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1. Introduction  

1.1. The mycotoxin problem  

Mankind has long been aware of the hazards related to fungi and their toxins, as shown by 

the book of Leviticus, The Bible: “The priest is to order the house to be emptied before he 

goes in to examine the mould … He is to examine the mould on the walls, and if it has 

greenish or reddish depressions that appear to be deeper than the surface of the wall, the 

priest shall go out the doorway of the house and close it up for seven days” (Moses 

definitely BC). Despite of this millennia-old knowledge, the compounds causing these toxic 

effects have only recently been discovered and characterised.  

The problem remained unidentified up until the year 1960 when more than 100,000 turkeys 

mysteriously died in England, together with domesticated birds, by an affliction that was 

called Turkey-X disease. The cause of the disease was traced to a company called ‘Oil Cake 

Mills’, which produced feed for turkeys. After extensive research, the source of toxicity was 

identified as a fungus called Aspergillus flavus, which had infected the peanut supply of the 

company. The compound causing Turkey-X was isolated from the fungus and named 

‘aflatoxin’, after A. flavus and toxin (Cole 1986; Spensley 1963). 

The toxic agents produced by fungi, such as aflatoxins, are secondary metabolites, i.e. 

organic compounds which have no direct role in major metabolic pathways of the fungus. 

Fungi can produce an immense variety of secondary metabolites. From an evolutionary point 

of view their advantage is to discourage predators to consume the fungi or to suppress 

competition. Some of these fungi are known to have a great importance and applicability 

(antibiotics, cheese production, etc...), but others, like the producers of aflatoxins, are 

known to exhibit major toxic effects in humans as well as in animals. The poisonous 

compounds they produce are called mycotoxins (from Greek μύκης (mykes, mukos) ‘fungus’ 

and Latin (toxicum) ‘poison’) (Keller et al. 2005). 

The unmistakable toxicity of these mycotoxins can be demonstrated by their use in biological 

warfare throughout history. The most notorious example was during the Vietnam War with 

the release of concentrated T-2 toxin (T-2) trichothecene mycotoxin over remote jungle 

areas in Laos. This caused over 6,300 deaths between 1975 and 1981. These biological 
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attacks were named ‘Yellow Rain’ because of the eyewitnesses descriptions of a yellow oily 

liquid being released from low flying aircrafts (Ashton et al. 1983; Spyker and Spyker 1983). 

In retrospect, mycotoxins have been proven or are suspected to be responsible for several 

diseases. The very important role of Fusarium spp. as mycotoxin producers appears to have 

remained largely unknown until the 1970s. Research has now unequivocally established the 

role of Fusarium spp. as the cause of alimentary toxic aleukia (ATA), previously known as 

human mycotoxicosis epidemic, an affliction which caused the death of an estimated 

100,000 people between 1942 and 1948 in the Union of Soviet Socialist Republics (USSR). 

Next to ATA, Akakabi poisoning in Japan and mouldy corn disease in the United States of 

America (USA) are presumably caused by intake of trichothecenes of Fusarium species as 

well (Beardall and Miller 1994; Pitt 2000; Ueno et al. 1973; Yagen and Joffe 1976). 

In spite of the increasing awareness of mycotoxigenic fungi and the mycotoxins they 

produce, this problem is very much a contemporary issue. In the 1940s up to 1960s a Green 

Revolution attempted to tackle famine and starvation by means of the development of high-

yielding varieties of cereal grains, expansion of irrigation infrastructure, modernisation of 

management techniques and distribution of hybridised seeds, synthetic fertilizers, and 

pesticides to farmers. Following this Green Revolution, much of the world's wheat crops are 

genetically very similar. This has led to concerns about the susceptibility of the food supply 

to pathogens that cannot be controlled by agrochemicals, as well as the permanent loss of 

many valuable genetic traits bred into traditional varieties over thousands of years. This 

knowledge together with the long storage times associated with an industrialised food 

industry, thereby possibly increasing further fungal spread and contamination, creates a 

potential impact of pathogens on agricultural production and food safety worldwide 

(Conway and Barbier 1988; Shiva 1991; Yapa 1993). 

The total number of mycotoxins is unknown, but it is estimated that several thousands of 

fungal metabolites exist. Mycotoxins that frequently occur and have pronounced toxic 

effects are aflatoxins, trichothecenes, fumonisins, zearalenone (ZEN), ochratoxins and ergot 

alkaloids (Richard, 2003), see Figure 1.  
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Figure 1. Global mycotoxin prevalence in surveyed regions. Finished feed and maize accounted for 27% of the 
samples each. The pool of samples further comprised wheat and wheat bran (9%), barley (8%), silage (8%), 
soybean meal (4%), distillers dried grain with solubles (DDGS; 2%), corn gluten meal (1%), rice and rice bran 
(1%), straw (1%) and other feed ingredients (e.g. cotton seed, sorghum, cassava, peanut, copra, etc.; 12%). 
Number of samples analysed for aflatoxins (AF), zearalenone (ZEA), deoxynivalenol (DON), fumonisins (FB), 
ochratoxin A (OTA), respectively: North America: 812; 832; 844; 820; 265; South America: 1,521; 784; 768; 
1544; 360; Northern Europe (ZEA; DON): 596; 789; others not analysed (NA); Central Europe: 241; 3,632; 5,521; 
206; 235; Southern Europe: 299; 381; 463; 233; 242; Africa: 302; 227; 286; 271; 47; Eastern Europe: 59; 106; 
111; 70; 86; Middle East: 167; 172; 170; 156; 69; South Asia: 495; 489; 478; 486; 433; South-East Asia: 2,383; 
2,350; 2,237; 2,357; 1,623; Oceania: 859; 873; 873; 842; 681; North Asia: 4,723; 4,799; 4,855; 4,365; 3,352. 
Adopted from (Schatzmayr and Streit 2013). 

 

 

Figure 2. From left to right wheat increasingly affected by Fusarium Head Blight (FHB). 
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Figure 3. Chemical structure of deoxynivalenol (DON), a trichothecene mycotoxin mainly produced by Fusarium 
fungi. 
 

In Northern and Central Europe, as well as in North America, North Asia and Oceania, 

deoxynivalenol (DON) is the most prevalent mycotoxin with pronounced toxic effects. 

Consequently, the focus of this thesis will be on the trichothecene DON, produced mainly by 

Fusarium fungi, responsible for Fusarium Head Blight (FHB) in wheat, as depicted in Figure 2. 

The chemical structure of DON is presented in Figure 3 (Richard 2003; Richard 2007).  

1.2. Mycotoxin management 

Because of the detrimental effects caused by mycotoxins, a number of preventive strategies 

have been developed to reduce the growth of mycotoxigenic fungi and mycotoxin 

production (pre- and post-harvest strategies), to detoxify contaminated feed and to lower 

the systemic availability once mycotoxins are ingested by the animal (mycotoxin detoxifying 

agents). 

1.2.1. Pre- and post-harvest strategies 

The pre-harvest methods correspond largely to the implementation of good agricultural 

practice (GAP). Drought, insect infestation, primary inoculum and delayed harvesting are 

important external factors that contribute to fungal contamination. Some of these factors 

are environmental and difficult to control. However, GAP measures such as cultivar/variety 

choice, crop rotation, crop residue management, fungicide usage, minimizing animal and 

mechanical damage, irrigation, and harvest and storage conditions, are preventive actions 
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that are regarded as primary mechanisms to reduce Fusarium mycotoxins in cereals and 

cereal products (Bullerman et al. 1984; Edwards 2004; Prandini et al. 2009).  

Management at the level of the plant or crop consists of developing mycotoxigenic fungi 

resistant cultivars, one of the major goals of numerous breeding programs across the world. 

Regarding FHB-resistant varieties, reviews are published by Kazan et al. 2012; Kolb et al. 

2001; Rudd et al. 2001; Snijders 2004. 

Crop rotation focuses on breaking the chain of infectious material, for example by 

wheat/non-cereal crop rotations. Including maize in the rotation should be avoided, as it is 

very susceptible to Fusarium spp. infestations. Crop residue management consists of 

destruction, removal or burial of the infected crop, thereby reducing the Fusarium inoculum 

for the following crop. The benefits of such crop practices have been demonstrated by 

several research groups (Dill-Macky and Jones 2000; Obst et al. 1997; Schaafsma et al. 2001). 

In the field, there is conflicting evidence as to the ability of fungicides to reduce FHB and to 

reduce contamination by Fusarium mycotoxins. The triazole fungicides, e.g. metconazole 

and tebuconazole, are active against Fusarium species. Correctly timed and dosed these 

fungicides result in a reduction of FHB and DON contamination (Edwards et al. 2001; 

Jennings et al. 2000). However, a number of fungicides at sub-lethal concentrations 

stimulate mycotoxin production in vitro (D'Mello et al. 1998; Matthies et al. 1999). Field 

trials have proven that application of other fungicides (e.g. azoxystrobin) can result in a 

reduction in FHB, but in an increase in DON contamination (Simpson et al. 2001). Promising 

results have been published in the field of biological control of Fusarium spread. The 

application of non-mycotoxigenic fungi or other microorganisms allows active competition 

with fungal pathogens for space and nutrients from the host plant (Diamond and Cooke 

2003; Schisler et al. 2002a; Schisler et al. 2002b). 

Compromised kernel integrity is another predisposing factor to fungal invasion. Appropriate 

use of insecticides combined with adequate pest control should minimize the damage 

resulting from insects, rodents and birds. Furthermore, these animals may act as a vector for 

fungal spores. Fusarium species have been readily isolated from a wide range of insects 

(Miller et al. 1998). Mechanical damage during harvest, handling and processing should be 

avoided as well (Dill-Macky and Jones 2000; Fandohan et al. 2006; Fiscus et al. 1971). 
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Reducing plant stress by irrigation is also valuable to prevent fungal infestation. All plants in 

the field need an adequate water supply, as there are indications that drought stress may 

compromise host plant defences against pathogens, or possibly lead to increased insect 

herbivory (Kabak et al. 2006; Miller 2001). However, excess irrigation, such as mist irrigation, 

during flowering (anthesis) can also make conditions favorable for Fusarium infection (Dill-

Macky and Jones 2000). 

The post-harvest methods consist firstly of bulk drying where necessary and separation of 

diseased from unaffected material (Aldred and Magan 2004; Jard et al. 2011). At present, 

the use of chemical preservatives in wheat-based food production only becomes important 

in the later processing stages. However, tests on the use of preservatives in wheat have 

shown a 90% reduction in DON and nivalenol (NIV) accumulation (Aldred et al. 2008; Cairns 

and Magan 2003; Hope et al. 2003). The cornerstone of post-harvest mycotoxin 

management consists of a well-controlled storage, with special regards to aspects such as 

moisture, temperature, insect and pest control. Although chemical methods are not allowed 

in the European Union (European Commission 2001), several chemical detoxification 

methods have also been described. In all cases, they aim to destroy or inactivate mycotoxins 

by generating non-toxic products but still warrant the nutritional value and technological 

properties of the food and/or feed. The wide variety of chemical decontamination processes 

includes radiation, oxidation, reduction, ammonisation, alkalisation, acidification and 

deamination (Jard et al. 2011; Kabak et al. 2006). 

For more information on post-harvest control strategies, following reviews were published: 

Aldred and Magan 2004; Magan and Aldred 2007; Magan et al. 2010; Mylona et al. 2012. 

1.2.2. Mycotoxin detoxifying agents  

Despite these strenuous prevention measures, contamination of various agricultural 

commodities with mycotoxins can never be fully eliminated. Consequently mycotoxin 

contaminated feed can cause disorders in animals as well as lead to economic losses due to 

subclinical toxicity. 

One strategy for further reducing the exposure to mycotoxins is to decrease their 

bioavailability by including so called mycotoxin-adsorbing agents or mycotoxin binders in the 
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compound feed, leading to a reduction of mycotoxin uptake. Mycotoxin-adsorbing agents 

are large molecular weight compounds that should be able to bind mycotoxins if 

contaminated feed is consumed, without dissociating in the gastrointestinal (GI) tract of the 

animal. In this way the toxin-adsorbing agent complex passes through the GI tract and is 

eliminated via the faeces. Mycotoxin-adsorbing agents can be silica-based inorganic 

compounds or carbon-based organic polymers (EFSA 2009; Kolosova and Stroka 2011). 

Another strategy is the degradation of mycotoxins into non-toxic metabolites by using 

mycotoxin-biotransforming agents such as bacteria, yeasts, fungi or enzymes (McCormick 

2013). Based on a literature review by the European Food Safety Authority (EFSA), the 

inventory of mycotoxin-adsorbing and mycotoxin-biotransforming agents is summarised in 

Table 1 (EFSA 2009). For more information on mycotoxin detoxifying agents, several reviews 

were published: EFSA 2009; Kolosova and Stroka 2011; McCormick 2013; Devreese et al. 

2013. 
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Table 1. Overview of different classes and subclasses of mycotoxin detoxifiers (adapted from EFSA 2009 and 
Devreese et al. 2013). 
 

Mycotoxin binders Inorganic Aluminosilicates Phylosilicates Bentonites 
    Montmorillonites 
    Hydrated sodium 

calcium 
aluminosilicate 

    Smectites 
    Kaolinites 
    Illites 
   Tectosilicates Zeolites 
  Activated charcoal   
  Polymers Dietary fibre  
   Polyvinylpyrrolidone  
   Cholestyramine  
 Organic Saccharomyces cerevisiae Live yeast  
   Yeast cell wall components Glucomannans 
  Lactic acid bacteria Lactococcus  
   Lactobacillus  
   Leuconostoc  
   Pediococcus  
     

Mycotoxin modifiers Bacteria Eubacterium BBSH 797   
  Nocardia asteroides   
  Corynebacterium rubrum   
  Mycobacterium fluoranthenivorans   
  Rhodococcus erythropolis   
  Flavobacterium aurantiacum   
  Pseudomonas fluorescens   
  …   
 Yeasts Trichosporon mycotoxinivorans   
  Phaffia rhodozyma   
  Xanthophyllomyces dendrorhous   
  Saccharomyces cerevisiae   
  …   
 Fungi Aspergillus sp. A. flavus  
   A. niger  
  Rhizopus sp. R. stolonifer  
   R. oryzae  
   R. microsporus  
  Penicillium raistrickii   
  Exophiala spinifera   
  Rhinocladiella atrovirens   
  …   
 Enzymes Epoxidase   
  Lactonohydrolase or Lactonase   
  Carboxypeptidase A   
  α-Chymotrypsin   
  Carboxylesterase   



 

21 
 

2. Deoxynivalenol  

DON is chemically described as 12,13-epoxy-3α,7α,15-trihydroxytrichothec-9-en-8-one 

(C15H20O6, MW: 296.32 g/mol, CAS 51481-10-8) and is stable at high temperatures (stable at 

120 °C, moderately stable at 180 °C). It is soluble in water and in some polar solvents (e.g. 

aqueous methanol, acetonitrile, and ethyl acetate) (EFSA 2004). 

DON belongs to the trichothecenes, a group of structurally related compounds with a 

common tetracyclic sesquiterpenoid 12,13-epoxytrichothec-9-ene ring system. The 

approximately 170 identified trichothecenes can be classified into four types (A-D) according 

to their functional hydroxyl and acetoxy side groups (Grove 1988, 1993), as depicted in 

Figure 4. Type A trichothecenes are mainly represented by HT-2 toxin (HT-2) and T-2. Type B 

is most frequently represented by DON. Types C (crotocin) and D (verrucarin, roridin A, 

satratoxin H) include some trichothecenes of lesser importance in a food-related context 

(Barthel et al. 2012; Ueno 1984). 

 

 

 

Figure 4. Classification of trichothecene type structures A-D; R groups may be H, OH, OAcyl, or variations in the 
macrolide chain (adopted from McCormick et al. 2011). 
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2.1. Fusarium species  

Fusarium spp. belong to the phylum Ascomycota, the largest phylum of the Fungi with over 

64,000 species. The defining feature of this fungal group is the ‘ascus’, a microscopic sexual 

structure in which non-motile spores, called ascospores, are formed (Walter et al. 2010). A 

list of the top 10 economically and scientifically important fungal plant pathogens was 

constructed. The fourth and fifth places comprise two Fusarium species, but with contrasting 

host ranges: with F. graminearum causing significant damage mainly to grains and cereals 

(and few non-cereal species), and F. oxysporum having a wide host range, with severe losses 

in crops as diverse as tomato, cotton and banana (Dean et al. 2012). 

The Ascomycota are represented in all land ecosystems worldwide, occurring on all 

continents including Antarctica. Spores and hyphal fragments are dispersed through the 

atmosphere and freshwater environments, as well as ocean beaches and tidal zones. The 

distribution of species is variable; while some are found on all continents, others, as for 

example the white truffle Tuber magnatum, only occur in isolated locations in Italy and 

Eastern Europe. 

F. graminearum, also called Gibberella zeae during its sexual reproductive stage, is the most 

important Fusarium species in Europe. F. graminearum species complex can be divided into 

13 species. These species may be divided into two chemotypes, based on their production of 

trichothecenes, a NIV- and a DON-chemotype. The latter can be divided into 3-acetyl-

deoxynivalenol (3ADON) and 15-acetyl-deoxynivalenol (15ADON) chemotype, producing 

mainly 3ADON and 15ADON, respectively. The chemotypes have also been called chemotype 

IA (3ADON), IB (15ADON) and II (NIV). F. graminearum can produce, aside from the 

trichothecenes, another major type of mycotoxin: the estrogenic ZEN (Bily et al. 2004; Geiser 

et al. 2004; Miller et al. 1991; O'Donnell et al. 2000). Apart from different chemotypes, the 

mycotoxin production and composition, such as ADON/DON ratio, is also affected by 

environmental factors, such as temperature, water activity, substrate and competition 

(Bottalico and Perrone 2002; Logrieco et al. 2002; McMullen et al. 1997; Yli-Mattila 2010).  

F. graminearum can infect several plants and agricultural crops such as wheat (Triticum), 

maize (Zea), barley (Hordeum), rice (Oryza) and other small grain cereals (Goswami and 

Kistler, 2004). Furthermore, F. graminearum is the most common causal agent for FHB, a 
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destructive disease, which affects small grains both in temperate and in semitropical areas. 

The disease has the capacity to destroy a potentially high-yielding crop within a few weeks of 

harvest. Nganje et al. (2004) demonstrated the significance of this problem, they estimated 

the economic losses due to FHB for all crops in the USA from 1998 to 2000 at 2.7 billion US 

dollars. These small grains (wheat, barley, oats) and maize crops comprise two thirds of 

cereal supply, which is currently in the order of 350 kg/person/year (Bily et al. 2004; 

Goswami and Kistler 2004; McMullen et al. 1997; Nganje et al. 2004). 

2.2. Occurrence in food and feed 

Occurrence surveys of mycotoxins in food and feed matrices have demonstrated that DON is 

one of the most prevalent food and feed associated mycotoxin, particularly in cereals and 

cereal-derived products. Due to its widespread occurrence and the potential for economic 

losses, DON is considered as one of the most important trichothecenes (Streit et al. 2012).  

Regarding DON occurrence in individual cereals, wheat has been investigated more widely in 

comparison with other grains. However, maize shows the highest percentage of positive 

samples (89%), followed by wheat (61%), rye (50%), barley (47%) and oat (34%). The 

weighted DON mean ranged from 594 μg/kg for maize to 37 μg/kg for barley, as shown in 

Table 2 (Gareis et al. 2003; Marin et al. 2013). 

Table 2. Deoxynivalenol prevalence in cereal samples originating from the European Union (adopted from 
Gareis et al. 2003). 

Cereal 
Samples 

n 
Positive samples 

n (%) 
Mean 
µg/kg 

Maximum 
µg/kg 

Wheat and wheat flour 6,358 3,891 (61%) 205 50,000 

Barley 781 367 (47%) 37 619 

Oat 595 204 (33%) 95 5,004 

Rye and rye flour 271 111 (41%) 42 595 

Maize 520 463 (89%) 594 8,850 

As DON is mainly present in cereals, pigs and poultry, which have a cereal-based diet, are 

often exposed to DON. An eight year long (2004-2011) mycotoxin survey in feed and feed 

raw materials, mainly from Asia (40%) and Europe (38%), showed similar findings to 

individual cereals. Of all samples (n=15,549), 55% tested positive for DON (n=8,608), with a 

mean of 535 µg/kg and a maximum of 50.3 mg/kg (Streit et al. 2013a). 
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2.3. Toxicity and toxicodynamics 

2.3.1. Cellular effects 

At a cellular level, DON primarily affects protein synthesis. Fast dividing cells such as 

(intestinal) epithelial cells will consequently be more sensitive to this toxic effect of DON. 

The cellular toxicity has been linked to the presence of the epoxide moiety (Cundliffe et al. 

1974; Pestka et al. 2004; Rotter et al. 1996; Ueno et al. 1973). This group allows DON and 

trichothecenes in general to bind to ribosomes, and causes ‘ribotoxic stress response’. This 

leads to activation of various protein kinases, modulation of gene expression, inhibition of 

protein synthesis and cellular toxicity. The absence of an epoxide moiety explains the 

diminished toxicity of de-epoxy-deoxynivalenol (DOM-1), an in vivo metabolite of DON 

(Pestka et al. 2004a; Pestka 2008, 2010b). 

At present, the precise nature of the chemical reactions allowing DON to bind to ribosomal 

ribonucleic acid (rRNA) are unknown. However, DON is known to bind to the A-site of the 

peptidyl transferase center of the 60S subunit of ribosomes in eukaryotic cells, which 

normally forms peptide bonds between adjacent amino acids by means of transfer RNA, and 

thus interferes with protein translation (Pierron et al. 2015). Probably the chemically very 

reactive epoxide moiety could react with nucleophile functions present on proteins, DNA 

and RNA nucleotides, i.e. amine moieties, and on the amine, carboxyl, thiol and hydroxyl 

groups of amino acids, as depicted in Figure 5 (Maresca 2013). 

The present hypothesis on DON toxicity is that DON binds to rRNA through the interaction of 

its epoxide moiety leading to the rapid activation of the double-stranded RNA-activated 

protein kinase (PKR) and hematopoietic cell kinase (Hck), which in turn activate mitogen-

activated protein kinases (MAPK). The type of activated MAPK will depend on DON 

concentrations. For instance, in macrophages, low doses of DON (nM range) activate 

preferentially extracellular signal-regulated kinases (ERK), causing cell survival, gene 

expression and inflammation, whereas high doses of DON (µM) activate p38 leading to 

apoptosis, rRNA cleavage and protein synthesis inhibition (He et al. 2012a, 2012b).  
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Figure 5. Chemical reactivity of the epoxide moiety (adopted from Maresca 2013). 

 

Accordingly, a recent study from Pestka’s group demonstrated that DON affects the 

phosphorylation of 188 proteins, including proteins involved in transcription, epigenetic 

modulation, cell cycle, RNA processing, translation, ribosome biogenesis, cell differentiation 

and cytoskeleton organisation (Pan et al. 2013). 

2.3.2. Impact on intestinal functions 

After ingestion of contaminated food and feed, intestinal epithelial cells (IEC) are the first 

target of DON. DON affects the proliferation and viability of animal and human IEC. Cell 

proliferation inhibition in human IEC is observed at low DON doses, with half maximal 

inhibitory concentration (IC50) in the range of 300 µg/L to 1.5 mg/L. Cytotoxic effects are 

observed at higher doses (2.5-12 mg/L) (Goossens et al. 2012; Instanes and Hetland 2004; 

Maresca et al. 2002). Similarly, high doses of DON cause decreased viability and apoptosis in 

rat and pig IEC. Moreover, toxicity studies on pig IEC show that the status of the cells 

(undifferentiated versus differentiated) and application site of DON (apical versus 

basolateral) have a significant effect on the toxicity. Undifferentiated IEC appear to be more 
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vulnerable and basolaterally applied DON has higher toxicity (Bianco et al. 2012; Diesing et 

al. 2011a; Diesing et al. 2011b; Vandenbroucke et al. 2011). 

Next to inhibition of proliferation and viability of IEC, DON also exerts toxic effects on 

intestinal functions such as 1) mutagenic effects in enterocytes, 2) modification of the 

intestinal microbiota, 3) alteration of the mucus composition and production, 4) increase of 

the transepithelial passage linked to tight junction disruption, 5) modulation of the secretion 

of proinflammatory cytokines by the intestinal epithelium, 6) increased IgA production, and 

7) disruption of the T helper cell (Th) 1/Th 2 immune response balance (Antonissen et al. 

2014b; Maresca 2013; Pinton and Oswald 2014). 

2.3.3. Immunomodulation 

After crossing the intestinal epithelium, the second organ system affected by DON is the 

immune system. DON may exert immunosuppression or -stimulation depending on the 

concentration, duration and time of exposure. Both in vivo and in vitro studies have shown 

that immune cells, more specifically macrophages, natural killer (NK) cells and lymphocytes, 

are very sensitive to DON (Escriva et al. 2015; Maresca 2013).  

Macrophages are stimulated to secrete inflammatory cytokines interleukin(IL)-1β, IL-2, IL-4, 

IL-5, IL-6 and tumour necrosis factor-α (TNF-α) and the expression of intracellular proteins 

involved in the innate immunity in response to low doses of DON (Döll et al. 2009; Pestka et 

al. 2004; Pestka 2008, 2010a; Sugita-Konishi and Pestka 2001). Simultaneously, low doses of 

DON also potentiate the stimulatory effects of cytokines/bacterial components on 

macrophages (Sugiyama et al. 2010). Furthermore, low DON doses also affect the ability to 

phagocytose and eliminate bacteria, leading to either an increase or a decrease in 

phagocytosis depending of the type of bacteria (Ayral et al. 1992; Vandenbroucke et al. 

2009). 

NK cells are an important component of the innate immunity, playing a role in the immune 

response against tumours and microbial infections (Vivier et al. 2008). Low doses of DON 

(45-90 µg/L) can inhibit the activity of human NK cells in vitro, potentially leading to an 

increase in the emergence of tumours, in contrast with its International Agency for Research 

on Cancer (IARC) class 3 classification (Berek et al. 2001). 
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With regards to lymphocytes, high doses of DON (> 3mg/L) may induce apoptosis of B and T 

cells. The resulting immunosuppression increases the susceptibility to infections and 

decreases vaccine efficiency (Antonissen et al. 2014a; Oswald et al. 2005; Pestka et al. 2004; 

Pestka 2008; Pinton et al. 2008). At lower doses (30-180 µg/L), DON merely suppresses the 

mitogen-induced proliferation of lymphocytes. Remarkably, at even lower doses (0.3-9 µg/L) 

DON stimulates the proliferation of lymphocytes (Oswald et al. 2005; Taranu et al. 2010). 

Furthermore, low doses of DON (µg/L) increase the lymphocytic expression of cytokines such 

as IL-2, IL-4, IL-6, IL-8 and TNF-α (Meky et al. 2001). 

2.3.4. Effects on the neuro-endocrine system 

As mentioned before, plasmatic DON is able to cross the blood brain barrier (BBB) (Pestka et 

al. 2008; Prelusky et al. 1990). When the BBB is crossed, DON can affect the viability and 

functions of astrocytes and microglial cells in vitro. Microglial cells, which are the resident 

macrophages of the central nervous system, are 100-times more sensitive than astrocytes, 

with IC50 values of 100 µg/L and 10 mg/L, respectively (Razafimanjato et al. 2011). The 

function of the latter is as biochemical support of endothelial cells but they also ensure 

provision of nutrients to the nervous tissue and have a role in the repair and scarring process 

of the brain and spinal cord following traumatic injuries. Astrocytes, when exposed to non-

cytotoxic levels of DON, lose their ability to reabsorb the excitatory neurotransmitter 

glutamate. Inhibition of the glutamate uptake may cause neuronal damage as a 

consequence of high excitotoxic extracellular glutamate concentrations (Wang and Bordey 

2008). Furthermore, the high glutamate concentrations may lead to effects such as an 

increased brain tumour progression (Varini et al. 2012), pain hypersensitivity (Ren and 

Dubner 2008) and memory and learning defects (Gibbs et al. 2008).  

DON is also referred to as ‘vomitoxin’, as several in vivo studies have demonstrated its 

emetic (and anorectic) properties in mice and pigs as a consequence of activation of central 

anorexigenic neurocircuitries, including proopiomelanocortin (POMC) and nesfatin-1 

neurons present in areas of the brain responsible for vomiting and feed intake, such as the 

area postrema, characterized by its extensive vasculature and lack of a normal BBB because 

its endothelial cells do not contain tight junctions. Consequently, this allows for free 
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exchange of molecules, such as mycotoxins, between blood and brain tissue (Girardet et al. 

2011; Ossenkopp et al. 1994). 

In addition to these neural effects, DON also causes endocrine perturbations. It is known to 

modify the gene expression, viability and synthesis/secretion of steroid hormones by human 

and animal adrenocortical cells, causing an increase in progesterone and a decrease in 

testosterone, estradiol and cortisol (Ndossi et al. 2012). In turn, this may potentially lead to 

reproductive disorders (Kolesarova et al. 2012; Medvedova et al. 2011). Furthermore, DON 

at nanomolar doses, may lead to growth retardation through inhibition of the growth 

hormone (Amuzie and Pestka 2010; Voss 2010). Finally, DON increases the secretion of 

insulin by pancreatic β cells and of hormone peptide YY, both hormones with an anorexic 

effect (Flannery et al. 2012; Szkudelska et al. 2002). In the pig and poultry industry this may 

lead to a reduced weight gain and consequently significant economic losses. 

2.4. Toxicokinetics  

Toxicokinetic studies describe how the animal or human body interacts with a toxin, as a 

function of dose and time. A number of different models have been developed in order to 

simplify conceptualisation of the many processes that take place in the interaction between 

an organism and a xenobiotic. The main processes are commonly referred to as ADME: 

absorption, distribution, metabolism and excretion. Together with toxicodynamic 

knowledge, toxicokinetic information is essential to investigate dose-response relations 

which allow legislative authorities to perform risk assessments and establish guidance values 

in food and feed. 

Most studies have been conducted in laboratory animals and domestic livestock, where 

interspecies variation in toxicokinetic parameters and susceptibility to trichothecenes has 

been consistently reported (Sudakin 2003). The susceptibility of animal species to DON can 

be ranked in the following decreasing order: pigs > mice > rats > poultry ≈ ruminants (Pinton 

and Oswald 2014). This differential sensitivity may be due to differences in absorption, 

distribution, metabolism and excretion of DON among animal species. Limited data is 

available on the toxicokinetics of trichothecenes in humans (Warth et al. 2013). As this thesis 

will mainly focus on toxicokinetics in broiler chickens and pigs, these species will be 

discussed in further detail.  
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2.4.1. Absorption  

A key quantitative toxicokinetic parameter to describe absorption is oral bioavailability (F%), 

a measure for the rate and extent at which an intact mycotoxin reaches the systemic 

circulation after oral exposure. Absolute oral bioavailability may be calculated based on the 

ratio between dose-corrected area under the plasma concentration-time curves (AUC) after 

per os (PO) and intravenous (IV) administration. Species-specific differences in oral 

bioavailability of DON have been demonstrated and can be ranked as follows: pigs (28-139%) 

> poultry (19-20%) > ruminants (1-10%) (Dänicke and Brezina 2013; Devreese et al. 2015; 

Osselaere et al. 2013; Prelusky et al. 1986). It needs to be noted that within one species, F 

may display a large range. Some of the factors influencing this large variation of F within 

species have been identified. A main contributing factor is acute versus chronic exposure. 

Chronic feeding of DON to pigs resulted in significantly higher F compared to acute exposure, 

i.e. single bolus studies (Goyarts and Dänicke 2006), namely 89 versus 54%. This 

phenomenon can be partly attributed to a compromised function of the intestinal barrier 

after chronic exposure due to DON mediated influence on tight junctions (Diesing et al. 

2011a; Pinton et al. 2010), and by a limited liver clearance capability (Beyer et al. 2010). On 

the other hand, chronic exposure in broiler chickens tends to decrease oral bioavailability 

(Osselaere et al. 2012; Yunus et al. 2012). Morphological and functional adaptations, such as 

decreased villus height, which reduce the absorptive surface of the intestines have been 

suggested as possible mechanisms for this decrease in F (Devreese et al. 2015; Yunus et al. 

2012). The relatively low values for F in chickens can be partially attributed to the short GI 

transit time in these animals. Short transit time together with a faster absorption are 

reflected by the time to maximum plasma concentration (tmax), in chickens these values vary 

between 0.4 and 2 h post administration (p.a.), for pigs the tmax range is 0.2 – 4.1 h p.a. 

(Dänicke and Brezina 2013). 

2.4.2. Distribution  

A quantitative parameter to assess the distribution and tissue penetration of a xenobiotic is 

the volume of distribution (Vd), a theoretical volume that the total amount of toxin should 

occupy, to provide a concentration identical to the one in plasma. A large (small) Vd 

corresponds with a good (limited) tissue distribution. For chickens, a Vd for DON after IV 
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administration of 4.9±1.2 L/kg has been observed (Osselaere et al. 2013). After a single oral 

dose of DON to chickens, maximum concentrations were found after 3 h in spleen, liver, 

heart, kidney, brain and GI tissues. For fat, muscle and oviduct tissues, concentrations were 

highest at 6 h p.a. Highest concentrations were observed in the liver, kidney and spleen. 

After 12 days repeated administration of DON, tissue concentrations remained relatively 

low, indicating a minimal accumulation of DON after chronic exposure (Prelusky et al. 1986). 

In pigs, Vd values of 1.02-1.62 L/kg (Prelusky and Trenholm 1991) and Vd/F values of 

1.19±0.02 L/kg (Devreese et al. 2014) were reported. These relatively high values indicate 

distribution in total body water and/or in various tissues. Similar to chickens, pigs had the 

highest DON concentration in kidney tissue, followed by the liver. These high concentrations 

are probably due to these organs’ role in clearing DON from the body (Goyarts and Dänicke 

2006; Prelusky et al. 1988). Nonetheless, carry-over of DON from feed into edible tissues of 

pigs and broiler chickens is regarded as negligible (Dänicke and Brezina 2013). 

2.4.3. Elimination 

Elimination can be divided into metabolism and excretion. Metabolism describes the 

biotransformation of DON to certain degradation products by e.g. liver, kidney, intestinal 

mucosa and GI microbiota. The metabolism of xenobiotics is often divided into two phases. 

Phase I, modification or transformation, consists mainly of oxidation (e.g. via cytochrome 

P450), reduction, and hydrolysis reactions. The goal is to convert xenobiotics to more polar 

(hydrophilic) metabolites. Phase II biotransformation, i.e. conjugation, is comprised mainly 

of glucuronidation, acetylation, and sulfation reactions in an attempt to convert the 

modified xenobiotic to more polar (water soluble) metabolites. Excretion is the process of 

removing a compound and its metabolites from the body.  

An in vivo metabolite of DON in ruminants is DOM-1 which is facilitated by the rumen 

microbiota. However, microbial de-epoxidation of DON has also been demonstrated for pigs 

and poultry. In pigs, de-epoxidation is limited in the proximal part of the GI, increases 

towards distal parts and reaches nearly 100% in rectal faeces (Dänicke et al. 2004; Eriksen et 

al. 2002; Kollarczik et al. 1994). In pig blood, the quantity of DOM-1 after DON 

administration varies between 0-7%. For broiler chickens, no DOM-1 could be detected in 

blood after single IV and PO administration (Osselaere et al. 2013). In contrast, for turkey 
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poults chronically administered PO DON, the amount of DOM-1 detected in plasma 

exceeded that of DON (Devreese et al. 2015). In chicken faeces, recovery as DOM-1 

amounted for 7-11% (Dänicke et al. 2013). No DOM-1 was detected in jejunal and ileal 

content, indicating that the de-epoxidation process is mainly situated at the caecum and 

colon (Dänicke and Brezina 2013).  

The other significant metabolic pathway consists of phase II biotransformation, conjugation 

with e.g. glucuronic acid. In the case of DON there are three functional groups that can serve 

as glucuronidation sites, resulting in respectively DON-3-β-D-O-glucuronide (DON3GlcA), 

DON-7-β-D-O-glucuronide (DON7GlcA) and DON-15-β-D-O-glucuronide (DON15GlcA). In vitro 

incubation tests with liver microsomes demonstrated the species-dependence of the degree 

and type of hepatic glucuronidation, as shown in Figure 6. Pig and chicken liver microsomes 

both formed DON3GlcA. However, chickens had the lowest glucuronidation capacity of all 

tested species (human, cow, rat, fish, pig and chicken). Pigs also exhibited a weak 

glucuronidation activity (Maul et al. 2012). One study demonstrated a complete absence of 

porcine liver microsomal metabolism of DON. The enzymes necessary for glucuronidation, 

although predominantly present in the liver, can also be found in tissues such as GI tract, 

lungs, kidney and skin. On the other hand, after oral administration of DON to pigs, the 

formed DON3GlcA accounts for approximately 35% (Dänicke et al. 2005). In chickens no 

DON-glucuronide was formed after IV and PO administration, in contrast to turkey poults 

(Devreese et al. 2015). Additionally, it needs to be noted that DOM-1 may also be 

conjugated with glucuronic acid. 

Similar to glucuronidation, conjugation with a sulfate molecule may also occur. This has been 

described for chickens and turkeys, and to a lesser extent for sheep (Devreese et al. 2015; 

Prelusky et al. 1987; Wan et al. 2013). Deoxynivalenol-3α-sulfate (DON3S) accounted for 

approximately 88% of the orally administered dose of DON in chickens (Wan et al. 2013). 

The DON3S/DON ratios after single IV and PO administration to turkeys were 1.3-12.6 and 

32.4-140.8, respectively, compared to 243-453 and 1,365-29,624 in broiler chickens 

(Devreese et al. 2015). Consequently, the possibility to form DON3S has also been suggested 

as one of the reasons why chickens are less sensitive to DON than several other species. 
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Figure 6. Species-dependent hepatic glucuronidation pattern of deoxynivalenol (adopted from Maul et al. 2012). 

 

Plasma elimination half-life (t1/2el) of DON for chickens and pigs is situated between 0.4-6 h 

and 5-9.8 h, respectively (Dänicke and Brezina 2013; Osselaere et al. 2013). In chickens, DON 

is rapidly excreted. At 48 h p.a. the DON content in various tissues decreased tenfold, with 

kidney and GI tract exhibiting the fastest clearance (Cl). Within 48 h, DON was almost 

completely excreted. Fat tissue, having only a limited blood flow, exhibited the slowest 

clearance. High concentrations of DON have been detected in bile, exceeding concentrations 

in plasma, indicating that biliary excretion has a significant role in the elimination of DON (De 

Baere et al. 2011; Osselaere et al. 2013; Prelusky et al. 1986). Because of the low oral F, 

rapid and extensive biotransformation, chickens are relatively resistant towards the toxic 

effects of DON. For pigs, although a fast excretion can also be observed, higher oral 

bioavailability and a less extensive degree of metabolism make this species less resistant to 

the detrimental effects of DON. 
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2.5. Legislation on feed 

In 2002, a provisional tolerable daily intake (pTDI) for DON exposure to humans was set by 

the Scientific Committee for Food (SCF) at 1 μg/kg body weight (bw) per day. Two years 

later, in 2004, the importance of the mycotoxin DON as a chronic contaminant of feed for 

farm animals has been recognised by EFSA (EFSA 2004). Based on this EFSA opinion, the 

guidance values for critical concentrations of DON in feed materials and complete feed were 

established (European Commission 2006). These guidance values are intended to protect 

farm animals from possible detrimental effects caused by the consumption of contaminated 

feed, and to ensure the awareness of all economic parties and supervisory authorities if 

these critical concentrations are exceeded, in order to identify the sources and take 

appropriate measures. The DON guidance values for complete feed reflect the species-

specific sensitivity. The lowest guidance value of 0.9 mg/kg complete feed was established 

for all categories of pigs as the most sensitive farm animal species. Calves (<4 months of 

age), lambs and kids are considered to be protected if complete feed concentrations do not 

exceed 2 mg/kg, while 5 mg/kg applies for other farm animal species and categories, 

including ruminants, horses and poultry (Table 3). 

Table 3. The guidance values on the presence of deoxynivalenol in products intended for animal feed as 
determined in the Commission Recommendation of 17 August 2006 (2006/576/EC). 

Products intended for animal feed Guidance value in mg/kg (ppm) relative to a 
feedingstuff with a moisture content of 12% 

Feed materials  
- Cereals and cereal products with the exception of 

maize by-products 
8 

- Maize by-products 12 

Complementary and complete feedingstuffs with the 
exception of: 

5 

- Complementary and complete feedingstuffs for pigs 0.9 
- Complementary and complete feedingstuffs for calves 

(<4 months), lambs and kids 
2 

 

A correct evaluation of mycotoxin contamination in food and feed is of utmost importance in 

determining the compliance with the guidance values. Because of the often highly 

heterogeneous distribution of mycotoxins in so-called ‘hot-spots’ or ‘mycotoxin pockets’ in 

feed, the most critical stage is taking representative samples. It needs to be noted that for 
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field fungi, such as Fusarium and Alternaria spp., the heterogeneity of distribution is usually 

of less concern than for storage fungi, such as Aspergillus and Penicillium spp. Appropriate 

sampling together with validated analysis is essential to ensure that the analytically derived 

(mean) concentration of a sample is representative for the true mean concentration of a 

batch (Baker et al. 2014; Chaytor et al. 2011; Wagner 2015). 
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3. Acetylated and modified forms of deoxynivalenol  

Occasionally, manifested clinical symptoms due to intake of mycotoxin-contaminated feed 

(mycotoxicosis) are significantly greater than what would be expected based on the feed 

contamination level. This has led to the discovery of modified or masked mycotoxins, which 

owe their name to the ‘ability’ to escape detection by routine analytical methods (Gareis et 

al. 1990).  

Due to the ambiguous use of the term ‘masked mycotoxin’, Rychlik et al. have recently 

systematically defined all modified mycotoxins according to four hierarchic levels, as 

depicted in Table 4 (Rychlik et al. 2014). First, a distinction is made between ‘free’, ‘matrix-

associated’ and ‘modified’ mycotoxins. Next, modified mycotoxins are divided into 

‘biologically’ and ‘chemically’ modified derivatives, the latter is subclassified into ‘thermally 

formed’ and ‘non-thermally formed’. Biologically modified compounds can be further 

distinguished into ‘functionalised’, ‘conjugated’ or ‘differently modified’. Finally, for the 

biologically conjugated mycotoxins a distinction between ‘plant’, ‘animal’ and ‘fungal’ 

conjugates is made. Some mycotoxins, however, can be classified in more than one of the 

above defined categories. For instance, 3ADON, which is a precursor in the biosynthesis of 

DON and occurs as such in contaminated feed commodities, is regarded as a free mycotoxin. 

However, in an attempt to detoxify DON, plants have been engineered by implementing a 3-

O-acetyltransferase, which allows the acetylation of DON to 3ADON, a trait which plants do 

not possess naturally. In planta produced 3ADON should therefore be classified as 

biologically conjugated by plants, or as a masked mycotoxin. Although these types of plants 

are not yet commercially available, this has been described for wheat, rice and barley 

(Karlovsky 2011; Manoharan et al. 2006; Ohsato et al. 2007; Okubara et al. 2002).  

In 2002, the presence of a modified mycotoxin, zearalenone-14-glucoside (ZEN14G), was 

demonstrated for the first time in naturally contaminated wheat (Schneweis et al. 2002). 

This was an important breakthrough since its presence had only been hypothesised before 

by in vitro studies, with maize suspension cultures (Engelhardt et al. 1988; Zill et al. 1990), 

and by indirect methods such as enzymatic hydrolysis (Gareis et al. 1990). For DON, the 

production of modified forms will be highlighted in section 3.1. 
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Table 4. Systematic definition of four hierarchic levels for (modified) mycotoxins (adopted from Rychlik et al. 
2014); ILSI: International Life Science Institute. 

 
1

st
 level 2

nd
 level 3

rd
 level 4

th
 level Example 

Free 
mycotoxins 

   Deoxynivalenol,  
3/15-acetyl-deoxynivalenol 

Matrix-
associated 
mycotoxins 

Complexes, 
physically 
dissolved or 
trapped 

   

 Covalently 
bound 

  Deoxynivalenol-oligosaccharides 

Modified 
mycotoxins 

Biologically 
modified 

Functionalised  
(phase I metabolites) 

 Aflatoxin B1-epoxide 

  Conjugated  
(phase II metabolites) 

Conjugated by 
plants (ILSI: 
‘masked’) 

Deoxynivalenol-3-glucoside 
 

   Conjugated by 
animals 

Deoxynivalenol-3/7/15-
glucuronide 

   Conjugated by 
fungi 

Zearalenone-14-sulfate 

  Differently modified  De-epoxy-deoxynivalenol 

 Chemically 
modified 

Thermally formed  Nordeoxynivalenol A-C 

   Non-thermally 
formed 

 Deoxynivalenol-sulfonate, 
Nordeoxynivalenol A-C  
(under alkaline conditions) 

 

 

Despite demonstration of the natural occurrence of modified mycotoxins for over a decade, 

there are no directives, regulations nor recommendations in food and feed taking these 

modified derivatives into account. In addition, little is known about the toxicity, 

toxicokinetics and potential in vivo hydrolysis of these modified mycotoxins. The chemical 

structures of the main modified derivatives of DON are shown in Figure 7. 
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Figure 7. Structures of DON and its modified forms. OAc= acetoxy group. 

3.1. Production  

At the level of food and feed, mycotoxins can be subjected to biological modification 

through conjugation by plants and fungi, or through chemical modification, either thermally 

or non-thermally, e.g. by food processing. These modified mycotoxins can contribute to the 

degree of contamination and may escape detection methods, causing an underestimation of 

the mycotoxin exposure and risk.  

3.1.1. Plant conjugates  

Many xenobiotics, among which mycotoxins, are readily absorbed by plants and could 

accumulate to toxic levels without efficient detoxification. The defense mechanisms of 

plants include biosynthesis pathways that can be divided into three phases, as depicted in 

Figure 8. During phase I, the transformation or activation phase, xenobiotics are subjected to 

hydrolysis, reduction or oxidation, resulting in the formation of reactive groups in the 

chemical structure of the xenobiotic. This phase typically affects lipophilic compounds by 

making them more hydrophilic. The main goal of these reactions is to create reactive groups 

necessary for phase II biotransformation. If a xenobiotic already has a reactive or functional 

group suitable for phase II, then detoxification can omit phase I, which is often the case for 

more hydrophilic compounds, such as DON. During phase II, also called solubilisation or 

conjugation phase, (activated) xenobiotics are conjugated with endogenous hydrophilic 

Mycotoxin R1 R2 R3 R4 R5 

DON OH H OH OH O 
DON3G C6H11O6 H OH OH O 
15ADON OH H OAc OH O 
3ADON OAc H OH OH O 
DON3GlcA C6H9O7 H OH OH O 
DON15GlcA OH H C6H9O7 OH O 
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molecules such as glutathione, sugars, sulfate or amino acids. The resulting conjugated 

xenobiotics have an increased polarity and are therefore more water soluble. This facilitates 

their transport mediated by adenosine triphosphate (ATP)-dependent glutathione-conjugate 

transporters to the vacuole or apoplastic space outside the cell, also known as 

compartmentalisation or phase III (Coleman et al. 1997). These conjugated xenobiotics are 

refrained from interacting with plant components and consequently unable to exert harmful 

effects to the plant. In contrast to similar phase I and II biotransformation pathways in 

mammals, residues may persist in plants for considerable periods of time and can have 

important toxicological consequences for their consumers. Furthermore, after oral intake, 

some of the conjugates formed in plants could be susceptible to hydrolysis by digestive 

enzymes upon ingestion, thereby releasing the unconjugated xenobiotic, e.g. free 

mycotoxins (Sandermann 1992, 1994). 

 

Figure 8. Three stages of a plant biosynthesis pathway: transformation, solubilisation and 
compartmentalisation (based on Coleman et al. 1997). 
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For mycotoxins, in planta transformation has been predominantly described for Fusarium 

toxins (Diana di Mavungu 2011). After the detection of ZEN14G in 2002, Berthiller et al. 

demonstrated, in 2005, the presence of deoxynivalenol-3-β-D-glucoside (DON3G) in wheat 

(Berthiller et al. 2005). The resistance trait of some FHB resistant wheat cultivars, e.g. Sumai 

3 and Nyubai, is inter alia caused by a more pronounced ability to detoxify mycotoxins by 

conjugation, solubilisation and compartmentalisation. However, this appears to be an 

incomplete story, evidenced by a similar conjugated fraction of total DON in resistant as well 

as susceptible cultivars. A more efficient mechanism of resistance is caused by lignins 

(deposition in the secondary cell wall thereby thickening it, reducing pathogen spread), 

hydroxycinnamic acid amides (acting as phytoalexins and cell wall strengthening agents) and 

flavonoids (antimicrobial properties and elimination of produced reactive oxygen species) 

(Gunnaiah and Kushalappa 2014). 

Next to the naturally occurring DON3G, DON can be converted to 3ADON by transgenic 

plants carrying the FsTRI101 gene. This gene encodes for an enzyme that transfers an acetyl 

moiety to DON thereby biosynthesising 3ADON. 3ADON can be listed as a modified 

mycotoxin and is deemed to be less toxic than DON (Kimura et al. 1998; Manoharan et al. 

2006; Ohsato et al. 2007). Although currently there are no commercially available plants 

carrying the FsTRI101 gene, greenhouse resistance tests have shown that the inoculated 

wheat heads are partially protected against the spread of F. graminearum and its associated 

FHB disease (Okubara et al. 2002). 

Besides ZEN14G and DON3G, also T-2 toxin-glucoside (T2-G) and HT-2 toxin-glucoside (HT2-

G) were recently identified and characterised in natural samples by Lattanzio et al. (2012). 

Based on current literature data, these four modified mycotoxins represent the major 

occurring plant produced modified mycotoxins in natural samples.  

In literature, several other Fusarium mycotoxin conjugates have been described, although 

they have only been reported to occur in artificially contaminated samples and/or are 

formed in in vitro studies. An engineered yeast expressing the HvUGT14077 gene, encoding 

for a barley UDP-glucosyltransferase, produced an approximate 1:1 mixture of ZEN14G and 

zearalenone-16-glucoside (ZEN16G) after incubation with ZEN. In planta production of ZEN 

glucosides has also been investigated for barley seedlings. A significant amount of the 
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administered dose (66-87%) was recovered in the root extracts. In these extracts, a minimal 

amount of ZEN was detected next to 3−5% ZEN14G and a 16-18 fold highervlevel of ZEN16G 

(Kovalsky Paris et al. 2014). Besides barley, the model plant Arabidopsis thaliana was able to 

transform ZEN into 17 different compounds, including glucoside, dihexoside and 

pentosylhexoside conjugates, α-zearalenol (α-ZEL) and β-zearalenol (β-ZEL) (Berthiller et al. 

2006). For T-2 and HT-2, the presence of diglucosides has also been described by Veprikova 

et al. (2012). 

Nakagawa et al. reported glucoside forms of other trichothecenes, such as fusarenon-X (FUS-

X) and NIV in artificially contaminated wheat (Nakagawa et al. 2013). Furthermore, 

glycosylation has been described for sporadically occurring trichothecenes such as verrucarin 

A and roridine A, D and E (Jarvis et al. 1996; Rosso et al. 2000). Next to conjugation to sugar 

moieties, the covalent attachment of fatty acids, such as palmitic acid is also known to occur 

for ZEN, T-2 tetraol, scirpentriol and trichothecolone (Chakrabarti and Ghosal 1986).  

Although in planta conjugation of mycotoxins to amino acids, glutathione, sulfate or fatty 

acids can occur, these phase II reactions appear to be of subordinate importance compared 

to glycosylation based on available literature. 

3.1.2. Fungal precursors  

Both 3ADON and 15ADON are fungal biosynthetic precursors of DON and classified as free 

mycotoxins. The final step in the biosynthesis of ADONs is the removal of an acetyl group 

from 3,15-diacetyl-DON at either the C-3 or C-15 position, mediated by an esterase encoded 

by TRI8. Differential activity of this esterase determines production of either 3ADON or 

15ADON chemotypes in F. graminearum (Alexander et al. 2011; Grove 2007). Figure 9 

represents a schematic overview of the trichothecene biosynthetic pathway in Fusarium 

with known genes included (adopted from McCormick et al. 2011). The genes responsible for 

deacetylation of the ADONs to DON have not been discovered yet. 
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Figure 9. Proposed trichothecene biosynthetic pathway in Fusarium. Identified genes encoding an enzymatic step are shown near the arrow indicating the step. Dashed 
arrows indicate steps for which a gene has not yet been assigned. Blue and green boxes identify type A and B trichothecenes, respectively (adopted from McCormick et al. 
2011).
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Apart from fungal precursors, fungi can also metabolise existing mycotoxins. When fungi 

capable of producing mycotoxins (mycotoxigenic fungi) occur together with fungi that do not 

have that capability (non-mycotoxigenic fungi), they actively compete for space and 

nutrients from the host plant. This can result in a reduction of the growth and metabolism of 

the mycotoxigenic fungi and consequently a diminished production of mycotoxins. In 

ecology this is known as the competitive exclusion principle or Gause’s law (Bacon et al. 

2001). This technique has been used to reduce e.g. A. flavus contamination (Cotty and 

Bayman 1993). Next to this mycotoxigenic fungal growth antagonism, the non-

mycotoxigenic fungus may also metabolise mycotoxins produced by the toxigenic fungus. 

Such metabolism has already been described for ZEN to ZEN14G and zearalenone-14-sulfate 

(ZEN14S) with the saprophytic Rhizopus fungus. This fungus has frequently been found on 

plants, fruits and vegetables (el-Sharkaway et al. 1991; Kamimura 1986).  

To our knowledge, there are only two cases reported in which a fungus itself produces a 

glucoside-conjugate. Three decades ago, Gorst-Allman et al. reported a strain of F. 

sambucinum that produced monoacetoxyscirpenol-4-α-glucopyranoside, exhibiting a 

decreased toxicity compared to the free mycotoxin (Gorst-Allman et al. 1985). This 

compound has recently been detected in corn together with the free mycotoxin 

monoacetoxyscirpenol using high resolution mass spectrometry (HRMS) (Nakagawa et al. 

2013). The second case, by Busman et al., reported the ability of liquid cultures of F. 

sporotrichioides to produce T-2, HT-2 and HT2-G, although in low amounts at a ratio of 100, 

0.9 and 0.1, respectively (Busman et al. 2011).  

3.1.3. Effects of food processing 

The influence of food processing on the fate of free mycotoxins in food or feed has been 

extensively investigated and reviewed (Bullerman and Bianchini 2007; Hazel and Patel 2004; 

Jackson and Bullerman 1999; Milani and Maleki 2014; Trigo-Stockli 2002). The 

(thermo)stability of trichothecenes allows them to withstand most food and feed processes 

(Malachova et al. 2010). In contrast, the fate of acetylated and modified mycotoxins during 

food processing is considerably less explored. There are indications that food processing 

plays an important role in the concentration of acetylated and modified forms of DON in 

certain commodities. The role of food processing in the de novo synthesis of compounds 

appears to be of subordinate importance, with a limited number of reported cases. The 



 

43 
 

commodities mainly affected are cereal-based products that undergo a fermentation step 

(introduction of yeast) or a malting process. 

One such commodity is beer, which is thoroughly investigated due to its widespread and 

large scale production. During the malting process, a slight increase of DON3G was observed 

before germination, in contrast to a distinct decrease in DON and the ADONs. Free 

mycotoxins, such as DON and the ADONs, are easily extracted by the introduction of water, 

possibly DON3G resists this extraction due to binding to matrix biopolymers (Lancova et al. 

2008a; Schwarz et al. 1995). During germination, levels of free and modified mycotoxins 

significantly increased with an up to eightfold increase for DON3G. Possible sources are the 

release of these compounds from their binding to macromolecules or biopolymers. Another 

possibility is the de novo synthesis of DON3G from germinating barley grains (Malachova et 

al. 2010). Similar to the release from bound forms, a release from acetylated and modified 

forms could also explain an increased amount of DON. 

During drying of the malt, no significant changes took place, either for DON or for the 

ADONs. For DON3G, variable results were obtained. A decrease was observed for naturally 

contaminated samples whereas no significant change for artificially contaminated samples 

was observed (Kostelanska et al. 2011; Lancova et al. 2008a).  

As a final step, formed rootlets are removed from the grain. This fraction contained 

concentrations of DON3G, ADONs and DON which were 100, 4 and 4 times higher, 

respectively, than the amounts measured in the initial barley grains. These amounts cannot 

be neglected as this fraction is often used as raw feed material for animals and food 

supplements for humans.  

The obtained malt is then brewed to beer (mashing, boiling and fermentation). During this 

brewing process, DON3G has been reported to increase up to sixfold (Lancova et al. 2008a). 

Regarding DON levels, contradictory results have been reported in the literature. Lancova et 

al. and Schwarz et al. observed that DON concentrations remained more or less equal. In 

contrast, Niessen and Donhauser measured a fourfold increase in the concentration of DON 

during brewing (Lancova et al. 2008a; Niessen and Donhauser 1993; Schwarz et al. 1995). It 

has been hypothesised by Lancova et al. that the observed large differences between the 

results of these studies might be due to possible cross-reactions associated with the ELISA 
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method based on a polyclonal antibody, as was used in the study by Niessen and Donhauser 

(Lancova et al. 2008a; Niessen and Donhauser 1993). On the other hand, Lancova et al. and 

Schwartz et al. employed liquid chromatography-tandem mass spectrometry (LC-MS/MS) 

and gas chromatography-mass spectrometry (GC-MS) as detection methods, respectively, 

and comparable results were obtained (Schwarz et al. 1995).  

The increase of DON3G during the production of beer can be demonstrated by 

concentrations of DON3G in commercial beers often exceeding that of free DON. Varga et al. 

found a molar DON3G/DON ratio in beer of up to 1.25, whereas the DON3G/DON ratio in 

cereals is around 0.1 - 0.2 (Malachova et al. 2011; Varga et al. 2013). Concerning the ADONs, 

only small concentrations were found and no significant changes were observed during 

brewing (Lancova et al. 2008a; Varga et al. 2013). Interestingly, the production of some 

DON-oligo-glycosides was demonstrated by Zachariasova et al., indicating the role of food 

processing not only in concentrating already present (modified) mycotoxins but also in the 

formation of these compounds (Kostelanska et al. 2011; Zachariasova et al. 2012).  

Another food commodity frequently contaminated with acetylated and modified mycotoxins 

is bread. During the processing of wheat to bread, Kostelanska et al. described that milling 

had little influence on the ratio (12%) of DON3G to DON. Due to fractionation, milling 

decreased the DON3G and DON content in white flour by 40% compared to initial 

unprocessed wheat (Kostelanska et al. 2011). These findings are supported by a previous 

study by Schollenberger et al., who investigated the fractionation of 16 Fusarium mycotoxins 

during dry milling of maize. It was observed that bran, the hard outer layers of cereal grain 

which are discarded for the production of white flour, contained the highest concentrations 

for all tested mycotoxins (Schollenberger et al. 2008). 

During kneading, fermenting and proofing, no significant changes occurred for DON, DON3G 

and 3ADON. However, when bakery improvers, such as enzyme mixtures, were employed as 

a dough ingredient, a distinct increase of up to 145% of DON3G occurred in fermented 

dough (Kostelanska et al. 2011; Lancova et al. 2008b; Vaclavikova et al. 2013; Valle-Algarra 

et al. 2009; Vidal et al. 2014). It is hypothesised that this increase in DON3G is due to a 

release from starch-based, matrix-bounded forms. According to Kostelanska et al. a decrease 

of 10% and 13% of both DON3G and DON, respectively, took place during baking (240 °C, 14 
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min) when compared to fermented dough. Valle-Algarra et al. baked at 240 °C for 30 min 

and observed a reduction inside the bread of 46–83% and 43–64% for 3ADON and DON 

respectively, whereas in the crust an even higher reduction took place (Valle-Algarra et al. 

2009). 

In conclusion, due to changes in physico-chemical properties (increased polarity, deviating 

thermostability, etc), acetylated and modified forms of DON may behave differently than 

DON during food processing. Additionally, a de novo synthesis of conjugates is possible at 

several levels in the processes. First steps towards unravelling the influence of food 

processing on acetylated and modified mycotoxins have been taken as demonstrated by 

these publications, but many questions still remain. Questions that not only address the 

often well regulated and standardised processes of the industry, but also the influence of 

processes at domestic levels, such as boiling of contaminated pasta or rice and the use of 

flour in pastries, are currently poorly understood.  

3.2. Occurrence in food and feed 

To give a concise overview of the current occurrence of DON and its acetylated and modified 

forms, reports published between 2010 and 2014 were investigated. Only papers regarding 

unprocessed cereals and those including a random sampling strategy were included. This 

yielded a total of nine reports on wheat, maize, barley, oat and rye, originating from 

following countries: Belgium, China, Czech Republic, Denmark, Italy, Nigeria, Norway and 

Sweden (Adetunji et al. 2014; Bertuzzi et al. 2014; De Boevre et al. 2012; Juan et al. 2013; 

Malachova et al. 2011; Rasmussen et al. 2012; van der Fels-Klerx et al. 2012; Wei et al. 2012; 

Zhao et al. 2014). It needs to be noted that the obtained values for incidence (%) and mean 

concentration (µg/kg) are calculated as the average of the individual publications (without 

weighing for number of samples within a given study). Range maximum is the largest 

measured value in all of the studies combined.  

As can be seen in Table 5, the following acetylated and modified forms of DON were 

detected in order of decreasing incidence as well as decreasing average concentrations: 

DON3G (55%, 85 µg/kg), 15ADON (31%, 37 µg/kg) and 3ADON (22%, 15 µg/kg).  
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Table 5. Occurrence data for deoxynivalenol (DON), 3-acetyl-deoxynivalenol (3ADON), 15-acetyl-deoxynivalenol 
(15ADON) and deoxynivalenol-3-glucoside (DON3G) in unprocessed cereals. The table is based on nine research 
articles published between 2010-2014. nsamples= total number of unprocessed cereal samples (unprocessed 
wheat, maize, barley, oat, rye and spelt) analysed for a given compound (countries of origin: Belgium, China, 
Czech Republic, Denmark, Italy, Nigeria, Norway and Sweden). Incidence (%) and mean (µg/kg) are calculated 
as the average of the reported values in the individual publications (without weighing for number of samples 
within a given study). Range maximum is the largest measured value in all of the studies. Based on (Adetunji et 
al. 2014; Bertuzzi et al. 2014; De Boevre et al. 2012; Juan et al. 2013; Malachova et al. 2011; Rasmussen et al. 
2012; van der Fels-Klerx et al. 2012; Wei et al. 2012; Zhao et al. 2014). 
 

Mycotoxin nsamples Incidence (%) Mean (µg/kg) Range maximum (µg/kg) 

DON 5,743 84 458 27,088 

3ADON 2,227 22 14.7 1,500 

15ADON 686 31 36.6 1,734 

DON3G 529 55 85.0 1,070 

 

For DON3G, 15ADON and 3ADON, concentrations exceeding 1,000 µg/kg have been 

reported (Gareis et al. 2003), amounts not to be neglected knowing that the tolerable daily 

intake (TDI) for DON in humans is 1 µg/kg bw. Sasanya et al. detected DON3G concentrations 

which were higher than those of free DON in some hard red spring wheat samples (Sasanya 

et al. 2008). The occurrence data for the free mycotoxin DON are in accordance with 

recently published European studies (Streit et al. 2013a; Streit et al. 2013b). 

In conclusion, sufficient attention should be paid to collect data on several commodities 

(wheat, rye, maize, etc.) as these can exhibit distinct conjugation profiles. Differences due to 

a geographical spread should also be taken into consideration, mainly to assess the influence 

of climatological parameters. The discovery of modified mycotoxins coincides with the rapid 

development of analytical methodologies, as reviewed by following studies: Berthiller et al. 

2009; Berthiller et al. 2013; Cirlini et al. 2012; Krska et al. 2008; Li et al. 2013. With the rise of 

untargeted metabolomic approaches, using HRMS, this will remain a fast evolving domain 

from which one can expect interesting developments in the near future. The research on 

toxicity and toxicokinetic data is often unable to follow the fast pace set by the analytical 

sector. 
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3.3. Toxicity  

One of the major questions associated with the existence of acetylated and modified 

mycotoxins is what the disposition and fate of these compounds are in the animal and 

human body? In addition, it has to be taken into account that upon ingestion the acetylated 

or modified mycotoxins could be converted back into their corresponding unconjugated 

form after e.g. in vivo hydrolysis. Another question, which will be addressed in this section, is 

what the intrinsic toxicity of the acetylated and modified forms of DON is. An overview of in 

vitro and in vivo research on the toxicity of acetylated and modified forms of DON is given in 

Table 6. The majority of this toxicity research is dedicated to human in vitro toxicity (59%). 

Animal and plant toxicity studies account for 35 and 6%, respectively. Mice and pigs are the 

most investigated animal species. In vitro research on trichothecenes is mainly performed 

using intestinal epithelial cell lines, such as a heterogeneous human epithelial colorectal 

adenocarcinoma cell line (Caco-2) and intestinal porcine epithelial cell lines (IPEC-1, IPEC-J2). 

Furthermore, approximately 70% of the studies compare the toxicity of the investigated 

acetylated and modified mycotoxins with that of the corresponding unconjugated 

mycotoxin. However, these studies utilize different cell lines, test systems or animal species. 

Consequently, these differences in study design may result in a broad range of toxicity.
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Table 6. Overview of in vitro and in vivo toxicity data for 3ADON, 15ADON and DON3G. All in vitro data are given in µM with molecular masses of 15ADON 338.4 g/mol; 
3ADON 338.4 g/mol; DON3G 458.5 g/mol. Factor fold toxicity=toxicity of the acetylated or modified mycotoxins expressed as times the toxicity of the free mycotoxin; PO=per 
os; IP=intraperitoneal; SC=subcutaneous; IV=intravenous; bw=body weight; EC50=effective concentrations inhibiting cell viability by 50%; CD50=50% cytotoxic dose; 
LD50=median lethal dose for 50% of subjects; N/A=not available; >=larger toxicity compared to DON; <=lower toxicity compared to DON. 

 

Mycotoxin 
Cell line/system/ 

animal species 
Exposure 

dose 
Exposure 

period 
Effect 

Factor 
fold 

toxicity 
Reference 

15ADON IPEC-1 0-30 µM 24 h 69% inhibition cell proliferation > Pinton et al. 2012 

15ADON IPEC-1 10 µM 48 h 75% reduction of transepithelial electrical resistance > Pinton et al. 2012 

15ADON IPEC-1 0-150 µM 24 h EC80 of 10.7 µM 1.6 Alassane-Kpembi et al. 2015 

15ADON Caco-2 0-30 µM 6 h no significant effect on cell viability N/A Kadota et al. 2013 

15ADON Caco-2 3 µM 6 h damage to tight junctions in luciferase yellow assay ≥ Kadota et al. 2013 

15ADON Caco-2 0-3 µM 72 h significant dose-dependent increase of IL-8 > Kadota et al. 2013 

15ADON Caco-2 0-7 µM 48 h IC50 1.47 (MTT assay)/1.10 (neutral red assay) µM 1.06/0.92 Alassane-Kpembi et al. 2013 

15ADON MIN-GL1/K-562 N/A N/A CD50 6 µM/1.2 µM 0.2/0.75 Visconti et al. 1991 

15ADON 3T3 0.5-14.8 μM 24 h 50% DNA synthesis inhibition at 1.51 µM 1.0 Sundstol Eriksen et al. 2004 

15ADON Mice 2.5 mg/kg bw PO 2 h/6 h altered cytokines expression N/A Wu et al. 2014 

15ADON Piglets 
1240 µg DON and 

935 µg 15ADON kg 
feed 

4 weeks 
decreased villus height compared to solely DON 

equivalent 
> Pinton et al. 2012 

3ADON IPEC-1 0-30 µM 24 h 13% inhibition cell proliferation < Pinton et al. 2012 

3ADON IPEC-1 30 µM 48 h transepithelial electrical resistance unaffected < Pinton et al. 2012 

3ADON IPEC-1 0-150 µM 24 h EC80 of 126 µM 0.13 Alassane-Kpembi et al. 2015 

3ADON Caco-2 0-30 µM 6 h no significant effect on cell viability N/A Kadota et al. 2013 

3ADON Caco-2 0-3 µM 72 h significant dose-dependent increase of IL-8 < Kadota et al. 2013 

3ADON Caco-2 0-7 µM 48 h IC50 2.94 (MTT assay)/1.99 (neutral red assay) µM 2.12/1.67 Alassane-Kpembi et al. 2013 

3ADON MIN-GL1/K-562 N/A N/A CD50 21 µM and 6 µM 0.06/0.15 Visconti et al. 1991 

3ADON 3T3 0.9–29.6 μM 24 h 50% DNA synthesis inhibition at 14.4 µM 0.1 Sundstol Eriksen et al. 2004 

3ADON Mice 
34 mg/kg bw PO 
49 mg/kg bw IP 

bolus LD50 1.4 Ueno 1984 

3ADON Mice 2.5 mg/kg bw PO 2 h/6 h altered cytokines expression N/A Wu et al. 2014 

DON3G Wheat ribosome 0-20 µM 25 min 8% inhibition of protein synthesis (luciferase activity) < Poppenberger et al. 2003 

DON3G Mice 2.5 mg/kg bw PO 2 h/6 h reduced cytokines expression N/A Wu et al. 2014 

DON3G Caco-2 0-10 µM 8 days unaltered viability and barrier function of cells < Pierron et al. 2015 

DON3G Intestinal explants 0-30 µM 4 h no histomorphological alterations < Pierron et al. 2015 
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3.3.1. 3ADON and 15ADON 

The toxicity of DON and its acetylated forms on intestinal morphology, barrier function, tight 

junction proteins, cell proliferation, MAPKs and cytokine expression in pigs has recently been 

investigated by Pinton et al. (Pinton et al. 2012). Porcine intestinal epithelial cells (IPEC-1) 

were incubated for 24 h with different concentrations of DON, 3ADON and 15ADON. A 

reduction in cell proliferation of 60% (p<0.0001), 13% (p<0.05) and 69% (p<0.0001) was 

demonstrated for DON, 3- and 15ADON, respectively. With regard to expression of claudins, 

which are important components of the tight junction protein complex, 15ADON displayed 

the most pronounced toxicity. Expression was decreased by 40% after exposure to 10 μM 

15ADON, whereas identical doses of DON or 3ADON were unable to exert a significant 

reduction. Considering activation of MAPKs, 15ADON was also more toxic than DON and 

3ADON, based on in vitro (IPEC-1), ex vivo (porcine jejunal explants) and in vivo (jejunum 

from piglets) studies (Pinton et al. 2012). These MAPKs are responsible for the cytotoxic 

effects of the mycotoxin.  

These findings were in accordance with the results from Alassane-Kpembi et al., who 

investigated the influence of DON, 3ADON and 15ADON on Caco-2 cells. Proliferating, non-

transformed Caco-2 cells were exposed to increasing doses of these mycotoxins and the 

induced cytotoxicity was measured by means of an 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) test. A similar toxicity was found for DON and 15ADON 

with effective concentrations inhibiting epithelial cell viability by 80% (EC80) of 16.5 and 10.5 

µM. 3ADON, for which a lower toxicity was expected, exhibited an EC80 value of 125 µM, 

which is approximately ten times higher (Alassane-Kpembi et al. 2015). 

Kadota et al. compared the toxicity of these compounds by measuring their effect on IL-8 

secretion and intestinal transport in Caco-2 cells. A significantly higher absorption of 

15ADON compared to DON and 3ADON was demonstrated. 15ADON also had a more 

profound effect on intestinal integrity, facilitating absorption through passive diffusion. 

Furthermore, the production of IL-8 was the lowest after 3ADON exposure, followed by DON 

and 15ADON respectively (Kadota et al. 2013).  

Visconti et al. evaluated the cytotoxicity on cultured human acute myelocytic leukemia and 

human lymphoid B cell lines (K-562 and MIN-GL1) (Visconti et al. 1991). Sundstol Eriksen et 
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al. focussed on DNA inhibition in Swiss mouse 3T3 fibroblasts, and revealed analogous 

results (Sundstol Eriksen et al. 2004). The last study included DOM-1. This metabolite was 

found to be at least 50 times less toxic than DON. Both studies demonstrate a distinct 

toxicity for these compounds, which can be ranked as follows, according to increasing 

toxicity: DOM-1 << 3ADON < DON ≤ 15ADON.  

3.3.2. DON3G  

The toxicity of DON3G remains largely unknown. To date, only one study investigated the 

toxicity of DON3G towards animals. More specifically, the effect on splenic pro-inflammatory 

cytokines and chemokines messenger RNA (mRNA) expression was investigated in mice. 

Compared to DON, DON3G proved to be ineffective in evoking cytokine or chemokine mRNA 

responses, indicating a reduced toxicity (Wu et al. 2014). The reduced cytokines induction of 

DON3G could be related to its inability to elicit a ribotoxic stress response. For plants, this 

has been demonstrated by an assay determining the inhibition of in vitro protein synthesis of 

wheat ribosomes by DON and DON3G, with a clear decrease in toxicity of the latter. For DON 

100% inhibition was seen at 5 µM, whereas 20 µM DON3G was unable to block the protein 

synthesis (Poppenberger et al. 2003). 

EFSA recently published a scientific opinion on the risks for human and animal health related 

to the presence of modified forms of ZEN, NIV and T-2 and HT-2 in food and feed. However, 

for the acetylated and modified forms of DON, the EFSA CONTAM working group is currently 

preparing a scientific opinion (EFSA CONTAM Panel 2014). 

3.3.3. Co-contamination 

Another point of concern is the co-contamination of DON with acetylated and modified 

forms of DON, and their potentially additive or synergistic effects. Alassane-Kpembi et al. 

demonstrated an order of magnitude of synergy ranging from 2 to 7 for several 

combinations of DON, 3ADON, 15ADON, NIV and FUS-X on epithelial cell toxicity (IPEC-1 and 

Caco-2). Binary or ternary mixtures often showed a dose-dependent effect, substantial 

enough to differ between antagonism and synergy (Alassane-Kpembi et al. 2013; Alassane-

Kpembi et al. 2015). This matter has received limited attention although possibly profound 

effects may be suspected at observed co-contamination occurrence levels. 



 

51 
 

3.4. Toxicokinetics  

In this section following questions are addressed: what is the disposition and fate of 

acetylated and modified mycotoxins in the animal and human body and is there a possibility 

that upon ingestion the acetylated and modified mycotoxins are converted back into their 

corresponding free form by e.g. in vivo hydrolysis of conjugated mycotoxins? 

Many of the articles on this topic are in vitro studies using incubations with isolated bacteria 

or faecal samples. However, mycotoxins are mainly absorbed in the proximal part of the 

small intestine. Consequently, hydrolysis and biotransformation occurring in the colon will 

not significantly affect systemic concentrations of a given mycotoxin or its metabolites. 

3.4.1. 3ADON and 15ADON  

The toxicokinetic properties of free DON in several animal species have recently been 

reviewed (Dänicke and Brezina 2013; Maresca 2013). Regarding acetylated and modified 

DON, several in vitro and in vivo studies are available. To determine the toxicokinetic 

behaviour and degree of hydrolysis of acetylated and modified DON forms, Sundstol Eriksen 

and Pettersson incubated acetylated and modified mycotoxins with isolated human faecal 

samples in vitro under anaerobic conditions for 48 h. For 3ADON about 78 ± 30% of the 

administered dose was recovered as DON, clearly demonstrating the possibility that human 

intestinal microbiota hydrolyse 3ADON to DON (Sundstol Eriksen and Pettersson 2003). 

Furthermore, the study proved that, in contrast to pigs, rats, mice, cows, chickens and 

sheep, isolated human faecal samples were unable to form the de-epoxidated metabolite 

DOM-1, as was the case for dogs and horses too (He et al. 1992; Kollarczik et al. 1994; 

Swanson et al. 1988; Swanson et al. 1990; Yoshizawa and Morooka 1975).  

A similar in vitro study with pig faeces and ileal digests indicated that deacetylation of 

3ADON to DON does occur in pigs. As mentioned before, pigs are able to further metabolise 

DON to DOM-1. However, not all pigs included in the study possessed this ability, illustrating 

high inter-individual variability. Moreover, this ability was not acquired after a 7-week period 

in which these pigs were fed a diet with low quantities of DON. On the other hand, faeces 

from pigs that were able to de-epoxidise DON were spread out in the pens of the pigs that 

lacked this metabolic feature. After one week, four out of five pigs had also acquired the 
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capability to metabolise DON to DOM-1, indicating that this ability can be transferred 

between pigs (Eriksen et al. 2002). 

In addition to the above in vitro studies, some in vivo studies on the metabolism of 3ADON 

have been published in rats and pigs. Versilovskis et al. investigated the metabolism of 

3ADON and 15ADON after oral administration to rats. One hour p.a. of 3ADON and 15ADON, 

12% of the dose could be detected in the stomach as free DON, indicating a likely hydrolysis 

of ADONs in the stomach. It was also observed that both ADONs can be glucuronidated in 

the stomach (5% of the administered dose) without prior deacetylation (Versilovskis et al. 

2012). Eriksen et al. investigated the ADME profile of 3ADON in pigs. After oral 

administration of 3ADON, neither 3ADON nor the acetylated de-epoxide metabolite could be 

detected in plasma. The retrieved metabolites in plasma 3 h p.a. were DON (54%) and DON-

glucuronide (42%). In faeces, no 3ADON was detected either, a mere 2% of the administered 

dose was recovered in faeces as DON and DOM-1. Approximately 50% of the dose was 

excreted in urine with a significant fraction (33%) as DON-glucuronide (Eriksen et al. 2003). 

In some cases, 3- and 15ADON exhibit a clearly distinct species-dependent behaviour as 

demonstrated by an in vitro study concerning the degradation of trichothecene mycotoxins 

by chicken intestinal microbiota. For 15ADON, a large fraction proved to have both the 

acetyl and epoxy moiety removed (± 90%), whereas only small quantities showed either 

solely de-epoxidation or deacetylation (6%). However, for 3ADON, deacetylation was the 

predominant reaction (64-94%) with only minimal subsequent de-epoxidation (4-24%) 

(Young et al. 2007). 

Due to a decreased polarity, ADONs might have an increased passive diffusion and intestinal 

transport to the portal blood circulation. Next, these compounds can be hydrolysed in this 

pre-systemic circulation. These two phenomena make it possible that the total amount of 

DON equivalents that enters an organism is higher for ADONs than for DON, when equimolar 

doses are considered. 

To perform a risk assessment in broiler chickens and pigs, more in vivo studies will be 

needed to assess the degree of in vivo hydrolysis, oral bioavailability and toxicokinetic 

parameters of 3ADON and 15ADON. 
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3.4.2. DON3G  

Unlike for the ADONs, degradation of DON3G in the human upper GI tract (mouth, stomach 

and proximal part of the small intestine, duodenum) seems unlikely, based on an in vitro 

study by Berthiller et al. Different treatments with acid (HCl), artificial stomach juice, 

artificial gut juice and human cytosolic β-glucosidase at 37 °C for 18 h were not able to 

hydrolyse significant amounts of DON3G (< 0.2%) (Berthiller et al. 2011). These results were 

confirmed by De Nijs et al., in a study in which two in vitro models representing the human 

upper GI tract, a fed digestion model and a Caco-2 transwell system, were unable to 

transform DON3G into DON (De Nijs et al. 2012). A study by Dall’Erta et al. further supported 

these findings, as a salivary, gastric and duodenal step in their model proved unable to 

release the DON aglycone from DON3G (Dall'Erta et al. 2013). De Angelis et al. evaluated 

bread contaminated with DON and DON3G in an in vitro digestion model, and observed an 

increase of DON3G in the duodenal compartment, together with a distinct decrease of DON. 

The authors hypothesize that this increase of DON3G could either be attributed to the 

release from embedded forms, bound to matrix macromolecules, or to glycosylation of DON 

by interaction with glucose molecules made available by the enzymatic release of starch in 

the bread matrix (De Angelis et al. 2014). 

Regarding the human lower GI tract, i.e. jejunum and ileum together with the large intestine, 

there are some indications that hydrolysis could take place there. Under semi-aerobic in 

vitro conditions, Berthiller et al. evaluated the hydrolytic capability of 47 isolated bacterial 

strains from intestinal content (Berthiller et al. 2011). Particular species of the genera 

Lactobacillus, Enterococcus, Enterobacter and Bifidobacterium efficiently cleaved DON3G to 

DON, releasing 6 to 62% of the dose as DON after 8 h incubation. These results indicate that 

the intestinal microbiota species composition and density could play an important role. 

Consequently, different cleavage rates can be expected in different animals or humans, or 

within one species between adults and infants as well (Abbott 2004; Hattori and Taylor 

2009). An interesting observation in the study by Berthiller et al. was that the hydrolytic 

enzyme cellobiase caused a 73% hydrolysis of DON3G after 18 h incubation, indicating that 

DON could be released in the GI tract of plant-based cellulose-foraging ruminants (Berthiller 

et al. 2011). 
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Gratz et al. investigated the metabolism of DON3G by human faecal microbiota and 

confirmed the above findings (Gratz et al. 2013). After 6 h of anaerobic incubation, 100% of 

DON3G was hydrolysed in 4 out of 5 cases. Dall’Erta et al. found similar results since after 24 

h of incubation a complete degradation of DON3G was observed with a recovery of 90% as 

DON (Dall'Erta et al. 2013). 

In vitro models do not take into account important physiological factors within and between 

different animal species and humans, such as intestinal mucosa and content composition, 

enterohepatic recirculation and the influence of the immune system (Gonzalez-Arias et al. 

2013). To estimate these factors and especially the interactions between them, species-

specific in vivo trials remain mandatory. The first DON3G in vivo study was published by 

Versilovskis et al. in 2012. Two rats were fed 25 µg of DON3G by oral gavage followed by 

blood collection at 17 and 55 min p.a. DON was detected in the stomach albeit at only 2% of 

the applied dose. This confirms the findings of the described in vitro studies stating that the 

hydrolysis of DON3G in the stomach is negligible. Further down in the GI tract, DON3G could 

be detected at 2-3% of the applied dose in the small intestine and at 1-2% in the colon. This 

remarkable decrease of DON3G in the small intestine is probably due to the presence of 

tissue β-glucosidases. In contrast, Berthiller et al. did not detect any hydrolysis after in vitro 

incubation with human β-glucosidase (Berthiller et al. 2011; Versilovskis et al. 2012). Nagl et 

al. orally administered DON and an equimolar dose of DON3G to six rats followed by urine 

and faeces collection over a two-day period. After PO administration of DON3G, less than 4% 

of the administered dose was recovered in urine, one third as DON, one third as DON-GlcA, 

10% as DON3G and 20% as DOM-1. The presence of urinary DON clearly demonstrates the 

hydrolysis upon ingestion. In comparison, after DON administration, 15% of the dose was 

recovered in urine, indicating a relatively low oral bioavailability for DON3G compared to 

DON in rats. This set-up, however, did not allow determination of where and how the 

hydrolysis took place. Analysis of faecal samples of the rats dosed with DON3G revealed that 

the vast majority of the metabolites of DON3G was excreted as DON and DOM-1 (sum: 99.5 

± 0.4%). Only traces of DON3G were detected, confirming that intestinal microbiota are 

effective in hydrolysing this modified mycotoxin (Nagl et al. 2012). Recently, the results in rat 

are supported by in vivo experiments performed in pig by the same research group. After IV 

administration of DON3G, no DON was detected in plasma, indicating that systemic 
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hydrolysis of DON3G is negligible. After oral administration of DON3G, 40.3% of the dose 

was recovered in urine as DON3G, next to DON (21.6%), DON15GlcA (6.8%), DOM-1 (5.9%) 

and DON3GlcA (3.4%). Consequently, it was concluded that in vivo cleavage of DON3G 

predominantly occurs in the (lower) digestive tract. Oral bioavailability was lower for DON3G 

than for DON, derived from the recovered DON equivalent amounts in urine, namely 84.8% 

for DON and 40.3% for DON3G. However, the oral bioavailability for both compounds in pig 

was remarkably higher than in rat (Nagl et al. 2014). The species composition and density of 

intestinal microbiota can contribute to the observed interspecies differences in oral 

bioavailability and degree of hydrolysis. These differences demonstrate the need for animal 

trials in species with a high exposure to these mycotoxins. 

The pig has remarkable similarities to humans in terms of anatomy and physiology of the GI 

tract, renal and cardiovascular organ systems. These similarities make the pig a suitable 

animal model for oral toxicokinetic studies in humans (DeSesso and Williams 2008; Roth et 

al. 2013; Svendsen 2006; Witkamp and Monshouwer 1998). At the moment, literature 

reports regarding the toxicokinetics of DON3G in humans are scarce. Warth et al. performed 

a study with a human volunteer consuming a diet naturally contaminated with DON3G (7 μg 

DON3G/day). The modified mycotoxin could not be detected in urine (Warth et al. 2013). 

Overall, the limited published studies tentatively demonstrate a limited oral bioavailability of 

DON3G, so it might be hypothesised that DON3G is less toxic to the tested animal species. 

Nevertheless, the hydrolysis of DON3G to DON might contribute to the overall toxicity after 

oral intake of DON3G. Determination of the oral bioavailability, degree of hydrolysis and 

toxicokinetic parameters of DON3G in relevant species may support legislative authorities to 

carefully take measure of all aspects of the risk assessment of DON3G, as well as 3ADON and 

15ADON, and to potentially consider the establishment of a TDI for acetylated and modified 

mycotoxins or to include them in a group TDI. Additionally, the data obtained for pigs can 

serve as a model for humans, for which studies are difficult to set up from an ethical point of 

view.  
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The Fusarium mycotoxin deoxynivalenol (DON) is one of the most frequently occurring 

mycotoxins worldwide, contaminating 56% of feed and feed raw materials. DON is known 

for its harmful effects on animals worldwide, leading to great economic losses. Additionally 

to DON, feed can be contaminated with acetylated forms of DON, such as 3-acetyl-

deoxynivalenol (3ADON) and 15-acetyl-deoxynivalenol (15ADON), and modified forms such 

as deoxynivalenol-3-β-D-glucoside (DON3G). One of the major questions associated with 

acetylated and modified forms of DON is whether in vivo hydrolysis may result in the release 

of DON and what their disposition in the body is. Little is known about the toxicodynamics 

and toxicokinetics of these acetylated and modified forms of DON, compared to the 

extensively investigated DON. Determination of the oral bioavailability, rate and extent of in 

vivo hydrolysis and toxicokinetic characteristics of 3ADON, 15ADON and DON3G in relevant 

animal species by means of a state-of-the-art toxicokinetic analysis, may support legislative 

authorities to carefully consider all aspects of the risk assessment and to eventually consider 

the establishment of a tolerable daily intake (TDI) for acetylated and modified mycotoxins or 

to include them in a group TDI. 

The general objective of this research is to determine the disposition, i.e. oral bioavailability, 

rate and extent of in vivo hydrolysis and toxicokinetic characteristics, of 3ADON, 15ADON 

and DON3G in broiler chickens and pigs in order to contribute to the risk assessment of 

these mycotoxins. Additionally, the cytotoxicity of these mycotoxins towards intestinal 

epithelial cells is investigated, as these are the first target after consumption of 

contaminated feed. 

Pigs are of particular concern for at least two reasons: (1) due to the cereal-rich diet, pigs 

can be exposed to a high level of toxins; and (2) the pig is one of the most sensitive species 

for several mycotoxins. In addition, pigs are anatomically and physiologically quite similar to 

humans, and because of the similarities in the intestinal tract, pigs can be considered as a 

good model for humans. In contrast, broilers are, together with ruminants, among the least 

sensitive species to DON, despite their high exposure to these mycotoxins, which makes this 

species interesting for comparative purposes. Additionally, poultry meat is worldwide the 

most consumed meat expressed in kg per capita. Moreover, within poultry consumption, 

84% originates from the consumption of broiler meat, further increasing the study relevance 

of this species. 
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Comparative toxicokinetic analysis with determination of the in vivo hydrolysis can 

contribute to explain the large interspecies difference in susceptibility to DON. Therefore, 

sensitive and validated multi-mycotoxin analysis methods in animal plasma are needed. 

The specific aims of this research were as follows: 

 To develop and validate a sensitive and specific liquid chromatography-tandem mass 

spectrometry (LC-MS/MS) method to quantify DON, 3ADON, 15ADON and DOM-1 in 

broiler chicken and pig plasma (Chapter I). 

 To perform toxicokinetic in vivo trials to determine oral bioavailability, in vivo 

hydrolysis and toxicokinetic parameters of DON, 3ADON and 15ADON in broiler 

chickens and pigs (Chapter II). 

 To determine oral bioavailability, in vivo hydrolysis and toxicokinetic parameters of 

DON3G in broiler chickens and pigs. For this, a validated LC-MS/MS method to 

quantify DON, DON3G and DOM-1 in broiler chicken and pig plasma is needed 

(Chapter III). 

 To assess the in vitro cytotoxicity of 3ADON, 15ADON and DON3G on differentiated 

and undifferentiated intestinal epithelial cells. As pigs are among the most sensitive 

species to DON toxicity, a porcine intestinal epithelial cell line (IPEC-J2) is chosen 

(Chapter IV). 
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CHAPTER I 

 

Development and validation of an LC-MS/MS method for the toxicokinetic 

study of deoxynivalenol and its acetylated derivatives in chicken and pig 

plasma 

 

 

 

 

 

 

 

 

 

 

 

Adapted from:  

Broekaert N., Devreese M., De Mil T., Fraeyman S., De Baere S., De Saeger S., De Backer P., 

Croubels S. (2014). Development and validation of an LC-MS/MS method for the 

toxicokinetic study of deoxynivalenol and its acetylated derivatives in chicken and pig 

plasma. Journal of Chromatography B, 971, 43-51. 
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Abstract - This study aims to develop an LC-MS/MS method allowing the determination of 3-

acetyl-deoxynivalenol, 15-acetyl-deoxynivalenol, deoxynivalenol and an in vivo metabolite, 

de-epoxy-deoxynivalenol, in plasma of broiler chickens and pigs. These species have a high 

exposure to these toxins, given their mainly cereal based diet. Several sample cleanup 

strategies were tested and further optimised by means of fractional factorial designs. A 

simple and straightforward sample preparation method was developed consisting of a 

deproteinisation step with acetonitrile, followed by evaporation of the supernatant and 

reconstitution in water. The method was single laboratory validated according to European 

guidelines and found to be applicable for the intended purpose, with a linear response up to 

200 ng/mL and limits of quantitation of 0.1 to 2 ng/mL. As a proof of concept, biological 

samples from a broiler chicken that received either deoxynivalenol, 3- or 15-acetyl-

deoxynivalenol were analysed. Preliminary results indicate nearly complete hydrolysis of 3-

acetyl-deoxynivalenol to deoxynivalenol; and to a lesser extent of 15-acetyl-deoxynivalenol 

to deoxynivalenol. No de-epoxy-deoxynivalenol was detected in any of the plasma samples. 

The method will be applied to study full toxicokinetic properties of deoxynivalenol, 3-acetyl-

deoxynivalenol and 15-acetyl-deoxynivalenol in broiler chickens and pigs. 

Keywords - LC-MS/MS - plasma - deoxynivalenol - 3-acetyl-deoxynivalenol - 15-acetyl-

deoxynivalenol - de-epoxy-deoxynivalenol - poultry - pig 
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1. Introduction 

Fusarium is regarded as one of the most important mycotoxigenic fungi genera. Dean et al. 

(2012) proposed a top ten for fungal pathogens based on scientific and economic 

importance. Fusarium graminearum and F. oxysporum got nominated for places four and 

five, respectively. Fusarium spp. can produce several toxins of which the trichothecenes, 

zearalenone and fumonisins are the most important based on occurrence and toxicity. Of 

these trichothecenes, deoxynivalenol (DON) is the most prevalent. It is typically found in 

wheat, barley, corn, rye and consequently also in compound feeds (Döll and Dänicke 2011; 

Pestka 2010). 

The research regarding the toxicity, toxicokinetics and occurrence of DON (and mycotoxins 

in general) has made significant progress during the last years. As the information and 

insight on native (or parent) mycotoxins increases, the focus of this research domain tends 

to shift partially towards the gathering of occurrence and toxicity data for masked and 

modified mycotoxins. The use of the term ‘masked mycotoxin’ is deliberately avoided 

throughout this manuscript. Masked mycotoxins owe their name to the fact that these 

mycotoxin conjugates or derivatives are undetectable by conventional techniques due to 

changes in their chemical strucutre and physico-chemical properties. Due to the ambiguous 

use of the term ‘masked mycotoxin’, Rychlik et al. (2014) systematically defined all potential 

modified mycotoxins. This nomenclature consists of a four hierarchic level definition and 

comprises modifications such as by plant biosynthesis pathways, animal conjugation, fungal 

production or by certain processing techniques (Rychlik et al. 2014). The acetylated 

derivatives of DON, 3-acetyl-deoxynivalenol (3ADON) and 15-acetyl-deoxynivalenol 

(15ADON), are intermediaries in its biosynthesis, hence they are often described as fungal 

precursors, or by Rychlik et al. as free mycotoxins.  

Conversion of these toxin derivatives or conjugates back to their native form by in vivo 

hydrolysis in humans and animals cannot be excluded. Consequently, this would imply an 

underestimation of the degree of contamination upon analysis. De Boevre et al. (2012) 

reported the presence of 3ADON and 15ADON in 87% and 73% of different cereals and 

cereal derived products, respectively. In the latter study, the highest contamination levels 

were detected in maize with concentrations up to 305 ± 216 ng/g for 3ADON and 334 ± 270 

ng/g for 15ADON (De Boevre et al. 2012). 
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The toxicological importance of 3ADON and 15ADON has recently been highlighted by 

Pinton et al. (2012) in a study regarding the toxicity of DON and its acetylated derivatives on 

intestinal morphology, barrier function, tight junction proteins and mitogen-activated 

protein kinases. A general conclusion was that these compounds have a distinct toxicity on 

the porcine intestine which can be ordered as follows, according to increasing toxicity: 

3ADON < DON < 15ADON (Pinton et al. 2012).  

Several methods have been developed to determine DON and its acetylated and/or modified 

forms in matrices such as wheat, maize, oats and derived products e.g. cornflakes, bread, 

flour and beer (De Boevre et al. 2012; Escrivá et al. 2014; Lancova et al. 2008; Suman et al. 

2013; Varga et al. 2013). Untargeted analysis by means of high resolution mass spectrometry 

(HRMS) of modified and acetylated mycotoxins is increasingly used for food and feed 

commodities (Di Mavungu et al. 2011; De Boevre et al. 2015). The goal of this study 

however, was to develop a method which allows to study the toxicokinetic properties of 

DON and the in vivo hydrolysis of its derivatives 3ADON and 15ADON in chickens and pigs, as 

these species have a high exposure to these toxins, given their mainly cereal based diet. 

Therefore, a method determining these compounds in plasma is needed. This enables to 

study whether or not 3ADON and 15ADON are hydrolysed in the gastro-intestinal (GI) tract 

of the animal and are consequently absorbed in the blood either as intact molecule or as the 

parent toxin DON. 

With respect to in vivo monitoring of DON and/or its derivatives few methods are published. 

Dänicke et al. (2012) developed a high-performance liquid chromatography method with 

diode-array detection (HPLC-DAD) to determine DON and the in vivo metabolite, de-epoxy-

deoxynivalenol (DOM-1); as well as an indirect method using β-glucuronidase to determine 

DON and DON-glucuronide (DON-GlcA) in pig plasma (Dänicke et al. 2012). The cleanup was 

based on immunoaffinity solid phase extraction (SPE), a relatively expensive and elaborate 

technique. Furthermore, the described methods lack a full validation, with given data 

restricted to the limits of detection (LOD) and recoveries.  

Recently several fully validated liquid chromatography tandem mass spectrometry (LC-

MS/MS) methods have been described. De Baere et al. (2011) developed a method to 

determine DON and DOM-1 in pig and chicken plasma. The limits of quantitation (LOQ) 
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ranged from 1 to 2.5 ng/mL using a SPE cleanup (Oasis® HLB column) (De Baere et al. 2011). 

Devreese et al. (2012) published a comparable method to determine DON and DOM-1 in pig 

plasma. The method used a straightforward cleanup, consisting of a simple deproteinisation 

step with acetonitrile, and managed to obtain comparable LOQ values (Devreese et al. 

2012). Brezina et al. (2014) developed and validated an LC-MS/MS method with SPE cleanup 

to determine DON, DOM-1 and zearalenone and its metabolites in pig serum. However, all 

the above mentioned methods do not allow the determination of acetylated derivatives of 

the native toxin.  

Methods to determine DON and/or its acetylated derivative 3ADON are available for pig but 

not for chicken plasma; for chickens only a method determining DON in plasma is available 

(De Baere et al. 2011). Eriksen et al. (2003) have reported a gas chromatography electron 

capture detector (GC-ECD) method allowing to determine DON, 3ADON and nivalenol in pig 

plasma and urine. As is common with more polar compounds, in GC a derivatisation step is 

required prior to analysis (Eriksen et al. 2003). To our knowledge, no method to determine 

15ADON in plasma, regardless of the animal species, is described in literature.  

The goal of this study was to develop a method to monitor DON, 3ADON or 15ADON and an 

in vivo metabolite, DOM-1, in broiler and pig plasma. Their chemical structures are 

presented in Figure 1.  

The described method was validated according to European guidelines (Commission 

Decision 2002; Heitzman 1994) and results for the evaluation of the linearity, accuracy, 

precision (repeatability, reproducibility), sensitivity (LOD and LOQ), matrix effect and carry-

over are presented for DON, 3ADON, 15ADON and DOM-1.  

As a proof of concept, the method was applied for the analysis of plasma samples from a 

broiler chicken that received either DON, 3ADON or 15ADON. In a further stage the method 

will be applied to gain insight into the toxicokinetic properties of the acetylated forms of 

DON.  
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Figure 1. Structure of 1: 3α,7α,15-trihydroxy-12,13-epoxytrichothec-9-en-8-one (deoxynivalenol or DON), 2: an 
in vivo metabolite, 3α,7α,15-trihydroxy-trichothec-9,12-dien-8-one (de-epoxy-deoxynivalenol or DOM-1), and 
two acetylated forms of DON, 3: 3α-acetoxy-7α,15-dihydroxy-12,13-epoxytrichothec-9-en-8-one (3-acetyl-
deoxynivalenol or 3ADON) and 4: 15-acetoxy-3α,7α-dihydroxy-12,13-epoxytrichothec-9-en-8-one (15-acetyl-
deoxynivalenol or 15ADON). 

2. Experimental 

2.1 Compounds, standards and solutions 

DON was purchased from Fermentek (Jerusalem, Israel) and dissolved in acetonitrile yielding 

a stock solution of 1 mg/mL. DOM-1 (50 µg/mL), 3ADON (100 µg/mL), 15ADON (100 µg/mL) 

and 13C15-DON (stable isotope labelled internal standard (IS), 50 µg/mL) stock solutions in 

acetonitrile were purchased from Romerlabs (Tulln, Austria). All the above mentioned stock 

solutions were stored at ≤−15 °C. Individual working standard solutions of 5 µg/mL were 

prepared by diluting the above stock solutions with HPLC-grade acetonitrile. All standard 

solutions were stored at ≤−15 °C. Standard mixture working solutions (containing DON, 

DOM-1, 3ADON and 15ADON) of 1 µg/mL and 100 ng/mL were prepared by mixing and 

diluting the individual working standard solutions in HPLC-grade acetonitrile and were kept 

at 2-8 °C. Acetonitrile solutions of DON have been reported stable for 24 months at room 

temperature, for 3ADON, 15ADON and DOM-1 no published stability data is available 
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(Widestrand and Pettersson 2001). However, the supplier claims a shelf-life of at least 6 

months at 4 °C for a 100 ng/mL solution in acetonitrile. 

2.2 Instrumentation, materials and reagents 

Separation of the analytes of interest was achieved on a Hypersil Gold (reversed-phase) (50 x 

2.1 mm i.d., 1.9 μm) column with a guard column (10 x 2.1 mm i.d., 5 μm) of the same type. 

Chicken plasma was analysed on a Surveyor® type MS pump Plus and Autosampler Plus HPLC 

in combination with a TSQ® Quantum Ultra™ mass spectrometer, operating in both the 

positive and negative heated electrospray ionisation (ESI) mode (Thermo Fisher Scientific, 

Breda, The Netherlands). Pig plasma was analysed on an Acquity UPLC system coupled to a 

Xevo® TQ-S mass spectrometer, operating solely in positive electrospray ionisation (ESI) 

mode (Waters, Zellik, Belgium). Microfilters Durapore PVDF 0.22 µm were obtained from 

Millipore (Overijse, Belgium). Water and methanol (ULC/MS grade) were purchased from 

Biosolve (Valkenswaard, The Netherlands). Glacial acetic acid and ammonium acetate (both 

analytical grade) and acetonitrile (HPLC grade) were obtained from VWR (Leuven, Belgium) 

and ammonium acetate from Merck (Brussels, Belgium). One mL, 60 mg SPE cartridges 

Oasis® HLB were purchased from Waters (Zellik, Belgium) and Bond Elute C18, 100 mg, 1 mL 

from Agilent (Diegem, Belgium).  

2.3 Plasma sample preparation 

Blank plasma was obtained by the collection of heparinised blood from broiler chickens 

(Ross 308) and pigs (Landrace). The animals were fasted twelve hours prior to blood 

collection. Plasma was obtained by centrifugation (2851 x g, 10 min, 4 °C) of the blood. The 

blank plasma was pooled, homogenised and stored at ≤ – 15 °C until the moment of use for 

the preparation of matrix-matched calibrators and quality control samples.  

Calibrator and quality control samples.  To 250 µL of blank plasma, 5 µL of a 1 µg/mL 

internal standard working solution (13C15-DON) and appropriate volumes of the standard 

mixture working solutions (1 µg/mL and 100 ng/mL) were added to obtain calibrator samples 

with mycotoxin concentrations of 1, 2, 5, 10, 20, 50, 100 and 200 ng/mL. After vortex mixing, 

acetonitrile was added up to a volume of 1 mL to precipitate plasma proteins. The samples 

were vortex mixed again, followed by a centrifugation step (10 min at 8517 x g, 4 °C). The 
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supernatant was transferred to a new tube and evaporated to dryness under nitrogen at 80 

°C. The sample was then redissolved in 200 µL of UPLC-grade water, micro-filtrated and 

analysed by means of LC-MS/MS. 

Incurred samples. To 250 µL of plasma, 5 µL of a 1 µg/mL internal standard working 

solution were added. After vortex mixing, the samples were subjected to the same sample 

preparation procedure as the calibrator samples. 

Blank samples. After the addition of 750 µL of acetonitrile to 250 µL of blank plasma, 

the samples were extracted in the same way as the calibrator samples. 

2.4 LC-MS/MS analysis 

For chicken plasma all compounds were eluted with a gradient of UPLC-grade water + 0.1% 

glacial acetic acid (mobile phase A) and UPLC-grade methanol + 0.1% glacial acetic acid 

(mobile phase B) at a flow rate of 300 µL/min (Figure 2 C). The gradient started at 5% B for 

one minute, in six seconds the gradient increased to 20% B and this was maintained up to 5 

minutes. From 5 minutes to 5.1 minutes the % B was augmented to 50 and was held up to 8 

minutes from where it increased to 95% in six seconds which was maintained for one 

minute. Afterwards, the gradient was restored to its initial conditions. Column and 

autosampler temperatures were set to respectively 60 and 5 °C, injection volume (partial 

loop) was fixed at 10 µL. For pig plasma identical parameters were used, the sole difference 

was the use of 0.3% glacial acetic acid instead of 0.1%. 

The mass spectrometers were operated in the multiple reaction monitoring (MRM) mode 

with two ion transitions for each target analyte. Instrumental and compound specific 

parameters were optimised by the direct infusion of either 1 µg/mL (TSQ Quantum Ultra) or 

10 ng/mL (Xevo TQ-S) standard solutions in methanol/ultra-pure water (50/50; v/v) + 0.1% 

acetic acid at a flow rate of 10 µL/min. For the TSQ, the instrumental mass spectrometry 

parameters were set as follows: vaporizer temperature 50 °C, capillary temperature 350 °C 

and ion sweep gas pressure 2.0. The other parameters varied for ESI- and ESI+ respectively, 

spray voltage 3500 V (-) and 5000 V (+), sheath gas pressure 40 arbitrary units (au) (-) and 49 

au (+), auxiliary gas pressure 10 au (-) and 25 au (+), source CID 5 (-) and -5 (+). Compound 

specific MS parameters, together with precursor and product ions used for quantification 
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and qualification, are given in Table 1. All compounds were detected in negative 

electrospray ionisation mode (ESI-) as [M+Hac-H]- adducts, except for 15ADON which 

exhibited better sensitivity when measured in ESI+, measured as the protonated precursor 

ion ([M+H]+). For the Xevo TQ-S, the desolvation gas flow rate was fixed to 1000 L/h with a 

temperature of 600 °C, the cone gas flow rate was set at 150 L/h, the source temperature 

was set at 150 °C and the capillary voltage was optimised at 3.5 kV. Dwell times of 44 - 

52 ms/transition were chosen. In Table 1, compound specific MS parameters such as cone 

voltage and collision energy are mentioned. 

Table 1. Compound specific MRM ion transitions and MS-parameters; Rt= retention time; IS= internal standard; 
a
 quantifier ion; for chicken plasma tube lens offset is mentioned, for pig plasma cone voltage. 

  Measured 
form/adduct 

Precursor ion 
(m/z) 

Product ion 
(m/z) 

Rt (min) Tube lens offset 
/cone voltage 

Collision 
Energy 

ESI 
modus 

Chicken 

DON [M+Hac-H]- 355.2 265.1a 3.50 75 15 - 
   295.1 3.50 75 10 - 

DOM-1 [M+Hac-H]- 339.1 249.1a 4.75 85 15 - 
   59.10 4.75 85 35 - 

3ADON [M+Hac-H]- 397.1 306.8a 7.05 95 15 - 
   337.1 7.05 85 10 - 

15ADON [M+H]+ 339.2 321.2a 7.00 80 15 + 
   136.9 7.00 80 20 + 
13C15-DON (IS) [M+Hac-H]- 370.2 279.1a 3.50 75 15 - 
   310.1 3.50 75 10 - 

Pig 

DON [M+H]+ 297.1 249.1a 3.50 20 9 + 
   203.4 3.50 20 14 + 

DOM-1 [M+H]+ 281.1 215.1a 4.75 20 12 + 
   137.0 4.75 20 16 + 

3ADON [M+H]+ 339.0 231.1a 7.05 30 10 + 
   213.2 7.05 30 14 + 

15ADON [M+H]+ 339.0 231.1a 7.00 30 10 + 
   213.2 7.00 30 14 + 
13C15-DON (IS) [M+H]+ 312.0 245.2a 3.50 20 10 + 
   263.0 3.50 20 10 + 

 

2.5 Validation 

Given the unavailability of reference materials, validation was performed on spiked blank 

plasma samples. Both recommendations as defined by the European Community 

(Commission Decision 2002; Heitzman 1994) and the Veterinary International Conference on 

Harmonisation (VICH 2009) served as validation guidelines. The developed method was 

single laboratory validated.  

Linearity of the response of the compounds was assessed by means of three matrix-matched 

calibration curves consisting of seven calibration points in the range of 1-200 ng/mL. The 
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correlation coefficients (r) and goodness-of-fit coefficients (gof) were determined, limits 

were set to ≥0.99 and ≤20%, respectively.  

Within-day accuracy & precision were determined by analyzing six samples at a low 

concentration level (LOQ of the compounds) and at a high concentration level (100 ng/mL). 

Values for the relative standard deviation (RSD) could not exceed 2/3 of the RSDmax, 

calculated according to the Horwitz equation (given below). The acceptance criteria for 

accuracy were: −30% to +10% and −20% to +10% for concentrations between 1 and 

10 ng/mL, and ≥10 ng/mL, respectively. Between-day accuracy & precision were assessed by 

analyzing the low and high concentration levels in threefold on three consecutive days 

(n=3x3). The acceptance criteria for accuracy were identical to the values given above and 

RSD values could not exceed the RSDmax. The formula to determine RSDmax are given below. 

   Within-day precision: RSDmax = 2(1−0.5logConc) × 2/3 

   Between-day precision: RSDmax = 2(1−0.5logConc) 

The LOQ was calculated as the lowest concentration for which the method had acceptable 

results with regards to accuracy and precision. It was determined by spiking six plasma 

samples at 1 or 2 ng/mL. The LOQ was also established as the lowest point of the calibration 

curve. The LOD was calculated using the samples spiked at the LOQ level (n=6) 

corresponding to the lowest concentration that could be determined with a signal-to-noise 

(S/N) ratio of 3.  

Carry-over was evaluated by analysing a mixture of mobile phase A and B (50/50; v/v) 

directly after the highest calibrator (200 ng/mL).  

The specificity, the capability of the method to distinguish signals of the analytes from any 

other substances or interferences, was determined on six blank plasma samples. For an 

acceptable specificity the S/N ratio of possible interfering peaks with similar retention times 

in these samples could not exceed the S/N ratio of the analyte(s)’ LOD. 

Recovery and matrix effects. Two types of matrix-matched calibration curves (on pooled 

blank plasma derived from six different animals) were prepared, one by spiking the blank 
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calibrator samples before and one after extraction. A third calibration curve was prepared in 

standard solution. All curves consisted of seven calibration points in the range of 1-200 

ng/mL. The slopes of these calibration curves (external calibration, without IS) were 

compared to calculate the apparent recovery (RA = 100 × slope spiked before 

extraction/slope standard solution), the matrix effect denoted as signal 

suppression/enhancement (SSE = 100 × slope spiked after extraction/slope standard 

solution) and the recovery of the extraction step (RE = 100 × slope spiked before 

extraction/slope spiked after extraction). Regarding SSE, values ≤ 1 indicate ion suppression 

due to matrix effect, values ≥ 1 are caused by ion enhancement (Matuszewski et al. 2003). 

To test applicability of the method on plasma from other animals, the validation as described 

above was also executed on pig plasma.  

2.6 Pilot study 

Three male broilers (Ross 308, 20 days of age) were housed at the Faculty of Veterinary 

Medicine of Ghent University. Water and feed were present ad libitum. The stable was 

climate controlled with temperatures between 18 and 25 °C and a relative humidity between 

40 and 80%. After one week of acclimatisation, the animals were treated with either DON, 

3ADON or 15ADON by intravenous injection (IV) or per os (PO, by means of gavage) in a two-

way crossover design with a washout period lasting 4 days. Twelve hours before 

administration of the compounds the animals were fasted. The administered doses were 

calculated to represent a worst case scenario within the legal framework of the European 

Union. The maximum EU guidance level in feed is 5 mg/kg DON (European Commission 

2006) and broilers consume on average 100 g feed/kg body weight (bw)/day at three to four 

weeks of age. This resulted in the administration of 500 µg DON/kg bw. For the ADONs 

equimolar doses (571 µg/kg bw) were administered. The toxins were dissolved in ethanol at 

25 mg/mL. The required amounts to administer per chicken were diluted with saline (0.9% 

NaCl, VWR, Leuven, Belgium) to a volume of one mL. Before the administration of the toxins 

and after 5, 10, 20, 30, 45, 60, 90, 120 and 240 min, blood (0.5 – 1 mL) was collected. Plasma 

was obtained by centrifugation of the blood samples (2851 x g, 10 min, 4°C) and stored at 

≤−15 °C prior to analysis. All samples were analysed within one month after blood collection. 



 

90 
 

The animal trial was approved by the ethical committee of the Faculty of Veterinary 

Medicine and the Faculty of Bioscience Engineering of Ghent University (EC2013/64). 

3. Results and discussion 

3.1 Method development 

To optimize the LC-MS/MS method several HPLC columns were tested in a first stage. All the 

tested columns, including a Hypersil Gold column (50 x 2.1 mm i.d., 1.9 μm), did not provide 

a separation of both ADONs. However, there was no need for a simultaneous determination 

of both toxins, as the purpose of this study was to apply the method for determination of 

the toxicokinetic properties of the compounds after separate administration to the animals. 

The Hypersil Gold column did however give a satisfactory resolution for the other 

compounds, as all analytes showed a baseline separation, in a relatively short analysis time, 

with an elution time of 7 minutes for the longest retained compound (Figure 2). 

Following the column choice, the mobile phase system was optimised. As organic solvent 

both acetonitrile and methanol were tested. The latter solvent gave more satisfactory 

results regarding peak shapes. Both ammonium acetate (NH4
+CH3COO-) and acetic acid 

(CH3COOH) concentrations were evaluated as modifiers. Best results, based on peak shapes 

and signal intensities, were obtained with mobile phases consisting of UPLC-grade water + 

0.1% acetic acid and UPLC-grade methanol + 0.1% acetic acid for broiler chicken plasma. For 

pig plasma, 0.3% acetic acid was deemed optimal. 
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Figure 2. LC-MS/MS chromatograms of A: DON (RT: 3.40 min), DOM-1 (RT: 4.50 min) and 3ADON (RT: 6.70 min) 
in broiler chicken plasma spiked at 1 ng/mL; B: DON, DOM-1 and 3ADON in broiler chicken plasma spiked at 10 
ng/mL; C: a blank plasma sample; D: an incurred sample from a broiler chicken given an IV bolus injection of 
571 µg 3ADON/kg body weight

 
ten minutes after injection, DON (RT: 3.40, 73 ng/mL) and 3ADON (RT: 6.70, 21 

ng/mL) together with the applied gradient, displayed as the grey line, % mobile phase B. 

Next, four sample cleanup strategies were evaluated for chicken plasma. The first one was a 

simple deproteinisation based on Devreese et al. (2012). Following the addition of 750 µL of 

acetonitrile to 250 µL of spiked plasma, the sample was centrifuged for 10 min at 8517 x g at 

4 °C. Next, supernatant was transferred and dried by means of N2 at 50 °C. After a 
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reconstitution in MeOH/H2O (80/20; v/v) and a vortex step (15 sec) the extract was 

ultrafiltrated (PVDF, 0.22 µm) (Devreese et al. 2012). The second method was comparable to 

the first one but a liquid-liquid extraction step was added to remove lipophilic substances. 

After the addition of acetonitrile, 1 mL of hexane was added and the sample was vigorously 

vortex mixed for 15 sec. Hexane was removed and the supernatant transferred and treated 

as in the first method. The third method included an SPE step based on De Baere et al. 

(2011). A 250 µL sample of spiked plasma was mixed with 250 µL of MeOH and centrifuged 

(10 min, 8517 x g, 4 °C). Two mL of H2O were added and this was loaded onto an SPE Oasis® 

HLB column (activated with 2 mL of MeOH and conditioned with 2 mL of H2O/MeOH (90/10; 

v/v)). Analytes were eluted with 1 mL of MeOH, dried (N2, 50 °C) and reconstituted 

(MeOH/H2O; 80/20; v/v) (De Baere et al. 2011). The last method was a conventional C18 SPE 

cleanup, 250 µL of plasma were mixed with 750 µL of H2O, vortexed (15 sec) and centrifuged 

(10 min, 8517 x g, 4 °C). The supernatant was loaded onto an SPE C18 column (activated with 

2x2 mL of MeOH and conditioned with 2x2 mL of H2O). The column was washed with 2x2 of 

mL H2O and the analytes eluted with 2 mL of MeOH. The extract was dried (N2, 50 °C) and 

reconstituted (MeOH/H2O; 80/20; v/v). These four methods were executed in threefold on 

100 ng/mL spiked chicken plasma. The results are depicted in Figure 3. Each bar represents 

the mean of three repeats, the whiskers represent the standard deviation. The graph was 

normalised by dividing the four means of the compounds by the mean of those means. The 

four methods all gave a comparable outcome, values ranged from 0.8 to 1.2 for all 

compounds. It was decided to further develop the first method as it has the best outcome 

for DOM-1 and 3ADON, it is the least time consuming and most economical. The method 

was further developed by means of fractional factorial designs. 

These fractional factorial designs are experimental designs consisting of a specifically chosen 

subset or fraction of the experimental runs of a full factorial experiment. The latter is an 

experiment whose design consists of several factors, each with discrete possible levels, and 

whose experimental runs take on all possible combinations of these levels across all such 

factors. A three level full factorial design would require 3y experimental runs, with y being 

the number of factors (variables). Three-level fractional factorial designs allow y factors to 

be evaluated on 3 levels with 3y-p samples, where p is the number of factors or interactions 

that are confounded, i.e., cannot be estimated independently. Nine experimental runs (or 
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samples) were executed to estimate three factors on three levels (33-1). This allowed to 

estimate the main effects, but these maybe confounded with two factor interactions. Five 

factors were tested in total, deproteinisation solvent (MeOH, acetonitrile and a 50/50; v/v 

mixture of both), water content of the deproteinisation solvent (0%, 25%, 50%), drying 

temperature (50, 65 and 80 °C), vortex time after reconstitution (15, 30 and 45”) and 

reconstitution solvent composition (MeOH/H2O 50/50, 25/75 and 0/100; v/v). 

 

Figure 3. Four sample cleanup strategies were tested for all the analytes. Each strategy was executed in 
threefold on chicken plasma spiked at 100 ng/mL. Each bar represents the mean of three repeats, the whiskers 
represent the standard deviation. The graph was normalised by dividing the four means for each compound by 
the mean of those means. 

 

Upon analysis by means of linear regression, three factors proved to be statistically 

significant (p<0.05), all three for the same compound 3ADON (results not shown). These 

were the reconstitution solvent, clearly better results were obtained with 100% water, and 

the deproteinisation solvent and its water content in which higher responses were obtained 

with acetonitrile without water. The statistically non-significant factors were set to a level 

that corresponds to the least time consuming, the most economical or the easiest to work 

cleanup strategy (drying temperature 80 °C, vortex time 15”). For pig plasma, the 

applicability of the developed extraction method for chicken was tested. 
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3.2 Validation 

Validation results are based on peak area ratios with 13C15-DON as IS. For the calibration 

model a linear, 1/x weighed, fitting was applied. The results for linearity (correlation 

coefficient (r) and goodness-of-fit (gof)) and sensitivity (LOD & LOQ) are given in Table 2. The 

results for linearity were all in accordance with the acceptance criteria, with r ≥ 0.99 and gof 

≤ 20%. For chicken plasma the LOD varied from 0.04 (DON) to 0.70 (15ADON) ng/mL, 

whereas LOQ was either 1 (DON & 3ADON) or 2 (DOM-1 & 15ADON) ng/mL. For pig plasma 

LOD values ranged from 0.01 (DON and 3ADON) to 0.20 (15ADON) ng/mL, LOQ values were 

0.1 (DON), 0.5 (DOM-1) and 1 (ADONs) ng/mL. Table 3 displays the results for accuracy (%) 

and precision (RSD, %). All results for chicken as well as pig plasma were within the 

validation criteria. 

Table 2. Validation results for linearity (r & gof, 8 concentration points in the range LOQ-200 ng/mL), sensitivity 
(limit of detection (LOD) and limit of quantitation (LOQ); n=6), signal suppression and enhancement (SSE), 
apparent recovery (RA) and extraction recovery (RE). 

Animal Compound Correlation 
coefficient (r) 

Goodness of 
fit (gof) 

LOD 
(ng/mL) 

LOQ 
(ng/mL) 

SSE 
(%) 

RA 
(%) 

RE 
(%) 

Chicken 

DON 0.9988 13.22% 0.04 1.0 96.7 97.3 100.7 
DOM-1 0.9994 10.24% 0.51 2.0 75.3 70.2 93.3 
3ADON 0.9994 4.91% 0.13 1.0 79.0 72.4 91.6 
15ADON 0.9993 3.21% 0.70 2.0 73.1 67.1 91.8 

Pig 

DON 0.9996 12.08% 0.01 0.1 81.5 88.3 92.3 
DOM-1 0.9999 3.79% 0.07 0.5 97.0 69.3 71.5 
3ADON 0.9989 11.26% 0.01 1.0 80.3 53.0 66.1 
15ADON 0.9911 17.05% 0.20 1.0 44.4 28.2 64.8 

 

Table 3. Validation results for within-day precision (n=6) and between-day precision (n=3x3) with corresponding 
accuracy at low (limit of quantitation, LOQ) and high (100 ng/mL) concentration level. 

  Within-day Between-day 

  Accuracy (%) Precision (RSD, %) Accuracy (%) Precision (RSD, %) 

Animal Compound LOQ 100 
ng/mL 

LOQ 100 
ng/mL 

LOQ 100 
ng/mL 

LOQ 100 
ng/mL 

Chicken 

DON -4.3 -4.0 6.5 1.3 6.2 0.5 17.6 5.4 
DOM-1 5.5 -2.2 14.3 3.7 7.2 1.7 32.8 6.6 
3ADON -28.4 0.4 22.6 6.0 5.8 1.9 28.3 12.1 
15ADON 2.0 -5.7 6.0 6.6 0.9 -0.9 12.1 16.7 

Pig 

DON -19.6 1.4 14.5 2.8 11.1 7.3 21.3 11.4 
DOM-1 18.2 0.8 8.6 4.8 10.2 -0.3 12.4 11.3 
3ADON 17.4 1.4 9.5 5.9 7.5 1.4 12.2 6.0 
15ADON 18.5 4.2 16.4 14.2 -1.0 6.9 11.9 12.4 
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The outcome of specificity tests demonstrated that no interfering peaks were detected in 

the chromatographic elution zone of the analytes with S/N values ≥ 3, as depicted in Figure 2 

C.  

The results for matrix effects (SSE), apparent recovery (RA) and extraction recovery (RE) are 

depicted in Table 2. For chicken and pig, a clear case of ion suppression, SSE values from 73 

to 96% and from 44 to 97%, respectively, could be demonstrated for the compounds, which 

demonstrated the need for matrix-matched calibration curves for a correct quantification. 

Matrix effect can be diminished by further optimizing the sample cleanup. However, a more 

elaborate cleanup tends to diminish the RE. Because the developed method is 

straightforward, values for RE are situated between 91 and 100% for chicken and 65 and 92% 

for pigs. RA values range from 67 to 97% for chicken and from 28 to 88% for pig, with the 

majority of the deviation caused by SSE. 

Finally, carry-over was evaluated (results not shown). For none of the compounds, signals 

were detected that could interfere with the response/area of the analytes at their given 

retention time. In Figure 2 A and 2 B LC-MS/MS chromatograms are shown for 1 and 10 

ng/mL spiked plasma samples from broiler chicken. 

3.3 Pilot study 

The pilot study was set up as a proof of concept. Acceptable plasma concentration-time 

profiles are obtained, depicted in Figure 4, in order to determine the toxicokinetic 

parameters in a next phase. As these profiles were obtained in one broiler, no statistical 

analysis of the data can be performed. However, several interesting observations can be 

made, such as the absence (< LOD) of DOM-1, previously described for DON treatments 

(Osselaere et al. 2013). Furthermore, one may observe in vivo hydrolysis of 3ADON to DON 

and to a lesser extent of 15ADON to DON. Interestingly, this has been described before for 

3ADON in pigs (Eriksen et al. 2003), but it is now for the first time demonstrated in poultry. 
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Figure 4. Plasma concentration-time profiles in one broiler chicken after the PO (by means of gavage) and IV 
administration of DON (500 µg/kg body weight) or an equimolar dose of 3ADON or 15ADON (571 µg/kg body 
weight); p.a.= post administration. 
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4. Conclusions 

The aim of this study was to develop an LC-MS/MS method allowing to determine DON, 

3ADON, 15ADON and DOM-1 in plasma of broiler chickens and pigs. After testing several 

sample cleanup strategies, a simple deproteinisation step with acetonitrile was favored. This 

was further optimised by the use of fractional factorial designs. Briefly, 250 µL of plasma was 

deproteinated by the addition of acetonitrile followed by centrifugation. The supernatant 

was evaporated to dryness, and the dry residue was reconstituted in 200 µL of water. The 

method was single laboratory validated and judged to be fit for the intended purpose. It is 

the first developed method to our knowledge to determine 3ADON and 15ADON in poultry 

and pig plasma.  

As a proof of concept, a pilot study was set up. A few interesting observations were made, 

such as the absence of DOM-1 and the release of DON due to hydrolysis of 3ADON and, 

apparently to a lesser extent, of 15ADON. This method together with an in vivo trial, will 

allow to study the hydrolysis of 3ADON and 15ADON to DON and to determine the 

toxicokinetic parameters of these mycotoxins in broiler chickens as well as pigs, two species 

with a high exposure to these toxins. 
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CHAPTER II 

 

Oral bioavailability, hydrolysis and comparative toxicokinetics of 3-acetyl-

deoxynivalenol and 15-acetyl-dexoynivalenol in broiler chickens and pigs 
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Vermeulen A., Croubels S. (2015). Oral Bioavailability, Hydrolysis and Comparative 

Toxicokinetics of 3-Acetyl-deoxynivalenol and 15-Acetyl-deoxynivalenol in Broiler Chickens 

and Pigs. Journal of Agricultural and Food Chemistry, 63, 8734-42. 
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Abstract - The goal of this study was to determine the absolute oral bioavailability, 

(presystemic) hydrolysis and toxicokinetic characteristics of deoxynivalenol, 3-acetyl-

deoxynivalenol and 15-acetyl-deoxynivalenol in broiler chickens and pigs. Cross-over animal 

trials were performed with intravenous and oral administration of deoxynivalenol, 3-acetyl-

deoxynivalenol and 15-acetyl-deoxynivalenol to broilers and pigs. Plasma concentrations 

were analysed by using liquid chromatography-tandem mass spectrometry and 

concentrations were processed via a tailor-made compartmental toxicokinetic model. The 

results in broiler chickens showed that the absorbed fraction after oral deoxynivalenol, 3-

acetyl-deoxynivalenol and 15-acetyl-deoxynivalenol administration was 10.6%, 18.2% and 

42.2%, respectively. This fraction was completely hydrolysed presystemically for 3-acetyl-

deoxynivalenol to deoxynivalenol, and to a lesser extent (75.4%) for 15-acetyl-

deoxynivalenol. In pigs, the absorbed fractions were 100% for deoxynivalenol, 3-acetyl-

deoxynivalenol and 15-acetyl-deoxynivalenol, and both 3-acetyl-deoxynivalenol and 15-

acetyl-deoxynivalenol were completely hydrolysed presystemically. The disposition 

properties of 3-acetyl-deoxynivalenol and 15-acetyl-deoxynivalenol demonstrate their 

toxicological relevance and consequently the possible need to establish a tolerable daily 

intake. 

 

Keywords - plasma - deoxynivalenol - 3-acetyl-deoxynivalenol - 15-acetyl-deoxynivalenol - 

pig - broiler chicken - in vivo hydrolysis - toxicokinetics 
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1. Introduction 

Among the more than 400 known mycotoxins, the trichothecene 3α,7α,15-trihydroxy-12,13-

epoxytrichothec-9-en-8-one (deoxynivalenol or DON, Figure 1), typically found in wheat, 

barley, corn and rye, is one of the most prevalent mycotoxins. DON is known to cause 

significant economic losses in animal husbandry due to reduced body weight (bw) gain and 

feed conversion (Döll and Dänicke 2011; Pestka 2010). In addition to the free mycotoxin 

DON, other forms that are plant derived, such as deoxynivalenol-3-glucoside, and/or fungal 

derived, such as 3α-acetoxy-7α,15-dihydroxy-12,13-epoxytrichothec-9-en-8-one (3-acetyl-

deoxynivalenol or 3ADON, Figure 1), and 15-acetoxy-3α,7α-dihydroxy-12,13-

epoxytrichothec-9-en-8-one (15-acetyl-deoxynivalenol or 15ADON, Figure 1), are frequently 

detected in food and feed as well (Van Asselt et al. 2012). 

 

 

Figure 1. Structure of 1: 3α,7α,15-trihydroxy-12,13-epoxytrichothec-9-en-8-one (deoxynivalenol or DON), 2: an 
in vivo metabolite, 3α,7α,15-trihydroxy-trichothec-9,12-dien-8-one (de-epoxy-deoxynivalenol or DOM-1), and 
two acetylated forms of DON, 3: 3α-acetoxy-7α,15-dihydroxy-12,13-epoxytrichothec-9-en-8-one (3-acetyl-
deoxynivalenol or 3ADON) and 4: 15-acetoxy-3α,7α-dihydroxy-12,13-epoxytrichothec-9-en-8-one (15-acetyl-
deoxynivalenol or 15ADON). 
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Due to the ambiguous use of the term ‘masked’ mycotoxin, all potential mycotoxin 

derivatives were systematically defined (Rychlik et al. 2014). The acetylated forms of DON 

are intermediaries in its biosynthesis and should be regarded as free mycotoxins (Yoshizawa 

and Morooka 1975). 

The presence of both 3ADON and 15ADON has been investigated in 30 samples of cereals 

and cereal derived products. Both 3ADON and 15ADON were highly prevalent, 

contaminating respectively 87% and 73% of the samples, with the highest contamination 

levels being detected in maize at concentrations up to 305 ± 216 µg/kg for 3ADON and 334 ± 

270 µg/kg for 15ADON (De Boevre et al. 2012). In a Dutch field survey, both ADONs were 

detected more frequently than DON itself, respectively in 21% and 7% of 42 maize samples 

(Van Asselt et al. 2012). Concentrations of 3ADON and 15ADON in corn exceeding 500 and 

1000 µg/kg, respectively, are reported occasionally (Gareis et al. 2003). In risk assessments 

of DON, both ADONs have been considered, but neglected due to the lack of information on 

toxicity and toxicokinetics and given the lower concentration levels compared to DON.  

The presence of mycotoxins gives rise to two important questions, as recently reviewed 

(Broekaert et al. 2015; De Boevre et al. 2015). First, what is the intrinsic toxicity of these 

contaminants? Second, what is the disposition and fate of these compounds in humans and 

animals? The toxicological importance of 3ADON and 15ADON has been previously 

highlighted by reporting the in vitro, ex vivo and in vivo toxicity of DON and its acetylated 

forms on intestinal morphology, intestinal epithelial cell proliferation and expression of 

intestinal epithelial cell tight junction proteins (Pinton et al. 2012). It was suggested that 

3ADON is less toxic than DON and, in contrast, that the toxicity of 15ADON is higher or 

comparable to DON. A comparison of the effect of these compounds on the interleukin-8 (IL-

8) secretion in Caco-2 cells, indicating activation of the innate immune system, and intestinal 

transepithelial transport over Caco-2 cells has been performed (Kadota et al. 2013). The 

study revealed a significantly higher intestinal absorption of 15ADON compared to DON and 

3ADON. Furthermore, the authors showed that the ability to induce IL-8 secretion was 

ranked as follows: 3ADON < DON < 15ADON. Similar effects were previously reported for the 

cytotoxicity on cultured human myeloid and lymphoid cell lines (K-562 and MIN-GL1) 

(Visconti et al. 1991), and for DNA inhibition in Swiss mouse 3T3 fibroblasts (Sundstol Eriksen 

and Pettersson 2003). Furthermore, an in vivo metabolite 3α,7α,15-trihydroxy-trichothec-
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9,12-dien-8-one (de-epoxy-deoxynivalenol or DOM-1, Figure 1), was included in the latter 

study and was found to be the least toxic compound, due to absence of the epoxide ring. In 

conclusion, these compounds have a distinct degree of toxicity, which can be ranked in order 

of increasing toxicity: DOM-1 << 3ADON < DON ≤ 15ADON.  

A key question concerning the in vivo disposition is whether conversion of 3ADON and 

15ADON to DON by in vivo hydrolysis in humans and animals would occur and possibly imply 

an underestimation of the degree of contamination and toxicity. Several in vitro studies 

described the hydrolysis of ADONs to DON in humans, pigs and poultry (Eriksen et al. 2002; 

Sundstol Eriksen and Pettersson 2003; Young et al. 2007). In contrast, only a limited number 

of in vivo studies are available on the hydrolysis and metabolism of ADONs. The hydrolysis of 

3ADON and 15ADON after oral administration to rats has been investigated (Versilovskis et 

al. 2012), as well as the hydrolysis and toxicokinetics of 3ADON when orally administered to 

pigs (Eriksen et al. 2003). Both studies demonstrated that in vivo hydrolysis of ADONs to 

DON is possible. However, it was not reported if the hydrolysis occurs presystemically and/or 

systemically. No in vivo data are available for broiler chickens, although these animals have a 

high exposure to these mycotoxins, because of their mainly cereal-based diet. 

The goal of this study was to determine the absolute oral bioavailability, the degree of 

hydrolysis (differentiating between presystemic and systemic hydrolysis) and toxicokinetic 

characteristics of 3- and 15ADON in broiler chickens and pigs. Species selection was based, 

as stated above, on the high exposure of these animals to the toxins, due to their mainly 

cereal-based diet and the high prevalence of mycotoxins in these diets. Additionally, pigs 

were included because of their sensitivity to DON. Animal species susceptibility to DON can 

be ranked as pigs > mice > rats > poultry ≈ ruminants (Prelusky et al. 1994). Differences in 

absorption, distribution, metabolism and elimination of DON among animal species might 

account for this differential sensitivity (Pestka 2010). Furthermore, the data from pig studies 

are highly relevant to humans because of the anatomical and physiological similarities of the 

gastrointestinal tract, liver, kidneys and cardiovascular system in both species (Helke and 

Swindle 2013; Swindle et al. 2012). 
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2. Experimental 

2.1 Chemicals, products and reagents 

DON, 3ADON and 15ADON had all >99% purity (Fermentek, Jerusalem, Israel). The 

mycotoxins were dissolved in analytical-grade ethanol (EtOH) (Merck, Brussels, Belgium), 

yielding a stock solution of 10 mg/mL and were used for both animal and analytical 

experiments. As internal standard (IS), 13C15-DON (50 µg/mL) stock solution in acetonitrile 

was used (Romer Labs, Tulln, Austria). All stock solutions were stored at ≤-15 °C. Individual 

working standard solutions of 10 µg/mL, used for the analytical experiments, were prepared 

by diluting the above stock solutions with ULC/MS grade acetonitrile (Biosolve, 

Valkenswaard, The Netherlands). All working standard solutions were stored at ≤-15 °C. 

Standard mixture working solutions containing DON, 3ADON and 15ADON of 1 and 0.1 

µg/mL were prepared by mixing appropriate dilutions of the individual working standard 

solutions in ULC/MS acetonitrile and were stored at 2-8 °C. Solutions of DON in acetonitrile 

have been reported to be stable for 24 months at room temperature (Widestrand and 

Pettersson 2001), whereas the supplier reported a stability of at least 6 months at 4 °C for a 

100 µg/mL solution of 3ADON, and 15ADON in acetonitrile. 

Water, methanol and glacial acetic acid were of ULC/MS grade (Biosolve). Microfilters Millex 

GV-PVDF 0.22 µm were obtained to filter deproteinised plasma samples (Millex, Overijse, 

Belgium). 

2.2 Animal trials 

Eighteen broiler chickens (Ross 308) were purchased from the Institute for Agriculture and 

Fisheries Research (Melle, Belgium), at the age of 3 weeks, as hatched and had an average 

bw ± standard deviation (SD) of 1210 ± 172 g. The broilers were randomly allocated to three 

groups of six animals. Water and feed were given ad libitum. The pen was climate controlled 

with temperatures between 21 and 25 °C, a relative humidity between 40 and 60% and an 

applied light schedule similar to commercial installations (18 h light/6 h dark). After one 

week of acclimatisation, the animals were treated with either DON (group 1), 3ADON (group 

2) or 15ADON (group 3) by intravenous bolus injection (IV, administration in vena basilica) 

(three animals/group) or per os (PO, by means of gavage in the crop) (three animals/group) 
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in a two-way cross-over design. The administered doses were based on the EU maximum 

guidance level of 5 mg DON/kg poultry feed (European Commission 2006). Since the average 

feed consumption of 4-week-old broiler chickens was 100 g feed/kg bw/day, 500 µg DON/kg 

bw was administered. For the ADONs, an equimolar dose of 571 µg/kg bw was administered. 

The calculated volume of stock solution (10 mg/mL in EtOH), was diluted with saline (0.9% 

NaCl) (VWR, Leuven, Belgium) up to a volume of 0.5 mL (IV) or 1 mL (PO). After oral 

administration of the toxins, 1 mL of tap water was administered to flush the gavage syringe. 

A washout period of 3 days was maintained between treatments. Feed was deprived 12 h 

before administration and till 3 h post administration (p.a.). Blood (0.5-1 mL) was sampled 

from the leg vein by venipuncture at 0 min (before administration) and at 5, 10, 20, 30, 45, 

60, 90, 120 and 240 min p.a. Blood samples were centrifuged (2851 x g, 10 min, 4 °C) and 

plasma was stored at ≤ -15 °C until analysis. 

For the pig study, nine clinically healthy male pigs (11 weeks of age, 28.6 ± 2.8 kg bw) were 

individually housed with feed and water ad libitum. Natural lighting was provided, the 

enclosure was climate controlled to keep the temperature between 20 and 24 °C and the 

relative humidity between 20 and 40%. After a 1 week acclimatisation period, the animals 

were treated with either DON (n=3), 3ADON (n=3) or 15ADON (n=3) by IV bolus injection 

using a surgically placed jugular catheter as previously described (Gasthuys et al. 2009), or 

PO (by means of gavage in the stomach) in a cross-over design. For this design, pigs were 

randomly divided into groups of three pigs. Each group received four treatments (two IV and 

two PO treatments), resulting in a cross-over for each compound in six animals. A washout 

period of 24 h was maintained between treatments. 12 h before administration of the 

mycotoxins, the animals were fasted until 4 h p.a. The administered doses were calculated 

as for the broiler chicken trial. The EU maximum guidance level in pig feed is 0.9 mg/kg DON 

(European Commission 2006). Pigs at 12 weeks of age consume on average 40 g feed/kg 

bw/day. This resulted in the administration of 36 µg DON/kg bw. For the ADONs, an 

equimolar dose of 41 µg/kg bw was administered. The calculated amount of toxin for each 

animal, dissolved in EtOH at 10 mg/mL, was diluted with saline to a volume of 1 mL (IV) or 10 

mL (PO). After oral administration of the toxins, 50 mL of tap water was administered to 

flush the gavage tube. Blood (1-2 mL) was sampled from the jugular vein at 0 min (before 

administration) and at 5, 10, 20, 30, 45, 60, 90, 120, 240, 360 and 480 min p.a. Blood 
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samples were centrifuged (2851 x g, 10 min, 4 °C) and plasma was stored at ≤ -15 °C until 

analysis. 

Both animal trials were approved by the Ethical Committee of the Faculty of Veterinary 

Medicine and Bioscience Engineering of Ghent University (EC2013/64). 

2.3. LC-MS/MS analysis 

Sample pretreatment and LC-MS/MS analysis was performed as previously described 

(Broekaert et al. 2014). In brief, 250 µL of plasma was supplemented with IS, 5 µL of a 1 

µg/mL 13C15-DON working solution. After vortex mixing for 15 sec, acetonitrile was added up 

to a volume of 1 mL to precipitate plasma proteins. The samples were vortex mixed, 

followed by a centrifugation step (8517 x g, 10 min, 4 °C). The supernatant was transferred 

and evaporated to dryness under a (gentle) nitrogen stream at 80 ± 5 °C. The dry residue 

was redissolved in 200 µL of ULC/MS-grade water, micro-filtrated through a Millex GV-PVDF 

filter (0.22 μm) and transferred to an autosampler vial. A 10 µL aliquot was injected onto the 

LC-MS/MS instrument. Broiler plasma was analysed on a Surveyor type MS pump Plus and 

Autosampler Plus HPLC in combination with a TSQ Quantum Ultra triple quadrupole mass 

spectrometer (Thermo Fisher Scientific, Breda, The Netherlands). Pig plasma was analysed 

on an Acquity UPLC system coupled to a Xevo TQ-S triple quadrupole mass spectrometer 

(Waters, Zellik, Belgium). 

Chromatographic separation of the analytes was achieved on a 50 mm x 2.1 mm i.d., 1.9 µm, 

Hypersil Gold column with a guard column of the same type (Thermo Fisher Scientific). All 

compounds were eluted with a gradient of ULC/MS-grade water containing 0.1% or 0.3% 

glacial acetic acid, for the analysis of chicken and pig plasma respectively (mobile phase A) 

and ULC/MS-grade methanol containing 0.1% or 0.3% glacial acetic acid, for the analysis of 

chicken and pig plasma respectively (mobile phase B) at a total flow rate of 300 µL/min. 

Following gradient elution program was run: 0-1 min, 5% B; 1.0-1.1 min, linear gradient to 

20% B; 1.1-5.0 min, 20% B; 5.0-5.1 min, linear gradient to 50% B; 5.1-8.0 min, 50% B; 8.0-8.1 

min, linear gradient to 95% B; 8.1-9.0 min, 95% B; 9.0-9.1 min, linear gradient to 5% B; 9.1-

12.0 min, 5% B. The mass spectrometer was operated in the multiple reaction monitoring 

(MRM) mode with two ion transitions for each target analyte. Limits of quantitation (LOQs) 
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varied from 0.1 ng/mL (DON in pig), 1.0 ng/mL (ADONs in pig, DON and 3ADON in chicken) to 

2.0 ng/mL (15ADON in chicken). 

2.4. Toxicokinetic modeling and statistical analysis 

Toxicokinetic analysis was performed using WinNonlin Professional version 5.2.1. (Pharsight, 

St-Louis, MO). Plasma concentrations below the LOQ were not taken into account. For the 

toxicokinetic analysis, all values were recalculated to their molar concentrations, expressed 

as nmol/mL. For the analysis of DON IV and PO data in chickens, a tailor-made two-

compartmental model (central compartment (Vc) and peripheral compartment (Vp)) with 

first order absorption and first order elimination was applied. For the IV and PO data of 

ADONs in chickens, a one-compartmental model was used in combination with the two-

compartmental model for DON. The fraction of the dose of DON, 3ADON or 15ADON that 

was absorbed after PO administration (in any form, thus as DON and/or ADON) was 

indicated as FRAC (%). BioADON was the fraction of the absorbed dose that entered the 

systemic circulation in its unchanged form, thus as ADON (%). Consequently, the product of 

FRAC and BioADON indicates the absolute oral bioavailability of ADON (F%), i.e. the fraction 

of ADON absorbed in the systemic circulation in its unchanged form. The product of FRAC 

and (1-BioADON) then indicates the absorbed fraction that was presystemically hydrolysed 

to DON and that entered the systemic circulation as DON (presystemic hydrolysis, %). 

Systemic hydrolysis was set at 100% for 3ADON and 15ADON in pigs and in broiler chickens, 

as the hydrolysis to DON was the only assumed clearance (CL) of ADON. In Figure 2 a 

graphical representation of the constructed model is given for DON (IV & PO) and ADON (IV 

& PO) in chickens. 

The constructed models for pigs were identical to those for chickens, except for the ADON 

PO model. Insufficient to no ADON data above the LOQ after PO administration of ADONs 

led to the exclusion of the ADON compartment for this administration route in pigs. This 

model therefore assumes a full presystemic conversion of ADON to DON.  

A 1/ŷ weighing was applied for all calculations with both the chicken and pig data. For all the 

described models, the Gauss-Newton (Levenberg and Hartley) algorithm was used and a 

maximum of 50 iterations was allowed.  
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The following primary and secondary toxicokinetic parameters were calculated for IV and PO 

administration: absorption rate constant ka (identical for DON and ADONs), 

intercompartmental flow for DON (QDON), total body clearance of DON (ClDON), total body 

clearance of ADON to DON (CLADON), central volume of distribution for DON (VcDON), 

peripheral volume of distribution for DON (VpDON), central volume of distribution for ADONs 

(VcADON) and disposition rate constant for DON (βDON). Additionally, for PO data the 

descriptive toxicokinetic parameters maximal plasma concentration (Cmax) and time to Cmax 

(tmax) were calculated for DON. 

 

 

 

Figure 2. Graphical representation of the applied models in broiler chicken for DON IV (black and red section), 
DON PO (blue and red section), ADON IV (purple, green and red section) and ADON PO (blue, orange, green and 
red section). IV=intravenous administration; ka=absorption rate constant (1/min); ClDON=clearance of DON 
(mL/min/kg); QDON=intercompartment flow for DON (mL/min/kg); VcDON=central volume of distribution for DON 
(mL/kg); VpDON=peripheral volume of distribution for DON (mL/kg); ClADON=clearance of ADON to DON 
(mL/min/kg); VcADON=central volume of distribution for ADON (mL/kg); FRAC=fraction of dose absorbed; 
BioADON=fraction of the absorbed dose that enters the systemic circulation as ADON; 1-BioADON=fraction of 
the absorbed dose that enters the systemic circulation as DON. 

Statistical analysis of these parameters consisted of one-way ANOVA with post-hoc Scheffé 

tests (p < 0.05) for both animal species (SPSS 20.0, IBM, Chicago, IL). All variables were log 

transformed in order to fulfil the equality of variances criterion as determined by the 

Levene’s test for homogeneity of variances (p > 0.01). 
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3. Results and discussion 

The goal of this study was to determine the absolute oral bioavailability of 3- and 15ADON, 

the degree of in vivo hydrolysis (differentiating between presystemic and systemic 

hydrolysis) and the toxicokinetic parameters in broiler chickens and pigs. The plasma 

concentration-time profiles were analysed by a tailor-made compartmental toxicokinetic 

model. This model has the advantage, compared to non-compartmental analysis, that for a 

given compound, PO and IV data can be fitted simultaneously for each animal. This is more 

accurate because certain toxicokinetic parameters, such as Cl and Vd, are independent of 

the administration route and thus more data is available to allow a reliable estimate. 

Furthermore, this model allows prediction of the plasma concentrations for scenarios that 

have not been studied yet, whereas non-compartmental analysis only uses observed values. 

For both ADONs, only a hydrolysis to DON is assumed in the model after IV and PO 

administration in broilers and pigs. It needs to be mentioned that also formation of 

glucuronide conjugates and possibly other metabolites can take place. Therefore, a study 

using high resolution mass spectrometry (HRMS) on pig and broiler chicken plasma after IV 

and PO administration was performed. The methodology was similar as the one used in a 

prior described study (Devreese et al. 2015). For both IV and PO administration in pigs, a 

mean peak area ratio of DON-glucuronide/DON of 4.98 and 4.95 was found, respectively 

(results not shown). Therefore, presystemic glucuronidation in pigs is considered 

neglectable. Consequently, the impact on estimated volumes of distribution, clearances and 

absorption and elimination rate constants for the studied compounds is expected to be very 

small. For chickens, only trace amounts of DON-glucuronide were detected (Devreese et al. 

2015).  

The developed model allows an estimation of the degree of presystemic and systemic 

hydrolysis after PO administration, which is not possible using non-compartmental analysis 

only. 
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Figure 3. Plasma concentration-time profiles of deoxynivalenol (DON), 3-acetyl-deoxynivalenol (3ADON) and 15-acetyl-deoxynivalenol (15ADON) after oral (PO) and 
intravenous (IV) administration (post administration = PA) of DON (dose=500 µg DON/kg body weight), 3ADON (dose=571 µg 3ADON/kg body weight) and 15ADON 
(dose=571 µg 15ADON/kg body weight) to broiler chickens (n=6 for each toxin). Values are presented as mean ± SD. 
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Figure 4. Plasma concentration-time profiles of deoxynivalenol (DON), 3-acetyl-deoxynivalenol (3ADON) and 15-acetyl-deoxynivalenol (15ADON) after oral (PO) and 
intravenous (IV) administration (post administration=PA) of DON (dose=36 µg DON/kg body weight), 3ADON (dose=41 µg 3ADON/kg body weight) and 15ADON (dose=41 µg 
15ADON/kg body weight) to pigs (n=6 for each toxin). Values are presented as mean ± SD. 
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Plasma concentration-time profiles for DON, 3ADON and 15ADON are presented in Figures 3 

and 4, respectively for broiler chickens and pigs. Each profile represents the mean of six 

animals ± standard deviation (SD). For broiler chickens, no adverse effects were observed 

during the animal trial following PO and IV bolus administration of the mycotoxins. Similarly, 

no adverse effects were observed during the pig trial following PO administration. Following 

IV dosing of DON, 3ADON and 15ADON respectively, three, two and two out of six pigs 

vomited within 0.5 h p.a. However, this had no observable influence on the results as these 

pigs were IV dosed. 

The plasma concentration-time profiles were also expressed as DON equivalents (DEQ). For 

this, the ADON concentrations were converted by means of their molar mass (DON= 296.3 

g/mol; ADONs=338.3 g/mol), multiplied with their respective volumes of distribution, added 

to the DON concentrations corrected for the volume of distribution and reported as DON 

equivalents in ng/kg bw. The results for pigs and chickens are shown in Figure 5. Clear 

differences can be seen for PO administration between DON, 3ADON and 15ADON in pigs as 

well as broiler chickens, while the IV profiles were similar, which can be regarded as a quality 

control of the utilised set-up.  

Toxicokinetic parameters, absolute oral bioavailability (F%) and degree of presystemic 

hydrolysis (%) were calculated using compartmental modelling, the results of which are 

given in Table 1. 
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Figure 5. DON equivalent (DONeq or DEQ) plasma concentration-time profiles after oral (PO) and intravenous 
(IV) administration of deoxynivalenol (DON), 3-acetyl-deoxynivalenol (3ADON) and 15-acetyl-deoxynivalenol 
(15ADON) in broiler chickens and pigs (n=6 animals for each toxin). DEQ is calculated by dividing the plasma 
concentration of the ADONs by their molar mass (338.3 g/mol) and by multiplying with that of DON (296.3 
g/mol) and correcting for their volumes of distribution, and by adding this to DON plasma concentrations 
corrected for volume of distribution. Values are presented as mean ± SD. 
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Table 1. Toxicokinetic parameters, presystemic hydrolysis of the bioavailable fraction (%) and absolute oral bioavailability (%) of DON, 3ADON and 15ADON after IV and PO 
administration to broiler chickens and pigs (n=6).  

 

 

Values are presented as mean ± SD. Statistical analysis was performed within each animal species, results sharing the same letters in each column are significantly different 
(p < 0.05) compared to DON values in the same animal species. Adm.=administered mycotoxin; ka=absorption rate constant (1/min); βDON=disposition rate constant for 
DON (1/min)(βDON could theoretically also be calculated after administration of ADONs); ClDON=clearance of DON (mL/min/kg); QDON=intercompartmental flow for DON 
(mL/min/kg); VcDON=central volume of distribution for DON (mL/kg); VpDON=peripheral volume of distribution for DON (mL/kg); ClADON=clearance of ADON to DON 
(mL/min/kg); VcADON=central volume of distribution for ADON (mL/kg); FRAC=absorbed fraction; BioADON=fraction of the absorbed dose that entered the systemic 
circulation as ADON (%); Pres.Hydr.=percentage of the total dose that is hydrolysed presystemically to DON and absorbed as DON (%); F=absolute oral bioavailability (%); 
CmaxDON=maximum plasma concentration for DON (ng/mL); tmaxDON= time to maximum plasma concentration for DON (min). 

Animal 
species 

Adm. 
ka 

(1/min) 
βDON 

(1/min) 
ClDON 

(mL/min/kg) 
QDON 

(mL/min/kg) 
VcDON 

(mL/kg) 
VpDON 

(mL/kg) 
ClADON 

(mL/min/kg) 
VcADON 

(mL/kg) 
FRAC 
(%) 

BioADON  
(%) 

Pres.Hydr. 
(%) 

F 
(%) 

CmaxDON 
(ng/mL) 

tmaxDON 
(min) 

Broiler 
chicken 

DON 
0.0203 

±0.0101 a 
0.0388 

±0.0062 
102±12a 59.8±25.2a 

1656 
±426a 

1025 
±142a 

- - 
10.6 
±4.6a 

- - 
10.6
±4.6a 

4.2±0.9a 32±11a 

3ADON 
0.0722 

±0.0497 a 
- 151±16a 155±65a 

109 
±66b 

3490 
±840a 

1506±615a 
15918 

±11620a 
18.2 
±5.5a 

0 18.2±5.5a 0b 15.0±8.8b 5.0±0b 

15ADON 
0.0289 

±0.0216 a 
- 340±132b 287±118b 

1861 
±1220a 

18154 
±14573b 

236±63b 
3692 

±1707b 
42.2 

±12.5b 
24.6 31.9±14.8b 

10.4
±3.6a 

16.2±7.6a,b 9.0±6.5b 

Pig 

DON 
0.0164 ± 
0.0161a 

0.00405 
±0.00076 

15.1±3.8a 21.1±12.7a 
2605 
±570a 

1174 
±600a 

- - 100a - - 100a 6.3±2.4a 109±41a 

3ADON 
0.0179 

±0.0100a 
- 14.0±2.4a 202±50b 

175 
±96b 

2579 
±406b 

1428±1162a 
13001 

±11625a 
100a 0 100a 0b 7.5±1.7a 101±45a 

15ADON 
0.0136 

±0.0044a 
- 15.3±2.1a 113±6.0c 

31.6 
±31.7b 

2895 
±241b 

426±231a 
7151 

±2427a 
100a 0 100a 0b 6.5±1.2a 78±39a 
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The absorbed fractions of 3ADON (18.2%) and 15ADON (42.2%) in broiler chickens 

correspond to approximately double and quadruple that of DON (10.6%), respectively. 

However, no statistical difference (p=0.061) could be demonstrated between the absorbed 

fraction of DON and 3ADON in broiler chickens. The absorbed fraction of 15ADON on the 

other hand was found to be significantly higher than that of DON and 3ADON (p<0.05). An 

increase in absorbed fractions for the ADONs might be expected as these acetylated 

mycotoxins are less polar and have a more favourable log D value for absorption by passive 

non-ionic diffusion compared to DON (estimated log DADON and log DDON at physiological pH 

are -0.5 and -1, respectively) (Maresca 2013). For pigs on the other hand, the absorbed 

fractions of DON, 3ADON and 15ADON were 100%. The relatively low absorbed fraction for 

chickens compared to pigs has been discussed (Prelusky et al. 1986) and may be partially due 

to the rapid transit time in the GI tract of chickens, leading to a reduced time for complete 

absorption. As another contributing factor, the high bacterial content in the GI tract of birds 

before the main site of absorption is proposed. These bacteria could metabolise DON and/or 

ADONs thereby decreasing their bioavailability and toxicity (Maresca 2013). 

To correlate the absorbed fraction to the absolute oral bioavailability (F%), the degree of in 

vivo hydrolysis must be considered. As the ADONs can be hydrolysed presystemically to 

DON, their absorbed fraction may represent a combination of absorption as DON and as 

ADON, and can thus differ from their oral bioavailability, which is represented by the 

absorption as ADON. However, this is not the case for DON. For chickens, the F% value for 

DON is equal to its absorbed fraction, being 10.6 ± 4.6% in this study. For DON in broiler 

chickens, an oral F% of 19.3 ± 7.42% has been observed (Osselaere et al. 2013), which is in 

the same range. In contrast, in fasted pigs a complete absorbed fraction and complete oral 

bioavailability of DON was found. Prior studies in pigs observed an oral F for DON after 

chronic and acute exposure of 62.8% and 54.1%, respectively (Goyarts and Dänicke 2006; 

Prelusky et al. 1988). Differences in F for acute exposure can be attributed to either the 

prandial state (fed versus fasted) and/or the administration of a bolus (dissolved in e.g. 

ethanol) versus the administration of contaminated feed. The oral absorption as well as oral 

bioavailability of the ADONs in pigs and chickens has thus far not been investigated. 

In broiler chickens, both ADONs have a significantly different degree of presystemic 

hydrolysis (p<0.05). While for 3ADON the fraction of the dose absorbed was completely 
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hydrolysed presystemically, the absorbed fraction of 15ADON that entered the systemic 

circulation as such (BioADON) was 24.6%, and was consequently 75.4% as DON. As the 

fraction of the dose absorbed for 3ADON was completely hydrolysed presystemically, an F% 

value of 0% was obtained, while for 15ADON an F% value of 10.4% was calculated. 

Differences in hydrolysis/metabolism between both ADONs in broiler chickens has already 

been demonstrated in vitro (Young et al. 2007). After anaerobic incubation of 3ADON for 72 

h with microbiota from the GI tract of chickens, deacetylation was the predominant reaction 

(94%) with only minimal subsequent de-epoxidation (6%); there was no evidence for de-

epoxidation only. However, for 15ADON, a large fraction proved to have both the acetyl and 

epoxy moiety removed (± 93%), whereas only small quantities showed either solely de-

epoxidation (± 1%) or deacetylation (± 7%), leaving no 15ADON. The role of GI microbiota in 

our in vivo study has little to no influence on the presented results as the high degree of 

hydrolysis after IV administration indicates a systemic biotransformation rather than being 

the result of the action of GI microbiota. Additionally, the microbiota from the 

aforementioned in vitro study were isolated from the large intestine. At this site in the GI 

tract the absorption of the toxins will be negligible and transformation here will not be 

reflected by changes in plasma concentrations. Furthermore, the average GI transit time for 

chickens is 3 to 4 h, whereas the experimental set-up of this in vitro study consisted of a 72 h 

anaerobic incubation (Golian and Maurice 1992; Young et al. 2007). 

In pigs, 3ADON and 15ADON exhibited a presystemic hydrolysis of >99% also leading to F% 

values of 0%. These findings for the in vivo hydrolysis of 3ADON in pigs correspond with an 

earlier study (Eriksen et al. 2003). Five castrated pigs were fed twice daily for three days 2.5 

mg 3ADON/kg feed. No 3ADON, nor DOM-1, could be detected in plasma. The only detected 

metabolite in plasma was DON as such. After incubation of the plasma samples with β-

glucuronidase, an increase of 72% DON was seen, indicating the presence of DON-

glucuronide. The rapid deacetylation prior to reaching the systemic circulation, as suspected 

by Eriksen et al. 2003, has been confirmed in our study. These data can be related to several 

in vitro and in vivo studies in other species. One study investigated the hydrolysis and 

metabolism of 3ADON and 15ADON after oral administration to rats (Versilovskis et al. 

2012). One h p.a. of 3ADON or 15ADON, 12% of the dose could be detected in the stomach 

as free DON, indicating a likely hydrolysis of both ADONs in the stomach. It was also 



 

119 
 

observed that both ADONs were glucuronidated in the stomach (5% of the administered 

dose) without prior deacetylation. Another in vitro study incubated human faecal samples 

under anaerobic conditions for 48 h with 3ADON (Sundstol Eriksen and Pettersson 2003). Of 

the administered dose, 78±30% was recovered as DON, clearly indicating the capability of 

human large intestinal microbiota to hydrolyse 3ADON to DON. Moreover, a rapid and 

complete hydrolysis of 3ADON and 15ADON to DON was also observed after IV 

administration.  

The relatively higher absorbed fractions for ADONs compared to DON in broilers are also 

reflected by significantly higher observed maximal DON plasma concentrations after PO 

administration of 3ADON (Cmax=15.0±8.8 ng/mL) and 15ADON (Cmax=16.2±7.6 ng/mL) 

compared to PO administration of DON (Cmax=4.2±0.9 ng/mL), as depicted in Table 1 and 

Figure 3. When transforming to DONeq plasma concentrations this difference between DON 

and ADONs becomes even more explicit, as can be seen in Figure 5. Furthermore, in broiler 

chickens, the administration of ADONs appears to lead to a more rapid absorption, reflected 

by a shorter tmax for DON after 3ADON administration (tmax=5.0±0 min) and after 15ADON 

administration (tmax=9.0±6.5 min) compared to after administration of DON itself 

(tmax=32±11 min). For pigs, no significant changes were seen in Cmax or tmax of DON after PO 

administration of DON, 3ADON or 15ADON. 

In this study, an absorption rate constant ka for DON of 0.0164 ± 0.0161/min was found in 

pigs, compared to 0.00995 ± 0.00292/min (Eriksen et al. 2003) and 0.0310 ± 0.0238/min 

(Goyarts and Dänicke 2006). However, these results are difficult to compare since the 

aforementioned study utilised a contaminated feed strategy (chronic exposure), whereas 

this study was based on a single bolus model with fasted animals. The ka values in broiler 

chickens are approximately twice the values obtained for pigs, indicating indeed a fast 

presystemic hydrolysis of ADONs and a fast GI transit and absorption in poultry. 

The Cl of DON after DON administration in broilers is approximately 10 times higher 

compared to that in pigs. The Cl of DON in pigs, approximately 15 mL/min/kg, is comparable 

to previous reported values for acute DON administration, 9.3 mL/min/kg (Goyarts and 

Dänicke 2006) and 5.0 mL/min/kg (Devreese et al. 2014). The Cl of 3ADON in broilers and 

pigs is remarkably higher compared to that of DON and 15ADON. In contrast, compared to 



 

120 
 

DON, 15ADON showed a faster Cl in pigs and a slower clearance in broiler chickens. The 

intercompartmental flow Q for DON is similar in both animal species. The Vc for ADONs are 

in the same order of magnitude for pigs and broilers. The model had difficulties in estimating 

the central and peripheral volumes of distribution for DON separately. However, when 

making the sum of both volumes of distribution, the values are found to be in a range of 2.6-

3.8 L/kg, except for 15ADON in chickens where the Vp was estimated to be approximately 18 

L/kg, but with a higher uncertainty. It was therefore attempted to fix the value of this 

parameter to a lower one but this led to a poorly fitted model. For 15ADON administration 

to broilers, DON as well as 15ADON where clearly measurable for a relatively long period of 

time, unlike for 15ADON in pigs and 3ADON in broilers as well as pigs. This possibly increased 

the difficulty for the model to correctly fit all parameters. The disposition rate constant (β) 

was calculated for pigs and chickens by dividing the value obtained for clearance by that of 

the sum of the central and peripheral volume of distribution, and was found to be 

0.0388±0.0062/min and 0.00405±0.00076/min, respectively. This corresponds to elimination 

half-lives for DON in broilers and pigs, calculated as 0.693/β, of 17.9 and 171 min, 

respectively. For pigs elimination half-lives of 15.2±12.9 h (IV) and 5.3±2.4 h (acute PO) 

(Goyarts and Dänicke 2006), and 2.39±0.71 h (PO) (Eriksen et al. 2003) were observed. 

When combining the above mentioned results for absorbed fraction, oral bioavailability and 

presystemic hydrolysis of 3ADON and 15ADON in pigs, it can be concluded that the 

administered dose of both ADONs is completely absorbed and both show a complete 

presystemic hydrolysis. Therefore, both ADONs can be regarded as toxic as DON itself in pigs 

regarding systemic toxicity. Moreover, the ADONs may also exert a local toxic effect in the 

intestine as previously proposed (Pinton et al. 2012). For broiler chickens, the absorbed 

fractions of 3ADON and especially 15ADON are higher than or at least equal to that of DON. 

Furthermore, 3ADON, which is reported to be less toxic than DON, is completely hydrolysed 

presystemically to DON whereas 15ADON is reported more toxic and not fully hydrolysed. 

This results in a ‘worst case scenario’ for broilers where each mole of 15ADON could be as 

toxic as 4 moles of DON, and where the less toxic 3ADON can be regarded equally toxic to 

DON since it is completely hydrolysed presystemically. 

In conclusion, both pigs and broiler chickens are exposed to DON after oral intake of ADONs. 

Combining these findings with the frequent co-contamination of ADONs and DON in food 
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and feed, this demonstrates the possible need to consider the establishment of a TDI for 

3ADON and 15ADON or the inclusion of the ADONs in a group TDI for DON related 

substances.  
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5. Supporting information 

The dosing design for the pig trial (S1), and the written code of the utilised model are 

described (S2), together with the fits of the median plasma concentration-time profiles of 

DON, 3ADON and 15ADON in broiler chickens and pigs (semi-log); circles=PO; diamonds=IV; 

blue=DON; green=3ADON; red=15ADON (S3). 

Supplementary material S1. Schematic overview of the utilized cross-over design for the pig trial. By 
subjecting each animal to 4 treatments a cross-over in six animals was obtained for each mycotoxin. This 
design allowed the use of half the animals needed for a traditional two-way cross-over experiment. 

pigs 1st treatment 2nd treatment 3rd treatment 4th treatment 

1-3 DON IV 15ADON IV DON PO 15ADON PO 

4-6 3ADON PO DON IV 3ADON IV DON PO 

7-9 15ADON IV 3ADON PO 15ADON PO 3ADON IV 

 

Supplementary material S2. Model code for toxicokinetic analysis of DON, 3ADON and 15ADON after PO and IV 
administration in broiler chickens, using WinNonlin Professional version 5.2.1. 

Model 1 
remark ****************************************************** 
remark Developer: Nathan Broekaert 
remark Model Date: 18-04-2014 
remark Model Version: 1.0 
remark ****************************************************** 
remark 
remark - define model-specific commands  
COMMANDS  
NFUNCTIONS 4 
NDERIVATIVES 7 
NPARAMETERS 9 
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PNAMES 'Cldon', 'Cladon', 'Qdon', 'VCdon', 'VCadon', 'ka', 'FRAC', 'BioADON', 'VPdon' 
END 
  
remark - define temporary variables 
TEMPORARY  
TIME=X 
DOSPO=1689 
DOSIV=1689 
  
END  
  
remark - define differential equations starting values 
START  
Z(1) = DOSIV/VCadon 
Z(2) = 0 
Z(3) = 0 
Z(4) = DOSPO*(1-FRAC) 
Z(5) = 0 
Z(6) = 0 
Z(7) = 0 
END 
  
remark - define differential equations 
DIFFERENTIAL  
remark IV 
  
DZ(1) = (-Cladon*Z(1))/VCadon 
DZ(2) = (Cladon*Z(1) -Cldon*Z(2) -Qdon*Z(2) +Qdon*Z(3))/VCdon 
DZ(3) = (Qdon*Z(2) -Qdon*Z(3))/VPdon 
  
remark PO 
  
DZ(4) = -ka*BioADON*Z(4) -(ka*(1-BioADON)*Z(4))  
DZ(5) = (BioADON*ka*Z(4) -CLadon*Z(5))/VCadon 
DZ(6) = ((1-BioADON)*ka*Z(4) +CLadon*Z(5) -CLdon*Z(6) -Qdon*Z(6) +Qdon*Z(7))/VCdon 
DZ(7) = (Qdon*Z(6) -Qdon*Z(7))/VPdon 
END 
  
remark - define algebraic functions 
FUNCTION 1 
F= Z(1) 
END 
  
FUNCTION 2 
F= Z(2) 
END 
  



 

123 
 

FUNCTION 3 
F= Z(5) 
END 
  
FUNCTION 4 
F= Z(6) 
END 
  
remark - define any secondary parameters 
remark - end of model 
EOM 
 
Supplementary material S3. Fits of the median plasma concentration-time profiles of DON, 3ADON and 
15ADON in broiler chickens and pigs after IV and PO administration using a tailor-made toxicokinetic model in 
WinNonlin Professional version 5.2.1 (semi-log); circles=PO; diamonds=IV; blue=DON; green=3ADON; 
red=15ADON. 
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CHAPTER III 

 

In vivo contribution of deoxynivalenol-3-β-D-glucoside to deoxynivalenol 

exposure in chickens and pigs: oral bioavailability, hydrolysis and 

toxicokinetics 
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Abstract - The goal of this study was to determine the absolute oral bioavailability and 

toxicokinetic characteristics of the modified mycotoxin deoxynivalenol-3-β-D-glucoside 

(DON3G) and its possible (presystemic) hydrolysis to deoxynivalenol (DON) in broiler 

chickens and pigs. Cross-over animal trials were performed with intravenous (IV) and oral 

(PO) administration of DON3G and DON to broilers and pigs. Systemic plasma concentrations 

of DON, DON3G and de-epoxyDON were quantified using liquid chromatography-tandem 

mass spectrometry. Liquid chromatography coupled to high-resolution mass spectrometry 

was used to unravel phase II metabolism of DON. In pigs, also portal plasma was analysed to 

study presystemic hydrolysis and metabolism. Data were processed via tailor-made 

compartmental toxicokinetic models. The results in broiler chickens indicate that DON3G is 

not hydrolysed to DON in vivo. Furthermore, the absolute oral bioavailability of DON3G in 

broiler chickens (3.79±2.68%) was low and comparable to that of DON (5.56±2.05%). After 

PO DON3G administration to pigs, only DON was detected in plasma, indicating a complete 

presystemic hydrolysis of the absorbed fraction of DON3G. However, the absorbed fraction 

of DON3G, recovered as DON, was approximately 5 times lower than after PO DON 

administration, 16.1±5.4% compared to 81.3±17.4%. Analysis of phase II metabolites 

revealed that biotransformation of DON and DON3G in pigs mainly consists of 

glucuronidation, whereas in chickens conjugation with sulfate predominantly occured. The 

extent of phase II metabolism is notably higher for chickens than for pigs, which might 

explain the relatively higher sensitivity of the latter species to DON. Although in vitro studies 

demonstrate a decreased toxicity of DON3G compared to DON, the species dependent 

toxicokinetic data and in vivo hydrolysis to DON illustrate the toxicological relevance and 

consequently the need for further research to establish a tolerable daily intake. 

 

Keywords - deoxynivalenol (DON) - deoxynivalenol-3-β-D-glucoside (DON3G) - pig - broiler 

chicken - in vivo hydrolysis - toxicokinetics - oral bioavailability 
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1. Introduction  

Mycotoxin contamination of food and feed has been classified by several authors as the 

most important chronic dietary risk for human and animal health. The Fusarium mycotoxin 

deoxynivalenol (DON) is one of the most frequently occurring mycotoxins, contaminating 

56% of feed and feed raw materials worldwide (Schatzmayr and Streit 2013). Additionally to 

DON, feed can be contaminated with modified forms of DON, such as deoxynivalenol-3-β-D-

glucoside (DON3G), causing a possible underestimation of the degree of contamination. 

Following a request from the European Commission, the risks to human and animal health 

related to modified forms of the Fusarium mycotoxins zearalenone, nivalenol, T-2 and HT-2 

toxin and fumonisins were evaluated. The European Food Safety Authority Panel on 

Contaminants in the Food Chain (EFSA CONTAM Panel) considered it appropriate to assess 

human exposure to modified forms of the various toxins in addition to the parent 

compounds, because modified forms may be hydrolysed into the parent compounds or 

released from the matrix during digestion. However, no risk assessment for modified forms 

of DON is currently available (EFSA CONTAM Panel 2014). Concerning acetylated forms of 

DON, 3-acetyl-deoxynivalenol (3ADON) and 15-acetyl-deoxynivalenol (15ADON), both 

ADONs were completely absorbed and presystemically hydrolysed to DON in pigs. In 

chickens, for both ADONs a higher absorbed fraction was observed compared to DON, as 

well as a presystemic hydrolysis of 3ADON and 15ADON to DON of 100% and 75.4%, 

respectively (Broekaert et al. 2015b). 

Recent occurrence data (2010-2014) for DON and DON3G have been reviewed for 

unprocessed cereals, such as wheat, maize, barley, oat, rye and spelt (Broekaert et al. 

2015a). Observed incidence, average concentration and maximum detected concentration 

for DON and DON3G were 84%, 458 µg/kg, 27,088 µg/kg and 55%, 85 µg/kg, 170 µg/kg, 

respectively. DON3G concentrations exceeding those of free DON have been detected in 

some hard red spring wheat samples (Sasanya et al. 2008), which indicate its high 

prevalence.  

The susceptibility of animal species to DON can be ranked in the following decreasing order: 

pigs > mice > rats > poultry ≈ ruminants (Pinton and Oswald 2014). The toxicity of DON 

depends on its ability to efficiently cross biological barriers in humans and animals, such as 
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the intestinal and the blood-brain barrier. At the cellular level, DON primarily affects protein 

synthesis. Consequently, fast dividing cells such as intestinal epithelial and immune cells will 

be more susceptible to the detrimental effects of DON (Maresca 2013; Pestka 2010; Rotter 

et al. 1996). The cellular toxicity is mainly attributed to the presence of the epoxide moiety 

(Pestka 2010; Ueno et al. 1973). This functional group allows DON, and trichothecenes in 

general, to bind to ribosomes, and to cause what is known as the ‘ribotoxic stress response’. 

It is expected that glucosylation of DON greatly reduces its toxicity. The phytotoxicity of DON 

and DON3G was studied by means of a wheat germ extract-coupled in vitro 

transcription/translation system. One µM of DON significantly decreased translation by 63% 

compared to a control. In contrast, 5 µM and 20 µM of DON3G resulted in a translation 

decrease of only 3.1% and 8.0%, respectively (Poppenberger et al. 2003). In a growth test 

with algal cells, 80 µM of DON3G, unlike an equimolar amount of DON, did not significantly 

alter growth compared to a control (Suzuki and Iwahashi 2015). Decreased toxicity has also 

been observed in mice, where DON3G was largely incapable of evoking cytokine or 

chemokine responses in the spleen of mice orally gavaged with 2.5 mg/kg body weight (bw), 

in contrast to DON, except for slight elevations in IL-1β mRNA expression (Wu et al. 2014). 

Recently, an in silico analysis suggested that DON3G, unlike DON, was unable to bind to the 

ribosome peptidyl transferase centre. Additionally, comparative cytotoxicity of DON and 

DON3G was assessed on both proliferative and differentiated Caco-2 cells by means of 

quantitation of the ATP present. After a 48 h exposure to DON, an IC50 of 1.3 µM (0.384 

µg/mL) was observed in proliferative Caco-2 cells. In contrast, no cytotoxicity was observed 

with 0-10 µM of DON3G. For differentiated Caco-2 cells, no cytotoxicity was observed for 0-

10 µM of DON nor DON3G (Pierron et al. 2015).  

Regarding the hydrolysis of DON3G to DON, different in vitro studies reported that DON3G 

was not hydrolysed to DON in the human upper gastrointestinal (GI) tract by means of acid, 

stomach and gut juice, or cytosolic β-glucosidase (Berthiller et al. 2011; Dall'Erta et al. 2013; 

De Angelis et al. 2014; De Nijs et al. 2012). Regarding the human lower GI tract, some in vitro 

experiments indicate that hydrolysis can take place and that the intestinal microbiota 

composition and their abundance can play an important role (Abbott 2004; Berthiller et al. 

2011; Dall'Erta et al. 2013; Gratz et al. 2013; Hattori and Taylor 2009). In vitro models do not 

take into account important physiological and anatomical factors within and between 
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different animal species and humans, such as intestinal mucosa and luminal content 

composition (enzymes, microbiota), splanchnic blood flow and enterohepatic recirculation 

(Gonzalez-Arias et al. 2013). To estimate these factors and especially the interactions 

between them, species-specific in vivo trials remain mandatory. Versilovskis et al. reported a 

first DON3G in vivo study in which two rats were fed 25 µg of DON3G by oral gavage, 

followed by blood collection at 17 and 55 min post-administration. DON was detected in the 

stomach albeit at only 2% of the applied dose. This confirms the conclusions of the in vitro 

studies, i.e. hydrolysis of DON3G in the stomach is negligible. Further down in the GI tract, 

DON3G could only be detected at 2-3% of the applied dose in the small intestine and at 1-2% 

in the colon. This remarkable decrease of DON3G in the small intestine is probably due to 

the presence of intestinal β-glucosidases (Versilovskis et al. 2012). Nagl et al. orally 

administered DON and an equimolar dose of DON3G to six rats, followed by urine and faeces 

collection over a two-days period. After PO administration of DON3G, less than 4% of the 

administered dose was recovered in urine, of which 35% as DON, 33% as DON-glucuronide 

(DON-GlcA), 24% as de-epoxy-deoxynivalenol (DOM-1) and 8% as DON3G. The presence of 

urinary DON clearly demonstrates the hydrolysis upon ingestion. In comparison, after PO 

DON administration, 15% of the dose was recovered in urine as DON-GlcA, DON and DOM-1, 

indicating a relatively low oral bioavailability for DON3G compared to DON in rats. Analysis 

of faecal samples of rats dosed with DON3G revealed that the vast majority of the 

metabolites of DON3G were excreted as DON and DOM-1 (sum: 99.5 ± 0.4%). Only traces of 

DON3G were detected, indicating that intestinal microbiota are effective in hydrolysing this 

modified mycotoxin in rats (Nagl et al. 2012). Recently, the results in rat were supported by 

in vivo experiments performed in pig by the same research group. After intravenous (IV) 

administration of DON3G, no DON was detected in plasma, indicating that systemic 

hydrolysis of DON3G is negligible. After oral administration of DON3G, 40.3% of the dose 

was recovered in urine as DON3G, next to DON (21.6%), DON-15-glucuronide (DON15GlcA) 

(6.8%), DOM-1 (5.9%) and DON-3-glucuronide (DON3GlcA) (3.4%) (Nagl et al. 2014). 

Consequently, it was concluded that in vivo cleavage of DON3G predominantly occurs in the 

(lower) digestive tract. Oral bioavailability was lower for DON3G than for DON, deduced 

from the recovered DON equivalent amounts in urine, namely 84.8% for DON and 40.3% for 

DON3G (Nagl et al. 2014). Moreover, the oral bioavailability for both compounds in pig was 

remarkably higher than in rat.  
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However, both study designs in rat and pig do not allow determination of the site of 

hydrolysis (GI microbiota, GI tissues, portal blood, liver, systemic blood). Sampling portal 

blood would offer a huge advantage as it would allow to differentiate between presystemic 

and systemic hydrolysis and therefore significantly contribute to the understanding of the 

(pre)systemic hydrolysis of DON3G. Transsplenic portal vein catheterisation in pigs has 

previously been described (Gasthuys et al. 2009) and was used to study the presystemic 

metabolisation of xenobiotics (Reyns et al. 2009). Therefore, portal vein catheterisation 

offers a valuable tool to study possible presystemic hydrolysis of DON3G in pigs. 

Currently, literature reports regarding the toxicokinetics of DON3G in humans and other 

animal species, such as broiler chickens, are scarce. Warth et al. performed a study with a 

human volunteer consuming a diet naturally contaminated with 138 µg DON/day, 7 μg 

DON3G/day and 20 µg 3ADON/day. DON3G, in contrast to DON, could not be detected in 

urine (Warth et al. 2013). For broiler chickens no data is available, although poultry have a 

high exposure to DON3G given their mainly cereal based diet. The GI anatomy, physiology 

and distinct microbiota species composition and abundance of poultry further contribute to 

the relevance of performing research in these species. 

The goal of this study was to determine the absolute oral bioavailability, the degree of 

hydrolysis and the main toxicokinetic parameters of DON3G in broiler chickens and pigs. 

Additionally portal vein catheterisation in pigs allowed determination of the site of 

presystemic hydrolysis.  

2. Materials and methods 

2.1. Standards, reagents and solutions 

DON (>99% purity) was commercially obtained (Fermentek, Jerusalem, Israel). DON3G 

was enzymatically synthesised, purified and verified using nuclear magnetic resonance 

(NMR) and liquid chromatography-tandem mass spectrometry (LC-MS/MS)(<0.05% DON) by 

the Christian Doppler Laboratory for Mycotoxin Metabolism Center for Analytical Chemistry 

(Vienna, Austria). DON and DON3G were dissolved in analytical-grade ethanol (EtOH) 

(Merck, Brussels, Belgium), yielding a stock solution of 10 mg/mL and were used for animal 

trials and analytical experiments. DOM-1 (50 µg/mL) and 13C15-DON (stable isotopically 

labelled internal standard, IS, 50 µg/mL) stock solutions in acetonitrile were purchased 
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(Sigma-Aldrich, Diegem, Belgium). All stock solutions were stored at ≤-15 °C. Individual 

working standard solutions of 10 µg/mL, used for the analytical experiments, were prepared 

by diluting the above stock solutions with ULC/MS grade acetonitrile (Biosolve, 

Valkenswaard, The Netherlands). All working standard solutions were stored at ≤-15 °C. 

Standard mixture working solutions containing DON, DON3G and DOM-1 of 1 and 0.1 µg/mL 

were prepared by mixing appropriate dilutions of the individual working standard solutions 

in ULC/MS acetonitrile, stored at 2-8 °C. Solutions of DON in acetonitrile have been reported 

to be stable for 24 months at room temperature (Widestrand and Pettersson 2001). Water, 

methanol and glacial acetic acid were of ULC/MS grade (Biosolve). Microfilters (GV-PVDF 

0.22 µm) were obtained from Millipore (Overijse, Belgium). 

2.2. Animal trials 

2.2.1. Broiler chickens 

Six broiler chickens (Ross 308) were purchased from the Institute for Agriculture and 

Fisheries Research (Melle, Belgium) at the age of 3 weeks, as hatched, and after one week 

acclimatisation the animals had an average bw ± standard deviation (SD) of 1400 ± 131 g. 

Water and feed were given ad libitum. The pen was climate controlled with temperatures 

between 21 and 25 °C, a relative humidity between 40 and 60% and an applied light 

schedule similar to commercial installations (18 h light/6 h dark). After a one week 

acclimatisation period, three broiler chickens were treated with DON3G by IV bolus injection 

in the vena basilica, and three broiler chickens received DON3G PO by means of gavage in 

the crop. After a wash-out period of 1 day, a cross-over design was applied which resulted in 

a PO and IV administration of DON3G in each of the six broiler chickens. Next, a second 

wash-out period of three days was respected, and the same broiler chickens were subjected 

to an identical two-way cross-over (IV and PO) study with DON. The administered doses 

were based on the EU maximum guidance level of 5 mg DON/kg poultry feed (European 

Commission 2006). Given an average feed consumption of 4-week-old broiler chickens of 

100 g feed/kg bw/day, 500 µg DON/kg bw was administered. For DON3G, an equimolar dose 

of 774 µg/kg bw was administered. The calculated volume of stock solution (10 mg/mL in 

EtOH) was diluted with saline (0.9% NaCl) (VWR, Leuven, Belgium) up to a volume of 0.5 mL 

(IV) or 1 mL (PO). Feed was deprived 12 h before administration and until 3 h post 

administration (p.a.). After oral administration of the toxins, 1 mL of tap water was 
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administered to flush the gavage syringe and tube. Blood (0.5-1 mL) was sampled from the 

leg vein (vena metatarsalis plantaris superficialis) by venipuncture at 0 min (before 

administration) and at 5, 10, 20, 30, 45, 60, 90, 120 and 180 min p.a. Blood samples were 

centrifuged (2851 x g, 10 min, 4 °C) and plasma was stored at ≤ -15 °C until analysis. 

2.2.2. Pigs 

For the pig study, six clinically healthy male pigs (11 weeks of age, 26.3 ± 1.8 kg bw) were 

individually housed and were provided feed and water ad libitum. Natural lighting was 

applied, the enclosure was climate controlled to keep the temperature between 20 and 24 

°C and the relative humidity between 20 and 40%. After a one week acclimatisation period, 

double lumen catheters were surgically placed into the vena jugularis of all six pigs. 

Additionally, in four of the six pigs a single lumen catheter was placed into the vena porta to 

study presystemic hydrolysis and biotransformation. The surgical procedure was as 

previously described (Gasthuys et al. 2009). After a two-days period, the animals were 

treated with DON3G by IV bolus injection using one lumen of the double lumen jugular 

catheters, or PO by means of gavage in the stomach, in a two way cross-over design. After 

DON3G administration, an identical cross-over administration with DON was set up in the 

same animals and respecting a wash-out period of 24 h between treatments. Twelve h 

before administration of the mycotoxins, the animals were fasted until 4 h p.a. The 

administered doses were calculated as for the broiler chicken trial. The EU maximum 

guidance level in pig feed is 0.9 mg/kg DON (European Commission 2006). Pigs at 12 weeks 

of age consume on average 40 g feed/kg bw/day. This resulted in the administration of 36 µg 

DON/kg bw. For DON3G, an equimolar dose of 55.7 µg/kg bw was administered. The 

calculated amount of toxin for each animal, dissolved in EtOH at 10 mg/mL, was diluted with 

saline to a volume of 1 mL (IV) or 10 mL (PO). After oral administration of the toxins, 50 mL 

of tap water was administered to flush the gavage syringe and tube. Blood (1-2 mL) was 

sampled via the other lumen of the jugular catheter and the vena porta catheter at 0 min 

(before administration) and at 5, 10, 20, 30, 45, 60, 90, 120, 240, 360 and 480 min p.a. Blood 

samples were centrifuged (2851 x g, 10 min, 4 °C) and plasma was stored at ≤ -15 °C until 

analysis. 
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The chicken and pig animal trials were approved by the Ethical Committee of the Faculty of 

Veterinary Medicine and Bioscience Engineering of Ghent University (EC2013/64 and 

EC2015/14, respectively).  

2.3. Plasma sample preparation 

Blank plasma was obtained by the collection of heparinised blood from six different broiler 

chickens and pigs. The animals were fasted 12 h prior to blood collection. Plasma was 

obtained by centrifugation (2851 x g, 10 min, 4 °C) of the blood. The blank plasma was 

pooled, homogenised and stored at ≤ -15 °C until use for the preparation of matrix-matched 

calibrators and quality control samples.  

Calibrator and quality control samples. To 250 µL of blank plasma, 25 µL of a 100 ng/mL IS 

working solution (13C15-DON) and appropriate volumes of the standard mixture working 

solutions (1, 10 100 and 1000 ng/mL) were added to obtain calibrator samples with 

mycotoxin concentrations of 0.1, 0.5, 1, 5, 10, 50, 100 and 500 ng/mL. After vortex mixing, 

acetonitrile was added up to a volume of 1 mL to precipitate plasma proteins. The samples 

were vortex mixed again, followed by a centrifugation step (10 min at 8517 x g, 4 °C). The 

supernatant was transferred to a new tube and evaporated to dryness under nitrogen at 45 

°C. The dry residue was then redissolved in 200 µL of ULC/MS grade water, micro-filtrated 

and 10 µL was injected onto the LC-MS/MS instrument. 

Incurred samples. To 250 µL of plasma, 25 µL of a 100 ng/mL IS working solution were 

added. After vortex mixing, the samples were subjected to the same sample preparation 

procedure as the calibrator samples. 

Blank samples. After the addition of 750 µL of acetonitrile to 250 µL of blank plasma, 

the samples were extracted in the same way as the calibrator samples. 

2.4. LC-MS/MS analysis and validation 

Separation of DON, 13C15-DON, DON3G and DOM-1 was achieved on a Hypersil Gold 

(reversed-phase) (50 x 2.1 mm i.d., 1.9 μm) column with a guard column (10 x 2.1 mm i.d., 5 

μm) of the same type. Chicken and pig plasma were analysed on an Acquity UPLC® system 

coupled to a Xevo® TQ-S MS instrument (Waters, Zellik, Belgium).  
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All compounds were eluted with a gradient of water containing 0.3% glacial acetic acid 

(mobile phase A) and methanol containing 0.3% glacial acetic acid (mobile phase B), at a flow 

rate of 300 µL/min. The following gradient elution program was run: 0-1 min, 5% B; 1.0-1.1 

min, linear gradient to 12% B; 1.1-5.0 min, 12% B; 5.0-5.1 min, linear gradient to 50% B; 5.1-

8.0 min, 50% B; 8.0-8.1 min, linear gradient to 95% B; 8.1-10.0 min, 95% B; 10.0-10.1 min, 

linear gradient to 5% B; 10.1-12.0 min, 5% B. The MS was operated in the multiple reaction 

monitoring (MRM) mode with two ion transitions for each target analyte as presented in 

Table 1. Instrumental and compound specific parameters were optimised by the direct 

infusion of 10 ng/mL standard solutions in methanol/ water (50/50, v/v) + 0.3% glacial acetic 

acid with a flow rate of 10 µL/min. For the Xevo TQ-S, the desolvation gas flow rate was fixed 

to 800 L/h with a temperature of 550 °C, the cone gas flow rate was set at 150 L/h, capillary 

voltage was optimised at 3.0 kV and a collision gas flow of 0.15 mL/min was used. Dwell 

times of 44 - 52 ms/transition were chosen. Compound specific MS parameters, together 

with precursor and product ions used for quantification and qualification, are given in Table 

1. DON, 13C15-DON and DOM-1 were detected in positive electrospray ionisation mode (ESI+) 

as the protonated precursor ion [M+H]+, DON3G was measured in ESI- as [M+CH3COO]- 

adduct.  

Given the unavailability of reference materials, validation was performed on fortified blank 

pig and broiler plasma samples. Both recommendations as defined by the European 

Community (Commission Decision 2002; Heitzman 1994) and the Veterinary International 

Conference on Harmonisation (VICH 2009) served as validation guidelines. The developed 

method was single laboratory validated.  

Table 1. Compound specific MRM ion transitions and MS-parameters for the analysis of DON, DON3G, DOM-1 
and 

13
C15-DON in broiler and pig plasma; Rt= retention time; IS= internal standard; 

a
 quantifier ion.  

 Precursor ion (m/z) 
Product ion 

(m/z) 
Rt 

(min) 
Cone voltage 

(V) 
Collision Energy 

(eV) 
Dwell time 

(ms) 
ESI 

modus 

DON 297.1 [M+ H]+ 
249.1a 

2.5 20 
9 0.25 

+ 203.4 14 0.25 

DON3G 517.0 [M+CH3COO]- 
427.2a 

2.8 14 
16 0.25 

- 247.0 15 0.25 

DOM-1 281.1 [M+ H]+ 
215.1a 

4.0 20 
12 0.81 

+ 137.0 16 0.81 

13C15-DON (IS) 312.0 [M+ H]+ 
245.2a 

2.5 20 
10 0.25 

+ 
263.0 10 0.25 
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Linearity of the response of the compounds was assessed by means of three matrix-matched 

calibration curves consisting of eight calibration points in the range of 0.1-500 ng/mL. The 

correlation coefficients (r) and goodness-of-fit coefficients (gof) were determined, limits 

were set at ≥0.99 and ≤20%, respectively.  

Within-day accuracy & precision were determined by analyzing six samples fortified at a low 

concentration level (limit of quantitation (LOQ) of the compounds) and at a high 

concentration level (100 ng/mL). Values for the relative standard deviation (RSD) could not 

exceed 2/3 of the RSDmax, calculated according to the Horwitz equation, i.e. 

RSDmax = 2(1−0.5logConc) × 2/3. The acceptance criteria for accuracy were: −30% to +10% and 

−20% to +10% for concentrations between 1 and 10 ng/mL, and ≥10 ng/mL, respectively. 

Between-day accuracy & precision were assessed by analyzing the low and high 

concentration levels in threefold on three consecutive days (n=3x3). The acceptance criteria 

for accuracy were identical to the values given above and RSD values could not exceed 

RSDmax= 2(1−0.5logConc). 

The LOQ was calculated as the lowest concentration for which the method had acceptable 

results with regards to accuracy and precision. It was determined by spiking six blank plasma 

samples. The LOQ was also established as the lowest point of the calibration curve. The limit 

of detection (LOD) was calculated using the samples spiked at the LOQ level (n=6) 

corresponding to the concentration that could be determined with a signal-to-noise (S/N) 

ratio of 3.  

Carry-over was evaluated by analysing a mixture of mobile phase A and B (50/50; v/v) 

directly after the highest calibrator (500 ng/mL).  

The specificity, the capability of the method to distinguish signals of the analytes from any 

other substances or interferences, was determined on six blank plasma samples. For an 

acceptable specificity the S/N ratio of possible interfering peaks with similar retention times 

in these samples could not exceed the S/N ratio of 3. 

Recovery and matrix effects. Two types of matrix-matched calibration curves were prepared 

by spiking blank calibrator samples before and after extraction. A third calibration curve was 

prepared in standard solution. All curves consisted of eight calibration points in the range of 
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0.1-500 ng/mL. The slopes of these calibration curves (external calibration, without IS) were 

compared to calculate the apparent recovery (RA = 100 × slope spiked before 

extraction/slope standard solution), the matrix effect denoted as signal 

suppression/enhancement (SSE = 100 × slope spiked after extraction/slope standard 

solution) and the recovery of the extraction step (RE = 100 × slope spiked before 

extraction/slope spiked after extraction). Regarding SSE, values ≤ 1 indicate ion suppression 

due to matrix effect, values ≥ 1 indicate ion enhancement (Matuszewski et al. 2003). 

2.5. High resolution mass spectrometry 

To determine the presence of phase II metabolites, i.e. glucuronide and sulfate conjugates, 

high resolution mass spectrometry (HRMS) analysis was performed on pig and broiler 

chicken plasma samples from three animals after IV and PO administration for identification 

and semi-quantification of DON3G, DON and its metabolites. The methodology was similar 

as in a previously described study (Devreese et al. 2015). Sample treatment, HPLC column 

and mobile phases were identical to the LC-MS/MS analysis. However, a different gradient 

elution program was applied: 0-1.0 5% B, 1.0-4.0 linear to 80% B, 4.0-6.7 min 80% B, 6.7-7.0 

linear gradient to 5% B, 7.0-10.0 5% B. The (U)HPLC consisted of an Accela type 1250 High 

Speed LC and autosampler coupled to an Exactive Orbitrap HR mass spectrometer, equipped 

with a heated electrospray ionisation (HESI) probe operating in the negative ionisation mode 

(all from Thermo Fischer Scientific, Breda, The Netherlands). Accurate masses for DON 

([M+CH3COO]-), DOM-1 ([M+CH3COO]-), DON-3α-sulfate and DON3GlcA, 355.1414, 

339.2016, 375.0755 and 471.1508, respectively, were based on Wan et al. and Devreese et 

al. (Devreese et al. 2015; Wan et al. 2014). Accurate mass of DON3G ([M+CH3COO]-) was 

determined to be 517.19250 by direct infusion of a 10 µg/mL solution in mobile phase A and 

B (50/50, v/v). 

2.6. Toxicokinetic modeling and statistical analysis 

Toxicokinetic analysis on the LC-MS/MS data was performed using WinNonlin Professional 

version 5.2.1. (Pharsight, St-Louis, MO). Plasma concentrations below the LOQ were not 

taken into account. For the toxicokinetic analysis, all values were recalculated to their molar 

concentrations, expressed as nmol/mL. For the analysis of DON IV and PO data in chickens 

and pigs, and for DON3G IV and PO in chickens, a tailor-made two-compartmental model 
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(central compartment (Vc) and peripheral compartment (Vp)) with first order absorption and 

first order elimination kinetics was applied. For the IV and PO administration of DON3G in 

pigs, a tailor-made one-compartmental model was fitted. Due to a lag time after PO DON3G 

administration to pigs, only terminal concentration points were above the LOQ. 

Consequently, it was not possible to calculate toxicokinetic parameters for the individual 

animals, and these parameters have been calculated simultaneously on all pooled pig PO 

DON3G data. As a result, no standard deviations could be calculated, instead coefficients of 

variation of the models’ predicted versus observed concentrations are provided. 

In Figure 1 and 2 a graphical representation of the constructed model is given for DON (IV & 

PO) and DON3G (IV & PO) in broiler chickens and pigs, respectively. 

A 1/ŷ weighing was applied for all calculations with both the chicken and pig data. For all the 

described models, the Gauss-Newton (Levenberg and Hartley) algorithm was used with a 

maximum of 50 iterations.  

The following primary and secondary toxicokinetic parameters were calculated for DON and 

DON3G after IV and PO administration: absorption rate constant (ka), intercompartmental 

flow (Q), total body clearance (CL), central volume of distribution (Vc), peripheral volume of 

distribution (Vp). FRAC is the absorbed fraction of the dose in either form (DON or DON3G). 

F indicates the absolute oral bioavailability, i.e. the fraction of DON or DON3G absorbed in 

the systemic circulation in its unchanged form. When both a central and peripheral volume 

of distribution were observed, the disposition rate constant (β) was calculated by dividing 

the Cl by the sum of Vc and Vp for each animal. When only a central volume of distribution 

was used, the elimination rate constant (ke) was calculated by dividing the Cl by the Vc for 

each animal. Presystemic hydrolysis (Pres. Hydr.) was the percentage of the total dose of 

DON3G that is hydrolysed presystemically to DON and absorbed as DON (%). Additionally, 

for PO data the descriptive toxicokinetic parameters maximal plasma concentration (Cmax) 

and time to Cmax (tmax) were given for DON. Elimination half lives (t1/2el) were calculated as 

0.693/β or 0.693/ke. 

Statistical analysis of FRAC, F, Cmax and tmax after DON3G administration compared to DON 

administration consisted of one-way ANOVA with post-hoc Scheffé tests (p value < 0.05) for 
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both animal species (SPSS 20.0, IBM, Chicago, IL). Equality of variances criterion was 

determined by the Levene’s test for homogeneity of variances (p value > 0.01). 

 

Figure 1. Graphical representation of the applied model for broiler chicken: DON IV (black, light red and dark 
red section), DON PO (blue, grey, light red and dark red section), DON3G IV (purple, light green and dark green 
section) and DON3G PO (blue, orange, light green and dark green section), IV=intravenous administration; 
kaDON=absorption rate constant of DON (1/min); kaDON3G=absorption rate constant of DON3G (1/min); 
ClDON=clearance of DON (mL/min/kg); QDON=intercompartment flow for DON (mL/min/kg); VcDON=central volume 
of distribution for DON (mL/kg); VpDON=peripheral volume of distribution for DON (mL/kg); ClDON3G=clearance of 
DON3G (mL/min/kg); QDON3G=intercompartment flow for DON3G (mL/min/kg); VcDON3G=central volume of 
distribution for DON3G (mL/kg); VpDON3G=peripheral volume of distribution for DON3G (mL/kg); FRAC=fraction 
of dose absorbed. 

 

Figure 2. Graphical representation of the applied model for pig: DON IV (black, light red and dark red section), 
DON PO (blue, grey, light red and dark red section), DON3G IV (purple and light green section) and DON3G PO 
(blue, grey and light red section + lag time). IV=intravenous administration; kaDON=absorption rate constant of 
DON (1/min); kaDON3G=absorption rate constant of DON3G (1/min); ClDON=clearance of DON (mL/min/kg); 
QDON=intercompartment flow for DON (mL/min/kg); VcDON=central volume of distribution for DON (mL/kg); 
VpDON=peripheral volume of distribution for DON (mL/kg); ClDON3G=clearance of DON3G (mL/min/kg); 
VcDON3G=central volume of distribution for DON3G (mL/kg); FRAC=fraction of dose absorbed. 
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3. Results and discussion 

3.1. LC-MS/MS method validation 

For the calibration model a linear, 1/x weighed, fitting was applied. The results for linearity (r 

and gof) and sensitivity (LOD and LOQ) are given in Table 2. The results for linearity were all 

in accordance with the acceptance criteria, with r ≥ 0.99 and gof ≤ 20%. For chicken plasma, 

the LOD varied from 0.11 (DOM-1) to 0.47 (DON) ng/mL, whereas the LOQ was 1 ng/mL for 

all compounds. For pig plasma, LOD values ranged from 0.01 (DON) to 0.28 (DOM-1) ng/mL, 

LOQ values were 0.1 (DON3G), 0.5 (DON) and 1 (DOM-1) ng/mL. 

The results for matrix effects (SSE), apparent recovery (RA) and extraction recovery (RE) are 

also depicted in Table 2. SSE values for all mycotoxins varied from 44 to 112%, which 

demonstrated the need for matrix-matched calibration curves for a correct quantification. 

The matrix effects could be diminished by further optimizing the sample cleanup. However, 

a more elaborate cleanup tends to diminish the RE, possibly limiting the sensitivity of the 

method. Values for RE varied between 68.2 and 97.0% and RA values ranged from 41.8 to 

76.2%, with the majority of the latter deviation caused by SSE. 

Table 2. Validation results for linearity (r & gof, 8 concentration points in the range LOQ-500 ng/mL), sensitivity 
(LOD & LOQ; n=6), matrix effects (SSE), apparent recovery (RA) and extraction recovery (RE). 

Plasma Compound 
Correlation 

coefficient (r) 
Goodness of 

fit (gof) 
LOD 

(ng/mL) 
LOQ 

(ng/mL) 
SSE 
(%) 

RA 
(%) 

RE 
(%) 

Chicken 
DON 0.9998 4.92% 0.47 1.0 85.3 65.9 77.2 
DOM-1 0.9997 7.05% 0.11 1.0 112.0 76.2 68.2 
DON3G 0.9997 7.58% 0.38 1.0 58.1 43.9 75.6 

Pig 
DON 0.9997 5.94% 0.01 0.5 67.5 65.4 97.0 
DOM-1 0.9999 3.98% 0.28 1.0 44.0 41.8 95.0 
DON3G 0.9998 4.98% 0.03 0.1 73.1 64.8 88.7 

 

Table 3 displays the results for accuracy (%) and precision (RSD, %). All results for chicken as 

well as pig plasma were within the acceptable ranges. The specificity test demonstrated that 

no interfering peaks were detected in the chromatographic elution zone of the analytes with 

S/N values ≥ 3 (results not shown).  

Carry-over was evaluated and for none of the compounds signals were detected that could 

interfere with the response/area of the analytes at their given retention time (results not 

shown). 
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Table 3. Validation results for within-day (n=6) and between-day precision (n=3x3) with corresponding accuracy 
at low (LOQ) and high (500 ng/mL) concentration level. 

  Within-day Between-day 
  Accuracy (%) Precision (RSD, %) Accuracy (%) Precision (RSD, %) 

Plasma Compound LOQ 
500 

ng/mL 
LOQ 

500 
ng/mL 

LOQ 
500 

ng/mL 
LOQ 

500 
ng/mL 

Chicken 
DON 8.0 0.6 12.3 3.3 -9.5 -0.7 27.6 4.7 
DOM-1 15.6 0.7 24.1 4.6 -12.2 0.3 12.7 4.2 
DON3G 6.1 0.3 29.4 7.5 16.3 0.3 18.4 5.0 

Pig 
DON -1.3 0.8 31.4 3.3 -5.7 -0.8 28.8 3.6 
DOM-1 -7.7 -0.6 6.4 2.0 -2.3 1.0 18.2 3.4 
DON3G -11.4 -0.8 24.6 1.7 -1.1 -2.0 31.3 4.3 

 

3.2. Toxicokinetic analysis 

The goal of this study was to determine the absolute oral bioavailability of DON3G and DON, 

the degree of in vivo hydrolysis of DON3G to DON (differentiating between presystemic GI, 

presystemic portal, presystemic hepatic and systemic hydrolysis) and the toxicokinetic 

parameters of both toxins in broiler chickens and pigs. A tailor-made compartmental 

toxicokinetic model was developed which offers the advantage, compared to non-

compartmental analysis, that for a given compound, PO and IV data can be fitted 

simultaneously for each animal allowing more reliable estimates as more data is available 

(Broekaert et al. 2015b). 

For broiler chickens, no adverse effects were observed during the animal trial following PO 

and IV bolus administration of the mycotoxins. Similarly, no adverse effects were observed 

during the pig trial following IV and PO DON3G administration and PO DON administration. 

Following IV dosing of DON, two out of six pigs vomited within 0.5 h p.a. However, this had 

no observable influence on the results as these pigs were IV dosed.  

Plasma concentration-time profiles for DON3G and DON in broiler chickens and pigs are 

presented in Figure 3. Each profile represents the mean of six animals ± SD for systemic 

plasma concentrations. Additionally for pigs, vena porta plasma concentration-time profiles 

are presented as mean of four animals ± SD. A first observation is the absence of DOM-1 in 

all analysed samples. The derived toxicokinetic results are shown in Table 4.  
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Figure 3. Systemic plasma (chickens and pigs) and vena porta plasma (pigs) concentration-time profiles of 
deoxynivalenol (DON) and deoxynivalenol-3-β-D-glucoside (DON3G) after oral (PO) and intravenous (IV) 
administration (post administration=p.a.) of DON (dose=500 µg DON/kg body weight) and DON3G (dose=774 
µg DON3G/kg body weight) to broiler chickens and of DON (dose=36 µg DON/kg body weight) and DON3G 
(dose=55.7 µg DON3G/kg body weight) to pigs (n=6 for systemic plasma, n=4 for plasma from vena porta). 
Values are presented as mean + or - SD. No DON was detected in chickens after DON3G administration. In pigs, 
no DON was detected after IV DON3G administration and no DON3G after PO DON3G administration. The 
inserts show PO administration data in more detail. 

 

 

 

 



 

146 
 

Table 4. Toxicokinetic parameters, presystemic hydrolysis of the bioavailable fraction (%) and absolute oral 
bioavailability (F%) of DON and DON3G after IV and PO administration to broiler chickens and pigs (n=6).  

 

 Broiler chicken Pig 

 DON (IV&PO) DON3G (IV&PO) DON (IV&PO) DON3G IV DON3G PO 

kaDON (1/min) 0.0315±0.0173 - 0.0274±0.0107 - 0.00501±0.00160 

KeDON/βDON (1/min) 0.0369±0.0041 - 0.00425±0.00155 - 0.0217±0.0014 

t1/2elDON (min) 18.8±2.1 - 163±59 - 31.9±2.1 

ClDON (mL/min/kg) 88.8±12.4 - 5.25±1.25 - 25.9±2.8 

QDON (mL/min/kg) 86.7±40.7 - 17.4±11.3 - - 

VcDON (mL/kg) 1350±578 - 614±127 - 1196±717 

VpDON (mL/kg) 1087±211 - 789±486 - - 

tlag (min) - - - - 83.6±5.6 

kaDON3G (1/min) - 0.0238±0.0203 - - - 

keDON3G/βDON3G (1/min) - 0.0204±0.0037 - 0.0128± 
0.0007 

- 

t1/2elDON3G (min) - 34.0±6.2 - 54.1±3.0 - 

ClDON3G (mL/min/kg) - 11.4±1.2 - 3.17±0.81 - 

QDON3G (mL/min/kg) - 27.7±25.8 - - - 

VcDON3G (mL/kg) - 290±188 - 249±67 - 

VpDON3G (mL/kg) - 284±167 - - - 

FRAC (%) 5.56±2.05 3.79±2.60 81.3±17.4 - 16.1±5.4** 

Pres.Hydr. (%) - 0 - - 100 

F (%) 5.56±2.05 3.79±2.68 81.3±17.4 - 0* 

Cmax (ng/mL) 7.40±7.35 16.6±10.4 23.7±9.8 - 3.88±2.0** 

tmax (min) 30.0±22.5 43.1±49.4 44.4±39.1 - 225±100** 

 

Values are presented as mean ± SD. For pigs, the DON3G PO parameters have been calculated simultaneously 
on all pooled pig PO DON3G data, as a result no SD could be calculated, instead coefficients of variation of the 
models’ predicted versus the observed concentrations are given. kaDON=absorption rate constant for DON 
(1/min); keDON=elimination rate constant for DON (1/min); βDON=disposition rate constant for DON (1/min); 
t1/2elDON=elimination half-life of DON (min); ClDON=clearance of DON (mL/min/kg); QDON=intercompartmental 
flow for DON (mL/min/kg); VcDON=central volume of distribution for DON (mL/kg); VpDON=peripheral volume of 
distribution for DON (mL/kg); tlag=absorption lag time (min); kaDON3G=absorption rate constant of DON3G 
(1/min); keDON3G=elimination rate constant for DON3G (1/min); βDON3G=disposition rate constant for DON3G 
(1/min); t1/2elDON3G=elimination half-life of DON3G (min); ClDON3G=clearance of DON3G (mL/min/kg); 
QDON3G=intercompartmental flow for DON3G (mL/min/kg); VcDON3G=central volume of distribution for DON3G 
(mL/kg); VpDON3G=peripheral volume of distribution for DON3G (mL/kg); FRAC=absorbed fraction; 
Pres.Hydr.=percentage of the total dose that is hydrolysed presystemically to DON and absorbed as DON (%); 
F=absolute oral bioavailability (%); Cmax=maximum plasma concentration for DON (ng/mL); tmax= time to 
maximum plasma concentration for DON (min); * and ** statistically significant difference at p<0.05 and 
p<0.01, respectively, compared to DON values in the same animal species.  
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The FRAC of PO administered DON and DON3G to chickens and PO administered DON to pigs 

was calculated using the tailor made model. However, the FRAC of DON3G to pigs could not 

be calculated by this model as after PO administration of DON3G only DON was recovered 

and after IV administration only DON3G. The FRAC was therefore calculated manually by 

correcting the area under the curve (AUC) of DON3G after IV administration by multiplying 

this value with its Cl, and by correcting the AUC of DON after PO DON3G dosing again by 

multiplying this value with its Cl and by correcting this ratio for the difference in molar 

masses, as shown in the formula below: 

          
                                             

                                                    
 

 

The mean (±SD) absorbed fractions of DON and DON3G in broiler chickens were 5.56±2.05% 

and 3.79±2.68%, respectively. Moreover, for DON and DON3G in chickens, F was equal to 

FRAC as DON and DON3G are absorbed in their unchanged form. The FRAC of DON in pigs, 

81.3±17.4% was also identical to the F. The FRAC of DON3G in pigs was 16.1±5.4%. However, 

as after PO DON3G administration only DON was recovered, F equals 0, indicating complete 

hydrolysis of the absorbed fraction. The higher observed FRAC values for pigs compared to 

chickens is an important contributing factor to the decreased sensitivity of the latter species, 

and may be partially caused by its rapid GI transit time, leading to a reduced time for 

absorption in chickens. 

After IV administration of DON3G to chickens and pigs, no hydrolysis to DON could be 

observed, indicating the absence of systemic hydrolysis for both species. For pigs, this 

confirms the findings of Nagl et al. (2014). After PO administration of DON3G to chickens, no 

hydrolysis was observed neither. In contrast, after PO DON3G administration to pigs, only 

DON was recovered, indicating a complete presystemic hydrolysis of the absorbed fraction. 

Presystemic hydrolysis can take place at the level of GI microbiota, GI tissues, portal blood or 

the liver. To further determine the site of presystemic hydrolysis, blood was collected from 

the porcine vena porta, which drains the venous intestinal blood to the liver first. 

Interestingly, only DON was recovered and no DON3G was detected in these portal plasma 

samples after PO DON3G administration. This absence of DON3G in portal plasma as well as 
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the absence of DON after IV DON3G administration, indicates that hydrolysis occurs at the 

site of the GI tract (microbiota or GI tissues) and not in portal blood nor in the liver. This is in 

accordance with previously reported in vitro results which reported that hydrolysis could be 

caused by intestinal microbiota and which have demonstrated the important role of 

microbiota composition and the abundance in the intestinal tract (Abbott 2004; Berthiller et 

al. 2011; Dall'Erta et al. 2013; Gratz et al. 2013; Hattori and Taylor 2009). The observed lag 

time for DON absorption after PO administration of DON3G to pigs, 83.6 min, further 

supports the hypothesised intestinal hydrolysis of DON3G. This is also reflected in the 

significant higher tmax value of DON after PO DON3G administration in pigs. DON is mainly 

absorbed in the proximal part of the small intestine by means of passive diffusion. A less 

effective passive non-ionic diffusion is expected for DON3G as it is more polar and has a less 

favourable log D value (-2.74) compared to DON (-0.97) at both physiological and acidic pH 

values (Maresca 2013). The pH in the stomach and duodenum of adult pigs is 4.4 and 6.4-

7.4, respectively (Merchant et al. 2011). These rather low pH values are unfavourable for 

most GI commensal bacteria. When moving to more distal parts of the small intestine, the 

pH increases and a more abundant growth of microbiota is observed (Maresca 2013). 

Consequently, the probability of DON3G hydrolysis to DON is increased, resulting in the 

observed lag time of 83.6 min. As chickens have a high bacterial load at the crop, thus before 

the small intestine, which is the main site of absorption, hydrolysis of DON3G to DON by GI 

microbiota would be expected after PO administration to chickens. For pigs, where the high 

bacterial load is located after the site of absorption, only limited hydrolysis to DON is 

expected. Remarkably, our observations were the opposite of these theoretical 

expectations. This discrepancy likely finds its cause in the bacterial species composition and 

abundance in both the chicken crop and pig distal small and large intestine. 

The mean (±SD) kaDON values in chickens and pigs were comparable, 0.0315±0.0173/min and 

0.0274±0.0107/min, respectively. For pigs kaDON values of 0.00995±0.00292/min (Eriksen et 

al. 2003), 0.0310±0.0238/min (Goyarts and Dänicke 2006) and 0.0164±0.0161/min 

(Broekaert et al. 2015b) have been reported, and for chickens a kaDON of 0.0203±0.0101/min 

(Broekaert et al. 2015b) was previously described. The kaDON3G in chickens was slightly lower 

than that of DON, 0.0238±0.0203/min. For pigs no kaDON3G could be calculated as it was fully 

hydrolysed to DON after PO administration. The resulting kaDON after PO DON3G 
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administration was 0.00501/min, significantly lower than the kaDON after DON 

administration. The kaDON after PO DON3G administration is influenced by presystemic 

hydrolysis, consequently this value is also determined by biotransformation in addition to 

absorption. 

Mean (±SD) ClDON3G values of 11.4±1.2 and 3.17±0.81 mL/min/kg were obtained for chickens 

and pigs, respectively. ClDON values in chickens and pigs were 88.8±12.4 and 5.25±1.25 

mL/min/kg, respectively. For chickens, a comparable ClDON of 120 mL/min/kg (Osselaere et 

al. 2013) and 102±12 mL/min/kg (Broekaert et al. 2015b) have previously been described. 

ClDON values in pigs of 9.30±3.95 mL/min/kg (acute PO) (Goyarts and Dänicke 2006), 

5.30±1.64 mL/min/kg (chronic PO) (Goyarts and Dänicke 2006), 15.1±3.8 mL/min/kg (acute 

PO) (Broekaert et al. 2015b) and a ClDON/F of 5.0±0.7 mL/min/kg (acute PO) (Devreese et al. 

2014) have been reported, which are in the same range as the results in this study. The 

obtained mean (±SD) VcDON and VpDON values for chickens were 1350±578 and 1087±211 

mL/kg, respectively. For pigs, VcDON and VpDON values were comparable, i.e. 614±127 and 

789±486 mL/kg respectively. For chickens VcDON3G and VpDON3G values of 290±188 and 

284±167 mL/kg were obtained. A VdDON3G in pigs of 249±67 mL/kg was obtained using a one-

compartmental model. The observed lower Vd values for DON3G indicate that DON3G is 

more confined to intravascular fluids than DON, which can be theoretically explained by its 

increased polarity compared to DON, resulting in less effective passive non-ionic diffusion 

into tissues. 

The mean (±SD) elimination half-lives (t1/2el) for DON in broilers and pigs were 18.8±2.1 min 

and 163±59 min (2.71 h), respectively. For pigs, t1/2el of 5.3±2.4 h (acute PO, two-

compartmental model) (Goyarts and Dänicke 2006), 2.4±0.7 h (acute PO, one-

compartmental model) (Eriksen et al. 2003), 2.7±0.5 h (acute PO, one-compartmental 

model) (Devreese et al. 2014) and 2.9 h (acute PO, two-compartmental model) (Broekaert et 

al. 2015b) were observed. For broiler chickens comparable elimination half-lives of 27.9±6.9 

min (IV) and 38.2±11.2 min (acute PO) (Osselaere et al. 2013) and 17.9 min (acute PO) 

(Broekaert et al. 2015b) were also reported. The t1/2elDON3G values for chickens and pigs were 

34.0±6.2 min and 54.1±3.0 min, respectively. Remarkably, the t1/2elDON3G compared to that of 

DON was increased for chickens and decreased for pigs, highlighting the difference between 
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both species with respect to DON3G’s elimination. For pigs, this is mainly attributed to a 

lower Vd. For broiler chickens, additional to a lower Vd a reduced Cl was observed. 

3.3. HRMS 

The plasma concentration-time profiles of phase II metabolites are depicted in Figure 4 and 

Figure 5 for pigs and chickens, respectively. Since only semi-quantitative analysis was 

performed, absolute peak areas obtained on the HRMS instrument are depicted. For pigs, a 

first observation is that glucuronidation patterns after PO administration do not differ 

between systemic (vena jugularis) and presystemic (vena porta) plasma. This indicates that 

glucuronidation does not occur presystemically to a significant rate and extent. This 

hypothesis is further supported by practically identical observed mean glucuronidation ratios 

(area of DON3GlcA/ area of DON) after IV and PO administration, 4.94 and 4.98, 

respectively. For pigs, no sulfate conjugates were detected, which is expected as this species’ 

deficient phase II sulfation reaction is described (Riviere and Papich 2013). In contrast 

chickens predominantly formed DON-3α-sulfate. The mean DON-3α-sulfate/DON ratios in 

chickens after IV and PO DON administration were 392 and 9,890, respectively. The 

observed ratios are comparable to previously found values for IV and PO administration of 

DON to chickens of 243-453 and 1,365-29,624, respectively (Devreese et al. 2015). This 

remarkable contrast in ratio between IV and PO administration, points towards a 

presystemic sulfation of DON, either by GI microbiota, GI tissues or a presystemic liver 

effect. In chickens, no glucuronidation was observed. The extensive and rapid sulfation in 

chickens might partially explain the relative resistance of this species towards the 

detrimental effects of DON.  

In conclusion, broiler chickens do not hydrolyse DON3G to DON in vivo. Additionally, DON3G 

has a low absolute oral bioavailability (3.79±2.68%) comparable to that of DON 

(5.56±2.05%). After PO DON3G administration to pigs only DON was recovered, indicating a 

complete presystemic hydrolysis of DON3G. However, the absorbed fraction is 

approximately 5 times lower than after PO DON administration, 16.1±5.4% compared to 

81.3±17.4%. Analysis of phase II metabolites revealed that DON biotransformation in pigs 

consists mainly of glucuronidation, and in chickens sulfation predominantly occurs. Pigs are  
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Phase II biotransformation is much more extensive for chickens than for pigs, which can be a 

possible explanation for the differences in sensitivity of the latter species to DON. 

Furthermore, given the in vivo hydrolysis of DON3G in pigs, pigs are likely to be more 

sensitive to this modified mycotoxin compared to chickens. Although in vitro studies 

reported that DON3G is less toxic than DON, the demonstrated in vivo hydrolysis to DON in 

pigs, as well as the inter-species differences observed, indicate a decreased yet not 

neglectable toxicological relevance of DON3G and consequently the need for further 

research to possibly establish a tolerable daily intake. 

 

 
 
 
Figure 4. Porcine plasma (systemic and vena porta) concentration-time profiles of deoxynivalenol (DON), 
deoxynivalenol-3-β-D-glucoside (DON3G) and deoxynivalenol-3-glucuronide (DON3GlcA) after oral (PO) and 
intravenous (IV) administration of DON (dose=36 µg DON/kg body weight) and DON3G (dose=55.7 µg 
DON3G/kg body weight) to pigs (n=3 for systemic plasma, n=3 for plasma from vena porta). Values are 
presented as mean + or - SD. 
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Figure 5. Plasma concentration-time profiles of deoxynivalenol (DON) and deoxynivalenol-3α-sulfate (DON3S) 
after oral (PO) and intravenous (IV) administration of DON (dose=500 µg DON/kg body weight) to broiler 
chickens (n=3). Values are presented as mean + SD. 
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CHAPTER IV 

 

In vitro cytotoxicity of acetylated and modified deoxynivalenol on a porcine 

intestinal epithelial cell line  

 

 

 

 

 

 

 

 

 

 

 

 

Adapted from:  

Broekaert N., Devreese M., Demeyere K., Meyer E., Croubels S. (2015). In vitro cytotoxicity of 

acetylated and modified deoxynivalenol on a porcine intestinal epithelial cell line. In 

preparation 



 

158 
 

Abstract - The gastrointestinal tract is the first target after ingestion of deoxynivalenol (DON) 

via feed and food. Deoxynivalenol is known to affect the proliferation and viability of animal 

and human intestinal epithelial cells. In addition to DON, feed and food is often co-

contaminated with acetylated and modified forms of DON, such as 3-acetyl-deoxynivalenol 

(3ADON), 15- acetyl-deoxynivalenol (15ADON) and deoxynivalenol-3-β-D-glucoside (DON3G). 

The goal of this study was to determine the in vitro intrinsic cytotoxicity of these acetylated 

and modified forms of DON towards differentiated and proliferative porcine intestinal 

epithelial cells by means of a flow cytometric technique. Cell death was assessed by means 

of dual staining with Annexin-V-fluorescein isothiocyanate (FITC) and propidium iodide (PI), 

which allows the discrimination of viable cells (FITC-/PI-), apoptotic (FITC+/PI-) and necrotic 

cells (FITC+/PI+). Based on the data from the presented pilot study, it is concluded that 

cytotoxicity can be ranked as follows: DON3G << 3ADON < DON ≈ 15ADON.  
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1. Introduction 

Small grain cereals, such as wheat, maize and oats are often infected by Fusarium species. 

These fungi may produce trichothecenes, a class of mycotoxins. Deoxynivalenol (DON) is the 

most prevalent trichothecene in cereals in Europe and North America (Gareis et al. 2003). In 

addition to its presence in raw cereals, DON is particularly stable towards most food-

processing techniques and thus can persist in processed food and feed (Hazel and Patel 

2004). After consumption of food/feed contaminated with DON, and mycotoxins in general, 

the gastrointestinal tract is the first target of these compounds.  

DON inhibits the absorption of certain nutrients (e.g. glucose and aminoacids) in human 

(Maresca et al. 2002) and animal (Awad et al. 2007; Awad et al. 2014; Hunder et al. 1991; 

Marin et al. 2011) intestinal epithelial cells (IECs). Furthermore, DON is known to affect the 

tight-junctions of the intestinal epithelium, thereby compromising the intestinal barrier 

function (Antonissen et al. 2015a; Diesing et al. 2011a; Diesing et al. 2011b; Goossens et al. 

2012; Maresca et al. 2002; Pinton et al. 2010; Pinton et al. 2012). Additionally, DON may 

cause intestinal inflammation (Maresca et al. 2008; Maresca and Fantini 2010), increased 

bacterial translocation (Maresca and Fantini 2010; Vandenbroucke et al. 2009; 

Vandenbroucke et al. 2011), a decrease in the number of goblet cells and a diminished 

mucus production (Antonissen et al. 2015b; Obremski et al. 2008; Pinton et al. 2015). All 

these processes may facilitate the crossing of microbial antigens indirectly affecting the IECs 

innate immunity (Maresca et al. 2008; Maresca and Fantini 2010). The IECs innate immunity 

may also be directly affected via the activation of signaling pathways by DON itself (Cano et 

al. 2013; Van De Walle et al. 2008; Maresca 2013; Van De Walle et al. 2010; Vandenbroucke 

et al. 2011). Finally, DON can alter the viability and proliferation of animal and human IEC. At 

low doses (IC50= 0.3-1.5 mg/L) inhibition of cell proliferation is observed, at higher 

concentrations (IC50= 3-15 mg/L) cytotoxic effects and apoptosis can be seen in human, pig 

and rat IEC (Bianco et al. 2012; Diesing et al. 2011a; Diesing et al. 2011b; Vandenbroucke et 

al. 2011). Factors influencing cytotoxicity such as status of the cells (differentiated vs 

undifferentiated) and exposure site (apical vs basolateral) have been investigated for pig IEC. 

It was observed that undifferentiated cells were 10-times more sensitive and that 

basolateral exposure resulted in a 4-times higher cytotoxicity compared to apical exposure 

(Diesing et al. 2011a; Diesing et al. 2011b; Diesing et al. 2012). 
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Food and feed containing DON is often co-contaminated with its modified forms. These 

modified mycotoxins predominantly consist of 3-acetyl-deoxynivalenol (3ADON), 15-acetyl-

deoxynivalenol (15ADON) and deoxynivalenol-3-β-D-glucoside (DON3G). Both 3ADON and 

15ADON are fungal precursors in the biosynthesis of DON. DON3G is produced in planta as 

phase II metabolite in an attempt to detoxify and eliminate DON. Concentrations exceeding 

1000 µg/kg have been reported for 3ADON, 15ADON and DON3G (Gareis et al. 2003), 

amounts not to be neglected knowing that the tolerable daily intake (TDI) for DON in 

humans is 1 µg/kg bodyweight (bw). DON3G/DON ratios larger than 1 have been observed in 

some hard red spring wheat samples (Sasanya et al. 2008).  

These modified mycotoxins have not been as extensively investigated as DON. Questions 

such as their potential in vivo hydrolysis and their intrinsic toxicity still remain. The goal of 

this study was to determine the in vitro cytotoxicity of 3ADON, 15ADON and DON3G towards 

differentiated and undifferentiated intestinal epithelial cells. As pigs are among the most 

sensitive species to DON toxicity, a porcine intestinal epithelial cell line (IPEC-J2) was chosen.  

2. Experimental 

2.1. Chemicals 

DON, 3ADON and 15ADON (>99% purity) were purchased from Fermentek (Jerusalem, 

Israel). DON3G was enzymatically synthesised, purified and verified using nuclear magnetic 

resonance (NMR) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) 

(<0.05% DON) by the Christian Doppler Laboratory for Mycotoxin Metabolism Center for 

Analytical Chemistry (Vienna, Austria). DON, 3ADON, 15ADON and DON3G were dissolved in 

ethanol yielding a stock solution of 10 mg/mL. All the above mentioned stock solutions were 

stored at ≤−15°C.  

2.2. Cell line and culture conditions 

The IPEC-J2 cell line is a continuous intestinal cell line derived from the jejunal epithelium 

isolated from a neonatal piglet. The IPEC-J2 cells are unique as they are derived from the 

small intestine and are neither transformed nor tumourigenic in nature (Vergauwen 2015). 

Cells were grown in Dulbecco’s Modified Eagle Medium (DMEM)/Ham’s F12 (1:1) medium 

(Invitrogen™ Life Technologies, CA, USA), supplemented with 5% fetal calf serum (FCS, 
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HyClone, UK), 1% (v/v) insulin/transferrin/Na-selenite (Gibco, Thermo Fischer Scientific, MA, 

USA), 1% (v/v) penicillin/streptomycin (Gibco), 1% (v/v) kanamycin (Gibco) and 0.1% 

fungizone (Bristol-Myers Squibb, Braine-l’Alleud, Belgium), further referred to as culture 

medium. The cells were routinely seeded at a density of 3 × 105 cells/mL with 40 mL of 

medium in plastic tissue culture flasks (150 cm2, Nunc, Denmark), maintained in a humidified 

incubator at 37°C under 5% CO2, and passaged twice weekly. 

2.3. Cytotoxicity assay 

For the cytotoxicity experiment, IPEC-J2 cells were seeded at 5 × 105 cells/well on 24-well 

plates in 1 mL of culture medium and allowed to grow for 2 or 21 days for proliferative and 

differentiated cells, respectively. The IPEC-J2 cell line in culture with addition of 5% FCS 

undergoes a process of spontaneous differentiation that leads to the formation of a 

polarised monolayer with high transepithelial electrical resistance (TEER) within 1–2 weeks 

(Vergauwen 2015). Each well was washed twice with 1 mL of sterile Hank’s buffered salt 

solution (HBSS, Gibco) in order to remove dead cells caused by the trypsin 

treatment/seeding protocol. Monolayers were exposed in fivefold to DON, 3ADON, 15ADON 

or DON3G, all dissolved in ethanol and diluted with culture medium, for 72 h at following 

concentrations: 0, 1, 5, 10, 15 and 20 µg/mL. In order to exclude a position effect on the 

plate, the order of the toxins was different for each 24-well plate. After incubation, the IPEC-

J2 cells were trypsinised and cells together with their culture medium (containing detached 

cells) were joined in a flow cytometric tube. In order to remove the mycotoxins and cellular 

debris, each tube was centrifuged (10 min, 524 x g, 4°C) after which the pellet was 

resuspended in 500 µL of HBSS. This was done three consecutive times. Next, the cells were 

centrifuged (10 min, 524 x g, 4°C) followed by an incubation for 10 min in the dark at room 

temperature with 100 μL of a solution containing 20 μL of a commercial Annexin-V-

fluorescein isothiocyanate reagent (Annexin-V-FITC reagent, Sigma-Aldrich, Belgium) and 20 

μL of a 50 µg/mL propidium iodide solution (PI, Sigma-Aldrich) dissolved in 960 µL of 

incubation buffer containing 10 mM 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid 

(HEPES), 140 mM NaCl and 5 mM CaCl2. Cells were analysed by a FACSCanto flow cytometer 

(Becton, Dickinson and Company, Belgium). A positive apoptosis control was included by 

staining the cells solely with Annexin-V-FITC after a 4 h treatment with 1.9 µM 

staurosporine. A positive necrosis control was obtained by single staining the cells with PI 
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after a 1 min incubation with RIPA buffer (PBS with 0.5% sodium deoxycholate, 0.1% sodium 

dodecyl sulfate and 1% NP-40). Additionally, positive controls were used to quantify and 

compensate for spectral bleed-through. Furthermore, unstained cells (no Annexin-V-FITC 

and no PI) were also included to determine autofluorescence of IPEC-J2 cells. To obtain 

viable cells as a negative control for Annexin-V-FITC staining and to determine the distinction 

between positive and negative stained cells, the culture medium was removed and the cells 

were washed twice with HBSS before trypsin treatment to exclude nonviable cells. Cell death 

was assessed using dual staining with Annexin-V-FITC and PI which allows the discrimination 

of viable cells (FITC-/PI-), apoptotic (FITC+/PI-) and necrotic cells (FITC+/PI+), see Figure 1. The 

mycotoxin concentration resulting in 50% reduction in viable cells (IC50) was calculated using 

linear regression.  

 

 

 

Figure 1. Dual staining with Annexin V and PI. In a live, intact cell, PI cannot enter the cell and label dsDNA/RNA 

and phosphatidylserine (PS) is maintained exclusively on the inner leaflet via flippase, resulting in negative 

staining for both dyes. Annexin V labels externalized PS- on the cell surface following the initiation of apoptosis. 

During the latter stages of apoptosis/necrosis both PS is exposed and PI can enter the cell due to the loss of 

membrane integrity (adopted from http://www.dojindo.com/store/p/847-Annexin-V-FITC-Apoptosis-Detection-

Kit.html) 

2.4. Statistical analysis 

Statistical analysis of mean Annexin-V-FITC intensity consisted of one-way ANOVA with post-

hoc Scheffé tests (P value < 0.05) followed by Levene’s test for homogeneity of variances (P 

value > 0.01). 
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3. Results and discussion 

The goal of this study was to determine the in vitro intrinsic cytotoxicity of DON, 3ADON, 

15ADON and DON3G towards differentiated and proliferative IPEC-J2 cells. By means of flow 

cytometry (FCM), distinction and quantification of viable cells (FITC-/PI-), apoptotic (FITC+/PI-) 

and necrotic cells (FITC+/PI+) was made. In Figure 2 viable (blue), apoptotic (green) and 

necrotic (black) populations are depicted after a 72h exposure to different concentrations of 

DON. 

 

Figure 2: Population plots displaying viable (blue), apoptotic (green) and necrotic (black) populations of IPEC-J2 
cells after a 72 h exposure of 1, 5, 10, 15 and 20 µg/mL of DON. Y-axis: PI intensity; X-axis: Annexin-V-FITC 
intensity 

Figure 3 shows viable, apoptotic and necrotic proliferative and differentiated IPEC-J2 cells 

after 72 h incubation with different concentrations of DON, 3ADON, 15ADON or DON3G and 

the corresponding IC50 values. A first observation is that differentiated IPEC-J2 cells are less 

susceptible to the evaluated mycotoxins compared to proliferative cells. Similar observations 

for DON have been made using IPEC-J2 cells (Vandenbroucke et al. 2011) and other intestinal 

epithelial cell lines such as Caco-2 (Bony et al. 2006; Pierron et al. 2015) and HT-29-D4 

(Maresca et al. 2002). Regarding the cytotoxic effect of DON on IPEC-J2 cells as determined 

by a neutral red assay, the viability of proliferative cells was significantly decreased after a 24 
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h exposure to concentrations exceeding 0.1 µg/mL. The viability of differentiated cells was 

not significantly affected after a 24 h exposure to 10 µg/mL of DON (Vandenbroucke et al. 

2011). A study by Goossens et al. demonstrated via FCM a decreased viability for 

proliferative IPEC-J2 cells after a 72 h exposure to 2.5 µg/mL of DON, with an IC50 value of 

6.98 µg/mL (Goossens et al. 2012). 

The higher susceptibility of proliferative cells could be attributed to the capacity of DON to 

inhibit protein synthesis and subsequently nucleic acid synthesis, mechanisms necessary for 

dividing cells. Another explanation is the well known cyclical fluctuation of many enzymatic 

activities, particularly those related to the metabolizing capacities that are increased at 

differentiation, as demonstrated for the Caco-2 cell line. Among the metabolizing enzymes, 

the UDP-glucuronosyltransferases (UGTs) for which DON can be a substrate (Maul et al. 

2012) and glutathione S-transferases (GSTs) for which the 12–13 epoxide group 

characterizing most trichothecenes are possible targets (Bony et al. 2006; Meky et al. 2003), 

have been reported. Also, an increased expression of transporters/efflux systems of the ABC 

superfamily, i.e. P-glycoprotein (P-gp) and non-Pgp carriers, in differentiated cells has been 

described (Delie and Rubas 1997).  

The IC50 values in proliferating IPEC-J2 cells calculated in this study were similar to prior 

published cytotoxicity results obtained with DON, 3ADON and 15ADON in proliferating Caco-

2 cells using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. A 

similar toxicity was found for DON and 15ADON with IC80 values of 16.5 µM (4.88 µg/mL) 

and 10.5 µM (3.55 µg/mL), respectively. 3ADON, for which a lower toxicity was expected, 

exhibited an IC80 value of 125 µM (42 µg/mL), which is approximately ten times higher 

(Alassane-Kpembi et al. 2015).  
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Figure 3: Viable (green), apoptotic (red) and necrotic (blue) proliferative and differentiated IPEC-J2 cells after a 72 h incubation with 0, 1, 5, 10, 15 or 20 µg/mL DON, 3ADON, 
15ADON or DON3G and the resulting IC50 values; Y-axis: percentage of cells (%); X-axis: concentration; /= not determined.
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The toxicity of DON3G in mammals remains largely unknown. Pierron et al. (2015) recently 

assessed comparative cytotoxicity of DON and DON3G on both proliferative and 

differentiated Caco-2 cells by quantitation of the present ATP. However, this set up does not 

allow distinction between viable and apoptotic cells since both cell types produce ATP. 

Nevertheless, this set up can discriminate between necrotic versus the sum of viable and 

apoptotic cells. After a 48 h exposure of proliferative Caco-2 cells to DON, an IC50 of 1.3 µM 

(0.384 µg/mL) was observed. In contrast, no cytotoxicity was observed with 0-10 µM of 

DON3G. For differentiated cells, no cytotoxicity was observed for 0-10 µM of DON or DON3G 

(Pierron et al. 2015). Our study could not calculate IC50 values for DON3G since the viability 

of cells incubated with DON3G appeared to be concentration independent, indicating 

absence of cytotoxicity in the concentration range tested. In contrast, the viability plots of 

DON, 3ADON and 15ADON were all characterised by a clear decreasing slope, indicating a 

concentration dependent cytotoxicity.  

When assessing cytotoxicity from a population point of view, necrosis and apoptosis often 

result in a decrease in cell volume causing a population shift in the forward scatter (FSC) area 

versus side scatter (SSC) area plot. In Figure 4 A this population shift of apoptotic and 

necrotic cells (black) compared to viable cells (blue) is depicted after exposure to 5 µg/mL of 

DON. In contrast, for 10 µg/mL of DON3G no such population shift could be detected as 

depicted in Figure 4 B.  

 

Figure 4: Side scatter (SSC) – forward scatter (FSC) area plots displaying necrotic and apoptotic cells (black) and 
viable proliferative IPEC-J2 cells (blue). A: 5 µg/mL DON causes a morphological shift of non-viable cells; B: 10 
µg/mL DON3G causes no morphological shift. 
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Another method to plot the FCM data is to determine mean FITC intensity for a given test 

condition. This is presented for apoptotic (Annexin-V-FITC positive, PI negative) proliferative 

cells in Figure 5. For each mycotoxin, mean Annexin-V-FITC intensities of the treated cells (1-

20 µg/mL) were compared with their control (0 µg/mL). When regarding the apoptotic cells, 

DON, 3ADON as well as 15ADON exhibited a statistically significant increase in mean FITC 

intensity compared to control, from 5, 5 and 10 µg/mL, respectively, indicating an increase in 

apoptosis. In contrast, DON3G concentrations up to 20 µg/mL did not lead to a significant 

increase in FITC, indicating the absence of a DON3G induced apoptosis.  

       

Figure 5: Mean ± SD Annexin-V-FITC signal intensity for apoptotic proliferative IPEC-J2 cells. * Statistically 
significant compared to the control (0 µg/mL), p<0.05 determined by one-way ANOVA with post-hoc Scheffé 
tests. 

In conclusion, based on the data from the presented study, cytotoxicity can be ranked as 

follows: DON3G << 3ADON < DON ≈ 15ADON. However, it is essential to keep in mind that 

cytotoxicity to IECs is merely one toxicological endpoint. Other endpoints, such as effects on 

the immune system, may display significantly more or less sensitive dose-response curves. 

Furthermore, susceptibility to DON has been demonstrated to exhibit large interspecies 

differences. These differences can be partly attributed to a varying sensitivity of the animals 

cells, tissues and organs to the effects of DON or to a different exposure, caused by 

toxicokinetic differences such as distinct differences in absolute oral bioavailability or in vivo 

hydrolysis of acetylated and modified mycotoxins. 
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The Fusarium mycotoxin deoxynivalenol (DON) is one of the most frequently occurring 

mycotoxins, contaminating 56% of feed and feed raw materials worldwide (Schatzmayr and 

Streit 2013). In addition to its high prevalence in raw cereals, DON is particularly stable 

towards most food processing techniques and thus can persist in processed food and feed 

(Hazel and Patel 2004). DON is known for its harmful effects on animals, leading to great 

economic losses. Additionally to the native mycotoxin, feed can be contaminated with 

acetylated and modified forms of DON, such as 3-acetyl-deoxynivalenol (3ADON), 15-acetyl-

deoxynivalenol (15ADON) and deoxynivalenol-3-β-D-glucoside (DON3G). Little is known 

about the toxicity and toxicokinetics of these acetylated and modified mycotoxins, 

compared to the well investigated free mycotoxin DON. One of the major questions 

associated with acetylated and modified mycotoxins is whether in vivo hydrolysis may result 

in the release of free mycotoxins and what their disposition in the animal’s body is. This 

doctoral thesis contributes to this research gap, more specifically with respect to the oral 

bioavailability, (pre)systemic hydrolysis and main toxicokinetic characteristics of 3ADON, 

15ADON and DON3G in broiler chickens and pigs. Figure 1 shows an overview of the main 

methodologies and main results achieved in this doctoral thesis. 

Determination of the oral bioavailability, rate and extent of in vivo hydrolysis and 

toxicokinetic characteristics of 3ADON, 15ADON and DON3G in relevant animal species by 

means of a state-of-the-art toxicokinetic analysis supports legislative authorities to carefully 

take measures with respect to their risk assessment. In turn, this risk assessment would 

assist in the establishment of a tolerable daily intake (TDI) for acetylated and modified 

mycotoxins or to include these compounds in a group TDI. The European Food Safety 

Authority (EFSA) recently published a scientific opinion on the risks for human and animal 

health related to the presence of modified forms of zearalenone (ZEN), nivalenol (NIV), T-2 

toxin (T-2) and HT-2 toxin (HT-2) in food and feed. However, for the acetylated and modified 

forms of DON, no assessment is currently available due to their limited toxicity and 

toxicokinetic data (EFSA CONTAM Panel 2014). The research presented here may also 

support such assessment. 

A more general discussion on (modified) mycotoxins is presented below, linked to the 

results obtained in this thesis. 
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Figure 1. Overview of the main methodologies and main results achieved in this doctoral thesis. IV=intravenous; PO=per os; ka=absorption rate constant (1/min); 
Cl=clearance (mL/min/kg); Q=intercompartmental flow (mL/min/kg); Vc=central volume of distribution (mL/kg); Vp=peripheral volume of distribution (mL/kg); 

FRAC=absorbed fraction; Pres.Hydr.=percentage of the total dose that is hydrolysed presystemically to DON and absorbed as DON (%) 
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Is there a need for risk assessment with respect to acetylated and modified 

deoxynivalenol? 

 “Wouldn’t it be more practical to just lower the guidance level in feed and TDI for 

DON, thereby also accounting for the fraction of acetylated and modified mycotoxins rather 

than investing time and resources in research on acetylated and modified mycotoxins?” 

At first glance this would seem an adequate solution to the acetylated and modified 

mycotoxin problem. However, several facts demonstrated in this doctoral thesis, make this 

statement flawed. 

 The first problem lies in the varying amounts of acetylated and modified mycotoxins 

in relation to DON. These ratios are highly dynamic and are significantly influenced by factors 

such as the producing fungi, geographical location and time of sampling/harvesting and the 

subsequent climatological conditions. Simply lowering the TDI and maximum guidance levels 

for DON cannot address these differences. If in a particular batch of food or feed only DON 

and no acetylated nor modified forms would be present, this would result in falsely 

discarding the batch, leading to economic losses. On the other hand, in case DON may be 

present in feed in low amounts but with high concentrations of modified forms, this would 

lead to acceptance of such a batch while adverse health effects may occur after 

consumption. 

Another problem is that such an approach would imply the assumption that the 

intrinsic toxicity of acetylated and modified forms of DON is equal to that of DON. Although 

these acetylated and modified forms are structurally similar to DON, it has been 

demonstrated that these compounds may exhibit distinct toxicities: DON3G & DOM-1 << 

3ADON < DON ≈ 15ADON (Pierron et al. 2015; Pinton et al. 2012). The decreased toxicity of 

DON3G and increased toxicity of 15ADON compared to DON are clear examples of the flaws 

of assuming equal toxicity. 

Furthermore, this doctoral thesis showed that toxicokinetic characteristics can 

significantly differ between animal species, further complicating the matter. In general, 

when compared to DON, the more polar DON3G would result in a lower fraction absorbed 

(FRAC) after oral intake, whereas the less polar ADONs have more favourable physico-
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chemical properties resulting in higher oral absorbed fractions. Indeed in pigs, DON, 3ADON 

and 15ADON are completely absorbed orally and both ADONs are completely hydrolysed to 

DON. Consequently, with respect to systemic toxicity, DON, 3ADON and 15ADON will have 

similar effects. In contrast, the absorbed fraction of DON3G is only 16.1±5.4% in pigs and is 

present in the systemic circulation as DON, hereby limiting the contribution of systemic 

toxicity with a factor of 5 compared to the ADONs.  

In broiler chickens, which are deemed more resistant to DON than pigs, the less toxic 

3ADON has an absorbed fraction of 18.2±5.5%, which is nearly double that of DON 

(10.6±4.6%), and it is completely hydrolysed presystemically. The more toxic 15ADON 

partially persists with a presystemic hydrolysis limited to 75.4%. Both ADONs may therefore 

exert more toxic effects than equal molar amounts of DON. Furthermore, the oral fraction 

absorbed of 15ADON is 42.2±12.5%, four times that of DON. In contrast, DON3G is not 

hydrolysed in broiler chickens, unlike in pigs, and has a limited oral bioavailability of 

3.79±2.68%. Combined with its decreased toxicity, this results in a limited contribution of 

DON3G towards the toxicity in broiler chickens.  

In conclusion, these data clearly demonstrate the complexity of the acetylated and 

modified mycotoxin problem including the inter-species variability and subsequently the 

need for risk assessment. 

Do intestinal bacteria play a major role in presystemic hydrolysis? 

The human and animal body contains roughly 10 times more bacteria than cells. 

Especially the intestinal microbiota of humans and animals contain a huge number of 

different bacterial species. The intestinal microbiota play an important role in the 

development of the intestinal systems, nutrient digestion but also in the protection of the 

host against hazardous xenobiotics, such as DON and its acetylated and modified forms 

(Antonissen et al. 2014; Antonissen et al. 2015; Maresca 2013). Figure 2 shows regional pH 

and microbiota densities in the digestive tract of monogastric animals, ruminants and 

poultry. For both ruminants and poultry, the proximal part of the GI tract is less acidic than 

for monogastric animals, allowing a higher bacterial density already present before the 

absorption site of most mycotoxins, i.e. the small intestine. 
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Figure 2. Regional pH and bacterial densities (per mL of intestinal fluid content) in the different segments of the 
digestive tract of humans, ruminants and poultry (adopted from Maresca 2013). 

 

The localisation of bacteria throughout the GI tract in relation to regional pH 

differences can lead to interspecies variability regarding the intestinal metabolism and 

hydrolysis of DON, 3ADON, 15ADON and DON3G. Based on these intestinal characteristics 

two groups can be distinguished. First, animals with a high bacterial load both before and 

after the small intestine such as polygastric animals and birds. Second, animals with only a 

high bacterial load after the small intestine, mainly in the colon, such as most of the 

monogastric species.  

In pigs and chickens, the results of this thesis show that 3ADON and 15ADON are 

presystemically hydrolysed to DON. This suggests that either chemical hydrolysis (reaction 

with water catalysed by acid or reaction with diluted alkali) or gut bacteria, luminal intestinal 

lipases, IEC, blood esterases or the liver during first passage may convert ADONs to DON. If 

complete hydrolysis would occur in the intestinal lumen before absorption, one would 

expect identical plasma concentration-time profiles of DON, 3ADON and 15ADON after the 

administration of equimolar doses. In broiler chickens, we demonstrated clearly higher DON 

plasma levels after 3ADON or 15ADON administration. This indicates that the less polar 

ADONs are not hydrolysed in the lumen but are absorbed, more efficiently than DON, 

followed by hydrolysis in the IEC, portal blood or liver before entering the systemic 

circulation. Remarkably, since after IV administration both ADONs are also rapidly 

hydrolysed, it is most likely that liver enzymes, blood esterases or chemical hydrolysis are 
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responsible for the deacetylation of the ADONs rather than the intestinal microbiota. In 

contrast, DON3G shows no hydrolysis after IV administration in neither of the species 

studied. In humans, β-glucosidase is located in the brush border of the small intestine. 

Consequently, limited or no contribution to DON3G hydrolysis is expected after IV 

administration. Furthermore, β-glucosidase from humans and almonds proved incapable of 

DON3G hydrolysis to DON, a typical trait of micro-organisms (Berthiller et al. 2011). 

In such case, hydrolysis of DON3G to DON would be expected after oral 

administration to chickens, given the high bacterial load before the small intestine is 

reached, the site of absorption. For pigs, where the high bacterial load is located after the 

site of absorption, no hydrolysis to DON would be expected. Our observations were however 

the exact opposite. The observed presystemic hydrolysis of DON3G to DON in pigs can be 

attributed to GI micriobiota or GI tissues, as no DON3G was present in portal plasma after 

PO administration. The hypothesis that GI microbiota play a major role is supported by the 

observed lag time of 84 min in DON plasma concentrations. The discrepancy between the 

absence and presence of hydrolysis for chickens and pigs, respectively, will likely find its 

cause in the bacterial species composition and abundance of both the chicken’s crop and 

pig’s distal small intestine and large intestine. The microbiota of pigs and chickens consist 

mainly of the phyla Firmicutes and Bacteroidetes, accounting for approximately 90% and 

80% of the relative abundance, respectively (Kim and Isaacson 2015; Waite and Taylor 2015). 

The crop, anterior small intestine, duodenal and jejunal epithelial cells, and digesta of 

chicken are dominated by Lactobacillus spp. (Watkins and Kratzer 1983). The hydrolytic 

capacity of Lactobacillus spp. towards DON3G has been described (Berthiller et al. 2011). Of 

the tested L. amylovorus, crispatus, fermentum, gasseri, paracasei, rhamnosus and 

plantarum, only the latter was able to hydrolyse DON3G to DON, more specifically 34% after 

4h incubation. This L. plantarum has been found in the GI tract of chickens, however it does 

not belong to the most abundant GI Lactobacillus species (Hilmi et al. 2007), in contrast, it is 

commonly found in human and other mammalian gastrointestinal tracts (de Vries et al. 

2006). The hydrolytic capacities towards DON3G of Enterococcus, a large genus within 

Firmicutes species, has also been investigated. Of the seven tested species, E. avium was the 

only species unable to hydrolyse DON3G to DON. E. casseliflavus, durans, faecalis, faecium, 

gallinarum and mundtii all hydrolysed DON3G varying between 2% and 39% after a 4 h 
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incubation. The occurrence of both Enterococcus species has been described in the GI tract 

of both chickens and pigs. Possibly, the relative amounts of Enterococcus and Lactobacillus 

species in the GI microbiota could partially explain our in vivo findings. However, the GI 

microbiota of animals consists of a multitude of phyla and genus, demonstrating interspecies 

as well as intraspecies differences, and differing between intestinal sections, providing a 

multitude of options for the observed differences in hydrolysis between chickens and pigs. 

The pig as an animal model for humans 

The (mini)pig presents a favourable species as a non-rodent animal model in terms of 

applicability to different toxicological and pharmacological studies, due to anatomical, 

physiological and biochemical resemblances between (mini)pigs and humans. The (mini)pig 

as a model in toxicity testing of xenobiotics has been well accepted by EU, USA and Japan 

(Gasthuys et al. 2015; Ikeda et al. 1998). The resemblances between pigs and humans have 

been illustrated for several organ systems or physiological processes, especially the striking 

resemblance of the GI tract, hepatic and renal system are of major importance as these are 

the principle organs involved in ADME processes (Bode et al. 2010; Helke and Swindle 2013; 

Svendsen 2006). With respect to acetylated and modified mycotoxins, the results obtained 

for pigs in this thesis are twofold. First, the data contribute to the risk assessment for pigs as 

target species themselves. Second, the data may contribute to the risk assessment for 

humans by extrapolation of pig data. Indeed, the presystemic hydrolysis mechanisms 

responsible for the results obtained in this thesis are comparable in addition to the 

toxicokinetic characteristics with respect to intestinal absorption, phase I and II 

biotransformation and renal excretion. Nevertheless, species extrapolation should always be 

performed with caution since for instance, humans predominantly form deoxynivalenol-15-

β-D-O-glucuronide and to a lesser extent deoxynivalenol-3-β-D-O-glucuronide (Heyndrickx et 

al. 2015), which is in contrast to pigs where the ratios of DON15GlcA to DON3GlcA varied 

between individual piglets (0.5–2.2) (Nagl et al. 2014). Another argument favouring the 

predictive value of pigs is that the porcine microbiota shows large similarities to the human 

intestinal microbial ecosystem (Heinritz et al. 2013), further contributing to the pigs’ 

applicability to study human presystemic hydrolysis. Furthermore, the potential use of 

piglets as an animal model for paediatric toxicity testing has been described (Gasthuys et al. 
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2015), with the additional benefit that this requires smaller quantities of the often expensive 

test compounds compared to full grown animals.  

Future perspectives for research on acetylated and modified mycotoxins 

Animal trials are for the moment indispensable tools in toxicology. Nonetheless, animal trials 

are heavily debated from an ethical point of view. Ethical committees set ethical standards 

for animal experiments, evaluate and guarantee the quality of animal trials and prevent 

unnecessary use and suffering of animals, based on the three R’s principle (Russell and Burch 

1959): replacement, reduction and refinement. In light of ethical awareness, a first future 

perspective could be the further application of the 3R principle in the determination of 

mycotoxin toxicity and toxicokinetics. These alternatives include the use of ex vivo tests to 

study toxicity and to simulate GI permeability, such as the testing of intestinal passage 

through GI tissue explants mounted in Ussing chambers. Another alternative is in vitro batch 

incubations with faecal matter or microbiota to determine GI metabolism and where 

applicable hydrolysis. These incubations can be performed for each animal species of 

interest and also using human faecal material. Such incubations would be very valuable in 

this research domain to unravel which micro-organisms are responsible for hydrolysis of the 

modified and/or acetylated mycotoxins. The drawback of such a system is the discrepancy 

between the absorption site of most mycotoxins and the site from which GI bacteria are 

often sampled. Similar to batch incubations, but more efficiently resembling the in vivo 

situation, are dynamic gastrointestinal simulators such as the TNO (gastro-)intestinal models 

(TIM) (Minekus & Havenaar 1996), the simulator of human intestinal microbial ecosystem 

(SHIME) (Molly et al. 1994), or its porcine equivalent the SPIME. It is a dynamic model of the 

GI tract used to study physicochemical, enzymatic and microbial parameters. The model 

consists of five or six reactors which sequentially simulate the stomach (acid conditions and 

pepsin digestion), duodenum and jejunum (digestive processes), ileum (digestive processes) 

and the three regions of the large intestine, i.e. the ascending, transverse and descending 

colon (microbial processes) (Molly et al. 1994). Finally, in silico modelling also provides a 

possible alternative to animal experiments. Many different types of in silico methods have 

been developed to characterize and predict toxic outcomes in animals and humans, making 

use of structure-activity relationships (Combes 2012; Maltarollo et al. 2015). 
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Data from animal trials is often analysed by means of non-compartmental toxicokinetic 

analysis. However, analysis and interpretation of toxicokinetic results may benefit from a 

model-based approach. Advantages of compartmental over some non-compartmental 

analysis include the ability to predict the concentration at any time. Additionally, 

compartmental approaches are more easily extrapolated to other individuals, demonstrating 

increased predictive properties. The disadvantage is the difficulty in developing and 

validating a proper model. A more profound integration of model-based approaches will 

provide a valuable tool in the future research on mycotoxins. 

In this thesis toxicokinetic research was limited to the analysis of plasma, systemic as well as 

portal. Analysis of other matrices from animal origin may provide new insights and/or 

opportunities. For instance, we have observed that the absorbed fraction of DON3G in pigs is 

completely presystemically hydrolysed. However, this leaves the question whether the 

unabsorbed fraction remaining in the GI tract is present as DON, and thus hydrolysed as 

well, and/or as DON3G, not hydrolysed, and what the relative amounts are, which is an 

important aspect with regard to local gastrointestinal toxic effects. Analysis of urine samples 

can be useful as an alternative method to determine bioavailability. Furthermore, analysis of 

faeces and urine samples may contribute to the research on biomarkers for mycotoxin 

exposure. Which phase I and II metabolites are formed? How long do they remain in these 

matrices after exposure? Can this data be quantitatively linked to the exposure? Several 

studies in this field indicated that deoxynivalenol-15-glucuronide was the main urinary DON 

biomarker for human DON exposure (Warth et al. 2013; Heyndrickx et al. 2015). In this 

respect, HRMS proves to be a very valuable tool, aiding in the search for phase I and II 

metabolites. 

Throughout this thesis, LC-MS/MS and HRMS were used to determine the concentrations of 

mycotoxins and their metabolites in plasma to study the toxicokinetic properties. The 

developed LC-MS/MS methods were limited to selected compounds. For our purposes, a 

chromatographic separation of 3ADON and 15ADON was not required as the ADONs were 

not simultaneously administered during the animal trials. However, in practice both ADONs 

can co-occur in food and feed. In such cases, chromatographic separation would be a 

valuable tool to separately quantify both 3ADON and 15ADON as no specific ion transitions 

were found to distinguish between 3ADON and 15ADON. The HRMS section, which is an 
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untargeted approach and is not limited to prior selected compounds, however, only provides 

semi-quantitative results due to the lack of analytical reference standards. This opens a third 

future perspective, namely the development of quantitative multi-mycotoxin methods in 

plasma allowing the simultaneous determination of free and modified mycotoxins together 

with phase I and II metabolites, consequently saving analysis time and financial resources. 

Such methods in animal plasma (and other matrices of animal origin) are currently lacking, in 

contrast to food/feed and human urine (Njumbe Ediage et al. 2013; Rodriguez-Carrasco et al. 

2014; Song et al. 2013; Warth et al. 2014; Zhao et al. 2015). This would also eliminate the 

need to deconjugate phase II metabolites, such as by using β-glucuronidase, during sample 

clean up, in order to determine the ratio between free and conjugated mycotoxins. The 

development of such quantitative methods requires the availability of reference standards. 

These can be isolated from naturally contaminated material or can be chemically or 

biochemically synthesised. This doctoral thesis demonstrates the applicability of appropriate 

toxicokinetic models and tools for blood collection (systemic as well as portal). These tools in 

combination with the production of analytical standards as well as suitable isotopically 

labelled internal standards, also provides a perspective to study other acetylated, modified 

and emerging mycotoxins, such as T-2 toxin-glucoside.  

In toxicity studies compounds are often administered solely in order to attribute 

observations to one specific compound. In practice however, co-contamination is often 

observed with acetylated and/or modified forms of the toxin as well as with other classes of 

mycotoxins. This co-contamination and the potentially additive or synergistic effects are a 

point of concern and provide another future perspective. Alassane-Kpembi et al. 

demonstrated an order of magnitude of synergy ranging from 2 to 7 for several 

combinations of DON, 3ADON, 15ADON, NIV and fusarenon-X on epithelial cell toxicity (IPEC-

1 and Caco-2) (Alassane-Kpembi et al. 2015; Wan et al. 2013). Binary or ternary mixtures 

often showed a dose-dependent effect, substantial enough to differ between antagonism 

and synergy (Alassane-Kpembi et al. 2013; Alassane-Kpembi et al. 2015; Huff et al. 1988; 

Ruiz et al. 2011). 
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Conclusions 

Additionally to DON, food and feed are often co-contaminated with acetylated and modified 

forms of DON. This study and previously published studies have demonstrated that these 

compounds may exhibit distinct toxicities: DON3G & DOM-1 << 3ADON < DON ≈ 15ADON. 

This doctoral thesis clearly demonstrates that in vivo, most of these forms can be hydrolysed 

with release of DON (ADONs in pigs and chickens, DON3G in pigs), thereby contributing to 

the in vivo DON exposure of broiler chickens and pigs. Furthermore, due to the altered 

physico-chemical characteristics of the acetylated and modified forms, these compounds can 

display a significant increase (3ADON and 15ADON in pigs) or decrease (DON3G in pigs) in 

systemic absorbed fractions. For DON3G, the site of hydrolysis was investigated by collecting 

systemic as well as portal plasma. Results indicate that presystemic hydrolysis occurs at the 

site of GI tract, most likely by GI microbiota and possibly by GI tissues. Additionally, analysis 

of phase II metabolites revealed that DON metabolism in pigs consists mainly of 

glucuronidation, and in chickens sulfation predominantly occurs. Phase II biotransformation 

was much more extensive for chickens than for pigs, which can be a possible explanation for 

the differences in sensitivity of the latter species to DON. In conclusion, the global 

occurrence, species dependent toxicity and toxicokinetics for DON, 3ADON, 15ADON and 

DON3G demonstrated in this thesis, highlight the importance of research on mycotoxins and 

their acetylated and modified forms as chronic food and feed contaminants. Mycotoxigenic 

fungi will never be completely eradicated, but research will allow to minimize the risk 

associated with these fungi and their mycotoxins, thereby contributing to food and feed 

safety in humans and animals.  
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Mycotoxin contamination has been classified by several authors as the most important 

chronic dietary risk factor both in food and feed. The Fusarium mycotoxin deoxynivalenol 

(DON) is one of the most frequently occurring mycotoxins, contaminating 56% of feed and 

feed raw materials worldwide. In addition to DON, feed can be contaminated with 

acetylated and modified forms of DON, such as 3-acetyl-deoxynivalenol (3ADON), 15-acetyl-

deoxynivalenol (15ADON) and deoxynivalenol-3-β-D-glucoside (DON3G), respectively. Both 

ADONs are produced by Fusarium fungi as well, whereas DON3G is formed by conjugation in 

plants. 

Little is known about the toxicodynamics and toxicokinetics of these acetylated and modified 

forms of DON, compared to the well investigated free mycotoxin DON. One of the major 

questions associated with acetylated and modified mycotoxins is whether in vivo hydrolysis 

may result in the release of the free mycotoxin and what their in vivo fate and disposition in 

the body is. Determination of the oral bioavailability, rate and extent of in vivo hydrolysis 

and toxicokinetic characteristics of 3ADON, 15ADON and DON3G in relevant animal species 

by means of state-of-the-art toxicokinetic analysis may support legislative authorities to 

carefully take measures with respect to the risk assessment of these contaminants.  

The general introduction of this doctoral thesis gives an overview of the mycotoxin issue 

and mycotoxin management in general. Next, the occurrence, toxicity and toxicokinetics of 

DON are described, followed by the established legislation in feed. Furthermore, the 

production of acetylated and modified forms of DON by plant, fungus and food processing is 

discussed, followed by an overview of their occurrence, toxicity and toxicokinetic properties. 

The general objective of this research was to determine the absolute oral bioavailability, 

rate and extent of in vivo hydrolysis and toxicokinetic characteristics of 3ADON, 15ADON and 

DON3G in broiler chickens and pigs, in order to contribute to the risk assessment of these 

mycotoxins. 

To achieve this goal analytical methods to detect and quantify mycotoxins and their 

metabolites in animal plasma are needed. In chapter I, a liquid chromatography-tandem 

mass spectrometry (LC-MS/MS) method allowing the quantification of 3ADON, 15ADON, 

DON and an in vivo metabolite, de-epoxy-deoxynivalenol (DOM-1), in broiler chicken and pig 

plasma was developed. Several sample cleanup strategies were evaluated and further 
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optimised by means of fractional factorial design. A simple and straightforward sample 

preparation method was developed consisting out of a deproteinisation step, followed by 

evaporation of the supernatant and reconstitution. The method was validated according to 

European guidelines and was applicable for the intended purpose, with a linear response up 

to 200 ng/mL and limits of quantitation ranging between 0.1 and 2.0 ng/mL.  

In chapter II, the developed method was applied to study the disposition of DON, 3ADON 

and 15ADON in broiler chickens and pigs, more specifically the absolute oral bioavailability, 

(presystemic) hydrolysis and toxicokinetic characteristics. For this purpose, cross-over animal 

trials were performed with intravenous (IV) and oral (PO) administration of DON, 3ADON 

and 15ADON to broilers and pigs. Plasma concentration-time data were processed via a 

tailor-made compartmental toxicokinetic model. The results in broiler chickens demonstrate 

that the mean absorbed fraction after oral DON, 3ADON and 15ADON administration was 

10.6%, 18.2% and 42.2%, respectively. For 3ADON, this fraction was completely hydrolysed 

presystemically to DON, but for 15ADON it was hydrolysed to DON to a lesser extent 

(75.4%). In pigs, the absorbed fractions were 100% for DON, 3ADON and 15ADON, and 

3ADON and 15ADON were completely hydrolysed presystemically. Also after IV 

administration, both ADONs were remarkably fast and completely hydrolysed. When 

combining these results, both ADONs can be regarded as toxic as DON itself in pigs with 

respect to systemic toxicity. The results for broiler chickens demonstrate a ‘worst case 

scenario’ since both ADONs have a higher absorbed fraction, with a four- and twofold higher 

DON exposure after 15ADON and 3ADON consumption compared to DON itself, respectively. 

Moreover, 3ADON can be regarded as at least equally toxic to DON since it is completely 

hydrolysed presystemically. 

The goal of chapter III was to investigate the absolute oral bioavailability and toxicokinetic 

characteristics of the modified mycotoxin DON3G and to unravel its possible (presystemic) 

hydrolysis to DON in broiler chickens and pigs. Again, cross-over animal trials were 

performed with IV and PO administration of DON3G and DON to broilers and pigs. Plasma 

concentrations of DON and DON3G were quantified using an in-house developed and 

validated LC-MS/MS method and phase II glucuronide and sulfate metabolites were semi-

quantified by liquid chromatography coupled to high resolution mass spectrometry (LC-

HRMS). Data were processed by tailor-made compartmental toxicokinetic models. In 
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contrast to the ADONs, no hydrolysis of DON3G to DON after IV administration in both 

animal species was observed. After PO exposure, the results in broiler chickens indicate that 

DON3G is not hydrolysed to DON neither. Furthermore, the absolute oral bioavailability of 

DON3G was low (3.79%) and comparable to that of DON (5.56%). Interestingly, after PO 

DON3G administration to pigs, only DON was detected in plasma, indicating a complete 

presystemic hydrolysis of DON3G. However, the mean absorbed fraction of DON3G, 

recovered as DON, was approximately 5 times lower than after PO DON administration, i.e. 

16.1% compared to 81.3%. Additionally, blood was sampled from the vena porta by 

surgically placed catheters in pigs, to further investigate the site of presystemic DON3G 

hydrolysis. Only DON but no DON3G was detected in portal plasma. The deficiency of 

systemic hydrolysis after IV dosing and the absence of DON3G in plasma from the vena porta 

indicate that the intestinal epithelial cells, or more likely, the porcine intestinal microbiota 

play a major role in the hydrolysis. Analysis of phase II metabolites revealed that 

biotransformation of DON and DON3G in pigs mainly consists of glucuronidation, whereas in 

chickens sulfate conjugation predominantly occurs. The extent of phase II biotransformation 

is notably higher for chickens than for pigs, which contributes to the relative sensitivity of 

the latter species to DON. Although in vitro studies demonstrate a decreased toxicity of 

DON3G compared to DON, the possibility of in vivo hydrolysis to DON in pigs demonstrates 

the toxicological relevance of DON3G. 

Additionally to the toxicokinetic research, the toxicity of acetylated and modified forms of 

DON was investigated in Chapter IV. The gastrointestinal tract is the first target after 

ingestion of DON. Consequently, the goal of this chapter was to determine the in vitro 

intrinsic cytotoxicity of acetylated and modified forms of DON towards differentiated and 

proliferative porcine intestinal epithelial cells by means of a flow cytometric technique. Cell 

death was assessed by means of dual staining with Annexin-V-fluorescein isothiocyanate 

(FITC) and propidium iodide (PI), which allows the discrimination of viable cells (FITC-/PI-), 

apoptotic (FITC+/PI-) and necrotic cells (FITC+/PI+). Based on the data from the presented 

study, it is concluded that cytotoxicity can be ranked as follows: DON3G << 3ADON < DON ≈ 

15ADON. 

In the general discussion, the need for a risk assessment regarding acetylated and modified 

forms of DON is discussed. Next, the undisclosed role of GI microbiota with respect to 
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hydrolysis is explored. Furthermore, in this thesis pigs were studied as target species but due 

to their comparative anatomy, physiology and biochemistry to humans, their role as non-

rodent animal model in human (acetylated and modified) mycotoxin research is explored. 

This is followed by some future perspectives on the research towards acetylated and 

modified mycotoxins are given.  

In conclusion, this doctoral thesis demonstrates the in vivo hydrolysis of 3ADON and 

15ADON to DON in both broiler chickens and pigs, as well as of DON3G in pigs. In contrast, 

DON3G is not hydrolysed in broiler chickens. For the ADONs this is most probably a chemical 

hydrolysis, whereas for DON3G this hydrolysis takes place in the GI tract, most likely by GI 

microbiota and possibly by GI tissues. Results from HRMS analyses revealed that phase II 

biotransformation of DON in pigs consist mainly of glucuronidation, while in chickens 

sulfation predominantly occurs. Phase II biotransformation is more extensive for chickens 

than for pigs, which can be a possible explanation for the differences in sensitivity of the 

latter species to DON. These findings contribute to gain insight in the overall risks of 

acetylated and modified mycotoxins, thereby contributing to maintaining food and feed 

safety in humans and animals. 
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Contaminatie van voedsel en voeder met mycotoxinen wordt door meerdere auteurs 

geclassificeerd als de belangrijkste chronische risicofactor voor (dieren)voeding. Het 

Fusarium mycotoxine deoxynivalenol (DON) is één van de meest voorkomende mycotoxinen, 

met een wereldwijde prevalentie van 56% in diervoeders en diervoedergrondstoffen. Naast 

DON kan voeder bijkomend verontreinigd zijn met geacetyleerde en gemodificeerde vormen 

van DON, zoals 3-acetyl-deoxynivalenol (3ADON), 15-acetyl-deoxynivalenol (15ADON) en 

deoxynivalenol-3-β-D-glucoside (DON3G). Beide ADONs worden net zoals DON 

geproduceerd door Fusarium schimmels, terwijl DON3G wordt gevormd door conjugatie in 

de plant. 

In vergelijking met het intensief bestudeerde DON is er weinig bekend over de toxicokinetiek 

en toxicodynamiek van deze geacetyleerde en gemodificeerde vormen. Een van de 

belangrijke vragen geassocieerd met deze derivaten van DON is of ze hydrolyse in het 

lichaam kunnen ondergaan met vrijstelling van het mycotoxine DON, alsook wat hun 

beschikbaarheid en dispositie in het lichaam is. Bepaling van de orale biologische 

beschikbaarheid, snelheid en mate van in vivo hydrolyse en toxicokinetische eigenschappen 

van 3ADON, 15ADON en DON3G in relevante diersoorten met behulp van geavanceerde 

toxicokinetische modellen, kan bijgevolg wetgevende instanties ondersteunen om 

maatregelen te nemen met betrekking tot de risicobeoordeling van deze contaminanten. 

De algemene inleiding van dit doctoraatsproefschrift geeft een overzicht van de mycotoxine 

problematiek en mogelijke maatregelen om dit in te perken. Vervolgens wordt het 

voorkomen, de toxiciteit en toxicokinetiek van DON beschreven, gevolgd door de bestaande 

wetgeving omtrent maximale gehalten en richtwaarden voor diervoeding. Daaropvolgend 

wordt de productie van geacetyleerde en gemodificeerde vormen van DON in planten, 

schimmels en tijdens sommige voedselverwerkende processen besproken, waarna 

aansluitend een overzicht van hun voorkomen, toxiciteit en toxicokinetische eigenschappen 

gegeven wordt. 

De algemene doelstelling van dit onderzoek was om de absolute orale biologische 

beschikbaarheid, snelheid en mate van in vivo hydrolyse en toxicokinetische eigenschappen 

van 3ADON, 15ADON en DON3G bij vleeskippen en varkens vast te stellen, teneinde bij te 

dragen tot de risicobeoordeling van deze mycotoxinen. 



 

196 
 

Om dit doel te bereiken waren analytische methoden om deze mycotoxinen en hun 

metabolieten te kwantificeren in plasma afkomstig van dieren een vereiste. In hoofdstuk I, 

werd een vloeistofchromatografische-tandem massaspectrometrische (LC-MS/MS) methode 

ontwikkeld en gevalideerd voor de bepaling van 3ADON, 15ADON, DON en een in vivo 

metaboliet, de-epoxy-deoxynivalenol (DOM-1), in plasma van vleeskippen en varkens. 

Verschillende staalvoorbereidingsstrategieën werden geëvalueerd en verder 

geoptimaliseerd door middel van fractionele factoriële designs. Een eenvoudige 

staalvoorbereidingsmethode werd uitgewerkt, bestaande uit een deproteïnisatie stap, 

gevolgd door indampen van het supernatans en heroplossen van het staal. De methode 

werd gevalideerd volgens de prestatiecriteria beschreven in de Europese richtlijnen en 

voldeed aan de beoogde voorwaarden met een lineaire respons tot 200 ng/mL en 

kwantificatielimieten tussen 0,1 en 2,0 ng/mL. 

In hoofdstuk II werd de ontwikkelde methode toegepast om de dispositie van DON, 3ADON 

en 15ADON te bestuderen in vleeskippen en varkens, meer in het bijzonder de absolute 

orale biologische beschikbaarheid, de mogelijke (presystemische) hydrolyse en 

toxicokinetische eigenschappen. Hiervoor werden dierproeven uitgevoerd volgens een 

cross-over design met intraveneuze (IV) en orale (PO) toediening van DON, 3ADON en 

15ADON. Plasmaconcentratie-tijdsprofielen werden geanalyseerd door middel van een in-

huis ontworpen compartimenteel toxicokinetisch model. De resultaten bij vleeskippen 

toonden aan dat de gemiddelde geabsorbeerde fractie na orale DON, 3ADON en 15ADON 

toediening respectievelijk 10,6%, 18,2% en 42,2% bedroeg. Voor 3ADON werd deze fractie 

geheel presystemisch, dus voor het bereiken van de algemene systemische bloedcirculatie, 

gehydrolyseerd naar DON. Daarentegen werd 15ADON slechts gedeeltelijk gehydrolyseerd 

(75,4%). Bij varkens waren de geabsorbeerde fracties na orale toediening 100% voor DON, 

3ADON en 15ADON, bovendien werden 3ADON en 15ADON volledig presystemisch 

gehydrolyseerd. Na IV toediening werden zowel 3ADON als 15ADON eveneens opmerkelijk 

snel en volledig gehydrolyseerd. Hieruit kan besloten worden dat beide ADONs met 

betrekking tot systemische toxiciteit bij het varken als even toxisch kunnen worden 

beschouwd als DON. De resultaten voor vleeskippen duiden op een ‘worst case scenario’ 

aangezien beide ADONs een hogere geabsorbeerde fractie vertonen dan DON, wat 

aanleiding geeft tot dubbele en viervoudige DON blootstelling na respectievelijk 3ADON en 
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15ADON toediening in vergelijking met DON zelf. Overigens kan 3ADON even toxisch worden 

beschouwd als DON vanwege de volledige presystemische hydrolyse ervan. 

Het doel van hoofdstuk III was de absolute orale biologische beschikbaarheid, mogelijke 

(presystemische) hydrolyse en toxicokinetische kenmerken van het gemodificeerde 

mycotoxine DON3G te onderzoeken bij vleeskippen en varkens. Opnieuw werden cross-over 

dierproeven uitgevoerd met IV en PO toediening van DON3G en DON. Plasmaconcentraties 

van DON en DON3G werden gekwantificeerd met behulp van een ontwikkelde en 

gevalideerde LC-MS/MS methode. Bijkomend werden de fase II glucuronide en sulfaat 

metabolieten semi-kwantitatief bepaald door vloeistofchromatografie gekoppeld aan hoge 

resolutie massaspectrometrie (LC-HRMS). De resultaten werden geanalyseerd aan de hand 

van aangepaste compartimentele toxicokinetische modellen. In tegenstelling tot 3ADON en 

15ADON, werd geen hydrolyse waargenomen na IV DON3G toediening. Na PO toediening bij 

vleeskippen werd eveneens de afwezigheid van in vivo hydrolyse van DON3G vastgesteld. 

Verder bleek de gemiddelde absolute orale biologische beschikbaarheid van DON3G laag 

(3,8%), en vergelijkbaar met die van DON (5,6%). Bij het varken werd na PO DON3G 

toediening opmerkelijk enkel DON gedetecteerd in plasma, hetgeen wijst op een volledige 

presystemische hydrolyse van DON3G. Echter, de geabsorbeerde fractie van DON3G, 

teruggevonden als DON, was ongeveer 5 keer lager dan na PO DON toediening, namelijk 

16,1% in vergelijking met 81,3%. Teneinde de plaats van deze presystemische hydrolyse bij 

het varken te ontrafelen, werd aanvullend plasma geanalyseerd afkomstig van bloed uit de 

gekatheteriseerde vena porta, die zich situeert tussen darm en lever. Ook in het portale 

plasma werd enkel DON en geen DON3G gedetecteerd. Het ontbreken van systemische 

hydrolyse en de afwezigheid van DON3G in plasma van de vena porta wijzen op de 

betrokkenheid van darmepitheelcellen en/of de bijdrage van gastrointestinale microbiota 

van het varken. Tot slot bleek uit de analyse van de fase II-metabolieten dat 

biotransformatie van DON en DON3G bij varkens voornamelijk bestaat uit glucuronidatie, 

terwijl bij vleeskippen voornamelijk sulfatatie optreedt. De mate van fase II biotransformatie 

is beduidend hoger voor kippen dan voor varkens, hetgeen mogelijks bijdraagt aan de hoge 

relatieve gevoeligheid van varkens aan DON. Hoewel in vitro studies een sterk verlaagde 

toxiciteit van DON3G ten opzichte van DON rapporteren, toont de mogelijkheid van in vivo 

hydrolyse bij varkens de niet te verwaarlozen toxicologische relevantie van DON3G aan. 
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Aanvullend aan het toxicokinetisch onderzoek werd de cytotoxiciteit van geacetyleerde en 

gemodificeerde vormen van DON onderzocht in hoofdstuk IV. Het maagdarmkanaal is het 

eerst blootgestelde orgaan na consumptie van DON gecontamineerd voeder. Het doel van 

dit hoofdstuk was dan ook om de in vitro cytotoxiciteit van geacetyleerde en gemodificeerde 

vormen van DON op gedifferentieerde en proliferatieve porciene darmepitheelcellen na te 

gaan. Door middel van een flowcytometrische techniek werd celdood bepaald door middel 

van dubbele kleuring met Annexine-V-fluoresceïne-isothiocyanaat (FITC) en propidium 

jodide (PI). Zo werd een scheiding en kwantificering mogelijk van levensvatbare (FITC-/PI-) , 

apoptotische (FITC+/PI-) en necrotische cellen (FITC+/PI+). Op basis van de bekomen data 

werd geconcludeerd dat de cytotoxiciteit als volgt kan worden gerangschikt: DON3G << 

3ADON < DON ≈ 15ADON. 

In de algemene discussie wordt dieper ingegaan op de risicobeoordeling voor de 

geacetyleerde en gemodificeerde vormen van DON. Vervolgens werd de mogelijke rol van de 

gastrointestinale microbiota betreffende de presystemische hydrolyse meer in detail 

besproken. In de algemene discussie werd eveneens een korte bespreking vermeld over de 

geschiktheid van het varken als diermodel voor de mens voor wat onderzoek naar 

(geacetyleerde en gemodificeerde) mycotoxinen betreft, vanwege hun opvallende 

gelijkenissen in anatomie, fysiologie en biochemie. Vervolgens werden enkele 

toekomstperspectieven betreffende het onderzoek naar de risicobeoordeling van 

geacetyleerde en gemodificeerde mycotoxinen aangehaald.  

Samengevat toont dit proefschrift aan dat in vivo hydrolyse van 3ADON en 15ADON naar 

DON optreedt bij zowel vleeskippen en varkens, alsook van DON3G bij varkens. Daarentegen 

wordt DON3G niet gehydrolyseerd in vleeskippen. Voor de ADONs betreft het vermoedelijk 

een chemische hydrolyse. Voor DON3G daarentegen vindt de hydrolyse plaats ter hoogte 

van het gastrointestinaal kanaal, zeer waarschijnlijk door gastrointestinale microbiota en 

mogelijks door gastrointestinale weefsels. Uit de resultaten van HRMS analysen blijkt dat 

fase II biotransformatie van DON bij varkens voornamelijk bestaat uit glucuronidatie, terwijl 

bij kippen overwegend sulfatatie optreedt. Fase II biotransformatie is beduidend belangrijker 

voor vleeskippen dan voor varkens, wat een mogelijke verklaring biedt voor de verschillen in 

gevoeligheid van deze diersoort aan DON. Deze bevindingen dragen bij tot het verwerven 
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van inzicht in de risico’s van geacetyleerde en gemodificeerde mycotoxinen, hetgeen finaal 

bijdraagt tot het vrijwaren van de voedselveiligheid bij mens en dier. 
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Nathan Broekaert werd geboren op 10 maart 1985 te Gent. Na het beëindigen van het 

algemeen secundair onderwijs aan het Koninklijk Atheneum Voskenslaan te Gent, richting 

moderne talen - wetenschappen, startte hij in 2004 met de studies farmaceutische 

wetenschappen aan de Universiteit Gent. Hij behaalde in 2009 het diploma van Master of 

Science in de Geneesmiddelenontwikkeling. Aansluitend volgde hij de opleiding Master-na-

Master Industriële Farmacie.  

Vrijwel onmiddellijk na het afstuderen in 2010 begon hij als wetenschappelijk medewerker 

bij het laboratorium voor Bromatologie aan de faculteit Farmaceutische Wetenschappen in 

het kader van een éénjarig EFSA project. Geboeid door het wetenschappelijk onderzoek 

vatte hij in maart 2012 zijn doctoraatsonderzoek aan het laboratorium voor Farmacologie en 

Toxicologie van de faculteit Diergeneeskunde aan. Dit Associatieonderzoeksproject omtrent 

geacetyleerde en gemodificeerde vormen van deoxynivalenol werd gefinancierd door het 

Bijzonder Onderzoeksfonds van de Universiteit Gent. 

Nathan Broekaert is auteur en mede-auteur van meerdere wetenschappelijke publicaties, 

gaf presentaties op verschillende nationale en internationale congressen en begeleidde 

master studenten van de Faculteiten Diergeneeskunde en Farmaceutische Wetenschappen 

bij het voltooien van hun thesis. Tot slot vervolledigde hij in 2015 het trainingsprogramma 

van de Doctoral Schools of Life Sciences and Medicine van de UGent. 
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pharmaceutical sciences at Ghent University in 2004. In 2009 he obtained his Master of 

Science in Drug Development degree. One year later he obtained the degree of Master in 
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After graduating in 2010, he started as a research assistant at the Laboratory of Food 

Analysis of the Faculty of Pharmaceutical Sciences under the supervision of Prof. S. De 

Saeger. This one-year project was funded by the European Food Safety Authority (EFSA). 

Fascinated by scientific research, he commenced his doctoral research in April 2012 at the 

Laboratory of Pharmacology and Toxicology of the Faculty of Veterinary Medicine. This 

Association Research project on acetylated and modified forms of deoxynivalenol was 

funded by the Special Research Fund (BOF) of Ghent University. 
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Ja, het dankwoord … hier ging ik mijn tijd voor nemen. Lovende zinnen mooi verwoord. Nu 

zit ik hier te staren naar een leeg blad dat binnen 24u gevuld naar de drukker moet. #Miljaar. 

Gelukkig hoeft snelheid niet gepaard te gaan met kwaliteitsverlies. 

“Haast is de moeder van de mislukking.” 

Herodotus, Grieks geschiedkundige BC 484-425 

Dju, de oude Grieken heb ik alvast tegen mij. Men zegt soms dat het niet om het doel gaat, 

maar om de reis daarheen. Voor mijn doctoraat is dit niet anders gebleken. Dit is in de eerste 

plaats, het geld buiten beschouwing gelaten, dankzij al die toffe collega’s, en ondanks Joren, 

van welke ik het voorrecht gehad heb hun de voorbije jaren te mogen kennen.  

Prof. dr. Siska Croubels, mijn promotor van dag één, al gauw werd het gewoonweg Siska, 

dat en zoveel andere aspecten sieren u en maakten van u een geweldige promotor. Hierbij 

denk ik aan het evenwicht dat u vindt tussen ons te begeleiden en ons zelfstandig te laten, 

uw toegankelijkheid, uw oog voor detail (werkelijk merkwaardig!) en uw geduld. Echt 

bedankt dat je mij de kans gegeven hebt dit onderzoek aan te vatten, ik heb er nog geen 

seconde spijt van gehad. 

Prof. dr. Mathias Devreese, Chulo, van mijn naaste gevorderd tot mijn promotor, en dat 

voor een twee jaar jongere West-Vlaming #doorninmijnoog. Maar geen doorn meer 

bekwaam of wie ik het meer zou gunnen. Dankzij uw hard werk heb je een verbazend 

parcours kunnen afleggen, eentje waar men u tegen kan zeggen. Had ik niet al een idool 

gehad (Theo Maassen) en was je niet van West-Vlaanderen geweest, was je het overwegen 

waard. Ik wens u en Joke veel succes toe met het nakende boeleke en hopelijk kan er hier en 

daar nog een boyz-weekend, met een z, vanaf in Amsterdam of gelijk waar dat niet West-

Vlaanderen is. Dat we 't zwien noh voak deur de bjèten mohen joagen! 

Prof. dr. Sarah De Saeger, mijn co-promotor, aan uw labo is mijn wetenschappelijke carrière 

begonnen. In dat jaar, maar ook daarna, heb ik altijd graag samengewerkt met u en uw 

onderzoeksgroep, met in het bijzonder dr. Christof Van Poucke (mijn geweldige promotor 

van destijds). Door de kans die mij destijds bij jullie gegeven is ben ik hier terecht gekomen 

en daar hebben uw lovende woorden naar Siska toe zeker bijdrage in geleverd, merci. 
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Prof. dr. Patrick De Backer, onze encyclopedie, uw interesse in kennis op vlak van 

farmacologie en toxicologie hebben mij aangezet tot kritisch reflecteren over mijn 

onderwerp, hetgeen tot een duidelijke meerwaarde heeft geleid voor dit proefschrift. 

Prof. dr. An Vermeulen, de toxicokinetiek-guru, ontzettend veel dank voor al uw bijdragen. 

Zonder uw hulp zat ik nu mogelijks nog te sukkelen met bepaalde modellen. Merci voor je 

inzicht, interesse en bereidwilligheid om me bij te staan. 

Ook de andere leden van de examencommissie, dr. Els Daeseleire en prof. dr. Lynn 

Vanhaecke, had ik graag bedankt voor de tijd en moeite die jullie geïnvesteerd hebben in 

het nalezen van mijn thesis. Dr. Isabelle Oswald thank you for your time and effort, your 

contributions indisputably increased the scientific value of this thesis. Prof. dr. Dominiek 

Maes, de voorzitter van mijn examencommissie, merci voor alles in goede banen te leiden 

op de verdediging. 

Koen, Cote, KB, onze beperkte professionele samenwerking, muizen en varkens mengen 

niet, werd ruimschoots gecompenseerd door onze naschoolse activiteiten. Uitzetten om 

Guatemala, Belize en Mexico onveilig te maken .. dat waren ze blijkbaar al .. dan maar de 

toerist afhangen en onze PADI halen samen met Lavabever. Een reis die ik nooit ga vergeten. 

En hopelijk blijft het mij allemaal bij, het klimmen, het uitgaan, mario kart, circle of death en 

noem maar op. Thomas, onze autist van den hoop, mag ik dat zeggen? Alleszins is het 

uitsluitend positief bedoeld, wat ik op professioneel vlak het meest aan u kan appreciëren is 

uw oog voor detail en uw hardnekkigheid om elke kleinste pietluttigheid uit te spitten en om 

te keren. Maar ook uw zin voor initiatief zoals de Journal Club. Maar wie maalt er in een 

dankwoord om het professionele vlak? Voorbije vier jaar zouden niet dezelfde geweest 

zonder u, management van de Kozzmozz, TF, Leuven (haha) en jouw dag dagelijkse kracht 

om een glimlach op ons gezicht te toveren. Moge je nog lang leven als manager of 

consultant! Veel succes daarmee. Joren, maatje, sorry van de “diss” hierboven, dat was 

enkel omdat ik weet dat jij sterk genoeg bent om het te dragen. De rots in de branding. Als ik 

er later niet meer zal zijn, zal jij alles op u moeten nemen, maar ik heb er het volste 

vertrouwen in. Don’t ever change! Anneleen, de mama van het labo, de lijm, bij u kan je 

altijd terecht voor een helpende hand, zij het voor oogdruppels of voor een babbel, ik heb 

dat altijd weten appreciëren. Als je dit leest zit jij ook in de afrondfase en ik wens je nog veel 
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sterkte met de laatste loodjes. Sophie, tot voor kort de enigste die de mycotoxine bro-ho 

ratio een beetje in stand hield, ik heb altijd genoten van onze congressen met de 

mycotoxine-groep, nu hebben we nog Berlijn om naar uit te kijken. Elke & Joske, jullie 

hebben die schattigste-bigjes-ooit niet nodig om mensen te doen verblijden, dat doen jullie 

zo al! Zij het door een enkel op ludieke wijze om te slaan, mee uit te gaan tot in de vroege 

uurtjes of door ons te verwennen met zelf gemaakte gebakjes tijdens de koekjes pauze. Wim 

& Marianne, de n00bs zoals ze dat dan heten op het internet. Jullie wens ik een spetterende 

start van jullie doctoraat toe, jullie zijn alleszins in goede handen en met zo twee knappe 

bollen als jullie kan dat niet anders dan los lopen. Juist nog wat wennen aan de naalden en 

het bloed. Dat brengt mij dan naadloos bij Gunther, aan u heb ik mijn ontgroening te danken 

van alles wat bij dierproeven komt kijken (hoe kan het ook anders, als jij om de twee botten 

met een nieuwe dierproef afkomt). Ondertussen is de vagale reflex een ver verleden. PS: als 

ik ooit met Chlamydia wordt gediagnosticeerd weet ik u en uw eenden te vinden, al zijn de 

laatste tegen dan al pijlen geworden. Julie, merci voor te helpen met al de stalen wanneer 

Gunther weer in een delegeerbui geschoten was. Siegrid en An M., merci voor jullie hulp bij 

het LC-MS/MS troubleshooten. Jelle, mijn verstand en geweten voor in het labo, dankzij u 

ben ik een netter mens geworden. Hier en daar is er nog wat werk aan de winkel, maar we 

hebben nog 6 maand om dat samen te regelen. Kris, Ann S. en Marc, ook bedankt, zij het 

voor hulp met pc gezever en GLP paperassen of voor een losse babbel. 

De biochemie mag ik niet vergeten. Kristel, de roddeltante, merci voor je goed geluimde 

zelve te zijn, het werkt aanstekelijk, alsook bij de hulp bij de flowcytometrie experimenten. 

Voor dat laatste wil ik prof. dr. Evelyne Meyer eveneens bedanken. Jorien en Jonas, veel 

succes met de respectievelijk laatste en eerste loodjes. Femke, jij veel succes met het 

trachten binnenhalen van je project. 

Graag had ik ook nog alle ex-collega’s (Heidi, Elke P., Joline, Ann O., Virginie, Donna en 

Jella) bedankt en jullie het beste gewenst. 

Er is geen groter offer dan je leven, en had het niet tegen gevestigde norm ingedruist had ik 

de proefdieren dan ook graag als eerste bedankt. Ik tracht jullie te eren door, met spijtig 

genoeg weifelende toewijding, sporadisch vegetarisch te eten tot ik jullie gespaard heb. Per 

varken 70 kg vlees, een gemiddelde portie is 200 g, afgerond één jaar per varken, pfffff. Wat 
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betreft de kippen, zal mijn schuldgevoel rapper afgekocht zijn, 1,5 kg vlees per kip is 

omgerekend één week vegetarisch eten. Ik doe mijn best. 

Liefje, ik moet (letterlijk) u nog het meest van al bedanken. Maar ook zonder de 

dreigementen dat ik je maar beter eer aan doe had ik je hier uitgebreid gelauwerd. Ondanks 

dat vergeleken met mijn studentenjaren mijn vrije tijd gevierendeeld is, zijn voorbije jaren 

de beste van mijn leven geweest, dat is grotendeels aan jou te wijten. Er is niets waar ik 

meer naar uitkijk dan samen met u de wereld te bereizen en ons ergens te settelen. Ik hou 

van jou. 

PS: ook nog eens bedankt om de receptie te regelen, ik weet dat er veel tijd en moeite in 

gekropen is, applausje. 

Tot slot wil ik nog mijn familie (inclusief kersverse petekind), Age of Empires, de Buffalo’s, en 

mijn hond Muesli bedanken, ik zie je ook graag Muesli en samen met Marlien gaan we nog 

een hele mooie toekomst tegemoet. 

“if I were never drunk, than how would my friends know I love them” 

Dan toch nog één citaat, bij deze mijn excuses voor het nuchter en vluchtig neerpennen van 

enkele droge lijnen, hetgeen anders mogelijks iets heel hartverwarmend en 

traanverwekkend had kunnen zijn. 

 

 

Schurftbeer 


