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This doctoral dissertation is about simulating fMRI data and bridges

the scientific fields of psychology, statistics, neuroimaging and informatics.

Before setting out the specific research questions and motivation, crucial

concepts that are basic in one field, but maybe less known in another, are

explained. First, we will explain the notion of simulation, followed by a dis-

cussion on the origin and properties of fMRI data. Then, the position of this

dissertation within a statistical framework is explained. This general intro-

duction ends with an overview of the different chapters in this dissertation.

1.1 Simulation

In general, simulation is defined as the imitation of the working of a real-

world process or system. Simulation can be performed in many contexts.

Take, for example, flight simulators that are used for training pilots using

lifelike experiences in a controlled environment or emergency simulations to

test safety procedures. In this dissertation, the focus lies on computational

simulation within a statistical validation framework. The computational as-

pect refers to the use of computers and their computational power to model

the system under investigation, while the statistical validation refers to the

ability of simulation to gain insight in the performance of statistical models.

In this context, a specific form of simulation is Monte Carlo simulation.

Monte Carlo methods are often used in computer simulation of physical

and mathematical systems. These methods rely on repeated random sam-

pling to compute their results and are specifically used in cases that are tech-

nically intractable (i.e. their solution involves prohibitively expensive labour

costs). The first Monte Carlo studies of a statistical procedure that have

been documented were performed by Erastus Lyman de Forest in the 1870s.

de Forest studied ways to smooth time series using a simulation based on

cards that were drawn from a box (Stigler, 1978). With the introduction of

high-speed computers, simulation studies have gained wide interest for their

flexibility and accessibility.

Monte Carlo simulation studies are equivalent to experimental studies.

Therefore, designing and analysing a Monte Carlo experiment is very similar
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to the design and analysis of any other scientific experiment. Gentle (2005)

and Robert & Casella (2005) discuss in detail how a Monte Carlo study has to

be designed and analysed. As for any experiment, the design of a Monte Carlo

study is very important, because this design determines the validity of the

conclusions drawn from the Monte Carlo experiment (Skrondal, 2000). Since

only a limited number of conditions can be investigated, the external validity,

generalising results beyond a given experiment, is important. This external

validity depends also on the quality of the generated data. Conclusions drawn

from a simulation study can only be generalised if the data generation is

representative for the real data. Also the precision or statistical efficiency

becomes an issue because the results of stochastic simulations are by nature

always more or less unreliable. Finally, the available computer resources and

time set puts its limits on Monte Carlo experimentation. To illustrate the

Monte Carlo technique, an example of a standard Monte Carlo experiment

will now be examined. Suppose we have a linear regression model under

standard Gauss-Markov assumptions

Yi = β0 + β1Xi + εi with εi ∼ N(0, σ2
ε ).

Both unbiasedness and efficiency of the parameter estimates can be proven

analytically. However, when we want to test robustness against violation of

the normality assumption, direct solutions can be challenging or even impos-

sible. Therefore, we will conduct a hypothetical Monte Carlo experiment.

The anatomy of this experiment is described based on the steps formulated

by Skrondal (2000).

Statement of the research problem

We start with a statement of the research problem. For example, we want

to investigate the bias on the estimation of β1 when the residuals are not

normally distributed. The bias is defined as the difference between the real

parameter value and the estimated parameter value, i.e. β1 − β̂1
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Experimental plan

Based on this research problem, an experimental plan has to be developed.

In this experimental plan, it is decided which factors will probably influence

the outcome and need to be manipulated (i.e. the conditions of the simulation

experiment). Possible factors in this case are, for example, the distribution

of the error term (F, Gamma, Exponential, Uniform, . . . ), the number of

observations, and small or medium effects for X.

Simulation

During the simulation, data will be generated for all the conditions in the

experimental plan. To generate the data Yi, values have to be chosen for

β0, β1, Xi and σ2
ε as well as the distribution of εi. While β0, β1 and Xi will

account for the fixed part of the data generation, drawing from a distribution

with variance σ2
ε will define the random component of the simulated data.

The following description of a hypothetical simulation algorithm illustrates

the data generating process. Choose parameter values β0 = 10, β1 = 2,

X = (1 2.6 7 3.5 11.4)′ and σ2
ε = 4.

Draw: ei from a χ2 distribution with d f = 2
Compute: Y = 10 + 2× (1 2.6 7 3.5 11.4)′ + e

The random number generation is implemented in many statistical software

packages like, for example, R.

Estimation

For the simulated data, the parameters in the linear regression model Yi =

β0 + β1Xi + εi have to be estimated, namely β0, β1 en σ2
ε . Then, the estimate

β̂1 can be compared with the known value of β1. It is crucial to understand

that in order to determine the bias of this estimate the real value of β1 has

to be known. We will call this the ground truth.
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Replication

A Monte Carlo simulation is based on numerous replications of the same

process. Therefore, both the simulation step and the estimation step will

be replicated N times. At the end, we will have an estimate for the bias of

β1 for each simulation run and the expected bias will be calculated as the

average of these values for each condition in the Monte Carlo experiment.

Consequently, it is possible to compare the expected bias values for each

condition and draw conclusions concerning the bias on the estimation of β1

in a simple regression model when the normality assumption is violated.

In conclusion, a Monte Carlo simulation is an excellent tool to infer sta-

tistical properties when analytical derivations are challenging or in complex

situations (e.g. fMRI data).

1.2 fMRI data

Magnetic resonance imaging (MRI) is a medical imaging method that is used

widely in clinical settings because of its ability to provide non-invasive high-

resolution images of body structures. The principle of magnetic resonance has

been discovered independently by Felix Bloch (Bloch et al., 1946) and Edward

Purcell (Purcell et al., 1945), who were rewarded for their contribution to

science with the Nobel Prize in Physics in 1952. It took until the late 1970s for

MRI images to become more or less standard practice in medical applications.

Until then computerised tomography (CT) was very popular to create high-

resolution images of the human body. One drawback for using CT imaging

is that it requires concentrated X-ray exposure. Because MRI images can

provide the same kind of information without this exposure, they became

increasingly popular.1

In 1992, Ogawa et al. (1992) and Kwong et al. (1992) discovered the pos-

sibility of using the MRI principle to capture the working brain. Functional

MRI (fMRI) was born and caused an explosion of research dedicated to the

1Around the same period nuclear magnetic resonance (NMR), the former name of MRI,
fell into disfavour, because the word nuclear was associated with health risks, which was
completely unjustified since NMR does not use ionising radiation.
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Figure 1.1 – (A) Protons in free space with random orientations. (B)
Protons in a magnetic field with orientations aligned to the magnetic field.
(source: wikidoc.org)

function of the brain, resulting in about 4000 fMRI related publications in

2012 alone. In order to understand the structure of fMRI data, we will briefly

discuss MRI physics, the neurovascular coupling, and the sources of noise in

the fMRI signal.

1.2.1 A brief introduction to MRI physics

The MRI-scanner is mainly a powerful magnet in which the subject is po-

sitioned alongside the z-axis that is parallel to the direction of the main

magnetic field B0 (Figure 1.2, top). This magnetic field has the purpose to

align the protons in the human body. These protons present random orien-

tations in their natural state (Figure 1.1A), but when placed in a magnetic

field the protons align with or against the magnetic field (Figure 1.1B). A

first crucial concept is that, dependent on the direction of the alignment with

the magnetic field, along or against it, the protons will be in low-energy or

high-energy state, respectively, and more will be at the low-energy state. The

sum of all the proton vectors is the net magnetisation, M0. Secondly, the

protons will show a spinning motion around the axis of the magnetic field

(Figure 1.1B). This phenomenon is known as precession and the resonant

frequency of the spinning, the Larmor frequency, is specific to the atomic

nucleus and the magnitude of the magnetic field in the MR scanner. Thirdly,
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Figure 1.2 – Illustration of the MRI scanner, RF pulses and T2? relaxation
(Ridgway, 2010).
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exciting the system with electromagnetic pulses can change the precession

angle (Figure 1.2, middle).

Putting the three concepts together, by exciting the protons with an

electromagnetic pulse, the spins in low-energy state will jump to the high-

energy state because they absorb the additional energy from the pulse. As

soon as the pulse is turned off, some of the high-energy protons will again

go to the low-energy state, thereby releasing the absorbed energy until a

natural equilibrium is reached. This energy release can be captured by a

radio frequency (RF) coil.

Thus, what is measured in MRI is the energy that is discharged during the

relaxation of M0. There are different angles to look at the relaxation rate and

for fMRI in particular the transversal relaxation is of greatest importance.

This means that the relaxation process is evaluated in the (x, y) plane. Take

the case where an 90◦ pulse excites the system (Figure 1.2, bottom). Before

excitation, the equilibrium state, M0 is parallel to the longitudinal direction

(i.e. z-direction) and will present zero transverse magnetisation. After ex-

citation, the direction of M0 is flipped perpendicular to the z-axis and the

net magnetisation in the transverse plane will be maximal. Over time, M0

returns to its equilibrium and the transverse magnetisation relaxes to its orig-

inal state. This transverse relaxation is referred to as T2 relaxation. However,

of more significance to fMRI is the T?
2 relaxation, which is very similar to T2.

T?
2 relaxation stems from the dephasing effect of the individual spins. Imme-

diately after the excitation pulse, the nuclei will all spin in phase, but due to

variations in B0 the spins start to move out of phase, meanwhile decreasing

the sum of all spins (i.e. the strength of the net magnetisation M0). So in

the end, what is measured during fMRI is the T?
2 relaxation effect, which is

in general smaller than the T2 relaxation rate.

By adding RF or gradient pulses, the spatial location of the process can

be manipulated and for each location, the T?
2 relaxation is written in the

frequency domain, also known as k-space. After applying Fourier transforma-

tion, a complex MRI image is obtained that has a real part and an imaginary

part. These complex data can then be transformed to magnitude data and

phase data. In practice, the magnitude data will mostly be used as the final
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Figure 1.3 – Illustration of the neurovascular coupling and the difference
in oxygenation of the blood when in rest or during activation. (source:
psychcentral.com)

fMRI data.

1.2.2 From neural activity to the BOLD response

Neuroimaging researchers want to investigate the function of the brain and in

particular the properties of the neural activity of brain cells. Unfortunately,

firing neurons are not directly measurable using the MRI principle. Instead,

the vascular response to the neural activity is measured. This neurovascular

coupling is mainly driven by the excessive oxygen supply in response to neural

activity. The main energy source of a firing neuron is oxygen. This oxygen is

supplied by the haemoglobin present in the blood. Whenever neural activity

occurs in the brain, the blood flow increases in order to deliver more oxygen to

the neurons (Figure 1.3). So, there is an increase of oxygenated haemoglobin

and it is the variation in the oxygenation of the blood that is picked up by the

MR scanner. Because blood deoxygenation affects magnetic susceptibility,

MR pulse sequences sensitive to T?
2 will show more MR signal where blood is

highly oxygenated and less MR signal where blood is highly deoxygenated.

The result is the measurement of the Blood Oxygenation Dependent Level

(BOLD). This response is a correlate of the neural activity and has some
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Figure 1.4 – Illustration of the typical characteristics of the BOLD re-
sponse.

typical characteristics. The peak of the response is delayed and occurs around

6s after the stimulus has been presented (Figure 1.4). After the peak, the

BOLD response returns to baseline, but before reaching this baseline a post-

stimulus undershoot can be observed. However, the specific form of the

response varies a lot across regions and within and between subjects. The

exact mechanisms of the neurovascular coupling are still subject to debate,

but it is accepted that the BOLD response is a plausible, yet indirect measure

of neural activity in the brain (Handwerker et al., 2012).

1.2.3 Signal and noise in fMRI data

It is said that looking for BOLD signal changes in fMRI data is like looking

for a needle in a haystack, because the fluctuations of the BOLD response

are rather small and the data consist mainly of noise. Noise is here a col-

lective noun for all unwanted fluctuations in the fMRI signal. This noise is

characterised by both temporal and spatial features and stems from different
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sources (see Greve et al., 2012, for a recent review).

Thermal noise

Thermal noise is caused by thermal motion of electrons within the subject

and within the scanner. This thermal motion generates changes in the signal

intensity over time and the higher the temperature in the scanner room,

the greater the fluctuations of the signal. There is also a linear relationship

between thermal noise and the magnetic field strength (Edelstein et al., 1986).

For example, thermal noise of 3T data will be twice as large as compared to

1.5T data. These fluctuations are completely random and unrelated to space

or time. The contribution of thermal noise to the fMRI data can easily be

decreased by minimising the room temperature. Remaining thermal noise

can also be eliminated by data averaging.

System noise

Variations and instabilities in the scanner hardware (e.g. nonlinearities in

the gradient fields) cause system noise, which is most commonly recognised

as scanner drift. Over time, the measured fMRI signal is subjected to low-

frequency drift that can be present as low-frequency fluctuations in the signal

but also as a linear decrease or increase of the overall signal level. Because

system noise is related to the hardware, it is hard to control it during data

acquisition. However, low-frequency drift removal is standard practice in

fMRI data analysis and several algorithms are available.

Physiological noise

Physiological noise is inherently linked to the scanning of living subjects.

Heart beat causes blood pulses through the arteries and the veins resulting

in regular fluctuation in blood flow. Similarly, inhaling and exhaling air will

influence the basic oxygen level in the blood. fMRI signal fluctuations related

to this heart and respiratory rate are called physiological noise. This noise

source can be dependent on place or time and is not necessarily random.

Figure 1.5 demonstrates that physiological noise is especially troublesome
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for fMRI since it is more present in grey matter (Krüger & Glover, 2001).

On the other hand, in the phantom images, the influence of physiological

noise is negligible. Measurement of heart beat and respiratory rate can be

used to filter their contributions out of the fMRI data, but the measurement

equipment has to be adapted to the scanner environment, which can be

expensive.

Motion noise

When the subject is not lying completely still in the scanner, motion noise

can be of great influence. The problem is that motion alters the location in

space of the voxels over time, whereby it can be hard to derive time series

of particular voxels. Figure 1.5d illustrates that motion noise will manifest

around the edges of the brain. Motion noise is rarely random and often

correlated with the task that the subject is performing (e.g. small movements

each time a response button has to be pressed). Head motion is often limited

by fixing the head using foam blocks. However, even then, chest movements

related to the respiratory system can cause motion noise. Since the impact

of motion noise for fMRI data is severe, removal of this noise source is a

standard aspect of the data analysis process.

Non-task-related noise

Spontaneous neural activity and non-task-related neural activity can cause

unwanted fluctuations in the BOLD signal. For example, while the subject is

performing a task, his/her brain reacts to the acoustic noise of the scanner,

or wonders about appointments later that day. This non-task-related noise

can be greatly diminished by an optimised experimental design.

Task-related noise

fMRI data contain also noise that is correlated to the stimulus. This can be

for example spontaneous activation due to the cognitive processes or move-

ments caused by behavioural responses. Hyde et al. (2001) demonstrated

that the power frequencies of resting voxels showed intense low-frequency
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Figure 1.5 – Illustration of the distribution of noise in the brain of one
subject: (a) anatomical image, (b) noise from all sources, (c) physiological
noise caused by blood flow variations and metabolic processes, (d) motion
noise, (e) noise from all sources in a phantom and (f) physiological noise in
a phantom (From Krüger & Glover, 2001)
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Figure 1.6 – 9× 9 voxel array from a bilateral finger-tapping task. Fre-
quency domain time series of resting-state voxels are presented. Intense
low-frequency peaks (e.g. left side of the time series in voxel 4 and 5 of the
last row) are observed. These frequency peaks in the resting-state voxels
correspond to the frequency of the task activation (From Hyde et al., 2001)
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Figure 1.7 – Example of an fMRI analysis pipeline used to localise active
voxels related to an experimental task

peaks that were coincidal with the task frequency (Figure 1.6), meaning that

performance of the task resulted in additional noise in non-active voxels.

Controlling this noise source is non-trivial and there are no standard prac-

tices to account for task-related noise.

1.2.4 fMRI data analysis: a short overview

Regardless of the specific analysis method that is used, analysing fMRI data is

a pipeline process. In this pipeline, different steps involving different methods

are performed. Roughly, the steps can be subdivided in preprocessing, esti-

mation and inference (Figure 1.7). Over the years, some standard procedures

have been proposed for each section in the pipeline, but the development of

analysis methods for fMRI data is still ongoing research. Here, we will give

a short overview of the most common procedures to localise activation (see

Friston et al., 2007, for a detailed discussion).
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Data preprocessing

The preprocessing of the fMRI data has several goals. Largely it involves

noise reduction, but also preparing the data for inter-subject comparison.

First, the influence of movements is reduced by realigning the images. Each

fMRI volume is realigned with a reference image (e.g. the first image) using

affine transformations. Additionally, it is possible to use the resulting esti-

mated motion parameters later in the estimation step. Secondly, the fMRI

images are normalised to a common space. Using a set of basis functions, the

individual brain images are transformed until they fit a standard template.

One example of such a template is the MNI152 template, which is the result

of averaging 152 adult brains. Normalisation of the images makes it possible

to compare the results across subjects. Finally, the realigned and/or nor-

malised images can be smoothed. Spatial smoothing is an averaging process

in which the voxels values are combined according to a Gaussian weighted

kernel. The result is a blurring of the data that comes with a cost of losing

some spatial resolution. However, the data averaging has the beneficial result

that the noise in the data is also reduced.

Model estimation

The classical approach to localise active voxels is a mass-univariate General

Linear Model (GLM) estimation. For each voxel in the brain, a GLM is fitted

to the time series of that voxel. The estimation is independent for each voxel,

but the GLM is based on a common design matrix. In this design matrix,

the experiment is modelled using regressors that indicate when a stimulus in

a particular condition has been presented. These stimulus regressors are con-

volved with a haemodynamic response function (HRF) to model the expected

BOLD response based on the experimental design. Optionally, temporal and

dispersion derivatives can be added to account for mismodelling in the delay

and dispersion of the HRF. In addition to the stimulus regressors, the motion

parameters estimated in the realignment step are often added to the design

matrix, as well as other possible confounders (e.g. reaction times or error

trials). A major difference with the classical GLM is that, during the model
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estimation for fMRI data, temporal auto-correlation is taken into account.

Statistical inference

Once the model is estimated, conclusions with regard to where active voxels

are located can be inferred based on the parameter estimates. For a given

contrast, a corresponding statistic is calculated for each voxel, creating a

parametric statistical map (SPM). Due to the mass-univariate approach, a

standard thresholding of this statistical map will yield inflated Type I error

rates caused by a huge multiple testing problem. The classical Bonferroni

correction will be too conservative because the voxel-wise tests are not com-

pletely independent. A possible correction for this problem is controlling

the Family Wise Error (FWE) rate (i.e. the probability of making even one

Type I error in the family). By using properties from Random Field Theory

(RFT), an estimation of the total number of independent tests is made and

the inference threshold is adjusted accordingly.

fMRI analysis software

The most popular software package for fMRI data analysis is, by far, SPM2.

This Matlab toolbox is freely available and provides an intuitive GUI inter-

face. The software is supported by a well documented manual and numerous

courses organised by the developers. Other competitive open-source software

packages are FSL3 and AFNI4. Both FSL and AFNI are comprehensive C

libraries of functions for fMRI data analysis that are controllable through

a GUI interface. The software packages provide extensive online documen-

tation and courses are frequently organised by the developers. All three

open-source software packages have the additional advantage that they are

easily scriptable and can be used to develop customised analysis protocols

that can be carried out automatically.

2http://www.fil.ion.ucl.ac.uk/spm/
3http://www.fmrib.ox.ac.uk/fsl/
4http://afni.nimh.nih.gov/afni/
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A critical note

Despite the available software and the well-documented pipeline process, the

researcher performing an fMRI data analysis is confronted with numerous op-

tions and it not clear yet how these choices influence the final result. Are the

defaults necessarily optimal or is there another more suitable value/option?

For example, during the preprocessing phase, one can choose between linear

and non-linear realignment. The number of degrees of freedom for the re-

alignment is also an option. Which one is better? In the spatial smoothing

step, the smoothing effect is largely determined by the choice of the width of

the smoothing kernel. How should one choose this value? When constructing

the design matrix, the researcher is again confronted with several questions:

Is it useful to add the estimated movement parameters? Could there be a

benefit of including a junk predictor? Which HRF is best suitable for the

data? Is voxel-wise correction more appropriate than cluster-based multiple

testing correction? Is it better to control the number of false negatives or

rather the number of false positives?

There are no standard answers to these questions and a lot of expert

knowledge is expected from the researcher who is applying these techniques.

It might not be realistic to expect the thorough statistical knowledge that is

needed to make insightful decisions on these matters to be generally present.

Therefore, the methods researchers have a major role to play in educating

the applied researchers on best-practices. However, this is impossible without

a comprehensive understanding of the effects that the choices have on the

end result.

1.3 A statistical approach

In this dissertation, a statistical approach to the simulation of fMRI data is

adopted. This is in contrast to a physical approach. In both fields, simula-

tions of fMRI data are commonplace but the underlying research question is

quite different. For example, Drobnjak et al. (2006) investigated the interac-

tion between rigid-body motion artifacts and B0 inhomogeneities. MRI-based
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simulations were carried out in which the Bloch equations (Bloch, 1946) were

solved numerically and the size of motion distortion and B0 inhomogeneity

was varied. In this simulation scenario, the correct modelling of the MRI

physics underlying the fMRI data acquisition was especially important.

fMRI simulation studies within a statistical context are mainly driven by

the question for model validation or model comparison. In this approach,

the crucial aspect of fMRI data generation will be to capture the compo-

nents in the data that will have an influence on the outcome of a statistical

model. The physical underlying mechanisms are of lesser importance, but the

challenge is to develop models that can accurately represent the fMRI data

components. For example, Smith et al. (2011) conducted a large-scale sim-

ulation study to evaluate and compare connectivity analysis methods with

respect to their capability to detect and induce the directionality of connec-

tions between brain regions. In this study, the influence of the MRI physics

on the measurement of the brain network is not of interest, since, first of

all, this influence will be equal for all statistical techniques that were evalu-

ated, and second, data across subjects will most likely be acquired using the

same pulse sequence or scanner. On the other hand, noise components in

the fMRI data that possibly hinder accurate detection of the brain network

should be modelled, but the characteristics of these sources can be defined

without explicit modelling of the MRI physics.

1.4 Motivation and outline

Due to the complexity of fMRI data and the variety of available statistical

methods, thorough validation of these methods is a must. In order to be

able to validate a statistical method, the ground truth of the data has to

be known. In the case of fMRI data this ground truth is hard to come by

and simulations offer an easy and priceless validation tool. The original goal

of this doctoral thesis proposal was to validate statistical methods for fMRI

data using Monte Carlo simulations. The validation studies would have a

twofold purpose. First, feedback could be given on the validity, efficiency

and robustness of the statistical methods, and second, guidelines could be
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provided on the optimal choices for the analysis parameters. However, the

search for an appropriate way to simulate fMRI data failed and it became

clear that there is still confusion in the literature on how fMRI data should

be simulated. Consequently, the focus of the doctoral project shifted to the

simulation of fMRI data an sich.

This dissertation has multiple goals, which correspond to the respective

chapters. First, an investigation of the fMRI simulation literature was carried

out (Chapter 2). In this review, current simulation studies were assessed with

a specific focus on how the fMRI data were generated. The most common

data generating processes were evaluated based on their correspondence to

real fMRI data. This literature survey raised a number of issues: (1) There

is no consensus on how to define signal-to-noise ratio for fMRI data; (2)

fMRI simulation studies are carried out using ad hoc and in-house simulation

scripts; (3) a great discrepancy was observed between the structure of the

noise that is present in fMRI data and the model for fMRI noise that is used

in simulations. These observations led to the following four studies in this

dissertation.

Chapter 3 is a comment on the definition of signal-to-noise (SNR) and

contrast-to-noise (CNR) ratio for fMRI data. In this comment, the compa-

rability between fMRI studies is challenged based on the variety of SNR and

CNR values that are reported. This variety stems from the use of several

definitions that differ in how the signal of interest is operationalised. The

advantages and drawbacks of the definitions are pointed out and tools are

provided to increase the transparency of fMRI studies.

Chapter 4 meets the lack of simulation software for fMRI data. An R

package, neuRosim, is presented that bundles functions to generate fMRI

data. Special attention is paid to how the simulated data are representative

for real data and how the different components are modelled. The software

package provides fast, flexible and intuitive simulation of fMRI data. All the

simulation studies presented in this dissertation used neuRosim for the data

generation.

In chapter 5 the noise model of simulated fMRI data is investigated. In a

series of simulations, the impact of different noise models on the conclusions of
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fMRI simulation studies is assessed. Special attention is given to the specific

effect of adding physiological noise to the data generating process and proof

is provided that ignoring this noise source can lead to biased conclusions.

In the final study (chapter 6), a demonstration is provided how simulation

studies can be used for the validation of analysis methods for fMRI data.

In this application of fMRI simulation, spatial smoothing techniques and

inference methods are systematically evaluated based on their effect on the

sensitivity and the specificity of an activation detection analysis.

Chapter 7 provides an overview of the main findings and conclusions in

each study. The implications of these results are discussed in a more general

framework and some topics for future research are suggested.

Chapters 4 and 5 are published papers in the Journal of Statistical Soft-

ware and the Journal of Neuroscience Methods, respectively. Chapters 2, 3,

and 6 are submitted. Full bibliographic details of these chapters are listed in

the bibliography at the end of this dissertation.
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Abstract

Simulation studies that validate statistical techniques for fMRI data are chal-

lenging due to the complexity of the data. Therefore, it is not surprising that

no common data generating process is available (i.e. several models can be

found to model BOLD activation and noise). Based on a literature search,

a database of simulation studies was compiled. The information in this

database was analysed and critically evaluated focusing on the parameters

in the simulation design, the adopted model to generate fMRI data and on

how the simulation studies are typically reported. Some striking findings are

discussed and some guidelines are provided that could improve the quality of

fMRI simulation studies.
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2.1 Introduction

Twenty years ago, functional magnetic resonance imaging (fMRI) was founded

as a method to measure brain activity (Kwong et al., 1992; Ogawa et al.,

1992). In these past twenty years, this technique has been used increasingly

and has pioneered the search to map and connect the brain that caused a

world-wide collaboration of scientists from different disciplines. Engineers

and physicists are intrigued by the acquisition of the fMRI data, while physi-

cians and psychologists are challenged to adapt their behavioural experimen-

tal protocols to the scanner environment. Last but not least, the analysis

of fMRI data has been, and still is, a topic of numerous discussions among

statisticians. The latter are confronted with the fact that the data acquired

through fMRI have no ground truth. This ground truth is needed to en-

sure validation of the statistical methods that are used to analyse the data

and to assess statistical properties such as sensitivity, specificity, bias and

robustness. Despite great efforts to develop mechanical models (Brosch et

al., 2002) or measuring neural activity with intracranial EEG (David et al.,

2008), simulations are probably still the most feasible way to establish the

ground truth of fMRI data.

NeuroImage, one of the flagship journals in the neuroimaging community,

celebrated the 20th anniversary of the first fMRI publications with a special

volume that consisted of 103 reviews about the early beginnings, develop-

ments in acquisition, software, processing and methodology, and prospec-

tives for the future (Bandettini (Editor), 2012). Although the advances in

statistical methods for fMRI data are discussed in several of these reviews,

simulations an sich are not mentioned. In general, it appears that simu-

lation studies are still not standard practice for fMRI methods validation.

A possible explanation is that it can be quite challenging to simulate fMRI

data. Not only is the coupling between the neural activity and the Blood

Oxygenation Dependent Level (BOLD) not completely understood (Handw-

erker et al., 2012), fMRI data are also characterised by a great deal of noise

coming from multiple sources (Greve et al., 2012). Consequently, no common

data generating process for fMRI data is available and the data generation
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in fMRI simulation studies is mostly defined ad hoc.

The goal of this review is to provide an overview of the most common

data generation methods used in fMRI simulation studies. An established

and accepted data generating process does not yet exist and therefore an

investigation of the existing published models is called for. Especially the

validity of these data generating methods is analysed and the overall report-

ing and conducting of fMRI simulation studies is critically reviewed. The

rest of the paper is organised as follows: In the Methods section the article

selection criteria are reported that were applied to establish a database of

fMRI simulation studies literature, and the focus points of the article evalu-

ation are discussed. The Results section focuses on different aspects of the

simulation studies, namely, the goals of the studies, the experimental design

under investigation, the simulation parameters and the data generation mod-

els. Finally, in the Discussion, guidelines and best practices are provided to

increase the reliability and generalisability of fMRI simulation studies.

2.2 Methods

2.2.1 Article selection

Articles were selected from the Web of Science database using the following

query: “fmri AND simulation AND (statistics OR data analysis)”. By ex-

cluding articles labelled as reviews or proceedings, this search resulted in 3181

hits. All these articles were manually inspected on content and relevance.

This screening resulted in excluding articles based on the following criteria:

the conducted simulations were for another modality (e.g. PET, EEG, MEG,

. . . ); no time series were simulated (e.g. inference methods are often vali-

dated on simulated statistical maps); non-human fMRI was simulated; and

no simulation study was conducted (e.g. papers presenting simulation soft-

ware). After exclusion, the remaining 119 articles were taken into account

in this analysis. Full bibliographic details of our sample can be found in

the appendix. These articles were published in 39 peer-reviewed academic

1Result as of January, 1st 2013
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Table 2.1 – Overview of journals in the survey. Full details of the included
studies can be found in the appendix.

Journal title Number
of articles

NeuroImage 37
Human Brain Mapping 11
IEEE Transactions on Medical Imaging 10
Magnetic Resonance Imaging 7
IEEE Transactions on Biomedical Engineering 6
Journal of Magnetic Resonance Imaging 6
Magnetic Resonance in Medicine 4
Other 38

journals (Table 2.1) over a period of 16 years (Figure 2.1). In this sample,

most simulation studies were published in NeuroImage (37), Human Brain

Mapping (11), IEEE Transactions on Medical Imaging (10), Magnetic Res-

onance Imaging (7), IEEE Transaction on Biomedical Engineering (6) and

the Journal of Magnetic Resonance Imaging (6).

During our article selection, we focused on simulation studies conducted

to validate or compare analysis procedures for BOLD-fMRI data. In order

to perform this validation, a data generating process is resulting in ariticial

data reflect to some degree the characteristics of real measured fMRI data.

From a statistical perspective, scanning parameters that influence magnetic

properties of the data (e.g. flip angle) are of less importance since they mainly

have an effect on the signal-to-noise ratio. For instance, when these scanning

parameters are optimised, the baseline signal might increase while the noise

level decreases. The crucial aspect is to determine the components in the

data that are expected to have an effect on the data analysis and model

these components while generating the simulated fMRI data.
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Figure 2.1 – Overview of number of articles for each publication year in-
cluded in the survey
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2.2.2 Article evaluation

In the present study, we analysed the sections describing the simulation study

for the selected papers. Where necessary the appendices or supplementary

materials were also included and whenever there was still missing informa-

tion after screening these sections, the whole paper was searched for this

information. Only the reported methodology was evaluated (i.e. no authors

were contacted for more information).2 For each study we evaluated the goal

of the simulation study, the simulation parameters and the data generating

process. In the case that multiple simulation studies were present in the

article, this information was retrieved from the most complex case that was

described. In the following section, summarised results are presented. For

a detailed results list on the individual study level, the reader is referred to

Table 2.3.

2.3 Results

2.3.1 Study goals

Simulation studies are conducted to evaluate statistical models based on a

given experimental design. For each article we assessed which statistical tech-

nique was validated. Six categories of statistical models were distinguished

(see Figure 2.2, left panel). Most simulation studies (25.2%) are conducted

for signal decomposition models like Principal Components Analysis (PCA),

Independent Component Analysis (ICA) and Wavelet analysis. This group of

methods is closely followed by General Linear Model (GLM) analysis, Likeli-

hood Ratio Tests (LRT) and t-tests (23.5% of the selected studies). 11.8% of

the simulation studies investigate properties of classification techniques using

for example Support Vector Machines or cluster analysis. Methods that are

2There might be a discrepancy between the conducted and reported simulation studies
(e.g. not all details are mentioned), however, to ensure reproducible science all critical
elements should be reported. It may not always be feasible to report everything in the
main text, but academic journals allow for crucial content to be described in appendices
or through online supplementary materials.
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Figure 2.2 – Statistical models (left) and experimental designs (right) in-
vestigated in the selected articles.

less represented in our sample are connectivity analyses (9.2%) or prepro-

cessing methods like motion correction and spatial smoothing (6.7%). All

studies that did not use any of the previous methods (23.5%) were gathered

in a rest category. In this category are included, for example, HRF esti-

mation methods, spatio-temporal models, bootstrapping and nonparametric

techniques.

2.3.2 Experimental design

The methods described above are validated using a given experimental design

(Figure 2.2, right panel). The majority of simulation studies (58%) report

using a block design for the generation of the BOLD activity. When this

design is not used, modelled activation is based on an event-related design

(21.8%) or it concerns a resting-state study (20.2%).

2.3.3 Simulation parameters

The general goal of a simulation study is to research a certain outcome (e.g.

power, bias, . . . ) under several conditions (e.g. noise level, HRF variability,

. . . ). The most common method to achieve this goal is by conducting a Monte
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Figure 2.3 – Overview of the dimensions of the simulated data (left) and
the number of replications for single-subject and multi-subject simulations
(right).

Carlo experiment. The simulation reports in our database were evaluated

on the dimensions of the simulated data, the number of replications and

parameter variation.

Data dimensions

fMRI data have in essence four dimensions (i.e. coordinates in an xyz-space

and time). However, the majority of articles in our sample (48.7%) published

results for 3D data where time series are simulated for all voxels in a single

slice (Figure 2.3, left panel), while 21% considered full 4D fMRI data. On the

other hand, 28.6% of the articles reported simulating fMRI time series only

with no spatial context. In this case, mass-univariate techniques were mostly

evaluated that also regard fMRI data as being multiple measurements of sin-

gle time series. A very small proportion (1.7%) considered two-dimensional

data. This was reported exclusively in an ICA validation context, where the

fMRI data are organised as voxels × timepoints.
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Table 2.2 – Proportions of studies reporting parameter variation and jus-
tification of the chosen parameter values

Justification of value
Parameter variation No Yes
No 20.2% 10.9%
Yes 32.8% 36.1%

Replications

83.2% of the selected articles considered single-subject data, while the re-

maining 16.8% simulated data for multiple subjects. In these last studies,

the number of subjects that was simulated corresponded typically with sam-

ple sizes reported in real fMRI studies (e.g. 4 to 20 subjects) and the data for

these subjects were mostly simulated once (with a few notable exceptions, see

Figure 2.3, right panel). For the single-subject simulation studies, the num-

ber of repetitions was higher in the majority of the studies, but still 37.4% of

the articles reported only 1 replication of the simulated data for each setting

of the manipulated parameters. It should be noted that simulating 3D or

4D datasets without any spatial correlations is equal to the simulation of

fMRI time series with n replications where n is the number of voxels. This

was true for 22 of the 37 studies that reported using 1 replication. However,

for the remaining studies conclusions are based on 1 realisation of the data.

Two studies reported simulating time series just once for each setting of the

simulation parameters.

Parameter variation

Other possible parameters taken into account in the simulations were, for

example, strength of the modelled activation, number of time points, noise

level, repetition time (TR), etc. The relevance of a simulation study depends

highly on the representativeness of these chosen parameter values. To ensure

that the parameters are characteristic for fMRI data, it is recommended that

a range of values is evaluated. Additionally, a justification is expected on why
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specific values of certain parameters are chosen. In our sample both require-

ments were assessed (see Table 2.2 for an overview). A study was classified

as using varying parameters as soon as more than one value of a specific pa-

rameter was considered. Whenever a reason for choosing a specific parameter

value was reported, the simulation study was evaluated positive on the justi-

fication of the chosen parameters. About one third of the studies reported a

variation in the values and gave a justification for their choices. Frequently

reported variations were several noise levels and activation strengths that

were taken into account. As for the choices of the values, authors mostly

justified these as being realistic values in real fMRI data or being estimated

from real data. However, 32.8% of the studies reporting variation of the pa-

rameters did not give any justification, 10.9% did justify the choice of the

parameter values but only used one specific value for each parameter, while

one fifth of the studies in our sample (20.2%) did neither.

2.3.4 Data generation models

Of all simulation studies investigated, 84% were pure synthetic simulations

while the other 16% adopted a hybrid simulation strategy. In hybrid sim-

ulations, a resting-state dataset is acquired and synthetically generated ac-

tivation is added to these data. As such, knowledge of the ground truth is

assured while the noise is representative for real data. However, manipula-

tion of the noise in the simulated fMRI data is not possible and replicating

the data will be a costly process. Therefore, in most simulations the fMRI

data are generated completely artificially.

All synthetic simulation studies adopted an additive data generation model

(e.g. Bellec et al., 2009) in which three main components can be distin-

guished: (1) a baseline signal, (2) BOLD activation and (3) noise. However,

half of the studies did not report using a baseline for the data, so we could

assume that this is zero for these studies. For the other half, 47% used a

static baseline, for example a constant when simulating time series and a

template slice or volume that was repeated for each time point in the case

of simulating 3D or 4D fMRI data. A minority of the studies (3%) used a
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Figure 2.4 – Overview of the different HRF functions used in the simulation
studies (left) and whether HRF variability was taken into account (right).

varying baseline, meaning that the baseline values were varied over time, e.g.

to model thermal shifts (Backfrieder et al., 1996).

BOLD response

An important component in the simulated fMRI data is the BOLD response

because this signal defines the ground truth in the simulation studies. De-

spite the fact that the coupling between the neural activation and the BOLD

response is still not completely understood (Handwerker et al., 2012), several

models are available to generate a haemodynamic response function (HRF).

See Figure 2.4 for an overview of the used models in the selected articles.

Those methods are, for example, a gamma function (Boynton et al., 1996;

Cohen, 1997), a difference of two gamma functions, also known as the canon-

ical HRF (Friston et al., 1998; Glover, 1999) or the Balloon model (Buxton

et al., 1998, 2004). Usage of these models was respectively reported in 12.6%,

34.5% and 0.8% of the articles. Nevertheless, 32.8% of the reported simula-

tion studies disregarded any BOLD characteristics and chose a square wave

(i.e. a boxcar function) to represent the BOLD activation in the simulated

fMRI data. When no experimental task was simulated, resting-state activa-

tion was predominantly modelled as a set of sinusoidal functions (8.4% of
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Figure 2.5 – Overview of the noise models in the synthetic simulation
studies (left) and the reported use of correlated noise (right).

the total sample), although 8.4% of the selected studies did not simulate any

BOLD activation. The shape of the HRF varies immensely from brain region

to brain region and also from subject to subject. 22.7% of the simulation

studies reported modelling this variation in the HRF parameters, while the

majority (77.3%) considered a fixed HRF in all simulations (Figure 2.4, right

panel).

Noise model

Noise is not only characteristic for fMRI data but also ensures generalisability

of the conclusions based on simulations. All simulation studies incorporated

some noise generating process (see Figure 2.5, left panel, for an overview).

The vast majority of the synthetic simulation studies (i.e. 75%) selected the

noise randomly from a Gaussian distribution. An additional 9% added also

some drift function to this noise, while about 7% of the studies considered a

skewed noise distribution (e.g. Rician or super Gaussian distribution). The

remainder of the studies used a very specific noise model (for example by

adding physiological noise, using a uniform distribution or adding motion

correlated noise), because they focused on the effects of these noise sources.

fMRI noise is also known to be spatially and temporally correlated. However,
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58% of the selected articles did not report modelling any correlations in

the noise (Figure 2.5, right panel). Temporal correlation (24%) was almost

exclusively modelled as an autoregressive autocorrelation process. Typically

this process was of order 1, but there are exceptions that used a model

order of 3 or 4. Spatial correlations (13%) were typically created by spatial

smoothing of the generated noise. A small fraction of the studies (i.e. 5%)

models both spatial and temporal correlations.

2.4 Discussion

Whenever statistical models are validated based on simulations, the model

that is used for the data generation is of utmost importance. In this paper,

a survey was conducted to list currently used data generation models. Based

on 119 research articles we described the simulation type, use and justifica-

tion of simulation parameters and the different components in the fMRI data

generating process. The survey results showed that current fMRI simulation

studies sometimes lack a thorough experimental manipulation. The param-

eters in the simulation study (e.g. noise level, TR, HRF delay, . . . ) are not

always varied, while representative values of some of these parameters are

not known. Further, the number of replications is a major topic of concern.

It was surprising to observe that the conclusions of some of the simulation

studies were based on only one replication of the random data generating

process. The external validity of these simulation can be questioned. In gen-

eral, the goal of a simulation study is to provide stable results. Therefore, it

is hard to belief that only one replication will suffice.

Model-based versus data-based simulation

In the majority of the reported simulation studies, the fMRI data were gen-

erated based on the same model as the model that was being validated (e.g.

generating time series from a VAR model to evaluate Granger causality).

As such, the simulation is entirely model-based and the assumptions of the

model under investigation are completely met. Consequently, the conclusions
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of these simulation studies give only partial information on the applicability

of these models as an analysis tool for fMRI data, since fMRI data generally

do not meet the assumptions of most statistical models. A better practice

would be to start from the data themselves and to define a data generating

process that models the different sources that are present in fMRI data. By

using data-based simulations, the properties of the analysis techniques can

be assessed in more realistic circumstances.

In this context, it should be noted that the data generating proces used

in most current simulation studies is not compatible with the knowledge

on how fMRI data are constructed. For instance, it is well-known that the

BOLD response is the result of a haemodynamic coupling to neural activity.

Although the precise dynamics are perhaps still debatable, there is consen-

sus about the BOLD signal being a delayed response with varying dynamics

over the brain regions and between subjects. Additionally, there could be

nonlinearities in the signal. Therefore, it came to us as a big surprise that

about one third of the reported simulation studies in our database did not

model any of these characteristics and used a simple boxcar function to dis-

tinguish stimulus induced activation from rest. About the same number did

model the slow emergence of the BOLD signal by using a canonical HRF, but

only a small fraction (i.e. two studies) did also model BOLD nonlinearities by

means of the Balloon model. In the case of spontaneous neural activation (for

example in resting-state studies), BOLD fluctuations were mostly modelled

through sinusoidal functions with frequencies that are commonly observed in

resting-state studies. However, describing these spontaneous fluctuations by

sinusoids stems from the tradition to use ICA to analyse these data and is

again more compatible with the model under investigation than being repre-

sentative for the data. Further, variability of the BOLD response was taken

into account only in about one fifth of the simulation studies. With regard to

modelling BOLD activation, in a data-based simulation context at least some

form of HRF should be used that takes into account the basic characteristics

of the BOLD signal, while any variation of the parameters of this model will

enhance the generalisability of the simulation results.

The generation of fMRI noise causes also a discrepancy between simulated
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and real fMRI data. The noise in fMRI consists of several sources (Lazar,

2008; Greve et al., 2012), for example thermal noise, motion related noise,

physiological noise and task-related noise. Nevertheless, the vast majority of

simulation studies investigated here have only used a white Gaussian noise

model to generate fMRI noise ignoring its multiple-source character. In some

cases, spatial or temporal correlations are added. Again, this noise model is

consistent with many of the statistical models for fMRI data (e.g. GLM).

Unfortunately, the Gaussian noise model only accounts for a fraction of the

noise in real data. One solution is to use hybrid simulations in which using

real noise acquired in a resting-state study increases the realistic character

of the simulated data. However, it is impossible to manipulate noise related

parameters and unwanted activation in resting-state data can influence the

simulation results. Moreover, multiple replications (i.e. acquiring resting-

state data from multiple subjects) are costly. Perhaps the better solution

is to model more than only Gaussian noise (i.e. thermal noise) and also

include, as has been demonstrated in several simulation studies, motion noise,

physiological noise, signal drift, etc. In some simulation studies, the results

will not be altered under a full noise model. It may not always be necessary

to include all noise sources (e.g. if a certain noise source is removed or the

influence of a source is assumed to be equal in all conditions), but this should

be motivated at least. To assure generalisability of the simulation results, a

more complex noise model, compared to the one that is generally adopted

now, might be imperative.

Guidelines for simulating fMRI data

Based on these results we present some guidelines to improve the reliability

and generalisability of fMRI simulation studies.

1. All parameters for which a value is chosen in the simulation experiments

should be thoroughly justified. If a single value is not agreed upon, a

range of values should be evaluated (see Bellec et al., 2009; Park et al.,

2012; Penny, 2011; Sturzbecher et al., 2009, for some examples).
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2. The conditions in the simulation study, (e.g. statistical model, param-

eter values,. . . ), have to be combined in an experimental design. The

construction of this experimental design in essential (Skrondal, 2000).

Factors that can be considered in the experiment are, for example,

variations of parameter levels, analysis methods and number of repli-

cations. The most complete design is the full-factorial design, although

there might be reasons to adopt fractional designs. Based on the ex-

perimental design, the simulation experiment will have external validity

(i.e. its results can be generalised beyond a given experiment).

3. A Monte Carlo experiment has to be repeated to exclude random in-

fluences on the simulation results. Therefore, a sufficient number of

replications of the experiment has to be performed. In the case of

time series simulations, at least 10000 replications might be necessary,

while for the simulation of 3D or 4D fMRI data a total of 100 might

be enough. In general, the more replications, the better. For example,

Sturzbecher et al. (2009) generated 10000 replications of 3D datasets,

and Park et al. (2012) simulated 4D multi-subject datasets to repre-

sent twin data using 500 replications of each paired dataset. In practice,

this number can be limited due to time or computational constraints.

Whenever in doubt, the convergence of the results should be tested.

4. The simulated task-related activation signal should reflect known prop-

erties of the BOLD response. This includes, but is not limited to, re-

sponse delay, nonlinearities and inter-region and -subject variability.

Either the canonical HRF or the Balloon model can be used (see John-

ston et al., 2008, for an example using the Balloon model).

5. fMRI noise is partially white (i.e. system noise) and this part can be

modelled by random Gaussian noise. However, additionally one should

account for (residual) motions, heart rate and respiratory rate fluctua-

tions, task-related noise and spatial and temporal correlations (see, for

example, Bellec et al., 2009; Fadili et al., 2001; Schippers et al., 2011).

6. If either the BOLD model or the noise model is simplified, this should
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be duly motivated.

Conclusion

The use of simulation studies to validate statistical techniques for fMRI data

should be highly encouraged, because simulation experiments are a fast and

costless tool to assess the quality and applicability of the analysis techniques.

However, our survey of the fMRI simulation literature raised several concerns

with respect to simulation studies as they are conducted now. The obser-

vation that the number of fMRI simulation studies seems to decrease the

last couple of years is troubling. Furthermore, it was demonstrated that the

data generating process used to simulate fMRI data is often model-based

and parameter variation in the data generating process is not standardly

implemented.

A possible reason for the absence of a common fMRI data generation

model might be the lack of established software packages. Current simula-

tion studies are mainly conducted using in-house software routines that have

no common programming language and are not widely available. Recently,

developments to fill this gap have resulted in the release of software packages

that provide a flexible and fast framework for fMRI simulations (Welvaert et

al., 2011; Erhardt et al., 2012). Using these software packages can be an im-

portant step in the right direction. Additionally, by taking into account the

different sources present in fMRI data and adopting a complete simulation

design with sufficient replications, conclusions from fMRI simulation studies

can be expected to be more reliable.

Researchers that conduct fMRI simulation studies are encouraged to im-

plement the guidelines presented in this paper in order to increase the relia-

bility and generalisability of the conclusions from simulation studies.
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Abstract

Signal-to-noise ratio, the ratio between signal and noise, is a quantity that

has been well established for MRI data but is still subject of ongoing debate

and confusion when it comes to fMRI data. fMRI data are characterised

by small activation fluctuations in a background of noise. Depending on how

the signal of interest is identified, signal-to-noise for fMRI data is reported by

using many different definitions. Since each definition comes with a different

scale, interpreting and comparing SNR values for fMRI data can be a very

challenging job. In this paper, we provide an overview of existing definitions.

Further, the relationship with activation detection power is investigated. Ref-

erence tables and conversion formulae are provided to facilitate comparability

between fMRI studies.
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3.1 Introduction

In science and engineering, the signal-to-noise ratio (SNR) is a measure that

compares the level of a desired signal to the level of background noise. For

data acquired through magnetic resonance imaging (MRI), this quantification

is typically used to allow comparison between imaging hardware, imaging

protocols and acquisition sequences. In this context, SNR is conceptualised

by comparing the signal of the MRI image to the background noise of the

image (Parrish et al., 2000; Edelstein et al., 1986). Mathematically, the

SNR is the quotient of the (mean) signal intensity measured in a region of

interest (ROI) and the standard deviation of the signal intensity in a region

outside the anatomy of the object being imaged (i.e. a region from which

no tissue signal is obtained). By optimising, for example, field of view, scan

parameters, magnetic field strength and slice thickness, the SNR of MRI

images can be increased because this optimisation reduces the background

noise.

Translating SNR of MRI images to fMRI images is not as straightforward

as it may seem. First of all, the noise in fMRI images does not correspond

to the background noise of MRI images. In fMRI images, system noise ef-

fects the image as well as noise stemming from the subject (i.e. cardiac and

respiratory pulsations, motion) and the task that is performed. Using time

series outside the brain as noise measurement only, will not be sufficient to

capture the noise data (Parrish et al., 2000; Krüger & Glover, 2001; Tabe-

low et al., 2009). Secondly, since the main goal of fMRI studies is to detect

small fluctuations over a period of time, image SNR might not be suitable.

Therefore, temporal SNR (tSNR), in which the (mean) signal over time is

taken into account, can be used to determine the SNR of fMRI time series

(Triantafyllou et al., 2005).

How to define SNR for MRI and fMRI data is documented quite well from

a physical perspective. Several studies have demonstrated the dependence on

scanning parameters and illustrated the necessary conditions to obtain higher

SNR (e.g. Krüger & Glover, 2001; Krüger et al., 2001; Parrish et al., 2000).

However, in the end, one is interested in how well the experimentally induced
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activation can be detected. From a statistical perspective, it is not entirely

clear how the SNR measurements relate to this detection power, because

the small activation fluctuations (typically around 1–5%) cannot be derived

from the mean signal based on a static image or time series. So for fMRI

data, using the contrast-to-noise ratio (CNR) of the time series instead of

(t)SNR is more preferred because CNR compares a measure of the activation

fluctuations to the noise (Hyde et al., 2001).

To retrieve the range of possible values of SNR and CNR, we looked at

the reported values of SNR and CNR in fMRI studies. NeuroImage published

in 2012 about 458 fMRI studies. Of these studies, 50 mentioned the role of

SNR/CNR for their experiment or method, while only 18 papers also reported

SNR or CNR values. Reported SNR values ranged from 0.35 to 203.6. Many

authors explicitly reported tSNR values ranging from 4.42 to 280, while in a

few other cases CNR values were reported that varied from 0.01 to 1.8.

Since the determination of the SNR and CNR of real data can be a de-

manding job and is not standardly reported, we also looked at the SNR/CNR

values that were reported in simulation studies. In simulation studies, the

range of the reported SNR/CNR values was determined based on the fMRI

simulation database from Welvaert & Rosseel (2013). The reported values

varied widely across studies and were almost exclusively labelled as SNR. For

example, the SNR for the simulations varied from 1 to 10 in one study, while

the range was 0.01 to 1 in another, and in yet other studies, we found SNR

values that could be negative, for instance, from -13 to 30.

Both in the experimental and simulation studies, the reported values

demonstrated a range that was much wider than can be explained by natural

variation only. There is only one reason that could account for the found

variation, namely, the use of different definitions to calculate SNR or CNR.

Indeed, several definitions can be found in the literature, especially for CNR.

All these CNR measurements model some form of relative signal change, re-

lated to the contrast of interest, relative to the noise level. However, there

is no consensus on how this contrast of interest should be conceptualised.

Therefore, the scale of the CNR definitions varies widely and this makes

comparing studies very hard. Furthermore, it is not clear how the CNR def-
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initions are related to the sensitivity (or power) to detect activation. In this

paper, an overview of the SNR and CNR definitions for fMRI data that are

most commonly reported is presented. The advantages and drawbacks of

these definitions are discussed, as well as the relationship between the defini-

tions and the power to detect activation. In addition, conversion strategies

between the definitions are derived that will enable comparison between dif-

ferent fMRI studies.

3.2 SNR and CNR definitions for fMRI data

Both SNR and CNR definitions have in common that a signal measure is

compared to the noise level. The distinction between SNR versus CNR and

the differences between the CNR definitions will be the result of how the

signal measure is defined. While discussing the definitions, we will consider

fMRI time series as the result of an addition of an activation signal time

course and a noise signal time course. The activation signal time course,

denoted as S, contains both the baseline signal and the possible fluctuations

in the signal due to the experimental task. In general, S can be calculated as

the average haemodynamic response function (HRF) of the fMRI time series

in a certain ROI (see for example Huettel et al., 2001). The noise signal,

N, will typically be the composition of several noise sources such as system

noise, physiological noise and task-related noise. When referring to the noise

signal, we implicitly take into account all these sources, ignoring the specific

influence or distribution of these sources (see Krüger & Glover, 2001, for

an extensive discussion). To calculate N from the fMRI series in an ROI,

the contribution of the activation signal can be reduced by subtracting the

average HRF from the time series (Huettel et al., 2001).

In the overview of the SNR and CNR definitions below, we will focus on

those definitions that were found in the literature database from Welvaert &

Rosseel (2013). In fMRI simulation studies, values for SNR/CNR are often

chosen to give an indication of the strength of the modelled signal relative

to the modelled noise. Six different definitions were found in total. We will

discuss their definition and whether they should be referred to as SNR or
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A

S

Figure 3.1 – Illustration how the amplitude A is determined from an acti-
vation signal S.

CNR. Note that, although in most papers these formulae were labelled as

SNR, the majority of them are in fact CNR measurements.

Definition 1 (SNR)

The first definition models SNR based on the mean signal of the fMRI time

series and the standard deviation of the noise in the time series (Nan &

Nowak, 1999; Chen & Yao, 2004),

S̄
σN

.

As such, the global signal level, comprised of the baseline and activation, is

related to the noise.
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Definition 2 (CNR)

Joel et al. (2011); Den Dekker et al. (2009); Valente et al. (2009); Lindquist

& Wager (2008) and De Martino et al. (2008), for example, used a CNR

definition in which an amplitude measurement is related to the standard

deviation of the noise,
A

σN
.

The amplitude of the signal is generally defined as the absolute difference

between the baseline of the signal and the signal peak (Figure 3.1).

Definition 3 (CNR)

The previous definition of the CNR can also be transformed in decibel (dB)

scale, which is a common scale in signal processing (Marrelec et al., 2003;

Suckling & Bullmore, 2004; Vincent et al., 2010),

10 log10

(
A2

σ2
N

)
.

Definition 4 (CNR)

Another possibility is to model the strength of the signal based on the stan-

dard deviation of the activation signal (Churchill et al., 2012; Esposito &

Goebel, 2011; Penny, 2011; Schippers et al., 2011; Stephan et al., 2008; De

Mazière & Van Hulle, 2007; Calhoun et al., 2005),

σS

σN
.

This definition is also implemented in the DCM simulator (Friston et al.,

2003) and is a very intuitive measurement of CNR because the ratio of the

fluctuations of both activation signal and noise is calculated.
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Definition 5 (CNR)

Lee et al. (2011) and Zhang (2010) used the ratio of the variances,

σ2
S

σ2
N

,

which is of course equal to the square of Definition 4.

Definition 6 (CNR)

Again, the ratio of the standard deviations is also found in dB scale (Casanova

et al., 2008; Sturzbecher et al., 2009; Lin et al., 2010; Ryali et al., 2011; Bellec

et al., 2010; Cabella et al., 2009),

10 log10

(
σ2

S
σ2

N

)
.

Comments on the definitions

Definition 1 is a pure SNR measurement and is directly related to tSNR

(Triantafyllou et al., 2005). Since the baseline levels in fMRI are typically

quite high (e.g. around 800) and the signal fluctuations are very small, no real

information about the activation signal strength is included in this definition,

which makes it possibly not very suitable for fMRI data. In fact, the higher

the baseline value of the data, the less impact the activation signal will have

on the value of the SNR. Therefore, based on the SNR value of a certain

voxel it will not be possible to distinguish active from non-active voxels.

In contrast, the remainder of the definitions all include some measurement

of the activation signal strength. Therefore, these definitions are referred to

as CNR formulae. It should be clear that, in theory, the value for these CNR

definitions will always be 0 for non-active voxels and > 0 for active voxels.

Consequently, theoretically it would be possible to detect active voxels based

on their CNR value. In practice however, the activation signal is stricto

sensu unknown and it may be complicated to calculate CNR values for single
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voxels.

For the CNR definitions, two different sets can be distinguished; the first

set (Definition 2–3) focuses on the amplitude of the activation signal, A,

while the second set (Definition 4–6) incorporates the standard deviation of

the activation as the signal of interest. With regard to the first set, these

formulae can be interpreted as definitions of effect size based on means or

differences between means, like for example Cohen’s d (Cohen, 1988). As

such it is a direct indication of the strength of the signal.

In the case of a block activation signal (Figure 3.1), the determination of

the amplitude A is quite straightforward. However, this is not the case in, for

example, an event-related design. In this experimental design, it is typical

that multiple events will cause several peaks in the signal and the timing of

the stimuli will have an effect on the height of the peak. In this case, the

amplitude of the signal could be either the difference between the baseline

and the maximal height of the signal, or the mean amplitude over all peaks.

In contrast, calculating the standard deviation of the activation signal, σS, is

independent of the experimental design (i.e. block or event-related designs).

So far, the definitions described above were only discussed based on a

single condition experiment. As soon as multiple conditions are considered

in a experiment, it is not quite clear anymore how to calculate the SNR or

CNR of the fMRI data. One option could be to determine the SNR/CNR

for each condition separately, which would be valid when distinct regions

are activated by the conditions. Another option could be to first create an

expected activation signal based on a contrast between the conditions, and

then to calculate the SNR/CNR of the contrast signal in the same manner as

for single condition time series. In this way, the signal of interest is directly

based on the contrast that will be tested.

In essence all of these definitions have the same denominator (i.e. σN)

so that differences are just scaling differences based on the definition of the

activation signal. One desirable property for an SNR or CNR definition of

fMRI time series would be that it is closely related to the activation detection

power. If the SNR/CNR is high, then the power should be high too (keeping

everything else constant). Secondly, the scaling differences make it hard to
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compare the values of the discussed definitions. In the remainder of this

paper, we will present some tools that will enable comparison among the

different definitions and further, we will shed some light on the relationship

with activation detection power.

3.3 Comparing the SNR and CNR values

Due to the fact that there is no consensus on how to define the SNR or CNR

for fMRI data, interpreting a value can be an almost impossible job. Depen-

dent on how the SNR/CNR is calculated, the values will be on a different

scale. This impedes comparability between fMRI studies and consequently

delays convergence of conclusions. In order to facilitate the comprehension of

SNR and CNR values, three reference tables were assembled (Table 3.1–3.3),

based on three experimental designs. The designs are (1) a block design,

(2) an event-related (ER) design, and (3) a contrast between two conditions.

These experimental designs serve as basic templates. More complex designs

can be partially reduced to one of these three design types based on the

specific research hypotheses at hand (i.e. a specific contrast or the effect of a

specific predictor). An activation signal of 200s was modelled for each design.

The block design consisted of alternating task and rest blocks that lasted 20s

each. For the ER design, 25 events were randomly distributed over the whole

time series. For the contrast, two alternating block conditions of 20s each

were modelled with a rest period of 20s after each sequence AB and the effect

of condition A was twice as high as the effect of condition B. The baseline

value of the time series was considered fixed at 100 and we chose three levels

of percent signal change, 1%, 2% and 5% respectively. The standard devi-

ation of the noise was allowed to vary between 0.1 and 10. For all levels

of these parameters, the SNR or CNR according to the six definitions was

calculated and the results are presented in Table 3.1, Table 3.2 and Table

3.3. Note that for the ER design the amplitude was defined as the maximal

amplitude (i.e. amplitude of the highest peak). In the case of the contrast

design, the SNR and CNR values were calculated based on the contrast signal

that was the difference of the activation signals of the two conditions. The
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Table 3.1 – Reference table for the different SNR/CNR definitions based
on a block design. Coloured cells indicate values that are within the range
reported in fMRI simulation studies.

% Sig. ch. σN
S̄

σN
A

σN
10 log

(
A2

σ2
N

)
σS
σN

σ2
S

σ2
N

10 log
(

σ2
S

σ2
N

)
Power

1 0.1 1003 10 20 4.46 19.85 12.98 1.00
0.2 502 5 14 2.23 4.96 6.96 1.00
0.5 201 2 6 0.89 0.79 -1.00 1.00
1 100 1 0 0.45 0.20 -7.02 0.99
2 50 0.5 -6 0.22 0.050 -13.04 0.58
5 20 0.2 -14 0.089 0.0079 -21.00 0.14
10 10 0.1 -20 0.045 0.0020 -27.02 0.07

2 0.1 1007 20 26 8.91 79.42 19.00 1.00
0.2 503 10 20 4.46 19.85 12.97 1.00
0.5 201 4 12 1.78 3.18 5.02 1.00
1 101 2 6 0.89 0.79 -1.00 1.00
2 50 1 0 0.45 0.20 -7.02 0.99
5 20 0.4 -8 0.18 0.032 -14.98 0.42
10 10 0.2 -14 0.089 0.0079 -21.00 0.15

5 0.1 1017 50 34 22.28 496.35 26.96 1.00
0.2 508 25 28 11.14 124.09 20.94 1.00
0.5 203 10 20 4.46 19.85 12.98 1.00
1 102 5 14 2.23 4.96 6.96 1.00
2 51 2.5 8 1.11 1.24 0.94 1.00
5 20 1 0 0.45 0.1985 -7.02 0.99
10 10 0.5 -6 0.22 0.0496 -13.04 0.59
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Table 3.2 – Reference table for the different SNR/CNR definitions based
on an ER design. Coloured cells indicate values that are within the range
reported in fMRI simulation studies.

% Sig. ch. σN
S̄

σN
A

σN
10 log

(
A2

σ2
N

)
σS
σN

σ2
S

σ2
N

10 log
(

σ2
S

σ2
N

)
Power

1 0.1 1002 10 20 3.07 9.41 9.74 1.00
0.2 501 5 14 1.53 2.35 3.72 1.00
0.5 200 2 6 0.61 0.38 -4.24 0.99
1 100 1 0 0.31 0.094 -10.26 0.67
2 50 0.5 -6 0.15 0.024 -16.28 0.22
5 20 0.2 -14 0.06 0.0038 -24.24 0.08
10 10 0.1 -20 0.03 0.00094 -30.26 0.06

2 0.1 1004 20 26 6.14 37.64 15.76 1.00
0.2 502 10 20 3.07 9.41 9.74 1.00
0.5 201 4 12 1.23 1.51 1.78 1.00
1 100 2 6 0.61 0.38 -4.24 0.99
2 50 1 0 0.31 0.094 -10.26 0.75
5 20 0.4 -8 0.13 0.015 -18.23 0.17
10 10 0.2 -14 0.06 0.0038 -24.24 0.08

5 0.1 1010 50 34 15.34 235.26 23.72 1.00
0.2 505 25 28 7.67 58.81 17.69 1.00
0.5 202 10 20 3.07 9.41 9.74 1.00
1 101 5 14 1.54 2.35 3.72 1.00
2 51 2.5 8 0.77 0.59 -2.31 0.99
5 20 1 0 0.31 0.15 -10.26 0.64
10 10 0.5 -6 0.15 0.024 -16.28 0.21
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Table 3.3 – Reference table for the different SNR/CNR definitions based on
a contrast. Coloured cells indicate values that are within the range reported
in fMRI simulation studies.

% Sig. ch. σN
S̄

σN
A

σN
10 log

(
A2

σ2
N

)
σS
σN

σ2
S

σ2
N

10 log
(

σ2
S

σ2
N

)
Power

1 0.1 1001 10.56 20.47 3.02 9.14 9.61 1.00
0.2 501 5.28 14.45 1.51 2.28 3.59 1.00
0.5 200 2.11 6.49 0.60 0.37 -4.37 0.96
1 100 1.06 0.47 0.30 0.09 -10.39 0.46
2 50 0.53 -5.55 0.15 0.02 -16.41 0.15
5 20 0.21 -13.51 0.06 0.0037 -24.37 0.07
10 10 0.11 -19.53 0.03 0.0009 -30.39 0.05

2 0.1 1003 21.12 26.49 6.05 36.56 15.63 1.00
0.2 501 10.56 20.47 3.02 9.14 9.61 1.00
0.5 201 4.22 12.51 1.21 1.46 1.65 1.00
1 100 2.11 6.49 0.60 0.37 -4.37 1.00
2 50 1.06 0.47 0.30 0.091 -10.39 0.92
5 20 0.42 -7.49 0.12 0.015 -18.35 0.27
10 10 0.21 -13.51 0.06 0.004 -24.37 0.10

5 0.1 1007 52.79 34.45 15.12 228.50 23.59 1.00
0.2 504 26.40 28.43 7.56 57.12 17.57 1.00
0.5 201 10.56 20.47 3.02 9.14 9.61 1.00
1 101 5.28 14.45 1.51 2.28 3.59 1.00
2 50 2.64 8.43 0.76 0.57 -2.43 0.99
5 20 1.06 0.47 0.30 0.09 -10.39 0.47
10 10 0.53 -5.55 0.15 0.02 -16.41 0.16
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amplitude of this contrast signal was calculated as the difference between the

maximum and the minimum.

The results in Tables 3.1–3.3 demonstrate that the SNR definition (Defi-

nition 1) is highly dependent on the value of the baseline, since the formula

is based on the mean signal strength. Additionally, the obtained values are

almost invariant to changes in the activation signal strength and the experi-

mental design.

The CNR definitions based on the amplitude of the signal (Definition

2 and Definition 3) are also partially determined by the baseline since the

(maximal) amplitude of the signal will always correspond to the % signal

change relative to the baseline. However, given the relative % signal change of

the activation or contrast signal, the amplitude is constant over experimental

designs. This is not true for the CNR definitions based on the standard

deviation of the activation signal (Definition 4, Definition 5 and Definition

6). Although these CNR definitions are completely independent from the

baseline, the activation standard deviation will be influenced by the number

of events in an ER design or by the length of the epochs in a block design.

The reference tables (Table 3.1, 3.2 and 3.3) illustrate this variation, but the

close range of these CNR values over the designs indicates that this variation

is rather small. Therefore, the reference tables presented here provide a

tool to roughly compare and interpret the values for the different SNR/CNR

definitions.

Of course, the conversion of one definition to another can also be solved

analytically in some cases. Given the percent signal change p of the activation

signal, the amplitude of the signal will be defined as

A =
p× 100

b
,

with b the baseline of the activation signal. A CNR value c calculated based

on Definition 2 or Definition 4 can be converted to a CNR value in dB, c′

using

c′ = 10 log10(c2).

Vice versa, a dB CNR value c′ can be back transformed to the CNR in the
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original scale, c, by

c = 10c′/20.

Since the standard deviation of the activation signal (as in Definition 4–6)

will be partially determined by the experimental design, there is no direct way

to go from the percent signal change to the standard deviation. To compare

these CNR values, either the reference tables, listed here, can be used to

provide a rough estimate, or the values have to be calculated specifically for

each design.

3.4 The relationship with detection power

There is no discussion on the fact that SNR or CNR is somehow related

to activation detection power. Indeed, the higher the signal or the lower

the noise (i.e. higher values for the SNR/CNR), the higher the power will

be. Naively, one could expect that, when, for example, SNR= 5 and the

power= 0.30, the power will increase to 0.60 for data with an SNR of 10.

In other words, one may expect an approximate linear relationship between

SNR/CNR values and the power to detect activation. In order to establish

the approximate relationship between activation detection power and the

SNR/CNR definitions, 104 time series were simulated for each design and

for each level of activation strength and noise in the reference tables. Time

series were generated by adding random Gaussian noise to the convolved

activation signal. The empirical power was determined by fitting a standard

GLM model to each of the simulated time series. In both the block and the

ER design, the power was assessed by testing H0 : β1 = 0. For the contrast

design, H0 : βA − βB = 0 was tested. Power results are presented in the

last column of the reference tables (Tables 3.1–3.3). Note that these results

represent maximal power values. In real fMRI data, the power will be smaller

due to the influence of non-white noise.

Looking at the results, we can immediately conclude that the simple

rule “twice as much signal will double the power” is not valid. In general,

the power will be lower for the time series that contain more noise, but
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their is no clear linear relationship with the SNR or CNR values. However,

comparing the power values for the different designs, overall lower values can

be observed for the ER design notwithstanding equal activation strengths

and noise levels. This lower power is in itself not that surprising, but this

can only be predicted based on the CNR definitions that use the standard

deviation of the activation signal, since the SNR/CNR values for the other

definitions are constant over the designs. Additionally, in the lower power

cases, the CNR values of Definition 4 are within the same range, indicating

that these CNR values can be used as a rough estimate of activation detection

power.

3.5 Discussion

fMRI data are often characterised by their SNR or CNR. SNR measurements

are, for example, used to compare scanner hardware or the quality of scanning

sequences, while CNR can be indicative of the quality (i.e. detectability) of

the contrast of interest. In this paper, an overview was provided of common

SNR and CNR definitions in an fMRI time series context. It was established

that the literature lacks consensus on how to define SNR/CNR for fMRI

data. Consequently, reported SNR and CNR values are hard to compare,

possibly hindering the convergence of conclusions based on fMRI studies.

Based on how the signal of interest is defined, an explicit distinction was

made between SNR and CNR. SNR compares the global signal level to the

amount of noise and can be applied to either MRI images or task-related and

resting-state fMRI (e.g. tSNR). The main purpose of determining the SNR

of the data will be to assess the quality of the data (e.g. influence of noise).

However, when applied to task-related fMRI data, the SNR of the data will

most likely miss out on the small fluctuations present in the activation signal

that are caused by the task. Therefore, in the case of these particular data,

in which the signal of interest is a specific contrast that models the influence

of certain conditions, it would be better to consistently use the concept of

CNR. The CNR value will also give an indication of the quality of the data

in terms of noise, but additionally it contains information on the strength of



Signal/contrast-to-noise ratio 81

the activation signal for a specific task. This information can be related to

activation detection sensitivity.

A sceptical reader would argue that it might be meaningless to capture

the information present in 4D fMRI data, which are characterised by very

high inter- and intra-subject and -scanner variability, in one single number

(either SNR or CNR). Indeed, for real data, SNR or CNR values are seldom

reported. Moreover, screening of the simulation database discussed in Wel-

vaert & Rosseel (2013) teaches us that no less than 62.2% of the simulation

studies avoid reporting an SNR/CNR value. Instead, they reported separate

parameters for the activation strength and the noise level. A second prob-

lem might be that the same value of SNR/CNR can indicate different levels

of activation strength and noise, which can have a different impact on the

detection accuracy. Despite the justly scepticism, determining the SNR or

CNR of fMRI data can still hold useful information, because it provides an

assesment of the quality of the data at a glance. However, we recommend to

calculate the values only for small regions that are likely to have the same

value of SNR/CNR based on anatomy or function. For simulation studies in

particular, it would be interesting to report the SNR/CNR of the simulated

value along with the specific values of activation strength and noise level.

As such, generalising the conclusions from these studies to real data will be

facilitated.

To conclude, although a CNR measure based on the standard deviation

of the activation signal (Definition 4) could be a candidate, pushing for a

common SNR/CNR definition may be preliminary right now because the

measurement depends very much on how the signal of interest is defined.

The tables presented in this chapter are a reference allowing easy comparison

from one definition to another. The ability to compare the values that are

reported in fMRI studies, either based on real or simulated data, will facilitate

the convergence of fMRI based knowledge.
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Krüger, G., & Glover, G. (2001). Physiological noise in oxygenation-sensitive

magnetic resonance imaging. Magnetic Resonance in Medicine, 46 , 631–

637.



84 Chapter 3
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Abstract

Studies that validate statistical methods for fMRI data often use simulated

data to ensure that the ground truth is known. However, simulated fMRI data

are almost always generated using in-house procedures because a well-accepted

simulation method is lacking. In this article we describe the R package neu-

Rosim, which is a collection of data generation functions for neuroimaging

data. We will demonstrate the possibilities to generate data from simple time

series to complete 4D images and the possibilities for the user to create his

own data generation method.
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4.1 Introduction

Despite optimization of experimental designs and significant improvements

in scanner technology, fMRI data still contain a considerable amount of noise.

Statistics are needed to infer information from the data. However, a major

problem is that the ground truth of fMRI data (i.e. where and when the

activation is located) is unknown and can only be measured with very inva-

sive techniques (i.e. intracranial EEG) that are almost always unethical to

perform with humans (David et al., 2008). Therefore, when researchers try

to establish the validity of a new statistical method, or when they want to

assess the sensitivity and the specificity of an existing method, they need to

know the ground truth. As a solution, simulation studies have gained great

interest as a validation tool because in these studies, the data themselves are

generated under a known model.

Although the neccesity of knowing the ground truth is acknowlegded, a

standard simulation procedure for fMRI data is lacking. In the literature, two

major categories of computational simulations can be distinguished, namely

(1) generating time series based on an experimental design and (2) simulating

the magnetic signal by solving the Bloch equations (Bloch, 1946). Unfortu-

nately, the first category in itself has no common method. Most researchers

model the activation in the time series as the convolution of a haemodynamic

response function and a stimulus vector. Additionally, some noise is added

ranging from pure random Gaussian noise (Lei et al., 2010; Liao et al., 2008;

Lin et al., 2010), over temporally correlated noise (Grinband et al., 2008; Lo-

cascio et al., 1997; Bullmore et al., 1996; Purdon & Weisskoff, 1998) to real

noise derived from empirically acquired resting state scans (Bianciardi et al.,

2004; Lange, 1999; Weibull et al., 2008; Lee et al., 2008; Lange et al., 1999;

Hansen et al., 2001; Skudlarski et al., 1999). Furthermore, all simulations

are done using in-house software routines. As a consequence, convergence

of the simulation methods is impossible as long as fMRI simulators are not

available. In contrast, the second method (Drobnjak et al., 2006), using the

Bloch equations, is embedded in a simulator as part of the software pack-

age FSL (S. Smith et al., 2004). However, the simulator is rarely used for
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validation studies. Probably, this is due to the fact that solving the Bloch

equations is computationally very intensive and it takes, for example, about

a month to generate a 4D dataset of 100 scans including all artefacts using

a PC with a 3.4 GHz processor. By developing our package neuRosim, we

want to respond to the current lack of fMRI simulators. Our package is by

no means intended to provide the fMRI data generation method. The aim

of the package is to provide a tool for simulating fMRI data that can initiate

the search for more established and validated simulation methods for fMRI

data such that the results of simulation studies can be generalized.

The R package neuRosim is created with two types of users in mind. The

first type is the practical researcher who uses the fMRI scanner as a tool

to acquire data that hopefully support his theory. This researcher normally

would not think of generating fMRI data. However, by generating some data

before the actual scanning process is started, this researcher can check the

effectiveness of his design without almost any cost, both in time and money.

In this way, the most effective design for a particular research question can be

tested and adjusted.1 Secondly, the more theoretical researcher (e.g. a statis-

tician) can validate both existing and new methods based on the generated

data. Because the data generation in neuRosim is fairly fast, the generation

process can easily be embedded in large simulation studies.

fMRI data are in fact the result of a Fourier transformation of the k-space

and are, as a result, complex-valued data (Rowe & Logan, 2004). However, in

most fMRI studies the data analysis is done for the magnitude data and not

for the phase data. In the current version of neuRosim, only the generation

of fMRI magnitude data is considered. Therefore, all assumptions that are

made to model the data apply only to the characteristics of magnitude data.

The generation of magnitude fMRI data is seen as an additive source prob-

lem (Bellec et al., 2009) in which two main sources are distinguished, namely

(1) the activation caused by an experimental design or resting state activa-

tion, and (2) the noise. neuRosim contains several functions to model both

sources. These functions are regarded as low-level functions, meaning that

1It should be noted that AFNI also contains algorithms for design optimization in the
function 3dDeconvolve without the need for data (Cox, 1996).
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they generate only a specific part of the data and are mostly used as build-

ing blocks to construct higher-level functions. For beginning users, it will be

more convenient to start with the high-level functions that are described in

section 4.3. However, advanced users can use the high-level functions as a

basis for their completely customized simulations. In section 4.2, we will give

an overview of the different models in the low-level functions.

Further, it should be noted that the data generated by neuRosim are

considered to be pre-processed data. This implies that several artefacts (e.g.,

head motion, magnetic field inhomogeneity) that are normally removed dur-

ing the pre-processing stage of the data are not explicitly modelled. However,

it is possible to incorporate some residual effects of these artefacts under

the assumption that the artefacts are not completely removed by the pre-

processing analyses. For example, neuRosim data can contain task-related

noise that can account for residual head movements.

4.2 Features and examples of low-level functions

4.2.1 Experimental activation and design

To generate BOLD activation, neuRosim uses a stimulus function that is

part of the experimental design. A BOLD response is only generated if

the function indicates the presence of a stimulus. Block designs, as well as

event-related designs (or a combination of both) can be defined based on the

onsets and the durations of the task as defined by the user. The function

stimfunction uses these arguments to generate a 0-1 valued time vector

where 1 indicates that the stimulus is present. Note that for a single event,

the duration of the stimulus should be defined as 0. For example, to generate

a stimulus function for a 20s ON/OFF block design of 200s with a microtime

resolution of 0.1s:

R> totaltime <- 200

R> onsets <- seq(1, 200, 40)

R> dur <- 20
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R> s <- stimfunction(totaltime = totaltime, onsets = onsets,

+ durations = dur, accuracy = 0.1)

The resulting stimulus function is shown as a dashed line in Figure 4.1. To

simulate the BOLD signal caused by the task, the stimulus function is con-

voluted with a haemodynamic response function (HRF). The role of the mi-

crotime resolution is to ensure a high-precision convolution with the specified

HRF. In the current version of neuRosim, three different response functions

are implemented.

1. The stimulus function is convoluted with a gamma-variate HRF as

implemented in the function gammaHRF with a user-defined full width

at half maximum (FWHM) value (Buxton et al., 2004). The function

is defined as

h(t) =
1

kτh(k− 1)!

(
t

τh

)k
e−t/τh (4.1)

with k = 3. To provide the desired FWHM, the time constant τh is

given by τh = 0.242 × FWHM (Buxton, Uludăg, Dubowitz, & Liu,

2004, p. S227).

R> gamma <- specifydesign(totaltime = 200,

+ onsets = list(onsets), durations = list(dur),

+ effectsize = 1, TR = 2, conv = "gamma")

To modulate the strength of the activation in each condition, the argu-

ment effectsize in the function specifydesign should be specified.

The values, provided in this argument, are used to increase (values

larger than 1) or decrease (values smaller than 1) the amplitude of the

generated BOLD response.

2. The stimulus function is convoluted with a double-gamma HRF via

canonicalHRF, which models an initial dip and an undershoot of the

BOLD signal (Friston et al., 1998),

h(t) =

(
t

d1

)a1

e
(
− t−d1

b1

)
− c

(
t

d2

)a2

e
(
− t−d2

b2

)
. (4.2)
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where a1 and a2 model the delay of the response and the undershoot

relative to the onset, b1 and b2 model the dispersion of the response

and the undershoot, c models the scale of the undershoot, and d1 and

d2 model the time to peak of the response and the undershoot. The

default values of the parameters are di = aibi, a1 = 6, a2 = 12, bi = 0.9
and c = 0.35 (Glover, 1999).

R> canonical <- specifydesign(totaltime = 200,

+ onsets = list(onsets), durations = list(dur),

+ effectsize = 1, TR = 2, conv = "double-gamma")

3. The stimulus function is used as the input for the balloon model im-

plemented in the balloon function (Buxton et al., 2004). The solving

of the differential equations in the model is based on the Runge-Kutta

solver in the R package deSolve. The parameters of the model can be

modulated via the param argument, which should be a list containing

values for all the parameters in the model. If not specified, the default

values as described by Buxton et al. (2004) are used.

R> balloon <- specifydesign(totaltime = 200,

+ onsets = list(onsets), durations = list(dur),

+ effectsize = 1, TR = 2, conv = "Balloon")

The spatial location of the activation is specified as regions using the

function specifyregion. A region can be modelled in three ways, namely

(1) as a cube, (2) as a sphere or (3) manually. The first two forms can be

modelled by defining two arguments, namely the coordinates of the center

of the region and the distance from the center to the edge of the region in

voxels. For example, to define an activated sphere (the result is displayed in

Figure 4.2):

R> a <- specifyregion(dim = c(64, 64), coord = c(20, 20),

+ radius = 10, form = "sphere", fading = 0.5)
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Figure 4.1 – The BOLD signals based on the three convolution functions
for a 20s ON/OFF block design.

To define the form manually, the coordinates of all voxels that are part of

the region should by specified as a matrix with colums corresponding to their

(x,y)-coordinates.

R> coord <- matrix(c(rep(20, 20), rep(26:30, each = 2),

+ 20:27, 20:27, rep(28, 6), 21:40, 30:21, rep(31, 8),

+ rep(40, 8), 33:38), ncol = 2, byrow = FALSE)

R> head(coord)

[,1] [,2]

[1,] 20 21

[2,] 20 22

[3,] 20 23

[4,] 20 24

[5,] 20 25

[6,] 20 26
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R> b <- specifyregion(dim = c(64, 64), coord = coord,

+ form = "manual")

The resulting activated slice is shown in Figure 4.2.

Additionally, it is possible to differentiate the strength of the measured

activation between voxels in the activated region. This can be the case if, for

example, the BOLD response to a certain stimulus is of different size in some

parts of the activated region. A first method to include this variability is

to divide the activated region into seperate subregions and specify separate

parameters of the HRF for each subregion in specifydesign. The subregions

can than be merged together using the high-level function simprepSpatial

(see section 3). Secondly, if the region is defined as a cube or a sphere, the

fading option can be used to require that the region has the largest effect

in the center and smaller activation towards the edges (see Logan & Rowe,

2004). This fading of the BOLD response is modelled as an exponential decay

depending on the distance of the activated voxel to the center of the region.

The decay rate λ can vary between 0 and 1 with 0 meaning no decay and 1

indicating the strongest decay. In 3D this corresponds to

A(i, j, k) =

(
3e

(i−i′)2+(j−j′)2+(k−k′)2
λ + 3

)
/6 (4.3)

where (i′, j′, k′) are the (x,y,z)-coordinates of the voxel in the center of the

region, λ is the decay rate and the activation is scaled to be 1 in the center

of the region. An example of an activated sphere with fading (λ = 0.5) is

presented in Figure 4.2.

4.2.2 Noise

The noise present in fMRI data is caused by different sources, such as for

example the scanner and the subject. neuRosim offers a bundle of functions

to model noise from one of these sources. The noise functions can be divided

into four categories, namely (1) white noise, (2) coloured noise, (3) tempo-

ral noise and (4) spatial noise. The white noise (modelled by the function

systemnoise) represents the system noise that is part of the fMRI data.
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Figure 4.2 – Example of an activated slice: on the left, the activation is
modelled as a sphere, on the right, the activated voxels are defined manually.

Two types of system noise are considered: (1) system noise that is Rician

distributed and (2) system noise that is Gaussian distributed. The former

is applicable for fMRI magnitude data with low signal-to-noise ratio (SNR),

while the latter can be used for higher SNR (about more than 10) (Haacke et

al., 1999; Gudbjartsson & Patz, 1995) . The standard deviation of the noise

is user-defined or can be based on the desired SNR defined by the user. In

all noise functions, average SNR is defined as

SNR =
S̄

σN
(4.4)

where S̄ represents the average magnitude of the signal, and σN stands for

the standard deviation of the noise (Krüger & Glover, 2001). For example

(the resulting time series is plotted in Figure 4.3),

R> n.white <- systemnoise(dim = 1, nscan = 100, sigma = 15,

+ type = "rician")

Coloured noise depends on either the signal, the timing or the location.

neuRosim contains three types of signal-dependent noise, (1) low-frequency

drift, (2) physiological noise and (3) task-related noise.

• Low-frequency drift, generated by lowfreqdrift, is a consequence of

system noise (A. Smith et al., 1999) that can be attributed to slow
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fluctuations in the scanner hardware (Lazar, 2008). The drift is mod-

elled as a basis of discrete cosine functions. The number of functions is

determined by the frequency of the drift with a default value of 128s.

For example (the resulting time series is plotted in Figure 4.3),

R> n.low <- lowfreqdrift(dim = 1, nscan = 100, TR = 2,

+ freq = 120)

• Physiological noise (physnoise) is defined as possible cardiac and res-

piratory artefacts and as such accounts for the variability in the signal

that is caused by the heart beat and respiratory rate. These artefacts

are often categorized as low-frequency drift. However, we choose to

model the physiological noise separately because it is shown that the

frequency of these artefacts is often higher than the scanner fluctua-

tions (A. Smith et al., 1999). The physiological noise is modelled as

sine and cosine functions with user-defined frequencies. Default values

are 1.17 Hz and 0.2 Hz for heart beat and respiratory rate respectively

(Biswal et al., 1996). For example (the resulting time series is plotted

in Figure 4.3),

R> n.phys <- physnoise(dim = 1, nscan = 100, sigma = 15,

+ TR = 2)

• Task-related noise accounts for spontaneous neural activity due to the

experimental task (Hyde et al., 2001) and is operationalized by adding

random noise only where and when activation is present. The distri-

bution of this noise can be either Gaussian or Rician. Additionally,

the task-related noise can be interpreted as residual noise from head

motion that is not removed in the pre-processing stage. For example

(the resulting time series is plotted in Figure 4.3),

R> n.task <- tasknoise(act.image = s, sigma = 15)

Temporal noise accounts for the fact that fMRI data are repeated measure-

ments (Purdon & Weisskoff, 1998). The function temporalnoise generates



98 Chapter 4

noise based on an auto-regressive model of order p (AR(p)) defined as

εt = Σp
i=1ρiεt−i + χt (4.5)

with χt ∼ N(0, σ2). For example, the generate temporally correlated noise

of order 2 (the resulting time series is plotted in Figure 4.3),

R> n.temp <- temporalnoise(dim = 1, sigma = 15,

+ nscan = 100, rho = c(0.4, -0.2))
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Figure 4.3 – Time series of the noise structures in neuRosim

Finally, spatial noise models the spatial dependencies in fMRI data (Lo-

gan & Rowe, 2004). Of course, voxels are arbitrary units and neighbouring

voxels are more likely to be correlated than voxels that are further apart.

The function spatialnoise incorporates three types of spatial noise models,

namely (1) an autoregressive correlation structure, (2) a Gaussian random

field and (3) a Gamma random field. The first structure correlates the voxels
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with each other based on random Gaussian or Rician noise. The strength

of the correlation depends on the value of the auto-correlation coefficient

(default value is rho=0.75) and the distance between the voxels. If spatial

correlation based on random fields is chosen, the full-width-half-maximum

(FWHM) of the kernel, which is used to generate the random field, should

be provided (default is FHWM=4). Additionally, if the method is gammaRF, the

shape (default is gamma.shape=6) and rate (default is gamma.rate=1) param-

eter of the Gamma distribution should be defined as additional arguments.

For example, to generate spatially correlated noise for a 20× 20 slice:

R> d <- c(20, 20)

R> n.corr <- spatialnoise(dim = d, sigma = 15,

+ nscan = 100, method = "corr", rho = 0.7)

R> n.gaus <- spatialnoise(dim = d, sigma = 15,

+ nscan = 100, method = "gaussRF", FWHM = 4)

R> n.gamma <- spatialnoise(dim = d, sigma = 15,

+ nscan = 100, method = "gammaRF", FWHM = 4,

+ gamma.shape = 3, gamma.rate = 2)

Figure 4.4 displays the correlation matrices for the generated slices. To

generate these images, all voxels were ordered and the correlation matrix of

the generated time series was calculated. Therefore, the diagonal represents

the perfect correlation of each voxel with itself. We see that voxels that

are close to this diagonal, representing neighbouring voxels, are also highly

correlated. The block diagonal structure, which can be observed clearly with

the Gaussian random field structure (Figure 4.4b), is the result of reducing

the two-dimensional structure of the slice.

Additionally, all noise functions include the functionality that a template

or mask can be provided. As such, the noise is only generated for those

voxels that are included in the mask. This would allow the user to make for

example a distinction between the noise source in the grey matter, the white

matter or in the cerebrospinal fluid.
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Figure 4.4 – Correlation images for (a) an autoregressive correlation struc-
ture, (b) a Gaussian random field and (c) a Gamma random field.

4.3 Examples of high-level functions

The aim of the high-level functions is to allow the user to generate fMRI

data efficiently and transparantly. The functions are developed such that

they can easily be implemented in a simulation environment. Of course,

these functions have limits in their use. Therefore, we refer users who desire

more functionalities to the low-level functions.

4.3.1 Generating fMRI time series

The simTSfmri function generates fMRI time series for a specified design

matrix and with an additive noise structure. The field of the design matrix

should be prepared with the simprepTemporal function, to ensure that all

arguments are in the correct format. As an example, we will generate a time

series for a block design with two conditions. The experiment lasts 100 scans

with TR=2 and the first condition has activation blocks of 20s, while the

second condition had activation blocks of 7s:

R> TR <- 2

R> nscan <- 100

R> total <- TR * nscan

R> os1 <- seq(1, total, 40)

R> os2 <- seq(15, total, 40)

R> dur <- list(20, 7)
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R> os <- list(os1, os2)

R> effect <- list(3, 10)

R> design <- simprepTemporal(totaltime = total,

+ onsets = os, durations = dur, effectsize = effect,

+ TR = TR, hrf = "double-gamma")

Figure 4.5 presents the resulting activation from this design in dashed lines.

The following arguments should be specified to ensure a complete definition

of the design matrix: the total duration of the experiment in seconds (total),

the onsets of each condition represented as a list (onsets), the duration of the

stimulus in each condition represented as a list (durations), the repetition

time in seconds (TR) and the form of the HRF (either "gamma", "double-

gamma" or "balloon"). The noise can be either of the structures described in

section 2, but it is also possible to add a mixture of noise. The different noise

components are then weighted with a vector of weights specified by the user.

The weights can vary between 0 and 1, however, the weights should sum

to one. For example, we will add a mixture of noise to our above specified

design. The mixture contains Rician system noise, temporal noise of order

1, low-frequency drift, physiological noise and task-related noise and has a

baseline value of 10:

R> w <- c(0.3, 0.3, 0.01, 0.09, 0.3)

R> ts <- simTSfmri(design = design, base = 10, SNR = 2,

+ noise = "mixture", type = "rician", weights = w,

+ verbose = FALSE)

The resulting time series are plotted in Figure 4.5.

4.3.2 Generating fMRI volumes

The function simVOLfmri is built to generate complete fMRI datasets (i.e.

3D for a slice and 4D for a volume). In this function, some spatial properties

of the data are introduced. For this function, not only a design matrix –

defining when the activation occurs– has to be specified, but also a region

–defining where the activaton takes place– should be provided. Similarly as
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Figure 4.5 – Generated time series (in blue) based on an experiment with
two conditions (dashed lines).

for the design matrix, a preparation function (simprepSpatial) is needed

to ensure that all arguments that define the region of activation are in the

correct format. Suppose that we wish to simulate 2 activated regions that

are part of a small network. We need to call the simprepSpatial function

as follows:

R> regions <- simprepSpatial(regions = 2,

+ coord = list(c(10, 5, 24), c(53, 29, 24)),

+ radius = c(10, 5), form = "sphere")

The arguments that should be provided in the function are: the number

of activated regions (regions), a list of coordinates specifying the regions

(coord), the radius of the region (radius, not needed if the region is defined

manually) and the shape of the region (form) The implemented shapes are

cube and sphere. For any other shape, the coordinates of all voxels in the

region should be entered manually (see section 2 for an example). Further,
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we will generate the activation in both regions following the same design

matrix as for the generation of the time series.

R> onset <- list(os, os)

R> duration <- list(dur, dur)

R> effect1 <- list(2, 9)

R> effect2 <- list(14, 8)

R> design2 <- simprepTemporal(regions = 2,

+ onsets = onset, durations = duration,

+ TR = TR, hrf = "double-gamma",

+ effectsize = list(effect1, effect2),

+ totaltime = total)

We can now generate an fMRI dataset corresponding to this very simple two-

region network. Again, we will add a mixture of noise with the additional

possibility that we can add spatially correlated noise.

R> w <- c(0.3, 0.3, 0.01, 0.09, 0.1, 0.2)

R> data <- simVOLfmri(dim = c(64, 64, 64),

+ base = 100, design = design2,

+ image = regions, SNR = 10, noise = "mixture",

+ type = "rician", weights = w, verbose = FALSE)

The result is a 4D fMRI dataset. To analyze the data with standard fMRI

data analysis software like SPM, FSL, AFNI,. . . , the dataset can be exported

as a NIfTI file using for example the function nifti.image.write of the R

package Rniftilib or the function writeNIfTI from the R package oro.nifti.

Note that with simTSfmri and simVOLfmri it is also possible to simulate

data that contain only activation or only noise.

4.3.3 Simulating and analyzing a 4D fMRI dataset

To further demonstrate the functionalities of the package, we present a more

real-life example. Consider the data from a repetition priming experiment
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performed using event-related fMRI (Henson et al., 2002)2. The data are

the result of a 2× 2 factorial study with factors fame and repetition where

famous and non-famous faces were presented twice against a checkerboard

(Henson et al., 2002, for more details, see). An orthographic overview of

the measured data is given on the left side of Figure 4.6. To generate data

using neuRosim that are representative for this study, we start by defining

the design. First we define some parameters like the dimension of the image

space, the number of scans and TR. Then, since we simulate an event-related

design, we also assign the onsets for each condition.

R> dim <- c(53, 63, 46)

R> nscan <- 351

R> TR <- 2

R> total.time <- nscan * TR

R> onsets.N1 <- c(6.75, 15.75, 18, 27, 29.25, 31.5, 36,

+ 42.75, 65.25, 74.25, 92.25, 112.5, 119.25, 123.75,

+ 126, 137.25, 141.75, 144, 146.25, 155.25, 159.75,

+ 162, 164.25, 204.75, 238.5) * TR

R> onsets.N2 <- c(13.5, 40.5, 47.25, 56.25, 90, 94.5,

+ 96.75, 135, 148.5, 184.5, 191.25, 202.5, 216, 234,

+ 236.25, 256.5, 261, 281.25, 290.25, 303.75, 310.5,

+ 319.5, 339.75, 342) * TR

R> onsets.F1 <- c(0, 2.25, 9, 11.25, 22.5, 45, 51.75,

+ 60.75, 63, 76.5, 78.75, 85.5, 99, 101.25, 103.5,

+ 117, 130.5, 150.75, 171, 189, 227.25, 265.5, 283.5,

+ 285.75, 288, 344.25) * TR

R> onsets.F2 <- c(33.75, 49.5, 105.75, 153, 157.5, 168.75,

+ 177.75, 180, 182.25, 198, 222.75, 240.75, 254.25,

+ 267.75, 270, 274.4, 294.75, 299.25, 301.5, 315,

+ 317.25, 326.25, 333, 335.25, 337.5, 346.5)

2The use of the dataset is with permission from the corresponding au-
thor and can be downloaded from his personal webpage (http://www.mrc-
cbu.cam.ac.uk/people/rik.henson/personal/)
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Next, we have to specify which voxels are activated. We will consider 5

regions. The first three are general regions that activate when faces are

presented, the fourth region is only activated if famous faces are shown,

while in the last region adaptation to the repetition of faces is modelled.

R> region.1A.center <- c(13, 13, 11)

R> region.1A.radius <- 4

R> region.1B.center <- c(40, 18, 9)

R> region.1B.radius <- 6

R> region.1C.center <- c(10, 45, 24)

R> region.1C.radius <- 3

R> region.2.center <- c(15, 16, 31)

R> region.2.radius <- 5

R> region.3.center <- c(12, 16, 13)

R> region.3.radius <- 5

In each region, the same design matrix will be considered. However, the

effect size in each condition will vary over conditions.

R> onsets <- list(onsets.N1, onsets.N2, onsets.F1, onsets.F2)

R> onsets.regions <- list(onsets, onsets, onsets, onsets,

+ onsets)

R> dur <- list(0, 0, 0, 0)

R> dur.regions <- list(dur, dur, dur, dur, dur)

R> region.1a.d <- list(160.46, 140.19, 200.16, 160.69)

R> region.1b.d <- list(140.51, 120.71, 160.55, 120.44)

R> region.1c.d <- list(120.53, 120.74, 140.02, 100.48)

R> region.2.d <- list(-0.24, 10.29, 80.18, 160.24)

R> region.3.d <- list(200.81, 50.04, 240.6, 50.83)

R> effect <- list(region.1a.d, region.1b.d, region.1c.d,

+ region.2.d, region.3.d)

Additionally, we will consider a baseline image. The baseline value for

each voxel is determined as the mean value of the measured time series of

that voxel. Nonbrain voxels are defined as voxels with an average measured

value less than 250 and are fixed to 0 in the baseline image.
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R> library(oro.nifti)

R> Hensondata <- readNIfTI("preprocessed_face.nii.gz")

R> baseline <- apply(Hensondata@.Data, 1:3, mean)

R> baseline.bin <- ifelse(baseline > 250, 1, 0)

R> ix <- which(baseline == 1)

R> baseline[-ix] <- 0

Consequently, the anatomical structure of the brain will be incorporated

in the simulated data. Now, we can use the functions simprepTemporal

and simprepSpatial to prepare the temporal and spatial structure of our

simulated 4D fmri data.

R> design <- simprepTemporal(regions = 5,

+ onsets = onsets.regions, durations = dur.regions,

+ hrf = "double-gamma", TR = TR, totaltime = total.time,

+ effectsize = effect)

R> spatial <- simprepSpatial(regions = 5,

+ coord = list(region.1A.center, region.1B.center,

+ region.1C.center, region.2.center, region.3.center),

+ radius = c(region.1A.radius, region.1B.radius,

+ region.1C.radius, region.2.radius, region.3.radius),

+ form = "sphere", fading = 0.01)

Finally, we can generate the dataset. Note that the values for the SNR and

the temporal autocorrelation coefficients were estimated based on the real

data.

R> sim.data <- simVOLfmri(design = design, image = spatial,

+ base = baseline, SNR = 3.87, noise = "mixture",

+ type = "rician", rho.temp = c(0.142, 0.108, 0.084),

+ rho.spat = 0.4, w = c(0.05, 0.1, 0.01, 0.09, 0.05, 0.7),

+ dim = c(53, 63, 46), nscan = 351, vee = 0,

+ template = baseline.bin, spat = "gaussRF")

An orthographic overview of the simulated data is given on the righthand

side of Figure 4.6.
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Figure 4.6 – Orthographic view of fMRI data for an event-related repetition
priming study. On the left, the data measured by Henson et al. (2002) and
on the right, the data simulated by neuRosim

Next, we analyzed the simulated data in SPM following the exact de-

scription given in the manual of SPM8 (Chapter 29). We considered three

contrasts, namely: (1) the overall effect of faces versus baseline checkerboard,

(2) the effect of famous faces and (3) the effect of repetition. The results were

thresholded with p < 0.05 (uncorrected), just to demonstrate the detection

of the activation. Figure 4.7 shows a comparison between some of the acti-

vated regions that are found in the real data (lefthand) and in the simulated

data (righthand).

4.4 Conclusions and future work

neuRosim provides a flexible framework for generating fMRI data including

a large variety of activation models and noise structures. High-level func-

tions are available to simulate time series or full 4D data in an efficient and

transparant way. For more advanced users, the low-level functions create

the opportunity to build customized simulation functions. Currently, we are

working on an extention of a resting state module such that in future updates

it will be possible to have the same functionalities for the generation of resting
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Figure 4.7 – Axial slice view of the activated voxels for the real (left) and
simulated data (right): faces versus baseline contrast (top), famous ver-
sus non-famous contrast (middle), first versus second presentation contrast
(bottom)

state data as for fMRI data. Other future plans are to include more neuro-

biological models, for example, the metabolic-hemodynamic model (Sotero

& Trujillo-Barreto, 2008; Sotero et al., 2009) and spatiotemporal BOLD dy-

namics (Drysdale et al., 2010). To extent the generalizability of the data

simulated by neuRosim, we plan to include the generation of complex-valued

fMRI data consisting of both magnitude and phase data. To conclude, it is

our hope that neuRosim will evolve to a general platform for simulating
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fMRI data. Simulation studies should be a requisite to publish a statisti-

cal validation paper in the field of neuroscience. This will only be possible

when standardized and trustworthy simulation methods using validated data

generation techniques are available.
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5 | How ignoring physiological

noise can bias the conclusions

from fMRI simulation results
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Abstract

Neuroimaging researchers use simulation studies to validate their statistical

methods because it is acknowledged that this is the most feasible way to know

the ground truth of the data. The noise model used in these studies typi-

cally varies from a simple Gaussian distribution to an estimate of the noise

distribution from real data. However, although several studies point out the

presence of physiological noise in fMRI data, this noise source is currently

lacking in simulation studies. Therefore, we explored the impact of adding

physiological noise to the simulated data. For several experimental designs,

fMRI data were generated under different noise models while the signal-to-

noise ratio was kept constant. The sensitivity and specificity of a standard

statistical parametric mapping (SPM) analysis were determined by comparing

the known activation with the detected activation. We show that by includ-

ing physiological noise in the data generation process, the simulation results

in terms of sensitivity and specificity drop dramatically. Additionally, we

used the new proposed simulation model to compare a standard SPM analysis

against the method proposed by Cabella et al. (2009). The results indicate
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that the analysis of data containing no physiological noise yields a better per-

formance of the SPM analysis. However, if physiological noise is included

in the data, the sensitivity and specificity of the Cabella method are higher

compared to the SPM analysis. Based on these results, we argue that the

results of current simulation studies are likely to be biased, especially when

analysis methods are compared using ROC curves.
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5.1 Introduction

Neuroimaging researchers using functional magnetic resonance imaging (fMRI)

depend highly on the statistical analysis of their data. This can be mainly at-

tributed to two reasons. First, the response of interest, the blood oxygenated

level dependent (BOLD) contrast, is embedded in a very noisy signal and sec-

ond, the BOLD response itself shows high variability among brain regions,

scanning session and subjects. Consequently, statistical methods are under

constant development and new techniques are published on a regular basis.

Validating these techniques, both old and new, should be considered a main

issue in this fast developing research field. Validating a statistical method

can have different purposes. One goal of validation studies can be to check if

the method works properly in ideal circumstances, i.e. when the assumptions

of the model hold. Another goal can be to investigate the robustness and

statistical properties of the method in more realistic circumstances. Some

studies look at test-reliability and reproducibility of results (see for example

Schuyler et al., 2010), while others use resampling techniques (e.g. boot-

strapping) and use the distributional properties of the resampled data as

validation measures (see Bellec et al., 2009, for an example of using para-

metric bootstrapping). However, validation studies often need to know the

ground truth of their data, and this is almost impossible for human data

without very invasive procedures (David et al., 2008) or technically challeng-

ing constructions (Cheng et al., 2006; Brosch et al., 2002). As a solution,

simulation studies have gained great interest as a validation tool because

in these studies the data themselves are generated under a certain model

representing the ground truth.

Based on a search of the literature, we noticed a discrepancy between

the methods of generating fMRI noise that are currently used in simulation

studies and the several noise sources that are known to be present in fMRI

data. Based on this discrepancy we wanted to investigate if including all

noise sources in the data generation process has an effect on the simulation

results. In this paper we give an overview of data generating methods (sec-

tion 2.1) and a detailed description of fMRI noise (section 2.2). We continue
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with describing two simulation studies (section 3 and 4) in which we com-

pared three types of fMRI noise generation by assessing the sensitivity and

specificity of an activation detection analysis. In a third simulation study

(section 5) we show how the different noise generation models can effect the

results of a comparison between statistical analysis methods. Finally we give

a discussion of the main results (section 6) and highlight some implications

for fMRI simulation research. Additionally, full data generation details are

described in Appendix.

5.2 Simulating fMRI data

5.2.1 Data generating methods

The greatest challenge of simulating fMRI data is how to generate the data

realistically such that they resemble empirically acquired datasets as closely

as possible. Taking into account the complexity of an fMRI signal, it is

not surprising that a variety of data generating methods is present in the

literature. Without being exhaustive, we will give a short overview and

discussion of the simulation methods.

The currently most used method is the so-called hybrid simulation (Bian-

ciardi et al., 2004; Lange, 1999; Weibull et al., 2008; Lee et al., 2008; Lange et

al., 1999; Hansen et al., 2001; Skudlarski et al., 1999). This technique com-

bines known activation with “real” noise. Resting-state noise is acquired in a

standard scanning process and next, activated time series that are the result

from the convolution of an experimental design with a known haemodynamic

response function (i.e. canonical HRF) are added to the data. Consequently,

the simulated data are very close to real datasets. However, these data con-

tain a lot of unintended and often unknown factors, such as activity from

the default mode network (Raichle & Snyder, 2007). Some authors tried to

avoid this unwanted activity by constructing the noise from summary statis-

tics based on the real data (Bellec et al., 2009) or by modelling the noise as

the resampled residuals from a GLM-analysis of the real data (Havlicek et

al., 2010).
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Secondly, another series of methods define the activation as the convo-

lution of an experimental design function with a known HRF. To construct

fMRI time series, noise is added to the convoluted stimulus function. In con-

trast to the first described method, the noise is not based on real data, but

is described as a stochastic process from an underlying known distribution.

Two approaches can be distinguised. The first approach is to model the noise

as purely white Gaussian noise (Lei et al., 2010; Liao et al., 2008; Lin et al.,

2010). Hence, the assumption is made that the noise is independently and

identically distributed, which is a major oversimplification of reality. The

second method models the noise as a first-order autoregressive (AR) model,

often combined with additive white noise (Grinband et al., 2008; Locascio et

al., 1997; Bullmore et al., 1996; Purdon & Weisskoff, 1998). Consequently,

this approach takes into account temporal correlations in fMRI data. An

implementation of this approach can be found in the simulation module of

DCM, as part of the SPM software (Friston et al., 2007). In this module it

is possible to simulate time series for a brain network (S. Smith et al., 2011).

The additive noise of the time series is implemented as a mixture of Gaussian

white noise and AR(1) noise.

The final method (Drobnjak et al., 2006) is mainly specialised in MRI

physics and uses the Bloch equations (Bloch, 1946) to simulate fMRI data.

The POSSUM simulator was originally intended to evaluate motion correc-

tion algorithms, but can easily be used for other types of validation. The

magnetic signal is calculated for each voxel on each timepoint while including

several artifacts like B0-field inhomogeneities and rigid-body motion. Noise

is modelled as additive, independent, white Gaussian noise, although res-

piratory and cardiovascular noise can also be included. The simulator, as

implemented in FSL (S. Smith et al., 2004) delivers very realistic data, how-

ever it is quite time-consuming and not often used for Monte Carlo simulation

studies.

Almost all above described data generating methods (except the last

method) have in common that the known activation is based on the genera-

tion of time series, while the main difference is in defining the noise. Because

of the discrepancies in noise simulation, in this study, we will elaborate on the
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use of noise models while generating data. That noise should be considered

as an important factor in fMRI simulation studies is quite trivial. It is gen-

erally known that roughly 1% of the fMRI signal is desired activation. The

rest of the signal can be classified as noise. Therefore, in the next section,

we will focus on what causes fMRI noise.

5.2.2 Disentangling the noise

The noise present in fMRI data can be seperated in three major components,

namely (1) thermal noise, (2) system noise and (3) subject and task-related

noise (see Lazar, 2008, Chapter 3, for an overview). Thermal noise is the

result of collisions between tissue electrons and the electronic components of

the scanner. The number of collisions is related to both the room temperature

in which the scanning process takes place, and the strength of the magnetic

field (Edelstein et al., 1986). This type of noise, which is often referred to as

white noise, has a random nature, meaning that it can be averaged out. This

noise source is mostly operationalized by drawing randomly from a Gaussian

distribution.

System noise can be attributed to fluctuations in the scanner hardware,

such as inhomogeneities in the static magnetic field and instabilities in the

gradient fields. These scanner instabilities are the main causes for low-

frequency drift in the signal (A. Smith et al., 1999). A. Smith et al. (1999)

showed that 13.7% to 68% of the voxels showed systematic changes in the

measured signal. In addition, the low frequency drift can create unrelated

patterns in adjacent voxels because the signal intensity in one voxel can have

different fluctuations over time compared to a neighbouring voxel.

Since fMRI studies are often conducted with humans, subject- and task-

related noise cannot be ignored. This type of noise is often referred to as

coloured noise. A first major source of this coloured noise is head motion.

Noise related to head motion cannot be regarded as random. Not only does

the head move entirely, which creates extra spatial dependence between vox-

els, the movement is often induced by the experimental task.

The second source of task- and subject related noise, physiological noise,
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often refers to respiration and heart-beat related noise, but is not restricted to

it. Other possible sources are spontaneous neural activity due to the experi-

mental task (Hyde et al., 2001) and fluctuations in the transverse relaxation

rate, which are closely linked to brain physiology (Krüger & Glover, 2001).

Several studies demonstrate that acknowledging physiological noise is un-

avoidable in fMRI studies. Not only is the noise dependent on the magnetic

field strength (i.e. physiological noise increases with the signal strength), the

contribution of physiological noise to the fMRI signal is higher than that of

thermal and system noise (Krüger & Glover, 2001). In addition, physiological

noise is not uniformally distributed over the brain but shows a clear spatial

structure, namely, the noise is more pronounced in grey matter (Lund et al.,

2006). Therefore, since functional studies are more and more conducted at

higher field strengths and functional activity is almost exclusively contained

in grey matter, physiological noise deserves a lot of attention.

As an alternative to this additive noise model, the observed MR signal

can be considered approximate Rician. In general, it should be modeled

as a square root of a mixture of noncentral (χ2) distributed random vari-

ables, where the noncentrality parameter describes the mean effect including

physiological noise and system noise. However, with higher SNR values this

noncentral χ2 distribution can be approximated by a Gaussian distribution.

Since the SNR of fMRI is usually high enough, it is safe to assume an ad-

ditive noise model (Haacke et al., 1999; Gudbjartsson & Patz, 1995). For

simulation studies, the additive noise model has the additional advantage

that different noise sources can be investigated seperately.

5.2.3 Current study

Based on the literature we can conclude that physiological noise is system-

atically present in fMRI data. However, in simulation studies it is mostly

neglected. In fact, this is also the case for most of the statistical models used

to analyze fMRI data. The result is that the statistical model is most likely

misspecified. This leads to the estimation of projection parameters instead of

the parameters of interest. This estimate will contain a systematic bias due
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to the ignored physiological noise and consequently, the test statistics based

on this estimate will be biased as well. In the end, this results in a lack of

interpretability of the results (see Monti, 2011, for a review). Of course, when

the simulation studies that validate these statistical models also neglect the

physiological noise component, this bias will never be observed. In this paper,

we show how this bias can be observed by introducing physiological noise in

the data generation process. We will compare analysis results for datasets

that were generated under different noise conditions and demonstrate that

using a simple noise model leads to biased sensitivity and specificity levels.

5.3 Simulation study I

5.3.1 Simulation design and data analysis

To assess the impact of physiological noise on the sensitivity and specificity

of detecting activation, we conducted a simulation study with a 3× 2× 2
full-factorial design. We generated data based on a 20s ON/20s OFF block

design where the BOLD response was simulated by convoluting a stimulus

boxcar function with the canonical HRF (Friston et al., 1998). Further de-

tails on the data generation method can be found in Appendix. The first

factor in the simulation design represents the noise condition. We simulated

data with different types of noise and this noise layer was constructed as one

of the following: (1) white noise only, (2) AR(1) noise only, and (3) a mixture

of white noise, AR(1) noise and physiological noise. Example time series for

the different noise conditions are presented in Figure 5.1. To ensure that the

SNR was kept equal between the different noise conditions, some weighting

parameters were introduced. Table 5.1 presents an overview of these weights

per noise condition. The weights were based on the estimates of the stan-

dard deviation of the different noise components by Krüger & Glover (2001).

Based on 6 subjects and an additive noise source model, they estimated

mean standard deviations of white noise and two physiological noise com-

ponents. We used these estimates to set the ratio between system/thermal

noise (i.e. white and AR(a) noise) on the one hand and physiological noise
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on the other hand. The ratio of the estimated mean standard deviations is

equal to 0.333. So, physiological noise accounts for almost two thirds of the

total noise variance. The ratio between heart and respiratory noise and task

related noise was based on the ratio of the estimated standard deviation of

the physiological noise components, namely 0.396.

The second factor of the simulation design represents the activation gen-

eration method (i.e. fMRI activation without noise). We simulated activation

data based on the Bloch equations on the one hand, and we generated time se-

ries on the other hand. The third factor controls the signal-to-noise ratio. We

included two levels of SNR in our simulation study, both high SNR datasets

(SNR=10) and low SNR datasets (SNR=5) were generated. The activation

based on the Bloch equations was generated using POSSUM (S. Smith et al.,

2004). All other data were generated using neuRosim (Welvaert et al., 2011).

The simulation study was conducted in R (R Development Core Team, 2010)

and each cell of the simulation design was replicated 100 times.

All generated datasets were analyzed using a standard GLM analysis with

SPM8 (Friston et al., 2007) using the canonical HRF with time and dispersion

derivatives and an AR(1) autocorrelation model. The default setting for the

high-pass filter was used (i.e. 128). The resulting F-map was used as the

starting point for a ROC analysis in which both the sensitivity and specificity

were evaluated. In the ROC analysis, the F-map was thresholded with alpha’s

ranging from 0.01 to 0.99. For each alpha, the average true positive rate

(TPR) was determined as the number of correctly detected voxels compared

to the number of active voxels in each simulation run. Similarly, the average

false positive rate (FPR) was determined as the number of falsely selected

voxels on the number of non-active voxels in each simulation run.

5.3.2 Results and discussion

The results of the ROC analysis are presented in Figure 5.2. The ROC

curves are based on the average TPR and average FPR for each specified sig-

nificance level calculated per condition over all datasets in the Monte Carlo

simulation. As can be seen from the figure, the analysis of the white noise



124 Chapter 5

Table 5.1 – Weights of the different noise sources to ensure constant SNR
for each noise condition

Noise condition
Condition 1 Condition 2 Condition 3

1. White noise 1 0 0.165
2. AR(1) noise 0 1 0.165
3a. Low-frequency drift 0 0 0.12
3b. Heart/Respiratory noise 0 0 0.156
3c. Task related noise 0 0 0.394

data with high SNR results in almost perfect ROC curves for both the Bloch

equations method (Figure 5.2b) and the time series method (Figure 5.2d).

The curves are situated completely in the upper left corner of the figure,

meaning that high sensitivity and specificity is obtained. However, when

temporal correlation is added to the data (noise condition 2), both the sensi-

tivity and specificity decrease (blue line). Furthermore, in noise condition 3,

the analysis of data including physiological noise results in a further drop of

the sensitivity and specificity (Figure 5.2b and 5.2d, red line). This decrease

in sensitivity is most pronounced for the time series method. For the analy-

ses of the low SNR data (Figure 5.2a and 5.2c), we observe the same pattern

with a general decreased level of the average TPR and FPR.

As a main finding from this simulation study we can state that including

physiological noise in the data generation process has a significant impact on

the results of the analysis. We observe a clear difference with the white noise

model. Of course, this is not a suprising result. The white noise perfectly

meets the assumptions of the conducted SPM analysis. Therefore, a decrease

in power when physiological noise is added can be explained by violating

these assumptions (i.e., not all physiological noise sources are accounted for

in the statistical model). More specifically, the variance model of the GLM is

incorrect so as a result, the assessment of the variances of the estimates will

be inaccurate, inevitably leading to incorrect scaling of the test statistics. A

similar logic is also applicable in the comparison between noise condition 2
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Figure 5.1 – Example time series for the different noise conditions and the
design specified in simulation study I.

and 3, because the SPM model takes into account temporal correlations of

the time series. Indeed, for both methods we see a further drop of the power

and FPR in condition 3 compared to condition 2.

This simulation study used the powerful block design to create an activ-

ity pattern. However, in reality, fMRI studies often use event-related designs

because they are more closely related to the designs of the behavioural ex-

periments that often precede fMRI studies. We expect that the results of

this simulation study can be extended to event-related designs. However,

it is possible that this design suffers more from physiological noise because
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Figure 5.2 – ROC curves representing the average TPR and FPR in the
three noise conditions in simulation study I. Shaded areas represent the
95% confidence intervals. The upper panel shows the results for the Bloch
equations method and the lower panel contains the results for the time series
method.

the frequency of events is more likely to interfere with the frequency of the

physiological noise. Therefore, we conducted a second simulation study for

an event-related fMRI experiment.
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5.4 Simulation study II

5.4.1 Simulation design and data analysis

In this simulation study we used the same full-factorial design as in simu-

lation study I, however, now applied to an event-related fMRI experiment.

The experimental design was based on an event-related repetition priming

experiment (Henson et al., 2002). We generated activation for the first 100

scans of this experiment (i.e. 34 events). Again we considered 3 noise con-

ditions, 2 data generating methods and 2 SNR levels. Further details can be

found in Appendix. A standard SPM analysis was carried out (same setting

as in simulation study I) and ROC curves based on the average true positive

rate and average false positive rate were determined.

5.4.2 Results and discussion

The results of the ROC analysis are presented in Figure 5.3. As in simulation

study I, the ROC curves are based on the average TPR and FPR calculated

per noise condition and over the different levels of SNR. We observe again a

clear difference in the results for the physiological noise datasets compared

to the white noise and temporal noise datasets. This means that we obtain

lower sensitivity and specificity in condition 3. However, while in the first

simulation study we also saw different results for the white and temporal

noise conditions, here the obtained sensitivity and specificity seems to be

equal in the high SNR conditions (Figure 5.3b and 5.3d). Only for data

generated under low SNR including temporal autocorrelation results in a

power decrease compared to the white noise only condition as can be seen

from the non-overlapping confidence intervals in Figure 5.3a and 5.3c.

The hypothesis we made above, that an event-related design would suffer

more from physiological noise, seems not valid. However, we demonstrated

clearly that also for event-related designs ignoring physiological noise would

result in biased sensitivity and specificity results. These results can be ex-

plained analogously as for simulation study I. Due to the incorrect variance



128 Chapter 5

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Low SNR

Average FPR

A
ve

ra
ge

 T
P

R

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) High SNR

Average FPR

A
ve

ra
ge

 T
P

R

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) Low SNR

Average FPR

A
ve

ra
ge

 T
P

R

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d) High SNR

Average FPR

A
ve

ra
ge

 T
P

R

White noise
AR(1) noise
All sources

Figure 5.3 – ROC curves representing the average TPR and FPR in the
three noise conditions in simulation study II. Shaded areas represent the
95% confidence intervals. The upper panel shows the results for the Bloch
equations method and the lower panel contains the results for the time series
method.

modeling, the scaling of the test statistics is biased.

So far, we only observed a power decrease due to the bias induced by the

physiological noise. In general, this would mean that the results of current

simulation studies provide us only with a polished version of the reality.

However, a problem arises when the drop in sensitivity and specificity would

not be equal between different analysis methods and so, when comparing

these methods, using white noise only would result in wrong conclusions
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about the validity of the methods. In particular ROC curves are a valuable

tool to validate new analysis techniques against more established ones (see

for example Luo & Puthusserypady, 2007; Lange et al., 1999; Hansen et al.,

2001; Skudlarski et al., 1999). The method that would result in the highest

ROC curve is most likely the best method to use. The question is now if the

same method is chosen as the best one if physiological noise is incorporated

in the data generation process. Therefore, in the final simulation study we

compared the standard SPM analysis against an analysis method for event-

related fMRI developed by Cabella et al. (2009). The latter technique is

based on the generalized relative entropy of the time series and used the

Kullback-Leibler divergence to distuinguish between activated epochs and

resting epochs (see Cabella et al., 2009, for a full description). Again we

used ROC curves to assess the sensitivity and specificity of both methods.

5.5 Simulation study III

5.5.1 Simulation design and data analysis

Following the simulations of Cabella et al. (2009), we generated time series

for an event-related design with 24 events and an interstimulus interval (ISI)

of 7 scans with TR = 1.5. The stimulus time course was convolved with the

canonical HRF and noise was added according to the same conditions as in

simulation studies I and II. The SNR was set to 10 and all other parameters

were identical to the Cabella study. We performed 10 000 simulations for the

activated time series to determine the average power and 10 000 simulations

of noise only time series to assess the average FPR.

Each generated time series was analyzed using a standard SPM analysis.

According to the Cabella method, we also computed the mean generalized

relative entropy based on the sample average of the 24 epochs along the

whole time course. This value was evaluated as a statistic for testing the

null hypothesis that the time course is pure noise against the alternative

hypothesis that the time course is composed of both BOLD signal and noise.

For both analyses ROC curves were constructed based on the average TPR
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and average FPR.

5.5.2 Results and discussion
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Figure 5.4 – ROC curves comparing the SPM analysis against the Cabella
method for the three noise conditions in simulation study III. Shaded areas
represent the 95% confidence intervals.

The results of the ROC analyses are presented in Figure 5.4. Based on

either the white noise or the AR(1) noise condition, we would conclude that

the SPM analysis outperforms the Cabella method in terms of achieving

higher power combined with low FPR levels. However, when physiological

noise is included in the data, the conclusion changes drastically. As was
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observed in the previous simulation studies, the ROC curve for the SPM

analysis drops dramatically, but this is not the case for the Cabella method.

On the contrary, in the physiological noise condition the Cabella method

results in higher sensitivity and specificity compared to the white noise and

AR(1) noise conditions. When comparing the methods this results in exactly

the opposite conclusion as made in the white noise condition. The Cabella

method shows higher power and lower FPR compared to the SPM analysis.

The distinction between the two methods boils down to a difference in

mean structure. In the GLM analysis the observed time series are compared

to the convolved stimulus function, while in the Cabella method the distance

between activation and resting periods in the observed time series is calcu-

lated. In general, the Cabella method is a more robust method than the

standard GLM analysis and therefore suffering less from the physiological

noise component. However, if only using a simple noise model in the simula-

tion study, this method will not be chosen as the best method. Therefore, it

is of great interest to developers of robust analysis techniques to use physio-

logical noise in their simulation studies. Only this way, the benefits of their

methods can be highlighted and more insight can be provided in how the

methods behave in more realistic circumstances.

5.6 General discussion

Simulation studies conducted to validate fMRI data analysis methods often

use a very simple noise model to generate fMRI data. The noise is typi-

cally Gaussian distributed and white (e.g. S. Smith et al., 2011). In case

coloured noise is considered, this is limited to introducing temporal auto-

correlation (e.g. Grinband et al., 2008). However, a number of studies have

shown that fMRI data contain physiological noise (e.g. Hyde et al., 2001).

Another approach of creating hybrid simulations (e.g. Weibull et al., 2008),

mixing known activation with real measured noise, does include this type

of noise, but suffers from the major disadvantage that the data can contain

unwanted activity, so the ground truth is not entirely known. The question

is if a simplification of the noise model is justified when assessing statistical
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properties like sensitivity and specificity of activation detection. To address

this issue, we conducted two simulation studies that compared the described

noise models used for simulating fMRI data. The results show clearly that

there is indeed a difference between the simple noise models and a model

containing physiological noise. We demonstrated that including physiolog-

ical noise in the data generation process results in a major decrease of the

obtained power and FPR levels based on an SPM analysis both in block and

event-related designs and for different levels of SNR. However, in simula-

tion study III we demonstrated that this effect is dependent on the method.

For example, using the Cabella method (Cabella et al., 2009) we observed

the reverse effect. Including physiological noise resulted in higher sensitivity

and specificity compared to the analysis of white noise/AR(1) only data. In

statistics this phenomenon is very well known as model misspecification. In

terms of the statistical model, model misspecification is caused by omitting a

variable that is related to the dependent variable. As a consequence, the ob-

served relationships in the misspecified models can be biased. In terms of the

data generating model, this translates to: omitting an important aspect of

the data while simulating will result in a biased assessment of the parameters

of interest. Stated the other way around, if the statistical model is known to

neglect a systematic component of the data, i.e. physiological noise, including

this component in the data generation process of simulation studies would

be necessary to have clear insight in the consequences of the misspecification

of the statistical model. Although preprocessing techniques might reduce

the influence of physiological noise (see for example Biswal et al., 1996), the

use of these techniques is not widespread probably due to a lack of imple-

mentation in widely used software packages. Therefore, the search for more

robust analysis methods driven by extensive validation research should be

encouraged.

In our simulation studies we used ROC curves as a measurement to com-

pare the results for the different data generating methods. These ROC curves

are also an instrument to contrast analysis techniques (e.g. Lange et al., 1999;

Luo & Puthusserypady, 2007; Hansen et al., 2001; Skudlarski et al., 1999).

Our concern is that the size of the systematic drop in the ROC curve we saw in
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this study, can be different for other analysis techniques as was demonstrated

in simulation study III. Consequently, when comparing analysis methods, the

difference between the ROC curves for these methods is unpredictable when

physiological noise is considered in the simulated data. Therefore, including

physiological noise in the simulation process would be highly beneficial, if not

necessary, in order to have a thorough understanding of simulation studies

that validate fMRI data analysis methods.

In summary, simulation studies that are used to assess statistical proper-

ties or to validate statistical methods for fMRI data analysis may suffer from

model misspecification if physiological noise is ignored in the data generation

process. In general, this will probably result in an overestimation of the sensi-

tivity and the specificity of the analysis but in more particular cases this may

result in a biased view on the performance of analysis techniques. Therefore,

we recommend including physiological noise when simulating fMRI data in

order to avoid the bias in the simulation results.



134 Chapter 5

References

Bellec, P., Perlbarg, V., & Evans, A. (2009). Bootstrap generation and

evaluation of an fMRI simulation database. Magnetic Resonance Imaging ,

27 , 1382–1396.

Bianciardi, M., Cerasa, A., Patria, F., & Hagberg, G. (2004). Evaluation of

mixed effects in event-related fMRI studies: Impact of first-level design

and filtering. NeuroImage, 22 , 1351-1370.

Biswal, B., DeYoe, E., & Hyde, J. (1996). Reduction of physiological fluctu-

ations in fMRI using digital filters. Magnetic Resonance in Medicine, 35 ,

107–113.

Bloch, F. (1946). Nuclear induction. Physical Review , 70 (7–8), 460–474.

Brosch, J., Talabave, T., Ulmer, J., & Nyenhuis, J. (2002). Simulation of

human respiration in fMRI with a mechanical model. IEEE Transactions

on Biomedical Engineering , 49 , 700–707.

Bullmore, E., Brammer, M., Williams, S., Rabe-Hesketh, S., Janot, N.,

David, A., et al. (1996). Statistical methods of estimation and inference

for functional MR image analysis. Magnetic Resonance in Medicine, 35 ,

261–277.

Cabella, B., Sturzbecher, M., Araujo, D. de, & Neves, U. (2009). Generelized

relative entropy in functional magnetic resonance imaging. Physica A, 388 ,

41–50.

Cheng, H., Zhao, Q., Duensing, G., Edelstein, W., Spencer, D., Browne, N.,

et al. (2006). Smartphantom – an fMRI simulator. Magnetic Resonance

Imaging , 24 , 301–313.

David, O., Guillemain, I., Saillet, S., Reyt, S., Deransart, C., Segebarth,

C., et al. (2008). Identifying neural drivers with functional MRI: An

electrophysiological validation. PLoS Biology , 6(12), e315.



The impact of physiological noise 135
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Appendix: Data generation details simulation study

I and II

All data in both simulation studies were generated according to an additive

simulation model (Bellec et al., 2009). More specifically, we considered data

consisting of two separate layers, namely (1) an activation layer and (2) a

noise layer. Depending on the cell determining the activation generating

method, the activation layer was generated as follows. For the Bloch equa-

tions method, the activated regions were based on the standard activation

template that is part of the FSL distribution (S. Smith et al., 2004). We gen-

erated 100 scans of a 64× 64× 12 dataset using an EPI pulse sequence with

TE = 0.03, TR = 2.04 and an isotropic voxel size of 3mm. For the time series

method, a baseline image was generated based on the MNI152 anatomical

template. We selected only the voxels that consisted of more than 34% grey

matter. This image containing the percentages of grey matter for each voxel

was multiplied with a baseline value of 40. We selected 3 activated regions

in the grey matter. The convoluted time series representing the activation

were added to the voxels in these regions. The activated time series were

originally generated with TR = 0.01s to ensure a high-precision convolution

with the HRF. The effective time points used in the simulated fMRI time

series were the result of downsampling with TR = 2s after convolution.

While generating the noise layer, several noise sources were considered. A

white noise component was constructed by drawing randomly from a normal

distribution with zero mean and standard deviation σN for each timepoint

and each voxel. The standard deviation of the noise is determined by the

signal-to-noise ratio (SNR):

SNR =
S

σN
(5.1)

where S stands for the magnitude of the signal (Krüger & Glover, 2001).

Temporal correlation was modelled based on AR(1) noise that was generated

by

εi = ρεi−1 + χi (5.2)
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with χi ∼ N(0, σχ) (Purdon & Weisskoff, 1998). The autocorrelation coeffi-

cient ρ was set to 0.3 and σχ was calculated based on equation 5.1 and the

additional requirement that

σ2
N =

σ2
χ

1− ρ2 . (5.3)

Finally, physiological noise was taken into account by modelling three compo-

nents. First, low frequency drift was modelled as the sum of a basis of discrete

cosine functions (Friston et al., 2007) with frequencies ranging between 0.005

Hz and 0.015 Hz (A. Smith et al., 1999). Second, heartbeat and respira-

tory rate noise were modelled as sine and cosine functions respectively with

frequency 1.17 Hz and 0.2 Hz (Biswal et al., 1996). Additionally, random

Gaussian noise was added to create stochastic variability between voxels.

Third, task related noise was operationalized by adding random Gaussian

noise only in activation blocks to account for the instability of cognitive pro-

cesses (Hyde et al., 2001). A combination of these noise sources as described

in Table 5.1 resulted in the three noise conditions used in both simulation

studies.
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Abstract

Although spatial smoothing of fMRI data can serve multiple purposes, in-

creasing the sensitivity of activation detection is probably its greatest bene-

fit. However, this increased detection power comes with a loss of specificity

when non-adaptive smoothing (i.e. the standard in most software packages) is

used. By conducting simulation studies and analysing experimental data, we

systematically investigated the effect of spatial smoothing on the power and

number of false positives in two particular cases that are often encountered

in fMRI research: (1) Single condition activation detection for regions that

differ in size, and (2) multiple condition activation detection for neighbour-

ing regions. Our results demonstrate that adaptive smoothing is superior in

both cases because less false positives are introduced by the spatial smooth-

ing process compared to standard Gaussian smoothing or FDR inference of

unsmoothed data.
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6.1 Introduction

For many neuroscientists, spatial smoothing of fMRI data has become an

automatic preprocessing step. The purpose of this smoothing procedure can

be threefold. First, spatial smoothing moderates intersubject variation in

brain anatomy, especially when individual brains are transformed to a stan-

dard brain space in order to allow intersubject comparison. Second, the

smoothing of fMRI data will increase the signal-to-noise ratio (SNR). Third,

a voxel-based mass-univariate analysis of fMRI data calls for the need of mul-

tiple testing corrections. In this context, spatial smoothing enhances random

field theory (RFT) based inference (see for example Worsley, 2003).

Although spatial smoothing, also referred to as spatial filtering, is mostly

performed during the preprocessing stage of the analysis, it is actually a cru-

cial step in the whole data analysis process because of its influence on the

sensitivity and specificity of the activation detection analysis. The critical

point here is that we need a useful estimate of the required width of smooth-

ing. Depending on the goal of smoothing, guidelines vary substantially. To

allow intersubject averaging, more smoothing might be necessary (e.g. a

Gaussian kernel full-width half-maximum (FWHM) of 8 mm, which is often

the default value in software packages) (Friston et al., 2007). In the context

of increasing SNR and based on the matched filter theorem (Rosenfeld &

Kak, 1982), one wants to take into account the size of the region of interest

(ROI), which can vary roughly from 2 to 10 mm, or even more. Finally, the

spatial smoothness needed for valid statistical inference can be rather small

(around 4 mm will mostly be sufficient) (Friston et al., 1994). In terms of

maintaining spatial structure, it would be better to smooth as little as pos-

sible. A smoothing kernel width that is at least twice the voxel size should

be appropriate in almost all cases (Poldrack et al., 2011).

6.1.1 Non-adaptive smoothing

Spatial smoothing is applied by the convolution of each volume of the fMRI

dataset and a Gaussian kernel. In practice this translates to the signal in
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the volume being blurred by averaging the data over all voxels in a spherical

region. Based on the size of the FWHM of the Gaussian kernel, local weights

determine if a certain voxel is part of this region. In the case of non-adaptive

smoothing, these weights are acting as indicators on how far the smoothing

kernel reaches in space and are completely defined by the value of the FWHM.

Although spatial smoothing increases the sensitivity of activation detec-

tion, it also has a major disadvantage, namely the decrease of spatial resolu-

tion. This results in loss of information on the spatial extent and the shape

of activated regions. Moreover, when the smoothing kernel is large compared

to the activated area, the sensitivity of activation detection will decrease and

false positives are introduced. Some algorithms were developed to overcome

this increase of false positive rate and decrease of spatial resolution, such as,

for example, scale space methods (Poline & Mazoyer, 1994) and non-linear

filtering (Descombes et al., 1998). In this paper, we will focus on the most

standard spatial smoothing method, referred to as Gaussian smoothing, as

an example of non-adaptive smoothing.

6.1.2 No smoothing

In a reaction to the specificity loss caused by non-adaptive smoothing, some

researchers omit the smoothing step and perform inference based on un-

smoothed data. The result is that activation detection is probably highly

specific, but on the other hand might also be overly conservative. First, there

has to be enough signal/contrast in the data to be sensitive to the activation,

and second, inference that corrects for multiple comparisons based on RFT

will be conservative due to unsufficient smoothness in the data (Logan &

Rowe, 2004). One solution to get more sensitive results out of unsmoothed

data would be to use False Discovery Rate control (FDR) (Benjamini &

Hochberg, 1995), since this method is known to be more sensitive (Logan

& Rowe, 2004). We will consider both strategies as alternatives to spatial

smoothing of the data.
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6.1.3 Adaptive smoothing

A second option to overcome the drawbacks of non-adaptive spatial smooth-

ing, and probably also of no smoothing, is to smooth adaptively. With this

smoothing technique, the smoothing width is not chosen a priori but based

on the data by using for example adaptive region growing, nonstationary

spatial Gaussian Markov random fields or adaptive weights smoothing (e.g.

Lu et al., 2003; Harrison et al., 2008; Yue et al., 2010; Tabelow et al., 2006;

Polzehl et al., 2010). We will discuss two of these methods in more detail

which will serve as examples of adaptive smoothing.

In 2006, Tabelow et al. introduced a structural adaptive smoothing pro-

cedure based on the propagation-separation approach (Polzehl & Spokoiny,

2006). Without using any prior anatomical knowledge, the methodology

takes into account the size and shape of activated regions (Tabelow et al.,

2006). During an iterative process adaptive weighting schemes at each loca-

tion are determined based on the parameter estimates of the statistical para-

metric map (SPM). These weights separate areas of distinct parameter val-

ues in particular activated voxels from non-activated voxels. This avoids the

blurring bias at the borders of these areas typically observed in non-adaptive

Gaussian filtering (see Tabelow et al., 2006, for the technical details). Signal

detection can then be performed, for instance, using thresholds based on Ran-

dom Field Theory (Adler, 2000; Worsley, 1994, 2003). Additionally, Polzehl

et al. (2010) presented a new version of the structural adaptive smoothing

algorithm, namely structural adaptive segmentation. Their extended algo-

rithm combines the estimation and smoothing step with the inference step

based on multiscale tests. Both simulations and analysis of real data showed

higher sensitivity and specificity compared to the original adaptive smoothing

procedure (see Polzehl et al., 2010, for the technical details).

A major advantage of these adaptive smoothing techniques is that users

only have to provide the maximum bandwidth of smoothing while the al-

gorithm determines the optimal local weighting scheme. Moreover, when

no spatial structure can be detected based on the functional activation, the

smoothing procedure reduces to non-adaptive Gaussian smoothing such that
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the SPM under the null hypothesis is again approximately a Gaussian Ran-

dom Field.

It should be noted that spatial smoothing is usually part of the pre-

processing pipeline. However, parameter estimation, with the exception of

prewhitening effects, is not effected by the spatial smoothing and therefore

the order of smoothing and parameter estimation is interchangeable (Tabe-

low et al., 2006). Since the adaptive smoothing procedures rely heavily on

the SNR in the data, parameter estimation before smoothing is necessary

as a variance and dimension reduction step. Therefore, in this paper, all

smoothing procedures will be applied after parameter estimation.

6.1.4 Current study

Despite the fact that the disadvantages of non-adaptive spatial smoothing are

well-known and that new improved methods (e.g. adaptive smoothing) have

been introduced, Gaussian smoothing is still used almost exclusively, prob-

ably because it is widely available. In this paper, we address two particular

situations that are applicable to fMRI research and for these situations we

provide a systematic analysis of the dependence of the sensitivity and speci-

ficity on smoothing parameters in a combination with inference methods. By

applying spatial smoothing, we will increase the SNR resulting in higher sen-

sitivity, but, by comparing the results for different smoothing and inference

methods, we will look for an optimal trade-off between gaining sensitivity

and losing specificity.

In the first study (section 2), experimental tasks are considered that cause

activation in multiple unequally sized regions. When we want to take into

account the spatial extent of these regions, the choice of the value of the

smoothing kernel width is non-trivial. Assuming that the actual size of the

activated regions is known (e.g. based on anatomical structures, localizer

tasks or previous analyses of similar tasks), the researcher is confronted with

a choice of the FWHM value ranging from the size of the smallest region to

the size of the largest region. The former will result in undersmoothing the

larger regions, while choosing the latter will oversmooth the smaller regions.
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The second study (section 3) investigates the effect of spatial smoothing on

the specificity and sensitivity of activation detection when two neighbouring

regions are activated due to different tasks, conditions or contrasts. Here,

we definitely want to avoid oversmoothing because this could result in an

unintended overlap between the activation regions.

For both studies, results for unsmoothed, non-adaptively smoothed and

adaptively smoothed data are contrasted. For the unsmoothed data, RFT

based Family-Wise Error (FWE) control and FDR control2 are compared

for two reasons. First, since the latter inference method is known to be

more sensitive (Logan & Rowe, 2004), we will investigate its properties as an

alternative to using spatial smoothing to augment the power. Secondly, due

to unsufficient smoothness, RFT inference is known to be too conservative on

unsmoothed data. For the smoothed data, inference is based on RFT (except

for the adaptive segmentation algorithm which used multiscale tests). Other

inference methods, like for example cluster-based inference are not used here

as they have the same blurring problem as RFT when relying on a Gaussian

filter. Using more realistic simulations (as opposed to Tabelow et al., 2006;

Polzehl et al., 2010) the empirical power and false positive rate (FPR) are

assessed at several contrast-to-noise ratio (CNR) values (section 2.1 and 3.1).

As an illustration, the conditions from both studies are also applied on real

data (section 2.2 and 3.2).

6.2 Study 1: regions with unequal size

6.2.1 Simulation study

Data generation and design

We simulated fMRI datasets of size 20× 20× 20× 107 consisting of 2 mm3

isotropic voxels in R (R Development Core Team, 2010) using the package

neuRosim (Welvaert et al., 2011). The stimulus function was based on a

2We explicitly discard cluster-based FDR methods (e.g. Chumbley & Friston, 2009)
because they are also dependent on RFT inference.
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Figure 6.1 – Ground truth activation in simulation study 1. Left: location
of the activated regions (grayscale values reflect position in space). Right:
timecourse of the block design.

block design with 3 activation blocks that each lasted 15 scans (see Figure

6.1 for a display of the timecourse). We modelled 2 activated regions (spheres

with diameter 6mm and 10mm respectively, see Figure 6.1). Rich noise was

added including temporal correlations (ρ = 0.3), spatial (ρ = 0.7) correla-

tions and physiological noise (i.e. noise due to heart rate, respiratory rate and

task-related noise). Specifically, the noise consisted for 10% of white noise,

30% temporally correlated noise, 20% low frequency drift, 10% physiological

noise, 10% task-related noise and 20% spatially correlated noise (see Wel-

vaert & Rosseel, 2012, for more details on the noise generation). These raw

data were then analysed in R using the package fmri (Tabelow & Polzehl,

2011). Six smoothing conditions were considered: (Condition 1) no spa-

tial smoothing, (Condition 2a) Gaussian smoothing with the size of the

smoothing kernel equal to the size of the smallest region (FWHM=6 mm),

(Condition 2b) Gaussian smoothing with the size of the smoothing kernel

equal to the average size of the regions, corresponding to the default value

(FWHM=8 mm), (Condition 2c) Gaussian smoothing with the size of the

smoothing kernel equal to the size of the largest regions (FWHM=10 mm),

(Condition 3) structural adaptive smoothing with maximum bandwidth
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Table 6.1 – Overview of the spatial smoothing and multiple corrections
methods applied in simulation study 1.

Condition Smoothing Inference
1a none Random Field Theory
1b none False Discovery Rate
2a non-adaptive (FWHM = 6 mm) Random Field Theory
2b non-adaptive (FWHM = 8 mm) Random Field Theory
2c non-adaptive (FWHM = 10 mm) Random Field Theory
3 adaptive smoothing Random Field Theory
4 adaptive segmentation Multiscale Tests

FWHM=10 mm, and (Condition 4) structural adaptive segmentation with

maximum bandwidth FWHM=10 mm. We also varied the CNR level (i.e.,

ratio of changes in the signal due to the experiment and fluctuations due

to noise) of the data between 0.02 and 0.5, and each dataset was replicated

100 times. For each replication, we assessed the power and FPR of the de-

tected activation based on a general linear model analysis including an AR(1)

temporal correlation model conducted using fmri (Tabelow & Polzehl, 2011).

The resulting statistical parametric maps were smoothed according to

the six smoothing conditions. So, in this context spatial smoothing is not

considered to be part of the pre-processing steps (Tabelow et al., 2006). Sen-

sitivity was measured by means of the average power, which was calculated

as the ratio of correctly detected voxels and the total number of active voxels.

Similarly, specificity was measured as the average false positive rate (FPR)

obtained by taking the ratio of falsely detected voxels and the total number

of non-active voxels. All results are corrected for multiple comparisons at

p < 0.05 based on a Family-wise Error (FWE) correction using Gaussian

Random Field theory in the no smoothing, non-adaptive smoothing, and

adaptive smoothing conditions (Worsley, 2003), and using multiscale tests for

the adaptive segmentation condition (Dümbgen & Spokoiny, 2001; Polzehl

et al., 2010). As a comparison and because RFT might not work properly on

unsmoothed data due to unsufficient smoothness, we also applied FDR based

inference (Benjamini & Hochberg, 1995) on the non-smoothed data. Table
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Figure 6.2 – Power (left) and FPR (right) results for the conditions in
simulation study 1. Table 6.1 presents an overview of the conditions.

6.1 provides an overview of the combination of the smoothing conditions and

the multiple corrections methods.

Results

The results are presented in Figure 6.2. The power results on the left hand

side of the figure and the FPR results on the right hand show that there is

indeed a difference between the smoothing conditions. In the no smoothing

condition combined with RFT inference, the overall power and FPR levels

are very low. This might be due to unsufficient smoothness in the data for
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the algorithm to work properly. By comparison, using FDR control on the

unsmoothed data already gives more power, so this will be our baseline con-

dition to compare the smoothing methods against. By spatially smoothing

the data we would like to obtain higher power, however, ideally, the FPR

should stay as low as when no smoothing is applied. Looking at the power

results first (Figure 6.2, left panel), we observe higher power values for all

smoothing methods as expected. The differences between the conditions are

rather small, although it seems that adaptive segmentation results in the

highest sensitivity levels, while Gaussian smoothing with the smallest kernel

(FWHM = 6 mm) provide a lower bound on the power results.

So, while the obtained power results are quite similar, more striking dif-

ferences are observed for the FPR results (figure 6.2, right panel). For the

Gaussian smoothing conditions, more false positives are observed with in-

creasing kernel width and increasing CNR values. Since there are almost

no false positives when no smoothing is applied, the increased FPR rate ob-

served in the Gaussian smoothing conditions is completely attributable to

the smoothing procedure. For example, with a medium-to-high CNR of 0.4,

about 5% false positives are introduced by the Gaussian smoothing proce-

dure in the case the default value of the FWHM is used (i.e. 8 mm). In

contrast, the FPR results for the adaptive smoothing and adaptive segmen-

tation techniques are very similar to the no smoothing condition; the number

of false positives is very low. Also in the case of no smoothing with FDR

based inference, the number of false positives appears to be well controlled.

Based on these simulation results, we can conclude that when there are

multiple activated regions, higher sensitivity can be obtained by either adap-

tive smoothing, adaptive segmentation or Gaussian smoothing, compared

to no smoothing (combined with either RFT or FDR). However, only the

adaptive procedures (adaptive smoothing and adaptive segmentation) suc-

ceed in maintaining the specificity while this greatly decreases for the Gaus-

sian smoothing conditions.
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6.2.2 Real data

We applied the smoothing procedures as described in the simulation study

above to experimental fMRI data from a passive viewing task used to localize

hV5/MT+ involved in motion perception (Seurinck et al., 2011). The data

were acquired on a 3T Siemens TRIO MR scanner (Siemens Medical Systems,

Erlangen, Germany) with scanning parameters TR = 1940 ms, TE = 35 ms,

flip angle = 80◦, 28 slices, slice thickness = 3 mm with a distance factor

of 17%, FOV = 244 mm, matrix = 64 × 64. We used 425 EPI images

(corresponding to the first run) from a random subject in the dataset.

All images were motion corrected3 and normalized to the MNI152 tem-

plate using SPM8 (www.fil.ion.ucl.ac.uk/spm). Spatial smoothing was per-

formed using the R package fmri (Tabelow & Polzehl, 2011) corresponding to

the same conditions as in simulation study 1. In a GLM analysis, we tested

the contrast moving stimuli versus static stimuli. We expect larger activation

in hV5/MT+ for the moving stimuli compared to the static stimuli. Figure

6.3 shows the results for the different smoothing conditions. Since locator

tasks have typically high CNR, the results for the no smoothing condition

(Figure 6.3a) already show clear bilateral activation in hV5/MT+. Based

on the activation detected in this condition, we distinguish two activated re-

gions, one in the right hemisphere, which we will refer to as the small region,

and one in the left hemisphere, which we will refer to as the large region.

The size of the FWHM values for the spatial smoothing are in this case

based on the sizes of the detected regions in these unsmoothed data. When

using FDR controlled inference on the unsmoothed data (Figure 6.3b), we

observe more sensitive results, but surpisingly also more activation outside

the hV5/MT+ region which is improbable given the contrast. Non-adaptive

(Gaussian) smoothing with a kernel width equal to the small region (FWHM

= 6) gives slightly extended activation regions (Figure 6.3c). However, in-

creasing the kernel width further results in loss of detected activation. For

Gaussian smoothing with FWHM = 8 mm, the activation in the right hemi-

3The influence of spatial smoothing in this stage was minimized by setting the FWHM
of the Gaussian smoothing kernel to 1 mm, before estimating the realignment parameters.



Adaptive smoothing as inference strategy 153

(a) No smoothing − RFT
 

(b) No smoothing − FDR
 

(c) Gauss. smoothing 
FWHM=6 mm

(d) Gauss. smoothing 
FWHM=8 mm

(e) Gauss. smoothing
FWHM=10 mm

(f) Adaptive smoothing
 

(g) Adaptive segmentation
 

Figure 6.3 – Example slices (Left=Right orientation) showing hV5/MT+
activation in a visual localizer experiment (Seurinck et al., 2011). Brighter
colours indicate stronger activation (based on the estimated signal of active
voxels in case of adaptive segmentation, and on the p-values otherwise).
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sphere is greatly diminished (Figure 6.3d), and with FWHM = 10 mm, it

disappears completely (Figure 6.3e). For this kernel width, also in the left

hemisphere only half of the activation survives the threshold. In contrast,

the adaptive smoothing techniques (Figure 6.3f-g) can produce slightly larger

hV5/MT+ activations with increased sensitivity compared to the no smooth-

ing condition. This demonstrates that loss of activation due to oversmooth-

ing is overcome with adaptive smoothing. Additionally, while sensitivity to

activation is increased for both adaptive procedures, the highest sensitivity

levels are observed for adaptive segmentation. Concerning the extra activa-

tion outside the hV5/MT+ regions that was detected in the unsmoothed -

FDR condition, spatial smoothing (all methods) succeeds in decreasing this

activation, resulting in clearly localized activation areas.

6.3 Study 2: neighbouring regions

6.3.1 Simulation study

Data generation and design

We simulated fMRI datasets of size 18× 18× 18× 120 consisting of 2 mm3

isotropic voxels in R (R Development Core Team, 2010) using the package

neuRosim (Welvaert et al., 2011).

The experiment was a block design with 2 conditions. Both conditions

contain 5 activation blocks of 10 scans which are alternately active. We

modelled 2 activated regions (6 × 6 cubes) next to each other accounting

for activation based on condition 1 and 2, respectively (see Figure 6.4), and

we used the same noise model as in simulation study 1. We considered 4

conditions: (1) no smoothing with RFT inference, (2) no smoothing with

FDR inference, (3) Gaussian smoothing with FWHM=6 mm (i.e. congruent

with the size of the activated region), and (4) adaptive segmentation with the

maximal bandwidth equal to 6 mm. The CNR varied between 0.02 and 1,

which are values common in fMRI research, and we simulated 100 replications

of each dataset. The data were analyzed using the R package fmri (Tabelow
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Figure 6.4 – Ground truth activation in simulation study 2. Left: location
of the activated regions. Right: timecourses of the block design.

& Polzehl, 2011) and the power and FPR were determined for each activation

condition separately.

Results

The results are shown in Figure 6.5. As in simulation study 1, in the no

smoothing condition using RFT inference, both power and FPR are very low

for all CNR levels. Again inference based on RFT might not be entirely

correct because of unsufficient smoothness. The FDR based results show

indeed more power, while keeping the FPR low. This condition will serve

again as our baseline. Looking at the power results (figure 6.5, left panel), we

see increasing power with increasing CNR levels for both smoothing methods

and in both conditions. For the tests of both conditions, Gaussian smoothing

results in slightly more power compared to adaptive segmentation for lower

CNR values, but the reverse is the case for higher CNR values. Overall, the

differences in sensitivity between both smoothing techniques are rather low.

The FPR results (figure 6.5, right panel) demonstrate a better performance

of adaptive segmentation. This smoothing procedure can control the number

of false positives very well in both conditions. However, for the Gaussian

smoothing condition, the FPR increases with increasing CNR values. Based
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Figure 6.5 – Power (left panel) and FPR (right panel) results for each
condition in simulation study 2.



Adaptive smoothing as inference strategy 157

on these simulation results we would again recommend adaptive smoothing

as the better method to increase the sensitivity while maintaining specificity

in the case of neighbouring regions.

6.3.2 Real data

Similar to the first simulation study, we demonstrate the impact of the

smoothing procedures on the results from experimental fMRI data for the

case of neighbouring regions. We used the same data as in the previous ex-

ample (Seurinck et al., 2011), however now we focus on different contrasts.

In a GLM analysis we tested the following two contrasts: (1) motion versus

rest, and (2) static versus rest. These are again localizer contrasts indicated

to find seperately active regions based on moving stimuli on the one hand

and static stimuli on the other hand. We do not expect any overlap between

the regions based on these contrasts. Similar to the second simulation study,

we consider four conditions: (1) no smoothing with RFT inference, (2) no

smoothing with FDR inference, (3) Gaussian smoothing with the FWHM

matched to the size of the activated region (i.e. 8 mm), and (4) adaptive

segmentation. Figure 6.6 shows results for the different smoothing proce-

dures on the most representative slice. When the data are not smoothed

(upper panel), RFT inference results in clearly distinct activation clusters

for both conditions without any overlap. However, using FDR control shows

a very different activity pattern. The static stimuli contrast (yellow) results

in widespread activation in several areas and also a lot of overlap (green)

is detected with the moving stimuli contrast (blue). Smoothing the data

(lower panel) results in two clusters that show small overlap in the Gaus-

sian smoothing condition, despite the fact that the value of the FWHM is

slightly smaller than the size of the region (based on the unsmoothed data).

In contrast, using adaptive segmentation enables us to localize two activation

regions for the moving and static stimuli separately without any overlap.

Next to more specific activation detection in the adaptive segmentation

condition, the sensitivity for activation strength is also higher in this condi-

tion. Figure 6.7 shows the probability density functions of the p values of
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Figure 6.6 – Application of the smoothing conditions from simulation study
2 to the visual localizer data from Seurinck et al. (2011). Upper left: no
smoothing (RFT); upper right: no smoothing (FDR); lower left: Gaussian
smoothing; lower right: adaptive segmentation. Blue indicates activation
for moving stimuli, yellow codes for activation for static stimuli and green
shows overlap between the two contrasts.
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and static stimuli respectively. Note that for the adaptive segmentation
condition the scaled estimated effect is plotted instead of a p value.
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active voxels for the non-smoothing and Gaussian smoothing conditions and

the scaled estimated effect for the adaptive segmentation condition. Based

on this figure, we can conclude that for both estimated contrasts the ac-

tivation evidence is highest for the adaptive segmentation, followed by the

unsmoothed data with FDR control.

As already demonstrated in the simulations, this real data example again

indicates that adaptive segmentation is successful in maintaining the original

shape of the activated region (i.e., increasing specificity compared to Gaussian

smoothing), while increasing the overall sensitivity of activation detection at

the same time.

6.4 Discussion

Despite the consensus on the benefits of spatial smoothing, the procedure

is often used in a standard preprocessing pipeline using default values, es-

pecially with regard to the kernel width. For example, only 8% of studies

that report using spatial smoothing, describe the reason why a particular

value of smoothing kernel width is chosen (Carp, 2012). In case a justifica-

tion is provided, the relation with the specific selected smoothing kernel is

at least vague. Poldrack et al. (2011) give as a guideline that a smoothing

kernel width of at least twice the voxel size would be appropriate in many

cases (pp. 51–52). A second problem is that applying non-adaptive spatial

smoothing comes at a cost of losing specificity. To accommodate this is-

sue, the kernel width should be chosen wisely to achieve the desired increase

in sensitivity while maintaining an acceptable specificity level. Given these

confusing guidelines, the drawbacks of standard smoothing techniques and

constant development of more advanced analyses, a systematic evaluation of

the impact of spatial smoothing is called for.

In this paper we focused on two specific scenarios often encountered in

fMRI research, namely (1) activation in unequally sized regions and (2) acti-

vation in neighbouring regions. For both cases several methods for smoothing

and signal detection were systematically evaluated using realistic simulations.

Based on the power results, we can conclude that all spatial smoothing pro-
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cedures are successful in increasing the power of the activation detection

analysis. Logan & Rowe (2004) have already demonstrated on unsmoothed

that FDR based inference is more sensitive compared to RFT inference, how-

ever the sensitivity levels of the FDR method are not as high when compared

to the smoothed data results. Although increased sensitivity is desirable, our

FPR analyses have shown that differences between smoothing methods are

quite dramatic for the specificity results. Applying non-adaptive smoothing

will inevitably lead to more false positives. In the case of unequally sized

regions, the chosen value of the FWHM can even increase this effect further.

On the other hand, even when the FWHM can be matched to the size of the

activated region, an overlap will be created between neighbouring regions.

Both effects were not present when applying adaptive smoothing. Almost no

false positives are introduced by these smoothing methods.

A demonstration on real experimental data further accords with these

results. However, it should be noted that, while the FDR based inference of

unsmoothed data in the simulation studies could control the FPR, the same

analysis of the real data showed more activation clusters that seemed im-

probable given the localizer contrasts. Applying FDR inference on smoothed

data might be a possible solution to control this unwanted activation, but

the method requires independent tests to be valid which is not the case for

smoothed data (although Benjamini & Yekutieli (2001) developed a correc-

tion for some forms of dependency) or has to rely oRFT to make cluster-based

inference (Chumbley & Friston, 2009).

With respect to the inference methods, we saw that, confirming the re-

sults of Polzehl et al. (2010), adaptive smoothing combined with multiscale

tests (i.e. adaptive segmentation) results in higher sensitivity levels compared

to using RFT based inference. We focused on voxelwise inference using RFT

corrected thresholds but we expect that the results for other inference meth-

ods, such as cluster-based techniques, would be similar because they would

suffer from the same blurring effect induced by non-adaptive smoothing. Sim-

ilarly, other adaptive smoothing techniques that are not considered here (e.g.

Lu et al., 2003; Harrison et al., 2008; Yue et al., 2010), but also make use

of the data to adaptively smooth the images, are expected to behave in the
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same way. By using knowledge on shape and extent of the activated region

that is present in the data, these more advanced techniques will provide more

reliable results with respect to the obtained specificity.

By specifically focusing on two cases applicable to single-subject fMRI,

we left the question of the impact of spatial smoothing on higher-level anal-

yses open for the time being. We used spatial smoothing in the first place

as a method to increase the SNR of the data, but in higher-level analyses

spatial smoothing is also used to make intersubject comparison more feasi-

ble. It is possible that some degree of specificity loss is necessary to enable

enough overlap between different subjects but this will be a subject for future

research.

In summary, more advanced adaptive smoothing procedures can be used

as an inference strategy to obtain more specificity for example with unequally

sized or neighbouring regions. Compared to the widely used non-adaptive

spatial smoothing, adaptive smoothing has the advantage of controlling the

number of false positives while increasing the power. In addition, using adap-

tive segmentation methods always includes a built-in multiple comparisons

correction based on multiscale tests.
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In this dissertation, we focused on the simulation of fMRI data within a

statistical validation framework. Within this framework, the most important

aspect of the data generation is to capture all relevant components that are

present in the data and will most likely have an effect on the results of the

statistical analysis of these data. Mainly driven by the lack of consensus on

how fMRI data should be generated from a statistical perspective, several

studies were conducted in order to (1) compile knowledge on the fMRI data

generation methods applied until now (Chapter 2 and 3), (2) propose new

tools in order to use these techniques (Chapter 4), (3) deliver proof of the need

for more advanced simulation techniques (Chapter 5), and (4) demonstrate

how the proposed data generation method can be applied in a statistical

validation context (Chapter 6). In this general discussion, we will present an

overview of the main findings and their implications for the field, followed by

a number of suggestions for future research.

7.1 Overview of the main findings and implica-

tions

Review of fMRI simulation studies

This dissertation started with a review of fMRI simulation studies (Chapter

2). In this review, an fMRI simulation database was compiled consisting of

representative papers. The contents of this database were analysed with

respect to the goal and the experimental design of the simulation study,

and the data generating process that was used to simulate the fMRI data.

The most crucial finding in this review was the discrepancy between the

simulated components of fMRI data and the components known to be present

in real data. In particular the noise model that was adopted in the simulation

studies captured only a fraction of real fMRI noise. Another surprising result

was that many current fMRI simulation studies lack thorough experimental

manipulation. Based on the oversimplification of the noise model and the

limited parameter variation of these simulation studies, the validity of the
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conclusions in these studies can be questioned. In order to improve the

validity of future simulation studies, guidelines were presented that encourage

designing thorough experimental manipulations and using more complex data

generation models.

A common definition of signal-/contrast-to-noise ratio

Chapter 3 focused on the definition of SNR and CNR for fMRI data. In

the fMRI literature, multiple definitions of these quantities exist and the spe-

cific properties of these definitions are unknown. We provided an overview

of the most current definitions and discussed their advantages and draw-

backs in particular with respect to fMRI data. Further, we explored the

linear relationship between these definitions and the power to detect activa-

tion. Unfortunately, we had to conclude that there was no solid evidence

to promote one of these definitions as a reasonable candidate for a common

SNR/CNR definition.

However, the main contributions of this chapter are the reference tables.

These tables allow for easy comparison of SNR/CNR values and provide an

estimate of the maximal power that can be expected to detect activation in

data with a given SNR/CNR value. First, these tables facilitate comparison

between experiments. For example, when an fMRI study fails to replicate

previous findings, assessing the data quality using an SNR or CNR measure-

ment of the data could provide an explanation on why the conclusions do

not converge. For group studies, it can also be important to compare the

data quality in terms of SNR/CNR between subjects. Second, a better un-

derstanding of the SNR/CNR values might encourage fMRI researchers to

report these measurements in a more systematic way.

Software for simulation of fMRI data

In Chapter 4 the R package neuRosim was presented that allows for fast

and flexible simulation of fMRI data (Welvaert et al., 2011). Based on the

additive data generation model (Bellec et al., 2009), three components have to

be modelled in order to simulate fMRI data: (1) a baseline image, (2) BOLD
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activation and (3) fMRI noise. In neuRosim a flexible environment was

created to use customised baseline images. BOLD activation can be modelled

using, for example, a gamma function (Boynton et al., 1996; Cohen, 1997),

a (canonical) double-gamma function (Friston et al., 1998; Glover, 1999) or

the Balloon model (Buxton et al., 1998, 2004). To model fMRI noise, the

following noise components are implemented: white system noise, temporally

correlated noise, low-frequency drift, physiological noise, task-related noise

and spatially correlated noise. All these noise sources can be combined using

a weighting function. In this chapter, the specifics of each function were

described and illustrated with several examples.

Around the same time, another simulation package, simTB, has been

released to the community (Erhardt et al., 2012). This Matlab-toolbox was

written using the same philosophy as neuRosim, namely, allowing for fast and

flexible fMRI data generation using complex noise models. However, while

neuRosim was developed under a data-driven perspective, simTB originated

from an ICA validation context. Therefore, the data generation model in

this toolbox is partially model-driven. It is not entirely clear how this ICA

data generation model can be applied to validate other statistical methods

for fMRI data. However, the independent release of two software packages

for the simulation of fMRI data is proof that, until then, there was a great

need for common simulation protocols. Making the software available to the

neuroscience community was definitely a first step in an attempt to achieve

consensus on the fMRI data generating process.

The role of physiological noise

Chapter 5 focuses on the discrepancy between the noise model used in fMRI

simulation studies and the knowledge we have about the noise sources in real

fMRI data. Simulation studies that generate purely artificial data generally

include random Gaussian noise in their data generating process. This noise

component only accounts for the white noise that is present in real data. Next

to containing white noise, fMRI data are known to suffer from low-frequency

drift, physiological noise, motion noise and task-related noise. In three simu-
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lation studies, we focused on the impact of physiological noise. The first two

simulation studies demonstrated that, compared to white noise data, adding

physiological noise to the data generating process resulted in a dramatic de-

crease of the power and increase of the false positive rate in a GLM analysis

of a block and event-related fMRI experiment. The drop of the ROC curve

was mainly attributed to the mismatch in the data generation model and the

analysis model. Indeed, due to the violation of the assumptions of the GLM

model, less sensitivity and specificity could be expected. However, the third

simulation study delivered proof that this decrease does not always have to

be present. More robust analysis methods did not suffer from the presence

of physiological noise. Consequently, when comparing robust methods with

the GLM model using a simple noise model, the wrong model could be pre-

ferred as the better one. These results deliver explicit evidence that the data

generating process for fMRI simulation studies should be constructed with

utmost care. Especially with regard to the simulated noise, it is important

to take into account the multiple noise sources found in fMRI data in order

to avoid biased conclusions.

Simulation application: Validation and comparison of spatial smoothing

techniques

In Chapter 6 an application was presented to demonstrate how simulations

can be applied to validate statistical methods. In this particular example,

the effect of spatial smoothing on the sensitivity and specificity of an acti-

vation detection analysis was investigated. The main goal of the validation

study was to consider alternative smoothing techniques to avoid specificity

loss in two situations, namely, fMRI data with multiple regions that differ

in size and fMRI data with neighbouring regions that are activated by dif-

ferent tasks. Standard Gaussian smoothing is known to have the benefit

of increasing the SNR/CNR, but this sensitivity increase comes with a cost

of losing specificity (i.e. information on the shape of the activated region is

partially lost). Two alternatives to this Gaussian smoothing were system-

atically evaluated: (1) False Discovery Rate (FDR) control of unsmoothed
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data (Benjamini & Hochberg, 1995), and (2) adaptive smoothing (Tabelow et

al., 2006; Polzehl et al., 2010). The difference between adaptive smoothing

and the standard (non-adaptive) smoothing is the use of adaptive weights

that are determined based on the functional activity. Simulation studies in

which two scenarios, i.e. unequally sized or neighbouring regions, were recon-

structed clearly showed the superiority of adaptive smoothing with respect

to maintaining specificity during activation detection (i.e. less false positives

compared to Gaussian smoothing) while the power was higher compared to

the results of FDR control on unsmoothed data. Applying the techniques

on a real data example, further demonstrated the benefits of using adaptive

spatial smoothing instead of standard Gaussian smoothing. Based on these

results, we made a call to apply more advanced analysis strategies.

This simulation application is of interest to both methodological and ap-

plied researchers. Methodological researchers can rely on this study as an

example on how different analysis methods are compared in a systematic

evaluation. In particular the design of the simulation studies should be of

great interest. The simulation studies were constructed in order to keep as

close as possible to real fMRI data experiments by choosing scenarios that

were representative for fMRI research and a data generation model that con-

tained the different sources of fMRI data. As such, the generalisability of

the simulation studies will be assured. The application of the investigated

techniques on real data provided additional evidence that will substantiate

the conclusions.

For applied researchers this study provides insight in the effects of fre-

quently used techniques with respect to the results of their studies. Next to

demonstrating that the current procedures are not ideal in some cases, the

benefits of an alternative were presented. Studies like this application can

serve as a guidance for applied researchers and are most likely to be highly

welcomed because they satisfy a need for making informed decisions on the

fMRI analysis pipeline.



174 Chapter 7

7.2 Future research

In this dissertation, the topic of research was simulation of fMRI data with

a specific focus on (1) activation detection within single-subject fMRI data

based on experimental tasks and (2) the noise model in the data generating

process. Consequently, there are still some topics related to the simulation of

fMRI data that were outside the scope of this dissertation but are definitely

of interest for future research projects.

Validation of analysis methods

First of all, the simulation strategies discussed in this dissertation can be

applied to validate statistical methods for fMRI data. In the General Intro-

duction some questions with regard to the fMRI data analysis pipeline were

posed. For example, is it useful to add the estimated movement parameters

in the design matrix; is it better to control the number of false negatives or

rather the number of false positives? In Chapter 6 we addressed one of these

questions: How should we choose the width of the smoothing kernel? In

the same manner and using the tools provided in this dissertation, the other

questions can be answered and the insights gathered from these validation

studies will further increase the quality of the analysis of fMRI data. Further,

any shortcomings of current analysis strategies, which would come up during

the validation process, could lead to the development of new, more suitable

and robust analysis methods for fMRI data.

Simulation of multi-subject studies

Single-subject validation studies should also be extended to multi-subject

studies. Especially, the second-level analysis (i.e. combined analysis of mul-

tiple subjects) is still largely unexplored terrain. Although widely applied,

it is not clear at all how the analysis procedure behaves in practice. For

example, what is the effect of the parameter choices that are made on the

single-subject level? How are the results effected by influential subjects?

Multi-subject datasets can easily be simulated using neuRosim and the prop-



Discussion and conclusions 175

erties of specific dynamics and their effects can be systematically evaluated.

Again, thorough validation of this analysis procedure will be highly benefi-

cial to those researchers who analyse their data, often blind-sighted to the

specific effects of the choices made during the analysis process.

Resting-state fMRI data

fMRI is not only used to image the brain in function but also at rest. The

number of resting-state fMRI studies has increased over the last years (see

Biswal, 2012, for a review). Together with the measurement of resting-state

data, the analysis techniques for this type of data have emerged. For ex-

ample, a GLM analysis is not suitable for resting-state data since the model

relies on a design matrix. Instead, model-free procedures like voxel-wise

cross-correlation and ICA have been used to distinguish the resting-state ac-

tivation from the noise. Validation studies based on simulations are highly

necessary and a sound simulation method is required. Since physiological

noise is present in fMRI data around the same frequency range as the resting-

state activation (see Birn, 2012, for a discussion on the role of physiological

noise in resting-state data), a data generating process that includes this type

of noise can play a major role.

Brain connectivity

A final extension to the research that has been conducted in this dissertation

is the simulation of brain networks. Simulating a brain network, either task-

induced or a resting-state network, imposes additional challenges on the data

generating process. The main difficulty is defining a data generation model

that is not influenced by an analysis technique. For example, although bio-

physically inspired, networks simulated using the DCM simulator (Friston et

al., 2003) cannot be considered as model-free simulations. Therefore, they

are not suitable for the validation of the retrieval of brain networks using

DCM. What a suitable data generation model should look like is still open

for debate. At the time of writing, there is not yet common ground on how

to model directed links between regions in the ground truth network.
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7.3 Final conclusion

Simulation studies are an excellent method to validate statistical methods

under the condition that the data generating process is representative for the

data on which the statistical methods are applied. However, with regard to

fMRI data, the data generating process is more often model-based instead of

data-driven, e.g. important sources that are present in the data are not mod-

elled during the data generation because they are not adequately represented

in the analysis technique. Therefore, these model-based simulations can be

questioned in terms of reliability and generalisability. As a solution, we pre-

sented a data-driven simulation method for fMRI data. A validation study

established that our technique can indeed alter the conclusions of a simula-

tion study. Further, the applicability of our approach to real-life questions

has been demonstrated.
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Functionele MRI (fMRI) wordt vaak toegepast om de functies van de

hersenen in beeld te brengen. De data die het resultaat zijn van deze beeld-

vormingstechniek staan bekend om hun complexe structuur doordat imper-

fecties tijdens het fysische meetproces interageren met de fysiologie en psy-

chologie van de proefpersonen. Gezien de complexiteit van de data is in

de fMRI literatuur een veelheid van analysetechnieken voorhanden. Deze

technieken dienen gevalideerd te worden alvorens ze met voldoende betrouw-

baarheid en validiteit toegepast kunnen worden op reële datasets. De va-

lidatie van analysetechnieken voor fMRI data wordt echter gehypothekeerd

doordat de werkelijke structuur van de data niet bekend is, wat een noodza-

kelijke voorwaarde is voor een gegronde validatiestudie. Een oplossing is om

de fMRI data artificieel te simuleren en de validatie te baseren op de gesi-

muleerde data waarvan exact geweten is hoe ze tot stand is gekomen. Dit

doctoraatsproefschrift neemt de huidige methodologie voor het genereren van

fMRI data onder de loep en stelt, waar nodig, alternatieven voor die de be-

trouwbaarheid van simulatiestudies kunnen verhogen.

In hoofdstuk 2 werd een database samengesteld die een representatieve

steekproef bevat van fMRI simulatiestudies. Op basis van de informatie in

deze database werden de simulatiestudies geëvalueerd op grond van het simu-

latiedesign en het model dat werd gebruikt voor het genereren van de fMRI

data. Het eerste opvallende resultaat was dat de meeste simulatiestudies

niet vaak gebaseerd zijn op een doordacht experimenteel design. Parame-

ters in de simulatiestudie worden bijvoorbeeld niet gevarieerd. De tweede

conclusie in deze review was de discrepantie tussen het model dat artificiële

fMRI noise genereert en de kennis over de bronnen van fMRI noise. Dikwijls

blijkt de noise structuur in veel modellen sterk vereenvoudigd. Bijgevolg

kan de betrouwbaarheid en generaliseerbaarheid van deze simulatiestudies in

vraag gesteld worden. Opdat deze betrouwbaarheid en generaliseerbaarheid

in de toekomst gegarandeerd zou kunnen worden, werden enkele richtlijnen

opgesteld voor onderzoekers die fMRI simulatiestudies uitvoeren.

Een bijkomend aspect, naast de betrouwbaarheid en generaliseerbaarheid,

is de transparantie en vergelijkbaarheid van simulatiestudies. In hoofdstuk 2

ligt de focus op de definitie van SNR en CNR voor fMRI data. Studie van
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de literatuur leert dat er een enorme waaier aan SNR/CNR waarden terug te

vinden zijn, dit wordt veroorzaakt door het gebruik van verschillende defini-

ties. In dit hoofdstuk werden de meest gangbare definities besproken en hun

voor- en nadelen met betrekking tot hun gebruik voor fMRI data toegelicht.

Kortweg hadden alle definities zowel voor- als nadelen en afhankelijk van

de specifieke context kan de ene dan wel de andere definitie verkozen wor-

den. Bijkomend werden enkele referentietabellen opgesteld die toelaten om

eenvoudige vergelijkingen te maken tussen de waarden van de verschillende

definities. Deze tabellen kunnen aangewend worden om de vergelijking tussen

simulatiestudies transparanter te maken.

Om tegemoet te komen aan het gebrek aan software voor het simuleren

van fMRI data werd een R pakket ontwikkeld dat toelaat om op een snelle en

flexibele manier fMRI data te simuleren (hoofdstuk 4). Bij het implementeren

van de verschillende functies werd bijzondere aandacht besteed aan de ver-

schillende componenten van fMRI data. neuRosim maakt het onder andere

mogelijk om complexe noise structuren te genereren die representatief zijn

voor fMRI data. De functies in het open-source software pakket zijn uiter-

mate geschikt om in een simulatiescript ingebed te worden. neuRosim werd

dan ook gebruikt bij alle simulatiestudies in dit proefschrift.

In hoofdstuk 2 werd reeds aangehaald dat de meeste simulatiestudies een

vereenvoudigde noise structuur van de fMRI data hanteren. Om een beter

inzicht te verwerven op de exacte invloed van deze vereenvoudiging werden

drie simulatiestudies uitgevoerd, hierin werden de resultaten op basis van

verschillende noise modellen met elkaar vergeleken (hoofdstuk 5). In het bij-

zonder werden data met een eenvoudige noise structuur, random witte noise,

vergeleken met data waarin fysiologisch gerelateerde noise werd toegevoegd.

De introductie van fysiologische noise in de data resulteerde in een drastische

daling van de sensitiviteit bij een standaard GLM-analyse. Daarnaast werd

aangetoond dat, wanneer twee analysetechnieken met elkaar vergeleken wor-

den, de conclusies van simulatiestudies vertekend kunnen zijn indien enkel

een eenvoudig noise model wordt gebruikt in de simulatiestudies.

Tenslotte werd in hoofdstuk 6 een toepassing gepresenteerd waarin si-

mulatiestudies werden aangewend om analysetechnieken voor fMRI data te
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evalueren en te vergelijken. In dit specifiek voorbeeld werden courante spa-

tiale smoothing procedures vergeleken met alternatieve technieken. Spa-

tiale smoothing creëert een uitvlakking van de data waardoor de signaal-

ruisverhouding verbetert. Als vertrekpunt werd het probleem vooropgesteld

dat wanneer fMRI data gesmoothed worden, de informatie over de precieze

vorm van een actieve regio verloren gaat. De daling in specificiteit dient dus

te worden afgewogen ten opzichte van de hoeveelheid van de winst in SNR

die door het smoothing proces ontstaat. Dit geldt in het bijzonder voor fMRI

data waarin meerdere regio’s actief zijn die een verschillende grootte hebben

of voor data waarin actieve gebieden naast elkaar gelokaliseerd zijn. Als

alternatief kan gebruik gemaakt worden van adaptieve smoothing. In deze

smoothing procedure worden lokale gewichten afgeleid op basis van de func-

tionele activatie in de data met als gevolg dat niet over de grenzen van actieve

regio’s gesmoothed wordt. Zowel simulatiestudies als voorbeeldanalyses van

experimentele data toonden aan dat de methodes die adaptieve smoothing

gebruiken superieur zijn in vergelijking met de courante smoothing proce-

dures in termen van specificiteit, maar met behoud van sensitiviteit. Met

andere woorden: de adaptieve technieken slaagden erin om een even hoge

SNR te bekomen als de standaard techniek, maar bovendien was er een be-

houd van de vorm van de actieve gebieden. Dit resulteerde bijvoorbeeld niet

tot een overlap tussen de nabijgelegen regio’s terwijl de standaard smoothing

procedure dit wel deed.

Tot slot kon er op basis van de fMRI simulatieliteratuur worden gecon-

cludeerd dat de betrouwbaarheid en generaliseerbaarheid van huidige simula-

tiestudies in vraag gesteld kunnen worden, dit voornamelijk met betrekking

tot de modellering van de noise. Deze simulatiestudies werden benoemd als

modelgebaseerde simulaties, waarbij het analysemodel dat gevalideerd wordt

ook als basis dient voor het genereren van de gesimuleerde data. In dit

proefschrift werden verscheidene instrumenten gepresenteerd om een data-

gebaseerde simulatiestudie uit te voeren. Daarnaast werd tijdens het on-

derzoek duidelijk dat de data-gebaseerde benadering de betrouwbaarheid en

generaliseerbaarheid van simulatiestudies, die analysetechnieken voor fMRI

data valideren, kan verhogen.
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Now this is not the end.

It is not even the beginning of the end.

But it is, perhaps, the end of the beginning.

Winston Churchill


