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Samenvatting
– Summary in Dutch –

Nieuwe uitvindingen en wetenschappelijke vooruitgang verrijken dagelijks het
leven van mensen. Om deze vooruitgang te bewerkstelligen spelen optimalisatie-
algoritmes een belangrijke rol. Deze algoritmen kunnen ontwerpsprocessen in
technische toepassingen significant versnellen. De afgelopen drie decennia heeft het
optimalizeren van een ingenieursontwerp groot voordeel gehaald uit evolutionaire
multi-objective optimalisatie-algoritmes.

Hoewel evolutionaire algoritmen bruikbaar zijn voor de meeste toepassingen,
zijn zij niet geschikt voor de optimalisatie van computationeel dure problemen.
Dit is te wijten aan het feit dat ze doorgaans een groot aantal evaluaties van de
doelfunctie vergen om te convergeren. Een typisch voorbeeld is een CFD simulatie
die soms weken tijd kan vergen en zich vertaalt in een optimalizatieproces dat
meerdere jaren in beslag neemt.

Surrogaatmodellering en surrogaat-gebaseerde optimalisatie werden ontwikkeld
als levensvatbare alternatieven die tot doel hebben het aantal functie evaluaties die
nodig zijn voor het optimalisatieproces verder te minimaliseren. Surrogaatmodelle-
ring is het proces waarbij men een goedkoop-te-evalueren vervangingsmodel bouwt
op basis van data die zorgvuldig gekozen werd met een ontwerp van experimenten
(DoE) of bemonsteringsalgoritme. Met behulp van een bemonsteringsalgoritme
bouwt men een set van trainingsgegevens door de tijdrovende doelfunctie voor
een aantal zorgvuldig gekozen waarden van de parameters te evalueren. Het surro-
gaat model kan vervolgens gebruikt worden als vervanging van de doelfunctie en
geoptimaliseerd worden met een traditioneel evolutionair optimalisatie-algoritme.

Surrogaat-gebaseerde optimalisatie volgt een andere benadering waarbij men
het optimalisatieprobleem aanpakt met behulp van een modelgedreven bemonste-
ringsstrategie. Het bemonsteringsalgoritme kan gebruik maken van informatie die
verkregen wordt uit het een surrogaat-model (bijvoorbeeld de onzekerheid van de
voorspelling), teneinde op iteratieve wijze monsters te selecteren die waarschijn-
lijk zullen leiden tot het optimum. Het bemonsteringsalgoritme of ontwerp van
experimenten (DoE) vormt dus de ruggengraat van zowel surrogaat-modellering als
surrogaat-gebaseerde optimalisatie. Dit proefschrift onderzoekt verschillende DoE
algoritmen die toegepast kunnen worden in optimalisatieproblemen in ingenieurs-
ontwerp.

Onderzoeksbijdragen in de volgende themas hebben geleid tot de totstandko-
ming van dit proefschrift:
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1. Het oplossen van het inverse probleem waarbij men quasi-optimale regios
zoekt of gebieden in de input ruimte die corresponderen met specifieke out-
putwaarden. De beoogde toepassingen zijn metinggedreven problemen zoals
het testen van de elektromagnetische compatibiliteit (EMC) van elektroni-
sche apparaten, of problemen die te maken hebben met computationeel dure
simulaties.

2. Het bestuderen van de balans tussen exploratie en exploitatie in een ont-
werp van experimenten. Een bemonsteringsalgoritme moet de invoersruimte
verkennen, en de belangrijke gebieden exploiteren (bijvoorbeeld, moeilijk
te modelleren niet-lineaire regio’s). Het effect van een varirende bijdrage
tussen exploratie en exploitatie werd bestudeerd, en een nieuw algoritme
werd ontwikkeld dat hier automatisch een evenwicht tussen zoekt op basis
van fout schattingen.

3. Het oplossen van multi-objective optimalisatie (MOO) problemen met cons-
traints met behulp van surrogaat-gebaseerde optimalisatie. Het efficinte Con-
strained Multi-objectieve Optimalisatie (ECMO) algoritme werd ontwikkeld
om computationeel dure MOO problemen op te lossen. Het algoritme kop-
pelt Kriging, Support Vector Regressie en Radiale-Basis-Functiemodellen,
of een ensemble daarvan met de Waarschijnlijkheid van Verbetering (PoI) en
de Waarschijnlijkheid van Haalbaarheid (PoF) bemonsteringscriteria. Het
algoritme werd succesvol toegepast voor het optimaliseren van een micro-
golffilterontwerp, de vormoptimalisatie van een cycloon, en het ontwerp van
een GPS-antenne.

4. Het oplossen van optimalisatieproblemen met data van meerdere betrouw-
baarheidsniveaus en big data. Bij het oplossen van problemen met com-
putationeel dure data, is het essentieel om alle gegevens die beschikbaar
zijn te gebruiken. Het is ook zinvol om de simulatiedata aan te vullen met
historisch experimentele gegevens, indien beschikbaar, en zoveel mogelijk
goedkope data te benutten. Wanneer analytische modellen beschikbaar zijn
die een ogenblikkelijke evaluatie mogelijk maken, kan het nuttig zijn om daar
zoveel mogelijk gegevens uit te tappen. Hiertoe werd een nieuw algoritme
ontwikkeld dat data van meerdere betrouwbaarheidsniveaus kan verwerken,
en eveneens datasets in de orde van een miljoen punten. Het probleem van
de cycloonvormoptimalisatie werd opgelost door gebruik te maken van ge-
gevens die verkregen werden uit analytische modellen, CFD simulaties en
experimentele resultaten.

5. Het oplossen van hoogdimensionale optimalisatieproblemen met domeinre-
ductie. Naargelang men de dimensionaliteit van problemen verhoogt, zal de
optimalisatiezoekruimte exponentieel groeien. Wanneer men meer dan tien
dimensies beschouwt hebben algoritmes het moeilijk om de optima in een
redelijke tijd te vinden. Deze vloek van de dimensionaliteit kan tot op zekere
hoogte worden tegengegaan door het aantal effectieve dimensies te reduceren
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(dimensionaliteit reductie), of het bereik (of domein) van elke dimensie te
beperken. Het Iteratieve Volume Reductie Algoritme (IVRA) is ontwikkeld
om het domein te reduceren voor hoog-dimensionale continue optimalisatie-
problemen. Het algoritme werd getest op analytische benchmarkproblemen
tot 50D.

6. Lijngebaseerd ontwerp van experimenten. Naargelang drones en robotge-
baseerde metingen steeds vaker voorkomen op industrile fabrieksvloeren is
er nood aan lijngebaseerde bemonstering die leidt tot optimale trajectories
als een alternatief voor de traditionele puntgebaseerde benadering. Hier-
toe werd het Voronoi Edge Traversal (VET) algoritme ontwikkeld teneinde
ruimtevullende paden op sequentile manier te genereren.





Summary

Novel inventions and scientific progress touch and enrich human lives everyday. At
the heart of this progress lie optimization algorithms, which have sped up designing
processes in engineering applications. Indeed, engineering design optimization has
benefitted immensely over the past three decades from evolutionary multi-objective
optimization algorithms.

Although evolutionary algorithms work well for most applications, they are
rendered unsuitable for optimization of computationally expensive problems. This
is due to their characteristic of typically requiring a large number of objective
function evaluations to converge. Considering examples such as CFD simulations,
each of which take weeks to run, this translates into multiple years of time taken
for the optimization process.

Surrogate modeling and surrogate-based optimization have been developed
as viable alternatives which aim to minimize the number of objective function
evaluations needed for the optimization process. Surrogate modeling is the process
of training a cheap-to-evaluate replacement, or surrogate model using a dataset
carefully chosen by a Design of Experiments (DoE) scheme (also known as a
sampling algorithm). The sampling algorithm obtains the training set by evaluating
the expensive objective function at a few carefully chosen parameter combinations
to maximize information gain. The surrogate model can then be used as the
objective function for optimization using a traditional evolutionary optimization
algorithm.

Surrogate-based optimization takes a different approach of directly attacking
the optimization problem using a model-driven sampling scheme. The sampling
algorithm may take advantage of information obtained from a surrogate model (e.g.,
uncertainty of prediction) to iteratively select samples that are likely to lead to the
optima.

The sampling algorithm or the design of experiments scheme therefore forms
the backbone of both, surrogate modeling and surrogate-based optimization. This
dissertation explores different DoE algorithms for application towards engineering
design optimization problems.

Research contributions in the following themes were made during the course of
the PhD leading to this dissertation:

1. Solving the inverse problem of finding quasi-optimal regions, or regions in the
input space corresponding to known output range(s). The target applications
are measurement-driven problems such as ElectroMagnetic Compatibility
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(EMC) compliance testing of electronic devices, or problems that involve
computationally expensive simulations.

2. Studying the balance of exploration and exploitation in a DoE scheme. A
sampling algorithm must perform exploration of the input space, and ex-
ploitation of regions of interest (e.g., hard to model non-linear regions). The
effect of varying contributions of exploration and exploitation was studied,
and a novel algorithm was developed that automatically balances exploration
and exploitation on demand, based on the current error estimate.

3. Solving Constrained Multi-Objective Optimization (MOO) problems using
surrogate-based optimization. The Efficient Constrained Multi-objective
Optimization (ECMO) algorithm was developed to solve computationally
expensive MOO problems. The algorithm couples Kriging, Support Vec-
tor Regression and Radial Basis Function models, or an ensemble thereof
with Probability of Improvement (PoI) and Probability of Feasibility (PoF)
sampling criteria. The algorithm has been successfully applied to design
optimization of a microwave filter, shape optimization of a cyclone separator,
and design of a GPS antenna.

4. Solving optimization problems involving multiple fidelities of data, and large
datasets. When attacking problems involving computationally expensive data,
it is critical to use all the data that is available. It makes sense to complement
simulation data with historical experimental results, if available. It also makes
sense to exploit as much of cheap data as possible. For example, if analytical
models are available that allow instant evaluation, it can be helpful to use
as much data from analytical models as possible. Towards this end, a novel
algorithm was developed to handle multi-fidelity data, and also datasets of
the order of a million points. The problem of cyclone shape optimization was
solved by leveraging data obtained using analytical models, CFD simulations
and experimental results.

5. Solving high dimensional optimization problems using domain reduction.
As the dimensionality of problems increases, the optimization search space
expands exponentially. Above ten dimensions, algorithms struggle to find the
optima in a reasonable time. This curse of dimensionality can be countered
to an extent by reducing the number of effective dimensions (dimensional-
ity reduction), or reducing the range (or domain) of each dimension. The
Iterative Volume Reduction Algorithm (IVRA) was developed to perform
domain reduction on high-dimensional continuous optimization problems.
The algorithm was tested on benchmark analytical problems up till 50D.

6. Line-based design of experiments. With automated robot-based measure-
ments becoming common on industrial factory floors, and drones being put
to a multitude of uses, there is a need to look at line-based sampling resulting
in optimal paths instead of point-based traditional approaches. The Voronoi
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Edge Traversal (VET) algorithm was developed with this use-case in mind to
generate space-filling paths sequentially to cover a given environment.





1
Introduction

“There is always something to optimize, if not everything.”

–Yours truly

The past half-century has seen an exponential growth in invention of new
devices and advancement of existing technologies making life easier. The internet
facilitates quick access to information and content on practically any desired topic.
Cellular phones have made it possible to be accessible in any corner of the globe,
with instant messaging, video calling and information streamed directly to the
devices. Automobiles have evolved in shape and character to be more fuel efficient,
faster and easier to operate with alternative fuel sources such as electricity, hydrogen
cells, solar power, etc. on the horizon of becoming mainstream. Such progress has
been a common theme across engineering disciplines and applications, e.g., aircraft
design, automobiles, electronic devices, etc.

One of the enabling factors at the heart of design evolution of engineering
systems has been computer-driven design optimization. With the decreasing cost
of computing power, the application of optimization algorithms for Engineering
Design Optimization (EDO) has become the norm. This has led to optimization
algorithms becoming a very active area of scientific research with substantial
progress made over the past couple of decades in topics such as multi-objective and
many-variable optimization.

The years of 1990s till mid-2000s saw Multi-Objective Evolutionary Algo-
rithms (MOEAs) grow in popularity. The landmark paper of Deb et. al. introducing
the Non-dominated Sorting Genetic Algorithm II (NSGA-II) algorithm [1] for
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solving Multi-Objective Optimization (MOO) problems has 15742 citations at the
time of writing this dissertation, which underlines the impact MOEAs have had on
MOO problems routinely encountered in EDO.

A common characteristic among MOEAs like NSGA-II [1] and S-metric Selec-
tion - Evolutionary Multi-objective Optimization Algorithm (SMS-EMOA) [2] is
that they typically require a large number of objective function evaluations to con-
verge. This can be problematic when the objective function is expensive to evaluate,
e.g., when Computational Fluid Dynamics (CFD) simulations, electromagnetic
simulators, etc. are used as objective functions.

Metamodel Assisted Optimization (MAO) [3] or Surrogate Based Optimization
(SBO) [4] offers an attractive alternative in situations where optimization problems
are required to be solved using a minimal number of objective function evaluations.
A metamodel or surrogate model is trained by evaluating the expensive objective
function at well chosen locations, and is then integrated in the optimization process.
The locations can be chosen such that the accuracy of the global surrogate model
is maximized, and the resulting model can be used as a surrogate or a cheap(er)
replacement of the expensive objective function. This scenario is termed as Sur-
rogate Modeling. Alternatively, the locations that are likely to lead to the optima
according to certain well-defined criteria can be chosen. The criteria may, for
example, prefer points having a high likelihood of improving the currently known
optima, or exploring the search space for new regions where optima might lie. The
resulting model is only locally accurate, and is called a local surrogate model. This
scenario is known as Surrogate-Based Optimization (SBO).

A typical surrogate modeling scenario is shown in Fig. 1.1. The idea is to
evaluate the simulator at a few carefully chosen points in the design space, so as to
maximize information gain. In the case of global surrogate modeling, the goal is to
mimic the behavior of the simulator as closely as possible, and the sample selection
scheme chooses additional samples to achieve this objective with a minimal number
of expensive samples.

In the case of surrogate-based optimization (SBO) the aim is to find the global
optimum, and the sample selection scheme selects additional samples to guide the
search towards the optimum. SBO methods have been widely used in various fields
such as aerospace, electromagnetics, metallurgy, etc. [5]

The process of choosing the locations, or data points is also known as sampling
or Design of Experiments (DoE). Hence, a sampling algorithm selects the loca-
tions or picks data/sample points. The term DoE comes from Statistics [6] where
historically it has been used to refer to the systematic study of a given system or
environment. In recent times, the term DoE has been used in the context of com-
puter experiments or simulations, which is the setting considered in this work. DoE
is the design of an information-gathering problem, and is used to plan computer
experiments in a variety of domains such as manufacturing, EDO, etc. [7–12].
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Figure 1.1 Surrogate Modeling Flowchart.
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This dissertation presents novel research in DoE methods within the framework
of surrogate modeling and SBO for application to EDO problems. The follow-
ing Section 1.1 lists the challenges identified and addressed during the course of
doctoral research, and summarizes per-chapter contributions. An overview of the
publications authored during the course of this research is provided in Section 1.2.

1.1 Challenges, Research Contributions and Outline

One of the most satisfying aspects of conducting scientific research is to see it being
used in real-world problems. Indeed, often times the cycle completes itself when
practitioners turn to scientists to solve together problems encountered in engineering.
The author considers himself blessed to have had many such interactions and joint
research conducted with practicing engineers, and scientists from other disciplines.
Many, if not all of the research challenges encountered during the course of the
author’s doctoral research have their roots in real-world engineering problems, or
interdisciplinary applications. The broad areas of research, and classes of problems
addressed in this dissertation are listed in the following subsections. Each research
theme corresponds to one or more chapters describing original research towards
the said theme. Table 1.1 clearly lists the mapping between research themes and
chapters comprising this dissertation.

1.1.1 The Inverse Problem

In engineering problems such as ElectroMagnetic Compatibility (EMC) compliance
testing of electronic devices (e.g., mobile phones), it is often required that regions in
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the input space corresponding to certain known (desirable or undesirable) range of
output values be identified. For example, the EMC compliance testing of a mobile
phone entails identifying the coordinates or regions having EMC issues between the
subsystems like bluetooth and GPS modules. This is a case of an inverse problem
wherein the relationship under study is (output → input) instead of the usual
(input→ output).

The traditional Monte-Carlo or probabilistic approaches would suffice if the data
were not expensive to obtain. In case of EMC compliance testing, time-consuming
measurements are performed using a robotic arm movable in three dimensions.
A more miserly strategy is therefore required which minimizes the number of
measurements required for the compliance testing process.

Chapters 2,3 present a novel adaptive classification algorithm that formulates
the inverse problem as a classification problem. Each of the classes correspond to
a region of interest (e.g., positive class - region with EMC issues, negative class
- all other regions). The inverse problem is then solved by identifying the class
boundary, and hence the boundary and location of the regions of interest.

Chapter 5 presents a SBO algorithm which solves the inverse problem using
a probabilistic criterion. A Kriging or Gaussian Process model is trained which
assigns the mean and variance of prediction to any given point in the input space. A
large number of random points are generated in the input space, and a corresponding
probability of lying in the region of interest is computed for each point using the
mean and variance of prediction from the model. This probabilistic search iteratively
tunes the boundary of the region of interest.

1.1.2 Exploration v/s Exploitation Tradeoff

Effective sampling algorithms are essential for the success of the optimization pro-
cess. A sampling algorithm must perform sufficient exploration of the input space,
and should identify and perform exploitation of interesting (e.g., hard to model, or
near optima) regions. There have been studies investigating different schemes for
exploration and exploitation, however the balance or extent of contribution of each
has not received much attention.

Chapter 4 discusses various ways of varying the contribution of exploration
and exploitation in a sampling algorithm or DoE scheme. A novel algorithm that
automatically varies the contribution of exploration and exploitation adaptively
based on the prevailing error estimate is also presented.
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1.1.3 Constrained Multi-Objective Optimization

Most scenarios and problems encountered in the real world have conflicting ob-
jectives. For example, an automotive engineer might deal with the objectives of
designing a fast car which is reliable and inexpensive to maintain. As many readers
might know first hand - a fast and reliable car is invariably expensive to own, and a
reliable inexpensive car is invariably not fast enough.

Such conflicting objectives are a common theme across disciplines in engi-
neering design. As discussed previously, evolutionary optimization algorithms
have been a popular choice for MOO. SBO approaches are popular for problems
where the objective functions or constraints are expensive to evaluate. Towards this
end, novel SBO algorithms were developed and tested on a variety of real-world
problems.

Chapters 6,7,8 discuss solution of Constrained MOO problems using the Ef-
ficient Constrained Multi-objective Optimization (ECMO) and Efficient Multi-
objective Optimization (EMO) algorithms. The problems considered were the
design of a microwave filter, shape optimization of a cyclone separator and design
of a GPS antenna respectively.

1.1.4 Multiple Fidelities of Data and Large Datasets

Optimization algorithms can often benefit from or be overwhelmed by multiple
fidelities of available data and/or voluminous data. In simulation-based optimization,
varying mesh sizes often generate different fidelities of data with finer meshes
consuming more computing power. Approaches such as Co-Kriging [13] take
advantage of multiple fidelities to enhance model accuracy.

Chapter 9 addressed both themes pertaining to multiple fidelities and large
datasets with algorithms developed to optimize the shape of a cyclone separator.
Three fidelities of data were used towards this end - cheap analytical models, CFD
simulations and experimental data. A recursive Co-Kriging model was trained by
sequentially training three sub-Kriging models. A sub-Kriging model was trained
from 823, 543 points lying over a grid, evaluated using an analytical cyclone model.
Two sub-Kriging models were trained using available CFD simulation data, and
experimental data respectively. The resulting recursive Co-Kriging model was then
used as the objective function for optimization with the SMS-EMOA optimization
algorithm.
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1.1.5 The Curse of Dimensionality

The search space for optimization scales exponentially with the increase in input
variable dimensionality. Problems are compounded if the range of each variable is
also long. Dimensionality reduction techniques are used to eliminate unimportant
or less significant input variables, while domain reduction is used to shrink the
range of each input variable.

Chapters 10,11 describe the Iterative Volume Reduction Algorithm (IVRA)
which iteratively shrinks the search space by reducing the domain of each di-
mension. Probabilisitic Support Vector Machine (PSVM) classifiers are used to
train a model using data samples selected using a sampling algorithm. A binary
classification problem is formulated with classes likely to contain the optima and un-
likely to contain the optima. The sampling algorithm selects samples that maximize
the probability of lying in the region likely to contain the optima. In tests performed
on benchmark analytical functions up to 50D, the IVRA algorithm resulted in a
reduction of over 99% in search space.

1.1.6 Line-based Design of Experiments

Traditional DoE approaches consider data points as discrete units and the ordering
among the points is not taken into account. With the advent of automated robots in
factories, drones, robotic lawn mowers, etc., the meaning of optimal DoE changes
from an optimal set of points to an optimal sequence of paths. The problem of an
Automated Guided Vehicle (AGV) performing periodic WiFi coverage data streams
on a factory floor motivated research into optimal DoE strategies for line-based
measurements.

Chapter 12 presents the novel sequential line-based space-filling sampling algo-
rithm (VET) that aims to maximize coverage of a given environment using paths
composed of lines. The typical use case is a factory floor where an AGV or a robot
performs periodic measurements. The DoE scheme ensures uniform coverage of
the environment avoiding local concentration of lines.

1.2 Publications

The research results obtained during this PhD research have been published in
scientific journals and have been presented at a series of international conferences.
The following list provides an overview of the publications during the PhD research.
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1.2.1 Publications in international journals
(listed in the Science Citation Index 1 )

1. Prashant Singh, Dirk Deschrijver, Davy Pissoort and Tom Dhaene.
Accurate Hotspot Localization by Sampling the Near-Field Pattern of Elec-
tronic Devices.
Published in IEEE Transactions on Electromagnetic Compatibility 55 (6),
1365- 1368, Apr. 2013.

2. Prashant Singh, Dirk Deschrijver, Davy Pissoort and Tom Dhaene.
Adaptive Classification Algorithm for EMC Compliance Testing of Electronic
Devices.
Published in Electronics Letters 49 (24), 1526-1528, Aug. 2013.

3. Prashant Singh, Ivo Couckuyt, Khairy Elsayed, Dirk Deschrijver and
Tom Dhaene.
Shape Optimization of a Cyclone Separator using Multi-Objective Surrogate-
Based Optimization.
Published in Applied Mathematical Modeling, available online 22 November
2015, ISSN 0307-904X, Nov. 2015.

4. Prashant Singh, Dirk Deschrijver, Ivo Couckuyt and Tom Dhaene.
Classification Assisted Domain Reduction for High Dimensional Continuous
Optimization Problems.
In revision, Journal of Heuristics, Sep. 2015.

5. Prashant Singh, Joachim van der Herten, Dirk Deschrijver, Ivo Couckuyt,
and Tom Dhaene.
A Sequential Sampling Strategy for Adaptive Classification of Computation-
ally Expensive Data.
In revision, Structural and Multidisciplinary Optimization, Apr. 2016.

6. Prashant Singh, Marco Rossi, Ivo Couckuyt, Dirk Deschrijver, Tom Dhaene
and Hendrik Rogier.
Constrained Multi-Objective Design Optimization using Surrogates.
In submission, International Journal of Numerical Modelling: Electronic
Networks, Devices and Fields, Apr. 2016.

7. Prashant Singh, Ivo Couckuyt, Khairy Elsayed, Dirk Deschrijver and
Tom Dhaene.

1The publications listed are recognized as ‘A1 publications’, according to the following definition
used by Ghent University: A1 publications are articles listed in the Science Citation Index, the Social
Science Citation Index or the Arts and Humanities Citation Index of the ISI Web of Science, restricted
to contributions listed as article, review, letter, note or proceedings paper.
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Multi-Objective Geometry Optimization of a Gas Cyclone using Triple-
Fidelity Co-Kriging Surrogate Models.
In submission, Applied Mathematical Modeling, Apr. 2016.

8. Prashant Singh, Dirk Deschrijver, Ivo Couckuyt, Joachim van der Herten
and Tom Dhaene.
A novel sequential line-based space-filling design of experiments for continu-
ous measurements.
Submitted, European Journal of Operational Research, Mar. 2016.

9. Xu Gong, Jens Trogh, Quentin Braet, Emmerich Tanghe, Prashant Singh,
David Plets, Dirk Deschrijver, Jeroen Hoebeke, Tom Dhaene, Luc Martens
and Wout Joseph.
A Measurement-Based Wireless Network Planning, Monitoring, and Recon-
figuration Solution for Robust Radio Communications in Indoor Factories.
Published in IET Science, Measurement & Technology, available online 12
Feb. 2016.

1.2.2 Publications in international conferences
(listed in the Science Citation Index 2 )

1. Prashant Singh, Dirk Deschrijver and Tom Dhaene.
A Balanced Sequential Design Strategy for Global Surrogate Modeling.
Published in the proceedings of 2013 Winter Simulation Conference, 2172-
2179, Dec. 2013.

2. Prashant Singh, Ivo Couckuyt, Francesco Ferranti and Tom Dhaene.
A Constrained Multi-Objective Surrogate-Based Optimization Algorithm.
Published in the proceedings of 2014 IEEE Congress on Evolutionary Com-
putation (CEC), 3080-3087, Jul. 2014.

3. Prashant Singh, Francesco Ferranti, Dirk Deschrijver, Ivo Couckuyt and
Tom Dhaene.
Classification Aided Domain Reduction for High Dimensional Optimization.
Published in the proceedings of the 2014 Winter Simulation Conference, pp.
3928-3939, Dec. 2014.

2The publications listed are recognized as ‘P1 publications’, according to the following definition
used by Ghent University: P1 publications are proceedings listed in the Conference Proceedings Citation
Index - Science or Conference Proceedings Citation Index - Social Science and Humanities of the ISI
Web of Science, restricted to contributions listed as article, review, letter, note or proceedings paper,
except for publications that are classified as A1.
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1.2.3 Publications in national conferences

1. Prashant Singh, Dirk Deschrijver, Davy Pissoort and Tom Dhaene.
Efficient measurement procedure for hotspot detection in near-field pattern
of electronic devices.
Poster presented at IAP-BESTCOM meeting, May 2013.
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2
A Sequential Sampling Strategy for

Adaptive Classification of
Computationally Expensive Data

This chapter introduces a novel input-output-based sequential DoE algorithm
appropriate for expensive data. The algorithm formulates the optimization problem
as a classification problem which is solved using minimal number of data points.

? ? ?

P. Singh, J. van der Herten, D. Deschrijver, I. Couckuyt, T. Dhaene

In revision, Structural and Multidisciplinary Optimization, Apr. 2016.

Abstract Many real-world problems in engineering can be represented and solved
as a data-driven classification problem, where the goal is to build a classifier that
maps a given set of input parameters onto a corresponding class or label. In
some cases, the collection of data samples can be computationally expensive. It
is therefore crucial to solve the problem using as little data as possible. To this
end, a novel sequential sampling algorithm is proposed that begins with a very
small training set and supplements it in each iteration by a small batch of additional
(expensive) data points. The outcome is a representative set of data samples that
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focuses the sampling on those locations in the input space where the class labels
are changing more rapidly, while making sure that no class regions are missed.

2.1 Introduction

Nowadays, the use of Machine learning techniques is becoming more widespread
in engineering. Many problems deal with identifying a group, a category or a class
to which a given input pattern belongs. Examples in literature include constrained
optimization problems [1, 2], finding quasi-optimal regions (QoRs) [3], determining
food quality [4], measuring analog circuit performance [5], detecting faults in
aircraft engines [6] and others. Such problems can be solved by fitting a classifier
to a set of data that consists of a number of instances or data points. Each data
point has a number of attribute values or features and a corresponding class label.
The classifier can then be used to predict class labels for new, previously unseen,
examples.

The data can be taken from databases of precomputed or recorded data. How-
ever, in engineering, data typically originates from computer experiments such as
simulations which are generated on demand. A potential difficulty is that com-
puter simulations are often computationally expensive. For example, Ford Motor
Company reports that the computational cost to perform a single simulation for an
automotive crashworthiness test takes on average 98 hours to complete. This scale
of computational expense would imply a total duration of 12 years to complete
the entire analysis. [7]. In order to alleviate such a computational burden, there
is a need to train classification models using as few training instances as possible.
Therefore, this paper presents a sequential sampling strategy to collect deterministic
data samples that can be used to build classifiers. It starts with an initial small set of
training data, and iteratively adds more training points at well-chosen locations in
the input space. The sampling algorithm picks additional points in a sequential way
based on previously computed data and stops when a predefined stopping criterion
is reached (e.g., number of allowed simulations, maximum simulation time,...).

In a post-processing step, the resulting data set can be used to build a clas-
sifier that allows an engineer to analyze e.g. functional dependencies between
input variables, perform what-if analyses, perform optimization, study uncertainty
quantification, etc.

The paper is organised as follows. Section 2.2 introduces the concept of adaptive
classification, while Section 2.3 describes the related work and state-of-the-art.
Section 2.4 explains the proposed sequential sampling algorithm. The algorithm is
demonstrated on analytical examples in Section 6.4. Section 12.6 concludes the
paper.
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2.2 Adaptive Classification

In the context of this work, the term adaptive classification is intended to mean
classifier construction using training data obtained sequentially from a sampling
algorithm. Consider a training set S in some input space X ⊆ Rd spanning d
attributes, and some output space Y . The output space is Y = {0, 1} for a binary
classification problem and Y = {1..K} for a K-class classification problem. The
training set is denoted as S = (X,Y ) ∈ X × Y where X consists of n data points
represented as vectors {x1...xn} and Y consists of class labels {y1...yn}. The
classifier h : X → Y predicts the class label of a given input pattern x̂ as ŷ = h(x̂).
For details of the classifier training process, the reader is referred to [8].

Figure 2.1 Adaptive classification flowchart.
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The flowchart of the adaptive classification process is shown in Figure 2.1.
The initial training set S is obtained by generating a set X of b points in the input
(or design) space, and evaluating X using the expensive simulator to obtain the
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corresponding class labels Y .
Assuming that the total number of allowed function evaluations is n, the se-

quential sampling algorithm selects a new batch of informative samples Xδ of size
δ at well-chosen locations in the input space. The simulator evaluates Xδ resulting
in class labels Y δ . The training set S is updated as:

Y δ := f(Xδ), (2.1)

S := S ∪ (Xδ, Y δ). (2.2)

This sampling process is iterated over bn−bδ c times until the number of allowed
simulations is exceeded, or one of the stopping criteria (if specified) has been
reached. Stopping criteria may include exceeding allowed sampling budget, or time
duration, etc. The classifier is then constructed using the final training set S.

The focus of this work is only on the sequential sampling process (the outlined
box in Figure 2.1), with the aim of obtaining an accurate model. The model is
assumed not to contribute to the sequential sampling process, while the sampling
algorithm aims at selecting samples which offer maximal training information for
construction of the model.

2.3 Related Work on Data Sampling

Adaptive sampling is closely related to the field of active learning [26, 27]. How-
ever, there are subtle differences. Active learning is largely semi-supervised and
traditionally assumes a fixed unlabeled dataset U, from which the learning algorithm
must sub-sample data points to learn from. The learner can only select unlabelled
data points xi ∈ U. Often, an active learning algorithm provides a ranking of
possible data points [28]. The doctoral dissertation of Jamieson [30] is an excellent
reference for a mathematical treatment thereof. Active learning is also used in
reinforcement learning (e.g. optimal learning for multi-armed bandits [29]). The
focus of this paper is on data sampling in a supervised learning context, where
data samples are not taken from a database U, but instead they are queried from an
oracle (e.g. a simulator) that provides a class label given a data point xi.

Adaptive sampling algorithms can be input-based, output-based, model-based,
or a combination of the three depending on the information utilised in the sampling
process. Table 2.1 lists the different type of sampling algorithms.

Input-based sampling algorithms like Latin Hypercube Sampling and Voronoi-
based sampling aim at selecting points in a space-filling manner, so as to cover as
much of the design (input) space as possible. Similarly, Low discrepancy sequences
and Monte-carlo techniques distribute points as uniformly as possible.

Model-based sampling algorithms make use of intermediate models to guide
the sample selection process. Typically, criteria such as Probability of Feasibility,
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model error, classifier boundary characteristics, etc. are used to guide sample
selection. Support Vector Machine (SVM) classifiers have been used in literature to
solve constrained optimization problems and failure domain identification using
sequential sampling (e.g., Explicit Design Space Decomposition (EDSD) algorithm)
[1, 9–11].

EDSD uses SVMs to construct an explicit decision function that models a
given constraint (for example). The algorithm works for multi and single-response
problems with possible discontinuities. The classification approach enables bet-
ter handling of discontinuities and potential non-smoothness in the problem. A
convergence criterion, or sampling budget controls the number of iterations of the
algorithm.

Virtual SVMs (VSVM) [12] have been used to improve the accuracy of SVM
classifiers for Reliability Based Design Optimization (RBDO) problems. A VSVM
[13] constructs a decision function by sampling near the class boundary. The sam-
pling algorithm selects additional virtual samples in order to incorporate invariances
in the problem. The hope is that the enlarged training set incorporating virtual
samples will lead to gains in accuracy over the original training set.

A detailed discussion on input and model-based sampling algorithms is out of
scope of this work, and the interested reader can refer to [14–18].

In this paper, an input-output-based algorithm is proposed that uses the class
labels of previously computed data points to narrow down the selection of new
samples to interesting regions. The algorithms identifies local changes in the class
labels and focuses the selection of samples in those areas. This kind of exploitation
is merged with a space-filling exploration component to make sure that no regions
are missed.

A key advantage of this method is that no intermediate classifiers (like SVM’s)
need to be built, which can lead to substantial savings in terms of computation
time. While model-based methods entail the potential of exploiting model-specific
information to better select new samples, they also run the risk of being misled by
the model. For instance, in the initial stages of the sampling process, the model
might be inaccurate and might drive the search towards non-optimal regions. This
can result in interesting regions not being covered by the algorithm. Input or output-
based methods are independent of the model, and therefore are less prone to such
pitfalls.

2.4 Neighborhood-Voronoi Sequential Sampling Al-
gorithm

In this section, a new approach for sequential sampling in a classification context is
proposed. The term sequential implies that the sampling algorithm is dynamic.
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The algorithm chooses additional samples in each iteration based on certain
criteria. These criteria may be based on uncertainty, or accuracy of the intermediate
classification models (if built), space-fillingness of the input space, satisfaction of
constraints, or other problem-specific performance criteria. Each of the potential
goals described above will need a dedicated sequential sampling algorithm. The
goal of the proposed algorithm is to train an accurate classifier while minimizing
the number of training samples.

The algorithm presented in this work is solely data driven. The data are collected,
analysed, and new data points are chosen in a sequential manner. No intermediate
(classification) models are required during the sampling process. Intermediate
classifiers can be constructed if the user desires (to test accuracy as stopping
criterion, for example) but is not required by the algorithm. Thus, the proposed
algorithm is independent of any particular classifier.

The Neighborhood-Voronoi algorithm is based on the LOLA-Voronoi algorithm
proposed by [14], with modifications made to handle classification problems instead
of regression. The algorithm aims to balance exploration of the input space and
exploitation of regions near the class boundaries which are prone to misclassification.
In the following subsections, the Neighborhood-Voronoi sampling algorithm is
explained by separately discussing the Neighborhood (exploitation) and Voronoi
(exploration) components.

2.4.1 Exploitation
The difficult-to-learn regions for a classifier are often near the class boundaries.
The exploitation component makes sure that samples are chosen more densely in
these interesting areas. A local neighborhood N of size m is computed for each
instance xi,∀i ∈ 1, ..., n as:

N(xi) = {xi1,xi2, ...,xim} ⊂ Xr = {xij}mj=1, (2.3)

where Xr = X \ {xi}, with \ being the set difference operator. To ensure that all
directions around the instance xi are covered uniformly, N is chosen according to
optimal adhesion and cohesion. The terms adhesion and cohesion used in this work
are defined below, and are unrelated in meaning to the use of the terms in biology,
chemistry and materials science.

• Cohesion makes sure that the neighbors are as close to xi as possible. It is
defined as the average minimum distance of neighboring points from xi. The
cohesion of a neighborhood N with respect to the fixed instance xi is defined
as:

C(N(xi)) =
1

m

m∑
j=1

‖xij − xi‖2. (2.4)

• Adhesion ensures that the neighbors are as far away from each other as
possible. It is defined as the average minimum distance of neighbors from
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each other. The adhesion of a neighborhood N with respect to the fixed
instance xi is defined as:

A(N(xi)) =
1

m

m∑
j=1

min
l 6=j
‖xij − xil‖2. (2.5)

Ideally, a neighborhood N should have a low value of cohesion C(N(xi))
and a high value of adhesion A(N(xi)). Finding such a neighborhood involves
minimising C(N(xi)) and maximising A(N(xi)) simultaneously, given a discrete
set of candidate neighborhoods. Ideally, if the neighbors of the reference point
xi could be chosen freely, they will be chosen such that they have equal cohesion
contribution and form a m−sided regular polygon. The problem is extended to
placing m points in an ideal configuration on a d−dimensional hyper-sphere such
that the adhesion value A(N(xi)) of the reference point xi is maximized. This is
an open problem in mathematics [31].

Since there is no optimal solution to the problem of placing m points on a
d−dimensional hypersphere [32], a subproblem with a known solution is considered.
This concerns the special case when m = 2d. Intuitively, for a one-dimensional
case, m = 2 and the configuration will involve placing one point on either side of
the reference point x. In the two-dimensional case, m = 4 and the points will form
a square around the reference point. For d−dimensions, the optimal configuration
is a d−cross-polytope [33] which contains all points obtained by permuting the d
coordinates:

(±1, 0, 0, ..., 0)

(0,±1, 0, ..., 0)

...
(0, 0, 0, ...,±1).

The cross-polytope configuration maximizes adhesion [33].
The cross-polytope ratio: Having established that for points lying on a hyper-

sphere, the cross-polytope is the optimal configuration which maximizes adhesion,
it can be inferred that any given neighborhood with cohesion C(N(xi)) must
always have an adhesion value A(N(xi)) lower than that of the cross-polytope
with radius C(N(xi)). For a cross-polytope, the distance between points is

√
2

times the distance from the origin (the reference point) for any dimension higher
than 1. This implies that

√
2C(N(xi)) is the absolute upper bound for adhesion

value of any neighborhood with cohesion C(N(xi)). Therefore, the following
measure R(N(xi)) can be used to gauge how closely a neighborhood resembles a
cross-polytope:

R(N(xi)) =

{
A(N(xi))√
2C(N(xi))

, d > 1

1− |xi1+xi2|
|xi1|+|xi2|+|xi1−xi2| , d = 1.

(2.6)
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The exception for the one-dimensional case is due to the fact that the distance of
the two points from each other is twice the distance from the reference point [14].

A neighborhood score that combines adhesion and cohesion can be used to
assign scores to neighborhoods:

S(N(xi)) =
R(N(xi))

C(N(xi))
. (2.7)

This measure will prefer neighborhoods that lie close to the reference point xi
and resemble a cross-polytope. S can be used as a criterion to choose N for all
instances. The neighborhood score thus is a single quantity which captures the
desired balance of adhesion and cohesion mentioned above.

After such a neighborhood is constructed, the class disagreement χ correspond-
ing to the sample xi belonging to the neighborhood N is calculated according to
the formula:

χ(xi) =

{
1, α > 1,
0, α = 1.

(2.8)

where (1 ≤ α ≤ K) is the number of unique class labels in N . An observation
with a higher value of χ is surrounded by samples having differing class labels, and
needs to be sampled more intensely as it is located along the class boundaries.

Algorithm 1 Pseudocode for the exploitation component of the Neighborhood-
Voronoi sequential sampling algorithm. X consists of all points processed by
the algorithm previously. Xδ is the set of points selected by the algorithm in the
previous iteration which are yet to be processed. δ is the number of new samples to
be selected by the algorithm.

for all xδ ∈ Xδ do
for all x ∈ X do

Evaluate membership of xδ for neighborhood N(x) of x
Evaluate membership of x for neighborhood N(xδ)
Update class disagreement information for x and xδ

end for
X ← X ∪ xδ

end for
for all x ∈ X do

Calculate class disagreement score for x
end for
Identify neighborhoods corresponding to δ highest ranked samples in X
Select new samples in these neighborhoods

Algorithm 1 describes the pseudocode of the exploitation component of the
Neighborhood-Voronoi algorithm. The algorithm begins by updating the state of
the samples selected by the algorithm in the previous iteration. Each new sample xδ
is considered as a candidate neighbor for each processed sample x and vice-versa.
The class disagreement scores for these samples are then updated according to
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Equation 3.2. After processing all previously unprocessed samples, the metric χ is
calculated for each sample in X which reflects the exploitation score of the sample
in question. Finally, each of the neighborhoods corresponding to the top δ samples
ranked according to χ are chosen to generate a new sample in.

2.4.2 Exploration

The exploration component identifies regions in the input space that are prone to
under-sampling, or under-representation. Such regions have a low density of points
and a mechanism to identify these regions is required.

A Voronoi tessellation is a well-known way to partition a space based on
density [34]. Assuming that our training set X ⊂ X in Euclidean space, the
Voronoi cell Ci ⊂ X of the point xi contains all points in X which lie closer to xi
than any other point in X . The Voronoi tessellation corresponding to X consists
of all Voronoi cells {C1, C2, ..., Cn} which tessellate the complete space X . To
define Voronoi cells formally, the notion of dominance [14, 34] is used.

Dominance: Given two distinct instances xi,xj ∈ X , the dominance of the
instance xi over the instance xj is defined as the subset of the plane being at least
as close to xi as it is to xj [14]:

dom(xi,xj) = {x ∈ X | ‖x− xi‖2 ≤ ‖x− xj‖2}. (2.9)

The plane dom(xi,xj) is half-closed, bounded by the perpendicular bisector of
xi and xj . The bisector is called the separator of xi and xj which separates all
points in X closer to xi as opposed to xj . The Voronoi cell Ci corresponding to
the instance xi is the part of the design space X with is dominated by xi over all
other instances in X:

Ci =
⋂

xj∈X\{xi}

dom(xi,xj). (2.10)

Figure 2.2 shows the Voronoi tessellation of a set {xi}10
i=1 of randomly gen-

erated instances. The test instance p is closer to x4, and so are all points in X
in the Voronoi cell corresponding to x4. It is also apparent from Figure 2.2 that
larger Voronoi cells correspond to regions in the design space that are sampled
more sparsely. To fully explore the design space X , new samples should be chosen
in Voronoi cells with a large volume. For example, generating a new sample point
or instance in the Voronoi cell corresponding to x3 will be more beneficial in terms
of space-fillingness as compared to sampling the Voronoi cell corresponding to
the instance x8. Therefore, a way to compute the hypervolume of Voronoi cells is
required in order to compare them.

Voronoi tessellations are geometric duals of Delaunay triangulations. The
Voronoi tessellation of a set of points X can be obtained from the Delaunay trian-
gulation of X in O

(
n
)

time [34]. Computing the volume of Voronoi cells is harder,
since the Voronoi cells near the border of X are unbounded. These Voronoi cells
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Figure 2.2 The bounded Voronoi tessellation of a set of points {xi}10
i=1. The test

point p lying in the Voronoi cell corresponding to x4 lies closer to x4 than any
other point.

will therefore have infinite volume. Hence, the border-lying Voronoi cells must first
be bounded before their volume can be computed.

As this is complex, the volume of Voronoi cells is approximated using a Monte
Carlo approach described in Algorithm 2, since only the relative differences in
volume of the Voronoi cells are important, and computing the exact volume is com-
putationally very expensive. Additionally, exact computation of Voronoi volumes
becomes infeasible above 6 dimensions [25]. A large number of random uniformly
distributed test samples T = {tl}Ll=1 are generated in X . The minimum distance
between each test point tl and existing instance xi is calculated. The test point
is then assigned to the instance closest to it. By having enough test points, it is
possible to estimate the volume of each Voronoi cell. The reader is referred to [14]
for details of the algorithm to approximate the hypervolume of each Voronoi cell.
Although distance computation will be adversely affected by the effect of distance
concentration in high-dimensions, the Neighborhood-Voronoi algorithm is limited
to 5− 6 dimensional problems where these affects are not as strong [35, 36].

The exploration metric ψ of an instance xi is defined as the ratio of the estimated
volume of Voronoi cell Ci containing xi with respect to the combined volume of
all Voronoi cells in the design space X :

ψ(xi) =
Vol(Ci)

Vol(C1) + Vol(C2) + ...+ Vol(Cn)
. (2.11)

A higher value of ψ(xi) implies that the corresponding Voronoi cell Ci is large,
whereas a smaller value of ψ(xi) implies thatCi is smaller. The sampling algorithm
should focus on cells with a higher value of ψ since they might be under-sampled.
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Algorithm 2 Pseudocode for the exploration component of the Neighborhood-
Voronoi sequential sampling algorithm. X consists of all points that have to be
ranked by the algorithm according to their respective Voronoi cell size.

T ← L random points ∈ X
V ← [0, 0, ..., 0]
for all t ∈ T do

d←∞
for all x ∈ X do

if ‖x− t‖ < d then
xclosest ← x
d← ‖x− t‖

end if
end for
V [xclosest]← V [xclosest] + 1

L
end for

2.4.3 Combining exploitation and exploration score

Algorithm 3 Pseudocode for the Neighborhood-Voronoi sequential sampling algo-
rithm. δ is the number of new samples to be selected by the algorithm.

for all x ∈ X do
Compute χ(x)
Compute ψ(x)
Compute final ranking Λ(x) = χ(x) + ψ(x)

end for
Sort X according to Λ
for i = 1 to δ do

xδ ← generate a sample near xi farthest from other samples
Xδ ← Xδ ∪ xδ

end for

After obtaining the two metrics χ and ψ for exploitation and exploration respec-
tively, the algorithm (Algorithm 3) assigns a combined score Λ for each existing
sample x ∈ X as:

Λ(x) = χ(x) + ψ(x). (2.12)

The algorithm ranks all samples in X in order of how well each sample ranks
in exploitation and exploration according to the criterion Λ. The top δ samples
in X are then selected and a new point is generated near each of these samples
such that the generated point is as far away from other existing samples as possible
(maximizing the minimum distance to other existing samples).

Although the combination scheme described above assigns equal weights to
exploration and exploitation, it is possible to vary the contribution of each depend-
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ing upon the characteristics of the problem at hand. In the regression context,
combination (or balancing) schemes for Voronoi-based exploration, and LOcal
Linear Approximation (LOLA)-based exploitation are described by [37].

The different balancing schemes are ε-greedy, ε -decreasing, and ε-adaptive.
In the ε-greedy scheme, a user-specified tuning parameter ε ∈ [0, 1] decides the
proportion of purely exploration-based sampling iterations. The remaining propor-
tion of 1 − ε sampling iterations is purely exploitation-based. In each iteration,
a random number α is generated according to a uniform distribution. If α < ε,
then the current sampling iteration consists of pure exploration. If α ≥ ε, then the
current sampling iteration consists of pure exploitation.

The ε-decreasing variant is similar to ε-greedy strategy, but for the choice of
the parameter ε. The initial value of ε can be user defined (or a default of 1), and
decreases over proceeding sampling iterations. Therefore, it is possible to start
with pure exploration (or very high exploration), which progressively decreases
and makes way for increasing exploitation. This is intuitive since it is desirable
to perform more exploration up-front when little is known about the design space.
With time, as more information is obtained, performing more exploitation may be
beneficial.

Finally, the ε-adaptive scheme utilizes the surrogate model for sampling, unlike
previous schemes. The value of ε is varied in this scheme based on different criteria,
e.g., deviation between successive models, fluctuations in model response, and
evolution of cross-validation error. For a deeper discussion on the three schemes,
and a comparison of their performance, the reader is referred to [37].

2.5 Examples

2.5.1 Example: Non-Linearly Separable Classification Problem
A Gaussian function centered at (x′1, x

′
2) = (0, 0) having a standard deviation

σ =
√

5 is defined as:

f(x) = exp
−
(

(x1−x
′
1)2+(x2−x

′
2)2

σ2

)
,

dom(f(x)) = {x1, x2 ∈ [−5, 5]},

where x = {x1, x2}. The problem involves finding the region in the input space
which corresponds to function values within 50% of the highest possible function
value (fmax = 1). The classification problem is defined as:

yi =

{
1, f(xi) ∈ [0.5,∞),
0, f(xi) ∈ (−∞, 0.5).

A classifier is trained over instances obtained according to a Latin Hypercube
design of b = 15 points (including the corner points of the design space). The
Neighborhood-Voronoi sequential sampling algorithm is used to select additional
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Figure 2.3 Non-Linearly Separable Classification Problem: The sampling per-
formed by the Neighborhood-Voronoi algorithm for the Gaussian function. The
black circle is the true class boundary. The learned positive class is represented by
the white region, while the learned negative class is represented by the grey region.
The dots are the instances in the training set for that particular iteration.
(a) Classifier built with 55 instances (b) Classifier built with 105 instances

(c) Classifier built with 155 instances (d) Classifier built with 205 instances
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Figure 2.4 Non-Linearly Separable Classification Problem: The evolution of classi-
fier accuracy with respect to number of training instances. The results are averaged
over 10 separate runs.
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samples iteratively in batches of δ = 10 each. The total number of function
evaluations allowed is n = 205. For the sake of visualization, a Support Vector
Machine (SVM) classifier [38] is built based on the outcome of the proposed
sampling strategy. All experiments have been performed using the SUrrogate
MOdeling (SUMO) toolbox [39] for MATLAB, running on a MacBook Pro machine
with 16 GB RAM and a 2.4 GHz Intel Core i5 processor. The operating system is
OS X El Capitan.

The results of applying the Neighborhood-Voronoi algorithm can be seen in
Figure 2.3. There is a large discrepancy between true and learned class boundaries
in the initial iterations. In subsequent iterations, the classifier boundary is refined
by selecting samples near the boundary. The accuracy of the classifier over 200
randomly generated test points was 98% with Precision and Recall being 1 and 0.98
respectively. The evolution of classifier accuracy with increasing number of training
instances over a static set of test instances can be seen in Figure 2.4. The accuracy
rises rapidly between 35 and 65 training samples, after which it begins to stabilise.
Figure 2.4 also shows a comparison with random sampling. It is observed that
random sampling climbs in accuracy quickly, but the balanced sampling properties
of the Neighborhood-Voronoi algorithm make sure it outperforms random sampling
consistently. The initial lethargy can be attributed to too few samples being near
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Figure 2.5 Non-Linearly Separable Classification Problem with noise: The sam-
pling performed by the Neighborhood-Voronoi algorithm for the Gaussian function
with added noise. The black circle is the true class boundary. The learned positive
class is represented by the white region, while the learned negative class is repre-
sented by the grey region. The dots are the instances in the training set for that
particular iteration.
(a) Classifier built with 55 instances (b) Classifier built with 105 instances

(c) Classifier built with 155 instances (d) Classifier built with 205 instances

the boundary in the initial iterations. As sampling progresses, the uncertainty near
the boundary decreases and accuracy of trained classifier improves.

2.5.2 Effect of Noise

In case of stochastic computer experiments, the effect of noise must be taken into
consideration. In order to study how noise affects the algorithm, random Gaussian
noise with zero-mean and standard deviation of 0.2 is added to the previous example.
It can be seen in Fig. 2.5 that the nature of the sampling is unaffected and robust,
although the noise will inevitably lead to accuracy loss when the data is used to build
a classifier. The accuracy of the resulting classifier over 200 randomly generated test
points was 94.35% with Precision and Recall being 0.9522 and 0.9891 respectively.
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From the sampling behavior depicted in Fig. 2.5 it can be inferred that the dip in
accuracy, Precision and Recall is due to the noise in the data rather than inefficacy
of the sampling algorithm. The algorithm avoids zooming in on noisy areas, as
it causes corresponding Voronoi cells to become increasingly smaller, leading to
lower ψ(x) and χ(x) scores in (2.11) and (2.12).

2.5.3 Example: Nowacki Beam Problem

A constrained multi-objective optimization problem described by [40] is now
considered. The aim is to design a tip-loaded encastre cantilever beam (Fig. 2.6)
minimizing the cross-sectional area and bending stress subject to certain constraints.
In order to achieve the goal, the problem of finding regions of feasibility must
be solved first. The rectangular beam has length l = 0.5 m and is subjected to
a tip-load F = 5 kN. The design variables are the height h and breadth b of the
beam. The optimization problem can be formulated as described in Table 2.2,
with A = b × h being the cross-sectional area of the beam, σB = 6Fl/(bh2)
the bending stress, δ = Fl3/(3EIY ) the maximum tip deflection, σY the yield
stress of the material, τ = 3F/(2bh) the maximum allowable shear stress, h/b the
height-to-breadth ratio, and
FCRIT = (4/l2)

√
GITEIZ/(1− ν2) the failure force of buckling. Here, IT =

(b3h+ bh3)/12, IZ = b3h/12, IY = bh3/12, and f is a safety factor of two. The
material under consideration is mild steel with yield stress σY = 240 MPa, Young’s
modulus E = 216.62 GPa, ν = 0.27 and shear modulus G = 86.65 GPa.

Table 2.2 Nowacki Beam Problem: Problem Definition.
Min
b,h

A, σB s.t. δ ≤ 5mm

σB ≤ σY
for 20 mm < h < 250 mm τ ≤ σY /2

10 mm < b < 50 mm h/b ≤ 10
FCRIT ≥ f × F

Instead of finding the optima, the problem of finding the region of feasibility
in the design space meeting all constraints is considered. This can be also seen as
an inverse problem of finding a region (quasi-optimal region) in the design space
corresponding to desired (known) output. For complex problems, a practitioner
might find it useful to find a small region in the design space containing possible
solutions first, and concentrating future efforts in only that region. This kind of
domain reduction can be very useful [41] while solving expensive constrained opti-
mization problems. Finding the feasible region efficiently will save the practitioner
a lot of time and effort.

The problem of finding the feasible region is solved using adaptive classification.
The problem can be cast as a classification problem with the class label yi assigned
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Figure 2.6 The Nowacki Beam Problem.

to instance xi = (b, h) as:

yi =

 1, δ ≤ 5mm;σB ≤ σY ; τ ≤ σY /2;
h/b ≤ 10;FCRIT ≥ f × F,

0, otherwise.

An Artificial Neural Network (ANN) classifier available from the WEKA
data mining software [42], and a SVM classifier were used to model the con-
strained problem. The initial design was a Latin Hypercube of 20 instances. The
Neighborhood-Voronoi sequential sampling algorithm was used to select 10 new
samples in each iteration and the total number of allowed function evaluations was
200.

The result can be seen in Figure 2.6a. It is observed that samples have been
selected densely along the edge of the feasible region, which is desirable [43]. Also,
the algorithm spreads exploitation samples evenly across the boundary, which is
prudent since nothing can be assumed about how well the model is approximating
the boundary. In the ideal scenario, the algorithm should assign more samples to
regions where the class labels are changing more rapidly, i.e., the leftmost tip of the
gray shaded region in Fig. 2.6a. The final classifier built using 200 samples has an
accuracy of 99.6%, precision of 0.9962 and recall of 0.9954.

As a comparison, the state-of-the-art EDSD algorithm is also applied to obtain
the feasible region of the Nowacki beam problem. The implementation used is
from the CODES toolbox 1 [44]. The initial design was a Centroidal Voronoi
Tessellation (CVT) of 20 points matching the size of LHD used in case of the
Neighborhood-Voronoi algorithm. The sampling budget was also set to 200 points
to match the experimental settings described above. All other parameters of the
algorithm were left at their default values.

1http://codes.arizona.edu/toolbox/
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Table 2.3 Nowacki Beam Problem: Classifier Test Performance.
Run Algorithm Classifier # samples Precision Recall AUC Accuracy(%) Time (s)

1 N-V ANN 200 0.9859 0.9861 0.9861 98.65 120.02
2 N-V SVM 200 0.9962 0.9954 0.9954 99.60 361.15
3 EDSD SVM 200 0.9993 0.9994 0.9994 99.93 2515.82

Figure 2.7 Nowacki Beam Problem: The comparison of sampling performed by
the Neighborhood-Voronoi and EDSD algorithms.
(a) The sampling performed by the Neighborhood-
Voronoi algorithm using an SVM classifier

(b) The sampling performed by the EDSD algo-
rithm

Table 2.3 compares the results obtained using the Neighborhood-Voronoi (N-V)
algorithm and the EDSD algorithm on a separate test set of 4900 samples. It can
be seen that both EDSD and Neighborhood-Voronoi algorithms lead to models
with comparable accuracy. The Neighborhood-Voronoi algorithm provides faster
sampling, but marginally less accurate models. It also provides the flexibility
of using any classifier since the sampling algorithm is model independent. The
difference in accuracy can be attributed in part to the presence of exploration
in the sampling process, which is not present in the EDSD algorithm. EDSD
exhibits very aggressive exploitation (Fig. 2.6b) that leads to a very accurate
characterization of the decision boundary. Since a part of the sampling budget of
Neighborhood-Voronoi goes towards exploration, the model accuracy improvement
is comparatively slower.

Although the exploration component of the Neighborhood-Vornoi algorithm
may lead to slower improvement in accuracy, it ensures that unknown feasible
regions will be found if given enough sampling budget. The following example
illustrates the importance of exploration.

2.5.4 Example: Disconnected Feasible Regions

The problem of finding feasible regions becomes challenging when the area oc-
cupied by feasible regions is very small in comparison to the entire design space.
Problems are compounded if there are multiple disjoint feasible regions forming
islands in the design space.
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Consider the modified Branin function [45] of the form:

Min f(x) = −(x1 − 10)2 − (x2 − 15)2,

s.t. g(x) =
(
x2 −

5.1

4π2
x2

1 +
5

π
x1 − 6

)2

+ 10
(

1− 1

8π

)
cos x1 + 10 ≤ 5.

The problem translated to the following classification problem with the class label
yi assigned to instance xi as:

yi =

{
1, g(xi) ≤ 5,
0, otherwise.

The Neighborhood-Voronoi and EDSD algorithms are used to solve for the
constrained design space represented by g(x). In order to illustrate the need for
exploration, a small initial design of 10 points in the form of a CVT is used. The
same initial design is used with both algorithms to ensure a fair start for the sampling
process.

Figure 2.8 Modified Branin Function: The comparison of sampling performed by
the EDSD and Neighborhood-Voronoi algorithms. The initial design common to
both algorithms consisted of 10 points that did not cover the two feasible regions at
the bottom.
(a) The sampling performed by the Neighborhood-
Voronoi algorithm using an SVM classifier

(b) The sampling performed by the EDSD algo-
rithm

The results are shown in Fig. 2.8. Since the initial design missed two of the
three feasible regions, the EDSD algorithm had no means to reach the two distant
islands. The Neighborhood-Voronoi algorithm was able to identify all three feasible
regions owing to Voronoi-based exploration, even though the initial design had
missed two regions. This can be critical in problems where the feasible regions
occupy a small area of the design space, and the initial design is not large enough
to cover all feasible regions.

Indeed, the exploration component eliminates the need to carefully choose
the size of the initial design and allows for automatic sequential coverage of the
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design space. The EDSD algorithm works very well in quickly refining SVM
classifier boundaries, but will struggle in such scenarios and can also benefit from
incorporation of an exploration component.

Although only binary classification problems are discussed as examples for the
purpose of exposition, the proposed algorithm functions as described for multi-class
classification problems as well. The algorithm is scalable till approximately 5− 6
dimensions, beyond which the running time prolongs considerably [16].

2.6 Conclusion and Future Work
Many design and optimization problems in engineering involve training of a clas-
sification model based on computationally expensive simulation data. A novel
sequential sampling strategy for training classification models is presented in this
paper that minimizes the number of training points needed to obtain an accurate
classifier. The proposed algorithm is compared to state-of-the-art Explicit Design
Space Decomposition algorithm and illustrated on a non-linear analytical example,
and a structural design problem. Future work involves exploring fuzzy theory-based
approaches to extend the algorithm towards handling problems having upto 10 input
dimensions.
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3
Adaptive Classification Algorithm for

EMC Compliance Testing of
Electronic Devices

In this chapter, we apply the Neighborhood-Voronoi algorithm to the problem of
EMC compliance testing of electronic devices.

? ? ?

P. Singh, D. Deschrijver, D. Pissoort, T. Dhaene.

Published in Electronics Letters 49 (24), 1526-1528, Aug. 2013.

Abstract This letter describes a novel technique that facilitates near-field (NF)
scanning for EMC-compliance testing. It performs measurements in a sequential
way with the aim of discovering multiple, possibly disjoint regions where the
amplitudes of a near-field component belong to certain output ranges. The measured
data samples are used to train a classification model where each NF range is
represented by a given class (e.g. low/medium/high NF amplitudes). The outcome
of the algorithm is a visual map that clearly characterizes and pinpoints the exact
location and boundaries of each class. Such maps are useful, for example, to detect
hotspots or regions that are prone to electromagnetic compatibility issues. The
technique is validated on a measured microstrip bend discontinuity.
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3.1 Introduction

The detection of electromagnetic compatibility (EMC) issues for electronic devices
is becoming important as an increasing amount of components are operating at
higher clock frequencies. A popular method to examine the EMC behavior of such
electronic (sub)systems is based on electromagnetic near-field scanning [1], as it
facilitates the assessment of both the intra-system and inter-system EMC behavior
of the device under test. In order to reduce the overall NF scanning time, an
automated algorithm was proposed in [2] that builds a high-resolution carthography
model of the NF pattern by performing a minimum amount of measurements and
fitting the data with a Kriging-based interpolation model. Such models are highly
accurate in the sense that they capture all variations in the NF pattern. For EMC
pre-compliance testing, however, one is usually interested in identifying only those
regions of interest that belong to a certain class (e.g. regions with low/medium/high
NF amplitudes). The early detection of such regions during the design-phase
yields insight into the EMC behavior of the device and can be exploited to reduce
development costs and design effort while increasing the performance. This letter
presents a novel classification-based scanning algorithm that sequentially performs
batches of measurements with the aim of detecting only the regions of interest
and outlining their boundaries. Numerical results confirm that the amount of
measurements can be reduced significantly as compared to a full device scan as
was proposed in [2].

3.2 Goal Statement

The goal of the algorithm is to identify all NF regions of the device that correspond
to a given class, while minimizing the number of measurements (data samples)
needed. Each data sample, k, is conveniently represented as a tuple (xk, L(xk))
where xk is a scan point that contains the horizontal, vertical, and height coordinates
of the probe and L(xk) is the resulting class label. Note that this label is assigned
by inspecting the output range of the amplitude of the electric or magnetic field
component and by mapping it onto the corresponding class (e.g. low, medium or
high).

3.3 Adaptive Classification Algorithm

The adaptive algorithm starts from a small initial set of scan points that is chosen
according to an optimized latin hypercube design. In each sequential step, optimal
coordinates for an additional batch of NF scan points are calculated and the corre-
sponding measurements are performed. This process is repeated iteratively until
all the regions of interest are well characterized. The resulting data samples are
used to train a classification model (e.g. Least-Squares Support Vector Machine
(LS-SVM), Artificial Neural Network (ANN),...) that predicts the class label at
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arbitrary coordinates in the scanning plane. The predictions of the model can
be used to calculate a visual map that accurately pinpoints the location and the
boundaries of each class region.

3.4 Sequential Sampling Scheme
When choosing scan points, it is important that exploration and exploitation criteria
are combined in a balanced way.

• Exploration makes sure that the scanning plane is sampled as evenly as
possible, to ensure that no important regions are missed. Given a set of K
scan points, a Voronoi tessellation is computed that divides the plane into
cells Ck. Cells with a larger relative volume correspond to sparse areas and
are assigned a higher score V (xk) (see Sect. III-A in [2]).

V (xk) =
Vol(Ck)

Vol(C1) + ...+ Vol(CK)
(3.1)

• Exploitation makes sure that the boundaries between different classes are
sampled more densely, because these are the areas where the uncertainty
of the classification model is the largest. For each scan point xk, a neigh-
bourhood {xnk}Nn=1 of N scan points is calculated (see Sect. 4.2 in [3]).
These neighbours should satisfy the properties of cohesion and adhesion.
Cohesion implies that neighbours are located as close to the scan point as
possible, while at the same time adhesion implies that the neighbours must
be as far apart from each other as possible. These properties ensure that all
directions around the scan point are well covered. Once the neighbourhood
is constructed, the class labels L(xnk ) of all neighbours are compared. A
higher score W (xk) is assigned to Voronoi cells where class labels of the
neighbours have a mismatch, because this corresponds to the areas where
boundaries are located.

W (xk) =

{
1⇐⇒ ∀1 ≤ i, j ≤ N : L(xik) = L(xjk)

0⇐⇒ ∃1 ≤ i, j ≤ N : L(xik) 6= L(xjk)
(3.2)

Once these metrics are computed for each Voronoi cell, all the cells are ranked
according to a global metric G(x) that combines both the criteria

G(x) = V (x) +W (x) (3.3)

Optimal scan coordinates for the next batch of scan points are then chosen inside
the highest ranked cells, and in such a way that the distance from the neighbours is
maximized. The iterative process of measuring additional scan points is repeated
until all the class regions are well characterized.
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3.5 Experiment
The algorithm was applied to scan the NF pattern of a double bended microstrip
line (see Fig. 3.1) that was measured using a NF scanning system. The PCB
comprised of a 50Ω microstrip on a 15 cm × 9 cm FR4 substrate with a thickness
of 1.5 mm. To create sufficient radiation, some basic EMC rules were violated
on the test PCB (e.g., routing the microstrip over a slot in the ground plane). The
microstrip was excited at one end with a generator set at an available power of 0dBm
and terminated in 50Ω at the other end. The amplitude of a field component, e.g.
|Hy|, was measured with a NF scanner that was built from a computer numerical
control milling machine. To do this, the miller and its suspension were removed
and replaced by a head to which a near-field probe is attached. The head can be
moved automatically in three dimensions above the device under test to perform
measurements. The probe was a magnetic NF probe from Langer EMV-Technik
(RF-U 2.5-2) that was specified for the frequency range of [30 MHz - 3 GHz]. It
was connected to a Rohde & Schwarz EMI receiver and all the measurements were
performed at a fixed height of 2 mm above the printed circuit board (PCB) under
test at a frequency of 200 MHz.

Figure 3.1 Layout of the bent microstrip

The algorithm is used to detect 3 regions in the scanning plane where the
amplitude of the NF component |Hy| corresponds to a different level:

Class label NF Range (dBµV) Colour
Low [0− 30[ blue

Medium [30− 40[ green
High [40−∞[ red

It starts from an initial set of 80 measurements that are chosen according to
an optimized Latin Hypercube. The sampling algorithm iteratively computes the
optimal coordinates of a batch of 20 additional scan points and the measurements
are performed. This process is repeated until a total amount of 700 samples are
available and LS-SVM classification model is calculated whose output is visualized
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as a map in Fig. 3.2. It is seen that the algorithm focuses the location of selected
scan points (black dots) near the class boundaries where the classifier is rather prone
to uncertainty, while at the same time covering the overall region in a space-filling
way [4].

Figure 3.2 Map of classification model with 700 scan points marked as black dots

The same experiment was repeated for varying number of scan points, and
the resulting models are validated on a separate test set of 500 measurements that
are uniformly distributed in the scanning plane. Table 1 shows that the resulting
models perform very well in terms of precision, recall and accuracy, even with a
limited number of scan points (150 or above). This is a significant reduction when
compared to a full device scan that would require at least 350 measurements (see
Fig. 22 in [2] for details).

Table 3.1 Validation of the classification models.
# Measurements Precision Recall Accuracy (%)
100 0.5702 0.6191 89
150 0.9523 0.9023 95
200 0.9676 0.9245 96.6
250 0.9679 0.9154 96.8
300 0.9622 0.9460 96
700 0.9865 0.9865 98.4
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3.6 Conclusion
A novel algorithm is proposed for EMC-compliance testing of electronic devices by
means of NF scanning. It combines adaptive classification and sequential sampling
algorithms to iteratively identify the regions of interest where the amplitude of
the NF pattern has prespecified characteristics. Numerical results show that it can
significantly reduce the number of measurements needed when compared to a full
device scan.
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4
A Balanced Sequential Design Strategy

for Global Surrogate Modeling

This chapter presents an analysis of the exploration v/s exploitation trade-off and
proposes an algorithm which automatically balances exploration and exploitation
adaptively based on the prevailing modeling error.

? ? ?

P. Singh, D. Deschrijver, T. Dhaene.

Published in the proceedings of 2013 Winter Simulation Conference, 2172-
2179, Dec. 2013.

Abstract The sequential design methodology for global surrogate modeling of
complex systems consists of iteratively training the model on a growing set of
samples. Sample selection is a critical step in the process and influences the
final quality of the model. It is desirable to use as few samples as possible while
building an accurate model using insight gained in previous iterations. A robust
sampling scheme is considered that employs Monte Carlo Voronoi tessellations for
exploration, linear gradients for exploitation and different schemes are investigated
to balance their trade-off. The experimental results on benchmark examples indicate
that some schemes can result in a substantially smaller model error especially when
the system under consideration has a highly non-linear behavior.
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4.1 Introduction
Computer experiments or simulations are extensively used in various disciplines
such as medicine, environmental sciences and physical sciences, including complex
system design problems such as aircraft design. In such cases, the computer models
constructed to simulate experiments can be very complex and computationally
intensive. The scale of computation is reflected in an example given in [1] where it
is reported that it takes the Ford Motor Company anywhere from 36 to 160 hours to
run one crash simulation. For an optimization problem, the total computation time
taken by repeated iterations may sum up to a practically unacceptable range of 75
days to 11 months. Valuable time, money and resources can be saved if a cheaper
replacement or approximation is fit to the underlying model. This “model of the
model” is called a metamodel or a surrogate model.

Surrogate models may cover the entire domain and can be used as full replace-
ments of the underlying system. Such surrogates are called global surrogate models.
Contrarily, local surrogate models only cover a region of the entire domain of
underlying systems with the aim of finding the global optimum and are mostly used
for design optimization. The focus of this work is on global surrogate modeling.

Surrogate modeling methodologies can be broadly divided into traditional
design of experiments (DOE) and sequential design (or adaptive sampling [2]). In
traditional DOE the surrogate is trained in a single iteration on a carefully chosen set
of samples. Such a set of samples which is aimed at capturing the maximum amount
of information about the design (or input) space is called an experimental design.
On the other hand, a typical sequential design surrogate modeling process starts
with an initial experimental design which leads to a preliminary model, and new
carefully chosen samples are iteratively added to enrich this model. This process
continues till the model reaches sufficient accuracy, or until a predefined sampling
budget is exceeded. This paper concerns only the sequential design methods.

The model itself can be of any type. In addition to polynomial functions,
surrogates makes use of diverse methods such as splines, kriging, radial basis
functions, neural networks, etc. [1]. Kriging, which is a stochastic model was
first proposed as a metamodeling method by (Sacks et al. 1989). Combinations
of the methods mentioned above have also been tried. Though it is not possible
to pronounce a specific model superior to the rest, Kriging and related Gaussian
processes have been intensely studied recently.

Since surrogates are trained using samples obtained by performing underlying
(often expensive) simulations or experiments, it is desirable to use as few samples
for training as possible while meeting specified accuracy goals. Thus, sampling
algorithms or sample selection schemes become crucial to the success of a sequential
design strategy. Sampling schemes might involve exploration (of the whole design
space) or exploitation (of regions with high non-linearity) or a combination of both.
In this paper, we propose an adaptive sampling scheme that combines exploration
and exploitation and controls the contribution of the two according to the different
balancing schemes.

The paper is organized as follows. Section 4.2 describes the related work and
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sequential design methods that are proposed in the literature. Section 4.3 explains
the different balancing schemes that will be investigated, while Section 4.4 reports
the experiments performed and results obtained. Finally, Section 5.7 concludes the
paper and summarizes the results.

4.2 Sequential Design Methods
There has been wide interest in the study of sequential design strategies for global
surrogate modeling in the last decade. Space-filling exploration methods are in-
vestigated in [3] and the authors conclude that pre-optimized latin hypercube
designs should be preferred if the number of samples is known in advance, and
threshold Monte Carlo methods otherwise. Continuing the use of Monte Carlo
methods, (Crombecq et al. 2011) proposed a sequential design strategy (called
LOLA-Voronoi) that utilizes local linear approximation of the objective function
for exploitation and Monte Carlo Voronoi tessellation for exploration. Both compo-
nents in this study are based on LOLA-Voronoi, with some modification performed
on the exploitation component as explained below :

• The exploitation component uses an estimation of the function gradient to
gauge the non-linearity at the sample location. The higher the gradient, the
steeper the slope of the function is expected to be, which in turn implies
high non-linearity. For a d dimensional input space x, the gradient ∇f of a
function f at a given sample location can be defined as:

∇f =

(
∂f

∂x1
,
∂f

∂x2
, ...,

∂f

∂xd

)
(4.1)

Since the function f is not known in advance, the gradient at all the existing
sample points is estimated by fitting a linear model through the neighbouring
sample points, and a new sample is randomly generated around points that
have high gradient values. It should be noted that the range used for gener-
ating new samples randomly is inversely proportional to the gradient value.
The intuition being, that a sample having a very high gradient will have high
non-linearity (and thus, high uncertainty) around it, and thus the new sample
should be located very close to it.

• To complement the exploitation component, a Voronoi tessellation based
exploration component is included, which is the same as the one used in
(Crombecq et al. 2011). The sample density of the entire design space is
estimated using a Voronoi tessellation. The samples having a large Voronoi
cell size are likely to have regions around them which are prone to under-
sampling, and hence such regions are given priority during the sampling
process to ensure that all regions in the design space are uniformly covered.

Since both criteria are possibly conflicting, the corresponding metrics are normal-
ized in [0, 1] and they are unified into a combined metric that keeps the ratio of
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exploration and exploitation components constant throughout the modeling process
(although it can be varied before the process starts). This hybrid approach per-
formed well in the experiments conducted by the authors. The algorithm has been
used successfully in various research domains such as microwave engineering (De-
schrijver et al. 2011), bioelectromagnetics (Aerts et al. 2013), and electromagnetic
compatibility (Deschrijver et al. 2012). In the next section, we propose alternative
schemes that balance the trade-off between exploration and exploitation.

4.3 Balancing Schemes
Although it has been established that both exploration and exploitation must be per-
formed, the extent of their individual contribution has not yet been explored. In this
paper, a modification to the LOLA-Voronoi algorithm is proposed by considering 3
balancing schemes : ε-greedy, ε-decreasing and ε-adaptive.

• ε-greedy : A tuning parameter ε ∈ [0, 1] decides the proportion of sampling
iterations for which all samples returned are purely exploration samples, and
purely exploitation samples are returned for the remaining 1− ε proportion of
sampling iterations. In each iteration step, a random number α is generated
according to a uniform distribution. If α < ε, then the current sampling
iteration contains purely explorative samples, and if α ≥ ε, then the current
sampling iteration contains purely exploitative samples. The value of ε is a
choice that is made up-front by the designer.

• ε-decreasing : This strategy is similar to ε-greedy, except for the fact that
the value of ε decreases with proceeding sampling iterations. Thus, this
scheme allows the algorithm to perform highly explorative behaviour up-
front and ends up with a lot of exploitation during the final sampling iterations.
Exploration will dominate in the beginning when the uncertainty of the model
is high. As we explore more of the design space, the uncertainty goes down
with time and the exploitation component takes over, eventually eclipsing
exploration.

• ε-adaptive : Unlike the previous two schemes, this strategy builds a surrogate
model in all successive sampling iterations. Each time an additional batch
of sample points is selected, the model is updated and the contribution of
the added sample points is quantified. This can be done by comparing
the deviation between successive models, fluctuations in the global model
response, and by investigating the evolution of the cross-validation error.
Depending on the added contribution of a given sample batch, the ε value is
adaptively increased or decreased over time in a dynamical way.

Fig. 1 presents a graphical visualization of the different schemes, where the
expected number of batches is shown that are chosen according to the exploration
and exploitation criteria as evolving over time.
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Figure 4.1 The figure shows the expected number of samples per batch (%) that
are chosen over time according to exploration (red) or exploitation (green) for the
ε-greedy, ε-decreasing and ε-adaptive algorithm.
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4.4 Experiments and Results

4.4.1 SUMO Toolbox

All experiments in this paper were performed in MATLAB and are compared to the
LOLA-Voronoi implementation that is available in the SUMO toolbox (Gorissen
et al. 2010). The toolbox is highly adaptable and supports many model types
which makes it an ideal choice for the experiments. A typical modeling sequence
in SUMO begins with an initial design (e.g. Latin hypercube) upon which an initial
model is trained. The accuracy of the model is estimated using a chosen measure
(e.g. error estimation using cross-validation), and if the desired accuracy has not
been reached, or the allotted number of simulations for the run have not been
exhausted, the process begins a new iteration with a sampling scheme selecting
a new batch of samples to train the model. This can also be seen as a process of
optimization of the model by tuning its parameters.

4.4.2 Benchmark Functions

The problems chosen for the experiments were modeling the Ackley, Bird and
Branin functions. For the sake of simplicity and understanding, all three problems
taken are 2-dimensional problems.

• The Ackley function can be defined in D-dimensions and has a high number
of local minima, but a single global minimum at the origin. Taking e as
Euler’s number, the function is defined as

f(x) = −20·exp(−0.2·

√√√√ 1

D
·
D∑
i=1

x2
i )−exp(

1

D
·
D∑
i=1

cos(2π · xi))+20+e

(4.2)

• The Bird function consists of two design variables. It has 2 global optima,
and few local optima

f(x1, x2) = sin(x1)∗exp((1−cos(x2))2)+cos(x2)∗exp((1−sin(x1))2)+(x1−x2)2

(4.3)

• The Branin function is also a two-variable function with −5 ≤ x1 ≤ 10 and
0 ≤ x2 ≤ 15

f(x1, x2) = (x2−
5.1

4π2
x1

2 +
5

π
x1−6)2 +10(1− 1

8π
)cos(x1)+10, (4.4)
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4.4.3 Numerical Results
The initial design chosen was a Latin hypercube of 100 samples in addition to 4
corner points. Each sample selection iteration consisted of selection of 20 samples
and the data were modeled with Kriging. The total budget of samples allotted to
each run was 1000 samples for the Ackley function, 850 for the bird function and
750 for the Branin function. A total of four independent runs were performed for
each scheme and the average of the true model error (RRSE) is compared to the
LOLA-Voronoi algorithm in Table 4.1.

Note that the value of ε for the ε-greedy approach was taken to be 0.7, 0.8 and
0.9 respectively for the Ackley, Bird and Branin functions. For the ε-decreasing
approach, the initial value of ε was set to 1 and it was decreased by 2% in each
iteration. The choice of the value depends upon the non-linearity of the problem,
and is largely based on the practitioner’s understanding of the problem.

The ε-greedy and ε-decreasing approaches perform slightly better than LOLA-
Voronoi, hereby reaffirming the belief that controlling the extent of exploration and
exploitation can lead to a more accurate model. It is however found that the results
of these schemes is highly dependent on the value of ε, which is usually not known
up-front. This makes the performance rather sensitive and prone to manual tuning.

It was found that the ε-adaptive approach achieves error values that are smaller
than the other schemes, albeit at the expense of building intermediate models. For
the Ackley function, it was observed that till approximately 800 samples, the error
estimates of both schemes were similar and thereafter the exploitation component
of the ε-adaptive approach got increasing portions of new samples. Thus, with only
200 additional samples, ε-adaptive approach managed to halve the error rate. The
results are in line with the expected behavior of starting with more exploration and
ending with more exploitation as the error rate goes down. It can also be seen from
Fig. 2 that the algorithm samples more densely at the slopes than LOLA-Voronoi.
The results for the Bird function, which also exhibits non-linear behavior are similar
to the Ackley function, and the ε-adaptive schemes outperforms LOLA-Voronoi
by substantial margins. The results for Branin function are comparable since the
function is relatively smooth and therefore less sensitive to the actual trade-off
between both criteria.

4.5 Conclusions
In this paper, a sequential design strategy is considered where different balancing
schemes are investigated to find a good trade-off between exploration of the design
space and exploitation of dynamic regions. Deciding the amount of exploration
and exploitation is not a trivial task, as it strongly depends on the character of the
function/problem being modeled. It is shown that adaptive balacing strategies can
lead to models with a smaller error at the expense of building surrogate models
during the sampling process.
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Figure 4.2 The top figure shows samples (dots) as selected by LOLA-Voronoi. The
bottom figure shows samples (dots) as selected by ε-adaptive, where more samples
can be seen at the slopes.
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5
Accurate Hotspot Localization by

Sampling the Near-Field Pattern of
Electronic Devices

This chapter solves the previously described problem of EMC compliance test-
ing using a surrogate-based optimization (SBO) approach, as opposed to the
classification-based approach presented before as part of the Neighborhood-Voronoi
algorithm. The SBO approach uses model-specific information to drive the sam-
pling process, as compared to information from input-output data utilised in the
Neighborhood-Voronoi algorithm. Results indicate that the Neighborhood-Voronoi
algorithm is more efficient and needs fewer data points to pronounce EMC compli-
ance as compared to the SBO approach.

? ? ?

P. Singh, D. Deschrijver, D. Pissoort, T. Dhaene.
Published in IEEE Transactions on Electromagnetic Compatibility 55 (6), 1365-
1368, Apr. 2013.

Abstract This short paper describes a new automated scanning algorithm to iden-
tify hotspots (regions with electric or magnetic near-field values above a specific
threshold) in the planar near-field profile of electronic systems. The algorithm
sequentially determines a set of optimal scanning coordinates where experimen-
tal measurements should be performed. The result of the process is a heat map



58 CHAPTER 5

that clearly outlines the presence and localization of hotspots. The efficacy of the
proposed algorithm is validated on a measured and a simulated example.

5.1 Introduction

The increasing miniaturisation and operating frequencies of electronic devices has
led to an elevated risk of intersystem and intrasystem electromagnetic interference
(EMI) issues. Early identification of the possible radiating source of such issues is
critical for minimizing the design effort and cost while maximizing performance.
To this end, electromagnetic near-field (NF) scanning is often used to assess the
EMC behaviour of electronic (sub)systems [1]. NF scanning is attractive as it does
not require measurements to be taken in (semi)anechoic or reverberant chambers
and as it allows the development of equivalent radiation models. Such models can
be used to predict the far-field radiation from the NF patterns or they can also be
used as component models in commercial electromagnetic software tools [2–4].

In [5], an automated algorithm was proposed that models the electromagnetic
behavior of a device. The aim in [5] was to characterize the overall NF pattern by
performing a minimum number of measurements and interpolating the raw NF data
into a high-resolution carthography model. However, for EMC pre-compliance
testing, one is often interested in identifying only those regions where the near-field
values exceed a predefined threshold (i.e., so-called hotspot regions). By focusing
solely on those regions of interest, it is possible to significantly reduce the number
of measurements and, hence, the overall measurement cost. Therefore, in this letter,
a novel scanning algorithm is introduced that is able to detect multiple disjoint
hotspot regions by performing batches of measurements in a sequential way [6]. In
each step, a Kriging model is built and two statistical criteria are used to determine
the optimal coordinates where additional measurements are needed. As in [5],
the algorithm does not need prior knowledge of the device or the localization of
radiation sources.

5.2 Goal statement and preliminaries

The goal is to build a heat map that localizes all hotspot regions of the device under
study while minimizing the number of NF scan points needed. Each scan point,
henceforth also called data sample, is represented as a tuple (x, |F (x)|) where x is
a vector that contains the horizontal, vertical and height coordinates of the probe
and |F (x)| represents the amplitude of the electric (E) or the magnetic (H) field
component. Each spatial coordinate in vector x is denoted by a superindex x(n).
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5.3 Kriging Models

Given a set of K scan points, Kriging interpolation [7] can be used to calculate an
analytical model Y (x) of the form

Y (x) =

P∑
p=1

βpfp(x) +

K∑
k=1

αkφ(θ,xk,x), (5.1)

where coefficients βp and αk are estimated from the data by a generalised least
squares procedure [5]. The first part corresponds to a regression function through the
K scan points with respect to basis function fp, while the second part is a localised
deviation from the linear regression component. This deviation is a summation of
K shifted instances of the Gaussian correlation function, each centered at one scan
point

φ(θ,xk,x) =

N∏
n=1

e−θn|x
(n)
k −x

(n)|2 , (5.2)

where n indexes the coordinates of the probe stored in vector x, and the parameters
θn are identified by the maximum likelihood estimation. More details can be found
in [8].

5.4 Statistical Criteria

The sequential selection of suitable scanning points is critical to identify and
localize all hotspots in the given plane. As discussed in [5], they should be chosen
in a balanced way to ensure a good mix between exploitation and exploration of
the design space. To this end, two statistical criteria are combined, namely the
Generalized Probability of Improvement (GPoI) and the minimum distance (MD)
criterion. The GPoI criterion takes care of the exploitation part and ensures that the
hotspot regions are sampled more densely than other areas. The MD criterion takes
care of the exploration part and makes sure that the whole design space is properly
covered [6].

The algorithm proceeds as follows: first, a set of candidate scan points are
randomly generated in the plane according to a uniform distribution, and for each
candidate point a score is computed that equals the average score on both criteria
(both are normalized to interval [0,1]). Then, all the samples are ranked according
to this score and the highest ranked samples are picked to form a batch of additional
scan points that must be measured. As the NF data from the measurements becomes
available, a Kriging model is built that becomes locally more accurate in the regions
where hotspots are located while at the same time covering the overall space. This
procedure is repeated iteratively until all the hotspots are well described.

More technical details about the two statistical criteria are given in [6] and will
be discussed in the following subsections.
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5.4.1 Generalized Probability of Improvement
When using Kriging models, the uncertainty at point x is treated as the realization
of a random variable Y (x) with prediction mean ŷ(x) and prediction variance
ŝ(x). The GPoI is used to calculated the probability that the amplitude of the field
component |F (x)| at point x is lying inside a certain range [T1, T2]:

gPoI(x) = P (T1 ≤ Y (x) ≤ T2)

= P (Y (x) ≤ T2)− P (Y (x) ≤ T1)

=

∫ T2

−∞
Y (x)dY −

∫ T1

−∞
Y (x)dY

= Φ

(
T2 − ŷ(x)

ŝ(x)

)
− Φ

(
T1 − ŷ(x)

ŝ(x)

)
, (5.3)

where Φ(t) is the standard normal cumulative distribution function. For detection
of the hotspot regions, it is proposed to set T1 = |Fmax| − α|Fmax| and T2 =∞ ,
where α is a desired percentage of the (so far discovered) highest field amplitude
|Fmax|. Alternatively, one can choose T1 as a scalar value to serve as a lower bound
that separates hotspot regions from other areas in the plane. By computing the GPoI
for various candidate points x, it is possible to determine a new batch of scanning
points where hotspots are most likely to be found.

5.4.2 Minimum Distance Criterion
The MD criterion avoids having newly chosen scanning points chosen very close to
the existing ones, as they would convey little additional information. Therefore, it
calculates the Euclidean distance of a candidate point x to the closest sample point
that has been measured before:

MD(x) = γ · min
k=1,...,K

√√√√ N∑
n=1

(x(n) − x(n)
k )2, (5.4)

where γ is a scaling factor which ensures that the output of the MD criterion is
normalized to the same range as GPoI.

5.5 Example : Measured Microstrip Lines
As a first example, the algorithm is applied to detect the hotspots of a bent microstrip
line that was measured using a NF scanning system. The PCB comprises a 50Ω
microstrip on a 12 cm× 10 cm FR4 substrate with a thickness of 1.5 mm. To create
sufficient radiation, some basic EMC rules were violated on the test PCB (e.g.,
routing the microstrip over a slot in the ground plane). The microstrip was excited
at one end with a generator set at an available power of 0dBm and terminated in
50Ω at the other end. The amplitude of each field component |Fx| is measured with
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Figure 5.1 Layout of the bent microstrip.

a NF scanner that was built from a computer numerical control milling machine.
To do this, the miller and its suspension were removed and replaced by a head to
which a near-field probe can be attached. The head can be moved automatically in
three dimensions above the device under test to perform measurements. The probe
is a magnetic NF probe from Langer EMV-Technik (RF-U 2.5-2) that is specified
for the frequency range [30 MHz - 3 GHz]. It is connected to a Rohde & Schwarz
EMI receiver and all the measurements are performed at a fixed height of 2 mm
above the printed circuit board (PCB) under test at a frequency of 200 MHz [5]. A
layout of the device is shown in Fig. 1.

The goal of the algorithm is to automatically detect all areas in the plane where
hotspots are located without assuming prior knowledge of the device. A hotspot can
be defined as a region where the amplitude of the values measured with the EMI
receiver are bounded within a certain output range [T1,T2] where the upperbound
T2 =∞ and lowerbound T1 is (for example) set to 35 dBµV, 40 dBµV and 45 dBµV
respectively. As an illustration, the method is here applied to consider the magnetic
near field |Hx|, although the same procedure can be applied to any field component.
First, the algorithm performs an initial set of 100 experiments according to an
optimized Latin Hypercube distribution and a Kriging model is built. Then, the
optimal location of additional scan points is chosen based on the two statistical
criteria (Sect. IV-A and IV-B) and the process of picking additional scan points
is repeated in an iterative way. The final results of the measurement process are
shown in Figs. 2-4. Scanning points whose output values are within the hotspot
range [T1,T2] are shown as black dots, whereas the other scan points are shown as
grey dots. It is clear that the MD criterion ensures that the plane is well covered in
such a way that no important regions are missed, whereas GPoI ensures that the
scan points are concentrated more densely in hotspots regions.
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5.6 Example : Printed Circuit Board
As a second example, a simulated PCB is considered that comprises an 8 cm × 5
cm FR4 substrate with relative permittivity = 4.2 and a thickness of 1.5 mm. The
bottom layer is a ground plane. On the top layer, there are four traces of various
widths, shapes and lengths, which are terminated by different impedances. The
top-left corner of the PCB comprises a rectangular dielectric block of 15 mm × 17
mm and a height of 1 mm, representing, e.g., a package. All details about the traces
and the ports are found in Section V of [5].

In order to facilitate a direct comparison with the results in [5], the same
experimental setup will be used. Hence, the amplitude of magnetic field component
|Hx| is simulated with Agilent’s EMpro at a fixed height of 2 mm above the PCB
over an area of 10 cm × 7 cm, and this at a frequency of 900 MHz. Rather than
modeling the field component over the entire plane as in [5], the novel algorithm
performs only as few measurements as are needed to detect the hotspot areas. As an
example, a hotspot is here defined as a region where the NF values are larger than
α = 80% of the highest field amplitude. The algorithm was applied to sequentially
perform simulations until all hotspots are discovered. The 300 selected scan points
are shown in Fig. 5 and a heat map of the corresponding Kriging model is shown in
Fig. 6. It is clear that the algorithm concentrates scan points in regions where the
NF values are higher than the specified threshold (red dots), while exploring also
the other regions of the plane (blue dots).

In order to validate the results, the “true” NF pattern was also calculated by
performing a large amount of simulations on a uniform grid of 7171 scan points.
The NF pattern (which is unknown to the algorithm) is shown in Fig. 7 and the
hotspot threshold is marked as a horizontal slice. By comparing Figs. 5-7, it
is confirmed that the algorithm is indeed able to discover all hotspot regions by
performing only 300 NF scans.

If one builds a full carthography model, as was the aim in [5], then 700 scan
points would be needed to have a globally accurate model (i.e. a heat map that
accurately captures all the variations in the NF pattern). Using the new approach
that focuses only on the localization and identification of hotspot regions, the
number of scan points can be reduced even further to 300, which leads to significant
savings in measurement cost.

5.7 Conclusion
A novel NF scanning algorithm that detects and localizes hotspot regions is proposed
for EMC compliance testing of electronic devices. The algorithm sequentially
performs a limited set of NF scans in the plane and evaluates two statistical criteria
to determine the optimal coordinates where additional measurements should be
performed. The outcome of the process is a heat map that clearly visualizes the
presence and the localization of hotspot regions. It is found that this method may
require significantly less scan points when compared to a dense uniform sampling,
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or other approaches which aim at a globally accurate carthography of the NF
pattern [5]. The effectiveness of the algorithm is demonstrated by applying it to a
measured microstrip example and a simulated PCB.

5.8 Software implementation
All experiments were performed using the SUMO research platform [9] which is
freely available for non-commercial, personal and academic use at http://sumo.intec.
ugent.be.
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Figure 5.4 Bent microstrip : hotspot defined as [45 dBµV -∞].
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Figure 5.5 PCB example : distribution of the 300 scan points.
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Figure 5.6 PCB example : heat map of Kriging model.
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Figure 5.7 PCB example : NF pattern based on a uniform grid of 7171 simulations
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6
A Constrained Multi-Objective
Surrogate-Based Optimization

Algorithm

The Efficient Constrained Multi-objective Optimization (ECMO) algorithm is
presented in this chapter. The algorithm uses the hypervolume Probability of
Improvement (PoI) and Probability of Feasibility (PoF) criteria, which are computed
using model-specific information. The algorithm is applied to the problem of design
of a microwave filter.

? ? ?
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Abstract Surrogate models or metamodels are widely used in the realm of engineer-
ing for design optimization to minimize the number of computationally expensive
simulations. Most practical problems often have conflicting objectives, which lead
to a number of competing solutions which form a Pareto front. Multi-objective
surrogate-based constrained optimization algorithms have been proposed in lit-
erature, but handling constraints directly is a relatively new research area. Most
algorithms proposed to directly deal with multi-objective optimization have been
evolutionary algorithms (Multi-Objective Evolutionary Algorithms - MOEAs).
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MOEAs can handle large design spaces but require a large number of simulations,
which might be infeasible in practice, especially if the constraints are expensive. A
multi-objective constrained optimization algorithm is presented in this paper which
makes use of Kriging models, in conjunction with multi-objective probability of
improvement (PoI) and probability of feasibility (PoF) criteria to drive the sample
selection process economically. The efficacy of the proposed algorithm is demon-
strated on an analytical benchmark function, and the algorithm is then used to solve
a microwave filter design optimization problem.

6.1 Introduction
Engineering design optimization of complex systems such as aircraft, electronic
filters, wireless sensors, etc. often involves expensive simulations. Wang and
Shan [1] cite the example of an automotive crash simulation conducted by Ford
Motor Company which takes anywhere between 36 and 160 hours to complete.
A two variable optimization problem would take 75 days to 11 months to solve
using these estimates, which is unacceptable in practice. This time-to-completion
can be drastically scaled down if a cheaper replacement is used instead of the
expensive simulator. Specifically, this work is concerned with data-based black-box
approximations, also known as surrogate models or metamodels.

Surrogate models may be used as full replacements of the underlying simula-
tors for all intents and purposes (global surrogate models), or may cover only a
region within the entire design space (local surrogate models). Local surrogate
models are often used in global design optimization frameworks [2]. The methodol-
ogy of using surrogate models to aid the process of design optimization is called
surrogate based optimization (SBO). A SBO problem may be single-objective or
multi-objective. This paper proposes a novel SBO algorithm for multi-objective
optimization problems which may have additional computationally expensive con-
straints. The optimization solution is given in the form of a set of equally optimal
solutions, i.e., the Pareto set.

This paper is organized as follows: Section 6.2 describes the use of surrogate
models in design optimization. The proposed algorithm is presented in Section
6.3 and its efficacy is tested on analytical and real-world problems in Section 6.4.
Finally, the conclusions are drawn in Section 12.6.

6.2 Multi-Objective Surrogate Based Optimization
A typical surrogate modeling scenario is shown in Fig. 6.1. The idea is to evaluate
the simulator at a few carefully chosen points in the design space, so as to maximize
information gain. In the case of global surrogate modeling, the goal is to mimic the
behavior of the simulator as closely as possible, and the sample selection scheme
chooses additional samples to achieve this objective with a minimal number of
expensive samples.
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Figure 6.1 Surrogate Modeling Flowchart.
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In the case of surrogate-based optimization (SBO) the aim is to find the global
optimum, and the sample selection scheme selects additional samples to guide the
search towards the optimum. SBO methods have been widely used in various fields
such as aerospace, electromagnetics, metallurgy, etc. [3]

The past decade has seen widespread use of SBO methods to solve single-
objective optimization problems. However, most problems in the real-world are
multi-objective with the objectives often in conflict with each other, and some
complex problems have additional constraints (over objectives, or inputs). These
constraints in turn may also be computationally expensive to evaluate and, hence,
applying traditional constrained optimization methods may be too time-consuming.
Multi-objective optimization methods result in multiple solutions, the Pareto set.
Each solution in the Pareto set can not be improved with respect to a particular
objective without compromising on another objective.

Most methods in literature to solve multi-objective optimization problems
directly have been evolutionary in nature. Examples are the Non-dominated Sorting
Genetic Algorithm - II (NSGA-II) [4], the Strength Pareto Evolutionary Algorithm
2 (SPEA2) [5] and the S-Metric Selection Evolutionary MultiObjective Algorithm
(SMS-EMOA) [6].

Although the resulting Pareto sets are convenient, multi-objective evolutionary
algorithms usually require a very large number of simulations, which is a pro-
hibitive factor when simulations are expensive. Couckuyt et al. [7] presented a
MOSBO algorithm (Efficient Multiobjective Optimization algorithm) which uses
multi-objective formulations of probability of improvement (PoI) and expected
improvement (EI) criteria [8] with Kriging models. EMO is more efficient in terms
of number of function evaluations as compared to evolutionary methods.

The algorithm proposed in this work uses the hypervolume-based PoI crite-
rion described in [7] to handle multiple objectives and utilizes the Probability of
Feasibility (PoF) criterion to handle computationally expensive constraints.
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6.3 Efficient Constrained Multi-Objective Optimiza-
tion Algorithm (ECMO)

The sampling criteria employed by the proposed ECMO algorithm make use of
Kriging models to drive the optimization process. Kriging models are very popular
and widely used in surrogate modeling. A thorough mathematical treatment has
been given by Forrester et al. [9]. A basic introduction is presented below. Multi-
objective versions of the hypervolume-based probability of improvement (PoI) [7]
and the probability of feasibility (PoF) are described in subsequent sections.

6.3.1 Kriging
Given a set of n samples X , (x1, ...,xn)′ in d dimensions mapped to function
values (y1, ..., yn)′,

X = (x1, ...,xn)′ (6.1)

Kriging is composed of two components. The first component is a regressor
h(x), while the second component is a centred Gaussian process Z, which is
constructed with variance σ2 and correlation matrix ψ through the residuals.

Y (x) = h(x) + Z(x). (6.2)

The regressor is coded in the n× p matrix F having basis functions bi(x) for
i = 1...p,

F =

b1(x1) b2(x1) · · · bp(x1)
...

. . .
...

b1(xn) b2(xn) · · · bp(xn)

 ,

and the n× n correlation matrix ψ is given by,

ψ =

ψ(x1,x1) · · · ψ(x1,xn)
...

. . .
...

ψ(xn,x1) · · · ψ(xn,xn)

 ,

where ψ(xi,xj) is the correlation function. ψ(xi,xj) is parameterized by a set
of hyperparameters θ. Obtaining an accurate model is highly dependent upon the
choice of the correlation function. In this work, the Matérn correlation function [10]
with ν = 3

2 is used for the experiments, which is defined as

ψ(x,x′)Matérn
ν= 3

2
= (1 +

√
3l)exp(−

√
3l), (6.3)

where

l =

√√√√ d∑
i=1

θi(xi − x′i)2.
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The hyperparameters θ are identified by Maximum Likelihood Estimation
(MLE) [7].

6.3.2 Hypervolume-based PoI
The single-objective probability of improvement sampling criterion [9] has been
widely used in practice, and discussed in literature. The idea is to select subsequent
samples such that the current best output value ymin is improved. Let ŷ(x) be
the prediction and s2(x) be the prediction variance of the Kriging model, then the
probability of having an improvement is,

P (I(x)) = Φ(ymin)

where Φ(t) is the normal cumulative distribution function,

Φ(t) =
1

2

(
1 + erf

(
t− ŷ(x)

s(x)
√

2

))
,

with mean ŷ(x) and variance s2(x), and erf(·) is the Gauss error function.
However, in a multi-objective setting there are several ways to measure the

improvement over the current Pareto set. Couckuyt et. al. [7] proposed to use the
hypervolume-based PoI for its good performance and fast calculation.

The hypervolume-based PoI is defined as,

Phv(I(x)) = Hexc(x)× P (I(x)),

whereHexc(x) is the exclusive hypervolume measuring the improvement of a new
sample x over the Pareto set and P (I(x)) is the multi-objective probability of
improvement given by,

P (I(x)) =

∫
y∈A

m∏
j=1

φj(yj)dyj ,

with A being the non-dominated region (Fig. 6.2) of the objective space and
m being the number of objective functions. The function φj is the probability
density function associated with the Kriging model for the j

′th objective denoted
as φj(yj) , φj(yj ; ŷj(x), s2

j (x)).
Identifying A and, hence, evaluating the criterion is rather cumbersome. An

efficient algorithm is suggested by Couckuyt et. al. which is used in this paper. For
further information, the reader is referred to Couckuyt et al. [7].

6.3.3 Probability of Feasibility
The probability of feasibility (PoF) criterion [8] is well suited to handle expensive
constraint functions. Intuitively, the PoF criterion can be seen as a measure of the
degree to which a sample satisfies the constraints. The higher the probability, the



74 CHAPTER 6

Figure 6.2 Illustration of a Pareto set of two objective functions. The dots represent
the Pareto points f i , for i = 1...v. The integration area A of the hypervolume-
based PoI corresponds to the (light and dark) shaded region which is decomposed
into cells by a binary partitioning procedure. The exclusive hypervolume of a point
p relative to the Pareto set can be computed from existing cells and corresponds to
the dark shaded region.
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stronger the indication that the sample satisfies the constraints. Given k constraint
functions, each modelled by a Kriging model, the probability of the prediction
being greater than the constraint limit can be computed in a manner similar to the
probability of improvement. Let ĝi(x) be the prediction and s2

i (x) be the variance
of the Kriging model for the ith constraint where i = 1, .., k, then the probability
of feasibility can be defined as

P (Fi(x) > gimin) = Φ

(
Fi − ĝi(x)

si(x)

)
,

where Φ(t) is the standard normal cumulative distribution function,

Φ(t) =
1

2

(
1 + erf(

t√
2

)

)
,

gi the constraint function, gimin the limiting constraint value, Fi(x) = Gi(x)−gimin
the measure of feasibility and Gi(x) a random variable for the ith constraint. The
combined probability of feasibility of satisfying k constraints then becomes

Pcombined(x) =

k∏
i=1

P (Fi(x) > gimin). (6.4)
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The final multi-objective criterion γ used in this work is obtained by multiplying
the hypervolume-based PoI with the PoF

γ(x) = Phv(I(x))× Pcombined(x).

Optimizing this criterion will provide an automatic balance between selecting
points which: (i) improve the Pareto set satisfying all the constraints, (ii) improve
the accuracy of the Kriging models of the objectives and constraints. The candidates
satisfying the constraints will have a high value of Pcombined, while the candidates
which minimize the objective more will have a high value of Phv . Thus, candidates
having a high γ value will be more desirable in terms of satisfying the constraints
as well as improving the value of the objective function(s). The flowchart of the
ECMO algorithm can be seen in Fig. 8.1.

Figure 6.3 Flowchart of the ECMO algorithm.

Initial Design

Evaluate points

Build Kriging model

Stopping 
criteria 
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Stop

Generate random 
candidates

Compute γ for each 
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existing samples

Yes

No

Since the uncertainty of the Kriging model will be high during the start of the
optimization process due to the limited number of samples available, the value of
the PoF criterion for candidate samples will not be very close to 0 or 1. As the
algorithm iterates and more samples are selected, the uncertainty will decrease and
the Kriging model will be more certain and assign probabilities close to 0 or 1 to
candidate samples.

Since each objective and each constraint is modeled using a separate Kriging
model, the algorithm is prone to slowing down as the number of objectives and
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constraints (m+ k) increases. However, the increase in number of dimensions d
has a more severe effect on the modeling speed as the complexity of building a
Kriging model is cubic in the number of total samples and increases exponentially
with the number of dimensions. Typically, the number of samples required to build
an accurate model is directly proportional to the dimensionality of the problem. As
the dimensionality d of the problem increases, an increasing amount of samples
would be needed to train the Kriging model and the speed of model construction
will become progressively slower. These limitations can be countered to an extent
by using different approximation methods for Kriging [11].

6.4 Examples

The ECMO algorithm is tested on an analytical, and a real-world problem. The
analytical example is the Nowacki Beam Problem [12], while the real-world prob-
lem is the design of a microwave filter. The experiments are performed using the
SUrrogate MOdeling MATLAB1 Toolbox (SUMO) [13], which is freely available
for personal non-commercial use. MATLAB’s fmincon optimizer was used to opti-
mize the best candidate selected using the γ criterion. The stopping criterion used
for the experiments was a limit on the number of samples or function evaluations.
Other possible stopping criteria include stopping when the model reaches a certain
accuracy (e.g. cross-validation error below a specified limit) and a limit on the time
(in seconds/minutes/hours) the algorithm takes.

6.4.1 Nowacki Beam Problem

Nowacki [12] described a tip-loaded encastre cantilever beam design problem [9]
for minimum cross-sectional area and lowest bending stress subject to specified
constraints. Considering a rectangular beam of length l = 1.5 m, subject to a
tip-load F = 5 kN, with design variables being height h and breadth b of the beam,
the constrained optimization problem can be formulated as:

1MATLAB, The MathWorks Inc., Natick, MA
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Min
b,h

A, σB

for
20 mm < h < 250 mm,

10 mm < b < 50 mm,
s.t.

δ ≤ 5mm,
σB ≤ σY ,
τ ≤ σY /2,
h/b ≤ 10,

FCRIT ≥ f × F,

where A = b × h is the cross-sectional area of the beam, σB = 6Fl/(bh2)
is the bending stress, δ = Fl3/(3EIY ) is the maximum tip deflection, σY is the
yield stress of the material, τ = 3F/(2bh) is the maximum allowable shear stress,
h/b is the height-to-breadth ratio, and FCRIT = (4/l2)

√
GITEIZ/(1− ν2) is

the failure force of buckling. Here, IT = (b3h+ bh3)/12, IZ = b3h/12, and f is
a safety factor of two.

The material under consideration is mild steel with yield stress σY = 240 MPa,
Young’s modulus E = 216.62 GPa, ν = 0.27 and shear modulus G = 86.65 GPa.

Figure 6.4 Non-dominated solutions of the Nowacki beam problem found using
ECMO.

The ECMO algorithm was allowed to run for a total of 50 sample points,
beginning with a Latin Hypercube of 11 points in addition to the 4 corner points.
The result of the proposed algorithm for the Nowacki beam problem can be seen
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Figure 6.5 The selected samples for the Nowacki beam problem.

Figure 6.6 Non-dominated solutions of the Nowacki beam problem found using
NSGA-II.
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in Fig. 6.4. The sample points can be seen in Fig. 6.5. The Pareto front clearly
describes the trade-off between the two objectives - at the extreme value of one
objective, the other has its least value. It should be noted that there are points
which satisfy all the constraints, but are not included in the Pareto set as they are
dominated by other solutions.

For the purpose of comparison, the NSGA-II algorithm was used to solve the
problem. The population size was set to 10, and the algorithm was allowed to run
for 4 generations to match the limit of 50 total function evaluations imposed on
ECMO. The resulting Pareto front can be seen in Fig. 6.6.

The ECMO algorithm was able to find 27 non-dominated solutions, as compared
to 9 non-dominated solutions found by Forrester et. al. [9] (using multi-objective
constrained expected improvement) and 10 found by NSGA-II using the same
number of total samples.

Although it can be argued that initializing NSGA-II with a larger population
may yield more solutions, that would come at the cost of sacrificing the number of
generations.

6.4.2 Double Folded Stub Microwave Filter
The ECMO algorithm is used to model a Double Folded Stub (DFS) microwave
filter with constraints on its scattering parameters and design parameters. The filter
is similar to the one described in Chemmangat et. al. [14].

Figure 6.7 Layout of the DFS microwave filter.

The design variables are the spacing S between a folded stub and the main line,
the length L of each folded stub, and the widthW of each conductor. The scattering
matrix S(f, S, L,W ) is computed using the ADS Momentum EM simulator2. The
frequency f is sampled over the range [5-20] GHz using 91 uniformly distributed
samples. The substrate is 0.254 mm thick with relative permittivity εr equal to 9.9.
The scattering matrix S(f, S, L,W ) can be written as

S(f, S, L,W ) =

[
S11(f, S, L,W ) S12(f, S, L,W )
S21(f, S, L,W ) S22(f, S, L,W )

]
, (6.5)

and is a complex-valued matrix composed of a real and imaginary part.

2Momentum EEsof EDA, Agilent Technologies, Santa Rosa, CA.
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Table 6.1 Design parameters of the DFS microwave filter

Parameter Min Max
Spacing 0.15 mm 1.5 mm
Length 0.5 mm 5.0 mm
Width 0.1 mm 0.5 mm

The design specifications are formulated in terms of objectives and constraints
on the scattering parameters and design variables. The constrained optimization
problem is defined as

Min
S,W,L

−|S21|dB,

|S21|dB

for
(5 GHz ≤ f ≤ 8 GHz, 18 GHz ≤ f ≤ 20 GHz),

(12 GHz ≤ f ≤ 14 GHz),

respectively
s.t.

3W + 2S ≤ 2 mm
|S11|dB ≥ -3 dB for 12 GHz ≤ f ≤ 14 GHz
|S21|dB ≤ -30 dB for 12 GHz ≤ f ≤ 14 GHz
|S11|dB ≤ -10 dB for 5 GHz ≤ f ≤ 8 GHz

and 18 GHz ≤ f ≤ 20 GHz
|S21|dB ≥ -3 dB for 5 GHz ≤ f ≤ 8 GHz

and 18 GHz ≤ f ≤ 20 GHz

where |.|dB = 20 log10|.| and |.| indicates the absolute value operator. It should be
noted that the objective −|S21|dB corresponds to the frequency range f1 = (5 ≤
f ≤ 8, 18 ≤ f ≤ 20) GHz and objective |S21|dB corresponds to the frequency
range f2 = (12 ≤ f ≤ 14) GHz.

The algorithm was allowed to run with a total simulation budget of 150 samples.
The initial design was a Latin Hypercube of 50 samples, in addition to 8 corner
points. One sample per iteration was added till the sampling budget was exhausted.
Each simulation takes approximately a minute on an Intel Core i5 machine with 8
GB RAM. It is desirable to perform as few simulations as possible while searching
for possible solutions.

The result of the algorithm can be seen in Fig. 6.8 and Fig. 6.9. It can be
observed that the hypervolume-based probability of improvement and probability
of feasibility sampling criteria drive the sampling towards the region with a high
likelihood of having design points which minimize the objectives and satisfy con-
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Figure 6.8 Pareto set for the DFS microwave filter.

Figure 6.9 Selected sampling locations for the DFS microwave filter. The region
containing the Pareto-optimal solutions is very small and the solutions can be seen
in a magnified view.
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straints. This leads to a dense clustering which can be seen in Fig. 6.9. Since
the algorithm is able to zoom in on the interesting region quickly, the approach
minimizes the number of expensive simulations required by concentrating on the
regions having a high likelihood of containing possible solutions.

Figure 6.10 Layout of one of the Pareto-optimal DFS filter designs with design
variables (S,L,W ) = (0.7168, 1.7449, 0.1887) mm.

The layouts and frequency responses (|S11|dB, |S21|dB) of three of the filter
designs from the Pareto set are depicted in Figs. 6.10 - 6.18. Although each of the
solutions in the Pareto set are non-dominated, the designer may prefer one over the
other based on different criteria like selecting the solution with the values of the
design parameters S, L, or W which are most suitable for the robustness of the
design considering fabrication tolerances.

The stopping criteria also depend on the designer. A designer might want to
obtain Pareto-optimal solutions rapidly in case there is a need to get the product
in the market quickly, or when the designer wants to check possible solutions for
different values of constraints/objectives. In such cases the sampling budget will be
small. On the other hand, a designer might also want the freedom to obtain a large
number of competing Pareto-optimal solutions so that they can later be evaluated
based on other parameters.

6.5 Conclusions
We have presented the ECMO algorithm to solve computationally expensive con-
strained multi-objective optimization problems which uses Kriging models in con-
junction with probability of improvement (PoI) and probability of feasibility (PoF).
The ECMO algorithm performed as expected on test problems and has the ability
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Figure 6.11 |S11| response of one of the Pareto-optimal DFS filter designs with
design variables (S,L,W ) = (0.7168, 1.7449, 0.1887) mm.

Figure 6.12 |S21| response of one of the Pareto-optimal DFS filter designs with
design variables (S,L,W ) = (0.7168, 1.7449, 0.1887) mm.
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Figure 6.13 Layout of one of the Pareto-optimal DFS filter designs with design
variables (S,L,W ) = (0.7236, 1.7536, 0.1824) mm.

Figure 6.14 |S11| response of one of the Pareto-optimal DFS filter designs with
design variables (S,L,W ) = (0.7236, 1.7536, 0.1824) mm.
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Figure 6.15 |S21| response of one of the Pareto-optimal DFS filter designs with
design variables (S,L,W ) = (0.7236, 1.7536, 0.1824) mm.

Figure 6.16 Layout of one of the Pareto-optimal DFS filter designs with design
variables (S,L,W ) = (0.7292, 1.7159, 0.1805) mm.
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Figure 6.17 |S11| response of one of the Pareto-optimal DFS filter designs with
design variables (S,L,W ) = (0.7292, 1.7159, 0.1805) mm.

Figure 6.18 |S21| response of one of the Pareto-optimal DFS filter designs with
design variables (S,L,W ) = (0.7292, 1.7159, 0.1805) mm.
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to solve multi-objective constrained optimization problems. The algorithm however
suffers from the well-known limitations of surrogate modeling methods with respect
to the limited input dimensionality of the problems which can be handled. However,
the ECMO algorithm can be applied to problems having up to 7 objectives, which
is sufficient for most real-world problems. Future work will compare the ECMO
algorithm with existing methods to solve constrained multi-objective optimization
problems.
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7
Shape Optimization of a Cyclone
Separator using Multi-Objective

Surrogate-Based Optimization

This chapter describes improvements made to the ECMO algorithm to converge
faster by selecting multiple points per iteration, as opposed to a single point in the
original formulation. An ensemble of surrogate models is also used instead of only
Kriging models to automatically determine the most appropriate model type for the
problem at hand, and to ensure that the sampling algorithm always has access to
accurate model-specific information.

? ? ?

P. Singh, I. Couckuyt, K. Elsayed, D. Deschrijver, T. Dhaene.
Published in Applied Mathematical Modeling, available online 22 November
2015, ISSN 0307-904X, Nov. 2015.

Abstract Cyclones are one of the most widely used separators in many industrial
applications. A low mass loading gas cyclone has two performance parameters,
the Euler and Stokes numbers. These indices are highly sensitive to the geomet-
rical design parameters which makes designing cyclones a challenging problem.
This paper couples three surrogate models (Kriging, Radial Basis Functions and
Support Vector Regression) with the Efficient Multi-objective Optimization (EMO)
algorithm to identify a Pareto front of cyclone designs with a minimal number of
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simulations. The EMO algorithm has been extended to select multiple samples per
iteration (as opposed to one in the original formulation) and the ability to use an
ensemble of surrogate models. The impact of using different surrogate model types
is tested using well-known mathematical models of cyclone separators. The algo-
rithm is applied to optimize the cyclone geometry, parametrized by seven design
variables, and compared against the well-known NSGA-II algorithm. The results
indicate that the Pareto set designs found using EMO outperform the designs found
using NSGA-II while using significantly fewer function evaluations. This translates
into substantial savings in time when computationally expensive CFD simulations
are used.

7.1 Introduction
Gas cyclones are widely used in air pollution control, gas-solid separation for
aerosol sampling and industrial applications. With the advantages of being relatively
simple to fabricate, having a low cost to operate, and being adaptable to extremely
harsh conditions of high pressure and temperature, cyclone separators have become
one of the most important particle removal devices used in scientific and engineering
applications. Cyclones are frequently used as final collectors where large particles
are to be caught. Efficiency is generally good for dust where particles are larger
than about 5µm in diameter. They can also be used as pre-cleaners for a more
efficient collector such as an electrostatic precipitator, scrubber or fabric filter [1].

In cyclone separators, a strong swirling turbulent flow is used to separate
phases with different densities. The efficiency of a separator depends upon the
cylone geometry. Optimizing cyclone geometry can be a time consuming exercise.
Using Multi-Objective Evolutionary Algorithms (MOEAs) is not desirable since
they typically require a large number of objective function evaluations during the
optimization process.

Surrogate modeling, also known as metamodeling, is a proven approach to
speed up complex optimization problems [2, 3]. Surrogate models, or metamodels,
are mathematical approximation models that mimic the behavior of (possibly
computationally expensive) simulation codes such as mechanical or electrical finite
element simulations, analytical models, or computational fluid dynamics (CFD).

While several types of surrogate modeling use-cases can be identified, this work
is concerned with the integration of surrogate models into the optimization process,
often denoted by Surrogate Based Optimization (SBO). SBO methods typically
generate surrogate models on the fly that are only accurate in certain regions of the
input space, e.g., around potentially optimal regions. The intermediate surrogate
models can then be used to intelligently guide the optimization process to the global
optimum. This paper deals with the use of surrogate models for expediting the
multi-objective optimization of deterministic black-box problems.

Popular surrogate model types include Kriging [4], Radial Basis Function
(RBF) models [5], Support Vector Regression (SVR) models [6], Artificial Neural
Networks (ANN) [7], Splines, etc. This work introduces the use of SVR and
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RBF models in the Efficient Multi-objective Optimization (EMO) algorithm [8].
Kriging, RBF and SVR models are compared with regard to the Pareto set obtained
using the EMO algorithm. Also, a new method is proposed that builds multiple
heterogeneous surrogate models and uses the most accurate one in each iteration of
the EMO algorithm [9].

CFD simulations are often computationally very expensive and optimization of
cyclone geometry can take several months. For the intended purpose of analysis and
performance evaluation, mathematical models of cyclone separators are used in this
work that are substantially cheaper to evaluate. The intent of the work is to validate
the performance of the EMO algorithm for optimization of cyclone geometry, and
study how Kriging, RBF and SVR models affect the performance. A practitioner
can then make an informed decision about the choice of surrogate models when
optimization is performed using expensive CFD simulations.

The following section gives a brief introduction to Kriging, RBF and SVR
models. Section 8.2 explains the EMO algorithm. Section 9.2 introduces the
shape optimization problem for a cyclone separator. Section 9.5 describes the
experimental settings while Section 9.6 discusses the results of the proposed multi-
objective optimization scheme. Section 9.7 concludes the paper.

7.2 Surrogate Models

Surrogate-based Optimization (SBO) methods have proven themselves to be effec-
tive in solving complex optimization problems, and are increasingly being used
in different fields [10–13]. Unlike evolutionary multi-objective algorithms such
as NSGA-II [14], SMS-EMOA [15] and SPEA2 [16], surrogate-based methods
typically require very few function evaluations to converge. This makes surrogate-
based methods very attractive for solving optimization problems where the system
behavior is expensive to simulate. Surrogate models used in this work include
Kriging, RBF and SVR models. A brief introduction to the models is presented
below.

7.2.1 Kriging

Kriging models are very popular in engineering design optimization [17]. This is
partly due to the fact that Kriging models provide the mean and prediction variance
which can be exploited by statistical sampling criteria. Their popularity also stems
from the fact that many implementations are widely available [18–21].

Let us assume a set of n samples X = (x1, ...,xn)′ in d dimensions having
the target values y = (y1,..., yn)′. The prediction mean and prediction variance of
Kriging are derived, respectively, as,

ŷ(x) = α+ r(x) ·Ψ−1 · (y−1α), (7.1)
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s2(x) = σ2

(
1− r(x)Ψ−1r(x)> +

(1− 1>Ψ−1r(x)>)

1>Ψ−11

)
, (7.2)

where 1 is a vector of ones, α is the coefficient of the constant regression function,
determined by Generalized Least Squares (GLS), r(x) is a 1× n vector of correla-
tions between the point x and the samples X , and σ2 = 1

n (y− 1α)>Ψ−1(y− 1α)
is the variance.

Ψ is a n× n correlation matrix of the samples X ,

Ψ =

 ψ(x1,x1) . . . ψ(x1,xn)
...

. . .
...

ψ(xn,x1) . . . ψ(xn,xn)

 ,

with ψ being the correlation function. The correlation function greatly affects the
accuracy of the Kriging model used for experiments and in this work the Matérn
correlation function [22] with ν = 3

2 is used,

ψ(xa,xb)
Matérn
ν=3/2 =

(
1 +
√

3l
)

exp
(
−
√

3l
)
,

with l =
√∑d

i=1 θi(x
i
a − xib)2. The hyperparameters θ are identified using Maxi-

mum Likelihood Estimation (MLE).

7.2.2 Radial Basis Function Models
Radial Basis Function (RBF) models represent unknown functions as weighted
sums of several basis functions. The basis functions are of the form φ(‖x− xi‖)
where x is a test point, and φ(·) is a transformation function. The ith basis function
depends only on the distance between x and xi. Subsequently, the predictor is a
linear combination of the basis functions [5],

ŷ = f̂(x) =

n∑
i=1

wiφ(‖x− xi‖).

The weights wi have to be found such that,

f̂(xj) =

n∑
i=1

wiφ(‖xj − xi‖) = yj ,∀j = [1, ..., n]. (7.3)

Defining a weight vector w = [w1, w2, ..., wn]T and the matrix Φi,j = φ(‖xj−
xi‖), Eq. 7.3 can be written as Φw = yT .

The weights can be computed using Eq. 7.3 as w = Φ−1yT , assuming that Φ
is invertible.

Although different basis functions φ(·) exist, this work is concerned with
Gaussian basis functions of the form [5],

φ(r) = exp

(
−r2

2σ2

)
.
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For the experiments in this paper, the hyperparameters σ and r were found using
the DIRECT optimization algorithm [23] and cross-validation. Let φ = [φ(‖x−
xi‖],∀i = 1..n. The prediction and variance of prediction of a point x can be
obtained as,

ŷ(x) = φw, (7.4)

s2(x) = 1− φΦ−1φT . (7.5)

For more details about RBF, the interested reader is referred to Sóbester et. al. [5].

7.2.3 Least Squares Support Vector Machines
Support Vector Machine (SVM) models are extremely popular due to their gen-
eralization abilities and proven empirical performance [24]. SVMs map data into
a higher dimensional input space where an optimal separating hyperplane is con-
structed by solving a quadratic programming problem. Least Squares Support
Vector Machine [25] (LS-SVM) classifiers are a variant of SVM classifiers which
involve solving a system of linear equations instead of the quadratic programming
problem as in the original formulation. LS-SVM classifiers have also been extended
to solve regression problems, and we use the formulation proposed by Suykens et.
al. [26].

It is possible to obtain the mean and variance of the prediction from LS-SVM
regressors [27] (henceforth referred to as SVR). A detailed discussion on the process
of computing mean and variance is out of scope of this work, and the reader is
referred to Van Gestel et. al. [27].

7.3 Efficient Multi-objective Optimization (EMO)
The expected improvement and Probability of Improvement (PoI) criteria are widely
used for single-objective optimization [28, 29]. Recently, multi-objective versions
of these criteria are increasingly being used to solve complex multi-objective
optimization methods [30, 31]. While they have been used in SBO schemes, due to
the computational requirements their applicability in practice has been limited to
problems with 2 objectives. The recently introduced EMO algorithm [31] provides
an efficient computation procedure and can be applied to problems up to about 7
objectives.

A flowchart of the EMO algorithm is shown in Fig. 7.1. The algorithm
begins with the generation of an initial set of points X corresponding to different
cyclone geometries. The initial points are evaluated on the expensive objective
functions fj(x), for j = 1 . . .m corresponding to the performance characteristics
of the cyclone separator. Each objective function fj(x) is then approximated by a
surrogate model. Based on the models, useful criteria can be constructed that help
in identifying Pareto-optimal solutions. The criteria are used to select a new point
in the design space, which is evaluated on the expensive objective functions fj(x).
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Figure 7.1 Flow chart of the Efficient multi-objective Optimization (EMO) algo-
rithm.

Create multiple surrogates
(Kriging, RBF, SVR)

Return new data points

The models are then updated with this new information and this process is repeated
in an iterative manner until some stopping criterion is met.

This work adopts the hypervolume-based PoI criterion. It is important to
note that the computation of these criteria requires a prediction of the modeling
uncertainty. Hence, the choice of surrogate model is limited to those which can
provide the uncertainty of the prediction.

7.3.1 Hypervolume-based probability of improvement

In a multi-objective setting the improvement I over the current Pareto set P can
be defined in several ways. The hypervolume metric (or S-metric) [32] is often
used to evaluate the goodness of the Pareto set. The hypervolume indicatorH(P)
denotes the volume of the region in the objective space dominated by the Pareto
set P , bounded by a reference point fmax + ε, where fmax denotes the anti-ideal
point.

A better Pareto set has a higher corresponding hypervolume H(P). The con-
tributing hypervolumeHcontr(p,P) of a Pareto set P relative to a point p (see Fig.
7.2) is defined as,

Hcontr(p,P) = H(P ∪ p)−H(P). (7.6)

Hcontr measures the contribution (or improvement) offered by the point p over
the Pareto set P and can be used to define a scalar improvement function I as,

I(p,P) =

{
Hcontr(p,P) : p is not dominated by P
0 : otherwise. (7.7)
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Figure 7.2 A Pareto set for two objectives consisting of Pareto points f i, for
i = 1...v. fmin and fmax denote the ideal and anti-ideal point respectively. The
hypervolume corresponding to the Pareto set is the dark and light shaded region,
while the contributing hypervolume is the dark shaded region.

Let yj = fj(x), ŷj(x) be the prediction mean, and s2
j (x) be the prediction

variance of a given surrogate model associated with the jth objective, then a
Gaussian probability density function φj with mean ŷj(x) and variance s2

j (x) can
be defined as,

φj [yj ] , φj
[
yj ; ŷj(x), s2

j (x)
]
. (7.8)

We useHcontr as the hypervolume contribution for I in this work to compute the
hypervolume-based probability of improvement (PoI) [8]. The hypervolume-based
PoI can be written as the product of the improvement function I(ŷ,P) and the
multi-objective PoI P [I],

P [I] =

∫
y∈A

m∏
j=1

φj [yj ]dyj , (7.9)

Phv[I] = I(ŷ,P) · P [I], (7.10)

where ŷ = (ŷ1(x), . . . , ŷm(x)) is a vector containing the prediction of the models
of each objective function for a point x. The integration area A of P [I] corresponds
to the non-dominated region. The reader is referred to Couckuyt et. al. [8] for a
detailed solution of Eq. 7.10.

7.3.2 Ensemble model construction and selection
The EMO algorithm couples a surrogate model with the hypervolume-based PoI
criterion. The original formulation consisted of a fixed model type, i.e., Kriging. A
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modification is proposed in this paper which constructs an ensemble of multiple
surrogate models (e.g., Kriging, SVR and RBF) in each iteration, and uses the most
accurate one as determined using cross-validation to calculate the hypervolume-
based PoI criterion.

This is helpful in situations where the practitioner does not know the most
suitable surrogate model type beforehand, which can vary between applications. It
minimizes the number of runs the practitioner has to go through to empirically find
the most appropriate surrogate model, albeit at the expense of building multiple
models per iteration.

The combined use of multiple surrogate models also allows for deficiencies
of certain model types to be nullified, or lowered by other models over iterations.
The overall goal of constructing multiple surrogate models is to boost the model
accuracy.

7.3.3 Search strategy
Optimizing the hypervolume-based PoI can be complex as the optimization surface
may be relatively flat with many local optima. Fortunately, as the criterion, and the
underlying surrogate models can be evaluated cheaply, a hybrid Monte-Carlo based
approach gives good results. Moreover, this approach allows multiple optima to be
identified per iteration.

The sampling process typically consists of generating a large number of candi-
date samples in the design space, and using the hypervolume-based PoI criterion
to rank the samples. The top-ranked candidate sample is fine-tuned by a local
optimization method, evaluated and added to the training set. The model is then
rebuilt using the updated training set.

In the original work [8], one sample is selected per iteration. Although, in-
tuitively, selecting one point at a time maximizes the information gained in each
iteration and thus is fairly optimal in minimizing the total number of samples, in
many situations it is more desirable to pick multiple points per iteration (local op-
tima) to speed up the optimization process. Since points can be evaluated in parallel,
fewer surrogate models need to be built, thus saving time without compromising on
performance.

Thereto, instead of selecting one candidate sample to fine-tune further, the
R top-ranked candidates are selected that are at least a given distance (ε) apart
from each other. Afterwards, each of the R candidates is used as a starting point
for a local optimization routine guided by the hypervolume-based PoI criterion.
Optimized candidates that are separated by at least a distance of ε are retained and
evaluated using the objective function(s).

7.4 Shape Optimization of a Cyclone Separator
The typical geometrical layout of a gas cyclone separator used to separate particles
from a gaseous stream is shown in Fig. 9.1, and corresponds to the Stairmand
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Figure 7.3 Schematic diagram of the gas cyclone separator

high-efficiency cyclone. The tangential inlet generates the swirling motion of the
gas stream, which forces particles toward the outer wall where they spiral in the
downward direction. Eventually the particles are collected in the dustbin (or flow
out through a dipleg) located at the bottom of the conical section of the cyclone
body. The cleaned gas leaves through the exit pipe at the top.

While the cyclone geometry is simple, the flow is an extremely complicated
three dimensional swirling flow. The complexity of the gas solid flow pattern in
cyclones has long been a matter of many experimental and theoretical studies. At
present, Laser Doppler Anemometry (LDA) [33, 34] and Particle Image Velocimetry
(PIV) [35–37] are frequently employed to empirically study the flow structure in
cyclones. As for the theoretical work, Computational Fluid Dynamics (CFD)
simulation tools have proven to be useful for studying cyclonic flows [38–42].

The geometry of the cyclone affects the flow pattern and performance. The
cyclone geometry is described by seven dimensions, namely, the cyclone inlet
height a and inlet width b, the gas outlet (vortex finder) diameter Dx and length S,
barrel height h, total height Ht and cone-tip diameter Bc [43] as shown in Fig. 9.1.
All the parameters are given as the respective ratios of cyclone body diameter D.

The main factors influencing the cyclone performance and flow pattern are
shown in Fig. 7.4, where the dominant factor is the cyclone geometry [43]. The two
performance indicators widely used in low mass loading cyclones are the pressure
drop and the cut-off diameter x50 [43].
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Figure 7.4 Cause and effect plot for a cyclone separator

Several mathematical models are available in literature to estimate cyclone sep-
arator performance. Among these models, the Muschelknautz Method of modeling
(MM), Ramachandran model and Iozia and Leith model are the most widely used
models to predict the effect of geometry on the cyclone performance characteris-
tics [43, 44]. For a detailed discussion of these models, the interested reader is
referred to Hoffmann and Stein [44] and Elsayed [43].

7.4.1 The pressure drop in a cyclone (Euler Number)
The dimensionless pressure drop (Euler number) is defined [44] as,

Eu =
∆p

1
2ρV

2
in

, (7.11)

where ∆p is the pressure difference between the cyclone inlet and the gas exit, ρ is
the gas density and Vin is the average inlet velocity [43].

The Euler number can be modeled using different models. Hoffmann and
Stein [44] recommended the Muschelknautz Method of modeling (MM) [44–50].
According to the MM model, the pressure drop occurs mainly due to friction with
the walls and irreversible losses throughout the vortex core [43].

As stated by Elsayed [43], the Ramachandran et al. [51] model is superior to
Shepherd and Lapple [52], and Barth [53] models in comparison with experimental
results. Consequently, this study considers only the Muschelknautz Method of
modeling, and the Ramachandran model to estimate the Euler number.

7.4.2 The cut-off diameter: the Iozia and Leith model (Stokes
Number)

The cut-off diameter x50 is the particle diameter that has a 50% collection efficiency
[44]. The Stokes number [54] Stk50 is the dimensionless cut-off diameter defined
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[43] as,
Stk50 = ρpx

2
50Vin/(18µD). (7.12)

It corresponds to the ratio between the particle relaxation time and the gas flow
integral time scale [43], where ρp is the particle density and µ is the gas viscosity.
The Iozia and Leith model [55] model is based on the equilibrium-orbit theory
(Force balance) [44]. It exhibits good agreement with experimental data [43] and is
used in this study to estimate the Stokes number.

7.5 Numerical settings
All experiments were performed using the SUMO Toolbox [19] for MATLAB R©1,
which is freely available for non-commercial use. The initial design is a Latin
Hypercube [56] of 71 points. The hypervolume-based PoI sampling algorithm is
used to select 5 new points in each iteration, until the simulation budget is exhausted.
The distance threshold ε is set to 0.05. The simulation budget is 150 simulations
for each simulator.

Each point is a 7-dimensional vector x = {a, b,Dx, Ht, h, S,Bc}, and the
MM-Iozia and Ramachandran-Iozia models are used to compute the value of the
objectives, i.e., the Euler and Stokes numbers.

The EMO algorithm is applied using Kriging, RBF and SVR models indepen-
dently. In addition, a novel strategy involving multi-surrogates described in Section
7.3.2 is employed which consists of the EMO algorithm using all three model types
together. The most accurate model (determined using cross-validation) in each
iteration is used with the hypervolume-PoI-based criterion to select new samples.

For the purpose of comparison, the well-known NSGA-II algorithm [14] is
chosen for its robust performance and popularity. The population size is kept at 10
individuals, and a maximum of 15 generations are allowed. An additional run with
a population size of 50 individuals evolving over 200 generations is also performed.

7.6 Results and Discussion
The result of surrogate-based multi-objective optimization can be seen in Fig. 7.5.
It can be seen that the Pareto set sufficiently covers the output space in all cases
except for NSGA-II with 150 allowed function evaluations.

Table 7.1 lists the number of function evaluations for the experiments. Table
7.2 lists the hypervolume indicator of the Pareto sets obtained using each scheme.
The values of the hypervolume indicator show that using multi-surrogates and SVR
models with the EMO algorithm results in better Pareto-optimal solutions than
when RBF models are used.

The final set of Pareto points corresponding to the 7 cyclone design dimensions
obtained from all surrogates have similar Euler numbers. The shape of the cyclones

1MATLAB, The MathWorks, Inc., Natick, Massachusetts, United States.
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Figure 7.5 The Pareto sets using the tested algorithms and the two tested simulators
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(f) NSGA-II (10000 evaluations)
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Table 7.1 Total number of objective function evaluations for each method.

Method # Evaluations
MM-Iozia Ramachandran-Iozia

Kriging 150 150
RBF 150 150
SVR 150 150

Multi-surrogates 150 150
NSGA-II 150 150
NSGA-II 10000 10000

Table 7.2 Mean Squared Error (MSE), based on 5-fold cross-validation of trained
surrogate models, and the hypervolume indicator for the resulting Pareto set for
each method. The best results are highlighted in bold. The reference point used
to estimate the hypervolume indicator is chosen to be the outermost point among
all Pareto sets and has the value (3.8769, 1.8079) for the MM-Iozia simulator, and
(4.3636, 1.8313) for the Ramachandran-Iozia simulator.

Method MSE Hypervolume Indicator
MM-Iozia Ramachandran-Iozia MM-Iozia Ramachandran-Iozia

Euler Stokes Euler Stokes
Kriging 9.43e-05 1.07e-02 1.60e-04 7.89e-03 6.94 3.98

RBF 2.44e-03 1.26e-02 5.16e-03 1.03e-02 2.78 3.66
SVR 2.23e-04 1.28e-02 2.44e-04 1.90e-02 6.94 4.16

Multi-surrogates 5.75e-05 5.97e-03 1.09e-04 9.37e-03 6.96 3.81
NSGA-II (150) - - - - 5.32 4.24e-01

NSGA-II (10000) - - - - 6.67 4.05

at the knees of the Pareto sets are very close regardless of the simulator or surrogate
model used. The extreme points have either a wider vortex finder (for minimum
Euler number) or a narrow one to minimize the Stokes number. The shape of the
Pareto fronts are similar for the same simulator regardless of the surrogate model
type.

The model errors of trained surrogate models computed using cross-validation
as measured using the Mean Squared Error (MSE) metric are also listed in Table
7.2. The results clearly show the benefits of using the multi-surrogates approach, as
the obtained models outperform all other model types. The exception is Kriging in
the case of modeling Stokes number using the Ramachandran simulator. Kriging
emerges as the single most accurate surrogate model type for the application across
both cyclone models. However, it was observed that even though Kriging models
are more accurate, SVR models resulted in comparable Pareto sets as reflected in
Table 7.1 by the hypervolume indicator.

It is also interesting to analyse the performance gain of multi-surrogates over
Kriging. Considering the case of the surrogate model obtained using multi-
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surrogates for Stokes number for the MM-Iozia simulator, the surrogate itself
is a Kriging model. The improved accuracy can be attributed to the fact that even
though RBF and SVR surrogates could not emerge as most accurate in the end, they
did assist in performing better sampling in intermediate iterations where Kriging
struggled. Consequently, the final surrogate model benefited in terms of accuracy.
A similar behavior is also observed in both other cases where multi-surrogates
approach is more accurate than Kriging alone. Also, since the sampling algorithm
selects multiple new points per iteration, the optimization process is substantially
quicker as compared to the original formulation of hypervolume-based PoI criterion.

Müller and Shoemaker [57] studied the influence of different surrogate model
types, and sampling strategies on solution quality for global (single-objective)
optimization of computationally expensive black-box functions. They consider
RBF, Kriging and Spline models, and two- and three-member weighted ensembles
thereof. It was found that ensembles typically outperformed single models, and the
authors suggest using RBF in cases where the practitioner has no information about
the objective function. The ensemble-based multi-surrogates approach performed
well in this work too, as indicated by accurate models and the hypervolume indicator.
In the multi-objective setting considered in this work, it was observed that Kriging
models performed comparably or better than RBF models on the cyclone geometry
optimization problem.

The Pareto set plots and the hypervolume indicator in Table 7.2 also show that
the EMO algorithm has been able to provide solutions which are comparable to,
or better than the solutions obtained using NSGA-II multi-objective evolutionary
algorithm. The proposed approach offers the advantage of using substantially fewer
number of function evaluations as compared to NSGA-II for providing comparable
solutions (see Table 7.1). Considering the fact that the objective functions can be
very expensive to evaluate (e.g., in case of CFD simulations), this advantage can
translate into substantial time savings in the optimization process.

7.7 Conclusion and Future Work
The multi-objective shape optimization problem of a cyclone separator is solved
using surro-gate-based optimization, and the results are compared with those ob-
tained using the NSGA-II algorithm. The surrogate model is trained with samples
selected using the hypervolume-based probability of improvement criterion. A
novel approach coupling an ensemble of multiple surrogate models (Kriging, RBF
and SVR) with the hypervolume-based probability of improvement is described.
The performance of different surrogate model types is validated on mathematical
models of pressure loss in a cyclone. The insight gained from this analysis is
helpful for the practitioner to select the best method for use with the expensive CFD
simulations to save time. The results show that the proposed method solves the
optimization problem using a very small simulation budget. The solutions obtained
are comparable to those obtained using NSGA-II with only a fraction of objective
function evaluations.
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Future work includes optimizing the shape of a cyclone separator using CFD
simulations in addition to mathematical models. As a single CFD simulation
of a cyclone takes multiple weeks, analytical models will be used to reduce the
computational burden. A combination of low and high fidelity simulators and
analytical models used in tandem will be explored to minimize the time required
for the optimization process.
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Constrained Multi-Objective Antenna
Design Optimization using Surrogates

In this chapter, the updated ECMO algorithm is applied to optimize the design of
an antenna conforming to the GPS-L1 standard.

? ? ?

P. Singh, M. Rossi, I. Couckuyt, D. Deschrijver, T. Dhaene, H.
Rogier.

In submission, International Journal of Numerical Modelling: Electronic Net-
works, Devices and Fields, Apr. 2016.

Abstract A novel surrogate-based constrained multi-objective optimization algo-
rithm for simulation-driven optimization is described. The Efficient Constrained
Multi-objective Optimization algorithm identifies Pareto-optimal solutions satisfy-
ing the required constraints using very few function evaluations. The efficiency of
the approach is demonstrated on the design of an L1-band GPS antenna. The algo-
rithm automatically optimizes the antenna geometry, parametrized by five design
variables with performance constraints on three objectives. This leads to substantial
savings in time and drastically reduces the time-to-market for expensive antenna
design optimization problems.
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8.1 Introduction
Engineering optimization problems, such as the design of electronic filters and
antennae, involve computationally expensive electromagnetic field simulations.
Using Multi-Objective Evolutionary Algorithms (MOEAs) is not desirable, since
they typically require a large number of objective function evaluations during the
optimization process.

Surrogate-Based Optimization (SBO) is a popular choice to expedite complex
optimization problems [1] involving expensive simulations. This letter describes a
constrained SBO algorithm for expediting the multi-objective design optimization
of deterministic black-box problems.

8.2 Efficient Constrained Multi-objective Optimiza-
tion (ECMO)

The EMO algorithm [2] very efficiently solves multi-objective optimization prob-
lems up to 7 objectives. The ECMO algorithm [3] extends the EMO algorithm
with the ability to handle computationally expensive constrained multi-objective
optimization problems. The sampling scheme in the original formulation of ECMO
selects only one new sample per iteration. In this letter, the ECMO algorithm in [3]
is extended such that multiple new candidate samples are selected per iteration,
and an ensemble of heterogeneous surrogate models is utilized to aid the sample
selection process.

Figure 8.1 Flowchart of the ECMO algorithm.
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The flowchart of the ECMO algorithm is shown in Fig. 8.1. The algorithm
begins with a small set of samples known as the initial design, for which the
objective functions are evaluated. The resulting training set is used to build a
surrogate model. A cycle that selects new samples, evaluates them and subsequently
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re-trains the surrogate based on the updated training set continues until a specified
stopping criterion (e.g., simulation budget, computation time, etc.) is met. The
goal of sampling algorithms is to rapidly drive the search towards the optima.
The ECMO algorithm employs two sampling criteria to quickly and efficiently
identify a Pareto-optimal set of solutions that satisfy the specified constraints. The
following subsections explain the hypervolume based Probability of Improvement
and Probability of Feasibility used as sampling criteria in the ECMO algorithm.

Hypervolume-based Probability of Improvement (PoI) The expected improve-
ment and probability of improvement are popular sampling criteria for single-
objective optimization problems. For multi-objective optimization problems, the
optimal solutions are represented by a Pareto set of trade-offs between the objec-
tives. One way to measure improvement over an intermediate Pareto set is to use
the hypervolume-based PoI, which has been shown to be fast and reliable [2].

The hypervolume-based PoI is defined as Phv[I(x)] = Hcontr(x)× P [I(x)],
whereHcontr(x) is the contributing hypervolume measuring the improvement of a
new sample x over the Pareto set and P [I(x)] is the multi-objective probability of
improvement defined as

P [I(x)] =

∫
y∈A

m∏
j=1

φj(yj)dyj , (8.1)

with A being the non-dominated region of the objective space and m being the
number of objective functions. The function φj is the probability density function
associated with the surrogate model (e.g., Kriging, Radial Basis Function (RBF),
Support Vector Regression (SVR)) for the jth objective denoted as φj(yj) ,
φj [yj ; ŷj(x), s2

j (x)].

Probability of Feasibility (PoF) The PoF criterion measures the probability of a
sample satisfying the constraints. Assuming k constraint functions, each modelled
by a surrogate model, the probability of the prediction being greater than a specified
constraint limit is computed in a manner similar to the probability of improvement.
Let ĝi(x) be the prediction and s2

i (x) be the variance of the surrogate model for
the ith constraint, the probability of feasibility can then be defined as

P [Fi(x) > gimin] =
1

s
√

2π

∫ ∞
0

e
−(Fi(x)− ˆ

gi(x))2

2s2 dGi, (8.2)

with gimin being the limiting constraint value, Fi(x) = Gi(x) − gimin the mea-
sure of feasibility and Gi(x) a random variable for the ith constraint. The com-
bined probability of feasibility of satisfying k constraints then becomes Pc(x) =∏k
i=1 P [Fi(x) > gimin].

The final criterion γ used in this work is obtained by multiplying the hypervolume-
based PoI with the PoF as γ(x) = Phv[I(x)]× Pc(x).
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Optimizing this criterion results in selecting points which improve the Pareto
set satisfying all the constraints, and also improve the accuracy of the surrogate
models. γ is optimized using a hybrid Monte-Carlo-based approach for experiments
performed in this work.

Ensemble model construction and selection For many applications, the most
appropriate surrogate model type is not known beforehand. As the evaluation of the
objectives by electromagnetic field simulations is much more expensive than the
computational cost of training models, an ensemble-based approach is needed to
reduce the burden of evaluating the best model type using repeated runs. Therefore,
an ensemble of multiple surrogates (e.g., Kriging, SVR, RBF) is trained in each
iteration of the ECMO algorithm. A cross-validation step determines the most
accurate surrogate, which is then used in conjunction with the sampling criteria.

Figure 8.2 Representative textile microstrip probe-fed GPS patch antenna.

8.3 Optimization of a GPS Antenna
Consider a textile microstrip probe-fed compressible GPS patch antenna [4], as
shown in Fig. 8.2. This antenna consists of a square patch with two truncated
corners glued on a flexible closed-cell expanded rubber protective foam substrate.
It is fed in the top right corner with a coaxial probe, exciting a right hand circular
polarization. The nominal characteristics of the substrate are relative permittivity εr
equal to 1.56, loss tangent tanδ equal to 0.012 and thickness h equal to 3.94 mm.

The antenna has to comply with the requirements of the GPS-L1 standard,
being return loss |S11| lower than -10 dB and axial ratio AR (defined as the ratio
between the amplitudes of the orthogonal components composing the circularly
polarized field) smaller than 3 dB in the [1.56342,1.58742] GHz frequency band.
Therefore, the ECMO algorithm is applied to optimize the design of the antenna
with respect to its |S11|, boresight AR and boresight Gain in this frequency band.
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More specifically, the objectives of the optimization are minimizing |S11|max and
ARmax, and maximizing Gain. The constraints are:

AR = ARmax − ARlim (8.3)

|S11| = |S11|max− |S11|lim (8.4)

where the limits ARlim and |S11|lim are dictated by the GPS-L1 standard, being
3dB and -10dB, respectively. ARmax, |S11|max and Gainmin are the maximum and the
minimum values, respectively, at operating frequencies 1.56342 GHz, 1.57542 GHz
and 1.58742 GHz. All the geometric parameters of the antenna are considered in the
optimization process, their variation ranges being: 72.6mm < Lpatch < 75.2mm,
69.2mm < Wpatch < 71.5mm, 6.5mm < xf < 9.7mm, 13.8mm < yf <
16.4mm and 3mm < c < 6mm.

8.4 Numerical settings

All experiments were performed using the SUMO Toolbox [1] for MATLAB R©,
which is freely available for non-commercial use. The initial design is a Latin
Hypercube of 100 points, in addition to the 32 corner points. An ensemble of
Kriging, RBF and SVR models is trained using the ECMO algorithm. The ECMO
algorithm selects 5 new points in each iteration, until the simulation budget of 250
points is exhausted. Each simulation takes approximately one minute on an Intel
Core i5 machine with 4 GB RAM.
Figure 8.3 GPS Antenna: Pareto set of solutions satisfying constraints, obtained
using the ECMO algorithm.
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Each point is a 5-dimensional vector x = {L,W, c,xf ,yf} corresponding to
a realization of the GPS antenna under study, which is then simulated in Keysight’s
ADS Momentum 2012-08 to evaluate the objectives and constraints (Eqs. 8.3, 8.4).
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Figure 8.4 GPS Antenna: Evolution of the hypervolume metric for NSGA-II,
SMS-EMOA and ECMO.
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8.5 Results and Discussion
The results of the surrogate-based optimization are plotted in Fig. 8.3. They are
compared against the NSGA-II [5] and SMS-EMOA [6] multi-objective evolution-
ary algorithms (MOEAs) on the hypervolume metric (Fig. 8.4). Online convergence
detection [7] was enabled for SMS-EMOA. Support for constraints was enabled
for all algorithms. The hypervolume of the intermediate Pareto sets obtained using
ECMO are consistently better than from NSGA-II and SMS-EMOA. This translates
into solutions that are diverse and present a wider choice for the practitioner. A
Pareto set of 33 solutions was obtained using the ECMO algorithm. All of them
satisfy the constraints specified by the GPS-L1 standard. A possible way to choose
between Pareto-optimal solutions is to consider the AR values, which is the most
crucial parameter in the design of the GPS-L1 compatible antenna. The chosen
solution, therefore, is {74.1250, 69.7676, 3.2995, 7.9560, 16.4306} having |S11|,
Gain and AR values {−15.8593,−4.8162, 2.8317} respectively.

Although the ensemble-based model construction scheme adds some computa-
tional overhead, it is small compared to the overall cost of performing a simulation.
The advantage of the algorithm is the ability to solve constrained multi-objective
optimization problems using very few objective function evaluations. The total
time taken by the ECMO algorithm for the optimization process was ≈ 5 hours, as
opposed to ≈ 30 to 40 hours for the MOEAs.

8.6 Conclusion
The ECMO algorithm was proposed to solve constrained multi-objective antenna
design optimization problems involving expensive electromagnetic field simulations.
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The algorithm combines surrogate models such as Kriging, Radial Basis Functions
and Support Vector Regression along with hypervolume Probability of Improvement
(PoI) and Probability of Feasibility (PoF) sampling criteria to efficiently drive the
search towards optimal solutions. The algorithm is applied to optimize the GPS
antenna. Results show that ECMO outperforms state-of-the-art Multi-Objective
Evolutionary Algorithms (MOEAs) such as NSGA-II and SMS-EMOA.
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Multi-Objective Geometry

Optimization of a Gas Cyclone using
Triple-Fidelity Co-Kriging Surrogate

Models

Scarcity of high fidelity data often adds to the complexity of performing multi-
objective optimization. It is imperative that all available data are taken into
account to perform optimization effectively and quickly. This chapter explains the
recursive Co-Kriging approach which takes into account multi-fidelity data to train
a surrogate model. Data from experiments, CFD simulations and analytical models
is used to train a triple-fidelity recursive Co-Kriging surrogate. The surrogate is
then used as an objective function with a multi-objective evolutionary optimization
algorithm (SMS-EMOA) to solve the optimization problem.

? ? ?

P. Singh, I. Couckuyt, K. Elsayed, D. Deschrijver, T. Dhaene.

In Submission, Applied Mathematical Modeling, Apr. 2016.

Abstract Cyclone separators are widely used in varied industrial applications. A
low mass loading gas cyclone is characterized by two performance parameters,
namely the Euler and Stokes numbers. These parameters are highly sensitive to the
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geometrical design parameters defining the cyclone. Optimizing the cyclone geom-
etry therefore is a complex problem. Testing a large number of cyclone geometries
is impractical due to time constraints. Experimental data and even CFD simulations
are time-consuming to perform with a single simulation or experiment taking several
weeks. Simpler analytical models are therefore often used to expedite the design
process. This however, comes at the cost of model accuracy. Existing techniques
used for cyclone shape optimization in literature do not take multiple-fidelities into
account. This work combines cheap-to-evaluate well-known mathematical models
of cyclones, available data from CFD simulations and experimental data to build a
triple-fidelity recursive Co-Kriging model. This model can be used as a surrogate
with a multi-objective optimization algorithm. The proposed scheme is applied to
optimize the cyclone geometry, parametrized by seven design variables.

9.1 Introduction
Performing physical experiments to test cyclone geometry is not practical as it is
very time consuming and expensive. CFD simulations offer a faster alternative, but
are still computationally too expensive for integration with optimization algorithms
as each simulation takes several weeks. Mathematical models are very cheap to
evaluate but less accurate in comparison with CFD simulations.

Multi-Objective Evolutionary Algorithms (MOEAs) are a popular choice for
solving such engineering problems. However, MOEAs typically require a large
number of objective function evaluations to converge and offer viable solutions.
Cheap-to-evaluate mathematical models can be used with MOEAs in practice but
solutions can not be guaranteed to be accurate. Surrogate-Based Optimization
(SBO) algorithms reduce the number of objective function evaluations required
during the optimization process, and can be used in conjunction with mathematical
models and CFD simulations.

Given the expensive nature of high-quality data, it is important to utilize all
available fidelities. SBO algorithms typically select data points during the optimiza-
tion process, which are then evaluated and used to update the surrogate. This acts
as a continuous validation mechanism and requires the availability of a simulation
code. When only precomputed (old) data are available (e.g., from previous physical
experiments or old CFD simulations), time constraints and practicality do not offer
the freedom to request additional data at arbitrary locations. Therefore, there is a
need for an optimization scheme which can utilize multiple fidelities of available
data to optimize the shape of a cyclone separator.

This paper presents an algorithm that trains a surrogate model using multiple
fidelities of available data. The surrogate model can then be used as a replacement
of mathematical models or CFD simulations by MOEAs. Recursive Co-Kriging
formulation is used to train the model, with the scheme being demonstrated using
three fidelities of data (physical experiments, CFD simulations and analytical
models in order of decreasing quality). The novelties of this work include triple
fidelity surrogate modeling (not many works can be found in literature that attempt
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Figure 9.1 Schematic diagram of the gas cyclone separator

it), training a sub-Kriging model from a million-point dataset, and handling a
missing output dimension.

The paper is organized as follows. Section 9.2 presents the detailed description
of the problem of cyclone shape optimization. Section 9.3 introduces Kriging mod-
els, and the recursive Co-Kriging formulation. Section 9.4 explains the proposed
algorithm for training a multi-fidelity recursive Co-Kriging model. Sections 9.5
and 9.6 list the experimental setup, and discuss the results respectively. Section 9.7
concludes the paper.

9.2 Geometry Optimization of a Gas Cyclone Sepa-
rator

Tangential inlet Stairmand high-efficiency cyclone shown in Fig. 9.1 is widely
used to separate particles from a gaseous stream. The gas-solid mixture enters
tangentially which produces a swirling motion. The centrifugal forces throw the
particles to the wall, and they are eventually collected at the bottom of the cyclone.
The gas (with some small particles) changes its direction and exits from the top of
the cyclone.

Although the geometry of the gas cyclone is simple, the flow is three-dimensional
and unsteady. The swirling flow in the cyclone makes the study of gas cyclone more
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complicated. The wide range of industrial applications of gas cyclones stimulate
many researches to study the flow pattern and the performance of gas cyclones
experimentally [1]. These experiments are in general costly because they involve
manufacturing of gas cyclones and using expensive measuring techniques such as
Laser Doppler Anemometry, and Particle Image Velocimetry [2, 3]. With the avail-
ability of computing resources, Computational Fluid Dynamics (CFD) has become
an alternative approach to study cyclone separators [4–6]. CFD is currently used to
study the flow pattern [7–10], as a simulator for CFD based geometry optimization
with different surrogate models [5, 11–15] as well as for shape optimization using
the adjoint method [16]. Analytical models based on simplified theoretical assump-
tions are still in use to predict the cyclone performance [17–22]. For more details
about most widely used analytical models in gas cyclone performance prediction,
the reader is referred to Hoffmann and Stein [22] and Elsayed [23].

The dominant factor influencing the cyclone performance and flow pattern is
the cyclone geometry [23]. The cyclone geometry is described by seven basic
dimensions, namely, the cyclone inlet height a and inlet width b, the vortex finder
diameter Dx and length S, barrel height h, total height Ht and cone-tip diameter
Bc [23] as shown in Fig. 9.1. All the parameters are given as the respective ratios
of cyclone body diameter D.

The two performance indicators widely used in low-mass loading gas cyclones
are the pressure drop and the cut-off diameter x50 [11, 23]. The dimensionless
pressure drop (Euler number, Eu) is defined as [22],

Eu =
∆p

1
2ρV

2
in

, (9.1)

where ∆p is the pressure difference between the inlet and the exit sections, ρ is the
gas density and Vin is the average inlet velocity [23].

The Euler number can be modeled using different models. Elsayed [23] recom-
mends the Ramachandran et al. [18] model for prediction of the Euler number. It is
reported that, the Ramachandran model is superior to Shepherd and Lapple [24],
and Barth [25] models and results in a better agreement with experimental results.
Consequently, this study considers only the Ramachandran model to estimate the
Euler number.

The cut-off diameter x50 is defined as the particle diameter which produces a
50% separation efficiency [22]. The Stokes number [26] Stk50 is a dimensionless
representation of cut-off diameter [23],

Stk50 = ρpx
2
50Vin/(18µD), (9.2)

where ρp is the particle density and µ is the gas viscosity.
The Iozia and Leith model [17] model exhibits good agreement with experi-

mental data, [22, 23] and will be used in this study to estimate the Stokes number
values.
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9.3 Surrogate Models
Surrogate-Based Optimization (SBO) methods have proven themselves to be effec-
tive in solving complex optimization problems, and are increasingly being used in
different fields [27–30]. SBO methods may directly solve the optimization problem
(e.g., the EGO [31] or EMO [32] algorithms) or may train a surrogate model to
be used in lieu of expensive simulators with traditional optimization algorithms.
This works concerns the second scenario of training a surrogate model intended to
replace an expensive simulator.

Evolutionary multi-objective algorithms like NSGA-II [33], SMS-EMOA [34]
and SPEA2 [35] are popular but typically consume a large number of function
evaluations to converge. This limits their use in computationally expensive multi-
objective optimization problems. A possible solution is to use the previously trained
cheap-to-evaluate surrogate model instead of the expensive simulator.

Popular surrogate model types include Kriging, Radial Basis Function (RBF),
Support Vector Regression (SVR), Splines, etc. This works uses Co-Kriging models,
which are explained below.

9.3.1 Kriging
Kriging models are very popular in engineering design optimization [36]. This is
partly due to the fact that Kriging models provide the mean and prediction variance
which can be exploited by statistical sampling criteria. Their popularity also stems
from the fact that many implementations are widely available [37–40].

Let us assume a set of n samples X = (x1, ...,xn)′ in d dimensions having
the target values y = (y1,..., yn)′. The prediction mean and prediction variance of
Kriging are derived, respectively, as,

ŷ(x) = α+ r(x) ·Ψ−1 · (y−1α), (9.3)

s2(x) = σ2

(
1− r(x)Ψ−1r(x)> +

(1− 1>Ψ−1r(x)>)

1>Ψ−11

)
, (9.4)

where 1 is a vector of ones, α is the coefficient of the constant regression function,
determined by Generalized Least Squares (GLS), r(x) is a 1× n vector of correla-
tions between the point x and the samples X , and σ2 = 1

n (y− 1α)>Ψ−1(y− 1α)
is the variance.

Ψ is a n× n correlation matrix of the samples X ,

Ψ =

 ψ(x1,x1) . . . ψ(x1,xn)
...

. . .
...

ψ(xn,x1) . . . ψ(xn,xn)

 ,

with ψ being the correlation function. The correlation function greatly affects the
accuracy of the Kriging model used for experiments and in this work the Squared
Exponential (SE) correlation function is used,
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ψ(xa,xb) = a2 exp
(
−0.5‖xa − xb‖2/l2

)
,

with l =
√∑d

i=1 θi(x
i
a − xib)2. The hyperparameters θ are identified using Maxi-

mum Likelihood Estimation (MLE).

9.3.2 Recursive Co-Kriging
An autoregressive Co-Kriging formulation was proposed by Kennedy and O’Hagan
[41]. Le Gratiet [42] reformulated the standard autoregressive Co-Kriging (intro-
duced by Kennedy and O’Hagan) in a recursive way. This recursive Co-Kriging
model scales better with the increasing number of fidelities, and this work uses Le
Gratiet’s formulation.

Let ŷc(x) and ŷe(x) be the function estimates from Kriging models trained
using cheap and expensive data (Xc,yc) and (X − e,ye) respectively. Then the
Co-Kriging estimate ŷCoK(x) is defined regressively as,

ŷCoK(x) = γŷc(x) + ŷd(x), (9.5)

where γ is the scaling parameter calculated during hyper-parameter estimation
using MLE and ŷd(x) is the estimate from a Kriging model trained from residuals
of the scaled cheap and expensive data (Xe,yd = ye − γŷc(Xe)).

9.4 The Training Algorithm
Let XA, XCFD and XExp represent the three fidelities of available data, namely,
data from analytical models, existing data available from CFD simulations and
existing experimental data respectively. The following subsections explain how
each fidelity of data is used for training the recursive Co-Kriging model.

9.4.1 Analytical Models
A one-shot Kriging model KA is trained on the dataset (XA,yA) using the GPatt
framework [43]. Assuming data are present on a Nsd grid, GPatt exploits the
grid structure to represent the kernel as a Kronecker product of d matrices, or
a Kronecker matrix. This ultimately allows exact inference and hyperparameter
optimization in O(dn

d+1
d ) time with O(dn

2
d ) storage (for d > 1). For a detailed

explanation, the reader is referred to Wilson et al. [43].
Since mathematical or analytical models are cheap to evaluate and allow the

freedom of choice of parameter combinations, it makes them an ideal choice to use
with the GPatt framework. To this end, a Gaussian Process (GP) model is trained
on parameter combinations lying on a 7D grid of Ns points. This essentially means
that Ns points span the range of each parameter, and the grid consists of all possible
combinations of input parameters, each consisting of Ns points. This results in a
total of (Ns)

7 points comprising the grid and form the set of samples XA. The
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analytical model(s) are used to evaluate XA to obtain yA. The model KA provides
estimates as ŷA(x).

9.4.2 CFD Data
Several validated CFD simulations results conducted by Elsayed and Lacor [13]
have been used in the fitting of the multi-fidelity surrogate models in this study.
The available CFD data XCFD consists of n = 33 points with 4 of 7 dimensions
varying (X1 to X4, corresponding to the inlet width and height, the vortex finder
diameter and the total cyclone height) while the remaining are fixed at h = 1.5, S =
0.5, Bc = 0.3750 respectively. Therefore, only a 4D Kriging model KCFD was
trained on the CFD data using the ooDACE toolbox [39]. The 4D model is extended
to 7D by concatenating the hyperparameters of the 3 fixed dimensions from the
model KA learned above.

Let ŷA(x) be the estimates obtained on a given point x using the model KA.
Let ŷd1 be the estimate from the Kriging model trained from residuals of analytical
and CFD data scaled using parameter γ1 (XCFD,yd1 = yCFD − γ1ŷA(XCFD)).
Then estimates on the point x are obtained recursively as,

ŷCFD(x) = γ1ŷA(x) + ŷd1(x), (9.6)

where γ1 is the scaling parameter described in Section 9.3.2.

9.4.3 Experimental Data
Experimental data XExp of n = 96 points available in the literature for the Euler
number values [15] is used to train the Kriging model KExp using the ooDACE
toolbox [39]. However, objective function values for only one objective (the Euler
number) is available. Consequently, a double-fidelity Co-Kriging model is trained
in lieu of a triple-fidelity Co-Kriging model for the second objective (the Stokes
number).

Let γ2 define the scaling between CFD and experimental data. Let ŷd2 be
the estimate from the Kriging model trained from residuals of scaled CFD and
experimental data (XExp,yd2 = yExp − γ2ŷCFD(XExp)). The estimate of the
model KExp on the point x is given by,

ŷExp(x) = γ2ŷCFD(x) + ŷd2(x). (9.7)

The process of estimation of scaling parameters γ1 and γ2 is described below.

9.4.4 Estimation of the Scaling Parameter
The scaling parameters γ1 and γ2 are estimated using cross-validation using the
scheme described by Le Gratiet [42]. Essentially, the cross-validation procedure
was performed in two stages. The first stage involved cross-validation the double-
fidelity Co-Kriging model trained using analytical models and CFD data, with CFD
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Figure 9.2 The Pareto Front obtained using the SMS-EMOA algorithm.
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data divided into partitions for training and testing. This yielded the value of γ1 to be
used for scaling between the sub-Kriging models trained using CFD and analytical
data. Similarly, the second stage involved partitioning the experimental data into
folds, while the sub-Kriging models obtained using CFD data and analytical models
were not modified. This yielded the value of γ2 for scaling between the sub-Kriging
models trained using experimental data, and CFD data.

9.5 Numerical settings
For the purpose of obtaining XA, the number of points in each dimension of the
grid Ns = 7. This results in n = 77 = 823543 training points in XA for KA.
The recursive Co-Kriging model is used as the objective function to be optimized
using the SMS-EMOA algorithm [34]. The size of the initial population is set
to 100 individuals allowed to evolve until the total number of objective function
evaluations reaches 10, 000.

9.6 Results and Discussion
The SMS-EMOA algorithm evolved the population of size 100 into 100 solutions,
which are shown in Fig. 9.2. The solutions are well-spread and show an improve-
ment over past approaches. A comparison with previous results obtained using
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multi-objective surrogate-based optimization with the EMO algorithm [11] can also
be seen in Fig. 9.2. Admittedly, the comparison is not completely fair since the
previous approach only utilized data from analytical models while the proposed
approach incorporated experimental and simulated data in addition to data from
an analytical model. Nevertheless, the results serve to validate and reinforce the
intention of this work to incorporate all available data to arrive at more accurate
surrogate models for use with optimization algorithms.

Table 9.1 Error estimates obtained using cross-validation.

Model MSE BEEQ
Eu Stk50 Eu Stk50

Double-fidelity: CFD+Analytical 3.1254 0.0773 3.1393 0.8637
Triple-fidelity: Experimental+CFD+Analytical 0.6699 - 0.6776 -

Since the trained model is used as a surrogate model to be treated as the objective
function by SMS-EMOA, its accuracy is crucial. Towards this end, cross-validation
of the multi-fidelity recursive Co-Kriging model was performed using the scheme
described in Section 9.4.4.

Table 9.1 lists the Mean Squared Error (MSE) and Bayesian Estimation Error
Quotient (BEEQ) estimates obtained using cross-validation, as described above.
BEEQ [44] quantifies the improvement of error of a Bayesian estimator ŷ, over
the prior mean ȳ, or of the updated estimate ŷ of a recursive estimator over the

predicted estimate ŷ. It is defined as BEEQ(ŷ) =
(∏n

i=1 βi

)1/n

, where:

βi =
‖yi − ŷ(xi)‖
‖yi − ȳ(xi)‖

.

The closer the value of BEEQ to 0, the better the model. BEEQ brings the advan-
tage of nullifying the effect of very large or small magnitudes of values on error
estimates.

The double-fidelity recursive Co-Kriging model obtained using CFD data and
analytical models is very accurate for the Stokes number with MSE=0.0773 and
BEEQ=0.8637. Considering the fact that the absolute range (max(yCFD) −
min(yCFD)) for Stokes number is 1.8765, a mean error of

√
0.0073 = 0.0854 is

a very good result. Similarly, the absolute range for the Euler number is 3.1139.
A mean variation of

√
3.1254 = 1.7679 units and a BEEQ score of 3.1393 is

not an excellent result, but considering the model is a 7D model trained using
only 33 data points, the results are acceptable. Moreover, using the sub-Kriging
model trained from experimental data improves the accuracy of the final triple-
fidelity model for the Euler number. The absolute range of the Euler number in
the experimental dataset is 4.2124. A mean variation of

√
0.6699 = 0.8185 and a

BEEQ score of 0.6776 is a much better result compared to using only the double-
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Figure 9.3 The resulting Pareto Front. Each Pareto-optimal solution corresponds
to a point in the figure representing the mean of variance (uncertainty) of prediction
for both objectives, according to the Co-Kriging models.
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fidelity Co-Kriging model and serves to capture the general trend of the problem
under consideration.

Another advantage of using the Co-Kriging model is that it can be used to obtain
variance of prediction of all Pareto-optimal points. Figure 9.3 shows the variance
of prediction for each Pareto-optimal solution as a ellipse. The major axis of a
particular ellipse corresponds to the variance of prediction for the Euler number,
and the minor axis corresponds to the variance of prediction for the Stokes number.
The availability of such information can aid the practitioner in selecting a particular
Pareto-optimal solution over another, since it may be impractical to validate all
Pareto-optimal solutions using CFD simulations, or experiments.

9.7 Conclusion
The problem of cyclone shape optimization involves computationally expensive
simulations, and data from time-consuming experiments. Existing approaches do
not take multi-fidelity data into account. This work proposes a novel approach
to combine existing data from experiments, CFD simulations and mathematical
models to train a tripe-fidelity recursive Co-Kriging surrogate model. The surrogate
model is used as a replacement for the expensive data in a conventional optimization
algorithm like SMS-EMOA. Experimental results indicate that the proposed ap-
proach leverages the advantages of multiple fidelities of data to result in an accurate
surrogate model which leads to a good Pareto front of possible solutions. The
accurate surrogate model allows thousands of evaluations to be computed cheaply,
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enabling optimization algorithms like SMS-EMOA to find high quality solutions
in a very short time. Comparison of the proposed approach to state-of-the-art
approaches shows substantial improvement in the obtained solutions.
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10
Classification Assisted Domain

Reduction for High Dimensional
Continuous Optimization Problems

This chapter introduces the Iterative Volume Reduction Algorithm (IVRA) to per-
form domain reduction for high-dimensional continuous optimization problems.
Domain reduction leads to a substantial reduction in search space (>90% reduction
in tests) allowing quicker convergence and better optima.

? ? ?

P. Singh, D. Deschrijver, I. Couckuyt, T. Dhaene.
In revision, Journal of Heuristics

Abstract The ‘curse of dimensionality’ limits the efficacy and applicability of opti-
mization algorithms, more so when the objective function is non-linear or expensive
to evaluate. The enormity of the design space in higher dimensions (above ten)
makes the search for optima challenging and time consuming. Domain reduction
aids the optimizer by reducing the search space and preventing the optimizer from
seeking the optima in less-likely regions. A novel technique is proposed in this work
which makes use of probabilistic support vector machine classifiers to significantly
reduce the search space for continuous optimization problems. The optimization
problem is transformed into a binary classification problem to differentiate between
feasible (likely containing the optima) and infeasible (not likely to contain the
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optima) regions in the input space. The search space is iteratively reduced by
selecting samples having a high probability of lying within the feasible region.
Since the feasible region is iteratively shrunk, the class definitions are dynamic and
are decided automatically on-the-fly. The technique results in a reduced subspace
within which existing optimization algorithms can be used to find the optima more
effectively. The proposed technique is validated on analytical benchmark problems
and a mechanical Truss design problem. Results indicate that the proposed algo-
rithm can potentially improve optima for a given function evaluation budget. In
case of computationally expensive problems, the algorithm can help find optima
while reducing the number of objective function evaluations.

10.1 Introduction
Engineering design optimization problems often involve many design variables.
Existing optimization algorithms struggle to solve non-linear black-box optimiza-
tion problems as the number of design variables increases to medium (above ten) or
high (above 50). The vastness of the search space limits the effectiveness of opti-
mizers. The complexity of the problem increases further if the objective function is
expensive to evaluate. It then becomes vital to minimize the number of function
evaluations needed to find the optima.

These computational limitations can be overcome by using surrogate-based
methods [1]. Surrogate-based optimization involves building a cheaper-to-evaluate
replacement, or a surrogate model which can replace the expensive objective
function. This brings down the time required for the optimization process since
building the cheaper surrogate model is a one-time investment.

Although widely used and attractive, the use of surrogate-based methods is
limited to mostly low scale optimization problems. This is due to the computational
expense and large memory requirements of building surrogate model types like
Kriging and radial basis functions (RBF) in high dimensional spaces [2].

Reducing the search space is a way to counter the curse of dimensionality to an
extent. This can be done by either reducing the number of dimensions (feature or
variable selection) or by reducing the domain of each dimension (domain reduction).
Kohavi and John [3] discuss feature subset selection in machine learning which
deals with removing either irrelevant dimensions or reducing the dimensionality of
the problem by combining multiple dimensions together. However, in this work we
are only concerned with domain reduction.

Spaans and Luus [4] illustrate the importance of domain reduction for derivative-
free optimization methods by showing that a relatively small number of function
evaluations are sufficient for convergence when domain reduction is applied, even
if the starting point is far from optima.

Domain reduction has been applied to optimization problems in literature.
Stander and Craig [5] construct linear models in a sub-region of the input space and
iteratively contract the size of this sub-region. Wan et al [6] apply domain reduction
to surrogate models. They find a ‘promising region’ by building a regression tree,
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and assigning a performance value to each region (best optima from that region).
The sampling is restricted to a promising region with lower average performance
values. The surrogate model is also constructed only over this promising region.

Trust region based optimization methods [7] also incorporate domain reduction
by constructing locally-accurate models within trust regions. A trust region is
defined by a radius, which is typically varied according to the ratio of achieved re-
duction to predicted reduction at a given point. Trust region methods are guaranteed
to converge to local minima under some assumptions [8].

This work focusses on using classification methods to reduce the search domain
for unconstrained single-objective continuous optimization problems. Classification
techniques have previously been applied for constraint modeling in optimization
problems [9]. Handoko et. al. [10, 11] proposed classification-assisted memetic
algorithms where the classifier is used to approximate the decision boundary. Sub-
sequently, the search for optima is concentrated in regions near this boundary [12].
Singh et. al. used adaptive classification methods to find multi-class regions in the
input space by combining support vector machine (SVM) classifiers and sequential
sampling strategies [13].

Classification techniques have also been used to achieve domain reduction. The
Iterative Volume Reduction Algorithm (IVRA) algorithm proposed by Singh et.
al. [14] uses probabilistic support vector machine (SVM) classifiers to identify
promising regions likely to contain the optima. The optimization problem is cast as
a binary classification problem with classes feasible (likely to contain the optimum)
and infeasible (not likely to contain the optimum). The probabilistic SVM classifier
drives the modeling/sampling process towards feasible regions. Experimental
results show that the algorithm is capable of significantly reducing the volume of
the search space in few sampling iterations depending upon the complexity of the
problem. However, the algorithm can converge to local minima if the reduction is
too aggressive.

This paper extends the IVRA algorithm by adding an adaptive exploration com-
ponent which can pull the algorithm away from local minima. Tests on benchmark
optimization problems, and a mechanical design optimization problem illustrate
IVRA’s ability to result in better optima, while still using a small number of objec-
tive function evaluations, which is crucial if the objective function is expensive to
evaluate. While the focus is on continuous optimization problems and the proposed
algorithm is designed as such, discrete variables that are ordinal in nature can also
be handled with minimal changes. The paper is organized as follows. Support
vector machine classifiers are discussed in Section 11.2. The IVRA algorithm is
described in Section 11.3. Its performance is demonstrated in Sections 12.5 and
10.5, and the concluding remarks are presented in Section 11.5.

10.2 Support Vector Machine Classifiers
Support vector machines (SVMs) have been extensively applied to various problems
in literature such as cancer diagnosis, signal processing, image recognition, etc.
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[15]. The popularity of SVMs stems from their good generalization capability
demonstrated on benchmark problems [16, 17] as well as practical applications
across various fields.

SVM classifiers are supervised machine learning classification models proposed
by Vapnik [18] as early as 1979, but only gained popularity after the soft margin
classifier was proposed by Cortes and Vapnik [19] in 1995, and good results were
obtained in digit recognition, computer vision, text classification and benchmark
problems [15]. SVMs have been an active research area since, and availability of
implementations like LIBSVM [20] and LS-SVMlab [21] has contributed to their
increased use over the years.

Standard SVMs output a class label given a data point. However, in certain
situations it is more desirable to have a measure of the degree to which a data
point belongs to a certain class, i.e., the probability of the data point belonging
to a certain class. Platt [22] proposed a method to obtain posterior probabilities
along with class labels for binary classification problems, and this gave birth to
Probabilistic SVMs. The method of Wu et. al. [23] to obtain posterior probabilities
is implemented in the LIBSVM library and is used in this work.

The classification problem can be defined as follows. We define D as a
n-dimensional input space spanned by a set of features (or attributes) A =
{A1, ..., An}. Denoting the domain of feature Ai as dom(Ai), ∀i if dom(Ai) ⊂ R
then D ⊂ Rn. S = {x1, ...,xl||y} ∈ D is a training set of l samples. Each
training instance xi ∈ S has a corresponding target value yi, and the vector y
consists of all target values in S. The target value yi ∈ {−1,+1} for a binary
classification problem and yi ∈ [1..k] for a k−class classification problem. This
work only concerns the binary formulation.

10.2.1 Soft margin SVMs
A SVM classifier maps the input vectors into a high-dimensional feature space
Z using a specified non-linear mapping such that the input vectors are linearly-
separable in Z. This linear separating hyper-surface in Z is constructed with the
aim of achieving good generalization capability [19]. This is done by selecting
a decision boundary from candidate decision boundaries which maximizes the
margin, or the sum of distances between the candidate decision boundary and the
closest positive training instance, and between the candidate decision boundary and
the closest negative training instance.

Given a weight vector w and a scalar b, the training set S is said to be linearly
separable if the following inequalities are valid for every xi ∈ S.

w · xi + b ≥ 1 when yi = 1,

w · xi + b ≤ −1 when yi = −1.

The inequalities can be written in the form [19]

yi(w · xi + b) ≥ 1 (10.1)
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The optimal hyperplane that separates the training instances is of the form

w0 · x + b0 = 0

and is unique as it has the maximal margin. The margin is 2/|w0| for the hyperplane
with arguments (w0, b0) which minimizes w ·w under the constraints specified by
Equation 11.1.

When S is not linearly-separable, the learning task becomes minimization of:

1

2
w2 + C · F

(
l∑
i=1

ξi

)

subject to the following constraints:

yi(w · xi + b) ≥ 1− ξi,
ξi ≥ 0,∀i ∈ [1..l]

where ξi ≥ 0, i = 1,...,l are non-negative slack variables which measure constraint
violations, F (·) is a monotonic convex function and C is a constant error penalty
for regularization. C-SVMs are also called soft margin SVMs.

The training vectors xi · xj are mapped onto the feature space φ(xi) · φ(xj)
using a kernel function K(xi,xj) = φ(xi) · φ(xj). The learning now involves
maximization of the Lagrangian [24]:

W (α) =

l∑
i=1

αi −
1

2

l∑
i,j=1

αiαjyiyjK(xi · xj)

subject to the constraints:

αi ≥ 0,

l∑
i=1

αiyi = 0,

where αi are the Lagrange multipliers. W (α) can be solved using quadratic
programming techniques and upon finding the optimal value of α, the classification
task reduces to the evaluation of the function

G(xtest) = sign

((
l∑
i=1

αiyiK(xtest,xi)

)
+ b

)
,

where xtest is the sample to be classified.
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10.2.2 Probabilistic SVMs
Platt [22] used the sigmoid function as a probability model to directly fit P (y =
1|G), where G is the decision function of the two-class SVM. The probability
model can be defined as:

P (y = 1|G) =
1

1 + exp(mG+ l)

where m and l are scalars fit by maximum likelihood estimation. Lin et. al.
[25] proposed an improved formulation of this scheme which is implemented in
LIBSVM and used for the experiments in this work.

10.3 Iterative Volume Reduction Algorithm
The motivation behind IVRA is to find a smaller subregion in the input or design
space which likely contains the optima of a (possibly) high-dimensional (computa-
tionally expensive) function f . An optimization algorithm often finds it easier to
converge when applied to a smaller domain.

The flowchart of IVRA can be seen in Fig. 11.1 and the algorithm is described
in Alg. 5. The notation followed in Alg. 5 assumes f to be the function to be
optimized, s to be the number of points in the initial design (11.3.1), tr to be the
total sampling budget, τ to be a threshold (11.3.2), A to be the bound constraints
and lc to be the number of points to select in each iteration (batch size). Sections
11.3.1-10.3.4 describe the different phases of IVRA.

10.3.1 Initial Design
The algorithm begins by generating an initial design I (e.g. a Latin Hypercube)
of a user-specified size s which aims at capturing as much of the design space as
possible. The size s should be sufficiently large to cover the entire design space.
The authors recommend setting s to at least 10n, where n is the dimensionality of
the problem.

Intuitively, it might be desirable to set τ = s
2 to obtain a balanced training set.

However, this results in a slow reduction of the feasible region. Since the number of
iterations for domain reduction available to IVRA is limited, shrinking the feasible
region quickly is crucial. Assigning s = 10n samples to initial design, the value
n is s

10 , which was found to be a good compromise between reduction speed, and
having a sufficient number of positive samples for high-dimensional problems.

10.3.2 Casting Optimization as Classification
A binary classification problem is derived by subdividing the input region into a
feasible class that contains only positive samples (which correspond to the optima),
and an infeasible class that contains the negative samples. Since it is highly unlikely
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Figure 10.1 Flowchart of the Iterative Volume Reduction Algorithm.
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that any of the points landed at locations corresponding to optima, all the points
will correspond to the negative class.

In order to have a dataset which contains both positive and negative samples
for the classification problem, a threshold value τ is introduced. IVRA sets the
threshold τ to the nth order statistic of evaluated values f(x) by default, where n
is the dimensionality of the problem. 1 The value of τ decides how quickly IVRA
reduces the domain in successive iterations. A smaller value of τ would lead to
rapid reduction at the cost of being more prone to be trapped in local minima. A
larger value of τ makes for a slower reduction, although with the benefit of being
less likely to get stuck in local minima. The authors find setting τ = nth order

1It is ensured that the positive samples are non-collinear in any given dimension such that an
n-dimensional hypercube can be specified.
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Algorithm 4 IVRA(f, s, tr, τ,A, lc)

n← NumberOfAttributes(A)
x← I(s, n) . Generate samples according to an initial design (e.g., Latin
Hypercubes)
fe ← f(x)
if τ = NULL then

τ ← nth order statistic of fe
end if
i← 0
while i ≤ b tr−slc c do

yτ ← PartitionIntoClasses(fe, τ) . Values in fe ≤ τ are assigned the
class label +1, and the rest -1

model← PSVM − TRAIN(x,yτ )
Dτ ← DomainOfFeasibleRegion(x,yτ ) . Simply the min and max of

positive samples for Ai
xc ← RandomCandidates(lc,Dτ ) . Generate lc candidates within the

feasible region
pc ← PSVM − PREDICT (model,xc)
xlc ← SortDecreasing(pc,xc) . Choose top lc

2 points ranked according
to decreasing probability

x← x ∪ xlc

fe ← fe ∪ f(xlc )
exc ← GetExplorationPoints(xc,x, fe, fmin,

lc
2 )

x← x ∪ exc

fe ← fe ∪ f(exc)
τ ← nth order statistic of fe
fmin ← min(fe)
i← i+ 1

end while
return Dred ← DomainOfFeasibleRegion(x,yτ )

statistic of available function values to be a good choice for a majority of problems.
The concept is similar to trust-region methods in that the hypercube can be thought
of as the trust region, and the value of τ indirectly influences the volume of the trust
region. The differences between IVRA and trust region methods lie in varying the
trust region radius, or τ , and global models being use in IVRA as opposed to local
models in trust region methods.

The samples x ∈ I are evaluated and the values f(x) are mapped to class labels
{+1,-1} based on the threshold τ resulting in a binary vector yτ .

yτ = +1, if f(x) ≤ τ , (in case of minimization) (10.2)
yτ = −1, if f(x) > τ. (10.3)

This task is performed by the routine PartitionIntoClasses. The process
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results in a training set S = {x||yτ}, which is used to build a probabilistic SVM
model 2.

10.3.3 Domain Reduction using Adaptive Sampling
The presence of positive samples (see Section 11.3.2) allows for a definition of a
hypercube around the feasible region. This hypercube (which is likely to contain the
optima) is defined by the min and max value of the attributes of each dimension
(Fig. 10.2).

Figure 10.2 The hypercube corresponding to the feasible region is defined by the
nth order statistic (2 samples corresponding to the positive class in this case) by
projecting each positive sample on each dimension.
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10.3.3.1 Exploration versus Exploitation

The reduction process must be carefully planned so as to achieve a large reduction
while avoiding local minima. If the reduction is too drastic, then there is the danger
of the optima lying outside the feasible region. Thus, reduction must be a balance of
exploration and exploitation. Exploitation corresponds to selecting samples having
a high probability of lying within the feasible region, and is directly responsible
for the volume reduction. As more probably feasible points are selected within the
hypercube, the value of the nth order statistic will move towards the optima.

2Handling Data Bias:
As the algorithm progresses and more samples are selected, the total number of samples in the negative
class tr − n will be much larger than the number of samples in the positive class n. The imbalance
can pose a problem during the training of the SVM model, making the classifier biased. To solve this
problem, a penalty is imposed on misclassification of positive samples during the training process. The
reader is referred to the section on weighted SVMs in Osuna et. al. [26].
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Due to the enormity of the input space, it is possible that optima lie in a small
region which was missed by the initial design and consequently by the exploitation-
based sampling scheme. In such a scenario, the feasible region will not contain the
optima and IVRA will only be able to converge to local optima. This necessitates
an exploration component which can pull IVRA out of local optima. The user-
specified sampling budget per iteration lc is divided equally among exploration
(le = lc

2 ) and exploitation (lx = lc
2 ) by default. The exploitation and exploration

components used by IVRA are described in 10.3.3.2 and 10.3.3.3 respectively.
The sample-selection process continues iteratively till the sampling budget tr

specified by the user has been exhausted. The total number of iterations performed
by IVRA are b tr−slc c.

10.3.3.2 Probabilistic SVM-based Exploitation

A large number of new candidate samples xc are generated randomly within
the hypercube using the routine RandomCandidates and the probabilistic SVM
model is used to predict the probability of each candidate sample belonging to the
feasible class. The samples with high probability values will lie within or close to
the region containing the optima. In each iteration IVRA selects lx best candidate
samples which are the top lx candidate samples ranked in decreasing order of
probability predicted by the SVM model. These new samples are used to augment
the training set S and the value of τ is updated. The probabilistic model is rebuilt
after redefining the classes according to the updated value of τ . The significance of
relaxing τ is that the feasible class corresponds to a region Aτ in the design space
which likely contains the optimum and in future iterations Aτ will be progressively
shrunk.

10.3.3.3 Local Exploration

The local exploration component selects samples in a space-filling manner. A large
number of candidate samples xc are generated randomly in the feasible region,
and its local neighborhood using the routine RandomCandidates. The local
neighborhood is defined by extending the feasible region in each dimension by a
multiplicative factor ν ∈ [0, 1]. The initial value of ν is set to 0 when IVRA begins.
Given that fmin and f

′

min signify the current optimum and the optimum of the last
iteration respectively, the following rule is applied to assign a value to ν in each
iteration:

ν = min(ν + 0.1, 1), if fmin ≥ f
′

min (10.4)
ν = max(ν − 0.1, 0), otherwise. (10.5)

The constant 0.1 controls the speed of enlargement of the local neighborhood for
exploration. Denoting the domain of the ith dimension in the feasible region as Di

τ

and the domain of the ith dimension in the input space as Di, the domain of the
local neighborhood defined using ν is:

Di
ν = max[Di

τ + (Di
τ ∗ ν), Di]
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Table 10.1 Experimental settings for the test problems.

Component Number of samples

Initial Design 400

Domain Reduction using IVRA 200

Optimizer 400

Total budget 1000

Batch size for sample selection 10

The candidate samples generated within the local neighborhood defined by Dν

are ranked according to their respective minimum Manhattan distance from existing
samples. The candidate having the maximum minimum distance is added to the
training set S. This ensures the desirable space-filling behavior. Since candidates
are selected one-at-a-time, the distance computation and ranking is iterated over le
times.

10.3.4 Defining the Reduced Domain
Once the sampling budget is exhausted, the final hypercube corresponding to the
reduced search space Dred is defined in 2× n dimensions as:

Dred =

[
min(Aτ1) min(Aτ2) · · · min(Aτn)
max(Aτ1) max(Aτ2) · · · max(Aτn)

]
where the domain of each attribute or dimension Aτi , i ∈ [1..n] is set to the min
and max value per dimension of the samples lying within the feasible region.

Dred now serves as a reduced subspace of D within which any optimization
algorithm can be used to search for the optimum. For the problems in this paper,
optimization algorithms from the NLopt non-linear optimization library 3 were
used.

10.4 Experiments

10.4.1 Experimental Setup
The efficacy of the IVRA algorithm was tested on analytical benchmark optimiza-
tion problems listed in the Appendix, and on a mechanical Truss design problem
described in the next section.

The experimental settings were kept the same for all functions and are described
in Table 11.1. The experimental setup for the benchmark problems can be seen in

3Steven G. Johnson, The NLopt nonlinear-optimization package, http://ab-initio.mit.edu/nlopt
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Figure 10.3 Experimental setup for the test problems.

Original Design 
Space

Reduced Search 
Space

OptimaOptimizerIVRA

Figure 10.5 Griewank function in 2-D
within the range [-10,10].

Fig. 11.2. IVRA was used to reduce the search space and thereafter optimizers
were constrained by this reduced space to find the optima. The optimization
algorithms tested were Controlled Random Search (CRS) with local mutation [27]
and Improved Stochastic Ranking Evolution Strategy (ISRES) [28].

The results of the experiments can be seen in Table 11.2. Each value in the table
is an average of 20 runs and indicates the mean and standard deviation (µ± σ). For
each case, IVRA was run with two configurations - with and without exploration.
The values for the ‘Optimizer Only’ case correspond to running the respective
optimizer with t = 1000 evaluations to match IVRA’s settings.

10.4.2 Results and Discussion
It can be seen that IVRA can handle shifted and asymmetric functions as well. The
extent of improvement IVRA offers depends upon the nature of the function or
simulator. In case of the Ackley function, the benefit of domain reduction was
not substantial as exploitation-only IVRA got stuck in local minima, while with
exploration it was able to get out of it but the reduction in search space was not
large enough. This is a perfect example of the limitations of a sampling-based
approach. Since the likelihood of landing a sample in the extremely narrow valley
containing the optima is very low, more often than not sampling-based methods
will struggle to reach the valley and get stuck in local minima. The probabilistic
SVM model for exploitation did not have any training samples in the valley and
hence was unable to assign higher probabilities to candidates lying in the valley.

Contrarily, exploitation-only IVRA performed better and offered a substantial
reduction in search space for the rest of the functions which do not have the optima
in a very narrow region. The volume of the feasible region itself was very small
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compared to the entire design space. As seen in Table 11.2, the reduction in search
space is greater than 99.9% in all the cases.

Turning on exploration makes sure that IVRA has means to get out of local
minima, but the reduction in search space decreases substantially. As can be seen
in Table 11.2, the true optimum is always in the feasible region when exploration is
used. Although the optimum found with the available sampling budget is always
inferior to exploitation-only variant, it is still better than using the optimizer alone
in most of the cases (exception being the CRS optimizer in 20 dimensions).

The nature of two of the test functions can be seen in Fig. 10.5. The non-
linearities of Ackley and Griewank functions are very pronounced near the optima.
Optimization methods like surrogate-based methods which build a model of the
underlying function or simulator will struggle to be accurate in light of these
pronounced non-linearities, while IVRA performs well by virtue of negating the
non-linearities by only considering classes - using the threshold τ . This simplifies
the problem to an extent and yields substantial performance gains as can be seen in
the case of the Griewank function.

IVRA’s running time hovers around approximately 7s for 20-dimensional prob-
lems and 23s for 50-dimensional problems. The running times of the optimizers
themselves are of the order of a few (less than 2) seconds. In comparison to IVRA,
surrogate-based optimization using Kriging models would take several hours for a
single run comprising 1000 total function evaluations. The main overhead in case
of surrogate-based methods involving Kriging is model-building, the complexity of
which is cubic in the number of samples and grows exponentially with the number
of dimensions. The complexity of the SVM implementation used is quadratic in
the number of samples. The running time becomes even more important when the
dimensionality increases and simulations are expensive. The time taken by IVRA to
reduce the search space is small compared to the time taken per simulation (which
might even be hours in some cases) when the simulations are expensive.

For the purpose of experiments, no parameter optimization was performed for
IVRA. Parameters such as the number of function evaluations given to IVRA and
the optimizer can be optimized to obtain better results. Additionally, the choice
of the optimizer also affects the speed of convergence. Table 11.3 lists the results
of experiments in which the most appropriate optimizer was used in conjunction
with IVRA. The Ellipsoid function is quadratic and hence the BOBYQA (BOunded
Optimization BY Quadratic Approximation) [29] algorithm was chosen for the
function as is performs quadratic approximation of the objective function. The
Griewank function has quadratic and cosine terms, so the BOBYQA algorithm
was appropriate. The Ackley function is Gaussian while the Rosenbrock function
has low function values spanning a vast region in the input domain. Since no
algorithm available to the authors was particularly more suitable, the DIRECT
(DIviding RECTangles) algorithm [30] was chosen which is a good general purpose
optimizer.

The DIRECT algorithm was not used for comparisons in Table 11.2 as its
symmetric division, and use of centre point of the domain as the starting point
makes the comparison unfair as the benchmark functions have symmetric domains
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Table 10.3 IVRA’s performance when the most appropriate optimizer is chosen for
each benchmark function. Each value is the average of optima reached over 20 runs.
Exploration was turned off for the experiments.

Function Best Worst Average Optimizer Used

Ackley 20D 3.43e− 2 3.79 0.95 DIRECT

Ellipsoid 20D 2.65e− 17 1.51 0.24 BOBYQA

Griewank 20D 3.54e− 06 1.67 0.47 BOBYQA

Rosenbrock 20D 16.72 36.31 23.25 DIRECT

Shifted Griewank 20D −179.39 −177.84 −178.64 BOBYQA

Shifted Rosenbrock 20D 4.25e+ 4 1.96e+ 07 1.99e+ 06 DIRECT

Ackley 50D 4.78 6.04 5.58 DIRECT

Ellipsoid 50D 3.02e− 13 0.33 0.03 BOBYQA

Griewank 50D 0.02 15.34 1.31 BOBYQA

Rosenbrock 50D 72.62 147.07 106.66 DIRECT

Shifted Griewank 50D −179.98 −178.98 −179.54 BOBYQA

Shifted Rosenbrock 50D 4.75e+ 5 1.52e+ 06 9.27e+ 5 DIRECT

and the optima lies at the origin.
The results show the potential gain offered by IVRA, which can be further

enhanced by hyper-parameter optimization and choosing an appropriate optimizer
according to the nature of the problem at hand (or a good general purpose optimizer).

10.5 Design of a Truss

The IVRA algorithm is also demonstrated on a structural dynamics problem. The
problem involves design optimization of a two-dimensional truss for maximum
passive vibration isolation. The problem has been described by Forrester and
Jones [31] where a two variable problem has been formulated. This work considers
a ten variable problem with more degrees of freedom and uses the IVRA algorithm
to find the optimal design.

The structure is constructed using 42 Euler-Bernoulli beams having two finite
elements per beam (Fig 10.6). The truss is subjected to a unit force excitation at
node 1 across the 100-200Hz frequency range. Movement is only allowed for free
nodes (all except encastre nodes) within a 0.9 × 0.9 square. A ten variable problem
is formulated by considering movement along x and y-coordinates for nodes 8
through 12. The other nodes are kept fixed according to the structure depicted in
Fig. 10.6. The domain of each variable is [0, 1].

The band-averaged vibration attenuation at the tip, compared to the baseline
structure is to be maximized. The problem itself is not particularly expensive, with
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Figure 10.6 The two-dimensional truss structure (courtesy of Forrester and Jones
[31]).

Table 10.4 Experimental settings for the Truss design problem.

Component Scheme 1 budget Scheme 2 budget

Initial Design 100 200

Domain Reduction using IVRA 300 500

Optimizer 200 500

Total budget 500 1000

Batch size for sample selection 5 5

an evaluation taking approximately one second. However, it does serve to illustrate
the performance of IVRA.

The experimental settings are listed in Table 10.4. Two schemes involving a
total objective function evaluation budget of 500 and 1000 evaluations respectively
were followed. The results are listed in Table 10.6. In case of a limited budget
of 500 evaluations, using an optimizer in a reduced domain obtained from IVRA
shows clear benefits. The optima obtained are better than using an optimizer alone
with full budget over the entire domain. The minima found after reduction using
IVRA itself is better than what optimizers could find without reduction. There is a
small overhead in total time taken to find the optima. Considering that the problem
itself can be expensive to evaluate, it is not as severe.

Increasing the function evaluation budget to 1000 results in very aggressive
reduction and the algorithm gets trapped in local minima if exploration is not used.
This is reflected in the results as we see no marked improvement as compared
to using optimizers alone over the entire domain for this problem setting. When
exploration is allowed, IVRA is able to avoid getting trapped in local minima with
the performance being better with all optimizers. Thus, the problem clearly shows
the pitfalls of using IVRA, as well as the potential benefits.

The scale of reduction is reflected in Table 10.5 which describes the reduced
search space obtained using IVRA. The search space was obtained from a run
following scheme 2 listed in Table 10.4 with exploration allowed. The original



Table 10.5 Reduced hypercube for the Truss design problem.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

min 0.0006 0.0002 0.7303 0.8078 0.9930 0.3904 0.9991 0.9981 0.0000 0.0001

max 0.0085 0.0025 0.7724 0.9207 1.0000 0.4591 0.9999 1.0000 0.0022 0.0029

search space has been reduced by 99.9%. The hypervolume of the reduced space
is 3.8888e−22 as compared to 1, which is the hypervolume of the original search
space.

To test the goodness of obtained optima, a monte-carlo approach using 20000
function evaluations was followed. The optima found over 20000 randomly gen-
erated points (according to a uniform distribution) was -3.2805. Repeating the
process 5 times did not yield a better optima.

10.6 Conclusions and Future Work

A novel fast algorithm for solution of expensive high-dimensional optimization
problems is presented in this work. The algorithm reduces the search space by
transforming the optimization problem into a binary classification problem which is
modeled using probabilistic support vector machines (PSVMs). Existing optimiza-
tion algorithms can then be applied to the reduced search space to find the optima
quickly. The performance of the IVRA algorithm is demonstrated on analytical
benchmark examples, and a mechanical Truss design problem with comparisons
to optimization algorithms used with and without the aid of the IVRA algorithm.
Future work involves extending IVRA’s capabilities to handle multi-objective opti-
mization problems.
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10.7 APPENDIX

10.7.1 Benchmark Test Functions

The following benchmark test functions are used for the experiments in this paper.
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10.7.1.1 Ackley Function

Minimize
x

−20 · exp(−0.2 ·

√√√√ 1

d
·
d∑
i=1

x2
i )

−exp(
1

d
·
d∑
i=1

cos(2π · xi)) + 20 + e

for

−32.768 ≤ xi ≤ 32.768 ∀i,
e = 2.7183,

d ∈ {20, 50},

min : x
∗

= 0.
Figure 10.7: The Ackley function in 2-D.

10.7.1.2 Ellipsoid Function

Minimize
x

d∑
i=1

ix
2
i

for

−5.12 ≤ xi ≤ 5.12 ∀i,
d ∈ {20, 50}

min : x
∗

= 0.

Figure 10.8: The Ellipsoid function in 2-D.

10.7.1.3 Griewank Function

Minimize
x

1 +
d∑
i=1

x2
i

4000
−

d∏
i=1

cos

(
xi√
i

)
for

−600 ≤ xi ≤ 600 ∀i,
d ∈ {20, 50},

min : x
∗

= 0.

Figure 10.9: The Griewank function in 2-D.
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10.7.1.4 Rosenbrock Function

Minimize
x

d∑
i=1

(100(xi+1 − x2
i )

2
+ (1− xi)2)

for

−2.048 ≤ xi ≤ 2.048 ∀i,
d ∈ {20, 50},

min : x
∗

= 0.

Figure 10.10: The Rosenbrock function in
2-D.

10.7.1.5 Shifted Griewank Function

Minimize
x

1 +

d∑
i=1

z2i
4000

−
d∏
i=1

cos

(
zi√
i

)
+ fbias

with

z = x−∆,

for

−600 ≤ xi ≤ 600 ∀i,

d ∈ {20, 50},

o = {5, 5, ..., 5}d (the shifted optimum)

z = x− o,

fbias = −180,

min : x
∗

= fbias.

10.7.1.6 Shifted Rosenbrock Function

Minimize
x

d−1∑
i=1

(100(z
2
i − zi+1)

2
+ (zi − 1)

2
) + fbias

with

z = x−∆ + 1,

for

−100 ≤ xi ≤ 100 ∀i,

d ∈ {20, 50},

o = {5, 5, ..., 5}d (the shifted optimum)

z = x− o + 1,

fbias = 390,

min : x
∗

= fbias.



ITERATIVE VOLUME REDUCTION ALGORITHM 155

References
[1] A. I. Forrester and A. J. Keane. Recent advances in surrogate-based optimiza-

tion. Progress in Aerospace Sciences, 45(1):50–79, 2009.

[2] I. Couckuyt, A. Forrester, D. Gorissen, F. De Turck, and T. Dhaene. Blind
Kriging: Implementation and performance analysis. Advances in Engineering
Software, 49:1–13, 2012.

[3] R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial
intelligence, 97(1):273–324, 1997.

[4] R. Spaans and R. Luus. Importance of search-domain reduction in random
optimization. Journal of Optimization Theory and Applications, 75(3):635–
638, 1992.

[5] N. Stander and K. Craig. On the robustness of a simple domain reduc-
tion scheme for simulation-based optimization. Engineering Computations,
19(4):431–450, 2002.

[6] X. Wan, J. F. Pekny, and G. V. Reklaitis. Simulation-based optimization with
surrogate modelsApplication to supply chain management. Computers &
chemical engineering, 29(6):1317–1328, 2005.

[7] A. R. Conn, N. I. Gould, and P. L. Toint. Trust region methods, volume 1.
Siam, 2000.

[8] N. M. Alexandrov, J. E. Dennis Jr, R. M. Lewis, and V. Torczon. A trust-region
framework for managing the use of approximation models in optimization.
Structural Optimization, 15(1):16–23, 1998.

[9] A. Basudhar and S. Missoum. Adaptive explicit decision functions for proba-
bilistic design and optimization using support vector machines. Computers &
Structures, 86(19):1904–1917, 2008.

[10] S. Handoko, K. C. Keong, and O. Y. Soon. Using classification for constrained
memetic algorithm: A new paradigm. In Systems, Man and Cybernetics, 2008.
SMC 2008. IEEE International Conference on, pages 547–552, Oct 2008.

[11] S. Handoko, C. Kwoh, and Y. Ong. Classification-Assisted Memetic Algo-
rithms for Equality-Constrained Optimization Problems. In A. Nicholson
and X. Li, editors, AI 2009: Advances in Artificial Intelligence, volume
5866 of Lecture Notes in Computer Science, pages 391–400. Springer Berlin
Heidelberg, 2009.

[12] S. Handoko, C. K. Kwoh, and Y.-S. Ong. Feasibility Structure Modeling: An
Effective Chaperone for Constrained Memetic Algorithms. IEEE Transactions
on Evolutionary Computation, 14(5):740–758, Oct 2010.



156 CHAPTER 10

[13] P. Singh, D. Deschrijver, D. Pissoort, and T. Dhaene. Adaptive classification
algorithm for EMC-compliance testing of electronic devices. Electronics
Letters, 49(24):1526–1528, November 2013.

[14] P. Singh, F. Ferranti, D. Deschrijver, I. Couckuyt, and T. Dhaene. Classi-
fication Aided Domain Reduction for High Dimensional Optimization. In
Proceedings of the 2014 Winter Simulation Conference, WSC ’14, pages
3928–3939, Piscataway, NJ, USA, 2014. IEEE Press. Available from:
http://dl.acm.org/citation.cfm?id=2693848.2694336.

[15] L. Wang. Support Vector Machines: theory and applications, volume 177.
Springer, 2005.

[16] T. Van Gestel, J. A. K. Suykens, B. Baesens, S. Viaene, J. Vanthienen, G. De-
dene, B. De Moor, and J. Vandewalle. Benchmarking Least Squares Support
Vector Machine Classifiers. Mach. Learn., 54(1):5–32, January 2004.

[17] C.-L. Liu, K. Nakashima, H. Sako, and H. Fujisawa. Handwritten digit
recognition: benchmarking of state-of-the-art techniques. Pattern Recognition,
36(10):2271–2285, 2003.

[18] V. N. Vapnik. Estimation of Dependencies Based on Empirical Data. Nauka,
Moscow, Russia, 1979. English translation, New York: Springer-Verlag, 1982.

[19] C. Cortes and V. Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995.

[20] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines.
ACM Transactions on Intelligent Systems and Technology (TIST), 2(3):27,
2011.

[21] K. Pelckmans, J. A. Suykens, T. Van Gestel, J. De Brabanter, L. Lukas,
B. Hamers, B. De Moor, and J. Vandewalle. LS-SVMlab: a matlab/c toolbox
for least squares support vector machines. Tutorial. KULeuven-ESAT. Leuven,
Belgium, 2002.

[22] J. Platt et al. Probabilistic outputs for support vector machines and compar-
isons to regularized likelihood methods. Advances in large margin classifiers,
10(3):61–74, 1999.

[23] T.-F. Wu, C.-J. Lin, and R. C. Weng. Probability estimates for multi-class clas-
sification by pairwise coupling. The Journal of Machine Learning Research,
5:975–1005, 2004.

[24] D. Chen, H. Bourlard, and J.-P. Thiran. Text identification in complex back-
ground using SVM. In Computer Vision and Pattern Recognition, 2001.
CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on,
volume 2, pages II–621. IEEE, 2001.

http://dl.acm.org/citation.cfm?id=2693848.2694336


ITERATIVE VOLUME REDUCTION ALGORITHM 157

[25] H.-T. Lin, C.-J. Lin, and R. C. Weng. A note on Platts probabilistic outputs
for support vector machines. Machine learning, 68(3):267–276, 2007.

[26] E. Osuna, R. Freund, and F. Girosi. Support vector machines: Training and
applications. AI Memo 1602, 1997.

[27] P. Kaelo and M. Ali. Some variants of the controlled random search algorithm
for global optimization. Journal of optimization theory and applications,
130(2):253–264, 2006.

[28] T. Runarsson and X. Yao. Search biases in constrained evolutionary opti-
mization. IEEE Transactions on Systems, Man, and Cybernetics, Part C:
Applications and Reviews, 35(2):233–243, 2005.

[29] M. J. Powell. The BOBYQA algorithm for bound constrained optimization
without derivatives. Cambridge NA Report NA2009/06, University of Cam-
bridge, Cambridge, 2009.

[30] J. M. Gablonsky and C. T. Kelley. A locally-biased form of the DIRECT
algorithm. Journal of Global Optimization, 21(1):27–37, 2001.

[31] A. I. Forrester and D. R. Jones. Global optimization of deceptive functions
with sparse sampling. In 12th AIAA/ISSMO multidisciplinary analysis and
optimization conference, pages 10–12, 2008.





11
Classification Aided Domain

Reduction for High Dimensional
Optimization

This chapter discusses the original formulation of the Iterative Volume Reduction
Algorithm.

? ? ?

P. Singh, F. Ferranti, D. Deschrijver, I. Couckuyt, T. Dhaene.
Published in the proceedings of the 2014 Winter Simulation Conference, pp.
3928-3939, Dec. 2014.

Abstract Engineering design optimization often involves computationally expen-
sive time consuming simulations. Although surrogate-based optimization has been
used to alleviate the problem to some extent, surrogate models (like Kriging) strug-
gle as the dimensionality of the problem increases to medium-scale. The enormity
of the design space in higher dimensions (above ten) makes the search for optima
challenging and time consuming. This paper proposes the use of probabilistic
support vector machine classifiers to reduce the search space for optimization. The
proposed technique transforms the optimization problem into a binary classification
problem to differentiate between feasible (likely containing the optima) and infeasi-
ble (not likely containing the optima) regions. A model-driven sampling scheme
selects batches of probably-feasible samples while reducing the search space. The
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result is a reduced subspace within which existing optimization algorithms can
be used to find the optima. The technique is validated on analytical benchmark
problems.

11.1 Introduction
Numerous real-world problems are high-dimensional in nature. The ‘curse of
dimensionality’ limits the applicability of existing optimization techniques and often
makes the search for optima computationally infeasible. Problems are compounded
when the objective function to be optimized is expensive to evaluate.

Surrogate-based methods are often used to solve such expensive optimization
problems [1]. Surrogate based methods aim to minimize the number of evaluations
of the expensive objective function by constructing a cheaper surrogate model
that serves as a full or partial replacement of the expensive objective function or
simulator. Although attractive, surrogate based optimization becomes impractical
for medium to high scale (above 50 dimensions) problems. The modeling times and
memory requirements needed to construct the surrogate model scale exponentially
with the dimensionality of the problem [2] and severely limit the applicability of
surrogate based methods.

Reducing the search space is a way to relieve the curse of dimensionality
for optimization problems. This can be done by either reducing the number of
dimensions, or reducing the domain of each dimension. Kohavi and John [3] discuss
feature subset selection techniques for machine learning. Feature selection deals
with removing irrelevant dimensions, while feature extraction deals with reducing
the dimensionality of the problem by clumping multiple features or dimensions
together. Feature selection has been used in surrogate based optimization [2] but
surrogate based methods are still limited to low or medium-scale optimization
problems due to the computational expense of building a model in high dimensional
spaces which would also need a lot of samples.

This paper does not concern feature selection techniques but instead focuses
on domain reduction. Spaans and Luus [4] illustrate the importance of domain
reduction for derivative-free methods by showing that a relatively small number of
function evaluations are sufficient to converge when domain reduction is applied,
even if the starting point is far from the optima. Domain reduction has been
applied to simulation-based optimization problems in literature [5], [6]. Stander and
Craig [5] construct linear models in a sub-region of the design space and iteratively
contract the size of this subregion. Wan et. al. [6] use domain reduction in a
surrogate modeling setting. They find a promising region by building a regression
tree and focus the sampling on this region alone. The surrogate model is also only
built over the promising region.

This work focusses on using classification methods to reduce the search domain
for unconstrained single-objective optimization problems. Classification techniques
have previously been applied to optimization problems in literature. Handoko et.
al. [7], [8] proposed classification-assisted memetic algorithms for constrained
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optimization problems. The classifier is used to approximate the decision boundary
in this case and the search for optima is concentrated in regions near this boundary
[9]. Singh et. al. used adaptive classification methods to find multi-class regions
in the input space by combining support vector machine (SVM) classifiers and
sequential sampling strategies [10].

The proposed Iterative Volume Reduction Algorithm (IVRA) formulates the
optimization problem as a binary classification problem with classes feasible (likely
to contain the optimum) and infeasible (not likely to contain the optimum). It uses a
probabilistic SVM classifier to drive the modeling/sampling process towards feasi-
ble regions. Experimental results show that the algorithm is capable of significantly
reducing the volume of the search space in very few sampling iterations depending
upon the complexity of the problem. However, being a sampling-based approach,
the algorithm can miss global optima if the size of the initial design is too small.

The paper is organized as follows. Support vector machine classifiers are
discussed in Section 11.2. The proposed algorithm is described in Section 11.3.
Its performance is demonstrated in Section 12.5 and the concluding remarks are
presented in Section 11.5.

11.2 Support Vector Machine Classifiers
Support Vector Machines or SVMs have been extensively applied to various prob-
lems in literature such as cancer diagnosis, signal processing, image recognition,
etc. [11]. The popularity of SVMs stems from their good generalization capability
demonstrated on benchmark problems [12], [13] as well as practical applications
across various fields.

SVM classifiers are supervised machine learning classification models proposed
by Vapnik [14] as early as 1979, but only gained popularity after good results were
obtained in digit recognition, computer vision, text classification and benchmark
problems [11] and soft margin classifier was proposed by Cortes and Vapnik
[15] in 1995. SVMs have been an active research area since, and availability of
implementations like LIBSVM [16] and LS-SVMlab [17] has contributed to their
increased use over the years.

Standard SVMs output a class label given a data point. However, in certain
situations it is more desirable to have a measure of the degree to which a data
point belongs to a certain class, i.e., the probability of the data point belonging
to a certain class. Platt [18] proposed a method to obtain posterior probabilities
along with class labels for binary classification problems, and this gave birth to
Probabilistic SVMs. The method of Wu et. al. [19] to obtain posterior probabilities
is implemented in the LIBSVM library and is used in this work.

The classification problem can be defined as follows. We define D as a
n-dimensional input space spanned by a set of features (or attributes) A =
{A1, ..., An}. Denoting the domain of feature Ai as dom(Ai), ∀i if dom(Ai) ⊂ R
then D ⊂ Rn. S = {x1, ...,xl||y} ∈ D is a training set of l samples. Each
training instance xi ∈ S has a corresponding target value yi, and the vector y
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consists of all target values in S. The target value yi ∈ {−1,+1} for a binary
classification problem and yi ∈ [1..k] for a k−class classification problem. This
work only concerns the binary formulation.

11.2.1 Soft margin SVMs
An SVM classifier maps the input vectors into a high-dimensional feature space
Z using a specified non-linear mapping such that the input vectors are linearly-
separable in Z. This linear separating hyper-surface in Z is constructed with the
aim of achieving good generalization capability [15]. This is done by selecting
a decision boundary from candidate decision boundaries which maximizes the
margin, or the sum of distances between the candidate decision boundary and the
closest positive training instance, and between the candidate decision boundary and
the closest negative training instance.

Given a weight vector w and a scalar b, the training set S is said to be linearly
separable if the inequalities

w · xi + b ≥ 1 when yi = 1,

w · xi + b ≤ −1 when yi = −1,∀i ∈ [1..l]

are valid for all elements of S. The inequalities can be written in the form [15]:

yi(w · xi + b) ≥ 1 (11.1)

The optimal hyperplane that separates the training instances is of the form:

w0 · x + b0 = 0

and is unique as it has the maximal margin. The margin is 2/|w0| for the hyperplane
with arguments (w0, b0) which minimizes w ·w under the constraints specified by
Eq. 11.1.

When S is not linearly-separable, the learning task becomes minimization of:

1

2
w2 + CF

(
l∑
i=1

ξi

)
subject to the following constraints:

yi(w · xi + b) ≥ 1− ξi,
ξi ≥ 0,∀i ∈ [1..l]

where ξi ≥ 0, i = 1,...,l are non-negative slack variables which measure constraint
violations, F (·) is a monotonic convex function and C is a constant error penalty
for regularization. C-SVMs are also called soft margin SVMs.

The training vectors xi · xj are mapped onto the feature space φ(xi) · φ(xj)
using a kernel function K(xi,xj) = φ(xi) · φ(xj). The learning now involves
maximization of the Lagrangian [20]:
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W (α) =

l∑
i=1

αi −
1

2

l∑
i,j=1

αiαjyiyjK(xi · xj)

subject to the constraints:

αi ≥ 0,

l∑
i=1

αiyi = 0.

where αi are the Lagrange multipliers. W (α) can be solved using quadratic
programming techniques and upon finding the optimal value of α, the classification
task reduces to the evaluation of the function

G(xtest) = sign

(
l∑
i=1

αiyiK(xtest,xi) + b

)
,

where xtest is the sample to be classified.

11.2.2 Probabilistic SVMs
Platt [18] used the sigmoid function as a probability model to directly fit P (y =
1|G), where G is the decision function of the two-class SVM. The probability
model can be defined as:

P (y = 1|G) =
1

1 + exp(MG+N)

where M and N are scalars fit by maximum likelihood estimation. Lin et. al.
[21] proposed an improved formulation of this scheme which is implemented in
LIBSVM and used for the experiments in this work.

11.3 Iterative Volume Reduction Algorithm
The motivation behind IVRA is to find a smaller subregion in the input or design
space which contains the optima of a high-dimensional function f(x). An existing
optimization algorithm often finds it easier to converge when applied to a smaller
domain. The flowchart of IVRA can be seen in Fig. 11.1 and the algorithm is
described in Alg. 5. The algorithm can be divided into the following four phases:

11.3.1 Initial Design
The algorithm begins by generating an initial design I (e.g., a Latin Hypercube)
of a user-specified size s which aims at capturing as much of the design space as
possible. The initial design also serves as IVRA’s exploration component. The
size s should be sufficiently large to cover the entire design space. The authors
recommend setting s to at least 10∗n, where n is the dimensionality of the problem.



164 CHAPTER 11

Figure 11.1 Flowchart of the Iterative Volume Reduction Algorithm.
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11.3.2 Reducing Optimization to Classification

A binary classification problem is now derived from the optimization problem. The
idea is to subdivide the input region into a feasible class that contains only positive
samples (which correspond to the optima), and an infeasible class that contains
the negative samples. Since it is highly unlikely that any of the points landed at
locations corresponding to optima, all the points will correspond to the negative
class.

In order to have a dataset which contains both positive and negative samples for
the classification problem, a threshold value τ is introduced to distinguish between
positive and negative samples. The value of τ decides how quickly IVRA reduces
the domain in successive iterations. A smaller value of τ would lead to a rapid
reduction at the cost of being more prone to be trapped in local minima. A larger
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Algorithm 5 IVRA(f, s, tr, τ,A, lc)
n← NumberOfColumns(A) . Dimensionality
x← I(s, n) . Generate samples according to an initial design (e.g., Latin Hypercubes)
fe ← f(x) . Evaluate the function over the points obtained from the initial design
if τ = NULL then
τ ← (n+ 1)th order statistic of fe . Optima was not known beforehand/user did not specify a value

end if
i← 0
while i ≤ b tr−slc

c do
yτ ← PartitionIntoClasses(fe, τ) . Values in fe ≤ τ are assigned the class label +1, and the rest -1
model← PSVM − TRAIN(x,yτ )
Dτ ← DomainOfFeasibleRegion(x,yτ ) . min and max of positive samples forAi (See Eq. 11.4)
xc ← RandomCandidates(lc,Dτ ) . Generate lc candidates within the feasible region
pc ← PSVM − PREDICT (model,xc)
xlc ← SortDecreasing(pc,xc) . Choose top lc points ranked according to decreasing probability
x← x ∪ xlc
fe ← fe ∪ f(xlc )
τ ← (n+ 1)th order statistic of fe
i← i+ 1

end while
return Dred ← DomainOfFeasibleRegion(x,yτ )

value of τ leads to a slower reduction, although with the benefit of being less likely
to get stuck in local minima. IVRA sets the threshold τ to the (n + 1)th order
statistic of values f(x) by default, where n is the dimensionality of the problem.
1 The authors used τ = (n+ 1)th order statistic of evaluated function values for
the experiments in this paper and find this to be a good choice for a majority of
problems2.

The samples x ∈ I are evaluated and the values f(x) are mapped to class labels
{+1,-1} based on the threshold τ resulting in a binary vector yτ with:

y = +1, if f(x) ≤ τ , (in case of minimization) (11.2)
y = −1, if f(x) > τ. (11.3)

This task is performed by the routine PartitionIntoClasses. The process
results in a training set S = {x||yτ}, which is used to build a probabilistic SVM
model 3.

1It is ensured that min(Aτi ) 6= max(Aτi ), ∀i ∈ Dτ so that an n-dimensional hypercube can be
specified.

2Given an initial design of s samples, intuitively it might be desirable to set τ = s
2

to obtain a
balanced training set. However, as the authors have observed, this allows for a slow reduction of the
feasible region. Since the number of iterations available to the algorithm for domain reduction is limited,
it is desirable to shrink the feasible region as quickly as possible. Allotting s = (10 ∗ n) samples to
initial design, the value n+1 is roughly s

10
, which was found to be a good compromise between having

sufficient positive samples and achieving fast reduction
3Handling Data Bias:

As the algorithm progresses and more samples are selected, the total number of samples in the negative
class (tr − (n+ 1)) will be much larger than the number of samples in the positive class (n+ 1). The
imbalance can pose a problem during the training of the SVM model, making the classifier biased. To
solve this problem, a penalty is imposed on misclassification of positive samples during the training
process. The reader is referred to the section on weighted SVMs in Osuna et. al. [22].
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11.3.3 Domain Reduction using Adaptive Sampling
The presence of positive samples (Section 11.3.2) allows for a definition of a
hypercube around the feasible region. This hypercube (which is likely to contain the
optima) is defined by the min and max value of the attributes for each dimension.

A large number of new candidate samples xc are generated randomly within
this hypercube using the routine RandomCandidates and the probabilistic SVM
model is used to predict the probability of each candidate sample belonging to
the feasible class. The samples with high probability values will lie within or
close to the region containing the optima. In each iteration IVRA selects a user-
specified number lc of best candidate samples which are the top lc candidate samples
ranked in decreasing order of probability predicted by the SVM model. These new
samples are used to augment the training set S and the value of τ is updated. The
probabilistic model is rebuilt after redefining the classes according to the updated
value of τ . The significance of relaxing τ is that the feasible class corresponds
to a region Aτ in the design space which likely contains the optimum. In future
iterations Aτ (and the corresponding hypercube) will be progressively shrunk.

This sample selection process is IVRA’s exploitation component since it allows
the algorithm to rapidly shrink the feasible region. This process continues iteratively
till the sampling budget tr specified by the user has been exhausted. The total
number of iterations performed by IVRA are b tr−slc c.

11.3.4 Defining the Reduced Domain
Once the sampling budget is exhausted, the final hypercube corresponding to the
reduced search space Dred is defined as:

Dred =

[
min(Af1 ) min(Af2 ) · · · min(Afn)

max(Af1 ) max(Af2 ) · · · max(Afn)

]
(11.4)

where the domain of each attribute or dimension Afi , i ∈ [1..n] is set to the min
and max value per dimension of the samples lying within the feasible region.

Dred now serves as a reduced subspace of D within which any optimization
algorithm can be used to search for the optimum. For the problems in this paper,
optimization algorithms from the NLopt non-linear optimization library 4 were
used.

11.3.5 Limitations
The algorithm suffers from the inherent limitations of sampling-based methods.
There is always the danger of missing the region containing the optima, or getting
stuck in local minima. Since the algorithm generates candidate samples only within
the feasible region, it might miss the true optima in case it is far away in a region
where the initial design was unable to land any samples.

4Steven G. Johnson, The NLopt nonlinear-optimization package, http://ab-initio.mit.edu/nlopt
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Table 11.1 Experimental settings for the test problems.

Component Number of samples

Initial Design 400

Domain Reduction using IVRA 200

Optimizer 400

Total budget 1000

Batch size for sample selection 10

Using a large enough space-filling initial design circumvents this problem.
Since the initial design is the only component responsible for exploration, it is
crucial to make sure its size s is large enough as explained in Section 11.3.1.

11.4 Experiments
The efficacy of the proposed IVRA algorithm was tested on analytical benchmark
optimization problems listed in the Appendix.

The experimental settings were kept the same for all functions and are described
in Table 11.1.The experimental setup for the benchmark problems can be seen in Fig.
11.2. IVRA was used to reduce the search space and thereafter optimizers were used
within this reduced space to find the optima. The optimization algorithms tested
were Controlled Random Search (CRS) with local mutation [23] and Improved
Stochastic Ranking Evolution Strategy (ISRES) [24].

Figure 11.2 Experimental setup for the test problems.

Original Design 
Space

Reduced Search 
Space

OptimaOptimizerIVRA

The results of the experiments can be seen in Table 11.2. Each value in the
table is an average of 20 runs and indicates the mean and standard deviation
(µ ± 1.96 ∗ σ). The values for the ‘Optimizer Only’ case correspond to running
the respective optimizer with t = 1000 evaluations to match IVRA’s experimental
settings.

It can be seen that IVRA always helps the optimizer improve the best optima
reached even when the function is shifted or asymmetric. The extent of improvement
IVRA offers depends upon the nature of the function/simulator. In case of the
Ackley function, the benefit of domain reduction was not substantial as the optimum
lies in a very narrow valley. This is a perfect example of the limitations of a
sampling-based approach. Since the likelihood of landing a sample in the extremely
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Table 11.2 IVRA’s performance on benchmark analytical functions. Each value is
the average of optima reached over 20 runs. The values are indicated in the form
(µ± 1.96 ∗ σ) where µ is the mean, and σ is the standard deviation over 20 runs.

Function IVRA Optimizer Only timeIV RA (s) Reduction (%)

CRS Optimizer
Ackley 20D 7.22 ± 1.03 16.63 ± 2.62 16.40 ± 1.80 > 99.9

Ellipsoid 20D 12.49 ± 5.15 237.79 ± 215.61 19.35 ± 1.97 > 99.9

Griewank 20D 4.40 ± 1.25 93.01 ± 74.28 17.45 ± 2.10 > 99.9

Rosenbrock 20D 59.18 ± 24.97 518.75 ± 330.51 16.60 ± 1.59 > 99.9

Shifted Griewank 20D −177.15 ± 1.08 −70.73 ± 105.25 15.30 ± 1.53 > 99.9

Shifted Rosenbrock 20D 4.08e + 06 ± 9.78e + 06 2.37e + 09 ± 3.68e + 09 15.20 ± 1.71 > 99.9

Ackley 50D 18.40 ± 0.55 20.57 ± 0.29 48.65 ± 5.78 > 99.9

Ellipsoid 50D 2244.76 ± 367.32 6294.53 ± 976.35 46.30 ± 4.99 > 99.9

Griewank 50D 318.47 ± 55.47 911.21 ± 151.88 47.75 ± 2.96 > 99.9

Rosenbrock 50D 2400.25 ± 449.13 10657.30 ± 1355.38 43.40 ± 1.68 > 99.9

Shifted Griewank 50D 83.04 ± 26.62 754.18 ± 90.12 40.00 ± 2.47 > 99.9

Shifted Rosenbrock 50D 3.89e + 09 ± 1.53e + 09 4.47e + 10 ± 1.11e + 10 42.25 ± 2.63 > 99.9

ISRES Optimizer
Ackley 20D 7.17 ± 1.02 19.26 ± 0.65 16.55 ± 1.57 > 99.9

Ellipsoid 20D 12.63 ± 6.41 472.29 ± 112.76 17.95 ± 1.80 > 99.9

Griewank 20D 5.18 ± 2.02 189.51 ± 39.02 18.05 ± 2.27 > 99.9

Rosenbrock 20D 61.87 ± 14.78 1341.57 ± 646.68 18.20 ± 1.58 > 99.9

Shifted Griewank 20D −177.26 ± 1.08 −1.70 ± 52.39 15.25 ± 1.37 > 99.9

Shifted Rosenbrock 20D 4.50e + 06 ± 1.25e + 07 4.20e + 09 ± 2.21e + 09 15.40 ± 2.98 > 99.9

Ackley 50D 18.44 ± 0.49 20.57 ± 0.27 45.40 ± 2.51 > 99.9

Ellipsoid 50D 2297.01 ± 384.02 6313.49 ± 1040.49 46.80 ± 1.82 > 99.9

Griewank 50D 323.47 ± 52.51 907.38 ± 138.77 47.80 ± 5.92 > 99.9

Rosenbrock 50D 2447.37 ± 529.91 10372.90 ± 1915.99 46.90 ± 7.47 > 99.9

Shifted Griewank 50D 80.14 ± 31.85 714.00 ± 109.80 39.75 ± 1.84 > 99.9

Shifted Rosenbrock 50D 3.55e + 09 ± 1.36e + 09 4.48e + 10 ± 7.88e + 09 39.75 ± 1.72 > 99.9

narrow valley is very low, more often than not sampling-based methods will struggle
to reach the valley. The probabilistic SVM model did not have any training samples
in the valley and hence was unable to assign higher probabilities to candidates lying
in the valley.

Contrarily, IVRA performed better and offered substantial reduction in search
space for rest of the functions which do not have the optima in a very narrow region.
The volume of the feasible region itself was very small compared to the entire
design space. As seen in Table 11.2, the reduction in search space is greater than
99.9% in all the cases.

The nature of two of the test functions can be seen in Fig. 11.3. The non-
linearities of Ackley and Griewank functions are very pronounced near the optima.
Optimization methods like surrogate-based methods which build a model of the
underlying function or simulator will struggle to be accurate in light of these
pronounced non-linearities, while IVRA performs well by virtue of negating the
non-linearities by only considering classes - using the threshold τ . This simplifies
the problem to an extent and yields substantial performance gains as can be seen in
the case of the Griewank function.

Table 11.2 also lists IVRA’s running time which hovers around approximately
a quarter of a minute for 20-dimensional problems and three quarters of a minute
for 50-dimensional problems. The running times of the optimizers themselves are
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Figure 11.3 Ackley function in 2D within the range [-2, 2] (left) and Griewank
function in 2D within the range [-10,10] (right).

of the order of a few (less than 3) seconds. In comparison to IVRA, surrogate-
based methods like Kriging would take several hours for a single run comprising
1000 total function evaluations. The main overhead in case of surrogate-based
methods (e.g., Kriging) is model-building, often having a complexity cubic in the
number of samples, and growing exponentially with the number of dimensions.
The complexity of the SVM implementation used is quadratic in the number of
samples. The running time becomes even more important when the dimensionality
increases and simulations are expensive. The time taken by IVRA to reduce the
search space is small compared to the time taken per simulation (which might even
be hours in some cases) when the simulations are expensive.

For the purpose of experiments, no parameter optimization was performed for
IVRA. Parameters such as the size s of the initial design I , the number of function
evaluations given to IVRA and the optimizer can be optimized to obtain better
results. Additionally, the choice of the optimizer also affects the speed of conver-
gence. Table 11.3 lists the results of experiments in which the most appropriate
optimizer was used in conjunction with IVRA. The Ellipsoid function is quadratic
and hence the BOBYQA (Bound Optimization BY Quadratic Approximation) [25]
algorithm was chosen for the function as is performs quadratic approximation of
the objective function. The Griewank function has quadratic and cosine terms, so
the BOBYQA algorithm was appropriate. The Ackley function is Gaussian while
the Rosenbrock function has low function values spanning a vast region in the input
domain. Since no algorithm available to the authors was particularly more suitable,
the DIRECT (DIviding RECTangles) algorithm [26] was chosen which is a good
general purpose optimizer.

The DIRECT algorithm was not used for comparisons in Table 11.2 since
it divides dimensions in halves in subsequent iterations which would make the
comparison unfair, since the benchmark functions have symmetric domains and the
optima lies at the origin.

The results show the potential gain offered by IVRA, which can be further
enhanced by hyper-parameter optimization and choosing an appropriate optimizer
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Table 11.3 IVRA’s performance when the most appropriate optimizer is chosen
for each benchmark function. Each value is the average of optima reached over 20
runs.

Function Best Worst Average Optimizer Used

Ackley 20D 3.43e− 2 3.79 0.95 DIRECT
Ellipsoid 20D 2.65e− 17 1.51 0.24 BOBYQA
Griewank 20D 3.54e− 06 1.67 0.47 BOBYQA
Rosenbrock 20D 16.72 36.31 23.25 DIRECT
Shifted Griewank 20D −179.39 −177.84 −178.64 BOBYQA
Shifted Rosenbrock 20D 4.25e+ 4 1.96e+ 07 1.99e+ 06 DIRECT

Ackley 50D 4.78 6.04 5.58 DIRECT
Ellipsoid 50D 3.02e− 13 0.33 0.03 BOBYQA
Griewank 50D 0.02 15.34 1.31 BOBYQA
Rosenbrock 50D 72.62 147.07 106.66 DIRECT
Shifted Griewank 50D −179.98 −178.98 −179.54 BOBYQA
Shifted Rosenbrock 50D 4.75e+ 5 1.52e+ 06 9.27e+ 5 DIRECT

according to the nature of the problem at hand (or a good general purpose optimizer).
As a pointer, IVRA is inappropriate when the simulation budget is very limited
(e.g., less than n ∗ 10) since it will not have enough sampling iterations to reduce
the search space. Allocating the entire budget to the optimizer is advisable in such
cases.

11.5 Concluding Remarks

A novel fast algorithm for solution of expensive high-dimensional optimization
problems is presented in this work. The algorithm reduces the search space by
transforming the optimization problem into a binary classification problem which is
modeled using probabilistic support vector machines (PSVMs). Existing optimiza-
tion algorithms can then be applied to the reduced search space to find the optima
quickly. The efficacy of the proposed algorithm is demonstrated on analytical
benchmark examples with comparisons to optimization algorithms used with and
without the aid of the proposed algorithm.
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11.6 Appendix

The following benchmark test functions were used for the experiments in this paper.

11.6.1 Ackley Function

Minimize
x

−20 · exp(−0.2 ·

√√√√1

d
·
d∑
i=1

x2
i )− exp(

1

d
·
d∑
i=1

cos(2π · xi)) + 20 + e

for
−32.768 ≤ xi ≤ 32.768 ∀i,

e = 2.7183,

d ∈ {20, 50},
min : x∗ = 0.

11.6.2 Ellipsoid Function

Minimize
x

d∑
i=1

ix2
i

for
−5.12 ≤ xi ≤ 5.12 ∀i,

d ∈ {20, 50}
min : x∗ = 0.

11.6.3 Griewank Function

Minimize
x

1 +

d∑
i=1

x2
i

4000
−

d∏
i=1

cos

(
xi√
i

)
for

−600 ≤ xi ≤ 600 ∀i,
d ∈ {20, 50},
min : x∗ = 0.
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11.6.4 Rosenbrock Function

Minimize
x

d∑
i=1

(100(xi+1 − x2
i )

2 + (1− xi)2)

for
−2.048 ≤ xi ≤ 2.048 ∀i,

d ∈ {20, 50},
min : x∗ = 0.

11.6.5 Shifted Griewank Function

Minimize
x

1 +
d∑
i=1

z2
i

4000
−

d∏
i=1

cos

(
zi√
i

)
+ fbias

with
z = x−∆,

for
−600 ≤ xi ≤ 600 ∀i,

d ∈ {20, 50},
∆ = {5, 5, ..., 5}d (the shifted optimum)

fbias = −180,

min : x∗ = fbias.

11.6.6 Shifted Rosenbrock Function

Minimize
x

d−1∑
i=1

(100(z2
i − zi+1)2 + (zi − 1)2) + fbias

with
z = x−∆ + 1,

for
−100 ≤ xi ≤ 100 ∀i,

d ∈ {20, 50},
∆ = {5, 5, ..., 5}d (the shifted optimum)

fbias = 390,

min : x∗ = fbias.
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12
A novel sequential line-based

space-filling design of experiments for
continuous measurements

This chapter introduces design of experiments with lines as basic units instead of
points. The uses cases arrive in many factories where robots perform automated
measurements, or when drones are used to capture data, etc.

? ? ?

P. Singh, D. Deschrijver, I. Couckuyt, T. Dhaene.
Submitted, European Journal of Operational Research, Mar. 2016.

Abstract Experimental designs are often used to determine suitable coordinates in
a spatial environment where the information gain from measurements is maximized.
Traditionally, space-filling approaches such as Latin Hypercubes are used, which
are based on a fixed number of points with a predefined distribution. Considering
data gathering as a continuous process, the optimality of information gain can
be improved by considering paths (or edges) between the points, along with the
points (or vertices) themselves. This paper proposes a novel algorithm which offers
two-fold improvement over traditional point-based space-filling methods. Firstly,
instead of sampling discrete points, continuous paths are considered, which is
called line-based sampling. Furthermore, the one-shot approach is extended to a
sequential space-filling design. This novel sequential experimental design strategy
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starts with an initial space-filling arrangement of lines, and generates additional
consecutive paths to augment the initial design. The novel line-based strategy is
compared against traditional point-based methods.

12.1 Introduction
Design of Experiments (DoE) [1], refers to the design of an information-gathering
problem, and is often used to plan computer experiments in a variety of domains
such as manufacturing, engineering design optimization, etc. [2–7].

In literature, one often uses popular experimental designs such as Box-Behnken
[8], Latin hypercube [9], Plackett-Burman [10], Taguchi designs [11], which are one-
shot approaches that determine the measurement campaign upfront where points
are traversed one after another. This works well for experiments where a fixed
distribution of data is required, but is sub-optimal for continuous (or approximately
continuous) stream of measurements in the parameter space to be explored, such as
in the case of measurements performed by Automated Guided Vehicles (AGVs) on
the two-dimensional factory floor.

The order of traversal, in addition to the points themselves can also change the
outcome of experiments. Furthermore, in case of point-based sequential experimen-
tal designs (henceforth referred to only as sequential designs), the AGV will likely
traverse the central regions more frequently as compared to corner regions, leading
to an unevenly spread distribution of measurements. As a result, the measurements
will not be space-filling in nature. Therefore, there is a need to formulate a sequen-
tial design strategy that considers paths, or lines (1-D elements) instead of only
discrete points (0-D elements) to capture more information while traversing the
same distance. The space-filling properties of the traditional point-based designs
in such cases can be improved to take into account the additional measurements
performed by the AGV along the path traversing the experimental design.

This paper describes a novel line-based space-filling sequential design strategy
which provides optimal paths for performing automated measurements. The paper
is organized as follows. Section 12.2 discusses point-based one-shot and sequential
space-filling designs. Section 12.3 introduces one-shot line-based designs. Section
12.4 presents the proposed line-based sequential design strategy. Examples and
comparisons between existing and presented approaches are presented in Section
12.5, and Section 12.6 concludes the paper.

12.2 Point-based designs

12.2.1 One-shot designs
One of the oldest and simplest designs used in practice are factorial designs [1, 15].
A full-factorial design is simply a uniform grid of md points. Figure 12.0a shows
a full-factorial design of order m = 3 (diamonds). In case the design is not
sufficiently dense, a finer grid (stars) can be used to obtain a denser design.
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Figure 12.1 One-shot designs: factorial and Latin hypercube designs.
(a) Factorial design: a factorial design of order 3
with 9 points is shown as the initial grid. A subse-
quent refinement results in a finer grid which covers
the design space more densely.
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(b) Latin hypercube design: a Latin hypercube of
20 points constructed using a seed value of 7. The
non-collapsing properties of LHDs can be clearly
seen in the figure.
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Latin Hypercube Designs (LHD) are very popular due to their good projective
properties, ease of implementation and availability, and computational speed [18].
A LHD is constructed by dividing the input space into m levels, and placing only
one point per level per dimension. This construction process inherently encourages
good projective properties. Figure 12.0b shows a LHD of 20 points in 2 dimensions.
For a detailed discussion on LHDs, the reader is referred to Viana et. al. [18].
Generating space-filling LHD in higher dimensions in reasonable time is also
challenging, and a deeper treatment can be found in Crombecq et. al. [15] and
Husslage et. al. [9].

Although simple and space-filling, one-shot designs come with the inherent
disadvantage of having to choose the number of points beforehand. In many
applications, the number of points required may not be known beforehand, and
might lead to sub-optimal solutions. To remedy this limitation of having to specify
the number of points beforehand, sequential designs were developed.

12.2.2 Sequential space-filling designs

Traditional design of experiments methodology is essentially one-shot. A design
such as factorial or Latin hypercube is chosen, according to which experiments are
performed. In a deterministic environment, well-established DoE techniques like
randomization, replication and blocking are rendered irrelevant [7, 15]. Therefore, a
process to supplement the design with additional design points is needed. Also, for
applications such as data modeling, computer-driven measurements, optimization,
etc., there is often no information about the required density of the experimental
design. The practitioner must choose the size n of the design by experience,
intuition, or according to some heuristic.

Sequential design strategies offer an attractive alternative in such scenarios.
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Figure 12.2 Sequential design: flowchart describing the sequential design process.
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A flowchart of the sequential design process is shown in Fig. 12.2. An initial
design (e.g., factorial design, LHD, etc.) is chosen as a starting point to perform
experiments. If the design satisfies certain stopping criteria like simulator budget
(in terms of number of design points, or total time duration), or application specific
requirements (e.g., specified model accuracy, optimum value, etc.), then the process
halts. Otherwise, a cycle of sample selection to supplement the experimental design
according to a sequential design algorithm, and testing stopping criteria ensues.
The terms sequential design [15], adaptive sampling [19] and active-learning [20]
are used interchangeably.

The notion of sequential designs is not new. Several sequential design strategies
have been proposed in literature. One of the earliest references to sequential design
is due to Mahalanobis [21] who considered the problem of finding the total acreage
of jute cultivation in the Indian state of Bengal. A small number of initial surveys
were conducted in order to properly design a large-scale census. The general
problem of large-scale surveys and the importance of sequential design in their
context is discussed in Mahalanobis [22]. A statistical discussion on the subject
can be found in Robbins [23].

A very common sequential space-filling design uses the maximin criterion. Let
D = {xi}ni=1 be a space-filling design in a d−dimensional input space X ∈ [0, 1]d.
In order to achieve space-fillingness, each point constituting D must be spread out
as far apart from its neighboring points as possible. This is achieved by maximizing
the maximin criterion φ [13]:

φD = max
D

min
xi,xj∈D

‖xi − xj‖.

The choice of norm ‖ · ‖, and normalization of the input space from Rd to [0, 1]d

simplify exposition and can be considered without loss of generality.
Figure 12.2a illustrates the behavior of the maximin criterion. The initial point

is set as (0.5, 0.5) and additional points are chosen sequentially one by one. To this
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Figure 12.3 One-shot designs: factorial and Latin hypercube designs.
(a) maximin criterion: selection of additional points
(numbered 2-6) iteratively using the maximin cri-
terion resulting in D = (xi)

5
i=1, given an initial

point (numbered 1).
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(b) maximin criterion: selection of 25 points it-
eratively using the maximin criterion resulting in
D1 = (xi)

25
i=1. The space filling evolution can be

clearly observed.
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end, a large number (1000) of random candidate points are generated in [0, 1]2, and
the candidate which maximizes the minimum distance (or the maximin criterion
for D) is selected. It is seen that the maximin criterion spreads out the neighbors
of each point xi ∈ D as far as possible. Figure 12.2b shows the evolution of the
design till 25 points. The space-filling behavior is retained as increasing number of
points are added.

It is possible that two or more candidate points result in the same maximin
score. The maximin criterion was extended as the φp criterion [14] to break ties in
such cases. A maximin-based design can also be one-shot instead of points being
added sequentially. For a detailed discussion on the φp criterion, its advantages and
limitations, the reader is referred to [14, 15].

Several such criteria exist to obtain space-filling designs, in addition to maximin
criterion which is most widely used in literature. For a review of such criteria, the
reader may refer to Table 1 in [15]. This paper concerns sequential designs in the
context of measurement-driven or simulation-driven experiments.

12.3 Line-based designs

12.3.1 One-shot space-filling designs
The notion of space-fillingness changes for experimental design consisting of lines
(curves), or paths instead of points. Although the concept of space-filling curves [30]
is not new, the authors are not aware of a discussion involving space-filling curves
in the context of experimental design. Space-filling curves have been used in
computer graphics [31–33], database systems [31, 34, 35], design of geometric
structures [36], data compression [37, 38], Radio Frequency IDentification (RFID)
tags [39], etc. Spires and Goldsmith [40, 41] proposed the use of space-filling
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Figure 12.4 Space-filling curves: Hilbert and Peano curves are popular space-filling
curves.
(a) Hilbert curve of order 3.
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(b) Peano curve of order 3.
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curves in performing geographic search of an area (e.g., for landmines) using
mobile robots. This scenario can be though of as an experimental design, however
their method does not allow for subsequent refinements in the initial path and the
robots are constrained to perform the search only along a Hilbert curve [30, 36].

Figure 12.4 shows the popular Hilbert and Peano space-filling curves of order 3
(or 3 levels). Both curves are constructed by a process of recursive sub-structuring
into l sub-squares (considering the 2 dimensional setting) in each step (or level).
For Hilbert curves, l = 4, and for Peano curves, l = 9. This makes Peano curves
denser than Hilbert curves of the same order. Also, Peano curves can be generated
in numerous ways resulting in 29 possible variants (including curves symmetric to
each other) [42]. Contrarily, there is only one Hilbert curve in two dimensions if
reflection and rotation of the curve are ignored. Consequently, Hilbert curves are
used in this work owing to their simplicity. A thorough discussion on the theory and
construction of the two curves can be found in Bader [42]. Section 12.3.1.1 gives
mathematical preliminaries of space-filling curves, and Section 12.3.1.2 discusses
Hilbert curve in the context of experimental design.

12.3.1.1 Preliminaries

In order to make the notion of space-filling curves more concrete, curves and
space-filling curves are defined below following the notation of Bader [42].

Definition 12.3.1. Curve: Let f : I → Rd be a continuous mapping of the compact
set I ⊂ R into Rd. A curve is then the respective image f∗(I) of such a mapping.
The parameter representation of the curve is x = f(t), t ∈ I.

Having established the definition of a curve, the property of space-fillingness
must be made clear in its context. A curve is called a space-filling curve if it
visits every point of the unit square thereby completely filling a given area or
(hyper)volume. Formally:
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Figure 12.5 Hilbert curve: an experimental design based on a Hilbert curve of
order 2.
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Definition 12.3.2. Space-filling curve: Let f∗(I) be a curve with mapping f :
I → Rd. The curve f∗(I) is called space-filling if it has a corresponding Jordan
content (area, (hyper)volume, etc.) larger than 0.

Computation of the Jordan measure would require bounding the curve by closing
it. The problem of obtaining a space-filling experimental design D comprising of
lines can thus be reduced to generating a space-filling curve f∗(I) | D ⊆ I. An
experimental design D obtained from a Hilbert curve of order 2 is shown in Fig.
12.5. The design D = {xi}ni=1 consists of n = 16 points arranged in the order of
construction of the curve, beginning at i = 1 and ending at i = 16. The design
therefore defines a path:

Definition 12.3.3. Path: Let S be a topological space. Let I ⊂ R be a compact
set {a, ..., b}. Let γ ∈ S be a continuous mapping γ : I → S from a to b. A path
is then the respective image γ∗(I) of such a mapping. The point a is is called the
initial point and the point b is called the final point on the path γ∗.

It is straightforward to deduce that a curve is a path considering S = Rd.
The initial point associated with the path γ∗ corresponding to the curve f∗(I)
(I = (0, 1) in Fig. 12.5) is the first point in D, i.e., a = x1. The final point is
b = xn (x16 in Fig. 12.5).

The value of n depends upon the order of the space-filling curve. For a Hilbert
curve, n = 4p, where p is the order of the curve. Thus, for p = 2 in Fig. 12.5,
n = 42 = 16.



184 CHAPTER 12

12.3.1.2 Hilbert Curve

The Hilbert curve is a space-filling curve discovered by David Hilbert as a variation
of the Peano curve [43]. A Hilbert curve can be represented as a Lindenmayer
system [44].

Definition 12.3.4. Hilbert curve: Let G = (V, ω, P ) be a context-free grammar
with V = {X,Y } being the alphabet composed of symbols X and Y . Let ω define
the initial state of the system. Let {F,+,−} be constants implying moving forward,
turning right by 90◦, and turning left by 90◦ respectively. The Hilbert curve is then
defined using the following production rules:

P :

{
X → −Y F +XFX + FY−
Y → +XF − Y FY − FX + .

The production rules define the replacement of each basic pattern during the
refinement of each of the p iterations (or levels). The context-free grammar (CFG)
thus describes the sequence of transforms and pattern orientations defining the
Hilbert curve. Detailed discussions on the mathematical description of the Hilbert
curve can be found in Bader [42] and Peitgen et. al. [44].

Hilbert curve as an experimental design and choice of order p
As discussed in Section 12.3.1.1, a Hilbert curve can be used as a space-filling
design constituting lines. An AGV or a mobile robot can follow a Hilbert curve
of suitable order p to perform measurements. This leads to a predicament about
the appropriate choice of the order p. If p is chosen too low, the design will not be
dense enough to offer sufficient information. An exceedingly high value of p will
lead to resource wastage and prolong experimentation time.

Similar problems are encountered in the case of point-based experimental
designs, and sequential sampling strategies to solve this issue. An initial design of
appropriate density is chosen to perform a fixed number of experiments initially.
If they serve the intended purpose, the process terminates. If not, then additional
experiments are performed iteratively according to a sequential design algorithm.
The same process will serve well in the context of line-based experimental designs.
The following section explains the proposed line-based sequential design algorithm.

12.4 Novel line-based sequential space-filling design
Having established the choice of a Hilbert curve of sufficient order as the initial
design, an algorithm to augment the line-based design with additional lines in a
space-filling manner is now presented.

The algorithm must identify regions in the design space that are prone to under-
sampling. A space-filling line (or curve), or more specifically a path from a given
position (current/initial position) of the subject performing the experiments (e.g.,
an AGV or a mobile robot) to a final position must be generated. The authors
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Figure 12.6 Voronoi diagram: a bounded Voronoi tessellation of points V =
(xi)

10
i=1. The test point p lies in the Voronoi cell corresponding to x4 as it is closest

to x4 as compared to V ′ = V \ x4.
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propose the use of maximin criterion (Section 12.2.2) in conjunction with Voronoi
tessellations (Section 12.4.1) to identify potential regions where a new space-filling
path can be generated.

12.4.1 Voronoi tessellations
Given a number of points in some space, their Voronoi decomposition divides the
space such that each point is assigned a Voronoi cell comprising of the region in the
space closest to it as compared to any other point. Figure 12.6 shows a bounded
Voronoi tessellation of 10 points in a two-dimensional space [−1, 1]2. Each point in
V = {xi}10

i=1 has a corresponding Voronoi cell consisting of all points in the space
closest to it, rather than to any other point in V . The test point p lies in the Voronoi
cell corresponding to x4 and is closest to it, rather than any point in V ′ = V \ x4.

To define a Voronoi tessellation formally, it is essential to define dominance [45]:

Definition 12.4.1. Dominance: Let D = {xi}ni=1 be a set of n points in a space
X . For two distinct points x1,x2 ∈ D, the dominance of x1 over x2 is defined as
the sub-space of X being at least as close to x1 as to x2:

dom(x1,x2) = {p ∈ X | δ(p,x1) ≤ δ(p,x2)},

where δ is the Euclidean distance function.

Therefore, dom(x1,x2) is a closed half-space bounded by the perpendicular
bisector of x1 and x2 (as can be seen in Fig. 12.6). The bisector separates all points
in X closer to x1 than x2 and is called the separator of x1 and x2.
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Definition 12.4.2. Region: Let D = {xi}ni=1 be a set of n points in a space X .
The region associated with a point x1 is the sub-space of X lying in all dominances
of x1 over the remaining points D′ = D \ x1 in D:

reg(x1) =
⋂

xi∈D\x1

dom(x1,xi).

The regions (or cells) are convex polygons since they arise from the intersection
of (n− 1) half-spaces. Therefore, the boundary of a region r consists of at most
(n− 1) Voronoi edges (maximal open straight line-segments), and Voronoi vertices
(the end-points) [45]. Voronoi edges and vertices have the following two interesting
properties:

Lemma 12.4.1. Each point on a Voronoi edge is equidistant from exactly two
points in D, by virtue of the edge being the perpendicular bisector of the two points.

Lemma 12.4.2. Each Voronoi vertex is equidistant from at least three points in D
by virtue of sharing Voronoi edges with other points in D.

Thus, Lemmas 12.4.1 and 12.4.2 imply that the regions span edge-to-edge and
vertex-to-vertex, and form a polygonal partition of X called a Voronoi diagram, or
a Voronoi tessellation:

Definition 12.4.3. Voronoi tessellation: Let D = {xi}ni=1 be a set of n points in a
space X . Let R = {ri}ni=1 be the set of regions corresponding to points in D. The
Voronoi tessellation V (D) of a set of points D is the n−tuple of all regions in R.

It should be noted that no region ri can be empty, since it consists of all points
close to xi. Therefore, there are exactly n such regions. Some of the regions
corresponding to the corner points in D are necessarily unbounded as the Voronoi
edges stretch to infinity. For a detailed discussion on the theory, and properties of
Voronoi tessellations, the reader may refer to Aurenhammer [45].

12.4.2 Voronoi edges, maximin criterion and sequential design
Voronoi tessellations have been used in sequential design algorithms in literature
[24, 46]. Their ability to help identify under-sampled regions makes them suitable
for use in space-filling sequential design algorithms. It can be seen in Fig. 12.6
that under-sampled regions in design space correspond to larger Voronoi cells.
Intuitively, this points towards large Voronoi cells as regions of interest where
additional points (or lines) can be chosen.

Considering the Voronoi tessellation of a design D, the Voronoi edges serve
as good candidates for lines constituting a candidate path. By virtue of Lemma
12.4.1, the Voronoi edges bounding a region ri associated with a point xi ∈ D will
be equidistant from xi and its neighboring points in D′ ⊆ D \ xi.

In particular, it seems intuitive that a path formed by traversing Voronoi edges
of large cells will have good space-filling properties. The initial point of the path is
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the current location of the measurement system (e.g., AGV), i.e., the final design
point xn ∈ D. In order to join the network of Voronoi edges, the first segment of
the path must be the connection between xn and the point of projection of xn on
the Voronoi edge closest to it.

Having established the initial point and a method to add segments to path by
traversing Voronoi regions in decreasing order of (hyper)volume, a mechanism
to select the final point of the path is needed. The maximin criterion is chosen
to generate a space-filling point (as described in Section 12.2.2) in X , which is
designated as the final point of the path.

12.4.3 Voronoi edge traversal maximin-based sequential design
(Voronoi-ET)

Algorithm 6 Pseudocode for Voronoi edge traversal maximin-based sequential
design. D consists of the current state of the experimental design.

D ← HilbertCurve(order) . order is chosen by the practitioner
while stopping criteria not met do

n←| D |
V (D)← V oronoiTessellation(D)
Vv ← V oronoiV ertices(V (D))
Ev ← V oronoiEdges(V (D))
R← Voronoi regions ∈ V (D)
xcurrent ← D(n)
xnew ← GetMaximinPoint(D)
T ← (xcurrent,xnew)
Vv = Vv ∪ T
xcclosest ← projection of xcurrent to closest Voronoi edge
xnclosest ← closest point to xnew ∈ Vv
Ev = Ev ∪ (xcurrent,xcclosest)
Ev = Ev ∪ (xnclosest ,xnew)
for all r ∈ R do

invV ol(r)← 1
V oronoiV olume(r)

for all e ∈ r do
if w(e) 6= 0 then

w(e)← w(e)+invV ol(r)
2

else
w(e)← invV ol(r)

end if
end for

end for
P ← Dijkstra(w,xcclosest ,xnew)

end while
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The pseudocode of the proposed algorithm is described in Algorithm 6. After
a line-based initial design composed of space-filling curves (e.g., Hilbert curve
(Section 12.3.1.2)) has been generated, the sequential design algorithm selects
additional design points iteratively until one of the stopping criteria (total number
of points, total measurement time, etc.) is met.

A space-filling point xnew is selected using the maximin criterion as described
in Section 12.2.2. Thereafter, a path is constructed with xnew being the final point
of the path, and xcurrent (the current position of the AGV/mobile robot, or the final
point in D chosen in the last iteration/initial design) being the initial point of the
path.

The set of points in the path P is constructed such that the following properties
are satisfied:

Property 1. Let T = {xcurrent,xnew} be the set of terminal vertices correspond-
ing to the current location xcurrent and the newly generated space-filling
point xnew. The initial point of the path must be xcurrent, and the final point
of the path must be xnew, i.e., T ⊆ P . The second point of the path xcclosest
is always the projection of xcurrent onto the closest Voronoi edge.

Property 2. P ⊆ V (D), where V (D) consists of Voronoi vertices of the Voronoi
tessellation of the design D.

Property 3. Let each edge ei be assigned a weight wi as:

wi =
1

k

k∑
j=1

1

vol(rj)
,

where vol(rj) is the (hyper)volume of the Voronoi cell rj having the edge ei,
and k is the number of such cells sharing edge ei. Let p−metric =

∑l−1
i=1 wi.

The path P is composed of (l − 1) corresponding edges that minimizes the
p − metric, where l denotes the number of Voronoi vertices in the path.
Additionally, P will contain an edge from xcurrent to xcclosest , and an edge
from xnclosest to xnew, where xnclosest is the projection of xnew onto the
Voronoi edge closest to it.

By virtue of Property 2, the path is composed of traversing Voronoi edges
between the current position and the newly generated space-filling point (generated
according to the maximin criterion). Property 2 also ensures that the algorithm is
parameter-free with regard to number of new points chosen in each iteration, since
they are determined by the number of Voronoi edges. Property 3 provides a criterion
to choose between candidate paths. The selected path must prefer traversing long
Voronoi edges. This ensures that the space-filling sampling behavior propagates
through the design space quickly and avoids the undesirable behavior of local
concentration. If each Voronoi edge is assigned a weight summating 1

vol(r) , for
each region sharing the edge, normalized by the number of such regions, then to
satisfy Property 3, the shortest path in such a graph obtained from the Voronoi
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Figure 12.7 Example 1: first three iterations of the Voronoi edge traveral maximin-
based sequential design.
(a) Iteration 1.

x1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Experimental design D

Path composed of Voronoi vertices

1

2

34

(b) Iteration 2.
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(c) Iteration 3.
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tessellation must be found. Such a path minimizes the p −metric described in
Property 3.

Dijkstra’s shortest path algorithm [47] is used in this work to find the shortest
path between the initial point, and the final point. Let Ev be the set of Voronoi
edges, and Vv be the set of Voronoi vertices in the Voronoi tessellation of D. The
initial and final points of the path are added to Vv : Vv ∪ T , and corresponding
edges between points in T and closest points in Vv (or projection of the points on
the closest corresponding Voronoi edges) respectively are added to Ev . This results
in a graph G = (Vv, Ev) with requisite connections between T and Vv . Each edge
e ∈ Ev in Ev connecting the vertices (v1, v2) is assigned a weight equal to the
normalized sum of inverse of Voronoi volumes of regions sharing the edge, as
described by Property 3.

12.5 Experiments

The algorithm is demonstrated by considering examples with Hilbert curves of
order 2 and 3. All experiments have been performed using the SUrrogate MOdeling
(SUMO)Toolbox [48] for MATLAB R©1, which is freely available for academic use.
The SUMO toolbox implements many common one-shot and sequential designs,
and modeling techniques making it easy to study and develop new designs. The
bounded Voronoi tessellations are obtained using the Multi-Parametric Toolbox
3 [49].

12.5.1 Example 1

The sequential construction of a space-filling path is demonstrated using the Hilbert
curve of order 2 shown in Fig. 12.5. The first three iterations of the algorithm
are shown in Fig. 12.7. The maximin criterion is used to select a space-filling
point labelled 4 in the first iteration, 7 in the second and 6 in the third iterations

1MATLAB, The MathWorks, Inc., Natick, Massachusetts, United States.
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Figure 12.8 Example 1: the path followed in the first three iterations of the Voronoi
edge traveral maximin-based sequential design.
(a) Iteration 1.
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(b) Iteration 2.
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(c) Iteration 3.
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respectively. The solid lines are the Voronoi edges, while the circled dots are the
points belonging to the experimental design D.

The selected paths show that the algorithm exploits the properties of Voronoi
edges (each edge bisects two points in D: Lemma 12.4.1) and selects a path which
traverses the design space X in a space-filling manner. Figure 12.8 shows the path
followed in the first three iterations of the algorithm. It can be seen that the path
sequentially fills-in the gaps in the design space. The evolution of the path can be
seen in Fig. 12.9. The space-filling properties of the design are maintained.

12.5.2 Example 2
As a comparison of the nature of sampling, Fig. 12.10 shows the distribution of lines
in the design space with 1000 points. A Hilbert curve of order 3 is used as an initial
design for this example, after which the Voronoi edge traversal maximin-based
sequential design algorithm selects additional lines (Approach A). For the purpose
of comparison, a naı̈ve approach (Approach B) combining a Latin Hypercube of
64 points (to match the number of points of the Hilbert curve) with the maximin
criterion is followed. One new point is selected in each iteration of Approach B.
The total length, or distance traversed is kept equal for both approaches.

Approach A exhibits the desirable space-filling behavior with lines spread
uniformly throughout the design space. Approach B involves a lot of activity of criss-
crossing lines in the centre of the design space with the corners left comparatively
sparse. The benefits of the proposed approach can be clearly seen, and Fig. 12.10
also demonstrates the space-filling properties of the algorithm with increasing
number of design points.

Figures 12.9b and 12.9d divide the design space into 10 equally spaced cells in
each dimension, and show the local line density, i.e., the number of lines passing
through each cell. The number of lines for the naı̈ve approach on average is more
than 10 times larger than the number of lines for the proposed approach. It can
also be observed that the distribution of number of lines for the naı̈ve approach is
approximately Gaussian with a very high concentration in the central region. The
Voronoi edge traversal maximin-based sequential design has an even distribution
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Figure 12.9 Example 1: the path followed in subsequent iterations of the Voronoi
edge traveral maximin-based sequential design.
(a) Iteration 5. (b) Iteration 10. (c) Iteration 15.

(d) Iteration 20. (e) Iteration 25. (f) Iteration 30.

(g) Iteration 35. (h) Iteration 40. (i) Iteration 45.
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Figure 12.10 Example 2: the path followed by the Voronoi edge traveral maximin-
based sequential design, and a naı̈ve maximin-based approach, keeping the total
length fixed. The corresponding local line density histograms reflect the coverage
per unit area.
(a) Example 2: Approach A (path composed of
1000 points).
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(b) Example 2: Approach A (local line density
histogram).
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(c) Example 2: Approach B (path of length equal
to that of Approach A).
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(d) Example 2: Approach B (local line density
histogram).
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Figure 12.11 Example 2: The evolution of average line density of the two ap-
proaches. Approach A significantly outperforms Approach B.
(a) Approach A.
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with a very low number of lines per cell, which is desirable. The path followed by
the naı̈ve approach has poor space-filling properties, as reflected by the histogram
(mostly dark cells) and non-uniform sampling in the design space.

The stability of the proposed approach is also shown in Figure 12.11, which
depicts the evolution of average line density over iterations. Average line density
is calculated as the average of local line densities of all the cells in a particular
iteration. It is seen that the proposed approach behaves in a stable manner balancing
the average line density, while the naı̈ve approach is on average approximately an
order denser. The experiments demonstrate that the proposed approach achieves
space-filling behavior while covering the design space uniformly, as opposed to
having unequal concentration of lines.

Although the proposed algorithm has only been demonstrated using two-
dimensional examples in the text, the approach extends to three-dimensions without
modification. The algorithm can therefore be used in industrial scenarios where
measurements are performed using a robotic arm (movable in three-dimensions) or
for measurements with drones in the air, or submarines in the ocean.

12.6 Conclusions

A novel line-based sequential space-filling design algorithm for performing continu-
ous measurements (or conducting experiments in general) is presented in this paper.
The algorithm uses Hilbert curves as initial design, and generates a sequence of
space-filling paths iteratively to augment the design. The paths are generated using
a hybrid strategy composed of a statistical space-filling criterion, and polygonal
space decomposition. The space-filling nature of the algorithm is demonstrated
by comparing the proposed line-based strategy to existing point-based design of
experiment schemes.
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13
Conclusion

“To iterate, or not to iterate, that is the question.”

–Yours truly

Engineering design optimization is a complex time-consuming endeavour. With
the advent of cheap computing power, the old ways of optimizing design according
to practitioner’s experience and trial-and-error, have paved the way for Computer
Aided Design (CAD) and optimization using automated computer algorithms.
Evolutionary optimization algorithms have evolved (no pun intended) to be a robust
choice for single and multi-objective optimization problems.

Although very popular, evolutionary algorithms are not suitable for all applica-
tions. They typically require a very large number of objective function evaluations
to converge to optima. This can be prohibitive in cases where the objective function
is expensive to evaluate. For example, simulation-driven optimization of a cyclone
separator entails evaluating CFD simulations, each of which might take several
weeks. A seven-variable two-objective optimization problem might potentially
need hundreds of function evaluations. This translated into more than two years of
computation time, which is impractical in the real world.

Surrogate-Based Optimization (SBO) and surrogate modeling are used in such
scenarios to minimize the number of expensive objective function evaluations. A
cheap-to-evaluate replacement, or surrogate model is trained from data collected by
evaluating the expensive objective function at certain well-chosen locations using
a sampling algorithm. This process is called surrogate modeling. The surrogate
model can then be used as the objective function with an evolutionary optimization
algorithm.



200 CHAPTER 13

Alternatively, the sampling algorithm can iteratively select locations with the
objective of finding the optima. Each successive iteration of the sampling algorithm
yields novel information which is used in successive iterations to guide the search
for optima. This scenario is known as surrogate-based optimization. One of the
most critical components of SBO and surrogate modeling is the sampling algorithm,
or the Design of Experiments (DoE) scheme. Different DoE schemes can be
employed based on the problem at hand, practical considerations and goals.

This dissertation presents the results of scientific research conducted towards
investigating algorithms to devise DoE schemes for real-world engineering design
optimization problems. Chapters 2,3 and 5 addressed the solution of inverse
problems. Chapter 4 studied the balance of exploration v/s exploitation, and
proposed an algorithm to dynamically balance the two. Chapters 6,7,and 8 presented
algorithms to solve (expensive) constrained multi-objective optimization problems.
Techniques to handle multiple fidelities and large datasets were explored in Chapter
8. Chapters 9 and 10 presented an algorithm to perform domain reduction for
high-dimensional optimization problems. Chapter 12 introduced a novel algorithm
to generate sequential line-based space-filling design of experiments for continuous
measurements. Finally, Chapter 13 concludes the dissertation.

13.1 Future Work
Each of the themes discussed in this dissertation present opportunities for future
work. Specifically, there is scope to explore different ways to balance the contribu-
tion of exploration and exploitation, apart from using the error estimate. Constraint
handling, computation within probabilistic sampling and model-construction can
all be improved in constrained MOO. Handling multiple-fidelities also presents
new challenges with work existing predominantly for Gaussian Process models.

With the ever increasing scale of data in terms of quantity and dimensionality,
there is an immediate need for algorithms which handle high-dimensional problems,
and large datasets. Model construction with very large datasets is still an evolving
field and there is scope for research towards methods to rapidly train classification
and regression models on tens of millions of data points.

The novel research direction of line-based sampling also presents many oppor-
tunities. The VET algorithm was designed with space-filling exploration in mind
and it has already been extended to accommodate different exploitation schemes.
There still exist possibilities to incorporate different exploration and exploitation
schemes, and different types of lines or curves.
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