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Abstract

This thesis presents several content-based methods to address the task of
filtering research resources. The explosive growth of the Web in the last
decades has led to an important increase in available scientific information.
This has contributed to the need for tools which help researchers to deal
with huge amounts of data. Examples of such tools are digital libraries,
dedicated search engines, and personalized information filters. The latter,
also known as recommenders, have proved useful for non-academic purposes
and in the last years have started to be considered for recommendation of
scholarly resources. This thesis explores new developments in this context.

In particular, we focus on two different tasks. First we explore how to
make maximal use of the semi-structured information typically available for
research papers, such as keywords, authors, or journal, to assess research
paper similarity. This is important since in many cases the full text of the
articles is not available and the information used for tasks such as article
recommendation is often limited to the abstracts. To exploit all the available
information, we propose several methods based on both the vector space
model and language modeling. In the first case, we study how the popular
combination of tf-idf and cosine similarity can be used not only with the
abstract, but also with the keywords and the authors. We also combine
the abstract and these extra features by using Explicit Semantic Analysis.
In the second case, we estimate separate language models based on each of
the features to subsequently interpolate them. Moreover, we employ Latent
Dirichlet Allocation (LDA) to discover latent topics which can enrich the
models, and we explore how to use the keywords and the authors to improve
the performance of the standard LDA algorithm.

Next, we study the information available in call for papers (CFPs) of
conferences to exploit it in content-based methods to match users with CFPs.
Specifically, we distinguish between textual content such as the introductory
text and topics in the scope of the conference, and names of the program
committee. This second type of information can be used to retrieve the
research papers written by these people, which provides the system with new
data about the conference. Moreover, the research papers written by the
users are employed to represent their interests. Again, we explore methods
based on both the vector space model and language modeling to combine
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viii Abstract

the different types of information.
The experimental results indicate that the use of these extra features

can lead to significant improvements. In particular, our methods based on
interpolation of language models perform well for the task of assessing the
similarity between research papers. On the contrary, when addressing the
problem of filtering CFPs the methods based on the vector space model are
shown to be more robust.



Samenvatting

Dit proefschrift stelt verschillende content-gebaseerde methoden voor om
het probleem van het filteren van onderzoeksgerelateerde resources aan te
pakken. De explosieve groei van het internet in de laatste decennia heeft
geleid tot een belangrijke toename van de beschikbare wetenschappelijke
informatie. Dit heeft bijgedragen aan de behoefte aan tools die onderzoek-
ers helpen om om te gaan met grote hoeveelheden van data. Voorbeelden
van dergelijke tools zijn digitale bibliotheken, specifieke zoekmachines, en
gepersonaliseerde informatiefilters. Deze laatste, ook gekend als aanbevel-
ingssystemen, hebben ruimschoots hun nut bewezen voor niet-academische
doeleinden, en in de laatste jaren is men ze ook beginnen inzetten voor
de aanbeveling van wetenschappelijke resources. Dit proefschrift exploreert
nieuwe ontwikkelingen in deze context.

In het bijzonder richten we ons op twee verschillende taken. Eerst
onderzoeken we hoe we maximaal gebruik kunnen maken van de semi-
gestructureerde informatie die doorgaans beschikbaar is voor wetenschap-
pelijke artikels, zoals trefwoorden, auteurs, of tijdschrift, om de gelijkenis
tussen wetenschappelijke artikels te beoordelen. Dit is belangrijk omdat in
veel gevallen de volledige tekst van de artikelen niet beschikbaar is en de
informatie gebruikt voor taken zoals aanbeveling van artikels vaak beperkt
is tot de abstracts. Om alle beschikbare informatie te benutten, stellen we
een aantal methoden voor op basis van zowel het vector space model en
language models. In het eerste geval bestuderen we hoe de populaire com-
binatie van tf-idf en cosinussimilariteit gebruikt kan worden met niet alleen
de abstract, maar ook met de trefwoorden en de auteurs. We combineren
ook de abstract met deze extra informatie door het gebruik van Explicit Se-
mantic Analysis. In het tweede geval schatten we afzonderlijke taalmodellen
die gebaseerd zijn op de verschillende soorten informatie om ze daarna te
interpoleren. Bovendien maken we gebruik van Latent Dirichlet Allocation
(LDA) om latente onderwerpen te ontdekken die de modellen kunnen verri-
jken, en we onderzoeken hoe de trefwoorden en de auteurs gebruikt kunnen
worden om de prestaties van de standaard LDA algoritme te verbeteren.

Vervolgens bestuderen we de informatie beschikbaar in de call for pa-
pers (CFPs) van conferenties om deze te exploiteren in content-gebaseerde
methoden om gebruikers te matchen met CFPs. Met name maken we on-

ix



x Samenvatting

derscheid tussen tekstuele inhoud, zoals de inleidende tekst en onderwerpen
in het kader van de conferentie, en de namen van de programmacommissie.
Dit tweede type informatie kan gebruikt worden om de artikels geschreven
door deze mensen te achterhalen, wat het systeem voorziet van bijkomende
gegevens over de conferentie. Bovendien worden de artikels geschreven door
de gebruikers gebruikt om hun interesses te voorstellen. Opnieuw onder-
zoeken we methoden gebaseerd op zowel het vector space model als op lan-
guage models om de verschillende soorten informatie te combineren.

De experimentele resultaten tonen aan dat het gebruik van deze ex-
tra informatie kan leiden tot significante verbeteringen. In het bijzonder
presteren onze methoden op basis van interpolatie van taalmodellen goed
voor de taak van het beoordelen van de gelijkenis tussen wetenschappelijke
artikels. Daarentegen zijn de methoden gebaseerd op het vector space model
meer robuust voor het probleem van het filteren van CFPs.
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Chapter 1

Introduction

The growing popularity of theWorld WideWeb has resulted in huge amounts
of information and many new applications. Academia has not remained un-
connected to this, and apart from making scientific information more acces-
sible, a variety of new tools have emerged to help researchers in different
ways. On the one hand, direct collaboration among researchers has ben-
efited from general purpose tools, such as emails or videoconferencing, or
other ones designed for a specific task but not limited to academia, like
project management applications, version control systems (e.g. CVS1, Sub-
version2), or online editors (e.g. Google Docs3, ShareLaTeX4) which make
it easier for researchers to work on a specific project or article at the same
time. On the other hand, other tools allow researchers to collaborate in-
directly, by sharing their knowledge with others. As an example of this,
bookmarking sites in particular have become very popular. On these sites,
researchers can bookmark those sites or articles which they find interesting
and then share them with other people, either explicitly by sending a link
or implicitly by being followed by other researchers. Examples of such sites
are BibSonomy5, which allows the user to bookmark interesting websites
and publications, or CiteULike6, to manage and search scholarly references,
encouraging researchers to discover new ones thanks to its recommendation
service.

Another valuable resource for research are digital libraries, which manage
and help dealing with the vast amounts of scientific literature generated each
year. Some publishers make their publications available online so they can
be consulted from anywhere at any moment (although some content is only
viewable for subscribers); examples of such libraries are the ACM Digital

1http://savannah.nongnu.org/projects/cvs
2http://subversion.apache.org
3http://docs.google.com
4http://www.sharelatex.com
5http://www.bibsonomy.org
6http://www.citeulike.org
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2 CHAPTER 1. INTRODUCTION

Library7 or Elsevier’s ScienceDirect8. These sites usually include a search
engine. Additionally, the content of many of these libraries is also indexed
by external, specialized search engines such as Google Scholar9 or Microsoft
Academic Search10, which index the repositories of academic institutions
too. Publications by researchers from the whole world are then just a couple
of clicks away.

However, the power of these search engines is not always enough to
find the desired information, since users have to express their information
needs by means by a query consisting of only a few terms, which cannot
always capture all the aspects of what they are really looking for. While
advances in information retrieval try to improve the techniques behind these
systems, another alternative is to rely on information filtering instead. In
this case, the system filters out all information not considered as relevant to
the users, so they are presented only with potentially interesting information.
For example, in the case of research papers, users are only shown those
papers which might be relevant for their research. User interests are usually
represented by a profile, or are inferred from his actions (e.g. if the user is
browsing a given paper, the system can present similar papers since possibly
he is interested in that topic). Recommender systems are inspired by this
idea.

In the last years, recommendation of research resources has gained pop-
ularity, especially research paper recommendation, and several methods to
address such tasks have been studied. However, it is a relatively new re-
search domain; commercial systems have only recently started to use such
techniques to offer recommendation services, and there are still many pos-
sibilities which remain unexplored.

The goal of this thesis is to study new methods that can be applied
to filter research resources. On the one hand, we present several content-
based methods to assess research paper similarity. These methods can be
employed, for instance, for research paper recommendation. In this case,
the methods can be used to find papers similar to a given paper interest-
ing to the user. Also, if each user is profiled by means of his own research
papers (i.e., we assume that the research papers that he has written rep-
resent his interests), such methods can be used to compare other papers
to those in the set and therefore offer personal recommendations. On the
other hand, we aim for a specific task: filtering calls for papers (CFPs) of
scientific conferences. This is a problem which to our knowledge has not
been addressed yet, but which could be an attractive addition to the tools
available to researchers. Such an ideal system for filtering CFPs would use
several methods to deal with different types of information; in this thesis

7http://dl.acm.org
8http://www.sciencedirect.com
9http://scholar.google.be

10http://academic.research.microsoft.com



1.1. THESIS OUTLINE 3

we study the content-based methods only. In particular, we examine how
different features of a typical CFP can be modeled and compared, for which
we also use, as part of the techniques, the methods for assessing research
paper similarity previously studied.

Specifically, we focus on the different kinds of information that can be
found in a document and how they can be used to improve the assessment
of document similarity. In the case of research papers this is particularly
important since the full text is often not available, and the publicly available
content is then limited to the abstract and other features such as keywords,
authors, or journal. It is therefore desirable to make optimal use of them,
and we propose several methods to exploit that information. Moreover,
these features do not only add useful information to the document or user
representations, but can also be used to access extra information. For ex-
ample, in the case of research papers, keywords and author names can be
used to help discovering latent information. On the other hand, in the case
of CFPs, the names of the members of the program committee can be used
to retrieve the papers that they have written, and these in turn can be used
to enrich the representation of a CFP in the system.

1.1 Thesis outline

This thesis is structured as follows. Chapter 2 introduces basic ideas from
information retrieval, focusing especially on the methods used as our basis
in Chapters 4 and 5, but which are also necessary to fully understand other
approaches reviewed in Chapter 3. In particular, we describe the vector
space model, in which documents are represented as vectors, and language
models, based on probabilistic models. In both cases we discuss several
methods within those frameworks, and we pay special attention to how they
can be applied to assessing document similarity.

In Chapter 3 we take a look at the information filtering domain, introduc-
ing and reviewing some basic concepts, to subsequently focus on information
filtering of research resources. Specifically, we present a broad survey of the
research carried out on this domain in the last years, with emphasis on
the recommendation of research papers. Finally, we see how some of this
research has been applied to actual systems used by thousands of people
every day.

Chapter 4 proposes novel methods to assess research paper similarity. In
particular, we focus on content-based approaches that exploit a number of
features usually available for research papers such as keywords, authors, or
journal. Some of these methods are based on the vector space model; more
specifically, we follow a well-known approach that we use as our baseline,
in addition to another model based on Explicit Semantic Analysis. On the
other hand, we also explore how language modeling can be used to combine
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the information from the various features. Also, we use Latent Dirichlet
Allocation to discover latent topics, and propose several methods to enhance
this technique.

In Chapter 5 we study content-based methods for filtering calls for papers
(CFPs) of conferences. To our knowledge, filtering this kind of resources was
previously unexplored, and it allows to explore how to apply some of the
ideas from the previous chapter to a specific task. As for research papers,
in CFPs we still find different features such as an introductory text about
the conference or the names of the people in the program committee. We
also examine how we can take advantage of information about the research
papers that have been written by members of the program committee or by
users of the system, in order to better characterize the scope of a conference
or the interests of a user.

Finally, in Chapter 6 we summarize the conclusions of this thesis and
present some possible directions for future research.

We lastly note that part of the research results published in this thesis
have been presented in international journals [71] and in the proceedings of
international conferences [65, 66, 67, 68, 69, 70].



Chapter 2

Preliminaries from
Information Retrieval

In this chapter we introduce some basic ideas related to information re-
trieval which are used in this thesis. We particularly focus on those specific
methods used in our work. Specifically, we first recall the vector space
model, a model that, as reflected by its name, represents documents as vec-
tors. Also, we recall two different approaches to calculate the components of
those vectors, namely tf-idf and Explicit Semantic Analysis (ESA). Then we
discuss language modeling, an alternative to the vector space model based
on probabilistic models. Finally we describe Latent Dirichlet Allocation
(LDA), another probabilistic method that attempts to discover the latent
topic structure in a document collection. For the sake of completeness, we
end the chapter with a brief review of other general methods for assessing
text document similarity.

2.1 Vector space model

The vector space model [124] is an algebraic model that represents text
documents as vectors. A document d is then represented as vector d =
(w1, w2, · · · , wn), where each component wi contains a weight correspond-
ing to each of the different terms occurring in d. Each weight reflects the
importance of that term in the document and/or in a given collection of
documents. The similarity between two documents can then be assessed
simply by comparing their vectors. The whole procedure can therefore be
divided in three steps: establishing the terms that determine the compo-
nents of the vectors, computing weights for these terms, and comparing the
resulting vectors by means of a given similarity measure.

5
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2.1.1 Defining the terms

The definition of term can vary, depending on the pursued goal. We can
consider each single word to be a term, in this case we talk about unigrams.
Another option might be to consider keywords, that can contain more than
one word each (e.g. “information retrieval”). This is an example of multi-
grams. In general, a multigram is any term containing more than one word,
so it can also be a name, an expression, a phrase, or a whole sentence. More
specific kinds of multigrams are fixed-length multigrams, like bigrams (con-
taining two words), trigrams (three words), and n-grams in general, where
n is the number of single words contained in the term.

For example, let document d be d = {recommender systems and intelli-
gent systems in general for paper recommendation: building a research paper
recommender focused on artificial intelligence}. If we decide to work with
unigrams, the vector representation of d will have sixteen components, one
for each of the different words (there is a total of nineteen words but rec-
ommender, systems and paper occur twice). However, if we do not want to
truncate the phrases (e.g. we want recommender systems to be a term), we
can work with multigrams. A typical option is to consider all sequences of n
words in the text, although this also leads to terms that are not real phrases
(e.g. systems and, for n = 2). A more elaborated approach is to work with a
specific vocabulary, and for a given range of values of n consider only those n-
grams that refer to a term listed in it. In this case, the vector representation
of d contains thirteen components: recommender systems, and, intelligent
systems, in, general, for, paper recommendation, building, a, research paper
recommender, focused, on, and artificial intelligence.

2.1.1.1 Stopword removal

We can see that in the vector representation of d some components are
assigned to short function words, i.e., words with an important grammatical
function but which outside a sentence are not really useful, like a, and, or
for. These words are called stopwords and can be safely removed without
altering the quality of the information in the document. Forms of common
verbs (e.g. to be) are usually considered stopwords too and therefore removed
as well. This results in shorter vectors, which speeds up computations and
in some cases also leads to better results since “noise” has been removed.
Since there is no unique, standard list of stopwords, this needs to be defined
for each application1. In this case, we consider articles, conjunctions and
prepositions to be stopwords. The number of components in the resulting
vector drops from sixteen to eleven.

1There are, however, some lists which are commonly used, or that can serve as a
basis for a new list by removing or adding terms. An example of this can be found at
http://snowball.tartarus.org/algorithms/english/stop.txt
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2.1.1.2 Stemming

One of the limitations of the vector space model is the fact that a suffi-
cient number of terms of two document vectors d1 and d2 must be identical
for the similarity between d1 and d2 to be considered high. However, two
related documents often contain similar, but not identical terms. In our
example, this is illustrated by recommender and recommendation, as well
as by intelligent and intelligence. Something similar happens with verbs in
different forms and tenses. To overcome this problem, words can be reduced
to their root or stem; this technique is known as stemming [98]. Hence, if we
apply stemming to our example using unigrams and stopword filtering, we
get a vector with components for the following terms: recommend, system,
intelligen, general, paper, build, research, focus, and artificial. Note how the
plural forms disappear, and how the verbs also change. The resulting terms
need not be actual words, like intelligen.

2.1.1.3 Feature selection

While stopword removal and stemming can help reduce the number of terms
in the documents, leading to shorter vectors, sometimes the dimensionality
of the feature space (i.e., the number of different terms in the collection)
is still too high, which means a less efficient but also a less robust system.
Therefore, more complex techniques must be used to tackle this problem.
These techniques can be grouped under the concept of feature selection.

Feature selection is a process that chooses a subset from the original
feature set according to some criteria [94]. The idea is that the selected
subset still retains most of the information contained in the original set. In
other words, what the process does is to identify and remove those terms
that do not contain a significant amount of information. This enhances
efficiency and robustness without a negative impact on the final results.

There are different feature selection techniques; in this section we only
discuss the term strength method, as it will be used in subsequent chapters.
We have chosen this method because it is unsupervised and because most
other methods are intended for classification, where documents are subdi-
vided in different classes. For a complete study on feature selection methods
we refer to [149].

The term strength method is based on the idea that terms shared by
closely related documents are more informative than others [149]. The
strength of a term w is thus computed by estimating the probability that a
term w occurs in a document d1 given that it occurs in a related document
d2:

strength(w) = P (w ∈ d1|w ∈ d2) (2.1)

This probability can be estimated by the percentage of pairs of related doc-
uments (d1, d2) where w occurs in both documents.
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Ideally, the pairs of related documents are already known, for example
because they have previously been annotated by experts. However, in many
cases these pairs are unknown; the first step is then to choose pairs of re-
lated documents, which can be done by using some approach to compute
the similarity between two documents (for example, any of the approaches
explained in the next sections). In this case, to define how close two doc-
uments must be to be considered as related, a threshold is used, namely
the average number of related documents per document. This means that
a similarity score is set as a minimum for considering two documents as
related, and all documents are compared using the chosen approach. If the
average number of related documents per document is above the threshold
(i.e., too many related documents per document), the minimum similarity
score is raised, and the process is repeated until the average number of re-
lated documents is below the threshold. Since a too small number of related
documents is not desirable either, a second threshold can be used to prevent
that. According to [149], satisfactory performance is achieved when using a
threshold between 10 and 20.

When the pairs of related documents are known, and after calculating
strength(w) for every term w in the document collection, the N strongest
terms are selected, ignoring the rest.

2.1.2 Computing the weights

As mentioned before, a document vector does not contain the terms them-
selves, but a weight corresponding to that term to reflect the importance
of the term in the document and/or in a given collection of documents:
the higher the weight, the more important the term is and the better it
represents the document.

According to [122], there are three main factors to take into account
when computing the weights: term frequency factor, collection frequency
factor, and length normalization factor.

On the one hand, it seems obvious that the most frequently mentioned
terms in a document are important, therefore the term frequency (tf ) is an
interesting metric for computing the weight. The term frequency of term wi

in document d can be calculated as:

tf(wi, d) =
n(wi, d)

|d| (2.2)

where n(wi, d) is the number of occurrences of wi in d and |d| is the total
number of terms in d.

On the other hand, if a term appears in most documents, it cannot
be seen as a discriminative term, regardless of its actual importance. In
these cases the collection frequency factor works better: by calculating the
inverse document frequency (idf ) we can get higher weights for those terms
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that appear only in a few documents:

idf(wi, d) =
|C|

|{dj ∈ C : wi ∈ dj}| (2.3)

where |C| is the number of documents in the collection, and |{dj ∈ C : wi ∈
dj}| is the number of documents in the collection that contain wi.

The strengths of both metrics can be combined in the tf-idf weight:

tfidf(wi, d) =
n(wi, d)

|d| · log( |C|
|{dj ∈ C : wi ∈ dj}| ) (2.4)

The logarithm is introduced to smooth the influence of the idf value; a term
occurring in 10 times more documents than another should indeed lead to
a lower tf-idf value, but a value 10 times smaller is too drastic. This can be
avoided using the logarithm: tf-idf values are still proportional to idf but in
a less harsh way. A common alternative to (2.4), used to avoid divisions by
zero in thoses cases when wi is not in the collection, is:

tfidf(wi, d) =
n(wi, d)

|d| · log( |C|
|{dj ∈ C : wi ∈ dj}|+ 1

) (2.5)

Finally, the length normalization factor must be considered, since not
all documents are equally long and this may lead to unfair comparisons.
Therefore, after computing each vector d, it should be normalized: d =
( w1
‖d‖ , · · · , wn

‖d‖ ), where ‖d‖ is the Euclidean norm ‖d‖ =
√
w1

2 + · · ·+ wn
2.

2.1.3 An alternative: Explicit Semantic Analysis

The tf-idf weighting scheme is the most popular approach in information
retrieval, due to its good performance and simplicity. However, only lexical
similarity is taken into account. In this section we therefore focus on Explicit
Semantic Analysis (ESA) [46], an approach that does not only deal then with
lexical information, but includes semantic information too. Instead of words,
the components in the vectors used by ESA refer to concepts: a document
is represented not as a weighted vector of words, but as a weighted vector
of concepts. However, to do so the concepts must be previously defined,
which means that an extra source of information other than the modelled
documents is required. In particular, [46] proposes to use Wikipedia2 to
define the concepts.

More formally, in this scheme, a vector representation dE is defined
for each document d, where dE has one component for every concept c in
Wikipedia. The idea is that each component of the vector should reflect
how related the document is to the corresponding concept.

2http://en.wikipedia.org
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Let d be the vector obtained for document d by using the tf-idf scheme.
In addition, we consider a vector dc to represent each concept c. In order to
build such a vector, the collection CE of Wikipedia pages is considered; this
collection contains a document dc for each concept. In the weighted vector
dc each component corresponds to a term in CE (i.e., a term occurring in at
least one Wikipedia page), and the weights are the tf-idf scores calculated
w.r.t. CE . Thus, dc represents Wikipedia concept c in the same way that
d represents document d. Finally, d and dc are normalized and can be
compared to compute the new vector representation dE of document d. In
particular, the weight wc in dE of the component corresponding to concept
c is calculated as follows:

wc = d · dc (2.6)

where d · dc denotes the scalar product. The whole process is summarized
in Figure 2.1.

Figure 2.1: Wikipedia-based generation of the ESA vector dE of a document

2.1.4 Comparing the vectors

Once the weighted vectors have been constructed, their similarity can be
calculated. Two vectors d1 and d2 corresponding to different papers can
be compared using standard similarity measures. The most commonly used
similarity measure is the cosine similarity, defined by:

simc(d1,d2) =
d1 · d2

‖d1‖ · ‖d2‖ (2.7)

where, again, d1 · d2 denotes the scalar product and ‖.‖ is the Euclidean
norm. The cosine similarity measures the angle between d1 and d2: the
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larger the angle between the vectors, the less similar the documents that
they represent. To this end, (2.7) is derived from the formula of the scalar
product:

d1 · d2 = ‖d1‖ · ‖d2‖ · cos θ (2.8)

The cosine similarity is then, as its name indicates, equal to cos θ. Since
the weights of the components of the vectors cannot be negative, the re-
sult is always a number between 0 (vectors form a 90◦ angle, i.e., they are
completely different) and 1 (the vectors are identical).

Another measure based on the same idea is the Dice similarity [39],
defined by

simd(d1,d2) =
2(d1 · d2)

‖d1‖2 · ‖d2‖2
(2.9)

Note that the denominator in both (2.7) and (2.9) as well as the norms in
the right-hand side of (2.8) are unnecessary when d1 and d2 are normalized.

Finally, two well-known alternatives which focus more directly on the
overlap of the two vectors are those based on the Jaccard index [72]. The
original Jaccard index compares two sets by dividing the size of the inter-
section of the two sets by the union of the two sets. This idea can be applied
to compare weighted vectors in two different ways. On the one hand, the
generalized Jaccard similarity [54], defined by

simgj(d1,d2) =

∑
k min(d1k , d2k)∑
k max(d1k , d2k)

(2.10)

straightforwardly adapts the original idea: it compares the sum of the
weights shared by the two vectors (e.g. if d1k = 0.3 and d2k = 0.1 the shared
weight for that term is 0.1) to the sum of the weights obtained when both
vectors are considered (e.g. 0.3 for the same case of d1k = 0.3 and d2k = 0.1).
On the other hand, the extended Jaccard similarity [121], defined by

simej(d1,d2) =
d1 · d2

‖d1‖2 + ‖d2‖2 − (d1 · d2)
(2.11)

compares the total sum of the weights of the terms shared by both vectors
to the sum of the weights of the terms that only occur in one of the vectors.

2.2 Language modeling

Weighted vectors are not the only way to represent text documents. Among
other approaches to this end, language modeling has received much attention
in the last years, and has been shown to perform well for comparing short
text snippets [62, 118], which as we will see in the following chapters makes
it interesting for our purposes.
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Language modeling is based on estimating the probability distribution
of a document, where, as in the previous section, a term can be either a
unigram or a multigram. This estimated probability distribution represents
the language model of the document. Since language modeling is used in
a broad range of applications, the definition of a term, as well as the ways
to estimate the language model vary widely depending on the pursued goal.
For example, in natural language processing applications it is common to
consider multigrams, since a given group of words can help to predict the
next word in a sentence. In other cases, such as document classification,
models are not only estimated for the documents, but also for the classes.
Since this thesis is about information retrieval, in the remainder of this
section we focus exclusively on the approach for this kind of task.

In the language modeling approach to information retrieval [117], a uni-
gram language model D is estimated for each document d in a collection C.
The idea, given a query q, is first to calculate, for each document d with a
model D, the probability P (q|D) that the language model D could generate
the terms in q. After that, a list of documents is retrieved: the more likely
a model is to have generated the query, the higher ranked the correspond-
ing document is in the list. In other words, we are assuming that if model
D (ideally) generated document d, the higher the probability of it having
generated query q, the more related d and q are.

In order to estimate the language modelD for a document d, we therefore
have to estimate the probability P (w|D) for each term w in d. The maximum
likelihood estimate of this probability is:

P (w|D) =
n(w, d)

|d| (2.12)

where n(w, d) is the number of occurrences of w in d, and |d| is the total
number of terms in d. As in the vector space model, it is possible to first
filter the terms, removing stopwords and/or applying stemming.

To illustrate how language modeling works, we take up the document d
used in Section 2.1.1, d = {recommender systems and intelligent systems in
general for paper recommendation: building a research paper recommender
focused on artificial intelligence}. Assuming that we use unigrams and
that we remove stopwords, the resulting set of terms is d = {recommender,
systems, intelligent, systems, general, paper, recommendation, building, re-
search, paper, recommender, focused, artificial, intelligence}

Now, given a query q = {recommender systems}, we can calculate the
query likelihood P (q|D). Since we are using unigrams and assuming that
terms are independent, a simple method to calculate P (q|D) is just to mul-
tiply the probabilities of each word in the query:

P (q|D) =
∏
i=1

P (wi|D) (2.13)
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In this case, we have P (recommender|D) = 2
14 and P (systems|D) = 2

14 , so
P (q|D) = 0.02. If we now change our query to q = {scientific recommender
systems}, we add P (scientific|D) to the product. However, as scientific is
not in d, P (scientific|D) = 0 and P (q|D) = 0, which is unreasonable. The
language model D should therefore consider terms that are not in d; this
technique is called smoothing.

Since we are not dealing with just one document but with many doc-
uments in a collection C, a common solution to smooth the models is to
combine the document model P (w|D) with the collection model P (w|C),
estimated as:

P (w|C) = n(w, C)
|C| (2.14)

where n(w, C) is the number of occurrences of w in the collection, and |C|
is the total number of terms in the collection. Note the similarities with
the tf-idf weighting scheme in the vector space model: P (w|D) works with
the term frequency, while P (w|C) uses the collection frequency. A simple
method is Jelinek-Mercer smoothing [152], which linearly interpolates both
models:

P ∗(w|D) = λP (w|D) + (1− λ)P (w|C) (2.15)

where parameter λ ∈ [0, 1] controls the weight given to each model.

A common alternative to Jelinek-Mercer smoothing is Bayesian smooth-
ing [152], also referred to as Bayesian smoothing with Dirichlet priors or sim-
ply Dirichlet smoothing. In this case, the model is built using the Dirichlet
prior and model parameter μ:

P ∗(w|D) =
n(w, d) + μP (w|C)

|d|+ μ
(2.16)

As it can be noticed, unlike Jelinek-Mercer smoothing, this type of smooth-
ing depends on the length of the document, which makes sense as intuitively
longer documents contain more information and therefore the estimations
require less smoothing. The value of μ is also related to the length of the
documents, ranging from 0, which turns (2.16) into (2.12) (i.e., no smooth-
ing), to a value several times |d|, which means that P ∗(w|D) is estimated
almost solely based on the smoothing. The optimal value varies depending
on the collection; a commonly used value is the average document length of
the collection [115, 43].

For more information on smoothing and other smoothing methods we
refer to [152] and [33].

As stated above and shown in the example, we can see how related a
document d is to a query q according to (2.13) (where P (wi|D) can alterna-
tively be replaced by P ∗(wi|D) as defined in 2.15 or in 2.16). We can use
this idea for documents instead of queries, making it possible to evaluate
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how similar two documents d1 and d2 are, by calculating
∏

i=1 P (wi|D1),
wi ∈ d2, or

∏
i=1 P (wi|D2), wi ∈ d1.

Alternatively, we can compare the documents’ models, D1 and D2. To
do so, we can measure their difference using the Kullback-Leibler divergence
[87], defined by

KLD(D1||D2) =
∑
w

P ∗(w|D1) log
P ∗(w|D1)

P ∗(w|D2)
(2.17)

Intuitively, KLD measures the extra number of bits required for encoding
data sampled from a distribution p using a code based on a second dis-
tribution q, which here could be seen as the extra information necessary
to obtain a document originally generated by D1 by using D2 to generate
it. Note that KLD(D1||D2) is not equal to KLD(D2||D1) in general. If
a symmetric measure is desired, a well-known and popular alternative is
Jensen-Shannon divergence [45]. In this case, the models are first compared
to an average model Davg where the probability for each term w is estimated
by

P ∗(w|Davg) =
P ∗(w|D1) + P ∗(w|D2)

2
(2.18)

and then the mean of both divergences is calculated:

JSD(D1||D2) =
KLD(D1||Davg) +KLD(D2||Davg)

2
(2.19)

2.3 Latent Dirichlet Allocation

The standard language modeling approach does not measure semantic sim-
ilarity, and therefore synonyms or related words are considered as totally
different. An approach based on probabilistic models which deals with this
problem is Latent Dirichlet Allocation (LDA) [21].

The idea behind LDA is that documents are generated by a (latent) set
of topics, which are modeled as a probability distribution over terms. To
generate a document, a distribution over those topics is set, and then, to
generate each term w in the document, a topic z is sampled from the topic
distribution, and w is sampled from the term distribution of the selected
topic.

Figure 2.2 shows an example of how this works. Document doc is as-
sumed to be generated by the latent set of topics T = {T1, T2, T3}. Each of
these topics has a different probability in the probability distribution θ, and
its own probability distribution φi over (some of) the terms in the collection
C = {a, b, c, d, e, f}. To generate the first term of the document, a topic is
sampled from θ, for example T1, and then a term is sampled from φ1, c.
Thus, the first term of the document is c. For the second term, a topic is
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Figure 2.2: Generation of a document according to LDA

sampled from θ, T3, and a term is sampled from φ3, b. The same process is
repeated to generate each term in the document.

Therefore, if we want to represent a document according to the topics
covered by it, the set of distributions φ over the terms in the collection (one
distribution for each topic) and the set of distributions θ over all the topics
(one distribution for each document) need to be estimated. To do so, we
use LDA with Gibbs sampling [55]. These probabilities are then estimated
as:

P (w|z) = φ̂(w)
z =

nz
(w) + β

nz
(·) +Wβ

(2.20)

i.e., the probability that topic z generates term w, and:

P (z|τ) = θ̂(d)z =
nz

(d) + α

n·(d) + Tα
(2.21)

the probability that topic z is sampled given τ , where τ is the LDA model
obtained with Gibbs sampling, W is the number of terms in the collection,
and T is the number of topics. Parameters α and β intuitively specify how
close (2.20) and (2.21) are to a maximum likelihood estimation: if their value
is zero, (2.20) and (2.21) become a maximum likelihood estimation, while
high values make them tend to a uniform distribution. Typical values for
these parameters are α = 50/T and β = 0.1 as proposed in [55]. The number
of topics T depends on the data and therefore differs for each problem.
A typical and straightforward solution is simply trying different values to
see which one offers the best results for the desired task. Alternatively,
the likelihoods can be compared [55]. Finally, a third and more formal
approach is to use Bayesian nonparametrics, specifically using hierarchical
Dirichlet processes [137], although in practice this is less used due to its high
computational cost.
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The rest of the values in (2.20) and (2.21) are described in the first block
of Table 2.1. All these values, except n·(d), which is simply the length of d,
are unknown a priori.

Table 2.1: Values used in LDA with Gibbs sampling to find underlying topics

value description

nz
(w) Number of times term w is assumed to have been generated by

topic z.
nz

(d) Number of times a term instance of document d is assumed to
have been generated by topic z.

nz
(·) Total number of times a term has supposedly been generated by

topic z.

n·(d) Total number of term instances of document d generated by any
topic.

n′
z
(w)

Number of times term w is assumed to have been generated by
topic z, but without counting the current assignment of w.

n′
z
(d)

Number of times a term instance of document d is assumed to
have been generated by topic z, but without counting the current
assignment of w.

n′
z
(·)

Total number of times a term has supposedly been generated by
topic z, but without counting the current assignment of w.

n′
·
(d)

Total number of term instances of document d generated by any
topic, but without counting the current assignment of w.

The idea of the Gibbs sampling algorithm is to sample all variables
from their distribution when conditioned on the current values of the rest
of the variables. If repeated, the values will start to converge to the actual
distribution. To apply the LDA algorithm, we first initialize it by randomly
sampling a topic from a uniform distribution, for each occurrence of a term in
every document; the topic is assigned as the generator of that instance of the
term. By doing this, counts nz

(w), nz
(d) and nz

(·) are randomly initialized.
Then, an iterative process begins. In each iteration, for each instance w of
a term in the collection, a topic is sampled based on probability estimates
derived from the current assignments, i.e., the probability that topic z is
chosen is given by

P (z|w, τ) ∝ P (w|z) × P (z|τ) = n′
z
(w) + β

n′
z
(·) +Wβ

· n′
z
(d) + α

n′·
(d) + Tα

(2.22)

Counts n′
z
(w), n′

z
(d), n′

z
(·) and n′·

(d) are described in the second block of
Table 2.1. When the algorithm stops after a specific number of iterations
given as input, φ and θ can finally be estimated according to (2.20) and
(2.21). Algorithm 1 shows the pseudo-code for the Gibbs sampling algorithm
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for LDA3.
Now we can evaluate the probability P (w|τ) that term w is generated

by the topics underlying document d:

P (w|τ) =
T∑
i=1

P (w|zi)× P (zi|τ) (2.23)

This allows us to reformulate (2.15) to build a model D not based on the
text itself, but on the latent topics:

P ∗(w|D) = λP (w|τ) + (1− λ)P (w|C) (2.24)

As before, the documents’ models can be compared by using (2.17) or (2.19).

3The pseudo-code of Algorithm 1 is based on both the descrip-
tion in [55] and Gregor Heinrich’s Java code that can be found at
http://arbylon.net/projects/LdaGibbsSampler.java
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Algorithm 1 Gibbs sampling algorithm for LDA

1: nz
(w) = 0 for all z, w � set all counts to zero

2: nz
(d) = 0 for all z, d

3: nz
(·) = 0 for all z

4: for all document d in D do � initialize counts
5: for all term wi

d in d do
6: sample z from {z1, · · · , zT }; � randomly sample a topic for wi

d

7: nz
(w) ++; � topic z has generated an instance of term w...

8: nz
(d) ++; � ... in document d

9: nz
(·) ++; � increase number of terms generated by z

10: end for
11: n·(d) = |d|;
12: end for � end of random initialization
13: for num. iterations do
14: for all document d in D do
15: for all term wi

d in d do
16: remove instance wi

d from nz
(w) � nz

(w) is now n′
z
(w)

17: remove instance wi
d from nz

(d) � nz
(d) is now n′

z
(d)

18: remove instance wi
d from nz

(·) � nz
(·) is now n′

z
(·)

19: n·(d) −−; � n·(d) is now n′·
(d)

20: sample ẑ according to (2.22)
21: nẑ

(w) ++; � topic ẑ has now generated instance wi
d

22: nẑ
(d) ++;

23: nẑ
(·) ++;

24: n·(d) ++;
25: end for
26: end for � end of sampling process
27: end for � end of sampling
28: for all term w in C do � distributions φ and θ are estimated
29: for all topic z in {z1, · · · , zT } do
30: estimate P (w|z) according to (2.20)
31: end for
32: end for
33: for all document d in D do
34: for all topic z in {z1, · · · , zT } do
35: estimate P (z|τ) according to (2.21)
36: end for
37: end for
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2.4 Text document similarity

While in this chapter we have only focused on some specific techniques for
assessing text document similarity, there are many other interesting ap-
proaches. In this last section we review some of the most popular methods.

The ability of assessing the similarity between texts is fundamental for
a broad number of tasks, such as information retrieval [59, 91], document
clustering [63, 133], text classification [7, 144], machine translation [110],
or text summarization [42], among others. In order to compare texts, the
similarity between words is what usually gets measured actually. This allows
for comparing larger text units like sentences or paragraphs, since these
could be seen as a combination of words, while semantic information which
becomes lost at a lower level (character level) is still retained.

Words then offer the possibility of comparing texts at two different levels:
lexical and semantic. On the one hand, two words are lexically related
if they share the same sequence of characters (although they can refer to
different things, e.g. bank). On the other hand, two words are semantically
related if they have a similar meaning or refer to related ideas (although
they can be represented by totally different sequences of characters, e.g. lift
and elevator).

To compare words at the lexical level, the most straightforward ap-
proaches are based on comparisons of characters. The Longest Common
Substring method (LCS) [58] determines the similarity between two words
according to the number of characters contained in the longest common
subsequence. Another possibility is not to look for subsequences but for
characters in similar positions (e.g. hand and hunt have two characters, h
and n, in the same positions), as the Jaro distance metric [75] does; this ap-
proach is extended in the Jaro-Winkler distance [146], which favours words
that share the first characters. A third alternative is the Levenshtein dis-
tance [90], which is based on the number of changes required to turn one
word into the other one, extended in the Damerau-Levenshtein distance [35]
which allows transpositions to accomplish that task. These methods can be
helpful when dealing with typographical errors [131, 35], and are commonly
used in bioinformatics [57, 53]. Character-based approaches are also useful
for information retrieval in Chinese or Japanese [44, 79].

However, these methods focus exclusively on the word as a set of char-
acters and ignore important information, like the relative importance of a
word within the text where it occurs, or the relevance of a word in a given set
of documents, shortcomings which make them less suitable for information
retrieval in general. Methods based on terms overcome that problem. In
the same way that the previous methods focus on a character’s role within a
word, these methods mainly consider a term’s role within a text4. Also, they

4For the sake of simplicity, in this section we consider each single word to be a term;
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usually invoke the bag-of-words model, where a document is represented as
an unordered collection of words.

The most basic methods of this kind are based on the boolean model
[123]. In this model, a document is represented as a set of terms, and
queries are boolean expressions connected by AND, OR and NOT. The
documents are then retrieved depending on whether or not they contain the
query terms. This model has many limitations nevertheless. A document
either matches the query or not, so there are no partial matches, and as
a consequence often too many or too few relevant documents are retrieved.
Also, since all documents are equally relevant or irrelevant, it is hard to rank
the retrieved documents unless additional information is available to use it
as ranking criterion (e.g. other users’ ratings, number of comments, etc.).
Finally, it is difficult to represent a text document by means of boolean
queries. Therefore, this model is mainly suitable for simple query-document
similarity, but it is not an ideal choice for document-document similarity.

In order to speed up computations, in the boolean model documents can
be seen as vectors of boolean values, where each component in the vector
corresponds to a term and has a value of 1 or 0, depending on whether or
not that term is contained in the document. This is a point in common
with the more popular vector space model [124], where documents are also
represented as weighted vectors, and which we have examined in detail in
Section 2.1. Finally, we have the state-of-the-art alternative to the vector
space model, language models [117], which we have reviewed in Section 2.2.

The main weakness of the previous approaches is that since they operate
at the lexical level, semantic information is ignored. So when two words are
semantically related but lexically different, they are not recognized as similar
even if they really are, e.g. truck and lorry. On the other hand, homonyms
are considered as similar even when they refer to different concepts (e.g. a
bow to shoot arrows and the bow of a ship). To deal with this problem
texts must be compared at the semantic level. To this end, several methods
have been proposed, based both on the vector space model and probabilistic
models.

In the vector space model, the most popular approach is Latent Seman-
tic Analysis (LSA) [88], which is based on the idea that semantically similar
terms occur in similar documents. By making a matrix that describes the oc-
currences of terms in documents (where rows correspond to terms, columns
correspond to documents, and values are typically calculated applying the
tf-idf weighting scheme) and applying singular value decomposition (SVD)
to it, terms can be represented as vectors and then be compared in the vector
space model. This approach has several points in common with the Hyper-
space Analogue to Language model [99], although in this case two terms
are semantically similar when they usually occur with the same words. The

for other possibilities we refer to Section 2.1.1
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considered context when comparing two terms is then derived only from the
surrounding terms and therefore, unlike the previous models, is not based on
the bag-of-words model as word order is important. Other alternatives use
external sources of information. For example, Explicit Semantic Analysis
(ESA) [46], described in Section 2.1.3, calculates how related a document
is to a given concept based on a given document collection, Wikipedia5 in
the original approach, or alternatives like the Reuters corpus of articles6 [4].
A different approach is the normalized Google distance (NGD) [34], based
on the number of documents found by Google for the potentially related
terms where they occur both alone and simultaneously. On the other hand,
several approaches have been proposed that use the relationships defined in
the semantic networks available at WordNet7 and MeSH8 [140, 148, 59].

Finally, semantic information can also be taken into account using prob-
abilistic models. From LSA evolved Probabilistic Latent Semantic Analysis
(PLSA) [60], with a probabilistic grounding instead of based on linear al-
gebra like LSA, and from this Latent Dirichlet Allocation [21], a generative
model that allows to discover the latent topics underlying a document that
is receiving much attention recently. We refer to Section 2.3 for more details
on this approach.

5http://en.wikipedia.org
6http://trec.nist.gov/data/reuters/reuters.html
7http://wordnet.princeton.edu/, a lexical database of English where words are grouped

into sets of cognitive synonyms, each expressing a distinct concept, interlinked by means
of conceptual-semantic and lexical relations.

8http://www.ncbi.nlm.nih.gov/mesh, Medical Subject Headings, a hierarchically ar-
ranged thesaurus for biomedical literature.
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Chapter 3

Information filtering

The goal of this chapter is to give an overview of the work that has been
carried out in the field of information filtering regarding scientific resources,
with a particular emphasis on research papers. We start the chapter intro-
ducing information filtering in general terms and reviewing the main ap-
proaches to this task. Then we focus on how information filtering has been
applied to the recommendation of scientific resources. As we have said, we
pay special attention to research paper recommendation, but we also review
other interesting applications such as citation recommendation or expert
finding. We also examine the repositories on which information filtering is
applied, such as Current Research Information Systems (CRISs) and digital
libraries. Finally, we analyze how some of the discussed methods are used
in six popular systems.

3.1 Introduction

Due to the rapid increase in popularity of the World Wide Web in the last
decades, the amount of information contained in it has long exceeded the
limits of what users can handle. The need for some help to avoid drowning in
such an ocean of data has contributed to the growing attention to informa-
tion retrieval (IR) and information filtering (IF). Information retrieval as we
know it nowadays originated in the late 1940s, when computerized methods
started to be developed to deal with the considerable amounts of scientific
information originated in those years [125]. Often used as synonyms, IF has
many points in common with IR, but also differs from it in several aspects
[16, 56]. First, IF systems are designed for regular users with long term
needs and repetitive usage, while IR systems focus on satisfying a one-time
information need at a given moment. This is the reason why user needs in
IF are modeled by the system and kept in the form of user profiles, while IR
systems do not usually know anything about the user and a query suffices
to describe his information need. Also, IR systems select from a database

23
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those relevant data that match a query, while IF filters out irrelevant data
from an incoming data stream, or collects relevant data from certain sources,
always according to the user’s profile.

In the aforementioned characterization of IF systems we can recognize
features of what we typically know as recommender systems. The reason is
that recommender systems are a specific type of IF systems, namely active
IF systems [56]. In this case, the system searches a specific space collecting
relevant information to the user, according to the interests described in his
profile. This relevant information is then presented to the user. Therefore,
the system needs to “act”: first by searching and then by offering the infor-
mation. The opposite to these active recommenders are passive IF systems.
In this case, the system could be seen as a kind of barrier between the user
and the data stream, letting only the data that match the user’s profile pass.
Although properly speaking these systems are information filters rather than
recommender systems, the differences are few and they are often labeled as
recommenders as well. In the remainder of the chapter we therefore make no
differences between recommenders (active filtering systems) and information
filters (passive filtering systems).

Recommenders have obtained a lot of attention in the last years. On the
one hand, recommenders are appreciated by users since they help them to
satisfy their information needs without having to dedicate too much time
to search or to browse a whole site. On the other hand, from a commer-
cial point of view, recommenders are also attractive as they are not only an
added value for the users, which may lead to a higher number of customers,
but these customers are also presented with potentially interesting items,
which in many cases leads to more sales. As a result, nowadays it is possible
to find recommenders on the Web applied to many different domains: shop-
ping (Amazon1), films (NetFlix2), music (Last.fm3), books (GoodReads4),
news (News3605), or scientific resources, on which we will focus in the next
sections of this chapter. Depending on the purpose, and therefore on the
information used, the recommendation methods vary, but most of them can
be classified into three main categories: content-based filtering, collabora-
tive filtering, and hybrid approaches. In the remainder of this section we
introduce some basic concepts about these approaches, to end with a fourth
category in which we briefly review other, less popular methods.

1http://www.amazon.com
2http://www.netflix.com
3http://www.last.fm
4http://www.goodreads.com
5http://www.news360.com
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3.1.1 Content-based filtering

In content-based recommender systems, the items to be recommended are
represented by a set of features based on their content [97]. For example, in
news recommendation the features which describe an item can be derived
from the title and body of a news article, while in movie recommendation
these features can be actors, plot, genre, etc. In most content-based rec-
ommenders, even if the item itself does not consist of text, the features
describing it are usually derived from textual content, as in the movie ex-
ample. On the other hand, a user is represented by his profile, which can
vary from a list of keywords to a list of items that represent his interests
best (e.g. a list of movies that he has watched before). Since a user’s inter-
ests can change in time, his profile can be updated, explicitly by the user or
implicitly learned from his behavior over time [1].

The representations of the items are then compared to the user profiles
using different approaches. Most content-based recommenders use relatively
simple retrieval models, such as keyword matching or the vector space model
with basic TF-IDF weighting [97]. Examples of such systems are [93] or
[105]. However, as we saw in the previous chapter, these methods ignore
semantic information, and therefore other approaches are sometimes used
to tackle this problem, like in [41] or [36], which use information from Word-
Net to add extra linguistic knowledge. An alternative to these approaches,
which are closer to IR, are machine learning techniques. In this case, the
system learns the user profile, and according to that information it classifies
items as interesting or not. The methods used in these recommenders are
mostly based on näıve Bayes classification [114, 17] or relevance feedback
and Rocchio’s algorithm [127, 9].

One of the advantages of content-based recommenders is the fact that,
unlike in those based on collaborative filtering, recommendations for a given
user do not depend on other users’ ratings, which is important as explicit
ratings by other users are not always easy to obtain. This also allows the
system to recommend new items that nobody has rated yet, which is a
typical problem in collaborative filtering. Finally, these recommenders are
also more transparent, as in many cases it is easy to list the features that
influenced a recommendation and the user can use this information to decide
whether to trust it.

However, these systems also have some drawbacks. Since they always
match the items against the same user profile, the recommendations will
always be similar unless the profile is updated or new items become available.
This disadvantage, also referred to as the serendipity problem, makes it hard
for the user to explore new types of items. Also, some representations cannot
capture all aspects of the content, thus ignoring some aspects that could
actually influence the user. For instance, a movie can be represented by
actors, director, and genre, but there are many more factors that influence
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liking a movie (e.g. the pace, the music, the photography, etc.).

For further information on content-based filtering we refer to [97].

3.1.2 Collaborative filtering

Collaborative filtering (CF) is the process of filtering or evaluating items
using the opinions of other users [126]. In these systems, the user gets
recommendations of items that are liked by users whose preferences are as-
sumed to be correlated with the user’s preferences. To indicate the interest
of each user in a given item, a rating is used; for example movies can be rated
by giving a score ranging from zero (“did not like at all”) to five (“loved
it”). Alternatives to these scalar ratings are binary ratings, for example
to indicate like/dislike, or unary ratings, to indicate that the user has ob-
served/purchased/liked an item, and where absence of rating indicates no
information about the relation between that user and that item. These rat-
ings are usually stored in a matrix with as many rows as users and as many
columns as items, and a system may use more than one matrix simultane-
ously. An online store, for example, could work with three matrices: one
with scalar values, storing the ratings given by users to the items, another
matrix with unary ratings to indicate which items the user has purchased,
and a third matrix with unary ratings to indicate that the user has browsed
some items.

According to [27], CF algorithms can be divided into two classes: memory-
based algorithms, and model-based algorithms. Memory-based algorithms
simply store all the ratings and use that information directly to make pre-
dictions. This kind of algorithms can also be subdivided into two categories:
user-based algorithms and item-based algorithms. In user-based algorithms,
the ratings of each user u are compared to those of the rest of the users,
usually by means of Pearson correlation or cosine similarity [27]. If a user u′

has given similar ratings to the same items as u, the system concludes that
u and u′ are similar, and it will consider those items rated highly by u′ as
potentially relevant for u. On the other hand, item-based algorithms make
their recommendations based on the similarity between items: all ratings
given to an item i are compared to those of the rest of the items, again us-
ing the Pearson correlation or cosine similarity. If i is usually rated similarly
as an item i′, they are considered as similar. Now, if a user has rated i but
not i′, his rating for i′ can be predicted by looking at his rating for i (and
for the other items similar to i′ for which his ratings are available). If this
rating is high, the item might be recommended to him.

Unlike memory-based algorithms, model-based algorithms do not consult
the user database each time a recommendation must be made, but they use
it to estimate a model that is then used to make predictions. These models
can be estimated in different ways, such as using cluster models or Bayesian
networks, as proposed by [27], or latent factor models [151, 2]. The idea
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behind these models is that there are a number of factors which are very
specific for a given domain and which are difficult to measure (e.g. the
complexity of the characters in a film or a book). However, these factors
may influence the ratings and should therefore be taken into account as well.
Similar to the LDA approach discussed in Section 2.3, these latent features
can be discovered and used by specific probabilistic models. This kind of
models can be found in [61], which uses PLSA, or [84].

CF algorithms have several advantages. On the one hand, they allow
users to discover items different from those in their history. For example, a
user of an online shop who has only bought books so far, could get interest-
ing recommendations about films just because other users who liked those
books also liked those films. With content-based filtering this is not always
possible. On the other hand, the user ratings allow to recommend items
of the specific quality that match the tastes of the user. For instance, two
users u1 and u2 might be interested in horror films but this does not mean
that they should get the same recommendations: u1 might be interested in
blockbusters while u2 is interested in B movies. Users with the same affini-
ties as u1 will probably rate other blockbusters higher than any B movie,
and users similar to u2 will do the contrary, so both u1 and u2 will get the
right recommendations. Also, CF algorithms can filter any type of content,
regardless of how complex it could be to represent it, since representations
of the content are not needed.

CF algorithms have some disadvantages nevertheless. The most common
one is probably the cold start problem. Since recommendations are based
on past ratings, when a user is new to the system there is no knowledge
about him, and therefore no accurate recommendations can be made until
the user has rated a sufficient number of items. Something similar happens
to new items: they must be rated by a sufficient number of users before
they can be correctly recommended to other users. Also related to this
fact, sometimes it may happen that popular items, which have been more
frequently rated, are more often recommended, leaving less room for similar
but less known items, and so impacting the diversity of recommendations
negatively. Finally, another typical problem are the so-called gray sheep,
users with tastes that do not really fit in any group and whose ratings are
therefore hard to predict. Also, a step further we find the black sheep: users
with really particular tastes for which recommendation is nearly impossible.

More detailed information about collaborative filtering can be found in
[126, 84].

3.1.3 Hybrid approaches

As we can see, both content-based and collaborative filtering algorithms have
important advantages, but also drawbacks. For this reason, hybrid recom-
menders have been proposed to combine both approaches, which in theory
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would sum the strengths of both methods while minimizing the weaknesses.
For example, the cold start problem of collaborative filtering would be mit-
igated since in those cases the recommendation could be made based on the
content, and the serendipity problem associated to content-based algorithms
would also be attenuated.

Most hybrid approaches focus on how to combine different existing meth-
ods for content-based and collaborative filtering. The simplest way is just
displaying the results from both methods in a single list of recommendations
(ranking them based on the predicted ratings, for example) [130] or com-
bining the scores from the separate recommenders by calculating a weighted
average score for each item [104]. Another simple alternative is to show
the results of only one recommender depending on the situation: one set
of results is chosen, but if the confidence on the results is not high enough,
the next set is considered [139]. More elaborated approaches include feature
combination, in which the features normally used by one approach are used
as input by the other one [12], or feature augmentation, in which new fea-
tures are created by the first approach to use them as input for the second
one [109]. An alternative to this last method consists not in creating fea-
tures that can be used as input for the second recommender, but in creating
a model that the second recommender can use to make its own recommen-
dations [8]. Finally, it is also possible to run the recommenders sequentially,
where the output of the first recommender is the input for the second one
(i.e., the second recommender refines the results of the first one) [30]. For
an in-depth analysis of hybrid approaches we refer to [31].

It is worth to note that although hybrid systems should produce better
results than those based on one kind of approach only, this does not seem
to be always the case, which is usually attributed to a bad performance of
content-based filtering due to low quality metadata [22].

3.1.4 Other approaches

In this final section we consider other approaches which fall outside the pre-
vious classification. The most important recommenders within this category
are knowledge-based recommenders [29]. These recommenders typically use
some kind of constraint-based reasoning, where recommendations are made
when certain constraints are satisfied, or case-based reasoning, where rec-
ommendations for previous, similar cases can be used to generate recom-
mendations for a specific new case. Specific knowledge on the considered
domain is usually needed in these cases, to define the set of constraints to
be satisfied or the rules the system should follow. Another possibility is
trust-based recommendation [5, 100]. In this case, the system makes use
of a trust network to encode how much a user trusts the others. The idea
is not to search for similar users as CF does, but to search for trustworthy
users by exploiting trust propagation over the network. Then, the items ap-
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preciated by these users are recommended to the active user [100]. Finally,
demographic recommenders use demographic information about the users,
like age, gender, education, and other personal data to categorize them and
then make recommendations according to each group [112].

With the appropriate knowledge base, these systems can provide valuable
recommendations. However, this strength also relates to a major drawback:
a costly knowledge engineering process is required. This is the main rea-
son why other approaches like those from the previous sections are usually
preferred. Also, the results can vary depending on the domain, something
especially evident in the case of demographic recommenders. For example,
it is not the same recommending movies which often have a very specific
demographic target, than recommending research papers which usually are
equally interesting for a whole scientific community.

3.2 Scientific information filtering

Scientific information is not an exception to the aforementioned explosive
information growth. This has motivated the development of new tools to
facilitate research-related tasks and the application of information filtering
techniques. In this section we first briefly review some systems which gather
and handle this information, and then we focus on methods designed to filter
specific kinds of data. In particular, we dedicate most of our attention to
research paper recommenders.

3.2.1 Managing scientific information

First we consider Current Research Information Systems (CRISs). These
systems store information about current research being carried out by orga-
nizations and researchers. This information ranges from information linked
to the nature of research being carried out, such as data, software, bibli-
ographies, or results, to information related to the management of research,
such as project descriptions, funding programmes, patents, or market/trend
reports. We find examples of these systems operating at national or regional
level in the USA6, Norway7, the Czech Republic8, Flanders in Belgium9, or
Andalusia in Spain10. A detailed view on the history and current situation
of CRISs can be found in [119]. The amount of information contained in
these systems is considerable (e.g. information concerning several research
institutions and projects of a whole country), and therefore they usually in-
corporate some search engine. Also, some of them follow specific standards

6http://cris.nifa.usda.gov
7http://www.cristin.no/english/
8http://www.isvav.cz
9http://www.researchportal.be

10http://sica2.cica.es



30 CHAPTER 3. INFORMATION FILTERING

(e.g. CERIF11) which incorporate, among other things, semantic metadata
that allow for better search possibilities [96].

However, it is interesting to observe that while information filtering or
recommendation would certainly be helpful in this context, to our knowledge
no attempts have been made to use a recommender in these systems, with
the only exceptions of [66] and [67] where we addressed the problem by
applying ideas from fuzzy-rough set theory. In particular, [66] describes an
alert system to match users with potentially relevant project descriptions
or funding programs. In this system both users and documents have a
profile based on keywords, some of them selected from a specific taxonomy,
while others can be manually introduced by the user or indicated by the
author of the document, and then are added as a new level of the taxonomy.
Additionally, the profiles indicate the relevance of every keyword for that
user/document with a value between 0 and 1; [67] focuses on how to assign
keywords and weights automatically. On the other hand, weights between 0
and 1 are also assigned to every relation in the taxonomy, representing how
related two keywords are. The idea is then to enrich the profiles based on
the relations in the ontology to subsequently assess their similarity.

On the other hand, more specialized than CRISs and also much more
popular are digital libraries dedicated to scientific literature. These libraries
can be interdisciplinary, such as ScienceDirect12, or they can focus on a
specific domain, such as PubMed13, for medical literature, the ACM Dig-
ital Library14 for computing, or IEEE Xplore15 for technology in general.
This kind of libraries usually include an advanced search engine that allows
searching by multiple fields and, unlike CRISs, some of them do include
recommendation functionalities, as we will see in detail in Section 3.3. Also,
these libraries are usually the source of the information filtered by many
of the proposed algorithms for paper recommendation which we review in
the next section, and the search space of specialized search engines such as
Google Scholar16 or Microsoft Academic Search17, whose recommendation
features will also be reviewed in Section 3.3.

3.2.2 Research paper recommendation

Although the aforementioned systems are an important first step in sepa-
rating relevant, research-related information from the rest of data available

11The Common European Research Information Format (CERIF) is a standard for
CRISs proposed by the European Comission and currently managed by euroCRIS
(http://www.eurocris.org)

12http://www.sciencedirect.com
13http://www.ncbi.nlm.nih.gov/pubmed
14http://dl.acm.org
15http://ieeexplore.ieee.org
16http://scholar.google.com
17http://academic.research.microsoft.com
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in the Web, users still have to spend valuable time browsing through the
systems searching for the desired information. To facilitate this process,
several research paper recommendation techniques have been developed.

Most research in this area has focused on personalized recommendations:
the system profiles the user based on his interests, and then presents him
with a set of articles which might be relevant to him, usually ranked from
more to less relevant. Users’ preferences can be obtained both in an explicit
or an implicit way. In the first case, the user can express his information
needs by entering a set of keywords or selecting them from a given list [25],
or indicating one or more papers that best represent his research interests.
To obtain the user’s preferences in an implicit way, the system can consider
the papers written by the user as representative of his interests [11] or, when
the user maintains a private library of papers relevant for his research (e.g.
bookmarks of relevant papers in the field which he might usually consult),
these papers can also be used [23]. In addition, the behavior of the user can
be monitored, including which searches he has performed, which articles he
has read, etc. [15]. Monitoring is also useful to implicitly obtain feedback
about the articles recommended by the system, for example depending on
whether the user clicked on the recommendation, or how much time he spent
reading a recommended article.

Although the main goal of personalized recommendation of research pa-
pers is to avoid that researchers have to spend time looking for relevant arti-
cles, an interesting application is the so-called reviewer assignment problem
(also called conference paper assignment problem), which consists in match-
ing papers with reviewers according to their expertise when setting up the
paper reviewing process for a conference. This specific problem has been
addressed several times since the first approach by Dumais and Nielsen [40],
who use Latent Semantic Indexing to match papers and reviewers whose
expertise is given by their own abstracts. The abstracts written by the re-
viewers are usually the source of information about the reviewers’ expertise,
as in [150] or in [11].

However, many efforts are not dedicated to personalized recommenda-
tions, but rather to assist the user during the search process. In particular,
they focus on searching similar or related papers to the one being browsed
by the user, to offer them as potentially interesting papers (e.g. [78, 52]).
This is the type of information filtering used in most non-experimental sci-
entific libraries which offer some kind of recommendation, as we will see in
Section 3.3, probably because it does not require the user to even register
at the site. Also, this form of filtering can be used as basis for personalized
recommendations, since as stated before the user profile can be seen as a set
of papers (written or selected by the user), and therefore any paper related
to the papers in that set would potentially be relevant to the user. Finally,
it is worth to note that although this “related articles” feature is the most
popular one when enhancing search engines, there are other approaches like
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the one in [3], which uses collaborative filtering to improve the results based
on searches made by similar users.

3.2.2.1 Content-based methods

We first discuss the application of content-based methods to the problem of
recommending research papers. These methods are solely based on textual
information about the papers and the users. In the case of the papers,
the only information used is their content, while in the case of the users
there are more possibilities, with the usual ones being some keywords or
categories selected/entered by them, the content of their own papers or other
papers that they have selected, their emails, or their personal websites. It
is important to note that with “content of research papers” we do not only
refer to the body of the article, but also to all kinds of information usually
available along with it, such as authors, keywords, journal, bibliography or
cited and citing papers. Also, while some approaches use only one kind
of information (e.g. only the abstract), other approaches combine different
features.

A good example of this is CiteSeer18 [25, 26]. On the one hand, CiteSeer
allows the user to specify constraints to define the papers he is interested
in, such as specific keywords that should occur in the text of the paper;
on the other hand, the user can also select a set of papers in which case
the system searches for other papers similar to those in the set. In the
case of constraints, to assess the similarity between a user and a paper,
the system simply checks whether the keywords occur in the document or
not, while in the second case the popular combination of tf-idf and cosine
similarity are combined. Citations are also an important feature in this
system, since a notion similar to bibliographic coupling is used and therefore
if two publications from the set selected by the user cite the same articles
they are considered to be related. It is interesting to note that all types of
information can be used simultaneously: the different models are compared
and then the results are combined assigning more or less weight to each
feature. These weights are adjusted not only manually by the users, but
also automatically by monitoring their actions while they are logged into
the system.

The method proposed in [136] also uses citations but in a different way.
In particular, given a paper p, not only a term vector is made for p, but
also for the articles that cite p and the articles cited in p. The profile of
each paper is then made by combining its own term vector with those of the
linked papers, while the profile of each user is created by doing the same for
all the papers that he has written. The work explores several methods to
include such contextual information in the profile by weighing it depending

18Do not confuse with CiteSeerX, which replaced the original CiteSeer but is quite
different.
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on different factors: cosine similarity between papers, publication year, etc.
The authors also discuss the view that junior researchers should probably
be profiled in a different way than senior ones, due to the low number of
papers they have written.

A similar approach is followed in the content-based methods studied in
[138]. To search papers related to a given paper p, not only the abstract of
p is used, but also the abstracts of the papers cited in p. This can either
be achieved by computing the vectors independently and finally combining
the similarity scores, or by concatenating the abstracts of p and those of the
cited papers, and treating it as a single document.

A set of related papers is also used in [108], again with the aim of search-
ing related papers given another paper. However, instead of using the ci-
tations to link papers as in the previous approach, the proposed method
first extracts a list of technical terms from the paper, to then use them as a
query to perform a search for papers. A set of papers that match the query
is then retrieved and ranked with the HITS algorithm [83].

This way of working in two steps, where a set of candidate papers is
first retrieved by using a specific method and then a second method is used
to rank them, is not uncommon. For example [78], which also focuses on
recommending papers similar to a given paper p, first uses the paper ci-
tation graph to narrow down the scope of candidates, which also helps to
speed up computations. In particular, this citation graph consists of the
papers cited in p, plus the papers that cite them, plus those that cite p,
plus the papers cited in this last group. The candidates are then ranked
based on their similarity with p. To this end, topic modeling is used, and
the document-topic distribution for each document is estimated with Latent
Dirichlet Allocation. The resulting models are compared in the vector space
model: each document is then represented as a vector where each compo-
nent corresponds to the probability of a latent topic. An interesting idea
in this work is the fact that it does not work with the whole abstract. In-
stead, the abstract is first split in two parts, to exploit the typical structure
of abstracts, where the problem is first explained and the solution is then
introduced. Each paper is then represented by two documents: the part of
the abstract related to the problem, and the part of the abstract related to
the solution. This distinction results in two different recommendation lists,
a problem-oriented one and a solution-oriented one, which offer the user a
more specific choice depending on what he found interesting about paper
p in first place (e.g. if he was browsing the article Finding similar research
papers using language models, was he actually interested in research paper
similarity, i.e., the problem, or in language models, i.e., the solution?).
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3.2.2.2 Collaborative filtering methods

As mentioned in Section 3.1, the common alternative to content-based meth-
ods are those based on collaborative filtering. Since CF is based on users
rating items, these methods are used to recommend papers to users more
often than to suggest papers related to a given paper. This is for example
the case in [111], which uses papers bookmarked by the users in CiteULike19.
Since CiteULike allows users to provide ratings and tags, these are also taken
into account to compute the similarity between users and to then rank the
obtained papers (which had first been explored in [23]). In particular, three
different methods are proposed: one based on the Pearson correlation over
the ratings of the users’ common papers (which is often considered as the
“classic” CF method), a variation on the former that takes into account
the number of raters for the ranking (i.e., papers rated by several users are
ranked higher), and one based on the BM25 algorithm that uses the tags
given by the users to the papers. An interesting observation made in this
work is the fact that many users simply ignore rating or tagging the papers.
Moreover, those users who do rate or tag sometimes have different rating
criteria. Therefore, the information about tags and ratings, while useful,
should be used carefully.

A different possibility is to mine the citations between papers and use
them as ratings, in such a way that a citation to a given paper is interpreted
as a positive rating for it; the ratings are then implicitly given by the users
when they cite a paper in their own work. This idea is used for example in
[138] and [102], which also propose alternatives to the classic CF method.
In particular, [138] also uses the citations in the cited papers (i.e., a user has
not only “rated” the papers cited in his work, but also those cited in those
papers), while [102] explores approaches which are completely different to
the classic method. On the one hand, a näıve Bayes classifier where co-
citations are the positive training examples is used; on the other hand, the
authors propose Probabilistic Latent Semantic Indexing, where the user gets
recommendations about the papers with the highest probabilities relative to
the latent classes with which he is related the most. However, these novel
approaches did not seem to work very well. Alternatively, the previous idea
of using citations as ratings can be polished and, instead of using boolean
ratings, more complex ratings can be given, like PageRank scores computed
out of the citation graph of the papers in the collection [141], although the
quality of the recommendations actually seems to decrease when this ranking
method is used.

Finally, another way to implicitly obtain ratings is monitoring the user.
In [3], which focuses mainly on the performance of the CF algorithms, this
idea is followed. Specifically, the system observes which papers the users
access, and assume their interest in those papers. Moreover, users who ac-

19http://www.citeulike.org
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cess the same set of papers are clustered, in what could be seen as research
groups. The idea is then both to improve the performance (the number of
“users” in the CF matrix is reduced) and to present the user with recom-
mendations based on the interests of his research group.

3.2.2.3 Hybrid methods

In Section 3.1.3 we have seen that there are approaches that combine content-
based with collaborative filtering techniques. The application of these hy-
brid approaches to research paper recommendation has also been studied in
a number of works. An example of such a hybrid system can be found in
[106], although it focuses more on the collaborative filtering part. In partic-
ular, the idea is to first filter the papers following a content-based approach,
where a series of search words are matched to the content of some fields
describing the paper like keywords, title, or language. The resulting set of
papers is then ranked according to the scores obtained with collaborative
filtering (“classic” CF). Interestingly, in this approach users do not rate each
article as a whole, but they rate different points about the article, like orig-
inality, readability, literature review, etc., and the matching of users in the
CF process is based on these separate ratings.

Torres et al. [138] study several hybrid approaches by combining the
results of two independent recommenders: a content-based one and a CF
one. Specifically, they use basic approaches for these two modules and focus
on how to combine them, which can be done by running them sequentially
(i.e., the output of the first one is the input of the second one, as in the pre-
vious example), or by running them in parallel and combining the resulting
rankings. In particular, papers occurring in both rankings appear at the
top of the final ranking, where their score is the sum of their ranks in the
two separate rankings. Papers that only appear in one of the two separate
rankings are appended next in the final ranking. It is interesting to see that
hybrid approaches where the recommenders run sequentially do not perform
very well in general, while combining the final results of both does seem to
bring some improvement.

A similar approach is followed in [6]; in order to combine the content-
based method (tf-idf combined with cosine similarity) with (classic) collab-
orative filtering, the final score for the similarity is obtained by computing
a weighted average of the two separate results. More than in the recom-
mendation methods themselves, the strength of the proposed digital library
lies in its structure in folders. Like in a file system, it is possible to have a
folder for a specific community, which contains a folder for each user, which
in turn contains the papers he is interested in, maybe also subdivided in
folders classified by topic. Such a structure allows to identify a user with a
folder and compare it to the papers contained in other folders, but it makes it
also possible, for example, to compare folders corresponding to users to find
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researchers with similar interests and so boost collaboration, or to compare
a user’s folder to that of a community.

Scienstein, the prototype proposed in [50], also uses a weighted average
to combine the scores of the different methods, although in this case more
than two methods are combined. Specifically, Scienstein uses several types
of information, namely text, author, source (e.g. journal), ratings, and refer-
ences, and different methods are used for some of these types: content-based
methods for the three first types, collaborative filtering for the ratings, and
techniques from citation analysis for the references. Each of the five meth-
ods gives a similarity score and, as mentioned before, a weighted average is
calculated, with the special feature that the user can specify the weights to
assign more importance to some specific types of information. Scienstein is
now discontinued, although it has successors in SciPlore20, which uses the
same citation analysis techniques as Scienstein, and Docear21 [15], which is
still in development.

Lastly, it is also posible to combine two approaches without doing it
sequentially or combining the results at the end, as in the previous meth-
ods. For example, [143] proposes to combine collaborative filtering based on
latent factor models with topic models, resulting in the collaborative topic
regression model, which represents users with topic interests and assumes
that documents are generated by topic models. On the one hand, latent
factor models use information from a user’s library, which makes it possible
to recommend articles from other users who have liked similar articles. On
the other hand, topic models are based on the content of the articles, which
makes it possible to recommend articles that have not been rated by any
user yet, something that would not be possible with the latent factor models
alone. This is a good example of what hybrid systems pursue, i.e., combin-
ing the different strengths of both content-based methods and collaborative
filtering.

3.2.2.4 Citation analysis

During the study of the different existing approaches to research paper filter-
ing and recommendation, we have observed that citations play an important
role in a substantial number of methods, forming almost a separate cate-
gory on their own. This is why we dedicate this last subsection to introduce
some concepts related with these techniques and to comment some solutions
which use them.

A central part of many techniques related to citations is the citation
graph. This is usually a directed graph where the nodes represent the pa-
pers and the edges represent the citations. Most systems work with the
whole graph, although some methods take only into account the closest

20http://www.sciplore.org
21http://www.docear.org
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neighbours, e.g. [78]. The citation graph is mainly used for two purposes in
the task of recommending research papers. On the one hand, as mentioned
in Section 3.2.2.2, it can be considered as a way to implicitly rate papers,
where each paper “rates” the papers it cites, and where it gets “rated” by
the papers citing it. This is not only an easy way to obtain ratings, but
it also ensures a high number of them, since all papers cite other papers
(while in a system where users rate, many users often do not rate any items
at all) [138, 101]. On the other hand, due to its analogy to hyperlinks on the
Web, ranking algorithms originally designed for the Web can thus be used
to rank scientific articles. In particular, many approaches explore the use of
the popular PageRank algorithm [28] either in its original form [52, 141] or
with some modifications [85], with HITS being an alternative [108].

However, although all citations are represented equally in the citation
graph, there are differences among them that cannot be captured by such
representation. For example, Liang et al. [92] define three different types of
citations: when the paper is somehow based on the cited paper, when the pa-
per and cited paper try to solve the same problem but use different methods,
and when the cited paper is mainly intented to introduce some background
information. Depending on the type of relation between papers, the edges
of the graph can get a higher or lower weight, which seems to improve the
results. Also, Gipp and Beel [49] study new ways to exploit citations to rec-
ommend papers. Apart from the well-known bibliographic coupling (“two
documents citing the same documents are likely to be related”) [82] and
co-citation analysis (“two documents usually cited together are likely to be
related”) [129], they propose citation proximity analysis and citation order
analysis. The first one is a refinement of co-citation which does not only
look at the citations, but also at their position in the text. The idea is that
two papers which are cited, for example, in the same sentence, are probably
more related than two papers cited in different sections of the paper. This
approach has proven useful and actually is the technique followed by the
previously mentioned SciPlore. On the other hand, citation order analysis
is related to bibliographic coupling, but also taking into account the order
on which papers are cited in different documents: two documents which cite
the same documents in the same order are probably more related than if
the common citations appear in different order. Moreover, this has other
applications than paper recommendation: if the same sequence of citations
is found in different papers, it can point to potentially plagiarized work.

3.2.3 Academic recommendation

Most recommendation methods for academic resources focus on recommend-
ing research papers, since research papers are arguably the main way of
knowledge transfer within academia and the main type of content in the
dedicated digital libraries. However, it is worth to mention that paper rec-
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ommendation is not the only application of recommenders in academia.

Closely related to paper recommendation is citation recommendation.
Actually, it can be seen as a particular case of paper recommendation in
which papers are identified which are similar to a given paper, so the strate-
gies are similar to those used for paper recommendation. For example,
[101] uses the previously seen collaborative filtering approach where the ci-
tations in every paper are used as ratings for the cited papers; each paper
is therefore seen as a “user” that rates other papers, and the recommen-
dations are made based on that information. A content-based approach is
used in [134], which proposes combining different content features with the
citation graph. In particular, for a given paper the system measures the
similarity between texts to retrieve a first set of papers, which is further
expanded with the papers cited in those. All these papers are then ranked
based on information that can be retrieved from the citation graph such
as co-citations, citation count, or Katz distance between nodes. Nallapati
et al. [107] also use both text and citations, but in a different way. More
specifically, their idea is to build a joint model based on text and citation
in the topic modeling framework, combining LDA and PLSA into a single
model called Link-PLSA-LDA. Finally, Huang et al. [64] do not focus on
the citations themselves, but on the context of the citations, i.e., the text
around the citation where the author explains the content of the cited work.
Based on those terms, they create a translation model which, given a specific
query, returns a list of possible works that could be cited.

Also, recommendation of researchers with similar interests can be use-
ful and has been explored in some works. Xu et al. [147] propose a method
based on both social network analysis, to deal with the relationships between
researchers, and semantic analysis, based on a domain ontology, to analyze
the semantic similarity of researchers’ expertise. The approach in [32] is
based on network analysis too, although in this case it is a co-autorship
network, and the methods measure the similarity between two researchers
depending on their distances in the graph and on common co-authors. On
the other hand, [51] proposes a completely content-based approach which
either models researchers from their papers to compare them, when prob-
abilistic modeling methods are used, or treats one profile as a query and
the other as a document, when using the vector space model. Finally, [19]
presents a method not oriented to actual researcher recommendation but
somehow related to it. In particular, they propose to use personal agents to
help researchers in their search for relevant information, like scientific pa-
pers. However, these agents do not only help searching: they learn from the
user’s behavior. The idea then is that agents belonging to senior researchers
can share their information with those of novices, which actually results in
senior researchers sharing their expertise with novice ones.
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3.3 Research paper filtering systems

We end this chapter reviewing some popular research paper search engines,
focusing on their recommendation features, to see how some profesional,
well-established systems start to incorporate methods like the ones com-
mented in Section 3.2.2, which until recently were limited to experimental
prototypes.

3.3.1 Google Scholar

Google Scholar22, released in 2004, is a subset of the larger Google search
index, consisting of full-text journal articles, technical reports, preprints,
theses, books, and other documents deemed to be scholarly [142]. Similar to
the Google main search engine, it has a simple interface consisting of a text
box to enter the query. The system then retrieves a list of potentially rele-
vant documents ranked, according to its developers, “in the way researchers
do, weighing the full text of each document, where it was published, who it
was written by, as well as how often and how recently it has been cited in
other scholarly literature”. While the details of this ranking algorithm are
unknown, research by Beel and Gipp [13, 14] showed that articles’ citation
counts have a significative impact on the ranking. The article’s title also
seems to play an important role in the algorithm, so articles whose titles
match several query terms tend to be ranked higher. However, the presence
of the same terms in the full text has a lesser impact, and their frequency
of use seems to be ignored.

The reason why we include Google Scholar in this list of recommenders
is the recommendation service included in August 2012. To use this feature,
the user must first create a profile, which basically includes his articles,
automatically retrieved by the system, although they can also be selected
manually. This profile consisting of the user’s articles is then used to filter
the new articles arriving to the system, and the potentially relevant ones are
selected and presented to the user.

Like the ranking algorithm of the search engine, the recommendation
algorithm used for this feature is unknown. However, as the filtered articles
are all recent, no citation information is available yet, and therefore this
information loses relevance here. A reasonable possibility, looking at some
personal recommendations, is that the most relevant terms are first retrieved
from the user’s articles (mainly from title and abstract) to subsequently
use them as input for querying the system’s index. The approach seems
therefore to be content-based, although probably other information such as
reputation of the authors is taken into account, i.e., papers of authors with
many citations are probably ranked higher. Also, it is interesting to remark
that in the user’s profile it is possible to specify co-authors (some of them

22http://scholar.google.com
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Figure 3.1: Google Scholar’s homepage

are automatically added by the system), which could open the possibility for
a collaborative filtering approach in the future. Also, this information can
be used to build a kind of social network and recommend papers of known
researchers (e.g. co-authors of co-authors).

Finally, Google Scholar offers a “related articles” feature, which allows
to obtain articles similar to a specific one. The strategy followed in this case
seems to be similar to that for personalized recommendation, but with some
differences. The main one is probably the fact that much more importance
seems to be given to the author, which causes other articles by the same au-
thors to be ranked high in the recommendation list. Moreover, the citations
seem to gain importance, and while they seem to have less influence than
on the search results, they still seem to be taken into consideration.

3.3.2 Microsoft Academic Search

Microsoft Academic Search23 is Microsoft’s search engine for academic pub-
lications. Relased in 2009, its interface is a bit more complex than Google
Scholar’s one. It features a text box to enter the query, but from the
homepage it is also possible to directly browse data about authors, pub-
lications, conferences, journals, keywords, and organizations, although this
is restricted to the top items of each category only; to find other items
the search engine must be used. Similarly to Google Scholar, Microsoft
Academic Search’s ranking algorithm is unknown, although the developers

23http://academic.research.microsoft.com
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claim that the results are sorted based on “their relevance to the query”
(more likely matching the query to title and abstract) and on “a static rank
value that is calculated for each item in the Microsoft Academic Search
index. The static rank encompasses the authority of the result, which is
determined by several details, such as how often and where a publication is
cited”.

Figure 3.2: Homepage of Microsoft Academic Search

In general, Microsoft Academic Search offers more features than Google
Scholar, making it possible to search and group by conference, journal, etc.
It also offers some interesting visualization tools to work with the citation
graph of a paper, or the co-author graph of a researcher, although it lacks
a personalized recommender system like that of its Google counterpart. It
does have a “related publications” recommendation feature, which is why
we include this system here. Again, the recommendation algorithm used is
unknown, and actually this feature is not available for all papers. However,
it seems to be related to the number of citations, as generally this feature
is not shown for papers with few citations and the number of “related”
publications is usually larger for papers with many citations. This, along
with the stress put on citations and graphs in other features of the system,
seems to indicate that the recommendation algorithm is somehow related to
the citation graph, although the actual method is not clear.
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3.3.3 ScienceDirect

ScienceDirect24 is Elsevier’s digital library containing full text journal arti-
cles, and since 2010 it is integrated in Elsevier’s platform SciVerse. The ad-
vantage of ScienceDirect over Google Scholar or Microsoft Academic Search
is the fact that since it indexes Elsevier’s own articles, users can access all
full texts (if they have paid a subscription). However, as it only indexes own
articles, its coverage is smaller than those other systems’.

Figure 3.3: ScienceDirect’s main page

Since ScienceDirect is mainly a digital library it is slightly different to
the previous systems, although it does have a search engine which allows
users to search by field and also to formulate more complex queries by using
boolean connectors. Any query made in this engine can also be saved and
used for the system’s alert service, which notifies the user when a new article
matching the query is added to the database. Even more relevant is the “re-
lated articles” feature. The algorithm used is unknown, and no information
is given about the data or methods used, other than “intelligent document
matching”. Looking at personal recommendations, the system seems to fol-
low a content-based method where the citations play a secondary or no role.
This would not be surprising, as the system has access to the full text of
all articles and can therefore estimate quite accurate models. Also, work-
ing with documents that follow the same publisher-specific format makes it
easier to extract and use extra information such as keywords given by the
authors or categories in a particular classification.

24http://www.sciencedirect.com
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3.3.4 CiteULike

CiteULike25, created in November 2004, is not a digital library or a spe-
cialized search engine, but rather a social bookmarking site that allows the
user to manage his library of research papers (own papers, papers he is in-
terested in, papers he often references, etc.) while sharing that information
with other researchers.

As a social bookmarking site, CiteULike’s strength lies precisely in shar-
ing. A user can share the articles in his library with a specific user or group
of users, but he also can tag the articles, which can be helpful for other
users to know what the articles are about, or can indicate his priority to
read the article, which can give an idea of his interest in a given topic.
This collaborative concept of CiteULike has made it an attractive system to
explore collaborative filtering approaches [111, 22], and it also has its own
recommendation mechanism based on this idea.

Figure 3.4: CiteULike’s user page

In particular, for users with at least 20 articles in their libraries (to ensure
reasonable recommendations), CiteULike uses a CF algorithm, based on the
papers that each user has in his library: if a paper is in a user’s library it
counts as a positive rating of that paper given by that user. The result is
then a list of potentially relevant papers that can help the user to discover
not only new papers but also like-minded users whose libraries might be
interesting to follow. More refined CF techniques could include using the
ratings that indicate the reading priority or comparing the tags [22].

25http://www.citeulike.org
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Also, like the previous systems, CiteULike includes a “find similar” func-
tion that allows to find articles similar to the browsed one. This function
is based on content-based filtering using title and abstract. Specifically, it
seems to extract some terms from the given paper and use them as query
to search for similar papers. Although this can lead to include too general
terms to the query, an interesting feature is the fact that the terms used in
the query are actually shown to the user, so it is clear why he has received
some specific recommendations. It is also worth to mention that this func-
tion does not limit itself to search for similar papers, but it also uses the
query to search for similar users and groups.

3.3.5 Mendeley

Mendeley26, released in August 2008, is an application for managing and
sharing research papers. The system actually consists of two parts: a desk-
top application, with which the user can manage the research papers on
his hard drive, and a web application which allows, among other things, to
share the documents with other users and to access a social network.

Figure 3.5: Mendeley’s personal library page

The scope of Mendeley is therefore much broader than that of the pre-
vious systems and offers more and quite different features. Thanks to its
desktop application, the reference manager can be integrated with text pro-
cessors such as Microsoft Word or LaTeX, and articles in PDF form can be
imported from other management programs to later annotate them. Also,

26http://www.mendeley.com
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its social network makes it possible to create groups, share documents, follow
other researchers activities, or discuss different topics.

What makes Mendeley worth discussing here are its recommendation
features. On the one hand, when browsing a paper, the user gets the pos-
sibility to access “related research”, which presents a list of similar papers.
To this end, the system follows a content-based approach that uses several
types of features: title, abstract, author, keyword, etc., as well as tags that
can be added and edited by the users. This last feature has proven to be
the most informative, although it has the important drawback that it is
available only in about 20% of the cases [74]. On the other hand, users with
an upgraded, paid-for version can get personalized recommendations via the
Mendeley Suggest service. This service is based on collaborative filtering,
more specifically item-based collaborative filtering [73].

3.3.6 ResearchGate

ResearchGate27 is a social network for researchers. Launched in 2008, it
could be described as something between CiteULike and the social network
of Mendeley, although it is closer to the latter. The idea is to have a so-
cial networking site on which researchers can share data and publications,
participate in discussions, follow other researchers, etc.

Figure 3.6: ResearchGate’s personal welcome page

Despite maintaining a profile for each user, each with his own library of
research papers (most of them found by the system itself), ResearchGate

27http://www.researchgate.net
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does not include a personal recommender. This is striking since, apart
from content-based methods that could use the user’s library, such a social
networking site could also exploit the relations between users to use some
kind of collaborative filtering approach.

ResearchGate does feature a “similar publications” function and for each
paper three similar publications are presented. Again, the recommendation
algorithm is undisclosed, and with so few recommendations it is difficult
to conclude anything about the used method. However, it seems to be
content-based, which sounds reasonable as the system offers the researchers
the possibility of uploading the full text of the papers and that information
could be used.



Chapter 4

Assessing research paper
similarity

Research paper abstracts are usually accompanied by additional informa-
tion such as keywords, authors, or journal. Our main goal in this chapter
is to study to what extent this semi-structured information can be used
to assess the similarity between two research papers following a content-
based approach in the context of either the vector space model or language
modeling. For the vector space model, we first consider the traditional tf-idf
approach as a baseline method, and then investigate the potential of Explicit
Semantic Analysis. In particular, we adapt a method from [46], representing
each document as a vector of keywords, a vector of authors, or a vector of
journals. By abstracting away from the individual terms that appear in a
document, and rather describing it in terms of how strongly it is related
to e.g. a given keyword, we can hope to overcome problems of vocabulary
mismatch that hamper the baseline method. For language modeling, on the
one hand, we consider the idea of estimating language models for document
features such as keywords, authors, and journal, and estimate a language
model for the overall article by interpolating these models, an idea which
has already proven useful for expert finding [154]. Furthermore, we use La-
tent Dirichlet Allocation (LDA) to discover latent topics in the documents,
and further improve the language model of an article based on the discov-
ered topical information. To improve the performance of the standard LDA
method, we replace its random initialization by an initialization which is
based on the keywords that have been assigned to each paper. The main
underlying idea is that a topic can be identified with a cluster of keywords.

The remainder of this chapter is structured as follows. In Section 4.1 we
analyze the information usually available to compare two research papers. In
Section 4.2 we study two methods based on the vector space model to mea-
sure article similarity, while in Section 4.3 we propose a number of methods
based on language modeling. In Section 4.4 we explain the details concern-
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ing our experimental set-up, and in Section 4.5 we present and discuss the
obtained results. The main conclusions are summarized in Section 4.7.

4.1 Available information

Comparing research papers is complicated by the fact that their full text
is often not publicly available, and only semi-structured document infor-
mation containing the abstract along with some document features such as
keywords, its authors, or its journal can be accessed. To illustrate this, we
can take a look at the following paper: “(v, T)-fuzzy rough approximation
operators and the TL-fuzzy rough ideals on a ring”. This is a 15-page paper,
but unless one is subscribed to its publisher’s services, the only available
information is the one shown in Table 4.1. As we can see, a 15-page text
is now reduced to a 4-sentence abstract. The amount of information thus
becomes severely reduced.

Table 4.1: Information available about the considered paper

Title (v, T)-fuzzy rough approximation operators and the TL-fuzzy
rough ideals on a ring

Abstract In this paper, we consider a ring as a universal set and study
(v,T)-fuzzy rough approximation operators with respect to a
TL-fuzzy ideal of a ring. First, some new properties of general-
ized (v, T)-fuzzy rough approximation operators are obtained.
Then, a new fuzzy algebraic structure - TL-fuzzy rough ideal
is defined and its properties investigated. And finally, the ho-
momorphism of (v, T)-fuzzy rough approximation operators is
studied.

Keywords (v,T)-fuzzy rough approximation operator; TL-fuzzy ideal;
(v,T)-fuzzy rough ideal; L-fuzzy relation; T-congruence

Authors Fei Li; Yunqiang Yin; Lingxia Lu
Journal Information Sciences
Year 2007
Bibliography ...

However, as stated above, the abstract is usually accompanied by doc-
ument features that might be useful. Keywords are an example of such
features, and intuitively they contain a considerable amount of information.
They are supplied by the authors to give an idea about the concepts covered
in the paper at a glance. This is also the reason why they have often been
considered in recommenders, as mentioned in Chapter 3. In the example of
Table 4.1, we see that the keywords indeed give a good idea about the topics
covered in the paper. In this respect, it is interesting to note that when one
reads these keywords one does not usually think only of these exact five
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concepts, but of slightly more general topics that also include synonyms,
related terms, etc. We explore this idea in Section 4.3.3.

Another potentially useful feature are the authors’ names. Most re-
searchers usually write on the same topics, with a similar choice of words,
so two papers written by the same person are likely to be related. Also,
if we generalize that idea, we can think of scientific communities, instead
of separate authors, where a community tends to cover the same concrete
topic or group of topics. Again, two papers written by people within the
same community are likely to be related. This information about the com-
munities is not directly available, but can be discovered by means of LDA.
We develop this idea in Section 4.3.3. An important limitation related to
this feature is the problem of name ambiguity, as several authors may have
the same name or one author may have several variations of his name. We
further discuss this in Section 4.7.

The name of the journal may be useful as well, as the same journal
usually covers the same topics. Therefore, intuitively, two randomly selected
papers published in the same journal are more likely to be similar than two
randomly selected papers published in different journals.

The publication year could be interesting to consider for different tasks,
like paper recommendation, as a filtering feature (e.g. “I am only interested
in papers published during the last six years”), or trend analysis, to see
for example how the interest in some concepts has evolved in time. How-
ever, when the only goal is to assess the similarity between two papers this
information is less useful, and therefore we do not consider it.

Also, the title is usually too short to consider on its own. It could be
concatenated to the abstract in order to extend it; however, early results did
not show significant improvement when the title was considered, probably
due to the fact that most of the meaningful terms occurring in the title are
usually already present in the abstract and/or the keywords. Therefore, we
do not consider the title.

Finally, we might consider the bibliography. Papers citing the same
works might be related (which is the idea behind the bibliographic coupling
similarity measure [82]), as well as papers frequently cited together (the
basis for co-citation similarity measure [129]), among other possibilities also
based on the frequency and patterns of citations in papers. In practice, these
techniques should be considered along with those proposed in the remainder
of this chapter. However, they fall into citation analysis territory, which is
out of the scope of this work as here we focus on the less studied content-
based methods, and therefore we are not considering this feature.

Summing up, we will assess the similarity of research papers based on
their abstract, keywords, authors, and journal. The challenge thus becomes
to make optimal use of this limited amount of information.
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4.2 Vector space model

In this section we discuss two methods based on the vector space model to
assess paper similarity using the information commonly available for a re-
search paper: abstract, keywords, authors, and journal. First we propose an
approach which makes use of tf-idf, and then another one based on Explicit
Semantic Analysis [46].

4.2.1 Baseline

A simple way to measure the similarity of two papers is by comparing their
abstracts in the vector space model: each paper is represented as a vector,
with each component corresponding to a term (unigram) occurring in the
collection. To convert a document into a vector, the stopwords1 are first
removed; we do not use stemming. Then, to calculate the weight for each
term wi in the abstract of document d, the tf-idf scoring technique is used
as defined in Chapter 2:

tfidf(wi, d) =
n(wi, d)

|d| · log |C|
|{dj : wi ∈ dj}|+ 1

(4.1)

Two vectors d1 and d2 corresponding to different papers can then be com-
pared using standard similarity measures such as the cosine, Dice, general-
ized Jaccard, and extended Jaccard similarity, defined respectively by Eqs.
(2.7), (2.9), (2.10), and (2.11).We refer to the method that combines tf-idf
on the abstract with these four similarity measures as abstract.

We also consider vector representations that are based on the keywords
that have been assigned to the documents, thus ignoring the actual terms of
the abstract (method keywords). Each component then represents a keyword
from the collection. However, since each keyword occurs only once in a
document, the tf-idf formula used in this case degenerates to:

tfidf(wi, d) =
1

|d| · log
|C|

|{dj : wi ∈ dj}|+ 1
(4.2)

where |d| is now the number of keywords assigned to the document, instead
of the number of terms in the abstract. Unlike in the method abstract, where
the terms are unigrams, here we consider the whole keywords, which may
be multigrams (e.g. “recommender system”).

4.2.2 Explicit Semantic Analysis

A problem with the previous methods is that only one feature (keywords or
abstract) is used at a time. Valuable information is thus ignored, especially

1The list of stopwords we have used for the experiments was taken from
http://snowball.tartarus.org/algorithms/english/stop.txt, expanded with the following
extra terms: almost, either, without, and neither.
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in the keywords method which does not use the abstracts, intuitively the
main source of information. In order to use the keywords without ignoring
the information from the abstract, we propose an alternative scheme which
we refer to as Explicit Semantic Analysis (ESA), as it is analogous to the
approach from [46], which was discussed in Chapter 2. However, while the
concepts in the original method come from Wikipedia, the concepts we use
in this approach are features found in the papers. Specifically, if the chosen
features are the keywords, a new vector representation dE is defined for
each document d, where dE has one component for every keyword k in
the collection. The idea is that each component of the vector reflects how
related the document is with the concept represented by the corresponding
keyword.

Figure 4.1: Keyword-based generation of the ESA vector dE of a document

We now reformulate the explanation given in Chapter 2, according to the
new source of information for the concepts. Let d be the vector obtained
from method abstract. In addition, we consider a vector to represent each
keyword (and, therefore, each concept). In order to build such a vector, a
new collection CE of artificial documents is considered. This new collection
contains a document dk for each keyword, where dk consists of the concate-
nation of the abstracts of the documents from the original collection C to
which keyword k was assigned. Then, a weighted vector dk is considered
for each dk. In this weighted vector, each component corresponds to a term
in CE , and the weights are the tf-idf scores calculated w.r.t. CE. Thus, dk

represents the concept corresponding to keyword k in the same way that
d represents document d. Finally, d and dk are normalized and can be
compared to compute the new vector representation dE of document d. In
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particular, the weight wk in dE of the component corresponding to keyword
k is calculated as follows:

wk = d · dk (4.3)

Figure 4.1 summarizes this process. For a detailed example we refer to
Appendix A. The dE vectors can be compared by using any of the similarity
measures defined in Section 2.1.4.

We further refer to this method as ESA-kws. Similar methods are consid-
ered in which vector components refer to authors (ESA-aut) or to journals
(ESA-jou), where, instead of dk, a weighted vector da (for authors) or dj

(for journals) is used. In these cases, the collection CE of artificial docu-
ments is built by considering a document da for each author (resp. dj for
each journal), which consists of the concatenation of the abstracts of the
documents from the original collection to which author a (resp. journal j) is
associated. For efficiency and robustness, only authors are considered that
appear in at least 4 papers of the collection in the ESA-aut method, and
only keywords that appear in at least 6 papers in the ESA-kws method.

4.3 Language modeling

4.3.1 Baseline

As an alternative to the approaches based on the vector space model, we
consider language modeling, as language modeling techniques have already
been shown to perform well for comparing short text snippets [62, 118]. As
explained in Section 2.2, the idea underlying language modeling is that a
document d is generated by a given probabilistic model D, where D has
a probability for each word: the probability of that word being used to
generate document d. Thus, what we want to do is to estimate unigram
language models [117] for each document, and to evaluate their divergence.
Each model is estimated from the terms that occur in the abstract of d (and
the rest of the abstracts in the collection for the smoothing). Using Jelinek-
Mercer smoothing, the probability that model D generates term w is given
by:

D(w) = λP (w|d) + (1− λ)P (w|C) (4.4)

where C is again the whole collection of abstracts, and λ controls the weight
given to the smoothing term P (w|C). The probabilities P (w|d) and P (w|C)
are estimated as defined in Section 2.2:

P (w|d) = n(w, d)

|d| (4.5)

P (w|C) = n(w, C)
|C| (4.6)



4.3. LANGUAGE MODELING 53

Once the models D1 and D2 corresponding to two documents d1 and d2
are estimated, we measure their difference using the Kullback-Leibler diver-
gence:

KLD(D1||D2) =
∑
w

D1(w)log
D1(w)

D2(w)
(4.7)

In the remainder of this section we consider different ideas to improve this
basic language modeling approach.

4.3.2 Language model interpolation

The probabilities in the model of a document are calculated using the ab-
stracts in the collection. However, given the short length of the abstracts,
it is important to make maximal use of all the available information, i.e., to
also consider the keywords, authors, and journal. In particular, the idea of
interpolating language models, which underlies Jelinek-Mercer smoothing,
can be generalized. Now we estimate and interpolate models also for the
keywords k, authors a, and journal j of the paper:

D(w) = λ1P (w|d) + λ2P (w|k) + λ3P (w|a) + λ4P (w|j) + λ5P (w|C) (4.8)

with
∑

i λi = 1. Interpolation of language models has also been used for
example in [154] for the task of expert finding, integrating several aspects of
a document in a model. In order to estimate P (w|k), P (w|a), and P (w|j),
we consider an artificial document for each keyword k, author a and journal
j corresponding to the concatenation of the abstracts of the documents in
which k, a and j occur, respectively. Since a document may contain more
than one keyword ki and one author aj, we define P (w|k) and P (w|a) as:

P (w|k) = 1

K

K∑
i=1

P (w|ki) (4.9)

P (w|a) = 1

A

A∑
j=1

P (w|aj) (4.10)

where K and A are the number of keywords and authors in the document.
The probabilities P (w|j), P (w|ki) and P (w|aj) are estimated using maxi-
mum likelihood, analogously to P (w|d). Alternatively, we can assign more
importance to the first author by giving a higher weight γ to his probabili-
ties. In that case, if there is more than one author, Eq. (4.10) becomes:

P (w|a) = γP (w|a1) + 1− γ

A− 1

A∑
j=2

P (w|aj) (4.11)
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4.3.3 Latent Dirichlet Allocation

Two conceptually related abstracts may contain different terms (e.g. syn-
onyms, misspellings, related terms), and may therefore not be recognized
as being similar. While this is a typical problem in information retrieval, it
is aggravated here due to the short length of abstracts. To cope with this,
methods can be used that recognize which topics are covered by an abstract,
where topics are broader than keywords, but are still sufficiently discrimi-
native to yield a meaningful description of the content of an abstract. This
topical information is not directly available, but it can be estimated by using
Latent Dirichlet Allocation (LDA) [21], as explained in Chapter 2:

P (w|z) = φ̂(w)
z =

nz
(w) + β

nz
(·) +Wβ

(4.12)

P (z|τ) = θ̂(d)z =
nz

(d) + α

n·(d) + Tα
(4.13)

P (z|w, τ) ∝ P (w|z) × P (z|τ) = n′
z
(w) + β

n′
z
(·) +Wβ

· n′
z
(d) + α

n′·
(d) + Tα

(4.14)

Analogously to underlying topics, we can try to identify underlying sci-
entific communities, as similar papers are often written by authors within
the same community. In the same way that a group of keywords can define
a topic, a group of authors (a community) can define the set of topics they
usually write about. By using the author information instead of the key-
words, the underlying communities can be found. A community model thus
becomes available by straightforwardly modifying equations (4.12), (4.13)
and (4.14) as follows

P (w|q) = φ̂(w)
q =

nq
(w) + β

nq
(·) +Wβ

(4.15)

P (q|κ) = θ̂(d)q =
nq

(d) + α

n·(d) + Cα
(4.16)

P (q|w, κ) ∝ P (w|q) × P (q|κ) = n′
q
(w) + β

n′
q
(·) +Wβ

· n′
q
(d) + α

n′·
(d) + Cα

(4.17)

where C is the number of communities, q is a given community and κ is
the new LDA model obtained with Gibbs sampling. The various counts
are defined as described in Table 4.2. To find the underlying topics and
communities, the LDA algorithm needs some input, namely the number T
of topics and the number C of communities to be found. In Section 4.5.3
we study and discuss the best values for T and C.

The topics and communities that are obtained from LDA can be used
to improve the language model of a given document d. In particular, we
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Table 4.2: Values used in LDA with Gibbs sampling to find underlying
communities

value description

nq
(w) Number of times term w is assumed to have been generated by

community q.
nq

(d) Number of times a term instance of document d is assumed to
have been generated by community q.

nq
(·) Total number of times a term has supposedly been generated by

community q.

n·(d) Total number of term instances of document d generated by any
community.

n′
q
(w)

Number of times term w is assumed to have been generated by
community q, but without counting the current assignment of w.

n′
q
(d)

Number of times a term instance of document d is assumed to
have been generated by community q, but without counting the
current assignment of w.

n′
q
(·)

Total number of times a term has supposedly been generated by
community q, but without counting the current assignment of w.

n′·
(d)

Total number of term instances of document d generated by any
community, but without counting the current assignment of w.

propose to add P (w|τ) and P (w|κ) to the right-hand side of Eq. (4.8), with
the appropriate weights λi:

D(w) = λ1P (w|d) + λ2P (w|k) + λ3P (w|a) + λ4P (w|j)
+λ5P (w|τ) + λ6P (w|κ) + λ7P (w|C) (4.18)

P (w|τ) reflects the probability that term w is generated by the topics un-
derlying document d. As defined in Chapter 2, it can be estimated by
considering that:

P (w|τ) =
T∑
i=1

P (w|zi)× P (zi|τ) (4.19)

On the other hand, P (w|κ) represents the probability that term w is gener-
ated by the underlying communities, and is defined by:

P (w|κ) =
C∑
i=1

P (w|qi)× P (qi|κ) (4.20)

In summary, we can now build a modelD for each document d interpolat-
ing not only some features as in Eq. (4.8), but also underlying information
such as topics and communities as defined in Eq. (4.18). This method is
further referred to as LM0.
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4.3.4 Enriched estimations

Equation (4.13) estimates the probability P (z|τ) of a topic z given an LDA
model τ . However, this estimation is only based on the abstracts, while
intuitively both authors and journals have an important influence on the
probability that an article covers a given topic: authors usually write on
the same topics, and journals cover a more or less well-defined spectrum.
Therefore, we propose to use both features to compute the estimations of φ
and θ.

While the outline of the method remains the same, we rewrite Eq. (4.13)
as

P (z|τ) = θ̂(d)z =
nz

(d) + α1 + nz
(j)α2 + nz

(a)α3

n·(d) + Tα1 + n·(j)α2 + n·(a)α3
(4.21)

where new counts are introduced: nz
(j) is the number of times a term of

journal j has been assigned to topic z, n·(j) is the total of terms (instances)
of j, nz

(a) is the number of times a term of author a has been assigned to
topic z, and n·(a) is the total of terms of a. Also, the value of α in Eq. (4.13)
is now split into α1, α2 and α3. These values, which control the importance
of each feature in the smoothing method, are discussed in Section 4.5.3.
This modification implies changes in the Gibbs sampling algorithm as well,
replacing the part of the estimation of P (z|τ) in Eq. (4.14) by Eq. (4.21).
We call this method LM0e.

4.3.5 Improved initialization

A different approach to improve LM0 is by taking advantage of the fact
that keywords have been assigned to each paper. In particular, we propose
to exploit the available keywords to improve the initialization part of the
Gibbs sampling algorithm (i.e., lines 1-12 of Algorithm 1 in Section 2.3),
and therefore to get more accurate estimations.

The idea is to cluster the keywords and identify each cluster with a
topic. The parameters of the multinomial distributions corresponding with
each topic can then initially be estimated from these clusters. Conceptu-
ally, we represent each keyword by an artificial document, corresponding to
the concatenation of the abstracts of the papers to which that keyword has
been assigned (analogously to the dk documents in Section 4.2.2). Similarity
between keywords is then estimated by calculating the cosine similarity be-
tween the corresponding artificial documents, and the clusters are obtained
using the K-means algorithm [95]. We have chosen this basic clustering
algorithm because it is fast, well known, and easy to implement.

Once the clusters have been determined, we represent them by the con-
catenation of all abstracts to which at least one of the keywords in the
clusters was assigned. We can then estimate a multinomial distribution
from these documents, and initialize the Gibbs sampling procedure with it.
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For this process, only the keywords which appear in a minimum num-
ber of documents are used (the value of this threshold is discussed in Sec-
tion 4.5.3). This means that the terms occurring in documents that do not
contain any of those keywords are not taken into account to build the clus-
ters (and therefore, to compute the initial values for the parameters). Also,
there is no information about the topics that generate the terms which occur
exclusively in those documents. In those cases, the topic is not sampled from
the resulting multinomial distributions, but from a uniform distribution, i.e.,
we fall back on the basic initialization method that is usually considered.
For more details, we refer to the example in Section 4.3.6, and in particular
to Section 4.3.6.4.

In addition to terms that do not occur in the artificial cluster documents
at all, we may also consider that terms that are rare in these clusters may
need to be smoothed. Initial experiments, however, indicated that this does
not actually improve the performance, hence we will not consider this ad-
ditional form of smoothing in our experiments, avoiding the unnecessary
introduction of more parameters.

Once initial values for all the parameters in Eqs. (4.12) and (4.13) have
been set, we have two possibilities. On the one hand, we can work directly
with these values, i.e., use them in Eqs. (4.12) and (4.13) or, in other words,
proceed directly to line 31 of Algorithm 1. We call this method LM1. On
the other hand, we can apply the iterative part of the LDA algorithm, i.e.,
start from line 13 of Algorithm 1. We refer to this method as LM2.

Both methods LM1 and LM2 can also be used to improve the community
models, by following the same clustering and initialization process, but using
authors instead of keywords. As with the topic models, the iterative part of
the algorithm is skipped in LM1, and applied in LM2.

This idea can also be used to improve LM0e. In that case, the counts
nz

(j), n·(j), nz
(a) and n·(a) must be initialized as well. After sampling a topic

for each instance of a term in a given document d, the respective counts
for the journal corresponding to that document are increased. In order to
estimate which author generated a term instance, a uniform distribution
on the total number of authors of d is used, and the counts corresponding
to the author sampled from it are increased. The rest of the process is
analogous to methods LM1 and LM2 ; we call these methods LM1e and
LM2e respectively.

4.3.6 Running example

We provide an example of how the proposed method based on language
models works as a whole, step by step. In particular, we detail how the
language models are created and interpolated, how the LDA step works,
and how the initialization of LDA can be improved.

We consider the following collection C consisting of four documents. In
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order to improve readability, we use letters instead of words, keywords, au-
thors’ names, or journals:

d1 = {abs = (a, b, a, c, d, a), kws = (k1, k2), aut = (u1, u2), jou = (j1)}
d2 = {abs = (a, a, d, a, b, a), kws = (k1, k3), aut = (u1, u3), jou = (j1)}
d3 = {abs = (a, b, a), kws = (k2, k3), aut = (u2, u4), jou = (j2)}
d4 = {abs = (a, b, b, e), kws = (k4), aut = (u5, u6), jou = (j2)}

4.3.6.1 Step 1: basic language models

As explained in Section 4.3.1, the probabilities are initially only based on
the abstract information and estimated using maximum likelihood. In this
way, the probabilities of a term being generated by the language model of
d1 are:

P (a|d1) = 3
6 P (b|d1) = 1

6 P (c|d1) = 1
6

P (d|d1) = 1
6 P (e|d1) = 0

Also, the probabilities of a term being generated by the background model
must be estimated:

P (a|C) = 10
19 P (b|C) = 5

19 P (c|C) = 1
19

P (d|C) = 2
19 P (e|C) = 1

19

Now the basic model D1 can be calculated for d1 (models D2, D3 and D4

are built analogously):

D1(a) = λ · 3
6 + (1− λ) · 10

19 D1(b) = λ · 1
6 + (1− λ) · 5

19
D1(c) = λ · 1

6 + (1− λ) · 1
19 D1(d) = λ · 1

6 + (1− λ) · 2
19

D1(e) = λ · 0 + (1 − λ) · 1
19

4.3.6.2 Step 2: interpolated language models

However, as proposed in Section 4.3.2, we do not only want to use the
abstract, but also the other features. For example, to use the keyword in-
formation, we first consider an artificial document for each keyword in the
collection. This artificial document contains a concatenation of the abstracts
of those documents where the keyword occurs:

k1 = {a, b, a, c, d, a, a, a, d, a, b, a}
k2 = {a, b, a, c, d, a, a, b, a}
k3 = {a, a, d, a, b, a, a, b, a}
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k4 = {a, b, b, e}

The probabilities can now be estimated similarly to the case of the abstracts.
For k1, for instance:

P (a|k1) = 7
12 P (b|k1) = 2

12 P (c|k1) = 1
12

P (d|k1) = 2
12 P (e|k1) = 0

The same is done for k2, k3 and k4. The same process is repeated for the
authors and the journal: an artifical document is considered for each author
(resp. journal) in the collection, and then the probabilities can be estimated.
After doing this, new models can be calculated with the new probabilities,
as is done in Eq. (4.8). Some examples:

D1(a) = λ1 · 3
6 + λ2 ·

7
12

+ 5
9

2 + λ3 ·
7
12

+ 5
9

2 + λ4 · 7
12 + λ5 · 10

19

D3(a) = λ1 · 2
3 + λ2 ·

5
9
+ 6

9
2 + λ3 ·

5
9
+ 2

3
2 + λ4 · 3

7 + λ5 · 10
19

D1(c) = λ1 · 1
6 + λ2 ·

1
12

+ 1
9

2 + λ3 ·
1
12

+ 1
9

2 + λ4 · 7
12 + λ5 · 1

19

It can be seen that, in the case of keywords and authors, the final probability
is estimated by calculating the average of the probabilities of the keywords
(resp. authors) that occur in that document.

4.3.6.3 Step 3: Latent Dirichlet Allocation

In Section 4.3.3 we have proposed using LDA in order to extract new infor-
mation, this time regarding the (underlying) topics. First, the number of
topics to be found must be given. In this example we assume that there are
2 underlying topics, A and B. Then, as explained in Section 4.3.3, we need
some counts to estimate the required probabilities defined in Eqs. (4.12) and
(4.13). These counts are initialized this way: for each term w in the abstract
of each document d, a topic z is randomly sampled. This topic is then as-
sumed to have generated that very instance of the term, which means that
the counts nz

(w), nz
(d) and nz

(.) are increased. By doing so, we obtain for
example:

nA
(a) = 7 nA

(b) = 3 nA
(c) = 0 nA

(d) = 1 nA
(e) = 0

nB
(a) = 3 nB

(b) = 2 nB
(c) = 1 nB

(d) = 1 nB
(e) = 1

nA
(d1) = 4 nA

(d2) = 3 nA
(d3) = 3 nA

(d4) = 1
nB

(d1) = 2 nB
(d2) = 3 nB

(d3) = 0 nB
(d4) = 3

nA
(.) = 11, the total number of instances generated by topic A

nB
(.) = 8, the total number of instances generated by topic B
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These values are then used to initialize the LDA algorithm. For example,
for term a and document d1 we obtain:

φ̂
(a)
A = 7+β

11+5β φ̂
(a)
B = 3+β

8+5β

θ̂
(d1)
A = 4+α

6+2α θ̂
(d1)
B = 2+α

6+2α

The LDA algorithm can now be run. In this example we set the parameters
α = 0.16 and β = 0.1, and the following estimations for the desired proba-
bilities are obtained:

φ̂
(a)
A = 0.93 φ̂

(b)
A = 0.018 φ̂

(c)
A = 0.018 φ̂

(d)
A = 0.018 φ̂

(e)
A = 0.018

φ̂
(a)
B = 0.35 φ̂

(b)
B = 0.35 φ̂

(c)
B = 0.076 φ̂

(d)
B = 0.15 φ̂

(e)
B = 0.076

θ̂
(d1)
A = 0.02 θ̂

(d2)
A = 0.5 θ̂

(d3)
A = 0.65 θ̂

(d4)
A = 0.037

θ̂
(d1)
B = 0.97 θ̂

(d2)
B = 0.5 θ̂

(d3)
B = 0.35 θ̂

(d4)
B = 0.96

With these values, and following Eq. (4.19), we can calculate the probability
of a given term being generated by a given topic, and then add that proba-
bility to the document model as shown in Eq. (4.18). For example:

D1(a) = λ1
3
6 + λ2

7
12

+ 5
9

2 + λ3

7
12

+ 5
9

2 + λ4
7
12 + λ5(0.93× 0.02 + 0.35× 0.97)

+λ6
10
19

D3(a) = λ1
2
3 + λ2

5
9
+ 6

9
2 + λ3

5
9
+ 2

3
2 + λ4

3
7 + λ5(0.93 × 0.65 + 0.35 × 0.35)

+λ6
10
19

D1(c) = λ1
1
6 +λ2

1
12

+ 1
9

2 +λ3

1
12

+ 1
9

2 +λ4
7
12 +λ5(0.018×0.02+0.076×0.97)

+λ6
1
19

The same process is followed to use the information about the communities.
For the sake of simplicity, we do not consider them here, and therefore the
term regarding the communities in the previous examples for D1(a), D3(a)
and D1(c) is missing.

4.3.6.4 Step 4: LDA improvements

Section 4.3.4 and Section 4.3.5 propose how to improve the previously ex-
plained method. To enrich the estimations new variables are introduced in
Eq. (4.21). In order to use these variables, we consider artificial documents
as in Section 4.3.6.2, and then we use them to initialize the variables as in
the previous section. Since there are no other differences, we do not go into
details here.

The use of the improved initialization does require a more detailed ex-
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ample. First, as explained in Section 4.3.5, the keywords are clustered. Only
those keywords which occur in a minimum number of clusters are used. In
this example we set the minimum to 2. After clustering the keywords, sup-
pose two clusters A and B are obtained:

A = {k1, k2}
B = {k3}

with their respective artificial documents cA and cB :

cA = {a, b, a, c, d, a, a, a, d, a, b, a, a, b, a}
cB = {a, a, d, a, b, a, a, b, a}

According to the information in the clusters, topic A has generated term
a 9 times, and B has generated a 6 times. This information leads to the
initial estimation P (a|A) = 9/15 and P (a|B) = 6/15. Then, to estimate
which topic actually generates a specific instance of a in document d1, we
just sample the topic from this distribution. If the sampled topic is, for
example, A, we increase the counts nA

(a), nA
(d1), and nA

(·). The process
is analogous for the remaining occurrences of a,b,c and d. However, term
e does not occur in the artificial cluster documents, and therefore there is
no information about it. To estimate the topic which generates e, we use a
uniform distribution on the T topics, i.e., P (e|A) = 1/2 and P (e|B) = 1/2.
This leads us to the following initial values for these variables for example:

nA
(a) = 8 nA

(b) = 3 nA
(c) = 1 nA

(d) = 2 nA
(e) = 0

nB
(a) = 3 nB

(b) = 1 nB
(c) = 0 nB

(d) = 0 nB
(e) = 1

nA
(d1) = 5 nA

(d2) = 4 nA
(d3) = 3 nA

(d4) = 2
nB

(d1) = 1 nB
(d2) = 2 nB

(d3) = 0 nB
(d4) = 2

As we can see, if c only occurs in cA, the only topic that can generate it
should be A. However, with the random initialization, as shown in Sec-
tion 4.3.6.3, it could be assumed to be generated by B. Of course, the
execution of LDA can correct this later, but there is no guarantee about
it. The improved initialization, on the other hand, already starts with more
realistic/correct assumptions.

With both improvements, the rest of the LDA process remains the same.
When the final models have been calculated, they can be compared by using
Eq. (4.7).
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4.4 Experimental set-up

To build a test collection and evaluate the proposed methods, we downloaded
a portion of the ISI Web of Science2, consisting of files with information
about papers from 19 journals in the Artificial Intelligence domain. These
files contain, among other data, the abstract, authors, journal, and keywords
freely chosen by the authors. A total of 25964 paper descriptions were
retrieved, although our experiments are restricted to the 16597 papers for
which none of the considered fields is empty.

The ground truth for our experiments is based on annotations made
by 8 experts3. First, 220 documents were selected, and each of them was
assigned to an expert sufficiently familiar with it. Then, using tf-idf with
cosine similarity, the 30 most similar papers in the test collection were found
for each of the 220 papers. Each of those 30 papers was manually tagged
by the expert as either similar or dissimilar. To evaluate the performance
of the methods, each paper p is thus compared against 30 others4, some of
which are tagged as similar. The approaches for assessing paper similarity
discussed in Sections 4.2 and 4.3 can then be used to rank the 30 papers,
such that ideally the papers similar to p appear at the top of the ranking. In
principle, we thus obtain 220 rankings per method. However, due to the fact
that some of the lists contained only dissimilar papers, and that sometimes
the experts were not certain about the similarity of some items, the initial
220-paper set was reduced to 209 rankings. To evaluate these rankings, we
use two well-known measures:

• Mean Average Precision (MAP). This measure takes into account the
position of every hit within the ranking, and is defined by:

MAP =

∑|R|
r=1AvPrec(r)

|R| (4.22)

where |R| is the total number of rankings and AvPrec is the average
precision of a ranking, defined by:

AvPrec =

∑n
i=1 Prec(i) × rel(i)

number of relevant documents
(4.23)

with Prec(i) the precision at cut-off i in the ranking (i.e., the percent-
age of the i first ranked items that are relevant) and rel(i) = 1 if the
item at rank i is a relevant document (rel(i) = 0 otherwise).

2http://apps.isiknowledge.com
3The set of annotations is publicly available at http://www.cwi.ugent.be/respapersim/
4During the annotation process it was also possible to tag some items as “Don’t know”

for those cases where the expert had no certainty about the similarity. These items are
ignored and therefore some papers are compared to less than 30 others.
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• Mean Reciprocal Rank (MRR). Unlike MAP, this measure only takes
into account the first hit within the rankings, along with its position.
It is defined by:

MRR =

∑|R|
r=1RR(r)

|R| (4.24)

where RR is the reciprocal rank of a ranking:

RR =
1

fhit
(4.25)

with fhit the rank of the first hit in the ranking.

4.5 Experimental results

4.5.1 Vector space model

Table 4.3: Results obtained with the approaches based on the vector space
model (methods described in Section 4.2)

MAP
cos dice e.jacc g.jacc

abstract 0.546 0.546 0.546 0.604
keywords 0.497 0.5 0.5 0.486

ESA-kws (cos) 0.576 0.549 0.549 0.529
ESA-aut (cos) 0.576 0.563 0.563 0.537
ESA-jou (cos) 0.397 0.404 0.404 0.329

ESA-kws (g.jacc) 0.599 0.536 0.536 0.504
ESA-aut (g.jacc) 0.582 0.553 0.553 0.512
ESA-jou (g.jacc) 0.403 0.37 0.37 0.273

MRR
cos dice e.jacc g.jacc

abstract 0.726 0.726 0.726 0.779
keywords 0.71 0.724 0.718 0.703

ESA-kws (cos) 0.738 0.704 0.704 0.701
ESA-aut (cos) 0.744 0.715 0.715 0.704
ESA-jou (cos) 0.546 0.554 0.554 0.42

ESA-kws (g.jacc) 0.749 0.72 0.72 0.695
ESA-aut (g.jacc) 0.736 0.736 0.736 0.697
ESA-jou (g.jacc) 0.565 0.524 0.524 0.32

Table 4.3 summarizes the results of the experiment for the approaches based
on the vector space model, as described in Section 4.2. In this table it is
interesting to observe that the abstract method, traditionally combined with
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cosine similarity, performs significantly better when instead combined with
the general Jaccard similarity measure (paired t-test, p < 0.001). This is
why we have built the ESA dE vectors not only using the cosine similarity,
as defined in Eq. (4.3) (results in the second block of the table) but also
by replacing it by the generalized Jaccard similarity (results in the third
block). In this last case there is an improvement when the resulting dE

vectors are compared using the cosine similarity, but when using any of the
other three similarity measures the results are slightly worse. On the other
hand, neither ESA-kws nor ESA-aut can outperform abstract, despite using
two types of features (abstract and keywords/authors) instead of just one
as abstract does. It turns out that the journal information is too general,
hence the especially bad performance of ESA-jou, although that is probably
related to the fact that all considered journals belong to the same domain.

4.5.2 Language modeling

Table 4.4 shows the results obtained with the language modeling methods,
described in Section 4.3. The λ configurations in the first columns corre-
spond to those controlling the weight of abstract, keywords, authors, journal,
topics, and communities, in that order.

The first block of the table summarizes the results obtained with lan-
guage models that only use one of these feature types. We find that language
models which only use the abstract (line 1) significantly improve the per-
formance of most of the vector space methods (paired t-test, p < 0.001),
the only exception being when general Jaccard is used to compare the ab-
stracts (p � 0.089). Models uniquely based on other features can perform
slightly better than abstract (depending on the chosen similarity measure
used by the latter), but these improvements were not found to be signifi-
cant. However, these results are still useful as an indication of the amount
of information contained in each of the features: language models based
exclusively on keywords or on authors perform comparable to the method
abstract. Using only topics yields such results when LM2e is used, while
using communities performs slightly worse. The information contained in
the journal feature is clearly poorer. Moreover, Fig. 4.2 shows that giving
a higher weight to the first author when modeling a paper, as proposed in
Section 4.3.2, does not make a big difference.
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Figure 4.2: Impact of the first author’s weight (configuration values shown
in Table 4.5)

Table 4.5: Configurations for the study of the impact of the first author’s
weight

abs kws aut jou tpc com

cfg.1 0 0 0.9 0 0 0
cfg.2 0.3 0.1 0.1 0.1 0.3 0
cfg.3 0.4 0.1 0.1 0 0.3 0
cfg.4 0.3 0.3 0.3 0 0 0

In the second block of Table 4.4 we examine different combinations of
two features: abstract with topics on lines 7-9, and abstract with keywords
on lines 10-12. These results confirm that the abstract contains the most
information, and should be assigned a high weight. On the other hand, we
can observe how the topics, when combined with the abstract, yield a better
MAP score. In particular, the MAP scores on line 9 are significantly better
than those on line 12 (LM0 : p � 0.003; LM0e: p < 0.001; LM1 : p � 0.041;
LM1e: p � 0.024; LM2 : p � 0.001; LM2e: p < 0.001). The differences are
also significant between lines 8 and 11 for all methods except LM0 (LM0 :
p � 0.062; LM0e: p < 0.001; LM1 : p � 0.003; LM1e: p � 0.001; LM2 :
p � 0.005; LM2e: p < 0.001), and between lines 7 and 10 for LM0e and
LM2e (LM0e: p � 0.022; LM2e: p � 0.026). Other combinations of two
features perform worse.

The third block shows the results of combining abstract and topics, with
keywords, authors, and journal. It is clear that giving a small weight to
keywords is beneficial, as it leads to high scores, which are significantly better
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than the configurations in lines 10-12 (p < 0.001 for all six methods LM0,
LM2 and LM2e). For all methods except LM0e and LM2e, the improvement
is significant with respect to the configurations in lines 7-9 as well (LM0 :
p < 0.029; LM1 : p � 0.002; LM1e: p � 0.01; LM2 : p < 0.012); for
LM0e the differences are only significant for lines 7-8 (p � 0.028, resp.
p � 0.001; p � 0.055 for line 9). Using authors and journal also means an
improvement, but smaller than that achieved with the keywords. Combining
more than three features, as in lines 19-21, does not show a significant
improvement with respect to the previous lines. In Fig. 4.3 we further
explore the importance of the abstract and the topics. We set the weight
of the keywords to a fixed value of 0.1, and the remaining weight of 0.8
is divided between abstract and topics. What is particularly noticeable is
that ignoring the abstract is penalized stronger than ignoring the topics
(especially for LM1 and LM1e), but the optimal performance is obtained
when both features are given approximately the same weight.

Figure 4.3: Importance of abstract vs. topics

Finally, in the fourth and last block we also include the communities.
Since abstracts and topics have proven to contain most of the information,
they still get higher weights. However, by assigning a small weight to the
communities, we can achieve the highest scores (although the difference with
the best scores in the third block is not significant).

We can note that LM1 and LM1e generally perform worse than LM0,
and that LM2 only slightly improves LM0. However, larger differences in
MAP scores can be observed between LM0 and methods LM0e and LM2e
in those cases in which the topics are given more importance, such as in line
8 (p � 0.001). The difference is particularly striking when only the topics
are used to create the models (line 5, with λtopics = 0.9, p < 0.001), which
shows how much LDA can benefit from information of the different features.
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4.5.3 Parameter tuning

For the experiments concerning the language modeling methods, we fixed
the sum of these weights to 0.9, and set the general smoothing factor (λ7

in Eq. (4.18)) to 0.1. Also, the threshold determining the minimum number
of documents in which a keyword must appear in order to be taken into
account for the clusters was fixed to 4. This means that a total number of
3219 keywords was used. The reason for this choice lies mainly in computing
performance constraints, but also in the fact that keywords appearing in just
a couple of documents may introduce noise. The choice of the number of
keywords influences the number T of topics, since we fixed this number
to 10% of the number of keywords. Therefore, the results displayed in
Table 4.4 were obtained with 321 topics. Figures 4.4 and 4.5, however, show
the limited importance of these choices with respect to the final results.
Furthermore, parameters α and β introduced in Eqs. (2.20) and (2.21) are
fixed to α = 50/T (i.e., α = 0.157 in this case) and β = 0.1, since these
are the values typically used for LDA with Gibbs sampling. Finally, the
communities used in our experiments (line 6 and last block of Table 4.4)
were calculated with method LM2 and a fixed number C of communities
equal to 201. This value of C was obtained analogously to T : 2017 authors
occurred in more than 4 documents and then we divided by 10. In Figure 4.6,
however, we can observe the robustness of the method w.r.t. the choice of
the value of C.

Figure 4.4: Impact of the keyword threshold, with cfg.1 : λtpc = 0.9 and
cfg.2 : λabs = 0.3, λkws = 0.1, λtpc = 0.3, λcom = 0.2.

As for methods LM0e, LM1e and LM2e, the chosen values for the α-
weights in these experiments are α1 = 0.8α and α3 = 0.2α. In other words,
the author information is now added to the LDA smoothing with a small
weight. However, no weight is given to the journal, since preliminary ex-
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Figure 4.5: Impact of the number T of topics, T = kws/X, with cfg.1 :
λtpc = 0.9 and cfg.2 : λabs = 0.3, λkws = 0.1, λtpc = 0.3, λcom = 0.2.

Figure 4.6: Importance of the number C of communities, C = authors/Y ,
with cfg.1 : λcom = 0.9 and cfg.2 : λabs = 0.3, λkws = 0.1, λtpc = 0.3, λcom =
0.2.

periments showed that the performance was not improved when using the
journal information, as it was, like in ESA-jou, too general.

4.6 Related work

Language models are a relatively recent approach to information retrieval,
and are typically seen as an alternative to the traditional methods based
on the vector space model. The language modeling approach is based on
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the assumption that a document has been generated using some kind of
probabilistic model. To estimate the relevance of a query to a document,
we then try to estimate the underlying probabilistic model, primarily based
on the terms that occur in it, and then compare the query to that model,
rather than to the actual document. Most current work builds on the ini-
tial approach by Ponte and Croft [117]. The most common way to improve
language models is to improve the smoothing method. The basic idea of
smoothing is to estimate the probability that a term is generated by the
language model underlying a document not only from the terms that oc-
cur in the document itself, but also from the terms that occur in the rest
of the collection. It is used to lessen the impact of common words (not
unlike the idea of inverse document frequency in the vector space model),
and to ensure that only non-zero probabilities are used. A comprehensive
overview of the most common smoothing methods can be found in [152]. A
number of authors have investigated smoothing methods that go beyond the
standard approaches. For instance, [89] combines Dirichlet smoothing with
bigrams, instead of the unigrams typically used, and the collection used for
smoothing is expanded with external corpora, for the task of spontaneous
speech retrieval. Deng et al. [38] follow a somehow inverse approach and
apply smoothing based only on subsets of the collection corresponding to a
specific community of experts. Different smoothing strategies are found in
the literature precisely for this task of expert finding. Karimzadehgan et al.
[80] and Petkova and Croft [115] try to improve smoothing by interpolating
models, expanding the idea originally proposed by [77] on which we have
partially built our approach. The idea of interpolating different language
models was used in a particularly comprehensive way in [115]: to represent
an expert, a model is estimated for his mails, another model for his papers,
etc., and then they are interpolated; at the same time, in order to model
the mails, a model can be created for the body of the mails, another model
for the subject headers, etc. Mimno and McCallum [103] evaluate, for the
same task, models that combine author-based information with Dirichlet
smoothing. Finally, [153] also proposes the interpolation of several models
to discover new expertise.

It is interesting to see that, as in our case, efforts to improve language
modeling often lead to the use of Latent Dirichlet Allocation [21]. Examples
of this are the already mentioned methods of [103] and [153]. As discussed in
Chapter 2, the topics underlying a particular collection of documents (and
a document itself) can be discovered by using LDA. These topic models
have gained a lot of popularity in the last years and have been used in
a vast diversity of tasks such as tag recommendation [86], measuring the
influence of Twitter users [145], or text classification [116]. The basic form
of LDA does not suffice in many cases, however. While for some problems
it is enough to adapt the distributions used by the algorithm [18], most
of the solutions involve changes in the way the estimated probabilities are
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computed and, depending on the task, different kinds of extra information
are incorporated. For example, the chronological order of the documents can
be taken into account to discover topic trends [24]; on the other hand [132]
considers the intuition of authors usually writing about the same topics,
and adds information about authors to create author-topic models, which
in turn have been improved as well [48, 103]. A different approach consists
in improving language models by using document labels, such as scores or
tags, which can be used as a kind of supervision [20], or be associated with
the topics in direct correspondence [120]. The approach of Kataria et al.
[81] could also be included in this group, as they use entities, annotations,
and classifications from Wikipedia to construct better models. One of the
methods proposed in this latter work has some similarities with ours, as the
number of times a word is assigned to a Wikipedia topic is used in LDA in
a manner comparable to our LM0e method (Section 4.3.4). However, our
strategy uses no external sources of information, but only what is already in
the document. Also, LDA topic models cannot only be improved by feeding
them with additional information, but also by improving the initialization of
the Gibbs sampling method that is typically used. This idea, which we have
explored in methods LM1, LM1e, LM2 and LM2e (Section 4.3.5), appears
to have received little attention in the literature.

4.7 Summary

We have proposed and compared several content-based methods to compare
research paper abstracts. To do so, we have studied and enriched exist-
ing methods by taking advantage of the semi-structured information that
is usually available in the description of a research paper: a list of key-
words, a list of authors, and the journal in which it was published. These
methods, based either on the vector space model or on language modeling,
perform comparably when only the abstract is considered. However, when
the additional document features are used, important differences are noticed.
The proposed methods based on the vector space model cannot outperform
the traditional method, although the ESA methods, which combine abstract
with another feature, do outperform the standard tf-idf approach in the case
where the popular cosine similarity is considered. In fact, our results suggest
that cosine similarity is far from an optimal choice for assessing document
similarity in the vector space model, at least in the case of research paper
abstracts. Language models, however, have proven more suitable in this
context than any of the vector space methods we considered, as the results
show that they are able to take advantage of the extra document features.
By interpolating models based on the different features, the typical approach
where only the abstract is used is significantly improved. Finally, we have
also explored how LDA could be used in this case to discover latent topics
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and communities, and a method has been proposed to effectively exploit the
keywords and authors associated with a paper to significantly improve the
performance of the standard LDA algorithm.

All experiments were performed with an annotated dataset which we
have made publicly available. To our knowledge, we are the first to con-
tribute such a public dataset to evaluate research paper similarity.

The present work leaves some issues open, offering two main directions
for further research. On the one hand, there are still some points in the
studied methods that may be improved. The use of the author field is
a good example. Author names in bibliographical databases are prone to
problems due to several reasons: badly recorded names, the appearance of
several variants of an author’s name, or different authors having the same
name are only some of them. This is a non-trivial problem that comprises
several challenges [128] which we have not addressed here. Also, alternative
clustering algorithms could be used for the LDA initialization. Or, focusing
on the vector space model approaches, it may be interesting to consider
other approaches based on concept representation (similarly to ESA), such
as the one proposed in [47].

On the other hand, an interesting idea is to implement a scientific article
recommender system in which the studied methods are applied. Such a
system can build user profiles based on the previously published papers of
each user, and/or on papers in which he has already expressed an interest,
and then compare those papers with the rest of the papers in the database or
databases used. Of course, such a system would have some of the limitations
inherent to content-based systems, so a next step would be combining the
proposed methods with other ideas such as collaborative filtering or the use
of authoritativeness.



Chapter 5

Content-based filtering of
Calls For Papers

At the end of the previous chapter we mentioned the possibility of apply-
ing the methods we studied to a scientific paper recommender. However,
while a number of techniques have been proposed recently for recommending
scientific resources, with the study and emergence of research paper recom-
menders (see Chapter 3), citation recommendation [134], or applications to
find experts in a specific research area [37], CFP recommendation remains
unexplored to our knowledge. This is why we have decided to focus this
chapter on a Call For Papers recommender rather than on a scientific paper
recommender.

Nowadays many scientific conferences are organized, resulting in a high
number of calls for papers (CFPs). This increasing number of CFPs, how-
ever, means for the researchers a substantial amount of time spent looking
for potentially interesting conferences. The problem has been addressed in
several ways, the most popular being the use of domain-specific mailing lists
(e.g. DBWorld1), or organizing CFPs per subject on dedicated websites (e.g.
WikiCFP2, CFP List3, or PapersInvited4). However, these solutions still re-
quire users to spend part of their time searching for CFPs, and the results
do not always match their specific interests.

Recommenders typically rely on collaborative filtering approaches [135],
content-based methods [113], or hybrid methods. It can be expected that
a CFP recommender would be most effective when content-based methods
are combined with other techniques. However, before such a recommender
can be developed, we feel that a number of content-based aspects need to
be understood better, including how the research interests of a user can

1http://research.cs.wisc.edu/dbworld/
2http://www.wikicfp.com
3http://www.cfplist.com
4http://www.papersinvited.com
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be induced from his publication history and how these interests could be
matched to CFPs. The aim of this chapter is to explore which methods
may be most suitable for this task. In particular, we consider the textual
content of the CFP such as the introductory text or the list of topics, and
we complement that information with the abstracts of the papers recently
written by the members of the program committee who are named in the
CFP. On the other hand, we use information from the papers that the users
have previously written to discover their research interests.

The chapter is structured as follows. First we discuss in more detail
what types of information are at our disposal, and how this information
can be used. Subsequently, in Section 5.2 we introduce different methods
to effectively model and compare CFPs and user profiles. In Section 5.3 we
describe the experiments performed and we show and discuss the results from
these experiments. Finally, in Section 5.4 we summarize the conclusions of
the chapter.

5.1 Available information

5.1.1 User representation

To represent the research interests of users we exploit the papers they have
written. Since research interests might change, only recent papers are con-
sidered. In our experiments we have considered papers written in the last
five years as being recent, although more advanced methods could be en-
visaged to analyze how the research interests of a user are changing over
time. Alternatively, in the case of users with few or no papers (e.g. a be-
ginning researcher) users could specify those papers which represent their
interests best. As mentioned in Chapter 4, getting access to the full text
of research papers is not always possible, and we therefore only use the pa-
pers’ abstracts. We then consider, for each user, a document consisting of
the concatenation of the abstracts of his papers. For the sake of clarity, we
further refer to this document as dabs.

What we can also learn from an author’s publication profile is which
authors he frequently cites. This information can be valuable if we consider
that authors are more likely to be interested in conferences whose program
committee (PC) contains several people who are working in the same field
and whose papers they sometimes cite. To take this into account, we will use
a second document consisting of the concatenation of the abstracts of the
papers written by the authors usually cited by the user. In our experiments,
we considered an author to be usually cited if at least 3 different papers
written by him have been cited by the user in 3 different occasions. We
refer to this document as daut.
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5.1.2 CFP representation

For this work we have used CFPs available from DBWorld. Although there
is no standard format for writing CFPs, they usually include similar in-
formation: an introductory text about the conference, an indicative list of
topics that are within the scope of the conference, and the names of the
members of the program committee (or at least the organizers). They usu-
ally also include important dates and location, but we will disregard that
information.

The introductory text usually consists of a short description about the
conference which might contain terms that describe the scope of the confer-
ence and are therefore important. However, this description often also refers
to past conferences, the proceedings, etc., which means that many terms are
mentioned that are not representative of the topics of the conference. We
try to compensate this by concatenating the text of the CFP with the list
of topics that are within the scope of the conference. We use the resulting
document, which we further refer to as dtxt, to model a CFP document.

The names of the members of the program committee are also potentially
useful. An option to use them directly could be trying to match them to the
names cited in the papers of the users, but the results of initial experiments
along these lines were not positive. However, these names can be used
indirectly too. In particular, for the experiments reported in this paper, we
associate each CFP with a document dcon, consisting of the concatenation
of the abstracts of all papers that have been written in the last two years
by the PC members.

Finally, if we want to consider both types of information simultaneously,
we can concatenate dtxt and dcon; we refer to this document as dtot. Table 5.1
summarizes the different types of information to represent users and CFPs.

Table 5.1: Different types of information for modeling users and CFPs

user dabs: concatenation
of abstracts written
by the users

daut: concatenation
of abstracts written
by frequently cited
authors

CFP
dtxt: concatenation
of introductory text
and topics

dcon: concatention
of abstracts written
by the members of
the PC

dtot: concatenation of dtxt and dcon
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5.2 Matching CFPs and users

Now that we have seen which kind of information is at our disposal, in this
section we explore how to model it and how to compare the resulting models
in order to assess the similarity between users and CFPs.

5.2.1 Tf-idf

To measure the similarity between a CFP and a user profile we compare
them in the vector space model: each profile is represented as a vector,
with one component for every term (unigram) occurring in the collection.
A CFP is encoded as a vector analogously to Section 4.2.1: stopwords5 are
first removed, no stemming is used, and to calculate the weight for each
term wi in the CFP, the tf-idf scoring technique as defined in Eq. (2.4) is
used. As mentioned in Section 5.1, CFPs can be represented in different
ways. Depending on which concatenated document is used, the tf-idf score
for each term is given by:

tfidf(wi, dtxt) =
n(wi, dtxt)

|dtxt| · log( |Ctxt|
|{dj : wi ∈ dj}| ) (5.1)

tfidf(wi, dcon) =
n(wi, dcon)

|dcon| · log( |Ccon|
|{dj : wi ∈ dj}| ) (5.2)

tfidf(wi, dtot) =
n(wi, dtot)

|dtot| · log( |Ctot|
|{dj : wi ∈ dj}|) (5.3)

where Ctxt is the collection of CFPs made from the concatenation of intro-
ductory text and scope topics (i.e., of documents of the form dtxt), Ccon is
the collection of CFPs made from the concatenation of the abstracts of the
papers written by the PC members (documents of the form dcon), and Ctot is
the collection of CFPs made from the concatenation of both textual content
and abstracts of the papers written by the PC members (documents of the
form dtot).

Since user profiles and CFPs belong to different collections, we consider
user profiles as queries, and therefore the process to convert a user profile
into a vector is slightly different. As with CFPs, stopwords are removed
and no stemming is used; however, only those terms that occur in the CFP
collection are considered, and the rest are ignored. Then the weight of each
term in the user profile is calculated, depending on the type of information
used:

tfidf(wi, dabs) =
n(wi, d

txt
abs)

|dtxtabs|
· log( |Ctxt|

|{dj : wi ∈ dj}| ) (5.4)

tfidf(wi, dabs) =
n(wi, d

con
abs )

|dconabs |
· log( |Ccon|

|{dj : wi ∈ dj}| ) (5.5)

5The list of stopwords we have used is the same as in Section 4.2.1
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tfidf(wi, dabs) =
n(wi, d

tot
abs)

|dtotabs|
· log( |Ctot|

|{dj : wi ∈ dj}| ) (5.6)

where dtxtabs, d
con
abs and dtotabs are obtained from the user profile dabs after re-

moving all terms that do not occur in Ctxt, Ccon and Ctot, respectively.
Two vectors d1 and d2 corresponding to different profiles can then be

compared using a standard similarity measure; we use the cosine similarity,
as defined by Eq. (2.7), and the generalized Jaccard similarity, as defined
by Eq. (2.10). Unlike in Chapter 4 we do not consider the extended Jac-
card similarity nor the Dice similarity, since their performance was generally
comparable or worse to that of the cosine similarity measure.

We further refer to the method that combines tf-idf with the cosine
similarity measure as tfidf-txt-cos, tfidf-con-cos and tfidf-tot-cos, depending
on the information used, and to the method that combines tf-idf with the
generalized Jaccard similarity as tfidf-txt-gja, tfidf-con-gja and tfidf-tot-gja.

5.2.2 Language modeling

As in Chapter 4, we also consider the alternative of estimating unigram
language models for each document, and determining their divergence. A
user or CFP d is then assumed to be generated by a given model D. This
model is estimated from the terms that occur in d and in the other CFPs.
Using Jelinek-Mercer smoothing as in Eq. (2.15), the probability that model
D corresponding to a CFP generates term w is estimated as:

P ∗(w|D) = λP (w|dtxt) + (1− λ)P (w|Ctxt) (5.7)

P ∗(w|D) = λP (w|dcon) + (1− λ)P (w|Ccon) (5.8)

depending on the type of information used, where Ctxt and Ccon are the
collections of CFPs as defined in Section 5.2.1. The probabilities P (w|d)
and P (w|C) are estimated using maximum likelihood, as defined in Eqs.
(2.12) and (2.14) respectively. Again, stopwords are removed from d before
estimating its model.

Alternatively, Dirichlet smoothing, as in (2.16), can be used:

P ∗(w|D) =
n(w, dtxt) + μP (w|Ctxt)

|dtxt|+ μ
(5.9)

P ∗(w|D) =
n(w, dcon) + μP (w|Ccon)

|dcon|+ μ
(5.10)

where μ = |dtxt| + 1 and μ = |dcon| + 1 respectively. Note that we do not
use the average document length for μ as in Chapter 2, but the document
length, which is not an unusual alternative [10] either. We add 1 for the
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cases where dcon is empty6 (i.e., when the CFP has no PC and therefore no
concatenation of abstracts written by its members).

To estimate the probability that the model of a user profile generates a
given term w we simply replace dtxt in Eqs. (5.7) and (5.9) and dcon in Eqs.
(5.8) and (5.10) by dtxtabs and dconabs (as defined in Section 5.2.1) respectively.

Once the modelsD1 andD2 corresponding to a user profile d1 and a CFP
d2 are estimated, we measure their dissimilarity using the Kullback-Leibler
divergence:

KLD(D1||D2) =
∑
w

D1(w)log
D1(w)

D2(w)
(5.11)

In Section 5.3.2, we refer to these methods as lm-txt-jms and lm-con-jsm,
when Jelinek-Mercer smoothing is used, and as lm-txt-dir and lm-con-dir
when Dirichlet smoothing is used.

However, if we want to consider both kinds of information jointly (i.e.,
the information from the documents of the form dtxt and that from the
documents of the form dcon), language model interpolation is used. The idea
of interpolating language models, which underlies Jelinek-Mercer smoothing,
can be generalized:

P ∗(w|D) = λ1P (w|dtxt)+λ2P (w|dcon)+λ3P (w|Ctxt)+λ4P (w|Ccon) (5.12)

for the CFPs, and

P ∗(w|D) = λ1P (w|dtxtabs)+λ2P (w|dconabs )+λ3P (w|Ctxt)+λ4P (w|Ccon) (5.13)

for the user profiles, with
∑

i λi = 1 and where

λ3 =

⎧⎪⎨
⎪⎩

1−λ1−λ2
2 , if λ1, λ2 > 0

1− λ1, if λ2 = 0

0, if λ1 = 0

λ4 =

⎧⎪⎨
⎪⎩

1−λ1−λ2
2 , if λ1, λ2 > 0

0, if λ2 = 0

1− λ2, if λ1 = 0

In Section 5.3.2, we refer to this method as lm-tot-jms.
On the other hand, if Dirichlet smoothing is used we interpolate the

models obtained with Eqs. (5.9) and (5.10):

P ∗(w|D) = λ1(
n(w, dtxt) + μP (w|Ctxt)

|dtxt|+ μ
) + λ2(

n(w, dcon) + μP (w|Ccon)
|dcon|+ μ

)

(5.14)
for the CFPs, and

P ∗(w|D) = λ1(
n(w, dtxtabs) + μP (w|Ctxt)

|dtxtabs|+ μ
) + λ2(

n(w, dconabs ) + μP (w|Ccon)
|dconabs |+ μ

)

(5.15)
for the users profiles. We refer to this method as lm-tot-dir. Again, μ =
|d|+ 1, where d is dtxt, dcon, d

txt
abs or dconabs , depending on the case.

6While dtxt cannot be empty, we set μ = |dtxt|+1 rather than μ = |dtxt| to keep things
simple, i.e., μ is equal to the document length plus 1 in all cases.
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5.2.3 Feature selection

As mentioned in Section 5.1, the introductory texts of the CFPs often con-
tain information about past editions of the conference or brief submission
guidelines. This leads to the use of a number of relatively common terms,
which are irrelevant for characterizing the scope of a conference. To elim-
inate such unwanted terms, we use the term strength method described in
Section 2.1.1.3. We recall that the strength of a term w is computed by es-
timating the probability that a term w occurs in a document d1 given that
it occurs in a related document d2:

strength(w) = P (w ∈ d1|w ∈ d2) (5.16)

In this case, in order to construct the pairs of related documents we use
method tfidf-txt-cos from Section 5.2.1. Also, as in Section 2.1.1.3, we set
the threshold of the average number related documents per document (i.e.,
the average number of pairs (di, dj) for each di) to a value between 10 and
20.

After calculating strength(w) for every term w in the CFP collection,
the N strongest terms are selected, ignoring the rest. For our experiments in
Section 5.3 we have used N = 500 and Ctxt as the CFP collection, since that
combination performed well in early tests. The documents are then modelled
as in Sections 5.2.1 and 5.2.2. When referring to particular methods in
Section 5.3.2, we indicate when feature selection was used by adding the
suffix -fs to the name of the method.

5.2.4 Related authors

As mentioned in Section 5.1, to reflect users’ interest for those conferences
whose PC members they are familiar with we propose to calculate extra
models exclusively based on papers and compare them. Specifically, we
compare the CFP model based on the concatenation of the abstracts of
the papers written by the PC members (dcon) with a user model based on
the concatenation of the abstracts of the papers written by the researchers
usually cited by that particular user (daut). Depending on the used method,
the model based on dcon is constructed according to Eq. (5.2), Eq. (5.8), or
Eq. (5.10). For the model based on daut these definitions become

tfidf(wi, daut) =
n(wi, d

con
aut)

|dconaut |
· log( |Ccon|

|{dj : wi ∈ dj}|) (5.17)

P ∗(w|D) = λP (w|dconaut) + (1− λ)P (w|Ccon) (5.18)

P ∗(w|D) =
n(w, dconaut) + μP (w|Ccon)

|dconaut |+ μ
(5.19)

where μ = |dconaut |+ 1.
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The method used to create and compare these extra models is always
analogous to that used to calculate the original result, e.g. if the original
result is obtained with method lm-txt-jms (language modeling with Jelinek-
Mercer smoothing), Eqs. (5.8) and (5.18) are used to calculate these extra
models, and they are then compared using the Kullback-Leibler divergence.

The idea is to use these models to complement the result obtained with
the methods seen in the previous sections. In particular, once the models
are created and compared, we simply combine the result with that of the
original comparison by means of the weighted average. For example, to
compare CFP cfp and user u with method tfidf-txt-cos, the result was given
by simc(cfptxt,utxt). However, if we take into account these extra models
based on dcon and daut (in this case, cfpcon and uaut), the result is now given
by:

α · simc(cfptxt,utxt) + β · simc(cfpcon,uaut) (5.20)

where α + β = 1. Based on preliminary experiments, we use α = 0.8 and
β = 0.2 for the experiments in Section 5.3.2. We indicate that these extra
models are used by adding the suffix -nam to the name of the method.

5.2.5 Related authors & feature selection

Finally, both previously introduced variations can be combined: first, feature
selection is applied, which also reduces the number of terms in the extra
models based on the frequently cited authors, and then, as explained in the
previous subsection, the models are compared separately, to finally combine
the results. We indicate that this variation is used by adding the suffix -fsn
to the name of the method.

5.3 Experimental evaluation

5.3.1 Experimental set-up

To build a test collection and evaluate the proposed methods, we downloaded
1769 CFPs posted between February and July 2012 at DBWorld, which
reduced to 1152 CFPs after removing duplicates. Additionally, those CFPs
lacking an introductory text or an indicative list of topics were removed
too, which further reduced the total number to 969 CFPs. Each of these
CFPs has a text part (concatenation of introductory text and topics) and a
concatenation of the abstracts of the papers written by the PC members in
the last 2 years7, where available.

On the other hand, 13 researchers from a field which relates to the scope
of DBWorld took part in our experiments as users. In order to profile them,

7All the information regarding research papers was retrieved from the ISI Web of
Science, http://apps.isiknowledge.com .
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we downloaded the abstracts of the papers they wrote in the last 5 years.
The ground truth for our experiments is based on annotations made by
these 13 users8. In a first experiment, each user indicated, for a minimum
of 100 CFPs, whether these were relevant or not (relevance degree of 1 or 0
respectively). Then, using each of the studied methods, the CFPs annotated
by the users were ranked such that ideally the relevant CFPs appear at the
top of the ranking.

In a second experiment, we considered only CFPs assessed as highly
relevant by at least one of the methods. To this end, we selected for each
user and each of the 48 studied methods the top-5 CFPs of the rankings
obtained in the first experiment. This resulted in 240 CFPs, which reduced
to an average of about 50 CFPs per user due to overlap between the top-5
CFPs returned by each method. Each of those CFPs was then rated by the
user, who gave them a score between 0 (“totally irrelevant”) and 4 (“totally
relevant”). Again, using each of the studied methods, these CFPs were
ranked such that ideally the most relevant CFPs appear at the top of the
ranking.

To evaluate the rankings resulting from both experiments, for each user
and each method we use normalized discounted cumulative gain (nDCG)
[76] to measure the relevance of each CFP according to its position in the
ranking. The idea of this measure is that the greater the ranked position
of a relevant document, the less valuable it is for the user, as users tend to
examine only those documents ranked high, except if those documents do
not satisfy their information needs, in which case it is more likely that they
still consider lower ranked documents. This is reflected by the discounted
cumulative gain of the document ranked in position r:

DCGr = rel1 +
r∑

i=2

reli
log2i

(5.21)

The relevance reli of the document ranked in position i is the relevance
indicated by the user, i.e., 0 or 1 for the first experiment, and 0, 1, 2, 3 or
4 for the second experiment.

Since the number of CFPs annotated by each user might be different,
the length of the obtained rankings varies. In order to compare the DCG
values we need to calculate the normalized DCG:

nDCGr =
DCGr

iDCGr
(5.22)

where iDCGr is the ideal DCG at position r: the DCG obtained at position
r in the ideal case where all documents are perfectly ranked, from most to
least relevant, according to the users’ annotations.

8The set of annotations is publicly available at http://www.cwi.ugent.be/cfpfiltering/
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For both experiments in Section 5.3.2 we work with the nDCG of the
CFP ranked in the last position, i.e., nDCGr where r is the total number
of CFPs in the ranking, as this value reflects the gains of all the CFPs
throughout the whole ranking.

5.3.2 Results

Tables 5.2 and 5.3 summarize the results of the first and second experiment
respectively. In particular, for each method we show the average nDCGr for
the 13 users, where r is the number of CFPs in the ranking for each user as
indicated in the previous section. For the sake of simplicity we have used
some fixed values for the λ parameters of (5.12) and (5.13) in the methods
based on language modeling with Jelinek-Mercer smoothing. In particular,
we use λ1 = 0.9 and λ2 = 0 for the lm-txt-jms method (i.e., analogously to
the tfidf-txt methods, it only uses the information from the text parts of the
CFPs); λ1 = 0 and λ2 = 0.9 for the lm-con-jms method; and λ1 = 0.4 and
λ2 = 0.4 for the lm-tot-jms method. For method lm-tot-dir, that uses (5.14)
and (5.15), we fix λ1 = 0.5 and λ2 = 0.5.

First we compare the different kinds of information that can be used:
introductory text plus topics (txt), concatenation of the abstracts of the
papers recently written by the PC members (con), or the concatenation of
both (tot). Figures 5.1 and 5.2 show that, in general, using the abstracts
alone (dcon) does not suffice to outperform the methods based on the textual
content (dtxt), except for methods tfidf-con-cos, tfidf-con-gja, and tfidf-con-
gja-nam in Experiment 1. Actually, in most cases in both experiments,
using the abstracts alone performs worse than using the textual content.
However, only in a few cases are these differences significant9, as shown in
line 1 of Table 5.4 and Table 5.5. On the other hand, methods based on the
concatenation of abstracts and textual content seem to perform comparably
or slightly better than the txt methods, although in some cases the perfor-
mance gets notably worse (lm-tot-jms-nam in Experiment 1; tfidf-tot-cos,
tfidf-tot-cos-nam, tfidf-tot-gja and its variants, and lm-tot-jms-nam in Ex-
periment 2). As shown in line 2 of Table 5.4 and Table 5.5, these differences
are significant mainly in Experiment 2, but only for some methods. How-
ever, we can see that tot methods do significantly outperform con methods
in most cases for both experiments, in particular for the methods based on
language modeling.

To study the impact of feature selection (fs), the additional models based
on frequently cited authors (nam) and the combination of both (fsn), we
fix the method and the type of information used. As shown in Figs. 5.3
and 5.4, in general, the best results are obtained when feature selection is
applied, especially for the methods based on language modeling. It must be

9In this chapter we consider a difference to be significant when p < 0.05 for the Mann-
Whitney U test. It should be noted that the low number of users affects the significance.
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noted, however, that these differences are only significant in some cases, as
depicted by line 1 of Tables 5.6 and 5.7: lm-con-jms-fs and lm-tot-jms-fs in
Experiment 1, and lm-tot-jms-fs and lm-tot-dir-fs in Experiment 2. On the
other hand, results obtained with the nam methods are worse than the orig-
inal, with significant differences for lm-jms methods, mainly in Experiment
2. Finally, fsn usually improves the original results, but as shown in line 3
of Tables 5.6 and 5.7 there is no significant evidence of this.

Table 5.6: Summary of significant differences based on the variation used:
none (-), fs, nam and fsn, compared as indicated by the second column;
significant difference is indicated by +/- when the first method in the pair
performs better/worse than the second one. Experiment 1

cos gja jms dir
line comp. txt con tot txt con tot txt con tot txt con tot
1 no - fs - -
2 no - nam +
3 no - fsn
4 fs - nam +
5 fs - fsn
6 nam - fsn

Table 5.7: Summary of significant differences based on the variation used:
none (-), fs, nam and fsn, compared as indicated by the second column;
significant difference is indicated by +/- when the first method in the pair
performs better/worse than the second one. Experiment 2

cos gja jms dir
line comp. txt con tot txt con tot txt con tot txt con tot
1 no - fs - -
2 no - nam + + +
3 no - fsn -
4 fs - nam + + + + + +
5 fs - fsn +
6 nam - fsn - - - -

If the variations are compared to each other (lines 4-6 of Tables 5.6 and
5.7) we see almost no significant differences in Experiment 1. In Experiment
2, however, it can be seen that fs significantly outperforms nam, especially
for the methods based on language modeling, as does fsn. If we compare
fs and fsn, although the results show some improvement of fs over fsn, the
difference is in general not significant.
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Table 5.9: Summary of significant differences based on the method used: cos,
gja, jms and dir, compared as indicated by the second column; significant
difference is indicated by +/- when the first method in the pair performs
better/worse than the second one. Experiment 2

txt con tot
li method - fs nam fsn - fs nam fsn - fs nam fsn
1 cos - gja +
2 cos - jms + + + + +
3 cos - dir + + + + + + + +
4 gja - jms + + + + +
5 gja - dir + + + + + + + +
6 jms - dir + + + +
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When both methods based on the vector space model are compared to
each other, we see that cosine similarity seems to perform slightly better
than the generalized Jaccard similarity. This is interesting since the results
of Chapter 4 suggested that the generalized Jaccard similarity outperforms
the cosine similarity for research paper similarity, although it also justifies
the popularity of this measure. The differences, however, are only signif-
icant between tfidf-tot-cos-fs and tfidf-tot-gja-fs in Experiment 1, and be-
tween tfidf-txt-cos-nam and tfidf-txt-gja-nam in Experiment 2, as indicated
by line 1 of Tables 5.8 and 5.9. On the other hand, we can compare both
methods based on language modeling. As shown in Table 5.8 and Fig. 5.1,
in Experiment 1 they perform comparably for txt and tot, and only for con
methods that use Jelinek-Mercer smoothing clearly outperform those that
use Dirichlet smoothing. However, as line 6 of Table 5.8 indicates, there are
no significant differences. In Experiment 2 Jelinek-Mercer smoothing seems
to perform better also for txt and tot, meaning a significant improvement in
some cases as shown in line 6 of Table 5.9.

Table 5.8: Summary of significant differences based on the method used: cos,
gja, jms and dir, compared as indicated by the second column; significant
difference is indicated by +/- when the first method in the pair performs
better/worse than the second one. Experiment 1

txt con tot
line method - fs nam fsn - fs nam fsn - fs nam fsn
1 cos - gja +
2 cos - jms + + + + + + + + +
3 cos - dir + + + +
4 gja - jms + + + + + +
5 gja - dir + + + +
6 jms - dir

Finally, we compare the methods based on the vector space model with
those based on language modeling. In Figures 5.5 and 5.6 we can observe
that the former generally outperform the latter. Some methods based on
language modeling (lm-tot-dir-fs, lm-tot-dir-fsn and lm-tot-jms-fs in Exper-
iment 1; lm-tot-jms-fs, lm-txt-jms-fs and lm-tot-dir-fs in Experiment 2) per-
form comparably to those based on the vector space model, but although
both vector space model and language model based approaches can achieve
good results, the former appear to be much more robust against changes in
the particular way in which CFPs are modelled. In a comparison where the
information type and the use of feature selection/names is fixed, methods
based on the vector space model significantly outperform those based on
language modeling in some cases (see lines 2-5 of Tables 5.8 and 5.9). In
Experiment 1 these are all cases where con is used, plus also some specific
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Figure 5.5: Comparison of vector space model based methods and language
model based methods for experiment 1. The Y-axis shows the nDCG, while
the X-axis indicates the kind of information and variation used.

cases where txt or tot are used, depending on the compared methods. The
differences in the con cases are also significant in Experiment 2. This is
interesting as the conclusions of Chapter 4 indicated the contrary for the
assessment of research paper similarity, but this might be due to the fact
that we use the profiles as queries and it has been observed that language
models are highly sensitive to smoothing for long and verbose queries [152].
It is also interesting to see that in Experiment 2 methods based on the vec-
tor space model always outperform those based on language modeling with
Dirichlet smoothing when txt is used.
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Figure 5.6: Comparison of vector space model based methods and language
model based methods for experiment 2. The Y-axis shows the nDCG, while
the X-axis indicates the kind of information and variation used.

5.4 Summary

We have proposed and compared several content-based methods to match
users with CFPs. We have studied the impact of the different types of
information available, the accuracy of the models that represent such infor-
mation, and the effect of feature selection on these models. Also, using the
users’ names and the names of the PC members we have accessed the papers
recently written by them to profile the users and to complete available infor-
mation about the CFP respectively. Information about authors frequently
cited by the users is also used to reflect the importance given by the users
to the CFPs of conferences with people in the PC working in the same field
and whose work they usually cite.

The results indicate that methods based on the vector space model are
generally more robust, and achieve the best performance on this task. Both
for vector space models and language models, feature selection improved
the results, which could relate to the problem of having too many terms in
the CFPs with a relative low informative load. Since the introductory texts
and topics were retrieved automatically, this problem might be alleviated by
improving and customizing the parser that performs this task, or by working
with clearly structured CFPs, which unfortunately does not occur often in
practice.

Finally, we have also seen that although the abstracts of the papers writ-
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ten by the PC members can enhance the performance obtained with the text
of the CFP alone they are not powerful enough on their own. This seems
to indicate that abstracts contain potentially useful information, but that
no method has yet been identified that could fully exploit it. The poor
performance of the methods that use abstracts of frequently cited authors
might be partly related to this. On the one hand, automatically retriev-
ing the papers written by a particular author is not a trivial problem, as
disambiguating author names is a well-studied research area itself. On the
other hand, something similar happens with the scope topics: it would be
interesting to deal with them separately, but correctly extracting keywords
often falls into NLP territory.

As mentioned in the introduction of the chapter, we remark that content-
based approaches alone do not suffice to cover all the aspects of CFP rec-
ommendation as the relevance of a conference depends also on information
not contained in the text of the CFPs. Therefore, the studied content-based
methods should be complemented with other techniques. Collaborative fil-
tering would be of great help as it allows using the aforementioned kind
of information. In this way, a given CFP can be recommended to a user
because another user with similar interests attended a previous edition of
that conference. Alternatively, a user can get a recommendation about a
given CFP because that conference covers similar topics as a conference he
attended in the past. Also, trust-based methods could reflect additional in-
formation not covered by collaborative filtering. A user can then be notified
about a conference because a researcher he trusts is in the program com-
mittee, or because he trusts the conference given its impact on his research
field.
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Chapter 6

Conclusion

There is an increasing number of online tools on offer to help researchers in
their work, from tools aimed at enhancing collaboration to applications to
manage specific resources such as project descriptions or scientific papers.
In particular, systems dedicated to deal with scientific literature, such as
digital libraries and dedicated search engines, have gained much popularity.
We are currently witnessing the development of many techniques which take
the task of helping the user to find relevant publications a step further: a
large number of recommendation methods have been studied in the last
years, and now some of them start to get implemented in popular systems.

Within this framework, in this thesis we have presented several methods
to filter research resources. On the one hand, we have studied how to exploit
various types of information usually found in scientific papers in order to
assess the similarity between two papers, and we have proven the suitability
of language models for this task. On the other hand, we have explored
several content-based methods to recommend calls for papers of conferences
(CFPs) based on the different parts of a typical CFP.

In particular, we have first presented a survey of these methods to filter
research resources, putting special emphasis on research paper recommender
systems since these systems are the most popular ones. This offers a broad
perspective of what the state of the art in this research area is right now.

This overview is followed by our main contributions to the domain of fil-
tering of research resources, focusing on content-based approaches. First we
have proposed and compared several content-based methods, based either
on the vector space model or on language modeling, to compare research
paper abstracts. In particular, we have studied how to make best use of
semi-structured information about research papers usually accompanying
the abstract: a list of keywords, a list of authors, and the name of the jour-
nal where the article was published. The results show that the proposed
methods perform comparably when only the abstract is considered. How-
ever, when the considered semi-structured information (keywords, authors,

97
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journal) is employed we can observe that the methods based on language
modeling exploit it better and outperform those based on the vector space
model. In particular, they interpolate models based on the different types
of information available. Also, extra information can be added to the in-
terpolated model by using Latent Dirichlet Allocation (LDA) to discover
latent topics and communities. Moreover, the performance of the standard
LDA algorithm can be significantly enhanced by using information about
keywords and authors associated with a paper for initialization.

On the other hand, we have also proposed and compared several content-
based methods to match users with calls for papers of conferences. As with
the research papers, we have studied the impact of the different types of
information available: the introductory text and list of topics in the scope
of the conference, and names of the program committee (PC) members.
These names can be used to access the papers recently written by them to
complete the information about the CFP. Also, the papers written by the
users are retrieved to use them as their profiles. In particular, the abstracts
of these papers are assumed to represent their interests, and the citations
in these papers can show which authors they usually cite. This latter kind
of information can be employed to reflect the importance given by the users
to the CFPs of conferences with people in the PC working in the same field
and whose work they usually cite. Again, the methods considered are based
either on the vector space model or on language modeling. In this context,
methods based on the vector space model are generally more robust and
achieve the best performance. In both cases feature selection improves the
results, and also the performance increases when the abstracts of the papers
written by the PC members are considered, instead of taking the text of the
CFP alone.

The methods proposed in this thesis are not an endpoint; they offer two
main directions for future work. A first possibility is focusing on improving
some aspects with a considerable impact on the results and which do not
directly relate to the methods but rather to the data used, while the second
possibility focuses on exploring alternative methods which can be combined
with the proposed ones.

As an example of the first case, we have seen the importance of the
information related to the authors, in the case of research paper similarity,
or related to the PC members, in the case of the CFP filtering. However,
automatically retrieving the papers of a given person is not a trivial task
due to the problems mentioned in Chapter 4. Further research to tackle this
problem would probably lead to improve the performance of the proposed
methods. In general, it is important to ensure the correctness of the data,
and a misspelled name is not the only possible error in a document. While
research papers usually follow a well-defined structure in which the different
parts (keywords, authors, abstract, etc.) are clearly identified, this is not
usually the case for CFPs or other documents. In these cases, for example
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in the case of CFPs, a more robust and complex parser should be used.
Also, as mentioned at the end of Chapter 5, some parts of a CFP require
something else than a parser, since correctly extracting keywords from the
scope topics is in many cases too difficult due to the complex formulation of
some sentences. In those cases, techniques from natural language processing
should be used. Mitigating these problems would improve the performance
of the proposed methods and would also allow to consider new methods
based on the proposed ones. For instance, if the keywords could be correctly
extracted from the scope topics of the CFPs, they could be used to estimate
new models which can later be interpolated as in the case of research paper
similarity.

In the second case, and with the goal of effectively applying the proposed
methods in a real recommender system, the research should not focus on
content-based methods alone, but rather on their integration with other
approaches. Collaborative filtering approaches are an ideal candidate, since
they have long proven their worth. Also, we have seen that techniques based
on citation analysis are popular and can lead to interesting results. Finally,
other factors worth to consider in a recommender could be trust (so users
who are more trusted by a given user gain more weight in a collaborative
filtering approach, for example) or the quality of the papers (e.g. estimated
according to the number of papers that cite them, the quality of the journal
in which they are published, or more complex authoritativeness indices).
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Appendix A

An ESA example

In this appendix we show a small example of how the ESA method described
in Section 4.2.2 exactly works. For the sake of simplicity, we have used letters
instead of words in order to represent the terms. The example, depicted
in Fig. A.1, shows the whole process of calculating the ESA vectors for a
collection C of four documents, C = {D1,D2,D3,D4}.

Figure A.1: How ESA vectors are calculated
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First, an artificial document is considered for each keyword by concate-
nating the abstracts of the documents where they occur, forming a new
collection CE (A). Then, a weighted term vector is calculated for each of
those documents using tf-idf (see Section 2.1.2), which is then normalized
(B). Weighted term vectors are calculated analogously for each document
in the original collection C, which contains the documents that we want to
represent as ESA vectors (C). Finally, each vector di resulting from step C
is compared to every vector ki resulting from step B. The result of each of
those comparisons is used as the weight of the corresponding components in
the resulting ESA vector dEi (D).



Appendix B

A detailed case study

This appendix offers a more qualitative view on the results of Chapter 4,
rather than the quantitative view offered in Section 4.5, in order to gain
insight into the improvements of the proposed methods. To do so, we detail
a particular case where the system must find matches for the following paper:
“(v, T)-fuzzy rough approximation operators and the TL-fuzzy rough ideals
on a ring”1.

As explained in Section 4.4, a paper is compared to 30 others tagged
as similar or not similar, obtaining then a ranking where the most similar
papers occur in the highest positions. Table B.1 shows the titles of the
top ten papers of such a ranking when methods abstract (g.jacc), LM0 and
LM2e are used to find matches for the aforementioned paper. The actual
hits are highlighted in bold. Also, at the bottom of the table the average
precision for each method is shown.

It can be seen that the top four positions for LM2e are indeed hits.
LM0 already misses one of those four hits (it appears at the 6th position),
while abstract ranks its first hit in the 10th position. This is due to the fact
that the abstracts of the hits, although they share some vocabulary with
that of the given document, do not have so many (meaningful) terms in
common with the selected paper as for example the first document ranked
by abstract. On the other hand, the LDA initialization based on keyword
clustering causes the difference between LM0 and LM2e. More specifically,
this is due to the fact that, in such a case, the keywords, although different
sometimes, are grouped under the same clusters. When this happens, the
words occurring in the abstracts of those documents are assumed by the
LDA initialization to have been generated by the same topic, increasing the
probabilities related to that given topic in both models and reducing the
differences between them (as long as the weight given to the topics in Eq.
(4.18) is big enough).

1Only the titles are used here; for information about the rest of features used by the
system we refer to the articles’ records in the ISI Web of Science.
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Appendix C

Significance values for the
experiments with CFPs

In Chapter 5 we summarized the significant differences between the studied
methods. In this appendix, we present exact values for the the p obtained
with the Mann-Whitney U test for both experiments. Sections C.1 and C.3
refer to Experiment 1, while Sections C.2 and C.4 refer to Experiment 2.

In particular, in Sections C.1 and C.2, for each table, we fix the type
of information used, i.e., txt, con and tot, and the variation: none, fs, nam
and fsn. On the other hand, in Sections C.3 and C.4, for each table we fix
the basic method employed to study the differences between the variations
(none, fs, nam and fsn). We highlight in gray those cases in which there is
a significant (p < 0.05) difference between two methods.

C.1 Experiment 1 - Differences between methods

Table C.1: none-txt

tfidf-cos tfidf-gja lm-jms lm-dir
tfidf-cos 0 0.3292 0.1587 0.2544
tfidf-gja 0.3292 0 0.3618 0.4209
lm-jms 0.1587 0.3618 0 0.4807
lm-dir 0.2544 0.4209 0.4807 0
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Table C.2: none-con

tfidf-gja tfidf-cos lm-dir lm-jms
tfidf-gja 0 0.596 0.0079 0.0057
tfidf-cos 0.596 0 0.0079 0.0054
lm-dir 0.0079 0.0079 0 0.231
lm-jms 0.0057 0.0054 0.231 0

Table C.3: none-tot

tfidf-cos lm-dir tfidf-gja lm-jms
tfidf-cos 0 0.4563 0.9415 0.0064
lm-dir 0.4563 0 0.4581 0.3104
tfidf-gja 0.9415 0.4581 0 0.0125
lm-jms 0.0064 0.3104 0.0125 0

Table C.4: fs-txt

lm-jms tfidf-cos lm-dir tfidf-gja
lm-jms 0 0.3929 0.7092 0.4228
tfidf-cos 0.3929 0 0.3022 0.5144
lm-dir 0.7092 0.3022 0 0.567
tfidf-gja 0.4228 0.5144 0.567 0

Table C.5: fs-con

lm-dir tfidf-cos lm-jms tfidf-gja
lm-dir 0 0.0059 0.0654 0.0087
tfidf-cos 0.0059 0 0.0447 0.4321
lm-jms 0.0654 0.0447 0 0.0177
tfidf-gja 0.0087 0.4321 0.0177 0

Table C.6: fs-tot

lm-jms lm-dir tfidf-gja tfidf-cos
lm-jms 0 0.8702 0.2851 0.0727
lm-dir 0.8702 0 0.431 0.6008
tfidf-gja 0.2851 0.431 0 0.0446
tfidf-cos 0.0727 0.6008 0.0446 0
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Table C.7: nam-txt

tfidf-cos tfidf-gja lm-dir lm-jms
tfidf-cos 0 0.3987 0.1296 0.0028
tfidf-gja 0.3987 0 0.3254 0.1782
lm-dir 0.1296 0.3254 0 0.8297
lm-jms 0.0028 0.1782 0.8297 0

Table C.8: nam-con

lm-dir lm-jms tfidf-cos tfidf-gja
lm-dir 0 0.8332 0.0098 0.0163
lm-jms 0.8332 0 0.0053 0.0083
tfidf-cos 0.0098 0.0053 0 0.8537
tfidf-gja 0.0163 0.0083 0.8537 0

Table C.9: nam-tot

tfidf-gja tfidf-cos lm-jms lm-dir
tfidf-gja 0 0.776 0.0077 0.2463
tfidf-cos 0.776 0 0.0045 0.2157
lm-jms 0.0077 0.0045 0 0.113
lm-dir 0.2463 0.2157 0.113 0

Table C.10: fsn-txt

lm-jms tfidf-gja lm-dir tfidf-cos
lm-jms 0 0.115 0.7408 0.038
tfidf-gja 0.115 0 0.5504 0.4703
lm-dir 0.7408 0.5504 0 0.3594
tfidf-cos 0.038 0.4703 0.3594 0

Table C.11: fsn-con

tfidf-cos lm-jms tfidf-gja lm-dir
tfidf-cos 0 0.0077 0.4248 0.0021
lm-jms 0.0077 0 0.0167 0.0712
tfidf-gja 0.4248 0.0167 0 0.012
lm-dir 0.0021 0.0712 0.012 0
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Table C.12: fsn-tot

lm-dir tfidf-gja lm-jms tfidf-cos
lm-dir 0 0.4937 0.1309 0.624
tfidf-gja 0.4937 0 0.5121 0.0822
lm-jms 0.1309 0.5121 0 0.0259
tfidf-cos 0.624 0.0822 0.0259 0
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C.2 Experiment 2 - Differences between methods

Table C.13: none-txt

tfidf-cos tfidf-gja lm-jms lm-dir
tfidf-cos 0 0.1596 0.2588 0.004
tfidf-gja 0.1596 0 0.9361 0.0129
lm-jms 0.2588 0.9361 0 0.0208
lm-dir 0.004 0.0129 0.0208 0

Table C.14: none-con

tfidf-gja tfidf-cos lm-dir lm-jms
tfidf-gja 0 0.5504 0.0169 0.0178
tfidf-cos 0.5504 0 0.0214 0.0255
lm-dir 0.0169 0.0214 0 0.1385
lm-jms 0.0178 0.0255 0.1385 0

Table C.15: none-tot

tfidf-cos lm-dir tfidf-gja lm-jms
tfidf-cos 0 0.2236 0.8583 0.8633
lm-dir 0.2236 0 0.3708 0.1051
tfidf-gja 0.8583 0.3708 0 0.9314
lm-jms 0.8633 0.1051 0.9314 0
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Table C.16: fs-txt

lm-jms tfidf-cos lm-dir tfidf-gja
lm-jms 0 0.7846 0.0028 0.6547
tfidf-cos 0.7846 0 0.0006 0.86
lm-dir 0.0028 0.0006 0 0.0018
tfidf-gja 0.6547 0.86 0.0018 0

Table C.17: fs-con

lm-dir tfidf-cos lm-jms tfidf-gja
lm-dir 0 0.0749 0.3976 0.1133
tfidf-cos 0.0749 0 0.0783 0.861
lm-jms 0.3976 0.0783 0 0.0072
tfidf-gja 0.1133 0.861 0.0072 0

Table C.18: fs-tot

lm-jms lm-dir tfidf-gja tfidf-cos
lm-jms 0 0.0129 0.0504 0.1138
lm-dir 0.0129 0 0.3477 0.4061
tfidf-gja 0.0504 0.3477 0 0.082
tfidf-cos 0.1138 0.4061 0.082 0

Table C.19: nam-txt

tfidf-cos tfidf-gja lm-dir lm-jms
tfidf-cos 0 0.0478 0.0012 0.0067
tfidf-gja 0.0478 0 0.012 0.106
lm-dir 0.0012 0.012 0 0.0554
lm-jms 0.0067 0.106 0.0554 0

Table C.20: nam-con

lm-dir lm-jms tfidf-cos tfidf-gja
lm-dir 0 0.6199 0.0032 0.0051
lm-jms 0.6199 0 0.0012 0.0026
tfidf-cos 0.0032 0.0012 0 0.6029
tfidf-gja 0.0051 0.0026 0.6029 0
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Table C.21: nam-tot

tfidf-gja tfidf-cos lm-jms lm-dir
tfidf-gja 0 0.9978 0.0438 0.043
tfidf-cos 0.9978 0 0.0113 0.009
lm-jms 0.0438 0.0113 0 0.7645
lm-dir 0.043 0.009 0.7645 0

Table C.22: fsn-txt

lm-jms tfidf-gja lm-dir tfidf-cos
lm-jms 0 0.4712 0.0079 0.1977
tfidf-gja 0.4712 0 0.0002 0.5646
lm-dir 0.0079 0.0002 0 0.0002
tfidf-cos 0.1977 0.5646 0.0002 0

Table C.23: fsn-con

tfidf-cos lm-jms tfidf-gja lm-dir
tfidf-cos 0 0.0221 0.8327 0.0045
lm-jms 0.0221 0 0.014 0.0619
tfidf-gja 0.8327 0.014 0 0.0116
lm-dir 0.0045 0.0619 0.0116 0

Table C.24: fsn-tot

lm-dir tfidf-gja lm-jms tfidf-cos
lm-dir 0 0.4722 0.9477 0.5071
tfidf-gja 0.4722 0 0.5043 0.1486
lm-jms 0.9477 0.5043 0 0.3923
tfidf-cos 0.5071 0.1486 0.3923 0
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C.3 Experiment 1 - Differences between variations

Table C.25: tfidf-txt-cos

-fs -nam -fsn
0 0.6198 0.1956 0.4985

-fs 0.6198 0 0.7724 0.4697
-nam 0.1956 0.7724 0 0.9838
-fsn 0.4985 0.4697 0.9838 0

Table C.26: tfidf-con-cos

-fs -nam -fsn
0 0.7825 0.5346 0.6127

-fs 0.7825 0 0.9018 0.5453
-nam 0.5346 0.9018 0 0.9056
-fsn 0.6127 0.5453 0.9056 0

Table C.27: tfidf-tot-cos

-fs -nam -fsn
0 0.1104 0.8409 0.1478

-fs 0.1104 0 0.1145 0.5302
-nam 0.8409 0.1145 0 0.1493
-fsn 0.1478 0.5302 0.1493 0
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Table C.28: tfidf-txt-gja

-fs -nam -fsn
0 0.1375 0.5591 0.3194

-fs 0.1375 0 0.9338 0.6564
-nam 0.5591 0.9338 0 0.2076
-fsn 0.3194 0.6564 0.2076 0

Table C.29: tfidf-con-gja

-fs -nam -fsn
0 0.4519 0.7065 0.5718

-fs 0.4519 0 0.5002 0.6219
-nam 0.7065 0.5002 0 0.614
-fsn 0.5718 0.6219 0.614 0

Table C.30: tfidf-tot-gja

-fs -nam -fsn
0 0.2183 0.4056 0.3646

-fs 0.2183 0 0.3508 0.7285
-nam 0.4056 0.3508 0 0.4853
-fsn 0.3646 0.7285 0.4853 0

Table C.31: lm-txt-jms

-fs -nam -fsn
0 0.082 0.2216 0.8893

-fs 0.082 0 0.111 0.3276
-nam 0.2216 0.111 0 0.1196
-fsn 0.8893 0.3276 0.1196 0

Table C.32: lm-con-jms

-fs -nam -fsn
0 0.0392 0.2375 0.201

-fs 0.0392 0 0.0546 0.2765
-nam 0.2375 0.0546 0 0.07
-fsn 0.201 0.2765 0.07 0
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Table C.33: lm-tot-jms

-fs -nam -fsn
0 0.0073 0.0335 0.4274

-fs 0.0073 0 0.0112 0.0529
-nam 0.0335 0.0112 0 0.0974
-fsn 0.4274 0.0529 0.0974 0

Table C.34: lm-txt-dir

-fs -nam -fsn
0 0.351 0.8607 0.3264

-fs 0.351 0 0.3167 0.3585
-nam 0.8607 0.3167 0 0.3
-fsn 0.3264 0.3585 0.3 0

Table C.35: lm-con-dir

-fs -nam -fsn
0 0.8319 0.8576 0.7103

-fs 0.8319 0 0.9017 0.6678
-nam 0.8576 0.9017 0 0.0647
-fsn 0.7103 0.6678 0.0647 0

Table C.36: lm-tot-dir

-fs -nam -fsn
0 0.1202 0.2603 0.1036

-fs 0.1202 0 0.1128 0.8017
-nam 0.2603 0.1128 0 0.1029
-fsn 0.1036 0.8017 0.1029 0
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C.4 Experiment 2 - Differences between variations

Table C.37: tfidf-txt-cos

-fs -nam -fsn
0 0.6023 0.1646 0.6696

-fs 0.6023 0 0.1876 0.831
-nam 0.1646 0.1876 0 0.2034

-fs-nam 0.6696 0.831 0.2034 0

Table C.38: tfidf-con-cos

-fs -nam -fsn
0 0.536 0.9126 0.6727

-fs 0.536 0 0.4311 0.687
-nam 0.9126 0.4311 0 0.588

-fs-nam 0.6727 0.687 0.588 0

Table C.39: tfidf-tot-cos

-fs -nam -fsn
0 0.0684 0.2383 0.1496

-fs 0.0684 0 0.0394 0.4391
-nam 0.2383 0.0394 0 0.081

-fs-nam 0.1496 0.4391 0.081 0
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Table C.40: tfidf-txt-gja

-fs -nam -fsn
0 0.0988 0.609 0.5853

-fs 0.0988 0 0.0876 0.523
-nam 0.609 0.0876 0 0.2151

-fs-nam 0.5853 0.523 0.2151 0

Table C.41: tfidf-con-gja

-fs -nam -fsn
0 0.9422 0.9439 0.9177

-fs 0.9422 0 0.9181 0.6931
-nam 0.9439 0.9181 0 0.9312

-fs-nam 0.9177 0.6931 0.9312 0

Table C.42: tfidf-tot-gja

-fs -nam -fsn
0 0.7804 0.2043 0.9253

-fs 0.7804 0 0.8126 0.7759
-nam 0.2043 0.8126 0 0.7012

-fs-nam 0.9253 0.7759 0.7012 0

Table C.43: lm-txt-jms

-fs -nam -fsn
0 0.3361 0.0081 0.2561

-fs 0.3361 0 0.0179 0.1595
-nam 0.0081 0.0179 0 0.0314

-fs-nam 0.2561 0.1595 0.0314 0

Table C.44: lm-con-jms

-fs -nam -fsn
0 0.0639 0.003 0.1716

-fs 0.0639 0 0.0045 0.2168
-nam 0.003 0.0045 0 0.0046

-fs-nam 0.1716 0.2168 0.0046 0
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Table C.45: lm-tot-jms

-fs -nam -fsn
0 0.0006 0.0311 0.0834

-fs 0.0006 0 0.0002 0.0066
-nam 0.0311 0.0002 0 0.0028

-fs-nam 0.0834 0.0066 0.0028 0

Table C.46: lm-txt-dir

-fs -nam -fsn
0 0.3895 0.2354 0.3428

-fs 0.3895 0 0.2311 0.7786
-nam 0.2354 0.2311 0 0.1932

-fs-nam 0.3428 0.7786 0.1932 0

Table C.47: lm-con-dir

-fs -nam -fsn
0 0.141 0.1576 0.4258

-fs 0.141 0 0.0158 0.0312
-nam 0.1576 0.0158 0 0.3922

-fs-nam 0.4258 0.0312 0.3922 0

Table C.48: lm-tot-dir

-fs -nam -fsn
0 0.003 0.1864 0.0007

-fs 0.003 0 0.0038 0.587
-nam 0.1864 0.0038 0 0.0037

-fs-nam 0.0007 0.587 0.0037 0
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[9] M. Balabanović and Y. Shoham. Fab: content-based, collaborative
recommendation. Communications of the ACM, 40(3):66–72, 1997.
25

[10] K. Balog, L. Azzopardi, and M. de Rijke. A language modeling frame-
work for expert finding. Information Processing and Management: an
International Journal, 45(1):1–19, 2009. 77

[11] C. Basu, W. W. Cohen, H. Hirsh, and C. G. Nevill-Manning. Technical
paper recommendation: A study in combining multiple information
sources. Journal of Artificial Intelligence Research, 14(1):231–252,
2001. 31

[12] C. Basu, H. Hirsh, and W. Cohen. Recommendation as classification:
using social and content-based information in recommendation. In
Proceedings of the fifteenth national/tenth conference on Artificial in-
telligence/Innovative applications of artificial intelligence, pages 714–
720, 1998. 28

[13] J. Beel and B. Gipp. Google Scholar’s ranking algorithm : an intro-
ductory overview. In Proceedings of the 12th International Conference
on Scientometrics and Informetrics, pages 230–241, 2009. 39

[14] J. Beel and B. Gipp. Google scholar’s ranking algorithm: The impact
of citation counts (an empirical study). In Proceedings of the Third
International Conference on Research Challenges in Information Sci-
ence, pages 439–446, 2009. 39

[15] J. Beel, B. Gipp, S. Langer, and M. Genzmehr. Docear: an academic
literature suite for searching, organizing and creating academic liter-
ature. In Proceedings of the 11th annual international ACM/IEEE
joint conference on Digital libraries, pages 465–466, 2011. 31, 36

[16] N. J. Belkin and W. B. Croft. Information filtering and information
retrieval: two sides of the same coin? Communications of the ACM,
35(12):29–38, 1992. 23

[17] D. Billsus and M. J. Pazzani. User modeling for adaptive news access.
User Modeling and User-Adapted Interaction, 10(2-3):147–180, 2000.
25
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