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Samenvatting 
In dit proefschrift wordt onderzocht welke meerwaarde meerpuntsgeostatistiek (MPG) 

kan bieden voor bodemkundige toepassingen. MPG is een recent ontwikkelde, 

geostatistische techniek die het variogram vervangt door een trainingsbeeld. De techniek 

werd ontwikkeld door aardolie- en hydrogeologen omdat zij vaak te maken krijgen met 

ruimtelijke patronen, zoals repetitieve, curvilineaire of verbonden patronen, die te complex 

zijn om met een variogramfunctie te modelleren. Bodemkundigen krijgen echter ook te 

maken met analoge complexe ruimtelijke patronen. Voorbeelden zijn paleogeulen, 

catena’s, duinpatronen, lapiaz, krimpscheuren, permafrostpatronen, landgebruikspatronen, 

sedimentaire gesteentelagen en bodemporiën. MPG zou dus ook bruikbaar kunnen zijn in 

de bodemkunde, maar de techniek wordt momenteel nog niet toegepast. 

Het kernidee van MPG is dat meerpuntsstatistieken nodig zijn om complexe 

ruimtelijke patronen te modelleren. Meerpuntsstatistieken relateren dezelfde variable op 

meer dan twee plaatsen tegelijk. Traditionele geostatistiek is gebaseerd op het variogram of 

de covariantiefunctie. Dit zijn tweepuntsstatistieken omdat ze dezelfde variable slechts op 

twee verschillende locaties relateren. Daarom gebruiken we in dit proefschrift de term 

tweepuntsgeostatistiek (TPG). MPG ontleent de vereiste meerpuntsstatistieken van een 

trainingsbeeld, omdat het aantal observaties vaak te beperkt is om er rechtstreeks 

meerpuntsstatistieken van af te leiden. Een trainingsbeeld is een conceptueel beeld van de 

verwachte ruimtelijke structuur dat vaak is opgebouwd uit voorkennis. Er werden 

verschillende MPG simulatie-algoritmes ontwikkeld, waarvan de meeste gebaseerd zijn op 

het principe van sequentiële simulatie. De belangrijkste verschillen van MPG t.o.v. TPG 

simulatie-algoritmes zijn dat de conditionele cumulatieve verdelingsfunctie voor elke 

locatie x  wordt voorspeld door alle observaties (typisch tussen 20 en 100 observaties) in 

de omgeving van x  gezamenlijk te beschouwen, in plaats van paarsgewijs en door het 

trainingsbeeld te scannen, in plaats van een kriging systeem op te lossen. 

We verzamelden eerst een dataset van complexe bodempatronen. Polygonale patronen 

van fossiele ijswiggen zijn een duidelijk voorbeeld van complexe bodempatronen. De 

structuren zijn overblijfselen van thermische krimpscheuren die tijdens een ijstijd in 

permafrostbodems werden gevormd. We selecteerden een landbouwperceel in België met 

fossiele ijswiggen in de ondergrond op basis van een luchtfoto met polygonale 

gewassporen. Een klein deel (6 x 6-m) van het testgebied (0.63 ha) werd opgegraven 

waardoor een fossiele ijswig zichtbaar werd. De wiggen waren gevormd in kleirijke 

Tertiaire mariene sedimenten tijdens de laatste ijstijd, en werden later afgedekt door een 

0.6 m dikke laag van eolische zandige sedimenten. We namen 94 bodemstalen (0.6 - 

0.8 m) verdeeld over het testgebied en analyseerden de bodemtextuur. Er was een duidelijk 
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verschil tussen het Tertiair moedermateriaal (gemiddeld 21 % klei) en het Quaternaire 

wigmateriaal (gemiddeld 6 % klei). Het testgebied werd ook gescand met een proximale 

bodemsensor die de schijnbare elektrische geleidbaarheid (ECa) meet, wat resulteerde in 

een accuraat beeld van het polygonaal netwerk. Het was de eerste keer dat ondergrondse 

fossiele ijswiggen zo nauwkeurig in kaart werden gebracht met een proximale 

bodemsensor. 

De lage ECa-waarden weerspiegelden het grover wigmateriaal en waren dus ruimtelijk 

verbonden, terwijl de hoge ECa-waarden eerder ruimtelijk geïsoleerd waren. De algemeen 

toegepaste benadering die steunt op een  multi-Gaussiaanse random functie is niet geschikt 

om de connectiviteit van extreme waarden te reconstrueren. Daarom hebben we als 

alternatief een niet-Gaussiaans random functiemodel geselecteerd en het vermogen van dit 

model om de ECa-variable te reconstrueren geëvalueerd. We vertrokken van algemene 

kennis over de bodem (pedogenetische processen en hun relatie tot ECa) en enkele 

beschrijvende statistieken van de ECa-dataset om het model te selecteren en de parameters 

ervan te schatten. Het gefitte continu lokaal trend (CLT) model werd dan vergeleken met 

een trans-Gaussiaans (TG) model voor dezelfde data met behulp van een teststatistiek die 

de ruimtelijke connectiviteit van lage ECa-waarden weerspiegelde. Het CLT-model 

scoorde beter dan het TG-model en was dus beter geschikt om het onderzochte 

bodemproces te modelleren. Omdat het CLT-model de connectiviteit van de 

bodemvariable kon reconstrueren, is het bijvoorbeeld geschikt om geparameterizeerde 

trainingsbeelden aan te leveren, wat een nood is in het domein van MPG. 

Vooraleer we MPG toepasten op de ijswigdataset, hebben we eerst een geschikt MPG-

algoritme geselecteerd en zijn workflow en het belang en de gevoeligheid van de input 

parameters grondig onderzocht. We selecteerden het Direct Sampling (DS) algoritme als 

het meest geschikte MPG-algoritme om het polygonaal netwerk reconstrueren, omdat dit 

algoritme in staat is om categorische, continue en multivariate simulaties te genereren. De 

sterkte van het DS-algoritme is dat het meteen een waarde uit het trainingsbeeld toekent 

aan x in plaats van de volledige conditionele cumulatieve verdelingsfunctie te voorspellen. 

We voerden een gevoeligheidsanalyse uit op de belangrijkste invoerparameters door 

simulaties te genereren met behulp van zeven verschillende trainingsbeelden, waaronder 

een 3D-trainingsbeeld. Dit resulteerde in een leidraad voor het uitvoeren van MPG 

simulaties met het DS-algoritme en enkele aanbevelingen omtrent het selecteren van de 

invoerparameters. 

Na het verzamelen van een geschikte dataset en het bestuderen van het DS-algoritme, 

voerden we een eerste MPG-reconstructie van het polygonaal netwerk uit. We 

beschouwden het proximale bodemsensorbeeld als referentiebeeld en bemonsterden hieruit  

een continue (655 sensormetingen) en een categorische (100 puntobservaties) dataset. We 

gebruikten twee verschillende continue trainingsbeelden: het eerste werd opgebouwd op 
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basis van de sensormetingen van een ander deel van het veld, terwijl het tweede werd 

opgebouwd op basis van het CLT-model. Als categorisch trainingsbeeld gebruikten we een 

geclassificeerde foto van een ijswignetwerk in Alaska. De resulterende MPG-

voorspellingen reconstrueerden de polygonale patronen goed en kwamen overeen met het 

referentiebeeld. We besloten hieruit dat MPG een veelbelovende techniek is om complexe 

bodempatronen te voorspellen. 

Het voorgaande experiment leerde ons ook dat een raster geïnterpoleerd van dicht 

bemonsterde metingen in een nabijgelegen gebied (het eerste continue trainingsbeeld) een 

geschikt en makkelijk op te bouwen trainingsbeeld is. We bouwden verder op dit principe 

en gebruikten het om proximale bodemsensormetingen te voorspellen in ontoegankelijke 

gebieden, die resulteren in hiaten in sensorbeelden. Voorbeelden van gebieden die moeilijk 

toegankelijk zijn voor een bodemsensor zijn gebieden met een dichte vegetatie, 

steenachtige gebieden, bebouwde zones of perceelsgrenzen. We gebruiken de 

aangrenzende, dicht bemonsterde gebieden tegelijk als conditionele data en als 

trainingsbeeld en spraken daarom van ‘trainingsdata’. De aanpak werd geëvalueerd op 

twee verschillende datasets: het ECa-beeld van de ijswigpolygonen en een tweede ECa-

beeld van een begraven paleogeul. We maskeerden systematisch gebieden uit de ECa-

beelden om vervolgens de ECa-waarden in deze gebieden te simuleren. We besloten dat de 

gesimuleerde ECa-waarden hetzelfde ruimtelijk patroon hadden als de aangrenzende 

gebieden. Wanneer de gemaskeerde zone klein was in verhouding tot de grootte van het te 

reconstrueren bodemfenomeen, kon een nauwkeurige voorspellingskaart gemaakt worden. 

De conditionele variatiecoëfficiënt werd gebruikt om extra puntobservaties te lokaliseren 

wat de voorspellingskwaliteit verder verbeterde. 

Een recente ontwikkeling is multivariate MPG waarbij meerdere variabelen gelijktijdig 

gesimuleerd worden met behulp van een multivariaat trainingsbeeld. De ijswigdataset liet 

ons toe te onderzoeken of multivariate MPG kan gebruikt worden voor de verwerking van 

sensordata. We pasten bivariate MPG toe om een selectie van de sensormetingen te 

interpoleren naar een regelmatige grid (ervan uitgaande dat er geen ontoegankelijke 

gebieden waren) en tegelijkertijd te voorspellen wat de kans is om wigmateriaal in de 

bodem te vinden. We construeerden een bivariaat trainingsbeeld met een categorisch beeld 

van een willekeurig polygonaal netwerk als eerste variabele en een continu beeld van de 

bijbehorende sensorwaarden als tweede variabele. Om een kader te schetsen voor de 

evaluatie van de nieuwe methode, vergeleken we ze met een veel gebruikte procedure 

waarbij de sensormetingen worden geïnterpoleerd met ordinary kriging en vervolgens 

worden geclassificeerd met fuzzy k-means. Een vergelijking tussen de resulterende kaarten 

en de luchtfoto met de polygonale gewassporen, toonde aan dat MPG het polygonaal 

patroon beter reconstrueerde. De accuraatheid van de MPG-kaarten werd bewezen door 

een kwantitatieve validatie op basis van negen meetlijnen die niet werden gebruikt tijdens 
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de simulatie en de 94 bodemstalen. Bijgevolg kan multivariate MPG met succes gebruikt 

worden bij de verwerking van sensordata. 

Tenslotte vertaalden we onze onderzoeksresultaten naar een industriële toepassing in 

samenwerking met het baggerbedrijf DEME N.V. Zij presenteerden ons een probleem 

waarmee baggerbedrijven dagelijks geconfronteerd worden, meerbepaald het reconstrueren 

van de sedimentaire lagen in een kanaal dat moet uitgebaggerd worden. Het voorspellen 

van de dikte van de sedimentaire lagen heeft directe economische gevolgen. We stelden 

zowel een TPG- als een MPG-procedure voor om dit probleem aan te pakken. De MPG-

procedure bestond uit het gebruik van het IMPALA-algoritme en een eenvoudig 

categorisch 3D-trainingsbeeld, terwijl de TPG-aanpak gebaseerd was op sequentiële 

indicator simulatie. Beide stochastische geostatistische technieken leverden eerder 

gelijkwaardige prestaties, doordat het ruimtelijk patroon van de sedimentlagen niet al te 

complex was (het kon worden gemodelleerd met een variogram) en omdat er voldoende 

boringen beschikbaar waren. Beide benaderingen gaven betere resultaten dan een nearest 

neighbour interpolatie, de deterministische methode die momenteel wordt gebruikt door 

het bedrijf als gevolg van een gebrek aan tijd, budget en opleiding. 

De algemene conclusie van dit proefschrift is dat MPG een innovatieve techniek is die 

een waardevolle bijdrage kan leveren tot de bodemkunde en meerbepaald de geostatistiek. 

Dit werd bewezen door de verschillende, succesvolle MPG-toepassingen in dit 

proefschrift. TPG en MPG zijn complementaire technieken en het is aan de gebruiker om 

te beslissen welke techniek het meest geschikt is om een specifiek probleem op te lossen. 

We besluiten niet dat MPG een betere methode is dan TPG, maar geloven wel dat het een 

flexibelere methode is. 

 
 



 

Summary 
In this thesis we assessed the potential of multiple-point geostatistics (MPG) to be 

applied in soil science. MPG is a recently developed geostatistical toolbox that replaces the 

variogram by a training image (TI). It has been developed by petroleum geologists and 

hydrogeologists because they often face spatial patterns, such as repetitive, curvilinear or 

connected features, that are too complex to be modelled with a variogram function. 

However, soil scientists also face complex spatial patterns. Examples are paleochannels, 

catenas, dune patterns, limestone pavement, desiccation cracks, patterned ground, land-use 

patterns, sedimentary rock layers and soil pores. Consequently, MPG might be of use to 

soil scientists as well, but its application has not yet been investigated.  

The main idea of MPG is that modelling complex spatial patterns requires multiple-

point statistics. Multiple-point statistics relate the same property at more than two locations 

at a time. Traditional geostatistics is based on the variogram or the covariance function, 

which are two-point statistics because they relate the same property only at two different 

locations. Therefore, we use the term two-point geostatistics (TPG) in this thesis. MPG 

generally derives the required multiple-point statistics from a TI, because the number of 

observations is often too limited derive the multiple-point statistics directly. A TI is a 

conceptual image of the expected spatial structure that is often built from prior knowledge. 

The MPG toolbox consists of different simulation algorithms. Most of these are based on 

the sequential simulation principle. The main differences between TPG and MPG 

simulation algorithms are that the latter estimate the conditional cumulative distribution 

function at each x  by considering the neighbouring data jointly (typically between 20 and 

100 neighbours), instead of pairwise, and by scanning the TI, instead of solving a kriging 

system. 

We first collected a comprehensive data set to evaluate the applicability of MPG to 

reconstruct complex soil patterns. Polygonal patterns of ice-wedge casts are a clear 

example of such complex soil patterns. They are remnants of thermal contraction cracks 

that were formed in permafrost-affected soils during an ice age. We selected an agricultural 

field in Belgium with ice-wedge casts in the subsoil based on an aerial photograph showing 

polygonal crop marks. A small part (6 x 6-m) of the test area (0.63 ha) was excavated 

revealing an ice-wedge cast. The wedges penetrated clay-rich Tertiary marine sediments, 

covered by a 0.6 m layer of aeolian sandy sediments, and were associated with the 

permafrost during the last glacial period. We took 94 subsoil (0.6 – 0.8 m) samples 

distributed over the test area and analyzed their texture. The results showed a clear 

difference between the Eocene host material (on average 21 % clay) and the Quaternary 

wedge filling (on average 6 % clay). The test area was also surveyed with a proximal soil 
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sensor measuring the apparent electrical conductivity (ECa) which resulted in an accurate 

image of the polygonal network. It was the first time that buried ice-wedge polygons were 

imaged so accurately with a proximal soil sensor.  

Low ECa values reflected the coarser wedge material and were thus strongly spatially 

connected, whereas the large ECa values were rather spatially isolated. The generally 

applied approach of assuming a multi-Gaussian random function is not suited to 

reconstruct the connectivity of extreme values. Hence, we selected as an alternative a non-

Gaussian random function model and evaluated its capacity to reconstruct the ECa values. 

We used general knowledge about the soil (pedogenetic processes and the relationship to 

ECa) and some summary statistics of the ECa data set, to select the model and to estimate 

its parameters. We then compared the fitted continuous local trend (CLT) model with a 

trans-Gaussian (TG) model of the same data using a multiple-point test parameter 

reflecting the connectivity of small ECa values. The CLT model scored higher than the TG 

model and is therefore more appropriate for process modelling in this environment. Since 

the CLT model succeeds in capturing the multiple-point behaviour of the soil variable, it 

could be used to provide parameterized TIs, which is a need in the field of MPG. 

Before applying MPG to the test data set, we first selected an appropriate MPG 

algorithm and thoroughly investigated its workflow and the importance and sensitivity of 

its input parameters. We selected the Direct Sampling (DS) algorithm to be the most 

appropriate MPG algorithm to reconstruct the polygonal network, because it can generate 

categorical, continuous and multivariate simulations. The strength of the DS algorithm is 

that it directly assigns a value from the TI to each x instead of predicting the entire 

conditional cumulative distribution function. We performed a sensitivity analysis on the 

most important input parameters by generating unconditional simulations using seven 

different TIs, including a 3D TI. This resulted in a comprehensive guide to performing 

multiple-point statistical simulations with the DS algorithm providing recommendations on 

how to set the input parameters appropriately. 

After collecting an appropriate test data set and studying the DS algorithm, we applied 

a first MPG reconstruction of the polygonal network test data set. We considered the high-

resolution proximal soil sensor image as our reference image, and extracted a continuous 

(655 sensor data) and a categorical (100 point observations) data set from it. We used two 

different continuous TIs: the first TI was built from the proximal soil sensor data of 

another part of the field, whereas the second TI was built from the CLT model. As 

categorical TI we used a classified photograph of an ice-wedge network in Alaska. The 

resulting MPG maps reconstructed the polygonal patterns well and corresponded closely to 

the reference image. Consequently, we identified MPG as a promising technique to map 

complex soil patterns. 
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The previous experiments showed that a grid interpolated from densely sampled 

measurements in a nearby field can serve as an appropriate and easy-to-build TI. We 

expanded on this principle and used it to predict proximal soil sensor measurements in 

inaccessible areas showing up as gaps in a proximal soil sensor image. Examples of areas 

that might remain unsampled are areas with a dense vegetation, stony areas, building areas 

or field boundaries. The neighbouring densely sampled areas are then used as both 

conditioning data and as TI, and are called ‘training data’. This technique was evaluated on 

two different test cases: the ECa image of the ice-wedge polygons and a second ECa image 

of a buried paleochannel. We systematically blanked zones from the ECa images and 

simulated the ECa values in the blanked zones. We found that the simulated ECa values 

had similar spatial characteristics to the neighbouring areas. When the gaps were small 

relative to the size of the features being reconstructed, an accurate prediction map could be 

made. The conditional coefficient of variation was used as a guide to determine the 

location of extra point observations to improve the prediction quality further.  

A recent development is multivariate MPG in which an ensemble of variables can be 

simulated simultaneously using a multivariate TI. We investigated whether multivariate 

MPG can be used for the processing of proximal soil sensor data using the ice-wedge data 

set. We applied bivariate MPG to interpolate a selection of the sensor measurements to a 

regular grid (assuming no inaccessible areas) and to derive simultaneously a map 

predicting the location of the ice-wedge casts. We built a bivariate TI with a categorical 

image of a random polygonal network as primary variable and a continuous image of the 

corresponding sensor values as secondary variable. To set a comprehensive framework for 

the evaluation of the new method’s prediction performance, we compared it with the often-

applied procedure of interpolating the sensor data with ordinary kriging and then 

performing a fuzzy k-means classification to derive the possibility of finding wedge 

material in the subsoil. A comparison between the resulting maps and the aerial photograph 

showing the ice-wedges through polygonal crop marks, showed that MPG reconstructed 

the polygonal patterns much better. The local accuracy of the MPG maps was proven by a 

quantitative validation based on nine measurement lines, that had not been used during 

simulation, and the 94 bore hole samples. Consequently, multivariate MPG can be used for 

the processing of proximal soil sensor data.  

Finally, our research findings were translated into an industrial application in 

collaboration with the dredging firm DEME N.V. They presented a problem that is daily 

faced by dredging firms, i.e. the reconstruction of the depositional pattern of sedimentary 

layers in a channel to be dredged. Predicting the thickness of sedimentary layers has direct 

economic consequences. We presented both a TPG and MPG solution to solve this 

problem. The MPG approach consisted of using the IMPALA algorithm and a simple 

categorical 3D TI, whereas the TPG approach was based on sequential indicator 
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simulation. Both stochastic geostatistical approaches showed a rather equivalent 

performance. This is because the sedimentary layers did not have a very complex spatial 

pattern (it could be represented with a variogram model) and because there were sufficient 

bore hole samples. Both approaches gave better reconstruction results than a nearest 

neighbour interpolation, a deterministic interpolation method that is currently used by the 

company due to budget and time constraints and a lack of training.  

The general conclusion of this thesis is that MPG is an innovative technique that can 

be a valuable part of the pedometrician’s toolbox. This was proven by the different 

successful MPG applications throughout this thesis. We believe that TPG and MPG are 

complementary techniques and the user should select the technique that is best suited to 

solve the particular problem. We do not state that MPG is a better method than TPG, but 

we believe that it is more flexible.  



 

Chapter 1  
Introduction 

1.1 Motivation  

‘The soil varies from place to place. This is what makes the soil so fascinating. We place 

the variety we observe on record, and we seek explanation for it. Were the soil uniform, we 

should simply acknowledge the fact and switch our attention to something more 

interesting.’ Heuvelink and Webster (2001). 

 

The first attempts to map soil variation were made by classifying the soil into discrete 

classes. Soil surveyors based their maps on a few, often expensive, observations and 

laboratory measurements, but especially on their knowledge of the soil and how the soil is 

related to geology, geomorphology, vegetation and landuse (Heuvelink and Webster, 

2001).  

Today, we mainly use quantitative methods to map soil variation. Pedometrics is an 

emerging field in soil science that collectively categorises all mathematical, statistical and 

numerical soil prediction methods. One of the most common methods for spatial prediction 

of soil properties currently in use is geostatistics (Lark, 2012a).  

Geostatistics was developed in the mining industry in the 1960s and was first 

implemented in soil science by Burgess and Webster (1980). It is based on the random 

function theory: soil properties are modelled as if they were realizations of random 

functions (Matheron, 1965). The geostatistical toolbox consists of prediction and 

simulation algorithms, most of them based on the principle of kriging (Goovaerts, 1997). 

The cornerstone of traditional geostatistics is the variogram function which is used as a 

model of the spatial structure (Webster and Oliver, 2007).  

Although the past decades have shown numerous successful applications of variogram-

based geostatistics, the variogram has two main shortcomings. First, variogram modelling 

is generally data driven: a first estimate of the variogram function is calculated from the 
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differences between paired data values at increasing distances. Translating prior relevant 

soil knowledge into a variogram function can be difficult. Second, the variogram is a two-

point statistic and therefore incapable to model all sorts of random functions. Especially 

the modelling of complex spatial patterns, as curvilinear, repetitive or connected features, 

is problematic. In this thesis, ‘complex spatial patterns’ refers to all spatial patterns that are 

too complex to be successfully modelled by a two-point statistic.  

Complex spatial patterns frequently appear in soils. They are induced by an interaction 

of soil-forming factors and can be observed at scales ranging from landscape to 

microscopic. Examples are paleochannels, catenas, dune patterns, limestone pavement, 

desiccation cracks, patterned ground, land-use patterns, sedimentary rock layers and soil 

pores. Figure 1.1 shows some examples of complex soil patterns.  

 

Figure 1.1 Examples of complex soil patterns: (a) aerial photograph of a paleochannel 
segment in Utah, USA (photograph: www.psi.edu); (b) aerial photograph of patterned 

ground due to frost action in Alaska (Jones et al., 2010); (c) HiRISE image of sedimentary 
layers in a valley on Mars (photograph: www.uahirise.org); (d) scanning electron 

microscope image of soil pores (Dathe et al., 2001). 
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Soil scientists might be interested in mapping these complex soil patterns or simulating 

them for probabilistic forecasting, for instance to predict infiltration rates. An often-used 

approach is complementing direct soil observations, as augerings or excavations, with high 

resolution indirect observations, such as air-borne, space-borne and proximal sensor or 

scanning data (McBratney et al., 2000). However, these data are not always available, may 

be of poor quality or are fragmented. Thus, getting a complete image of complex spatial 

structures requires an adequate geostatistical prediction or simulation method. 

This method might be found in the field of oil and gas reservoir modelling, where 

scientists faced similar problems when simulating complex patterns. The lab of Strebelle 

(2002) at Stanford University (USA) developed multiple-point geostatistics (MPG). MPG 

covers a collection of simulation algorithms that use a training image (TI) as model of the 

spatial structure instead of a variogram function. A TI is a conceptual image of the 

expected spatial structure. A TI can be built from prior knowledge and can represent more 

complex spatial patterns than a variogram function, because it allows one to derive 

multiple-point statistics. To date, MPG has not been applied to soil science. 

1.2 Research hypothesis and objectives 

The research hypothesis of this thesis is that MPG can be used to reconstruct complex 

spatial patterns in soil science. To evaluate this research hypothesis, the following 

objectives were formulated. 

1.2.1 Collect a test data set of complex soil patterns. 

Evaluating a new methodology requires a good test case to set up experiments. 

Consequently, our first objective was to collect a comprehensive data set of complex soil 

patterns, consisting of both direct and indirect observations.  

1.2.2 Fit a non-Gaussian model of spatial variation to the test data set. 

Soil scientists generally rely on the multi-Gaussian random function and a set of 

predefined variogram models. However, it is known that this approach is not suited to 

reconstruct the connectivity of extreme values (Goovaerts, 1997), as is the case for the 

collected data set. Our second objective was to select an alternative, non-Gaussian model 

of spatial variation and to evaluate its capacity to reconstruct a multiple-point test 

parameter measuring the connectivity of extreme values.  

1.2.3 Perform a sensitivity analysis on an appropriate MPG algorithm. 

Although there is agreement about the fundamental principle of MPG, different 

algorithms have been developed to implement it. Because these are all very new, there is 
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little supporting material to help users getting started. Therefore, our third objective was to 

select the most appropriate algorithm, and to thoroughly investigate its workflow and the 

importance and sensitivity of its input parameters. 

1.2.4 Evaluate the potential of MPG to reconstruct complex soil patterns using the 

test data set. 

To date, most of the MPG applications can be found in the fields of petroleum geology 

and hydrogeology. Therefore, our fourth objective was to use the collected soil data set to 

set-up two straightforward experiments, i.e. a categorical and a continuous one, to evaluate 

the potential of MPG to reconstruct complex soil patterns. A focus here was finding an 

appropriate categorical and continuous soil TI.  The latter is a challenging but crucial step 

in a MPG analysis. 

1.2.5 Investigate whether MPG can be used for the processing of proximal soil sensor 

data.  

Proximal soil sensing is an increasingly used data source for soil inventory. The typical 

sampling scheme of mobile soil sensing and the large density of the collected observations 

require adapted geostatistical procedures. Our fifth objective was to investigate whether 

MPG can be used for the processing of proximal soil sensor data. More specifically, we 

assessed if MPG could be used to interpolate the sensor data between measurements and in 

inaccessible areas, and if it could be used to predict the target variable of interest.  

1.2.6 Evaluate the practical use of MPG in an industrial application. 

Prediction or simulation methods that are successful at a field scale in 2D, cannot 

necessarily be extended to 3D studies at a landscape scale. Hence, the sixth objective was 

to apply the MPG approach in the context of an industrial application.  

1.3 Structure of the thesis 

The thesis is divided in ten chapters (Figure 1.2). Chapter 2 summarizes the state-of-

the-art of two-point and multiple-point geostatistics and contains an overview of developed 

MPG algorithms. Chapters 3 explains how we collected a test data set of complex soil 

patterns by surveying a field with a polygonal network of ice-wedge casts in the subsoil 

using a proximal soil sensor. Chapter 4 presents a geometric model of spatial variation for 

polygonal soils that has been fitted to the test data set. Chapter 5 gives a detailed 

description of the Direct Sampling (DS) algorithm together with a sensitivity analysis on 

its input parameters. Chapter 6 shows a categorical and continuous MPG reconstruction of 

the polygonal network. Chapter 7 and 8 deal with the use of MPG to process proximal soil 
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sensor data. In chapter 9 MPG is used to reconstruct 3D sedimentary layers. The last 

chapter links the results to the originally defined research objectives. General conclusions 

are drawn concerning the applicability of MPG in soil science. 

 

Figure 1.2 Structure of the thesis 





 

Chapter 2  
Beyond the variogram: the advent of 
multiple-point geostatistics 

2.1 The random function model 

The spatial prediction of soil properties requires a model of how the soil property 

behaves at unsampled locations. The probabilistic model that is at the root of geostatistics 

is the random function model. A probabilistic model recognises a fundamental uncertainty 

about how the soil property behaves at unsampled locations, in contrast with a 

deterministic model that assumes full knowledge about the soil process under study (Isaaks 

and Srivastava, 1989).  

At each point in space x a property is treated as a random variable )(Z x . This random 

variable is a model that represents the set of all possible values )(z x  and their likelihood. 

Continuous random variables are characterized by their cumulative distribution function 

(cdf), which gives the probability that )(xZ  is no greater than any given threshold z : 

    1,0)(Prob);(  zZzF xx . ( 2-1 ) 

Its derivative is the probability density function (pdf) );( zf x . Categorical random 

variables can only take a finite number K of values kz  with a probability of occurrence at 

x : 

    1,0)(Prob),(  kk zZzp xx . ( 2-2 ) 

A sampled observation  xz  ( ,...)2,1  is assumed to be the outcome of a random 

variable. Predicting properties at unsampled locations )(* xz  and assessing their 

uncertainty can thus be achieved by modelling the distribution function of )(xZ . This 

modelling is often restricted to assuming a parametric distribution and estimating its 

parameters, such as the mean and the variance for the frequently used Gaussian 
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distribution. However, it is important to note that a random variable is, in general, not fully 

described by a few parameters (Isaaks and Srivastava, 1989). Alternative approaches do 

not assume a theoretical distribution function of )(xZ  by applying a non-parametric 

indicator approach (Goovaerts, 1997) or by building algorithm-driven random variables 

through the  generation of many alternative outcomes of the unknown (Remy et al., 2009).  

The ensemble of all dependent random variables  )(),...,( 1 NZZ xx  at each x in the 

study area is called a random function or a random field (RF). Just as a random variable, a 

RF has several possible outcomes or realizations (maps), and is characterized by a 

distribution, known as the joint probability distribution function (Goovaerts, 1997): 

   NNNN zZzZzzF  )(,...,)(Prob),...,;,...,( 1111 xxxx . ( 2-3 ) 

All geostatistical prediction or simulation methods require a decision of some degree 

of stationarity. This assumption allows one to infer statistics by pooling data over 

homogeneous areas. Strict stationarity implies that the joint probability distribution 

(Eq. 2-3) is independent of x (Goovaerts, 1997; Webster and Oliver, 2007).  

2.2 Two-point geostatistics 

Traditional geostatistics generally models the RF by specifying its variogram, or 

alternatively its covariance function, hereby weakening the stationarity decision to the 

first- and second-order moments (Goovaerts, 1997). Because the variogram and covariance 

function are two-point statistics, we will use the term two-point geostatistics (TPG) in the 

remaining of this thesis. The term ‘two-point’ refers to statistics that relate the same 

property at two different locations. 

2.2.1 The covariance and variogram function 

The covariance function describes the dependence between two random variables 

)(xZ  and )( hx Z  separated by a vector h: 

     )()(E)( hxxh ZZC , ( 2-4 ) 

where   is the mean  )(E xZ  assumed to be stationary or constant for all x.  

The covariance cannot be defined when the mean changes over the study area. 

Therefore, Matheron (1965) weakened the condition of a stationary mean, and replaced the 

covariance by the variogram, that characterizes the spatial variation between two random 

variables )(xZ  and )( hx Z  separated by a vector h: 

   2)()(E
2

1
)( hxxh  ZZ . ( 2-5 ) 
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The use of a variogram does not assume that the mean is constant over the entire study 

area, but that it is at least constant for small h, so that      0E  hxx ZZ . The less 

stringent conditions associated with the variogram make it much more useful than the 

covariance (Webster and Oliver, 2007). 

 The estimator of the variogram, known as Matheron’s method of moments estimator 

(Matheron, 1962), is 

     


 
)(

1

2

)(2

1
)(ˆ

h

hxx
h

h
N

zz
N

, ( 2-6 ) 

where )(hN  is the number of data pairs     hxx  zz , . A plot of the calculated )(ˆ h  

values versus h is called an experimental variogram. The theoretical variogram model is a 

continuous variogram function fit to the experimental variogram allowing to deduce 

variogram values for any possible h (Figure 2.1) (Webster and Oliver, 2007).  

As can be seen in Figure 2.1, variogram values typically increase for larger h. This 

behaviour reflects Tobler’s first law of geography: ‘Everything is related to everything 

else, but near things are more related than distant things’ (Tobler, 1970). In most 

situations, the variogram stabilises around a maximum, which is generally the sum of the  

sill C1 and the nugget effect C0. The nugget effect is a discontinuity at the origin of the 

variogram that arises from measurement errors or spatial sources of variation at distances 

smaller than the shortest sampling interval. The distance at which the plateau is reached is 

the range a and can be interpreted as the distance of dependence or zone of influence of the 

property (Journel and Huijbregts, 1978).  

Only functions that are conditionally negative definite can be considered as variogram 

models, so most geostatistical analyses are limited to a few permissible models, including 

the spherical, exponential or Gaussian model, or a combination of them (Goovaerts, 1997). 

 

Figure 2.1 An experimental variogram (black dots) and a fitted theoretical exponential 
variogram model (solid line) with indication of the range a, the nugget C0 and the sill C1. 
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2.2.2 Two-point geostatistical prediction and simulation methods 

The two-point geostatistical (TPG) toolbox consists of prediction and simulation 

techniques. Most of these techniques are based on the principle of kriging (Krige, 1951; 

Matheron, 1962). Kriging is a best linear unbiased predictor. It is linear because its 

predictions are weighted linear combinations of the sampled observations: 

 )()(*
)(

1



 xx

x

zz
n

, ( 2-7 ) 

where   are the kriging weights and )(xn  is the number of observations in the search 

neighbourhood. Kriging is unbiased because the expected value of the prediction error is 

zero, and it is best because the variance of the prediction error is minimized (Isaaks and 

Srivastava, 1989). The set of kriging weights   that produces these best linear unbiased 

predictions can be found by solving the kriging equation system. The kriging system 

includes a matrix with data-to-unknown variogram values and data-to-data variogram 

values, causing the ability of kriging to induce declustering (Remy et al., 2009). 

There exist different types of kriging, of which ordinary kriging (OK) is the most 

common algorithm to predict continuous variables and indicator kriging (IK) the most 

common for categorical variables. The latter is applied to binary indicators of occurrence 

of a category kz .  

 Kk
zz

zi k
k ,...,1

otherwise0

)(if1
);( 



 

 


x
x  ( 2-8 ) 

IK can be used to predict continuous variables when the event k is that )(xZ  is valued 

below a given threshold kz . Advantages of IK are that one can use separate indicator 

variogram models for each );( kzi x  accounting for class-specific patterns of spatial 

variation, and that the kriging predictions can be directly interpreted as predicted 

probabilities for kz  to occur at x . In other words, they directly model the pdf of the 

discrete random variable (Goovaerts, 1997; Remy et al., 2009). 

Prediction maps are created by calculating the best kriging prediction )(* xz  for each x 

in a regular grid, without considering any neighbouring prediction. Kriging prediction 

maps are therefore smoothed in their spatial variation and do not represent the true spatial 

variation properly (Goovaerts, 1997). In other words, kriging prediction maps are locally 

accurate but the true spatial pattern may be poorly reproduced. 

Simulation methods, on the other hand, aim at a more realistic reproduction of the 

spatial pattern by generating multiple realizations. Each realization represents the RF 

model, or the joint distribution in space of all random variables )(xZ . The ensemble of all 

simulated values for each x represents the distribution function of the random variable, 

from which, for instance, the local mean (E-type) can be derived. Depending on the 
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applied algorithm, realizations can honour the conditioning data (observations) and can 

reproduce the sample histogram and variogram. Most TPG simulation algorithms are 

sequential simulation algorithms. 

Sequential simulation algorithms generate realizations by visiting the unsampled grid 

nodes x successively along a random path. At each x, a conditional cumulative distribution 

function (ccdf) is estimated: 

  )()(Prob))(;( nzZnzF  xx , ( 2-9 )  

where )(n  expresses the conditioning to local information, i.e. the conditioning data and 

the previously simulated grid nodes. From this ccdf a simulated value is drawn and the 

algorithm proceeds to the next x. The realization is finished when each grid node has been 

visited. To generate a next realization, the algorithm defines a new random path 

(Goovaerts, 1997).  

TPG simulation methods build the ccdfs by considering the n neighbouring data one by 

one: for each x, a kriging system is solved based on two-point variogram values. 

Sequential Gaussian simulation (SGS) assumes a multi-Gaussian RF: the ccdfs are 

Gaussian-shaped and their mean and variances are derived from a (simple or ordinary) 

kriging system. Sequential indicator simulation (SISIM) determines the ccdfs by applying 

IK (the indicator formalism) (Goovaerts, 1997) and can thus be used to simulate 

categorical variables (Emery, 2004).  

2.3 Multiple-point geostatistics 

About a decade ago, Caers and Zhang (2004) published Figure 2.2. It shows three 

different geological patterns together with their variogram. The similarity of the 

variograms proves that a two-point statistic is not enough to characterize the geometry of 

different geological patterns. Therefore one should consider statistics that relate the same 

property at more than two locations at a time, or multiple-point statistics. 

 

Figure 2.2 (a) Three different spatial patterns with (b) similar east-west and north-south 
variograms (Caers and Zhang, 2004). 
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2.3.1 The principle behind multiple-point geostatistics 

In MPG the two-point variogram is replaced by a multiple-point TI as model of the 

spatial structure. A TI is a conceptual image of the expected spatial structure reflecting the 

spatial dependence between multiple points (Guardiano and Srivastava, 1993). Possible TIs 

are for instance hand drawings, model outputs or existing maps or photographs that are 

assumed to be analogues with the phenomenon under study. Alternatively, a TI can be 

constructed from more densely sampled zones (Goovaerts, 1997). A good TI reflects the 

prior structural concept (Hu and Chugunova, 2008), allowing the user to provide 

information about the shape of the structures and their degree of connectivity (Straubhaar 

et al., 2011). A TI does not need to carry any local information about the studied 

phenomenon (Strebelle et al., 2003). Remy et al. (2009) defined a TI as a representation of 

how the random variables )(xZ  are jointly distributed in space, or an unconditional 

realization of the joint probability distribution (Eq. 2-3). Figure 2.3 shows a –now famous– 

example of a binary TI representing a channel system (Strebelle, 2002), together with one 

MPG realization using this TI (Caers and Zhang, 2004).  

The MPG toolbox consists of different simulation algorithms. Most of these are based 

on the sequential simulation principle as explained in 2.2.2. The main differences between 

TPG and MPG simulation algorithms are that the latter estimate the ccdf at each x  by 

considering the n  (typically between 20 and 100) neighbouring data jointly, instead of 

pairwise, and by scanning the TI, instead of solving a kriging system. Consequently, MPG 

algorithms aim at generating realizations that honour the conditioning data and the 

multiple-point statistics of the TI, instead of just the histogram (a one-point statistic) and 

the variogram (a two-point statistic). In other words, MPG simulation algorithms anchor 

the multiple-point patterns of the TI to the conditioning data (Caers and Zhang, 2004).  

 

 

Figure 2.3 Example of (a) a binary TI representing a channel system (Strebelle, 2002), and 
(b) one MPG realization based on this TI (Caers and Zhang, 2004). 
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For each successively visited x, a data event )(xdn  of size n centred at location x is 

defined (Figure 2.4). This data event consists of the n neighbouring data values )( hxz  

and the neighbouring data geometry, defined by the n vectors h  ( n,...,1 ). 

 

Figure 2.4 Example of a data event )(4 xd  of size 4 centred at location x . 

 Then, the TI is scanned for replicates of )(xdn . The TI scan is based on the principle 

that ))(;(* nzp kx  corresponds to the ratio of the number of replicates with their central 

node value equal to kz  and the total number of replicates found, known as the Bayes 

relation of conditional probability (Strebelle, 2002).  

 

 

Figure 2.5 Principle of the TI scan: the training image (left), three different data events 
centred around x (centre) and the training image with the found replicates indicated in grey 

for the second and the third data event. 

x
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Figure 2.5 shows the principle of the TI scan. Here, the data event is limited by a 

rectangular search window and consists of two neighbouring data values in the first case, 

and eight in the second and the third case. For instance, the TI has 14 replicates of the data 

event of size 2. The probability to find a white pixel at x is thus 9/14 because 9 replicates 

have a white central node, and the probability to find a black pixel at x is 5/14 because 5 

replicates have a black central node. The same principle holds for the other two data 

events.  

MPG relies on a stationarity decision that allows one to derive multiple-point statistics 

from the chosen TI. This stationarity decision is not stronger than for TPG. Any mapping 

algorithm requires the same amount of multiple-point statistics. The often-used sequential 

Gaussian simulation algorithm, for instance, seems to require only a histogram and a 

variogram. However, the assumption that all higher-order statistics are multivariate 

Gaussian is included in the algorithm (Caers and Zhang, 2004). A limitation of this multi-

Gaussian RF model is that it does not allow for any significant spatial correlation between 

small or large values (Goovaerts, 1997). This maximum disconnectivity of extreme values 

is known as the ‘maximum entropy’ property. As a consequence, MPG simulations 

strongly depend on the chosen TI (Strebelle, 2002), but this sensitivity is not stronger than 

the sensitivity to the combination of a variogram model and implicit high-order 

assumptions (Journel and Zhang, 2006). 

Using a TI instead of a variogram enables thus to model more complex spatial patterns, 

such as curvilinear or connected features. This is particularly important to model flow and 

transport processes. A second advantage is that a TI can be constructed more 

straightforwardly from expert knowledge because it connects more closely to reality than a 

variogram function. Although attempts have been made to translate prior conceptual 

knowledge of the studied phenomenon into a variogram function (Truong et al., 2012), it is 

easier to translate these concepts into an image (Journel and Zhang, 2006).  

2.3.2 Multiple-point geostatistical algorithms  

Guardiano and Srivastava (1993), who proposed the basic idea of using multiple-point 

statistics, developed a first MPG sequential simulation algorithm for categorical variables, 

and called it ENESIM. ENESIM re-scans the entire TI at each x to predict ))(;(* nzp kx . 

Unfortunately, this strategy is not practically implementable since it requires a long 

computing time. 

Strebelle (2002) offered a practical solution with his SNESIM code, which is an 

improved version of the algorithm of Guaridano and Srivastava (1993). Prior to simulation, 

SNESIM scans the entire TI with a search template and stores all possible TI replicates in a 

dynamic data structure called a search tree. During simulation, this catalogue is used to 

compute ))(;( nzp x
 
at each x. 
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A second improvement of SNESIM is its multi-grid approach that ensures a good 

reproduction of the patterns at different scales while keeping the size of the search template 

rather small (Strebelle, 2002). More information about the multi-grid approach can be 

found in chapter 9. To date, SNESIM is still a popular MPG algorithm (e.g. Huysmans and 

Dassargues, 2011; Le Coz et al., 2011; Ronayne et al., 2008) that is implemented in the 

freely distributed SGeMS software (Remy et al., 2009). Liu (2006) presents a practical 

guide to SNESIM together with a sensitivity analysis on its input parameters.  

During the last decade, MPG has become an active research topic and several 

alternative MPG algorithms have been developed (Hu and Chugunova, 2008). We limit our 

discussion to two recent MPG algorithms that are further applied in this thesis: the 

IMPALA algorithm (Straubhaar et al., 2011) and the DS algorithm (Mariethoz et al., 

2010).  

The IMPALA algorithm stores the catalogue of possible TI replicates in lists instead of 

tree structures. The main advantage of the list approach is a significant reduction in 

memory usage (Straubhaar et al., 2011). The IMPALA algorithm is included in the 

commercial Isatis software (Bleinès et al., 2011). More details about the IMPALA code are 

given in Chapter 9.  

Because all possible TI replicates are stored beforehand in a catalogue, both SNESIM 

and IMPALA can only be used to simulate categorical variables. The first MPG sequential 

simulation technique that enables simulating different variable types, including categorical, 

continuous and multivariate variables, is the Direct Sampling (DS) code (Mariethoz et al., 

2010). DS re-scans the TI for each x  during sequential simulation, as was first proposed 

by Guardiano and Srivastava (1993), but it directly samples the TI without explicitly 

modelling the ccdfs. Up to date, DS has not been implemented in a software package, but 

the code is available for academic purposes. Chapter 5 gives a detailed analysis of the 

possibilities offered by DS.  

For completeness, we mention that MPG is not only an alternative to variogram-based 

geostatistics but also to Boolean object-based techniques (e.g. Deutsch and Wang, 1996). 

A main shortcoming of object-based techniques is that conditioning them to dense data sets 

is virtually impossible (Caers and Zhang, 2004). There is also an evolution in the 

development of pattern-based MPG techniques, such as SIMPAT (Arpat and Caers, 2007) 

and FILTERSIM (Zhang et al., 2006b). Pattern-based MPG techniques can be considered 

as a kind of object-based techniques (Hu and Chugunova, 2008). Neither pattern-based or 

object-based techniques are discussed in this thesis. 

  





 

 

 

 

Chapter 3  
Imaging a polygonal network of ice-
wedge casts with proximal soil sensing 

The content of this chapter is based on: Meerschman, E., Van Meirvenne, M., De 

Smedt, P., Saey, T., Islam, M.M., Meeuws, F., Van De Vijver, E. and Ghysels, G. 2011. 

Imaging a polygonal network of ice-wedge casts with an electromagnetic induction sensor. 

Soil Science Society of America Journal 75, 2095–2100. 

 

This chapter explains how we collected a test data set of complex soil patterns. We 

selected an agricultural field with a polygonal network of ice-wedge casts in the subsoil, 

being a typical example of a geometrically complex soil pattern. The field was surveyed 

with a proximal soil sensor. The indirect observations were complemented with bore holes 

and an excavation.  

3.1 Introduction 

In many parts of the mid-latitudes of the northern hemisphere, the past existence of 

peri-glacial conditions is evidenced by the presence of ice-wedge casts and relic sand 

wedges (French, 2007). These cryogenic structures are the remnants of thermal contraction 

cracks formed in permafrost-affected soils (Kolstrup, 1986). Progressive infilling of these 

cracks with ice, sand or both, resulted in wedge-shaped bodies of ice, sand or sand-ice 

(French et al., 2003; Ghysels and Heyse, 2006; Murton and French, 1993; Vandenberghe 

and Pissart, 1993). When changing climatic conditions caused the permafrost to thaw, the 
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wedge-shaped cavities were filled with wind- and water-transported sediments resulting in 

their preservation as ice-wedge casts or ice-wedge pseudomorphs (Harry and Gozdzik, 

1988). Consequently, the wedge filling has a different composition than the host material.  

The surface expression of thermal contraction cracks is generally a network of 

polygons, still observable in modern periglacial environments at high latitudes (French, 

2007). In central Europe and North-America, polygonal networks of ice-wedge casts were 

often covered by eolian or fluviatile loess or sand, so their pattern is rarely directly 

observable. However, the morphology of these polygonal networks provides valuable 

information about past environmental and climatic conditions, since their formation 

depend on many factors such as soil temperature gradients, mineral composition of the 

soil, moisture content and variations in air temperature (Dutilleul et al., 2009; Mackay and 

Burn, 2002; Plug and Werner, 2002; 2008; Romanovskij, 1973). Apart from imaging the 

ice-wedge casts for paleoclimatological reconstructions, characterizing their abrupt 

changes in soil composition can suit other purposes. Ice-wedge casts can have an impact 

on engineering projects (Morgan, 1971), preferential flow paths for leaching to 

groundwater (Dansart et al., 1999) and on crop yield calling for techniques known as 

precision agriculture.  

Occasionally, near-surface networks of pseudomorphs show up on aerial photographs 

of cultivated fields due to color contrasts of the crop, called crop marks. These are caused 

by pedological differences between host material and wedge filling. However, the 

occurrence of crop marks is very sensitive to variations in soil type, soil moisture content, 

vegetation type, nutrient availability and meteorological conditions (Walters, 1994). 

Therefore, the time frame for such observations is often very narrow and the costs of 

obtaining them are large. In the particular situations where crop marks reveal the presence 

of ice-wedge casts, aerial photographs can be used to map the polygonal network 

morphology (Ghysels, 2008; Lusch et al., 2009).  

Near-surface geophysical prospection methods are an alternative for mapping 

polygonal networks of ice-wedge casts. A few studies have shown the use of ground-

penetrating radar (Dansart et al., 1999; Doolittle and Nelson, 2009) and electrical 

resistivity (Lusch et al., 2009) to detect relic ice-wedges. Cockx et al. (2006) were the first 

to map near-surface Pleistocene ice-wedge casts with an electromagnetic induction (EMI) 

sensor. However, their survey covered a small excavated area where the casts were visible 

at the surface. 
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3.2 Material and methods 

3.2.1 Aerial photograph and test area 

Figure 3.1a shows a part of an oblique aerial photograph of an agricultural field in 

Deinze, Belgium (central coordinates: 51°01'16"N, 3°29'41"E). The field is situated on the 

West Flanders plateau, a low-lying plateau (25 m above sea level) next to the Coastal 

Plain.  

The photograph was taken on 4 August 1996 when sugar beets were cultivated on the 

field. Notice that the polygonal pattern was not visible on adjacent fields with a different 

crop. An aerial photograph of the same field but with a different crop taken one year later 

did not show the polygonal pattern, demonstrating the ephemeral character of crop marks 

(Ghysels, 2008). It is our experience that due to their deep rooting system, sugar beets 

often develop good crop marks. Besides the polygonal pattern, the aerial photograph also 

shows a former field track, crossing the field from north to southeast. The photograph was 

georeferenced and color stretched to enhance the contrasts, after which a test area of 

0.63 ha was selected and clipped (Arcmap 9.3, ESRI) (Figure 3.1b). 

3.2.2 Electromagnetic induction survey and data processing 

The test area was surveyed with a Geonics EM38DD sensor which simultaneously 

measures the apparent electrical conductivity (ECa) in a horizontal (ECa-H) and vertical 

(ECa-V) dipole mode. With a fixed inter-coil spacing of 1 m, each coil pair has its own 

depth-response curve (McNeill, 1980). The depth of exploration (DOE), defined as the 

depth where 70 % of the response is obtained from the soil volume above this depth, is 

0.76 m for ECa-H and 1.55 m for ECa-V (Saey et al., 2009a). Characteristic for ECa 

measurements is their strong relationship with soil texture in the absence of salinity (Cockx 

et al., 2007; Corwin and Lesch, 2005).  

The sensor was mounted on a sled pulled by an all terrain vehicle, which drove along 

parallel lines with an inter-line distance of on average 0.75 m at a speed from 4 to 6 km h-1. 

The ECa was measured with a frequency of 10 Hz and the data were recorded by a field 

computer. A Trimble AgGPS332, with Omnistar correction, was used to georeference the 

ECa measurements with a pass-to-pass accuracy of approximately 0.10 m (Saey et al., 

2009a). The survey was conducted on 9 April 2010 during dry weather conditions on a 

bare field with no soil tillage since October 2009.  

The ECa measurements were post-corrected for instrumental drift (Simpson et al., 

2009) and standardized to a reference temperature of 25°C (Slavich and Petterson, 1990). 

A Gaussian low pass filter was applied to the data for noise removal using SGeMS (Remy 

et al., 2009).  
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Figure 3.1 (a) Aerial photograph taken on 4 August 1996 showing polygonal crop marks 
and a former field track (north – southeast oriented) with delineation of the test area (large 
rectangle) (© J. Bourgeois, Department of Archaeology and Ancient History of Europe, 

Ghent University, Belgium, Photo: J. Semey) and (b) same aerial photograph after 
georeferencing, clipping and color stretching with delineation of the excavated area (small 
rectangle) and indication of the 94 augering locations (dots). Full dots represent a selection 

of 15 samples located on the polygonal crop marks. Coordinates are according to the 
Belgian metric Lambert-72 projection. 

Because ECa values were generally larger at the former field track, we subtracted a 

moving spatial average (radius = 3 m) from each measurement to highlight the polygon 

boundaries. Finally, the residuals (ΔECa = ECa – moving average) were interpolated to a 

grid with a cell size of 0.1 m by 0.1 m using ordinary kriging (Surfer 9, Golden Software). 

Because of the larger data density in the direction of the measurements lines, we used an 

elliptical search window with a major axis of 2 m perpendicular to the measurement lines 

and a minor axis of 0.5 m parallel to the measurement lines. 

3.2.3 Excavation 

In a small part of the field (6 x 6-m) (Figure 3.1b) we exposed the polygonal pattern to 

investigate and characterize the network. An excavator crane systematically removed 

sediment layers of 0.3 m to a depth of 0.9 m. The horizontal exposure was photographed 

from a height of about 20-30 m using a remotely controlled camera attached to a kite. 

Afterwards, the photograph was georeferenced and color contrast enhanced (Arcmap 9.3, 

ESRI). 
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3.2.4 Soil Sampling 

To characterize the textural variability of the subsoil, we took 94 subsoil samples 

within the test area according to a mixed systematic and random scheme. Half of the 

locations were sampled according to a grid to ensure equal coverage and the other half 

were randomly located (Figure 3.1b). As the casts extended downwards from a depth of 

0.6 m (see further), samples were taken from the 0.6 - 0.8 m depth interval. The textural 

fractions were analyzed with the conventional sieve-pipette method.  

The results of the texture analyses were classified into two groups by a fuzzy k-means 

algorithm with the FuzMe software (Minasny and McBratney, 2002). The multivariate 

classification was based on the clay and sand percentage using a Mahalanobis distance 

matrix and a fuzziness exponent φ of 1.6. The determination of φ was done following the 

scheme proposed by McBratney and Moore (1985). Each observation was assigned to the 

class for which it received the largest fuzzy membership. 

3.3 Results and discussion 

3.3.1 Excavated area 

The aerial photograph, taken by the camera attached to the kite, of the 0.9 m deep 

excavation pit shows a more or less continuous part of a network of polygonal cells with a 

diameter of about 6 m (Figure 3.2). The structures suggest thermal contraction cracking in 

a permafrost environment, probably during the last part of the Weichselian (Buylaert et al., 

2009). The wedge infillings comprised yellowish brown, structureless sandy sediments 

with dispersed gravel elements. The pseudomorphs extended down from the base of a 0.6 

m thick silty-sandy Quaternary layer and penetrated sandy-clayey host material belonging 

to the Ypresian stage of the Eocene epoch (55.8 - 48.6 Ma).  

The shape of the ice-wedge casts was irregular with wide (0.3 - 1.2 m) upper parts. 

Irregular shapes point to thaw modification as wedge ice melted, though the occurrence of 

sand in the original wedge filling cannot be excluded. Ghysels and Heyse (2006) described 

composite-wedge casts at other sites on the same plateau.  
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Figure 3.2 Kite aerial photograph of the 0.9 m deep excavation pit (6 x 6-m) with 
enhanced color contrast and indication of the outline of the polygonal network of ice-

wedge casts. 

3.3.2 Subsoil textural variability 

The subsoil texture covers four USDA textural classes as shown in Figure 3.3. The 

average soil textural composition corresponds to a sandy loam texture class, but given the 

bimodal nature of the textural fractions in this field (see further), the average class is not 

representative. Table 3.1 gives the result of the 94 texture analyses of the 0.6 - 0.8 m 

subsoil samples. The coefficients of variation are 0.19 for the sand fraction, 0.52 for the silt 

fraction and 0.62 for the clay fraction. This large variability in subsoil texture contrasts 

strongly with the homogeneous topsoil (not analytically determined but this could clearly 

be observed in the field by hand feeling) and is responsible for the substantial variation in 

crop performance. 

The fuzzy k-means classification resulted in a division of the 94 samples in almost two 

equal classes (Table 3.1): class I contained 51 samples with a centroid at 61.3 % sand, 

17.4 % silt and 21.3 % clay (i.e. sandy clay loam), and class II contained 43 samples with a 

centroid at 85.9 % sand, 8.1 % silt and 5.9 % clay (i.e. loamy sand) (Figure 3.3). A Wilks’ 

lambda test showed that the means of these classes are significantly different (p < 0.001). 

Based on the aerial photograph we selected 15 sampling locations which were clearly 

located on a crop mark polygon (Figure 3.1b). Since these 15 points were all classified as 

belonging to class II (Figure 3.3), we concluded that class II corresponds to the Quaternary 

wedge filling, and that the polygonal crop marks visible on the aerial photograph (Figure 

3.1) represent the network of ice-wedge casts. Hence, class I represents the Tertiary host 

material. 
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Figure 3.3 Results of the 94 texture analyses plotted on the USDA soil texture triangle. 
The full dots are the selection of 15 samples located on polygonal crop marks on Figure 

3.1b. The grey diamonds represent the centroids of two classes created by a fuzzy k-means 
classification. 

 
Table 3.1 Results of the texture analyses of the subsoil (0.6 - 0.8 m) samples taken within 

the test area. 

 average 

(%) 

min 

(%) 

max 

(%) 

variance 

(%)2 

All samples (n = 94) 

sand  72.6 52.0 95.6 191.5 

Silt 13.1 1.4 32.0 46.5 

Clay 14.3 2.5 32.7 77.8 

Class I (n = 51) 

Sand 61.3 52.0 74.1 28.0 

Silt 17.4 10.6 32.0 16.6 

Clay 21.3 10.2 32.7 28.2 

Class II (n = 43) 

Sand 85.9 68.4 95.6 53.8 

Silt 8.1 1.4 24.9 35.8 

Clay 5.9 2.5 13.0 7.2 
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3.3.3 Image of the polygonal network 

The average of the 82 770 ECa -V values was 41.0 mS m-1 and of the ECa-H values it 

was 32.3 mS m-1. This indicates that the deeper soil layers have an overall larger ECa. The 

Pearson correlation coefficient between the ECa-V and ECa-H values was 0.88 and the 

pattern shown by both maps was very similar. However, the ΔECa-H map showed sharper 

contrasts revealing the polygons in more detail. So regardless of their smaller DOE, 

measurements taken in the horizontal dipole mode proved more appropriate to map the ice-

wedge casts in the subsoil. A possible explanation is that the ECa-V measurements 

received a larger response from the Tertiary material underlying the ice-wedge casts, 

which masked the influence of their sandy infillings. Despite our experience (Cockx et al., 

2006), a combination of both signals did not result in an improvement. Therefore, we 

continued with the ΔECa-H map shown in Figure 3.4a and further indicated as ΔECa map. 

Similar to the classification of the subsoil samples, a k-means classification of the ΔECa 

map resulted in two classes of approximately equal size meaning that both subsoil textures 

occur with about the same frequency. 

 

Figure 3.4 (a) ΔECa (mS m-1) map and (b) georeferenced aerial photograph taken on 4 
August 1996 with delineation of the excavated area on both figures (small rectangle). 

The ΔECa map (Figure 3.4a) images the polygonal network of ice-wedge casts clearly 

due to the smaller EC of the wedge filling, caused by its smaller clay content. In general, 

positive ΔECa values correspond to the host material, whereas negative ΔECa values 

correspond to the wedge filling. For comparative reasons, Figure 3.4b shows the 

georeferenced aerial photograph. Although one image represents the variability in soil 

electrical conductivity and the other one in crop color,  it can be observed that both are 

very similar. However, measuring ECa is much less dependent on external conditions than 

observing crop marks, asking for a particular combination of crop and climatic conditions. 
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The five parallel white horizontal lines on the aerial photograph are due to a non-uniform 

sowing density.  

3.3.4 Verification 

For each of the 94 sampled locations the ΔECa was extracted from the ΔECa map to 

investigate the relationship between soil texture and ΔECa. The Pearson correlation 

coefficient between ΔECa and the subsoil textural fractions was -0.68 for sand, 0.46 for silt 

and 0.71 for clay. So it is clear that ΔECa is a proxy for the subsoil clay and sand content. 

Figure 3.5 illustrates these relationships and confirms the existence of two distinctly 

different subsoil classes.  

Figure 3.6 shows a detail of the ΔECa map around the excavated area with indication 

of the boundary of the exposed polygon (Figure 3.2). The differences between the wedge 

filling and the host material are clearly visible on the ΔECa map confirming the direct 

relationship between the processed ECa measurements and the presence of ice-wedge casts 

in the subsoil of this area.  

 

Figure 3.5 Subsoil (0.6 - 0.8 m) clay and sand content in relation to ΔECa (mS m-1): the 
size and shape of the symbols correspond to the ΔECa value measured at the same 

location. 
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Figure 3.6 Detail of the ΔECa map with indication of the excavated area and the observed 
polygon outline (as shown in Figure 3.2). 

3.4 Conclusions 

A textural difference between host material and wedge filling is the key to successfully 

mapping polygonal networks of ice-wedge casts with EMI sensors. In contrast to being 

dependent on occasional aerial photographs of polygonal crop marks, the use of mobile 

EMI sensors offers a more generally applicable method to map ice-wedge pseudomorphs, 

even when these are covered by a topsoil layer of 0.6 m. This non-invasive, fast method 

offers detailed exhaustive information about the morphology of the cryogenic features. 

Our study showed that the presence of ice-wedge casts in the subsoil can be 

responsible for a highly heterogeneous subsoil texture. About half of the test area has a 

sandy clay loam subsoil texture, as indicated on the 1/20 000 soil map of Belgium. The 

other half represents the ice-wedges which contain considerably more sand and 

consequently less clay. Because the presence of both textures is spatially structured and 

can be mapped, this situation can be considered as a challenge for managing the within 

field variability to optimize crop yield, i.e. precision agriculture.  

The collected data set consisting of the soil knowledge provided by the excavation, the 

94 soil samples and the proximal soil sensor image, is a good test case to evaluate the 

applicability of MPG to reconstruct complex soil patterns.  



 

 

 

Chapter 4  
A geometric random function model 
for the polygonal network  

The content of this chapter is based on: Lark, R.M., Meerschman, E. and Van 

Meirvenne, M. A stochastic geometric model of the variability of soil formed in 

Pleistocene patterned ground. Submitted for publication in Geoderma (2013). 

 

The spatial pattern of the collected ECa data (chapter 3) shows the connectivity of  

small ECa values (coarser soil material). Before practicing MPG, we first selected and 

fitted a geometric non-Gaussian RF model to the ECa data. This alternative RF model was 

inferred from soil knowledge. We then compared the geometric RF model with a trans-

Gaussian (TG) model of the ECa data, i.e. a model fitted by conventional geostatistical 

analysis after the data have been transformed to approximate normality. Specifically we 

compared the models with respect to a criterion that summarizes the spatial connectivity of 

small ECa values, which might be relevant to simulations of transport processes in the soil. 

We then evaluated which model appeared best to represent the spatial pattern in the ECa 

data. 

4.1 Introduction 

‘Mais surtout nous insisterons sur la nécessité d’incorporer au maximum la physique 

du problème et le contexte géologique de la zone ´etudiée.’ Chilès and Guillen (1984). 

 

In most geostatistical analyses of soil the data are assumed to be a realization of a 

multi-Gaussian RF, perhaps after they have been transformed so that their histogram 
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represents a Gaussian distribution. Furthermore, the RF commonly has a spatial covariance 

or variogram function drawn from a limited subset of models (Webster and Oliver, 2007), 

which are used because of their convenient mathematical properties (see section 2.1 and 

2.2). In some of the earth sciences there has been progress in the development of RFs with 

parameters that are determined, or at least constrained, by parameters of underlying 

processes which have a physical meaning (e.g. Kolvos et al., 2004; Chilès and Guillen, 

1984). This has advantages (Lark, 2012a), for example, the efficiency of spatial sampling 

to model the spatial covariance function could be improved if prior distributions for 

covariance parameters could be specified from process knowledge. However, this has not 

been achieved in soil science. Lark (2012a) suggested that this is probably because the 

variables that soil scientists study are commonly influenced by a more complex set of 

factors at more diverse spatial scales than is the case for the variables where it has proved 

possible to specify the covariance function from process information. For example, the 

covariance function for diffusion processes is well-established (Whittle, 1954; 1962), and 

diffusion is a source of spatial variation in the concentration of nutrients in soil, but it is 

just one of many sources of spatial variation, and is of limited importance at the spatial 

scales most generally studied for practical purposes. 

Lark (2012a, 2012b) suggested that progress might be made by recognizing a number 

of distinct modes of soil variation, simple and generalizable rules that capture how the 

effects of factors of soil variation vary laterally, and which map naturally on to particular 

spatial RFs. For example, in conditions where soil variation is strongly determined by 

differences between discrete domains in the landscape (such as geological units, 

topographic units, fields etc.) then a subdivision of space into random sets such as Poisson 

Voronoi polygons may be appropriate (Lark, 2009) and properties of the spatial model 

(such as the mean chord length of the polygons) may be given a physical meaning. 

Lark (2012b) proposed a mode of soil variation: continuous local trends. Under this 

mode of variation soil varies laterally in space, changing continuously rather than in a step-

wise fashion; and these trends are local and repeating, so that they are essentially 

unpredictable (in contrast to a large-scale trend in a variable that might be observed across 

a study area). Examples of continuous local trends would be concentration gradients 

around the rhizosphere, or around individual plants, and catenary variation at landscape 

scale. Lark (2012b) proposed a general family of RFs to describe continuous local trends 

(CLT random functions). The value of a CLT variable at some location is given by a 

distance function, whose argument is the distance from the location of interest to the 

nearest event in a realization of a spatial point process. This makes the CLT a random 

function.  The CLT variables considered by Lark (2012b), and in this chapter, are Poisson 

CLT (PCLT) variables because the spatial point process is completely spatially random. 

Lark (2012b) estimated parameters of a PCLT process from data on a soil variable. It was 
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also pointed out that the PCLT process might differ from a comparable Gaussian RF with 

respect to its multiple-point statistics. This raises the possibility that PCLT models, as well 

as mapping closely on to a particular mode of soil variation, might be practically useful for 

applications where spatial connectivity plays a major role controlling processes in soil and 

so the multiple-point statistics of the variable are important. 

4.2 Initial data analysis 

In chapter 3 it was shown that the ECa measurements clearly reflected the polygonal 

patterns: small ECa values indicated the former ice-wedges filled with lighter material. In 

addition to the short-range variation in ECa, there were large values of ECa near an old 

field track in the north-east of the surveyed region. To avoid any assumptions about the 

form of this trend we decided to restrict our analyses to the lower left quadrant of the 

surveyed area, a region of approximately 40 x 40-m with 17 792 observations. We used the 

processed ECa data, and not the residuals ΔECa (see section 3.2.2). Figure 4.1 shows a 

post-plot of these data. The coordinates were first rotated and then translated to have their 

origin in the lower left corner. 

 

Figure 4.1 ECa data after coordinate transformation (coordinates are in metres relative to 
the the lower left corner). 

Figure 4.2 shows the histogram of the data. Summary statistics are presented in 

Table 4.1. Note that the data are mildly skewed. In the analyses reported below the PCLT 

model was fitted in all cases to the raw data, and all analyses with the TG model were done 

with the data after a transformation. 
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Figure 4.2 Histogram of ECa data. 

Table 4.1 Summary statistics of the raw data on ECa (n = 17 792). 

Statistic mS m-1 

Average 31.37 

Median 31.13 

Standard deviation 2.2 

Skewness 0.36 

Quartile 1 29.9 

Quartile 3 32.76 

Octile 1 29.03 

Octile 7 34.08 

4.3 Trans-Gaussian model 

The objective of the case study is to compare a continuous local trend (PCLT) model 

of the data with a trans-Gaussian (TG) model, as might be used in standard geostatistical 

analysis. We therefore used a Box-Cox transformation of the data to normality for the TG 

modelling: 
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where z  is a value on the original scale and y  is a transformed value. We used the 

BOXCOX procedure from the MASS package (Venables and Ripley, 2002) for the R 
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platform (R Development Core Team, 2012) to find the likelihood profile of the   

parameter. The data were then transformed with the maximum likelihood estimate of 
(-0.57), substituted into Eq. 4-1 and then standardized to zero mean and unit variance. The 

summary statistics for the data after transformation, and standardization, are presented in 

Table 4.2. 

 
Table 4.2 Summary statistics of the data on ECa after Box-Cox transformation and for the 
transformed data after standardization. Variogram parameters for the standardized data are 

also given. 

Statistics 
Transformed  

data 

Transformed and 

 standardized data 

Average 1.508 0 

Median 1.507 -0.056 

Standard deviation 0.01 1 

Skewness 0 0 

Quartile 1 1.501 -0.646 

Quartile 3 1.514 0.668 

Octile 1 1.497 -1.085 

Octile 7 1.52 1.216 

Variogram parameters *  
 

0C   0.12 
1C   0.84 

a   1.91 

  1.49 
*Powered (stable) exponential model, see Eq. (4-2) 

 

An isotropic empirical variogram of the transformed and standardized data was then 

computed using Matheron’s method of moments estimator (Matheron, 1962) as 

implemented in the FVARIOGRAM directive in GenStat (Payne et al., 2009). An 

authorized model was then fitted to the estimated variogram by weighted least squares 

(Cressie, 1985) using the MVARIOGRAM procedure in GenStat (Harding et al., 2010). 

Alternative models were considered and the stable or powered exponential model was 

selected on the basis of the Akaike information criterion (McBratney and Webster, 1986). 

This variogram model takes the form: 
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where  is a shape parameter ( 20  ). The estimates of these parameters are presented 

in Table 4.2, and the estimates of the variogram of the TG variable, and the fitted model 

are shown in Figure 4.3. 

 

Figure 4.3 Empirical variogram of transformed and standardized ECa data with a fitted 
model. 

4.4 Stochastic geometric model 

Estimates of the isotropic variogram of the raw data on ECa were obtained using the 

method of moments estimator due to Matheron (1962) as previously described for the 

transformed data (these are the solid symbols in Figure 4.6). The identification and fitting 

of an appropriate stochastic geometric model for the soil variable will allow us to plot a 

continuous variogram function for these estimates. 

When a TG model is fitted it is assumed that, after any transformation, the data 

 )(),...,(),( 21 nyyy xxxy   from the n locations nxxx ,...,, 21  can be regarded as a 

realization of an n-variate Gaussian RF Y . Under this assumption the variogram of Y  

entirely summarizes the information that the data contains about the spatial variability of 

Y , and the task of estimating model parameters, under the assumption of a stationary 

mean, reduces to the task of estimating variogram parameters. This is not the case with 

models for random functions, such as the PCLT models, which have non-zero moments of 

order three or larger, and therefore are not Gaussian. The fitting of a PCLT model cannot, 

therefore, simply reduce to the computation of parameters which minimize the weighted 

sum of squared residuals between the empirical and fitted variogram. 

In this study our approach to the selection and estimation of a PCLT model is to 

constrain it by soil knowledge. Soil knowledge consists of general understanding of the 

underlying processes that influence soil formation and so the variation of the target 
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variable, and also of general quantitative information about the variable in the study site or 

a homologous site, represented by summary statistics, empirical variograms or similar 

information. In the following sections we go through a semi-formal process of model 

identification based on inferences from soil knowledge and culminating in the estimation 

of parameters for an appropriate model. Each subsection is headed with a question, and 

with the general source of soil knowledge used to address it. The individual elements of 

soil knowledge are then summarized in brief labelled sentences, expanded in a short 

paragraph. Inferences from this soil knowledge are then set out. 

4.4.1 Question: ‘What mode of soil variation?’ Soil knowledge about the underlying 

pedogenetic process. 

SK1. The dominant source of soil variation at metre scale in this landscape is the 

presence of Pleistocene ice-wedge polygons. These are described in more detail in chapter 

3. Ice-wedge polygons form in periglacial conditions on surfaces with slopes less than a 

critical value. Over much of central Europe ice-wedge polygons formed in periglacial 

conditions during the Quaternary, they are detectable at the study site from airphotography. 

It has been shown (Cresto Aleina et al., 2012) that the comparable polygonal patterns in 

ground of contemporary tundra can be modelled as a Poisson Voronoi Tessellation (PVT), 

that is to say one may postulate an underlying homogeneous spatial point process of 

completely spatially random seed points, and any one polygon consists of all locations 

nearest to one associated seed point than to any of the others. See Lark (2009) for a 

summary of some of the properties of PVT spatial processes and Okabe et al. (2000) for a 

more complete account. By analogy we infer that a PVT model would be a plausible 

descriptor of the ice-wedge polygons at the study site. 

SK2. We may expect more or less continuous variation in depth-integrated soil 

properties from the centre to the edge of any polygon. Much of the polygonal patterned 

ground formed in Europe and North America during the Quaternary was covered by 

aeolian or glacio-fluvial sand or silty deposits. These have an important role in subsequent 

pedogenesis (Catt, 1979; Walters, 1994) imposing local lateral trends. At the centre of a 

polygon there is typically a relatively thin layer of sandy or silty superficial material over 

the host material in which the ice-wedges originally formed. After thawing, the space 

previously occupied by ice in the wedges that delineate the polygons was typically filled 

with the superficial material. Any depth-integrated soil property, such as ECa, can 

therefore be expected to vary laterally (although not necessarily linearly) from the centre of 

the polygon to its edge if there is a texture contrast between the host material and the 

superficial material. There is such a contrast at the Deinze study site where the overlying 

material is silty-sand Quaternary deposits, and the host material is Eocene sandy clay. 
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From these two elements of soil knowledge we may infer that the spatial variation of a 

depth integrated soil property such as ECa, in these conditions, can plausibly be regarded 

as a Poisson Continuous Local Trend random process as defined by Lark (2012b). In the 

next section we consider what distance function might be proposed. 

4.4.2 Question: ‘What type of distance function is plausible?’ Soil knowledge about 

pedogenetic processes and summary statististics. 

SK3. We may expect ECa to decline from the polygon centre to the rim. It is generally 

found that measurements of ECa made by electromagnetic induction are positively 

correlated with the clay content of the soil (e.g. Kachanoski et al., 2002; Saey et al., 

2009b). For this reason we should expect ECa, as a depth-integrated variable, to decline 

from the polygon centre, where the thickness of sandy and silty material over the heavier 

host material is thinner, to the edge of the polygon where the former ice-wedge is filled 

with the lighter material. This was found to be the case for our test case (chapter 3). 

SK4. The data on ECa are mildly positively skewed. This can be seen in Table 4.1. 

The simplest PCLT model, as used by Lark (2012b), has a linear distance function 

kkD )( . If the distance function has a positive slope, i.e.    )()'(' kDkDkk  , then 

it can be seen that the corresponding PCLT random function has a moderate positive 

skewness (about 0.65). A linear distance function with a negative slope, needed for 

consistency with SK3, would therefore give rise to a RF with a moderately negative 

skewness. This is not compatible with SK4. 

Of the distance functions examined by Lark (2012b) one in which the distance function 

is proportional to the reciprocal of distance is compatible with SK3 and SK4. The 

reciprocal of distance declines with distance (SK3), and the example of such a RF given by 

Lark (2012b) has mild positive skewness (SK4). On this basis it was decided to proceed 

with further analysis on the assumption that the data on ECa could be regarded as 

realizations of a PCLT process with a distance function linearly proportional to 

 ak
kD




1
)(

 ( 4-3 ) 

where k  is the distance to the nearest event of the underlying spatial point process, and   

is a parameter which must take some value 0  to ensure that the distance function is 

defined for all positive k . We refer to this PCLT as the inverse-distance PCLT in the 

remainder of this chapter. 

This distance function was selected because it was seen to be a simple function, at least 

potentially compatible with available soil knowledge. In due course its parameters are 

estimated and this gives some further indication of its plausibility, and in section 4.5 we 

evaluate statistics to compare its plausibility with the TG model. 
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We call the inverse-distance PCLT random function idZ . We shall model the ECa data 

as a realization of a random function Z  where 

idZZZ n  , 

and nZ  is an is an independently and identically distributed Gaussian nugget component of 

mean zero. We now obtain the cumulative distribution and density functions of idZ . 

We first define the inverse of the distance function in (Eq. 4-3), )(' idzD , such that 
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Since )(kD  is monotonic and decreasing with increasing k  for admissible (non-

negative) values of k , the marginal cdf of idZ , )(id zF  can be written as 

 )),('(1)( idid zDFzF k  ( 4-5 ) 

where )(kFk  is the marginal cdf of k . In Eq. 14 of Lark (2012b) it is shown that, for a 

Poission point process in 2D with intensity  , 

  2exp1)( kkF  , ( 4-6 ) 

and so 
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which is defined for  /10 idz , which shows that random function idZ  has an upper 

and a lower bound. 

By differentiation of )( idid zF  with respect to idz  we can obtain a pdf: 
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A soil variable modelled as an inverse-distance PCLT random function is assumed to 

have a spatially correlated component that is linearly proportional to idz  for some values of 

the parameters α and λ. As noted above, the soil variable is assumed to be a realization of a 

random function Z  that includes an independent Gaussian nugget component of mean 
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zero. If the pdf of the nugget component is denoted by )( nn zf , then the pdf of Z , )(zf , 

can be obtained by the convolution operation 

 ,d)()()( id xxzfxfzf n  



 ( 4-9 ) 

since idZ  and nZ  are independent random variables (Dudewicz and Mishra, 1988). 

4.4.3 Question: ‘What is a plausible range of values for λ, the intensity of the 

process?’ Soil knowledge from field observations and an estimate of the proportion of 

variation of ECa that is attributable to the nugget component. 

SK5. Chapter 3 reports a detailed excavation of a polygonal cell with a diameter of 

about 6 m, which is regarded as typical from airphoto evidence. If all cells have a diameter 

of d  m then the average intensity of an underlying spatial point process is 2/4 d . On the 

basis of the information provided by the excavation it was decided to consider a range of 

possible values of λ for the spatial point process in the interval [0.02 m-2, 0.08 m-2] which 

corresponds to a range of polygon diameters from 4 to 8 m (i.e. 2 m either side of the value 

proposed as representative). 

SK6. The nugget variance of the (untransformed) ECa data is about 10% of the 

correlated variance. This information is needed to allow us to calculate moments of the 

pdf in Eq. 4-9. To obtain it we fitted a powered exponential model (Eq. 4-2) to the 

empirical variogram of the ECa data (not shown here) using the MVARIOGRAM 

procedure in GenStat (Harding et al, 2010). 

The mean and variance of idZ  for some values of the parameters α and λ was obtained 

from the pdf in Eq. 4-8, the QDAG algorithm in the IMSL library (Visual Numerics, 2006) 

was used for numerical integration. It was then possible to compute the variance of an 

independent Gaussian nugget component nZ  such that the variances of idZ  and nZ  were 

in the same ratio as SK6 suggests for the ECa data. The coefficient of skewness for the 

sum of these two random variables could then be calculated from moments obtained by 

numerical integration of the convolution of the distributions of idZ  and nZ  (Eq. 4-9). 

Figure 4.4 is a plot of values of the skewness coefficient of idZ  for values of the 

parameters α and λ, the range for λ obtained from SK5. Note that over much of the range 

of values of λ it is α that has the strongest effect on the skewness. The two contours drawn 

on Figure 4.4 bound a region within which the skewness is in the interval [0.25, 0.5]. We 

regard this as mild positive skewness, compatible with SK4. Figure 4.4 shows that values 

of α less than 2 m seem unlikely to be compatible with SK4 since coefficients of skewness 

for such variables are larger than 0.5. 
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Figure 4.4 Values of the coefficient of skewness for an inverse-distance PCLT process 
with different values of the parameters λ and α. The two contours bound the region where 

we regard the variable as mildly positively skewed. 

4.4.4 Model fitting given the soil knowledge 

Estimates of the isotropic variogram of the raw data on ECa were obtained using 

Matheron’s method of moments estimator (Matheron, 1962) as implemented in the 

FVARIOGRAM directive in GenStat (Payne et al., 2009). An inverse-distance PCLT 

model was then fitted to the estimates. This variogram was specified by: 

 ),,()( id10id  hgCCh  ( 4-10 ) 

where ),(id rg  is the standardized inverse-distance PCLT variogram: 
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where ),(id hC is the covariance function for lag h  for an inverse-distance PCLT 

process with parameters α and λ. The covariance function for a variable in 2D is given by 
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where ),( rkkS  is the joint survival function for the underlying spatial point process, as 

defined by Lark (2012b). This equation is obtained directly from Eq. 20 of Lark (2012b) 

and the reader is referred to that paper for details. 

To fit the inverse-distance PCTL variogram the value of α was first fixed. The 

parameter λ was then set to values over the range defined from SK5, and for each value the 

IMSL optimization subroutine BCPOL (Visual Numerics, 2006) was used to find estimates 

of 0C  and of 1C  that minimize the weighted sum of squares of deviations between the 
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fitted variogram model and the point estimates (Cressie, 1985). This produces a ‘profile’ 

plot of the weighted sum of squares against λ for fixed α.  

 

Figure 4.5 Profile plot of the weighted sum of squares (WSS) for the fit of the inverse-
distance PCLT variogram function against λ, with α fixed at 2.5 m. 

The procedure followed was to set α to discrete values ≥ 2.0 and to find the value of λ 

with the minimum weighted sum of squares on the profile plot. If the two values of the 

parameters fell within the region of mild positive skewness in Figure 4.4, then they were 

retained as possible estimates. The set of parameters was then selected for which the 

weighted sum of squares was smallest. The resulting values of α and λ were 2.5 m and 

0.07 m-2 respectively. The estimated nugget and spatially correlated variance were 0.49 

and 4.03 respectively. Figure 4.5 shows the profile plot of the weighted sum of squares 

(WSS) with α = 2.5 m and Figure 4.6 shows the empirical variogram for the untransformed 

data and the fitted inverse-distance PCLT model. In Figure 4.7 is shown the qq-plot of the  

standardized random function nZZZ  id  and the standardized ECa data. The theoretical 

and empirical distribution functions are in reasonable agreement, although the median of 

the former is slightly smaller than the latter. 
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Figure 4.6 Empirical variogram of the untransformed ECa data with the fitted inverse-
distance PCLT variogram. 

 

Figure 4.7 (a) qq-plot of the standardized inverse-distance PCLT random function with 
α = 2.5 m and λ = 0.07 m-2 and the standardized ECa data.  

4.5 Comparing the TG and PCLT models 

It is well known that Gaussian (and trans-Gaussian) models of spatial variation, in 

which all information on variability is expressed by two-point statistics such as the 

covariance function, are not able to reproduce all important features of natural spatial 

fields, which must be represented by higher-order moments (e.g. Guardiano and 

Srivastava, 1993). This has been the motivation for the development of multiple-point 
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statistics. In this section we investigate whether the PCLT model characterizes the spatial 

structure of the ECa data better than the TG model. 

One feature of the Gaussian and trans-Gaussian random variables that often limits their 

applicability is the fact that large values of the variable tend to be spatially isolated from 

other large values, the same holds for small values (e.g. Strebelle, 2002). In this case study 

we may consider locations with small values of ECa. These locations are likely to be 

dominated by lighter sandy and silty Quaternary material, rather than the heavier-textured 

Eocene host material, and so will have larger hydraulic conductivities than sites where the 

ECa is larger. The potential for rapid lateral transport of water-born contaminants through 

such a landscape may therefore be underestimated under a TG modelling framework if the 

TG model does not adequately represent the local connectivity of areas with small values 

of ECa. Figure 4.8 shows a realization of each of the fitted PCLT and TG models for ECa. 

The inverse-distance PCLT realization was generated directly following the procedure 

used by Lark (2012b). The TG realization was obtained by Sequential Gaussian Simulation 

using the SGSIM subroutine from the GSLIB library (Deutsch and Journel, 1997) modified 

to use the powered exponential variogram function. On visual inspection it can be seen 

that, while some large patches with smaller ECa values are seen in the TG realization, 

there are fewer isolated small patches with small ECa values in the inverse-distance PCLT 

realization, which has large and connected regions with small conductivity around the 

boundaries of the Voronoi cells of the underlying point process. However, this visual 

inspection is of limited usefulness and a more objective measure is needed. 

 

Figure 4.8 Realization of (a) the inverse-distance PCLT random function and (b) the TG 
random function (back transformed to original units) on a 0.25-m square grid. 

To this end we consider a simple test criterion, which can be readily evaluated on the 

ECa data which are more or less regularly sampled but which do not constitute a 

comprehensively observed ‘image’. We define the criterion ),( P  as the expected 
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proportion of observations within a square window of width , centred at a randomly 

selected location x which are  , conditional on the value at x being  . We may expect 

these values to be smaller for a TG random function than for a function which better-

represents the spatial structure of a variable in which small values tend to be spatially 

connected. 

We estimated ),( P  for the TG and PCLT random functions fitted to the ECa data by 

simulation. These are denoted by ),(TG P  and ),(PCLT P  respectively. We considered 

windows of width 2 m or larger (because approximately 40 ECa observations occur within 

a 2-m window). Each simulation program generated a single independent realization of the 

random function at 25 equally-spaced locations in a window of width  one of which was 

at the centre of the window. If the simulated value at the centre was  , the conditioning 

criterion, then the realization was retained and ),( P  was estimated as the proportion of 

the observations in the window for which  . This was repeated until 10 000 independent 

realizations which met the criterion that the central value was   had been obtained. The 

PCLT realizations were generated using the procedure described by Lark (2012b). The TG 

realizations were obtained by LU decomposition (Goovaerts, 1997). The mean value of 

),(TG P  and the standard deviation of the 10 000 independent values, were computed for 

different values of  and for τ set to the median, first quartile and first octile of the ECa 

data. This was also done for ),(PCLT P . The difference between the mean values of 

),(PCLT P  and ),(TG P  for these different thresholds and for windows of different size, 

are plotted in Figure 4.9. 

 

Figure 4.9 Plot of the difference between the mean of ),(PCLT P and that of ),(TG P  

for different window widths () and with τ set to the median, first quartile and first octile 
of the ECa data (mean for 10 000 realizations of each random function). 
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Figure 4.9 shows three things. First, the mean value of ),(PCLT P  is larger than that 

of ),(TG P  for given τ and Δ. That is to say, given that a value falls below a threshold, 

there is a larger proportion of neighbouring values which do so for the PCLT process than 

for the TG process. Second, the effect depends on the threshold, and increases as the 

threshold becomes more extreme relative to the overall distribution. Third, the effect 

depends on the window size. It is small for a large window, but it is also notable that the 

difference is larger for the window width 4 m than the window width 2 m. This reflects the 

spatial scale of the random function. 

The ),( P  statistic was then estimated from the ECa data for the same three threshold 

values used in the simulations, and for Δ = 4 m given that this window showed the largest 

differences between the two processes in the simulation. An independent random 

subsample of 250 observations for which ECa   was obtained, the proportion of ECa 

observations within a square window, width Δ about each of these observations was 

computed. The results are shown in Figure 4.10. The mean value of ),(TG P  and 

),(PCLT P  from the simulations are plotted, and for each of these the 95 % confidence 

interval for the mean of a sample of 250 independent observations is also shown, based on 

the variances of the values obtained by simulation. The estimates from the ECa data are 

also plotted.  

 

Figure 4.10 ),( P  with  = 4 m plotted against τ set to the median, first quartile or first 
octile. The solid disc (●), is the mean value from 10 000 realizations of the PCLT random 

function, the solid square () is the mean value from 10 000 realizations of the TG random 
function. The horizontal bars show the 95 % confidence interval for the mean of based on 

250 independently and randomly selected locations that mean the conditioning criteria. The 
crosses (x) show the mean values for 250 independently and randomly selected sites in the 

ECa data set. 
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Note that for all three thresholds the values of ),( P  for the data are larger than the 

upper limit of the confidence interval for the TG process. For τ equal to the median and the 

first quartile the values from the data are within the confidence interval for the PCLT 

process, for the first octile the estimate is slightly smaller than the confidence interval for 

the PCLT process, but closer to the expected value for the PCLT process than it is for the 

TG process. 

4.6 Discussion 

The overall objective of this study was to identify a stochastic model for a soil property 

that varies according to some mode, and to base this identification as far as possible on 

knowledge of the underlying soil process and, at most, some simple descriptive statistics of 

the variable such as the empirical variogram and summary statistics. This was achieved in 

this study by employing general soil knowledge in a structured way. This is proposed as a 

framework for similar studies on soil variation in contrasting modes. 

The particular value of this approach is shown by the fact that the inverse-distance 

PCLT model was better than the TG model in terms of the test statistic on the connectivity 

of values with small ECa. If one wanted to generate conditional simulations of the soil in 

this environment as a basis for computing, for example, distributions of upscaled processes 

such as pollutant transport across a block of land, then the inverse-distance PCLT model 

would produce superior representations of the connectivity of material with large 

conductivities, and so of preferential flow pathways. 

There is considerable scope for further development of this approach. Other distance 

functions could be considered for this variable, and for others. In this study we looked for 

the simplest distance function that seemed to be compatible with soil knowledge, and there 

may be scope further to refine a framework for selecting a function. More specific soil 

knowledge could be used. For example, in the case study considered here, one could 

generate a simple conceptual 3D model of a polygon, with material with different 

dielectrical properties, and compute the expected trend function from models of the EM 

properties of the soil. While the objective of this particular study was to restrict the use of 

direct observations on the target variable to simple descriptive statistics, one might also 

conduct specific surveys at fine scale on transects across polygons in order to identify 

plausible distance functions for further studies. 

The model-fitting framework in this study made combined use of point estimates of the 

variogram, and a weighted least squares criterion for parameter estimation, subject to 

constraints identified from soil knowledge. Ultimately a  likelihood framework is required 

for estimation. It is not straightforward to develop this for such non-Gaussian variables, but 

more general consideration of soil knowledge might help us to identify a limited set of 
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distance functions that are of interest, and for which the appropriate likelihood framework 

could then be developed. 

There is scope for further work on the comparison of realizations of the PCLT and TG 

processes with respect to multiple-point statistics and for weighing the evidence that one 

model rather than the other best represents particular data. We used a relatively simple 

criterion in this chapter, given that our data are not-quite regularly sampled and so do not 

constitute an image. However, it would be interesting to see how statistics developed for 

images (e.g. De Iaco and Maggio, 2011) might be adapted to irregularly sampled data. That 

said, the statistic which we used in this chapter was not a general measure of spatial 

structure but rather was focussed on a particular problem of direct interest (i.e. the 

connectedness of areas likely to have larger hydraulic conductivities). This is arguably 

more relevant than a generalized measure. It would be interesting to develop methods to 

quantify the spatial structure of RFs as this affects particular processes. For example, one 

might compare the outcomes of a process model for the dispersal of contaminant plumes 

when it is run with input data on conductivity or similar model parameters which are 

realizations of contrasting random processes. 

Any PCLT model could be used in conventional spatial prediction by kriging since the 

variogram or, equivalently, the covariance function can be specified. However, since the 

PCLT covariance function is not available in closed form, it would generally be more 

efficient to use a standard variogram function for kriging. Furthermore, one might 

generally want to transform a non-Gaussian variable prior to kriging. The value of the 

PCLT model is not to provide an alternative form of the covariance function, but rather for 

spatial prediction of non-Gaussian variables whose multivariate distribution is not entirely 

characterized by the covariance function. Spatial prediction in such cases may be may be 

done by codes such as SNESIM (Strebelle, 2002) or the direct sampling method of 

Mariethoz et al. (2010) which allow one to obtain the distribution function of random 

variables at unsampled sites from multiple realizations of a non-Gaussian process. These 

procedures require TIs of the variables of interest, and the availability of sufficient TIs of 

adequate quality is a potential limitation on the use of MPG methods in soil science. For 

this reason Pyrcz et al. (2008) developed a library of training images for a particular 

geological setting (fluvial and deepwater reservoirs) by a combination of stochastic and 

object-based simulation methods. If an appropriate PCLT process could be identified for a 

particular soil variable, then it might be used similarly to generate TIs, either for a library 

or as required for a MPG simulation. 
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4.7 Conclusions 

We have developed an alternative non-Gaussian RF that is able to model the polygonal 

pattern of the ECa measurements. The appropriate stochastic geometric model was fit 

through a structured use of soil knowledge. We have shown that this model appears to 

capture features of the spatial variation of our target variable better than the standard 

Gaussian model, even after transformation of the data to marginal normality. There is more 

work to be done in the development of this approach, and exploring its practical 

implications but we believe this case study shows that there is considerable potential.  

In particular, realizations of PCLT processes may be better than standard TG 

simulations for predicting outcomes of non-linear processes such as contaminant transport, 

and for quantifying the uncertainty of such predictions. If PCLT models succeed in 

capturing the multiple-point behaviour of soil variables, then PCLT simulation could be 

used to provide an inexhaustible supply of TIs for existing MPG algorithms. 

  





 

 

Chapter 5  
Performing MPG simulations with the 
Direct Sampling algorithm 

The content of this chapter  is based on: Meerschman, E., Pirot, G., Mariethoz, G., 

Straubhaar, J., Van Meirvenne, M. and Renard, P. 2013. A practical guide to performing 

multiple-point statistical simulations with the Direct Sampling algorithm. Computers & 

Geosciences 52, 307–324. 

 

This chapter analyses the Direct Sampling (DS) algorithm, the MPG algorithm that we 

selected as the most appropriate to reconstruct the polygonal network (chapter 3), because 

it allows categorical, continuous and multivariate simulations (Mariethoz et al., 2010). It is 

important to understand precisely the capacities of DS and its sensitivity to the user-

defined input parameters. However, DS was only recently developed, and there is little 

supporting material to help users getting started. Therefore, the first section of this chapter 

describes the DS workflow in general and the second section reports a more detailed 

explanation and a comprehensive sensitivity analysis on the DS input parameters. Two of 

the seven TIs used for the sensitivity analysis were ice-wedge polygonal network TIs. 

5.1 Introduction 

The Direct Sampling (DS) algorithm is a recent MPG algorithm (Mariethoz et al., 

2010) that is the object of an international patent application (PCT/EP2008/009819). The 

code is available on demand for academic and research purposes. DS is implemented in the 

ANSI C language and all input and output files are in an ASCII SGeMS compatible format 

(Remy et al., 2009).  



 
70  5. The Direct Sampling algorithm 

5.2 Theory 

Figure 5.1 shows the workflow of the DS algorithm. If there are conditioning data 

available, these are first assigned to their closest grid nodes in the simulation grid. 

Conditioning data are generally point observations, that can be either categorical or 

continuous, but it can also be transect or (quasi) exhaustive samples. When no conditioning 

data are available, DS will generate unconditional simulations. Then, a path is defined 

through the (remaining) locations to be simulated x. This path is usually random, but the 

user has the option to define a unilateral path.  

For each sequentially visited x, DS defines the data event )(xdn  consisting of the n 

closest neighbours (including conditioning data and previously simulated grid nodes) 

within the defined search area. The user defines the maximum number of neighbours nmax 

and the maximum search area. This search area can be defined by setting the parameters 

‘maximum search distance’, i.e. the radius in the x-, y- and z- direction of a rectangular 

search area. Generally, it is advised to use a large search area by setting the radii to half the 

size of the simulation grid, corresponding to the maximum neighbourhood size. Making 

nmax  the only limiting factor results in data events that cover a large part of the search area 

when the first unknown grid nodes are simulated, and a progressive decrease of the size of 

the area covered by nd  when the number of already simulated nodes increases. 

Consequently, DS ensures that patterns at different scales are present in the simulation, 

which is also the purpose of the multi-grid approach in SNESIM (Strebelle, 2002).  

Next, a TI scan is performed, as illustrated in Figure 5.2. For a random location y in 

the TI grid, the TI pattern )(ydn  is defined that has the same data geometry as )(xdn . The 

dissimilarity between the data values of )(xdn  and )(ydn  is quantified by a distance 

measure  )(),( ydxd nnD . As soon as D is smaller than a user-defined acceptance 

threshold t, the value at the central node of this TI pattern )(yz  is assigned to )(xz  in the 

simulation grid. If D is larger than t, the TI scan continues. This acceptance threshold t 

needs to be defined because a TI pattern matching )(xd n  exactly is often not found, 

especially for continuous variables. For each variable type, one only has to select the 

appropriate dissimilarity distance D, making DS a flexible technique. The default distance 

type for categorical variables is the fraction of non-matching nodes between )(yd n  and 

)(xd n . For continuous variables, it is the sum of the absolute value of the differences 

between the corresponding data values in )(yd n  and )(xd n . The latter is normalised, so 

both dissimilarity distances range between zero (exact match) and one (no match).  

The user can decide about the maximum fraction of the TI that is scanned for each x by 

setting parameter f, ranging between 0 (no scan) and 1 (scan full TI if necessary). If this 

maximum fraction has been scanned and still no TI pattern with D < t has been found, DS 

assigns the central node of the TI pattern with the smallest D to )(xz . When no neighbour 
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is found for x , for instance for the first node of an unconditional simulation, DS randomly 

samples a node y  in the TI and assigns its value )(yz  to )(xz  in the simulation grid. 

 

Figure 5.1 Workflow of the Direct Sampling algorithm.  
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Figure 5.2 Illustration of how the Direct Sampling algorithm scans the TI focusing on the 
three main input parameters: t, f and n. 

5.3 Sensitivity analysis on the Direct Sampling algorithm 

Using DS requires the user to define some parameters: among them, the acceptance 

threshold t, the maximum fraction of TI to scan f and the maximum number of points in the 

neighbourhood n are the most important since they are balancing simulation quality and 

CPU time. For these three parameters, we report a detailed sensitivity analysis by 

generating non-conditional simulations for the entire 3D parameter space. Next to a visual 

inspection of the resulting simulations, we quantified the similarity between the 

simulations and the TI by means of simulation quality indicators (CASE 1). The same 

quality indicators were calculated for a 3D example (CASE 2). We also illustrated the 

potential of the post-processing option (CASE 3), the multivariate simulation option 

(CASE 4) and the data conditioning option (CASE 5) and discussed the corresponding 

user-defined input parameters. Table 5.1 summarizes the values of the parameter that we 

kept fixed and the range of values of the parameters that we varied. 

Since Mariethoz (2010) already showed good performance of DS with as many as 54 

processors, the parallelization option is not discussed here. For more information about the 

option to use transform-invariant distances we refer to Mariethoz and Kelly (2011). 
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Table 5.1 Fixed parameters with their default values chosen for this study (sorted 
according to their appearance in the parameter file) and parameters that were varied with 
their default values and range over which they were varied (sorted according to the case 

number in which they were studied). 

Fixed parameters 

Name Default 

Simulation method MPS 

Number of realizations 10 

Max search distance 125 125 0 (½ size simulation grid) 

Anisotropy ratios in the search  
window (x,y,z) 

1 1 1 

Transformations 0 (no transformations) 

Path type 0 (random path) 

Type of variable 0 for categorical, 1 for continuous 

Exponent of the distance function  
in the template 

0 

Syn-processing parameters (4) 0 0 0 0 (no syn-processing) 

Initial seed 1350 

Parameters reduction 1 (no parameters reduction) 

Parallelization 1 (serial code, no parallelization) 

Varied parameters 

Name Defa
ult 

Range C
a
s
e 

Threshold position t 0.05 0.01 – 0.02 – 0.04 – 0.06 – 0.08 – 0.1 
– 0.12 – 0.14 – 0.16 – 0.18 – 0.2 – 
0.25 – 0.5 – 0.75 – 0.99 

1 

Max fraction of TI to 
scan f 

0.5 0.05 – 0.1 – 0.15 – 0.2 – 0.3 – 0.4 – 
0.5 – 0.6 – 0.75 – 1 

1 

Max number of points in 
neighbourhood n 

50 1 – 5 – 10 – 15 – 20 – 30 – 50 – 80 
 

1 

Post-processing 
parameters  
- Number of post-
processing steps (p) 
- Post-processing factor 
(pf) 

 
0 
 
0 

 
0 – 1 – 2  
 
0 – 1 – 3  

2 

Number of variables 
to simulate jointly 

1 1 – 2  3 

Relative weight  
of each variable 

1 0.1 0.9 – 0.25 0.75 – 0.5 0.5 – 0.75 
0.25 – 0.9 0.1 

3 

Weight of  
conditioning data (δ) 

1 0 – 1 – 5  4 

Data conditioning no no – yes 4 
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Figure 5.3 The seven training images (TIs) that were used for the sensitivity analyses: (a) 
continuous (photograph: Plug and Werner, 2002) and (b) categorical (k = 3) TI of ice-

wedge polygons; (c) continuous and (d) categorical (k = 3) TI of a thin marble slice; (d) 
continuous and (e) categorical (k = 3) TI of snow crystals; (g) categorical (k = 3) 3D TI of 
a block of concrete The x-, y- and z-axes represent the number of pixels. The results of the 
sensitivity analyses for TIs (b), (c) and (g) are illustrated in this chapter; the results for TIs 

(a), (d), (e) and (f) can be found as supplementary material in Appendix. 
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Many previous studies have used only one TI with sinuous channels (Figure 2.3 – left). 

In contrast, we include a greater variety of patterns by performing sensitivity analyses on 

seven TIs: an image of ice-wedge polygons (Plug and Werner, 2002), a microscopic view 

of a thin marble slice, an image of snow crystals, all three as categorical and continuous 

images, and a categorical 3D image of concrete (Figure 5.3). The continuous 2D TIs are 

grayscale photographs with pixel values between 0 and 255; the categorical 2D TIs are 

derived from these by classifying them into three categories. The 3D TI is generated by 

sequentially simulating 2D slices constrained by conditioning data computed at the 

previous simulation steps (Comunian et al., 2012).  

The figures shown in this chapter are the results for the categorical ice-wedge TI, the 

continuous marble TI and the 3D concrete TI (3D case). They are presented with the same 

color scale as the TIs in Figure 5.3. The results for the other TIs can be found as 

supplementary material in Appendix. 

5.3.1 CASE 1:parameters balancing CPU time and simulation quality: t, f and n 

It is clear that the larger n and the closer t to 0 and f to 1, the better the simulation 

quality will be. However, these settings will be very expensive in terms of CPU time. For 

the six 2D TIs, we simulated 10 unconditional realizations for each parameter combination 

of 15 t values, 10 f values and 8 n values (Table 5.1), resulting in 12 000 realizations for 

each TI.  

 CPU time 

Figure 5.4 shows the CPU time needed to simulate one unconditional simulation using 

the categorical ice-wedge TI and one using the continuous marble TI. First the influence of 

t and n is shown for f = 0.5 after which the influence of f is shown for different 

combinations of t and n.  

Besides the fact that generating simulations based on the continuous TI generally takes  

longer, the results for the categorical and the continuous case show a similar behavior. 

Simulations with small t and large n require a long simulation time and decreasing f 

strongly reduces CPU time. Modifying one of the parameters t, f or n increases or 

decreases the CPU exponentially. The combined effect of relaxing all three parameters 

only slightly, can reduce CPU time significantly. For instance, generating one simulation 

for the categorical case with default parameters (t = 0.05, f = 0.5, n = 50) takes 163 s. 

Relaxing t to 0.1 only takes 44 s, relaxing all three parameters to t = 0.1, f = 0.3 and n = 30 

only takes 13 s.  

This behavior is related to the scanning algorithm. When t is close to 0, f close to 1 and 

n large, the algorithm scans the entire TI for a very good match with complex data events 

(large neighbourhoods). This takes a lot of time. In the opposite case, the algorithm finds 

very quickly a TI pattern that matches the criteria and the algorithm is fast. What is striking 
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in Figure 5.4 is that the evolution between these two cases is rather abrupt for some 

parameter values. When the parameter values are beyond such an abrupt boundary, DS is 

very fast whatever the parameter values, below this boundary CPU time increases.  

 

Figure 5.4 Influence of t and n (for f = 0.5) (top) and f (bottom) on the CPU time required 
to run one unconditional simulation. 

 Visual quality inspection 

Figure 5.5 shows the first out of 10 simulations for some combinations of t, f and n 

using the categorical ice-wedge TI and Figure 5.6 using the continuous marble TI. The 

results for the other TIs can be found as supplementary material. Similar as for Figure 5.4, 

first a sensitivity analysis on t and n is performed (for f = 0.5), after which the effect of f is 

illustrated for some combinations of t and n. We select simulations with different quality 

levels in order to illustrate the evolution of the simulation quality. As the quality steps 

depend on the TI, simulations with different t and n values are illustrated for each case. 

For the categorical case, running DS with t > 0.5 or n ≤ 5 results in noisy images. This 

is not surprising since then the sampling is not selective enough: any )(ydn  can be 

accepted even if it is far away from )(xdn . This corresponds to situations in which the 

algorithm is very fast. For t ≤ 0.5 and n > 5, the ice-wedge pattern is reasonably well 

reconstructed. For t ≤ 0.2 and n ≥ 30, the simulation quality is very good. Not only the 

pattern reconstruction, but also the appearance of noise and the fuzziness of the edges 

between different categories are influenced by t and n (CASE 3). For the categorical 

marble TI (Figure 5.3d) similar thresholds were found (Appendix - Figure B).  
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Figure 5.5 (a) First out of 10 unconditional simulations illustrating the effect of parameters 
t and n with f = 0.5 and (b) first out of 10 unconditional simulations illustrating the effect 

of f for constant t and n based on the categorical ice-wedge TI (Figure 5.3b). 
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Figure 5.6 (a) First out of 10 unconditional simulations illustrating the effect of parameters 

t and n with f = 0.5 and (b) first out of 10 unconditional simulations illustrating the effect 

of f for constant t and n based on the continuous marble TI (Figure 5.3c). 

For the categorical snow crystals TI (Figure 5.3f) the simulation quality is good for 

t ≤ 0.1 and n ≥ 50 (Appendix – Figure C). In contrast to the effect of t and n, f has a much 
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smaller effect on the simulation quality. Scanning a smaller part of the TI hardly results in 

a quality decrease (Figure 5.5b). The same conclusion can be drawn from the simulations 

using the other categorical TIs (Appendix – Figure B and C).  

Figure 5.6 shows that generating continuous simulations generally requires stricter 

parameters (smaller t, larger n and f). Running DS with t ≥ 0.2 results in noisy images. The 

simulation quality is good for t ≤ 0.1 and n ≥ 30. Simulations using the continuous ice-

wedge TI (Figure 5.3a) show important changes in visual quality for the same values of t 

and n (Appendix – Figure A). The quality of the simulations using the continuous snow 

crystal TI (Figure 5.3e) is generally less good: only for t ≤ 0.1 and n ≥ 50 the simulation 

quality is moderate (Appendix – Figure D). For the continuous cases, it is observed that 

variations in f do not affect much on the simulation quality.  

Especially for the continuous cases, it can be seen that some simulations are almost 

exact copies of parts of the TI. This phenomenon is called ‘patching’. It is caused by 

copying each time the central node of the same best matching pattern. The issue of 

patching will be discussed further in this chapter. 

 Simulation quality indicators 

For each unconditional simulation we calculated several quality indicators by 

comparing the histogram, variogram and connectivity function of the TI and the 

simulations. The connectivity function )(h  for a category s is defined as the probability 

that two points separated by a lag vector h  are connected, denoted as hxx  , by a 

continuous path of adjacent cells all belonging to s, conditioned to the fact that the two 

points belong to s (Boisvert et al., 2007; Emery and Ortiz, 2011; Renard et al., 2011; 

Renard and Allard, 2012):  

  ssss  )(,)(Prob)( hxxhxxh . ( 5-1 ) 

Figure 5.7 compares the histogram, variogram and connectivity function of the 

categorical ice-wedge TI (Figure 5.3b) with these of a good simulation (t = 0.01, f = 0.5, 

n = 80) and a bad simulation (t = 0.5, f = 0.5, n = 15 for categorical and t = 0.2, f = 0.5, 

n = 5 for continuous). Both the indicator variogram values )(hk  and the connectivity 

function )(hk  for each category k  are calculated for 20 lag classes h  with a lag width 

of 5. The histograms (proportions of the three categories) are represented for both 

simulations. The indicator variograms and the connectivity functions are only reproduced 

for the good simulation, except for the intermediate material (grey), where the bad 

simulation partially reproduces the TI statistics. 

Figure 5.8 illustrates the same for the continuous case. Here the standard variogram 

)(h  is calculated instead of the indicator variogram. To calculate the connectivity 

functions, the TI and the simulations were first divided into three categories based on two 

thresholds representing connectivity jumps in the TI (Renard and Allard, 2012). Similarly 
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to Figure 5.7, the histograms (represented as the cdf) were represented for both the good 

and the bad simulation, whereas the variogram and the connectivity functions were only 

reproduced by the good simulation. 

 

Figure 5.7 Reproduction of (a) the categorical ice-wedge TI statistics of (b) a good 
(t = 0.01, f = 0.5, n = 80) and a bad simulation (t = 0.5, f = 0.5, n = 15) with the 

reproduction of (c) the histogram, (d) the indicator variograms (the dotted lines represent 
the TI indicator variance) and (e) the connectivity functions. 
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Figure 5.8 Reproduction of (a) the continuous marble TI statistics of (b) a good (t = 0.01, 
f = 0.5, n = 80) and a bad simulation (t = 0.2, f = 0.5, n = 5) with the reproduction of (c) the 

histogram, (d) the variogram (the dotted line represents the TI variance) and (e) the 
connectivity functions. 

To quantify the dissimilarity between the simulations’ statistics and those of the TI, we 

calculated three error indices for each simulation: a histogram error hist , variogram error 

var  and connectivity error conn . For the categorical simulations, k
hist  was defined as 

the absolute value of the difference between the proportion of k  in the simulation grid 
k

simf  and in the TI k
TIf . For the continuous simulations, hist  is calculated as the 

Kullback–Leibler divergence KLD  (Kullback and Leibler, 1951): 

 
i

KLhist Q(i)

P(i)
P(i)=Q)P(D= log  ( 5-2 ) 

with P(i)  the probability distribution in the simulations and Q(i)  the probability 

distribution in the TI. 
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The variogram error var  for the continuous simulations is based on the weighted 

average difference between the variogram values of the simulations )(hsim  and the TI 

)(hTI  for 20 lag classes dh , and is calculated as 

 

 



 


20

1

20

1
var

1

var
1

=d d

=d sim

dTIdsim

d

)()(

=

h

hh

h
 ( 5-3 ) 

with simvar  the simulation variance used to standardize the absolute errors, so they range 

between 0 and 1. The term dh/1  was included to give larger weights to errors 

corresponding to small variogram lags. The variogram error k
var  for the categorical case 

was calculated similarly using the indicator variogram values.  

The connectivity error conn was calculated as  
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and also ranges between 0 and 1. 

 Results and discussion 

Figure 5.9 and Figure 5.10 show the results of the simulation quality indicators for the 

categorical and the continuous case. The first part of the figures illustrates the effect of t 

and n, the second part the effect of f.  

As was already concluded from Figure 5.7 and Figure 5.8, hist  behaves differently 

than var  and conn . The histogram was generally well reproduced for all simulations. 

Noisy images reproduced the histogram the best, which was especially clear for the 

continuous case. This can be explained by considering the extreme case of t = 1. With such 

a setting, DS randomly samples values from the TI, resulting in a perfect reproduction of 

the marginal distribution ( hist = 0), but no reproduction of the spatial pattern (very large 

var  and conn ). For intermediate combinations of t and n, hist  is generally larger. In the 

areas with good simulation quality (t ≤ 0.2 and n ≥ 30) hist  behaves differently for the 

categorical and the continuous case. For the categorical case small t and large n guarantee 

both small hist  and good simulation quality (Figure 5.5, Figure 5.9). For the continuous 

case, the high quality simulations (t ≤ 0.2 and n ≥ 30) have larger hist (Figure 5.5, Figure 

5.10). 

This counterintuitive result can be explained as follows: with small t and large n, the 

simulation has to honour very strong spatial constraints. When the structures are made of 

objects that are large with respect to the domain size, respecting such spatial constraints 

means to respect the connectivity of facies and the objects size, even if it contradicts the 
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target pdf. Because of a slight non-stationarity in the TI, the simulation can then follow the 

pdf of one specific part of the TI that is different than the rest. This can result in significant 

variability in the pdfs of the simulations. This is the opposite as the case of t = 1, where the 

TI distribution is honoured because there is no constraint on the spatial continuity. For the 

continuous ice-wedge TI (Figure 5.3a) and the snow crystal TI (Figure 5.3e), the histogram 

is well reproduced in the high quality simulations (Appendix – Figure E and H). Since 

certain applications require the histogram to be reproduced, this issue could be further 

addressed by the DS developers.  

 

Figure 5.9 Influence of (a) t and n (for f = 0.5) and (b) f on the quality indicators based on 
the categorical ice-wedge TI (Figure 5.3b). 
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Figure 5.10 Influence of (a) t and n (for f = 0.5) and (b) f on the quality indicators based on 

the continuous marble TI (Figure 5.3c). 

In contrast, var  and conn  increase for larger t and smaller n, which is a more 

intuitive behavior. Both errors show similar quality jumps as were derived from the visual 

inspection and therefore behave as stable simulation quality indicators.  

These results allow us to derive some rules of thumb. Running DS using a categorical 

TI should result in good simulations for t ≤ 0.2 and n ≥ 30. Selecting t ≥ 0.5 and n < 15 

should be avoided. For continuous TI, it is advised to use t ≤ 0.1, n ≥ 30 and to avoid 

t ≥ 0.2 and n ≤ 15. The quality of intermediate combinations is hard to predict. It is obvious 

that the simulation quality steps strongly depend on the TI. The greater the pattern 

repeatability in the TI, the better the simulation quality will be.  

Figure 5.9b and Figure 5.10b lead again to the conclusion that f does not have a strong 

influence on the simulation quality. This was confirmed by the other TIs (Appendix – 

Figure E,F,G and H). Only for certain situations, like for f < 0.2 in the continuous case (see 

results for var ), the pattern reproduction degraded with smaller f since the probability of 

finding a matching TI pattern was lower. Note also that using a small f value for TIs that 

contain insufficient diversity (Mirowski et al., 2009), might aggravate the statistical 

scarcity and lead to poor results. But generally decreasing f results in large computation 
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gains without a substantial decrease in simulation quality, which is an important 

conclusion for an efficient use of DS. 

It is interesting to juxtapose the CPU time (Figure 5.4) with the corresponding quality 

indicators (Figure 5.9 and Figure 5.10). This reveals where the interesting boundaries are 

located in terms of quality over CPU time ratio. For instance, for the categorical case the 

quality is moderate from n ≥ 15 and t ≤ 0.18 (f = 0.5) (Figure 5.9a), whereas the CPU time 

really increases from n ≥ 30 and t ≤ 0.1 (Figure 5.4a). In between these boundaries, the 

simulation quality is good, as is confirmed by the visual inspection. In case CPU time is a 

limiting factor, users are recommended to investigate the quality over CPU time ratio for 

different parameter combinations running trial simulations on a small grid. 

It is good practice to run DS initially with f = 0.5, t between 0.05 and 0.2 and n 

between 20 and 50. From this, the parameters need to be fine-tuned for every particular 

situation, knowing that decreasing t and increasing n and f should result in better 

simulation quality. However, one should keep in mind that using parameters which 

guarantee very good simulations has two drawbacks. First, these configurations will 

require large CPU times. Second, there is a risk of generating simulations which are all 

exact copies of (part of) the TI (patching effect or verbatim copy). This risk is higher when 

the TI does not show enough pattern repeatability (which is more often the case for 

continuous TIs) and when there are no conditioning data (CASE 5). Strategies to avoid 

patching are choosing f < 1, thus avoiding to pick each time the same best matching mode, 

slightly relaxing t and n, or using a smaller ‘maximum search distance’. 

5.3.2 CASE 2: 3D simulation 

Similarly to two dimensions (CASE 1), DS can generate 3D simulations. To 

demonstrate this, we performed a limited sensitivity analysis using the 3D concrete TI 

(Figure 5.3g). We generated 10 unconditional simulations for each combination of eight t 

[0.01 – 0.05 – 0.1 – 0.15 – 0.2 – 0.25 – 0.3 – 0.5] and eight n [1 – 5 – 8 – 16 – 32 – 64 – 

125 - 216] values, using a fixed value of 0.5 for f. The other parameters were set as 

indicated in Table 5.1, with exception of the maximum search distance that was defined as 

half of the search grid in three directions (x, y and z).  

The CPU time as a function of t and n behaved very similar as for 2D (Figure 5.4). For 

instance, generating one simulation with t = 0.1 and n = 32 took 194 s, with t = 0.05 and 

n = 32 1998 s and with t = 0.05 and n = 64 6804 s. 

Figure 5.11b shows the simulation quality indicators as a function of t and n. Overall, 

the results were analogous to those of CASE 1. The simulation quality generally improved 

with increasing n and decreasing t with a quality jump for t = 0.2 and n = 32, as can be 

seen from grey
conn  and black

conn , and the unconditional simulations shown in Figure 5.11a. 

Again, hist  was the smallest for noisy simulations with very small n.  
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Since the white category represented the background volume, white
conn  was very small 

for all parameter combinations and hence not informative. With parameters producing 

noisy simulations (t ≥ 0.3 and n ≤ 8), grey
var  was again smaller. This can be explained by 

the small range of the grey indicator variogram, causing grey
var  to be small for pure nugget 

variograms reproducing the sill correctly. 

5.3.3 CASE 3: Post-processing for noise removal 

To further improve the simulation quality and more specifically to remove noise, DS 

includes a post-processing option. After having generated a DS realization, each node 

(except for the conditioning data locations) for which no TI pattern with D < t had been 

found is re-simulated. Because all the unknown grid nodes had already been simulated, a 

data event in the post-processing step consists of the n closest grid nodes of x . Whether or 

not this post-processing is performed should be decided by the user. Two post-processing 

parameters need to be defined: the number of post-processing steps p and the post-

processing factor pf. The latter is the factor by which f and n are divided aiming to save 

CPU time in the additional post-processing steps (Mariethoz, 2009). For example, if p = 2 

and pf = 3, all nodes are resimulated two times with parameters f and n 3 times smaller than 

their original values. Figure 5.12 illustrates the noise removal effect of post-processing for 

increasing t and varying p and pf for the categorical ice-wedge TI .  

The post-processing step proved to be valuable especially for intermediate t values (0.1 

and 0.2), since the noise can be considered as entirely removed without substantially 

increasing CPU time. The simulations obtained with intermediate t after post-processing 

were similar to these obtained with small t, except for the boundaries which were less 

sharp. Furthermore, post-processing allowed for a significant reduction in CPU time. With 

t = 0.1 and one post-processing step, we obtained in 58 s realizations similar to when using 

t = 0.05 without post-processing, which took 163 s. 
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Figure 5.11 3D example with (a) first out of 10 unconditional simulations illustrating the 

effect of parameters t and n with f = 0.5 and (b) influence of t and n (for f = 0.5) on the 

quality indicators based on the 3D concrete TI (Figure 5.3g). 
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Figure 5.12 Illustration of the noise removal effect of post-processing using the categorical 
ice-wedge TI (Figure 5.3b) for increasing t, and sensitivity analysis for the number of post-
processing steps (p) and the post-processing factor (pf) showing the lower left corner of the 

simulation grid. 
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For small t (0.05) the post-processing step was not necessary because the simulation 

quality was already good without it. For large t (0.5) it was insufficient since post-

processing only removes noise and does not improve structures at larger scale. Repeating 

the post-processing step did not result in significant quality improvements, and whether or 

not f and n were decreased in the post-processing step neither decreased the CPU time nor 

improved the simulation quality. 

The effect of a post-processing step was less substantial for the continuous case than 

for the categorical case and the CPU cost was much higher. Hence, for continuous cases, 

the quality loss of selecting a large t, cannot be corrected with one or more additional post-

processing steps.  

Since p and pf have to be chosen in advance, it can be considered as good practice to 

add one additional post-processing step when simulating categorical variables. When noise 

appears, it will be reduced and the extra CPU time needed is relatively low. For pf a value 

of 1 can be selected, since adjusting pf does not seem to have an effect. If the simulations 

still contain noise after post-processing, it is however advised to decrease t instead of 

adapting p and pf. 

5.3.4 CASE 4: Multivariate simulation 

Among the MPG methods, only DS has demonstrated its potential to simulate m 

variables simultaneously based on m TIs. These variables can be continuous, categorical or 

a mixture of both since for each a different distance measure can be chosen (distance type 

parameter set to 0 for categorical and 1 for continuous). Several implementations have 

been tested. The one of Mariethoz et al. (2010) is used in this chapter. First, a path is 

defined that goes randomly through all the non-observed grid nodes x for each of the m  

variables. When one variable is simulated at one location, the other variable at the same 

location can be simulated later in the path. For each x a multivariate data event )(xdn  is 

defined that contains the neighbouring data for the m variables, which do not have to be 

collocated. For each variable the maximum number of neighbours nm can be defined 

separately. Based on a weighted average of the m selected distance measures, the 

multivariate TI pattern, centred at the same node for each TI, is chosen that is most similar 

to the multivariate )(xd n  and the value at the central node of this TI pattern is pasted in the 

simulation grid at location x. The weights used to define the multivariate distance measure 

mw  are user-defined. DS automatically normalizes their sum to one. If conditioning data 

are given for all or some of the m variables, they will be honoured by assigning them to the 

closest grid node prior to sequential simulation, as shown in CASE 5 (Mariethoz et al., 

2010).  

A potential application is a situation where one variable is (partially) known and the 

other(s) are to be simulated (the collocated simulation paradigm). DS becomes especially 
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interesting when the relationship between the variables is known via the training data set 

but not expressed as a simple mathematical relation. Applications can be found in 

Mariethoz et al. (2010; 2012) and Chapter 7 of this dissertation. As an illustration we 

showe five unconditional bivariate simulations using the categorical and continuous ice-

wedge TI (Figure 5.3a and b) as bivariate TI and performed a sensitivity analysis on the 

weights given to both variables (Figure 5.13). For the other parameters we used the default 

values as given in Table 5.1: both ncat and ncont were 50. 

Figure 5.13 shows that not only the spatial texture of each TI is reproduced, but also 

the multiple-point dependence between the TIs. The weights given to each variable 

strongly influenced the continuous variable. The larger contw , the better the quality of the 

continuous variable. The quality of the continuous variable decreased for smaller contw . In 

such cases, the bivariate relationship between both TIs was well respected, but the spatial 

continuity of the continuous variables was not strongly imposed. The quality of the 

categorical simulations was less affected by the choice of the weights. Note that for large 

contw  the continuous simulation was almost an exact copy of the continuous TI (Figure 

5.3a), which is again an example of the patching effect described in CASE 1. 

These results suggest that it is often beneficial for the quality of the simulation of 

continuous variables to co-simulate a categorical variable that helps reproducing the 

continuity of the structures. This is a generally accepted technique in image processing in 

which the categorical variable is called ‘feature map’ (Lefebvre and Hoppe, 2006; Zhang et 

al., 2003). 

5.3.5 CASE 5: Data conditioning 

DS always honours conditioning data by assigning them to the closest grid node prior 

to simulation. Hence, local accuracy is guaranteed (the pixels at the data locations will 

have the correct values) but the simulated structures need to be coherent with the 

conditioning data. Therefore, one needs to check whether the fixed grid nodes are 

embedded in the spatial pattern or whether they appear as noise. The parameter that can be 

used to enforce pattern consistency in the neighbourhood of the conditioning data is the 

data conditioning weight δ. This parameter is used in the distance computation to weight 

differently data event nodes that correspond to conditioning data. If δ = 1, all the nodes in 

)(xd n  have the same importance. For δ > 1 higher weights are given to the data event 

nodes that are conditioning data, while for δ < 1 they are given lower weights (Mariethoz 

et al., 2010; Zhang et al., 2006a). 

For both the categorical and continuous cases, one of the best unconditional 

simulations (t = 0.01, f = 1, n = 80) was used as reference image. To avoid using reference 

images that were copies of part of the TI due to patching, we first mirrored both 
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simulations horizontally and vertically, before sampling 100 conditioning data from each 

according to a stratified random sampling scheme (Figure 5.14 and Figure 5.15). 

 

Figure 5.13 Illustration of the multivariate simulation option: five unconditional bivariate 
simulations using Figure 5.3a and b as bivariate TI, and sensitivity analysis for the weights 

given to the two variables ( catw  and contw ). The left column represents the categorical 

variable for each simulation, and the right column represents the corresponding continuous 
variable. 



 
92  5. The Direct Sampling algorithm 

Using the default parameters for t, f and n (Table 5.1), we run 50 simulations using 

these conditioning data and the corresponding TI. To remove noise, one post-processing 

step was performed with pf  = 1 (CASE 3). Conditioning data nodes were not re-simulated 

during post-processing. For δ = 0, δ = 1 and δ = 5, the first conditional simulation was 

shown together with the conditional probabilities for category k in the categorical case 

(Figure 5.14), and the median over the 50 simulations for the continuous case (Figure 

5.15). 

It can be concluded that δ is an important parameter when conditioning data are 

available. For δ = 0 the 50 simulations can be considered as unconditional simulations, 

since the conditioning data grid nodes were ignored in )(xdn . The simulation patterns 

were not at all consistent with the conditioning data and the large variation between the 

simulations resulted in non-informative summarizing images. For δ = 1 the simulations 

showed patterns that were more or less consistent with the conditioning data. The 

remaining inconsistencies disappeared with δ = 5, resulting in summarizing images that 

closely resembled the reference images. The better results for δ = 5 were due to the high 

quality of the conditioning data, which perfectly represented the reference image without 

measurement errors. Generally, we advise to set δ to a value larger than or equal to 1. The 

smaller the expected uncertainty of the conditioning data, the larger δ can be chosen. 

Note that for this example the conditioning data were sampled from a field with a 

spatial pattern that was very similar to the TI. When one expects that the underlying spatial 

pattern of the conditioning data deviates more from the TI, the use of transform-invariant 

distances can be beneficial. This option of DS increases the number of TI patterns by 

randomly scaling or rotating the patterns found in the TI (Mariethoz and Kelly, 2011). 
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Figure 5.14 Illustration of data conditioning for the categorical ice-wedge TI (Figure 5.3b) 

based on 100 conditioning data. For δ = 0, δ = 1 and δ = 5 the first simulation is shown 

together with the conditional probabilities for each category summarizing 50 simulations.  
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Figure 5.15 Illustration of data conditioning for the continuous marble TI (Figure 5.3c) 

based on 100 conditioning data. For δ = 0, δ = 1 and δ = 5 the first simulation is shown 

together with the conditional median for each category summarizing 50 simulations. 

5.4  Conclusions 

This chapter reported the first comprehensive sensitivity analysis for the DS algorithm, 

aiming to encourage users to benefit more efficiently from the potential of DS and its wide 

spectrum of applications. Given these results we provide the following general guidelines. 

For categorical TIs, choosing t ≤ 0.2 and n ≥ 30 will generally result in high quality 

simulations. Smaller t and larger n result in better simulation quality and a  lower level of 

noise. However, this choice will also depend on the available CPU time. Furthermore, for 

small t and large n the user should check if there is still sufficient variability between the 

simulations. For continuous TIs, we advise to select t  ≤  0.1 and n  ≥ 30. For continuous 
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cases, the selection of t and n is a delicate balance between ensuring good simulation 

quality and still guaranteeing sufficient variability between the simulations (avoiding 

patching). A good strategy to reduce both CPU time and the risk of patching is setting 

f < 1, and reducing the maximum search distance to a third the domain size or less, thus 

scanning a different fraction of the TI for each unknown grid node. 

For categorical simulations in particular, it is advised to always add one post-

processing step for noise removal. If the final simulations still contain (too much) noise, 

improvements should be sought by adapting t and n. 

Simulating bivariate images is a very new and promising technique first offered by the 

DS algorithm. With the illustrative example in this chapter we have shown that the weights 

given to each variable clearly affect simulation quality. In case of continuous variable 

simulation, it is beneficial to add an auxiliary categorical variable that is co-simulated with 

a relative small weight. This generally improves the simulation of the continuous variable. 

When conditioning data are available, it is interesting to put the weights given to the 

conditioning data (parameter δ) higher than the weights given to the already simulated 

nodes. This results in simulated patterns more consistent with the conditioning data. 





 

 

Chapter 6  
Categorical and continuous MPG 
reconstruction of the polygonal 
network 

The content of this chapter  is based on: Meerschman, E., Van Meirvenne, M., Van De 

Vijver, E., De Smedt, P., Islam, M.M. and Saey, T. 2013. Mapping complex soil patterns 

with multiple-point geostatistics. European Journal of Soil Science 64, 183–191. 

 

After collecting an appropriate test data set (chapter 3) and studying the DS algorithm 

(chapter 5), in this chapter we applied a first MPG reconstruction of the polygonal network 

test data set.  

6.1 Introduction 

Most MPG applications can be found in petroleum and hydrogeological studies 

(Comunian et al., 2011; Huysmans and Dassargues, 2009; Le Coz et al., 2011; Ronayne et 

al., 2008; Strebelle et al., 2003; Zhang et al., 2006a). However, complex spatial patterns 

that are hard to model with traditional TPG also occur in soil science (chapter 1). This 

chapter provides a case study to demonstrate the applicability of MPG in soil science using 

the polygonal ice-wedge data (chapter 3). 

The coordinates of the ΔECa map  of the polygonal network of ice-wedge casts (Figure 

3.4a) were first rotated and then translated to have their origin in the lower left corner. The 

lower left part of this map was used as the exhaustively known reference image (30 x 

30-m). From this reference image we extracted a continuous and a categorical data set and 

evaluated the continuous and categorical MPG reconstruction of the polygonal network. 
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6.2 Continuous MPG reconstruction 

6.2.1 Continuous reference image and conditioning data 

The lower left part of the ΔECa image (30 x 30-m) (Figure 6.1) was used as the 

continuous reference image (Figure 6.2 – top right). Ten measurement lines within this 

area, having an inter-line distance of 3 m and a within-line distance of 0.4 m, were used as 

conditioning input data (655 data points) (Figure 6.2 – top left). 

 

Figure 6.1 ΔECa image (mS m-1) (Figure 3.4a) after coordinate transformation: the left 
bottom part of this image was used as continuous reference image (white rectangle) and the 

right bottom part as a continuous TI (white dashed rectangle). 

6.2.2 Variogram modelling and mapping with traditional two-point geostatistics 

Before reconstructing the image with MPG, let us first apply a standard TPG approach 

of fitting a variogram model to the experimental variogram and using this model to 

generate a prediction and simulation map (see section 2.2). The experimental variogram of 

the continuous data is given in Figure 6.2 (centre left). It shows no nugget effect and an 

almost linear increase to a sill which displays a hole effect, indicating a fairly regular 

repetition in the process (Webster and Oliver, 2007). To evaluate the contribution of 

considering the hole effect, we fitted both a non-periodic and a periodic variogram model. 

The non-periodic variogram model was a cubic function: 

 























































ahC

ah
a

h

a

h

a

h

a

h
C

h

for

for75.05.375.87
)(

7532

 ( 6-1 ) 



 
6. Categorical and continuous MPG reconstruction 99 

with C  = 1.11 m and a  = 4.1 m. Similar to a Gaussian function, a cubic function is a 

bounded model with reverse curvature near the origin (Webster and Oliver, 2007). We 

incorporated periodicity in the variogram model by fitting a combination of a cubic and 

cardinal sine variogram: 
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 with 1C  = 0.48, 1a  = 3.2 m, 2C  = 0.52 and 2a  = 0.9 m. The cardinal sine function is a 

simple periodic function that is valid in one, two and three dimensions (Webster and 

Oliver, 2007).

 

The prediction maps were created with ordinary kriging (OK) and the simulation maps 

with sequential Gaussian simulation (SGS) (Goovaerts, 1997) (Figure 6.2 – centre right). 

The ΔECa data distribution already followed a standard normal distribution, making a 

normal score transformation unnecessary. Both the variogram modelling and the two-point 

geostatistical mapping were performed with the Isatis software (Bleinès et al., 2011). The 

search area was set to the size of the study area (30 x 30-m) and the maximum number of 

neighbours to 50.  

6.2.3 TI construction and mapping with multiple-point geostatistics 

Whereas 655 observations are generally considered as sufficient to infer two-point 

statistics, this number is not enough to infer multiple-point statistics. Therefore, we applied 

an alternative strategy and constructed two continuous TIs. The first TI (Figure 6.2 – 

bottom left) was built by a histogram transformation of the unconditional simulation 

generated from the PCLT model (Figure 4.8b). We used the TRANS algorithm that is 

implemented in SGeMS that transforms a variable Z with a source cdf zF  into a variable 

Y  with a target cdf YF : ))((1 ZFFY zY
 (Remy et al., 2009, p. 216). We defined YF  as 

the experimental cdf of the 655 observations. To get an idea about how sensitive the MPG 

maps are to the TI, we repeated the reconstruction with a second continuous TI, for which 

we used another part of the ΔECa image (Figure 6.1). This mimics a situation where a field 

is partially sampled at a very high resolution to infer multiple-point statistics and partially 

at a lower resolution (larger inter-line distance) for cost minimisation.  

The prediction maps were obtained as the E-type (conditional mean) of 100 DS 

realizations and the simulation maps were obtained as the first DS realizations (Figure 6.2 
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– bottom right). We used the default distance type for continuous data. Parameter t was set 

to 0.02, f to 0.75, n to 50 and the maximum search area equal to the size of the study area 

(30 x 30-m).  

6.2.4 Evaluation of the two-point and multiple-point maps 

Both the TPG and MPG prediction maps corresponded reasonably well to the 

reference image (Figure 6.2). The mean absolute estimation error (MAEE) was 0.51 for the 

TPG map based on the cubic variogram, 0.52 for the TPG map based on the periodic 

variogram, 0.58 for the MPG map based on the PCLT model TI and 0.64 for the MPG map 

based on the densely sampled neighbourhood TI. However, pattern reconstruction was 

better for the MPG maps: the connectivity of the small values was better reproduced.  

The TPG prediction maps were very similar (r = 0.99) and thus rather insensitive to the 

hole effect of the variogram model, whereas the two MPG prediction maps differed more 

(r = 0.77). This demonstrates that changing the TI has larger consequences than changing 

the variogram: a TI has greater control over the spatial structure (Boisvert et al., 2007). To 

correctly interpret this, one should revert to the fundamental distinction between two-point 

and multiple-point techniques. For MPG simulations, the user provides a prior multiple-

point structural model, i.e. the TI. This model allows one to link the n neighbouring data 

jointly to )(* xz . For TPG simulations, the user only provides a prior one-point, i.e. the 

histogram, and two-point structural model, i.e. the variogram, linking the n neighbouring 

data pairwise to )(* xz . Beyond the histogram and variogram, TPG algorithms use their 

own intrinsic prior structural model that is beyond the control of the user. For SGS this 

model is multi-Gaussian: a model that imposes maximum entropy for the high-order 

statistics (Journel and Zhang, 2006) (see section 2.3.1).  

The different multiple-point structural models are to some extent visualised in the 

simulation maps (Figure 6.2). The TPG simulation maps show a spatial distribution of 

higher entropy: the extremes are more spatially fragmented. The spatial patterns in the 

MPG simulations maps can be considered as better structured, and correspond more 

closely to these in the reference image. This is of course due to the lower entropy (spatially 

connected small values) prior multiple-point models we defined by means of the TIs. Note 

that the conditioning data strongly guide the pattern reconstruction. The differences 

between the TPG and MPG simulations maps would have been more profound for a 

smaller number of conditioning data.  
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Figure 6.2 Reconstruction of the continuous reference image with two-point and multiple-
point geostatistics starting from 655 conditioning data. The two-point prediction (OK) and 

simulation (first SGS realization) maps were based on two different variogram models. 
The two multiple-point prediction (E-type of 100 DS realizations) and simulation (first DS 

realization) maps were based on two different TIs.   
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6.3 Categorical MPG reconstruction 

6.3.1 Categorical reference image and conditioning data 

To obtain a categorical reference image, the continuous one was classified by a 

k-means classification after running a contrast enhancement filter (Figure 6.3 – top right). 

We chose k = 3 to have a strict categorical data set, and not a binary one. The three classes 

represent wedge material, host material and intermediate material. From this classified 

reference map 100 data points were extracted according to a stratified random sampling 

scheme, mimicking a soil sampling campaign where the subsoil textural class is observed 

by hand feeling (Figure 6.3 – top left). 

6.3.2 TI construction and prediction with multiple-point geostatistics 

The experimental set-up of the categorical case study requires an alternative approach 

to construct the TI. Assume that the only information we have about the spatial structure 

comes from the small excavated area and that there is no exhaustively measured 

neighbouring field to directly derive a TI from, as was done in the continuous case. Hence, 

we chose an existing photograph from literature and rescaled it based on the information 

we gathered from the excavation, because it is beneficial when the size of the TI patterns 

corresponds more or less with the true pattern size.  

We selected a near-infrared aerial photograph of a present-day ice-wedge network in 

Alaska (Plug and Werner, 2002), assuming that a similar genetical process was at the basis 

of both ice-wedge patterns. The photograph was rescaled, equalling its average polygon 

size to this of the textural polygon that was observed in the Belgian field by excavation 

(Figure 6.4a). Then, we applied an adaptive low-pass filter for noise removal and classified 

the image into three classes with a k-means classification using Matlab (Mathworks, 

R2011a) (Figure 6.3b). We chose a photograph from Alaska, and not from Belgium, to 

better illustrate the strong concept of the TI as a database of representative patterns, 

independent of its origin. 

The prediction map was the most probable category (conditional mode) of 100 DS 

realizations and the simulation map was the first DS realization. We used the default 

distance type and set t to 0.05, f to 0.5 and nmax to 50. The maximum search area was set 

equal to the size of the study area and after each simulation one post-processing step was 

performed for noise removal.  
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Figure 6.3 (a) The original, rescaled near-infrared aerial photograph of an ice-wedge 
network on the floor of a drained lake near Espenberg, northwest Alaska (Plug and 

Werner, 2002) used to construct (b) the categorical TI. 

6.3.3 Evaluation of the multiple-point maps 

Figure 6.4 compares the multiple-point categorical reconstruction with the categorical 

reference image. Most of the polygons were correctly identified. The categorical prediction 

map had a correct classification rate of 54.0 %. The largest source of error between the 

prediction map and the reference image was due to the difference in spatial pattern 

between the chosen TI and the reference image. The TI contains polygons with smoother 

boundaries, and slightly overestimates the connectivity of the wedge material and 

underestimates the connectivity of the intermediate material.   

Note that we did not made the comparison with TPG here, because the number of 

observations was too small to reveal the spatial pattern, and the patterns themselves –

especially the pattern of the intermediate material- were too complex to be modelled with a 

two-point variogram function.  

6.4  Conclusions 

We successfully applied MPG to reconstruct complex soil patterns. Soil scientists 

frequently face periodic, connected or curvilinear patterns. We believe that MPG is a 

promising and accessible technique to model these complex soil patterns and that it should 

be added to the pedometrician’s toolbox.  

Both the strength and the bottleneck of the approach is the construction of an 

appropriate TI. A TI allows one to reconstruct complex soil patterns that cannot be 

modelled with a variogram, but should be chosen carefully because it strongly influences 

the MPG simulations. 
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Figure 6.4 Reconstruction of the categorical reference image with multiple-point 
geostatistics starting from 100 conditioning data. The multiple-point prediction 

(conditional mode of 100 DS realizations) and simulation (first DS realization) maps were 
based on a categorical TI. 

We applied three different strategies to construct a TI. In contrast to variogram 

modelling that is mostly data-driven, TI construction usually requires extra information. 

This extra information can consist of a geometric model that was fit to a particular 

situation (such as the PCLT model) or a photograph that is deemed to be representative for 

the studied phenomenon, as was used in the categorical case. Obviously, this selection 

strongly depends on the user’s judgement and requires sufficient knowledge of the studied 

phenomenon. Creating a TI from neighbouring proximal soil sensor data and use it to 

interpolate less densely sampled areas, as illustrated in the continuous case, is an elegant 

approach, especially with today’s growing availability of high density measurements.  

 

 
 



 

 

Chapter 7  
MPG reconstruction in inaccessible 
areas using neighbouring densely 
sampled areas as training data 

A grid interpolated from densely sampled measurements can serve as an appropriate 

and easy-to-build TI (chapter 6). This chapter expands on this principle and uses it to 

reconstruct proximal soil sensor values in inaccessible areas showing up as gaps in a 

proximal soil sensor image. The neighbouring densely sampled areas are then used as both 

conditioning data and as TI, and are called ‘training data’. This is the first of two chapters 

that analyses the potential of MPG to improve the processing of proximal soil sensor data.  

7.1 Introduction 

Proximal soil sensing is an increasingly used data source for soil inventory 

(McBratney et al., 2000). Using proximal soil sensors in a mobile setup allows one to 

rapidly collect indirect observations of the subsoil in a non-destructive way (Adamchuk et 

al., 2004), as was demonstrated in section 3.3.3. It is typically done with a sensor attached 

to a vehicle taking measurements at fixed intervals while driving along parallel lines 

(Figure 7.1a). With the instruments available today, the within-line distance is generally 

small. The inter-line distance, on the other hand, largely affects the costs of a field survey. 

A good sampling strategy requires the inter-line distance to be chosen based on the 

expected scale of the soil features to be mapped, known as the Nyquist sampling theorem 

(Nyquist, 1928). 

Even though proximal soil sensor data are considered as high resolution data, 

interpolating the data to a regular grid remains a crucial processing step. The data need to 
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be interpolated between the measurement lines, but possibly also in areas that were 

inaccessible to the mobile proximal soil sensor (Figure 7.1). Examples of the latter are 

areas with a dense (wooden) vegetation, stony areas, building areas or field boundaries. 

Nearby power lines or metal fences can also disturb the sensing system (Reynolds, 1997).  

 

Figure 7.1 Schematic overview of the processing steps needed to interpolate proximal soil 
sensor data to a regular grid with (a) proximal soil sensor data with their typical sampling 

scheme and indication of an inaccessible area (trees); (b) an incomplete sensor image 
obtained by interpolating the sensor data between the measurement lines and (c) a 

complete sensor image obtained by reconstructing the sensor values in the inaccessible 
area. 

Our experience has shown that OK is a successful method to interpolate the sensor 

values between the measurement lines (first step in Figure 7.1), on the condition that the 

inter-line distance is not too large. Whether a TPG approach is also successful to 

reconstruct the sensor values in inaccessible areas (second step in Figure 7.1) depends on 

the scale (represented by the range of the variogram) and the geometrical complexity of the 

soil features to be mapped. Assume for instance a field that has an inaccessible area of 20 x 

20-m. When the sensor measurements reflect a smoothly varying texture pattern and their 

variogram has a range of 50 m, TPG should be able to reconstruct the sensor values in the 

inaccessible area. But, reconstructing sensor measurements that reflect clay lenses with an 

average radius of 4 m will not be possible. The size of the inaccessible area will prohibit an 

accurate prediction, and the geometrical complexity of the clay lenses will even prohibit a 

TPG simulation, such as SGS, to reconstruct the spatial patterns without local accuracy.  

We suggest a MPG approach to reconstruct proximal soil sensor values in inaccessible 

areas (second step in Figure 7.1). We used the DS approach and built the TI from the 

neighbouring densely sampled areas (Mariethoz and Renard, 2010). The technique was 

evaluated on two different test cases: a proximal soil sensor image of a polygonal network 

of ice-wedge casts and a proximal soil sensor image of a buried tidal channel. We 
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systematically blanked zones from these proximal soil sensor images, and reconstructed 

the sensor values in the blanked zones with MPG.  

With the introduction of the MPG approach, we target to reconstruct more 

geometrically complex soil patterns. However, just as for TPG, the potential of the MPG 

approach will also depend on the scale of soil features relative to the size of the 

inaccessible area (Mariethoz and Renard, 2010). Whereas the ice-wedge polygons of the 

first test case were small relative to the size of the blanked area, the buried tidal channel 

was large relative to the size of the blanked area. Therefore, we targeted good simulations 

of the spatial pattern (without local accuracy) in the first test case, and locally accurate 

prediction maps in the second case.   

7.2 Material and methods 

7.2.1 Test cases 

The first proximal soil sensor image was the ΔECa image representing a polygonal 

network of ice-wedge casts (chapter 3) with transformed coordinates and a resolution of 

0.25x0.25-m. We blanked an east-west oriented 30 m-wide area (Figure 7.2). 

 

Figure 7.2 Test case 1: ΔECa image representing a polygonal network of ice-wedge casts 
(Figure 6.1) with a 30 m-wide blanked area (coordinates are in metres relative to the lower 

left corner).  
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Figure 7.3 Test case 2: (a) ECa image representing a buried tidal channel (Saey et  al., 
2012) and (b) indication of five successively blanked 30 m-wide areas (coordinates are in 

metres relative to the lower left corner). 

The second proximal soil sensor image was an ECa image representing a buried tidal 

channel (Saey et al., 2012) (Figure 7.3a). This ECa image resulted from surveying a 6.5 ha 

agricultural field located in the western part of the coastal plain of Belgium (central 

coordinates: 51°06'45"N and 2°42'04"E) with an EMI sensor (DUALEM-21S). The inter-

line distance was 1 m and the within-line distance was 1.7 m, which was sufficiently small 

relative to the size of the buried tidal channel (Figure 7.3a). From the four ECa 

measurements simultaneously collected by the DUALEM-21S sensor, we used these 

measured with a horizontal coplanar coil orientation and a coil separation of 2 m (Simpson 

et al., 2009). The 39 326 data were interpolated to a regular grid with a resolution of 

0.5x0.5-m using OK. More details about this test case can be found in Saey et al. (2012). 

We sequentially blanked five north-south oriented 30 m-wide areas from the ECa image, as 

indicated in Figure 7.3b. 

7.2.2 DS using training data 

The Direct Sampling algorithm is capable of using the conditioning data themselves as 

training data, as is described in Mariethoz and Renard (2010). This means that multiple-

point statistics can be inferred directly from the conditioning data when their sampling 

density is sufficiently high. The conditioning data file is then the only input file needed. 

Although it is theoretically possible to use the irregularly spaced proximal soil sensor 

data before interpolation (Figure 7.1a) as training data, our experience has shown that it 

was then more difficult to find replicates. Therefore, we first interpolated the proximal soil 

sensor data between the measurement lines with OK and used the incomplete sensor image 
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as training data (Figure 7.1b). For the two test case, the training data are shown in Figure 

7.2 and Figure 7.3b. 

The core of the DS algorithm, as explained in chapter 4, remains unchanged if a data 

set has to be scanned for replicates of the data event instead of a TI (Mariethoz and Renard, 

2010). When the user sets the TI file parameter to ‘none’, DS automatically uses the 

conditioning data as training data, and scans these for replicates of the data event.  

All simulation maps in this chapter were generated by using the default distance type 

for continuous variables. For the first test case, t was set to 0.02, f to 0.5 and n to 30, and 

for the second test case t was set to 0.05, f to 0.75 and n to 30. When using the training 

data, we set the weight given to the conditioning data two times larger than the weight 

given to the already simulated grid nodes, aiming to enforce pattern consistency at the 

boundaries of the blanked areas (see section 5.3.4). When extra point observations within 

the blanked area were added to the conditioning data (test case 2), we increased the data 

conditioning weight to five. 

7.2.3 Evaluation 

To evaluate the pattern reconstruction of the MPG simulations in test case 1, we 

calculated the connectivity function for both the training data and ten realizations. These 

were first classified in two categories, i.e. the smallest (< median) and largest (൒ median) 

values. For each category, the connectivity functions were calculated in the east-west 

direction using the MATLAB function ConnectFct.m accompanying the DS algorithm 

(Mariethoz, 2009). 

The local accuracy of the MPG predictions maps in test case 2 was evaluated by 

calculating the mean absolute estimation error (MAEE), the root mean square estimation 

error (RMSEE) and the Pearson’s correlation coefficient r between the predicted and the 

true ECa values within each blanked area. 

7.3 Results and discussion 

7.3.1 Test case 1  

Figure 7.4a shows the first DS realization reconstructing the ΔECa values in the 

blanked area. Note that the difference between this MPG simulation and the one from 

section 6.2.3 is that the neighbouring densely sampled areas are here also used as 

conditioning data, resulting in the pattern consistency at the boundaries of the blanked 

area. It took DS 44 s (on a 3GHz Windows PC) to generate this realization. The spread of 

the simulated values was slightly smaller than for the training data: the standard deviation 

of the ΔECa values in the blanked area was 0.95, whereas it was 1.26 for the training data. 
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The polygonal patterns were well reconstructed which was illustrated by the similarity 

between the connectivity functions (see section 5.3.1) of the training data and ten MPG 

reconstructions (Figure 7.4b). The added value of completing the blanked ΔECa image 

with a MPG simulation is that the full image can be easily used as an input map for, for 

instance, preferential flow path modelling.  

 

Figure 7.4 (a) A MPG simulation of ΔECa (mS m-1) within the blanked area (white 
rectangle) using the densely sampled areas as training data and (b) connectivity functions 
(calculated in the east-west direction) of the smallest (< median) and largest ΔECa values 

(൒	median) of the training data and ten MPG realizations.   

Creating a map that predicts the location of the ice-wedge casts in the blanked area is 

impossible because the size of the blanked area is large relative to the size of ice-wedge 

polygons. Different MPG realizations all reconstructed the polygonal pattern well, but each 

realization showed polygons at different locations, making the E-type map non-

informative. To ensure local accuracy in the blanked area, one should collect additional 

point observations within the blanked area and add these to the conditioning data set, as 

illustrated for test case 2. 

7.3.2 Test case 2 

Figure 7.5 shows the E-type (conditional mean of 50 simulations) maps predicting ECa 

values within the five successively blanked areas. The E-type maps could be used as 

prediction maps because all realizations were more or less similar, in contrast with test 

case 1. Comparing the MPG prediction maps with the true ECa values in the blanked areas 

(Figure 7.3a) shows that the predictions were accurate. The buried tidal channel was well 

reconstructed. The predictions were consistent with the training data at the boundaries of 

the blanked area and the connectivity of the large ECa values was well preserved.  
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Just as for test case 1, the prediction values had a slightly smaller spread than the true 

values. For instance, the true values in area a had a standard deviation of 5.68 mS m-1, 

whereas the predicted values had a standard deviation of 4.44 mS m-1. Generating one 

E-type map took about 7.5 min, or 9 s per realization (on a 3GHz Windows PC).   

The high prediction quality was confirmed by the validation results as shown in 

Table 7.1. The Pearson’s correlation coefficient was large for all areas and ranged between 

0.80 for area e and 0.95 for area a. The MAEE and RMSEE were also small relative to the 

magnitude of the ECa values (the mean of the reference image was 55 mS m-1).   

 
Table 7.1 Validation indices (MAEE = mean absolute estimation error, RMSEE = root 

mean square estimation error and r = Pearson’s correlation coefficient) for the E-type maps 
(Figure 7.5) of the five blanked areas. 

 area a area b area c area d area e area e + 26 

samples 

MAEE 1.49 2.96 2.92 5.14 5.27 3.10 

RMSEE 2.06 3.96 4.11 6.78 7.12 4.35 

r 0.95 0.82 0.87 0.81 0.80 0.93 

 

To improve the prediction quality of the area with the worst validation results, i.e. 

area e, we added additional samples from within this area. As has been shown for TPG 

simulation techniques (Meerschman et al., 2011; Van Meirvenne and Goovaerts, 2001), it 

is interesting to select additional samples at locations x where the conditional coefficient of 

variation (CV) is large: 

 
)(*

)(var
)(CV

x

x
x

Ez
 , ( 7-1 ) 

where )(var x  is the conditional variance and )(*zE x  the E-type prediction calculated 

from 50 realizations. We selected the 26 locations in area e with the largest )(CV x  and a  

mutual distance of at least 5 m (Figure 7.6a), and sampled the true image (Figure 7.3a) at 

these locations. Figure 7.6d shows the new prediction map (E-type of 50 realizations) 

using the training data complemented with the 26 additional point observations.  

The shape of the buried channel was better reproduced when the extra conditioning 

data were added (Figure 7.6d). The validation indices also improved remarkably (Table 

7.1).  
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Figure 7.5 MPG maps (E-type of 50 simulations) predicting ECa within the five blanked 
areas (white rectangles) using the remaining densely sampled areas as training data. 

 

Figure 7.6 Detail of area e with (a) the conditional coefficient of variation (CV) and 
indication of the 26 selected locations to be sampled; (b) true ECa image (Figure 7.2b); (c) 

prediction map without using the 26 additional samples (Figure 7.5e) and (d) prediction 
map using the 26 additional samples.  
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The above presented methodology is very promising to be used in practice. For 

example, proximal soil sensor surveys are frequently interrupted along field boundaries, 

resulting in small elongated gaps in proximal soil sensor images. These incomplete images 

can be rapidly complemented by running the DS algorithm with the incomplete image as 

its only input file. This new approach is not only very straightforward to implement, it can 

also simulate geometrically complex spatial patterns that cannot be simulated with TPG. 

The main condition of the approach is obviously a stationarity assumption, as for all 

prediction techniques. The presented approach will only work when you can assume that 

the multiple-point statistics in the inaccessible area are inferable from these in the densely 

sampled neighbourhood, or in other words, that their spatial patterns are similar.  

When the prediction results are not satisfying, one can easily add additional point 

observations from within the ‘inaccessible’ area to the training data. Areas that are 

inaccessible to a mobile proximal soil sensor, such as areas with a dense vegetation, can 

often be manually surveyed. A mobile ECa survey can for instance be complemented with 

manual measurements with the same ECa sensor or with an EC probe. It is also possible to 

use point observations of a different (correlated) soil variable from within the inaccessible 

area, such as clay percentages. In the latter case, a bivariate MPG reconstruction is 

required, which is explained in the next chapter. 

7.4 Conclusions 

We suggested a MPG approach to reconstruct proximal soil sensor images in 

inaccessible areas. Multiple-point statistics were directly inferred from the neighbouring 

densely sampled areas, that were used both as TI and as conditioning data. Their role as TI 

ensured that the simulated sensor values had similar spatial characteristics as the 

neighbouring areas, and their role as conditioning data ensured pattern consistency along 

the boundaries of the inaccessible area. When the inaccessible area was small relative to 

the size of the soil features, the conditional mean of different MPG simulations served as 

an accurate prediction map. The conditional coefficient of variation was used as a guide to 

determine the location of extra point observations to further improve the prediction quality.  

 

 





 

 

Chapter 8  
Bivariate MPG to interpolate proximal 
soil sensor data and predict a target 
variable 

 

The content of this chapter is based on: Meerschman, E., Van Meirvenne, M., 

Mariethoz, G., Islam, M.M., De Smedt, P., Van De Vijver, E. and Saey, T. 2013. Using 

bivariate multiple-point statistics and proximal soil sensor data to map fossil ice-wedge 

polygons. Geoderma, in press (DOI: 10/1016/j.geoderma.2013.01.016). 

 

In this chapter we investigated if bivariate MPG can be used to simulate the ECa data 

while simultaneously predicting a categorical target variable. This chapter is the second of 

two chapters that answer the research question whether MPG can be used for the 

processing of proximal soil sensor data. 

8.1 Introduction 

Proximal soil sensor measurements are often considered as indirect observations that 

are used to predict the soil variable of interest, i.e. the target variable. Processing proximal 

soil sensor data then includes two steps: first the sensor data need to be interpolated to a 

regular grid (chapter 7) and then this map can be used as a proxy to predict the target 

variable (de Gruijter et al., 2010). Figure 8.1 schematically represents these steps. For this 

study, we assume that there are no inaccessible areas and that the data only need to be 

interpolated between the measurement lines.  
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Figure 8.1 Schematic overview of the processing steps needed to predict a target variable 
from proximal soil sensor data 

To date, ordinary kriging (OK) is an often-used method to interpolate sensor data 

because of its declustering ability (Goovaerts, 1997). In our experience, OK is a successful 

method to interpolate sensor data. However, when the sensor data reflect subsoil 

phenomena that have a complex spatial pattern, the two-point variogram is no longer 

sufficient. In practice, problems arise when the inter-line distance is large compared to the 

scale of the investigated soil features. Hence, it is worth investigating whether MPG can 

serve as a more suited interpolation technique for these situations.  

If the sensor variable differs from the target variable (i.e. the soil variable of interest), a 

model is needed to predict the target variable from the sensor variable, which then serves 

as an ancillary or secondary variable (de Gruijter et al., 2010). For example, if the sensed 

variable is electrical resistivity and the variable of interest is porosity, the modelling of the 

relationship between these two attributes is critical. Depending on the specific situation 

and the type of target variable, a variety of pedometrical techniques can be used for this 

aim, ranging from numerical classification to CLORPT and hybrid techniques (McBratney 

et al., 2000). For instance, fuzzy k-means is an often-used predictive classification 

technique to delineate zones with homogeneous soil properties based on proximal soil 

sensor data (Cockx et al., 2006; 2007; Islam et al., 2011; Vitharana et al., 2008b). 

Examples of CLORPT techniques are predicting the depth to contrasting soil layers from 

proximal soil sensor data with inverse modelling techniques (Saey et al., 2008; 2009a; De 

Smedt et al., 2011) or predicting the soil clay content based on neural network approaches 

(Cockx et al., 2009). Vitharana et al. (2008a) used regression kriging to predict the depth to 
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clay substratum and Triantafilis et al. (2001) compared different hybrid techniques to 

predict soil salinity from proximal soil sensor data.  

Multivariate MPG is promising for both the interpolation of sensor data and the 

prediction of the target variable. This technique is mainly developed for situations where 

one variable is (partially) known and the other is to be simulated (the collocated simulation 

paradigm). Using a bivariate TI is especially interesting when the relationship between the 

variables is known through training data but cannot simply be expressed as a mathematical 

relationship (Mariethoz et al., 2010; Meerschman et al., 2013). To investigate the use of 

multivariate MPG, we applied it to a case study aiming to predict the location of fossil ice-

wedge polygons in the subsoil based on electromagnetic induction (EMI) data.  

In this chapter, we applied bivariate MPG to interpolate the proximal soil sensor data 

to a regular grid and to simultaneously derive a map estimating the location of the fossil 

ice-wedge polygons in the subsoil. To set a comprehensive framework for the evaluation of 

the new method’s prediction performance, we compared it with the often-applied 

procedure of interpolating the sensor data with OK and then performing a fuzzy k-means 

classification to derive the possibility of finding wedge material in the subsoil (Figure 8.1).  

8.2 Material and methods 

8.2.1 Study area and data collection 

 

Figure 8.2 Overview of the ΔECa data used for this study with (a) the conditioning data: 
28 measurement lines (within-line distance 0.4 m) (mS m-1) and (b) the validation data: 9 

measurement lines (within-line distance 0.4 m) (mS m-1) and 94 classified bore hole 
samples indicating the presence (wedge indicator 1) or absence (wedge indicator 0) of 

wedge material in the subsoil (0.6 - 0.8 m). 
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In this study, we used the entire study area as surveyed in chapter 3, but we only used a 

subset of the ΔECa data having an inter-line measurement distance of approximately 3 m 

and a within-line distance of 0.4 m. Figure 8.2a shows the selected data set, referred to 

hereafter as ‘sensor data’.  

To validate the interpolated sensor data maps we selected nine other measurement 

lines with an inter-line distance of approximately 9 m and a within-line distance of 0.4 m 

(Figure 8.2b). The lines were positioned in the middle of two conditioning data lines. To 

validate the prediction of wedge material in the subsoil, we used the 94 classified soil 

samples (0.6 m - 0.8 m): 43 samples were classified as wedge material and 51 as host 

material (Figure 8.2b) (section 3.3.2).  

8.2.2 Two-point geostatistics and predictive classification 

First, the sensor data were interpolated to a regular grid (cell size 0.1 x 0.1-m) with OK 

using a spherical variogram model (C0 = 0, C1 = 1.7, a = 4.3 m) (Figure 8.3) (Goovaerts, 

1997). The model was fit to the experimental variogram considering only data pairs in the 

direction of the driving lines. This directional variogram was more stable than the 

omnidirectional one which showed a jump at lag distances around 3 m, corresponding to 

the inter-line distance. This strategy could be applied since we assumed that the anisotropy 

shown by the experimental variograms was caused by the sampling configuration, whereas 

the spatial process being studied was assumed isotropic. We defined an elliptical search 

window with the longest radius perpendicular to the driving direction to ensure that 

neighbours from different measurement lines were selected.  

 

Figure 8.3 Spherical variogram model with C0 = 0, C1 = 1.7 and a = 4.3 m used to 
interpolate the proximal soil sensor data with traditional two-point geostatistics (OK). 
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Then, we performed a fuzzy k-means classification of the interpolated sensor data. 

Since fuzzy-set theory can deal with uncertainty especially due to imprecise boundaries 

between categories (McBratney and Odeh, 1997), this technique was appropriate to 

classify the soil into two classes: one area with host material and one with wedge material 

in the subsoil (from 0.6 to 0.8 m depth). Although theoretically required for predictive 

classification (de Gruijter and McBratney, 1988), we did not add an extragrade class here 

since this would complicate comparison with the MPG probability map. We used the 

FuzME software (Minasny and McBratney, 2002) and set the fuzziness exponent φ at 2.1 

following the scheme proposed by McBratney and Moore (1985). Parameter φ controls the 

degree of fuzziness of the classification and has a value between 1 (hard classification) and 

∞. The resulting fuzzy membership map for the wedge material class was interpreted as the 

possibility to find wedge material in the subsoil. 

8.2.3 Multiple-point geostatistics 

Bivariate MPG requires the construction of a bivariate TI. For this case study the TI 

needed to consist of a categorical image of the target variable (TI1), i.e. an indicator for the 

presence of wedge material in the subsoil, and a continuous image of the ancillary variable 

(TI2), i.e. the sensor data. Both TI1 and TI2 needed to represent the expected spatial 

structure of the corresponding variable and the bivariate image needed to represent the 

expected relationship between both variables. We built this bivariate TI based on our 

physical knowledge of the crack formation and the sensor measurements on the one hand, 

and the information we gathered during the field work on the other hand, i.e. the 

excavation and the prediction sensor data (Figure 8.2a).  

TI1 was built from a binary image of a polygonal network of desiccation cracks in a 

Mexico silt loam, that we selected from literature (Baer et al., 2009). We resized the image 

to an image of 700 pixels high and 700 pixels wide (bicubic interpolation), each pixel 

representing an area of 0.01 m2. Then, we dilated the wedges considering the width of the 

excavated polygon (see section 3.3.1). Figure 8.4a shows the resulting image that was used 

as TI1. TI2 was obtained by a forward modelling procedure predicting the corresponding 

sensor data starting from TI1. We spatially filtered TI1 with a kernel (11x11 pixels) 

representing the depth-response curve of the EM38DD soil sensor (McNeill, 1980). This 

filtered image was histogram transformed targeting the histogram of the sensor data 

(Figure 8.2a). The continuous TI (TI2) is shown in Figure 8.4b. The image processing 

steps were performed in Matlab (Mathworks, R2011a). 

We used the Direct Sampling (DS) code to generate bivariate multiple-point 

simulations (Mariethoz et al., 2010). In this chapter we used the fraction of non-matching 

nodes for the categorical variable and the mean absolute error for the continuous variable. 

The continuous variable was given a weight three times larger than the categorical 
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variable. The weight given to the conditioning data was set five times larger than the 

weight given to the already simulated grid nodes (see section 5.3.4).  

 

Figure 8.4 Bivariate TI used to interpolate the proximal soil sensor data and predict the 
target variable with multiple-point geostatistics with (a) the categorical image representing 
the spatial pattern of the wedge indicator (TI1) and (b) the continuous image representing 

the spatial pattern of the sensor data (TI2). 

We ran 50 bivariate simulations with the constructed bivariate TI (Figure 8.4) and the 

sensor data as continuous conditioning data (Figure 8.2a). The resulting E-type for the 

continuous variable served as an interpolated sensor data map and the E-type for the 

categorical (binary) variable served as a probability map for the presence of wedge 

material in the subsoil. 

8.2.4 Validation 

The interpolated sensor data maps were validated by comparing the measured sensor 

values in the independent measurement lines (Figure 8.2b) with the estimated values at the 

closest grid node. For both the map interpolated with two-point geostatistics and the one 

interpolated with multiple-point geostatistics, we made a scatterplot and calculated five 

validation indices: the mean estimation error (MEE), the root mean square estimation error 

(RMSEE), the mean absolute estimation error (MAEE), the Pearson’s correlation 

coefficient (r) and the Spearman’s rank correlation coefficient (rR).  

Based on the 94 classified bore hole samples (Figure 8.2b), we validated the two maps 

predicting the presence of wedge material in the subsoil by calculating their receiver-

operating characteristic (ROC) curve (Pontius and Schneider, 2001). This method was 

chosen since a ROC curve evaluates the two-class prediction performance of the maps 

independent of the chosen decision threshold. This is important to compare the fuzzy 

membership value map more objectively with the probability map derived with MPG. The 

effect of the degree of fuzziness, as is defined by φ, will not influence the comparison. The 
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ROC space is defined by the 1-specificity (false positive rate) and the sensitivity (true 

positive rate) as x- and y-axes respectively, considering a continuous range of decision 

thresholds. The top left corner is the optimal location of the ROC space since there both 

the specificity and the sensitivity are 1. The area under the ROC curve (AUC) measures the 

two-class prediction performance. An AUC of 0.5 indicates a classification performance 

no better than chance. The closer the AUC is to 1, the better is the classification potential 

of the maps (Cockx et al., 2007). 

 

Figure 8.5 Map of the sensor data interpolated with ordinary kriging and derived fuzzy 
membership value map indicating the possibility to find wedge material in the subsoil (left) 

and map of the sensor data and probability map to find wedge material in the subsoil 
simultaneously generated with MPG (E-type of 50 simulations) (right). 
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8.3 Results and discussion 

Figure 8.5 shows the maps generated with traditional two-point geostatistics (left) and 

multiple-point geostatistics (right). When we compare these maps with the georectified 

aerial photograph of the polygonal crop marks (Figure 8.6), it is clear that both maps 

delineate the major ice-wedges very well, especially considering the between-line distance 

of the input data which was large in relation to the scale of the soil features (Figure 8.2a).  

 

Figure 8.6 Comparison of the aerial photograph (centre) with the TPG (left) and MPG 
(right) prediction map for the presence of wedge material in the subsoil. 

 

Figure 8.7 Validation results for both interpolated sensor data maps (Figure 8.5 - top) 
using the independent validation data of 9 measurement lines (Figure 8.2b): scatterplots 

and validation indices (MEE = mean estimation error, RMSEE, root mean square 
estimation error, MAEE = mean absolute estimation error, r = Pearson’s correlation 

coefficient, rR = Spearman’s rank correlation coefficient) for the map interpolated with 
two-point geostatistics (left) and the map interpolated with multiple-point geostatistics 

(right). 



 
8. Bivariate MPG reconstruction 123   

However, the polygonal pattern was much better reconstructed in the MPG maps. The 

maps based on TPG showed more smoothed polygons and a lack of connectivity for the 

smaller polygons. This better pattern reconstruction of the MPG maps is due to the use of a 

TI as a structural model which explicitly implies a multiple-point pattern.  

In addition to reconstructing the patterns correctly, the prediction maps also need to be 

locally accurate. To quantify this local accuracy, we validated the maps as described in 

section 8.2.4. Figure 8.7 shows the validation results for the interpolated sensor data maps 

(Figure 8.5 – top). Although the validation scatterplots show a smoothing effect for both 

maps (the slope shown by the data in both plots is less than one), they predicted the sensor 

data reasonably well. The scatterplot cloud was more elongated for the MPG E-type map, 

the correlation coefficients were closer to 1, and the validation indices closer to 0. This 

shows that the enhanced pattern reconstruction obtained with MPG does not come at the 

cost of local accuracy.  

Figure 8.8 shows the ROC curves for the maps predicting the presence of wedge 

material in the subsoil (Figure 8.5 – bottom) using the 94 classified bore hole samples 

(Figure 8.2b). The fuzzy membership value map had an AUC of 0.73 and the probability 

map created with MPG an AUC of 0.84. This means that the probability of ranking a 

randomly chosen location with wedge material higher than a randomly chosen location 

with host material, is higher for the MPG map than for the fuzzy membership value map. 

Hence, the MPG map was better able to map the polygonal network in the subsoil.  

 

Figure 8.8 Validation results for both maps predicting the presence of wedge material in 
the subsoil (Figure 8.5 – bottom) using the 94 classified bore hole samples (Figure 8.2b): 

receiver-operating characteristic (ROC) curves. 
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8.4 Conclusions 

This study shows that bivariate MPG can be used for the processing of proximal soil 

sensor data. Based on a bivariate TI, we interpolated the proximal soil sensor data between 

the measurement lines and simultaneously predicted a target variable, i.e. the location of 

fossil ice-wedge polygons in the subsoil. The use of the sensor data as ancillary variable 

guaranteed local accuracy, while the multiple-point structural model (TI) ensured pattern 

reconstruction. 

This was the first application of multivariate MPG in soil science, but the flexibility of 

the method opens up a wide range of potential applications. The variables to be simulated 

can be categorical and/or continuous and for each variable conditioning data can be given 

as input data. Furthermore, the (multivariate) TI can be data driven, knowledge driven or a 

combination of both, like the TI used in this chapter.  

 



 

 

Chapter 9  
3D reconstruction of sedimentary 
layers: an industrial application 

The aim of this chapter is to translate some of our research findings into an industrial 

application. We present a TPG and MPG solution to solve a problem that is daily faced by 

dredging firms, i.e. the reconstruction of the depositional pattern of sedimentary layers in a 

channel to be dredged. Predicting the thickness of sedimentary layers has direct economic 

consequences. 

9.1 Introduction 

An adequate planning of a dredging project requires an accurate prediction of the 

sediment volumes to dredge and the uncertainties attached to these volume predictions. 

Next to the total volume to dredge, one is also interested in the depth and thickness of the 

sedimentary layers for each location along the dredging route. This information is needed 

to select appropriate dredging equipment, to ensure sufficient disposal options and to draw 

up a project budget and schedule.  

This chapter presents a real case study of a channel to be dredged by DEME N.V. 

(Dredging, Environmental & Marine Engineering), a Belgian dredging and hydraulic 

engineering group. The channel will be dredged over a length of ca. 35 km to a depth of 

9.5 m allowing larger ships access. For confidential reasons, no geographical details about 

the study area can be provided. Bore hole samples that were collected in a pre-dredging 

survey provided information about the sedimentary layers: a soft sediment layer, consisting 

of sand and loose (soft) clay, covered a hard sediment layer, consisting of compacted (stiff) 

clay. The aim of this research was to reconstruct the depositional pattern of the 

sedimentary layers in order to optimize the dredging campaign.  
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DEME N.V. solved this case study by applying nearest neighbour interpolation 

whereby the predictions at unsampled locations are provided by the nearest observation. 

More advanced geostatistical tools that allow to simulate sedimentary layers are indicator 

kriging (IK) (e.g. Bastante et al., 2005) and sequential indicator simulation (SISIM) (e.g. 

Seifert and Jensen, 2000). These non-Gaussian approaches allow to simulate categorical 

variables (Goovaerts, 1997). An advantage of SISIM over its kriging counterpart is that 

each equiprobable SISIM realization represents an alternative scenario for which the total 

volume to dredge can be calculated, resulting in a probability distribution of total volume 

predictions, and corresponding project budget predictions. An alternative is using a MPG 

approach to map sedimentary layers (e.g. Jung and Aigner, 2012). Bastante et al. (2008) 

and dell’ Arciprete et al. (2012) compared TPG indicator approaches with MPG 

approaches to model depositional patterns.    

This chapter presents two alternative solutions to reconstruct the sedimentary layers in 

the channel to be dredged: SISIM, a two-point geostatistical algorithm, and IMPALA, a 

multiple-point geostatistical algorithm. The aim was to provide improved workflows, while 

ensuring practicality for the company involved. Before the presentation of the case study 

and the results, we summarize the theory behind both algorithms. All geostatistical 

analyses were performed with Isatis (Bleinès et al., 2011). 

9.2 Theory 

9.2.1 Two-point geostatistical algorithm: SISIM 

Sequential Indicator Simulation (SISIM) is a widely used sequential simulation 

technique for categorical variables (Goovaerts, 1997). We used the SISIM algorithm as 

implemented in Isatis. Consider the simulation of the spatial pattern of a finite number K of 

mutually exclusive categories kz  conditional to the data set  ,...2,1),( xz . SISIM first 

transforms all categorical data  xz  into a vector of K indicator data: 

 Kk
zz

zi k
k ,...,1

otherwise0

)(if1
);( 
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These indicator data are migrated to their closest grid node. Then, a random path is defined 

visiting each unsampled grid node x.  

The K conditional probabilities of occurrence for each category kz , i.e. ))(,(* nzp kx , 

are predicted by simple or ordinary kriging using the neighbouring indicator data, 

consisting of both the conditioning data and the previously simulated grid nodes. One can 

use a separate indicator variogram model for each );( kzi x , accounting for class-specific 

patterns of spatial variation, or one representative variogram model. The latter is allowed 

when the shape and the anisotropy of the different indicator variograms are similar. It is 
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known as median indicator kriging because one generally uses the variogram model for the 

median indicator (in the case of continuous variables).  

The K predicted probabilities are normalized ensuring their sum to be one. The vector 

of the K predicted probabilities is then considered as the conditional probability 

distribution function (cpdf). The simulated category for x is the category that has been 

randomly sampled from this cpdf. Then, the algorithm proceeds to the next node along the 

random path and the previous steps are repeated (Goovaerts, 1997). 

Just as conventional 3D variogram models, 3D indicator variogram models are 

generally fitted to the experimental variograms calculated in the horizontal and vertical 

direction. The nugget effect C0 must be chosen to be equal in all directions. Geometric 

anisotropy allows one to model different ranges a for different directions, whereas zonal 

anisotropy allows one to model different sills C1 in different directions (Gringarten and 

Deutsch, 2001). 

9.2.2 Multiple-point geostatistical algorithm: IMPALA 

IMPALA stands for Improved Multiple-point Parallel Algorithm using a List 

Approach (Straubhaar et al., 2010). It is a recent MPG algorithm for categorical variables 

that is implemented in Isatis (Bleinès et al., 2011). The algorithm proceeds in three steps. 

First the TI is scanned, then the conditioning data are migrated to their closest grid node, 

followed by the sequential simulation. Similar to SNESIM (Strebelle, 2002), IMPALA 

uses a multi-grid approach to capture structures within the TI that are defined at different 

scales. The user defines the number of subgrids m. First, the grid nodes x with coordinates 

that are a multiple of 2m-1 are simulated (coarsest grid), followed by the grid nodes with 

coordinates that are a multiple of 2m-2 , etc. (Figure 9.1a).  

IMPALA scans the TI for all possible TI patterns )(ydn , i.e. the pattern configurations 

for each location y  in the TI grid (except for the grid borders). TI patterns have a  

rectangular shape in 2D, and a box shape in 3D. The dimensions of the search template are 

defined by the user. For each TI pattern found in the TI, its frequency of occurrence is 

saved together with its frequency of occurrence having a central node value equal to iz  
(chapter 2, Figure 2.5). These TI scan results are stored in lists, instead of trees. The TI 

scan is repeated for each of the m subgrids. The lag vectors of the search template, are 

rescaled for each subgrid, as shown in Figure 9.1b.  

The conditioning data are migrated to all subgrids. The observed facies are assigned to 

the node in the simulation grid whose corresponding region contains the observed location. 

If two or more data points are migrated to the same grid simulation node, only the data 

point that is the closest to the centre of the corresponding region of the grid node is kept.  
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Figure 9.1 Principle of the multi-grid approach for m = 3. 

For each subgrid, a random path is defined visiting all x. Based on the data event 

)(xdn  of x, ))(;(* nzp kx  is retrieved from the corresponding list. A random value is 

drawn from this cpdf and the node is used as conditioning data point for the next x. More 

details about IMPALA can be found in Straubhaar et al. (2010) and the software manual of 

Isatis (Bleinès et al., 2011). 

Whereas 3D TPG requires a 3D variogram model, 3D MPG requires a 3D training 

image. Because finding a 3D TI is challenging, this problem is often overcome by 

constructing 3D TIs from 2D TIs (Comunian et al., 2012; dell’Arciprete et al., 2012; 

Okabe and Blunt, 2004).  

9.3 Data set and initial data analysis  

Because the geographical details of the study area are confidential, the coordinates 

were transformed and are relative to a local datum (Figure 9.2). The channel to be dredged 

is part of a big river that flows southeast and connects an economically important city to 

the sea. The channel is ca. 35 km long and its width ranges between ca. 280 and 430 m. It 

should be dredged to a depth of 9.5 m with side slopes of 1:5 or 1:10, aiming at a total 

water volume of 68 418 145 m³. 

The dredging firm provided us with a data set of 155 bore holes (Figure 9.2). Note that 

many bore holes were located outside the boundaries of the channel to be dredged, 

especially in the central part of the channel where most of the bore holes were located to 

the west of the channel. The bore holes had been sampled in four different sampling stages, 
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partly by local authorities and partly by the dredging firm. In this research, we treated all 

bore holes equally. For each bore hole, the water depth and the lithology of the sediment 

layers had been reported. The dredging firm assigned a stratigraphy (12 categories) to the 

lithological borehole intervals.  

 

Figure 9.2 Channel to be dredged (X = Eastings; Y = Northings) with indication of the 
main flow direction and the 155 bore hole locations (145 interpolation bore holes and 10 

validation bore holes).  

We further classified the stratigraphy in soft (code 1) and hard (code 2) sediment 

material, each requiring a different dredging strategy. We assigned a code 0 to the water 

layer, i.e. between the channel bed and the water surface (assumed to be at the 0 m 

reference level). We added water as a separate class since the water depth is an important 

variable to be predicted for the entire channel. The average water depth of the 155 bore 

holes was 7.83 m with a standard deviation of 1.26 m and ranged between 1.49 m 

and ≥ 9.5 m.  

Since the data were measured at different support sizes, we first converted the bore 

holes into composite samples of the same dimension. The bore holes were cut into 

intervals of the same length (0.1 m) honouring the boundaries between the three categories 

(water, soft material, hard material) using Isatis (Bleinès et al., 2011). This resulted in a 

total of 14 746 composite samples. 

In contrast to the previous chapter, we did not have a true reference image in this 

study. Therefore, we randomly selected 10 validation bore holes, corresponding to 950 

composite samples, from the 57 bore holes that were located within the channel 
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boundaries. We chose this rather limited number of validation bore holes to have left 

sufficient prediction bore holes within the channel boundaries. 

Table 9.1 shows the proportions of composite samples for each category. Based on 

these proportions, we calculated an initial volume prediction: a total volume of 

11 940 314 m³ sediment material needs to be removed, consisting of 4 931 986 m³ soft 

material and 7 008 328 m³ hard material.  

  
Table 9.1 Number of composite samples (0.1 m) and proportions of water, soft sediment 
layer and hard sediment layer of all composite data, the interpolation composite data and 

the validation composite data.  

 all data  

(155 bore holes) 

interpolation data 

(145 bore holes) 

validation data 

(10 bore holes) 

number of composites  14746 13796 950 

% water  82.33  82.29  83.05  

% soft layer  7.30  7.19  8.84  

% hard layer   10.37  10.53  8.11  

9.4 Results and discussion 

9.4.1 Nearest neighbour interpolation 

Figure 9.3 shows the prediction map as obtained by nearest neighbour interpolation. 

We defined a simulation grid of 40x40x0.1-m. We chose a rather low resolution in the X- 

and Y-direction to constrain the simulation time together with a high resolution in the Z-

direction because the spatial variation was expected to be larger in the Z-direction than in 

the X- and Y-direction.  

The most northern part of the channel (near X = 2 km and Y = 25 km) has a water 

depth that is generally larger than 9.5 m. The centre of the channel (near X = 10 km and 

Y = 12 km) has the thickest hard sediment layer, whereas the bend of the channel (near 

X = 17 km and Y = 5 km) has the thickest soft sediment layer. The boundaries between the 

layers do not represent the natural boundaries: their shape solely depends on the data and 

their sampling configuration.  
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Figure 9.3 Nearest neighbour prediction map. 

 

9.4.2 Two-point geostatistical reconstruction 

Figure 9.4 shows the horizontal and vertical experimental indicator variograms for the 

three categories. The horizontal variogram was calculated from data pairs in the major flow 

direction of the channel (135° clockwise from the north axis). We applied median SISIM 

since the spatial patterns of the three categories were similar. The 3D variogram was 

modelled as a spherical variogram with C0 = 0.01, C1 = 0.09, ax = 29 000 m, ay = 29 000 m 

and az = 5.5 m (Figure 9.4). The sill was assumed to be constant for all directions and the 

range to be different for the vertical direction (i.e. geometric anisotropy).  

 

 

Figure 9.4 3D variogram model used for the TPG reconstruction with (a) the experimental 
variograms (dots) calculated in the horizontal plane (direction 135°) and the variogram 

model (line) in the horizontal plane and (b) the experimental variograms (dots) calculated 
in the vertical direction (tolerance 0°) and the variogram model (line) in the vertical 

direction.   
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The same simulation grid as for the nearest neighbour interpolation was used. The 

search window was defined as an ellipsoid with a radius of 1600 m in the X-direction, 

1600 m in the Y-direction and 5 m in the Z-direction. The maximum number of 

conditioning data was set to 100 and the optimum number of already simulated grid nodes 

to 100.  

Figure 9.5 shows the first SISIM realization together with the conditional mode (most 

simulated category) of 50 realizations. Both maps respect the sequence of water over soft 

material over hard material. The simulation map is rather noisy. It shows some isolated 

pixels and noisy edges between the different layers. The conditional mode map does not 

show noise and has sharper boundaries between the layers.  

 

Figure 9.5 (a) First SISIM realization and (b) conditional mode of 50 SISIM realizations.  
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9.4.3 Multiple-point geostatistical reconstruction 

We artificially built a simple 3D TI based on our prior knowledge of the depositional 

pattern and some summary statistics of the bore hole samples. It consist of three 

subsequent layers: a water layer of 7.9 m, a soft layer of 1.3 m and a hard layer of 0.3 m 

(Figure 9.6). We chose these depths to have similar relative proportions in the TI as in the 

composite data (Table 9.1). Just as for the variogram model, we assumed isotropy in the X- 

and Y-plane. The TI is a 3D grid of 5 km in the X-direction, 5 km in the Y-direction and 

9.5 m in de the Z-direction with a resolution of 40x40x0.1-m. Note that the TI has the same 

resolution as the simulation grid but that it is much smaller. The simplicity of the TI 

pattern does not require a larger TI; the TI already provides sufficient pattern repetition.  

 

 

Figure 9.6 3D training image used for the MPG reconstruction of the water and sediment 
layers. 

We used four IMPALA subgrids and defined a search box with a half-side-length of 

400 m in the X-direction, 400 m in the Y-direction and 2 m in the Z-direction. The 

simulation grid was equal to the grid used for the nearest neighbour reconstruction. 

Figure 9.7 shows the first MPG realization together with the conditional mode of 50 

realizations. Overall, the depositional patterns predicted by the MPG approach were very 

similar to these predicted by the TPG approach (Figure 9.5). However, the MPG 

realization is less noisy and corresponds better to the conditional mode map. 
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Figure 9.7 (a) First IMPALA realization and (b) conditional mode of 50 IMPALA 
realizations. 

9.4.4 Evaluation and discussion 

Validating the prediction maps (Figure 9.3, Figure 9.5b and Figure 9.7b) using the 950 

validation composite samples showed that all approaches produced similar and accurate 

predictions. The overall accuracy was 0.93 for the nearest neighbour prediction, 0.94 for 

the TPG prediction and 0.96 for the MPG prediction. The measure of agreement kappa 

(Cohen, 1960) was 0.78 for the nearest neighbour prediction, 0.82 for the TPG prediction 

and 0.87 for the MPG prediction. Each method had a rather high validation performance, 

which is partly due to the proximity of the validation data to the interpolation data. 

However, the suggested TPG and MPG approaches scored consistently higher than the 

currently used nearest neighbour interpolation. The small discrepancies between the 

suggested methods are due to the better MPG prediction for the water layer (the most 

represented category). The soft and hard sediment layer were slightly better predicted by 

the TPG approach. dell’Arciprete et al. (2102) also concluded from their comparative study 
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that SISIM reproduced the distribution of the less abundant categories more efficiently 

than MPG.  

Table 9.2 gives the summary statistics of the total volumes to be dredged calculated 

from the 50 TPG and MPG realizations. The predicted volumes are generally smaller for 

the MPG than for the TPG reconstruction.  

 
Table 9.2 Summary statistics of the total volume to be dredged (soft and hard layer) 

calculated from the 50 TPG and MPG realizations. 

 Nearest neighbour TPG MPG 

nb of realizations 1 50 50 

min volume (m³) - 10 239 769 10 023 483 

mean volume (m³) 10 246 528 10 426 351 10 286 270 

max volume (m³) - 10 712 893 10 591 233 

standard deviation (m³) - 113 625 124 146 

 

The nearest neighbour prediction resulted in a total volume to dredge of 10 246 528 m³. An 

advantage of using SISIM or IMPALA is thus that they provide a measure of the 

uncertainty about the volume to dredge. However, it is important to keep in mind that 

SISIM and IMPALA both target realizations with a predefined histogram: SISIM 

realizations target the histogram of the input data and IMPALA realizations the histogram 

of the TI (here similar to the histogram of the input data). This could explain the rather 

small standard deviations of the volume predictions.  

An interesting additional way to evaluate the applied methodologies is generating 

unconditional realizations. Eliminating the influence of the conditioning data clearly 

reveals the consequences of selecting a certain algorithm (and its parameters) and a certain 

model of spatial variation. Figure 9.8 shows a SISIM and IMPALA unconditional 

realization generated with the 3D variogram model, the TI, and the SISIM and IMPALA 

parameter settings as described above. Both realizations reconstructed the layer geometry. 

The IMPALA realizations were less noisy and reconstructed the correct sequence of the 

layers.  
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Figure 9.8 An unconditional simulation of (a) the applied TPG technique en (b) the 
applied MPG technique. 

9.5 Conclusions 

For this case study, both methods were equivalent. They both required a 

comprehensive model of spatial variation, whether this is a variogram model or a TI, and a 

thorough selection of their input parameters. We believe that the choice between a TPG or 

MGP method for other similar applications will strongly depend on the number of 

conditioning data and on the complexity of the depositional pattern. Using a TI will be 

advantageous when the number of conditioning data is small or when the depositional 

pattern is more complex (Jung and Aigner, 2012).  

We found good results by using a very simple 3D TI, which is in line with the 

Occam’s Razor principle. A TI is a conceptual model and can therefore be less complex 

than the actual depositional pattern. It is the task of the algorithm to anchor the TI patterns 

to the available conditioning data. Note that the unconditional simulations already showed 

some spatial variability and did not simply mirror the parallel sediment layers of the TI.  

We believe that the ease of building a TI is a crucial point to transfer the innovative MPG 

approach to industrial applications. On the other hand, when expert knowledge or indirect 

observations (e.g. seismic data) provide more information about the expected depositional 

pattern, it is no problem to use a more advanced TI.  

This chapter showed a practical application of MPG to reconstruct sedimentary layers, 

suggesting a broader applicability and transferability of the MPG approach to industrial 

applications. Both TPG and MPG approaches performed well for this case study, 

demonstrating the complementarity of both approaches. For similar case studies, the user 

should select an appropriate technique considering his own experience, the number and 

quality of the available samples and the complexity of the depositional pattern.   

 



 

 

Chapter 10  
General conclusions and future 
research 

This chapter reflects on the most important conclusions of this thesis and discusses the 

formulated research objectives (chapter 1). Finally, some ideas for future research are put 

forward.   

10.1 Conclusions 

This research contributed to –what is called in medicine– translational research. 

Translational research facilitates the translation of findings from fundamental science to 

more practical applications. The foundations of multiple-point geostatistics were already 

laid during the last decade. Its practical applications are however still scarce, especially in 

soil science. We indulged in the developed methodology and evaluated its application in 

soil science, a field where traditional variogram-based geostatistics is still the dominating 

spatial modelling technique. We hereby focused on theoretical aspects that are important 

for the implementation of the technique, but priority was given to practicality, a trademark 

of geostatistics that explains its success and application in such diverse fields as stated by 

Goovaerts (1997). 

10.1.1  Collect a test data set of complex soil patterns. 

A typical example of complex soil patterns are the ice-wedge pseudomorphs that show 

up in various parts of Flanders (Belgium) and in other parts of the mid-latitudes of the 

northern hemisphere. We selected an appropriate field based on aerial photography and 

collected both direct and indirect observations of the soil. This data set was not only the 
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basic for most of our MPG experiments, it was also the first time that a subsoil polygonal 

network was imaged so accurately with a proximal soil sensor.  

10.1.2  Fit a non-Gaussian model of spatial variation to the test data set. 

We concluded that the spatial pattern of the ice-wedge pseudomorphs could not be 

modelled with a Gaussian RF and a predefined variogram model. We therefore assessed a 

theoretical solution to model the polygonal pattern and adapted a geometric RF model to fit 

our test case. This alternative model was well evaluated because it reconstructed the 

connectivity of low values. The approach of using soil knowledge to select and fit a non-

Gaussian RF model also contributes to the trend of applying more knowledge driven 

modelling approaches in pedometrics.  

However, the theoretical correctness of the geometric RF model conflicts with its 

practicality. One cannot expect soil scientists to develop alternative –mathematically more 

complex– random functions for each spatial modelling questions. The difficulty of 

developing alternative random functions to model complex spatial patterns asks for a more 

practical approach, that could be provided by MPG. 

10.1.3  Perform a sensitivity analysis on an appropriate MPG algorithm. 

We found the Direct Sampling (DS) algorithm to be an appropriate MPG algorithm to 

reconstruct soil patterns due to its flexibility and its wide range of potential applications. 

Because a well thought setting of the input parameters of DS is crucial for its performance, 

we derived some general implementation guidelines from the results of a sensitivity 

analysis on DS in collaboration with the DS developers. 

The main three parameters are the acceptance threshold t, the fraction of the TI to scan 

f and the number of neighbours n. Choosing a small t together with a large f and n 

generally gives good simulation results but requires a long simulation time and minimizes 

the variability between different simulations (especially for continuous simulations). 

Finding an optimal balance for these three parameters is thus important. When one wants 

to reduce CPU time or the risk of patching, it is advised to first adapt parameter f. 

Especially for categorical simulations, it is good practice to always add one post-

processing step for noise removal. For bivariate simulations, we showed that the weights 

given to each variable clearly affected the simulation quality. Continuous variable 

simulations could be improved by adding an auxiliary categorical variable that is co-

simulated with a relative small weight. To improve data conditioning, it is interesting to 

put the weights given to the conditioning data (parameter δ) higher than the weights given 

to the already simulated nodes.  
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10.1.4  Evaluate the potential of MPG to reconstruct complex soil patterns using the 

test data set. 

We found that MPG, using an appropriate TI, was well suited to reconstruct the 

polygonal pattern of the ice-wedge pseudomorphs. Both the simulation and prediction 

maps honoured the conditioning data and reproduced the spatial pattern. The prediction 

maps, which are particularly important in soil science, were also locally accurate. It is 

interesting that MPG can be used for the reconstruction of continuous and categorical 

variables, since both frequently appear in soil science. Especially for mapping categorical 

variables, the traditional geostatistical toolbox is rather limited.  

We used a continuous TI that was built using the geometric RF model and one that was 

built from more densely measured neighbouring areas. Despite the fact that the geometric 

RF model was explicitly fit to the test case (using soil knowledge), the data driven TI gave 

the best results. For the categorical case, we used a photograph showing a spatial pattern 

that was expected to be similar to the studied phenomenon and adapted it to the histogram 

of the observations, which gave good results.  

We concluded that using an entirely data-driven TI is a straightforward and  promising 

approach. When using a knowledge driven TI, such as a model outcome or a photograph 

that is deemed to show similar spatial patterns, we found good results when the image was 

first transformed to have a histogram similar to the conditioning data.    

A comparison with a TPG approach for the continuous case showed the stronger 

pattern reproduction capacity of MPG. Whereas TPG simulation algorithms reproduce the 

variogram and let the multiple-point statistics depend on the chosen algorithm, MPG 

reproduces the multiple-point statistics of the TI. However, we want to remark that 

comparing the mapping performance of MPG and TPG is delicate. The reconstruction 

quality of both approaches strongly depends on the number and quality of the conditioning 

data, the appropriateness of the model of spatial variation (which is a variogram for TPG 

and a training image for MPG) and the implementation of the algorithm (its parameter 

settings).  

10.1.5  Investigate whether MPG can be used for the processing of proximal soil sensor 

data.  

We concluded that MPG is an appropriate toolbox for the processing of proximal soil 

sensor data. In a first case (chapter 7), we interpolated proximal soil sensor data in areas 

that were inaccessible for the mobile soil sensor. Characteristic for this approach is its very 

easy implementation. The only DS input file needed contained the neighbouring high 

density data interpolated to a regular grid between the measurement lines and showing 

gaps in inaccessible areas. When the input parameters of DS were thoroughly set, the 

sensor values in the inaccessible areas could be well reconstructed. When the gaps were 
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large relative to the size of the soil features, only simulation maps could be provided, 

whereas the gaps were small relative to the size of the soil features, both simulation and 

prediction maps could be provided.  

In a second case (chapter 8), we used bivariate MPG to interpolate sensor data within 

measurement lines (assuming no inaccessible areas) and to predict a categorical target 

variable simultaneously. The suggested approach gave good results, especially in 

comparison with a more traditional approach of applying ordinary kriging followed by a 

fuzzy k-means classification. However, in contrast to the previous case, the approach is 

more difficult to implement because a bivariate TI needs to be constructed. Hence, we 

believe that this approach is promising but not immediately useful in practical applications. 

On the other hand, we demonstrated one of the first applications of the only recently 

developed bivariate MPG.  

Consequently, to evaluate this research objective, we showed two processing problems 

that could be solved using MPG. However, we believe that there is a wide spectrum of 

other processing steps of proximal soil sensor data, or high density data in general, where 

MPG can be useful. Processing high density data with a variogram function as model of 

the spatial structure results in a loss of information. The data itself often reveal their 

multiple-point patterns (such as connectivity, curvilinearity, repetitivity), but this 

information is ignored in the variogram model. We therefore believe that the current trend 

of collecting more and more high density observations goes hand in hand with the 

application of MPG. 

10.1.6  Evaluate the practical use of MPG in an industrial application. 

To date, MPG is already being used in the petroleum industry. However, the technique  

could be of assistance in other industrial fields. We applied a MPG approach to reconstruct 

the sedimentary layers in a channel to be dredged by DEME N.V. The MPG approach 

consisted of using the IMPALA algorithm and a simple categorical 3D TI. We also 

suggested a TPG approach, i.e. sequential indicator simulation. Both stochastic 

geostatistical approaches showed a rather equivalent performance. This is because the 

sedimentary layers did not have a very complex spatial pattern (it could be represented 

with a variogram model) and because there were sufficient bore hole samples. Both 

approaches gave better reconstruction results than a nearest neighbour interpolation, a 

deterministic interpolation method that is currently used by the company due to budget and 

time constraints and a lack of training. A second advantage of the stochastic geostatistical 

approaches is that they allow to calculate the uncertainty related to the predicted sediment 

volumes to dredge, allowing some risk analysis.  
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10.1.7  General conclusions 

Our general conclusion is that MPG is an innovative technique that can be a valuable 

part of the pedometrician’s toolbox. This was proven by the different successful MPG 

applications in soil science throughout this thesis. We believe that TPG and MPG are 

complementary techniques and the user should select the technique that is best suited to 

solve the particular problem. We do not state that MPG is a better method than TPG, but 

we believe that it is more flexible.  

MPG is flexible because it can be both knowledge and data driven, and therefore 

belongs to the hybrid approaches. Soil scientists often have some prior conceptual 

knowledge about the studied phenomenon. It is easier to translate these concepts into an 

image than into a variogram function. Note that the approach reconnects with the first soil 

mappers who based their maps especially on their knowledge of the soil. Lark (2012a) 

calls it a successful sign of scientific progress when one makes space in quantitative 

models of soil variation for understanding of the soil.  

The second reason for the flexibility of MPG is its capacity to model a broad range of 

spatial patterns. Soil scientists often face periodic, connected or curvilinear patterns that 

are difficult to represent with a random function model. However, the use of MPG is not 

restricted to complex spatial patterns. A TI can also be simple as was shown in chapter 9.  

There are some perceptions about constructing a TI that prohibit soil scientists to 

experiment with MPG. An often mentioned constraint is that TI construction requires a 

larger effort than variogram modelling. Whether this is true or not, strongly depends on the 

situation. For instance, the TI that was built from the geometric RF model (chapter 6) and 

the bivariate TI (chapter 8) were indeed rather difficult to construct, but the TIs constructed 

from high density measurements (chapter 6 and 7) and the simple 3D TI (chapter 9) were 

obtained in a straightforward way. Today, there is an increasing availability of soil 

covariates helping the soil scientist to accurately model spatial variation. This soil 

covariate information, like aerial photographs or proximal soil sensor images, might be 

used to construct TIs which can be more generally applied (since they do not need to 

contain any local information).  

The second perception is that TI construction is more subjective than variogram 

modelling. Indeed, constructing a TI forces the user to make decisions about the multiple-

point statistics instead of just accepting them implicitly. However, we follow the opinion 

of Journel and Zhang (2006) and consider the explicit visualisation of multiple-point 

statistics in a TI as an advantage because it allows a visual inspection of the full model of 

spatial variation applied. Multiple-point maps are very sensitive to the chosen TI, but one 

should realise that this sensitivity is not stronger than the sensitivity to the combination of 

a variogram model and implicit high-order assumptions.  
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Just as soil scientists implemented variogram-based geostatistics as developed in the 

mining industry, we believe that the time is ready to also implement multiple-point 

geostatistics as developed in the petroleum geology. We want to encourage soil scientists 

to rethink the –often blindly applied– variogram modelling procedure by evaluating first if 

the expected spatial pattern cannot be better or more easily modelled with a training image. 

10.2 Future research 

‘In theory, theory and practice are the same. In practice, they are not.’ Albert Einstein. 

 

The MPG theory is rather recent and therefore exposed to diverse theoretical 

improvements that are suggested in scientific literature. Main MPG research lines are the 

assessment of the sensitivity to the input training image, the use of parameterized TIs, the 

development of appropriate (multiple-point) validation statistics to evaluate the pattern 

reconstruction of MPG simulations, and the search for improvements to existing MPG 

algorithms or the development of new MPG algorithms aiming to increase the simulation 

quality and the computational efficiency,  

The search for theoretical improvements of MPG is essential, but it should not delay 

the implementation of MPG in practice because often a lot can be learned from practical 

applications. The main obstacle to a wide implementation of MPG in practice is the need 

for user friendly and easily attainable MPG software packages. The SNESIM algorithm 

that is implemented in SGeMS and the IMPALA algorithm in Isatis are pioneering 

software tools, but the other developed algorithms and the theoretical improvements should 

follow. 

Concerning the application of MPG in soil science, we suggest further research to 

focus especially on the construction of TIs from high density soil sensor data. Solutions 

should be found to judge the suitability of these data to be used as the basic for TI 

construction and to develop criteria for soil science TIs. A related research question is for 

instance which data transformations, such as the histogram transformation that was often 

applied in this thesis, are required. Another idea for future research is the development of 

libraries of parameterized soil TIs for frequently appearing soil features, as has already 

been realised in hydrogeology. Geometric RF models, such as the RF model for the 

polygonal ice-wedges, could serve as the basic to construct such libraries.  
 



 

 

Appendix 
Supplementary figures chapter 5 

 

Figure A (a) First out of 10 unconditional simulations illustrating the effect of parameters t 
and n with f = 0.5 and (b) first out of 10 unconditional simulations illustrating the effect of 

f for constant t and n based on the continuous ice-wedge TI (Figure 5.3a). 
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Figure B (a) First out of 10 unconditional simulations illustrating the effect of parameters t 
and n with f = 0.5 and (b) first out of 10 unconditional simulations illustrating the effect of 

f for constant t and n based on the categorical marble TI (Figure 5.3d). 
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Figure C (a) First out of 10 unconditional simulations illustrating the effect of parameters t 
and n with f = 0.5 and (b) first out of 10 unconditional simulations illustrating the effect of 

f for constant t and n based on the categorical snow crystals TI (Figure 5.3f). 
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Figure D (a) First out of 10 unconditional simulations illustrating the effect of parameters t 
and n with f = 0.5 and (b) first out of 10 unconditional simulations illustrating the effect of 

f for constant t and n based on the continuous snow crystals TI (Figure 5.3e). 
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Figure E Influence of (a) t and n (for f = 0.5) and (b) f on the quality indicators based on 
the continuous ice-wedge TI (Figure 5.3a). 
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Figure F Influence of (a) t and n (for f = 0.5) and (b) f on the quality indicators based on 
the categorical marble TI (Figure 5.3d). 
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Figure G Influence of (a) t and n (for f = 0.5) and (b) f on the quality indicators based on 
the categorical snow crystals TI (Figure 5.3f). 
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Figure H Influence of (a) t and n (for f = 0.5) and (b) f on the quality indicators based on 
the continuous snow crystals TI (Figure 5.3e). 

 
 



 

 

References 
Adamchuk, V.I., Hummel, J.W., Morgan, M.T. and Upadhyaya, S.K. 2004. On-the-go soil 

sensors for precision agriculture. Computers and Electronics in Agriculture 44, 71–91. 

Arpat, G.B. and Caers, J. 2007. Conditional simulation with patterns. Mathematical 
Geology 39, 177–203. 

Baer, J.U., Kent, T.F. and Anderson, S.H. 2009. Image analysis and fractal geometry to 
characterize soil desiccation cracks. Geoderma 154, 153–163. 

Bastante, F.G., Ordóñez, C., Taboada, J. and Matias, J.M. 2008. Comparison of indicator 
kriging, conditional indicator simulation and multiple-point statistics used to model 
slate deposits. Engineering Geology 98, 50–59. 

Bastante, F.G., Taboada, J., Alejano, L.R. and Ordóñez, C. 2005. Evaluation of the 
resources of a slate deposit using indicator kriging. Engineering Geology 81, 407–418. 

Bleinès, C., Bourges, M., Deraisme, J., Geffroy, F., Jeannée, N., Lemarchand, O., Perseval, 
S., Poisson, J., Rambert, F., Renard, D., Touffait, Y. and Wagner, L. 2011. ISATIS 
2011 Case studies. Geovariances, Avon Cedex.  

Boisvert, J.B., Pyrcz M.J. and Deutsch C.V. 2007. Multiple-point statistics for training 
image selection. Natural Resources Research 16, 313–321. 

Burgess, T.M. and Webster, R. 1980. Optimal interpolation and isarithmic mapping of soil 
properties. I. the semivariogram and punctual kriging. Journal of Soil Science 31, 
315–331. 

Buylaert, J.P., Ghysels, G. Murray A.S., Thomsen, K.J., Vandenberghe, D., De Corte, F., 
Heyse, I. and Van den Haute, P. 2009. Optical dating of relict sand wedges and 
composite-wedge pseudomorphs in Flanders, Belgium. Boreas 38, 160–175.  

Caers, J. and Zhang, T. 2004. Multiple-point geostatistics: a quantitative vehicle for 
integrating geologic analogs into multiple reservoir models. Integration of outcrop and 
modern analog data in reservoir models, AAPG memoir 80, 383–394. 

Catt, J.A. 1979. Soils and Quaternary Geology in Britain. Journal of Soil Science 30, 607–
642. 

Chilès, J.P. and Guillen, A. 1984. Variogrammes et krigeages pour la gravimétrie et le 
magnétisme. Sciences de la Terre – Série Informatique Géologique 20, 455–468. 

Cockx, L., Ghysels, G., Van Meirvenne, M. and Heyse, I. 2006. Prospecting ice-wedge 
pseudomorphs and their polygonal network using the electromagnetic induction 
sensor EM38DD. Permafrost and Periglacial Processes 17, 163–168. 

Cockx, L., Van Meirvenne, M. and De Vos, B. 2007. Using the EM38DD soil sensor to 
delineate clay lenses in a sandy forest soil. Soil Science Society of America Journal 
71, 1314–1322. 

Cockx, L., Van Meirvenne, M., Vitharana, U.W.A., Verbeke, L.P.C., Simpson, D., Saey, 
T. and Van Coillie, F.A.B. 2009. Extracting Topsoil Information from EM38DD 



 
152 References 

Sensor Data using a Neural Network Approach. Soil Science Society of America 
Journal 73, 2051–2058. 

Cohen, J. 1960. A coefficient of agreement for nominal scales. Educational and 
Psychological Measurements 20, 37–46. 

Comunian, A., Renard, P. and Straubhaar, J. 2012. 3D multiple-point statistics simulation 
using 2D training images. Computers & Geosciences 40, 49–65. 

Comunian, A., Renard, P., Straubhaar, J. and Bayer, P. 2011. Three-dimensional high 
resolution fluvio-glacial aquifer analog - Part 2: Geostatistical modeling. Journal of 
Hydrology 405, 10–23. 

Corwin, D.L. and Lesch, S.M. 2005. Characterizing soil spatial variability with apparent 
electrical conductivity: I. Survey protocols. Computers and Electronics in Agriculture 
46, 103–133. 

Cressie N. 1985. Fitting variogram models by weighted least squares. Mathematical 
Geology 17, 563–586. 

Cresto Aleina, F., Brovkin, V., Muster, S., Boike, J., Kutzbach, L. and Zuyev, S. 2012. 
Poisson-Voronoi diagrams and the polygonal tundra.  Geophysical Research Abstracts 
14, EGU2012-1963-1. 

Dansart, A.M., Bahr, J.M. and Atig, J.W. 1999. Using ground-penetrating radar to map 
fossil permafrost wedges that are preferential flow paths for leaching to groundwater. 
Geological Society of America, Abstracts with Program 31, A–76. 

Dathe, A., Eins, S., Niemeyer, J. and Gerold, G. 2001. The surface fractal dimension of the 
soil-pore interface as measured by image analysis. Geoderma 103, 203–229. 

de Gruijter, J.J. and McBratney, A.B. 1988. A modified fuzzy k-means method for 
predictive classification, In: Bock, H.H. (Ed.), Classification and Related Methods of 
Data Analysis, Elsevier, North Holland, pp. 97–104. 

de Gruijter, J.J., McBratney, A.B. and Taylor, J. 2010. Sampling for High-Resolution Soil 
Mapping. Chapter 1, In: Rossel, V.R.A., McBratney, A.B., Minasny, B. (Eds.), 
Proximal Soil Sensing. Progress in Soil Science 1. Springer Science+Business Media 
B.V., pp. 3–14. 

De Iaco, S. and Maggio, S. 2011. Validation techniques for geological patterns simulations 
based on variogram and multiple point statistics. Mathematical Geoscience 43, 483–
500. 

dell’Arciprete, D., Bersezio, R., Felleti, F., Giudici, M., Comunian, A. and Renard, P. 
2012. Comparison of three geostatistical methods for hydrofacies simulation: a test on 
alluvial sediments. Hydrogeology Journal 20, 299–311. 

De Smedt, P., Van Meirvenne, M., Meerschman, E., Saey, T., Bats, M., Court-Picon, M., 
De Reu, J., Zwertvaegher, A., Antrop, M., Bourgeois, J., De Maeyer, P., Finke, P.A., 
Verniers, J. and Crombe, P. 2011. Reconstructing palaeochannel morphology with a 
mobile multicoil electromagnetic induction sensor. Geomorphology 130, 136–141. 

Deutsch, C.V. and Journel, A.G. 1997. GSLIB: Geostatistical Software Library and User's 
Guide. 2nd Edition. Oxford University Press, New York. 



 
References     153  

Deutsch, C.V. and Wang, L. 1996. Hierarchical object based stochastic modeling of fluvial 
reservoirs. Mathematical Geology 28, 857–880. 

Doolittle, J. and Nelson F. 2009. Characterising Relict Cryogenic Macrostructures in Mid-
Latitude Areas of the USA with Three-Dimensional Ground-Penetrating Radar. 
Permafrost and Periglacical Processes 20, 257–268. 

Dudewicz, E.J. and Mishra, S.N. 1988. Modern mathematical statistics. John Wiley & 
Sons, New York. 

Dutilleul, P., Haltigin, T.W and Pollard, W.H. 2009. Analysis of polygonal terrain 
landforms on Earth and Mars through spatial point patterns. Environmetrics 20, 206–
220. 

Emery, X. 2004. Properties and limitations of sequential indicator simulation. Stochastic 
Environmental Reseach and Risk Assessment 18, 414–424. 

Emery, X. and Ortiz, J.M. 2011. A comparison of random field models beyond bivariate 
distributions. Mathematical Geosciences 43, 183–202. 

French, H.M. 2007. The Periglacial Environment, 3rd Edition. John Wiley and Sons, 
Chichester. 

French, H.M., Demitroff, M. and Forman, S.L. 2003. Evidence for Late-Pleistocene 
Permafrost in the New Jersey Pine Barrens (Latitude 391N), Eastern USA. Permafrost 
and Periglacial Processes 14, 259–274. 

Ghysels, G. 2008. Bijdrage tot de studie van de kenmerken, de genese en de datering van 
periglaciale polygonale wigstructuren in België. PhD dissertation, Ghent University, 
Ghent, Belgium (in Dutch). 

Ghysels, G. and Heyse, I. 2006. Composite-wedge pseudomorphs in Flanders, Belgium. 
Permafrost and Periglacial Processes 17, 145–161. 

Goovaerts, P. 1997. Geostatistics for Natural Resources Evaluation. Oxford University 
Pres, New York. 

Gringarten, E. and Deutsch, C.V. 2001. Variogram interpretation and modeling. 
Mathematical Geology 33, 507–534. 

Guardiano, F.B. and Srivastava, R.M. 1993. Multivariate geostatistics: beyond bivariate 
moments, In: Soares, A. (Ed.), Geostatistics-Troia, Vol. 1. Kluwer Academic 
Publishers, Dordrecht, pp. 133–144. 

Harding, S.A., Murray, D.A. and Webster, R. 2010. MVARIOGRAM procedure, In: 
Payne, R.W. (Ed.), GenStat Release 13 Reference Manual, Part 3 Procedure Library 
PL21. VSN International, Hemel Hempstead. 

Harry, D.G. and Gozdzik, J.S. 1988. Ice wedges: Growth, thaw transformation, and 
palaeoenvironmental significance. Journal of Quaternary Science 3, 39–55. 

Heuvelink, G.B.M. and Webster, R. 2001. Modelling soil variation: past, present, and 
future. Geoderma 100, 269–301. 

Hu, L.Y. and Chugunova, T. 2008. Multiple-point geostatistics for modeling subsurface 
heterogeneity: A comprehensive review. Water Resources Research 44, W11413. 



 
154 References 

Huysmans, M. and Dassargues, A. 2009. Application of multiple-point geostatistics on 
modelling groundwater flow and transport in a cross-bedded aquifer (Belgium). 
Hydrogeology Journal 17, 1901–1911. 

Huysmans, M. and Dassargues, A. 2011. Direct multiple-point geostatistical simulation of 
edge properties for modelling thin irregularly shaped surfaces. Mathematical 
Geosciences 43, 521–536. 

Isaaks, E.H. and Srivastava, R.M. 1989. An Introduction to Applied Geostatistics. Oxford 
University Press, New York. 

Islam, M.M., Saey, T., Meerschman, E., De Smedt, P., Meeuws, F., Van De Vijver, E. and 
Van Meirvenne, M. 2011. Delineating water management zones in a paddy rice field 
using a Floating Soil Sensing System. Agricultural Water Management 102, 8–12. 

Jones, A., Stolbovoy, V., Tarnocai, C., Broll, G., Spaargaren, O. and Montanarella, L. 
2010. Soil Atlas of the Northern Circumpolar Region. Publication Office of the 
European Union, Luxembourgh. 

Journel, A.G. and Huijbregts, C.J. 1978. Mining Geostatistics. Academic Press, New York.  

Journel, A. and Zhang, T. 2006. The necessity of a multiple-point prior model. 
Mathematical Geology 38, 591–610. 

Jung, A. and Aigner, T. 2012. Carbonate geobodies: hierarchical classification and 
database – a new workflow for 3D reservoir modelling. Journal of Petroleum Geology 
35, 49–65. 

Kachanoski, R.G., Hendrickx, J.M.H. and de Jong, E. 2002. Electromagnetic induction. In: 
Dane, J.H., Topp, G.C (Eds.), Methods of Soil Analysis, Part 1, Physical Methods, 
Third Edition. Soil Science Society of America, pp.497–501. 

Kolstrup, E. 1986. Reappraisal of the upper Weichselian periglacial environment form 
Danish frost wedge casts. Palaeogeography, Palaeoclimatolgoy, Palaeoecology 56, 
237–249. 

Kolvos, A., Christakos, G., Hristopulos, D.T. and Serre, M.L. 2004. Methods for 
generating non-separable spatiotemporal covariance models with potential 
environmental applications. Advances in Water Resources 27, 815–830. 

Krige, D.G. 1951. A statistical approach to some mine valuations and allied problems at 
the Witwatersrand. Master Thesis, University of Witwatersrand, Johannesburg, South 
Africa.  

Kullback, S. and Leibler, R.A. 1951. On information and sufficiency. Annals of 
Mathematical Statistics 22, 79–86. 

Lark, R.M. 2009. A stochastic-geometric model of soil variation. European Journal of Soil 
Science 60, 706–719. 

Lark, R.M. 2012a. Towards soil geostatistics. Spatial Statistics 1, 92–99. 

Lark, R.M. 2012b. A stochastic geometric model for continuous local trends in soil 
variation. Geoderma 189–190, 661–670. 



 
References     155  

Le Coz, M., Genthon, P. and Adler, P.M. 2011. Multiple-point statistics for modeling 
facies heterogeneities in a porous medium: the Komadugu-Yobe alluvium, Lake Chad 
Basin. Mathematical Geosciences 43, 861–878. 

Lefebvre, S. and Hoppe, H. 2006. Appearance-space texture synthesis. ACM Transactions 
on Graphics 25, 541-548. 

Liu, Y.H. 2006. Using the Snesim program for multiple-point statistical simulation. 
Computers & Geosciences 32, 1544-1563. 

Lusch, D.P., Stanley, K.E., Schaetzl, R.J., Kendall, A.D., Van Dam, R.L., Nielsen, A., 
Blumer, B.E. Hobbs, T.C., Archer, J.K., Holmstadt J.L.F. and May, C.L. 2009. 
Characterization and Mapping of Patterned Ground in the Saginaw Lowlands, 
Michigan: Possible Evidence for Late-Wisconsin Permafrost. Annals of the 
Association of American Geographers 99, 445–466. 

Mackay, J.R. and Burn, C.R. 2002. The first 20 years (1978-1979 to 1998-1999) of ice-
wedge growth at Illisarvik experimental drained lake site, western Arctic coast, 
Canada. Canadian Journal of Earth Sciences 39, 95–11. 

Mariethoz, G. 2009. Geological stochastic imaging for aquifer characterization. PhD 
Dissertation, University of Neuchâtel, Neuchâtel, Switzerland. 

Mariethoz, G. 2010. A general parallelization strategy for random path based geostatistical 
simulation methods. Computers & Geosciences 36, 953–958. 

Mariethoz, G. and Kelly, B.F.J. 2011. Modeling complex geological structures with 
elementary training images and transform-invariant distances. Water Resources 
Research 47, W07527.  

Mariethoz, G., McCabe, M. and Renard, P. 2012. Spatiotemporal reconstruction of gaps in 
multivariate fields using the Direct Sampling approach. Water Resources Research 48, 
W10507. 

Mariethoz, G. and Renard, P. 2010. Reconstruction of incomplete data sets or images using 
Direct Sampling. Mathematical Geosciences 42, 245–268. 

Mariethoz, G., Renard, P. and Straubhaar, J. 2010. The Direct Sampling method to perform 
multiple-point geostatistical simulations. Water Resources Research 46, W11536. 

Matheron, G. 1962. Traité de Géostatistique Appliqué, Tome 1. Memoires du Bureau de 
Recherches Géologiques et Minières, Paris. 

Matheron, G. 1965. Les variables régionalisées et leur estimation. Masson, Paris. 

McBratney, A.B. and Moore, A.W. 1985. Application of fuzzy sets to climatic 
classification. Agricultural and Forest Meteorology 35, 165–185. 

McBratney, A.B. and Odeh, I.O.A. 1997. Applications of fuzzy sets in soil science: fuzzy 
logic, fuzzy measurements and fuzzy decisions. Geoderma 77, 85–113. 

McBratney, A.B., Odeh, I.O.A., Bishop, T.F.A., Dunbar, M.S. and Shatar, T.M. 2000. An 
overview of pedometric techniques for use in soil survey. Geoderma 97, 293–327.  

McBratney, A.B. and Webster, R. 1986. Choosing functions for semi-variograms of soil 
properties and fitting them to sampling estimates. Journal of Soil Science 37, 617–
639. 



 
156 References 

McNeill, J.D. 1980. Electromagnetic terrain conductivity measurement at low induction 
numbers. Geonics Ltd, Ontario. 

Meerschman, E., Cockx, L. and Van Meirvenne, M. 2011. A geostatistical two-phase 
sampling strategy to map soil heavy metal concentrations in a former war zone. 
European Journal of Soil Science 62, 408–416. 

Meerschman, E., Pirot, G., Mariethoz, G., Straubhaar, J., Van Meirvenne, M. and Renard, 
P. 2013. A practical guide to performing multiple-point statistical simulations with the 
Direct Sampling algorithm. Computers & Geosciences 52, 307–324. 

Minasny, B. and McBratney, A.B. 2002. FuzMe version 3. Australian Centre for Precision 
Agriculture, The University of Sidney, New South Wales.  

Mirowski, P.W., Tetzlaff, D.M., Davies, R.C., McCormick, D.S., Williams, N. and Signer, 
C. 2009. Stationarity scores on training images for multipoint geostatistics. 
Mathematical Geosciences 41, 447–474. 

Morgan, A.V.M. 1971. Engineering problems caused by fossil permafrost features in the 
English Midlands. Quaterly Journal of Engineering Geology & Hydrogeology 4, 111–
114. 

Murton, J.B. and French, H.M. 1993. Thaw modification of frost-fissure wedges, Richards 
Island, Pleistocene Mackenzie Delta, western Arctic Canada. Journal of Quaternary 
Science 8, 185–196. 

Nyquist, H. 1928. Certain topics in telegraph transmission theory. Trans. AIEE 47, 617-
611. 

Okabe, H. and Blunt, M.J. 2004. Prediction and permeability for porous media 
reconstructed using multiple-point statistics. Physical Review E, 70. 

Okabe, A., Boots, B., Sugihara, K. and Chiu, S.K. 2000. Spatial Tessellations: Concepts 
and Applications of Voronoi Diagrams. 2nd Edition. John Wiley & Sons, Chichester. 

Payne, R.W., Harding, S.A., Murray, D.A., Soutar, D.M., Baird, D.B., Glaser, A.I., 
Channing, I.C., Welham, S.J., Gilmour, A.R., Thompson, R. and Webster, R. 2009. 
Genstat Release 12 Reference Manual, Part 2 Directives. VSN International, Hemel 
Hempstead. 

Plug, L.J. and Werner, B.T. 2002. Nonlinear dynamics of ice-wedge networks and 
resulting sensitivity to severe cooling events. Nature 417, 929–933. 

Plug, L.J. and Werner, B.T. 2008. Modelling of ice-wedge networks.  Permafrost and 
Periglacial Processes 19, 63–69. 

Pontius, R.G.Jr. and Schneider, L.C. 2001. Land-cover change model validation by an 
ROC method for the Ipswich watershed, Massachusetts, USA. Agriculture, 
Ecosystems and Environment 85, 239–248. 

Pyrcz, M.J., Boisvert, J.B. and Deutsch, C.V. 2008. A library of training images for fluvial 
and deepwater reservoirs and associated code. Computers & Geosciences 43, 542–
560. 

Remy, N., Boucher, A. and Wu, J. 2009. Applied Geostatistics with SGeMS: A User's 
Guide. Cambridge University Press, New York. 



 
References     157  

Renard, P. and Allard, D. 2012. Connectivity metrics for subsurface flow and transport. 
Advances in Water Resources 51, 168–196. 

Renard, P., Straubhaar, J., Caers, J. and Mariethoz, G. 2011. Conditioning facies 
simulations with connectivity data. Mathematical Geosciences 43, 879–903. 

Reynolds, J.M. 1997. An Introduction to Applied and Environmental Geophysics. Wiley & 
Sons, New York.  

Romanovskij, N.N. 1973. Regularities in formation of frost-fissure polygons and 
development of frost-fissure polygons. Biuletyn Peryglacjalny 23, 237–277. 

Ronayne, M.J., Gorelick, S.M. and Caers, J. 2008. Identifying discrete geologic structures 
that produce anomalous hydraulic response: An inverse modeling approach. Water 
Resources Research 44, W08426. 

Saey, T., Islam, M.M., De Smedt, P., Meerschman, E., Van De Vijver, E., Lehouck, A. and 
Van Meirvenne, M. 2012. Using a multi-receiver survey of apparent electrical 
conductivity to reconstruct a Holocene tidal channel in a polder area. Catena 95, 104–
111. 

Saey, T., Simpson, D., Vermeersch, H., Cockx, L. and Van Meirvenne, M. 2009. 
Comparing the EM38DD and DUALEM-21S sensors for depth-to-clay mapping. Soil 
Science Society of America Journal 73, 7–12. 

Saey, T., Simpson, D., Vitharana, U.W.A., Vermeersch, H., Vermang, J. and Van 
Meirvenne, M. 2008. Reconstructing the paleotopography beneath the loess cover 
with the aid of an electromagnetic induction sensor. Catena 74, 58–64. 

Saey, T., Van Meirvenne, M., Vermeersch, H., Ameloot, N. and Cockx, L. 2009. A 
pedotransfer function to evaluate the soil profile textural heterogeneity using 
proximally sensed apparent electrical conductivity. Geoderma 150, 389–395. 

Seifert, D. and Jensen, J.L. 2000. Object and pixel-based reservoir modeling of a braided 
fluvial reservoir. Mathematical Geology 32, 581–603. 

Simpson, D., Van Meirvenne, M., Saey, T., Vermeersch, H., Bourgeois, J., Lehouck, A., 
Cockx, L. and Vitharana, U.W.A. 2009. Evaluating the Multiple Coil Configurations 
of the EM38DD and DUALEM-21S Sensors to Detect Archaeological Anomalies. 
Archaeological Prospection 16, 91–102. 

Slavich, P.G. and Petterson, G.H. 1990. Estimating average rootzone salinity for 
electromagnetic (EM-38) measurements. Australian Journal of Soil Research 31, 
2401–2409. 

Straubhaar, J., Renard, P., Mariethoz, G., Froidevaux, R. and Besson, O. 2011. An 
improved parallel multiple-point algorithm using a list approach. Mathematical 
Geosciences 43, 305-328. 

Strebelle, S. 2002. Conditional simulation of complex geological structures using multiple-
point statistics. Mathematical Geology 34, 1–21. 

Strebelle, S., Payrazyan, K. and Caers, J. 2003. Modeling of a deepwater turbidite reservoir 
conditional to seismic data using principal component analysis and multiple-point 
geostatistics. SPE Journal 8, 227–235. 



 
158 References 

Tobbler, W. 1970. A computer movie simulating urban growth in the Detroit region. 
Economic Geography 46, 234–240. 

Triantafilis, J., Odeh, I.O.A. and McBratney, A.B. 2001. Five geostatistical models to 
predict soil salinity from electromagnetic induction data across irrigated cotton. Soil 
Science Society of America Journal 65, 869–878. 

Truong, P.N., Heuvelink, G.B.M. and Gosling, J.P. 2012. Web-based tool for expert 
elicitation of the variogram. Computers & Geosciences 51, 390-399. 

Vandenberghe, J. and Pissart, A. 1993. Permafrost changes in Europe during the Last 
Glacial. Permafrost and Periglacial Processes 4, 121–135. 

Van Meirvenne, M. and Goovaerts, P. 2001. Evaluating the probability of exceeding a site-
specific soil cadmium contamination threshold. Geoderma 102, 75–100. 

Venables, W.N. and Ripley, B.D. 2002. Modern Applied Statistics with S. Fourth Edition. 
Springer, New York. 

Vitharana, U.W.A., Saey, T., Cockx, L., Simpson, D., Vermeersch, H. and Van Meirvenne, 
M. 2008a. Upgrading a 1/20,000 soil map with an apparent electrical conductivity 
survey. Geoderma 148, 107–112. 

Vitharana, U.W.A., Van Meirvenne, M., Simpson, D., Cockx, L. and De Baerdemaeker, J. 
2008b. Key soil and topographic properties to delineate potential management classes 
for precision agriculture in the European loess area. Geoderma 143, 206–215. 

Walters, J.C. 1994. Ice-wedge casts and relict polygonal patterned ground in North-East 
Iowa, USA. Permafrost and Periglacial Processes 5, 269–281. 

Webster, R. and Oliver, M.A.. 2007. Geostatistics for environmental scientists. 2nd 
edition. John Wiley & Sons, Chichester. 

Whittle, P. 1954. On stationary processes in the plane. Biometrika 41, 434–449. 

Whittle, P. 1962. Topographic correlations, power-law covariance functions and diffusion. 
Biometrika 49, 305–314. 

Zhang, T., Bombarde, S., Strebelle, S. and Oatney, E. 2006a. 3D porosity modeling of a 
carbonate reservoir using continuous multiple-point statistics simulation. SPE Journal 
11, 375–379. 

Zhang, T, Switzer, P. and Journel, A. 2006b. Filter-based classification of training image 
patterns for spatial simulation. Mathematical Geology 38, 63–80. 

Zhang, J., Zhou, K., Velho, L., Guo, B. and Shum, H.Y. 2003. Synthesis of progressively-
variant textures on arbitrary surfaces. ACM Transactions on Graphics 22, 295–302. 

 



 

 

Curriculum vitae 
Personal data 

Name: Eef Meerschman 
Address: Hippodroomstraat 41, 8790 Waregem 
E-mail: eefmeerschman@hotmail.com 
Phone: +32 499 294647 
Date of birth: 22 December 1986 
Place of birth: Kortrijk, Belgium 
Nationality: Belgian 

Education 

2007-2009: Master of Bioscience Engineering: Environmental Technology 
 Ghent University 
 Thesis: Geostatistical inventory of heavy metal concentrations in the soil 

around Ypres as a consequence  of World War I  
 Promoter: Prof. dr. ir. Marc Van Meirvenne 
2004-2007: Bachelor of Bioscience Engineering 
 Ghent University 

Professional experience 

2009-2013: Doctoral researcher  
 PhD fellowship of the Fund for Scientific Research-Flanders (FWO-

Vlaanderen). 
 Research Group Soil Spatial Inventory Techniques  
 Department of Soil Management 
 Ghent University 
 Promoter: Prof. dr. ir. Marc Van Meirvenne 

Scientific publications 

International publications with peer review and in the Science Citation Index (A1) 

22. De Smedt, P., Van Meirvenne, M., Herremans, D., De Reu, J., Saey, T., Meerschman, 
E., Crombé, P. and De Clercq, W. 2013. The 3-D reconstruction of medieval wetland 
reclamation through electromagnetic induction survey. Scientific Reports 3, 1517.  

21. Lark, R.M., Meerschman, E. and Van Meirvenne, M. 2013. A stochastic geometric 
model of the variability of soil formed in Pleistocene patterned ground. Submitted for 
publication in Geoderma. 



 
160 CV 

 
20. Islam, M.M., Meerschman, E., Saey, T., De Smedt, P., Van De Vijver, E. and Van 

Meirvenne, M. 2013. Delineating and evaluating variably puddled zones in a paddy 
rice field using electromagnetic induction based soil sensing. Submitted for 
publication in Computers and Electronics in Agriculture. 

19. Meerschman, E., Van Meirvenne, M., Mariethoz, G., Islam, M.M., De Smedt, P., Van 
De Vijver, E. and Saey, T. 2013. Using bivariate multiple-point statistics and proximal 
soil sensor data to map fossil ice-wedge polygons. Geoderma, in press (DOI: 
10/1016/j.geoderma.2013.01.016). 

18. Meerschman, E., Van Meirvenne, M., Van De Vijver, E., De Smedt, P., Islam, M.M. 
and Saey, T. 2013. Mapping complex soil patterns with multiple-point geostatistics. 
European Journal of Soil Science 64, 183–191. 

17. Saey, T., De Smedt, P., De Clercq, W., Meerschman, E., Islam, M.M. and Van 
Meirvenne, M. 2013. Identifying soil patterns at different spatial scales with a multi-
receiver EMI sensor. Soil Science Society of America Journal 77, 382–390.  

16. Van Meirvenne, M., Islam, M.M., De Smedt, P., Meerschman, E., Van De Vijver E. 
and Saey, T. 2013. Key variables for the identification of soil management classes in 
the Aeolian landscapes of north-west Europe. Geoderma 199, 99–105. 

15. De Smedt, P., Saey, T., Lehouck, A., Stichelbaut, B., Meerschman, E., Islam, M.M., 
Van De Vijver, E. and Van Meirvenne, M. 2013. Exploring the potential of multi-
receiver EMI survey for geoarchaeological prospection: a 90 ha dataset. Geoderma 
199, 30–36. 

14. Meerschman, E., Pirot, G., Mariethoz, G., Straubhaar, J., Van Meirvenne, M. and 
Renard, P. 2013. A practical guide to performing multiple-point statistical simulations 
with the Direct Sampling algorithm. Computers & Geosciences 52, 307–324. 

13. De Smedt, P., Van Meirvenne, M., Davies, N., Bats, M., Saey, T., De Reu, J., 
Meerschman, E., Gelorini, V., Zwertvaegher, A., Antrop, M., Bourgeois, J., De 
Maeyer, P., Finke, P.A., Verniers, J. and Crombé, P. 2012. A multidisciplinary 
approach to reconstructing Late Glacial and Early Holocene landscapes. Journal of 
Archaeological Science 40, 1260–1267.  

12. Saey, T., De Smedt, P., Islam, M.M., Meerschman, E., Van De Vijver, E., Lehouck, 
A. and Van Meirvenne, M. 2012. Depth slicing of multi-receiver EMI measurements 
to enhance the delineation of contrasting subsoil features. Geoderma 189–190, 514–
521. 

11. Saey, T., Islam, M.M., De Smedt, P., Meerschman, E., Van De Vijver, E., Lehouck, 
A. and Van Meirvenne, M. 2012. Using a multi-receiver survey of apparent electrical 
conductivity to reconstruct a Holocene tidal channel in a polder area. Catena, 95, 104–
111. 

10. Islam, M.M., Meerschman, E., Saey, T., De Smedt, P., Van De Vijver, E. and Van 
Meirvenne, M. 2011. Comparing apparent electrical conductivity measurements on a 
paddy field under flooded and drained conditions. 2011. Precision Agriculture 13, 
384–392. 

9. Saey, T., De Smedt, P., Meerschman, E., Islam, M.M., Meeuws, F., Van de Vijver, E., 
Lehouck, A. and Van Meirvenne, M. 2012. Electrical conductivity depth modelling 



 
CV     161  

 
with a multireceiver EMI sensor for prospecting archaeological features. 
Archaeological Prospection 19, 21–30. 

8. Saey, T., Van Meirvenne, M., Dewilde, M., Wyffels, F., De Smedt, P., Meerschman, 
E., Islam, M.M, Meeuws, F. and Cockx L. 2011. Combining multiple signals of an 
electromagnetic induction sensor to prospect land for metal objects. Near Surface 
Geophysics 9, 309–317. 

7. Islam, M.M., Saey, T., Meerschman, E., De Smedt, P., Meeuws, F., Van De Vijver, E. 
and Van Meirvenne, M. 2011. Delineating water management zones in a paddy rice 
field using a floating soil sensing system. Agricultural Water Management 102, 8–12. 

6. Islam, M.M., Cockx, L., Meerschman, E., De Smedt, P., Meeuws, F. and Van 
Meirvenne, M. 2010. A floating sensing system to evaluate soil and crop variability 
within flooded paddy rice  fields. Precision Agriculture 12, 850–859. 

5. Meerschman, E., Van Meirvenne, M., De Smedt, P., Saey, T., Islam, M.M., Meeuws, 
F., Van De Vijver, E. and Ghysels, G. 2011. Imaging a polygonal network of ice-
wedge casts with an electromagnetic induction sensor. Soil Science Society of America 
Journal 75, 2095–2100. 

4. De Smedt, P., Van Meirvenne, M., Meerschman, E., Saey, T., Bats, M., Court-Picon, 
M., De Reu, J., Werbrouck, I., Zwertvaegher, A., Antrop, M., Bourgeois, J., De 
Maeyer, P., Finke, P.A., Verniers, J. and Crombé, P. 2011. Reconstructing 
palaeochannel morphology with a mobile multi-coil electromagnetic induction sensor. 
Geomorphology 130, 136–141. 

3. Meerschman, E., Cockx, L. and Van Meirvenne, M. 2011. A geostatistical two-phase 
sampling strategy to map soil heavy metal concentrations in a former war zone. 
European Journal of Soil Science 62, 408–416. 

2. Meerschman, E., Cockx, L., Islam, M.M., Meeuws, F. and Van Meirvenne, M. 2011. 
Geostatistical assessment of the impact of World War I on the spatial occurrence of 
soil heavy metals. AMBIO: A Journal of the Human Environment 40, 417–424. 

1. Saey, T., Van Meirvenne, M., De Smedt, P., Cockx, L., Meerschman, E., Islam, M.M. 
and Meeuws, F. 2011. Mapping depth-to-clay using fitted multiple depth response 
curves of a proximal EMI sensor. Geoderma 162, 151–158. 

Book chapters 

1. Islam, M.M., Meerschman, E., Cockx, L., De Smedt, P., Meeuws, F. and Van 
Meirvenne, M. 2011. Comparing apparent electrical conductivity measurements on a 
paddy field under flooded and drained conditions. In: Stafford, J.V. (Ed.), Precision 
Agriculture 2011. Czech Centre for Science and Society, Prague, Czech Republic. 
ISBN: 978-80-904830-5-7, p43–50. 

Conference and workshop proceedings 

8. Lark, R.M., Meerschman, E. and Van Meirvenne, M. 2013. A stochastic-geometric 
model of soil variation in Pleistocene patterned ground. In: Geophysical Research 
Abstracts, Vol. 15, EGU2013-2234, EGU General Assembly 2013, Vienna, Austria. 

 



 
162 CV 

 
7. Meerschman, E., Van De Vijver, E., Mariethoz, G. and Van Meirvenne, M. 2012. 

Using bivariate multiple-point statistics for the processing of proximal soil sensor 
data. In: Goméz-Hernandez (Ed.), Proceedings of geoENV 2012: IX conference on 
Geostatistics for Environmental Applications, Polytechnic University of Valencia, 
Valencia, Spain, pp. 219–220 

6. Meerschman, E., Pirot, G., Mariethoz, G., Straubhaar, J., Van Meirvenne, M., Renard, 
P. 2012. Guidelines to perform multiple-point statistical simulations with the Direct 
Sampling algorithm. In: Expanded abstract collection from Ninth International 
Geostatistics Congress, Oslo, Norway, abstract number P–029. 

5. Pirot, G., Meerschman, E., Mariethoz, G., Straubhaar, J., Van Meirvenne, M. and 
Renard, P. 2011. Optimizing Direct Sampling algorithm’s parameters to performing 
multiple-points geostatistical simulations. In: Proceedings of AGU Fall Meeting 2011, 
San Francisco, California, USA, abstract number H53F–1475. 

4. Meerschman, E. and Van Meirvenne, M. 2011. Using bivariate multiple-point 
geostatistics and proximal soil sensor data to map fossil ice-wedge polygons. In: 
Jakšík, O., Klement, A. and Borůvka, L. (Eds.), Pedometrics 2011 – Innovations in 
Pedometrics, the Czech University of Life Sciences, Prague, Czech Republic, pp. 51. 

3. Islam, M. M., Van Meirvenne, M., Loonstra, E., Meerschman, E., De Smedt, P., 
Meeuws, F., Van De Vijver, E. and  Saey, T. 2011. Key properties for delineating soil 
management zones. In: Adamchuk, V.I. and Viscarra Rossel, R.A. (Eds.), Proceeding 
of the second Global Workshop on Proximal Soil Sensing, McGill University, 
Montreal, Canada, pp. 52–55. 

2. Meerschman, E. and Van Meirvenne, M. 2010. Regional characterization of soil heavy 
metals in a former World War I battle area. In: Cockx, L., Van Meirvenne, M., 
Bogaert, P. and D’Or, D. (Eds.), Book of abstracts of geoENV 2010: 8th International 
Conference on Geostatistics for Environmental Applications, Ghent University, 
Ghent, Belgium, pp. 195–197. 

1. Meerschman, E. and Van Meirvenne, M. 2010. Application of multiple-point 
geostatistics in soil science: the reconstruction of polygonal networks of ice-wedge 
pseudomorphs. In: Cockx, L., Van Meirvenne, M., Bogaert, P. and D’Or, D. (Eds.), 
Book of abstracts of geoENV 2010: 8th International Conference on Geostatistics for 
Environmental Applications, Ghent University, Ghent, Belgium, pp. 28–31. 


