0.21 0.14 0.17 0.21 0.18   

flux annual (mass) kg/(yr∙m2) 1.56 2.00 1.97 1.29 1.60 2.00 1.72   

 

Survey S10 

 

        

flow rate (vol) L/min 25.32 32.66 32.28 20.87 26.18 32.68 28.13  112258 

flow rate annual 

(mass) 

T/yr 210.53 271.51 268.35 173.48 217.68 271.70 233.87   
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Table 6.3 (continued) 

flux (vol) mL/(min∙m2) 0.23 0.29 0.29 0.19 0.23 0.29 0.25   

flux annual (mass) kg/(yr∙m2) 1.88 2.42 2.39 1.55 1.94 2.42 2.08   

 

Survey S11 

 

        

flow rate (vol) L/min 15.32 19.58 19.35 12.63 15.70 19.60 16.87  67981 

flow rate annual 

(mass) 

T/yr 127.85 163.36 161.42 105.35 130.99 163.50 140.73   

flux (vol) mL/(min∙m2) 0.23 0.29 0.28 0.19 0.23 0.29 0.25   

flux annual (mass) kg/(yr∙m2) 1.88 2.40 2.37 1.55 1.93 2.41 2.07   

 

Table 6.4. Mean values, standard deviation and relative error of all nine surveys, separately averaged for clean and 
dirty BRSs for Area 1 (Table 6.3). 

 Clean bubble models 

Surveys S1 S2 S3 S4 S7 S8 S9 S10 S11 

Mean 
flux[kg/(yr∙m

2
)] 

1.105 2.444 1.377 1.179 1.975 1.837 1.843 2.228 2.219 

Stdev 0.154 0.334 0.187 0.164 0.274 0.257 0.245 0.306 0.294 

Average relative 
error ; BRSM 

~ ±10 % 

 Dirty bubble models 

Mean 
flux[kg/(yr∙m

2
)] 

0.991 2.190 1.234 1.056 1.770 1.647 1.651 1.997 1.988 

Stdev 0.181 0.396 0.223 0.193 0.323 0.302 0.295 0.362 0.354 

Average relative 
error ; BRSM 

~ ±12 % 

 

 
Figure 6.5. Flux changes for Area 1 during nine surveys (surveys S5 and S6 did not investigate this area). 
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Fig.6.5 shows how the flux changed between 2008 (S1) and 2014 (S11). Flux values derived from 

different rising speed models vary in the same range as the temporal fluctuations themselves (about 1 

kg CH4 m
-2yr-1). Flux values ranging from 0.75 to 2.6 kg CH4 m

-2yr-1 point towards a moderate variability. 

Tables 6.5 and 6.6 show the flux variability in Area 2 at the slope of PKF. Fig. 6.6 depicts the change over 

time of the mean fluxes at Area 2 with similar fluxes as in Area 1. In contrast, the flux peaks between 

October 2013 and August 2014 with higher values as the maximum flux in Area 1. 

Table 6.5. Estimated flow rates and fluxes of Area 2 for surveys S1, S2, S3, S4, S5, S6, S7, S8 and S9 using different 
BRSM (M1C: “Leifer” clean; M2C: “Mendelson” clean; M3C: “Leifer & Patro” clean; M1D:”Leifer” clean; M2D: 
“Leifer & Patro” dirty; M3D: “Woolf93”; M4D: “Thorpe 91” dirty). 

 

  BRSM  

 Survey S1  Units Clean bubble 

 

Dirty bubble 

 

 

 

 

 

 M1C M2C M3C M1D M2D M3D M4D Total area (m2) 

flow rate  (vol) L/min 24.27 31.39 31.03 20.003 25.17 31.4173 27.03 202163 

flow rate 

annual (mass) 

T/yr 229.39 297.21 293.77 189.00 238.26 297.38 255.94   

flux (vol) mL/(min∙m2) 0.12 0.15 0.15 0.09 0.12 0.15 0.13   

Flux annual 

(mass) 

kg/(yr∙m2) 1.13 1.47 1.45 0.93 1.17 1.47 1.26   

Survey  S2        

flow rate (vol): L/min 21.74 28.07 27.74 17.91 22.50 28.09 24.18  233105 

flow rate 

annual (mass) 

T/yr 217.67 280.95 277.67 179.36 225.24 281.14 241.97   

flux (vol) mL/(min∙m2) 0.09 0.12 0.11 0.076 0.09 0.12 0.10   

flux annual 

(mass) 

kg/(yr∙m2) 0.93 1.20 1.19 0.76 0.96 1.20 1.03   

 

Survey S3 

 

       

flow rate (vol) L/min 26.17 33.97 33.58 21.56 27.23 33.99 29.26  423938 

flow rate 

annual (mass) 

T/yr 338.06 438.87 433.81 278.57 351.81 439.11 377.96   

flux area (vol) mL/(min∙m2) 0.06 0.08 0.07 0.05 0.06 0.08 0.06   

flux annual 

(mass) 

kg/(yr∙m2) 0.79 1.03 1.02 0.65 0.82 1.03 0.89   

 

Survey S4 

 

       

flow rate (vol) L/min 52.40 68.18 67.40 43.18 54.65 68.21 58.71  342149 

flow rate 

annual (mass) 

T/yr 687.54 894.74 884.45 566.55 717.20 895.17 770.45   

flux area (vol) mL/(min∙m2) 0.15 0.19 0.19 0.12 0.15 0.19 0.17   

flux annual 

(mass) 

kg/(yr∙m2) 2.00 2.61 2.58 1.65 2.09 2.61 2.25   
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Table 6.5 (continued) 

Survey S5 

 

       

flow rate (vol) L/min 59.43 77.36 76.48 48.97 62.01 77.40 66.62  337486 

flow rate 

annual (mass) 

T/yr 784.89 1021.91 1010.17 646.77 819.138 1022.4 879.96   

flux (vol) mL/(min∙m2) 0.17 0.22 0.22 0.14 0.18 0.22 0.19   

flux annual 

(mass) 

kg/(yr∙m2) 2.32 3.0 2.99 1.91 2.42 3.02 2.60   

 

Survey S6 

 

       

flow rate (vol) L/min 59.03 76.82 75.94 48.64 61.58 76.86 66.15  326863 

flow rate 

annual (mass) 

T/yr 775.72 1009.72 998.12 639.21 809.37 1010.21 869.46   

flux (vol) mL/(min∙m2) 0.18 0.23 0.23 0.14 0.18 0.23 0.20   

flux annual 

(mass) 

kg/(yr∙m2) 2.37 3.08 3.05 1.95 2.47 3.09 2.66   

 

Survey S7 

 

       

flow rate (vol) L/min 34.36 44.26 43.74 28.31 35.48 44.29 38.12  214762 

flow rate 

annual (mass) 

T/yr 362.14 465.96 460.49 298.41 373.5941 466.29 401.35   

flux (vol) mL/(min∙m2) 0.16 0.20 0.20 0.13 0.16 0.20 0.17   

flux annual 

(mass) 

kg/(yr∙m2) 1.68 2.16 2.14 1.38 1.73 2.17 1.86   

 

Survey S8 

 

       

flow rate (vol) L/min 40.08 52.14 51.54 33.02 41.79 52.17 44.90  307272 

flow rate 

annual (mass) 

T/yr 503.43 655.08 647.55 414.83 525.10 655.40 564.11   

flux (vol) mL/(min∙m2) 0.13 0.16 0.16 0.10 0.13 0.16 0.14   

flux annual 

(mass) 

kg/(yr∙m2) 1.63 2.13 2.10 1.35 1.70 2.13 1.83   

 

Survey S9 

 

        

flow rate (vol) L/min 23.26 29.78 29.43 19.16 23.88 29.80 25.65  345878 

flow rate 

annual (mass) 

T/yr 295.41 378.17 373.70 243.42 303.24 378.49 325.76   

flux (vol) mL/(min∙m2) 0.06 0.08 0.08 0.05 0.06 0.08 0.07   

flux annual 

(mass) 

kg/(yr∙m2) 0.85 1.09 1.08 0.70 0.876 1.09 0.94   

 

Table 6.6. Mean values, standard deviation and relative error of all nine surveys, separately averaged for clean and 
dirty BRSs for Area 2 (Table 6.5). 

 Clean bubble models 

Surveys S1 S2 S3 S4 S5 S6 S7 S8 S9 

Mean flux[kg/(yr∙m
2
)] 1.353 1.110 0.952 2.403 2.782 2.839 2.000 1.959 1.009 
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Table 6.6(continued)          

Stdev 0.189 0.153 0.134 0.341 0.396 0.403 0.272 0.278 0.135 

Average relative error; 
BRSM 

~ ±10 % 

 Dirty bubble models 

Mean flux[kg/(yr∙m
2
)] 1.213 0.995 0.854 2.155 2.495 2.546 1.792 1.757 0.904 

Stdev 0.222 0.181 0.157 0.398 0.461 0.470 0.324 0.324 0.162 

Average relative error; 
BRSM 

~ ±12 % 

 

 
Figure 6.6. Average flux values versus survey date (Area 2) obtained with first comparison method using different BRSM 
(surveys S10 and S11 did not investigate this area). 

 

6.3.5. Gas release variability, Common Area Comparison Method (CAC method) 

The second approach used to evaluate gas release changes over time was comparing common areas 

that have been mapped during different surveys (Figs. 6.7 and 6.8). This was done by clustering the 

processed flares within a survey in the same way as described for the TAF method in chapter 4 (section 

4.4.3.2) Subsequently, positions of all the clusters were gridded in Matlab using a cell size of 1x1 m and a 

flux value was assigned to each cell. This value was the mean flux of the cluster (mean value of fluxes 

from flares that belong to a cluster; equation 4.18) of which the specific cell is part of. The so generated 

data sets were exported as ASCII files (x, y, flux value) and used for the following comparison.  

Common areas between surveys were derived by generating binary matrices with GMT, using the xyz 

coordinates of the ASCII files and gridding them using the blockmean and nearneighbor commands of 

GMT (cell size= 1 m, search radius = 50 m; fixed z values of 0 and 1 with 1 = cells with a flux value). A 

second matrix of the same area and grid size is created holding median flux values per cell (cell size 1m, 
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z=flux) again using the blockmedian and nearneighbor commands of GMT. This process was done for all 

the surveys. For defining the common areas between N surveys, the binary matrices were multiplied 

(GMT command gridmath operator MUL) resulting in a new binary matrix with cell values of one only 

where all surveys showed gas release. Following, the gridded flux matrices of each survey are multiplied 

with the binary matrix resulting in a comparison binary flux matrix of the common areas. The 

representative flux (QRF) and the flow rate (   ) of all common areas are calculated with equation 6.2 

and 6.3 respectively. 

 
Figure 6.7. Maps of flare clusters at Area 1. The colors of the map shows how many times flare clusters from different surveys 

overlap. From 9 surveys (S1, S2, S3, S4, S7, S8, S9, S10, S11) the maximum overlap obtained was 8 times. 
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Figure 6.8. Maps of flare clusters at Area 2. The colors of the map shows how many times flare clusters from different surveys 
overlap. From 9 surveys (S1, S2, S3, S4, S5, S6, S7, S8, S9) the maximum overlap obtained was 5 times. 
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[6.3] 

 

Where, 

     : Flux at the i, j grid 

   : Number of cells with flux values 

   : Horizontal cell size 

   : Vertical cell size 

    : Approximated representative flux (mean flux) of common area 

    : Representative flow rate of common area 

 

Results of these comparisons are detailed in Tables 6.7 and 6.8, and illustrated in Figs. 6.9 and 6.10, 

respectively. For Area 1 we found 29 common areas which have been mapped by up to 6 surveys; for 

Area 2 a total of 35 common areas could be identified again with up to 6 surveys covering the same 

area. 

Table 6.7. Results using the second comparison method for Area 1. Fluxes are detailed for different surveys 

involved in the common area combination. Here, a total of 29 combinations are shown. At the end of the 

table average flux values, standard deviation and relative errors per each survey are detailed. 

 S1 S2 S3 S4 S7 S8 S9 S10 S11 Common 
area (m

2
) 

Flux [Kg/(yr∙m
2
)]  7.16 1.67  2.96  7.61 2.89  5284 

 9.39 3.80     6.19 2.41 9156 

1.15 8.02 3.33 4.06    6.80 4.05 8 

 7.11   3.23     140924 

 7.30   3.47 2.84 7.20   19512 

    5.31 6.04 8.45 4.99 2.91 4916 

 7.50    2.54 7.05   28708 

 7.88      3.76  82248 

 4.06      3.59 1.64 59612 

 7.42  1.97 2.85     6708 

    3.21 2.22 6.82   31588 

     1.92 6.59   48960 

       3.59 1.64 59612 



                                                              Spatial and temporal variability of free gas emission offshore Svalbard 

175 

Table 6.7. (continued) 

Flux [Kg/(yr∙m
2
)] 1.83 8.78 3.11    6.84 3.15  2868 

1.65 8.26 3.20  3.08 3.81    68 

1.34 10.09 3.57  5.48 3.59  6.34  1740 

2.34 8.97 3.81  4.62 3.41 6.10  6.10 1684 

1.40 8.45 3.35  3.97  7.36 3.37  2640 

1.22  3.72  5.35  7.74  1.83 1328 

2.88 7.98 3.67  3.62   4.52  5412 

2.85 8.25 3.91     4.94 1.93 2956 

1.76 7.16   2.96  7.61 2.89  5284 

2.32 7.47      3.48 1.91 9096 

1.28  3.12  3.78  7.25 3.49  3152 

2.19       3.24 1.66 15260 

   1.49 2.61     15816 

   2.35 2.76 3.22    3564 

   2.07  2.16    7056 

   2.05   7.68   5912 

1.86 7.84 3.35 2.33 3.70 3.17 7.25 4.20 2.60  

0.60 1.25 0.60 0.88 0.97 1.19 0.59 1.28 1.44  

26.99 10.75 11.67 24.90 21.22 24.92 6.30 25.48 40.21  

 

 
Figure 6.9. Results of common areas fluxes from Area 1 calculated with ‘Leifer’, clean bubble ‘BRSM at different surveys. The 

results are shown for the multiple combinations between surveys carried out to obtain different common areas. 
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Table 6.8. Results using the second comparison method for Area 2. Fluxes are detailed for different surveys 
involved in the common area combination. Here, a total of 35 combinations are shown. At the end of the table 
average flux values, standard deviation and relative errors per each survey are detailed. 
 S1 S2 S3 S4 S5 S6 S7 S8 S9 Common area (m

2
) 

Flux Kg/(yr∙m
2
)   0.57 1.45 1.27 0.23  0.46 3.32 20 

 0.39 0.53       6724 

 0.39       2.70 15052 

  0.63    1.86   16828 

  0.86    0.83 5.23 1.51 148 

  0.58     1.01 3.02 10568 

  0.53      1.54 138064 

  0.57 4.03      86816 

  0.63 5.94    1.36  7744 

  0.57 1.54    0.76 2.74 1608 

  0.52 2.98     2.08 21992 

  0.59 5.14 2.37     8628 

  0.62 1.26 1.44   1.56  772 

  0.57 1.45 1.27 0.23  0.46  216 

  0.57 1.45 1.27 0.23   3.32 684 

  0.57 1.45  0.23  0.46  216 

  0.59  1.59     34656 

  0.57  1.27 0.23  0.46  228 

       1.54 3.23 54400 

1.16  0.58       6396 

0.84  0.59      3.74 1684 

1.18  0.58 10.70      1776 

0.85  0.59 17.63     3.74 1032 

   6.34    1.91 3.63 11580 

   13.09 1.39 0.64  0.51  1760 

   1.44 1.35 0.35   3.42 992 

 0.31     0.44   16 

      0.89 0.51 0.59 21148 

   9.70   5.17   18248 

   10.68   2.13 1.79  6824 

   5.01   0.53 1.59 3.89 1488 

   6.79   0.75  3.85 4484 

   3.16 2.02  0.29   412 

    1.20  1.33   4444 

     0.77 2.55   4264 

Mean 1.00 0.35 0.59 5.77 1.50 0.36 1.52 1.30 2.86  

Stdev 0.18 0.04 0.06 4.63 0.37 0.21 1.41 1.21 0.97  

Relative error 
(%); mean 

15.92 27.95 6.20 136.56 18.51 47.44 66.87 59.28 27.39  
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Figure 6.10. Results of common areas fluxes from Area 2 calculated with ‘Leifer, clean bubble’ BRSM at different surveys. The 
results are shown for the multiple combinations between surveys carried out to obtain different common areas. 

 

6.3.7. Gas release variability, Cell by Cell Comparison Method (CCC method) 

An alternative method proposed to evaluate the spatio/temporal changes is the direct comparison of 

each grid cell for the common area fluxes between different surveys. The CCC method uses the 

interpolated flux values of the common areas obtained for the CAC method (cell size of 1x1 m).  Unlike 

the other methods, this comparison allows to observe temporal changes in the spatial distribution of the 

gas seepage intensity (or flux strength). The method is applied for survey combinations that present 

spatial overlapping among the hydroacoustic data of flares. Here, the CCC method is applied to two 

survey combinations and the flux results (using the Leifer “clean” BRSM) from the common areas are 

graphically presented in Figs. 6.11 and 6.12. The first example (Fig. 6.11) shows the temporal flux 

variability at Area 1 for 717 cells that belong to a common area of 5 surveys (S1, S2, S3, S9 and S10).  The 

second example (Fig.6.12) shows the gas release changes of 372 common-area cells at Area 2 including 4 

surveys (S4, S7, S8 and S9). As shown the common areas can be subdivided in clusters of neighboring 

cells. In both examples cell clusters are illustrated in different colors. The sizes of these clusters are 

generally comparable to the sizes of the echosounder footprint. Additionally, both figures display the 

results coming from the TAF and CAC method for the respective surveys involved. Here, the CCC method 

is only applied to some examples of common areas to only illustrate how the flux-strength and spatial 

distribution is temporally changing. Not all common areas and possible comparisons are shown. 
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Figure 6.11. Flux results obtained by using CCC method in common area resulting from the combination of S1, S2, S3, S9 and 
S10. The image represents the flux variability of 717 cells (1x1 m size) in time a) Map of total common area. Sub-areas are 
grouped according their position and displayed in different colors. b) Flux values of cells at different survey time.  Curve colors 
are associated to the location of the sub-groups indicated in (a). Additionally, flux results from TAF and CAC method are 
illustrated for comparison. 
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Figure 6.12. Flux results obtained by using GGC method in common area resulting from the combination of S4, S7, S8 and S9. 
The image represents the flux variability of 372 cells (1x1 m size) in time. a) Map of total common area. Sub-areas are grouped 
according their position and displayed in different colors. b) Flux values of cells at different survey time.  Curve colors are 
associated to the location of the sub-groups indicated in (a). Additionally, flux results from TAF and CAC method are illustrated 
for comparison. 

 

6.3.8. Total flow rate and flux 

A total flow rate was calculated by merging the hydroacoustic information of the entire set of flares 

detected during the 11 surveys. Flares located within a certain area (area Fig.6.2) were clustered when 

their footprints overlapped. Cluster flow rates were derived using the same procedure explained in 

section 4.4.3.2. Finally, total flow rates were calculated by the summation of the clusters (or isolated 

flares) flow rate. Results are detailed for the different BRSMs in Table 6.9.  Additionally, flow rates and 

fluxes were calculated separately for Area 1, Area 2 and Area 3 (Fig. 6.2). 
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Table 6.9. Total volumetric flux and flow rate of methane calculated using merged hydroacoustic information of  
area from Fig.6.2 (78°28’ N, 78°42 N; 9° 15’ E, 10° 20’ E ) using different BRSM (M1C: “Leifer” clean; M2C: 
“Mendelson” clean; M3C: “Leifer & Patro” clean; M1D:”Leifer” clean; M2D: “Leifer & Patro” dirty; M3D: 
“Woolf93”; M4D: “Thorpe 91” dirty). 
 
 Clean bubble models Dirty bubble models 

Total area (Fig. 6.2) M1C M2C M3C M1D M2D M3D M4D 

Flow rate vol (L/min) 305.65 395.06 390.47 251.86 316.72 395.31 340.24 
Flow rate mass (T/yr) 3141.03 4063.72 4016.52 2588.28 3257.80 4066.20 3499.78 
Flux vol (L/min*m

2
) 0.13 0.17 0.17 0.11 0.14 0.17 0.15 

Flux vol (T/yr*m
2
) 1.40 1.81 1.79 1.15 1.45 1.81 1.56 

Area with acoustic data [m
2
] 2241772 

Mean annual flow rate [T/yr] 3740.42 3499.78 
Standard deviation Flow rate BRSM [T/yr] 519.62 612.11 
Mean relative error Flow rate BRSM [%] ± ~ 10 ± ~ 12 
Area 1 M1C M2C M3C M1D M2D M3D M4D 

Flow rate vol (L/min) 122.96 158.28 156.43 101.32 126.91 158.40 136.33 

Flow rate mass (T/yr) 1032.03 1328.57 1313.00 850.41 1065.19 1329.51 1144.31 

Flux vol (L/min*m
2
) 0.19 0.24 0.24 0.16 0.20 0.25 0.21 

Flux vol (T/yr*m
2
) 1.60 2.06 2.03 1.32 1.65 2.06 1.77 

Area with acoustic data [m
2
] 646234 

Mean annual flow rate [T/yr] 1224.53 1097.35 

Standard deviation Flow rate BRSM [T/yr] 166.89 198.42 

Mean relative error Flow rate BRSM [%] ± ~ 10 ± ~ 12 

Area 2 M1C M2C M3C M1D M2D M3D M4D 

Flow rate vol (L/min) 150.49 195.18 192.92 124.01 156.46 195.28 168.08 

Flow rate mass (T/yr) 1949.25 2528.28 2499.05 1606.23 2026.77 2529.69 2177.31 

Flux vol (L/min*m
2
) 0.10 0.13 0.13 0.08 0.11 0.13 0.11 

Flux vol (T/yr*m
2
) 1.33 1.72 1.70 1.10 1.38 1.72 1.48 

Area with acoustic data [m
2
] 1466867 

Mean annual flow rate [T/yr] 2325.53 2085.00 

Standard deviation Flow rate BRSM [T/yr] 326.19 382.48 

Mean relative error Flow rate BRSM [%] ± ~ 10 ± ~ 12 

Area 3 M1C M2C M3C M1D M2D M3D M4D 

Flow rate vol (L/min) 60.80 78.53 77.62 50.10 62.96 78.58 67.64 

Flow rate mass (T/yr) 555.96 718.50 710.14 458.12 576.02 718.95 618.82 

Flux vol (L/min*m
2
) 0.12 0.15 0.15 0.10 0.12 0.15 0.13 

Flux vol (T/yr*m
2
) 1.10 1.42 1.40 0.90 1.14 1.42 1.22 

Area with acoustic data [m
2
] 507447 

Mean annual flow rate [T/yr] 661.53 592.98 

Standard deviation Flow rate BRSM [T/yr] 126.21 108.03 

Mean relative error Flow rate BRSM [%] ± ~ 10 ± ~ 12 
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6.4. Discussion 

6.4.1. Data analyses 

6.4.1.1. Temporal variability  

Our analysis cover results obtained from the TAF and CAC method (Fig. 6.13). Results from the CCC 

method are not considered in this method comparison because they do not cover all surveys. Results 

obtained with both, the TAF and CAC method from Area 1 seem to be moderately correlated (linear 

correlation; r2 = 0.59). The comparison of both methods shows different flux magnitudes for all the 

surveys at Area 1 with the CAC method giving higher values. For Area 2, results obtained with the two 

methods do not correlate (r2 = 0.19). On the other hand, flux magnitudes obtained with the two 

methods show very similar values for some surveys (S1, S3, S7 and S8).  

 
Figure 6.13. Graphical comparison of mass flux results obtained from with TAF and CAC method for Area 1 (a) and Area 2 (b). 
Results correspond to the fluxes obtained with the Leifer “clean” BRSM. The comparison is done for surveys containing flare-
hydroacoustic data at the respective areas. Flux results that represent the CAC method are the respective average QRF values at 
each survey (see also Figs. 6.9 and 6.10). 

 
It is clear that flux results obtained with the two different methods show a mismatch (Fig.6.13) and 

logically, raising the question which one of the two methods better represents the  gas release in the 

study area? According to the possible errors that each method can produce, the conclusion is that the 

TAF method could introduce a larger error. The reason is that hydroacoustic data of flares from different 

surveys do not come always from the same insonified area at the seafloor. One specific survey could 

cover a larger amount of hot spots (seep sites with higher flow rates) than other surveys; therefore 

comparing total mean fluxes from both of them would be not appropriate. It has been shown that 

seepage intensity (or strength) spatially changes over the study area (see acoustic map Fig. 4.14) and 

therefore the TAF method is not able to represent the gas flux realistically by using a mean flux value 

(QC). Nevertheless, the TAF method seems to be an acceptable tool to visualize substantial changes in 

gas emission over time. On the other hand, the CAC method provides a localized comparison using 

common areas where flare information associated to the same area of each survey exist. Thus, results 

obtained from the CAC method (QRF) are more reliable in terms of flux comparison. In contrast, QRF 

values do not represent the gas emission of the entire area because these fluxes are associated to the 

much smaller common area. An argument that supports the use of a QRF value is that most survey-
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related fluxes obtained from different overlapping hydroacoustic data (different survey combinations) 

show a tendency to be grouped around the mean QRF value (see Figs. 6.9 and 6.10; see standard 

deviation Figs. 6.14 and 6.15). From this it could be concluded wrongly that the area is homogeneously 

seeping gas; other acoustic maps show that this is not the case (Fig. 4.14). Therefore the tendency of 

flux values around the mean QRF value is interpreted as a result of the similarities in fluxes from common 

areas that are relatively close to each other or even overlap.  

Results from Area 1 (Fig. 6.14) show that the mean flux from the common area method varies between 

2 and 8 kg CH4 yr-1 m-2; the standard deviation is relatively moderate (0.6 to 1.4 kg CH4 yr-1 m-2). The 

variations illustrate that flux values fluctuate around a mean value of ~3 kg CH4 yr-1 m-2 except for 

surveys S2 and S9 that show higher values. A moderate correlation between the average bottom water 

temperatures and fluxes has been observed (r2: 0.55).  

 
Figure 6.14. Temporal variability of the average QRF value (CAC method; Leifer “clean” BRSM) and water associated average 
water bottom temperature at Area 1. Additionally, the figure illustrates minimum, maximum and standard deviation size. 

 
Mean flux results from Area 2 (Fig. 6.15) show values between 0.35 and 5.7 kg CH4 yr-1 m-2 with a mean 

value of 1.7 kg CH4 yr-1 m-2. A peak in flux magnitude is observed for survey S4 accompanied with a 

higher standard deviation for QRF values obtained from common areas resulting from different survey 

combinations. The high standard deviation as a consequence of very different fluxes indicates that the 

common areas of survey S4 could be spatially separated from each other.   

 



                                                              Spatial and temporal variability of free gas emission offshore Svalbard 

183 

Unlike the calculated fluxes for S4, all other QRF values show a moderate standard deviation. Because of 

that, the correlation between temperature and fluxes was done without the S4 data and results show a 

moderate correlation of r2 0.679.  

 
Figure 6.15. Temporal variability of the average QRF value (CAC method; Leifer “clean” BRSM) and water associated average 
water bottom temperature at Area 2. The figure includes minimum, maximum and a representative length of standard 
deviation. 

 
For interpreting the results it is necessary to have a clear understanding about why methane release 

could change in time. We grouped the possible reasons according to the time scales on which they most 

likely occur. 

 In general, gas release from seep site could be affected by changes of the hydrostatic pressure over 

the bubble outlet (the water depth). On short time scales gas release could thus be affected by 

pressure changes originated by e.g. tidal cycles or changing bottom currents. The influence of tidal 

cycles and currents over gas vents fluxes has been reported e.g. Boles et al. (2001), Joyce and 

Jewell, (2003) or Schneider von Deimling et al. (2010). Because our results are just ‘snapshots’ of 

gas release, it cannot be discarded that hydroacoustic flare data were acquired at times when the 

observed gas vents were under the influence of different static pressure. As such, the observed flux 

differences could be just a response of short term variability of ambient conditions and not 

originate from long term process such as gas hydrate destabilization induced by anthropogenic 

warming. It has been reported that the area is strongly affected by currents (Graves et al., 2015; 

Steinle et al., 2015) but it is unknown how strong their influence is on the gas bubble release. An 

influence of tidal cycles and currents in our results cannot be discarded. In order to visualize such 

influences on hour to week time scales it is necessary that observatories constantly monitor the gas 

release at the seafloor e. g. hydroacoustically (e.g. Greinert, 2008) or visually(e.g. Römer et al., 
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2012b; Sauter et al., 2006)and that environmental conditions (static pressure, direction and 

magnitude of currents) are recorded as well. 

 Results published by Berndt et al. (2014) indicate that seasonal temperature changes could have an 

influence in the methane released from Area 2 because of a seasonal migration of the TGHZ. At the 

same time flow rates at Area 1 could be influenced if both areas are sedimentologically connected 

allowing the migration of gas from Area 2 into Area 1. At Area 2, changes in gas flow rates would be 

expected to be associated to the seasonal formation and dissociation of shallow gas hydrates in the 

upper part of the sediment where the TGHZ seasonally migrates. The rate of already dissociating 

hydrates could be accelerated by the seasonal increase of temperature and therefore increase  gas 

flow rates. Results show a moderate correlation between fluxes and temperature at Area 2 (Fig. 

6.15). For both, Area 1 and Area 2, this moderate correlation does not allow to argue for a clear link 

between methane bubble release and seasonal changes in temperature. Again, a continuous 

observation e.g. carried out with a sideward-looking hydroacoustic observatory like GasQuant 

(Greinert 2008) would be appropriate to give more conclusive answers. To evaluate if there is any 

sub-seafloor connection between Area 1 and Area 2, mean QRF values from both areas need to be 

compared (Fig. 16). It becomes clear that Area 1 shows a higher release intensity (or flux) than Area 

2 for the common areas. This should not be misinterpreted with the fact that Area 2 releases more 

gas than Area 1 because of its higher abundance of seeps (Table 6.9). A second observation is that 

increasing fluxes in Area 1 are accompanied by decreasing fluxes in Area 2 for surveys S1, S2, S3, S4 

and S7. This highlights the possibility that both areas share the same gas source that either releases 

gas in Area 1 or Area 2. A probable explanation of the gas release alternation would be the 

existence of migration pathways that are blocked and opened maybe together with changes of the 

TGHZ. Migration pathways could become temporally permeable allowing gas to escape “earlier” in 

Area 2 closer to the TGHZ.  

 

 
Figure 6.16. Graphical comparison of average QRF values between Area 1 and Area 2 for surveys containing flare-hydroacoustic 
information from both areas. 
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 For both Areas no increase or decrease trend in fluxes is visible over the 6 years of observation. It 

can be assumed that some of the processes that control the gas release (e.g. TGHZ long-term 

migration, average annual temperatures, tectonic changes processes) probably did change during 

the years of the surveys but not significantly. In addition it can be concluded that the source(s) of 

the seeping gas are not being depleted. Because shallow hydrates are sensitive to bottom water 

temperature changes, a much longer record (decades) is needed to see if and how increasing global 

temperature changes the bottom water around Svalbard and how this really influences the gas 

release at the TGHZ. At the same time, a long term observation could also reveal how increasing 

global temperatures could affect the methanogenesis in the deep and surface sediments. 

 

CCC method results 

The results of the CCC method (Figs. 6.11 and 6.12) are useful to illustrate how gas seepage intensity 

changes across the study area.  This method is highly recommended for future spatio/temporal analysis 

of gas release when larger common areas with flare-related hydroacoustic information exist. 

Unfortunately this is not the case for our data set. The results also show that in most grid cells used for 

the comparison, independently of the absolute magnitude, fluxes follow a common increase/decrease 

pattern which correlates very well with CAC results. From this observation it can be deduced that the 

flux-strength spatial distribution does not change considerably through time. Some of the cells that 

belong to the spatial domain of the flare common areas show different flux variations and cannot be 

represented with an average pattern. A possible explanation is that some gas vents are intermittently 

active as a consequence of the formation/dissociation of shallow gas hydrates. This scenario has already 

been postulated for the PKF seep site area (Berndt et al., 2014). In order to proof the link between 

spatially different distribution fluxes and gas hydrate formation/dissociation again, a continuous 

hydroacoustic monitoring is required utilizing the capabilities of a permanent hydroacoustic 

observatory. 

6.4.1.2. Spatial variability 

No clear sign of bubble source displacements has been observed in the entire region. At Area 1, this 

observation supports the hypothesis that methane (free and dissolved gas) is coming from deep sources 

and migrates along a defined permeable pathway beneath an impermeable glacigenic debris flow (Rajan 

et al., 2012; Sarkar et al., 2012). At Area 2, no clear downward migration of the gas seepage associated 

with changes of the TGHZ could be found. However, the used data set is not sufficient enough to detect 

a gradual migration of the seepage locations over long-term because of the not complete hydroacoustic 

coverage of the seep site area and the lack of precision to visualize small spatial changes. Westbrook et 

al. (2009) hypothesized that a downward migration of the TGHZ was triggered by a 1°C increase of the 

bottom water temperature over ~30 years. Sarkar et al., (2012) modeled the migration of the TGHZ in 

response to the 1°C temperature variation and obtained a displacement from 370 to 410 m bsl. Our data 

cover only 7 years (2008-2014) which is considered a short period to detect a possible gradual migration 

of seepage linked to the gas hydrate destabilization. To prove or disprove a possible downward 

displacement again long term monitoring is recommended, in order to obtain comparable information; 
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acoustic surveys should be done during the same season and the areas insonified during each survey 

should be the same. To advance such an approach it is recommended to also use MBES information to 

have a complete coverage of the gassing seep sites in the mapped area. Additionally, MBESs give better 

resolution because of the smaller beam width (usually < 2°) when compared to common SBESs (normally 

~7°). Annual complete mapping of the area with a multibeam system would allow a much better 

identification of potential seep migration at the seafloor. With parallel running SBES for flow rate 

quantifications and their link to the backscatter data of MBES systems, spatial changes could be rather 

exactly detected and quantified. Then, a new challenge could be the calibration of MBES using SBES. 

Influences of seasonal temperature in the spatial migration of the TGHZ also need to be considered; an 

area that was not seeping at a certain time of the year could release gas in a warmer period due to 

seasonal formation and dissociation of shallow gas hydrates. In this respect, the evaluation of long term 

changes of gas release in a specific area using the comparison of annual fluxes should be carried out 

with hydroacoustic information acquired during the same season (ideally the late same months when 

bottom water and increased bottom water temperatures could migrate into the seabed. During the 

acquisition of the hydroacoustic surveys described in this thesis, this point could not be considered as 

data where acquired on cruises of opportunity.  

6.4.1.3. Total flow rate 

Comprehensive hydroacoustic information can reveal how much gas is being released into the water 

column. In the presented work the total flow rates range from ca. 2500 to ca. 4000 T CH4 yr-1 for the 

entire region (region Fig. 6.2), assuming a continuous release of bubbles of 100% methane. For Area 1, 

Area 2, and Area 3 separately calculated flow rates are between 850 - 1300 T CH4 yr-1, 1600 - 2500 T CH4 

yr-1and 450 - 700 T CH4 yr-1, respectively. 

The results can be compared with results obtained in other studies of similar/the same seep areas 

(Table 6.10). A first comparison can be done with results published by Veloso et al. (2015; chapter 4) 

using the same hydroacoustic inverse method for calculating fluxes for a sub-area of Area 1. Differences 

in flow rates (~400-600 T CH4 yr-1; see Table 6.10) are attributed to the different area sizes and the 

higher number of hydroacoustic data sets (9 merged surveys) compared to only two surveys used by 

Veloso et al. (2015). A larger hydroacoustic dataset most likely has a wider coverage at the seafloor and 

seeps that were not mapped before can be included in the estimate.  Therefore it can be expected that 

results given by this comprehensive data set better represent the amount of methane released at the 

study area than the previous calculations by Veloso et al. (2015). It is necessary to highlight that large 

errors can be introduced in flow rate estimations if the accuracy in acoustic flare positioning is low. A 

wrong positioning of acoustic flares could lead to flow rate overestimation as the same seep site could 

be multiple times considered in the flow rate calculation if its detected locations do not overlap. An 

additional error in our calculations is the possible transient formation of bubble vents e.g. due to 

changes of static pressure over the gas outlets. This temporal variability of gas bubble emissions on 

short time scale is neglected when the hydroacoustic information from different surveys is combined. 

Flow rate values presented here can also be compared with results by Sahling et al. (2014) for the same 

study area; they used a combination of optical and acoustical observations to estimate flow rates 
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(Sahling et al. 2014 call flow rates flux in their paper). Their results are given for Area 2 and Area 3, 

which are regions comparable to Area 1 and Area 2 in this study. The here presented flow rates (~1075 T 

CH4 yr-1 for Area 1 and ~2050 T CH4 yr-1 for Area 2) are higher than the mean values of 433 T CH4 yr-1 and 

417 T CH4 yr-1 obtained by Sahling et al. (2014). Despite that the mean flow rate in Area 1 is different to 

the obtained by Sahling et al. (2014), the value is still inside their uncertainty range. Differences can be 

attributed to the amount of hydroacoustic information related to gas release used to derive flow rates in 

both studies. While detected flares by Sahling et al., (2014) were acquired with a MBES, which has 

higher resolution than SBES, their data collection represents the release of just one survey. Methane 

seeps that are intermittent in time could not be considered in their quantification approach. Differences 

can also be a consequence of the extrapolation of flow rates from localized observations to the entire 

area. Total flow rates given by Sahling et al. (2014) are based on the extrapolation of localized bubble 

flow rates obtained from direct and visual techniques. As a result, extrapolated flow rates could be 

wrong in case hot spots with higher seepage intensity were not observed. In contrast, flow rate results 

presented here consider the total variability in seepage intensity of the seep area and despite the 

inverse methodology is less precise than direct/visual techniques the overall flow rate might be closer to 

reality,  

Following, a set of bubble flow rate calculations at different study areas is presented to be compared 

with our calculations (Table 6.10).  A general conclusion is that the calculated flow rates are within the 

same order of magnitude for similar places in the world where bubble seepage has been reported (Table 

6.10).  

Table 6.10. Flow rate results (considering a CH4 molecular weight of =16.04 g/mol) for several seep sites located in 
the world for comparison 
 
Annual Flow rate (T CH4/yr) Water depth (mbsl) Study area Reference 
3250 (2500-4000) 67-410 PKF Total area (Fig.6.2) This study 
1075 (850 -1300) 193-352 PKF Area 1 This study 
2050 (1600 -2500) 194-410 PKF Area 2 This study 
575 (450 - 700) 67-117 PKF Area 3 This study 
440 -675 ~240 PKF  

78°38’30’’-78°40’N; 9°23’- 
9°28’ E  

Veloso et al., 2015 

433 (80-1090) 240-245 PKF Area 2 (comparable to 
Area 1 in this article) 

Sahling et al., 2014 

417 (64-802) 380-390 PKF Area 3 (comparable to 
Area 2 in this article) 

Sahling et al., 2014 

304 1250–1270 Håkon Mosby Mud Volcano– 
all three emission sites 

Sauter et al., 2006 

32-1395  890 Kerch Flare, Black Sea Römer et al., 2012a 
21.9   600–700 Northern summit of Hydrate 

Ridge, offshore Oregon 
Torres et al., 2002 

24  65–75 Tommeliten field, North Sea Schneider von Deimling et al., 
2011 

641.6 (±513.28) 575–2870 Makran continental margin 
(50 km broad segment) 

Römer et al., 2012b 

3.6892 to 36.892  1690 Carbonate slab, Nile Deep 
Sea Fan 

Römer et al., 2014 
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6.4.2. Sources of error 

6.4.2.1. Inverse method, data quality and processing 

Applying the inverse method of Veloso et al. (2015) a prominent error in the flow rate estimate can be 

introduced by a wrong bubble size distribution (BSD). Our video observations correspond to only two 

surveys (S2 and S3) and the collected footage contains only partial information of the total amount of 

gas vents in the study area. We realize that assuming a unique BSD increase the uncertainty in our 

results. A relative error of ~± 60 % in flow rate estimates was reported by Veloso et al., (2015; chapter 

4), which shows that the inverse method is highly sensitive to the BSD. This can be explained by the 

strong backscattering-bubble size dependence of the acoustical cross-section model for single bubbles 

(Thuraisingham, 1997) embedded in the inverse method. It is recommended to collect high quality visual 

information of bubble sizes in order to decrease the error in flow rate estimates. 

Noise and reverberation are additional error sources due to the overlap with the backscattering of 

bubbles, resulting in inaccurate target strength (TS) values. Veloso et al. (2015; chapter 4) reported a 

relative error of ~± 26 % in the flow rate when the average TS of an acoustic flare source has an 

uncertainty of ± 1 dB. The presence of fish in the study area has been confirmed visually and 

acoustically. It is therefore highly probable that there is a degree of overlap between backscattering 

caused by fish and by bubbles (Fig. 4.1). In addition, noise coming from the vessel (periodical) has been 

clearly observed in echograms, in many cases overlapping with acoustic flares. In light of these problems 

it should be pointed out that data acquired in the future  should be of very high quality meaning that 

artificial noise should be avoided as much as possible (diminish vessel noise by steaming slowly, shut off 

additional hydroacoustic and seismic systems). Better techniques for data cleaning and filtering still have 

to be developed to diminish the influence of noise and reverberation (e.g. removing backscattering from 

fish). 

Multiple scattering effects (e.g. Foldy 1945; Carey and Roy 1993; Prosperetti et al. 1993) have not been 

included in the inverse hydroacoustic method but should be considered as a possible error source. 

However this can only be evaluated in a future experimental validation of the inverse method by 

artificially create a bubble stream of which the BSD and flow rates can be adjusted under controlled 

conditions and SBES surveys are undertaken with great care. 

According to the BSD and the classification of Amaya-Bower and Lee (2010), bubbles in the study area 

are in the ellipsoidal regime when they are rising. Because of this the used model of a single spherical 

bubble by Thuraisingham (1997) could be considered an additional error source. It is possible to correct 

for this error by modifying the current inverse method by incorporating backscattering predictions from 

ellipsoidal bubbles (Strasberg, 1953; Stanton, 1989; Feuillade and Werby, 1994; Leblond et al., 2014). An 

additional error related to the bubble backscattering model is that it is designed for bubbles in free-field 

and not for bubbles close to a boundary, here the seafloor. Some researchers concluded that boundaries 

have a direct influence in the scattering cross-section of the bubble (e.g. Gaunaurd, 1995; Maksimov et 

al., 2014).  

It is further important to highlight that the bubble model does not consider bubbles that are hydrate-

coated. At many other study areas bubbles rise through the GHSZ, allowing the formation of a hydrate 
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skin around the bubble (e.g. Greinert et al., 2006; Rehder et al., 2002 and 2009;  Römer et al., 2012b; 

Smith et al., 2014). It is known that a hydrate skin has a direct influence on the bubble stiffness and 

therefore the acoustical backscattering of a hydrate-coated bubble is expected to be different than that 

of one without a hydrate skin (Church, 1995; Maksimov and Sosedko, 2005). In the present work, all 

flow rate calculations assumed that the bubbles where outside the GHSZ regime. For Area 2 this could 

be an extra source of error. 

Finally, an additional source of error included in our estimates is related to the content of methane in 

the bubble. Our assumption of bubbles completely full of methane (100 %) has been based on few 

observations (Sahling et al., 2014); our estimates of the total carbon content might not be correct in 

case the content of the bubble differs from site to site.  

6.4.2.2. Flare Clustering 

Clustering was carried out considering acoustic flares with overlapped footprints (see clustering method 

chapter 4). This was done in order to obtain representative information of the same seep site when 

insonified multiple times (at least two times). Here, we define as a seep site, an area with multiple 

bubble streams where streams are close to each other. The bubble streams themselves do not need to 

have the same or even similar flow rates. An additional error is thus introduced when it is assumed that 

the entire cluster can be represented with one mean flux value. 

6.4.2.3. Method Comparison  

Generally errors can be introduced by the instrumentation used to observe the phenomena of interest. 

With respect to remote (ship-based) hydroacoustic bubble mapping the greatest problem is that the 

resolution of the system (echosounder footprint) is not sufficient (small enough) to observe individual 

bubble vents/streams in a large bubble releasing area. SBES cannot distinguish if the derived flow rate 

from an acoustic flare is produced by one or multiple bubble streams. Moreover, under those conditions 

of multiple release spots echosounders are not able to define an accurate position of the bubble stream 

outlets. Under these conditions, a temporal variability evaluation of bubble flow rate would be possible 

only if the insonified area at the seafloor is ‘strictly’ the same. This is very difficult to accomplish at open 

sea when a vessel is under the influence of wind and waves (motion during data acquisition) and when 

only limited time is available to complete a hydroacoustic survey. Experience shows that even planning 

the same ship track, the hydroacoustically covered areas on the seafloor are most of the time different. 

Data presented were collected by several scientific groups and surveys were planned and conducted in 

different ways. As a consequence the data collection shows different hydroacoustic coverage between 

years which makes it not possible to compare flow rates among surveys. On the other hand, different 

hydroacoustic coverage at the seafloor possibly allows for a better flow rate estimate of the entire 

region when data are merged for the final calculation. 

To overcome the problems when comparing different survey results , the first attempt using the TAF 

method was based on the temporal analysis of the average ‘fluxes’ per year, with the average fluxes 

represented by the total annual flow rate divided by the total area containing hydroacoustic flare 

information (eq. *1+). This comparison becomes ‘logical’ in case the flux does not change considerably in 

space, being a mean flux a representative value of the complete analyzed area (e.g. Area 1 or Area 2) 
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even when the comparison involves surveys with different hydroacoustic coverage. It becomes clear 

that the TAF comparison only gives correct results if the area releases gas homogeneously or in other 

words, if bubble streams are uniformly distributed in space and have similar bubble release intensities. 

Unfortunately the hydroacoustic evidence does not support a homogeneous emission of bubbles for 

Area 1 and Area 2. From acoustics maps of Area1 (Figs. 4.13c and 4.13d), it is easy to understand that 

hot spots exist where the bubble release intensity is higher than in other places. Using the CAC method 

it is also possible to visualize differences in QRF values from the same survey (Fig. 6.10; strong standard 

deviation at S4, Fig. 6.15) associated to the spatial variability of bubble flux intensities. The latter is also 

supported by the CCC method (Figs. 6.10 and 6.11) that shows different flux values in different locations 

of a common area obtained from different surveys. Based on this it can be concluded that the TAF 

method is useful to visualize ‘significant’ changes in fluxes over time and large areas but it is not the 

appropriate method to evaluate the temporal variability of fluxes in the study area. 

It was not possible to find a larger and continuous area with identical hydroacoustic coverage between 

several or even two surveys. However, common areas that have been insonified up to 6 times during 

different years exist. The CAC method was based on the analysis of these common areas with the 

smallest area with hydroacoustic flare information (SBES resolution) represented by the footprint at the 

seafloor where a flare was detected. This emphasizes that the real position of the bubble stream(s) 

generating the flare is/are unknown; it is only known that the bubbles are released from within the 

delimited area, the footprint coverage. However, a common area could be smaller than a footprint at 

the seafloor as the common area forms if at least two footprints with flare information partially overlap 

(Fig. 6.17). As described in section 6.4 the temporal variability analysis of gas emissions using common 

areas was done by calculating the QRF value. 

A general error is that it is not possible to assign a flux to a process that is not homogeneously 

distributed. A flux represents the transport of a quantity (here methane) per time over an area when the 

entire area is carrying out this transport. A bubble stream is coming from a discrete outlet (the vent) at 

the seafloor and therefore it is not appropriate to assign its flow rate to an area to derive a flux. 

Unfortunately there is no other choice to temporally compare the hydroacoustic information presented 

in this study which is the reason why a flux value was introduced. This value was an approximated flux 

(volumetric or in mass) calculated by normalizing the flow rate of an acoustic flare with the footprint 

area at the depth the flare was detected. Then, a ‘false’ but useful assumption is that each piece of the 

footprint contributes with a certain amount of gas to the total flow rate can be made. This 

approximation does not correctly represent the bubble release phenomena and evidently is a source of 

error. Despite that, the approximation can be used to detect ‘considerable’ variability in gas emissions 

over time in the common areas. To illustrate the error introduced by this approximation one could think 

about two acoustics flares captured during different surveys with their footprints partially overlapping. 

Such an example is shown in Fig. 6.17 where the common area has different fluxes from each survey. In 

this example the common area fluxes of the two surveys are assumed to be different, which could be a 

wrong conclusion in case bubble streams did not change in time (same flow rate and position). The 

reason for assuming different fluxes is that because the footprint during the second survey covers a 
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higher number of bubble streams than the footprint during the first survey. This source of error 

inevitably is introduced in all three comparison methods presented in this study. 

 

 
 

Figure 6.17. Example to illustrate error induced by normalizing flow rates to an area (flux) and using CAC method 

 
6.4.2.4. Continuous vs. seasonal gas release 

An additional uncertainty is that flow rates are considered stable over short time (e.g. hours, days, 

months). As mentioned before, bubble release from seep sites can strongly depend on environmental 

conditions as tides, wave height, currents, etc. (e.g. Boles et al., 2001; Joyce and Jewell, 2003; Schneider 

von Deimling et al., 2010). Different flux results were obtained for surveys carried out during the same 

year and one explanation for this would be that gas emissions change seasonally e.g. if they are linked to 

the water temperature changes. Under such conditions it is necessary to highlight that an annual flux 

value is just an approximation of the real amount of gas released from the area.  

6.4.3. Future hydroacoustics survey planning (recommendations summary) 

It is clear that using SBES for flare monitoring is challenging when the gas release is distributed over a 

large area because of the SBES coverage capabilities are limited and thus the time required to carry out 

a complete hydroacoustic survey is high. As a consequence, just partial information of the total area 

related to gas release can usually be acquired. Because of this it is highly recommended to follow the 

same survey plan repeatable in time in order to obtain comparable information. This plan should be 

optimized to be time efficient (covering the most intense area not necessarily resulting in full coverage), 

and it should include measures to acquire high quality data. Based on the gained experience during this 

work, we propose some recommendations for future hydroacoustic surveys related to submarine gas 

release.  

 Incorporation of MBESs for water column scanning in the hydroacoustic survey. MBESs have high 

resolution and are able to cover large areas in a short period of time allowing then a complete 

overview of the seeps distributed over the area. 
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 Use of calibrated SBES for gas flow rate quantification through inverse methods.  

 Repetition of tracks surveyed in order to obtain comparable hydroacoustic information (same 

insonified area).  

 Hydroacoustic cross-track recording over seep sites (e.g. at hot spots) to diminish the instrumental 

error in flow rate estimates.  

 Definition of vessel speed limits to morphologically differentiate gas release from other scatterers in 

SBES echograms. Speeds should be defined according to the seabed depth and the beam width of 

the echosounder. 

 Execution of hydroacoustic surveys under similar environmental conditions (e.g. tidal cycles, 

seasonal temperature and currents) for flux comparison in case gas release is strongly controlled by 

these environmental parameters. 

  Acquisition of hydroacoustic information from different seasons within a year to understand how i 

dynamic gas release is under the influence of seasonal changes of ambient parameters (e.g. 

temperature 

 Motion compensation and static offsets corrections of hydroacoustic data for accurate positioning 

of acoustic flares. 

 Reduction of artificial noise to improve the quality of the collected data. 

 Optical observations of seep sites for physical characterization of the bubble release (e.g. BSD, BRS, 

bubble shapes, bubble composition). 

 Use of observatories with horizontally looking hydroacoustic systems (e.g. Greinert, 2008) for a 

continuous observation of gas release. 

6.5. Conclusions 

Due to the lack of hydroacoustic data recorded at exactly the same area, a direct and unbiased flow rate 

comparison over time was not possible to achieve. As a consequence, three methods have been 

elaborated to overcome this shortcoming, which is a general problem for all so far undertaken temporal 

analysis of submarine gas release. The three comparison methods introduce the term ‘flux’ by 

associating the calculated flow rate to an area in three different ways; this is to find a value that has 

been derived in a certain way over time for a specific area and thus can be compared. According to the 

presented data set the CAC method seems to be the best method to carry out the temporal analysis. 

The two investigated areas show fluctuations in fluxes between the time periods when surveys were 

carried out, but no clear trend towards increased seepage is observed. Because of the limited length of 

time, it is not possible to discard or prove that anthropogenic influence of global warming could lead to 

an accelerated dissociation of gas hydrates in the future. As hydroacoustic information is only a 

‘snapshot’ in time, it is concluded that observed flux changes can be in general attributed to a) short 

time variations of ambient conditions as pressure changes over the gas vents due to currents and tidal 

cycles, b) blocking and opening of gas conduits due to seasonal formation and dissociation of shallow 

gas hydrates (linked to seasonal changes in bottom water temperature), c) dissociation of shallow 

hydrates related to water temperature changes induced by anthropogenic global warming, d) variability 
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in geological migration pathways of gas driven by unknown sub-seabed structural changes. From our 

results it can also be concluded that the gas supplying reservoir is not depleting to a measurable extent. 

No evidence of displacements of the gas/bubbles sources has been detected in the region. At Area 1, 

this supports the hypothesis that methane is coming from deep sources and migrates along defined 

permeable pathways (Rajan et al., 2012; Sarkar et al., 2012). At Area 2, a pronounced downward 

migration of the TGHZ has not been observed.  Small TGHZ displacements are not detectable due to 

limitations of our data resolution and different coverage between surveys. 

Results derived from the CCC method clearly show that the seepage intensity changes in space meaning 

that large areas are not represented by a ‘unique’ mean flux value. From the same results it is also 

concluded that the spatial distribution of the seepage intensity follows a similar rising/decreasing 

pattern of gas fluxes over time. This observation is only valid for the common areas involved in the 

comparison. 

By merging hydroacoustic information from different surveys it was possible to estimate the total flow 

rates of the seep areas considered. Derived flow rates are higher than gas estimates carried out using 

direct/visual techniques in the same study area. Assuming no errors in our calculations, flow rate 

differences could be attributed to: a) a more complete hydroacoustic data set than the one survey used 

by Sahling et al. (2014); b) observations that are missing hot spots with higher flow rates in the 

extrapolations carried out by Sahling et al. (2014). It is shown that our flow rates are comparable to 

estimates from similar seep site areas located in other parts of the world. 

We conclude that the use of SBES for studying the spatio/temporal analysis of submarine gas release 

can be a powerful tool in case it is used properly. The challenge in this study was to make flare-

hydroacoustic data comparable from one survey to the other due to partial and different hydroacoustic 

coverage between surveys. It is recommended to keep an optimized-repeatable plan for future surveys 

in order to improve the data comparability (hydroacoustic data coming from the same insonified area). 

Additionally, complementary systems such as MBES should be included in future surveys to overcome 

the SBES limitations associated to the hydroacoustic coverage, time consumption and seafloor 

resolution. Nevertheless, SBES are the tool of choice when it comes to gas flux quantification. 
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7. Conclusions 
 

7.1. Scientific achievements 

Several groups of scientists around the world have been trying to evaluate the contribution of 

submarine methane sources to the atmospheric methane budget and therefore another facet of the 

impact of the ocean on climate change (e.g. Etiope, 2009; Etiope and Milkov, 2004; Hornafius et al., 

1999; Hovland and Judd, 1988; Judd, 2004; Judd and Hovland, 2009; Kvenvolden et al., 2001). The 

research associated to methane emissions from submarine sources consists of several sub-topics that 

together can answer how influential submarine methane sources are in the context of climate change. 

Some of these subtopics are 1) the assessment of the amount of methane stored in sediments and its 

vulnerability to be released, 2) the quantification of methane that is released from the seafloor, 3) the 

mechanisms that trigger the release, 4) the methane dynamics in the water column (bubble dissolution, 

oxidation, and distribution) and 5) the net methane flux from the surface water to the atmosphere. 

 

Contribution 

The presented thesis has been focused on the development of a hydroacoustic method for quantifying 

free gas/bubble released from the seabed and the application of this method in a seepage area in the 

Arctic. The main contribution of this work can be summarized as follows: 

 

 A new hydroacoustic inverse method for quantifying free gas flow rates and fluxes is now available 

(chapter 4). The method inverts the total backscattering produced by a group of spherical bubbles 

when they are insonified by a monochromatic plane wave. The method has shown flow rate results 

comparable to direct/visual estimates in the same area, although it has not been completely 

validated by open ocean experiments. In addition, a methodology for clustering and cluster-flow 

rates averaging has been proposed and used to calculate the total flow rate of large seep areas.   

 A new software package, FlareHunter and FlareFlowModule GUIs, has been created and is made 

available to the scientific community (chapter 5). The software design and its capabilities is driven by 

the need to have an organized way to analyze, post-process and finally estimate flow rates of 

acoustic information extracted from echograms. FlareHunter includes a set of specialized tools for 

flare processing and interactive editing, whereas the FlareFlowModule allows an easy and fast 

evaluation of gas flow rates of acoustic flares in different depth layers.  

 The first spatio/temporal variability evaluation of the gas released in a large seep site area using 

hydroacoustic information is presented in this thesis (chapter 6). This study is the result of a long 

term monitoring program offshore PKF (Svalbard) and it is an important contribution for 

understanding the degassing dynamics of an area prone to hydrate destabilization. 
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Conclusions 

From the hydroacoustic observations and the different analysis carried out during this work, the main 

conclusions can be summarized as follows: 

 Observed changes in fluxes are associated to changes on static pressure, formation and dissociation 

of hydrates linked to seasonal changes of bottom water temperature, temperature changes related 

to anthropogenic warming and unknown changes of geological pathways that control gas migration. 

 Additionally, the constant seeping of gas at the study area suggests that gas sources are not being 

depleted.  

 From the temporal variability analysis of the gas emissions at the study area (chapter 6), it is 

suggested that two different areas are connected and share the same gas source. The latter is 

deduced due to the observed alternation in gas flux magnitudes between two separated areas, 

which can be explained by the opening and blocking of gas conduits produced by seasonal migration 

of the TGHZ. 

 From gas/flare spatial analysis, a pronounced displacement of the TGHZ in response to annual 

average temperature changes is still unclear. Migration of the TGHZ has been just attributed to 

seasonal changes of temperature (Berndt et al., 2014) but in our study no evidence of this migration 

has been observed. Visualization of the TGHZ migration has not been possible because of the lack of 

information produced by the partial insonification of the seafloor at different surveys and the 

echosounder resolution limitation.  

 Spatial analysis of methane fluxes (CCC method) at PKF indicate that the spatial distribution of the 

seepage intensity does not change in time, at least for the common areas considered in the analysis. 

 The total gas flow rate of the three main seep site areas was calculated. Here, total flow rate values 

range approximately from 2500 to 4000 T CH4 yr-1, for the entire region. 

7.2. Limitations and challenges 

A clear understanding of the limitations and the current challenges is the key to address the direction of 

the continuity of this work. In the following section, a set of limitations and challenges found during the 

evolution of this research are listed. 

7.2.1. SBES data 

The first recognized limitation during this work is related to the data resolution. Echosounder data 

resolution is low compared to the size of the phenomena observed (gas released as bubble streams). 

Then, the amount of bubble streams that is represented by the flow rate derived from an acoustic flare 

is unknown.  

Another limitation is associated to the time required to carry out a “flare hunting” survey over a large 

seep site area. SBES footprint sizes compared to a large area are considered small and are time 

consuming during  data acquisition considering that the vessel speed has to be moderately slow to 

obtain good quality echograms. 

An identified problem is the difficulty to hydroacoustically map the same area at different surveys. This 

has a direct implication in the spatio/temporal analysis of gas emissions because flow rates can only be 

compared in case they were derived strictly from the same insonified area.  
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 Sources of noise and reverberation are considered a problem that has direct consequences in the flow 

rate calculations.  Acoustic flares are commonly overlapped by unwanted targets and noise (natural or 

artificial) which could cause wrong calculations of flow rates using the inverse method. 

7.2.2. Inverse method 

The first challenge associated to the inverse method is its validation, which is required to increase the 

reliability in the derived flow rates. For validation, artificial bubble sources able of releasing different 

flow rates accompanied with visual monitoring when bubble sources are insonified are needed. 

Unfortunately an experimental setup to carry out this validation is still not available. 

A second challenge has to do directly with the physical considerations that the bubble model, embedded 

in the inverse method, needs to have. At the moment a simplistic backscattering model of single 

unbounded spherical bubble insonified by a monochromatic plane wave is considered (Thuraisingham, 

1997). As mentioned in chapter 4, future improvements of the model should consider additional aspects 

such as multiple scattering effects (e.g. Kafesaki et al., 2000; Prosperetti et al., 1993), bubble 

deformation (e.g. Strasberg, 1953; Feuillade and Werby, 1994) and changes in the total backscattering 

cross-section when bubbles are located near to a boundary (e.g. Gaunaurd, 1995; Maksimov, 2015). In 

addition to that, it is necessary to highlight that the inverse method is restricted to bubbles without 

hydrate coating and in the future this aspect should be considered. As it is expected, the hydrate coating 

could change the physical properties of the bubble such as e.g. stiffness influencing the character of 

acoustical scattering (Church, 1995; Maksimov and Sosedko, 2005). 

7.2.3. Data quality and tools for post-processing 

As already described, Flarehunter and FFM GUI present different tools for post-processing and 

evaluation of flare flow rates, however there are still some problems that have to be solved. A first 

challenge, proper to the software as a prototype, is the scripts optimization in order to improve the 

software performance. A second challenge is the capability of this tool to remove or clean noise and 

reverberation from unwanted targets. It is known that the signal overlapping can have a strong 

implication in the derived gas flow rates and therefore it is essential that noise/reverberation sources 

are removed in order to obtain realistic results. So far, tools for manually removing of 

noise/reverberation are implemented in the GUI. Possible techniques to remove noise that have been 

developed by other researchers could be implemented in a future version (Korneliussen, 2000; Robertis 

and Higginbottom, 2007). Together with that, the future work should be addressed to create new 

techniques for removing and deleting noise/reverberation.  

7.3. Future work 

According to the findings, limitations and problems found during the evolution of this thesis, the 

following points can be suggested as a future work. 

 A validation of the inverse hydroacoustic method is still needed to provide reliable flow rate 

estimates. The validation should consider an experimental setup where the total flow rate coming 

from artificial bubble streams is determined through mechanical/visual methods. At the same time, 

bubble streams should be insonified with the echosounder. Bubble stream sources should be strictly 
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located within the area defined by echosounder footprint.  It is suggested that the experimental 

setup includes a mechanism able to control the flow rate strength, the bubble stream numbers and 

bubble sizes, in order to test how the method responds to different total flow rates.  The insonified 

water section should be free of unwanted scatterers for validation. Additional measurements 

including unwanted scatterers (e.g. fish) are also recommended in order to evaluate the errors in 

flow rate estimates produced by overlapping of the backscattered signals. 

 Improvements of the inverse method should include multiple scattering effects, scattering of 

deformed bubbles, bubble scattering effects near boundaries and scattering of hydrate-coated 

bubbles. An experimental setup could be useful to evaluate the sensitivity of the flow rate estimates 

to these improvements. 

 New techniques of removing noise and reverberation from the echograms have to be implemented 

in order to decrease the error in flow rate estimates induced by the overlapping of the 

backscattered signal coming from these sources. 

 Because flarehunting surveys over large seepage areas using SBES is a highly time-consuming 

process,  future work should be addressed in the creation of techniques for gas flow rate 

quantification combining SBES (calibrated system) and MBES  (a non-calibrated system).  The 

combination should be based in finding a relationship between the backscattering received with 

both systems when they insonify the same seep site.  Then, flow rates derived from the calibrated 

system (SBES) could be associated to the backscattered amplitude obtained with the uncalibrated 

system (MBES). A relationship (If there is one), could be useful to derive flow rates from a large seep 

site area using the backscattering information obtained with the MBES.  

 Passive acoustic techniques to determine BSD and bubble flow rates have been implemented by 

others (Bergès et al., 2015; Leifer and Tang, 2007; Leighton and White, 2012). As BSD is one of the 

important inputs in the presented inverse hydroacoustic method, these techniques should be 

considered in future fieldwork.   

 At the study area, optical observations should be carried out in order to derive BRS associated to 

bubble sizes. These measurements will decrease the uncertainties in flow rate estimates produced 

by using BRSM.  

 At the study area, an increase in methane release from submarine sources triggered by climate 

effects still cannot be discarded. Because clear manifestations of an increment in methane 

emissions due to accelerated hydrate dissociation could be expected to be a long term process, it is 

recommendable to continue the data acquisition at the study area. Surveys have to be efficiently 

planned in order that acquired hydroacoustic data come from a same insonified area at different 

times. The latter will allow having a better evaluation of the spatio/temporal changes in gas release. 

 At the study area, a hydroacoustic observatory (side-looking sonar) is suggested to be located within 

the area where the TGHZ seasonally oscillates (between 360 to 410 m bsl). According to Berndt et al. 

(2014), seasonal fluctuations in the bottom-water temperature originates gas hydrates formation 

and dissociation. The existence of a hydroacoustic observatory will ideally allow visualization and 

evaluation of changes in methane emissions associated to increasing bottom-water temperature. 

Additionally, the same hydroacoustic observations will be useful to evaluate the influence of static 

pressure changes (produced by e.g. tidal cycles or currents near the seabed) over the gas release. 
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Appendices 

Appendix.1  

SV, TS and TSCOMP calculation 

The received backscattered signal can be displayed as TS, TSCOMP and SV values after calculation. TS and SV 

values are obtained using the following equations (Echoview formulas verified by SIMRAD derived from 
the online support of Echoview): 
 

                      (
    

   

    ) (A.4.1) 

 

                      (
    

      

    )      (A.4.2) 

 
 
where: 
 
R  : corrected range (m) =r – sT 

r : uncorrected range (m) = nc(τ/2) 

s : TVG range correction offset value  

T : sample thickness (m) = c(τ/2) 

n : sample number 

Pr : received power (dB re 1 W) 

Pt  : transmitted power (W) 

α : absorption coefficient (dB/m) 

G0 : transducer peak gain (non-dimensional) 

λ : wavelength (m) = c/f 

f : frequency (Hz) 

c : sound speed (m/s) 

τ : transmit pulse duration (s) - also known as the pulse length 

ψ : Equivalent Two-way beam angle (Steradians) 

Sa  : Simrad correction factor (dB re 1m-1) determined during calibration of 
theEK60 

 
 
TSCOMP is calculated using the following equation: 
 
               [A.4.33] 
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where:
 
 
                             
                            
                            
 
and: 
 
   : Alongship mechanical angle (degrees) 
   : Athwarpship mechanical angle (degrees) 
    : Beam width alongship (degrees) 
    : Beam width athwarpship (degrees) 
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Appendix.2 

Work flow diagram of the data processing 
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Appendix.3  

Salinity, temperature, density and sound velocity profiles for the 11 surveys considered in this study. 
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Appendix.4  

Damping as function of bubble radius calculated according to equations [4.5] and [4.6] for 38 kHz and 

220 m water depth. 

 
 

 


