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All scientific work is incomplete – whether it be observational or
experimental. All scientific work is liable to be upset or modified
by advancing knowledge. That does not confer upon us a freedom
to ignore the knowledge we already have, or to postpone the
action that it appears to demand at a given time. (Hill, 1965,
300)





Preface

This dissertation concerns laws of nature and causality in the special sciences.
The label ‘special sciences’ covers many scientific disciplines, ranging from
genetics over occupational medicine and epidemiology up to economics and
the social sciences. I will perforce restrict myself mainly to the theory of
classical genetics, but on occasion I will also glance at other disciplines.

Are there any laws of nature in the special sciences? It has often been
argued there are not. I will argue by contrast that this view is mistaken.
There are laws of nature in the special sciences . . . provided we adopt an
appropriate conceptual framework. Given such a framework, we may rightly
call the principles of e.g. the theory of classical genetics ‘laws of nature’.

Laws of nature and causality are closely linked with many others topics
from philosophy of science. I will go more deeply into the following issues:
mechanisms and scientific theories, explanation and policy, experimentation
and causal discovery, . . . Thus I will not only examine what laws of nature
are, but also what they can be used for and how they can be discovered.

As such, this dissertation should be looked upon as philosophy of sci-
ence. More precisely, it should be considered formal philosophy of science.
Throughout I will make use of the language of causal modelling and Bayesian
nets to tackle the above issues. And I will present a formal logic for causal
discovery. Finally, it should be deemed historically based philosophy of sci-
ence. A large part of it will rely on papers and monographs from the history
of classical genetics and rival theories of inheritance.

By calling this dissertation historically based formal philosophy of science,
I purposively exclude two things. Firstly, it is not intended as history of sci-
ence. Secondly, it is not pure metaphysics. Laws of nature have been amply
discussed in metaphysics, where they are often understood as metaphysical
entities underlying the regularities observed in the world. I will define laws
of nature as generalizations describing these regularities. What brings about
such regularities is a question I will mainly sidestep. Any philosophy of sci-
ence involves metaphysical commitments – this I certainly do not want to
dispute –, but still we should distinguish between these two domains.
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Chapter 1

Introduction. What are laws of
nature?

For years on end, ‘laws of nature’ have played an important role in philosophy
of science. What laws of nature are, and what criteria they satisfy, thus was
an important philosophical issue. Within the logical empiricist tradition,
criteria have been developed which gave rise to what now can be labeled ‘the
received view’. With much rigour, and with the help of first order predicate
logic, lawful generalizations were distinguished from mere accidental ones.
I called this approach ‘the received view’, but an even better label would
be ‘the once received view’, since it has come under attack ever more. In
section 1.1 I will briefly present the criteria in question and show why they
are wanting as regards the theories and generalizations of science – especially
of the special sciences! In sections 1.2 and 1.3 I will present two alternative
approaches to laws of nature in the special sciences. The first is Sandra D.
Mitchell’s pragmatic approach. The second is Jim Woodward’s concept of
‘invariance’ as the hallmark of causal and/or explanatory relations. In section
1.4 I will synthesize their ideas and propose four related concepts: P -laws,
P -regularities, cP -laws and cP -regularities. These concepts, it will be seen,
are very fruitful for tackling the problem of laws of nature and causality in
the special sciences.

1.1 The received view on laws of nature

For decennia, ‘laws of nature’ (or ‘scientific laws’) have played an important
role in philosophy of science. The discovery of laws was deemed the hall-
mark of good science and the laws themselves were deemed indispensable
for prediction, explanation and the evaluation of counterfactual statements.

1



2 Introduction. What are laws of nature?

Some statements were considered paradigmatic examples of scientific laws,
such as (1.1), (1.2), or (1.3). Others were considered paradigmatic examples
of accidental generalizations, such as (1.4), or (1.5).

Newton’s laws of motion (1.1)

Kepler’s laws of planetary motion (1.2)

“All copper when heated expands” (1.3)

“All the screws in Smith’s car are rusty” (1.4)

“All the coins in my pocket to-day are made of silver” (1.5)

With both the alleged functions of prediction, explanation and support of
counterfactuals and these paradigmatic examples in mind, the necessary and
sufficient conditions for lawlikeness were sought. I will list seven criteria that
were frequently cited, e.g. by Nagel (1961, 29–78), Goodman (1973, 17–27,
73–81) and Hempel (1965, 231, 265–268). These criteria were strongly shaped
by the language, as well as the inferential power of first order classical logic
(see also Mitchell, 2000 and Bechtel and Abrahamsen, 2005). To be sure,
this list is not exhaustive and both the relative importance and the precise
interpretation of these criteria were heavily discussed. But they strongly
influenced the debate on laws of nature in philosophy of science and are
rightly called the ‘received’ view.

First, however, some conceptual clarifications are in order. I will treat
‘law of nature’ and ‘scientific law’ on a par.1 By ‘law of nature’ or one of
its synonyms, I will always mean a generalization. Laws are generalizations
describing regularities. Hence they should not be confused with these regu-
larities. Nor should they be interpreted as metaphysical entities that produce
or are responsible for these regularities.2

Let us now have a look at the conditions to be satisfied by laws or lawful
generalizations. Generalizations that satisfy these conditions, I will call strict
laws. These will be contrasted with weaker laws in subsequent sections. The
first condition is universality . Laws of nature are represented as universal
conditionals (∀x)(Ax ⊃ Bx), where ‘∀’ is the classical universal quantifier
and ‘⊃’ is material implication. (In Hempel (1965, 266) conditional form is
considered less important.) The second criterion is truth or high probabil-
ity. Sentences describing lawful regularities should be true (Hempel, 1965,

1But I will distinguish between ‘strict laws’ and ‘pragmatic laws’.
2A different view, viz. that laws of nature are different from both regularities and gen-

eralizations and that they produce the former can be found in Mumford (2004). (However,
Mumford argues that no such laws can exist in nature.)



The received view on laws of nature 3

265), or they should have adequate empirical support, or high probability
(Nagel, 1961, 42–43). Thirdly, laws of nature are not vacuously true. A
universal generalization (∀x)(Ax ⊃ Bx) is vacuously true if nothing satisfies
its antecedent, i.e. if no object or event is A. Vacuous truth was mostly
considered an unacceptable feature for scientific laws. Otherwise, assuming
that unicorns do not exist, an infinite number of ‘laws’ such as ‘All unicorns
are black’, ‘All unicorns are red’, . . . would have to be accepted. (Nagel,
1961, 50–52) The fourth criterion is that laws of nature should have no gen-
uine exceptions (i.e. exceptions which are not the result of poor observation,
careless experiments, . . . ). This is implied by the conditions of universality
and truth. (The condition of exceptionlessness was not that strict, however.
Nagel (1961, 65–66) allowed for genuine exceptions if the law concerned is
sufficiently supported by indirect evidence.)

The conditions given so far do not suffice to rule out accidental universal
generalizations such as (1.4) or (1.5). Indeed, both are universal general-
izations and the world may be such that they are non-vacuously true and
have no genuine exceptions. But to many philosophers it seemed (and does
seem) unacceptable to classify them as laws. Three more criteria were intro-
duced to remedy this problem. The fifth criterion states that laws should be
general or non-local . In a lawlike generalization, no reference to particular
objects or specific spatio-temporal locations (either explicitly or implicitly)
is allowed. However, this condition has to be restricted to fundamental laws
such as (1.1). Otherwise, derivative laws such as (1.2) threaten to loose their
status as scientific laws.3 (Nagel, 1961, 57–58; Hempel, 1965, 267) Accord-
ing to the sixth condition, laws of nature have to be projectible and to have
unlimited scope. If the evidence supporting a generalization is known or sup-
posed to exhaust that generalization’s scope of predication, or if its scope
of predication is known or supposed to be closed for further augmentation,
the generalization in question would not be appropriate for prediction and
hence not be considered a law of nature. Consequently, a law had to be ac-
ceptable prior to the determination of all its instances. (Nagel, 1961, 62–64;
Hempel, 1965, 267; Goodman, 1973, 20–21) Finally, one of the most striking
features of a law of nature is that it expresses not merely de facto generality,
but some strong or ‘necessary’ connection between properties or kinds. Laws
of nature have some kind of necessity . This condition is closely connected
with the conviction that laws of nature support counterfactuals. Consider
a screw s that never was in Smith’s car and is destroyed, so that it never

3A law is fundamental if it contains no individual names and if all its predicates are
purely qualitative (i.e. do not require reference to particular objects or spatio-temporal
locations). A law is derivative if it is a logical consequence of a set of fundamental laws.
(Nagel, 1961, 57)



4 Introduction. What are laws of nature?

will be in Smith’s car. Generalization (1.4) cannot guarantee that, had s
been in Smith’s car, it would have been rusty. Suppose, by contrast, that
some piece of copper c was never heated and is destroyed too. Generalization
(1.3), it is assumed, allows us to accept the counterfactual claim that if c had
been heated it would have expanded. The relation between temperature and
volume is deemed ‘necessary’, while that between ‘being is Smith’s car’ and
‘being rusty’ is not.4 (Nagel, 1961, 50–56, 68–73)

For decades, these criteria for lawfulness have dominated philosophical
discussions about laws of nature. But in the 1980’s and the 1990’s, many
problems cropped up. If the criteria are accepted at face value, we end
up having little or no laws in the sciences at all. This holds for physics
(Cartwright, 1983), as well as for chemistry (Christie, 1994), biology (Beatty,
1995, 1997; Brandon, 1997; Sober, 1997) and the social sciences (Beed and
Beed, 2000; Roberts, 2004). The generalizations that are put forward in
these sciences often fail to correctly describe reality since they involve many
idealizations. Hence they violate the criterion of nonvacuous truth. Often
they have genuine exceptions. Many refer to particular objects or spatio-
temporal locations either implicitly or explicitly. And most lack necessity
since they are contingent upon historically evolved conditions. Given that
laws are traditionally deemed indispensable for prediction, explanation and
the assessment of counterfactuals (and in recent approaches also for manip-
ulation, cf. infra), this is highly problematic.

This situation has led some philosophers to abandon the concept of ‘law of
nature’ and to search for alternatives. Others have sought for an alternative
interpretation of ‘law’ itself. In the following sections I will introduce Sandra
Mitchell’s concept of ‘pragmatic laws’ (section 1.2) and Jim Woodward’s
concept of ‘invariant relations’ (section 1.3). Then, in section 1.4 I will
propose the overarching concepts of ‘P -law’, ‘P -regularity’, ‘cP -law’ and ‘cP -
regularity’.

1.2 Pragmatic laws

Instead of rejecting the concept of law of nature, Sandra Mitchell (1997,
2000) sets out to refine it. She starts from the findings of the previous sec-

4Note that the condition of necessity was not unproblematic. Firstly, there are many
kinds of necessity (logical, causal, physical, . . . ). While some (e.g. conventionalists) inter-
preted scientific laws as logically necessary, most did not. Secondly, since the concept of
law of nature was mostly discussed within the neopositivistic framework, the problem was
how to accommodate the idea of necessity (support of counterfactuals) with an empiricist
world view.
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tion, viz. that the existing criteria for lawfulness are too restrictive, at least
with respect to biology and perhaps also with respect to other sciences. Bi-
ological generalizations are contingent, they have exceptions, etc. Therefore,
she proposes a pragmatic approach to the question whether there are laws
in biology. (Again, the term ‘laws’ refers to (some special kind of) gener-
alizations describing regularities, not to some alleged metaphysical entities
producing these regularities.)

The pragmatic approach focuses on the role of laws in science,
and queries biological generalizations to see whether and to what
degree they function in that role. (Mitchell, 1997, S469, original
emphasis)

The roles of laws that Mitchell focuses on are prediction, explanation and
manipulation. If a generalization is used for one or several of these tasks,
it qualifies as a pragmatic law. (From this it does not follow, however, that
laws are sufficient for these tasks. Perhaps some extra ingredient might be
necessary.)

Mitchell contrasts the pragmatic approach for evaluating the lawfulness
of biology both with the normative and the paradigmatic approach. In the
normative approach one begins with a norm or definition of lawfulness, more
specifically the traditional criteria for strict lawfulness (cf. supra), and re-
views the candidate biological generalization to see if it meets the specified
conditions. The paradigmatic approach begins with a set of exemplars of laws
(characteristically in physics) and compares these to the generalizations in
biology. If a match is found, the generalization is considered a law. (Mitchell,
1997, S469; Mitchell, 2000, 244–250) As we saw in section 1.1, paradigmatic
and pragmatic considerations also played an important role in the works of
Hempel, Nagel and Goodman. Criteria for lawfulness were assumed to rank
Newton’s paradigmatic laws of motion as laws and statements about the
screws in Smith’s car as accidental generalizations. The criteria also had to
be such that laws are the vehicles for prediction (Goodman) and explanation
(Hempel) par excellence. So Mitchell’s approach does not differ radically in
spirit from the traditional one. The main difference, and also the most inter-
esting one, concerns the new, gradual criteria she proposes for the ranking of
lawful generalizations. (Mitchell, 1997, S475–S478; Mitchell, 2000, 259–263)

Generalizations are laws if and to the extent that they can be used for
prediction, explanation or manipulation. Therefore, they must be projectible.

The function of scientific generalizations is to provide reliable ex-
pectations of the occurrence of events and patterns of properties.
The tools we use and design for this are true generalizations that



6 Introduction. What are laws of nature?

describe the actual structures that persist in the natural world.
(Mitchell, 1997, S477)

Given that these generalizations will seldom be universal, we need to know
when (in what contexts) they hold and when they don’t. The interesting
problem is not that biological generalizations are contingent, but how and
to what extent. Therefore, if we want to use a generalization, we need to
assess the stability and strength of the relation or regularity it describes.
Stability and strength are two very important ontological parameters for the
evaluation of a generalization’s usefulness. (To these, Mitchell also adds
several gradual representational parameters, such as degree of accuracy, level
of ontology, simplicity, and cognitive manageability (Mitchell, 1997, S477–
S478; Mitchell, 2000, 259–263). I will not discuss these parameters here.)

Stability What are the conditions upon which the regularity under study is
contingent? How spatio-temporally stable are these conditions? And
what is the relation between the regularity and its conditions (is it
deterministic, probabilistic, etc.)?

Stability is a gradual parameter. All regularities are contingent in that they
rest on certain conditions. These conditions are historically shaped and are
to a certain extent spatio-temporally stable. Stability does not bear solely
on the laws of physics. Only if contingency is interpreted gradually, Mitchell
claims, our conceptual framework will be rich enough to account for the
diversity of types of regularities and generalizations and for the complexity
found in the sciences (Mitchell, 1997, S469–S477; Mitchell, 2000, 250–259).
Strength too is a gradual parameter.

Strength How strong is the regularity itself? Does it involve low or high
probabilities? Or is it deterministic? Does it result in one unique
outcome? Or are there multiple outcomes?

Mitchell’s pragmatic approach raises two questions which I should deal
with first. Firstly, the approach is very liberal and one may urge that it
qualifies too many generalizations as lawful. More specifically, Mitchell’s
approach is often criticised for allowing for very weak and/or unstable laws.
Secondly, one may question whether it sufficiently allows for distinguishing
between causal laws and non-causal laws.

Is Mitchell’s approach too liberal? Obviously it is from the traditional
point of view. Few pragmatic laws satisfy the criteria for strict lawfulness.
But does this provide us with sufficient reason to deprive them of their hon-
orific label ‘law’? And more specifically, should the fact that Mitchell’s
approach allows for very weak and/or unstable pragmatic laws count as a
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shortcoming? I am of course willing to give up the word ‘law’, but I doubt
this would be of any help. Moreover, there are two good reasons to stick to
Mitchell’s approach.

A first reason is that many scientific generalizations (in many different
scientific disciplines) are called laws, while failing to satisfy the criteria for
strict lawfulness. By contrast, their status as a law and their usefulness in
practice can be easily acknowledged within Mitchell’s framework. Theories
of lawfulness that apply more stringent criteria run the risk of selling short
these generalizations. The history of classical genetics provides us with a
nice example of such non-strict scientific laws. In 1900 William Bateson
was deeply convinced that it would be both useful and possible to discover
the laws of heredity (Bateson, 1900). This conviction was mainly inspired
by the works of Francis Galton, who formulated the law of regression and
what would later be known as the law of ancestral inheritance (Galton, 1889,
1897). But at that time Bateson also got acquainted, via Hugo de Vries,
with the works of Gregor Mendel (Mendel, 1933; de Vries, 1900a). What is
particularly interesting is the way Bateson conceived of the laws of heredity.
He acknowledged that both Galton’s laws and Mendel’s law (at that time,
Bateson did not distinguish between the law of segregation and the law of
independent assortment) are subject to exceptions and have a limited scope
of application. However, this did not dissuade him from holding to the
label ‘law’. Nor did he later change his mind, when ever more exceptions to
Mendel’s laws were adduced by the biometricians, e.g. Weldon (1902), who
rejected Mendel’s theory in favour of Galton’s (Bateson, 1902).

The idea that ‘laws’ may have exceptions, or limited scope of application
was not new. Some 35 years before, Gregor Mendel had explicitly declared
that before the time he started his investigations, “no generally applicable
law of the formation and development of hybrids ha[d] yet been successfully
formulated”5 (Mendel, 1865, 2, my emphasis) and that the purpose of his
experiments was to observe the changes to which pairs of opposing traits are
subject in the offspring of hybrids, “and to deduce the law according to which
they appear in successive generations.”6 (Mendel, 1865, 5, my emphasis)
Mendel found many regularities and used various labels to describe them:
the ‘law of combination of differing traits’, the ‘law of development’, the ‘law
of simple combinations’, . . . From the fact that he spoke in terms of laws
it should not be concluded he a priori considered them to be universal or

5“[Es ist] noch nicht gelungen [. . . ], ein allgemein gültiges Gesetz für die Bildung und
Entwicklung der Hybriden aufzustellen [. . . ].” (Mendel, 1933, 1, my emphasis)

6“Diese Veränderungen für je zwei differirende Merkmale zu beobachten und das Gesetz
zu ermitteln, nach welchem dieselben in den aufeinander folgenden Generationen eintreten,
war die Aufgabe des Versuches.” (Mendel, 1933, 6, my emphasis)
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exceptionless. Instead, their scope of application and their projectibility had
to be determined by further research. “The object of further experiments
will be to determine whether the law of development discovered for Pisum
is also valid for hybrids of other plants.”7 (Mendel, 1865, 32, my emphasis)

In the works of Thomas Hunt Morgan and his co-workers (Morgan et al.,
1915; Morgan, 1919, 1928), Mendel’s findings of segregation and independent
assortment were also called laws, even if they were complemented with sys-
tematic explanations of their failures (coupling and crossing-over, sex-linked
inheritance, failure of dominance, . . . ). And even today, textbooks in mod-
ern genetics start with an overview of Mendel’s laws (Klug and Cummings,
1997, chapter 3).

Mendel’s findings were certainly not strict laws,8 but their usefulness can
be acknowledged within the pragmatic approach, as can their status as ‘laws’.
Much research in classical genetics aimed at uncovering the conditions for the
different regularities, assessing their stability, specifying their strength, etc.
Nothing is gained by merely claiming these regularities are not lawful. This
completes the first reason to stick to Mitchell’s approach.

A second reason for sticking to Mitchell’s approach is that it also nicely
fits actual scientific practice. Scientists invest plenty of time and money to
discover (statistical) regularities that can be used for prediction, explana-
tion or interventions. Granted, few of the resulting descriptions are called
laws. But what is more interesting is the fact that the criteria used nicely fit
Mitchell’s liberality. In 1965, Sir Austin Bradford Hill famously addressed
the problem of causal inference (Hill, 1965, 295). Hill’s paper is still very
influential today (at least it is cited frequently). He envisaged situations in
occupational medicine in which our observations reveal a statistically signifi-
cant association between two variables (a disease or injury A and conditions
of work B) but where our background knowledge (the general body of med-
ical knowledge) does not suffice to determine whether the relation is causal.
His paper was unquestionably motivated pragmatically:

In occupational medicine our object is usually to take action.
If this be operative cause and that be deleterious effect, then we
shall wish to intervene to abolish or reduce death or disease. (Hill,
1965, 300)

7“Es wird die Aufgabe weiterer Versuche sein, zu ermitteln, ob das für Pisum gefundene
Entwicklungsgesetz auch bei den Hybriden anderer Pflanzen Geltung habe.” (Mendel,
1933, 32, my emphasis)

8Mendel’s laws fail to satisfy the criteria for strict lawfulness in yet another respect.
They are evolutionarily contingent. They are contingent on conditions that are the product
of evolution. So they violate the criterion of necessity. (Beatty, 1995).
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To be useful in reducing death or disease, an association needn’t be strong:

We may recall John Snow’s classic analysis of the opening weeks
of the cholera epidemic of 1854 [. . . ]. The death rate that he
recorded in the customers supplied with the grossly polluted wa-
ter of the Southwark and Vauxhall Company was in truth quite
low – 71 deaths in each 10,000 houses. What stands out vividly
is the fact that the small rate is 14 times the figure of 5 deaths
per 10,000 houses supplied with the sewage-free water of the rival
Lambeth Company. (Hill, 1965, 296)

The weakness of the relation between sewage and cholera – P (cholera |
sewage) is very low – doesn’t make it unusable for occupational (preventive)
medicine. It underlay interventions to improve public health. To be useful
in reducing death or disease, an association also needn’t be very stable:

Arsenic can undoubtedly cause cancer of the skin in man but
it has never been possible to demonstrate such an effect on any
other animal. (Hill, 1965, 298)

Whether arsenic causes cancer in non-human animals is of little interest
if the intended domain of application consists of humans. Evidence from
humans should suffice. To conclude, the case of Hill shows that Mitchell’s
approach nicely fits the pragmatic slant of occupational medicine (which,
after all, is part of the life sciences). And it shows that Mitchell’s liberality
regarding very weak and/or unstable pragmatic laws is a strength, rather
than a weakness.

The case of Hill brings us to the second question that is raised by Mitchell’s
approach. Hill explicitly intended to distinguish causal regularities from mere
association, but Mitchell’s framework provides no means for making such a
distinction. A regularity can be very stable or very strong, even if it is a
spurious association. The distinction is favourable for two reasons. Firstly,
causalists regarding explanation allege that all explanantia should cite (at
least some of) the explanandum’s causes. Secondly, there is widespread
agreement among philosophers that manipulation requires causal relations.
I will not take up a position regarding the indispensability of causes in ei-
ther explanation or manipulation in this chaper. But in order not to lose
the causalists of explanation and/or manipulation, I will distinguish between
causal regularities and non-causal ones.
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1.3 Invariant generalizations

The distinction between causal regularities and non-causal ones can be drawn
with the help of Jim Woodward’s theory. His theory is closely related to the
status of causality in the special sciences and the formal framework he adopts
is connected to actual statistical techniques (such as structural equation mod-
elling). In Woodward’s view, a generalization is causal and explanatory if and
only if it is invariant. And it is invariant to the extent that it “remains sta-
ble or unchanged as various other changes occur” (Woodward, 2003b, 239).
Different senses of invariance can be distinguished (Woodward, 2003b, 242).
For example, a generalization can be invariant under changes to variables not
occurring in the generalization itself. Or it can be invariant under changes to
variables occurring in the generalization itself, where these changes are not
the result of interventions (non-I-changes). But the most important sense of
invariance is invariance under interventions.

Before I present Woodward’s framework in more detail, let me give an
intuitive example. Consider the relation between ‘Physical Exercise’ on the
one hand, and ‘Stamina’ on the other hand. ‘Physical Exercise’ and ‘Sta-
mina’ can be considered as random variables . Intuitively, a random variable
represents some feature of an entity or set of entities. Each random variable
may have several values. Each value represents a different state that the fea-
ture can take. For example, we may distinguish between two possible values
for ‘Physical Exercise’: ‘Physical Exercise = less than 2 hours/week’, and
‘Physical Exercise = more than 2 hours/week’. Likewise, we may distinguish
between two possible values for ‘Stamina’: ‘Stamina = bad’, and ‘Stamina =
good’. (Note that variables may have more than two possible values. For the
notion of variables and their values, see page 41 and definition 3.19.) Suppose
now that there is a correlation between ‘Physical Exercise’ and ‘Stamina’ in
the Belgian population. For example, that the probability of ‘Stamina =
good’ is higher in the subpopulation for which ‘Physical Exercise = more
than 2 hours/week’ than it is in the subpopulation for which ‘Physical Ex-
ercise = less than 2 hours/week’. This relation may be stable or invariant
under changes to other variables. For example, the relation between ‘Phys-
ical Exercise’ and ‘Stamina’ may remain unchanged even if Belgium’s GNP
changes (from ‘GNP = n euros’ to ‘GNP = n′ euros’). The relation could
also be invariant under changes that are due to a process affecting ‘Physical
Exercise’ and ‘Stamina’ at the same time (non-I-changes). But the interest-
ing point is whether it would be invariant under a manipulation of ‘Physical
Exercise’ that does not influence ‘Stamina’ – except, perhaps, through ‘Phys-
ical Exercise’. For example, it is plausible that by increasing the number of
gym classes from less to more than 2 hours/week for all pupils, the number
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of pupils with good stamina may be raised. By contrast, it is not plausible
that directly improving these pupils’ stamina, e.g. by administering drugs,
would help to increase their amount of physical exercise. This asymmetry
Woodward deems the hallmark of causal relations.

When are generalizations invariant under interventions? A necessary con-
dition is that they are change- or variation-relating,9 “in the sense that they
purport to describe a relationship between changes or variations in the value
of one or more variables and changes or variations in the values of another
variable.” (Woodward, 2003b, 245) However, not all change-relating gener-
alizations are invariant under interventions (spurious correlations are not).
For example, changes or variations in the barometer reading are accompa-
nied by changes or variations in the weather condition. But the relation
between barometer status and weather conditions is not invariant: you can-
not influence the weather condition by actively changing or manipulating the
barometer’s pointer.

When is a change-relating generalization G between X and Y invariant
under interventions? Interventions are informally defined as follows:

an intervention on some variable X with respect to some second
variable Y is a causal process that changes the value of X in an
appropriately exogenous way, so that if a change in the value of
Y occurs, it occurs only in virtue of the change in the value of
X and not through some other causal route. (Woodward, 2003b,
94)

The precise definition of intervention is as follows:

(IN) I’s assuming some value I = zi, is an intervention on X with respect
to Y if and only if I is an intervention variable for X with respect to
Y and I = zi is an actual cause of the value taken by X. (Woodward,
2003b, 98)

I is an intervention variable for X with respect to Y if it satisfies the
following conditions:

(IV) I1 I causes X

9The variables in a change-relating generalization are repeatable. A variable is repeat-
able (or repeatably instantiatable, or type-level) if it can be assigned a value more than
once. Repeatable variable are to be contrasted with single-case variables (token level vari-
ables) which can only be assigned a value once. (Williamson, 2005, 7) By ‘variable’ I will
always mean ‘repeatable variable’.
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I2 I acts as a switch for all the other variables that cause X. That
is, certain values of I are such that when I attains those values,
X ceases to depend on the values of other variables that cause X
and instead depends only on the value taken by I.

I3 Any directed path from I to Y goes through X.10 That is, I does
not directly cause Y and is not a cause of any causes of Y that
are distinct from X except, of course, for those causes of Y , if any,
that are built into the I −X −Y connection itself; that is, except
for (a) any causes of Y that are effects of X (i.e., variables that
are causally between X and Y ) and (b) any causes of Y that are
between I and X and have no effect on Y independently of X.

I4 I is (statistically) independent of any variable Z that causes Y and
that is on a directed path that does not go through X.

I5 I does not alter the relationship between Y and any of its causes Z
that are not on any directed path (should such a path exist) from
X to Y . (Woodward, 2003b, 98–99)

Consider a generalization or equation G relating the variable X to another
variable Y . Let the actual value of X be x0 and let the actual value of Y
be G(x0) = y0. Consider now a (real or ideal) intervention that changes the
value of X from x0 to some different value x1, where the difference between
x0 and x1 is such that G predicts that a change will occur in Y (from y0 to
G(x1) = y1 6= y0). G, then, is invariant under this intervention if and only
if it is indeed the case that G(x1) = y1 under this intervention. (Woodward,
2003b, 250)

Invariant relations must be stable under some interventions, but it is per-
fectly possible that they fail to be stable under others. Some generalizations
are more invariant than others, depending on the range and importance of the
interventions under which they are invariant. Invariance comes in degrees.
Like stability and strength it is a gradual notion. (Woodward, 2003b, 251)
But it also involves a threshold. If a generalization isn’t stable under any
interventions, it is noninvariant, and hence neither causal nor explanatory.
(Woodward, 2003b, 248–249)

10A directed path is a series of direct causal relations that has no colliders X → Y ← Z
or forks X ← Y → Z.
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1.4 (c)P -laws and -regularities

With the help of Woodward’s conceptual framework, Mitchell’s concept of
pragmatic law can be refined. Admittedly, Woodward defines ‘laws’ tradi-
tionally and he argues that lawfulness isn’t of any help regarding scientific
explanation (Woodward, 2003b, 166–167). But this does not preclude us
from joining the concepts of pragmatic law and invariance. (For more de-
tailed comparisons between both frameworks, see Mitchell (2000, 258–259)
and Woodward (2003b, 295–299).) In the following chapters, I will repeat-
edly use the following four concepts:

(P -regularity) A regularity is a pragmatic regularity (a P -regularity) if it
has some degree of stability and strength.

(P -law) A generalization is a pragmatic law (a P -law) if it describes a P -
regularity. It has stability and strength to the extent that the regularity
it describes is stable and strong. It allows one to a certain extent to
predict, to explain and/or to manipulate the world. It may, but need
not, satisfy the criteria for strict lawfulness.

(cP -law) A generalization is a causal P -law (a cP -law) if it is a P -law and
if it is invariant under some range of interventions. It allows one to a
certain extent to predict, to explain and/or to manipulate the world.11

It may, but need not, satisfy the criteria for strict lawfulness.

(cP -regularity) A P -regularity is a causal P -regularity (a cP -regularity) if
it is described by a causal P -law.

In the interest of readability I will often write ‘(c)P -regularity’ (respec-
tively ‘(c)P -law’) instead of the phrase ‘P -regularity or cP -regularity’ (re-
spectively, ‘P -law or cP -law’).

1.5 Outline

Up till now we have seen that the concept of ‘law of nature’ occupied a cen-
tral place in twentieth century philosophy of science, but that the traditional
criteria for lawfulness are too strict. They hardly allow to classify generaliza-
tions in physics (let alone in biology and the other special sciences) as laws.
We have seen that a relaxed notion of ‘law of nature’, viz. Mitchell’s concept
of ‘pragmatic laws’ may be of help. It fits the use of the label ‘law’ in the
theory of classical genetics and it dovetails with actual scientific practice in

11I’m assuming that every regularity can be described by some generalization. Note also
that cP -laws should not be mistaken for ceteris paribus laws.
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e.g. occupational medicine. Finally, we saw that extra conceptual strength is
gained by explicitly distinguishing between causal regularities and general-
izations, and non-causal ones. To that end, I briefly presented Woodward’s
concept of ‘invariance’. In section 1.4 I combined ‘pragmatic laws’ and ‘in-
variance’ and introduced the terms ‘P -regularity’, ‘cP -regularity’, ‘P -law’,
and ‘cP -law’.

It can of course be objected that the definitions of these terms are non-
committal. They hardly tell us how these regularities look like, how they
can be represented by laws, or how these laws can be expressed. Moreover,
the definitions of ‘P -law’ and ‘cP -law’ invoke crucial other concepts, such as
prediction, explanation and manipulation, but these concepts are left inde-
terminate. Finally, the definitions of P -regularities and cP -regularities leave
open the question how such regularities are discovered. In the following
chapters, I will remedy these shortcomings.

In chapters 3 and 4 I will tackle the first shortcoming and show how
(c)P -laws and the scientific theories in which they figure, can be expressed
or represented. In chapter 3, “The Language of Causal Modelling”, I will
introduce the formal framework of causal modelling. A large part of the
definitions presented there are well-entrenched in the literature, but I will
add several concepts that will prove valuable in the subsequent chapters.
In chapter 4, “The Causal Structure of Classical Genetics”, I will use this
framework to analyse and represent the laws and theory of classical genetics
in a way that resembles (but not strictly follows) the structuralist approach
of Balzer et al. (1987). It will be seen how the law of segregation, the law of
independent assortment, linkage, crossing-over, etc. fit together in this causal
structure. We will also see that they all are faced with exceptions and lack
strict universality, that the history of classical genetics is replete with changes
to account for these anomalies, that the theory of classical genetics consists
of a number of theory-elements that are the product of a set of exemplars
and that they each have a limited intended domain of application, etc.

In chapters 5 and 6 I will tackle the second shortcoming. How can non-
strict laws be used in prediction, explanation or policy? I will not discuss the
case of prediction since I am convinced that the central problems involved
in prediction from non-strict laws also surface in the case of explanation and
the case of policy. In chapter 5, “Explanation in Genetics: a Many-Headed
Monster”, I will show how the laws of classical genetics can be used for expla-
nation and thus meet one of major requirements of the pragmatic approach
to laws of nature. Several types of explananda were addressed in classical ge-
netics. I will mostly zoom in on the explanation of phenotypic distributions.
By calling explanation in genetics a many-headed monster, I mean that it in-
corporates many of the central aspects often attributed to explanation in the
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literature. The explanation of phenotypic distributions can be considered
a kind of deductive-statistical explanation in which heavy stress is laid on
the role of causal generalizations (and in which the straightjacket of the re-
ceived view’s criteria for strict lawfulness is of course relinquished). In other
words, phenotypic distributions are explained by means of genetics’ causal
P -laws. The cP -laws that are invoked together describe a ‘complex-system
mechanism’, and thus provide a kind of mechanistic explanation. Finally,
(explanation on the basis of) the theory of classical genetics provides on-
tologically grounded derivational unification as a bonus. I will conclude by
examining other types of explananda, such as singular events or the nature
of the relation between genotypes and phenotypes. In chapter 6, “P -laws,
cP -laws and Policy”, I will address the question to what extent P -laws and
cP -laws can be used for policy and thus meet another major requirement of
the pragmatic approach. In the past few decades, consensus has grown in the
literature that causal relations are a conditio sine qua non for manipulation.
But then it can be asked whether non-causal P -laws (more precisely, spurious
correlations) are of any use in policy. If not, it would seem they have little
value apart from their evident applicability for prediction. But then the lack
of any clear distinction between causal pragmatic laws and non-causal ones
should be counted heavily against Mitchell’s framework and it would become
hard to see what this framework adds to the theory of Woodward.

In chapters 7, 8, and 9 I will tackle the third shortcoming. How are
pragmatic regularities discovered? The discovery of causal and non-causal
relations is studied from many different angles in the philosophical (and the
non-philosophical!) literature. Some recurrent themes are: the superiority of
experimental over merely observational data for causal discovery, the devel-
opment of algorithms to sidestep this difficulty in case only non-experimental
data are available, the use of reliable background knowledge to complement
these algorithms, and the omnipresence of statistical techniques in the dis-
covery of causal and non-causal relations. In chapter 7, “Experiments in
Classical Genetics”, I will show that the claims of the leading geneticists
notwithstanding, real experiments were very rare in the history of classical
genetics. This emerges from the distinction between experimental designs
and e.g. prospective designs as it is made in contemporary methodology of
many special sciences (the social sciences, epidemiology, . . . ). It is of course
not my intention to chide these geneticists for their misapprehension. I rather
want to show how this hampered causal discovery and how it kindled objec-
tions by opponents of Mendelian genetics. In chapter 8, “Causal Discovery
and the Problem of Ignorance. An Adaptive Logic Approach”, I will further
discuss the topic of causal discovery from non-experimental data. Instead of
reviewing all the algorithms that are currently on the market, I will focuss on
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one of them: Judea Pearl’s IC-algorithm. The IC-algorithm is well-known
and its merits can hardly be overrated, but it cannot handle the problem of
ignorance, a problem that is both ubiquitous, persistent and far-reaching in
scientific practice. In short, this problem comes down to the following: for
some pairs of variables A and B, and for some disjoint (and possibly empty)
sets of variables Q, it is not known whether or not A and B are indepen-
dent conditional on Q. I will also present an adaptive logic, ALIC, which is
based on the IC-algorithm and which adequately handles cases of ignorance.
The existing algorithms for causal discovery, such as IC, and the existing
methods for the discovery of causal and non-causal relations in general, rely
heavily on – and are strongly tied to – statistical techniques. This is fine,
but it also requires that these techniques are themselves as neutral as possi-
ble regarding their domain of application (i.e. the theory being developed or
tested). In chapter 9, “Galton’s Blinding Glasses. Modern Statistics Hiding
Causal Structure in Early Theories of Inheritance”, I will argue that present-
day statistical techniques such as structural equation modelling may indeed
be perniciously biasing. (From this it should not be concluded that these
techniques are to be renounced, only that we should apply them carefully.)
My arguments are based on a case study, viz. Galton’s theory of ancestral
inheritance. Although Francis Galton used (and introduced!) more novel
statistical techniques than Mendel, his theory of heredity was surpassed by
the latter’s. I will show that his failure was due (at least in part) to his
knowledge of statistical techniques. Finally, in chapter 10, “Concluding Re-
marks: the Biassing Role of Causal Models”, I will examine whether and to
what extent the language and inferential framework of causal modelling may
be biassing as well. It may be feared that they constrain both the discovery
of causal relations and our concepts of causality and laws of nature in the
special sciences.

First, however, I will consider one major alternative, or alleged alterna-
tive, for laws of nature. In the past decades, the concept of ‘complex-system
mechanism’ has been repeatedly put forward in philosophy of science as an
alternative to laws of nature, especially with an eye to explanation in the life
sciences. In chapter 2, “Can Mechanisms Really Replace Laws of Nature?”, I
will argue that as valuable as the concepts of mechanism and mechanistic ex-
planation are, they cannot replace regularities nor undermine their relevance
regarding explanation. It goes without saying that this argument is based
on a relaxed notion of laws and regularities, viz. (c)P -laws and -regularities.



Chapter 2

Can Mechanisms Really
Replace Laws of Nature?

Today, complex-systems mechanisms and mechanistic explanation are very
popular in philosophy of science and are deemed a welcome alternative to
the decried laws of nature we met in section 1.1 and to D-N explanation.1

However, starting from the relaxed, pragmatic notion of regularities and laws
of sections 1.2, 1.3 and 1.4, I will cast doubt on their status as a genuine al-
ternative. I will argue that (1) all complex-systems mechanisms ontologically
must rely on stable regularities, while (2) it is not obvious that all such reg-
ularities must rely on an underlying mechanism. Analogously, (3) models
of mechanisms must incorporate (and hence are epistemologically dependent
on) pragmatic laws, while (4) such laws themselves needn’t always represent
mechanisms. As valuable as the concepts of mechanism and mechanistic ex-
planation are, they cannot replace regularities nor undermine their relevance
regarding explanation.

2.1 Introduction

Today, mechanisms and mechanistic models are very popular in philosophy of
science, in particular in philosophy of the life sciences. Mechanicist philoso-
phers like Machamer et al. (2000) and like Bechtel and Abrahamsen (2005)

1In deductive-nomological explanation (D-N explanation), the explanandum is either
a sentence describing a particular fact, or a general law (a universal conditional in first
order logic, i.e. a strict law). The explanans must consist of (true!) sentences describing
particular facts and at least one general law and it must have empirical content (i.e., it
must be capable, at least in principle, of test by experiment or observation). Finally, the
explanandum must be a logical consequence of the explanans. (Hempel, 1965, 247–249,
336)

17
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set their face against the dominant position that strict laws of nature and
D-N explanation have occupied for years on end. (As I stated in chapter 1,
by ‘law of nature’ I mean a generalization describing a regularity, not some
metaphysical entity that produces or is responsible for that regularity.) Their
opposition is not groundless. The criteria for lawfulness that have been ad-
vanced by e.g. Nagel (1961), Hempel (1965), and Goodman (1973) and that
are considered the received view are highly problematic. If we would hold
on to these criteria, we should classify almost all scientific generalizations
as contingent, accidental generalizations. This holds for the special sciences,
such as biology and the social sciences, as well as for chemistry and physics.
If there are no strict laws, there are no D-N explanations in Hempel’s sense.
Hence the mechanicist alternative, which states that explanation involves
mechanistic models (i.e. descriptions of mechanisms) instead of strict laws,
might be very welcome.

As we saw in section 1.2, the received view has been attacked from other
sides as well. Instead of abandoning the concept of law of nature, Sandra
Mitchell (1997, 2000) proposed to revise it. In her view, laws of nature should
be interpreted pragmatically. A generalization is a pragmatic law if it allows
of prediction, explanation and/or manipulation, even if it fails to satisfy the
traditional criteria. To this end, it should describe a stable regularity, but
not necessarily a universal and necessary one.

The precise relation between mechanisms and stable regularities, or be-
tween mechanistic models and pragmatic laws is still an open question, which
I will address in this chapter. In sections 2.2 and 2.3 I will briefly present
mechanisms and mechanistic models and raise the question whether mech-
anisms really are an alternative to regularities. In section 2.4 I will briefly
revisit pragmatic laws and their corresponding regularities. Together, sec-
tions 2.2, 2.3 and 2.4 set the stage for the arguments presented in the rest
of this chapter, where I will make four related claims – two ontological ones
(section 2.5) and two epistemological ones (section 2.6). Firstly, mechanisms
are ontologically dependent on stable regularities. There are no mechanisms
without both macro-level and micro-level stable regularities. Secondly, there
may be stable regularities without any underlying mechanism. Thirdly, mod-
els of mechanisms are epistemologically dependent on pragmatic laws. To
adequately model a mechanism, one has to incorporate pragmatic laws. Fi-
nally, pragmatic laws are not epistemologically dependent on mechanistic
models. It is possible to gain evidence for the stability of some regularity,
and hence for the pragmatic lawfulness of the corresponding generalization,
without relying on mechanistic background knowledge. Pragmatic laws thus
needn’t incorporate a description of a mechanism underlying the regularity at
hand. In section 2.7 I will conclude by showing what are the implications for
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the status of mechanistic explanation. As valuable as the concepts of mech-
anism and mechanistic explanation are, they cannot replace regularities nor
undermine their relevance for scientific explanation.

2.2 Mechanisms

From the end of the 1970’s onwards, the concept of ‘mechanism’ has become
popular in philosophy of science. Different families of concepts can be dis-
tinguished. In the Salmon/Dowe account, mechanisms are characterized in
terms of causal processes and causal interactions. Here I will not consider
this account. Rather, I will focus on the complex-systems approach defended
by i.a. Glennan, Woodward, Machamer et al., and Bechtel and Abrahamsen.
In this approach, mechanisms are treated as complex systems of interacting
parts. Contrary to Salmon/Dowe-mechanisms, complex-systems mechanisms
(henceforth cs-mechanisms) are robust or stable. They form stable configu-
rations of robust objects and as a whole they have stable dispositions: the
behaviour they display (see Glennan, 2002, S344–S346). This difference will
prove relevant in the following sections.

In this section, I will focus on the theories of Machamer et al. (2000)
and of Bechtel and Abrahamsen (2005). (As I will indicate in section 2.7,
my findings can be extended to e.g. Glennan (1996, 2002) and Woodward
(2002b).) Both theories are mainly concerned with the life sciences and they
both present mechanisms and mechanistic explanation as an alternative to
strict laws of nature and D-N explanation.

In their influential paper, “Thinking about mechanisms”, Peter Machamer,
Lindley Darden and Carl F. Craver define mechanisms as complex systems:

(M∗) [cs-]Mechanisms are entities and activities organized such that they
are productive of regular changes from start or set-up to finish or ter-
mination conditions. (Machamer et al., 2000, 3)

Entities are the things that engage in activities. Activities are the producers
of change. The authors defend a dualistic metaphysics that combines sub-
stantivalist notions with concepts of process philosophy. Entities and activ-
ities, they claim, are complementary, interdependent concepts. (Machamer
et al., 2000, 4–8) If entities and activities are adequately organized, they
behave regularly.

William Bechtel and Adele Abrahamsen’s definition of mechanisms is
somewhat different, but it portrays mechanisms as organized, complex sys-
tems too.
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(M†) A [cs-]mechanism is a structure performing a function in virtue of its
component parts, component operations, and their organization. The
orchestrated functioning of the mechanism is responsible for one or
more phenomena. (Bechtel and Abrahamsen, 2005, 423)

This theory strongly resembles the previous one. The component parts are
clearly entities. Operations are strongly related to activities. (Bechtel and
Abrahamsen (2005, 423) use the label ‘operation’ instead of ‘activity’ because
they wish to draw attention to the involvement of parts). And the mecha-
nism’s parts and activities must be organized or orchestrated. But Bechtel
and Abrahamsen add to (M∗) the notion of function (and thus some kind of
design). (Bechtel and Abrahamsen, 2005, 423–424)

Both theories stress the role of mechanistic models in explanation. What
is important is that they do so at the expense of strict laws. They signal
several distinct but related problems with respect to strict laws and D-N
explanation. Firstly, attention is drawn to the fact that strict regularities
are rarely if ever discovered in the life sciences. But if strict biological laws
are rare or nonexistent, D-N explanations would not be practicable in the
life sciences. Secondly, Bechtel and Abrahamsen append to this that their
account avoids some hard ontological problems. Staking on mechanisms as
real systems in nature, they write, has the advantage that “one does not
have to face questions comparable to those faced by nomological accounts of
explanation about the ontological status of laws.” (Bechtel and Abrahamsen,
2005, 425) Thirdly, it is stressed that, even if there would be strict biological
laws, there is no denying that explanation in the life sciences usually takes
the form of mechanistic explanation. Bechtel and Abrahamsen write that
(see also Bechtel and Richardson, 1993, 231):

Explanations in the life sciences frequently involve presenting
a model of the mechanism taken to be responsible for a given
phenomenon. Such explanations depart in numerous ways from
nomological explanations commonly presented in philosophy of
science. (Bechtel and Abrahamsen, 2005, 421; my emphasis)

Machamer, Darden and Craver make a somewhat stronger claim:

In many fields of science what is taken to be a satisfactory expla-
nation requires providing a description of a mechanism. (Machamer
et al., 2000, 1)

Fourthly, both groups of authors argue that even if there would be strict
biological laws, D-N explanations would not be sufficiently explanatory. Ex-
planation, they say, involves more than subsumption under a law or regu-
larity. Laws or regularities do not explain why some phenomenon occurs.
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Machamer et al. have it that activities are essential for rendering phenomena
intelligible. A mechanistic explanation makes a phenomenon intelligible by
providing an elucidative relation between the explanans and the explanan-
dum, i.e. by revealing the productive relation between the mechanism’s set-up
conditions, intermediate stages and termination conditions. This productive
relation is completely accounted for by the mechanism’s activities: “It is not
the regularities that explain but the activities that sustain the regularities.”
(Machamer et al., 2000, 21–22) They append to this that “[. . . ] regulari-
ties are non-accidental and support counterfactuals to the extent that they
describe activities. [. . . ] No philosophical work is done by positing some fur-
ther thing, a law, that underwrites the productivity of activities. (Machamer
et al., 2000, 7–8) (Terminological prudence is in order here. In my terms reg-
ularities are ontological and cannot describe activities. And I do not adhere
to laws as metaphysical entities that underwrite the productivity of activi-
ties.) According to Bechtel and Abrahamsen, subsumption under a law does
not show why the explanandum phenomenon occurred.

Even if accorded the status of a law, this statement [a statement
concerning the ratio of oxygen molecules consumed to ATP in
metabolism] merely brings together a number of actual and po-
tential cases as exemplars of the same phenomenon and provides
a characterization of that phenomenon. However, it would not
explain why the phenomenon occurred – either in general or in
any specific case. (Bechtel and Abrahamsen, 2005, 422)

To explain why, scientists (biologists) explain how. They provide a model of
the mechanism underlying the phenomenon in question.

In short, (M∗) and (M†) are motivated by the apparent shortcomings
of the concepts of strict law/regularity and D-N explanation (in the context
of the life sciences). Mechanisms and mechanistic explanation are then put
forward as an alternative to these problematic concepts. I will side with
the mechanicists in their critical assessment of both strict laws/regularities
and D-N explanation. I will also endorse the view that ‘mechanism’ and
‘mechanistic explanation’ are very fruitful concepts. But I will doubt whether
mechanisms and mechanistic models are an alternative to regularities and
laws.
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2.3 Are mechanisms an alternative to regu-

larities?

In this section I will show that both (M∗) and (M†) depend on the concept
of ‘regularity’ – at least prima facie. In section 2.5 I will argue that this is
no coincidence: cs-mechanisms are ontologically dependent on the existence
of regularities.

In definition (M∗), regularities are mentioned explicitly: mechanisms,
it says, are productive of regular changes. In definition (M†), regularities
are not referred to explicitly. However, it states that mechanisms perform
a function. Functions are best conceived of as dispositions. Dispositions
always involve regularities. Hence, (M†) implicitly refers to regularities.

Functions are dispositional in two ways. The first way is that proposed
by the dispositional theory of functions (e.g. Bigelow and Pargetter, 1987).

(DTF) An effect e of a character c is a function of that character if it confers
a survival-enhancing propensity on the creature having c.

Bigelow and Pargetter interpret propensities dispositionally. It is not re-
quired, however, that e enhances survival (and/or reproduction) in all indi-
viduals all of the time. The dispositional theory of functions is not unques-
tioned, however. The main alternative is the etiological theory of functions
(cf. Mitchell, 2003a, 92).

(ETF) An effect e of a character or component c is a function of that charac-
ter or component if it has played an essential role in the causal history
issuing in the presence of that very component.

During this causal history, c must have been selected over alternatives on
the basis of its doing e, and it must have been produced or reproduced as a
direct result of that selection process (Mitchell, 2003a, 96). By its reference
to natural selection, the etiological theory links functions to fitness, which
is a dispositional characteristic. So either way, functions are dispositional.
(See also Walsh (1996) who proposes a relational account of functions which
should cover both the dispositional and the etiological account.)

The second way in which functions are dispositional is compatible with
both accounts of functions. Even if the function of x is to do f , it is not
required that x does f all the time. The (or a) function of my stomach is
to digest food, even if I haven’t eaten for two days. The (or a) function of
my legs is to allow me to walk, even if I’m sitting in a chair. This is true
regardless of the reasons we have for attributing them these functions (i.e.
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whether we refer to survival-enhancing propensities or to the causal history
of organisms having stomachs or legs).

Since functions are dispositions, they presuppose the existence of regular-
ities. Even if there is no consensus about the correct analysis of dispositions,
all attempts seem to have in common that dispositions involve regularities.
(For an overview of the most prevalent definitions of ‘disposition’, see Fara,
2006.) Roughly, a disposition can be characterized as follows:

(DISP) An object is disposed to M when C iff, if it were the case that C
and Ψ, then it would φ(M).

M refers to a manifestation, C to the conditions of manifestation. In the
case of a fragile glass, M could be ‘breaking’, and C could be ‘being struck’.
Ψ stands for the extra conditions that should be included in the definition
or analysis of dispositions. The simple conditional analysis, which leaves Ψ
empty, is victim to several counterexamples and a large part of the literature
about dispositions concerns the question what other conditions should be
included in Ψ. (For example, David Lewis has suggested that an object is
disposed to M when C if and only if it has an intrinsic property B such that,
if it were that C, and if the object were to retain B, then the object would M
because C and because it has B; see Fara, 2006, section 2.3.) The φ-operator
stands for the modal or probabilistic strength that should be included in the
definition of dispositions. According to the simple conditional analysis, the
object should always M if it were that C. Again, this makes the simple
conditional analysis victim to several counterexamples. Therefore, it has
been proposed to interpret φ less strictly, viz. habitually (Fara, 2006, section
2.4) or probabilistically (Prior et al., 1982). What is relevant for the present
discussion is the following: even if we would allow for dispositions that are
seldom manifested when their manifestation conditions C obtain, φ cannot
be replaced by ‘never’, since this would result in a contradictio in terminis.
If the conditions in Ψ are satisfied, P (M | C) > 0 (where M and C denote
events, not variables).2

2If there are dispositions that are seldom manifested when their manifestation condi-
tions C hold, the following may serve as an example. A lottery is being held with 1.000.050
tickets. The tickets range from 1 to 1.000.000, but there are 51 tickets with the number
666. In this case, one might say, the lottery is disposed to select 666 as the winning number
when a draw is made, even if the chance of selecting 666 is very low ( 51

1.000.000 ).
I do not claim that such dispositions exist, and hence I do not claim that this lottery
should be ascribed the disposition to have 666 as its outcome. What I want to claim is
the following: even if our definition of dispositions is so liberal that φ might refer to very
low probabilities, dispositions still depend on the existence of regularities. Only, in this
case the regularities involved would have very limited strength, to be compared with e.g.
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So far we can safely conclude that both Machamer et al., and Bechtel and
Abrahamsen define mechanisms in terms of regularities (either explicitly or
implicitly). This raises a first question, viz. whether this use of ‘regularity’
is necessary or unavoidable. This question will be answered in section 2.5. It
should also be noticed that neither gives a minute characterization of these
regularities. They only describe them negatively: they are not strict. This
raises a second question which I will answer very briefly in section 2.4, viz.
how these regularities should be conceived of. Regularities are a blind spot
in the mechanistic literature. This blind spot can be removed by means of a
more adequate theory of regularities and lawfulness. It should be no surprise
that the concepts of chapter 1 will come in useful.

2.4 (c)P -laws and -regularities shortly revis-

ited

Instead of rejecting the concept of law of nature, Sandra Mitchell (1997,
2000) sets out to refine it and to approach it pragmatically (cf. section 1.2).
To count as a pragmatic law, a generalization need not satisfy the traditional
criteria for strict lawfulness. It need only be useful for prediction, explanation
and/or manipulation. Pragmatic laws may differ from each other in many
ways. They may differ qua stability or strength (both are important gradual
ontological parameters), or qua cognitive manageability, simplicity, and other
gradual representational parameters.

Jim Woodward (2003b) also proposes an alternative to strict laws of na-
ture (cf. section 1.3). He advocates the concept of invariant generalizations,
i.e. generalizations that remain stable or unchanged under interventions. In-
variance, too, is a gradual concept. Woodward considers invariance under
interventions the conditio sine qua non for causal and explanatory relations.

The concepts of both Mitchell and Woodward are intended to better fit
scientific practice. On the basis of these concepts, I introduced the notions
of P -regularity, cP -regularity, P -law, and cP -law (cf. section 1.4).

Up till now we have seen that whereas cs-mechanisms are put forward
as an alternative to strict regularities (section 2.2), they are nevertheless
defined in terms of regularities (section 2.3). Now the question regarding the
precise relations between cs-mechanisms and (c)P -regularities, and between
mechanistic models and (c)P -laws can be addressed.

the regularity relating syphilis to paresis. (For the concept of strength of regularities, see
section 1.2.)
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2.5 The ontological relations between mech-

anisms and (causal) P -regularities

In this section, I will first argue that complex-systems mechanisms are onto-
logically dependent on (causal) P -regularities. No x can count as a mecha-
nism, unless it involves regularities. Then I will investigate the reverse rela-
tion, i.e. whether there can be (causal) P -regularities without any underlying
mechanism.

Mechanisms are ontologically dependent on the existence of regularities
both at the macro-level and at the micro-level. Firstly, no x can count
as a cs-mechanism, unless it produces some macro-level regular behaviour.
Secondly, to produce such macro-level regular behaviour, this x has to rely
on micro-level regularities.

In the life sciences, reference to mechanisms cannot be detached from
matters of projectibility. Thomas Hunt Morgan and his co-workers sought
after the mechanism of Mendelian heredity to explain both Mendel’s find-
ings and their exceptions in a systematic way (Morgan et al., 1915; Morgan,
1919, 1928).3 Mainly drawing from findings in fruit flies, they explained def-
inite macro-level behaviours (definite phenotypic ratios in subsequent gener-
ations of organisms) by referring to the behaviours (independent assortment,
crossing-over, interference, . . . ) of a complex set of parts or entities (ga-
metes, chromosomes, factors or genes, . . . ). But Morgan et al. were not only
interested in the fruit flies in their laboratories. They were interested in the
mechanism of heredity in Drosophila and in other species as well. As evidence
accumulated, both Mendelian inheritance and the underlying chromosomal
mechanism were more and more considered a general phenomenon. In the
end, Morgan formulated the theory of the gene (including Mendel’s two laws)
without reference to any specific species (Morgan, 1928, 25).4 He likewise
gave an abstract mechanistic explanation (Morgan, 1928, chapter III). The
case of T.H. Morgan illustrates not only that talk in terms of laws is compat-
ible with talk in terms of mechanisms, but also that reference to mechanisms
in the life sciences cannot be detached from matters of projectibility. Due to
this concern for projectibility, Glennan (2002, S345) stresses that the behav-
iour of complex-systems mechanisms as a whole should be stable.

At this point, the reader might worry that metaphysical issues (about
what a mechanism is) get conflated with epistemological ones (about the use
of mechanistic knowledge). Such worry would be baseless. It is not that our
concern for projectibility implies that mechanisms should be stable or robust.

3The status of mechanisms in classical genetics is ambiguous, however (see section 5.3).
4Morgan’s formulation of the theory of the gene is quoted in section 4.2.
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Rather, it implies that life scientists should search for robust mechanisms (it
is a matter of fact that, to phrase it naively, they succeed in this). And if
the concept of ‘complex-systems mechanism’ is to fit scientific practice (as is
argued by Machamer et al. (2000, 1–2) and Bechtel and Abrahamsen (2005,
422)), it must incorporate this notion of stability. But, per definitionem, this
comes down to the following:

(H-REG) There can be no cs-mechanism without some higher level (causal)
P -regularity (viz. the stable behaviour produced by that mechanism).

In section 2.3 I showed that (M∗) and (M†) conform to (H-REG). Follow-
ing (M†), mechanisms perform a function. They have a dispositional prop-
erty which φ-regularly results in M if the conditions C and Ψ are satisfied
(see p. 23). Even very weak dispositions (see footnote 2) can be accounted
for by the concept of (causal) P -regularity. Following (M∗), mechanisms are
productive of regular changes from start or set-up to finish or termination
conditions: they exhibit causal P -regularities.

Bogen (2005, 398–400) has criticised Machamer et al. for unfoundedly
providing a regularist account of causation and Machamer (2004, note 1) has
sided him. According to regularism, there is no causation without regularity.
By contrast, Bogen argues for an Anscombian account in which causality
is one thing, and regularity another. From this he concludes that mecha-
nists needn’t invoke regularities or invariant generalizations. Some causal
mechanisms, he states, are too unreliable to fit regularism.

The mechanisms which initiate electrical activity in post-synaptic
neurons by releasing neuro-transmitters are a case in point. They
are numerous enough, and each of them has enough chances to
release neurotransmitters to support the functions of the nervous
system. But each one fails more often than it succeeds, and so
far, no one has found differences among background conditions
which account for this [. . . ]. (Bogen, 2005, 400, my emphasis)

In this chapter I will not address the nature of causation, and hence I do
not want to argue pro or contra regularism. But I dismiss the conclusion
Bogen draws regarding mechanisms. His example fails to show that some
cs-mechanisms go without regularities. It only illustrates that some go with
regularities that are very weak and of (as yet) poorly specified stability.

Let us now turn to the cs-mechanism’s micro-level dependence on (causal)
P -regularities. A mechanism’s behaviour is not groundless. It is produced
by its component parts. Suppose now, that some part pi behaves completely
irregularly: it may do ai1, or ai2, or . . . , or ain, or . . . but what it does
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is the result of a completely random internal process. There is no relation
whatsoever to the behaviour of the other parts pj of the mechanism, nor to
the previous behaviours of pi itself. And there isn’t even a stable probability
distribution over the behaviours ai.... Suppose moreover, that the same holds
for all the other parts of the mechanism. Clearly, this would make it very
unlikely for the mechanism to produce a macro-level P -regular behaviour, let
alone a causal P -regularity. So unless the behaviour of its parts is sufficiently
stable and sufficiently strong, i.e. unless it is P -regular, and unless these
behaviours are organized sufficiently well, the mechanism’s overall behaviour
will fail to be P -regular. (I do not rule out that some of the mechanism’s parts
behave randomly. Only, then, sufficiently many other parts should behave
P -regularly and their behaviour should be organized sufficiently well.)

(L-REG) There can be no cs-mechanism without some lower level (causal)
P -regularities (viz. the regular behaviours, operations, or activities dis-
played or engaged in by the mechanism’s parts).

Again, this is stressed by Glennan (2002, S344): a mechanism’s parts must
be objects – in the absence of interventions, their properties must remain
relatively stable. Translating this to (M∗) and (M†), these parts’ activities
or operations must be causal P -regularities.

Up till now, I have shown that mechanisms always involve both macro-
and micro-level regularities. But what about the reverse relation? Can there
be a (causal) P -regularity without an underlying mechanism? In other words,
can there be fundamental regularities whose stability and strength are some-
how sui generis? Glennan (1996, 61–63) assumes or stipulates they exist.
That is more than I need. Since the concept of cs-mechanism entails the
concept of (causal) P -regularity, it suffices for me that their existence is log-
ically possible. It might be the case that, as a matter of fact, all (causal)
P -regularities rest on some (hitherto unknown) underlying mechanism – I see
nothing metaphysically wrong with an infinite ontological regress of mech-
anisms and regularities. What matters is that the concept of fundamental
P -regularity/law is coherent. If there are such fundamental P -regularities
and P -laws, and if we want to explain everything, we should seek for (or
hope for) non-mechanistic forms of explanation.

2.6 The epistemological relations between

mechanistic models and (causal) P -laws

The mechanicist may endorse the conclusion of the former section, while still
holding exclusively to mechanistic explanation in biology and the biomed-
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ical sciences. After all, why should biologists care about non-mechanistic
forms of explanation in physics? (Let us assume, for the sake of the ar-
gument, that the fundamental regularities, if any, are or will be described
by physics.) Drawing on the findings of the previous section, I will show
that mechanistic explanation cannot dispense with (causal) P -laws. To ade-
quately describe cs-mechanisms, mechanistic models need incorporate – and
thus are epistemologically dependent on – (causal) P -laws. By contrast, a
generalization may count as a P -law without describing or referring to any
underlying mechanism.

A large part of the complex-systems literature about mechanisms, espe-
cially the contributions by Machamer et al. and by Bechtel and Abrahamsen,
is motivated by the failure of the D-N model to provide an adequate account
of scientific explanation (see section 2.2). Explanation, especially in the
life sciences, rarely if ever involves subsumption under strict laws. Far more
often it takes the form of mechanistic explanation: one models or describes
the mechanism underlying the explanandum phenomenon.

This raises the question what criteria a model should satisfy to count as
a model of a cs-mechanism. The trivial answer is that it should adequately
represent that mechanism. As a mechanism is a system producing some be-
haviour on the basis of the organized operations of its component parts, the
less trivial answer is that it should adequately represent (i) the macro-level
behaviour, (ii) the mechanism’s parts and their properties, (iii) the opera-
tions they perform or the activities they engage in, and (iv) the organization
of these parts and operations. Let us call this the adequacy criterion for
mechanistic models (see also Craver, 2006, 367–373). So, by section 2.5, the
model should adequately describe both the macro-level and the micro-level
(causal) P -regularities. Hence, by definition, it should incorporate (causal)
P -laws. Thus the adequacy criterion implies that all mechanistic models
must incorporate (causal) P -laws.

But then the following question arises. Is it possible to gain evidence
for a generalization’s lawfulness without relying on mechanistic background
knowledge? Can one be convinced that some generalization describes a regu-
larity that is sufficiently stable and/or strong (for some particular application
context) and can one assess this stability and/or strength without any evi-
dence for some underlying mechanism? In short, can a generalization count
as a (causal) P -law without referring to mechanisms? To be sure, this ques-
tion isn’t idle and moreover it has large epistemological import. It isn’t idle
since mechanistic background knowledge is useful in assessing the lawfulness
of regularities (as I illustrated with the case of T.H. Morgan, see page 25),
and is used so in many different scientific disciplines. It has large epistemo-
logical import since, given what we know from the first part of this section,
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the epistemological dependence of (causal) P -laws on mechanistic models
would imply an infinite (and perhaps vicious) epistemological regress. To be
sure that some model M is a model of a cs-mechanism, I would need to know
that the generalizations G1, . . . , Gn figuring in it are (causal) P -laws. But
then I would have to know the underlying mechanisms . . .

It certainly doesn’t do to rely on the existence of fundamental laws.
Firstly, I have argued for the logical possibility of fundamental regularities,
but it is still an open question whether they actually exist. Secondly, granted
that there are fundamental regularities, little or no practising biologists would
turn to fundamental laws in explaining biological phenomena.

Machamer, Darden and Craver have tried to solve the problem of infi-
nite regress by introducing the notion of ‘bottoming out’. In their concep-
tion, nested hierarchical descriptions of mechanisms bottom out in lowest
level mechanisms. These are but fundamental relative to the purposes of a
given scientist, or discipline, . . . Their entities and activities are taken to
be fundamental (and hence as not calling for further explanation) relative
to the research question at hand, even if it is known that in other scien-
tific fields they are considered as non-fundamental, macro-level phenomena.
(Machamer et al., 2000, 13) Although this notion nicely fits scientific prac-
tice, it offers at best a pseudo-solution to our problem. It only assures us
that, if there is an infinite regress, it will do no harm. In the rest of this
section I will face the problem head on and show that (causal) P -laws are
not epistemologically dependent on mechanistic models. Mechanistic knowl-
edge is not indispensable for the assessment of a generalization’s lawfulness.
Other means do at least as well.

A most natural candidate is performing experiments. Experiments are of-
ten ascribed the power to reveal causal connections and to confirm or refute
claims about stable regularities, even if the relation between experiments and
laws or theories is fraught with several problems (see Franklin, 1995, 2003).5

5In Franklin (1995, 196–204) three problems are discussed. The first is known as the
‘theory-ladenness of observation’. Observation statements and measurement reports use
terms whose meanings are determined by a particular theory. (This problem may be
generalized. Not only the interpretation of experimental results may be theory-laden.
The realization of an experiment often also depends on theoretical insights about the ex-
perimental (object-apparatus) system and the possible interactions with its environment.
Prior knowledge is needed about the object under study and about the instruments used.
(Radder, 2003b, 165, 168–169)) The second problem is the ‘Duhem-Quine problem’. If
some hypothesis h generates a prediction e, it always does so together with some back-
ground knowledge b. Hence, if ∼e is observed instead of e, either h is to be blamed, or
b, or both. So one can always save h by blaming only b. The third problem is the fact
that experiments are fallible and that different experimental results may discord. Franklin
concludes that although these problems are important and impel us to treat experimental
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Moreover, experiments are very frequently performed in biology and the bio-
medical sciences. The question now is to what extent stable regularities may
be experimentally discovered or established, without any knowledge of some
underlying mechanism. I will start by giving a very general characterization
of experiments.

(EXP) In an experiment, an object is placed in some controlled environ-
ment . It is manipulated, often using some apparatus , such that it
assumes some definite property X = x. Then, again using some ap-
paratus, the outcome is measured in some (other) property Y . More
specifically, it is verified whether there is some relation between X = x
and Y = y (for some or all possible values x of X and y of Y ), and if
so, what is its strength and how it can be characterized.6

Let me briefly dwell on this description. The term ‘object’ has to be
interpreted as broadly as possible. It may refer to one particular material
object, or to some complex of objects, or to some sample of liquid or gas,
etc. An environment is ‘controlled’ if the relation between X and Y is not
influenced or disturbed by other factors. To eliminate all possible disturbing
factors (and all possible sources of error in general) is a very delicate and
difficult task, a large part of which depends on statistical analysis and data-
reduction (cf. Galison, 1987; Franklin, 1990). I will return to this issue in a
moment. Emphasis is laid on ‘manipulation’ since this, much more than pas-
sive observation, is considered a particularly reliable way to find out causal
relationships.7 (The role of manipulation in experiments will be found to be
significant with respect to the status of genetic crosses in classical genetics
– see chapter 7.) Finally, apparatus are often indispensable in experimental
designs. Sometimes these are relatively simple, but often they are very com-
plex. They play at least three different roles: as a device for manipulation,
for measurement, or to control disturbing influences. (In Radder (2003a),
the role of technology and instruments in experiments is discussed several
times by many different authors.)

This characterization, the mechanicist may argue, clearly reveals the use
of mechanistic background knowledge in experimentation. If you want to

results carefully, they are not insuperable. Experimental evidence may serve to test laws
and theories.

6For the notion of variables and their values, see page 41 and definition 3.19.
7Woodward (2003a) heavily stresses the connections between experimentation and ma-

nipulation on the one hand, and causation on the other hand. In his view, experiments
not only are an excellent tool for causal discovery and causal inference. To say that X
causes Y also “means nothing more and nothing less than that if an appropriately designed
experimental manipulation of X were to be carried out, Y (or the probability of Y ) would
change in value.” (Woodward, 2003a, 90, I have slightly changed notation)
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create a controlled environment and rule out all disturbing influences, much
is gained to know what these influences are. Such knowledge, furthermore,
is outstandingly provided by mechanistic models. I endorse this claim, but
challenge that it is noxious for my argumentation. Mechanistic background
knowledge is highly valuable for the experimenter. But it certainly isn’t
indispensable.

In many experiments, viz. in randomized experimental designs , disturbing
influences are not screened off physically. Instead, experimenters endeavour
to cancel out their influence by means of randomization. From the target
population P a sample S is randomly selected. The random sampling pro-
cedure should guarantee that the subjects in S do not drastically differ from
the rest of the subjects in P . In other words, for any variable Z, its distrib-
ution in S should not deviate drastically from its distribution in P .8 Then
the subjects in S are randomly divided into an experimental group SX and a
control group SK . All subjects in SX are manipulated such that they assume
some definite property X = x, whereas those in SK are not so manipulated
(X = ∼x) – often they are given a placebo. This procedure should guaran-
tee that the subjects in SX and SK most closely resemble each other, except
with respect to the cause variable X and its effects. (Instead of having only
X = x and X = ∼x, one may also create several experimental groups, each
with a different level of X.) Then the relation between X and the effect
variable Y is measured.

Randomization is a technique that is highly context-independent. It al-
lows to control for disturbing influences without even knowing them. This
clearly shows that mechanistic background knowledge is no conditio sine qua
non for experimentation and hence is not indispensable regarding the assess-
ment of the lawfulness of generalizations. Fortunately, we escape the problem
of infinite epistemic regress.

2.7 Conclusion: can mechanisms really re-

place laws of nature?

In this chapter, I have substantiated the following claims. Firstly, cs-mech-
anisms as defined in (M∗) or (M†) necessarily involve regularities. Their
macro-level behaviour is regular and it is based on the micro-level regular
behaviours (the activities or operations) of the component parts. These reg-
ularities needn’t be deterministic, nor necessary; i.e. they needn’t be strict.

8In practice this is not guaranteed. Randomization only works in the limit as sample
size tends to infinity.
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It suffices that they have some stability and strength, that they are (causal)
P -regularities. Secondly, even if it cannot be ruled out that all (causal)
P -regularities involve an underlying mechanism, it is logically possible that
there are fundamental regularities. Thirdly, no model can count as a mech-
anistic model, unless it incorporates (causal) P -laws. To adequately model
a mechanism, it should model the regular behaviour of the mechanism and
its parts. Finally, a generalization can be considered a (causal) P -law even
in the absence of any knowledge of some underlying mechanism. Hence we
do not face the problem of infinite epistemological regress. Randomized ex-
perimental designs allow us to assess a generalization’s stability and strength
without mechanistic background knowledge.

My arguments primarily addressed the theories of Machamer et al. (2000)
and of Bechtel and Abrahamsen (2005). This may raise doubts on the ex-
ternal validity of my conclusions. For sure, they cannot be simply extended
to the mechanistic theories within the Salmon/Dowe approach. (And I will
leave the question to what extent this approach is victim to my arguments
untouched.) On the other hand, they are generalizable to mechanicists such
as Glennan (1996, 2002) and Woodward (2002b) who openly endorse the in-
timate relation between mechanisms and regularities (see also Craver (2006,
372) and Craver (2007)).9

In section 2.2 I listed four objections to strict laws and D-N explanation
that are raised by Machamer et al. and by Bechtel and Abrahamsen, and that
motivate the mechanistic account of explanation. Let us see to what extent
these objections still hold if laws are conceived of pragmatically, and if the
concept of explanation is relaxed so that it settles for less than strict laws, i.e.
for (causal) P -laws. (Apart from mechanistic explanation, a detailed account
of explanation without strict laws can be found in Woodward (2003b). It is
absent, however, in Mitchell’s work. I will discuss explanation with non-strict
laws in chapter 5.)

Firstly, it is argued that in the life sciences strict laws of nature are rarely
if ever discovered and that D-N explanation is hardly practicable. This is
true, but it does not follow that we should reject the concept of law. Although
I am willing to give up the word ‘law’, it think it is more fruitful to revise
the concept and to do justice to its role in explanation (cf. infra).

Secondly, Bechtel and Abrahamsen argue that staking on mechanisms
as real systems allows to avoid some hard ontological problems regarding
laws. If by laws they mean some metaphysical entity producing regularities,
they might be right. But if, as is most probable (cf. Bechtel and Abraham-
sen, 2005, 422), they mean generalizations describing regularities, this is at

9I will discuss Woodward’s concept of cs-mechanism in section 5.3.
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best a pseudo-advantage. By section 2.6, even when staking on mechanisms
and mechanistic explanation one cannot escape from questions regarding the
status of (causal) P -laws and their relations to (causal) P -regularities.

Thirdly, it is argued that even if there would be strict biological laws,
explanation in the life sciences still takes the form of mechanistic explanation
in many cases. This is also true, but raises the question why mechanistic
explanation is so successful. Mechanistic explanation is typically directed at
regularities: the mechanism’s macro-level behaviour (or derivatively at events
that are the product of a reliable mechanism) (Glennan, 2002, S346–S349).
To explain such regularities, a mechanistic model should incorporate (causal)
P -laws, as we have seen in section 2.6. I endorse the view that mechanistic
explanation is a valuable concept (this will emerge in section 5.3). It provides
a very solid account of scientific explanation without strict laws. But it would
fail to account for explanation in the life sciences if it would abandon the
idea of projectibility. A large part of the success of mechanistic explanation
derives from the fact that it involves (causal) P -laws.

Of course, some caution is in order here. The fourth (and final) objec-
tion states that explanation involves more than subsumption under some
law or regularity. It is argued that laws or regularities do not explain why
the explanandum phenomenon occurs (Bechtel and Abrahamsen), or that
the explanatory power wholly resides in the productivity of the activities
(Machamer et al.). Again, I endorse that subsumption under a strict law is
not sufficient for explanation. But two points may be raised in defence of
(causal) P -laws. Firstly, some notion of productivity is ingrained in Wood-
ward’s causal theory of explanation (an intervention on X with respect to Y
produces a change in Y (Woodward, 2003b, 98)) and hence also in the notion
of causal P -law. Secondly, even if this is not enough, i.e. even if (causal)
P -laws are not deemed sufficient for explanation, it does not follow that they
are not necessary.

This should suffice to show that the concepts of ‘(causal) pragmatic law’
and ‘(causal) pragmatic regularity’ are valuable alternatives to the decried
strict laws and regularities, and that they are compatible with (but not su-
perseded by) the concepts of ‘cs-mechanism’ and ‘mechanistic model’. Now
it remains to be shown how they can be represented, how they can be used
in prediction, explanation or manipulation, and how they are discovered.





Chapter 3

The Language of Causal
Modelling

In the following chapters I will use the language of causal modelling to express
the pragmatic laws of classical genetics, and to represent its causal structure.
I will also use it to handle several central concepts from philosophy of science,
such as ‘exemplars’, ‘anomalies’, ‘explanation’, ‘policy’, ‘experiments’, and
‘causal discovery’, all of which are closely tied to laws of nature. In this
chapter, I will present this language. In section 3.2 I will discuss the concept
of ‘causal net’ or ‘causal model’ based on the works of Pearl (2000), Spirtes
et al. (2000), Neapolitan (2004), and Williamson (2005). As all the definitions
in this section are standard, I will not present quotations as quotations.
Then, in section 3.3, I will introduce several interesting relations between
causal nets. In section 3.4 I will introduce the concepts of causal scheme,
credal set and credal net, and again discuss several interesting relations that
may obtain between such objects. Finally, in section 3.5 I will discuss a
useful kind of relations between sets of variables, viz. where one set is the
‘compound’ of two or more other sets.

Credal sets and credal nets are representations of imprecise probabilities
(Cozman, 2005). As often as not, they go hand in hand with a Bayesian
interpretation of probabilities. In that case, they represent imprecise degrees
of belief. Here however, their function will be slightly different. I will use
them (along with causal schemes) to economically describe the set of causal
models of a theory, in casu classical genetics. In each model, all probabilistic
relations are precise and probabilities are interpreted physically; together,
these models provide imprecise probabilities.

The word “model” has many different interpretations in philosophy of
science. As I will repeatedly use the word, this may lead to confusion. To
avoid any such confusion, I will start by specifying what precisely I will mean
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by the term. To that extent, some few distinctions from the literature on
models and modelling will be taken into account. (I do not intend to give an
enumeration, let alone an elaborate overview of all possible types of models.
I refer the reader to e.g. Lloyd, 1998 and Frigg, 2006).

3.1 Models, models, and models

The word “model” has many different interpretations in philosophy of science.
Balzer et al. (1987) distinguish between two main interpretations:

In ordinary language and in informal contexts within empirical
science, the term “model” is used in an ambiguous way. If we con-
sider the term “model” with respect to the relationship between a
“picture” of something and the thing “depicted”, it appears that
“model” is sometimes used in the sense of picture and sometimes
in the sense of the thing depicted. The two meanings are logically
converse, so that one can be defined through the other by just
transforming the phrase “x is a model of y” into “y is a model
of x”. Empirical scientists tend to use “model” in the sense of
“picture”, as when they say that a certain set of equations “is
a model” of some subatomic phenomena or certain real-life mar-
ket situations. Logicians and mathematicians consistently use
“model” in the sense of the thing depicted by a picture (= by a
theory). (Balzer et al., 1987, 2)

The mathematician’s and logician’s use of “model” is derived from Tarski.
Suppes phrases it as follows:

Roughly speaking, a model of a theory may be defined as a pos-
sible realization in which all valid sentences1 of the theory are
satisfied, and a possible realization of the theory is an entity of
the appropriate set-theoretical structure. (Suppes, 1969b, 24)

Let me call these logical models , or set-theoretical models .2 In the pre-
vious chapter, we already met a different kind of model. There the phrase
“mechanistic model” was frequently used. These mechanistic models are

1By the valid sentences of a theory, Suppes means the logical consequences of its axioms.
‘Valid sentence’ is thus a syntactic notion, not a semantic one as in e.g. Boolos and Jeffrey
(2002, 120).

2The term mathematical models may also be used in the sense of ‘logical model’ or
‘set-theoretical model’. But this may lead to confusion since it is also applied to sets of
mathematical equations.
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what I will call iconic models, or representational models , i.e. “those that
scientists construct as more or less abstract descriptions of a real system”
(Craver, 2006, 356). They describe mechanisms and thus are ‘pictures’, not
things depicted. Iconic or representational models may be conceived of as
mini-theories.

This distinction between models as pictures (representational models) and
models as the things depicted (logical models) raises two questions which
should be answered before we may enter upon the conceptual framework
of causal modelling and its use in the following chapters. Firstly, which of
both uses of the word “model” is most fundamental or basic? Secondly, is the
above distinction sharp or exclusive in the sense that there is an unbridgeable
gap between the two interpretations?

Which use of the word “model” is most fundamental? The logical notion
of “model” is taken to be fundamental by many philosophers, not only with
respect to mathematics, but also regarding the empirical sciences. Suppes
writes:3

It is my opinion that this [logical] notion of model is the fun-
damental one for the empirical sciences as well as mathematics.
To assert this is not to deny a place for variant uses of the word
‘model’ by empirical scientists, as, for example, when a physicist
talks about a physical model, or a psychologist refers to a quan-
titative theory of behavior as a mathematical model. (Suppes,
1969b, 24)

The position of Balzer et al. (1987) is similar in this respect. They add
the following to their previous quote:

Since this second use of “model” is well-established and clearly
defined in the formal sciences, it is the one we are going to adopt
here. Therefore, instead of saying that certain equations are a
model of subatomic or economic phenomena, we propose to say
that the subatomic or economic phenomena are models of the
theory represented by those equations. (Balzer et al., 1987, 2)

Depending on the formal system at hand, logical models can take several
forms. I quote Pearl, since I will return to his position in a minute. He
writes:

3Suppes (1969b) analyses the relations between theories, experiments and data via a
hierarchy of logical (or set-theoretical) models. Although this is a very fruitful idea, I will
not incorporate it explicitly in the following chapters.
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A ‘model,’ in the common use of the word, is an idealized rep-
resentation of reality that highlights some aspects and ignores
others. In logical systems, however, a model is a mathematical
object that assigns truth values to sentences in a given language,
where each sentence represents some aspect of reality. Truth ta-
bles, for example, are models in propositional logic; they assign
a truth value to any Boolean expression, which may represent an
event or a set of conditions in the domain of interest. A joint
probability function, as another example, is a model in proba-
bility logic; it assigns a truth value to any sentence of the form
P (a | b) < p, where a and b are Boolean expressions representing
events. (Pearl, 2000, 202, I slightly change notation)

Let us turn now to the second question, viz. whether the distinction be-
tween representational models (models as pictures) and logical models (mod-
els as the things depicted) is a sharp one. I will tackle this question from two
sides. Firstly, there is no unbridgeable gap between models of the first kind
and models of the second kind. Models of both kinds may complement each
other. Secondly, it will be seen that the distinction is not exclusive. Models
may be both pictures and things depicted at the same time.

I endorse the view of Suppes that there is no unbridgeable gap between
representational or ‘physical’ models and logical or set-theoretical models.
By ‘physical model’ Suppes means a concrete physical thing. For example,
“many physicists want to think of a model of the orbital theory of the atom
as being more than a certain kind of set-theoretical entity. They envisage it
as a very concrete physical thing built on the analogy of the solar system”
(Suppes, 1969a, 13). This physical model is intended to represent the atom
and thus should be considered a representational model. According to Sup-
pes, there is no real incompatibility between set-theoretical models and such
physical models (see also Suppe, 1974, 96–97):

To define a model as a set-theoretical entity which is a certain
kind of ordered tuple consisting of a set of objects and relations
and operations on these objects is not to rule out the physical
model of the kind which is appealing to physicists, for the physical
model may simply be taken to define the set of objects in the set-
theoretical model. (Suppes, 1969a, 13)

Another thing is that the distinction between logical models and repre-
sentational models is not exclusive. Models may be both pictures and things
depicted at the same time. Quite recently, the idea was put forward by Mor-
gan and Morrison (1999) that models are relatively (but not completely!)
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autonomous mediators between theory and reality. They mostly focus on
models in the first sense, i.e. as some kind of mini-theories:

In some cases the distinction between models and theories is rel-
atively straightforward; theories consist of general principles that
govern the behaviour or large groups of phenomena; models are
usually more circumscribed and very often several models will be
required to apply these general principles to a number of different
cases. (Morrison and Morgan, 1999b, 12)

Although I will use the word “model” rather in the sense of the thing de-
picted, interesting lessons can be drawn from their account. In their view,
there is a significant lacuna in our understanding of how models function to
give us information about the world.

[The] literature on scientific practice still characterises the model
as a subsidiary to some background theory that is explicated or
applied via the model. [. . . ] The result is that we have very little
sense of what a model is in itself and how it is able to function
in an autonomous way. (Morrison and Morgan, 1999a, 7–8)

Yet clearly, autonomy is an important feature of models [. . . ].
Viewing models strictly in terms of their relationship to theory
draws our attention away from the processes of constructing mod-
els and manipulating them, both of which are crucial in gaining
information about the world, theories and the model itself. How-
ever, in addition to emphasising the autonomy of models as en-
tities distinct from theory we must also be mindful of the ways
that models and theory do interact. [. . . ] Our goal is to clarify
at least some of the ways in which models can act as autonomous
mediators in the sciences and to uncover the means by which they
function as a source of knowledge. (Morrison and Morgan, 1999a,
8)

The metaphor of “models as mediators” is highly valuable. I will not
include all the subtleties of Morgan and Morrison’s account (see Morrison
and Morgan, 1999b). I will only retain the following central point. Even
if models are interpreted in the logical sense, i.e. as models of a theory, as
models that are described or depicted by a theory, they retain some kind of
autonomy. These models are not identical to ‘the world’. All models involve
some degree of abstraction and idealization. To my opinion, Cartwright’s
label ‘simulacra’ nicely fits logical models too.
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A model is a work of fiction. Some properties ascribed to objects
in the model will be genuine properties of the objects modelled,
but others will be merely properties of convenience. (Cartwright,
1983, 153)

In order to stress this ‘anti-realistic’ aspect of models, I call my
view of explanation a ‘simulacrum’ account. (Cartwright, 1983,
152)

In this chapter, I will introduce several well-known concepts from the
causal modelling literature, as well some new ones. In chapter 4 I will use
these concepts to analyse the causal structure of classical genetics in a way
that to some extent resembles the structuralist analyses of Balzer et al. (1987)
and of Balzer and Lorenzano (2000). But where they use Bourbakian set-
theoretical models, I will use causal models instead. My models play the same
role as their models (both are things depicted), but they are constructed from
a different formal language. This is grosso modo in line with the approach of
Pearl (2000, chapter 7) – grosso modo, as there are also differences between
our approaches (cf. section 4.4). To the above quote, Pearl adds: “A causal
model, naturally, should encode the truth values of sentences that deal with
causal relationships. [. . . ] Such sentences cannot be interpreted in standard
propositional logic or probability calculus because they deal with changes
that occur in the external world rather than with changes in our beliefs about
a static world.” (Pearl, 2000, 202–203, original emphasis) In my analysis, the
theory of classical genetics consists of, or describes, or depicts (interrelated
sets of) causal nets or causal models (I will make no distinction between
both terms). These causal models in turn resemble actual things in the
world. Consequently, they are set-theoretic models (things depicted) and
representational models (pictures or descriptions of the world) at the same
time (see figure 3.1).

Before we start, a notational issue has to be addressed. In the following
section, I will use the expression ‘B = 〈G, P 〉’ to denote a causal net or causal
model and I will continue to do so throughout all the following chapters,
except one. In chapter 8, where I will present ALIC, the adaptive logic
for causal discovery, I will use the expression ‘M = 〈R+, c, p〉’ to denote
causal models. In that expression, R+ is just the set of nonnegative real
numbers. The functions c and p can be equated with G and P in ‘B = 〈G, P 〉’,
respectively. This notational change will be helpful in order to make a clear
distinction between the syntax and the semantics of the logic ALIC (and
the related logic LIC).
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THEORY of Classical Genetics

(interrelated sets of) causal MODELS

THINGS in the domain of application

describes, depicts,
is satisfied by

describe, depict
(with idealizations)

Figure 3.1: Theories, models and reality

3.2 Causal nets

A causal net is a causally interpreted Bayesian network. A Bayesian network
B = 〈G, P 〉 is defined on a finite set of random variables V . It consists of
a directed acyclic graph G = 〈V, E〉 and a probability distribution P (V ),
where P and G satisfy the (causal) Markov condition.4

In statistics, a random variable represents some feature of an entity or set
of entities. (In section 3.5 I will present the precise mathematical definition
of ‘random variable’.) Associated with each random variable A ∈ V is the
space of A, i.e. the set of mutually exclusive and jointly exhaustive values
it may assume. Let [A] denote the space of A. If A is a discrete variable,
[A] has finitely or countably many elements. Each value a ∈ [A] represents
a different state that the feature can take. Where U = {A1, . . . , An} is a set
of variables, let [U ] = [A1] × . . . × [An]. The members of [U ] thus consist
of the possible configurations of members of [A1], . . . , [An], respectively. I
immediately need to relax this definition. I will not attach significance to
the order of the values in the elements of [U ] (note that the variables in
U are not ordered either). For example, suppose that [A1] = {a11, a12},
[A2] = {a21, a22} and U = {A1, A2}. Then I will not discriminate between
the couple 〈a21, a11〉 and the couple 〈a11, a21〉, even if strictly speaking only
one of them can be a member of [U ]. I will also relax the above definition in
a second way. In the interest of readability, each n-tuple u = 〈a1, a2, . . . , an〉
may be written as a1a2 . . . an or as a1, a2, . . . , an. All this being said, let

4As I will not touch upon the problem of causal discovery from merely observational
data in chapter 4, I will not require here that P and G are faithful. (Moreover, I will
treat the credal nets of classical genetics as convex sets (cf. infra). It may be feared that
convexity and faithfulness may conflict with each other.)
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me also define [[U ]] =
⋃

[Ai] (for all Ai ∈ U). Obviously, [U ] and [[U ]] are
different sets.

From a set of discrete random variables, (joint) probability distributions
can be defined as follows.

Definition 3.1 (joint probability distribution) Let a set of n random
variables U = {A1, A2, . . . , An} be specified such that each Ai has a finite or
countably infinite space [Ai]. A function, that assigns a real number P (U =
ui) to every ui ∈ [U ] (i.e. to every combination of the values of the variables
Ai) is called a joint probability distribution of the random variables in U if
it satisfies the following conditions:

1. For every ui ∈ [U ],

0 ≤ P (U = ui) ≤ 1

2. We have∑
P (U = ui) = 1

Here is an intuitive example. Consider a pack of playing cards (with
no joker). Each card has a definite colour, suit and face. Colour, suit
and face are features of playing cards, so we may define random variables
Colour, Suit and Face representing these features. In a pack of cards, some
cards are red, others are black. Red and black are the different states that
Colour can take. Hence, [Colour] = {red, black}. Analogously, [Suit] =
{hearts, diamonds, clubs, spades} and [Face] = {ace, two, three, . . . , ten,
jack, queen, king}. Where U = {Colour, Face}, [U ] = {〈red, hearts〉,
〈red, diamonds〉, 〈red, clubs〉, . . . , 〈black, spades〉} and [[U ]] = {red, black,
clubs, spades, diamonds, hearts}.

Finally, the standard probability distribution associated with a pack of
playing cards is such that

P (red, hearts) = 0.25 P (red, diamonds) = 0.25
P (red, clubs) = 0.00 P (red, spades) = 0.00
P (black, hearts) = 0.00 P (black, diamonds) = 0.00
P (black, clubs) = 0.25 P (black, spades) = 0.25

A directed acyclic graph G = 〈V, E〉 consists of a set V of vertices or
nodes (this is the same set of random variables on which B is defined), and
a set E of directed edges (A → B, where A, B ∈ V ). Since G is acyclic,
there is no directed path from any variable to itself. If a Bayesian network
B = 〈〈V, E〉, P 〉 is interpreted causally, i.e. if B is a causal net, then for all
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vertices A, B ∈ V , A→ B ∈ E if and only if A denotes a direct cause of B,
relative to V . The notion of a direct cause may be interpreted in Woodward’s
interventionist sense here:

(DC) A necessary and sufficient condition of X to be a direct cause of Y with
respect to some variable set V is that there be a possible intervention
on X that will change Y (or the probability distribution of Y ) when
all other variables in V besides X and Y are held fixed at some value
by interventions. (Woodward, 2003b, 55)

As I said, for B to count as a causal net, its elements G = 〈V, E〉 and
P (V ) must satisfy the causal Markov condition (cf. Williamson, 2005, 50).

Definition 3.2 (Causal Markov condition) G = 〈V, E〉 and P (V ) sat-
isfy the causal Markov condition if and only if each variable is probabilisti-
cally independent (according to P ) of its non-effects, conditional on its direct
causes (where causes and effects are relative to G).

In case it is clear over which set of variables a distribution is defined, I
will write P instead of P (V ).

3.3 Relations among causal nets

As is evident from the above definitions, causal nets may differ from each
other along different lines. They may differ with respect to V and/or E
and/or P . Therefore, I will define several possible relations between sets
of variables, between graphs, and between causal nets that are helpful to
analyse the causal structure of classical genetics. (I apologize for using the
symbol ‘→’ in two different ways in the following definitions, viz. to refer to
arrows in graphs and to define bijections.)

Firstly, sets of variables may be isomorphic or value-isomorphic.

Definition 3.3 ((value-)isomorphism for sets of variables) V and V ′

are isomorphic if and only if there is a bijection b : V → V ′. V and V ′

are value-isomorphic if and only if there are bijections b : V → V ′ and
b′ : [[V ]]→ [[V ′]] such that for any A ∈ V and a ∈ [[V ]], a ∈ [A] if and only
if b′(a) ∈ [b(A)].5

Sets of variables that are value-isomorphic are isomorphic, but not vice
versa. Isomorphism and value-isomorphism for sets of variables are illus-
trated in figure 3.2. Graphs and causal nets may also be isomorphic or
value-isomorphic.

5Recall that [[V ]] =
⋃

[Ai] (for all Ai ∈ V ).
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Figure 3.2: Schematic representation of isomorphism and value-isomorphism
between sets of variables

Definition 3.4 ((value-)isomorphism for graphs) G = 〈V, E〉 and G′ =
〈V ′, E ′〉 are isomorphic if and only if there is a bijection b : V → V ′ such
that for any A, B ∈ V : A → B ∈ E if and only if b(A) → b(B) ∈ E ′.6 G
and G′ are value-isomorphic if and only if there are bijections b : V → V ′

and b′ : [[V ]]→ [[V ′]] such that for any A, B ∈ V : A→ B ∈ E if and only if
b(A) → b(B) ∈ E ′, and such that for any A ∈ V and a ∈ [[V ]], a ∈ [A] if
and only if b′(a) ∈ [b(A)].

If G = 〈V, E〉 and G′ = 〈V ′, E ′〉 are isomorphic (respectively, value-
isomorphic), then V and V ′ are isomorphic (respectively, value-isomorphic),
but not vice versa.

Definition 3.5 ((value-)isomorphism for causal nets) B = 〈G, P 〉 and
B′ = 〈G′, P ′〉 are isomorphic if and only if G and G′ are isomorphic. B and
B′ are value-isomorphic if and only if G and G′ are value-isomorphic.

With respect to isomorphic graphs and causal nets, let me introduce the
following convention:

Convention 3.6 If G = 〈V, E〉 and G′ = 〈V ′, E ′〉 are isomorphic, I will
write G′ = 〈V ′, E〉 instead of G′ = 〈V ′, E ′〉 – even if E and E ′ are specified
over different sets of variables. Analogously, I will write B′ = 〈〈V ′, E〉, P ′〉
instead of B′ = 〈〈V ′, E ′〉, P ′〉 in case B and B′ are isomorphic.

6This corresponds to the definition of isomorphic causal structures in Spirtes et al.
(2000, 22). See also http://mathworld.wolfram.com/IsomorphicGraphs.html.
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The relations of isomorphism and value-isomorphism of definition 3.5 con-
cern structural similarities between causal nets. Let us now turn to proba-
bilistic similarities.

Definition 3.7 (distribution-identity for causal nets) Let B = 〈〈V, E〉,
P 〉 and B′ = 〈〈V ′, E〉, P ′〉 be value-isomorphic and let b and b′ be bijec-
tions as in definition 3.3. Moreover, where u = 〈a1, a2, . . . , an〉 ∈ [V ], let
b′(u) = 〈b′(a1), b

′(a2), . . . , b
′(an)〉. Then B and B′ are distribution-identical

if and only if P (u) = P ′(b′(u)) for each u ∈ [V ]. (In other words, B and B′
have like joint distributions.)

3.4 Causal schemes and credal nets

Now that the relations of isomorphism, value-isomorphism and distribution
identity are defined, let us turn to the concept of a causal scheme. A causal
scheme is a set of isomorphic (or value-isomorphic) causal nets.7

Definition 3.8 (causal scheme (1)) For any causal net B, let the causal
scheme C(B) be the set of causal nets that are isomorphic to B

C(B) = {B′ | B′ is isomorphic to B}

and let the causal scheme C([B]) be the set of causal nets that are value-
isomorphic to B

C([B]) = {B′ | B′ is value-isomorphic to B}

Note that C([B]) ⊂ C(B).

Causally interpreted credal nets are an interesting special case of causal
schemes. A credal net may be thought of as a representation for a set of
Bayesian networks over a fixed set of variables (Cozman, 2005, 171), so a
causally interpreted credal net represents a set of causal nets. These causal
nets all have the same graph, but differ with respect to P . A credal net
B = 〈G, P〉 consists of a directed acyclic graph G = 〈V, E〉 and a set P of
probability distributions over V .

A set of probability distributions is called a credal set . In Bayesian con-
texts, these are used to model imprecise degrees of belief. Consider again

7Causal schemes (and generic credal nets, cf. infra), it will turn out, are similar in spirit
to Kitcher’s general argument patterns (Kitcher, 1989, 432–433) or to Darden’s abstract
explanatory patterns (Darden, 1991, 19). They also resemble the structuralist notion of
theory-element (Balzer et al., 1987, 39).
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our pack of playing cards and suppose that a croupier randomly draws one
card. If I am convinced that this pack of cards is normal and contains no
joker, my degree of belief that the card drawn is red should be one half:
P (Colour = red) = 26

52
(more briefly, P (red) = 26

52
). This is a precise degree

of belief. Suppose, however, that I am convinced that the croupier has falsi-
fied the game by turning a red card into a black card at least one time. Then
my degree of belief should be between P (red) = 25

52
and P (red) = 0

52
, and is

no longer precise. The credal set P = {P | P (red) = 26−n
52

, 1 ≤ n ∈ N ≤ 26}
represents these possible degrees of belief.

Definition 3.9 (credal set) A credal set P(V ) is a set of probability dis-
tributions P (V ).

In case no confusion may arise, I will write P or P instead of P(V ) or
P (V ).

Credal sets may be convex or non-convex, and they may be open or closed
(cf. Cozman, 2005, 175).

Definition 3.10 (convexity for credal sets) A credal set P is convex if,
for any measures P, P ′ ∈ P, the measure αP+(1−α)P ′ ∈ P for any α ∈ [0, 1].

Openness and closeness of a credal set can be compared with openness
and closeness of intervals: [a, b] is a closed interval, ]c, d[ is open.

The credal set specified in the above example is non-convex. It could be
argued, however, that my degrees of belief range over the complete convex
hull of this set. (Where the convex hull of P is the intersection of all con-
vex sets containing P; Walley, 1991, 611) In that case, I better could have
specified P as a closed convex set: P = {P | 0 ≤ P (red) ≤ 25

52
}.

Credal nets can be defined in terms of credal sets.

Definition 3.11 (credal net) A credal net is a set of causal nets with a
common graph: B = 〈G, P〉 = {B = 〈G, P 〉 | P ∈ P}

I stated above that causally interpreted credal nets are interesting special
cases of causal schemes. The reason is that if B,B′ ∈ B, their graphs are
identical and hence (value-)isomorphic. Therefore, if B,B′ ∈ B then B,B′ ∈
C(B) and B,B′ ∈ C([B]) (note that the converse does not hold). It follows
that we can also define causal schemes on the basis of credal nets.

Definition 3.12 (causal scheme (2)) For any credal net B, let the causal
scheme C(B) be the set of causal nets that are isomorphic to some member
of B

C(B) = {B′ | B′ is isomorphic to some B ∈ B}
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and let the causal scheme C([B]) be the set of causal nets that are value-
isomorphic to some member of B

C([B]) = {B′ | B′ is value-isomorphic to some B ∈ B}

Note that B ⊂ C([B]) ⊂ C(B).

Structural and probabilistic similarities can also be defined for credal sets,
credal nets and causal schemes.

Definition 3.13 ((value-)isomorphism for credal sets) The credal sets
P(V ) and P′(V ′) are isomorphic if and only if V and V ′ are isomorphic. P(V )
and P′(V ′) are value-isomorphic if and only if V and V ′ are value-isomorphic.

Definition 3.14 (distribution-identity for credal sets) Let V and V ′

be value-isomorphic, let b and b′ be bijections as in definition 3.3, and let
u and b′(u) be defined as in definition 3.7. Then the credal sets P(V ) and
P′(V ′) are distribution-identical if and only if there is a bijection b′′ : P→ P′

such that P (u) = b′′(P )(b′(u)) for all P ∈ P and all u ∈ [V ]. (In other words,
all distributions in P are distribution-identical to their image in P′.)

If two credal sets are distribution-identical, they are value-isomorphic
(and hence isomorphic), but not vice versa. Let us turn now to relations
between credal nets.

Definition 3.15 ((value-)isomorphism for credal nets) B = 〈G, P〉
and B′ = 〈G′, P′〉 are isomorphic if and only if G and G′ are isomorphic.
B = 〈G, P〉 and B′ = 〈G′, P′〉 are value-isomorphic if and only if G and G′

are value-isomorphic.

Definition 3.16 (distribution-identity for credal nets) B = 〈〈V, E〉,
P〉 and B′ = 〈〈V ′, E〉, P′〉 are distribution-identical if and only if P(V ) and
P′(V ′) are distribution-identical.

Equivalently, B and B′ are distribution-identical if and only if there is
a bijection b∗ : B → B′ such that for all B ∈ B, B is distribution-identical
to b∗(B).

If two credal nets are distribution-identical, they are value-isomorphic
(and hence isomorphic), but not vice versa. The two formulations in def-
inition 3.16 are equivalent. The second formulation can be used to define
distribution-identity for causal schemes.
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Theorem 3.17 Both formulations in definition 3.16 are equivalent.

Proof. ⇒ Assume that B = 〈〈V, E〉, P〉 and B′ = 〈〈V ′, E〉, P′〉 are distri-
bution-identical in accordance with the first formulation. Then P and P′

are distribution-identical (by definition 3.16). It follows that V and V ′ are
value-isomorphic (by definition 3.14), so G = 〈V, E〉 and G′ = 〈V ′, E〉 are
value-isomorphic too (by definition 3.4). Since P and P′ are distribution-
identical, there is a bijection b′′ : P → P′ such that for all P ∈ P, P is
distribution-identical to b′′(P ) (definition 3.14). Now define b∗ : B → B′

as follows: for any B = 〈G, P 〉 ∈ B : b∗(B) = 〈G′, b′′(P )〉. It follows that
for any such B, B is distribution-identical to b∗(B) (by definition 3.7). This
shows that B = 〈〈V, E〉, P〉 and B′ = 〈〈V ′, E〉, P′〉 are distribution-identical
in accordance with the second formulation.
⇐ Assume that B = 〈〈V, E〉, P〉 and B′ = 〈〈V ′, E〉, P′〉 are distribution-

identical in accordance with the second formulation. Then there is a b∗ : B→
B′ such that for any B = 〈〈V, E〉, P 〉 ∈ B it holds that B is distribution-
identical to b∗(B). As b∗(B) ∈ B′, its graph is 〈V ′, E〉. Now define b′′ : P→ P′

as follows: for any P ∈ P, b′′(P ) = P ′ if and only if b∗(〈〈V, E〉, P 〉) =
〈〈V ′, E〉, P ′〉. This shows that P and P′ are distribution-identical (definition
3.14). But then B = 〈〈V, E〉, P〉 and B′ = 〈〈V ′, E〉, P′〉 are distribution-
identical in accordance with the first formulation.

Let us now define distribution-identity for causal schemes.

Definition 3.18 (distribution-identity for causal schemes) Two caus-
al schemes C and C′ are distribution-identical if and only if there is a bijection
b∗∗ : C→ C′ such that for all B ∈ C, B is distribution-identical to b∗∗(B).

Summary of the above definitions:

(value-)isomorphism distribution-identity
sets of variables definition 3.3 /
graphs definition 3.4 /
causal nets definition 3.5 definition 3.7
credal sets definition 3.13 definition 3.14
credal nets definition 3.15 definition 3.16
causal schemes / definition 3.18

3.5 Compound variables and sets of variables

Let us turn now to one more kind of useful relations, viz. relations of ‘com-
poundedness’ between variables and between sets of variables.
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For the definition of a compound variable, let me briefly dwell on the
precise definition of random variables. Higher I stated that a random variable
represents some feature of an entity or set of entities, and that its values
represent the different states this feature can take. This corresponds to the
meaning of random variables in statistics (cf. Neapolitan, 2004, 28–34). The
precise mathematical definition, however, is as follows (cf. Neapolitan, 2004,
3–5, 10–17):

Definition 3.19 (Random variable) Let Ω be a sample space (i.e. the set
of different outcomes of an experiment8) and let P be a probability function
on the power set of Ω. Then the pair 〈Ω, P 〉 is called a probability space.

Given a probability space 〈Ω, P 〉, a random variable X is a function on Ω
that assigns a value x ∈ [X] to each outcome in the sample space: X : Ω→
[X].

Now we can define compound variables and compound variable sets as
follows:9

Definition 3.20 (Compound variable) Random variable Z is the com-
pound of variables X and Y (Z = compound〈X, Y 〉) if and only if

1. [Z] = [X]× [Y ], and

2. for all e ∈ Ω and all xi ∈ [X], if X(e) = xi, then Z(e) ∈ [Z]xi, where
[Z]xi = {〈xi, yj〉 | yj ∈ [Y ]}, and

3. for all e ∈ Ω and all yj ∈ [Y ], if Y (e) = yj, then Z(e) ∈ [Z]yj , where
[Z]yj = {〈xi, yj〉 | xi ∈ [X]}

By extension, we can define variables composed of more than two other vari-
ables recursively: Z = compound〈X1, . . . , Xn〉 if and only if there is some Z ′

such that Z = compound〈Z ′, Xn〉 and Z ′ = compound〈X1, . . . , Xn−1〉.
8In probability theory, the following situations may be called experiments: tossing

a coin once, tossing a coin 100 times, throwing three dice, selecting a random sample
of 200 people and observing the number of left-handers in it, crossing two species of
plants and observing the phenotypes of the offspring, . . . Experiments are defined in terms
of their outcomes or results. These are called events. For example, the experiment of
randomly selecting 200 people and observing the number of left-handers may result in 201
different events. Simple (or indecomposable) events (e.g. observing 149 left-handers) are
distinguished from compound (or decomposable) events (e.g. observing at least 149 left-
handers). (Compound events should not be confused with compound variables.) Every
compound event can be decomposed into simple events. Simple events are also called
sample points (or points). The aggregate of all sample points is called the sample space
(Ω). (Feller, 1950, 7–9)

9I could also have used the term ‘joint variable’ (cf. Antonucci and Zaffalon, LSCN,
section 2).
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Definition 3.21 (Compound variable set) A set of variables V is the
compound of sets V ′ and V ′′ (V = compound〈V ′, V ′′〉) if and only if

1. V, V ′, and V ′′ are isomorphic (so that there are bijections b : V → V ′

and b∗ : V → V ′′), and

2. for all A ∈ V , A = compound〈b(A), b∗(A)〉.

By extension, we can define sets of variables composed of more than two other
sets of variables recursively (cf. definition 3.20).

In the following chapters I will use all the concepts presented here to
analyse the causal structure of classical genetics and to handle several cen-
tral concepts from philosophy of science: exemplars, anomalies, explanation,
experimentation, policy, etc.

3.6 Causal models and the structure of sci-

entific theories

In section 3.1 I distinguished between two general kinds of models: set-
theoretic models and representational models. Although both concepts of
‘model’ should not be confused, there is no unbridgeable gap between them.
Theories describe, or are satisfied by, their set-theoretic models. But in turn,
these models comprise abstract and idealized representations of ‘reality’, so
they also function as representational models. In short, they are mediators
between theory and reality.

In the following chapter, I will use one such kind of set-theoretic models:
causal nets or causal models. I will use these models (and the other concepts
defined in this chapter) to analyse the structure of classical genetics. To some
extent my analysis will resemble the old structuralist approach of Balzer et al.
(1987) and it will incorporate interesting insights from both Kitcher (1989)
and Darden (1991). But it will supersede each of these frameworks in an
important respect: it will be apt to represent the causal structure of classical
genetics.



Chapter 4

The Causal Structure of
Classical Genetics

4.1 Introduction

In this chapter I will tackle the following questions: “How can the structure
of scientific theories, more specifically of classical genetics, be represented?”
And: “How can the pragmatic laws that figure therein be expressed?” The
question how to represent the structure of scientific theories has been asked
many times in the history of philosophy of science, and many authors have
used the theory of classical genetics as a case study.

The logical empiricists treated scientific theories as axiomatic theories for-
mulated in first-order logic with identity. In their view, a scientific theory TC
consists of a set of axioms or theoretical laws T and a set of correspondence
rules C (Nagel, 1961, chapters 4–5). For example, Woodger (1952, part II)
has formalized the theory of classical genetics by means of set theory, proba-
bility theory and first-order logic (see also Woodger, 1959 and Lindenmayer
and Simon, 1980).

The logical empiricist approach became discredited (Suppe, 1974) and
several alternatives emerged. Within the structuralist approach, theories
are considered as classes of set-theoretic structures or models (Balzer et al.,
1987). This framework has been applied to classical genetics by Lorenzano
(1995, 2007) and by Balzer and Lorenzano (2000).1 Although he did not
directly tackle the question how to represent scientific theories, the works
of Kitcher (1989) need also be mentioned. In his view, scientific theories
consist of general argument patterns that can be used time and again for

1See also Balzer and Dawe (1986a), Balzer and Dawe (1986b) and Balzer and Dawe
(1997).
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explanation. He considers four examples of such patterns that have been
employed in genetics in the twentieth century (Kitcher, 1989, 438–442). Fi-
nally, Darden (1991) analyses the theory of classical genetics in terms of
changing theoretical components. She also attaches great importance to the
role of diagrammatic representations. These representations, she argues, can
be abstracted so as to obtain (some analogues of) Kitcherian argument pat-
terns.

These alternatives all have their virtues, but they also have a joint short-
coming. None of them adequately handles the role of causation and causal
relations in classical genetics. This is regrettable since causation is strongly
tied to several other important topics in philosophy of science, such as expla-
nation, experimentation, policy, etc. Balzer et al. (1987) pay absolutely no
attention to the topics of causation, experiment or policy, and their concept
of explanation has little to do with causation. (In their view, to explain a set
of data is tantamount to fitting it in a model of a theory. But in these models
no distinction is made between causal and non-causal relations.) In Balzer
and Lorenzano (2000) several genetic relations are represented by functions.
They acknowledge that some of these functions are in fact causal, but they
lack the formal resources to distinguish them from non-causal ones. More-
over, they seem timorous with respect to causation. Regarding to genotypes,
they write:

Again, we distinguish between parental genotypes, those that
‘cause’ the parental phenotype, and a finite number of geno-
types for the progeny of each parental pair, one for each progeny.
(Balzer and Lorenzano, 2000, 247, original quotation marks)

In Kitcher’s theory causation occupies a queer place. Causal relevance
is dependent on explanatory relevance. The notion of the latter is tied to
the systematization of belief in the limit of scientific inquiry, as guided by
the search for derivational unification (Kitcher, 1989, 499). As we will see in
chapter 5, there is little guarantee that causal relevance thus defined will fit
‘the causal order of things in the world’.2

Finally, although Darden acknowledges that causal considerations played
a role in genetics and cytology (Darden, 1991, 253–254), she pays little at-
tention to causation.

I will not present the accounts of Kitcher (1989), Darden (1991) or Balzer
and Lorenzano (2000) in full detail. Rather, I will occasionally touch upon
the relevant aspects or the central concepts of their theories.

2This expression is adopted from Uskali Mäki (2001).
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I will proceed as follows. In section 4.2 I will present the ‘Theory of
the Gene’ as it was stated by Thomas Hunt Morgan. Then I will give a
very short overview of the present-day terminology of genetics (section 4.3).
In the subsequent sections I will represent the theory of classical genetics
by means of interrelated causal nets. First I will list their causal relata
and their joint graph (section 4.4). Then I will discuss Morgan’s treatment
of Mendel’s crosses on tall and short pea plants (section 4.5), show how
the results of these crosses were generalized to other reciprocal monohybrid
crosses with complete dominance (section 4.6) and provide an explication
of Darden’s concept of exemplar in terms of generic credal nets (section
4.7). In sections 4.8 and 4.9 I will present reciprocal monohybrid crosses
with incomplete dominance, discuss the role of (model) anomalies in classical
genetics and show how the structuralist notion of theory-elements is useful
to deal with such anomalies. In sections 4.10–4.13 I will treat multihybrid
crosses with independent assortment, linkage and crossing-over. In section
4.14, I will quickly discuss other patterns of inheritance, as well as the role
of environmental influences in (my representation of) classical genetics.

4.2 The theory of the gene

In 1926, Thomas Hunt Morgan published a very concise formulation of the
‘theory of the gene’. It provides a succinct formulation of the theory of clas-
sical genetics which had developed since 1900 (or since 1865). A revised
and enlarged edition was published in 1928. This formulation can be consid-
ered an end point in the development of classical genetics (Darden, 1991, 3,
38) and serves as a good starting point for exploring the causal structure of
classical genetics.

According to Morgan, the modern theory of heredity “is primarily con-
cerned with the distribution of units between successive generations of indi-
viduals.” (Morgan, 1928, 1) These units are invisible and are called genes.
To these genes, properties are assigned in a non-arbitrary way, based on “nu-
merical data obtained by crossing two individuals that differ in one or more
characters.” (Morgan, 1928, 1) After presenting several examples of possible
relations between genes and characters, Morgan formulates the theory of the
gene as follows:

We are now in a position to formulate the theory of the gene.
The theory states that the characters of the individual are refer-
able to paired elements (genes) in the germinal material that are
held together in a definite number of linkage groups; it states
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that the members of each pair of genes separate when the germ-
cells mature in accordance with Mendel’s first law, and in con-
sequence each germ-cell comes to contain one set only; it states
that the members belonging to different linkage groups assort in-
dependently in accordance with Mendel’s second law; it states
that an orderly interchange – crossing-over – also takes place, at
times, between the elements in corresponding linkage groups; and
it states that the frequency of crossing-over furnishes evidence of
the linear order of the elements in each linkage group and of the
relative position of the elements with respect to each other.
These principles, which, taken together, I have ventured to call
the theory of the gene, enable us to handle problems of genetics
on a strictly numerical basis, and allow us to predict, with a great
deal of precision, what will occur in any given situation. In these
respects the theory fulfills the requirements of a scientific theory
in the fullest sense. (Morgan, 1928, 25; emphases omitted)

The theory of the gene, as it is stated here, is not one single theory.
Instead, it is composed of different theoretical components (Darden, 1991)
or theory-elements (Balzer et al., 1987; Balzer and Lorenzano, 2000).3 These
theory-elements have to some extent the same causal structure. This shared
causal structure ties them together, and distinguishes the theory of the gene
from alternative theories of inheritance. In chapter 9 I will discuss Francis
Galton’s ‘theory of ancestral inheritance’ which has a strongly different causal
structure.

3Theoretical components are not the same as theory-elements. In Darden’s framework,
theoretical components evolve in the course of time.

[. . . ] I will be using the term ‘theoretical component’ to discuss parts of
the theory that change over time. [. . . ] The principal theory that I will be
discussing is the theory of the gene; the early ideas that developed into it
will be termed ‘theoretical components of Mendelism.’ (Darden, 1991, 18)

By contrast, theory-elements may be considered as the end-products of such theory change.
They consist of a theory-core and a set of intended applications. The theory-cores of
different theory-elements incorporate different ‘laws’ or axioms and may be used to account
for different (but related) kinds of phenomena. See footnote 8 for a short presentation of
some of the main components of theory-cores: potential models, actual models, partial
potential models, . . . (Balzer et al., 1987, 37–40; Balzer and Lorenzano, 2000, 245–246)
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4.3 Classical genetics and present-day termi-

nology

The history of classical genetics is replete with conceptual changes (cf. Dar-
den, 1991). Many concepts were originally used ambiguously. Even in Mor-
gan’s monograph, several contemporary concepts are often tangled up. For
example, Morgan often writes ‘genes’ where we would now use ‘alleles’. I
will often make use of present-day terminology (both from genetics and from
cytology) to explicate Morgan’s reasoning. This will add clarity and speed
up my analysis.

In this section, I will briefly present this terminology, based on Klug et al.
(2006, 1–136). I will confine myself to the terminology relating to classical
genetics in eukaryotes. This means that I will not discuss molecular genetics
or inheritance in prokaryotes. Since Klug et al. (2006) is a standard textbook,
I will not present quotations as quotations.

In eukaryotic organisms such as plants and animals, each species has a
characteristic number of chromosomes (the diploid number 2n). Chromo-
somes in diploid cells exist in n pairs consisting of 2 homologous chromo-
somes . During mitosis (somatic cell division), chromosomes are copied and
distributed so that the two resulting daughter cells each receive a diploid
set of chromosomes. Meiosis is a form of cell division associated with ga-
mete formation. Gametes are reproductive cells, i.e. sperm or pollen and
eggs. Cells produced by meiosis receive only one member of each pair of
homologous chromosomes, thus having n chromosomes in total (the haploid
number). When two gametes fertilize, the resulting zygote has n + n = 2n
chromosomes. (Klug et al., 2006, 3–4)

Chromosomes are the bearers of the genes . Put simply, genes code for
(or cause) observable characters (e.g. eye colour in humans). Alleles are
alternative forms of genes, producing different traits of the same character
(e.g. brown eyes or blue eyes). The organism’s observable features are called
its phenotype; the set of its alleles for a given character (or set of characters)
is called its genotype. (Klug et al., 2006, 4, with slight modifications) In any
diploid organism, two alleles of the same gene occur (each of which is part
of a distinct member of a pair of homologous chromosomes). If both alleles
are identical, the individual is homozygous (a homozygote), otherwise it is
heterozygous (a heterozygote). (Klug et al., 2006, 42)

There are many more genes than chromosomes. Alleles that are part of
the same chromosome are said to be linked, or to show linkage in genetic
crosses. During meiosis, gametes receive one member of each pair of ho-
mologous chromosomes. Alleles that are part of the same chromosome are,
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ceteris paribus, transmitted as a unit. However, during the first phase of
meiosis (prophase I), homologous chromosomes may reciprocally exchange
chromosome segments. This is called crossing-over . As the alleles on the
chromosome segments in question are exchanged, linkage is violated. The
degree of crossing-over provides a means to determine the locus (place) of
genes on the chromosome. The distance between two genes on the same chro-
mosome is called the interlocus distance. The degree of crossing-over between
any two genes is proportional to their interlocus distance. By comparing the
interlocus distances of many pairs of genes, chromosome maps describing the
linear order of the genes can be constructed. (Klug et al., 2006, 28, 101–136)

For some genes, two alleles exist. Of these alleles, one may be domi-
nant, the other recessive (e.g., the allele B for brown eyes is dominant to
the allele b for blue eyes – so heterozygotes have brown eyes). This is called
dominance/recessiveness or complete dominance. In incomplete dominance,
neither allele is dominant. For example, red-flowered snapdragons are ho-
mozygous (R1R1), having two copies of the red-producing allele (R1). White-
flowered snapdragons are homozygous (R2R2) for the white-producing allele
(R2). Heterozygous snapdragons (R1R2) are neither red, nor white. They
are pink.4 In codominance, both alleles have an influence in the heterozygote
(i.e. both can be considered as dominant). Here, both alleles produce distinct
and detectable gene products (in the case of complete dominance or incom-
plete dominance, the gene products of one of the alleles are not detectable).
The MN blood group in humans is a case of codominance. In people that
are homozygous for M (i.e. have the M blood group) a glycoprotein molecule
is found on the surface of red blood cells. In people that are homozygous
for N (having the N blood group) a slightly different glycoprotein molecule
is found. In heterozygotes (with the MN blood group), both variants of the
molecule are found. (Klug et al., 2006, 68–69)

For other genes, more than two alleles exist, sometimes even up to a
hundred or more (multiple alleles). For example, the ABO blood groups
result from one gene having three alleles. IA and IB are each dominant to
IO, but they are codominant to each other. (Klug et al., 2006, 70–72)

The relation between genes and characters is not always one-to-one. On
the one hand, phenotypes may be affected by more than one gene (gene in-
teraction, also called multiple factors) (Klug et al., 2006, 75–79). On the
other hand, expression of a single gene may have multiple effects (pleiotropy)

4This can be interpreted as follows. R1 produces an enzyme that participates in a
reaction leading to the synthesis of a red pigment. R2 produces an enzyme that cannot
catalyze the reaction leading to pigment. In the heterozygote (R1R2) only about half the
pigment of the red-flowered plant is produced and the phenotype is pink. (Klug et al.,
2006, 69)
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(Klug et al., 2006, 80–81). Finally, phenotypic expression is not always a di-
rect reflection of the genotype. Gene expression and the resulting phenotype
are co-determined by the cell’s internal milieu, the external environment, and
the interaction between cells.

Sometimes a mutant genotype is only expressed in part of the mutants.
The percentage of individuals that show at least some degree of expression
of a mutant genotype defines the penetrance of the mutation (cf. section
5.5). By contrast, expressivity reflects the range of expression of the mutant
genotype. For example, Drosophila flies that are homozygous for the recessive
allele ‘eyeless’ may have normal eyes, or somewhat smaller eyes, or even lack
one or two eyes. Expressivity ranges from complete loss of both eyes to
completely normal eyes. This variation is due both to genetic background,
and to environmental influences. Different kinds of genetic background effects
have been distinguished. In the case of genetic suppression or epistasis , a
suppressor gene causes the (complete) reversal of the expected phenotypic
expression of some mutation. Also, the position of a gene on the chromosome
may influence its expression (position effect). Some parts of the chromosome
are more condensed and genetically inert. Genes may change position on the
chromosome due to translocation or inversion. Analogously, different kinds
of environmental influences have been distinguished. For example, some
mutations are temperature sensitive (temperature effect). (Klug et al., 2006,
85–89)

4.4 The causal relata of classical genetics

In the first chapter of his monograph, “The fundamental principles of genet-
ics”, Morgan introduces the theory of the gene by means of several paradig-
matic crosses (Morgan, 1928, 1–25). He cites Mendelian pea crosses (a tall
variety versus a short variety) and crosses of humans (blue eye colour versus
brown eye colour) to illustrate monohybrid crosses with complete dominance,
and crosses of four-o’clocks (red flower colour versus white flower colour) to
illustrate monohybrid crosses with what is now called incomplete dominance.
In a monohybrid cross, only one set of opposing traits is observed. Mendelian
pea crosses (yellow and round seeds versus green and wrinkled seeds) also
serve to exemplify dihybrid crosses with independent assortment, whereas
linkage and crossing-over are exemplified by crosses on fruit flies. These
paradigmatic crosses will play an important role in the following sections.

Whereas these exemplars are prima facie very different, at a general level
of description they are all similar, viz. at the level of their causal structure.
More precisely, each of them relates to the inheritance of some particular set
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of traits in some particular kind of organism. Each exemplar can be described
by means of a credal net. The graph of this net describes the traits and factors
at hand. Its credal set results from selecting those probability distributions
that satisfy a certain set of principles. These are the principles by which
the results of these crosses are described, predicted or explained. In other
words, these principles are pragmatic laws. Where credal nets correspond to
exemplars, their elements (causal nets) each describe some possible genetic
cross on the organism and traits in question. The set-theoretical relations
between different credal nets show the logical structure of classical genetics
(cf. Balzer and Lorenzano, 2000). At the most general level, all causal nets
belong to the same causal scheme, since their graphs are all isomorphic. This
causal scheme represents the causal structure of classical genetics. (Causal
schemes are similar to sets of potential models – cf. footnote 8.)

In each paradigmatic cross, two subsequent generations of individuals (or
groups of individuals) are observed. In the parental generation, two (groups
of) individuals are crossed. Their offspring is called the filial generation. So
basically, three groups of individuals are observed: a first parental group, a
second parental group, and a filial group. The members of the first parental
group produce pollen or sperm (so let us call them the fathers); those of
the second parental group produce seeds5 or egg cells (so let us call them
the mothers). Although I distinguish between two parental groups, cases
of selfing (or self-fertilization, where the parents are identical) and cases
of parthenogenesis (where one of the parental groups is absent) can be ac-
counted for in my framework. In many studies, more than two generations
are observed (e.g. a parental generation and two or three filial generations).
These can be considered concatenations of the causal scheme to be outlined.

For each of the three groups, the following features are discussed (see
figure 4.1): their observable characters (phenotype), their genetic make-up
(genotype), and (mostly) the genetic make-up of their gametes.6 These fea-
tures may be represented by random variables. The phenotype of each in-
dividual or group of individuals i (i = 1, 2, 3) is represented by PTi, their
genotype by GTi and the make-up of their gametes or germ-cells by GCi. It
will be seen that these variables are causally related.

Which are the causal relations that Morgan asserts between these random
variables? From a present-day point of view, it is natural to consider genes
as the causes of characters; i.e. to assume that for each i, GTi → PTi. It

5Where Mendel wrote ‘Samen’ (Mendel, 1933, 18) or ‘seeds’ (Mendel, 1865, 18), Morgan
(1928, 2–3) uses ‘eggs’ for the gametes of pea plants.

6The concepts of genotype and phenotype were introduced by Wilhelm L. Johannsen in
1909. Although they were not explicitly used in (Morgan, 1928), I will use them throughout
this chapter to abbreviate Morgan’s wording (cf. supra, section 4.3).
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is not so natural, however, to attribute this assumption to Morgan. Causal
language was used surprisingly infrequently in the genetics literature; and
in his exposition of the theory of the gene, Morgan does not explicitly state
that genes caused characters, only that the latter are referable to the former
(Darden, 1991, 182). On the other hand, he implicitly uses causal language
more than once. I will give three examples. Firstly, he hypothesizes that the
tall variety of pea plants “contains in its germ-cells something that makes
the plants tall” (Morgan, 1928, 2, my emphasis). Secondly, he distinguishes
between red-producing genes and white-producing genes in the crosses of four-
o’clock mentioned above (see fig. 6 in Morgan, 1928, 8). Finally, he writes
that

[i]t must not be supposed [. . . ] that mutant changes produce only
a single striking or even a single small change in one particular
part of the body. On the contrary, [. . . ] even in those cases
where one part is especially modified, other effects are commonly
present in several or in all parts of the body.” (Morgan, 1928,
315, my emphasis)

‘Making’ and ‘producing’ clearly are causal verbs. ‘Effect’ clearly is a causal
noun. These examples should suffice to show that, according to Morgan,
genes cause characters (see also Darden, 1991, 182–183).

Let us turn now to the relations between the paired genes and the germ-
cells. In “Chapter III. The mechanism of heredity” and “Chapter IV. Chro-
mosomes and genes”, Morgan (1928) lists overwhelming cytological evidence
leading to the conclusion that GTi → GCi (i = 1, 2, 3) and that GC1 →
GT3 ← GC2, i.e. that the parental gametes together determine the filial
genotype. Firstly, the chromosomes are the bearers of the genes.

[. . . ] evidence has accumulated supporting the view that the
chromosomes are the bearers of the hereditary elements or genes,
and this evidence has steadily grown stronger each year. (Morgan,
1928, 45)

Secondly, somatic cells have a diploid number of chromosomes, half of which
come from the father, the other half from the mother.

[. . . ] there is a double set of chromosomes in each cell of the
body and in the early stages of the germ-cells. The evidence of
this duality came from observations on differences in the sizes of
the chromosomes. Whenever recognizable differences exist there
are two chromosomes of each kind in the somatic cells and one
of each in the germ cells after maturation. One member of each
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Figure 4.1: The causal structure of classical genetics

kind has been shown to come from the father and the other from
the mother. (Morgan, 1928, 32)

Finally, the germ cells receive a haploid number of chromosomes.

Toward the end of the ripening period of the germ-cells, chromo-
somes of the same size come together in pairs. This is followed
by a division of the cell, when the members of each pair go into
opposite cells. Each mature germ-cell comes to contain only one
set of chromosomes [. . . ]. (Morgan, 1928, 33)

Together, these claims give rise to the structure presented in figure 4.1.
The GCi and the GTi-variables are dotted to show that they are CG-
theoretical terms in the structuralist sense (where CG is the theory of clas-
sical genetics). The variables PTi are CG-non-theoretical and hence are not
dotted. I will first present the structuralist criterion for theoreticity. Then I
will argue that phenotype is CG-non-theoretical, whereas genotype and ga-
metic make-up are CG-theoretical. I will also show that this distinction is
relevant in at least three respects.

Definition 4.1 (T-theoreticity) Informal criterion: a concept whose de-
termination involves some kind of measurement will be called theoretical with
respect to theory T if all methods of measurement involved in its determi-
nation have to be conceived as models of T [i.e. invoke the laws of T – cf.
footnote 8] or as presupposing some models of T. (Balzer et al., 1987, 50)
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Semi-formal criterion: a concept t is called theoretical relative to theory
T (or just T-theoretical) iff every determination of (a relation belonging to) t
in any application of T presupposes the existence of at least one actual model
of T. (Balzer et al., 1987, 55)

Phenotype is a CG-non-theoretical concept. One can tell whether some
pea plant is tall or short without invoking any of the principles of classical
genetics. (Note that this does not commit us to some naive version of direct
observability. The MN blood groups in humans provide a nice example of
a phenotype the observation of which is relatively complicated. The MN
blood groups are characterized by antigens on the surface of red blood cells
(Klug et al., 2006, 69–70). Detecting the antigens is less straightforward
than measuring the height of pea plants, but nevertheless it can be done
without relying on classical genetics.) By contrast, genotype and gametic
make-up are CG-theoretical concepts. Until the advent of molecular genetics
and genomics, there was no way to observe the genotype without relying on
phenotypes and the principles of classical genetics.

In the context of classical genetics, the structuralist distinction between
T-theoretical and T-non-theoretical concepts is relevant in at least three
respects. Firstly, it will emerge in the following sections that genetic ex-
planations are to a certain extent abductive. Their abductive character re-
sults from the CG-theoretical nature of the genotype. (This point is nei-
ther stressed by Balzer et al. (1987), nor by Balzer and Lorenzano (2000).)
Secondly, the history of classical genetics is replete with theory changes to
account for recalcitrant anomalies. In Darden’s framework, these are called
model anomalies , i.e. anomalies that require a change in the theory. Such
changes either involved the alteration of a typical explanatory pattern or
the addition of one or more new patterns and were most often related to
changes in the concept of the genotype.7 (Darden, 1991, 199–201) Given
the CG-theoretical character of the genotype, such changes run the risk of
being ad hoc. Their ad hocness was reduced in several ways: by looking
for inter-theoretic relations with cytology, by systematically applying the re-
sulting explanatory pattern in different contexts, etc. Thirdly, within the
structuralist framework there is a straightforward relation between T-non-
theoretical concepts and data. Data report on the theory’s T-non-theoretical
parts.8 This is clearly revealed in the case of classical genetics: the “numeri-

7Model anomalies are contrasted with monster anomalies, which do not require such a
change (see section 4.14.1 for an example of monster anomalies).

8The relations between theories, theoreticity, and data are as follows within the struc-
turalist approach. The set of potential models Mp(T) of a theory T consists of those
set-theoretic structures that can be subsumed under that theory’s conceptual framework
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cal data” on which T.H. Morgan lays so much stress (cf. section 4.2) always
concern phenotypic distributions.

In the following sections I will show how each of the exemplars discussed
by Morgan can be described by means of a credal net. I will also show that
these credal nets have graphs that are isomorphic to the graph in figure 4.1.
This figure represents the causal scheme containing all models of classical
genetics. (Note that not all members of this causal scheme are models of
classical genetics. Causal schemes are similar to sets of potential models in
the language of Balzer et al. (1987). Not all potential models of a theory are
actual models of that theory.) From figure 4.1, causal nets B = 〈〈V, E〉, P 〉
can be obtained by specifying V and P such that these B’s explain the data
at hand. This picture strongly resembles Kitcher’s views on unification and
explanation (Kitcher, 1989). But, as I will argue, it surpasses these views on
several interesting points. It is also grosso modo in line with (Pearl, 2000,
202–207). Pearl defines a causal theory as a set of causal worlds. A causal
world consists of a causal model and a particular realization of the exogenous
variables. A causal model , in his view, consists of a set of variables and a set

(Balzer et al., 1987, 15–17). The set of its models (or actual models) M(T) contains those
potential models that moreover satisfy its laws (Balzer et al., 1987, 3, 15–17). Finally, the
set of its partial potential models Mpp(T) consists of those set-theoretic structures that
contain no T-theoretical concepts as in definition 4.1 (where such concepts take the form
of relations defined on the domain or base sets) but that can be ‘extended’ to potential
models by adding suitable (T-theoretical) relations (Balzer et al., 1987, 56–57). Finally,
the authors take it that a theory’s intended applications have the structure of partial po-
tential models: I ⊆Mpp (where I is the set of intended applications) (Balzer et al., 1987,
86–89).

Data describe intended applications and are ‘explained’ by the theory.

When confronted with some given “data” or “phenomena” [the authors make
no distinction between both concepts] we might want to use a theory T to
“understand” them, to “explain” them, to “predict” them, – in short, we
might want to apply T to those data. To do this, the first thing we try is
to conceptualize the domain I of data in terms of T, i.e. to use the concepts
appearing in potential models of T to refer to I. We create a potential model
of T for I [by extending the partial potential model at hand in a suitable
way]. This is the more “conceptual” aspect of the application of a theory.
The next step is to make an assertion about I in terms of T – an assertion
with empirically testable consequences. We then assert that I satisfies the
fundamental laws of T, which, of course, only makes sense if I has already
been conceptualized in terms of T. In other words, we make the empirical
assertion that the potential model considered is also an actual model of T.
This empirical assertion can be either true or false. If it turns out to be true,
we can say that we have applied T to I successfully. (Balzer et al., 1987, 23,
original emphasis)
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of functional relations between these variables. But whereas Pearl requires
that for all endogenous variables U i in a causal world there is a uj ∈ [U i] such
that P (uj) = 1 (or equivalently, that there is a u ∈ [U ] such that P (u) = 1,
where U is the set of exogenous variables), I will not. (A variable is exogenous
in a graph G if it has no parents in that graph. It is endogenous otherwise.)

Before we turn to the first of Morgan’s exemplars, let me briefly dwell on
the representational capabilities of my framework in relation to the concept
of the gene. Whereas it will allow us to elucidate the possible structural and
probabilistic relations between the genes (or the genotype) on the one hand,
and the phenotype and the gametic makeup on the other hand, it is inapt
to fully reveal the nature of the genes. In other words, in my framework it
can be seen how genes are related to e.g. phenotypic traits. But it cannot
be seen what genes are. In the history of genetics, many different (explicit
or implicit) views on what genes are have relieved each other. Although it
has extensively been questioned whether Mendel indeed invoked invisible ele-
ments to explain his phenotypic distributions (cf. Darden, 1991, 40–42), there
is good evidence that he did (see footnote 11). According to Meijer (1983,
section 5.3), there are some indirect indications that Mendel did not conceive
of genes as ‘particles’ but as discrete, uncountable ‘fluids’. By discrete it is
meant that in the hybrid the different fluids (responsible for opposing traits)
do not mix together (cf. oil and water), so that the respective traits do not
blend either. By uncountable it is meant that when two identical fluids come
together, they only count as one. Later, Bateson conceived of genes as ‘vi-
brations’, ‘vortices’ or ‘forces’ (Darden, 1991, 47), or as ‘enzymes’ (where it
was not known that enzymes were proteins (Darden, 1991, 210)). After he
opposed Mendelism and the chromosome theory for a long time (see Morgan,
1909, 1910), T.H. Morgan became one of the most important proponents of
both, and the Morgan group introduced the view that genes were like ‘beads
on a string’ (see also Darden, 1991, passim).

My framework has two important strengths in this respect. Firstly, all
these views on what genes are, are compatible with it. So it is flexible enough
to model different accounts of classical genetics. Secondly, notwithstanding
this flexibility, my framework does allow to distinguish between these differ-
ent views. To the extent they generate divergent predictions that may be
tested empirically, their internal differences can be represented in my frame-
work.
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4.5 Of tall and short pea plants

Morgan’s first exemplar consists of monohybrid crosses with complete dom-
inance performed by Mendel. Recall that in a monohybrid cross, only one
pair of opposing characteristics is observed. Mendel crossed a tall variety of
edible pea (Pisum) with a short variety.9 The tall plants he used were true-
breeding. A plant is true-breeding for some trait if, when self-fertilized, it
only produces offspring with this trait. (This definition is not watertight. All
the offspring of non-true-breeding plants may, by accident, have the parental
phenotype.) True-breeding plants may also be called pure (cf. Morgan, 1928,
4).10

Mendel observed that when true-breeding tall plants are crossed with
short plants, all the offspring or hybrids (F1) are tall (cross 1). It did not
matter whether the tall plants produced pollen and the short plants produced
eggs or vice versa. Reciprocal crosses gave identical results (cf. Mendel, 1865,
8–9; see also page 68). In a second cross (cross 2), self-fertilization of the
F1-generation resulted in offspring (F2) 75% of which was tall, the other
25% being short. Finally, when the F1 hybrids (pollen plants) were back-
crossed to the short plants (egg plants), 50% of the resulting off-spring F2′

was tall, the other 50% was short (cross 3). Cross 3 served as a test cross
for the validation of his explanatory principles.11 How can these phenotypic

9Pisum plants are one kind of model organisms that were frequently used in classical
genetics. Other kinds of model organisms were i.a. Drosophila (fruit flies), mice, . . . Model
organisms can be regarded as (representational) models (see Leonelli, 2007).

10True-breeding Pisum plants were sold by seed dealers (the procedure by which these
true-breeding plants were obtained is described in section 6.2):

From several seed dealers a total of 34 more or less distinct varieties of peas
were procured and subjected to two years of testing. In one variety a few
markedly deviating forms were noticed among a fairly large number of like
plants. These, however, did not vary in the following year and were exactly
like another variety obtained from the same seed dealer; no doubt the seeds
had been accidentally mixed. All other varieties yielded quite similar and
constant offspring; at least during the two test years no essential change could
be noticed. Twenty-two of these varieties were selected for fertilization and
planted annually throughout the entire experimental period. They remained
stable without exception. (Mendel, 1865, 4)

Three decades later, Correns writes in a footnote in his paper “G. Mendel’s Law Concern-
ing the Behavior of Progeny of Varietal Hybrids,” that

The names of the varieties given in this chapter are those which I received
from [the seed firm] Haage and Schmidt in Erfurt. (Correns, 1900, 120)

11There is much debate regarding the question whether Mendel indeed invoked invisible
elements to explain his phenotypic distributions (cf. Darden, 1991, 40–42). In contempo-
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distributions be accounted for? It will turn out that the results of each can
be accounted for by means of a causal net whose graph is isomorphic to the
graph in figure 4.1.

Let us first give an appropriate interpretation to each of the nodes in
figure 4.1 by specifying their respective sets of possible values. The plants in
each of the three groups in these crosses have one of the following observable
traits: either they are tall (PTi = tall) or short (PTi = short). These traits
are referable to paired alleles in the germinal material. Let t and s denote
a ‘tall-producing’ allele and a ‘short-producing’ allele, respectively.12 There
are three possible configurations of paired genes, i.e. three possible values
for the variables GTi, viz. tt, ts, and ss. Finally, the gametes or germ-cells
contain one gene of each pair. Hence, the variables GCi may assume the
values t or s.

These specifications can be summarized as follows. Let V 1 = {PT1, . . . ,
GC3} be a set of variables corresponding to the nodes in figure 4.1. Let
[PTi] = {tall, short}, [GTi] = {tt, ts, ss}, and [GCi] = {t, s}, (i = 1, 2, 3).
Let G1 = 〈V 1, E〉 be isomorphic to the graph in figure 4.1 (where PT1 ∈
V 1 corresponds to the node PT1 in the graph, . . . ) This completes the
description of G1. By adding probability distributions to this graph, we
obtain causal nets that may represent the phenotypic distributions in crosses
1 to 3. How should the probability distributions look like?

rary genetics textbooks, Mendel’s views are often cast as if he did. For example, according
to Klug et al. (2006), Mendel derived the following postulate:

Genetic characters are controlled by unit factors existing in pairs in individ-
ual organisms. (Klug et al., 2006, 41, original emphasis)

Such way of presenting his views has been criticized by historians of science. Nevertheless,
I am inclined to think that Mendel indeed invoked some kind of elements responsible for
the phenotype. Firstly, it is very natural to read his Versuche this way (Mendel, 1933).
For example, when discussing the experimental results of Kölreuter and Gärtner, he writes
the following (see also section 4.9.1):

Both concur in the opinion that, in external appearance, hybrids either main-
tain a form intermediate between the parental strains or they approach the
type of one or the other, sometimes being barely distinguishable from them.
(Mendel, 1865, 39, my emphasis)

The subordinate clause in italics would make little sense if Mendel did not distinguish
between external appearance and internal make-up. Secondly, Meijer (1983) provides
convincing arguments supporting this view. Fortunately, this debate need not concern
us here. What is relevant for the present discussion is the fact that Morgan (1928, 3)
attributes to Mendel the use of cross 3 as a test cross.

12Morgan does not use the words “tall-” or “short-producing alleles”. But his presen-
tation of inheritance of flower-colour in four-o’clocks is phrased in terms of white- and of
red-producing genes (Morgan, 1928, 5–7).
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table 1 table 2 table 3
PTi GCi GT3

GTi tall short GTi t s GC1 GC2 tt ts ss
tt 1.00 0.00 tt 1.00 0.00 t t 1.00 0.00 0.00
ts 1.00 0.00 ts 0.50 0.50 t s 0.00 1.00 0.00
ss 0.00 1.00 ss 0.00 1.00 s t 0.00 1.00 0.00

s s 0.00 0.00 1.00

Conditional probability tables 1–3: these provide constraints for P ∈ P1

To explain the phenotypic distributions of crosses 1 to 3, Morgan appeals
to the following principles. Firstly, he implicitly assumes that the follow-
ing relations hold between the genotype and the phenotype of each group:
plants that have two tall-producing alleles are tall; hybrids, which have both
an allele for tall and one for short, are tall; and plants that have two short-
producing alleles are short. These relations correspond to the principle of
‘complete dominance’. They are summarized in conditional probability ta-
ble 1. This table should be read as follows: in the right-hand column, the
probability distribution is given for the variables PTi (i = 1, 2, 3), condi-
tional on the possible values of their respective graphic parents (i.e. the
variables GTi, i = 1, 2, 3), which are listed in the left-hand column. For
example, the first row states that P (PTi = tall | GTi = tt) = 1.00 and that
P (PTi = short | GTi = tt) = 0.00. Analogously, the second row states that
P (PTi = tall | GTi = ts) = 1.00. It expresses the fact that tall is dominant
to short and corresponds to the second part of the following quote:

If the tall variety contains in its germ-cells something that makes
the plants tall and if the short variety carries something in its
germ-cells that makes the plants short, the hybrid contains both
[cf. table 3]; and since the hybrid is tall it is evident that when both
are brought together the tall dominates the short, or, conversely,
short is recessive to tall. (Morgan, 1928, 2–3, my emphasis)

As a second principle, Morgan assumes that

[i]f the element for tall and the one for short (that are both present
in the hybrid) separate in the hybrid when the eggs and pollen
grains come to maturity, half the eggs will contain the tall and half
the short element [. . . ]. Similarly for the pollen grains. (Morgan,
1928, 3)

This hypothesis he attributes to Gregor Mendel, calling it Mendel’s first law
(Morgan, 1928, 3, 5). With respect to true-breeding plants (in contrast with
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the hybrids), he implicitly assumes that all the eggs or pollen grains of plants
that have only tall-producing alleles (respectively only short-producing alle-
les) will contain the tall element (respectively the short element). From Mor-
gan’s discussion of the underlying chromosomal mechanism it is evident that
Mendel’s first law, which is now called the law of segregation, not only applies
to the hybrids or heterozygotes, but also to the homozygotes.13 Mendel’s first
law is summarized in table 2.

As a third principle, Morgan assumes that when an egg and a pollen
grain fertilize, their respective elements together make up the genotype of
the resulting offspring. I will call this the principle of combination.14 It is
summarized in table 3. The relations in tables 1 and 3 are joined in the
following quote:

[. . . ] when tall meets tall a tall plant is produced; when tall
meets short a tall plant results; when short meets tall, a tall
plant is produced; and when short meets short, a short plant
arises. (Morgan, 1928, 3)

Finally, it should be noted that Morgan assumes that chance fertiliza-
tion occurs, i.e. that GC1 is probabilistically independent from GC2. This
assumption is incorporated in G1, as GC1 and GC2 are d-separated by the
empty set in the graph in figure 4.1 (to which G1 is isomorphic).

13In the following quote, part of which I already used on page 60, Morgan does not
restrict segregation to chromosomes carrying different alleles or Mendelian units.

Toward the end of the ripening period of the germ-cells, chromosomes of the
same size come together in pairs. This is followed by a division of the cell,
when the members of each pair go into opposite cells. Each mature germ-
cell comes to contain only one set of chromosomes, [. . . ]. This behavior of
the chromosomes in the maturation stages parallels Mendel’s first law. A
chromosome derived from the father separates from a chromosome derived
from the mother for each pair of chromosomes. The germ-cells that result
contain one chromosome of each kind. Taking the chromosomes in pairs
we may say, half of the germ-cells, when mature, contain one member of
each pair, the other half the mates of those chromosomes, pair for pair. If
one substitutes Mendelian units for chromosomes, the statement is the same.
(Morgan, 1928, 33–34, my emphasis)

14The principle of combination should not be confused with the function
COMBINATOR in Balzer and Lorenzano (2000). This function represents the transition
from the parental genotypes to the genotypes of the progeny. My principle of combination
only deals with the relation between the parental gametes and the filial genotypes. In
Balzer and Lorenzano (2000), the role of the gametes and their genetic make-up is not
made explicit.
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Together, the graph G1 and tables 1–3 give rise to a credal set:

P1(V 1) = {P (V 1) | P (V 1) satisfies tables 1–3}

Joined with G1, this defines a credal net :

B1 = 〈G1, P1〉

Recall that a credal net is a set of causal nets defined over the same graph.
I will now show that each of the crosses cited above can be described or
explained by some B ∈ B1.

Let us first turn to cross 1. In one variant of cross 1, the pollen plants
are true-breeding tall and the egg plants are short: PT1 = tall, PT2 = short.
(Recall that GT1, PT1, and GC1 correspond to the paternal plants and that
GT2, PT2, and GC2 correspond to the maternal plants.) If it is assumed that
a true-breeding tall plant contains the element for tall twice present (Mor-
gan, 1928, 6), it can be abduced that GT1 = tt and GT2 = ss (cf. the CG-
theoretical nature of the variables GTi). If we denote the probability distrib-
ution that corresponds to this cross by P 1(V 1), or briefly P 1, we can express
this as follows: P 1(PT1 = tall) = P 1(PT2 = short) = 1.00, and P 1(GT1 =
tt) = P 1(GT2 = ss) = 1.00. Assume now that P 1 ∈ P1, so that it satisfies the
constraints in tables 1–3.15 Then it follows that P 1(GC1 = t) = P 1(GC2 =
s) = 1.00 (from table 2), and that P 1(GT3 = ts) = 1.00 (from table 3). But
then P 1(PT3 = tall) = 1.00 (from table 1). Hence it is ‘explained’ why all the
F1 hybrids are tall. (I will provide a more elaborate account of explanation
by means of causal nets in chapter 5.)

Mendel also performed another variant of cross 1, in which the pollen
plants were short and the egg plants were pure tall. Reciprocal crosses gave
identical results.

All experiments proved further that it is entirely immaterial whether
the dominating trait belongs to the seed or pollen plant; the form
of the hybrid is identical in both cases. (Mendel, 1865, 9)

This result nicely fits my analysis: there is a P 2 ∈ P1 such that P 2(PT1 =
short) = P 2(PT2 = tall) = 1.00, and P 2(GT1 = ss) = P 2(GT2 = tt) = 1.00.
Given that P 2 ∈ P1, P 2(PT3 = tall) = 1.00. This corresponds to the data.

In short, both variants of cross 1 can be described by a causal net. The
first variant by B1 = 〈G1, P 1〉. The second variant by B2 = 〈G1, P 2〉. Since
P 1, P 2 ∈ P1, it follows that B1,B2 ∈ B1.

15I use ‘constraints’ in the sense of Williamson (2005, 84), not in the sense of Balzer
et al. (1987, 46–47).
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Analogously, the phenotypic distributions in cross 2 can be explained
by B3 = 〈G1, P 3〉, where P 3 ∈ P1. In cross 2, the F1 hybrids are selfed
and they produce F2 offspring 75% of which is tall and 25% of which is
short. Obviously, if P 3(GT1 = ts) = P 3(GT2 = ts) = 1.00 and if P 3 ∈ P1,
then P 3(GT3 = tt) = 0.25, P 3(GT3 = ts) = 0.50, and P 3(GT3 = ss) =
0.25, so that P 3(PT3 = tall) = 0.75 and P 3(PT3 = short) = 0.25.16 This
corresponds to the data.

Finally, in cross 3 the F1 hybrids are back-crossed with the recessive
parental plants. Let P 4(GT1 = ts) = P 4(GT2 = ss) = 1.00. If P 4 ∈ P1,
then we would expect that P 4(PT3 = tall) = 0.50. “The results confirm
the expectation.” (Morgan, 1928, 4) Hence, cross 3 can be represented by
B4 = 〈G1, P 4〉 ∈ B1 (where P 4 ∈ P1).

So far we have seen that a number of crosses with tall and short pea
plants can be represented by distinct causal nets that belong to one common
credal net B1. Each of these causal nets is a model of classical genetics, more
specifically of a reciprocal monohybrid cross with complete dominance. We
have also seen that these models can be used to explain data or phenomena
(phenotypic distributions) obtained in experimental crosses. (I use the word
‘experimental’ in a loose sense here. Also, I will distinguish between data
and phenomena hereafter.)

This account of explanation is similar to that in Balzer et al. (1987), but
surpasses it in an interesting way in that it explicitly accounts for the use of
causal knowledge in explanation. According to Balzer et al., to explain data
or phenomena17 one (i) extends the corresponding partial potential model
to a potential model by adding suitable T-theoretic relations, and (ii) shows
that this potential model is an actual model of T (cf. footnote 8). In a like
manner, I have shown that the phenotypic distributions in crosses 1 to 3
can be extended to a causal net B = 〈G, P 〉, where G (more specifically,
G1) ‘contains’ the conceptual framework of classical genetics and where P
satisfies the laws of classical genetics (tables 1 to 3). (For a more elaborate
discussion of explanation in genetics, see chapter 5.)

In the following sections, I will show how crosses with other genera, and
crosses on other characters in Pisum can be represented by causal nets that
fit in analogous credal nets, and I will explicate the set-theoretical relations
between these respective credal nets.

First, however, we should have a closer look at the extensions of B1 and
P1. The extension of the former is completely tied to the extension of the

16Note that, at least in the artificial cases described by Mendel and Morgan, selfing or
self-fertilization does not contradict the assumption of random fertilization.

17Recall that they do not distinguish between these concepts.
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latter, as B1 = {B = 〈G1, P 〉 | P ∈ P1}. B1 is a separately specified,
finitely generated, closed and convex credal net. Since it is convex, it has
uncountably many elements.

A credal net B = 〈〈V, E〉, P〉 is finitely generated if P is finitely generated,
i.e. if it is obtained as the convex hull of a finite number of (conditional)
probability distributions (Antonucci and Zaffalon, LSCN, section 3). The
convex hull of a set of probability distributions P is the intersection of all
convex sets containing P (Walley, 1991, 611).18 B is separately specified
if P is obtained by local or separate specifications, i.e. if for each variable
Xi ∈ V , P (xi | paij) = [r, s] is given for each value xi ∈ [Xi] and for each
value paij ∈ [PAi], where PAi is the set of graphic parents of Xi. (Note that
I also could have used an open interval, e.g. ]r, s[. P would then be an open
credal set.) This probability distribution may be imprecise or, as a limit case,
it may be precise for some xi and paij. In separately specified credal nets,
all conditional probabilities are determined locally: P (xi | paij) is allowed
to take any value in [r, s], independently of what happens elsewhere in the
credal net. (Antonucci and Zaffalon, LSCN, section 4)

Strictly speaking, B1 is a degenerate credal net. All probability specifi-
cations in tables 1 to 3 are precise. All imprecision is relegated to the root
variables GT1 and GT2. (In later sections I will introduce genuine credal
nets.) In experimental contexts only a few typical distributions over these
variables were studied. These correspond to the vertices, in the sense of ex-
treme points, of P1 (cf. Antonucci and Zaffalon, LSCN, section 3). In exper-
imental contexts, the organisms in each parental group mostly had the same
genotype (or they were deemed to have the same genotype). But in principle
any mixed group can serve as a parental group in a genetic cross. For exam-
ple, the first parental group may consist of f% true-breeding tall plants, g%
hybrids and (100− f − g)% short plants, and the second parental group may
consist of f ′% true-breeding tall plants, g′% hybrids and (100−f ′−g′)% short
plants. The phenotypic distribution of the resulting off-spring can then be
determined (on the assumption of random mating) by means of the principles
discussed, or in other words, by selecting an appropriate B ∈ B1.

18Recall that a credal set P is convex if, for any measures P, P ′ ∈ P, the measure
αP + (1−α)P ′ ∈ P for any α ∈ [0, 1]. Recall also that I did not require that the members
of B1 are faithful.
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4.6 Monohybrid crosses with complete dom-

inance

The members of B1 can be used to describe monohybrid crosses with tall
and short Pisum plants, where tall is completely dominant with respect to
short. In the history of classical genetics, many other monohybrid crosses
with complete dominance have been reported. In his Versuche über Pflanzen-
Hybriden, Mendel discussed six more such crosses with Pisum (Mendel, 1865,
5–17). He selected traits relating to the shape of the ripe seeds (round
versus angular or wrinkled), the colouration of the seed albumen (yellow
versus green), . . . Likewise, Morgan (1928, 4–5) discusses the inheritance of
eye colour in man (blue eyes versus brown eyes) as an example of complete
dominance.

These crosses cannot be described by the members of B1, since the set of
variables V 1 on which they are defined is tied to the case of stem length in
Pisum. However, by slightly changing the members in V 1, other monohybrid
crosses with complete dominance can be accounted for.

Consider the case of eye colour in man. Two phenotypic traits are studied,
where brown is dominant to blue. These traits are referable to paired genes
in the germinal material, which Morgan denotes by br and bl. (In the works
of Morgan and his co-workers there is a large variety qua symbols used to
denote alleles.) The results of crosses with blue and brown eyes in man can
be accounted for with the help of the principles discussed in section 4.5, viz.
Mendel’s first law, complete dominance, etc. Thus, they are very similar
to the case of stem length in Pisum. This similarity can be explicated in a
precise way. There is a credal net, say B2, that is both value-isomorphic and
distribution-identical to B1. The members of B2 can be used to describe or
explain crosses on eye colour in man.

Let us see how B2 can be characterized. V 2 = {PT ′
1, . . . , . . . , GC ′

3} is
a set of variables corresponding to the nodes in figure 4.1, where [PT ′

i ] =
{brown, blue}, [GT ′

i ] = {brbr, brbl, blbl}, and [GC ′
i] = {br, bl}, (i = 1, 2, 3).

Let b : V 1 → V 2 be a bijection such that b(PTi) = PT ′
i , b(GTi) = GT ′

i ,
b(GCi) = GC ′

i. Let b′ : [[V 1]] → [[V 2]] be a bijection such that for any
A ∈ V 1 and a ∈ [[V 1]], a ∈ [A] if and only if b′(a) ∈ [b(A)]. More specifically,
let b′(tall) = brown, b′(short) = blue, b′(tt) = brbr, . . . , b′(s) = bl. Obviously,
V 2 is value-isomorphic with V 1 (definition 3.3). It follows that G2 = 〈V 2, E〉
is value-isomorphic to G1 = 〈V 1, E〉 (definition 3.4).

Let P2 be the set of probability distributions over V 2 that satisfy con-
straints analogous to tables 1–3 and that are causally Markov to G2. More
specifically, where the members of P1 satisfy P (a | pa(A)) = r, let the mem-
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bers of P2 satisfy P (b′(a) | b′(pa(A))) = r for any A ∈ V 1, a ∈ [A], and pa(A)
∈ [PA(A)].19 (PA(A) ⊂ V 1 is the set of A’s graphic parents in G1.) It follows
that P2 is distribution-identical to P1 (definition 3.14).

Let B2 = 〈G2, P2〉. B2 is value-isomorphic to B1 (definition 3.15). Hence
B2 ⊂ C([B1]), or equivalently, C([B1]) = C([B2]). B2 is also distribution-
identical to B1 (definition 3.16). Thus for any possible cross of tall and short
pea plants, there is an analogous cross on eye colour in man.

4.7 Exemplars, general argument patterns,

and generic credal nets

The relations between crosses on stem length in pea plants and crosses on
eye colour in man can be generalized to all monohybrid crosses with com-
plete dominance. Therefore, let Bα = 〈Gα, Pα〉 (with Gα = 〈V α, E〉) be a
generic credal net that is distribution-identical to B1. Any monohybrid cross
with complete dominance can be described by means of a causal net that is
distribution-identical to some member of Bα, by filling in V α and Pα. Bα is
a general representation of these crosses.

By defining Bα = 〈Gα, Pα〉 in this way, I refer indirectly to B1, . . . ,B4.
This is in line with the way Morgan presents the theory of classical genetics.
He expounds this theory by providing concrete examples of each type of
process (in casu monohybrid crosses with complete dominance) (Darden,
1991, 195). More specifically, he uses B1, . . . ,B4 to introduce Mendel’s first
law, the principle of complete dominance, etc.

The concepts of “credal net” (such as B1 and B2) and “generic credal net”
(such as Bα) can be looked upon as precise and fruitful explications of the
notions of exemplar and general argument pattern in the works of Lindley
Darden. These notions incorporate aspects from both Kuhnian exemplars
and Kitcherian general argument patterns.

Kuhn (1996) characterizes exemplars as “[. . . ] concrete problem solutions
in which a formalism (such as a mathematical equation) is applied and given
empirical grounding.” (Darden, 1991, 18) A Kitcherian general argument
pattern is defined as follows:

A schematic sentence is an expression obtained by replacing some,
but not necessarily all, the nonlogical expressions occurring in a
sentence with dummy letters. [. . . ] A set of filling instructions for
a schematic sentence is a set of directions for replacing the dummy

19Where U = {A1, . . . , An} ⊆ V and b : V → V ′, let b(U) = {b(A) | A ∈ U} and
b′([U ]) = [b(A1)]× . . .× [b(An)].
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letters of the schematic sentence, such that, for each dummy let-
ter, there is a direction that tells us how it should be replaced.
[. . . ] A schematic argument is a sequence of schematic sentences.
A classification for a schematic argument is a set of statements
describing the inferential characteristics of the schematic argu-
ment: it tells us which terms of the sequence are to be regarded
as premises, which are inferred from which, what rules of infer-
ence are used, and so forth. Finally, a general argument pattern
is a triple consisting of a schematic argument, a set of sets of fill-
ing instructions and a classification for the schematic argument.
(Kitcher, 1989, 432)

Kitcher (1989, 438–442) characterizes classical genetics as a set of prob-
lem-solving patterns that serve to answer specific types of questions and that
each exemplify one and the same general idea. The questions to be answered
are:

What is the expected distribution of phenotypes in a particu-
lar generation? Why should we expect to get that distribution?
What is the probability that a particular phenotype will result
from a particular mating?, and so forth. (Kitcher, 1989, 438)

The general idea common to all patterns is that these questions may be
answered

[. . . ] by making hypotheses about the relevant genes, their phe-
notypic effects, and their distribution among the individuals in
the pedigree. (Kitcher, 1989, 438–439)

He distinguishes between the following patterns (in chronological order):
Mendel, Refined Mendel, Morgan, and Watson-Crick. The more recent
patterns are refinements of the older patterns and they can accommodate
previously recalcitrant cases (anomalies). (Mendel will be cited as an exam-
ple on page 121.)

Kuhnian exemplars, Darden argues, may serve to generate Kitcherian
argument patterns.

[They] may serve in the construction of abstract explanatory
patterns or schemas [. . . ]. The patterns abstractly characterize
mechanisms, which, when they are operating, produce observable
data-points as output. Thus, fitting an observation into a pattern
is a way of explaining it. A set of exemplary patterns constitutes
the explanatory repertoire of Mendelian genetics [. . . ]. (Darden,
1991, 19)
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The crosses on stem length in Pisum play the role of Dardenian exemplars
in Morgan (1928). Darden writes, “[t]he examples supplied model cases.
Similar results of similar hybrid crosses could be explained by invoking similar
steps and filling in the details about the characters in the specific cross.”
(Darden, 1991, 195)

Darden’s view is precisely explicated in my framework. The causal nets
B1, . . . ,B4 are used to introduce, to illustrate, and to test several explanatory
principles. Together, these principles give rise to a credal net B1 that fully
expresses their meaning. B1 serves as an exemplar. By abstracting from
the precise details in question, a generic credal net Bα is obtained. Any
reciprocal monohybrid cross with complete dominance (i.e. any similar result
of a similar hybrid cross) can be described or explained by means of a causal
net that is distribution-identical to some member of Bα, viz. by filling in the
details about the characters at hand. Bα is a general argument pattern, or
the semantic counterpart of such a general argument pattern, in Darden’s
sense.

The fruitfulness of this explication will emerge in chapter 5. I will show
that my framework provides an interesting account of explanation cum uni-
fication which improves on those of Kitcher and Darden.

As was to be expected, my framework cannot account for every single
detail of Darden’s analysis. Darden (1991, 195–196) strongly clings to the
role of diagrammatic representations (e.g. pedigree diagrams) in the history
of classical genetics. Admittedly, the concrete details of the diagrams used
in theory presentation (but also in the creation and development of a theory)
may produce interesting, unexpected, fruitful and/or restrictive constraints.
Here, I cannot frame all these aspects of diagrammatic representations since
I focus on their underlying causal contents and force or translate them into
Bayesian nets.

4.8 Monohybrid crosses with incomplete dom-

inance

After presenting Mendel’s crosses and those regarding eye colour in man,
Morgan turned to crosses that were interestingly different. Whereas in the
crosses represented by Bα, hybrids phenotypically resemble one of their par-
ents (the parent with the dominant trait), in other crosses they don’t.

There are other crosses that give, perhaps, a more striking il-
lustration of Mendel’s first law. For instance, when a red and
a white-flowered four-o’clock [Mirabilis jalapa] are crossed, the
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hybrid [F1] has pink flowers [. . . ]. If these pink-flowered hybrid
plants self-fertilize, some of their offspring (F2) are red like one
grandparent, some of them pink like the hybrid, and others white
like the other grandparent, in the ratio of 1:2:1. Here one original
parental color is restored when red germ-cell meets red, the other
color is restored when white meets white, and the hybrid combi-
nations appear as often as red meets white, or white meets red.
All the colored flowered plants in the second generation taken
together are to the white-flowered plants as 3:1.

In passing it is important to note two facts. The red and the
white F2 individuals are expected to breed true, because they
contain the elements for red, or for white, twice present [. . . ], but
the pink F2 individuals should not breed true, since they are like
the first hybrid generation, and contain one red and one white
element [. . . ]. All this turns out to be true when these plants are
tested. (Morgan, 1928, 5–6)

Morgan’s explanation of the phenotypic distributions rests on the fol-
lowing principles. Firstly, as in the case of the previous crosses, he invokes
Mendel’s first law (or the law of segregation). Recall that he deems this cross
even “a more striking example of Mendel’s first law.” Secondly, as in the case
of the previous crosses, he assumes that when two germ-cells fertilize (again,
he assumes random fertilization), their respective elements together make
up the genotype of the resulting off-spring (the principle of combination).
What is new, however, is the relation between genotype and phenotype. Let
me jointly label the relations in the quote above the ‘principle of incomplete
dominance’.20

How can we account for this difference in terms of causal nets? It is
easily seen that crosses with incomplete dominance are structurally different
from crosses with complete dominance in the following sense: crosses on
flower colour in four-o’clocks cannot be described or explained by means
of causal nets that are value-isomorphic (let alone distribution-identical) to
members of Bα, since the corresponding set of variables V 3 (cf. infra) is
not value-isomorphic to V α. The flower colour (character) of four-o’clocks
has three possible states (traits): white, pink, and red. So let me define
V 3 = {PT1, . . . , . . . , GC3}, where [PTi] = {red, pink, white}, [GTi] = {rr,

20In the beginning of the 20th century, the concept of “incomplete dominance” was used
ambiguously. Sometimes, it was used for actual cases of incomplete dominance (where the
parental characters are absent in the F1-generation). Other times it was used for cases
of multiple factors. Morgan et al. (1915, 27–32) have sorted out these different cases (cf.
Darden, 1991, 68–69).
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table 4 table 5 table 6
PTi GCi GT3

GTi red pink white GTi r w GC1 GC2 rr rw ww
rr 1.00 0.00 0.00 rr 1.00 0.00 r r 1.00 0.00 0.00
rw 0.00 1.00 0.00 rw 0.50 0.50 r w 0.00 1.00 0.00
ww 0.00 0.00 1.00 ww 0.00 1.00 w r 0.00 1.00 0.00

w w 0.00 0.00 1.00

Conditional probability tables 4–6: these provide constraints for P ∈ P3

rw, ww}, and [GCi] = {r, w}, (i = 1, 2, 3).21 Let G3 = 〈V 3, E〉 be isomorphic
to the graph in figure 4.1. What about the probability distributions over
G3? The constraints generated by the principle of incomplete dominance,
by Mendel’s first law, and by the principle of combination are summarized
in tables 4, 5 and 6, respectively. Together, they determine the credal set
P3(V 3) and the credal net B3 = 〈G3, P3〉.

In line with section 4.6, we can show how the crosses cited by Morgan
can be described or explained by means of members of B3. In a first cross,
a red flowered four-o’clock is joined with a white-flowered four-o’clock. Mor-
gan does not clarify which of the two is the pollen producing plant but,
as reciprocal crosses again give the same results, we may assume that the
pollen producing plant is red.22 Now consider a distribution P 1(V 3) such
that P 1(PT1 = red) = P 1(PT2 = white) = 1.00.23 If P 1(V 3) ∈ P3, it fol-
lows that P 1(PT3 = pink) = 1.00. This corresponds to the data, so it may
be assumed that B1 = 〈G3, P 1〉 (with P 1 ∈ P3) represents this first cross.
In the second cross, the F1 hybrids are selfed, so let P 2(V 3) be such that
P 2(PT1 = pink) = P 2(PT2 = pink) = 1.00. If P 2(V 3) ∈ P3, it follows that
P 2(PT3 = red) = 0.25, P 2(PT3 = pink) = 0.50, and P 2(PT3 = white) =
0.25. Hence, the 1:2:1 ratio can be explained by assuming that this cross is
rightly described by B2 = 〈G3, P 2〉 (where P 2 ∈ P3).

As we saw in section 4.5, Morgan cited test crosses to confirm the law of
segregation. With respect to incomplete dominance, he considers three such
crosses: selfing of the red F2 plants, selfing of the white F2 plants, and selfing
of the pink F2 hybrids. All predictions turned out to be true. In other words,
for all three crosses there is a P i ∈ P3 such that Bi = 〈G3, P i〉 explains the

21Morgan did not use r and w for the red- and white-producing genes (alleles). Instead
he used small black circles and small white circles in his diagrammatic representation of
these crosses (Morgan, 1928, 7).

22As in section 4.5, the reverse assumption would result in a different causal net in B3.
23Note that P 1(V 1) and P 1(V 3) are different distributions, given that V 1 and V 3 are

different sets of variables (they are not even value-isomorphic). Likewise, B1 = 〈G3, P 1〉
with P 1 ∈ P3 should not be confused with B1 = 〈G1, P 1〉 with P 1 ∈ P1.
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data. As a result, the adequacy of P3 and of B3 was corroborated.24

Flower colour in four-o’clocks is not the only character that shows in-
complete dominance. Like results have been obtained with snapdragons
(Antirrhinum), where crosses of red- and white-flowered plants give rise to
pink-flowered offspring (Klug et al., 2006, 68–69).

These relations can be generalized to all monohybrid crosses with incom-
plete dominance. Therefore, let Bβ = 〈Gβ, Pβ〉 (with Gβ = 〈V β, E〉) be
a generic credal net such that V β is value-isomorphic to V 3, Gβ is value-
isomorphic to G3, and Bβ is distribution-identical to B3. Any monohybrid
cross with incomplete dominance can be described by means of a causal net
that is distribution-identical to some member of Bβ. Bβ is a generic net
representing these crosses.25 Clearly, complete dominance and incomplete
dominance are completely different, as Bα ∩Bβ = ∅.

4.9 Anomalies, theory-elements, and the log-

ical subordination of the Law of Domi-

nance

The history of classical genetics is replete with theory changes to account for
recalcitrant anomalies. In section 4.9.1, I will show how the status of com-
plete dominance was heavily debated in the beginning of the 20th century,
how cases in which complete dominance failed were accounted for, and how
Bateson drew attention to what he considered the core of Mendel’s theory,

24I use corroboration in a loose sense here.
25It should be noted that monohybrid crosses with codominance, instead of incomplete

dominance, can also be represented by causal nets that are distribution-identical to some
member of Bβ . As we saw in section 4.3, the MN blood group, discovered by Karl
Landsteiner and Philip Levin in 1927, provides an example of codominance. In 1930, F.
Schiff expressed his hope that the inheritance of MN blood groups would fit Bβ as follows:

Eigene Beobachtungen an Familien sowie Müttern und Kindern sprechen
ebenso wie Massenuntersuchungen (1420 Berliner, 180 Wolgadeutsche) dafür,
daß die Vererbung der Faktoren M und N durch ein einziges Genpaar bedingt
ist. Keines der beiden Gene dominiert derartig, daß das andere Gen in der
Heterozygote phänotypisch unterdrückt würde. Sollte sich die Vererbung
von M und N nach dem monohybriden Schema als ausnahmslos gültig er-
weisen, so wäre damit für die gerichtliche Abstammungsuntersuchung ein
wesentlicher Fortschritt erreicht [my emphasis]. Es würde dann möglich sein,
durch Untersuchung auf M-Nund Blutgruppe rund jeden dritten zu Unrecht
als Vater angegebenen Mann auszuschließen (gegen bisher jeden sechsten bis
siebenten). (Schiff, 1930, Zusammenfassung)

In Morgan (1928), no exemplar of codominance is mentioned.
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viz. the “purity of the germ-cells”. In this part, I will mainly rely on the
works of Mendel (1865), de Vries (1900a), Correns (1900), Bateson (1900,
1902), and Weldon (1902). In section 4.9.2, I will show how the role of
anomalies can be explicated in my framework, and how the status of com-
plete dominance is adequately represented. I will also show how this fits
with Darden’s concepts of model anomalies and monster anomalies, and how
these issues provide an extra justification for partly basing my framework on
the structuralist approach of Balzer et al. (1987).

Together, sections 4.9.1 and 4.9.2 will illustrate that pragmatic laws, such
as the principle of complete dominance, may have exceptions and that they
have limited domains of application. In other words, they are not universal
and have limited stability.

4.9.1 The status of complete dominance in the early
days of classical genetics

In Mendel’s original paper, Versuche über Pflanzen-Hybriden, only crosses
with complete dominance are mentioned but there is no clear indication that
Mendel deemed complete dominance a universal phenomenon. Moreover, he
stated that

[. . . ] Kölreuter and Gärtner, the two authorities in this field [. . . ]
concur in the opinion that, in external appearance, hybrids either
maintain a form intermediate between the parental strains or they
approach the type of one or the other, sometimes being barely
distinguishable from them. (Mendel, 1865, 39, my emphasis)

Mendel not only assentingly mentioned the findings of Kölreuter and Gärt-
ner, he also stated that his choice for dominant and recessive traits was
methodological (cf. Mendel, 1865, 3–5). Nevertheless, in 1900 the principle
of complete dominance was taken to be universal (or nearly universal) by
Hugo de Vries:

My experiments have led me to make the two following state-
ments: [. . . ] 1. Of the two antagonistic characteristics, the hy-
brid carries only one, and that in complete development. Thus
in this respect the hybrid is indistinguishable from one of the
two parents. There are no transitional forms [my emphasis]. 2.
In the formation of pollen and ovules the two antagonistic char-
acteristics separate, following for the most part simple laws of
probability.
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These two statements, in their most essential points, were drawn
up long ago by Mendel for a special case (peas). These formula-
tions have been forgotten and their significance misunderstood.
[. . . ] As my experiments show, they possess generalized validity
for true hybrids.

The lack of transitional forms between any [my emphasis] two
simple antagonistic characters in the hybrid is perhaps the best
proof that such characters are well delimited units.26 (de Vries,
1900a, 110)

Whereas de Vries did not really question the principle of complete domi-
nance, Carl Correns did.27 In the same year, 1900, he wrote:

I can not understand why de Vries assumes that in all pairs of
traits which differentiate two strains, one member must always

26It should be noted, however, that de Vries also mentions exceptions to the principle
of complete dominance.

Exceptions occur seldom; an example is presented by some sectional segrega-
tions. Thus Veronica longifolia (blue) × V. longifolia alba in my experiments
not infrequently forms racemes whose flowers are white on one side and blue
on the other. (de Vries, 1900a, 112)

de Vries merely mentions these anomalies, without proposing any explanation, and without
considering them problematic.

27Correns and de Vries are often cited as independent rediscoverers of the laws of Mendel.
(They are often cited so along with Tschermak, but there are good reasons not to grant
Tschermak this honour – see Stern and Sherwood (1966, x–xii) and the text of Tschermak
(1950).) Correns and de Vries each put very much effort in stressing their originality, both
with respect to Mendel as to each other.

This important treatise [viz. Mendel (1933, 1865)] is so seldom cited that
I first learned of its existence after I had completed the majority of my
experiments and had deduced from them the statements communicated in
the text. (de Vries, 1900a, 110)

When I discovered the regularity of the phenomena, and the explanation
thereof [. . . ] the same thing happened to me which now seems to be happen-
ing to de Vries: I thought that I had found something new. [. . . ] But then
I convinced myself that the Abbot Gregor Mendel in Brünn, had, during the
sixties, not only obtained the same result through extensive experiments with
peas, which lasted for many years, as did de Vries and I, but had also given
exactly the same explanation, as far as that was possible in 1866. (Correns,
1900, 119–120, original emphasis)

For more information on questions relating to the allegedly independent rediscoveries of
Mendel’s works, see inter alia Meijer (1983, sections 1 and 2), Darden (1991, 42–46) and
Orel (1996, 284–288).
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dominate. Even in peas, where some traits completely conform
to this rule, other trait pairs are also known in which neither trait
dominates [. . . ]. (Correns, 1900, 121, original emphasis)

After mentioning examples of such failures of complete dominance, Cor-
rens provisionally restricted the domain of application of Mendel’s principles
to cases of complete dominance:

The following holds only for pairs of traits which have a domi-
nating and a recessive member; there is no reason to believe that
it may not hold for other types of pairs of traits as well, but at
present we know of no example. [In a footnote added later, he
writes: “In the meantime I have found an example.”] (Correns,
1900, 122)

In a postscript to his paper, Correns reemphasized these points:

I must emphasize again: 1. that in many pairs of traits there is
no dominating member [. . . ], 2. that Mendel’s Law of segregation
cannot be applied universally [. . . ]. (Correns, 1900, 132)

Later in 1900, William Bateson treated Mendel’s work on a par with
Galton’s, in spite of the fact that the two seem incompatible. According
to Bateson, Galton was the first to search systematically for and enunciate
a “law of heredity” (i.e. a ‘general expression capable of sufficiently wide
application to be justly called a “law” of heredity’) (Bateson, 1900, 3).28

However, Galton’s law has many exceptions.

These large classes of exception – to go no further – indicate
that, as we might in any case expect, the principle is not of uni-
versal application,29 and will need various modifications if it is
to be extended to more complex cases of inheritance of varietal
characters. (Bateson, 1900, 4–5)

Fortunately, Bateson wrote, Galton’s theory had recently been supple-
mented with Mendel’s, which seems fairly general:

28In chapter 9 I will discuss Galton’s theory in more detail and I will show how it was
biased by his knowledge of statistical tools.

29Bateson makes a distinction between ‘general’ principles, and ‘universal’ ones. The
latter are stronger than the former (see footnote 37).
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Professor de Vries has worked at the same problem in some dozen
species belonging to several genera, using pairs of varieties char-
acterized by a great number of characters: for instance, colour
of flowers, stems, or fruits, hairiness, length of style, and so
forth. He states that in all these cases Mendel’s law is followed.30

[. . . ] When we consider, besides, that Tschermak and Correns
announce definite confirmation in the case of Pisum, and de
Vries adds the evidence of his long series of observations on other
species and orders, there can be no doubt that Mendel’s law is
a substantial reality; though whether some of the cases that de-
part most widely from it can be brought within the terms of the
same principle or not, can only be decided by further experiments.
(Bateson, 1900, 7–8, my emphasis)

Bateson concluded in a pluralist fashion:

That different species should follow different laws, and that the
same law should not apply to all characters alike, is exactly what
we have every right to expect. It will also be remembered that
the principle is only declared to apply to discontinuous characters.
(Bateson, 1900, 8)

Despite Bateson’s pluralism, W.F.R. Weldon wrote a harsh article in the
newly founded journal Biometrika in which he set out to undercut “Mendel’s
laws of alternative inheritance in peas” and to argue for the supremacy of
Galton’s theory (Weldon, 1902). This would provoke a heated and longstand-
ing discussion among proponents and opponents of Mendelism.31

Weldon’s arguments against Mendelism are as follows. Firstly, he at-
tributes the “Law of Dominance” (his capitals) a central place in Mendel’s
theory, along with the “Law of Segregation” (Weldon, 1902, 229).32 Secondly,
using Pearson’s χ2-test, he shows that Mendel’s data fit his theory too nicely

30Note that Bateson writes ‘Mendel’s law’ (singular).
31According to Sloan, Weldon’s paper cannot be characterized as the broadside against

Mendel’s paper that Bateson (1902) depicted in his Defence. (Sloan, 2000, 1074) It is
nevertheless true that Weldon’s introduction is fairly explicit: whereas the theory of Galton
and Pearson provides an account for blended inheritance “which seems likely to prove
generally applicable,” our knowledge of (particulate and) alternative inheritance, which
is deemed the intended domain of application of Mendel’s theory, is still rudimentary.
(Weldon, 1902, 228)

32Weldon defines the Law of Dominance as follows:

If peas of two races be crossed, the hybrid offspring will exhibit only the
dominant characters of the parents; and it will exhibit these without (or al-
most without) alteration, the recessive characters being altogether absent, or
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(Weldon, 1902, 232–235) – in a way that foreshadows Fisher’s famous paper
“Has Mendel’s work been rediscovered?” (Fisher, 1936).33 Thirdly, he en-
deavours to show that the Law of Dominance is plagued by exceptions, even
in its paradigmatic cases, and that Mendel’s failure is due to his neglect of
the influence of ancestry (Weldon, 1902, 236–252).

Weldon’s paper occasioned Bateson’s lengthy monograph, Mendel’s Prin-
ciples of Heredity. A Defence (Bateson, 1902). For Bateson the stakes were
high.34 His monograph is interesting for several reasons. Firstly, it con-
tains a reprint (with additions) of his 1900 paper. Secondly, what is more
interesting, it also contains a reprint (with slight modifications) of the first
English translation of Mendel’s Versuche über Pflanzen-Hybriden, which was
published by the Royal Horticultural Society in 1901. It is titled “Mendel’s
Experiments in Plant Hybridisation”. And it also contains the first English
translation of Mendel’s second paper, Über einige aus künstlicher Befruch-
tung gewonnenen Hieracium-Bastarde (cf. Mendel, 1869). These translations
all contained errors and mistakes which fundamentally changed the meaning

present in so slight a degree that they escape notice. (Weldon, 1902, 229,
original emphasis)

His definition of the “Law of Segregation” also deserves our attention (albeit as a side
issue). Just like the Law of Dominance, it is phrased in a Pearsonian way, i.e. without any
reference to unobservable entities.

If the hybrids of the first generation produced by crossing two races of peas
which differ in certain characters, be allowed to fertilize themselves, all pos-
sible combinations of the ancestral race-characters will appear in the second
generation with equal frequency, and these combinations will obey the Law
of Dominance, so that characters intermediate between those of the ancestral
races will not occur. (Weldon, 1902, 229, original emphasis)

In the rest of his paper, however, Weldon at times uses non-Pearsonian language.
33It is interesting to note that in the bibliography of Fisher (1936), no reference is made

to Weldon (1902). Between 1902 and 1936, the theory of χ2-tests had changed, however.
In 1922, Fisher had shown that Karl Pearson used χ2 distributions with too high numbers
of degrees of freedom (Yates and Mather, 1963, 101).

34

In the world of knowledge we are accustomed to look for some strenuous effort
to understand a new truth even in those who are indisposed to believe. It
was therefore with a regret approaching to indignation that I read Professor
Weldon’s criticism. Were such a piece from the hand of a junior it might
safely be neglected; but coming from Professor Weldon there was the danger –
almost the certainty – that the small band of younger men who are thinking of
research in this field would take it they had learnt the gist of Mendel, would
imagine his teaching exposed by Professor Weldon, and look elsewhere for
lines of work. (Bateson, 1902, vi, my emphasis)
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of Mendel’s sentences (Stern and Sherwood, 1966, vi-vii). Thirdly, what is
most interesting in the context of this section, Bateson’s monograph contains
a lengthy attempt to defend Mendel against Weldon.

Bateson’s defence shows one way in which supposed anomalies or coun-
terexamples may be cleared away. He attributes a central place to the “purity
of germ-cells” in Mendel’s theory, at the expense of the alleged Law of Domi-
nance.35 The “purity of the germ-cells” is “a proposition at variance with all
the laws of ancestral heredity, however formulated”36 (Bateson, 1902, 114),
and it contradicts Weldon’s suggestion that Mendel’s failure is due to his
neglect of the influence of ancestry.

In those cases to which it applies strictly, this principle declares
that the cross-breeding of parents need not diminish the purity
of their germ-cells or consequently the purity of their off-spring.
When in such cases individuals bearing opposite characters, A
and B, are crossed, the germ-cells of the resulting cross-bred,
AB, are each to be bearers either of character A or of character
B, but not both. (Bateson, 1902, 114)

He even leaves open the possibility that the principle of the purity of the
germ-cells also applies to cases of blended inheritance. (In the case of blended
inheritance, there are no pairs of strictly distinguishable, opposing or alter-
native phenotypic traits. What used to be called blended inheritance is now
attributable to incomplete dominance, or to multiple factors.) Thereby, he
denies the Law of Dominance a central place in Mendel’s theory.

Mendel’s own cases were almost all alternative; also the fact of
dominance is very dazzling at first. But that was two years ago,
and when one begins to see clearly again, it does not look so cer-
tain that the real essence of Mendel’s discovery, the purity of the
germ-cells in respect of certain characters, may not apply also to
some phenomena of blended inheritance. The analysis of this pos-
sibility would take us to too great length, but I commend to those
who are more familiar with statistical method, the consideration
of this question: whether dominance being absent, indefinite, or
suppressed, the phenomena of heritages completely blended in the
zygote, may not be produced by gametes presenting Mendelian
purity of characters. (Bateson, 1902, 115)

35Curiously, Bateson (1902) nowhere mentions (let alone addresses) Weldon’s statistical
arguments on goodness of fit.

36For the law of ancestral heredity, see section 9.5.1.
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Mendel’s choice for antagonistic traits was methodological (cf. supra),
and it made his discovery possible. But as such, complete dominance “is still
an accident of particular cases.” (Bateson, 1902, 117)

The whole question whether one or other character of the antag-
onistic pair is dominant though of great importance is logically
a subordinate one. It depends on the specific nature of the vari-
eties and individuals used, sometimes probably on the influence
of external conditions and on other factors we cannot now dis-
cuss. There is as yet no universal law here perceived or declared.37

(Bateson, 1902, 117–118, my emphasis)

By denying the principle of complete dominance a central place in his
framework, Bateson effected that exceptions to this principle should not
count heavily against the theory of Mendelian genetics.

4.9.2 Anomalies and theory-elements

More and more exceptions to the principle of complete dominance were re-
ported, both by Mendelians (e.g. Correns) and biometricians (e.g. Weldon).
The status of these anomalies in my framework is straightforward. They give
rise to data for which there is no B = 〈G, P 〉 such that (i) B is distribution-
identical to some member of Bα and (ii) P is consistent with the data (cf.
section 4.8).

Darden (1991, 199–201) distinguishes between two kinds of anomalies.

A monster anomaly does not require a change in the set of pat-
terns for normal, well-functioning cases. In contrast, a model
anomaly does requires [sic] such a change, either the alteration of
a typical pattern or the addition of one or more new patterns to
the set. (Darden, 1991, 199)

Monster anomalies are resolved by showing what went wrong in
the normal process. The theory is saved. [. . . ] Model anomalies,

37Bateson distinguishes between general truths and universal ones (Bateson, 1902, 119),
and he is surprised that Weldon makes no such distinction (Bateson, 1902, 106).

That the dominance of yellow cotyledon-colour over green, and the dominance
of the smooth form over the wrinkled, is a general truth for Pisum sativum
appears at once; that it is a universal truth I cannot believe any competent
naturalist would imagine, still less assert. Mendel certainly never did. (Bate-
son, 1902, 119, original emphasis)

It is reasonable to interpret ‘universal’ in the sense of chapter 1 here. By contrast, Bate-
son’s use of ‘general’ should not be equated with that in the same chapter.
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however, require a change in the claims about what is normal (or
general) in hereditary processes. (Darden, 1991, 203)

Darden nowhere discusses the status of incomplete dominance. However,
it can be deduced from her criteria that it should be considered a ‘small’
model anomaly. It should be considered a model anomaly since it gives rise
to a different exemplar in Morgan (1928), and hence to a different explanatory
pattern. It should be considered small since Morgan attaches little impor-
tance to it. He does not explicitly refer to it in his abstract statement of the
theory of the gene (Morgan, 1928, 25). As we saw in section 4.9.1, Bateson
(1902, 117–118) granted complete dominance but a logically subordinate sta-
tus. By 1915, Morgan and his coworkers attached even less importance to it
(cf. Darden, 1991, 72):

Whether a character is completely dominant or not appears to
be a matter of no special significance. In fact, the failure of
many characters to show complete dominance raises a doubt as to
whether there is such a condition as complete dominance. (Mor-
gan et al., 1915, 31)

In my framework, it is easily seen that incomplete dominance is a model
anomaly. After all, the crosses B1 = 〈G3, P 1〉,B2 = 〈G3, P 2〉, . . . with
P 1, P 2, . . . ∈ P3 all belong to B3, which in turn can be generalized to
the generic credal net (i.e. the general argument pattern) Bβ which is sub-
stantially different from Bα: Bβ is not value-isomorphic to Bα, let alone
distribution-identical.

In the structuralist approach, scientific theories are represented as sets of
interrelated theory-elements. These elements and their interrelations are de-
picted in a theory-net – a tree-shaped graph in which the nodes correspond to
theory-elements and the edges to their interrelations (in the structuralist ap-
proach, several such relations are discerned: specialization, refinement, etc.).
Each theory-element, or the set of laws in each theory-element, has a limited
domain of intended application. In Balzer and Lorenzano (2000, 256), models
with complete dominance (Mcompdom) and models with incomplete dominance
(Mincompdom) are relegated to different theory-elements, each with a different
domain of intended application. In my opinion, this account provides a nice
way to explicate the way in which classical geneticists dealt with exceptions.
Moreover, Mcompdom and Mincompdom each are obtained by ‘specializing’ an-
other theory-element, Mone (which encompasses all monohybrid crosses in
which Mendel’s first law holds). These specializations are removed relatively
far from the root node in the theory-net of classical genetics. This indicates
that, indeed, the issue of dominance is logically subordinate.
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Figure 4.2: The theory-net of classical genetics in Balzer and Lorenzano
(2000, 261)

As I have shown above (section 4.5), there are strong intuitive links be-
tween the concepts ‘model,’ ‘potential model,’ and ‘partial potential model’
on the one hand, and my framework on the other hand. I will not elaborate
the details of these links here. It suffices to state that the generic credal
nets Bα and Bβ (and those to follow) not only provide an explication for
the Kitcher-Darden explanatory patterns, but also an indirect representation
for (an adapted version of) the structuralist’s theory-elements. Each generic
credal net incorporates a set of implicit ceteris paribus conditions38 and de-
termines the structural and probabilistic properties of the causal models that
may account for a limited domain of intended applications (where Bβ’s do-
main of intended applications consists of phenomena that are anomalous
with respect to Bα). The set of ceteris paribus conditions determines this
domain of intended applications. (Hence the domain of intended applications
is independently specified. The range of possible exceptions is not explicitly
incorporated in the laws of the theory-elements in question. For the distinc-
tion between ‘independent specification’ and ‘exception-incorporation’, see
Woodward (2003b, 273ff).)

38I mean a more or less well delineated set of ceteris paribus conditions, based on existing
scientific knowledge. So it should not be feared that these ceteris paribus conditions make
the principles of classical genetics trivially true (cf. Pietroski and Rey, 1995, Earman et al.,
2002, Woodward, 2002a, and Mitchell, 2002). For example, both in Bα and in Bβ it is
assumed that mutation does not occur. This assumption is part of the set of implicit
ceteris paribus conditions incorporated by these generic credal nets. The assumption that
no angel interferes to change the relation between genotypes and phenotypes is not a part
of this set.
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4.10 Multihybrid crosses and independent as-

sortment

After presenting two monohybrid crosses with complete dominance, and one
with incomplete dominance, Morgan turns to dihybrid crosses. His most
important mainspring is to better come to grips with the ontological status
of the gene. With respect to the crosses in section 4.8, he writes:

So far the results tell us no more than that something derived
from one parent separates, in the germ-cells of the hybrid, from
something brought in by the other parent. The results might be
interpreted, on this evidence alone, to mean that red-flowered and
white-flowered plants behave as wholes or entities in inheritance.
(Morgan, 1928, 7)

To prove that plants do not behave as wholes in inheritance, he cites one
of Mendel’s dihybrid crosses.

Mendel crossed peas whose seeds were yellow and round with peas
whose seeds were green and wrinkled. Other crosses had shown
that yellow and green constitute a pair of contrasted characters
giving a 3 to 1 ratio in the second generation, and that round and
wrinkled constitute another pair.

The offspring [F1] were yellow and round [. . . ]. When selfed,
they produced four kinds of individuals [F2], yellow round, yellow
wrinkled, green round, and green wrinkled in the ratio of 9:3:3:1.

Mendel pointed out that the numerical results found here can
be explained, if the separation of the elements for yellow and for
green is independent of that for round and wrinkled. This would
give four kinds of germ-cells in the hybrid, yellow round, yellow
wrinkled, green round, and green wrinkled [. . . ].

If the fertilization of the four kinds of ovules by the four kinds
of pollen grains is at random, there will be sixteen combinations
possible. Remembering that yellow dominates green, and that
round dominates wrinkled, these sixteen combinations will fall
into four classes, that are in the ratios of 9:3:3:1. (Morgan, 1928,
7–9)

To explain the phenotypic distributions in the F1 and the F2 generation,
Morgan relies on the following principles. He takes Mendel’s first law (the law
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of segregation) and adds the assumption that segregation (separation) for one
pair of elements is independent of segregation for another pair. This he calls
Mendel’s second law, or the law of independent assortment (Morgan, 1928,
10). He assumes that ‘complete dominance’ holds for the pairs yellow/green
and round/wrinkled, as it did in the monohybrid crosses. He adopts some
revised version of the principle of combination (cf. figure 8 in Morgan, 1928,
9). Finally, he assumes random fertilization.

Clearly, dihybrid crosses cannot be described by any set of variables that is
value-isomorphic to V α or V β. Each phenotypic variable has four possible val-
ues: [PTi] = {yellowround, yellowwrinkled, greenround, greenwrinkled}.
Morgan refers these phenotypes to more complex genotypes than in the previ-
ous sections: [GTi] = {GGWW, GGWw, . . . , ggww}. Likewise, the gametes
also have a more complex make-up: [GCi] = {GW,Gw, gW, gw}.39 Let V 4 be
the set of these variables. (Note that the members of [GTi], [GCi] and [PTi]
are not labeled fully rigorously. In accordance with definitions 3.20 and 3.21,
they should be tuples; e.g. 〈yellow, round〉, 〈yellow, wrinkled〉, . . . In the in-
terest of readability, however, I have allowed for this relaxed notation.)

As Morgan indicates, these dihybrid crosses are strongly related to other,
monohybrid crosses performed by Mendel. At the level of random variables,
there is a strong relation between V 4 and V α. More specifically, let V 1′

and V 1′′ be two sets of variables such that there are credal nets B1′ =
〈〈V 1′ , E〉, P1′(V 1′)〉 and B1′′ = 〈〈V 1′′ , E〉, P1′′(V 1′′)〉 that are distribution-
identical to Bα and such that the members of B1′ and B1′′ can be used to
describe or explain crosses on albumen colour and on seed shape in Pisum,
respectively. (It follows by definitions 3.16 and 3.7 that V 1′ and V 1′′ are
value-isomorphic to V α.) I will show that V 4 can be interpreted as a set of
compound variables that can be defined in terms of members of V 1′ and V 1′′ .

Let [PT ′
1] = {yellow, green} be the space of PT ′

1 ∈ V 1′ and let [PT ′′
1 ] =

{round, wrinkled} be the space of PT ′′
1 ∈ V 1′′ . Clearly, PT1 = compound

〈PT ′
1, PT ′′

1 〉 (definition 3.20). Analogously, all other variables in V 4 can be
defined as compounds of suitable variables in V 1′ and V 1′′ , respectively. In
short, V 4 = compound〈V 1′ , V 1′′〉 (definition 3.21).

Let us turn now to the credal set P4 over V 4 that is generated by Morgan’s
explanatory principles. Any P ∈ P4 is such that it satisfies tables 7 and 8,
plus some revised version of the principle of combination. In table 7, the
relations between the genotype and the phenotype are listed. It shows that
yellow dominates green, and that round dominates wrinkled. Table 8 lists
the relations between the genotype and the gametic make-up. It incorporates
both Mendel’s first law (the law of segregation) and Mendel’s second law (the

39For the extensions of [GTi] and [GCi], see Morgan (1928, 9), figure 8.
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table 7 table 8
PTi GCi

ye ye gr gr
GTi rnd wrd rnd wrd GTi GW Gw gW gw
GGWW 1.00 0.00 0.00 0.00 GGWW 1.00 0.00 0.00 0.00
GGWw 1.00 0.00 0.00 0.00 GGWw 0.50 0.50 0.00 0.00
GGww 0.00 1.00 0.00 0.00 GGww 0.00 1.00 0.00 0.00
GgWW 1.00 0.00 0.00 0.00 GgWW 0.50 0.00 0.50 0.00
GgWw 1.00 0.00 0.00 0.00 GgWw 0.25 0.25 0.25 0.25
Ggww 0.00 1.00 0.00 0.00 Ggww 0.00 0.50 0.00 0.50
ggWW 0.00 0.00 1.00 0.00 ggWW 0.00 0.00 1.00 0.00
ggWw 0.00 0.00 1.00 0.00 ggWw 0.00 0.00 0.50 0.50
ggww 0.00 0.00 0.00 1.00 ggww 0.00 0.00 0.00 1.00

Conditional probability tables 7–8: together with the principle of combination, these pro-
vide constraints for P ∈ P4

law of independent assortment). I leave the specification of the conditional
probability table explicating the principle of combination for this dihybrid
cross to the reader.

Instead of specifying the tables 7 and 8 directly for P4, I could have
tried to determine P4 on the basis of P1′ and P1′′ . This can be done by
specifying, for each Z ∈ V 4, for each zk ∈ [Z] and for each pal ∈ [PA(Z)],
the probability P (zk | pal) in terms of P ′(xi | pam) and P ′′(yj | pan), where
X ∈ V 1′ , Y ∈ V 1′′ , Z = compound〈X, Y 〉, zk = 〈xi, yj〉, pam ∈ [PA(X)],
pan ∈ [PA(Y )], and pal = 〈pam, pan〉.

I will do this only partly here. I will concentrate on the relation be-
tween the variables GTi and GCi (for each i), described in table 8. The
reason is that here the quintessence of independent assortment is revealed.
Let b : V 4 → V 1′ and b∗ : V 4 → V 1′′ be bijections as in definition 3.21.
For each GTi, GCi ∈ V 4, GTi = compound〈b(GTi), b

∗(GTi)〉 and GCi =
compound〈b(GCi), b

∗(GCi)〉. For each i, PA(GCi) = {GTi}, PA(b(GCi)) =
{b(GTi)}, and PA(b∗(GCi)) = {b∗(GTi)}.

Recall that the credal nets B1′ and B1′′ are distribution-identical to Bα.
From table 8 it is easily seen that the relation between GTi and GCi is such
that, for each zk ∈ [GCi] and for each pal ∈ [GTi],

P (zk | pal) = P ′(xi | pam)× P ′′(yj | pan) (4.1)

For example,

P (GW | GgWW ) = 0.50 = P ′(G | Gg)×P ′′(W | WW ) = 0.50× 1.00

What conditions need be in place for equation (4.1) to hold? Note that
each zk = 〈xi, yj〉 can be regarded as a conjunction xi ∧ yj, and each pal =
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〈pam, pan〉 as a conjunction pam ∧ pan. Hence let us redescribe P (zk | pal)
as P (xi ∧ yj | pam ∧ pan). (I will not make a notational distinction between
P (V 4) and P (V 1′ ∪V 1′′).) P (xi∧ yj | pam∧pan) = P (xi | pam)×P (yj | pan)
for all xi, yj, pam, and pan if the following conditions hold:

(b(GCi)q b∗(GCi) | b(GTi), b
∗(GTi)), and

(b(GCi)q b∗(GTi) | b(GTi)), and

(b∗(GCi)q b(GTi) | b∗(GTi)).

This can be seen as follows (I substitute b(GCi) with A, b∗(GCi) with B,
b(GTi) with C, and b∗(GTi) with D):

P (a ∧ b | c ∧ d) = P (a | c ∧ d)× P (b | c ∧ d)

for all a ∈ [A], b ∈ [B], c ∈ [C], d ∈ [D]

if (AqB | C, D),

P (a | c ∧ d) = P (a | c)
for all a ∈ [A], c ∈ [C], d ∈ [D]

if (AqD | C), and

P (b | c ∧ d) = P (b | d)

for all b ∈ [B], c ∈ [C], d ∈ [D]

if (B q C | D). Hence,

P (a ∧ b | c ∧ d) = P (a | c)× P (b | d)

for all a ∈ [A], b ∈ [B], c ∈ [C], d ∈ [D]

if (AqB | C, D), (AqD | C),

and (B q C | D).

This shows why equation (4.1) holds when

(b(GCi)q b∗(GCi) | b(GTi), b
∗(GTi)), and

(b(GCi)q b∗(GTi) | b(GTi)), and

(b∗(GCi)q b(GTi) | b∗(GTi)).

These conditions are satisfied in the case of independent assortment .
Then “the separation of the elements for yellow and for green is indepen-
dent of that for round and wrinkled.” (Morgan, 1928, 8)

As is to be expected, all crosses mentioned in Morgan’s citation can be
described or explained by means of a causal net in B4 = 〈〈V 4, E〉, P4〉.
Crosses similar to this exemplar can be explained in a similar way. Hence, let
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Bγ = 〈Gγ, Pγ〉 (where Gγ = 〈V γ, E〉 and where Bγ is distribution-identical
to B4) be the generic representation of dihybrid crosses with complete dom-
inance and independent assortment (and without gene interaction, . . . ).

4.11 Linkage and crossing-over

From the crosses discussed in section 4.10, Morgan concludes the following:

[. . . ] it can no longer be assumed that the whole parental germ-
materials are separated in the hybrid; for yellow and round that
went in together have, in some cases, come out separated. Simi-
larly for green and wrinkled. (Morgan, 1928, 9–10)

Other crosses performed by Mendel, involving three or even four pairs of
characters, had corroborated this conclusion.40 Is independent assortment a
universally applicable law, then? No.

It might, then, have seemed justifiable to extend this conclusion
to as many pairs of characters as enter any particular cross. This
would mean that there are as many independent pairs of elements

40In Morgan (1928), multihybrid crosses with complete dominance and independent
assortment are mentioned but left unspecified. I refer the reader to Mendel (1865, 17–23)
for Mendel’s own description of such crosses, and to the earlier works of Morgan:

When three independent factor-pairs are present the numerical expectation
can be directly derived from the 9:3:3:1 ratio in the same way that the latter
was derived from the 3:1 ratio. Thus:

3 1 One pair of characters︷︸︸︷ ︷︸︸︷
9 3 3 1 Two pairs of characters︷︸︸︷ ︷︸︸︷

27:9 9:3 9:3 3:1 Three pairs of characters

Each F2 class of the two-factor case (9:3:3:1) will contain a three-to-one ratio
for the third factor-pair. Thus in the 9 class there will be 3 dominants of
the third factor to one recessive (27:9). So for each 3 class: each contains
the third factor in the ration of 3:1. So also for the 1 class. The total result
therefore is:

27 : 9 : 9 : 9 : 3 : 3 : 3 : 1

(Morgan, 1919, 71–72)

Crosses with three or more independent pairs of characters can be easily incorporated in
my framework (by means of recursively specified compound variables and sets of variables),
but I will not do it here.
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in the germinal material as there are possible characters. Sub-
sequent work has shown, however, that Mendel’s second law of
independent assortment has a more restricted application, since
many pairs of elements do not assort freely, but certain elements
that enter together show a tendency to remain together in suc-
ceeding generations. This is called linkage. (Morgan, 1928, 10,
my emphasis)

More precisely,

By linkage we mean that when certain characters enter a cross
together, they tend to remain together in later generations, or,
stated in a negative way, certain pairs of characters do not assort
at random. (Morgan, 1928, 10)

Like independent assortment, linkage is relevant for the ontological status
of the gene:

It would seem, then, so far as linkage holds, that there are limits
to the subdivision of the germinal material. (Morgan, 1928, 10–
11)

Genes that are linked belong to the same linkage group. For example, in
Drosophila melanogaster, four linkage groups were discovered (Morgan, 1928,
11–12). It was soon discovered that genes in the same linkage group are not
always completely linked. There may be some interchange between linkage
groups.41

This interchange is called crossing-over, which means that, be-
tween two corresponding linked series, there may take place an
orderly interchange involving great numbers of genes. (Morgan,
1928, 14)

Linkage and crossing-over are illustrated by means of crosses performed
by Bateson and Punnett.

For instance, when a sweet pea having purple flower-color and
long pollen grains is crossed to one with red flowers and round
pollen grains, the two types that go in together come out to-
gether more frequently than expected for independent assortment
of purple-red and round-long [. . . ]. (Morgan, 1928, 10)

41The phenomena to be discussed in the present section were not always explained in
terms of linkage and crossing-over (see footnote 47).
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Flower colour and pollen shape in sweet peas (Lathyrus odoratus) were known
to show normal Mendelian segregation and to satisfy dominance/ recessive-
ness (with purple being dominant to red, and long being dominant to round)
(Darden, 1991, 122–123).42 In other words, monohybrid crosses on flower
colour and on pollen shape in Lathyrus odoratus can be described by means
of credal nets B1∗ = 〈〈V 1∗ , E〉, P1∗〉 and B1∗∗ = 〈〈V 1∗∗ , E〉, P1∗∗〉 that are
distribution-identical to Bα. By contrast, there is no credal net B such that
B is distribution-identical to Bγ (i.e. the generic representation of dihybrid
crosses with independent assortment) and such that the members of B can
be used to represent or explain dihybrid crosses on flower colour and pollen
shape in sweet peas. The reason is that the independence conditions listed
on page 89 are not satisfied. It follows that we should seek a new credal
net B5 = 〈〈V 5, E〉, P5〉, which is not distribution-identical to Bγ, such that
V 5 = compound〈V 1∗ , V 1∗∗〉 and such that P5 accounts for the failure of inde-
pendent assortment.

Let us first have a look at the data reported by Bateson and Punnett
(Morgan, 1928, 11, figure 9).43 Cross 1: Sweet peas with purple flowers and
long pollen grains were crossed with sweet peas with red flowers and round
pollen grains. (It may be assumed that these parental plants were true-
breeding.) The resulting hybrids (F1) all had long pollen grains and purple
flowers, as could be expected from the dominance of long to round, and of
purple to red. Cross 2: Self-fertilization of the F1 generation produced F2 in-
dividuals in the following proportions (the absolute frequencies are Morgan’s,
I have added the percentages):

long, purple round, purple long, red round, red
583 26 24 170
73% 3% 3% 21%

The results of cross 2 can be explained as follows. We know that the F1

plants are hybrid, so P (GT1 = GgWw) = P (GT2 = GgWw) = 1.00, where G
denotes the purple-producing allele, g the red-producing allele, W the long-
producing allele and w the round-producing allele.44 We may assume that the
dominance/recessiveness relations between purple and red, and between long
and round still hold in the dihybrid case, so that we may rely on some variant

42So purple flower colour is not an intermediate between red and white, as in four-o’clock.
This is not a case of incomplete dominance.

43The text in Morgan (1928, 11, figure 9) gives the impression that the cross concerned
purple and white flowers, instead of purple and red ones. This conflicts with Morgan’s
main text and with Darden (1991, 122).

44Morgan (1928, 11) does not use letters to denote the alleles in these crosses. He uses
instead pictorial elements (coloured flowers and little circles and ovals for the shape of the
pollen grains).
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of table 7. We may also assume that the principle of combination holds.
Then all we need to do is to find the appropriate conditional probability
table for the relation between GTi and GCi. I will show that the phenotypic
distribution for the F2 individuals can be explained if

P (GCi = GW | GTi = GgWw) = 0.46

P (GCi = Gw | GTi = GgWw) = 0.04

P (GCi = gW | GTi = GgWw) = 0.04

P (GCi = gw | GTi = GgWw) = 0.46

For example, by the principle of dominance F2 individuals can only have
round pollen and red flowers if their genotype is ggww. By the principle
of composition, this genotype can only result when the make-up of both
fertilizing gametes is gw. The following calculations retrodict that 21% of
the F2 individuals will have round pollen and red flowers. Firstly, we know
that P (GT1 = GgWw) = P (GT2 = GgWw) = 1.00. By the conditional
probabilities just given, we can compute that P (GC1 = gw) = 0.46, and
likewise that P (GC2 = gw) = 0.46. Since (GC1 q GC2) (see figure 4.1),
P (GC1 = gw ∧ GC2 = gw) = 0.46 × 0.46 = 0.21. So by the principle
of combination and by some analogue of table 7, P (GT3 = ggww) = 0.21
and P (PT3 = roundred) = 0.21. Like calculations allow to retrodict the
probabilities of the other phenotypes in F2.

45

Can we specify the extension of P5 by demanding that for all P ∈ P5 the
above conditional probabilities hold? No. These conditional probabilities
are cross-dependent. Assume that, in cross 1, GGww individuals had been
crossed with ggWW individuals (instead of GGWW × ggww).46 The result-
ing F1 hybrids would all be GgWw, as in Morgan’s example. But selfing of
these hybrids would give F2 plants in the following proportions:

long, purple round, purple long, red round, red
50,16% 24,84% 24.84% 0.16%

The reason is that here G and w (and thus also g and W ), tend to
remain together, whereas in the original cross G and W (and thus also g
and w) tended to remain together (cf. the conditional probabilities below).
In modern terminology, it’s the genes that are linked, not their respective

45The calculations for the other phenotypes are somewhat more elaborate, given the
multiple realizability of dominant phenotypic traits.

46Morgan did not discuss this particular cross, but an analogous way of reasoning can
be found in Morgan (1928, 16–17).
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alleles.47

P (GCi = GW | GTi = GgWw) = 0.04

P (GCi = Gw | GTi = GgWw) = 0.46

P (GCi = gW | GTi = GgWw) = 0.46

P (GCi = gw | GTi = GgWw) = 0.04

How, then, should we characterize P5? As we have seen, linkage and
crossing-over influence the probabilistic relations between GTi and GCi when
GTi = GgWw (i.e., when doubly heterozygous plants are involved). Both
sets of conditional probabilities listed above can be summarized as follows:

P (GCi = GW | GTi = GgWw) =
a

2

P (GCi = Gw | GTi = GgWw) =
1− a

2

P (GCi = gW | GTi = GgWw) =
1− a

2

P (GCi = gw | GTi = GgWw) =
a

2
,

where a ∈ {0.08, 0.92} and where min{0.08, 0.92} = 0.08 is the frequency
of crossing-over for dihybrid crosses on flower colour and pollen shape in
Lathyrus odoratus.

GgWw is the only possible value of GTi for which independent assortment
on the one hand, and linkage and crossing-over on the other hand, give rise
to probabilistically different results. Firstly, suppose that GTi = GGWW
or any other doubly homozygous value. Then (in the absence of mutation)
only one kind of gametes can be produced: GCi = GW . Secondly, suppose
that GTi = GGWw or any other singly homozygous value. Then one chro-
mosome will carry G and W . The other chromosome will carry G and w.
Part of the gametes (say, x%) will not be the result of crossing-over. Half

47Between 1905 and 1911, Bateson tried to explain linkage phenomena in terms of the
concepts of coupling and repulsion, which were strongly related to his presence and absence
theory. According to the presence and absence theory , a dominant trait results from the
presence of a dominant factor, while a recessive trait results from its absence. For example,
purple flowers result from the presence of G, while red flowers result from g, which denotes
the absence of G. Accordingly, linkage of dominant traits (such as purple and long, see
the original cross 1) should then be interpreted in terms of a coupling of the dominant
factors G and W . If, on the other hand, a dominant trait is linked with a recessive trait
(such as purple and round, see my simulated cross), this should be interpreted in terms of
a repulsion of the dominant factors G and W . (Darden, 1991, 121–123)
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table 9 table 10
PTi GCi

pu pu red red
GTi lng rnd lng rnd GTi GW Gw gW gw
GGWW 1.00 0.00 0.00 0.00 GGWW 1.00 0.00 0.00 0.00
GGWw 1.00 0.00 0.00 0.00 GGWw 0.50 0.50 0.00 0.00
GGww 0.00 1.00 0.00 0.00 GGww 0.00 1.00 0.00 0.00
GgWW 1.00 0.00 0.00 0.00 GgWW 0.50 0.00 0.50 0.00
GgWw 1.00 0.00 0.00 0.00 GgWw a

2
1−a
2

1−a
2

a
2

a ∈ {0.08, 0.92}
Ggww 0.00 1.00 0.00 0.00 Ggww 0.00 0.50 0.00 0.50
ggWW 0.00 0.00 1.00 0.00 ggWW 0.00 0.00 1.00 0.00
ggWw 0.00 0.00 1.00 0.00 ggWw 0.00 0.00 0.50 0.50
ggww 0.00 0.00 0.00 1.00 ggww 0.00 0.00 0.00 1.00

Conditional probability tables 9–10: together with the principle of combination, these
provide constraints for P ∈ P5. Table 9 is analogous to table 7 (complete dominance
holds, even though pollen shape is linked with flower colour). The difference between
tables 8 and 10 reveals the difference between independent assortment on the one hand,
and linkage and crossing-over on the other hand. min{0.08, 0.92} is the frequency of
crossing-over.

of them (x
2
%) will be GW , the other half will be Gw. The rest of the ga-

metes, (100− x)%, will be the result of crossing-over. Half of these, 100−x
2

%,
will be Gw; the other half will be GW . Consequently, x

2
+ 100−x

2
= 50% of

the gametes will be GW , the other half will be Gw. Hence, the gametes
of both doubly homozygous plants and singly heterozygous plants are as in
the case of independent assortment (even if they result from strongly differ-
ent mechanisms; i.e. even if linkage and crossing-over take place). Linkage
and crossing-over only make a probabilistic difference in the case of doubly
heterozygous plants. This is summarized in table 10.

P5 thus is the set of distributions over V 5 that satisfy tables 9 and 10
(plus the principle of combination). It is important to note that the physical
probability a may take two possible values and that hence the distribution
over GCi conditional on GTi is imprecise. But regarding crosses on flower
colour and pollen shape in Lathyrus odoratus, the physical probability a may
not take any value between 0.08 and 0.92. In crosses involving different kinds
of hybrids, however, a may take any value between 0.08 and 0.92. Then it
should not be deemed a physical probability, but just a relative frequency.

Other crosses, for example on Drosophila, also revealed linkage (and most
often crossing-over), but showed different frequencies of crossing-over.48 The

48The crosses discussed by Morgan show another interesting phenomenon, viz. sex linked
inheritance (cf. section 4.14).
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frequency of crossing-over for some particular pair of genes in some particu-
lar organism is most easily determined observationally as follows (provided
complete dominance holds for both genes). Let A, B denote dominant alle-
les, and let a, b denote their recessive counterparts. Let two grandparental
individuals (e.g. AABB and aabb, or AAbb and aaBB) together produce
a double heterozygote (AaBb) (F1). Perform the cross AaBb × aabb (the
resulting offspring is F2). Barring problems of statistical inference (parame-
ter estimation) and barring cases of double crossing-over, the frequency of
crossing-over is identical to the proportion of individuals in F2 that do not
phenotypically resemble any of the grandparents.

Crosses on wing colour (yellow versus gray) and eye colour (white versus
red) in Drosophila revealed a frequency of crossing-over of 1% (99% of the
F2 individuals resembled one of their grandparents in crosses like those just
described). Other crosses in Drosophila gave other frequencies of crossing-
over: 33% cross-over types versus 67% grandparental types (white versus
red eyes and miniature versus long wings), or 40% cross-over types versus
60% grandparental types (white versus red eyes and forked versus normal
bristles). If there are no cross-over types, linkage is complete.

A study of crossing-over has shown that all possible percentages
of crossing-over occur, up to nearly 50 per cent. If exactly 50
per cent of crossing-over took place, the numerical result would
be the same as when free assortment occurs. That is, no linkage
would be observed even though the characters involved are in the
same linkage group. Their relation as members of the same group
could, nevertheless, be shown by their common linkage to some
third member of the series. If more than 50 percent crossing-over
should be found, a sort of inverted linkage would appear, since
the cross-over combinations would then be more frequent than
the grandparental types.

The fact that crossing-over in the female of Drosophila is always
less than 50 per cent, is due to another correlated phenomenon
called double crossing-over. By double crossing-over is meant
that interchange takes place twice between two pairs of genes
involved in the cross. The result is to lower the observed cases of
crossing-over, since a second crossing-over undoes the effect of a
single crossing-over. This will be explained later. (Morgan, 1928,
19–20)

From this quote, it can be seen how the generic representation of dihybrid
crosses with linkage and crossing-over (and with complete dominance) should
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look like. Let Bδ = 〈〈V δ, E〉, Pδ〉 be such that (i) Gδ = 〈V δ, E〉 is value-
isomorphic to G5 = 〈V 5, E〉, and such that (ii) any P ∈ Pδ satisfies complete
dominance, the principle of combination and some analogue of table 10, where
a ∈ {b, 1− b} for some b ∈ [0.00, 0.50].

It should be noted that the characterization of Pδ should invoke one more
principle. This principle relates to the linear ordering of the genes, and will
be discussed in section 4.13.

Notwithstanding the need for this extra principle, I can point already to
the following interesting point. As Morgan writes, if exactly 50% of crossing-
over takes place (i.e. if b = 0.50), then the numerical result would be the same
as when free assortment occurs. Hence Bγ ⊂ Bδ, although the underlying
mechanisms are different.

4.12 The simultaneous interchange of many

genes in crossing-over

In section 4.11 we saw that an interchange (crossing-over) may occur be-
tween corresponding linkage groups (or, cytologically, between homologous
chromosomes). We also saw that double crossing-over might take place and
that this hampers the correct interpretation of the data in dihybrid crosses.
It leads to a systematic underrating of the frequencies of crossing-over. This
problem is solved by taking into account more than two pairs of traits.

In the examples of crossing-over just given, two pairs of characters
were studied. The evidence involved only those cases of crossing-
over that took place once between the two pairs of genes involved
in the cross. In order to obtain information as to how frequently
crossing-over takes place elsewhere, i.e., in the rest of the linkage
group it is necessary to include pairs of characters [traits] that
cover the entire group. (Morgan, 1928, 20)

As an example, Morgan discusses a series of crosses along the lines of the
method presented in section 4.11.

For example, if a female with the following nine characters of
Group I, scute, echinus, cross-veinless, cut, tan, vermilion, garnet,
forked and bobbed, is crossed to a wild type male, and if the F1

female [. . . ] is back-crossed to the same multiple recessive type,
the offspring produced will give a record of every crossing-over.
(Morgan, 1928, 20)



The simultaneous interchange of many genes 99

scute

echinus

cross-veinless

tan

cut

verm
ilion

garnet

forked

bobbed

scute

echinus

cross-veinless

tan

cut

verm
ilion

garnet

forked

bobbed

Figure 4.3: The linear order of the genes in Group I of Drosophila (cf.
Morgan, 1928, 21). At the top, no crossing-over has occurred. At the bottom,
crossing-over took place twice (between tan and cut, and between garnet and
forked). (In contrast with Morgan, I have equated all map distances.)

He draws a diagram depicting the linear order of the corresponding genes
in the linkage group (see figure 4.3) and discusses some possible scenarios
(Morgan, 1928, 20–22). Crossing-over may take place in the middle of the
series, such that two complete halves are interchanged. Or it may take place
near one end of the series (e.g. between echinus and cross-veinless). Finally,
simultaneous crossing-over may occur at two levels at the same time (cf.
supra, double crossing-over). In that case,

[a]ll the genes in the middle of the two series have been inter-
changed. This would pass unobserved were there no mutant genes
in the region to indicate the fact that two crossings-over had taken
place, since the two ends of both series remain the same as be-
fore.49 (Morgan, 1928, 22)

How the Morgan group retrieved the linear order of the genes will be
shown in the following section. The reasoning involved is directly relevant
for the characterization of Pδ.

49If this would pass unobserved, the frequencies of crossing-over would be underrated
(cf. supra).
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4.13 Frequencies of crossing-over and the lin-

ear order of the genes

When genes are linked, they belong to the same linkage group. It can be
asked how linkage groups should be represented. As we saw in section 4.12,
the answer is: linearly.

In the preceding illustrations of linkage and crossing-over, that
have been given, the genes are represented as lying in a line – like
beads on a string. (Morgan, 1928, 24)

On the one hand, the linear order of the genes is of course strongly suggested
by the chromosome theory. Cytological evidence showed that chromosomes
were threadlike entities (cf. Morgan, 1928, 38–44). If genes are located on the
chromosomes, it is most natural to assume they are organized linearly. On the
other hand, drawing on assumptions from the chromosome theory, genetic
evidence pointed in the same direction in a way that is directly relevant for
the characterization of Pδ.

Let us further consider the relations between the behaviour of the genes
and the behaviour of the chromosomes. It can be assumed that crossing-over
is the result of some interchange taking place at the level of the chromosomes:

If, as other evidence clearly shows, the chromosomes are the bear-
ers of genes, and if the genes may interchange between members
of the same pair, it follows that sooner or later we may expect
to find some kind of mechanism by which such interchange takes
place. (Morgan, 1928, 39)

Though cytological evidence for such an interchange between like chromo-
somes was not conclusive, it still was quite convincing:

[. . . ] it has been shown in a number of cases that the chro-
mosomes are brought into a position where such an interchange
might readily be supposed to take place. (Morgan, 1928, 44)

Such considerations gave rise to the concept of map distance.50

It is self-evident that if two pairs of genes should be near together,
the chance that crossing-over occurs between them is smaller than
if they are further apart. If the other genes are still further apart

50Sturtevant equated one map unit (mu) with 1 percent recombination. In honour of
Morgan’s work, map units are often referred to as centimorgans (cM). (Klug et al., 2006,
105)
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the chance of crossing-over is correspondingly increased. We may
utilize these relations to obtain information as to the “distance”
at which any two pairs of elements lie with respect to each other.
(Morgan, 1928, 22)

The concept of map distance allowed to further corroborate the hypothesis
of the linear order of the genes.51

Suppose that crossing-over between yellow wings and white eyes
occurs in 1.2 per cent of cases. If we then test white with a third
member of the same series, such as bifid wings, we find 3.5 per
cent of crossing-over [. . . ]. If bifid is in line and on one side of
white it is expected to give with yellow 4.7 per cent crossing-
over, if on the other side of white it is expected to give 2.3 per
cent of crossing-over with yellow. In fact, it gives one of these
values, namely, 4.7. We place it, therefore, below white in the
diagram. This sort of result is obtained whenever a new character
is compared with two other members of the same linkage group.
The crossing-over of a new character is found to give, in relation
to two other known factors, either the sum or the difference of

51Morgan’s presentation of the argument is somewhat different from mine here. He
starts with discussing four drawings of the linear arrangement of nine characters in the
first linkage group of Drosophila (Morgan, 1928, 20–22, cf. my figure 4.3). This is strange,
since no argument has yet been given to support the choice for this linear representation. In
each of the drawings, zero, one or two crossings-over are depicted. In these crossings-over,
whole series of genes are interchanged simultaneously. Then he introduces the concept of
“map distance” (Morgan, 1928, 22) and the ‘proof’ of the linear order of the genes which
I will present below (Morgan, 1928, 24). The relations between linkage, crossing-over and
the position of genes on the chromosomes are considered only in later chapters (Morgan,
1928, chapters III, IV). It is obvious that assumptions regarding the relations between
chromosomes and genes, and observations on the shape and structure of chromosomes
partly guided the choice for a linear representation of the genes as beads on a string, even
if Morgan’s discussion of the linear order precedes his chapters on the chromosome theory.
This is also evident from the following quote:

The cytologist, then, has given us an account of the chromosomes that fulfills
to a degree the requirements of genetics. When we recall the fact that much
of the evidence was obtained prior to the rediscovery of Mendel’s paper,
and that none of the work has been done with a genetic bias, but quite
independently of what the students of heredity were doing, it does not seem
probable that these relations are mere coincidences, but rather that students
of the cell have discovered many of the essential parts of the mechanism by
which the hereditary elements are sorted out according to Mendel’s two laws
and are interchanged in an orderly way between members of the same pair
of chromosomes. (Morgan, 1928, 44)
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their respective cross-over values. This is the known relation of
points on a line, and is the proof of the linear order of the genes;
for no other spatial relation has yet been found that fulfills these
conditions. (Morgan, 1928, 24, my emphasis)

Of course, map distances should be construed in a relative sense, given
that not all parts of the chromosome are evenly prone to interchange.52

What is the relevance of the linear ordering of the genes for the charac-
terization of Pδ? Morgan’s last citation can be explicated as follows. Let the
credal nets Bi = 〈〈V i, E〉, Pi〉, Bj = 〈〈V j, E〉, Pj〉, and Bk = 〈〈V k, E〉, Pk〉 be
distribution-identical to Bα = 〈〈V α, E〉, Pα〉. In other words, let the mem-
bers of Bi, Bj, and Bk be descriptions of monohybrid crosses with com-
plete dominance. Assume, moreover, that these crosses concern the same
kind of organisms, e.g. Drosophila. Then three kinds of dihybrid crosses
are feasible. Let Bl = 〈〈V l, E〉, Pl〉 be distribution-identical to Bδ and
let V l = compound〈V i, V j〉. In other words, the members of Bl describe
dihybrid crosses involving the characters described by the members of Bi

and Bj, respectively. Let Bm and Bn be defined analogously: Bm =
〈〈V m, E〉, Pm〉 and Bn = 〈〈V n, E〉, Pn〉 are distribution-identical to Bδ, V m =
compound〈V j, V k〉, and V n = compound〈V i, V k〉. Finally, let al, am, and an

be the frequencies of crossing-over for Bl, Bm and Bn. In other words, let
al = min{bl, 1 − bl}, am = min{bm, 1 − bm}, an = min{bn, 1 − bn} (with
bl, bm, bn ∈ [0.00, 0.50]). Then, according to Morgan’s findings, if at least
two of the three frequencies differ from 0.50 (i.e. if the genes in question all
belong to the same linkage group),53

either al = am + an or al = |am − an|
52Note also that a crossover event in one region of the chromosome may inhibit a second

event in nearby regions. This is called positive interference. Positive interference increases
as the genes in question are closer. This may be explained by physical constraints pre-
venting the formation of closely aligned chiasmata. (Klug et al., 2006, 114)

53It is sufficient to demand that at least two frequencies differ from 0.50. Moreover, to
demand that all three of them do so, would be too restrictive. Consider three genes, say
A, B and C, and their respective frequencies of crossing-over, say aAB , aAC , and aBC . If
these three genes belong to three different linkage groups, they will all assort independently
and aAB = aAC = aBC = 0.50 (in the case of independent assortment, the label ‘frequency
of crossing-over’ should be interpreted in a loose sense). If they belong to two different
linkage groups, say A and B to a first group and C to a second group, then aAC = aBC =
0.50. Whether aAB = 0.50 or aAB 6= 0.50 depends on the distance between A and B on
the chromosome (note that aAB = 0.50 is a limit case). This shows that it is sufficient to
demand that at least two frequencies differ from 0.50. Suppose, now, that they all belong
to the same linkage group. In most cases, aAB 6= 0.50, aAC 6= 0.50, and aBC 6= 0.50,
but not necessarily so. This shows that it would be too restrictive to demand that all
frequencies differ from 0.50. Even if one of them equals 0.50, the others won’t.
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In other words, the crossing-over of a new character is found to give, in
relation to two other known factors, either the sum or the difference of their
respective cross-over values.

4.14 Other patterns of inheritance and the

role of environmental influences

Up till now I have shown that a variety of paradigmatic crosses discussed
by Morgan can be represented as interrelated sets of causal nets. Before I
turn to the next chapter, I want to do two more things. Firstly I want to
briefly indicate that many other patterns of inheritance can be represented
too. Some are seemingly different but can be represented by credal nets
that are distribution-identical to Bα, Bβ, Bγ, or Bδ, others require slight
modifications to these generic nets. Secondly I want to elucidate the role
of environmental influences in (my representation of) classical genetics. To-
gether, this will show that my account is fairly general (at least regarding
the case of classical genetics).

4.14.1 Other patterns of inheritance

Some patterns of inheritance once seemed to provide anomalies for the theory
of classical genetics, but eventually turned out to fit it. I will give one
example.

Cuénot (1902, 1904, 1905) studied the inheritance of coat colour in mice.
In 1905, he discovered a striking exception to the well-known 3:1 ratio’s
that are covered by Bα. Crosses of yellow mice with mice of other colours
revealed that yellow is dominant. But when the resulting F1 hybrids were
bred, less than 75% of the F2 mice were yellow. (In Cuénot’s data the ratio
was about 2.55:1. Later the ratio was shown to approximate 2:1.) Moreover,
none of the F2 mice turned out to be homozygous for yellow. These ratio’s
seemed to challenge the principle of segregation (Mendel’s first law) and
the initial explanations drastically diverged from Bα. Morgan suggested
that they provided evidence contra the ‘purity of the germ cells’.54 Cuénot
thought they resulted from non-random or selective fertilization. Eventually,
Castle and Little suggested that the allele for yellow coat colour is lethal such
that zygotes having two of them are not viable. This last hypothesis turned
out to be correct. As a result, no alteration was needed to the explanatory
principles of classical genetics. Cuénot’s anomalous 2:1 mice ratio’s belonged

54In that time, Morgan was not yet an adherent of Mendelian genetics.
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to Bα’s domain of application. (Darden, 1991, 98–105) In other words, these
ratio’s were not model anomalies, but monster anomalies (Darden, 1991,
199–201).

Other patterns of inheritance cannot directly be accounted for by Bα, Bβ,
Bγ, or Bδ: cases of sex-linked inheritance, cases of multiple alleles, cases of
multiple factors,55 of gene interaction, of genetic suppression or epistasis,
and of pleiotropy, cases of inheritance in non-diploid organisms, cases of
parthenogenesis, cases in which mutations arise, etc. However, each of these
cases can easily be accounted for by introducing new generic nets Bε, Bζ , . . .
But there is one important class of exceptions that need to be considered:
cases where environmental influences heavily influence the phenotype.

4.14.2 The role of environmental influences

In this chapter I have nowhere considered any influence of the environment
on the phenotype (let alone on the genotype), even if the environment does
influence certain phenotypic traits and may even have an impact on the
genotype. (In this respect, the above account is not better than that of
Kitcher (1989), Darden (1991), or Balzer and Lorenzano (2000).) In this
section I will proceed as follows. Firstly, I will show that classical geneticists
did take the possibility of environmental influences into account. Then I
will show that environmental influences can easily be incorporated in my
framework. Finally I will show that this need not cast serious doubts upon
the results of this chapter (although prima facie it does).

Morgan refers passim to the role of environmental influences. Let me first
cite some passages regarding the influences on the phenotype. For example,
he cites an experiment on Drosophila that disconfirms the presence and ab-
sence hypothesis that had been advanced to explain the difference between
dominant and recessive characters (see footnote 47). In the experiment a
temperature effect was recorded.

A mutant race of Drosophila is called vestigial [. . . ] because only
vestiges of the wings are present, but if the larvae are reared at
a temperature of about 31◦ C. the rudiments are quite long and
in extreme cases may be almost as long as the wings of the wild
type. If the gene for producing long wings is absent, how can a
high temperature bring it back again? (Morgan, 1928, 75, my
emphasis)

Later in his monograph, Morgan cites the findings of Hurst on polyploid
roses.

55An example of two factors that jointly produce one character is given in section 7.2.2.
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Hurst, who has studied species of Rosa, both wild and cultivated,
thinks that the wild diploid species consist of five primary groups
[. . . ]. Many combinations of these five fundamental types are
recognizable. [. . . ]

Hurst states that each member of the five primary series has at
least 50 diagnostic characters. These can be recognized in combi-
nations in the hybrids. The environmental conditions may alter-
nately favor the expression of one or the other set of characters.
(Morgan, 1928, 163–165, my emphasis)

Regarding the causes responsible for sex reversal, Morgan writes:

In recent years there has been some discussion concerning the
reversal of sex, which means, by implication, that a male, already
determined as such, can become changed into a female, and vice
versa. It has even been suggested that, if this can be shown
to occur, the genetic interpretation of sex is discredited or even
overthrown. It is scarcely necessary to point out that there is
nothing in the theory of sex as determined by sex-chromosomes or
genes contradictory to the idea that other influences may so affect
the development of the individual as to change or even reverse the
balance normally determined by the genes. To fail to appreciate
this is to fail entirely in grasping the ideas that underlie the theory
of the gene; for this theory postulates no more than that in a given
environment such and such effects are expected as a result of the
genes present. (Morgan, 1928, 261)

Let me now turn to the case of environmental influences changing an
organism’s genotype.

Stockard carried out a prolonged series of experiments on the ef-
fects of alcohol on guinea pigs. The guinea pigs were treated by
placing them in closed tanks over strong alcohol. They breathed
the air saturated with alcohol, and after a few hours became com-
pletely stupefied. The treatment was carried over a long time.
Some of the guinea pigs were bred while undergoing treatment,
others only at the end of the treatment. The results were essen-
tially the same. Many young were aborted or absorbed, others
were born dead, others showed abnormalities, especially in the
nervous system and eyes [. . . ]. Only those that themselves showed
no defects could be bred. From these, abnormal young continued
to appear along with other individuals normal in appearance. In
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later generations abnormals continued to appear, but only from
certain individuals. (Morgan, 1928, 307–308)

Stockard [. . . ] interprets his result to mean that an injury of
some sort to the germ-cells has been produced by the alcohol – an
injury to some part of the machinery that is involved in heredity.
(Morgan, 1928, 308, my emphasis)

Stockard’s findings were not unique.

More recently Little and Bagg have carried out a series of ex-
periments on the effects of radium on pregnant mice and rats.
When the treatment is properly administered, the young mice in
utero may develop abnormally. [. . . ] Some of these embryos die
before parturition, and are absorbed, others are aborted. Still
others are born alive and some of these survive and may procre-
ate. The offspring often show serious defects in the brain or the
appendages. [. . . ] Bagg has bred some of these mice and finds
that they produce many abnormal offspring that show defects
similar, in a general way, to those induced directly in the original
embryos. (Morgan, 1928, 308–309)

The role of environmental influences can be incorporated in my frame-
work in the following way. In figure 4.4 the joint graph of all credal nets
discussed so far is embedded in a larger graph that also contains variables
denoting environmental influences. Each group (the two parental groups and
the filial group) is given an environmental variable Ei. To make the graph
not too complex, I have only added causal relations from the environment
to the phenotype, and between the environments themselves. It is obvious
that the environment of, say, the paternal plants may be causally related
to the filial environment, and that the paternal environment and the mater-
nal environment may be influenced by a common cause (that is why I have
introduced the variable E0.

An important problem arises immediately here. If the graph in figure
4.1 can be embedded in the larger graph 4.4, it appears that the former
did not satisfy the causal Markov condition. For example, in figure 4.1 the
variables PT1 and PT2 do not causally influence each other, nor do they have
a common cause. Hence by the causal Markov condition (definition 3.2), PT1

should be independent from PT2 conditional on GT1. However, with respect
to figure 4.4 the causal Markov condition does not imply this independence
relation. There, PT1 and PT2 share a common cause, viz. E0.

56

56In other words, the graph in figure 4.1 is not causally sufficient (cf. chapter 8).
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Figure 4.4: The causal structure of classical genetics, including environmental
influences on the phenotype variables
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Shouldn’t we conclude from this that the above sections were in vain?
No. All genetic crosses cited above were performed in ‘standard’ (or con-
trolled) environments. Part of the experimental methodology was focussed
on keeping the environmental influences as stable as possible. In the lan-
guage of Woodward (2003b) this can be expressed as follows: by means of
interventions, the environmental variables E1, E2 and E3 were set at partic-
ular values E1 = es, E2 = es and E3 = es corresponding to these ‘standard’
environments. This procedure had both a big advantage and a big disadvan-
tage.

Here is the advantage. By implicitly conditioning on the ‘standard’ en-
vironments E1 = es, E2 = es and E3 = es, the variables PT1 and PT2

are rendered independent. The set {E1, E2, E3} d-separates PT1 and PT2.
57

Moreover, by conditioning on this set it is assured that any dependencies
between PT1 and PT3, and between PT2 and PT3 are due to the causal
relations in figure 4.1. The legitimacy of the theory of classical genetics is
assured in the ‘standard’ or controlled environment.

However, there is one important drawback. The ‘standard’ environment
is artificial and knowledge amassed in artificial contexts does not necessarily
extend to other contexts. Unless scientific knowledge can be extended to
other contexts, it will be of little practical value.

In general, what is required for usable knowledge is some claim
that one can detach from the particulars of a given observa-
tional or experimental situation and export to other contexts
[. . . ]. (Mitchell, 2000, 249)

In order to apply less than ideally universal laws, one must carry
the evidence from the discovery and confirmation contexts along
to the new situations. As the conditions become less stable, more
information is required for application. (Mitchell, 2000, 257)

The theory of classical genetics certainly was not useless and a large part
of the enthusiasm for this discipline in the beginning of the twentieth century
derived from its prospects regarding applications in e.g. horticulture, agri-
culture and stock breeding. But such applications were not straightforward.

57For the concept of d-separation, see definition 8.5.
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4.15 Causal structure and pragmatic laws in

classical genetics

In this chapter, I have analysed the causal structure of classical genetics
by means of causal nets. It emerged that many aspects of the “Theory of
the Gene” fit this framework. Firstly, Mendel’s crosses on tall and dwarf
pea plants and the principles used to account for the resulting phenotypic
distributions and their relation to genotypes and gametic make-ups can be
described by the members of one credal net, B1. Similar monohybrid crosses
with complete dominance can be described by the members of other credal
nets, e.g. of B2 in the case of eye colour in humans. These credal nets
are distribution-identical (and hence also value-isomorphic) to B1. I used
the generic credal net Bα to abstractly represent these credal nets. In the
language of Kitcher-Darden, Mendel’s crosses on pea plants and the principles
that were invoked to describe them formed an exemplar B1. From this
exemplar a general argument pattern can be obtained, which is represented
semantically here by Bα.

Other crosses comprised anomalies to Bα. For example, monohybrid
crosses with incomplete dominance comprised a small model anomaly which
was accounted for by means of different principles. Semantically, cases of
monohybrid crosses with incomplete dominance can be accounted for by
means of the members of credal nets that are distribution-identical to the
generic credal net Bβ. In the language of the structuralists, Bα and Bβ

are two different theory-elements, each of which have a limited domain of
intended application and each of which is faced with exceptions or anomalies
that are accounted for by the other.

Although Bα and Bβ are strongly different (they are not even value-
isomorphic), they are nevertheless interestingly similar: they are isomorphic
and share the same causal structure. This causal structure is also present in
the other theory-elements of classical genetics: Bγ, Bδ, . . .. All these generic
credal nets (and the ‘non-generic’ credal nets corresponding to them) belong
to the same causal scheme! This shared causal structure somehow unifies the
domain of intended application of genetics as a whole.

All these concepts not only serve to explicate the causal structure of
classical genetics. They also allow us to tackle the concept of pragmatic
laws. The sets of causal models of classical genetics were defined by means
of conditional probability tables (together with the graph in figure 4.1). All
causal models of classical genetics should satisfy several such tables. (Which
tables have to be satisfied depends on the theory-element or the domain
of intended application in question.) These conditional probability tables
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are lists of probabilistic generalizations and they represent the principles
of classical genetics.58 The principles of classical genetics do not satisfy
the criteria listed in section 1.1. They are not necessary, as they are the
contingent outcome of the evolutionary history. Also, they are not universal
or exceptionless. For example, many pairs of traits in many organisms do
not relate to each other as dominant and recessive. Likewise, there are cases
in which Mendel’s first law fails.

All this shows that the principles of classical genetics are not strict laws.
By consequence, this makes them excellent candidates for the label ‘prag-
matic law’ and in this chapter I did not eschew terming them so. But are
they indeed pragmatic laws? If so, they should be useful for prediction, ex-
planation and/or manipulation. In the following chapters I will show that
indeed they can play these roles in scientific practice.

58Since they are lists of generalizations, these conditional probability tables are to be
considered (part of) the theory of classical genetics. The causal nets satisfying them are
the models, in the sense of logical models, of this theory. To some extent, these models in
turn represent things ‘out there’ and thus can be considered representational models too.
They mediate between the theory and ‘reality’.



Chapter 5

Explanation in Genetics: a
Many-Headed Monster

In chapter 4 I analysed the causal structure of classical genetics and I termed
the principles of classical genetics ‘pragmatic laws’. If they really are ‘prag-
matic’ laws, they should be useful for prediction, explanation, and/or ma-
nipulation. But this has not been shown adequately yet. Admittedly, in the
previous chapter I have deliberately used ‘description’ and ‘explanation’ on a
par. And I have repeatedly called the principles of classical genetics ‘explana-
tory principles’. But this was little more than mere stipulation. I will now
provide an account of scientific explanation as it figured in classical genet-
ics. In section 5.1 I will first do some preliminary work and figure out what
were the explananda in classical genetics. In section 5.2 I will present an
account of explanation of phenotypic distributions, both semantically and
syntactically. In section 5.3 I will show that this account is epistemic (or
derivational) and that it incorporates mechanistic, causal-probabilistic and
interventionist aspects of explanation. In section 5.4 I will show that it pro-
vides ontologically grounded derivational unification as a bonus. Finally, in
section 5.5 I will discuss the status of other types of explananda in classical
genetics.

I will not enlarge in too much detail on the different models of explanation
that are, or were, on the philosophical market. I will touch upon the D-N
model and the D-S model (Hempel, 1965), the D-N-P model (Railton, 1978,
1981), the mechanistic account (e.g. Machamer et al., 2000; Glennan, 2002)
and the unificationist account (Kitcher, 1989) only insofar as is necessary. I
will leave the I-S model (Hempel, 1965) and the S-R model (Salmon, 1984,
1989) untouched. I will also sidestep the simulacrum account (Cartwright,
1983, 143–162), although by section 3.1 many aspects of it have implicitly
been assimilated. Nor will I systematically discuss the many counterexamples

111
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that have been raised against these models. So I will mostly disregard the
flagpoles, the ink-stains, the contraceptive pills and the barometers.

5.1 The explananda in classical genetics

In classical genetics, two general kinds of explananda were addressed. On
the one hand, geneticists aimed at explaining phenotypic distributions. On
the other hand, they used classical genetics to explain singular events. The
first kind of explananda outweighed the second kind and will receive most
attention here.

How were phenotypic distributions explained? Recall the phenotypic dis-
tribution obtained in cross 2 of section 4.5: self-fertilization of the hybrid
F1-generation (i.e. tall pea plants that originated from a cross between short
pea plants and true-breeding tall pea plants) resulted in offspring (F2) 75% of
which was tall, the other 25% being short. At the end of section 4.5, I stated
that this distribution can be explained by B3 = 〈G1, P 3〉, where P 3 ∈ P1 is
such that P 3(GT1 = ts) = P 3(GT2 = ts) = 1.00, since then it follows that
P 3(PT3 = tall) = 0.75 and P 3(PT3 = short) = 0.25. I also added that this
corresponds to the data.

Two caveats are in order here. The first caveat concerns the fact that,
whereas I characterize explanation semantically here, I will also discuss it on
the syntactical level (see section 5.2).

The second caveat is more pressing. The probabilities in question are
the product of idealization, and the data rarely fitted these ratio’s exactly.
In Mendel’s experiment, of the 1064 F2-plants, 787 were tall and 277 were
short (Mendel, 1865, 13). The corresponding relative frequencies are 73,97%
and 26,03%. In Mendel’s paper (but also in the writings of many of the later
Mendelians) the step from relative frequencies to theoretical probabilities was
very intuitive. He merely aggregated and rounded off the results of his seven
experiments on Pisum (involving seed shape, albumen colour, . . . , and stem
length respectively).

When the results of all experiments are summarized, the average
ratio between the number of forms with the dominating trait and
those with the recessive one is 2,98:1, or 3:1. (Mendel, 1865, 13,
my emphasis).

I will not pursue the matter of statistical inference in detail here. Nor will
I tackle the question why Mendel’s data fitted his theoretical explanation too
good (see Weldon (1902) and Fisher (1936); see also Wright (1966) and Meijer
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(1983, section 3) for possible explanations).1 I only want to draw attention
to the following fact: in the context of phenotypic distributions, my account
is primarily aimed at the explanation of idealized statistical generalizations,
not of frequency distributions in limited samples.

In the vocabulary of Bogen and Woodward (1988), this amounts to the
following: the theory of classical genetics can be used to explain the phenom-
enon of the 3:1 ratio in cross 2, but it cannot be used to explain directly the
data, or the reported relative frequencies 787

1064
and 277

1064
, which play the role

of evidence for the existence of this phenomenon. Bogen and Woodward do
not say that data cannot be explained. Only, data are idiosyncratic to par-
ticular experimental contexts and are produced (better: co-determined) by
the experimental design, the measurement or detection techniques, the data
gathering procedures, etc. It follows that explanations of data do not exhibit
detailed patterns of dependency (of the explanandum on the explanans) and
that they don’t provide unification or systematization. Bogen and Woodward
deem both requirements quintessential for explanation.

This distinction between data and phenomena, or between frequency dis-
tributions in limited samples and statistical generalizations, is necessary
given the following remarks by Wesley Salmon. These remarks are aimed
at Hempel’s D-S model of explanation (cf. infra), but they apply equally well
to the account to be outlined below.

1Meijer’s explanation is interesting in its own right, since it casts light on the state of
statistical inference in Mendel’s days. According to Meijer (1983, 128), Mendel’s math-
ematical training was rooted mainly in the works of Doppler, Baumgartner and von Et-
tingshausen. Concerning statistical inference and the reliability of data, Baumgartner
and Ettinghausen wrote the following in their Die Naturlehre nach ihrem gegenwärtigen
Zustand mit Rücksicht auf mathematische Begründung (I quote Meijer’s translation):

Even the shrewdest observer with the best instruments never gets results
which are totally devoid of error, and in order to come as close as possible
to the truth, the only thing one can do is to repeat the operation as many
times as necessary [Meijer adds: sic!] and to select from all results those
which have the smallest error. (Meijer, 1983, 128, original emphasis)

Contemporary statistical theory requires that the number of measurements (or the size of
the sample) is determined beforehand. Also, outliers (i.e. extreme observations) should
only be discarded if good reasons to do so are present:

A safe rule frequently suggested is to discard an outlier only if there is direct
evidence that it represents an error in recording, a miscalculation, a mal-
functioning of equipment, or a similar type of circumstance. (Kutner et al.,
2005, 108)

It is evident from this quote that deviation from the model to be tested does not provide
a good reason.
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THEORY: Classical Genetics

PHENOMENA: Statistical generalizations

DATA: Sample frequencies

explanation

explanation?

Figure 5.1: Theory, phenomena, data, and explanation

[. . . ] it would be possible to construct a D-S explanation of the
fact that, in general, 10 milligrams of radon almost always contain
about 2.5 milligrams of radon 7.64 days later. However, it is
impossible to deduce from the information given anything about
the radon content of this particular sample (beyond, perhaps, the
conclusion that the value must be somewhere between 0 and 10
milligrams). (Salmon, 1998, 150–151)

Since the D-S species of D-N explanations must appeal to statisti-
cal laws, and since such laws typically apply to potentially infinite
classes, we can say, in principle, that there can be no D-S explana-
tions of frequency distributions in finite samples. (Salmon, 1998,
153)

As I will show in section 5.3, my account to a large extent resembles the
D-S model. Hence, to escape Salmon’s criticism, I need at least to leave open
the possibility of explanation of data.2

5.2 Explanation of phenotypic distributions

Let us now turn to the explanation of phenotypic distributions (in the sense
of phenomena or statistical generalizations). How is the 3:1 ratio in cross 2,

2At present, I have no fully fledged account of explanation of data. It would appear
to me that much hinges on the choice between classical and Bayesian statistics. I am
also convinced that in the explanation of a set of data {a1, . . . , an} more is involved than
a series of D-N-P explanations, one for each ai (see section 5.5 for the D-N-P model of
explanation).
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i.e. the pair of generalizations P (PT3 = tall | PT1 = tall, PT2 = tall) = 0.75
and P (PT3 = short | PT1 = tall, PT2 = tall) = 0.25, explained by the
theory of classical genetics? I will first approach the problem syntactically.
Then I will show that this fits the semantic characterization of chapter 4.

Syntactically, one introduces assumptions (hypotheses) regarding the geno-
type of the parental plants (the F1 hybrids) and one tries to find a theory-
element of classical genetics that allows to derive the observed phenotypic
ratio. Which theory-element is appropriate cannot be determined a priori
(cf. some alleles show complete dominance, others show incomplete domi-
nance, some genes have more than two alleles, some characters depend on
multiple factors, etc.) and the choice of theory-element is closely linked to
the genotypic assumptions that are introduced (or: the introduction of the
genotypic assumptions is closely linked to the chosen theory-element).

For the explanation of the 3:1 ratio in cross 2, Morgan assumes that both
the paternal and the maternal phenotype are caused by a pair of alleles, say
a tall-producing allele and a short-producing allele, and that the former is
dominant to the latter. This step is abductive, but not arbitrary.3 It is partly
based on background knowledge concerning the ancestry of both the paternal
and the maternal plant(s) – together with the explanatory principles of B1

(cf. genotypes and phenotypes are T-theoretical (definition 4.1)). This back-
ground knowledge derives from cross 1 of section 4.5, where it was assumed
that the parental organisms had similar genes. At the same time, Morgan
assumes this cross belongs to the domain of the theory-element of reciprocal
monohybrid crosses with complete dominance. From the above genotypic
assumptions, together with the principle of complete dominance (table 1),
Mendel’s first law (table 2), the principle of combination (table 3) and the
assumption of random fertilization, and together with the appropriate math-
ematical machinery, the 3:1 ratio can be derived. If necessary, the reliability
of the genotypic assumptions can be checked by performing test crosses (see
e.g. cross 3 of section 4.5), where it is assumed that in these crosses the same
explanatory principles are valid.4

3It will be seen in chapter 7 that this abductive character initially put explanation in
genetics in bad light.

4In Neapolitan (2004, 216–230), abductive inference in Bayesian networks is treated
probabilistically. Let B = 〈〈V,E〉, P 〉 be a Bayesian network, and let M ⊆ V,D ⊆
V, and M ∩ D 6= ∅. M is called the manifestation set, D is called the explanation set.
Let m ∈ [M ] and d ∈ [D] be sets or configurations of values of the variables in M and D,
respectively. Then a set of values of the variables in D that maximizes P (d | m) is called a
most probable explanation (MPE) for m (relative to B). The process of determining such
a set is called abductive inference.

To some extent, this fits the reasoning involved in the explanation of the 3:1 ratio in
cross 2. The manifestations are that both the paternal plant and the maternal F1-plant are
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In chapter 4 I handled explanation semantically instead of syntactically.
For example, I stated that the phenomenon of the 3:1 ratio in cross 2 could be
explained by providing a model, B3 = 〈G1, P 3〉, that makes this phenomenon
true. I will first show that there is a good reason to look at explanation from
a semantic point of view. Then I will argue that this dual approach does not
result in two different kinds of explanation.

Focussing on the semantic level helps to get a better grip on the causal
interpretation of symmetric laws. For example, the relations between the
volume, the temperature, and the pressure of some particular sample of gas
are described by a symmetric equation, pV = nRT (the volume V , the
pressure p and the temperature T may vary; n, the amount of gas (in mol)
and R, the gas constant are fixed for the sample). But the symmetry breaks
down in any particular instantiation. In one case, a change in temperature
may cause a change in volume and/or pressure. In another case, the change
in temperature may itself be caused by changes in the volume and/or the
pressure. Hence, while the linguistic (mathematical) law is symmetric, each
model of the law incorporates asymmetric (i.e. fully directed) graphs (cf. the
relation between the language and the semantics of ALIC in chapter 8).

All this need not imply, however, that I favour two different kinds of
explanation. For any theory-element x, the explanatory principles of x are
sound with respect to the models of x. This follows from the characterization
of the models.5 Hence, if some statistical generalization G follows from a set
of hypotheses and the explanatory principles of x, then in any model of x in
which the hypotheses are true, G will also be true.

5.3 Features of the above account

What features does such an explanation have? The explanandum consists
of two related statistical generalizations: P (PT3 = tall | PT1 = tall, PT2 =
tall) = 0.75 and P (PT3 = short | PT1 = tall, PT2 = tall) = 0.25. The
explanans implicitly incorporates statistical generalizations too. These are
constitutive of the credal set P1. And the relation between the explanans

tall, and that they each result from a cross of short plants with true-breeding tall plants.
Given the theoretic principles incorporated in B1, the probability that both the paternal
and the maternal F1-plant are heterozygous is approximately unity. This can be further
corroborated via test crosses. It should be noted, however, that abductive reasoning in
classical genetics is far more complex than Neapolitan’s framework suggests. Neapolitan
presupposes that the Bayesian net B is given. In classical genetics, a large part of the
abductive inference consists in finding a suitable B.

5I apologize for the fact that I will not endeavour to prove this claim. So it should
rather be considered a conjecture.
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and the explanandum is deductive. In these respects, the above explanation
fits the D-S model.

The D-S model of explanation is a special kind of deductive-nomological
explanation. In deductive-nomological explanation (D-N explanation), the
explanandum is either a sentence describing a particular fact, or a general law
(a universal conditional in first order logic, i.e. a strict law). The explanans
must consist of (true!) sentences describing particular facts and at least one
general law and it must have empirical content (i.e., it must be capable,
at least in principle, of test by experiment or observation). Finally, the
explanandum must be a logical consequence of the explanans. (Hempel,
1965, 247–249, 336)

In deductive-statistical explanation (D-S explanation), the explanandum
is a statement in the form of a statistical law.6 The explanans is a set of
premises that contains indispensably at least one law or theoretical principle
of statistical form. And the deduction is effected by means of the mathemat-
ical theory of statistical probability. (Hempel, 1965, 380–381)

In my account, the relation between the explanans and the explanandum
is deductive, as in the D-S model, but it involves more than the mere theory
of statistical probability. It involves the constraints in tables 1, 2 and 3 that
are constitutive of P1, and that represent the explanatory principles listed in
section 4.5. But these are inextricably joined to the causal structure embodied
in G1. Each P ∈ P1 must satisfy the causal Markov condition with respect
to G1.

So the concept of explanation that implicitly figured in chapter 4 can
be treated as D-S-cum-causation, where the causal component is ingrained
in the account. This is highly important. It is the parental genotypes, not
the parental phenotypes, that explain the distribution of the filial phenotypes.
(Better: it is the descriptions of the former that explain the description of
the latter.)

Of course, many accounts of explanation have incorporated a causal com-
ponent and, very often, different accounts of explanation were coupled with
different accounts of causation. My account relies both on the notion of ‘in-
variance’ (or cP -laws) and on the concept of ‘complex-system mechanism’
(cs-mechanism) we met in chapter 2. As such, it can be considered a causal-
mechanistic variant of D-S explanation.

It is easily seen that the generalizations represented by the conditional
probability tables 1, 2 and 3 (relating genotypes, phenotypes and gametic

6In Hempel (1965, 376–379), a statement has the form of a statistical law if it is
formulated in terms of statistical probabilities. It may be a law of basic statistical form,
such as ‘P (G | F ) = r’ (where G and F denote statements, not random variables), or it
may be more complex.
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make-up), which together constitute P1 and thus partly determine B1, are (or
are to be deemed) invariant. Recall that for a generalization to be invariant,
it must at least be stable under interventions, although it may also and
typically will be stable under other sorts of changes too (see section 1.3).

Let us have a look at the relation between GT and PT . Suppose that
some pea plant has the genotype GT = ts and the phenotype PT = tall.
Then if by some ideal intervention its genotype were changed to GT = ss,
its phenotype would change to PT = short – or so we would expect from
the theory of classical genetics. Hence, the relation between GT1 and PT1

described by conditional probability table 1 is invariant . . . according to
classical genetics.

The invariant relations satisfied by the members of B1 together describe
a complex-system mechanism. I will elaborate this claim in a minute. First,
however, I need to clear up two conceptual ambiguities. The first conceptual
ambiguity is found in the works of Woodward. On the one hand, Wood-
ward defines mechanisms (better: representations of mechanisms) as follows
(against the background of a structural equation interpretation of directed
acyclic graphs):

It is natural to suppose that if a system of equations correctly
and fully represents the causal structure of some system, then
those equations should be modular. One way of motivating this
claim appeals to the idea that each equation in the system should
represent the operation of a distinct causal mechanism. (Correl-
atively, each complete set of arrows directed into each variable in
a directed graph should also correspond to a distinct mechanism.)
(Woodward, 2003b, 48, my emphasis)

Under this view, a system of equations is modular if each equation is indepen-
dently changeable. In section 4.5, the conditional probability tables 1, 2 and
3 play the role of the equations in question. According to the above character-
ization, B1 contains or represents seven mechanisms (let me call them local
mechanisms), one for each endogenous variable: GT1 → PT1, . . . , GT1 →
GC1, . . . , and GC1 → GT3 ← GC2. On the other hand, Woodward charac-
terizes representations of mechanisms along the lines of the complex-systems
account:

(MECH) a necessary condition for a representation to be an
acceptable model of a mechanism is that the representation (i)
describe an organized or structured set of parts or components,
where (ii) the behavior of each component is described by a gen-
eralization that is invariant under interventions, and where (iii)
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the generalizations governing each component are also indepen-
dently changeable, and where (iv) the representation allows us
to see how, in virtue of (i), (ii) and (iii), the overall output of
the mechanism will vary under manipulation of the input to each
component and changes in the components themselves. (Wood-
ward, 2002b, S375)

Let me call mechanisms covered by representations satisfying (MECH),
global mechanisms . Condition (iii) clearly indicates what is the relation be-
tween global and local mechanisms: the former are composed of (or contain)
the latter. According to (MECH), B1 contains or represents a single global
mechanism.

The second conceptual ambiguity concerns the status of mechanisms in
classical genetics. On the one hand, the ensemble of genotypes, phenotypes
and gametic make-ups, governed by the principles cited in section 4.5, consti-
tutes a global mechanism (a cs-mechanism) whose behaviour (the phenotypic
distributions) is explained by the behaviours of the components. On the other
hand, Morgan et al. (1915) and Morgan (1919, 1928) also treat cytological
entities and activities (the chromosomes, meiotic division, physical crossing-
over, etc.) as the ‘mechanism’ underlying Mendel’s first law, Mendel’s second
law, and the principles of linkage and crossing-over. I would not label these
cytological entities and activities a complex-system mechanism underlying
these laws and principles. Rather, the cytological mechanism provides the
physical realization of the genetic mechanism – on the same ontological level.

Given these conceptual clarifications, my claim that the invariant gener-
alizations in question together describe a complex-system mechanism comes
down to the following: the genotypes, the phenotypes and the gametic make-
ups together constitute a global mechanism. In accordance with the complex-
systems literature on mechanistic explanation, the description (the represen-
tational model) of the organized behaviours of these components explains
the resulting phenotypic distributions.

5.4 Ontologically grounded unification as a

bonus

Up till now, I have shown that the above account amounts to a causal-
mechanistic kind of D-S explanation. I stick to the notion of D-S explana-
tion since deduction and probabilistic inference played an important role in
classical genetics – at least in the case of explanation of phenotypic distrib-
utions. In this section, I will show how explanation in genetics also provides
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ontologically grounded unification.

But let me first indicate that ontological unification is not only a by-
product of explanation in classical genetics. The assumption of the unity of
the world was ingrained in Mendel’s world view. In the concluding remarks
of his Versuche, Mendel asks himself to what extent his laws for Pisum are
generalizable, both to other Pisum plants and to other genera. His answer
is subtle. On the one hand, inductive generalization should be based on
additional research. On the other hand, he believes that to some extent the
world is unified:

Whether variable hybrids of other plant species show complete
agreement in behavior [with Pisum] also remains to be decided
experimentally; one might assume, however, that no basic differ-
ence could exist in important matters since unity in the plan of
development of organic life is beyond doubt.7 (Mendel, 1865, 43,
original emphasis)

Recall that I represented the theory of classical genetics by means of in-
terrelated credal nets B1, B2, . . ., each of which corresponds to an exemplar
in The Theory of the Gene. Recall also that, according to Darden (1991,
18–19), these exemplars may serve in the construction of Kitcher-style gen-
eral argument patterns (abstract explanatory patterns or schemas) and that
these patterns abstractly characterize mechanisms. In her view, these mech-
anisms, when they are operating, produce observable data-points as output
and fitting an observation into a pattern is a way of explaining it. The set
of exemplary patterns in The Theory of the Gene then constitutes the ex-
planatory repertoire of classical (or Mendelian) genetics. (As we have seen in
section 5.3, the credal nets B1, B2, . . . indeed represent mechanisms. How-
ever, as we have seen in section 5.1, it is advisable to distinguish between
data and phenomena. So, we may say, these mechanisms are idealized mecha-
nisms that produce phenomena which are indirectly uncovered via the data.)
Finally, recall also that Kitcher directly applies his account of explanatory
unification to the theory of classical genetics. He distinguishes between four

7The German text is as follows:

Ob die veränderlichen Hybriden anderer Pflanzenarten ein ganz übereinstim-
mendes Verhalten beobachten, muss gleichfalls erst durch Versuche entsch-
ieden werden; indessen dürfte man vermuthen, dass in wichtigen Punkten eine
principielle Verschiedenheit nicht vorkommen könne, da die Einheit im En-
twicklungsplane des organischen Lebens ausser Frage steht. (Mendel, 1933,
42–43, original emphasis)
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patterns: Mendel, Refined Mendel, Morgan, and Watson-Crick.8 For ex-
ample, the pattern Mendel consists of the following items:

(1) There are two alleles A, a. A is dominant, a recessive.

(2) AA (and Aa) individuals have trait P , aa individuals have trait
P ′.

(3) The genotypes of the individuals in the pedigree are as follows: i1
is G1, i2 is G2, . . . , iN is GN {(3) is accompanied by a demonstration
that (2) and (3) are consistent with the phenotypic ascriptions in the
pedigree.}

(4) For any individual x and any alleles yz if x has yz then the prob-
ability that x will transmit y to any one of its offspring is 0.5.

(5) The expected distribution of progeny genotypes in a cross between
ij and ik is D; the expected distribution of progeny genotypes in a
cross . . . { continued for all pairs for which crosses occur }.

(6) The expected distribution of progeny phenotypes in a cross between
ij and ik is E; the expected distribution of progeny genotypes in a cross
. . . { continued for all pairs in which crosses occur }.

Filling instructions. A, a are to be replaced with names of alleles, P, P ′

are to be replaced with names of phenotypic traits, i1, i2, . . . , iN are to
be replaced with names of individuals in the pedigree, G1, G2, . . . , GN

are to be replaced with names of allelic combinations (e.g. AA,Aa, or
aa), D is replaced with an explicit characterization of a function that
assigns relative frequencies to genotypes (allelic combinations), and E
is to be replaced with an explicit characterization of a function that
assigns relative frequencies to phenotypes.

Classification. (1), (2), and (3) are premises: the demonstration ap-
pended to (3) proceeds by showing that, for each individual i in the
pedigree, the phenotype assigned to i by the conjunction of (2) and (3)
is that assigned in the pedigree; (4) is a premise; (5) is obtained from
(3) and (4) using the principles of probability; (6) is derived from (5)
and (2). (Kitcher, 1989, 439)

In Kitcher’s theory, unification consists in showing that many different
phenomena can be accommodated by (derived from) a small number of such
patterns. But, as Mäki (2001) forcefully argues, this account is problematic.
I will first present Mäki’s claims. Then I will show to what extent I can
side with his arguments and to what extent his position needs to be revised.
Finally, I will show how explanation in genetics gives rise to ontologically

8In the rest of this section, I will only discuss Kitcher’s work. Darden’s emphasis
on diagrammatic representations will not solve the problem put here, viz. that Kitcher’s
account is not (or not necessarily) ontologically grounded. Diagrammatic representations
may or may not be ontologically grounded. But this is a contingent matter of fact. Hence,
the arguments in this section equally apply to Darden.
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grounded unification, how this unification comes in degrees and how it is
nicely captured by the concepts introduced in chapter 3 (isomorphism, value-
isomorphism, distribution-identity and causal schemes).

Mäki distinguishes between two kinds of unification, viz. derivational uni-
fication and ontological unification (see also Marchionni (2005)).9 When this
distinction is applied to Kitcher’s theory, it emerges that the latter advocates
“unification as a derivational accomplishment without ontological ground-
ings.”10 (Mäki, 2001, 497) According to Kitcher, explanation is not a matter
of describing causal relations in the world. By contrast, causal relations are
a function of explanatory relations.

What is distinctive about the unification view is that it proposes
to ground causal claims in claims about explanatory dependency
rather than vice versa. (Kitcher, 1989, 436)

[. . . ] there is no sense to the notion of causal relevance indepen-
dent of that of explanatory relevance and . . . there is no sense
in the notion of explanatory relevance except that of figuring in
the systematization of belief in the limit of scientific inquiry, as
guided by the search for unification. (Kitcher, 1989, 499)

Mäki is dissatisfied with these suggestions. In his view, derivational ex-
planatory unification is one option, but not the only one. As an alternative,
he proposes ontological unification (see also Mäki, 1990):

In contrast to derivational unification, ontological unification is
based on the referential and representational capabilities of the-
ories, while derivational unification is based on their inferential
capabilities [. . . ]. Ontological unification is a matter of redescrib-
ing apparently independent and diverse phenomena as manifes-
tations (outcomes, phases, forms, aspects) of one and the same
small number of entities, powers, and processes. Those phenom-
ena are thereby revealed to be only apparently independent; as a
matter of actual fact, they are dependent on the same underly-
ing structure of entities, forces, and processes [. . . ]. The notion
of ontological unification, unlike that of mere derivational unifi-
cation, is presumed to include some deeper idea of why exactly
unification would be a virtue worth pursuing. (Mäki, 2001, 498)

9Mäki primarily focusses on explanatory unification in economics, but his arguments
may be generalized to explanatory unification in other special sciences as well.

10Strictly speaking, Mäki aims this quote against Robert J. Aumann, a game theorist
who advocates an instrumentalist interpretation of scientific theories. But, Mäki (2001,
497) writes, “In this respect [Aumann’s view] resembles Kitcher’s “Kantian” account.”
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Unification, according to this picture, is not just a matter of
derivational success but rather a matter of successfully represent-
ing how things are related in the causal order of things in the
world. (Mäki, 2001, 500, my emphasis)

Where derivational unification mostly serves as a formal constraint on
theories, ontological unification is a contingent matter of fact.

If there is unity among a set of phenomena, it is a matter of their
sharing the same ontic foundations (causes, origins, constituents).
Unity among phenomena is a matter of what they are and how
they come about, and it is a matter of discovery rather than
[Kantian] imposition to establish this. (Mäki, 2001, 498)

Does all this imply that derivational and ontological unification are in-
compatible, one may ask? Mäki claims they are not. In this respect I would
like to take his side. But, as I will argue, his answer is only partly satisfying.

According to Mäki, derivational and ontological unification are compati-
ble:

Note that ontological unification and mere derivational unifica-
tion are supposed to be [. . . ] contrasted – but putting the sugges-
tion in this way leaves room for the possibility that derivational
and ontological unification coincide, or perhaps that derivational
unification has partial ontological grounds. (Mäki, 2001, 499, my
emphasis)

But whether this is the case (in some particular context), or the extent to
which this is the case (in that context), is contingent:

My hunch is that this is a contingent issue; there is no necessity
for the two kinds of unification to be related in one particular
way or another. (Mäki, 1990, 499)

Mäki’s hunch is plausible, provided derivation is tied to standard logical
inference. In this respect I would like to take his side. Kitcher’s argument
patterns, e.g. Mendel, are phrased in natural language. But their expressive
power does not exceed that of non-modal second order logic joined with
probability theory.11 Hence, whether Kitcher’s argument patterns coincide

11Alleles and genotypes may be considered properties (of organisms) instead of objects.
Then, in a sense, “There are two alleles A, a. A is dominant, a is recessive.”, which is
premise (1) of Mendel, is a second order sentence. I write ‘in a sense’, since the quantifier
indirectly refers to the filling instructions (A and a are dummy letters, not common second
order variables).
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with “the causal order of things in the world” (where this causal order is not
defined as a function of the explanatory relations), is indeed contingent. In
the formula (∀x)(Ax ⊃ Bx), the predicate A may denote a property that is
causally relevant to the property denoted by B, but this certainly needn’t be
the case.

If, by contrast, derivation is tied to causal reasoning (in the sense of in-
ference with respect to causal nets), the tie between derivational unification
and ontological unification is much stronger. In this sense, Mäki’s answer
is but partly satisfying. It should be stressed that there are good reasons
to draw in causal reasoning. Unification, it is often said, is closely linked to
explanation. But it is not clear how mere ontological unification, in the sense
of mere reference and representation, would contribute to this. Representa-
tion is description, but description is not the same as explanation (otherwise,
I needn’t write this chapter). If derivation is tied to causal reasoning, the
distinction between derivational and ontological unification largely dissolves.

The relations between the causal nets describing genetic crosses show
that the various phenotypic distributions (‘those phenomena’) are ‘only ap-
parently independent’ (cf. the quote on page 122). They are dependent on
the same underlying structure of entities and processes. In other words,
they are dependent on the same complex-system mechanism. The exemplars
B1, B2, . . . each are value-isomorphic and distribution-identical to several
other credal nets. By abstracting from their details, generic credal nets
Bα, Bβ, . . . can be obtained. Generic credal nets can be regarded the causal
(and semantic) analogues of Kitcher’s argument patterns. (I will not give an
elaborate counterpart for Kitcher’s filling instructions here.)

In this framework, unification comes in degrees. The stronger the rela-
tions (isomorphism, value-isomorphism, distribution-identity) between credal
nets, the stronger the corresponding phenomena are unified. But, and this
is very important, all credal nets are isomorphic. All credal nets fit the same
causal scheme:

for all credal nets B and B′ of classical genetics: C(B) = C(B′).

It is this causal scheme that represents the causal structure of classical ge-
netics and that unifies all phenomena in its domain of application.

5.5 Other types of explananda

Before I conclude this chapter, I will briefly examine other types of ex-
plananda and see whether they can be explained by classical genetics (and
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if so, how). Up to now, I have treated the explanation of statistical general-
izations, e.g. why 75% of the offspring of hybrid pea plants in cross 2 is tall
and why the rest (25%) is short. In section 5.1, I mentioned another type
of explananda: singular events (better: descriptions of singular events). For
example, one might want to know why Mary has blue eyes. How can we
explain this fact?

A caveat is in order here. In line with the previous sections, I will treat
explanation as an epistemic, derivational activity (which is not to say that
(all) explanations are purely arguments – cf. infra). In my view, explana-
tion is strongly tied to causation (at least in many contexts). But from this
premise one should not conclude that we need an ontic account of explana-
tion. So I disagree with Salmon’s plea for such an ontic account (cf. Salmon,
1984, 17–18, 121–124).12 Regarding the explanation of general regularities,
in casu the explanation of those covered by Kepler’s laws from those covered
by Newton’s, he writes:

While it is true that Kepler’s laws can be deduced from Newton’s
laws, it is also correct to say that the physical regularity exhib-
ited by these specially situated bodies [i.e. relatively light bodies
moving in an orbit around another, much more massive body] is
part of the general regularity exhibited by all bodies of any sort
that possess gravitational mass. The more restricted regularity
(which is not a statement, but a physical fact) is part of the more
general pattern (which is also a physical fact). Indeed whenever
the physical part-whole relation obtains, that is also a physical
fact that is entirely independent of the behavior of language-users
and of the epistemic states of scientists. Thus there is no obstacle
to our acceptance of the thesis that scientific explanation involves
subsumption under laws and our rejection of the view that expla-
nations are arguments. It is the physical subsumptive relations,
not the inferential relations of deductive or inductive logic, which
is exhibited by our beautiful scientific paradigms. The supposi-
tion that relations of subsumption must be interpreted in terms
of logical argument forms is, I believe, one of the most unfortu-
nate errors in modern philosophy of science. (Salmon, 1984, 92,
emphases are changed)

According to the ontic conception, “[to] give scientific explanations is to
show how events . . . fit into the causal structure [or the causal nexus] of the
world.” (Salmon, 1984, 19) That is fine to me, but I fail to see how this

12Salmon’s ontic account of explanation is still popular, see e.g. Craver, 2007.
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can be done without making use of representational tools. I fear that by
excising the mediating role of languages and conceptual schemes, of models,
and of logics or inferential frameworks from our account of explanation we
would deny ourselves the very possibility of being on our guard against their
possibly biasing effects.

In spite of all this, I will sometimes elliptically use ontological language,
but only in the interest of readability. For example, I may say that an
explanandum-event is explained by its causes instead of saying that the
explanandum-statement is explained by deriving it from explanans-statements
(premises describing the causes).

So how can we explain why Mary has blue eyes (PT = blue)? The
most straightforward explanation is in terms of her genotype. Mary’s eye
colour is caused (and hence explained) by her genotype (according to B2

she must be homozygous for the blue producing allele: GT = blbl). It is
not crucial that according to B2 the relation between the genotype and the
phenotype is deterministic. In section 4.3 I briefly discussed the concept of
‘penetrance’, which is defined as the percentage of individuals that show at
least some degree of expression of a (mutant) genotype. Although penetrance
is not discussed in Morgan (1928), I would not keep it out of the domain of
classical genetics. In the glossary of Klug et al. (2006, A-11), penetrance is
defined in more detail as follows:

(penetrance) The frequency, expressed as a percentage, with which indi-
viduals of a given genotype [say, GT = y] manifest at least some degree
of a specific mutant phenotype [say, PT = x] associated with a trait.

This percentage needn’t always equal 100. And it seems to me that it
is entirely acceptable to explain why, for example, some particular fruit fly
manifests some degree of mutant phenotype x by showing (or hypothesizing)
that it has genotype y, by stating that f% of the flies with genotype y
manifest at least some degree of x (where f < 100) and by stating as a
parenthetic addendum that, by chance, this fly manifests at least some degree
of x. It is only required that the relation GT → PT is causal. But this is
ingrained in the theory of classical genetics.

In the last paragraph I implicitly referred to Railton’s D-N-P model (Rail-
ton, 1978, 1981). In the rest of this section I will do the following. First I
will briefly present this model and show where I deviate from it. Then, on
the basis of one of these deviations, I will discuss the limits of explanation
in classical genetics.

Railton’s D-N-P model treats singular probabilistic explanation in a de-
ductive-nomological way (hence: deductive-nomological-probabilistic expla-
nation). Schematically, we may D-N-P explain why e did become G at t0 (or
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why it did not become G at t0) in the following way (Railton, 1978, section
4):

(1) ∀t∀x[Fx,t → Prob(G)x,t = p]
“At any time, anything that is F has probability p to be G.”

(2) A derivation of (1) from our theoretical account of the
mechanism(s) at work.

(3) Fe,t0

“e is F at time t0”
(4) Prob(G)e,t0 = p

“e has probability p to be G at time t0”
(5) (Ge,t0/∼Ge,t0)

“(e did/did not become G at t0)”

According to Railton, premise (1) need be a (true) law, but he leaves
open the question what statements count as natural laws. He also explicitly
leaves open the interpretation of ‘→’ in (1). My bet is that he would not have
excluded the causal interpretation figuring in my account. (He deems causal
laws useful, but not indispensable for explanation (Railton, 1978, 207).) The
relation between the premises (1)-(3) on the one hand, and the conclusion
(4) on the other hand, is deductive-nomological. Hence, the explanation of
why e has probability p to be G at t0 is an argument. (5) is not a conclusion,
but a parenthetical addendum. It does not follow from (1)-(4). Therefore I
stated in the beginning of this section that, although I deem explanation an
epistemic, derivational activity, I do not wish to say that (all) explanations
are purely arguments.

There are three ways in which my explanation of the fruit fly’s mani-
festing some degree of x deviates from the D-N-P model. The first and the
second I merely mention in the interest of comprehensiveness. The third way
is especially interesting with respect to the limits of explanation in classical
genetics. Firstly, Railton (1978, 213) demands that (1) is a genuinely inde-
terministic law. There may be no ‘hidden variables’ characterizing unknown
initial conditions that suffice to account for G deterministically. I cannot
guarantee that in all cases of incomplete penetrance such hidden variables
are ruled out. Later, Railton weakened his position (Railton, 1981, 249–255).
Even if (1) is not genuinely indeterministic, an ‘argument’ of the above form
may be explanatory (in the sense of conveying explanatory information), even
if it does not fit the D-N-P model. Secondly, my explanation regarding the
fruit fly’s manifesting some degree of x deviates from the D-N-P model in
that the latter seems to be wedded to a propensionist interpretation of prob-
ability (Railton, 1978, 222), but the definition of penetrance is phrased in
terms of frequencies. Thirdly, and most interestingly, Railton heavily stresses
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the role of (2), the theoretical derivation of (1). For Railton, the existence of
general, causal laws that cover the explanandum is not always sufficient: “the
search for explanation has also taken the form of a search for mechanisms
that underly these laws.” (Railton, 1978, 207)

This clearly shows the explanatory limits of classical genetics. Classical
genetics may explain why our fruit fly manifests some degree of x by reference
to the genotype y. But it cannot explain why it is the case that y causes
x. Nor can it explain why homozygosity for blue-producing alleles (either in
general for all human beings, or in the case of Mary in particular) causes blue
eyes. And it cannot be explained why blue-producing alleles are recessive
with respect to their brown-producing counterparts. These are tasks for
molecular genetics.13 In molecular genetics, the mechanisms connecting the
genotype, the phenotype and the environment (including transcription and
translation of the genetic information, regulation of gene expression, etc.)
are uncovered.

5.6 The use of pragmatic laws in classical ge-

netics

The results of this chapter show that the label ‘explanatory principle’, which
I have used in chapter 4, does not apply vainly to the principles of classical
genetics. This is very important, since explanation is one of the central role
of laws in Mitchell’s framework. The principles of classical genetics were
used to explain phenotypic distributions (in the sense of phenomena or sta-
tistical generalizations, not in the sense of frequency distributions in limited
samples). This kind of explanation is akin to D-S explanation. Statistical
generalizations are derived by means of other statistical generalizations (the
explanatory principles of classical genetics). It is important to note, how-
ever, that these principles describe causal regularities that together make up
a complex-system mechanism. They are causal pragmatic laws. Finally, we
saw that explanation in classical genetics also provides ontologically grounded
unification.

Phenotypic distributions do not exhaust the scope of possible explananda
in classical genetics. Singular events, such as Mary’s having blue eyes, can
also be explained. Explanation of singular events in classical genetics is akin
to Railton’s D-N-P model. But there are also interesting explananda that
cannot be accounted for by classical genetics. To give one example, the

13Note that Bateson’s attempts to explain dominance and recessiveness in terms of the
presence and absence of alleles were not successful (see footnote 47 of chapter 4).
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principle of complete dominance can be used, together with a description of
her genotype, to explain why Mary has blue eyes. But it cannot be explained
why brown eyes are dominant to blue eyes.

Now that we have seen that non-strict laws may be used for explanation,
let us see whether they can also be used for policy. This I will do in the next
chapter, where I will consider pragmatic laws more generally (i.e. I will not
restrict to the case of classical genetics).





Chapter 6

P -laws, cP -laws and Policy

Up till now we have seen that the concept of ‘(causal) pragmatic law’ is
a valuable alternative to the decried concept of ‘strict law’, and that it is
compatible with (but not superseded by) the concept of ‘cs-mechanism’. We
have also seen how (c)P -laws and the theories in which they figure can be
represented by (interrelated sets of) causal nets. Finally, it emerged that
causal P -laws may be used for explanation even if they are not strict, as was
revealed by the case of explanation in genetics.

This last point was very important, since their use in explanation is one of
the main conditions in Mitchell’s framework to call non-universal and contin-
gent generalizations (such as the principles of classical genetics) ‘pragmatic
laws’. But explanation is not the only role of laws in her framework. She
also focuses on prediction and manipulation.

I will not discuss prediction explicitly here. At several points in chapter
4 the topic of prediction was dealt with implicitly. I do not intend to say
that generating reliable predictions from non-strict laws is straightforward.
If some generalization has limited stability and strength it often takes much
effort to assess its use for prediction in some intended area of application.
But in my view, all these difficulties are also present in the context of policy
and manipulation. Therefore I will concentrate thereon.

The concept of manipulation might raise a problem for the present frame-
work, however. In section 6.1 I will present the standard view on the practical
value of causal knowledge, viz. that manipulation of causes is a good way to
bring about a desired change in the effect (whereas, for example, manipu-
lation of the effect is no good way to bring about a desired change in the
causes).1 If this is true, it can be asked whether non-causal P -laws are of any

1This chapter is based on Leuridan, Weber and Van Dyck, “The Practical Value of Spu-
rious Correlations: Selective versus Manipulative Policy”, to appear in Analysis (Leuridan
et al., POL). To avoid change of style, I will continue writing in the first person singular,
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use in policy at all. If not, it seems they have little value apart from their
applicability for prediction, since they hardly played a role in explanation
(except as explanantia). But then the lack of any clear distinction between
causal pragmatic laws and non-causal ones should be counted heavily against
Mitchell’s framework and it would become hard to see what this framework
adds to that of Woodward. Fortunately, the situation is not that bad. In
section 6.2, I will argue that although the standard view is intuitively very
plausible, there are common cases in which some desired goal is obtained
on the basis of spurious correlations or non-causal P -laws. (From this one
should not conclude, however, that causal knowledge is superfluous in these
cases.) I will not concentrate solely on the principles of classical genetics, al-
though these will be addressed too. In section 6.3 I will distinguish between
manipulative policy and selective policy to account for the use of non-causal
P -laws in policy.

(I will not give an overview of the technical literature on the prediction of
policy-outcomes. I refer the reader to the do-calculus of Pearl, 2000, chapters
3, 4, and 7 and the manipulation theorem of Spirtes et al., 2000, 47–53.)

6.1 The standard view on the practical value

of causal knowledge

In the past 25 years, many philosophers have endorsed the view that the
practical value of causal knowledge lies in the fact that manipulation of causes
is a good way to bring about a desired change in the effect. This view is
intuitively very plausible. For instance, we can predict a storm on the basis
of a barometer reading, but we cannot avoid the storm by manipulating the
state of the barometer (barometer status and storm are effects of a common
cause, viz. atmospheric conditions). In this section, I will present textual
evidence which shows that this view is very popular.

In “Causal Laws and Effective Strategies”, the first essay of How the Laws
of Physics Lie (1983), Nancy Cartwright argues that the notion of “effective
strategy” is intimately tied to causation. Intuitively, an effective strategy
should be conceived of as an adequate way to achieve some desired goal.
She distinguishes between laws of association and causal laws . The former
just tell how often two qualities co-occur, “but they provide no account of
what makes things happen” (Cartwright, 1983, 21). This is done by causal
laws, which relate some cause C to some effect E – e.g. “Smoking causes
lung cancer”. Cartwright stresses “[. . . ] that causal laws cannot be done

but of course the arguments to be presented are the outcome of this joint work.
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away with, for they are needed to ground the distinction between effective
strategies and ineffective ones” (Cartwright, 1983, 22). She also claims that
“[. . . ] spurious correlations are no grounds for action” (Cartwright, 1983, 34)
and that “[. . . ] if one wants to obtain a goal, it is a good (in the pre-utility
sense of good) strategy to introduce a cause of that goal” (Cartwright, 1983,
36).

Daniel Hausman describes the practical value of causal knowledge as fol-
lows:

Causes can be used to manipulate their effects, but effects cannot
be used to manipulate their causes, and effects of a common cause
cannot be used to manipulate one another. (Hausman, 1998, 1)

Knowing the causes of an event helps one to bring it about.
Knowing its effects does not. Knowing what things are related to
an event as effects of a common cause does not help one to bring
it about either. Causes are means and tools. People can use
them to bring about their effects. (Hausman, 1998, 86, original
emphasis)

The following quote of Jim Woodward reveals that he also ties the prac-
tical value of causation to manipulation of causes to bring about a desired
effect:

In particular, it is our interest in manipulation that explains why
we have (or provides the underlying motivation for our having) a
notion of causality that is distinct from the notion of correlation.
If one asks why we single out those relationships between X and
Y that persist under interventions on X [. . . ], the answer is to be
found in our practical interest in changing or controlling nature.
Human beings often are (and are justified in believing that they
are) in situations in which they can perform actions affecting some
variable X [. . . ] meeting the conditions [. . . ] on interventions set
out above, and in which their interest is in knowing what will
happen to some other variable Y under such an intervention.
(Woodward, 2003b, 150)

According to Jon Williamson, one of the reasons why it is convenient to
represent the world in a causal way, is stated in the following principle, which
he calls Strategy:

Normally, instigating causes is a good way to achieve their effects.
On the other hand instigating effects is not normally a good way
to bring about their causes. (Williamson, 2005, 137)
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In the following quote, the practical value of causal knowledge is described
in the same way:

[. . . ] if A causes B then intervening to change the value of A can
change the value of B but intervening to change the value of B
cannot change the value of A. An intervention (sometimes called
a divine intervention) on A is a change in the value of A that is
brought about without changing the values of any of A’s direct
causes in V . Thus an intervention changes A via a causal pathway
that is not captured by the modelling context V . (Williamson,
2005, 139, original emphasis)

Judea Pearl also endorses this view:

What difference does it make if I told you that a certain connec-
tion is or is not causal? Continuing our example, what difference
does it make if I told you that the rooster does cause the sun to
rise? This may sound trivial. The obvious answer is that know-
ing “what causes what” makes a big difference in how we act. If
the rooster’s crow causes the sun to rise, we could make the night
shorter by waking up our rooster earlier and making him crow
– say, by telling him the latest rooster joke. (Pearl, 2000, 337,
original emphasis)

In the following quote Pearl also refers to bringing about effects by ma-
nipulating causes:

Causal effects permit us to predict how systems would respond
to hypothetical interventions – for example, policy decisions or
actions performed in everyday activity. As we have seen [. . . ],
such predictions are the hallmark of causal modeling, since they
are not discernible from probabilistic information alone; they rest
on – and, in fact, define – causal relationships. (Pearl, 2000, 65)

6.2 Why the standard view is too restrictive:

three examples

I have used the label standard view for the thesis that the practical value of
causal knowledge lies in the fact that manipulation of causes is a good way
to bring about a desired change in the effect. I will now argue, by means of
three examples, that this view is too restrictive.
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table 11 table 12
PTi GCi

GTi black white GTi B b
BB 1.00 0.00 BB 1.00 0.00
Bb 1.00 0.00 Bb 0.50 0.50
bb 0.00 1.00 bb 0.00 1.00

Conditional probability tables for crosses on coat colour in guinea pigs (together with some
analogue of table 3). The resulting credal set is distribution-identical to Pα.

For ages, agriculturists have sought to obtain ever better (in the sense
of more productive, more beautiful, more easy to raise, more resistant to
diseases, . . . ) livestock and crops. They sought to obtain some desired
phenotype. It should be obvious from chapter 4 how this can be obtained.
(I will illustrate it by means of the example used in Leuridan et al. (POL),
which was taken from Stansfield, 1983, 24–25.)

Guinea pigs are black or white. The colour is determined by one pair of
alleles (B and b), where B is dominant to b and codes for black coat colour.
Hence, crossings on guinea pigs regarding coat colour can be described by
means of the members of a credal net that is distribution-identical to Bα.

With respect to the phenotypic expression of these genes, we have three
causal P -laws. All BB animals are black. All Bb animals are black. All
bb animals are white. With respect to the results of crossings, we also have
several causal P -laws, e.g.: if x has BB, then if it is crossed with an arbitrary
y, all offspring is black. In line with chapter 4, this is summarized in tables
11 and 12.

We also have several non-causal P -laws that can be explained by means
of these causal P -laws. If x is white, then it has bb. If x is black, then it has
BB or Bb. If x is black and one of its parents white, then it has Bb . . . (In
Leuridan et al. (POL) these non-causal P -laws are called ‘symptom laws’,
i.e. laws that claim that some phenomenon is a symptom of the presence
of a cause.) One important symptom law is the following: If x is black
and belongs to a population that was produced by procedure P, x is almost
certainly BB. The procedure P refers to a series of artificial selections: start
with a population of black animals and let them mate; remove all white
animals from the filial population, and let the filial population mate; repeat;
repeat; . . . A population that is produced this way is called “true-breeding”
(cf. section 4.5).

Suppose that we want to produce a black guinea pig. The following
strategy would help (though it is not completely reliable, as I will show):

Take a black female (x), and a black male (y). Let this male and
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female mate.

The expected result depends on the genetic make-up of x (which by the
symptom laws is either BB or Bb) and of y (which also is either BB or
Bb). Suppose, on the one hand, that at least one of them has BB. Then
all offspring will be black. Suppose, on the other hand, that both have Bb.
Then on average 75% of the offspring will be black, 25% white. So it is to
be expected that between 75% and 100% of the offspring of x and y will be
black. (In about 99,6% of the litters with 4 offspring, which is the average
number of young per litter, there will be at least one black offspring in the
case of Bb×Bb.)

Suppose we want to produce a white guinea pig. A possible strategy is
the following:

Take a white female and a white male. Let this male and female
mate.

This strategy is completely reliable (barring cases of e.g. mutation). By
the causal and non-causal P -laws specified above, all resulting offspring will
be white.

Though the strategies are useful to obtain a desired goal, they do not rely
on a directed causal relation. Instead they rely on a common cause structure,
on a non-causal P -law that describes correlated effects of a common cause.
The phenotypes of the parents and of the children are non-simultaneous
effects of the same cause, viz. the genotype of the parents, as is evident from
figure 4.1.

Let us turn now to a second example. Insurance companies ask you a lot
of questions before they decide whether or not to give you a life insurance.
They do this with the explicit goal to minimize future disbursements. For
instance, they usually ask whether and how much you smoke, whether you
drink alcohol (and how much) and whether you are pregnant (if you are fe-
male). And they ask about a whole list of diseases you might have or have
had: tuberculosis, peptic ulcers, heart attack, multiple sclerosis, leukemia,
diabetes, malaria, and many others. All these questions relate to possible (re-
mote or more proximate) causes of death. However, the following questions
were also found in a list of a Belgian insurance company:

Were you refused by another company for a life insurance or a
health insurance?

Did you ever do an AIDS test?
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With respect to the second question, it is important to note that the
company already knows whether you have aids or not (this is one of the
diseases they ask you about). So they use the fact that you thought you
might have AIDS (and therefore did a test) as a criterion. But the AIDS test
will not kill anyone. If there is a correlation between AIDS tests and death, it
is spurious. The policy of the company is based on this spurious correlation.
The first question also shows that the company uses spurious correlations as
a basis for policy: being refused does not make one less healthy.

Let us now consider the third and last example. A company’s productivity
in large part depends on the quality and allocation of its personnel. The
goal of staff business is therefore to set up an appropriate work force. In
many sectors, especially in academia, diplomas and degrees still play an
important role in the recruitment of new employees. Her having a diploma
or a high degree does not, however, make an applicant fit. If there is a
correlation between having a diploma or high degrees and future value for
the employer, it certainly is spurious. Rather, it is considered a sign of
intelligence, diligence, organizational skills, etc., which are in turn considered
as causally relevant for the applicant’s expected value for her employer.

6.3 Manipulative policy versus selective pol-

icy

As Daniel Hausman has pointed out (cf. the quote in section 6.1) manipulat-
ing an effect of a common cause is not a good strategy to bring about a change
in another effect of the same cause. Whitening a guinea pig will have no effect
on the phenotype of its descendants. Forcing subjects (chosen randomly) to
do an AIDS test will not make them die sooner (nor will deprivation from
such a test raise their life expectancy). And arbitrarily distributing diplo-
mas or degrees will not improve the productivity of the fortunate receivers.
However, the examples in section 6.2 reveal that there is a different way in
which causal knowledge can be useful. We should distinguish between two
kinds of policy. On the one hand, we have manipulative policy . To obtain a
goal, one may actively manipulate certain cause variables to obtain a desired
value of the goal variable. On the other hand, we have selective policy . To
obtain a goal we select (from a given population) individuals with certain
characteristics that are spuriously related to the goal state.

Manipulative policy is based on causal P -laws. Selective policy is based
on non-causal P -laws. But it also involves complex causal knowledge. In the
examples above, the policy was based on knowledge about common cause
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structures. However, this is only the tip of the iceberg. Selective policy
may be based on knowledge of causal structures that are very diverse in
character. Consider the following scenario: a student’s having a high degree
may not only be caused by her being intelligent, diligent, etc., but also by
her having enjoyed a lot of tutoring. A company that wishes to recruit a
new employee may thus benefit from choosing (selecting) someone with a
high degree amongst those that did not enjoy much tutoring. Most certainly,
exploring the space of possibilities will reveal many interesting ways in which
a desired goal can be obtained on the basis of non-causal P -laws, provided
the latter are used in an appropriate way.

To conclude, even if non-causal P -laws are unserviceable for manipula-
tion, they are useful for other kinds of policy. Prediction, explanation and
manipulative policy do not exhaust the range of roles of laws in scientific
practice. Hence the lack of any clear distinction between causal pragmatic
laws and non-causal ones should not be counted against Mitchell’s pragmatic
approach.



Chapter 7

Experiments in Classical
Genetics

Up to now I have discussed several topics relating to laws of nature and
causality in the special sciences. I showed that there are little or no strict
laws in the special sciences and proposed to use the concepts of ‘(causal)
pragmatic law’ and ‘(causal) pragmatic regularity’ instead (chapter 1). I also
showed that these are compatible with, but not superseded by the concepts
of ‘mechanism’ and ‘mechanistic model’ (chapter 2). Then I introduced the
language of causal modelling and used it to analyse the causal structure of
classical genetics (chapters 3 and 4). In chapters 5 and 6 I showed that causal
pragmatic laws can be used for explanation and for manipulative policy, and
I argued that non-causal pragmatic laws may usefully underly selective policy
(a point which is mainly neglected in the philosophy of science).

Here, and in the next two chapters, I will tackle a new set of issues. All
are related to the problem of causal discovery. In this chapter, I will zoom in
on the case of classical genetics again and show that the language of causal
modelling is also suitable for analysing the ‘logic’ of experimentation. It is
generally assumed that experiments and experimental data are superior to
merely observational data as regards causal discovery. I subscribe to this
assumption, and want to examine to what extent this bears upon causal
discovery in classical genetics. In chapter 2 I gave a very general characteri-
zation of experiments. In section 7.1 I will elaborate on this characterization
and show in what sense it distinguishes experiments from non-experimental
designs. This distinction is commonplace in the methodology of the special
sciences. Section 7.2 will serve three goals. Firstly, I will show that it was
customary in the history of classical genetics to call genetic crosses ‘experi-
ments’. Secondly, I will show that these crosses are not experiments in the
sense of section 7.1. Thirdly, I will show that genuine experiments were not

139



140 Experiments in Classical Genetics

completely wanting in the history of classical genetics. In section 7.3 I will
discuss the relevance of these findings as regards causal inference in classical
genetics. The non-experimental nature of genetic crosses hampered causal
discovery, as was argued by the early T.H. Morgan!

7.1 Experiments and non-experimental

designs

In section 2.6 I gave the following general characterization of experiments:

(EXP) In an experiment, an object is placed in some controlled environment.
It is manipulated, often using some apparatus, such that it assumes
some definite property X = x. Then, again using some apparatus, the
outcome is measured in some (other) property Y . More specifically, it
is verified whether there is some relation between X = x and Y = y
(for some or all possible values x of X and y of Y ), and if so, what is
its strength and how it can be characterized.

I added that the term object should be interpreted as broadly as possi-
ble, that an environment is ‘controlled’ if the relation between X and Y is
not influenced or disturbed by other factors and that apparatus are often
indispensable in experimental designs for manipulation and/or measurement
and/or control of disturbing influences. (Although control of the environment
is vital to experimentation, it also hampers the projection of experimental
knowledge to, or the application of such knowledge in, other contexts – cf.
section 4.14.2.) The central point of this characterization, however, is the no-
tion of manipulation since this provides one of the main distinctions made in
statistics and the methodology of the special sciences between experimental
and observational studies. This is evident from Kutner et al. (2005), an elab-
orate statistics handbook covering the use of regression analysis and analysis
of variance in business administration, economics, the social and behavioral
sciences, engineering, the health and biological sciences, etc. (Kutner et al.,
2005, vi, 2).

Kutner et al. (2005) define experiments as follows:

Designed experiments are conducted to demonstrate a cause-and-
effect relation between one or more explanatory factors (or predic-
tors) and a response variable. The demonstration of a cause-and-
effect relationship is accomplished, in simple terms, by altering
the levels of the explanatory factors (i.e., the X’s) and observing
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the effect of the changes on the response variable Y . (Kutner
et al., 2005, 643, my emphasis)

The levels of the explanatory factors are often called treatments. The
objects or entities to which the treatments are applied are called experi-
mental units. In a proper experimental design the assignment of treatments
to experimental units is governed by randomization. (In section 2.6 I indi-
cated that randomization is an effective and widely-used way to control for
disturbing factors.)

Thus a characteristic feature of an experimental study is that the
investigator exercises control over the assignment of treatments
to the experimental units through the process of randomization.
If important differences in the responses result between the treat-
ment groups, we can attribute them to the treatments. (Kutner
et al., 2005, 644, my emphasis)

In section 2.6 we saw that randomization occurs twice in experimental
designs. Firstly, a sample S is randomly selected from the target population
P . Secondly, the experimental units in S are randomly divided into an
experimental group SX (or several such groups) and a control group SK .

Kutner et al. (2005, 643) cite the following example. In 1976 an experi-
ment was conducted on the effects of vitamin C on the prevention of colds. A
sample of 868 children was studied. (Kutner et al. do not mention whether or
not these were selected at random from the target population.) Half of these
were randomly selected for the experimental group. Children in this group
received a 1,000-mg tablet of vitamin C daily for the test period (X = 1).
The remaining children (the control group) received a placebo (an identical
tablet containing no vitamin C; X = 0) also on a daily basis. The variable
X is treated as a qualitative variable with two levels or values here.1 The
average number of colds per child was .38 for the first group, and .37 for the
second group. (The response variable thus is a ratio variable.) The difference
was not statistically significant.

By contrast, the assignment of treatments or factor levels to experimen-
tal units is not subject to randomization in observational studies. In other
words, no second-phase randomization occurs. (The first-phase randomiza-
tion preferably does occur.) Therefore, they are less suitable for demonstrat-
ing causal relations.

1It could also be treated as a quantitative variable with levels ranging from 0-mg to,
say, 3000-mg (i.e. as a ratio variable).
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A cause-and-effect relationship between the explanatory factors
and the outcome or response variable is difficult to establish in
an observational study. Usually, evidence external to the obser-
vational study would be required to rule out possible alternative
explanations for cause and effect. (Kutner et al., 2005, 645)

[. . . ] designed observational studies do not directly demonstrate
cause-and-effect relationships between the explanatory factors and
the response. They can establish association between explanatory
factors and a response, and provide the basis for further study
of potential cause-and-effect relationships. To infer causality, po-
tential confounding variables would need to be identified, and
subgroup analysis performed to try to rule out possible alterna-
tive factors. (Kutner et al., 2005, 666)

Several kinds of observational designs can be distinguished. I will focus on
prospective designs, since these will turn out to be relevant in the following
sections.2

In a prospective observational study , one or more groups are
formed in a nonrandom manner according to the levels of a hy-
pothesized causal factor, and then these groups are observed over
time with respect to an outcome variable of interest. Prospec-
tive studies answer the question: “What is going to happen?”
(Kutner et al., 2005, 667)

In a prospective design, the groups are self-selected. Kutner et al. (2005,
645) cite the following example. The administration of a college of business
offered its faculty the opportunity to participate in a summer workshop on
case teaching methods. Faculty were not required to attend the workshop,
but were asked to sign up on a first-come, first-served basis. Of the 110
faculty in the business school, 63 faculty elected to attend the seminar. At
the end of the following academic year, the administration compared the
recent teaching performances of faculty who attended the seminar (X = 1)
to those who did not attend (X = 0). (Again, we have a qualitative variable.
Since subscription was on a first-come, first-served basis, it seems to me

2In a retrospective observational study , groups are defined on the basis of an observed
outcome, and the differences among the groups at an earlier point in time are identified
as potential causes. Retrospective designs answer the question: “What has happened?”
(Kutner et al., 2005, 667) In a cross-sectional study measurements are taken at a single
point in time. The levels of the potential cause factors and the response variable are
determined simultaneously. (Kutner et al., 2005, 666)
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that it could also have been treated as an ordinal variable, e.g. subscribers
1 to 10, versus subscribers 11 to 20, versus . . . ) Students evaluated faculty
on a 7-point scale (1=poor performance, . . . , 7=outstanding). Faculty who
attended the seminar were generally rated more highly by students than
faculty who did not attend. The difference between the average ratings (5.76
versus 5.26) was statistically significant, but this in itself does not show that
the workshop enhanced the faculty’s teaching performances. It may be the
case, for example, that attendance and teaching performances have a common
cause such as the faculty’s motivation to work.

This distinction between experimental designs and observational studies
has frequently been discussed in philosophy of science (see inter alia Wood-
ward (2003a,b) and Giere (1997)).3 The implications of this distinction as
regards causal discovery have been extensively treated in the literature on
causal modelling: see for example Pearl (2000), Spirtes et al. (2000), Neapoli-
tan (2004), Williamson (2005), and Korb and Nyberg (2006). In chapter 8
I will briefly zoom in on the results of this literature and present an adap-
tive logic for causal discovery. First, however, I will discuss the status of
‘experiments’ in classical genetics.

7.2 The status of ‘experiments’ in genetics

This section will serve three goals. Firstly, in section 7.2.1 I will show that
it was customary in the history of classical genetics to call genetic crosses
‘experiments’. To this end I will use quotations from Mendel, de Vries,
Correns and Bateson. In many cases, I will add the original German or French
version. In section 7.2.2 I will show that these crosses are not experiments
in the sense of section 7.1. Finally, in section 7.2.3 I will show that genuine
experiments were not completely wanting in the history of classical genetics.

7.2.1 ‘Experiments’ in the works of Mendel, de Vries,
Correns and Bateson

In the history of classical genetics it was customary to call genetic crosses ‘ex-
periments’. This is evident from the works of Mendel, de Vries and Correns.
It is also evident from the works of Bateson, who explicitly joins the difference

3It should be noted that intervention or manipulation in experiments needn’t always
be material. Mary S. Morgan (2003) discusses the case of model experiments, virtual ex-
periments and in-between hybrid experiments in which (little or) no material intervention
occurs.



144 Experiments in Classical Genetics

between experimentation and non-experimental research to the reliability of
the resulting knowledge.

The German title of Mendel’s main paper is “Versuche über Pflanzen-
Hybriden”. Eva R. Sherwood translated it as “Experiments on Plant Hy-
brids”. The paper begins as follows:

Artificial fertilization undertaken on ornamental plants to obtain
new color variants initiated the experiments to be discussed here.
The striking regularity with which the same hybrid forms always
reappeared whenever fertilization between like species took place
suggested further experiments whose task it was to follow the
development of hybrids in their progeny. (Mendel, 1865, 1, my
emphasis)

The original German text is as follows:

Künstliche Befruchtungen, welche an Zierpflanzen deshalb vor-
genommen wurden, um neue Farbenvarianten zu erzielen, waren
die Veranlassung zu den Versuchen, die hier besprochen werden
sollen. Die auffallende Regelmässigkeit, mit welcher dieselben
Hybridformen immer wiederkehrten, so oft die Befruchtung zwis-
chen gleichen Arten geschah, gab die Anregung zu weiteren Ex-
perimenten, deren Aufgabe es war, die Entwicklung der Hybriden
in ihren Nachkommen zu verfolgen. (Mendel, 1933, 1, my empha-
sis)

Mendel discusses several such experiments:

This paper discusses the attempt at such a detailed experiment.
It was expedient to limit the experiment to a fairly small group
of plants, and after a period of eight years it is now essentially
concluded. Whether the plan by which the individual experiments
were set up and carried out was adequate to the assigned task
should be decided by a benevolent judgement. (Mendel, 1865,
2–3, my emphasis)

Die vorliegende Abhandlung bespricht die Probe eines solchen
Detailversuches. Derselbe wurde sachgemäss auf eine kleine Pflan-
zengruppe beschränkt und ist nun nach Verlauf von acht Jahren
im Wesentlichen abgeschlossen. Ob der Plan, nach welchem die
einzelnen Experimente geordnet und durchgeführt wurden, der
gestellten Aufgabe entspricht, darüber möge eine wohlwollende
Beurtheilung entscheiden. (Mendel, 1933, 4, my emphasis)
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In 1900, Correns, de Vries and Tschermak all referred to Mendel’s work or
that of their own as ‘experiments’. In section 4.9.1 I mentioned the following
quote by de Vries:4

My experiments have led me to the two following statements:
[. . . ]. [. . . ] As my experiments show, they possess generalized
validity for true hybrids. (de Vries, 1900a, 110)

In the same year 1900, de Vries wrote a French paper, “Sur la Loi de
Disjonction des Hybrides”, which begins as follows:

According to the principles which I have expressed elsewhere (In-
tracelluläre Pangenesis, 1889), the specific characters of organ-
isms are composed of separate units. One is able to study, exper-
imentally, these units either by the phenomena of variability and
mutability, or by the production of hybrids. (de Vries, 1950, 35,
my emphasis)

D’après les principes que j’ai énoncés ailleurs (Intracellulare Pan-
genesis [sic], 1889), les charactères spécifiques des organismes sont
composés d’unités bien distinctes. On peut étudier expérimenta-
lement ces unités soit dans des phénomènes de variabilité et de
mutabilité, soit par la production des hybrides. (de Vries, 1900b,
845, my emphasis)

After discussing several monohybrid crosses, he concluded as follows:

The totality of these experiments establishes the law of segrega-
tion of hybrids and confirms the principles that I have expressed
concerning the specific characters considered as being distinct
units. (de Vries, 1950, 38, my emphasis)

L’ensemble de ces expériences met donc en évidence la loi de
disjonction des hybrides et vient confirmer les principes que j’ai
énoncés sur les charactères spécifiques considérés comme des unités
distinctes. (de Vries, 1900b, 847, my emphasis)

When Correns read this French paper, he immediately submitted a reac-
tion:5

The latest publication of Hugo de Vries: “Sur la Loi de Disjonc-
tion des Hybrides”, which through the courtesy of the author

4I did not consult the original German text.
5I did not consult the original German text.
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reached me yesterday, prompts me to make the following state-
ment: In my hybridization experiments with varieties of maize
and peas, I have come to the same results as de Vries, who ex-
perimented with varieties of many different kinds of plants, [. . . ].
(Correns, 1900, 119, my emphasis)

[. . . ] the Abbot Gregor Mendel in Brünn, had, during the sixties,
not only obtained the same result through extensive experiments
with peas, which lasted for many years, as did de Vries and I, but
had also given exactly the same explanation, as far as that was
possible in 1866. (Correns, 1900, 120, emphases adjusted)

Bateson pursued the same course and added some zealous flavour. But
what is most interesting, he joined the difference between experimentation
and non-experimental research to the topic of the reliability of scientific
knowledge.

I venture to express the conviction, that if the facts now before us
are carefully studied, it will become evident that the experimental
study of heredity, pursued on the lines Mendel has made possible,
is second to no branch of science in the certainty and magnitude
of the results it offers. (Bateson, 1902, ix, my emphasis)

The study of variation and heredity, in our ignorance of the cau-
sation of those phenomena, must be built of statistical data, as
Mendel knew long ago; but, as he also perceived, the ground must
be prepared by specific experiment. The phenomena of heredity
and variation are specific, and give loose and deceptive answers
to any but specific questions. That is where our exact science will
begin. Otherwise we may one day see those huge foundations of
“biometry” in ruins. (Bateson, 1902, xi, emphases adjusted)

7.2.2 Genetic crosses are no genuine experiments

How should we evaluate Bateson’s judgement? When we put the results of
chapter 4 and of section 7.1 together, it immediately emerges that genetic
crosses (whether they are monohybrid or multihybrid crosses) are not genuine
experiments.

The data that were obtained in such crosses concern both the parental
and the filial phenotypes. But the former do not cause the latter. Rather,
they each are effects of a common cause: the parental genotypes. (The
paternal and the filial phenotype are effects of the paternal genotype; the
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maternal and the filial phenotype are effects of the maternal genotype.) But
this common cause was not observable. It is CG-theoretical (where CG
stands for classical genetics) so it could not be determined without relying
on the principles of classical genetics. Worse still, this common cause was
not manipulated or intervened on. Before the advent of genetic engineering
there was no way to purposively alter an organism’s genotype.6

It can of course be objected that the parental genotypes were indirectly
fixed by selecting ‘appropriate’ parental plants (e.g. short pea plants to make
sure that GT = ss, or true-breeding tall plants to make sure that GT = tt –
cf. section 4.5). This is true, but it will not save the experimental status of
genetic crosses. This procedure necessarily relies on the principles of genetics.
It is of course possible to select short pea plants without relying on the prin-
ciples or classical genetics (cf. phenotype is CG-non-theoretical). It is even
possible to select true-breeding tall plants (defined phenotypically). Other-
wise, Mendel could not have bought true-breeding seeds from seed dealers
(see footnote 10). But unless you rely on the principles of genetics, you can-
not in this way select organisms of some desired genotype. The structuralist
notion of T-theoreticity thus is not only relevant with respect to observation,
but also regarding selection and/or manipulation.

The CG-theoreticity of genotype has a serious drawback. The relation
between genotypes and phenotypes is to some extent invariant. At least,
that was part of classical genetics’ claims. It is ideally possible to perform
an intervention (i.e. an ideal intervention) on GTi with respect to PTi. At
the time, however, it was not possible to perform a real intervention on GTi

with respect to PTi. The selection of plants on the basis of their pheno-
type violates the definition of “intervention variable” (IV), and hence of
“intervention” (IN). Whereas ideal interventions are all that is needed for
the definition of causal relations, real interventions are indispensable for gen-
uine experimentation. The absence of manipulation or intervention shows
that genetic crosses are no genuine experiments. They are rather akin to
prospective designs.

I write ‘akin to’, since genetic crosses do not have all the characteristics of

6This claim should be nuanced in two ways. Firstly, by saying that there was no way
to purposively alter an organism’s genotype, I explicitly leave room for non-purposive
alterations. In fact, in section 4.14.2 we already encountered such non-purposive ma-
nipulations. By changing the environmental conditions (e.g. by administering alcohol or
radium) changes in the genotype can be effected in mice. By calling these manipulations
non-purposive, I mean that they could not be used to obtain some desired phenotype.
Secondly, by saying that before the advent of genetic engineering there was no way to
purposively alter an organism’s genotype, I do not say that such manipulations now can
be carried out easily.
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prospective designs. Whereas in prospective designs there is an experimental
group (or several such groups) and a control group, no such control group
exists in genetic crosses. The plants in genetic crosses are compared with a
theoretic expectation, not with unmanipulated counterparts. The degree of
fit between the observational results and the theoretic expectation may then
be measured by performing a χ2 test.

Theoretic expectations of course do not come out of thin air. They are
abductively posited or derived. In section 7.3 we will see this had a serious
drawback.

7.2.3 Genuine experiments in classical genetics

From the fact that genetic crosses are no genuine experiments it does of
course not follow that experiments were totally inexistent in classical genetics.
In section 4.14.2 I already cited some examples of genuine experiments in
classical genetics that are cited by Morgan (1928, chapter XVIII). In that
chapter, Morgan tackles the question whether genes are stable.7

Mendel’s theory of heredity postulates that the gene is stable. It
assumes that the gene that each parent contributes to the hybrid
remains intact in its new environment in the hybrid. (Morgan,
1928, 292)

The experiments by Stockard and by Little and Bagg, which I briefly
discussed in section 4.14.2 are such that the environment is manipulated,
either by administering alcohol or by applying radium. Then the effects
on the genotype are studied to see whether genes are stable under such
influences. (Morgan, 1928, 307–310)

Of course, the CG-theoretical nature of the genotype still plays a role in
these experiments.

Since the gene cannot be studied directly by physical or chemical
methods, our conclusions concerning its stability must rest on
deductions [better: abductions] from its effects. (Morgan, 1928,
292)

7.3 Causal inference in classical genetics

What should we conclude from sections 7.2.1 and 7.2.2? Should we chide
the early Mendelians for their poor methodology? That is certainly not my

7This question was very important given the then discussions about the inheritance of
acquired characteristics.
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intention. At the time, the theory of the design and analysis of experiments
in the life sciences had not yet been developed. In 1925, Fisher published
his Statistical Methods for Research Workers. It was a practical handbook,
albeit somewhat cursory and elementary. It was based on the experience he
acquired at Rothamsted Experimental Station. In this book the principles
of randomization were first expounded. In 1935 he published The Design of
Experiments, which was more elaborate.8 (Yates and Mather, 1963)

Thus, at the time Mendel, Correns, de Vries and Bateson presented the
results of genetic crosses, the theory of experimental design had not yet been
developed. At Morgan’s time, the theory was at its infancy. (But Fisher’s
Statistical Methods for Research Workers is not included in the bibliography
of Morgan (1928).) If it is not my intention to chide the early Mendelians,
what is? In the rest of this section I will elaborate the problem of causal
discovery from non-experimental data with unobservable variables. It will
be seen that this problem also engaged geneticists in the beginning of the
twentieth century.

The non-experimental nature of genetic crosses hampers the use of such
crosses for causal discovery. In order to infer the existence of causal relations
between genotypes, gametic make-ups and phenotypes, a lot of background
assumptions are needed. But given that the selection of parental genotypes
depends on the theory of classical genetics itself, these background assump-
tions are not independently underpinned. Hence it is not surprising that
Mendel and the later geneticists performed many test crosses to check them.

An objection seems to be in order here. Wasn’t this problem quickly
evanescent? After all, once the existence of pairs of ‘genes’ was well-con-
firmed and once their relation to the phenotype was well understood, the
selection of genotypes on the basis of phenotypes was no longer problematic
in practice.

To a certain extent, this objection is sound. The theory of classical genet-
ics made it possible to purposively obtain offspring of some desired pheno-
type by crossing appropriate parental organisms – where the selection of the
parental organisms is based on their phenotype (see chapter 6). The theory
was thus invaluable for horticulture, agriculture and stock breeding. But we
saw in chapter 4 that the history of classical genetics is replete with the-
ory changes to account for recalcitrant anomalies. It often took a long time
before anomalies were accounted for, and the proposed solutions frequently
were not independently grounded.9 Darden cites the following example:

8Unfortunately, I could not consult any of these two works.
9The chromosome theory and the resulting solution to the problem of linkage phenom-

ena was an important exception to this finding. Independent grounding from cytology was
quintessential for the development of the chromosome theory.
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East (1910)10 while studying color inheritance of seeds in maize,
found a ratio of 15 yellow to 1 white plant in the F2 generation,
with the yellow varying from dark yellow to light yellow. He
explained this by postulating two pairs of factors that interacted
in producing the yellow color. Thus the 9:3:3:1 ratio could be
extended from cases of two independent pairs of factors producing
two independent characters to cases in which two pairs of factors
interacted in the production of one character in a “continuously”
varying array in the F2 generation. The 9:3:3 ratio collapsed to
15. (Darden, 1991, 66, original emphasis)

Similar ratios were explained in the same way, by invoking two, three
or even more pairs factors (i.e. multiple factors). This posed methodolog-
ical problems, and it kindled objections by opponents of Mendelian genet-
ics. Originally, T.H. Morgan strongly opposed Mendelian genetics.11 More
specifically, he opposed the “modern factor-hypothesis”, i.e. the assumption
that phenotypic traits are caused by different material units (factors) which
separate in the germ cells “after having lived together through countless
generations of cells without having produced any influence on each other”
(Morgan, 1909, 366) – see also Darden (1991, 67).12

10The paper referred to is East, E.M. (1910), “A Mendelian Interpretation of Variation
That is Apparently Continuous,” American Naturalist, 44: 65–82. I did not consult this
paper myself.

11T.H. Morgan opposed Mendelism until about 1911.
12Morgan opposed to the preformation character of the factor-hypothesis or segregation-

hypothesis.

The factors have become entities that may be shuffled like cards in a pack, but
cannot become mixed. The whole mechanism turns on the old preformation
idea of the way the characters of the adult are contained in the egg. The
success of the method as a ready means of explanation does not, in my
opinion, justify the procedure [. . . ]. (Morgan, 1909, 366)

Instead, Morgan favoured the epigenetic conception.

I think that the condition of two alternative characters may equally well be
imagined as the outcome of alternative states of stability (or of conditions)
that stand for the characters that make up the individual. (Morgan, 1909,
366)

The egg need not contain the characters of the adult, nor need the sperm.
Each contains a particular material which in the course of the development
produces in some unknown way the character of the adult. (Morgan, 1909,
367, original emphasis)

Morgan’s partiality for the epigenetic conception was based on several grounds. Firstly,
he was convinced that having more than one hypothesis or interpretation was favourable
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In the modern interpretation of Mendelism, facts are being trans-
formed into factors at a rapid rate. If one factor will not explain
the facts, then two are invoked; if two prove insufficient, three will
sometimes work out. The superior jugglery sometimes necessary
to account for the result, may blind us, if taken too näıvely, to
the common-place that the results are often so excellently “ex-
plained” because the explanation was invented to explain them.
(Morgan, 1909, 365)

Morgan continues by drawing attention to the abductive nature of expla-
nation in genetics (cf. section 5.2) and by arguing in favour of an instrumental
interpretation of the theory.

We work backwards from the facts to the factors, and then,
presto! explain the facts by the very factors that we invented
to account for them. I am not unappreciative of the distinct ad-
vantages that this method has in handling the facts. I realize how
valuable it has been to us to be able to marshal our results under
a few simple assumptions [. . . ] So long as we do not lose sight
of the purely arbitrary and formal nature of our formulae, little
harm will be done [. . . ]. (Morgan, 1909, 365)

Not all Mendelians considered their formulae as purely arbitrary or for-
mal. But where did these formulae come from? The theoretic expectations
certainly did not come out of thin air. They were abductively posited or
derived. But the scope of possible explanations was seemingly unlimited (see
footnote 4 of chapter 5, where I contrasted the complexity of abduction in
classical genetics with the simplicity of Neapolitan’s framework for abduc-
tive reasoning in Bayesian networks). Hence Morgan’s reticence was not un-
founded. Only by performing many different crosses on many different kinds
of organisms and on many different characters, by systematically performing
test crosses to check the explanatory principles invoked, by repeatedly incor-
porating apparent anomalies, and by gradually incorporating the results of
i.a. cytology, classical genetics eventually developed into a well-established
theory. But nothing was straightforward.

for scientific progress: “[. . . ] the more such [interpretations] we have, the less likely are
we to become blind followers of one idea” (Morgan, 1909, 367). Secondly, genetic evi-
dence indicated that Mendelian segregation is not universally or generally valid. Thirdly,
he thought he had good cytological evidence for his epigenetic interpretation. Finally,
experimental embryology provided indirect (better: analogical) evidence contra the pref-
ormation idea.
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7.4 Causal discovery in the special sciences

We may conclude this chapter by stating that a large part of the empiri-
cal basis of classical genetics was non-experimental and that this hampered
causal discovery. But classical genetics is not the only scientific discipline
that is largely thrown back on non-experimental data. In epidemiology, in
the social sciences, in medicine, . . . experiments are sometimes feasible and
permissible, but not always so. Fortunately, more and more algorithms for
causal discovery from merely observational data are being developed. These
algorithms are phrased within the framework of causal modelling. In the fol-
lowing chapter, I will discuss one such algorithm, show that it faces a problem
that is important and widespread in the special sciences, and present a solu-
tion based on the adaptive logic framework.



Chapter 8

Causal Discovery and the
Problem of Ignorance. An
Adaptive Logic Approach.

In chapter 7 I presented the distinction between experimental designs and
observational studies. Whereas the former involve manipulation, the latter
do not. I also indicated that the former are more suitable for demonstrating
causal relations (cP -regularities) than the latter. This does not mean, how-
ever, that non-experimental causal discovery is out of the question. Indeed,
in the past decades, many interesting algorithms for causal discovery from
(purely) observational data have been developed. But these algorithms still
face several problems.

In this chapter,1 I will zoom in on one such algorithm (Judea Pearl’s
IC algorithm), on one such problem it faces (a problem that I will call the
‘problem of ignorance’), and on a possible solution (an adaptive logic for
causal discovery). Besides, I will pass by the theory of classical genetics for
a while, and seek alliance with occupational medicine, the social sciences,
epidemiology, . . .

8.1 Introduction: causal discovery and the

problem of ignorance

Since the end of the 1980’s, the interrelations between probability theory,
graph theory and causal discovery have been studied by increasing numbers

1This chapter is based on my paper “Causal Discovery and the Problem of Ignorance.
An Adaptive Logic Approach”, to appear in the Journal of Applied Logic (Leuridan,
CDPI).
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of research groups. Different algorithms have been developed to infer causal
relations from non-experimental statistical data.2

In this chapter, I will discuss Judea Pearl’s IC algorithm (Pearl, 2000, 50–
51). It is one of the best known algorithms for causal discovery, or ‘inductive
causation’, and its merits can hardly be overrated. Nevertheless, it faces
a hard and very important problem. In this section, I want to substantiate
three related claims. Firstly, in scientific practice, the problem of ignorance is
ubiquitous, persistent, and far-reaching. Intuitively, the problem of ignorance
bears upon the following situation. A finite set of random variables V is
studied but only partly tested for (conditional) independencies; i.e. for some
variables A, B and for some sets of variables Q it is not known whether A
and B are independent (conditional on Q). So ‘ignorance’ should not be
understood as ‘probabilistic knowledge’, or ‘degree of belief < 1’, but as
the existence of ‘undecided independencies’.3 Secondly, the IC algorithm
cannot be applied in cases of ignorance. It presupposes that a full list of
(conditional) independence relations is on hand.4 If it would be applied to
partial lists, this would moreover lead to unsatisfactory results. Thirdly, the
problem of ignorance can be solved without losing the strong points of the
IC algorithm, viz. by means of an adaptive logic for causal discovery.5

Let me briefly dwell on the first claim. In scientific practice, for example in
the social sciences or in epidemiology, the problem of ignorance is ubiquitous.
This may be illustrated by an example. The influence of many different
factors on cognitive skills and educational achievement are studied by many
different research groups. Some research groups focus on cultural factors,
some on sociological factors, still others on psychological ones. Other research
groups focus on biological, chemical or other factors. In total, hundreds of
variables are studied.6 The combined research of all these groups gives rise

2See Spirtes et al. (2000, chapters 5–6) and Neapolitan (2004) for an overview of several
different such algorithms.

3In 2006, Rolf Haenni and Stephan Hartmann devoted a special issue of Minds and
Machines to the topic of Causality, Uncertainty and Ignorance. Unfortunately, none of
the papers in question treated ‘ignorance’ in the sense just stated, viz. the presence of
undecided independencies. (Haenni and Hartmann, 2006)

4In the rest of this chapter, I will use the following abbreviations. ‘UIR’ will stand for
‘unconditional independence relation’. Likewise, ‘CIR’ will stand for ‘conditional indepen-
dence relation’. ‘IR’ will be used as an umbrella term. Note that the relations in question
are particular relations; they are relations between particular (sets of) variables.

5Since the adaptive logic to be presented is based on IC, it involves only finite sets
of finite variables. Like IC, it also assumes causal sufficiency (i.e. if two variables under
study share a common cause, this cause is observed too).

6The ISI Web of Knowledge cites hundreds of articles on “educational achievement”,
published between 2000 and 2007. Many of them report non-experimental data (e.g.
the National Education Longitudinal Study). The scope of the factors studied is huge:
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to the confirmation and disconfirmation of many CIRs and UIRs, as in each
study several possible confounders are tested for.7 However, not all possible
(conditional) independencies are tested.

The problem of ignorance is moreover persistent. Even if many con-
ditional independence relations can be ruled out a priori, on the basis of
reliable background knowledge, micro-level knowledge, common sense argu-
ments, . . . , many others will still be undecided.

Finally, the problem of ignorance is far-reaching. If the causal interpreta-
tion of non-experimental data requires that all (conditional) independencies
are decided, as in the IC algorithm, then observational science would lose a
large part of its materiality. No causal knowledge could ever be obtained in
the short run.8

In section 8.5, I will present ALIC, the adaptive logic for causal discovery
which properly solves the problem of ignorance while doing justice to the
merits of Pearl’s IC. First, however, I will present the formal background
to IC (section 8.2), and also the algorithm itself (section 8.3). Then I will
present LIC, a non-adaptive logic for causal discovery (section 8.4). By itself,
LIC has little to add to the IC algorithm, but its significance derives from
the role it plays in the formulation of ALIC.

8.2 Formal background to causal discovery

In this section I will briefly present the formal background to IC. Part of
this has already been dealt with in chapters 3 and 4. In the interest of read-
ability, I will restate some of the concepts defined there. Section 8.2.1 deals
with directed acyclic graphs and their relations with probability distribu-
tions. Section 8.2.2 is on faithful indistinguishability classes and patterns.
Finally, section 8.2.3 treats of the graphoid axioms and their meta-theoretic
properties (the relevance of which will prove in sections 8.4.4 and 8.5.5).

it ranges from television viewing, social capital and self-esteem over parasites, maternal
smoking, birth order, ethnicity, . . .

7I use ‘confirmation’ and ‘disconfirmation’ in a loose sense here.
8The problem of ignorance not only lurks in scientific practice, but also in everyday

human reasoning. Humans often endorse or disaffirm CIRs and UIRs between many
different variables, thereby leaving undecided a large number of IRs.
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8.2.1 Directed acyclic graphs and probability distrib-
utions

As in the previous chapters, causal structures will be described by means of
directed acyclic graphs, or DAGs. Let me briefly restate what DAGs are.
A graph G = 〈V, E〉 consists of a finite set of vertices V and a finite set of
edges E. In a directed graph, all edges are directed (→). Two vertices A and
B are adjacent (A− B) iff either A→ B ∈ E, or B → A ∈ E (‘−’ will also
be called an undirected edge). There is a path between A and B iff there
is a sequence of adjacent vertices, beginning with A and ending with B. A
directed path (A⇒ B) is a path that has no colliders (X → Y ← Z) or forks
(X ← Y → Z). A path that contains no vertex more than once is acyclic. A
directed, acyclic graph (DAG) is a directed graph that contains no directed,
cyclic paths.

Directed acyclic graphs are closely connected to probability distributions.
The vertices in V may denote random variables with a finite number of dis-
crete values. Recall that random variables are represented by italicized capi-
tal letters: e.g. A, B, C, . . . or X, Y, Z, . . . Values of variables are represented
by italicized small letters: e.g. a, b, c, . . . or x, y, z, . . . Sets of variables are
denoted by bold capital letters: e.g. A,B,C, . . . or X,Y,Z, . . . Configura-
tions of values for all members of a set of variables are denoted by bold small
letters: e.g. a,b, c, . . . or x,y, z, . . .

Let P (V ) be a joint distribution over V . P may verify some independence
relations (IRs).

Definition 8.1 ((Un)conditional Independence) According to P , A,B
⊆ V are independent conditional on Q ⊆ V , in short (AqP B | Q), iff P (a |
b,q) = P (a | q) for all a,b and q (whenever P (b,q) > 0). Likewise, A and
B are unconditionally independent, in short (A qP B), iff P (a | b) = P (a)
(whenever P (b) > 0).9 (Pearl, 2000, 11)

A DAG G = 〈V, E〉 can be used to represent the IRs verified by P (V ).
To that extent, P and G need to satisfy two conditions: the causal Markov
condition and the Faithfulness condition. (The Markov condition we already
encountered in chapter 3. In this chapter, I will often omit the label ‘causal’.)
These conditions are formulated in terms of kinship relations between vari-
ables. B is a parent of A iff B → A ∈ E. Parents(A) is the set of parents
of A. Other kinship relations are defined likewise. By convention, A is its
own child and descendant, even though A→ A and A⇒ A are ruled out in
DAGs.

9Conditional probability is defined as follows: P (a | b) = P (a,b)/P (b).
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Convention 8.2 A ∈ Children(A), and hence also A ∈ Descendants(A)

Definition 8.3 (Causal Markov Condition) (Pearl, 2000, 30) G = 〈V,
E〉 and P (V ) satisfy the causal Markov condition if and only if each variable
is probabilistically independent (according to P ) of its non-effects, conditional
on its direct causes (where causes and effects are relative to G). In other
words, for every A ∈ V ,

(AqNondescendants(A) \ Parents(A) | Parents(A))

Given any graph G, the Markov condition generates a set of IRs. But
probability distributions that are Markov to G may verify extra IRs too.
The faithfulness condition rules out such distributions.

Definition 8.4 (Faithfulness Condition) Let P (V ) be a probability dis-
tribution generated by G = 〈V, E〉 according to the Markov condition. G and
P satisfy the faithfulness condition iff every IR true in P is entailed by the
Markov condition applied to G. (Spirtes et al., 2000, 13)

As I stated earlier, a DAG G = 〈V, E〉 may be used to represent the IRs
verified by some P (V ). If P is Markov and faithful to G, then all and only
those IRs that are entailed by the Markov condition applied to G are true
in P . It is difficult, however, to delineate the set of these relations. The
graph-theoretical concept of d-separation provides an easy means to do this
(Spirtes et al., 2000, 44).

Definition 8.5 (d-separation) Let G = 〈V, E〉 be a DAG. If Q ⊂ V
and A, B ∈ V \ Q, then A and B are d-separated given Q in G, in short
(AqG B | Q) iff there is no path U between A and B, such that

1. for every collider . . .→ C ← . . . on U , Descendants(C) ∩Q 6= ∅,10

2. and no other vertex on U is in Q.

If X 6= ∅,Y 6= ∅ and Z are three disjoint sets, then X is d-separated from
Y given W iff every member of X is d-separated from every member of Y
given Z.

10Note again that C ∈ Descendants(C), by convention 8.2.
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8.2.2 Faithful indistinguishability classes and patterns

The relation between conditional independence and d-separation is charac-
terized by the following two theorems, the last of which lays at the basis of
Judea Pearl’s IC algorithm for causal discovery.

Theorem 8.6 P (V ) is Markov and faithful to a DAG G = 〈V, E〉 iff for all
disjoint sets A,B and Q, (AqP B | Q) iff (AqG B | Q)

Proof. See Spirtes et al., 2000, 385–393.

Theorem 8.7 If P (V ) is faithful to some DAG, then it is faithful to the
DAG G = 〈V, E〉 iff

1. for all A, B ∈ V , A−B iff ∼(AqP B | Q) for all ∅ ⊆ Q ⊆ V \{A, B};
2. and for all A, B, C ∈ V such that A − B − C, but not A − C, A →

B ← C is a subgraph of G iff ∼(A qP C | Q ∪ {B}) for all ∅ ⊆ Q ⊆
V \ {A, B, C}.

Proof. See Spirtes et al., 2000, 393–394.

The IC algorithm takes as its input a probability distribution P that is
Markov and faithful to some underlying DAG G0.

11 The intended output is
the DAG G0. In most cases, however, several DAGs are statistically indistin-
guishable from G0 – i.e. no non-experimental data can distinguish between
G0 and these other DAGs. DAGs that are statistically indistinguishable
belong to the same indistinguishability class. (Spirtes et al., 2000, 59, 61)
There are several different concepts of indistinguishability and corresponding
indistinguishability classes. In the rest of this section, I will discuss faithful
indistinguishability. Two graphs G = 〈V, E〉 and G′ = 〈V, E ′〉 are faithfully
indistinguishable (f.i.) iff for every P (V ), P (V ) is Markov and faithful to G
iff it is Markov and faithful to G′. Whether or not two DAGs are f.i. can be
easily verified by the following graphic criterion:

Definition 8.8 (Faithful indistinguishability) Two DAGs G and G′ are
faithfully indistinguishable iff (i) they have the same vertex set V , (ii) they
have the same underlying undirected graph: A−B in G iff A−B in G′ and
(iii) they have the same unshielded colliders: if A−B−C and not A−C in
G or in G′, then A → B ← C in G iff A → B ← C in G′. (Spirtes et al.,
2000, 61)

11The requirement that P is Markov and faithful to some DAG G0 will prove to be very
important in section 8.3.2.
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Faithful indistinguishability classes may be represented by a pattern Π =
〈V, E〉. A pattern is a partially directed graph: E may contain both directed
(. . .→ . . .) and undirected edges (. . .− . . .) edges. Each pattern Π represents
a set of graphs Repr(Π). Whether G = 〈V, E〉 ∈ Repr(Π) may be determined
by the following graphic criterion. G = 〈V, E〉 ∈ Repr(Π) iff

1. G and Π have the same adjacency relations;

2. if A→ B in Π, then A→ B in G;

3. if A→ B ← C and not A−C in G, then A→ B ← C and not A−C
in Π.

8.2.3 The graphoid axioms, incompleteness and partial
completeness

In this section, I will briefly dwell on some meta-theoretical results regard-
ing the (semi-)graphoid axioms, since these are relevant for the rest of this
chapter.12

A ternary relation q between disjoint subsets of V is a semi-graphoid
over V iff it satisfies the following axiom schemata13 (cf. Spohn, 1994, 176):

(G1) (AqB | Q) ⊃ (BqA | Q) (Symmetry)

(G2) (Aq ∅ | Q) (Trivial Independence)

(G3) (AqB ∪C | Q) ⊃ (AqB | Q) (Decomposition)

(G4) (AqB ∪C | Q) ⊃ (AqB | Q ∪C) (Weak Union)

(G5) ((AqB | Q ∪C) ∧ (AqC | Q)) ⊃ (AqB ∪C | Q) (Contraction)

It is a graphoid over V iff it also satisfies the following extra schema:

(G6) ((AqB | Q∪C)∧ (AqC | Q∪B)) ⊃ (AqB∪C | Q) (Intersection)

The graphoid axioms are highly relevant for the following three reasons.
Firstly, probabilistic conditional independence is a (semi-)graphoid (theorem
8.9). This means that the graphoid axioms may be used to derive IRs from
other IRs. Secondly, however, probabilistic conditional independence is not
in general completely axiomatizable (theorem 8.10). But this doesn’t alter
the fact that, thirdly, some interesting subclasses of (semi-)graphoids are
completely axiomatizable (theorem 8.11).

12In fact, the (semi-)graphoid axioms are not axioms, but axiom schemata. But for
reasons of readability, I will use ‘axiom’ and ‘axiom schema’ interchangeably.

13‘⊃’ denotes material implication; ‘∧’ denotes classical conjunction.
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Theorem 8.9 For any probability measure P , qP is a semi-graphoid. More-
over, if P is strictly positive (i.e., if P (A) = 0 only for A = ∅), then qP is
a graphoid.14(Spohn, 1994, 176)

So the axioms (G1)-(G5) are sound for probabilistic conditional inde-
pendence and (G6) is sound in case P is strictly positive. By contrast,
(G1)-(G6) are not in general complete for probabilistic conditional inde-
pendence. This follows from the following theorem of Milan Studený (1992):

Theorem 8.10 There is no finite set of independent axioms which is com-
plete for probabilistic conditional independence. More specifically, there is no
finite set of rules of the form (r ≥ 0):

((A1 qB1 | C1) ∧ . . . ∧ (Ar qBr | Cr)) ⊃ (Ar+1 qBr+1 | Cr+1)

such that for any set T of IRs on any set of variables V there is a probability
measure P (V ) such that qP = q, i.e. such that

(AqP B | Q) iff (AqB | Q) ∈ Cl(T )

(where Cl(T ) is the closure of T under the given set of rules)

As I stated above, there are some interesting subclasses of (semi-)graphoids
that may be completely characterized. For example:

Theorem 8.11 For each semi-graphoid q generated by a list of total causes
there is a probability measure P such that qP = q. (Spohn, 1994, 180)

A list of total causes is a set of IRs for which there is a linear ordering
X1, X2, . . . of all variables in V such that the list contains for each Xk exactly
one statement of the form (Xk q {X1, . . . , Xk−1} \ J | J) for some J ⊆
{X1, . . . , Xk−1}. A (semi)graphoid is generated by a list of total causes iff it
is the closure of that list under the (semi)graphoid axioms. (Spohn, 1994,
179)

Let P ∗(V ) be Markov to the DAG G0 = 〈V, E〉, i.e. P ∗(V ) is a dis-
tribution that verifies, for all A ∈ V , the IR (A q Nondescendants(A) \
Parents(A) | Parents(A)) that results from applying the Markov condi-
tion to G0. The set of all these IRs is a list of total causes. Hence, the
(semi-)graphoid q generated by this list is completely axiomatized by the
(semi-)graphoid axioms and for all P that are Markov and faithful to G0:
qP = q.

14In this theorem, A denotes an event, not a variable.
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8.3 The IC algorithm for causal discovery

In section 8.3.1, I will present the IC algorithm. Then I will show to what
extent it is impotent regarding the problem of ignorance (section 8.3.2) and
give a hint at the solution which I will present in the rest of this chapter
(section 8.3.3).

8.3.1 The algorithm

The IC algorithm is based on the relations between DAGs, probability dis-
tributions and f.i. classes described in sections 8.2.1 and 8.2.2. It runs as
follows (Pearl, 2000, 50–51):

Input A probability distribution P ∗(V ) which is faithful to some underlying
DAG D0 (or the list of IRs that it verifies).

Output A pattern Π∗ representing all DAGs that form a complete causal
explanation for the IRs verified by P ∗(V ); i.e. all DAGs G such that
(AqP ∗ B | Q) iff (AqG B | Q). These DAGs form the f.i. class of D0.

Algorithm The algorithm consists of three consecutive steps:

1. For all A, B ∈ V search for a (possibly empty) set Q ⊆ V \{A, B}
such that (AqP ∗ B | Q). Construct an undirected graph G1 such
that A−B iff no such Q can be found.

2. For all A, B, C ∈ V such that A−C−B and not A−B in G1, check
if C ∈ Q. If it is, then continue. If it is not, then A → C ← B.
The resulting graph is G2.

3. Starting from G2, orient as many of the undirected edges as possi-
ble subject to two conditions: (i) the orientation should not create
a new unshielded collider; and (ii) the orientation should not cre-
ate a directed cycle. This is done by closing G2 under the rules
R3.1 - R3.4 depicted in figure 8.1.15

8.3.2 Taking stock of IC

The IC algorithm certainly is meritorious as it provides an interesting means
to infer causal relations from non-experimental data. However, it is impotent
regarding the problem of ignorance. Firstly, its possible inputs are restricted

15The rules R3.1 - R3.4 are necessary (Verma and Pearl, 1992) and sufficient (Meek,
1995a) for obtaining the pattern Π∗ representing the intended equivalence class.
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R3.1

R3.2

R3.3

R3.4

Figure 8.1: Rules R3.1-R3.4 According to each of the rules, if a graph
contains the left-hand side as a subgraph, an arrow may be added to the
dotted line so as to obtain the right-hand side.

to full lists of IRs. Secondly, when applied to partial lists of IRs, IC would
lead to unsatisfactory results.

The possible inputs of IC are restricted to full lists of IRs. This follows
from the requirement that P ∗(V ) is Markov and faithful to D0. The graphoid
q generated by applying the Markov condition to D0 is completely axioma-
tized by (G1)-(G6). Hence for all A, B ∈ V and all Q ⊆ V \ {A, B} it is
known whether or not (AqP ∗ B | Q); all IRs are decided.

Now suppose that IC were applied to a partial list of IRs. A straight-
forward solution would be to take a negation as failure account: all CIRs
(AqB | Q) and IRs (AqB) not occurring in the input (failure) should be
taken to be false (negation). This approach, however, has a serious drawback:
it treats conditional and unconditional sentences on a par. From a pragmatic
point of view, I will argue, this is unsatisfactory. Whereas the negation as
failure account is sensible with respect to the former, it certainly isn’t with
respect to the latter.

The negation as failure account is sensible regarding conditional inde-
pendence (CIRs). Suppose that A and B are known to be unconditionally
dependent, ∼(A q B), that all tested sentences (A q B | Q) were falsified,
but that (AqB | Q∗) is still undecided for some Q∗. Even if correlation is no
proof for direct causation, it is often regarded as a useful indicator – and so
it should be, otherwise non-experimental causal research would be a rather
idle enterprise (cf. the importance attached to epidemiological evidence by
the IARC (2006)). This requirement may satisfactorily be met by consider-
ing all undecided (A q B | Q∗) as false (negation as failure), provided faulty
applications of this heuristic can be detected and remedied quickly.
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By contrast, the negation as failure account is unsatisfactory for uncon-
ditional independencies (UIRs). A large part of scientific practice consists in
finding models that are simple enough to be manageable and useful for predic-
tion, explanation and/or intervention. Models are simulacra that share some,
but not all the characteristics of the phenomena under study (Cartwright,
1983). They are the mediators between a theory and reality (Morgan and
Morrison, 1999). As such, they do not perfectly mirror this world. Ab-
straction and idealization are non-negligible aspects of scientific modelling.
Moreover, they are already implicitly present in Pearl’s framework. The
Markov and the Faithfulness condition together imply the Minimality condi-
tion (Spirtes et al., 2000, 31).16 If G = 〈V, E〉 and P (V ) satisfy the Minimal-
ity condition, then each edge in G prevents some conditional independence
that would otherwise obtain; apart from that, G does not contain any su-
perfluous edges (Spirtes et al., 2000, 12). However, if all undecided (AqB)-
sentences are taken to be false (negation as failure), the resulting model would
be gratuitously complex. In scientific practice, if (AqB) is undecided, then
it is frequently or even mostly the case that for all Q∗, (A q B | Q∗) is
undecided too. Hence, in view of the previous paragraph, negation as failure
would allow to infer that A − B. Therefore negation as failure should not
be applied to undecided UIRs. These should be considered as true, provided
faulty applications of this heuristic can be detected and remedied quickly.

Before I give a short introduction to adaptive logics in section 8.3.3, I
will first pursue some possible epistemological worries. My suggestions may
come across as too rash to some readers. Why should we rely on default
assumptions which will most probably be violated in many contexts? And
what would be the consequences of any such violation? The following three
remarks should help to remove such doubts. Firstly, in scientific practice
defeasible assumptions are abundantly used for causal inference. In his short
but highly influential paper, Sir Austin Bradford Hill (1965, 295) addresses
the question how to pass from an observed association to a verdict of causa-
tion in occupational medicine, when no general body of medical knowledge
provides a decisive answer. After listing nine viewpoints from which to in-
vestigate the association in question, he argues that no decisive criterion (or
set of criteria) exists. Hence, the inference from association to causation
is defeasible. Nevertheless, we are pragmatically forced to judge (whether
the association is causal or not, whether the assumed cause is suitable for
intervention or not), given that we have to take action:17

16G = 〈V,E〉 and P (V ) satisfy the Minimality condition if and only if for every G′ =
〈V,E′〉 such that E′ ⊂ E (i.e. for every subgraph G′ of G), G′ = 〈V,E′〉 and P (V ) do not
satisfy the Markov Condition. (Spirtes et al., 2000, 12)

17I do not claim that Hill argued in favour of the defaults incorporated in the adaptive
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All scientific work is incomplete – whether it be observational or
experimental. All scientific work is liable to be upset or modified
by advancing knowledge. That does not confer upon us a freedom
to ignore the knowledge we already have, or to postpone the
action that it appears to demand at a given time. (Hill, 1965,
300)

Secondly, the use of default assumptions is not new in the literature on
causal inference. For example, Williamson (2005, chapters 5,6) proposes to
use the Maximum Entropy principle (MaxEnt) to handle the problem of
ignorance. Suppose we are given a partial list of IRs. Then many different
probability functions will satisfy this list. If the set of these functions is
closed and convex, MaxEnt selects the single member which is maximally
noncommital with regard to missing information. (The MaxEnt principle
generalizes the Principle of Indifference; see also Paris and Vencovská, 1997,
2001 and Paris, 2005.) As the selected probability function will mostly be
at odds with any new information, the suggested mechanism is defeasible
and non-monotonic (cf. infra, section 8.5.6). Thirdly, the adaptive logic
framework provides us with a dynamic proof theory which allows us (i) to
trace the particular assumptions on which each inference is based, and (ii)
to trace the consequences of the violation of each particular assumption (i.e.
faulty applications of each heuristic can be detected and remedied quickly).
As such, the dynamic proof theory allows us to cautiously apply these default
assumptions. This will become clear in section 8.5.4, where I will present the
proof theory of ALIC and discuss its epistemological implications.

8.3.3 Towards an adaptive logic solving the problem
of ignorance

In the following sections, I will show how the problem of ignorance may be
solved. I will develop an adaptive logic for causal discovery that properly
gives shape to the findings of the previous section.

Using an adaptive logic (instead of, for example, some other default logic)
has several advantages. Firstly, the standard format of adaptive logics pro-
vides a unified framework for handling various non-monotonic consequence
relations (defaults, inconsistency-handling mechanisms, . . . ).18 Many defea-
sible consequence relations have successfully been translated into the adap-

logic ALIC, only that he argued in favour of defeasible reasoning.
18Given this flexibility, it would be fairly easy to devise alternatives to ALIC, based on

different rationales, to address the problem of ignorance.
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tive logic framework (e.g. Meheus, 2003; Batens, 2000),19 whereas no other
approach is known to have such unifying power. This unified framework
makes it possible to easily compare such consequence relations. Moreover,
contrary to most other non-monotonic logics (cf. Makinson, 2005), adaptive
logics provide a good proof theory that captures the dynamics involved in
non-monotonic reasoning. Finally, as I will argue in section 8.5.4, ALIC’s
dynamic proof theory gives rise to a pragmatic picture of causal inference in
which proofs may act as a guide for both scientific research and policy.20

Adaptive logics are non-monotonic logics (Batens, 2001, 2004, 2007). In
general, they are characterized by a triple AL = 〈LLL, Ω, adaptive strategy〉.
LLL is the lower limit logic of AL. It is the stable part of AL. Semantically,
the adaptive models of Γ are a subset of its LLL-models (Γ being a premise
set). Proof theoretically, all the axioms and inference rules of LLL may be
applied unconditionally. Hence, if Γ `LLL α, then Γ `AL α. By contrast, the
other axioms or inference rules of AL are conditional: they may be applied
on the condition that certain other formulas (certain abnormalities) are not
derivable. Ω is the set of abnormalities. These are formulas that are charac-
terized by a (possibly restricted) logical form and that are presupposed to be
false, unless and until proven otherwise. Intuitively speaking, an abnormality
ω ∈ Ω is presupposed to be false relative to Γ, unless and until it turns out
that Γ forces you to give up this presupposition.21

Together, LLL and Ω define an upper limit logic ULL. Proof theoreti-
cally, the ULL is obtained by adding to LLL an axiom or inference rule that
connects abnormality to triviality. Semantically, the ULL-models are ob-
tained by selecting those LLL-models that verify no abnormality. The follow-
ing theorem reveals a crucial relation between LLL, Ω and ULL. (Dab(∆)
denotes the disjunction of the members of ∆.)

Theorem 8.12 Γ `ULL α iff there is a finite ∆ ⊆ Ω such that Γ `LLL

α ∨Dab(∆) (Derivability Adjustment Theorem)

Proof. See Batens (2007, 230–231)

19Other results can be found at http://logica.UGent.be/centrum/writings/.
20It has often been argued that adaptive logics fit actual human reasoning. More specif-

ically, this part of the motivation underlying the adaptive logic for causal discovery pre-
sented in Van Dyck (2004). I will not endeavour to argue so. In non-scientific reasoning
contexts, humans are faced with the problem of ignorance too (cf. footnote 8). But there
is insufficient psychological evidence indicating that they solve it along the lines of ALIC
(for the relation between Bayesian networks and human reasoning, see Gopnik et al., 2004,
Beckers et al., 2006).

21As I will show in section 8.5.4, the proof theory of adaptive logics is such that it
makes sense to write “unless and until it turns out that Γ forces you to give up this
presupposition”.
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In general, the following proof theoretic relations hold between AL, LLL,
and ULL: If Γ is normal (i.e. if no Dab-formulas are LLL-derivable from Γ),
then

CnLLL(Γ) ⊂ CnAL(Γ) = CnULL(Γ)

If Γ is abnormal, then (except for limit cases22)

CnLLL(Γ) ⊂ CnAL(Γ) ⊂ CnULL(Γ) = the set of all formulas

One of the best known adaptive strategies is reliability . It determines how
to treat minimal Dab-consequences. Dab(∆) is a minimal Dab-consequence
of Γ iff Γ `LLL Dab(∆) and there is no ∆∗ ⊂ ∆ such that Γ `LLL Dab(∆∗).
According to reliability, a formula is unreliable relative to Γ if it is a disjunct
of a minimal Dab-consequence of Γ.23

8.4 LIC: the lower limit logic of ALIC

In this section I will present LIC, a non-adaptive logic for causal discovery.
By itself, LIC does not add much to IC, but its significance derives from the
role it plays in the formulation of ALIC. I will describe both its language
(8.4.1), its semantics (8.4.2) and its proof theory (8.4.3). I will conclude this
section by briefly discussing soundness and (in)completeness for LIC (8.4.4).

8.4.1 The language of LIC

Let V be a finite set of finite random variables. I will assume that all variables
in V are different (different name = different variable) and that they are
logically independent.24 Let Wf be the set of factual propositions, i.e. the
smallest set satisfying the following conditions:

(L1) If X ∈ V and xi ∈ [X] (i.e. xi is a value of X), then X = xi ∈ S
(L2) If α ∈ S, then α ∈ Wf

22In limit cases, such as when Γ is itself trivial,

CnLLL(Γ) = CnAL(Γ) = CnULL(Γ) = the set of all formulas

23Another well-known strategy is minimal abnormality. The choice of strategy affects
both the proof theory and the semantics of the adaptive logic. Here I will stick to reliability.

24So V cannot contain both G, ‘gender’, and K, ‘being a king’, since by definition, all
kings are male.
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(L3) If α, β ∈ Wf , then ∼α, (α ∧ β), (α ∨ β) ∈ Wf

The elements of V and of Wf by themselves do not belong to the lan-
guage of LIC, but they serve as the basis for the formulation of the latter.
The atomic sentences of LIC are either probabilistic (Wp) or causal (Wc).
Complex sentences (W) are built from atomic ones by means of classical
connectives. SoWp, Wc andW are the smallest sets satisfying the following
conditions:

(L4) If A,B,Q ⊂ V are disjoint sets of variables, then (A qB), (A qB |
Q) ∈ Wp

Convention 8.13 If A, B ∈ V and Q ⊆ V \ {A, B}, then I will write
(AqB) and (AqB | Q) instead of ({A}q{B}) and ({A}q{B} | Q).
Likewise, if Q is a singleton {Q}, I will write Q instead of {Q}.

(L5) If A, B ∈ V , then A→ B, A−B, and A⇒ B ∈ Wc

(L6) If α ∈ Wp ∪Wc, then α ∈ W
(L7) If α ∈ W , then ∼α ∈ W
(L8) If α, β ∈ W , then (α ∧ β), (α ∨ β), (α ⊃ β), (α ≡ β), (α Y β) ∈ W25

8.4.2 The semantics of LIC

The semantics of LIC should meet certain obvious requisites. For one thing,
each model should assign appropriate truth values to the atomic probabilis-
tic sentences, to the atomic causal sentences and to the classical complex
sentences (see (Sv1)–(Sv12)). Moreover, no model should allow for cyclic-
ity (see (Sc.3)). Finally, the probabilistic sentences verified by each model
should be Markov and faithful to the causal sentences it verifies (see (Sp9)).

To make sure that the semantics hereunder is recursive, I need to intro-
duce an ordering relation ≺ over V . This ordering may be done by lexico-
graphic order, or by the Gödel numbers of the variables. Hence it is not the
case that A ≺ B iff A is an ancestor of B in some DAG.

• There is no A ∈ V such that A ≺ A

• For all A, B ∈ V : either A ≺ B, or B ≺ A, but not both

• For all A, B, C ∈ V : A ≺ B and B ≺ C implies A ≺ C

25The last logical connective, Y, is the exclusive disjunction, cf. (Sv12). Although the
exclusive disjunction can be easily omitted, I include it so as to present the LIC-axioms
in an intuitive way.
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An LIC-model is a triple M = 〈R+, c, p〉. R+ is the set of nonnegative real
numbers (including 0). c is a function which determines the causal relations
holding between members of V . p is a probability distribution over V .

c is a partial function that maps couples of variables 〈A, B〉 to the set
{l, r, n}, subject to the following conditions:

(Sc1) c : V × V → {l, r, n}.
(Sc2) c(〈A, B〉) is only defined for A ≺ B.

(Sc3) There is no {X1, . . . , Xn} ⊆ V such that either c(〈Xi, Xi+1〉) = l for
all 1 ≤ i ≤ n − 1 and c(〈X1, Xn〉) = r, or c(〈Xi, Xi+1〉) = r for all
1 ≤ i ≤ n− 1 and c(〈X1, Xn〉) = l.26 (acyclicity)

In the interest of the readability of the metatheorems, however, I intro-
duce the following convention:

Convention 8.14 “c(〈A, B〉) = l” should be read as: “If A ≺ B, then
c(〈A, B〉) = l. If B ≺ A, then c(〈B, A〉) = r.” In the same manner, I will
use “c(〈A, B〉) 6= n” as an abbreviation for “If A ≺ B, then c(〈A, B〉) 6= n.
If B ≺ A, then c(〈B, A〉) 6= n.” etc. etc.

p is a function assigning a ‘weight’ to sentences in Wf . It is defined as
the composition of two other functions, m and o. m assigns a weight to the
elements of a set S. o maps factual propositions to subsets of S.

(Sp1) Let S be a set with at least the cardinality of the sample space defined
by V .

(Sp2) m : S→ R+

(Sp3)
∑

α∈S m(α) = 1

(Sp4) For all β ⊆ S : m(β) =
∑

α∈β m(α)

(Sp5) For all β ⊆ S : m(βc) = 1−m(β).

(Sp6) For all β, γ ⊆ S : m(β ∩ γ) = m(β) + m(γ)−m(β ∪ γ).

(Sp7) o : S → ℘(S), where S is the set of atomic factual propositions
X = xi.

o can be extended to a function mapping all factual propositions to subsets
of S: o :Wf → ℘(S), with

• o(∼α) = (o(α))c for all α ∈ Wf ,

• o(α ∧ β) = o(α) ∩ o(β) for all α, β ∈ Wf , and

26Note that I use the shorthand notation for the values of c throughout this section (cf.
convention 8.14).
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• o(α ∨ β) = o(α) ∪ o(β), for all α, β ∈ Wf

p is composed of m and o. Moreover, by condition (Sp9), p is Markov
and faithful to c.

(Sp8) p(x) = m(o(x))

(Sp9) If A, B /∈ Q, then (AqB | Q) iff every undirected path between A and

B is d-separated by Q. More precisely, p(A=a∧(B=b∧Q=q))
p(B=b∧Q=q)

= p(A=a∧Q=q)
p(Q=q)

for all values a of A, b of B and q of Q (whenever p(B = b∧Q = q) > 0)
iff

1. c(〈A, B〉) = n, and
2. for any n-tuple 〈X1, . . . , Xn〉 such that (i) n ≥ 3, (ii) X1 = A, (iii)

Xn = B, and (iv) c(〈Xi, Xi+1〉) 6= n for all 1 ≤ i ≤ n− 1, at least
one of the following conditions is satisfied:

(a) There is some 1 ≤ i ≤ n − 2 such that c(〈Xi, Xi+1〉) =
c(〈Xi+1, Xi+2〉) (= r or = l) and Xi+1 ∈ Q.

(b) There is some 1 ≤ i ≤ n− 2 such that c(〈Xi, Xi+1〉) = l, and
c(〈Xi+1, Xi+2〉) = r, and Xi+1 ∈ Q.

(c) There is some 1 ≤ i ≤ n− 2 such that c(〈Xi, Xi+1〉) = r, and
c(〈Xi+1, Xi+2〉) = l, and Xi+1 /∈ Q and for all X such that
there is an m-tuple 〈Y1, . . . , Ym〉 such that Y1 = Xi+1, and
Ym = X, and for all 1 ≤ i ≤ m− 1, c(〈Yi, Yi+1〉) = r, X /∈ Q.

A valuation function vM determined by a model M = 〈R+, c, p〉 is a
function that satisfies the following conditions:

(Sv1) vM :W → {0, 1}
(Sv2) vM((AqB)) = 1 iff p(A=a∧B=b)

p(B=b)
= p(A = a) for all values a of A and

b of B (whenever p(B = b) > 0)

(Sv3) vM((AqB | Q)) = 1 iff p(A=a∧(B=b∧Q=q))
p(B=b∧Q=q)

= p(A=a∧Q=q)
p(Q=q)

for all values

a of A, b of B and q of Q (whenever p(B = b ∧Q = q) > 0)

(Sv4) vM(A→ B) = 1 iff c(〈A, B〉) = r

(Sv5) vM(A−B) = 1 iff c(〈A, B〉) 6= n

(Sv6) vM(A ⇒ B) = 1 iff there is a series of variables C1, . . . , Cm ∈ V
(m ≥ 2) such that A = C1, B = Cm, and for all 1 ≤ i ≤ m − 1:
c(〈Ci, Ci+1〉) = r

(Sv7) vM(∼α) = 1 iff vM(α) = 0

(Sv8) vM(α ∧ β) = 1 iff vM(α) = vM(β) = 1

(Sv9) vM(α ∨ β) = 1 iff vM(α) = 1 or vM(β) = 1
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(Sv10) vM(α ⊃ β) = 1 iff vM(α) = 0 or vM(β) = 1

(Sv11) vM(α ≡ β) = 1 iff vM(α) = vM(β)

(Sv12) vM(α Y β) = 1 iff vM(α) 6= vM(β)

Definition 8.15 (Truth in a model) α is true in a model M = 〈R+, c, p〉
(abbreviated as M |= α) =df vM(α) = 1

8.4.3 The proof theory of LIC

The proof theory of LIC should meet the following obvious requirements.
Firstly, it should determine the behaviour of the classical connectives ∼,
∧, . . ., of the q-relation and of the causal relations→,− and⇒. Secondly, it
should mimic the IC algorithm. These requirements are met by the following
axiom schemata and inference rules:

(R1) α, α ⊃ β/β

(A1) The axiom schemata of propositional classical logic

(A2) The (semi-)graphoid axiom schemata

(A3) ∼(A⇒ A)

(A4) A−B ≡ (A→ B ∨B → A)

(A5) A⇒ B ≡ (A→ B ∨
∨
{(A⇒ C ∧ C → B) | C ∈ V \ {A, B}})

(A6) A−B Y
∨
{(AqB | Q) | Q ⊆ V \ {A, B}}

(R2) A − C, C − B,∼(A − B) / (A → C ∧ B → C) ≡
∨
{(A q B | Q) ∧

∼(AqB | Q ∪ {C}) | Q ⊂ V \ {A, B}}

That the IC algorithm is adequately mimicked, can be easily ascertained.
The steps in the algorithm are based on a few basic premises. Firstly, no
directed cyclic paths are allowed. This is mimicked by (A3) and (A5).
Secondly, two variables are adjacent if and only if no disjoint set screens
them off. This is mimicked by (A6). Thirdly, three variables A, B, C form
an unshielded collider (i.e. A→ C ← B and not A−B) if and only if there
is a Q ⊂ V \ {A, B} such that (AqB | Q) and not (AqB | Q ∪ {C}).

8.4.4 Soundness, but no completeness for LIC

The inference rules and axiom schemata listed in section 8.4.3 are not com-
plete with respect to the semantics of section 8.4.2. This follows from theorem
8.10, given that I will not restrict the possible sets of premises to those sets of
IRs for which the graphoid axioms are complete. Consider a set T of IRs for
which there is no P such that (AqP B | Q) iff (AqB | Q) ∈ Cl(T ) (where
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Cl(T ) is the closure of T under the graphoid axioms). From theorem 8.10 it
follows that such a T exists. Hence each model M = 〈R+, c, p〉 of T verifies
at least one IR /∈ Cl(T ). So all models verify the disjunction of these addi-
tional IRs, but there is no guarantee that this disjunction is LIC-derivable
from T .

Conversely, the rules and axioms in section 8.4.3 are sound with respect
to the semantics in section 8.4.2.

Theorem 8.16 (Soundness for LIC) If Γ ` α, then Γ |= α

Proof. See Appendix 2 (pp. 182–184).

8.5 ALIC: the adaptive logic for causal dis-

covery

Regarding the problem of ignorance, LIC, the non-adaptive logic presented
in section 8.4, is almost on a par with the IC algorithm. In case the input or
premise set Γ consists of a full list of IRs, neither LIC nor IC will run into
difficulty and they will produce the same causal output or consequence set:
A − B ∈ CnLIC(Γ) iff A − B ∈ Π(Γ) or A → B ∈ Π(Γ) or B → A ∈ Π(Γ),
and A → B ∈ CnLIC(Γ) iff A → B ∈ Π(Γ). Likewise, neither LIC nor IC
will lead to satisfactory results in case the input or premise set Γ consists of
a partial list of IRs.

As I said, LIC is almost on a par with IC. Since any set of LIC-wffs (i.e.
any Γ ⊂ W) may serve as a premise set, combining observational knowledge
with background knowledge, micro-level knowledge, common sense knowl-
edge, etc. poses no technical problems. For example, if background knowl-
edge shows that A causes B, or if common sense dictates that C cannot cause
D, since it succeeds D in time, it is straightforward to include A → B or
∼(C → D) in the premise set.27

In this section, I will present ALIC, the adaptive logic for causal dis-
covery which properly solves the problem of ignorance. In section 8.3.2, I

27In Meek (1995a) a framework is presented which also allows to combine the IC-
algorithm with background knowledge. However, this framework cannot deal with the
problem of ignorance. Moreover, it cannot deal with background knowledge consisting of
complex formulas. In Meek (1995a), background knowledge consists of a pair K = 〈F,R〉
in which F is the set of directed edges which are forbidden and R is the set of directed
edges which are required. Hence it cannot incorporate background knowledge of the form
A→ B ∨ C → B.
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have outlined the basic heuristics governing ALIC. In the face of an unde-
cided CIR, (A q B | Q), we should conceive of it as false, provided faulty
applications of this heuristic can be detected and remedied quickly. If not,
non-experimental causal research would be a rather idle enterprise. In other
words, CIRs should be presupposed to be false, unless and until proven other-
wise. This heuristic does not apply to UIRs. In the face of an undecided UIR,
(AqB), we should conceive of it as true, provided faulty applications of this
heuristic can be detected and remedied quickly. If not, our scientific models
would be gratuitously complex. So UIRs should be presupposed to be true,
unless and until proven otherwise. These heuristics will be formalized singly
in sections 8.5.1 and 8.5.2, where I will present two auxiliary logics ALICRS

and ALICAt. Then I will combine both auxiliary logics (and their respective
heuristics) in one single logic: ALIC. First I will describe its proof theory
(section 8.5.4; an example of of an ALIC-proof can be found in Appendix 1,
p. 181). Then I will describe its semantics and some straightforward meta-
theoretic results (section 8.5.5). Finally, I will briefly discuss the relation
between ALIC and MaxEnt-based causal discovery (section 8.5.6).

8.5.1 ALICRS: the Reckless Statistician’s account of
CIRs

The heuristic regarding conditional independence statements may metaphor-
ically be called the heuristic of the Reckless Statistician. If all CIRs (AqB |
Q) are undecided, and if this heuristic is added to LIC, then one may in-
fer causation, A − B, from correlation, ∼(A q B), contrary to one of the
best-known warnings in introductory statistics courses. Any statistician that
would apply this heuristic blindly, would deservedly be called reckless. But
as I will show in the following sections, the adaptive logical framework affords
a way to apply it properly. The Reckless Statistician is tempered.28

The heuristic of the Reckless Statistician naturally leads to the following
adaptive logic: ALICRS = 〈LIC, ΩRS, reliability〉. The set of abnormali-
ties ΩRS contains all CIRs regarding pairs of variables (not pairs of sets of
variables).

ΩRS = {(AqB | Q) | A, B ∈ V,Q ⊆ V \ {A, B}}

By adding axiom schema (A7) to LIC, a suited upper limit logic ULLRS is
obtained.29

28The same intuition, viz. that ∼(AqB) implies A−B, unless and until some set Q is
found such that (AqB | Q), lays at the basis of the logic presented in Van Dyck (2004).

29The reader can easily check that theorem 8.12 holds for LIC, ΩRS and ULLRS.
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(A7) ∼(AqB | Q)

The ULLRS-semantics consists of the LIC-models for which c is such that

if c(〈A, B〉) = c(〈B, C〉) = r, then c(〈A, C〉) = r

if c(〈A, B〉) = c(〈B, C〉) = l, then c(〈A, C〉) = l

if c(〈A, B〉) = l and c(〈B, C〉) = r, then c(〈A, C〉) 6= n

I will not discuss the proof theory, nor the semantics of ALICRS in detail
as these are not significant for the present purposes and moreover are really
straightforward (see Batens, 2007, sections 3 and 4).

8.5.2 ALICAt: the Atomist’s account of UIRs

Where the first heuristic could be called the heuristic of the Reckless Sta-
tistician, the second one, regarding UIRs, may metaphorically be called the
heuristic of the Atomist. If all UIRs (A q B) are undecided, and if this
heuristic is added to LIC, then one may infer that no causal relations what-
soever exist; i.e., ∼(A−B) for all A, B ∈ V . So the heuristic of the Atomist
results in models that verify as little causal relations as possible.30

All this naturally leads to the following adaptive logic:

ALICAt = 〈LIC, ΩAt, reliability〉

where ΩAt contains all negations of UIRs regarding pairs of variables.

ΩAt = {∼(AqB) | A, B ∈ V }

By adding axiom schema (A8) to LIC, a suited upper limit logic ULLAt

is obtained.31 The ULLAt-semantics consists of the LIC-models for which
c(〈A, B〉) = n for all A, B ∈ V .

(A8) (AqB)

Again, I will not further discuss the proof theory or the semantics of ALICAt.

30An even better label would have been ‘the Greedy Statistician’, but ‘the Atomist’ was
chosen to avoid entanglement with existing greedy search strategies (cf. Williamson, 2005,
38).

31The reader can again easily check that theorem 8.12 holds for LIC, ΩAt and ULLAt.
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8.5.3 ALIC: outline

ALIC is the result of combining ALICRS and ALICAt. Its lower limit logic
is LIC and its strategy is reliability. Its set of abnormalities is the union of
ΩRS and ΩAt:

ALIC = 〈LIC, ΩRS ∪ ΩAt, reliability〉

As I will show in section 8.5.4, the proof theory of ALIC is dynamic.
Lines of a proof may be marked (but also unmarked) as the proof continues.
Formulas occurring on marked lines are not considered as derived. Notwith-
standing this dynamics, the set of ALIC-consequences of some premise set Γ
is fixed: CnALIC(Γ) = CnALICRS(CnALICAt(Γ)).32 This stability is reflected
in the ALIC-semantics (see section 8.5.5).

8.5.4 The proof theory of ALIC

ALIC-proofs are dynamic. Lines in a dynamic proof consist of five elements:
(i) a line number k, (ii) a formula α, (iii) the line numbers of the formulas
from which α is derived, (iv) the rule by which α is derived, and (v) a
condition Υ.33 The condition is a (possibly empty) set of abnormalities.
It determines whether α is derived or not. Intuitively, if all members of Υ
may be considered as false, then α is derived on line k. Otherwise, line k is
marked and α is no longer considered as derived.

The proof theory of ALIC consists of three generic deduction rules, and
a marking definition. The deduction rules allow one to add a line to the
proof. By adding a line, the proof is brought to a next stage. The marking
definitions determine, at each stage s of the proof, which lines are marked
and which are unmarked.

The generic deduction rules are as follows (Γ is a premise set):

PREM If α ∈ Γ, one may add a line comprising of the following elements:
(i) an appropriate line number, (ii) α, (iii) –, (iv) PREM, and (v) ∅.

RU If β1, . . . , βn `LIC α and each of the βi occurs in the proof on lines
i1, . . . , in that have conditions Υ1, . . . , Υn respectively, one may add
a line comprising of the following elements: (i) an appropriate line
number, (ii) α, (iii) i1, . . . , in, (iv) RU, and (v) Υ1 ∪ . . . ∪Υn.

32Although the proof theories of ALICRS and of ALICAt are also dynamic,
CnALICRS(Γ) and CnALICAt(Γ) are fixed as well.

33For a general characterization of the dynamic proof theory of adaptive logics, see
Batens, 2007, 227–229. For the proof theory of combined adaptive logics, see Batens,
2001, 61–62.
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RC If β1, . . . , βn `LIC α∨Dab(Θ) (for some Θ ⊆ ΩRS∪ΩAt) and each of the
βi occurs in the proof on lines i1, . . . , in that have conditions Υ1, . . . , Υn

respectively, one may add a line comprising of the following elements:
(i) an appropriate line number, (ii) α, (iii) i1, . . . , in, (iv) RC, and (v)
Υ1 ∪ . . . ∪Υn ∪Θ.

As I stated above, α is derived from Γ at stage s of a proof from Γ iff
α occurs at some line k of the proof, and line k is not marked at stage s.
Marking is governed by the marking definition, which is applied at each stage
of the proof. Let DabAt(∆) denote a Dab-formula with ∆ ⊆ ΩAt; and let
DabRS(∆) denote a Dab-formula with ∆ ⊆ ΩRS.

Definition 8.17 (minimal DabAt-formula) Dab(∆) is a minimal DabAt-
formula at stage s of a proof iff

(1) ∆ ⊆ ΩAt

(2) At stage s, Dab(∆) is the second element of a line i on the condition ∅
(3) There is no ∆′ ⊂ ∆ such that Dab(∆′) satisfies condition (2)

Definition 8.18 (minimal DabRS-formula) Dab(∆) is a minimal DabRS-
formula at stage s of a proof iff

(1’) ∆ ⊆ ΩRS

(2’) At stage s, Dab(∆) is the second element of a line i′ on the condition
Θ ⊆ ΩAt

(3’) Line i′ is unmarked at stage s

(4’) There is no ∆′ ⊂ ∆ such that Dab(∆′) satisfies conditions (2’) and (3’)

Where Dab(∆11), . . . , Dab(∆1n) are the minimal DabAt-formulas at stage
s, UAt

s (Γ) = ∆11 ∪ . . . ∪∆1n is the set of unreliable At-formulas at stage s.
Likewise, where Dab(∆21), . . . , Dab(∆2m) are the minimal DabRS-formulas
at stage s, URS

s (Γ) = ∆21 ∪ . . .∪∆2m is the set of unreliable RS-formulas at
stage s.

Now everything is in place to present the marking definition, the applica-
tion of which proceeds stepwise. At each stage s of the proof, lines are first
marked/unmarked in view of UAt

s (Γ). Then lines are marked/unmarked in
view of URS

s (Γ).

Definition 8.19 (Marking for ALIC) Step 1: line i is marked at stage s
iff, where Υ is its condition, Υ ∩ UAt

s (Γ) 6= ∅. Step 2: after step 1, line i is
marked at stage s iff, where Υ is its condition, Υ ∩ URS

s (Γ) 6= ∅.34

34The marking definition depends on the adaptive strategy, in casu quo reliability. Min-
imal abnormality would result in a different definition (see Batens, 2001, section 6).
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Notwithstanding the dynamics of ALIC-proofs, the set of ALIC-conse-
quences of some premise set Γ is fixed, well-defined and proof-independent
(see definition 8.21).

Definition 8.20 α is finally derived from Γ on line i of a proof at stage s
iff (i) α is the second element of line i, (ii) line i is not marked at stage s,
and (iii) any extension of the proof in which line i is marked may be further
extended in such a way that line i is unmarked.

Definition 8.21 Γ `ALIC α (α is finally derivable from Γ) iff α is finally
derived on a line of a proof from Γ.

Let us briefly return to the worries raised in section 8.3.2, viz. that the
suggestions which eventually were incorporated in ALIC come across as
too rash. I argued that default assumptions for causal inference are used
both in scientific practice (cf. Hill, 1965) and in the literature on causal
modelling (cf. Williamson, 2005). I also argued that the proof theory of
adaptive logics allows us (i) to trace the particular assumptions on which
each inference or (intermediate) conclusion is based (cf. the condition of each
line in a proof), and (ii) to trace the consequences of the violation of each
particular assumption (cf. the marking definition). This gives rise to the
following pragmatic picture of causal inference: given a partial list of IRs,
ALIC allows us to derive a set of consequences (giving rise to a DAG or a
pattern representing our causal beliefs). Some formulas are derived on the
empty condition and hence are indubitable relative to the premises. All other
consequences may be accepted provisionally. Whether these may serve as a
ground for action will depend upon circumstances. Some interventions may
be based on relatively slight evidence, while others need fair or even very
strong evidence (cf. Hill, 1965, 300).35 Hence, if α is derived on line i on the
non-empty condition Υi, we may either decide to take action on the basis of
α, or we may find that more information is needed regarding the members of
Υi. As such, ALIC’s dynamic proofs may act as a guide for both scientific
research and policy.36

35I do not use ‘intervention’ in Woodward’s sense here.
36This gives rise to some kind of ‘reverse falsificationism’. As the acceptability of α

depends on the falsehood of Υi’s members, try to prove their truth (e.g. by gathering new
data and performing new conditional independence tests). Accept α in case such proofs
fail.
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8.5.5 The semantics of ALIC

The semantics of ALIC bears out that final derivability is a stable notion.37

For each premise set Γ, the set of its ALIC-models is a subset of its LIC-
models: MALIC(Γ) ⊆ MLIC(Γ). This subset is obtained by a two-step
selection. For any M ∈ MLIC, two abnormal parts of M are defined as
follows:

Definition 8.22 AbAt(M) = {ω ∈ ΩAt | M |= ω} and AbRS(M) = {ω ∈
ΩRS |M |= ω}

Now the selection runs as follows:

M0(Γ) =df MLIC(Γ), whereMLIC(Γ) = {M ∈MLIC |M |= Γ}

DabAt(∆) is a DabAt-consequence of Γ iff ∆ ⊆ ΩAt and DabAt(∆) is
verified by all M ∈ M0(Γ). Where DabAt(∆11), DabAt(∆12), . . . are the
minimal DabAt-consequences of Γ, U1(Γ) =df ∆11 ∪∆12 ∪ . . .

M1(Γ) =df {M ∈M0(Γ) | AbAt(M) ⊆ U1(Γ)}

DabRS(∆) is a DabRS-consequence of Γ iff ∆ ⊆ ΩRS and DabRS(∆) is
verified by all M ∈ M1(Γ). Where DabRS(∆21), DabRS(∆22), . . . are the
minimal DabRS-consequences of Γ, U2(Γ) =df ∆21 ∪∆22 ∪ . . .

M2(Γ) =df {M ∈M1(Γ) | AbRS(M) ⊆ U2(Γ)}

This concludes the selection of the ALIC-models of Γ:

MALIC(Γ) =M2(Γ)

The meta-theoretical properties of adaptive logics are straightforward and
have been studied extensively (Batens, 2001, 2004, 2007). If the proof theory
of the LLL is sound and complete with respect to its semantics, then so is the
resulting adaptive logic’s proof theory regarding to the adaptive semantics.
However, the proof theory of LIC is sound, but not complete, with respect
to the LIC-semantics. Hence the ALIC-proof theory is sound, but not
complete, with regard to the ALIC-semantics.

37For a general characterization of the semantics of adaptive logics, see Batens (2007,
229–230). For the semantics of combined adaptive logics, see Batens (2001, 56–57).
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8.5.6 ALIC and MaxEnt

Inspection of the ALIC semantics gives us a clear view on what it does at
the level of probability functions. Recall that an (A)LIC-model is a triple
M = 〈R+, c, p〉, where p is a probability distribution over V . Intuitively, the
set of ALIC-models of Γ consists of those LIC-models of Γ that verify no
more abnormalities (ω ∈ ΩRS ∪ ΩAt) than required by Γ. Whether M |= ω,
wholly depends on p. So ALIC indirectly selects those probability functions
p that satisfy the premises, but verify no more abnormalities than required.

The ALIC semantics and the MaxEnt principle discussed in section 8.3.2
are somehow similar in that they both provide a mechanism to select one or
more members from a set of probability distributions (a credal set) satisfying
Γ. However, if this credal set is closed and convex, MaxEnt selects one single
probability function, whereas the set of ALIC-models of Γ will usually not
be a singleton (and its members may also differ qua p). Moreover, there is
no guarantee that for any M ∈MALIC(Γ), p has maximal entropy.38

Given this semantic difference, ALIC and MaxEnt-based causal discov-
ery, such as the framework of Williamson (2005, §§5.6–5.7), will typically
lead to different results if the premises consist of a partial list of IRs. In
the following example it will be seen that ALIC tends to output unshielded
colliders. Suppose that V = {A, B, C,D} and that Γ is the following partial
list of IRs:

Γ = {∼(AqB),∼(Aq C),∼(Aq C | D),∼(AqD),

(AqD | C),∼(C qD),∼(C qD | A)}

Which are the causal relations that are ALIC-derivable from Γ? The
object level proof in Appendix 1 shows that B → A, C → A, C −D,∼(B −
C),∼(A − D) and ∼(B − D) are derivable.39 Of these consequences only
‘∼(A − D)’ is derived unconditionally, but all are finally derivable from Γ.
The resulting graph is depicted in figure 8.2.

It is easily seen that the framework of Williamson (2005, §§5.6–5.7) results
in a different output. One starts by constructing an undirected constraint

38Entropy is defined as follows:

H = −
∑

v∈[V ]

p(v) log p(v)

(Williamson, 2005, 80)
39In the interest of readability, the fifth element of some of the lines in that proof will

be abbreviated. For example, ‘Υ6 ∪Υ8’ is shorthand for the union of the fifth element of
line 6 and the fifth element of line 8.
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graph G as follows (Williamson, 2005, 86). Take as vertices the set V =
{A, B, C,D} and include an edge between two variables if and only if they
occur in the same premise (constraint). The underlying rationale is the
following: if no premise gives information about the relation between two
variables Xi and Xj, then we should assume them to be independent. The
result is depicted in figure 8.2. A constraint graph G represents conditional
independencies that a maximum entropy function satisfies.

Theorem 8.23 For all X,Y,Z ⊆ V , if Z separates X from Y in the con-
straint graph (i.e. if every path from X to Y in the constraint graph goes
through some vertex in Z) then (XqpY | Z) for any p satisfying the premises
which maximizes entropy.

Proof. See Williamson (2005, 86–87)

The converse does not hold. The premises state that (A q D | C), but
this does not correspond to any separation in our constraint graph G. (This
is why the edge between A and D is dotted in figure 8.2.)

The next steps in Williamson’s framework are such that a directed acylic
graph H is obtained by adding arrows to G (Williamson, 2005, 89–90). It
is possible that more than one DAG H can be obtained in this way. The
partially directed constraint graph depicted in figure 8.2 is the pattern repre-
senting all possible DAGs that can be obtained in our example. (The reader
can easily check that this partially directed constraint graph is the result of
first triangulating G and then applying ‘Step 1’ of Williamson (2005, 90).)

In this partially directed constraint graph there is an edge from A to C,
A→ C, whereas C → A is ALIC-derivable from Γ. This clearly shows that
ALIC may lead to different results than MaxEnt-based causal discovery.
Which framework is most suitable is hard to determine a priori. (By ‘a
priori ’ I mean ‘apart from concrete application contexts’.) Note that Γ may
be the result of observations from an underlying DAG in which C → A is
the case, such as world 2 in figure 8.2. In that case ALIC produces the
best output. But Γ may equally result from observations from world 1. In
that case, MaxEnt ’s output is the best. Which framework is most suitable
is underdetermined by Γ.

8.6 Concluding remarks

In this chapter, I claimed that, in scientific practice, the problem of ignorance
is ubiquitous, persistent and far-reaching. I also claimed that Pearl’s IC
algorithm cannot be applied in cases of ignorance. Finally, I put forward
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Figure 8.2: ALIC and MaxEnt-based causal discovery.

an adaptive logic, ALIC, which properly solves the problem of ignorance
without thereby losing the strong points of IC.

ALIC allows one to derive both classical, probabilistic and causal conclu-
sions from any set of probabilistic and/or causal premises. Hence it is greatly
apt for combining observational knowledge with background knowledge, com-
mon sense knowledge, etc. (The use of reliable background knowledge should
not be underrated, cf. the role of cytology in the development of classical ge-
netics.) What is more important: ALIC assigns an adequate truth value
to all undecided UIRs and CIRs (i.e. to all IRs that are undecided even in
the light of the available background knowledge, common sense knowledge,
etc). This assignment is based on two rationales: firstly, that scientific mod-
els should not be overly complex, and secondly, that correlation is a useful
(but not infallible) indicator of causation. But what is most important, if the
interpretation of an undecided IR turns out to be fallacious (e.g. in the light
of new premises), ALIC adapts itself to the premises and faulty applications
of the above rationales are remedied adequately.
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Appendix 1: an ALIC-proof

Part I: to derive A− C (conditionally), A−B (conditionally) and
∼(A−D) (unconditionally)

1. ∼(Aq C) – PREM {}
2. ∼(Aq C | D) – PREM {}
3. (A− C) Y ((Aq C) ∨ (Aq C | B)∨ – RU {}

(Aq C | D) ∨ (Aq C | B,D))
4. (A− C) Y ((Aq C | B) ∨ (Aq C | B,D)) 1, 2, 3 RU {}
5. (A− C) ∨ (Aq C | B) ∨ (Aq C | B,D) 4 RU {}
6. A− C 5 RC

{(Aq C | B), (Aq C | B,D)}
7. ∼(AqB) – PREM {}
8. A−B 7 RC

{(AqB | C), (AqB | D), (AqB | C,D)}
9. (AqD | C) – PREM {}

10. ∼(A−D) 9 RU {}

Part II: to derive ∼(B − C) and ∼(B −D) (conditionally)

11. (B q C) ⊃ ∼(B − C) – RU {}
12. ∼(B q C) ∨ ∼(B − C) 11 RU {}
13. ∼(B − C) 12 RC

{∼(B q C)}
14. (B qD) ⊃ ∼(B −D) – RU {}
15. ∼(B qD) ∨ ∼(B −D) 14 RU {}
16. ∼(B −D) 15 RC

{∼(B qD)}

Part III: to derive C −D (conditionally)

17. ∼(C qD) – PREM {}
18. ∼(C qD | A) – PREM {}
19. C −D 17, 18 RC

{(C qD | B), (C qD | A,B)}

Part IV: to derive B → A ∧ C → A (conditionally)

20. A−B ∧A− C 6, 8 RU Υ6 ∪Υ8

21. (B → A ∧ C → A) ≡ 20 RU Υ6 ∪Υ8

(((B q C) ∧ ∼(B q C | A))∨
((B q C | D) ∧ ∼(B q C | A,D)))

22. ∼(((B q C) ∧ ∼(B q C | A))∨ 21 RU Υ6 ∪Υ8

((B q C | D) ∧ ∼(B q C | A,D)))∨
(B → A ∧ C → A)

23. (B → A ∧ C → A)∨ 22 RU Υ6 ∪Υ8

∼((B q C) ∧ ∼(B q C | A))
24. (B → A ∧ C → A)∨ 23 RU Υ6 ∪Υ8

∼(B q C) ∨ (B q C | A)
25. B → A ∧ C → A 24 RC

Υ6 ∪Υ8 ∪ {∼(B q C), (B q C | A)}
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Appendix 2: soundness for LIC

Theorem 8.16 (Soundness for LIC) If Γ ` α, then Γ |= α

Proof. Consider an LIC-proof of α from Γ. Each line of this proof either
contains a premise, or an instance of (A1)-(A6), or a formula which is
derived from previous formulas by either (R1) or (R2). I will show that all
LIC-models of Γ verify α, so that Γ |= α.

Consider an LIC-model M = 〈R+, c, p〉 such that vM verifies all members
of Γ. I will show that for each line i in the proof, if β is the formula derived
on line i, then vM(β) = 1. It follows that vM(α) = 1.

(PREM) If β is a premise, then β ∈ Γ and, by hypothesis, vM(β) = 1.

(R1) If vM(β′) = vM(β′ ⊃ β) = 1, then vM(β) = 1 (by (Sv10)).

(A1) By (Sv7)-(Sv12), vM(β) = 1 if β is an instance of (A1) – i.e. an
axiom of propositional classical logic.

(A2) Likewise, vM(β) = 1 if β is an instance of (A2) – i.e. a (semi-)graphoid
axiom. I will prove this for the case of (G5). The proofs for the other
(semi-)graphoid axioms are left to the reader.
Suppose that vM((A q B | Q ∪ C)) = 1 (*) and that vM((A q C |
Q)) = 1 (**). From (*) it follows by (Sv3) that for all relevant values
of A, B, C and Q,40

p(A = a ∧B = b ∧Q = q ∧C = c)

p(B = b ∧Q = q ∧C = c)
=

p(A = a ∧Q = q ∧C = c)

p(Q = q ∧C = c)

and from (**) it follows by (Sv3) that for all relevant values of A, B,
C and Q,

p(A = a ∧Q = q ∧C = c)

p(Q = q ∧C = c)
=

p(A = a ∧Q = q)

p(Q = q)

From these equations it follows that

p(A = a ∧B = b ∧Q = q ∧C = c)

p(B = b ∧Q = q ∧C = c)
=

p(A = a ∧Q = q)

p(Q = q)

But then, by (Sv3), vM((AqB ∪C | Q)) = 1.

(A3, A4, A5) If β is an instance of (A3), (A4) or (A5), then vM(β) = 1.
The proofs for these cases are straightforward and left to the reader.

40By ‘relevant values’ I mean those values for which the conditional probabilities in
question are defined.
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(A6) If β is an instance of (A6), then vM(β) = 1. For the first part, suppose
that vM(A− B) = 1. It has to be shown that for all Q ⊆ V \ {A, B},
vM((AqB | Q)) = 0. So suppose that for some such Q∗, vM((AqB |
Q∗)) = 1. By (Sv3) it follows that for all relevant values of A, B and
Q∗,

p(A = a ∧B = b ∧Q∗ = q∗)

p(B = b ∧Q∗ = q∗)
=

p(A = a ∧Q∗ = q∗)

p(Q∗ = q∗)

But then, by (Sp9), c(〈A, B〉) = n. Hence, by (Sv5), vM(A−B) = 0,
which contradicts our supposition.

For the second part, suppose that vM(A−B) = 0. It has to be shown
that for some Q∗ ⊆ V \ {A, B}, vM((A q B | Q∗)) = 1 (i.e. that Q∗

blocks all paths between A and B – cf. (Sp9) and (Sv3)). Define Q∗

as follows (cf. Verma and Pearl, 1992, lemma 3.1):

Q∗ = {X | A 6= X 6= B and either X ⇒ A or X ⇒ B}

Suppose that some path P = 〈X1, . . . , Xn〉 (with n ≥ 3, X1 = A, and
Xn = B) is not blocked by Q∗. This means that for this path, Q∗

satisfies none of the conditions (a), (b) and (c) of (Sp9). Hence, by
the definition of Q∗, for all Xi (2 ≤ i ≤ n− 1):41

(a∼) if Xi−1 → Xi → Xi+1 or Xi−1 ← Xi ← Xi+1, then ∼(Xi ⇒ A)
and ∼(Xi ⇒ B)

(b∼) if Xi−1 ← Xi → Xi+1, then ∼(Xi ⇒ A) and ∼(Xi ⇒ B)

(c∼) if Xi−1 → Xi ← Xi+1, then (Xi ⇒ A) or (Xi ⇒ B)

Let us now consider all adjacency relations in P , starting with X1. If
X1 ← X2, then X2 ∈ Q∗. But this contradicts either (a∼) (if X2 ← X3)
or (b∼) (if X2 → X3). So X1 → X2 (§).
What about X2 and X3? If X2 ← X3, then X2 ⇒ B (by (§), (c∼)
and acylicity). But then X3 ∈ Q∗, which contradicts either (a∼) (if
X3 ← X4) or (b∼) (if X3 → X4). It follows that X2 → X3 (§§). If
n = 3, X2 ∈ Q∗, which contradicts (a∼), so n ≥ 4.

So what about X3 and X4? By the same reasoning, (§) and (§§) to-
gether imply that X3 → X4 (§§§), and hence that n ≥ 5. But this
implies that X4 → X5 (§§§§) and n ≥ 6. etc. etc. So P consists of an
infinite number of nodes, which is impossible.

To conclude, Q∗ blocks all paths between A and B and vM((A q B |
Q∗)) = 1.

41Note that for all Xi in question, A 6= Xi 6= B.
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(R2) If β is derived by means of (R2), and if vM(β′) = 1 for all the β′

used for this derivation, then vM(β) = 1. Suppose that vM(A − C) =
vM(C − B) = vM(∼(A − B)) = 1. It has to be shown that vM(A →
C ∧B → C) = 1 implies that for some Q, vM((AqB | Q)∧∼(AqB |
Q ∪ {C})) = 1, and vice versa.
For the first direction, suppose that vM(A→ C ∧ B → C) = 1. Given
that vM(∼(A−B)) = 1, there is some Q∗ such that vM((AqB | Q∗)) =
1 (see the soundness proof for (A6)). Now suppose that vM((A q B |
Q∗ ∪ {C})) = 1 (†). Since vM(A → C ∧ B → C) = 1, the triple
〈A, C,B〉 is a path between A and B. By (†), 〈A, C,B〉 must satisfy
one of the conditions of (Sp9). Trivially, it cannot satisfy (a) or (b).
By condition (c), C /∈ Q∗∪{C}, which is impossible. Hence, contra (†),
vM((AqB | Q∗∪{C})) = 0 and, by (Sv7), vM(∼(AqB | Q∗∪{C})) =
1. So, by (Sv8), vM((AqB | Q∗) ∧ ∼(AqB | Q∗ ∪ {C})) = 1.
The proof for the reverse direction is left to the reader.



Chapter 9

Galton’s Blinding Glasses.
Modern Statistics Hiding
Causal Structure in Early
Theories of Inheritance

In the previous chapters I have dealt with the discovery of pragmatic regular-
ities (more specifically with causal discovery) from two perspectives. Instead
of trying to give an overview of the plethora of topics relating to causal
discovery, I focussed on two themes. First I touched upon the superiority
of experimental over non-experimental studies as regards causal discovery
and showed that this was relevant in the history of classical genetics. Then I
turned away from classical genetics to discuss algorithms for causal discovery
from non-experimental data. Again, I did not give an elaborate overview of
all such algorithms. I focussed on Pearl’s IC algorithm, showed that it faced
a serious problem (the problem of ignorance), and presented an adaptive
logic, ALIC, that properly handles that problem.

The present chapter1 is also dedicated to causal discovery. It serves two
different goals. The major goal is to show that notwithstanding the fact that
contemporary statistical techniques are highly valuable and widely used for
causal discovery, we should be on our guard for their possibly biasing role.
To that end I will exploit another case study from the history of science, viz.
Sir Francis Galton’s theory of Ancestral Inheritance. (We will see that the
Mendelians did not have the monopoly of the concept of ‘law’ in the context

1This chapter is based on my paper “Galton’s blinding glasses. Modern statistics
hiding causal structure in early theories of inheritance”, which appeared in F. Russo and
J. Williamson (eds.), Causality and Probability in the Sciences, Texts in Philosophy series,
pp. 242–262. College Publications, London. (Leuridan, 2007a).
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of inheritance. Several different generalizations or equations were called laws
by Galton and the later biometricians. Some of these were clearly causal
P -laws (such as the law of ancestral heredity), others (such as the law of
filial regression) were clearly non-causal.)

The theory of ancestral inheritance rivalled the theory of classical genetics
for a long time. This will allow me to pursue a second aim. I will use the
concepts of chapters 3 and 4 to state precisely how Galton’s theory differed
from that of classical genetics. Their respective models had a different causal
structure (they were not isomorphic) and thus belonged to different causal
schemes.

9.1 The problem: probability and statistics

as a tool for discovering causal patterns

Mendel published the results of his genetic crosses on Pisum and their theo-
retic explanation in 1865/1866. His works again came to the fore from 1900
onwards. In the intervening years, the then influential scientist and statisti-
cian Francis Galton tried to analyse hereditary phenomena statistically. He
discovered interesting phenomenological regularities and posited a theoret-
ical or causal mechanism of hereditary transmission to explain them. But,
as I will argue, his causal ideas were perniciously biased by the statistical
techniques he used.

As we have seen in chapter 8, it is now commonplace to attribute to
probability theory and statistical inference a central place in the philosophy
of causality. The algorithms presented in Pearl (2000), Spirtes et al. (2000),
Neapolitan (2004), and Williamson (2005) make it possible to discover causal
relations on the basis of knowledge of (conditional) (in)dependence relations
between variables, together with some graph theoretical theorems and a set
of assumptions. Their theories are tightly linked with contemporary sta-
tistical techniques such as structural equation modelling (SEM).2 To put it
metaphorically: probability and statistics are viewed as glasses through which
we can see or detect causal relations.

This raises a problem. If I succeed in showing that Galton’s knowledge
of statistics impeded him to successfully develop a biological theory of inher-
itance (and thus acted as blinding glasses), it could be called into question
whether contemporary statistical techniques are neutral with respect to their

2‘Structural equation modelling’ refers to many related techniques. Other, more or less
equivalent labels are: ‘covariance structure analysis’, ‘covariance structure modelling’, and
‘analysis of covariance structures’. The term ‘causal modelling’ is considered somewhat
dated. (Kline, 2005, 9)
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domain of application (i.e. with respect to the theory being developed or
tested).

So here’s the plan. In sections 9.2 and 9.3, I will discuss an important
methodological difference between Mendel and Galton (the role of statistics
in their scientific research) and I will briefly recapitulate the main character-
istics of Mendel’s theory. Then, in section 9.4, I will show how probability
and statistics generated two explananda which in their turn generated con-
straints for any theory of inheritance. In sections 9.4.1 and 9.5, I will present
Galton’s explanans (his theory of heredity) and discuss the differences with
Mendel’s view on the matter. After parrying two possible counter-arguments
to my reasoning (9.6.1, 9.6.2), I will summarize what this case-study shows us
regarding the neutrality or non-neutrality of statistics in the work of Galton.
In section 9.7 I will redeem my promises. I will analyse the consequences for
contemporary statistical techniques like SEM and show that these may also
have a blinding influence. Finally, in section 9.8 I will show that Galton’s
theory of inheritance strongly differed from the classical framework. Their
causal schemes were strongly different. In other words, Galton’s causal or
credal nets are not isomorphic (let alone value-isomorphic or distribution-
identical) to any of the causal or credal nets of classical genetics.

9.2 Gregor Mendel and Francis Galton: two

different scientists

In the second half of the 19th century Francis Galton studied the processes of
heredity. He started his research by considering ‘hereditary genius’ (Galton,
1869), but soon he turned to more easily observable characteristics. In Nat-
ural Inheritance (Galton, 1889) he bundled the results of more than twenty
years of research on this topic. One of the most interesting aspects of Gal-
ton’s work was the fact that he used and developed several modern statistical
techniques, some of which are still used today (e.g. linear regression, which
was mathematically developed by Karl Pearson and others).

At the time Galton started to work on the problem of heredity, Mendel
had just finished his series of crosses with pea plants (P. sativum). In 1866
he wrote his Versuche über Pflanzenhybriden (Mendel, 1933) in which he
meticulously presented his theory of inheritance. As this paper met little
or no response in the biological community at the time, his ideas remained
silent until they were rediscovered by Carl Correns (1900) and Hugo de Vries
(1900a).3 In the meantime, Galton independently developed his biometric

3For a nice demystification of this mysterious rediscovery and of the preceding neglect,
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theory of ancestral inheritance. After 1900, these theories would become
vehement rivals and it would take several years or even decades before the
dispute between the Mendelians (e.g. Bateson, 1902) and the biometricians
(e.g. Karl Pearson, but also Weldon, 1902) was settled.4

Contrary to Galton, Mendel made little use of statistical theory. Of
course, he was trained mathematically and statistically (cf. footnote 1 of
chapter 5), and he recognized the need for empirical data. But he was not
trained in the ‘new’ tradition of Quetelet, Galton, etc. He inferred in a rather
intuitive way from particular observations to general regularities (see section
5.1). So, given the current dominant role of statistics in the special sciences,
shouldn’t we expect Galton to have found the most ‘true’ regularities? It
seems not. While Mendel is still considered the founding father of genet-
ics, Galton’s name is now only associated with dubious disciplines such as
phrenology and eugenics.

9.3 Mendel’s theory of inheritance

All of the phenotypic characteristics that Mendel observed in P. sativum
were qualitative and discrete. He studied seven pairs of contrasting traits,
such as seed shape (round or wrinkled) and stem length (tall or dwarf). His
explanandum consisted of some very straightforward empirical regularities
(phenotypic distributions). The task was to explain why after crossing short
plants with true-breeding tall plants, all the off-spring in the first filial gener-
ation was tall (see cross 1 of section 4.5); or why, after selfing this off-spring,
75% of the second filial generation was tall, while 25% was short (see cross 2
of section 4.5). These explananda are visualized in figure 9.1 (compare this
to figure 9.2).

Mendel’s explanans is based on a causal mechanism invoking material
bearers of hereditary traits. In each pair of contrasting traits, one is dominant
and the other is recessive (round is dominant to wrinkled, tall is dominant to
dwarf). These traits are caused and carried over from parental plants to filial
plants by unit factors (‘Factoren’, see Mendel, 1933, 24). A unit factor either
codes for the dominant trait or for the recessive trait. Factors occur pairwise
in the individual pea plants, but singly in the gametes.5 Roughly half of the

see Meijer (1983, sections 1 and 2) and also Darden (1991, section 4.3.).
4Two main factors brought the dispute to an end. Firstly, the theory of classical genetics

gained more and more independent evidence from e.g. cytology. Secondly, Sir R.A. Fisher,
the well-known statistician, proved that Galton’s explananda could be explained within
the Mendelian framework (Fisher, 1918).

5At least, this is what classical Mendelism has taught us. However, there is every
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Figure 9.1: Mendel’s explananda illustrated. The F1-generation resulted
from crossing dwarf plants with true-breeding tall plants. The F2-generation
resulted from selfing F1.

gametes carries (a copy of) the first factor, the other half carries (a copy
of) the second factor (later this was called the ‘principle of segregation’).
As emphasized by William Bateson in the beginning of the 20th century,
no gamete carries an intermediate factor. This is dubbed ‘the purity of the
germ-cells ’ in Bateson (1902, 108).6

A last point to be noted with respect to Mendel’s theory is that the
‘genotype’ of a pea plant is screened off or d-separated (see figure 4.1) from
the ancestral genotypes by the set of gametes that produced it. In figure 4.1,

(GT3 q {GT1, GT2} | {GC1, GC2}) (9.1)

Once it is established what unit factors are carried by the germinal cell
and the pollen cell, the origin of these gametes plays no further role. Remote
ancestry has no influence, conditional on the gametes.

To summarize, these are the main features of Mendel’s theory that we
should bear in mind in the following sections and which we should contrast
with Galton’s. Traits are grouped in pairs, in which one is dominant, the
other recessive. They are caused and transmitted by unit factors that occur
pairwise in individual organisms. Each gamete, however, contains only one
factor,7 according to the principle of segregation. Moreover, the gametes

indication that according to Mendel factors occur pairwise in heterozygotes, but singly in
homozygotes, since he considered them as discrete, uncountable fluids (Meijer, 1983).

6I will not discuss the ‘principle of independent assortment’, as Galton did not explicitly
treat multi-hybrid crosses.

7Each gamete contains only one factor of each pair of factors. Recall, however, that I
only discuss monohybrid crosses here.
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are pure (they never carry intermediate factors), and they screen off the
resulting individual from its ancestry.

9.4 Statistics generating two explananda for

Galton’s theory of heredity

9.4.1 Preview of Galton’s theory of Ancestral Inheri-
tance

Like Mendel, Galton invoked bearers of hereditary traits to set up a causal
mechanism of heredity.8 He called them ‘elements’ or ‘particles’.9 But con-
trary to Mendel’s unit factors, these did not occur in pairs. In each individual
organism, an indefinite or incalculable number of elements responsible for the
same phenotypic trait is present. (If we want to assess the merits of Galton’s
work, we should bear in mind that cytological constraints were rather poor
at Galton’s time; see Darden, 1991, chapter 7.)

Mendel had a relatively clear view on the transmission of unit factors
and on the possible genetic make-up of the gametes.10 By contrast, the
genetic make-up of gametes or individuals was never treated concretely in
Galton’s texts and the gametes played no inferential or predictive role in his
theory.11 Although he stated, in the beginning of his Natural Inheritance,
that “there is no direct hereditary relation between the personal parents and
the personal child” and that “the main line of hereditary connection unites
the sets of elements out of which the personal parents had been evolved with

8I have found no explicit discussion of the concept of ‘causation’ either by Mendel or
by Galton. Both their writings, however, reveal a ‘mechanistic’ view on causation.

Note that in this respect they strongly differed from e.g. Pearson who had a Machian
view on causation in which, first, causation is defined as perfect correlation and in which,
secondly, the existence of causal relations in the empirical world is excluded a priori
(Pearson (1900, chapter IV) or (1911, chapter V)).

9Galton also used the word ‘element’ to refer to the phenotypic traits themselves,
instead of the particles that caused them (see section 9.5.1).

10See ‘The reproductive cells of hybrids’ (in Stern and Sherwood, 1966, 23–32). See also
the credal net B1 and the generic credal net Bα in sections 4.5 and 4.7.

11In a later paper, Galton would refer to the germ-cells in his presentation of the law of
ancestral heredity (for the definition of this law, see section 9.5.1):

Now this law is strictly consonant with the observed binary subdivisions of
the germ cells, and the concomitant extrusion and loss of one-half of the
several contributions from each of the two parents to the germ-cell of the
offspring. (Galton, 1897, 403)
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the set out of which the personal child was evolved” (both are quoted from
Galton, 1889, 19), he directly predicted the traits of issue from the traits of
its ancestors. The ancestors not only included the parental generation, but
also the grand-parents, great-grand-parents, . . . Galton was convinced that
all ancestry may in principle have an influence on the set of elements from
which the organism is built, and thus on its phenotype (cf. infra, p. 197).
The influence is neither screened off by the parents, nor by their gametes.
Therefore, Galton’s theory can be called the theory of ancestral inheritance.

This suffices to show that the causal mechanisms proposed by Mendel and
by Galton were very different (see also section 9.8). In the following sections,
I will show how this difference can (partly) be explained by laying bare
the role played by Galton’s statistical knowledge. (I write ‘partly’, since his
views were also influenced by the theories of e.g. Weismann and Darwin.) His
statistics generated two explananda which in their turn imposed influential
constraints on any would-be explanans.12

9.4.2 The first explanandum : the normal distribution

Contrary to Mendel, Galton mostly studied continuous traits. In his Nat-
ural Inheritance, he paid a lot of attention to the schemes of distribution
and the schemes of frequency of e.g. human strength, stature, span of arms,
weight, breathing capacity, etc. (Galton, 1889, 35–50 and 200). All these
characteristics, Galton noted, are normally distributed.

In the 19th century, the normal distribution played a very important
role, not only in astronomy, but also in the biological and the social sciences.
Adolphe Quetelet, the Belgian statistician and sociologist, discovered that
measurements of e.g. human stature, birth ratios and crime rates were all
normally distributed. The term ‘Quetelismus’ refers, then, to the exaggera-
tion of the dominance of the normal distribution, i.e. to the view that “all
naturally occurring distributions of properly collected and sorted data follow
a normal curve” (Stigler, 1986, 201, my emphasis; see also 203–205). Galton
explicitly acknowledged the influence of Quetelet and stated that the latter
introduced the idea that the Law of Error (i.e. the normal distribution) might
be applicable to human measures (e.g. Galton, 1877, 493 and 1889, 54–55).

Galton knew several ways to represent distributions of data. One way
was to represent them graphically. Another way was to cite a series of eleven
percentiles (the 5th, 10th, 20th, . . . , 80th, 90th and 95th). But the most
economical method, applicable in case the data were normally distributed
(as seemed mostly the case), was to cite just two numbers: M and Q. M was

12In fact, Galton’s statistics generated at least three explananda (see footnote 30).
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the mean or median. Q he called the ‘Prob. Deviation’ and it was defined
as one half of the interquartile range: Q = 1

2
(Q2 − Q1), where Q2 and Q1 are

the third and the first quartile respectively. Q conveyed the dispersion of
the distribution and thus played a role similar to the standard deviation σ.13

Once M and Q were known, all percentiles could be calculated and the scheme
of distribution could be drawn.

The normal distribution of Human Stature played a tremendously impor-
tant role in Galton’s biometrical work. He wrote:

In particular, the agreement of the Curve of Stature with the
Normal Curve is very fair, and forms a mainstay of my inquiry
into the laws of Natural Inheritance. (Galton, 1889, 57)

Several sets of data, collected by Galton himself, indicated that the median
male stature P was 68.25 inch (Galton used the symbol P to refer to the
median in the context of Stature) and that Q = 1.7 inch.

Obviously, the normal distribution generated a major constraint on Gal-
ton’s theory of heredity. Whatever mechanism one was to propose to explain
the processes of inheritance, it had to be able to explain why inherited traits
are normally distributed. As Galton stated,

The conclusion is of the greatest importance to our problem. It is,
that the processes of heredity must work harmoniously with the
law of deviation, and be themselves in some sense conformable to
it. (Galton, 1877, 512)

What causes variables to be normally distributed? In 1810, Pierre Si-
mon Laplace first introduced what was later to be called the ‘Hypothesis of
Elementary Errors’ : that the joint action of a multitude of independent ‘er-
rors’ produces a normal distribution (Stigler, 1986, 201–202). Laplace’s main
topic of interest was the distribution of astronomical observations,14 but his
ideas forcefully influenced Quetelet and later also Galton. Galton wrote:

The Law of Error finds a footing wherever the individual pecu-
liarities are wholly due to the combined influence of a multitude
of “accidents” [. . . ]. (Galton, 1889, 55)

So the constraint imposed by the normal distribution was the following:
Galton had to introduce what he called a ‘variety of petty influences ’ in his
biological theory (Galton, 1889, 16–17).

13The standard deviation σ is by definition larger that Q, since M±σ includes about 68%
of the observations, while M± Q includes only 50% of them.

14If every measurement is the aggregate of many independent component measurements,
each of them subject to small errors, the normal distribution of astronomical data is
explained.
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9.4.3 The second explanandum : regression towards
the mean

Perhaps the most important one of Galton’s contributions to modern sta-
tistical theory was his concept of ‘regression towards the mean’. It would
later result in the theory of linear regression (elaborated by his protégé Karl
Pearson). What exactly did Galton mean by this regression?

In the 1860’s, he first tackled the topic of inheritance by studying human
genius or talent and the way it was distributed within families. In Hereditary
Genius (1869), Galton observed that, generally speaking, the relatives of
gifted men (such as Johann Sebastian Bach or Jacob Bernouilli) are gifted
too, but less so. And the more remote a relative is, the less he is talented
(Stigler, 2002, 176–177). In other words, Galton found a ‘regression towards
mediocrity’.

Of course, genius or talent is not easily observable, let alone measur-
able, but other characteristics are.15 In 1884, Galton gathered hundreds or
even thousands of records about the human population, called the R.F.F.
Data (Record of Family Faculties). They comprised information about the
Stature, Eye-colour, Temper, Artistic Faculty, . . . of whole families (span-
ning several generations). The major part of Natural Inheritance concerned
Human Stature, and the main research question was whether it is inheritable
or not, i.e. whether the offspring of tall people is – on average – tall, or not.16

But what do we mean by ‘tall’?
As I stated earlier, Galton knew that male stature was normally distrib-

uted with P = 681
4

inch and Q = 1.7 inch (see page 191). Women are slightly
smaller than men, but this difference disappears if their statures are multi-
plied or ‘transmuted’ by 1.08. These figures suggested a very straightforward
criterion for ‘tallness’. People are tall iff they have a stature larger than P.
Human stature could be written as the sum of two components:

Stature = P± D, (9.2)

in which D is the individual’s deviation from the mean (Galton, 1889, 51–52
and Chapter VII). So the sign and size of D indicated whether and to what
extent an individual was tall or small and Galton’s research question could

15Galton took great pains, however, to classify men according to their talent, both on
the basis of their ‘reputation’ and on the basis of their ‘natural ability’ (Galton, 1869,
37–38).

16The R.F.F. Data contained the statures of 205 pairs of parents and their 930 adult
children. Other data sets also reported on Stature: the Special Data covered about 783
brothers from 295 families and the Measures at the Anthropometric Laboratory consisted
of about 10,000 data (Galton, 1889, 71–82).
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be rephrased as follows: does the issue of parents with a large D itself also
have a large D?

The stature of the issue of unlike parents does not depend on the specific
statures of the father and of the mother, as Galton’s data revealed. It depends
only on their average stature. Therefore, Galton introduced the concept of
the ‘Mid-Parent’, which is defined as “an ideal person of composite sex, whose
Stature is half way between the Stature of the father and the transmuted
Stature of the mother.” (Galton, 1889, 87) The Mid-Parental Statures are
normally distributed with P = 681

4
inch and Q = 1.21 inch.17

Stature Mid-Parent =
Stat.Father + Transm.Stat.Mother

2
,

(9.3)

(Maybe the reader cannot help sniggering here. We should recall, how-
ever, that these procedures now are well-established. Transformations of
variables (such as the transmutation of the female statures) may be useful
for a variety of reasons (Kutner et al., 2005, 127–137) and can be easily per-
formed in e.g. SPSS.) The R.F.F. Data revealed that the off-spring of tall
Mid-Parents is on average taller than P and that the relation between the
Mid-Parental Stature and the average Stature of the Son is stable (where
the Son refers to both the sons and the transmuted daughters). If the Mid-
Parental deviation is D, then the filial deviation is on average 2

3
D:

I call this ratio of 2 to 3 the ratio of “Filial Regression.” It is the
proportion in which the Son is, on the average, less exceptional
than his Mid-Parent. (Galton, 1889, 97)

Galton could now describe with numerical precision what he had discov-
ered years before: the inheritance of characteristics is subject to ‘regression
towards the mean’ (which should be labeled a ‘phenomenon’ in the language
of chapter 5).

Stat.Son = P± 2

3
D, where D is the Mid-Parent’s deviation (9.4)

Take for example a Mid-Parent that is very tall, say 71.25 inch (D = 3
inch). Equation (9.4) predicts and figure 9.2 illustrates that its issue will, on
average, be 70.25 inch (D = 2 inch = 2

3
× 3 inch).18

17Note that 1.21 is a theoretically predicted number, as 1.7√
2 = 1.21. According to the

R.F.F. Data, the Mid-Parental Q is 1.19. Galton considered the agreement between these
numbers to be excellent (Galton, 1889, 92–94 and 208).

18Figures 9.1 and 9.2 nicely illustrate the difference qua explananda between Mendel’s
theory and Galton’s.
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Distribution of Human Stature: Mid-Parent
M=68,25   Q=1,21   σ=1,79

62 64 66 68 70 72 74 76 78

Distribution of Human Stature: Son
M=70,25   Q=1,7   σ=2,52

62 64 66 68 70 72 74 76 78

D = 3 inch

D = 2 inch

height (inches)

height (inches)

P(height)

P(height)

Figure 9.2: Filial Regression illustrated

Galton treated the equation describing filial regression not merely as a
nice generalization. He considered it a law:

By the use of this word [D or ‘a deviate’] and that of ‘mid-
parentage,’ we can define the law of regression very briefly. It
is that the height-deviate of the offspring is, on the average, two-
thirds of the height-deviate of its mid-parentage. (Galton, 1885,
508, my emphasis)

So here we are presented with a second set of constraints. Every theory of
heredity should be able to explain the law of filial regression. In the following
section, I will show how Galton’s theory of Ancestral Inheritance did this.

‘Filial Regression’ was not the only kind of regression that Galton dis-
covered (Galton, 1889, 99–110). Related notions which will prove to be
relevant in the following sections are ‘Mid-Parental Regression’ (equation
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9.5), ‘Parental Regression’ (equation 9.6) and ‘Fraternal Regression’ (equa-
tion 9.7):

Stat.Mid-Parent = P± 1
3
D, where D is the deviation of the Son, (9.5)

Stat.Son = P± 1
3
D, where D is . . . of one of his Parents, (9.6)

Stat.Brother = P± 2
3
D, where D is . . . of a known man. (9.7)

As we will see, the equations (9.4), (9.5), (9.6) and (9.7) turn out to be
spurious correlations from the point of view of Galton’s theory of Ancestral
Inheritance, just like the phenotypic distributions considered in chapters 4
and 5 turned out to be spurious from the point of view of classical genetics.
Hence, if equation (9.4) is a law, it is not a causal law. In the language of
chapter 1: it is a pragmatic law (a P -law), but not a causal pragmatic one
(not a cP -law).

9.5 Galton’s theory of ancestral inheritance

as an explanans

In this section I will show how Galton’s theory of inheritance satisfied the
constraints generated by the normal distribution and regression towards the
mean.

9.5.1 Particulate inheritance and the hypothesis of el-
ementary errors

Mendel’s causal mechanism responsible for the processes of heredity consisted
of unit factors in pairs. In Galton’s theory, the situation was less clear-cut.
He called it the theory of ‘particulate inheritance’ and used the words ‘ele-
ments ’ and ‘particles ’ several times. But sometimes these elements seemed
to denote (elements of) phenotypic traits, other times they might have re-
ferred to carriers of hereditary traits. Nonetheless, as Galton was influenced
by August Weismann’s theory of the germ-plasm and Charles Darwin’s con-
cept of Pangenesis, a ‘material’ interpretation of the elements or particles is
certainly justified (Galton, 1889, 7–9 and 192–193).

Galton’s hereditary particles are transmitted from parents to offspring,19

but in principle every ancestor may contribute to an individual’s elements.

19Since phenotypic traits sometimes seem to skip a generation, he distinguished between
personal elements (causing the traits they code for to be present), and dormant or latent
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So the parents or their gametes do not screen off the offspring from the rest
of its ancestry. The influence of remote ancestry is obviously smaller than
the parental influence. Nevertheless, it exists and plays an important role
in Galton’s predictive inferences. The separate contribution of each ancestor
follows a very simple rule, which would later be called the ‘Law of Ancestral
Heredity ’ by Karl Pearson:20

[. . . ] the influence, pure and simple, of the Mid-Parent may be
taken as 1

2
, and that of the Mid-Grand-Parent as 1

4
, and so on.

Consequently the influence of the individual Parent would be 1
4
,

and of the individual Grand-Parent 1
16

, and so on. (Galton, 1889,
136)

Taken together, the set of all ancestors fully determines the Son’s set of
elements, as

(2× 1

4
) + (4× 1

16
) + (8× 1

64
) + . . . = 1.

At first glance, this picture seems paradoxical. Although all hereditary
influence passes through the parents, there is still room for the influence
of the grand-parents, great-grand-parents, etc. This semblance of paradox
is dissolved if we distinguish between personal allowance and ancestral al-
lowance (cf. section 9.6.2). Personal allowance is the allowance ‘pure and
simple’ and it is governed by the Law of Ancestral Heredity (so that e.g. the

elements (‘unused’ elements, having no phenotypic influence). Prima facie, this strongly
resembles the Mendelian distinction between dominant and recessive traits or factors.
There is an important difference, however. The relation of dominance/recessiveness is
fixed for each pair of contrasting traits (round seed shape is always dominant to wrinkled
seed shape in Pisum). By contrast, Galtonian elements that are latent in one organism can
be personal in another. Galton had no definite answer to the question what determined
whether an element would be latent or personal. He thought there were three possible
answers:

[. . . ] first, that in which each element selects its most suitable immediate
neighbourhood, in accordance with the guiding idea in Darwin’s theory of
Pangenesis; secondly, that of more or less general co-ordination of the influ-
ences exerted on each element, not only by its immediate neighbours, but by
many or most of the others as well; finally, that of accident or chance [. . . ].
(Galton, 1889, 19)

20Galton explicitly discussed the validity of this ‘Law of Ancestral Heredity’ for the
inheritance of personal elements. At the end of his Natural Inheritance he hypothesized
that it would also apply to the latent elements (Galton, 1889, 187–191).
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father’s personal allowance is 1
4
). The ancestral allowance comprises all influ-

ence that is just passed through an ancestor. An individual’s total allowance
thus is the sum of its personal and its ancestral allowance.21

Now it is easy to explain why characteristics like human stature are nor-
mally distributed. In principle, an infinite number of ancestors influences
the set of hereditary particles of a man. And his ‘genotype’ consists of an
indefinite or incalculable number of elements. This makes sure that the in-
heritance of traits is determined by a ‘variety of petty influences ’ (Galton,
1889, 16–17).22 If it is assumed that these are to some degree independent of
one another (as Galton did), a physical basis is provided for the Hypothesis
of Elementary Errors. So the theory of Ancestral Inheritance is capable of
explaining the normal distribution of phenotypic traits (Galton, 1889, 84–85).

9.5.2 The Law of Ancestral Heredity, dilution and tax-
ation

Now what is the cause of Filial Regression (equation 9.4)? Why is it that
offspring tends to be more mediocre than its parents? Galton proposed an
answer in his paper “Regression towards mediocrity in hereditary stature”
(Galton, 1886), which he recapitulated in Natural Inheritance (Galton, 1889).

Suppose some Mid-Parent has Stature P ± D and call D her peculiarity.
From equation (9.5), Galton stated, it follows that the peculiarity of the
Mid-Grandparent is 1

3
D, that of the Mid-Great-Grand-Parent 1

9
D, etc. If each

generation would contribute its whole peculiarity, we should expect the Son
to inherit D(1 + 1

3
+ 1

9
+ &c.) = D3

2
. This contradicts the expected Filial

Regression of 2
3

(Galton, 1889, 134).
So Galton considered the possibility that the bequests of the successive

generations are somehow taxed or diminished. His data did not allow to
directly measure the size of this tax, but he had two limiting hypotheses. On
the one hand, if the bequest of every generation is taxed just once, the tax
rate has to be 4

9
(since D2

3
= D3

2
× 4

9
). On the other hand, if the tax is repeated

at each successive transmission, the rate should be 6
11

.23 Galton’s data did

21Galton did not use the labels ‘personal allowance’ and ‘ancestral allowance’ in Natural
Inheritance. They appear one time in his “The Average Contribution of each several
Ancestor to the total Heritage of the Offspring” (Galton, 1897, 441).

22Galton incorporated two more sources of ‘petty influences’ in his theory. First, whether
or not an element will be personal or dormant depends on very numerous influences (Gal-
ton, 1889, 22). Secondly, a trait such as Human Stature is not one element, but “a sum
of the accumulated lengths or thicknesses of more than a hundred bodily parts” (Galton,
1889, 83–84), and each element or length of a body part is subject to errors or environ-
mental effects.

23D 2
3 = 1D× 6

11 + 1
3D× ( 6

11 )2 + 1
9D× ( 6

11 )3 + etc.
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not allow to choose between these hypotheses. But as both values differed
but slightly from 1

2
, he decided that this would be a very good approximation

(Galton, 1889, 134–136).
Galton’s reasoning lacked logical rigour and can be challenged from sev-

eral sides.24 Nevertheless, one should not consider it as totally ad hoc. Both
in 1886 and in 1889, Galton concluded that, as the tax rate should be esti-
mated to be 1

2
, the Mid-Parent contributes half of his peculiarity, the Mid-

Grand-Parent one quarter, etc. That is, he combined it with the Law of
Ancestral Heredity (see page 197).25 In 1897, Galton published an extra ar-
gument for this law. If each ancestor may contribute to the heritage of the
offspring (‘as is shown by observation’), if remote ancestry contributes less
than near ancestry (‘as is well known’), if the contribution of the parents to
the children is the same as that of the grand-parents to the parents, etc. (‘as
is reasonable to believe’), and if the total amount contributed equals 1 (‘as
is necessarily the case’), then only the series of 1

2
+ (1

2
)2 + (1

2
)3 + etc. can

describe the share of the Mid-Parent, the Mid-Grand-Parent, etc. (Galton,
1897, 403). Michael Bulmer deems it very plausible that Galton had this
argument in mind in 1886 (Bulmer, 2003, 246).26 If he is right, as I think he
is, Galton’s choice for the tax rate of 1

2
was not totally ad hoc.27

So now we see how Galton’s theory explains regression towards the mean.
Since the peculiarity D of the Mid-Parent is mixed with the smaller peculiar-
ities of more remote ancestry (viz. 1

3
D, 1

9
D, . . .), the Son’s deviation from P is

smaller than D. Galton used a very powerful metaphor to illustrate this:

[The] effect resembles that of pouring a measure of water into
a vessel of wine. The wine is diluted to a constant fraction of
its alcoholic strength, whatever that strength may have been.
(Galton, 1889, 105)

The exceptionality of the parents is diluted by the mediocrity of the rest
of the ancestry (hence, I call this the Dilution Theory), so that their offspring
is more mediocre too. But, as we have seen, the Dilution Theory needed to

24For a crushing discussion of Galton’s derivation, see Bulmer (1998) and Bulmer (2003,
243).

25Note that the Law of Ancestral Heredity matches only the second of both limiting
hypotheses, namely that the tax is repeated at each successive transmission.

26In the bibliography of Bulmer (2003), however, this article is wrongly dated to 1885.
27Bulmer’s conviction is based on the following quote by Galton: “These and the fore-

going considerations were referred to when saying that the law might be inferred with
considerable assurance à priori [...].” (Galton, 1897, 403) Galton had indeed stated in
1886 that his law might have been deductively foreseen (Galton, 1886, 253).
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be completed with the concept of Taxation to get the correct ratio of Filial
Regression.

9.6 Two possible objections and a conclusion

Before I turn to the conclusion, I want to anticipate two possible objections
to my thesis that statistics played a blinding role in the development of
Galton’s theory of heredity. I will show that neither the observational nature
of the data on Human Stature, nor the continuous or blending nature of the
observed characteristics can be cited as alternative explanantia for Galton’s
failure to arrive at the ‘right’ theory of heredity.

9.6.1 The nature of Galton’s data

One of Mendel’s major merits was that he paid a lot of attention to the
design of his genetic crosses.28 By carefully selecting a well-suited organ-
ism (pea plants) and manageable pairs of opposing characteristics, and by
meticulously planning the right monohybrid as well as multihybrid crosses,
he was able to confirm his causal theory of inheritance – a theory that still
is considered the basis of modern genetics, although it has been subject to a
vast amount of changes, specifications and additions.

It is certainly true that Galton’s data were gathered in far less controlled
circumstances. He preferred data about humans because he considered them
more interesting or relevant. As a consequence his subjects were less easily
controllable.

In the 1870’s, however, after having published Hereditary Genius (1869),
but before collecting the R.F.F. Data, Galton did study plants (sweet peas,
not to be confused with P. sativum). He weighted thousands of seeds to
determine their size and then selected several sets for planting. Each set
consisted of seventy seeds, divided in seven packets of ten seeds of exactly
the same weight (K, L, . . . , Q). The K-class contained very heavy seeds, L
the next heaviest, and so on. He sent these sets to his friends throughout the
United Kingdom and asked to plant them according to very minute instruc-
tions and to collect the produce of each class separately. Seven plantings

28It should be noted that this section is slightly different in my paper “Galton’s Blinding
Glasses” (Leuridan, 2007a). There it was called ‘Observational versus experimental data’.
It met the possible objection that Galton’s data were observational, whereas Mendel’s were
allegedly experimental. The paper was written before chapter 7, and now the distinction
between Galton’s observational data and Mendel’s experimental data is superseded. I was
deluded by the statements of Mendel and others regarding the experimental nature of their
designs. The results of chapter 7, however, by no means affect the present argument.
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(with in total 7 × 7 × 10 = 490 parental seeds) succeeded (Galton, 1877,
512–514 and 1889, 79–82, 225–226).

The data showed that large seeds beget large seeds. But, as was the case
with hereditary genius, ‘Reversion’ could be observed (the label ‘regression
towards the mean’ was not yet introduced in 1877). In 1877, he gave no
exact value for the regression coefficient, stating only that it is constant.
In “Regression towards mediocrity in hereditary stature”, which dates nine
years later, this lacuna is removed:

It will be seen that for each increase of one unit on the part of the
parent seed, there is a mean increase of only one-third of a unit
in the filial seed; and again that the mean filial seed resembles
the parental when the latter is about 15.5 hundredths of an inch
in diameter.29 (Galton, 1886, 259)

This suffices to show that the difference between Mendel’s and Galton’s
scientific practice should not be sought in the nature of their data (highly
controlled in Mendel’s case, poorly controlled in the case of Galton).

9.6.2 Alternative inheritance versus blended
inheritance

Can’t we explain the difference between Galton and Mendel by looking at the
variables, i.e. the phenotypic traits, they studied? After all, Human Stature
and the Size of sweet peas are continuous variables, while Mendel observed
pairs of discrete, opposing characteristics.

It is certainly true that Galton paid a lot of attention to continuous traits
and it is equally true that that was the best way to discover regression-
phenomena.30 In Natural Inheritance, however, he took great pains to ar-

29See also Galton (1889, 225).
30As I phrase it here, it looks as if Galton did not come upon the phenomenon of

regression by merely analysing his data, but that he actively sought for it. In fact, this
was indeed the case. Galton needed ‘Regression towards the Mean’ to explain another
statistically inspired explanandum.

In 1877, he published “Typical Laws of Heredity” (Galton, 1877). One of the main
explananda in that paper was the fact that the distribution of characteristics (specifically
the Size of sweet peas) remained more or less constant in each successive generation. Using
the terminology of 1889, it was to be explained why both its M and Q remained constant.

In the absence of regression, the dispersion Q would increase from generation to genera-
tion. The offspring of tall men would on average be as tall as its parents, some of it would
even be taller; in the next generation, even taller issue would result, . . . But this would
contradict Galton’s data about sweat peas, as well as the findings of Quetelet, Galton and
others on human characteristics (Venn, 1889, 415). Regression was the perfect candidate
to solve this problem, as it would act as a counterbalance to this dispersive tendency.
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gue that the theory of Ancestral Inheritance could encompass the transmis-
sion of both blended heritages and alternative heritages (Galton, 1889, 12–14
and 138–153). To prove this point, Galton studied the transmission of Eye-
Colour:

If notwithstanding this two-fold difference between the qualities
of Stature and Eye-colour, the shares of hereditary contribution
from the various ancestors are alike in the two cases, as I shall
show they are, we may with some confidence expect that the
law by which those hereditary contributions are found to be gov-
erned, may be widely, and perhaps universally applicable. (Gal-
ton, 1889, 139)

How could the Law of Ancestral Heredity be used to predict the distri-
bution of Eye-colour in issue, conditional on the Eye-colour of its parents,
grand-parents, etc.? Galton distinguished between three types of Eye-Colour:
light, hazel and dark, and then treated the problem as if it concerned Stature.

Suppose you want to predict the stature of some man, S, but that you
only have information about one of his parents, F , having peculiarity D. By
equation (9.5), the parents of F have on average the peculiarity 1

3
D, while his

grand-parents (i.e. the great-grand-parents of S) have 1
9
D, . . . From the Law

of Ancestral Heredity it follows that F transmits only 1
4

of his peculiarity
to S; his parents transmit 1

16
D, etc. So the total calculable or predictable

heritage that is transmitted through F is31

D{1× 1× 1

4
+ 2× 1

3
× 1

16
+ 4× 1

9
× 1

64
+ &c.} ≈ D× 0.30,

consisting of F ’s known personal allowance (0.25 D) and its predictable an-
cestral allowance ((0.30− 0.25)D = 0.05 D). By analogy, two parents have a
known total allowance of 0.60, “leaving an indeterminate residue of 0.40 due
to the influence on ancestry about whom nothing is either known or implied”
(Galton, 1889, 149). The residue is a direct consequence of the fact that the
ancestral influence is not screened off by the parents or the parental gametes
in Galton’s theory.

These results can be easily re-interpreted in the context of Eye-colour.
We only need to interpret the personal allowance or ancestral allowance as
fractions of the total number of children in a family that will inherit some
specific trait (Galton, 1889, 149–150). If a parent has dark eyes, 30% of his
children will have dark eyes. Of the children of two dark-eyed parents, 60%

31See Galton (1889, 148–149). Note that Galton’s formula on p. 149 contains a printing
error.
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will be dark-eyed. Of the residue, 40% in this case, Galton assigns 28% to
dark eyes and 12% to light eyes, proportionally to their overall ratio in the
population. Galton’s reasoning gives rise to the following table, from which
it is easy to predict the distribution Eye-colour in issue, conditional on the
Eye-colour of its parents and grand-parents.32

For example, from the premise that in a family there are two light-eyed
parents, three light-eyed grand-parents and one hazel-eyed grandparent, you
can calculate that on average 91% of the children will have light eyes. The
rest, 9%, will be dark-eyed.33

Contribution to the Data limited to the eye-colour of the
heritage from each 2 parents 4 grand-parents 2 parents and

4 grand-parents
I. II. III.

Light Dark Light Dark Light Dark
Light-eyed parent .30 .25
Hazel-eyed parent .20 .10 .16 .09
Dark-eyed parent .30 .25
Light-eyed grandparent .16 .08
Hazel-eyed grandparent .10 .06 .05 .03
Dark-eyed grandparent .16 .08
Residue, rateably assigned .28 .12 .25 .11 .12 .06

Thus we can conclude that, even if Galton paid heavy attention to con-
tinuous variables, he also tried to incorporate the transmission of discrete
characteristics.

9.6.3 The neutrality of Galton’s statistics

I have shown that, in the second half of the 19th century, Galton’s views on
the mechanism of heredity were so much constrained by his statistical ex-
plananda, that he failed to discover the Mendelian scheme.34 It follows that
statistics can bias scientific research. Moreover, Galton’s case can be supple-

32Note that only the distribution of dark eyes and of light eyes is calculated. This table
is reproduced from Galton (1889, 213).

332× 0.25 + 3× 0.08 + 1× 0.05 + 0.12 = 0.91,
2× 0.00 + 3× 0.00 + 1× 0.03 + 0.06 = 0.09 (see also Galton, 1889, 215, Table 19).

34By this I do of course not mean that Mendel’s theory was either unconditionally true
or that it is still used in its original form. I only mean that he laid the fruitful basis of
modern genetics, even if the development of genetics involved a lot of changes to his basic
tenets.
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mented with examples from outside biology. In his utmost interesting book,
The Taming of Chance (1990), Ian Hacking has argued that the practice of
descriptive statistics by the bureaucracies of nation states affected the way
people conceived of society, of other people and of themselves. So statistics
has biased people’s world views and it has (partly) constrained theory devel-
opment in the social sciences too. So clearly, probability and statistics were
not always neutral scientific tools.

9.7 Consequences for contemporary statistics

In the literature on causal discovery, probability and statistics play an impor-
tant role, as several flourishing research programmes use conditional (in)de-
pendence relations as indicators of the presence and absence of causal rela-
tions and maintain strong ties to statistical techniques such as SEM (Pearl,
2000; Spirtes et al., 2000). In the SEM-literature, however, one is frequently
warned not to draw causal inferences from structural models too quickly.
Causal inference is only justified on the basis of models that fit the data
well. But good model fit is not enough. It may indicate that the model ac-
curately reflects reality, but not necessarily so. It leaves open the possibility
that the model is equivalent to one that corresponds to reality but itself is in-
correct, or that it fits the data from a nonrepresentative sample but has poor
fit in the population, or that it has so many parameters that it cannot have
poor fit (Kline, 2005, 321). In addition to fitting the data well, the model
should also correctly describe the causal relations between its variables.

A SEM-model has to be specified independently before it is confronted
with the data. In the SEM-literature, heavy stress is laid on the need for
reliable background knowledge or theory in this process.35 But this presup-
poses that this background knowledge is not perniciously biased by statistics
itself.

So what about the neutrality of contemporary statistics? I would like

35The following quote illustrates this and shows at the same time that, contrary to
what Pearl has argued, the exclusion of causal interpretations from SEM cannot be com-
pletely put down to SEM-practitioners seeking respectability by keeping causal assump-
tions implicit, or to the unsuitability of algebraic language for making or expressing causal
assumptions (Pearl, 2000, 137–138).

It is only from a solid base of knowledge about theory and research that
one can even begin to address [the] requirements for inferring causation from
correlation. Although facility with the statistical details of SEM is essential,
it is not a substitute for what could be called wisdom about one’s research
area. (Kline, 2005, 95)
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to make two statements in this respect. First of all, we should not throw
out the baby with the bathwater. One of statistics’ fundamental strengths
is that it has much thought for the presuppositions and internal limitations
of each of the techniques developed (presuppositions with respect to the dis-
tribution of the data or the relation between variables, robustness against
missing values and outliers, requisites concerning sample sizes, etc.). Add to
this that tests have been developed for most of these presuppositions (tests
which were not available to Francis Galton). Secondly, however, we should
not be blindly optimistic. Galton’s problem still is relevant today. Specifying
a SEM-model involves that we prestructure our domain of interest. Exam-
ples of such prestructuring can be found at many places in Kline’s intro-
ductory work (Kline, 2005). SEM-modelling involves marking out variables,
specifying their possible values and developing and including methods for
measuring them. It involves fixing covariance relations and perhaps impos-
ing constraints on (covariances between) disturbance variables. It involves
specifying the directionalities of presumed causal effects . . .

Consequently, SEM (and like methods) should be used very carefully in
practice. One should always bare in mind the possibly blinding influence of
the techniques themselves.

9.8 Galton’s causal scheme

Up till now, I have pursued the first goal of this chapter, viz. to show that
statistical techniques (including contemporary ones), although valuable and
widely used for causal discovery, may be perniciously biasing. In this final
section I will briefly discuss the difference between Galton’s theory and the
theory of classical genetics. In figure 9.3 the causal structure of Galton’s
theory of inheritance is sketched by means of the inheritance of stature.
The variable elem1 denotes the set of elements of some human. I have not
distinguished between her latent elements and her personal elements. Both
are joined in one variable. The variable elem1 causes the variable stat1,
which denotes her stature. The states of elem1 are in principle determined
by an infinite number of ancestral ‘genotypes’. I have included six ancestors:
two parents (numbers 2 and 3), and four grandparents (numbers 4 up to
7). This numbering is governed by the recursive rule Galton outlined in
his “A Diagram of Heredity” (Galton, 1898).36 The influence of the rest of

36Galton set forth his rule as follows:

The Subject of the pedigree is numbered 1. Thenceforward whatever be the
distinctive number of an ancestor, which we will call n, the number of its
sire is 2n, and that of its dam is 2n + 1. All male numbers in the pedigree
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elem1

stat1

elem5elem4 elem7

elem2 elem3

elem6

stat2 stat3

stat7stat6stat5stat4

residue

Figure 9.3: The causal structure of Galton’s theory of inheritance (sketch)

her ancestry is represented by the variable residue (cf. the table in section
9.6.2). This is of course a stopgap (this is why I have dotted the edge between
residue and elem1.) The stature stati of each ancestor is determined by the
corresponding variable elemi. All elemi-variables are dotted because they
are T-theoretical with respect to the theory of ancestral inheritance.

The graph in figure 9.3 is common to all pedigrees relating to the inheri-
tance of stature in humans in which the statures of both parents and those
of both grandparents are known (cf. column III. of the table in section 9.6.2).
By specifying the values of residue and of all variables elemi (2 ≤ i ≤ 7),
and by specifying the relations between these several variable (cf. taxation),
the distribution over elem1 and stat1 can be derived.

Two remarks are in order here. Firstly, Galton never discussed the set
of possible values (the space) of the variables elemi (let alone of residue)
in detail. Whereas the Mendelians had (ever more) precise ideas about the
possible values of the GTi-variables, Galton only stated that the “there is
no direct hereditary relation between the personal parents and the personal
child” and that “the main line of hereditary connection unites the sets of el-
ements out of which the personal parents had been evolved with the set out
of which the personal child was evolved” (Galton, 1889, 19). Whereas ab-
ductive reasoning from phenotypes to genotypes was theoretically supported
in classical genetics, it was absent in Galton’s framework.

Secondly, from these quotes it is evident that Galton’s phenotypic general-

are therefore even, and all female numbers are odd. To take an example – 2
is the sire of 1, and 3 is the dam of 1; 6 is the sire of 3, and 7 is the dam of
3. (Galton, 1898, 293).
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izations, i.e. the equations (9.4), (9.5), (9.6), and (9.7), are spurious according
to the theory of Ancestral Inheritance. Take the case of equation (9.6). The
parental stature and the filial stature are effects of a set of common causes:
the sets of elements of all ancestry. So where the law of ancestral heredity
may be considered a causal P -law, the cited equations are non-causal P -laws.

Let us now compare figure 9.3 with figure 4.1. The graphs in these figures
are not isomorphic. Hence the theory of Galton differs strongly from the
theory of classical genetics. They have different causal schemes. It could
of course be objected that in figure 4.1 I included but two generations (the
parental and the filial generation), whereas in figure 9.3 I included three. This
is true, but innocuous to my argument. Firstly, I included three generations
to make clear the point that offspring is not d-separated from its remote
ancestry by (the gametes of) its parents. Secondly, I could have restricted
the graph in figure 9.3 to two generations. In that case, I would still have
needed the variable residue (and its influence on elem1 would then have
been even stronger – cf. column I. in the above table). So anyhow, my
reconstruction would have resulted in a graph that is not isomorphic to the
graph in figure 4.1.

9.9 Concluding remarks

The present chapter served two goals. The first goal was to show that statis-
tical techniques played a perniciously biassing role with respect to Galton’s
theory of ancestral inheritance and that these days the same might some-
times hold for e.g. structural equation modelling. The second goal was to
show that the causal structure of Galton’s theory strongly differed from that
of classical genetics. Their respective causal models were not isomorphic and
hence do no belong to the same causal scheme.

An important objection might be raised here. There could be a risk that
the concepts which I used have equally played a biassing role. This would of
course not follow directly from the results of the present chapter. After all,
although I used concepts like ‘causal net’, ‘credal net’, and ‘causal scheme’,
I did not use any statistical techniques. But the objection is legitimate and
I will examine it in a minute.





Chapter 10

Concluding Remarks: the
Biassing Role of Causal Models

In chapter 1 I presented the criteria for strict lawfulness that were proposed
by i.a. Nagel, Hempel and Goodman. I also stated that these criteria were
strongly shaped, or biassed, by the language and the inferential characteris-
tics of first order classical logic – a logic the language of which moreover does
not allow for a distinction between causal laws and non-causal ones. This
bias was pernicious, as these criteria hardly allow for laws of nature in the
special sciences (or even in physics!).

I proposed to use the concepts of ‘P -law’ and ‘cP -law’ as an alternative.
These concepts are less strict and allow for laws of nature in the special
sciences. They are formulated against the background of the causal modelling
framework. This offered several advantages.

Firstly, the distinction between causal and non-causal laws could straight-
forwardly be expressed. Secondly, the causal structure of scientific theories,
in casu quo classical genetics, could adequately be described. And it was seen
that several related concepts from philosophy of science, such as anomalies,
exemplars and theory-elements could fruitfully be adapted and incorporated.
Thirdly, we saw that explanation on the basis of non-strict laws is nothing
to be afraid of. Though explanation in genetics relies on causal pragmatic
laws, it may account for different kinds of explananda (phenotypic distrib-
utions, singular events). It incorporates many different aspects commonly
attributed to scientific explanation (derivational unification, ontological uni-
fication, mechanistic explanation, . . . ). Fourthly, non-strict laws are not only
apt for explanation, but also for policy. It is well established in the literature
on causal modelling that causal pragmatic laws can be used for manipula-
tive policy. In addition, however, we saw that non-causal pragmatic laws are
useful for policy (selective policy) too. Finally, the causal modelling frame-

209
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work offered an interesting way to examine causal discovery. We saw that
experimental data provide more solid grounds for discovering causal prag-
matic laws than merely observational data and that classical genetics went
to a large extent without experiments. Although experiments are useful for
causal discovery, they are not indispensable. Many tools for observational
causal discovery have been devised. My adaptive logic ALIC provides such
a tool and it can handle an important and widespread problem: the problem
of ignorance.

The framework of causal modelling also fits the methodology of many of
the special sciences. It is closely related to statistical techniques used in the
social sciences, in epidemiology, in biology, etc. It is even explicitly connected
to structural equation modelling by Woodward, Pearl, etc. But as we saw in
the last chapter, structural equation modelling should be applied carefully.
Relying on the case of Galton’s theory of inheritance I showed that statistical
techniques (even contemporary ones) may bias our causal beliefs.

Do we have any guarantee, then, that the framework of causal modelling
does not bias our causal beliefs as well? Or that it did not bias our view
on causality and laws of nature in the special sciences? Quite the contrary!
The concepts of causal modelling certainly are not innocent. In this final
chapter, I will briefly discuss the biassing role of causal models with respect
to both causal discovery and the concept of causality. I will not endeavour
to glance through the plethora of objections that have been raised against
causal modelling. I will concentrate on four central and closely related is-
sues: the causal Markov condition, the faithfulness condition, invariance, and
modularity. Whereas I discussed the first three concepts frequently, I did not
touch upon modularity. But as it has been heavily debated in the past ten
years, I will do it here.

10.1 The causal Markov condition

There are several key assumptions underlying both algorithms for causal
discovery from non-experimental data and the causal modelling semantics.
One central assumption is the causal Markov condition, viz. that each variable
is probabilistically independent of its non-effects, conditional on its direct
causes. This condition is not uncriticized. Jon Williamson (2005, 49–57) cites
five sets of objections raised indirectly against the causal Markov condition.1

1In his view the objections affect the causal Markov condition if both causality and
probability are interpreted physically (not as features of an agent’s mental state). The
discussion of these objections serves an overarching goal in Williamson (2005), viz. to argue
for an objective Bayesian interpretation of probability and for an epistemic interpretation
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The causal Markov condition is related to the Principle of the Common
Cause. This principle is a development of John Stuart Mill’s Fifth Canon of
Inductive Reasoning and was formulated by Hans Reichenbach in close to its
current form (Williamson, 2005, 51).

Definition 10.1 (Principle of the Common Cause) If ∼(AqB), then
A⇒ B or B ⇒ A or there is a Q ⊆ V such that C ∈ Q implies C ⇒ A and
C ⇒ B, and (AqB | Q).

The principle of the common cause is relevant for the present discussion,
since it is implied by the causal Markov Condition. Hence any counterexam-
ple to the former calls into question the validity of the latter.

Theorem 10.2 The causal Markov condition implies the Principle of the
Common Cause.

Proof. See Williamson (2005, 52)

According to the principle of the common cause, if two variables are prob-
abilistically dependent, there must be a causal explanation for this. Either
one causes the other, or they are effects of a common cause. Jon Williamson
(2005, 52–57) cites five sets of objections to the principle of the common
cause. Random variables may be probabilistically dependent without there
being any causal explanation: (i) they may be so related by accident, (ii)
or by having related meanings, (iii) they may be logically related, (iv) or
mathematically, or (v) the dependence may result from non-causal physical
laws or from local, non-causal constraints and initial conditions.

Firstly, probabilistic dependencies may arise by accident, as is shown by
Elliott Sober’s famous example about the sea level in Venice and the price
of bread in Britain. Both have been on the rise in the past two centuries,
and thus are strongly positively correlated. But none is a cause of the other.
Nor are they effects of a common cause (unless one decides to treat time as
a common cause). Probabilistic dependencies may also result from variables
having related meanings. Analogously, they may result from variables being
logically related. This is why I stipulated in chapter 8 that all variables in V
should be different (different name = different variable) and that they should
be logically independent. So V cannot contain both ‘Gender’ and ‘Being a
King’ as a variable, but it can contain both ‘Gender’ and ‘Being a royal head
of state’. (By definition, kings are male.) Fourthly, probabilistic dependen-
cies may result from mathematical relations. Williamson illustrates this by

of causality.
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an example of a probabilistic expert system for colonoscopy. The aim was
to produce a system for guiding an endoscope up a patient’s colon, using
a camera image to assist the guiding process. From the camera image, the
colon centre (which shows up as a large dark region on the screen) had to be
distinguished from pockets in the colon wall (which show up as small dark
regions on the screen). In order to distinguish between both types of region,
two variables were used: the mean light intensity M and the intensity vari-
ance V . (Williamson, 2005, 49) But the mean and the variance of a variable
are related mathematically, not causally. Finally, probabilistic dependencies
may arise from non-causal physical laws or from local non-causal constraints
and initial conditions. The latter case is illustrated by an example from
Nancy Cartwright.

A typical case occurs when a cause operates subject to constraint,
so that its operation to produce one effect is not independent of
its operation to produce another. For example, an individual has
$10 to spend on groceries, to be divided between meat and veg-
etables. The amount that he spends on meat may be a purely
probabilistic consequence of his state on entering the supermar-
ket; so too may be the amount spent on vegetables. But the two
effects are not produced independently. The cause operates to
produce an expenditure of n dollars on meat if and only if it op-
erates to produce an expenditure of 10− n dollars on vegetables.
Other constraints may impose different degrees of correlation.
(Cartwright, 1994, 113–114)

10.2 The Faithfulness condition

The causal Markov condition is not the only assumption underlying algo-
rithms for causal discovery that has been under attack. The faithfulness
condition, which states that effects should be probabilistically dependent
on their causes, has been criticized too.2 (The faithfulness assumption is
less central for the causal modelling semantics than is the causal Markov
condition.) Nancy Cartwright (2001, 244–248) cites two problems for the
faithfulness condition. The first problem is Simpson’s Paradox : facts about
probabilistic dependency (positive dependency, negative dependency, inde-

2For the exact interpretation of the faithfulness condition (which in fact is a binary
relation between DAGs and probability distributions), see definition 8.4.
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pendency) may be reversed in moving from populations to subpopulations.3

Pearl illustrates this as follows:

For example, we may find that students who smoke obtain higher
grades than those who do not smoke but, adjusting for age, smok-
ers obtain lower grades in every age group and, further adjusting
for family income, smokers again obtain higher grades than non-
smokers in every income-age group, and so on. (Pearl, 2000, 78,
my emphasis)

The reversal of probabilistic dependencies in this case may be the result
of probabilistic dependencies between smoking on the one hand and age and
income on the other hand.

The version of Simpson’s Paradox that is most relevant here is the sit-
uation in which two variables X and Y are probabilistically dependent (re-
spectively, independent) in some population, but independent (respectively,
dependent) in any subpopulation obtained by conditioning on the value of
some third variable Z. Depending on the population chosen, X may or may
not be considered a cause of Y . (Cartwright adopts Suppes’ notion of prima
facie causation. X is a prima facie cause of Y if and only if it precedes Y in
time and is correlated with Y . Genuine causes, then, are prima facie causes
that survive the same independence tests as in my axiom (A6) – see section
8.4.3. Simpson’s Paradox shows that X may be a genuine cause of Y , and
nevertheless not be a prima facie cause of Y in the subpopulations studied.)

The second problem for the faithfulness condition affects cases where one
and the same cause has different influences on an effect, and where these
influences cancel each other. Cartwright cites Hesslow’s famous example of
the birth-control pills.

The pills are a positive cause of thrombosis. On the other hand,
they prevent pregnancy, which is itself a cause of thrombosis.
Given the right weights for the three processes, the net effect of
the pills on the frequency of thrombosis can be zero. (Cartwright,
2001, 246)

If such cancellation occurs, birth-control pills and thrombosis are prob-
abilistically independent even though the former are a genuine cause of the
latter.

3Simpson’s Paradox is not a paradox in the strict logical sense.
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10.3 Markov, faithfulness, and the problem

of causal discovery

What should we conclude from the objections against the causal Markov
condition and the faithfulness condition?4 Do they affect the results of the
previous chapters? We should distinguish between two issues here. The first
issue regards the problem of causal discovery. The second issue is semantic
or definitional, as it regards the concept of causality and laws of nature. Let
me tackle the problem of causal discovery first.

The causal Markov condition and the faithfulness condition both are in-
dispensable fundamentals underlying the IC algorithm, the logic ALIC, and
many other tools for causal discovery. The objections discussed in the pre-
vious sections show that IC and ALIC are fallible. No one would have
expected otherwise! As the objections mentioned above show, the causal
Markov condition may induce us to posit causal relations where in fact there
are none. And the faithfulness condition may induce us to disregard existing
such relations. But does that mean that we have to abandon such algorithms
completely? Cartwright seems to suggest we do. By presupposing that the
causal structure to be discovered is faithful to our probabilistic knowledge
(in cases where we lack the information necessary to confirm this) we run the
risk of not getting the causal structure right. She responds with a truism:5

when you don’t know, you don’t know; and it is often dangerous
to speculate. (Cartwright, 2001, 249)

Two questions are in order here. Firstly, how often will we fail to get the
causal structure right? Secondly, how dangerous would such failure be?

In any case, failures of the causal Markov condition should be ruled out
as much as possible. All background knowledge (if any) suggesting that some
probabilistic dependency may not be the result of an underlying causal struc-
ture but is rather due to accident, or semantic relations, or logical relations,

4I will sidestep another assumption underlying most algorithms for causal discovery,
viz. that causal relations are not cyclic. The acyclicity assumption can easily be satisfied
even in contexts where the structures to be studied are cyclic (Williamson, 2005, 50).

5Cartwright often stresses that she favours the Bayes-nets account of causal discovery,
but the truism – if taken seriously – seems to undermine the whole approach. When
you don’t know that the causal structure to be discovered is faithful to your probabilistic
knowledge, you don’t know. In that case, Cartwright claims, it is often dangerous to
speculate. But when you know that it is faithful, you know. That is, you know the causal
structure and may compare it with your probabilistic knowledge. In that case you would
no longer need the algorithms in question.
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etc. should be taken into account. One of the main advantages of ALIC is
that incorporating such background knowledge really is straightforward.

What about failures of the faithfulness assumption? The faithfulness as-
sumption has been defended by showing that at least in a measure theoretic
sense it is reasonable (Spirtes et al., 2000, 41–42; Meek, 1995b). Intuitively,
the argument is as follows: take the set PG of probability distributions that
are causally Markov relative to some DAG G. Part of these distributions
will also be faithful to G, but not all of them. Suppose one randomly draws
a distribution from PG. Then the probability of drawing an unfaithful distri-
bution is zero (Meek, 1995b, theorem 7). More specifically, with respect to
the Lebesgue measure over the space of sets of parameters that characterize
the members of PG, the set of distributions which are unfaithful to G has
measure zero. This should show that we would seldom fail to get the causal
structure right.

Cartwright (2001, 250) is not impressed by this argument. For one thing,
she does not see how Lebesgue measures connect with the way in which
parameters are chosen or arise naturally for the causal systems to be stud-
ied.6 So Meek’s result seems irrelevant. Moreover, she argues, it is also ‘an
irresponsible interjection into the discussion.’

Getting it right about the causal structure of a real system in front
of us is often a matter of great importance. It is not appropriate
to offer the authority of formalism over serious consideration of
what are the best assumptions to make about the structure at
hand. (Cartwright, 2001, 250)

I would not go this far. I think we rather have to accept that our methods
for causal discovery from non-experimental data are fallible. But from the
fallibility of these algorithms (or of inductive methods in general) it should
not be concluded that they may never be used. If, in some context, they are
the best we have, there may be good reasons to use them. All scientific work
is incomplete. But, in the words of A.B. Hill, that does not confer upon us a
freedom to ignore the knowledge we already have, or to postpone the action
that it appears to demand at a given time.

This does not mean, of course, that any action may be done on the basis
of any evidence. Let me quote A.B. Hill once more:

Finally, in passing from association to causation I believe in ‘real
life’ we shall have to consider what flows from that decision. On
scientific grounds we should do no such thing. The evidence is

6For a further discussion of the probability of exceptions to the faithfulness condition
and of Cartwright’s arguments, see Steel (2006).
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there to be judged on its merits and the judgement (in that sense)
should be utterly independent of what hangs upon it – or who
hangs because of it. But in another and more practical sense we
may surely ask what is involved in our decision. (Hill, 1965, 300,
my emphasis)

Hill’s paper focusses on occupational medicine, and the phrase ‘what is
involved in our decision’ touches medical, economic, social, political and other
considerations. Some decisions may be based on ‘relatively slight evidence’,
such as the decision to restrict the use of a drug for early-morning sickness
in pregnant women. Others should be based on ‘fair evidence’, such as the
decision to change from a probably carcinogenic oil to a non-carcinogenic oil
in a limited environment. But ‘very strong evidence’ would be needed before
we make people “stop smoking the cigarettes and eating the fats and sugar
that they do like.” (Hill, 1965, 300)

Algorithms for causal discovery, like any inductive inference procedures,
should be applied as carefully as possible. And in any application, it should
be backed with as much relevant background knowledge as possible. But
we should not rule out from the start applying them in cases where they
might fail. How dangerous it is to speculate depends on ‘what flows from our
decision’ and cannot be determined apart from concrete cases.

10.4 Invariance and modularity

Up till now I have discussed two important assumptions: the causal Markov
condition and the faithfulness condition. I thereby focussed on the problem
of causal discovery. Woodward and others closely tie the causal Markov
condition to another central concept, modularity, in a way that affects the
semantics or the definition of causality. Modularity resembles invariance,
but whereas invariance is a feature that applies to single generalizations,
modularity applies to sets of generalizations. Both modularity and invariance
are important with respect to the concept of causality.7

Woodward discusses modularity primarily with respect to causally inter-
preted structural equation models (i.e. sets of causally interpreted equations).
It conveys the assumption that each equation is independently changeable,
without disrupting the other equations.

[. . . ] a system of equations will be modular if it is possible to
disrupt or replace (the relationships represented by) any one of

7‘Modularity’ is applied in many different senses, see Callebaut and Rasskin-Gutman
(2005) and Mitchell (2006). I will stick to the concept of Hausman and Woodward here.
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the equations in the system by means of an intervention on (the
magnitude corresponding to) the dependent variable in that equa-
tion, without disrupting any of the other equations. Modularity is
thus a feature that a set of representations of causal relationships
(e.g., equations or a directed graph) may (or may not) possess.8

(Woodward, 2003b, 48)

In Woodward’s view, the concept of modularity presupposes that all equa-
tions or generalizations in question are to some extent invariant, as is seen
from his more precise definition (MOD). Thus modularity and invariance
are two distinct concepts, where the former implies or presupposes the latter,
but not vice versa.

(MOD) A system of equations is modular if (i) each generalization is [. . . ]
invariant under some range of interventions and (ii) for each equation
there is a possible intervention on the dependent variable that changes
only that equation while the other equations in the system remain
unchanged and level-invariant. (Woodward, 2003b, 329)

In the previous chapters, I never discussed sets of structural equations
explicitly. But I did discuss conditional probability tables. Conditional prob-
ability tables play the same role as Woodward’s structural equations. They
provide constraints to be satisfied by probability distributions and by causal
nets. For example, tables 1–3 in section 4.5 provide constraints for P ∈ P1,
and hence indirectly for B ∈ B1 = 〈G1, P1〉. B1 is the set of causal models
that satisfy tables 1–3 (and are isomorphic to the graph in figure 4.1).

In chapter 5 I showed that the generalizations in tables 1–3 are invariant
(at least according to the theory of classical genetics). Suppose that a pea
plant has the genotype GT = ts and the phenotype PT = tall. Then it is to
be expected that if by some ideal intervention its genotype were changed to
GT = ss, its phenotype would change to PT = short.

Modularity applies to systems of generalizations. For example, within
each of its theory-elements the principles of classical genetics are (or can be
deemed) modular. It could be expected that by intervening on the gametic
make-up CG1 of a paternal plant (or a group of paternal plants) in a genetic
crossing, detaching it from the causal influence of GT1, one may change the
value (or the probability distribution over the values) of the genotype GT3

of its offspring in accordance with the principle of composition. If so, the
principle of composition is invariant under this intervention. (One may think

8In my view, some clarification is in order here. In Woodward’s claim that modularity
is a feature of directed graphs, ‘directed graphs’ should be interpreted syntactically, not
semantically.



218 Concluding Remarks: the Biassing Role of Causal Models

of such an intervention as a divine intervention, where the make-up of the
gametes is suddenly changed by some magical power. Derivatively one may
think of the gametes being replaced by different gametes with some known
and desired make-up. Barring problems relating to the CG-theoreticity of
‘gametic make-up’, this last procedure was feasible in the beginning of the
twentieth century.) But it may also be assumed that this intervention would
leave the relations between, e.g., GT2 and PT2, or between GC2 and GT3

unaltered. This is what Woodward calls “modularity”. Disrupting (the re-
lationship described by) the conditional probability table relating GT1 and
GC1 should leave unaltered the conditional probability tables describing the
other local mechanisms.

Woodward considers modularity as a precondition for representational
adequacy. Hence the concept of modularity plays a semantic or definitional
role in his framework.

It is natural to suppose that if a system of equations [or a set
of conditional probability tables] correctly and fully represents
the causal structure of some system, then those equations [or
conditional probability tables] should be modular. (Woodward,
2003b, 48)

It remains to be seen whether this claim should be endorsed no matter
what.

10.5 Modularity and causal pragmatic laws

Two main motivations underlying the modularity assumption may be dis-
tinguished. Firstly, modular systems are well suited for manipulative policy.
Secondly, it has been argued that modularity implies the causal Markov con-
dition and that this makes it worth arguing for.

Modular systems of generalizations are well suited for manipulative pol-
icy. If an intervention on (the magnitude corresponding to) a variable does
only affect (the local mechanism described by) one invariant generalization,
while leaving the other generalizations unchanged, the effects of manipula-
tive policy can relatively easily be predicted. This is true, and it provides a
good pragmatic reason to search for (or to hope for) modular representations.
But by itself it does not allow one to conclude that if a representation is not
modular, it does not fully represent the causal structure of some system.

A second motivation underlying the modularity assumption seems to go
in that direction. It is supposed to underpin the causal Markov condition
(Hausman and Woodward, 1999). This motivation has come under attack.
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Nancy Cartwright (2002; 2006) has repeatedly argued that modularity does
not imply the causal Markov condition and Hausman and Woodward (2004)
have tried to defend their thesis. Whether or not Hausman and Woodward
are right in claiming that modularity implies the causal Markov condition is
a difficult matter and the discussion does not seem to be closed yet. But to
a large extent it is immaterial with regard to the previous chapters. Sup-
pose that modularity does not imply the causal Markov condition. This
would not compromise the latter. The causal Markov condition has indepen-
dent grounding. It is a fallible, but heuristically useful tool, together with
the faithfulness assumption, for discovering causal pragmatic regularities.
Causal pragmatic regularities are described by causal pragmatic generaliza-
tions. These are invariant under some range of interventions. But whereas
invariance is closely linked to modularity, they are nevertheless two distinct
concepts (cf. supra). My concepts of cP -law and cP -regularity incorporate
the former, but not the latter.

Suppose now that modularity does imply the causal Markov condition.
Again, this would not compromise the latter. Objections to the modularity
assumption would not carry over to the causal Markov condition. On the
contrary, modularity implying the causal Markov condition would be inter-
esting from a practical point of view. If modular systems of generalizations
are particularly useful for predicting the outcome of manipulative policy (as
I think they are) then it would be comforting to know that the variables
in these systems satisfy the causal Markov condition. The most interesting
systems would be the most ‘visible’ ones.

Nevertheless, we should not impose our wishes upon reality. The princi-
ples of classical genetics are modular.9 Whether other sets of generalizations
describing other causal structures are modular better remains an open ques-
tion. Firstly, the issue of modularity does not directly affect either invariance
or the causal Markov condition. Secondly, if taken as part of the definition
of causality, modularity would exclude the existence of plastic or adaptively
evolving causal structures. Such structures seem to be abundant in many
biological (and social, and economic, . . . ) domains.10

10.6 Conclusion

Laws of nature and causality in the special sciences are well captured by the
notions of P -regularity, P -law, cP -regularity and cP -law. These concepts

9This I illustrated in section 10.4. I did not establish it in detail.
10See Mitchell (2003a) for several examples of dynamically complex biological systems.

See also Wagner (1999) for the problem of causal inference in complex (biological) systems.
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are related to several others, which may not always be innocent: invariance
under interventions, the causal Markov condition, the faithfulness condition,
and modularity. The causal Markov condition and faithfulness play a central
role in causal discovery, but we should always keep in mind they are fallible
assumptions. The notion of invariance I took as central to the definition of
causal pragmatic laws and regularities. To my opinion this was fruitful, but
it implies that we rule out causes that can never be used to manipulate their
effects – even in ideal cases. That is a consequence I am ready to bear. But
I am reticent to treat modularity on a par. There are good reasons to prefer
modular representations to non-modular ones. But from this it does not
follow that modularity should be incorporated in our definition of causality
or causal pragmatic laws.
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Cuénot, L. (1904). L’hérédité de la pigmentation chez les souris (3
note). Archives de Zoologie Expérimentale et Générale, 4 séries, notes
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Mäki, U., 121
Makinson, D., 165
manipulation, 5, 9, 30, 131–138, 140
manipulation theorem, 132
map distance, 100
map unit, 100
marking, 174
marking for ALIC, 175
Mather, K., 149
MaxEnt, 164, 178
Maximum Entropy, 164
mean, 192
measurement, 30
(MECH), 118
mechanism, 17–33, 96, 98, 100, 101,

124, 128, 188, 190
Bechtel and Abrahamsen, 20
global mechanism, 119
local mechanism, 118
Machamer et al., 19
Woodward, 118

mechanistic background knowledge, 28–
31



INDEX 243

mechanistic explanation, 17–33
median, 192
Meek, C., 161, 171, 215
Meheus, J., 165
Meijer, O.G., 65, 113, 188
meiosis, 55
Mendel, 73, 121
Mendel’s first law, 54, 66, 74
Mendel’s laws, 101
Mendel’s second law, 54, 88, 89
Mendel, G., 7, 64, 66, 68, 78, 87, 91,

112, 144, 186, 187, 200
micro level behaviour, 25–27
Mid-Parent, 194
mid-parental regression, 195
Mill, J.S., 211
minimal Dab-consequence, 166
minimal DabAt-formula, 175
minimal DabRS-formula, 175
minimality condition, 163
missing values, 205
Mitchell, S.D., 4–9, 22, 24, 108, 131,

138, 219
mitosis, 55
MN blood group, 56, 61
(MOD), 217
model, 36

actual model, 62, 86
as mediator, 39, 163
causal model, 40, 116
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Studený, M., 160
Sturtevant, A.H., 100
Suppe, F., 51
Suppes, P., 36, 38, 213
systematization, 113
systematization of belief, 122

T-theoreticity, 60, 206
Tarski, A., 36
taxation, 198–200
temperature effect, 57, 104
test cross, 64, 76, 115, 149
theoretical components, 52, 54
theory changes, 77
theory of ancestral inheritance, 188,

190–191, 196–200
theory of the gene, 53–54
theory-core, 54
theory-element, 54, 77–86, 115
total allowance, 198
traits, 55

continuous traits, 191, 201
discrete traits, 188, 201

transmutation, 193
true-breeding, 64, 135
truth, 2
truth in a model, 170
Tschermak, E., 79

[U ], 41
[[U ]], 42
UAt

s (Γ), 175
URS

s (Γ), 175
UIR, 154
ULL, 165
ULLAt, 173
ULLRS, 172
unification, 52, 113

derivational, 122–124
ontological, 122–124
ontologically grounded, 119–124

unit factors, 188
unity, 120
universal truths, 84
universality, 2, 202
upper limit logic, 165

V , 41, 166
[V ], see [U ]
[[V ]], see [[U ]]
vM , 169
valuation function, 169
value-isomorphism, 124

for causal nets, 44
for credal nets, 47, 71
for credal sets, 47
for graphs, 43
for sets of variables, 43

Van Dyck, M., 131, 172
variable, 10, 41, 49, 58

compound variable, 49, 88
compound variable set, 50
discrete variable, 41
endogenous variable, 63
example, 42
exogenous variable, 63
hidden variables, 127
intervention variable, 11
repeatable variable, 11
root variable, 70
single-case variable, 11
space of, 41
values of, 10

variety of petty influences, 192, 198
Vencovská, A., 164
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