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Samenvatting

Verbale communicatie is niet meer weg te denken uit ons dagelijks leven en wordt
maar al te vaak als vanzelfsprekend beschouwd. Nochtans ondervinden men-
sen met spraakstoornissen hier zowel praktisch als sociaal grote problemen door.
Daarom is het belangrijk dat deze mensen kunnen behandeld en opgevolgd worden
door logopedisten.

De ernst van een spraakstoornis wordt vaak uitgedrukt in termen van de spraak-
verstaanbaarheid. Dit begrip heeft een ruime betekenis, maar kan hier worden
gedefinieerd als de mate waarin een luisteraar in staat is de boodschap van de be-
treffende spreker te “ontcijferen”. In de dagelijkse praktijk wordt spraakverstaan-
baarheid gemeten d.m.v. een perceptuele test, waarbij de spreker een bepaalde
tekst of woordenlijst voorleest, en waarbij de verstaanbaarheid van de spraak be-
oordeeld wordt door een logopedist(e). De resultaten van deze werkwijze zijn
echter niet altijd even betrouwbaar. Ze zijn immers van nature subjectief, vermits
de logopedist(e) de patiënt kan kennen (spreekstijl, stem) en vermits het herhaal-
delijk afnemen van dezelfde test ertoe leidt dat de logopedist(e) de spreker beter
zal begrijpen dan een luisteraar die niet met de test bekend is.

Om deze redenen zou het interessant zijn om te kunnen beschikken over een
altijd objectieve luisteraar die men zou kunnen creëren door gebruik te maken van
automatische methoden ter bepaling van spraakverstaanbaarheid. De afgelopen
jaren zijn er reeds enkele programma’s ontwikkeld die dit doel voor ogen hebben,
maar die programma’s zijn nog onvoldoende getest om met succes hun intrede te
kunnen doen in de klinische praktijk.

Van 2005 tot 2009 voerden de universiteiten van Brussel, Gent en Leuven
(België) samen met het universitair ziekenhuis van Antwerpen (UZA) een IWT-
SBO-project uit met als titel: ‘Speech Algorithms for Clinical and Educational
applications’ (SPACE). In het kader van dit project ontwikkelde ik een programma
voor het automatisch bepalen van de spraakverstaanbaarheid van Vlaamse patho-
logische sprekers op basis van de opnames die normaal in het kader van een stan-
daard perceptuele test worden gemaakt.

Spraakverstaanbaarheid op foneemniveau
In eerste instantie onderzocht ik of het mogelijk is de bestaande perceptuele ver-
staanbaarheidstest, het “Nederlandstalig Spraakverstaanbaarheidsonderzoek” of af-
gekort NSVO genaamd, te automatiseren. Deze test, die in het Engels als “Dutch
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Intelligibility Assessment” (DIA) bekend staat, onderzoekt de verstaanbaarheid
van alle Vlaamse fonemen op basis van uitspraken van 50 geı̈soleerde woorden
waarvan er een groot deel geen betekenis hebben. Per woord dient de logope-
dist(e) één foneem te identificeren (b.v. de finale consonant). De verstaanbaarheid
wordt dan bepaald als het percentage correct geı̈dentificeerde fonemen. De ont-
wikkelaars van de DIA (logopedisten van het UZA) bezorgden mij de opnames
van een 200-tal pathologische en een honderdtal niet-pathologische sprekers die
deze test voorlazen, alsook nog wat ander tekstmateriaal. Samen met de bijho-
rende verstaanbaarheidsscores werden deze opnames opgenomen in het Corpus
voor Pathologische Spraak (COPAS) dat als basis voor mijn onderzoek heeft ge-
fungeerd.

Ik onderzocht verschillende mogelijke pistes om op basis van COPAS een sys-
teem te bouwen voor het automatisch bepalen van spraakverstaanbaarheid. Ruw-
weg werkt een dergelijk systeem in drie stappen: een voorverwerking die een
spectro-temporele voorstelling van het akoestisch signaal oplevert, een spreker-
kenmerkenextractor die deze voorstelling analyseert en er globale kenmerken
uit afleidt die de spraak van de spreker op een compacte manier beschrijven, en
een spraakverstaanbaarheidsvoorspelling die op basis van deze kenmerken de
spraakverstaanbaarheid berekent. Een van de belangrijkste uitdagingen van mijn
onderzoek was het afleiden van interessante sprekerkenmerken die genoeg infor-
matie bevatten om er verstaanbaarheid te kunnen uit afleiden.

Oorspronkelijk bevatten al mijn systemen een automatische spraakherkenner
die dezelfde taak uitvoerde als de logopedist(e) in een perceptuele test: naar de
50 woorden luisteren en het geteste doelfoneem trachten in te vullen. Door de
resultaten van de herkenner te vergelijken met wat de spreker gevraagd werd te
lezen, kan men dan zogenaamde foneemnauwkeurigheid bepalen.

Omdat deze foneemnauwkeurigheid onvoldoende met de perceptuele waarde
correleerde werden alternatieve systemen ontwikkeld waarin de spraakherkenner
de spraak alleen maar dient op te lijnen met de gekend veronderstelde uitgesproken
tekst. Met behulp van een competitieve spraakherkenner, gebaseerd op de traditio-
nele fonetische modellen voor Vlaamse (normale) spraak, werd het pathologische
spraaksignaal opgelijnd met de fonetische transcriptie van de gelezen tekst (een
woord). Uit die oplijning werden dan fonemische kenmerken afgeleid, die be-
schrijven hoe goed de waargenomen uitspraken van de Vlaamse fonemen in de
woorduitspraken van een spreker gemiddeld genomen worden ‘herkend’ door de
(normale) foneemmodellen van de spraakherkenner.

Vermits spraakverstaanbaarheid veel te maken heeft met articulatie, onder-
zocht ik vervolgens of fonologische (articulatorische) modellen voor spraak een
meerwaarde zouden kunnen bieden t.o.v. de traditionele fonemische modellen.
Daartoe werd het pathologische spraaksignaal nogmaals opgelijnd met de foneti-
sche transcriptie van de doelwoorden, maar deze keer werd daarbij een spraakher-
kenner gebruikt die met fonologische modellen voor (normale) Vlaamse spraak
werkt. Hieruit werden dan de fonologische kenmerken afgeleid, die beschrij-
ven hoe goed de fonologische eigenschappen van de waargenomen uitspraken van
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Vlaamse fonemen in de woorduitspraken van een spreker gemiddeld genomen
worden ‘herkend’ door de (normale) fonologische modellen van de spraakherken-
ner.

Ik onderzocht het potentieel van al deze sprekerkenmerken als voorspellers van
spraakverstaanbaarheid door ze als inputs van diverse verstaanbaarheidsmodellen
te gebruiken. Dit bracht aan het licht dat een combinatie van foneemnauwkeurig-
heid en fonologische kenmerken m.b.v. een Support Vector Regressie kon omge-
zet worden tot betrouwbare spraakverstaanbaarheidsscores die zeer goed correle-
ren met de perceptuele beoordelingen (Pearson Correlatiecoefficiënt van meer dan
0.80). Een andere interessante combinatie was deze van fonologische en fonemi-
sche kenmerken. Zij leidt tot scores die niet significant minder dan de uitgangen
van het beste model met de perceptuele scores correleren. Bovendien geven ze
meer inzicht in de onderliggende articulatorische problemen van de geteste spre-
ker.

Behalve de zonet genoemde algemene modellen, werden ook pathologie-speci-
fieke modellen ontwikkeld. Deze leiden meestal tot hogere correlaties (tot 0.96)
tussen de perceptuele en de automatische verstaanbaarheidsscores.

Door te onderzoeken welke kenmerken belangrijk zijn voor de ontwikkeling
van een verstaanbaarheidsmodel, vond ik dat de kenmerken die frequent door de
machinale leermethodes geselecteerd werden kunnen gelinkt worden aan gekende
articulatieproblemen bij specifieke types pathologische sprekers.

Verstaanbaarheid op zinsniveau
Vermits de NSVO test voor de helft uit nonsenswoorden bestaat, kunnen mensen
beginnen twijfelen aan het woord dat ze dienen te lezen, en lezen ze een woord
dat ze kennen. Ze maken dus leesfouten die verkeerdelijk tot een reductie van de
verstaanbaarheidsscore leiden. Om dat probleem te omzeilen zocht ik naar een
alternatieve manier om de verstaanbaarheid op foneemniveau af te leiden uit op-
names van normale lopende spraak. Gebruik makende van dezelfde methodologie
als hierboven beschreven, ontwikkelde ik een verstaanbaarheidsmodel dat werkt
met fonologische en fonemische sprekerkenmerken die zijn afgeleid door oplij-
ning van de pathologische spraakuitingen met de zinnen die ze voorstellen. Dit
leidde opnieuw tot betrouwbare verstaanbaarheidsscores.

Hoewel deze methodologie op basis van de oplijning van lopende spraak goed
schijnt te werken, worden de resultaten toch nog steeds negatief beı̈nvloed door
aarzelingen en leesfouten in de opnames. Daarom ontwikkelde ik een oplijnings-
vrije fonologische en fonetische karakterisering van de spreker die kan worden
afgeleid zonder gebruik te moeten maken van kennis over de gelezen tekst. Ik kon
aantonen dat een verstaanbaarheidsmodel gebaseerd op deze nieuwe kenmerken
eveneens tot zeer goede resultaten leidt.

Vermits de afgeleide sprekerkenmerken tot goede resultaten leidden op Vlaamse
data, werd vervolgens onderzocht of ze ook bruikbaar zijn voor andere talen of
dialecten. Met dit doel voor ogen werd samengewerkt met de universiteit van Er-
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langen (Duitsland) en het Nederlands Kankerinstituut en de Universiteit van Am-
sterdam. Via deze samenwerkingen kon ik aantonen dat de voorgestelde methodo-
logie voor de berekening verstaanbaarheid op zinsniveau ook in die talen (Duits)
en regionale varianten (Noord-Nederlands) tot scores leidt die nagenoeg even be-
trouwbaar zijn als perceptuele scores.

Verdere analyse van pathologische spraak
Nu dat aangetoond is dat verstaanbaarheid betrouwbaar kan bepaald worden met
behulp van de door mij ontwikkelde sprekerkenmerkensets, is het tijd om te onder-
zoeken of deze sprekerkenmerken meer in zich hebben. Vermits ze naar specifieke
dimensies verwijzen (fonologisch, fonemisch of fonetisch), kunnen ze misschien
ook specifieke problemen voorspellen die betrekking hebben op deze dimensies,
en dus m.a.w. de onderliggende oorzaken van een lage verstaanbaarheid naar bo-
ven brengen. Een eerste onderzoek op basis van COPAS leidde niet tot bevredi-
gende resultaten, in de eerste plaats omdat dit corpus weinig of geen betrouwbare
informatie over de manier van spreken van de patiënten bevat.

Anderzijds bleek het wel mogelijk om een groep sprekers met een welbepaalde
pathologie op basis van een beperkt aantal goed gekozen sprekerkenmerken te on-
derscheiden van de niet-pathologische sprekers. Doordat dit reeds goed bleek te
werken met slechts twee kenmerken waren de resultaten van een dergelijke ana-
lyse gemakkelijk te visualiseren. Uit de experimenten bleek dat vooral de oplij-
ningsvrije kenmerken hier goed scoorden, en dat de de meest onderscheidende
kenmerken konden gekoppeld worden aan eigenschappen van de onderzochte pa-
thologieën.

Door samenwerking met het Nederlands Kankerinstituut en de Universiteit van
Amsterdam kon ik experimenteren op een corpus waarin alle pathologische spre-
kers beoordeeld waren door 13 luisteraars. Verder werden ook verschillende aspec-
ten van hun spraak beoordeeld: verstaanbaarheid, fonatie, articulatie, dialect, en-
zovoorts. Gebruik makende van eenzelfde methodologie als voor de ontwikkeling
van verstaanbaarheidsmodellen, kon ik modellen ontwikkelen voor het voorspel-
len van fonatiekwaliteit, de articulatiekwaliteit en het accentgehalte van de spraak.
Deze modellen bleken minstens even betrouwbaar als een gemiddelde luisteraar.

De DIA-tool
Mijn onderzoek leidde tot de ontwikkeling van de online DIA tool. Deze tool
is gebruiksvriendelijk en gemakkelijk toegankelijk voor logopedisten. Men heeft
enkel een PC of laptop nodig met een web browser, een head set, een geluids-
kaart en een Java runtime environment. Het programma werkt in een client/server
omgeving en kan zowel online als offline gebruikt worden. De tool laat toe de oor-
spronkelijke NSVO woordtest op te nemen en er zowel een perceptuele test als een
automatische analyse op uit te voeren. De automatische analyse leidt dan tot een
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rapport dat de huidige verstaanbaarheid van de patiënt bevat alsook enkele figuren
waarin de positie van de spreker t.o.v. andere pathologische en normale sprekers
wordt aangegeven. Binnenkort zal ook de automatische test op zinsniveau in de
tool worden opgenomen.





Summary

Effective verbal communication is an essential aspect of daily life and is often
taken for granted. It presents a major bottleneck though for people experiencing
speech disorders. Disordered (or pathological) speech can be the consequence of
a plurality of causes, and the assessment, treatment and monitoring of causes have
been receiving growing attention in the biomedical field.

A widely used measure of the severity of a speech disorder is speech intelligi-
bility, loosely defined as the ease with which a listener is able to lexically decode
the utterances of a speaker. In the clinical setting, measures of speech intelligibil-
ity for text level stimuli are often acquired by means of a perceptual test, but the
results of such a test are anticipated to be subjective and influenced by the listener’s
familiarity with both the patient’s voice and the prompted text.

For these reasons it would be interesting if one could have access to an ever
objective assistant to score the intelligibility of the speech. This calls for the devel-
opment of objective automatic methods for intelligibility assessment. During the
past decade, a few attempts were made to develop such methods, but thus far these
methods were insufficiently tested for getting widely accepted in clinical practice.

From 2005 to 2009, the universities of Brussels, Ghent and Leuven (Belgium)
and the University Hospital of Antwerp participated in an IWT-SBO-project with
the title ‘Speech Algorithms for Clinical and Educational applications’ (SPACE).
In the course of this project I developed a program for the automatic computation
of speech intelligibility of Flemish pathological speakers on the basis of recordings
that are normally made as part of a standard perceptual test.

Phoneme Intelligibility
As a first step, I investigated whether it was possible to automate the Flemish
phoneme intelligibility test, called the “Nederlandstalig Spraakverstaanbaarheid-
sonderzoek” (NSVO). This test, referred to as “Dutch Intelligibility Assessment”
(DIA) in English literature, examines the intelligibility of all Flemish phonemes
on the basis of 50 isolated monosyllabic word utterances, a large part of which are
actually meaningless. Per word the speech therapist has to identify one phoneme
(e.g. the final consonant). Intelligibility is then defined as the percentage of cor-
rectly identified phonemes. The developers of the DIA test (UZA) kindly provided
recordings of about 320 speakers, amongst which about 200 pathological speakers.
For each speaker, recordings of the DIA test and of some other tests (e.g. a para-
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graph) were available. The recordings, together with their perceptual intelligibility
scores, were assembled in COPAS, a corpus of pathological and normal speech.

I used COPAS to develop and investigate several methods for the automatic
prediction of speech intelligibility.

Roughly speaking, such a system operates in three steps: a preprocessing
stage which produces a spectro-temporal representation of the acoustic signal, a
speaker feature extraction which analyses this representation and retrieves global
features from it to construct a compact characterization of the speech of the tested
speaker, and an intelligibility prediction which computes an intelligibility score
on the basis of these speaker features. Deriving interesting speaker features which
carry enough information about individual intelligibility problems was one of the
main challenges of my research.

Originally, all my systems comprised an automatic speech recognizer (ASR)
that performed exactly the same task the speech therapist has to perform in a per-
ceptual task, namely, listen to the 50 words and identify the tested phoneme. By
comparing the outputs of the speech recognizer with the prompts that were given
to the speaker, one obtains a phoneme accuracy.

Because the computed phoneme intelligibility did not sufficiently correlate
with its perceptual value, alternative systems were developed employing the speech
recognizer just to align the speech with the prompted text (a word in this case).
By means of a state-of-the-art ASR, working with traditional context-dependent
phonemic models of Flemish (normal) speech, the pathological speaker’s utter-
ance was aligned with the phonemic transcription of the prompted text. From
this alignment a number of global features were derived which describe how well
the observed pronunciations of the Flemish phonemes were ‘recognized’ by the
phoneme models inside the recognizer.

As speech intelligibility is closely related to articulation, I investigated whether
phonological models offer an added value over the the traditional phonetic mod-
els. To establish this, the pathological speech is aligned again with the prompted
text, this time with an ASR employing phonological models for (normal) Flemish
speech. From this alignment, phonological speaker features were derived to de-
scribe how well on average the observed pronunciations of Flemish phonemes in
word utterances of a speaker are ‘recognized’ by the normal phonological models
of the ASR.

I investigated the potential of all these speaker feature sets as predictors of
speech intelligibility by employing them as inputs to diverse intelligibility predic-
tion models. This investigation revealed that by means of Support Vector Regres-
sion it is possible to convert the combination of phoneme accuracy and phonolog-
ical features to an intelligibility score that correlates very well with the perceptual
ratings (Pearson Correlation Coefficient higher than 0.80). Another interesting
combination was that of the phonological and the phonemic features. The scores
emerging from that combination correlate nearly as well to the perceptual ratings
than those emerging from the best model. Moreover, they offer more insight in the
underlying articulatory problems of the tested speaker.

Next to the above general models, I also created pathology-specific models.
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These models generally yield higher correlations (up to 0.96) between perceptual
and automatic intelligibility scores.

By analyzing which features are important for the development of an intelli-
gibility prediction model, I found that the features that are frequently selected by
the machine learning methods can be linked to known articulatory problems in
specific pathological speaker populations.

Running Speech Intelligibility
Since the DIA test material consists for more than 50% of nonsense words, people
may start to doubt about what they have to read, and substitute the prompted word
by a common word they know. This leads to reading errors which on their turn
lead to a reduction of the intelligibility score. To circumvent this problem I have
searched for an alternative way of deriving phoneme intelligibility from record-
ings of running speech. Using the same methodology as before, I developed an
intelligibility prediction model that employs phonological and phonemic speaker
features that originate from alignments of speech utterances with the sentences
they represent. Again, this approach yielded reliable intelligibility scores.

Although the alignment-based methodology seems to perform well, the results
continue to be affected by hesitations and reading errors in the recordings. That
is why I also developed an alignment-free phonological and phonetic speaker
characterization that can be calculated without having to employ any knowledge
of the prompted text. I was able to demonstrate that an intelligibility model based
on the new speaker features also leads to reliable results.

As the derived speaker features worked well for Flemish data, I also investi-
gated their usability for other languages and regional variants/dialects. With this
goal in mind a collaboration was set up with the Chair of Pattern Recognition
of the University of Erlangen (Germany) and the Dutch Cancer Institute and the
Institute of Phonetics of Amsterdam University (Netherlands). Through these col-
laborations I succeeded in demonstrating that the proposed methodology for the
prediction of running speech intelligibility (RSI) at the sentence level also leads to
reliable scores in the tested languages (German) and regional variants (Northern
Dutch). The computed scores turn out to be about as reliable as the perceptual
scores of a single human rater.

Further analysis of pathological speech
Having shown that intelligibility can be predicted in a reliable way on the basis of
the speaker features I developed, I investigated whether these features have more
potential than that. Since the features point to specific dimensions (phonological,
phonemic or phonetic), they might be able to predict specific problems that relate
to these dimensions. Consequently, they may be able to reveal the underlying
causes of a low intelligibility. An initial investigation using COPAS did not lead
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to the desired results, mainly because this corpus comprises little or no reliable
detailed information about the way patients speak.

On the other hand, it appeared viable to separate a group of speakers with
a specific pathology from the normal speakers on the basis of a small number
of well chosen speaker features. As two features seemed to be enough to get
good results, the results were also easy to visualize. Experiments showed that
alignment-free features scored very well here, and that the most distinctive features
could be linked to properties of the considered pathology.

By collaborating with the Dutch Cancer Institute and the Institute of Phonet-
ics of Amsterdam University I had the opportunity to work on the NKI-CCRT
database. In this database, all pathological speakers were judged by 13 human
raters on different aspects such as intelligibility, articulation, phonation, accent,
etc. Using the same methodology as before, I was able to develop phonation qual-
ity, articulation quality and accent gravity prediction models that seem to be as
reliable as the average human rater.

The DIA tool
My research has lead to the development of the DIA tool. The tool is easy to use
and easy to access by speech therapists. All that is needed is a PC or laptop with a
web browser, a head set, a sound card, and an up-to-date Java runtime environment.
The tool works in a client/server environment and can be used both in an on-line
and an off-line mode. The tool permits to record the original DIA word test and to
conduct a perceptual test as well as an automated analysis. The automatic analysis
produces a report describing the patient’s current intelligibility and some figures
showing his position against other pathological speakers and against the normal
speakers. Soon, the automatic RSI test will also be incorporated in the DIA tool.



1
General Introduction

1.1 Intelligibility

Verbal communication is getting increasingly important in our society. As we need
the possibility to interact with other people for almost all of our basic needs, it has
become an essential part of our lives. People with speech disorders therefore suffer
from great functional as well as social discomfort as they are deprived from one
of the primary communication forms. This explains the growing need for speech
therapy as a follow-up of these patients in order to assess and improve their vocal
and pronunciation skills.

During speech rehabilitation, it is important that the speech therapist regularly
measures the current state of the patient in terms of type, progression and severity
of the pathology. This monitoring can be useful to determine the right and person-
alized therapy for every individual patient. One of the most popular and important
measures for severity of a speech disorder is intelligibility.

Intelligibility is an overall measure which can be defined as the degree to which
the acoustic realization of one’s speech can be understood [1]. This does not in-
volve semantic or syntactic context, neither visual aspects of communication like
e.g. gestures [2]. A person’s intelligibility is purely determined by the performance
of his/her speech production system.

Traditionally, the patient’s intelligibility is measured using a perceptual test:
the speech therapist listens to and rates the patient’s utterance. This method is
by definition subjective in nature, affecting the reliability of the outcome. Several
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factors can bias the listener, such as familiarity with the speaker or the speaker’s
accent, background and type of disorder. Similarly, familiarity with the used test
material also induces a positive bias. In tests using real words, linguistic infor-
mation can also play a role, as the speech therapist can guess the right word by
using the context or language knowledge. Some intelligibility tests try to circum-
vent this problem by using large sets of test items combined with random selection
or by working with non-existing words or meaningless sentences to rule out the
usage of linguistic knowledge. However, this influences the naturalness of the
test items in a negative way, leading to reading mistakes and hesitations at the
speaker’s side [2]. This trade-off between naturalness of the test material and pre-
dictability for the speech therapist is difficult to keep balanced. And even when
this would not be a problem, the familiarity with the (type of pathological) speaker
still remains an issue. Speech therapists who work with some type of pathological
speakers automatically know their typical errors and, when therapy evolves, they
get familiar with their patients’ speech. As a logical consequence, it is impossible
to assess ones intelligibility without previous knowledge/bias. Therefore, it could
be interesting to create an assistant which always stays objective. This calls for the
development of objective automatic methods for intelligibility assessment since
the use of computer-assisted measurements could solve the subjectivity-issues.
During the last decade, only a few attempts were made to develop an automated in-
telligibility assessment tool [3,4]. From 2005 to 2009, the universities of Brussels,
Antwerp, Ghent and Leuven (Belgium) and the University Hospital of Antwerp
participated to the the IWT-project ‘Speech Algorithms for Clinical and Educa-
tional applications’ (SPACE) [5]. As one of the members of this research project,
I developed an automatic intelligibility assessment tool for Flemish pathological
speakers.

Of course, introduction of technology always needs proof of reliability. There-
fore, an automatic method should prove to provide scores which are as reliable as
those of a panel of speech therapists which are not particularly familiar with the
patient. Therefore, I started from the Flemish phoneme intelligibility test, called
the “Nederlandstalig Spraakverstaanbaarheidsonderzoek” (NSVO) [6], referred to
as “Dutch Intelligibility Assessment” (DIA) in English literature. This test was
developed by the University Hospital of Antwerp (UZA) and consists of 50 iso-
lated short words, mostly nonsense words. Recordings of 319 speakers, amongst
which 197 pathological, performing this test, were kindly provided by the UZA, to-
gether with their perceptual intelligibility score according to the DIA. This formed
the base for my research, which eventually lead to the online and freely available
DIA-tool 1.

As mentioned above, the need for objectivity in perceptual tests often leads
to the use of unnatural speech material like nonsense words or sentences, leading

1http://diaweb.elis.ugent.be/
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to reading mistakes and confusions. As the perceptual DIA-test uses nonsense
words, a possible improvement for the DIA-tool could be to only use existing
words or, even closer to daily life, use sentences or paragraphs. After automating
the perceptual DIA test, I investigated whether I could predict intelligibility from
running speech.

Finally, intelligibility is, as much as it is used, just one number. It does not
inform the speech therapist about the underlying reasons for a high or low score,
nor does it point to specific articulatory problems. In my opinion, an intelligibil-
ity test should be able to present more than just one number. A more profound
articulatory analysis can help the speech therapist to determine the right personal
pathology for every patient, and is therefore very valuable. My latest research is
devoted to this topic.

1.2 Terminology
At the start of this dissertation, it is useful to elucidate some frequently used terms
in the field of speech science.

Phoneme : the smallest contrastive unit in the sound system of a particular lan-
guage. It serves to distinguish between meanings of words. The phonemes
of a language constitute the minimal set of symbols needed to describe
the pronunciations of all words in that particular language. All Flemish
phonemes can be found in Appendix A.

Allophone : phonemes can be pronounced in different ways while still carrying
the same meaning. Those different pronunciations are called allophones. In
Flemish, tongue-tip /r/ and uvular /R/ are different allophones of the same
phoneme /r/.

Phone : the acoustic realizations of some of the allophones typically consist of
two successive phases, like e.g. the pressure build-up and the pressure re-
lease phase of a /p/. Therefore, one has also introduced sub-phonemic units
representing those phases. Together with the allophones not needing such a
split, they constitute a set of phones that can be used for an acoustic-phonetic
description of the speech.

Orthographic transcription : the written record of speech. Orthographic refers
to the use of the standard alphabet.

Phonemic transcription : this form of transcription uses a sequence of phonemes
to describe the uttered speech.

Phonetic transcription : this form of transcription uses a sequence of phones to
describe the uttered speech.
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Phonetic alphabet : The International Phonetic Association (IPA) [7] has devel-
oped an alphabet, called the International Phonetic Alphabet, for describing
as accurately as possible all phones in all possible languages. This phonetic
alphabet is internationally used. As the symbols used in this alphabet are not
the standard symbols found on computer keyboards, there exist a number of
encodings representing a subset of the IPA that can be used to describe the
speech in one language. Examples of such encodings are: SAMPA (Speech
Assessment Methods Phonetic Alphabet, [8]), YAPA (Yet Another Phonetic
Alphabet) and CGN (Corpus Gesproken Nederlands - see [9]). All Flem-
ish phonemes can be found in Appendix A with their notation in SAMPA,
YAPA, CGN and IPA and a Flemish word in which they appear. In this
dissertation, I will use the CGN phonetic alphabet for Flemish (51 phones
for 45 phonemes, extended with four extra symbols for annotating short and
long silences (/#/ and /##/), glottis closure (/!/) and unknown (/?/) ) and
the ARPABET alphabet for American English (48 phonemes, 58 phones
and some pause symbols) [10], which can also be found in Appendix A.
Obviously, the ARPABET comprises much more allophones than the CGN
alphabet.

Articulatory characteristics of speech are characteristics stemming from direct
measurements of articulatory movements (e.g. by means of an articulograph).

Phonological characteristics of speech are characteristics which intend to de-
scribe articulatory phenomena, although they are derived from the wave-
form [11].

Phonetic characteristics of speech describe the characteristics of speech in terms
of its phones.

Phonemic characteristics of speech describe the characteristics of speech in terms
of its phonemes.

1.3 Outline
As described in Section 1.1, this dissertation assembles my research towards an
automatic intelligibility assessment tool. Before describing my methodology, I
will briefly describe the human speech production system in Chapter 2 and some
problems that can arise in this system, leading to speech disorders, in Chapter 3.
Some common evaluation strategies for these speech disorders will be discussed
in Chapter 4.

To construct automatic models for intelligibility prediction, two important is-
sues need to be discussed: the databases and the modeling techniques. Modeling
techniques, and, more general, the machine learning basics I used, will briefly
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be described in Chapter 5. The databases I used for model development will be
described in Chapter 6.

Having described all necessary medical and technical basics, Chapter 7 covers
my research in the automation of the perceptual DIA test. Chapter 8 broadens
the use of automatic intelligibility assessment tools towards running speech and
Chapter 9 explores the prediction of more aspects of pathological speech.

Since my research lead to the online DIA-tool, this tool will be described in
Chapter 10.

Finally, Chapter 11 ends this dissertation with the main conclusions of my
work and some possible directions for future work.

1.4 Contributions
My research contributed to the field of speech analysis for applications which have
to cope with disordered speech. First of all, I investigated whether phonological
models for Flemish speech offer more potential for assessing articulation problems
than the traditional phonetic models typically used for speech recognition.

I have proposed two novel approaches that can predict the intelligibility of
disordered speech. The first approach is an alignment-based approach which uses
phonological or phonetic models to align the speech with its phonetic transcription,
and which derives from that alignment a number of global features that constitute
the phonological or phonetic characterization of the speaker. This characterization
is then supplied to an intelligibility prediction model that predicts the intelligibility
of that speaker.

Although the alignment-based approach yielded very good results, these re-
sults are negatively affected by the presence of hesitations and reading errors in the
speech recordings. To circumvent this problem, I have created an alignment-free
phonological and phonetic characterization of the speaker which can be computed
without taking the read text into account.

The alignment-based and alignment-free speaker characterizations were then
investigated in a number of collaborations with foreign institutes (Chair of Pattern
Recognition of the University of Erlangen and the Netherlands Cancer Institute
and the Institute of Phonetics of Amsterdam University). From these studies I
could conclude that the proposed methodology for the prediction of intelligibility
also yields close-to-human performance in scenarios involving multiple languages
or accents and multiple speech modes (e.g. isolated words and running speech).
In a similar vein I established that the proposed methodology also yielded good
performance for the assessment of some articulation and phonation problems.

The main results of my research are published in 3 international journal papers
[12–14] and in the proceedings of 5 international conferences [15–19].
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2
Speech Production

The ability to express oneself verbally is used so much in everyday life that we
often take it for granted. We do not realize how complex the process of speech
production is and how many body parts have to function and cooperate correctly to
even transfer a simple message. Thoughts must be translated into linguistic repre-
sentations (sequence of phonemes) in the brain. This sequence of phonemes leads
to a sequence of motor commands to the vocal organs. From the brain’s motor
center, every single of these commands is sent to the lungs for creating the right
amount of air pressure, to the vocal tract to create the right air vibration (called
phonation) and then to the oral cavities to create the right resonance and articula-
tion [20]. In this section, I will briefly describe every of these sub-processes.

2.1 Speech motor control

Every single action in the speech process is programmed, coordinated and directed
by the motor part of the nervous system. This consists of the central nervous sys-
tem, consisting of the brain and the spinal cord, and the peripheral nervous system
being the collection of nerves connecting all muscles to the central nervous system.
While the peripheral nervous system is more used for reflexes, the central system
is the one planning and consciously executing tasks [20]. In the next sections, I
will elucidate the speech motor part of both the peripheral and the central nervous
system.
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2.1.1 Central motor system

Several parts of the central motor system are used in the speech production pro-
cess. The premotor cortex (see figure 2.1), which is part of the frontal cortex,
takes care of the planning of volitional movements. The motor cortex (see figure
2.1), situated next to the premotor cortex [21], activates and initializes the voli-
tional movements. It is organized in an inverted body scheme, which means that
every part of this area is responsible for transmitting motor impulses to a specific
muscle in the contralateral part of the body [22]. The pyramidal system trans-
ports motor pulses from the cortex to the brainstem and spinal cord. It carries the
voluntary, fine movements and is also organized in an inverted body scheme. The
extrapyramidal system also makes part of the neural pathways from the cortex
to the brainstem and spinal cord. Unlike the pyramidal system, it carries the auto-
matic, non volitional aspects of the movements, like e.g. the initiation of walking
or speaking, transmitted by the pyramidal system. Moreover, two important neu-
rotransmitters are produced in this area: dopamine and acetylcholine, regulating
the speed of the initiation of movements and the muscle tonus [20, 22]. The cere-
bellum, located at the base of the brain, monitors the precision of the movements
by comparing the initial motor signal to the execution of the movement and - if
necessary - correcting it. The cerebellum is important for coordination, smoothing
and precision of movements.

motor cortex 

premotor cortex 

cerebellum 

brainstem 

spinal cord 

pyramidal  and  
extrapyramidal  
tract 

Figure 2.1: Motor speech pathway. Starting in the motor cortex, commands are transported
through the pyramidal and extrapyramidal tract and passed to the brainstem where the
necessary nerves are activated. After [20, 21].
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2.1.2 Peripheral motor system

The peripheral motor system consists of a collection of cranial and spinal nerves,
of which five are important for speech. They each control the movements of a
specific part of head and neck. One nerve, the nervus vagus, is very important
because it controls the velar, pharyngeal and laryngeal movements as well as the
organs in the chest, such as breathing [20].

2.2 Vibration
After the commands of the nervous system have been distributed over the speech
organs, the first step in the speech production process is the creation of a pressure
wave. After inhalation, the air is pushed out of the lungs through the trachea to
the larynx. This last part, illustrated in figure 2.2, is the most heavily innervated
sensory structure in the body [23]. It is used for swallowing, protection of the
airways and - very important - phonation. The cartilaginous framework of the
larynx has two horizontal folds of soft tissue in the passage of air, called the vocal
folds [24]. Right above the vocal folds, another pair of folds, called the vestibular
folds or “false vocal folds” is located. The vocal folds divide the airway in a

trachea 

cricoid  
cartilage 

thyroid  
cartilage 

epiglottis 

vestibular  
fold 

vocal fold 

cricoid  
cartilage 

arytenoid 
cartilage 

thyroid  
cartilage 

vocal fold 

vocal ligament 

glottis 

Figure 2.2: Vertical (left) and horizontal (right) transsection scheme of the larynx. Af-
ter [25, 26].

subglottal and a supraglottal part and are the most essential organs in the phonation
process. During respiration, the vocal folds are in abducted position (separated),
leaving a gap between them which is called the glottis. During phonation, the vocal
folds adduct (move together), narrowing the glottis. This makes the subglottic
pressure to build up below the vocal folds. When the pressure is high enough, the
vocal folds are forced to separate and the airstream is allowed to flow through the
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vocal folds. The airstream through the vocal folds then accelerates causing a drop
in pressure according to Bernoulli’s theory. This drop in pressure then forces the
vocal folds back together [25]. Subglottic pressure then builds up again and this
cycle repeats at a certain frequency, called the fundamental frequency, until the
vocal folds are relaxed or when there is no airflow anymore. The movement of the
vocal folds during the glottal cycle is a very complex 3-dimensional movement,
and different parts of the folds move in different parts of the cycle, creating a rich
spectrum with harmonics.

2.2.1 Changing fundamental frequency and intensity

The fundamental frequency (F0) of the voice can be altered by the muscles sur-
rounding the vocal chords. These muscles can change their length, thickness and
thus tension. The intensity of the voice can be regulated by three mechanisms [27]:
controlling the subglottal pressure, changing the portion of the phonation cycle
during which the glottis is open and altering the shape of the larynx. The first
two mechanisms both have an effect on the behavior of the vocal folds during
phonation, inducing an increased intensity of the voice which is often linked to an
increase in F0. The third mechanism consists of changing the shape and thus the
formant settings of the vocal tract so that its resonance frequencies (the formants)
coincide with the harmonics of the fundamental frequency. According to [28],
fundamental frequency in male speech ranges between 90 and 165 Hz, in female
speech between 158 and 259 Hz.

2.2.2 Unvoiced sounds and whispering

For the production of unvoiced sounds, like e.g. /p/, /f/ etc., the vocal folds are - like
during respiration - in abducted position. While the expelled air passes through the
larynx, the vocal folds do not vibrate and there is no phonation. The process is in
reality much more complicated than this. Larynx and pharynx (throat) position are
different compared to the production of voiced sounds, oral air pressure and air
flow are higher/faster but the main audible difference is the lack of phonation [29].

A different usage of the glottis can be noticed during whispering. The vocal
folds are then partly adducted and partly abducted. This leads to the generation of
the very turbulent air flow characterizing /h/ and whispered sound.

2.3 Resonance

The expelled air vibrations continue their way out through the so-called vocal tract,
which literally means the pathway of the voice. It consists of the laryngeal cavity,
the pharynx, the oral cavity and the nasal cavity (see Figure 2.3). Different parts
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of the vocal tract have different resonance frequencies, which will form the timbre
of the air vibrations created by the vocal folds. Some parts of the vocal tract,
like the nasal cavity and the nasopharynx (between nasal and pharyngeal cavity),
can not be moved voluntarily but they can resonate according to their rather fixed
dimensions. Other parts of the vocal tract can strongly adapt their dimensions, like
the sinuses, the upper part of the larynx, the pharynx, and the total oral cavity to the
desired sound. By moving the larynx, epiglottis (top of the larynx), velum, tongue,
mouth musculature, jaws and lips during articulation, the cavities can considerably
change shape, changing the resonance frequencies as well [25]. The soft palate

lips 

teeth 

alveolar ridge 
nasal 
cavity 

tongue 

palate 

oral cavity 

pharynx 

velum 

esophagus vocal folds 

trachea 

larynx 

Figure 2.3: Vocal tract. The grey area is filled with air. After [11].

or velum plays a very important role in resonance. This soft tissue in the back
roof of the mouth determines whether oral and nasal cavity should be connected
or not. For the production of so-called non-nasal sounds (see Section 2.4), the
velum retracts and elevates to separate the oral cavity from the nasal cavity in
order to produce the oral speech sounds. For nasal sounds, such as nasal vowels
/E/̃, /O/̃, /A/̃ and the consonants /m/, /n/ and /N/ [25], the velum does not close off
completely, leading to an air flow and resonance through the nose, causing speech
to be perceived as nasal.

2.4 Articulation

After this last phase of the speech production process, the expelled air vibrations
are transformed into specific phones. Jaws, lips, tongue and other oral muscles/tis-
sues (like the palate) are configured in a certain way to shape the oral, pharyngeal
and nasal cavities according to the targeted phone. The outcoming sound will de-
pend on the shape of the cavities and on how much and where they are narrowed.
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The degree of narrowing (stricture) and the way the air flows out describes the
manner of articulation, while the place of stricture determines the place of articu-
lation.

2.4.1 Manner of articulation

As mentioned above, the manner of articulation describes the degree of constric-
tion of the oral and/or pharyngeal cavity. Several categories can be distinguished
[29]:

Plosives or stops are characterized by a short stop of the airflow during which
the air pressure at some place in the vocal tract is built up, immediately followed
by a short explosion during which the air is released. This process intrinsically
consists of two phones, namely a closure followed by a burst. Examples of stops
are /p/, /b/,/k/, /t/, /d/.

Fricatives are sounds which are characterized by a turbulent air stream caused
by the air flowing through a small gap. Examples are /f/, /v/, /s/, /z/, /S/, /Z/.

Liquids are sounds for which the air flow is only slightly constricted. Depend-
ing on the way the constriction is made, this category is subdivided in laterals and
trills. A lateral is a sound with an occlusion somewhere in the axis of the tongue
but in which the air can flow along the sides of the tongue. An example of this
is /l/. A trill sound is produced by vibrations between the tongue and the place
of articulation. Examples of this are the Flemish “tongue-tip” alveolar /r/ and the
French uvular /R/.

Taps and flaps are produced by briefly brushing the tongue towards the alveo-
lar ridge or palate horizontally (flap) or vertically (tap). Often both terms are used
as synonyms. These phenomena do not occur in Flemish. In the North-American
pronunciation of e.g. /latter/ the middle /t/ can be replaced by a flap.

Nasals are produced with an occlusion in the mouth while the air is (partly)
escaping via the nose because the velum is lowered. Examples of nasals are /m/,/n/
and /N/.

Approximants are produced with an even smaller, hardly noticeable occlu-
sion. Their sound approximates the sound of vowels, e.g. /j/ sounds like /i/, /w/
like /u/.

Vowels can be distinguished from all categories mentioned above - all conso-
nants - because they are realized without any obstacle for the air flow. They will
be described in Section 2.4.3.

2.4.2 Consonant place of articulation

For consonants, the place of constriction in the vocal tract determines the place
of articulation. Consonants can be produced at the following places [29], also
indicated in figure 2.3:
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Bilabial sounds are produced by letting both lips make contact, like in /m/, /p/,
/b/ and the Flemish /w/.

Labiodental sounds are produced by using the lower lip and teeth, like in /f/
and /v/.

Dental sounds are produced by placing the tongue tip against the teeth, like in
the English /th/. No Flemish phones are produced dentally.

Alveolar sounds are produced when the tongue tip hits the alveolar ridge,
which lays right between the upper teeth and the palate. Examples are /t/, /s/,
/n/, /d/, /l/, /z/, /r/.

Post-alveolar sounds are produced when the tongue hits both the alveolar ridge
and the front of the hard palate. An example of this is /S/.

Retroflex sounds are produced by curling the tongue backwards behind the
alveolar ridge. The English /r/ is formed this way. No Flemish phone is retroflex.

Palatal sounds are produced by pushing the tongue body against the palate,
like in /j/.

Velar sounds are produced pushing the tongue towards the soft palate (velum),
like in /N/,/k/,/g/,/x/ and /G/.

Glottal articulation is found in /h/ and the glottal stop (like just before an
initial vowel or between two identical vowels). In these cases, the glottis is closed
or narrowed for the articulation.

The IPA chart for consonants (Figure 2.4) gives an overview of all existing
consonants for all possible languages, classified according to their manner and
place of articulation. Voicing is also indicated.

Figure 2.4: IPA chart for consonants.
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2.4.3 Vowel articulation dimensions

In vowel production, the air can flow without much obstruction through the vocal
tract. The configuration of the nasal, oral and pharyngeal cavity will determine the
resonance frequencies and thus the produced vowel. The shape of the cavities is
mainly determined by the amount and place of elevation of the tongue (leading to
vowel height and place), the rounding of the lips and the opening of the velum.

Vowel height. Elevation of the tongue leads to a separation between the oral and
pharyngeal cavity. The air flows from the pharyngeal to the oral cavity through a
narrower opening, demarcated by the tongue body and the roof of the mouth. The
vertical position of the tongue determines how narrow the opening is. This in turn
determines the so-called vowel height. High vowels, also called closed vowels, are
produced with a high position of the tongue, leading to a close, narrow opening.
/i/ is an example of this. Low or open vowels are produced with a low position of
the tongue, leading to a wide opening between pharyngeal and oral cavity. /a/ is an
example of this. Vowel height is a continuous dimension. All positions between
low and high are also possible, all leading to other vowels. Often, four vowel
heights are distinguished: high, mid-high, mid-low and low (or close, close-mid,
open-mid and open). However, this distinction is rather artificial and is just made
to roughly classify vowels.

Vowel place. The place of the tongue body along the horizontal dimension de-
termines the so-called vowel place. /i/ is produced in the front of the mouth, while
/u/ is pronounced in the back of the mouth. Again a continuum of vowel places is
possible, but often one distinguishes front, mid and back as possible places.

Rounding. Vowels can be pronounced with rounded or spread lips. /i/ and /y/
have the same vowel height and place, but the first is spread and the second one
rounded.

Nasality. If the velum is opened, part of the air escapes through the nose, lead-
ing to nasal vowels. Generally, vowels are not nasalized in Flemish. However,
there are quite some French words used in Flemish which are nasal, like /parfum/,
/bulletin/, etc. using /Y/̃, /E/̃ etc.

Diphtongs. Diphtongs are sounds which gradually shift from one vowel to an-
other. Three diphtongs exist in Flemish: /E+/, /Y+/ and /A+/.

The IPA chart for vowels (Figure 2.5), gives an overview of all existing vowels
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for all possible languages, classified according to vowel height and place. Round-
ing is also indicated.

Figure 2.5: IPA chart for vowels.
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3
Speech Pathologies

Chapter 2 makes clear that the mechanism of producing speech is dependent on
the well-functioning of a whole series of nerves, muscles etc. of the speech organs.
One little bug in this process can disturb the speech production, leading to a speech
disorder. In this chapter, some of the speech disorders I was confronted with during
my research will be described: dysarthria, laryngectomy, hearing impairment and
cleft lip and/or palate. For every pathology, I will start with a general description
before discussing how the four speech production sub-processes described in the
previous chapter are affected.

3.1 Dysarthria

Dysarthria is a so-called motor speech disorder, meaning that the origin of the dis-
order can be found in the motor part of the nervous system. It causes a malfunc-
tioning of one or more muscles used to produce speech. Note that the problem is
situated in the speech production, not in the speech planning.
Dysarthria can be caused in many ways. A stroke or trauma can damage part of the
motor nervous system, a biochemical disorder can change the production of neu-
rotransmitters, a virus or tumor can damage the nervous system or it can be con-
genital. The exact symptoms, the change in force, initiation, speed, coordination
and tonus of muscle movements depend on the exact location of the “damaged”
region.
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3.1.1 Flaccid dysarthria

When one or more of the cranial nerves in the peripheral motor speech system
are damaged, all input of the central nervous system which needs to be transmitted
through that/those nerve(s) is hindered or blocked. This is reflected in all automatic
and planned movements of the muscles innervated by the part of the nerve after
the lesion. Those muscles will be partially or totally paralyzed, weak, hypotone
(low muscle tone or tension), sometimes with small fasciculations (involuntary
contractions and relaxations) and degenerating over time. Symptoms depend on
which nerves are damaged and how severe the damage is. Most common symp-
toms in dysarthric speech production are listed in Table 3.1. Note that “phonation”
refers to the quality of the sound produced by the vocal folds, while “voicing” is
considered as part of the articulation process since the ability of making a clear dis-
tinction between voiced and unvoiced sounds is partially related to the articulatory
movements of the mouth.

3.1.2 Spastic dysarthria

Spastic dysarthria results from damage to the voluntary part of the central motor
system, namely the motor cortex and/or the pyramidal system. Since both of those
are organized in an contralateral body scheme, the damaged region will cause a
problem in the contralateral muscles. As the peripheral nervous system receives
a bilateral innervation for every movement, the problem will be mild if the lesion
is unilateral. Otherwise, it will be severe. The principle result of the damage is
difficulty with all fine motor movements. As the motor cortex has an inhibiting in-
fluence on the muscle tone, a lesion in this region will lead to exaggerated stretch
reflexes, resulting in increased muscle tone and decreased coordination, hence the
name spastic dysarthria. In general, the disorder affects/paralyzes the facial mus-
cles, leading to a non-expressive, drooling face, with difficulties with swallowing
and moving the lips and the velum. Patients sometimes laugh or cry unprovokedly,
which is caused by the disturbed inhibiting influence of the motor cortex. Most
common symptoms in speech production are listed in Table 3.1.

3.1.3 Ataxic dysarthria

The cerebellum is responsible for monitoring the precision, smoothing and coordi-
nation of movements. A lesion in this area will thus disturb coordination, affecting
force, speed, range, timing and direction of the movements [22]. The resulting
pathological speech is known as ataxic dysarthria. Typical speech symptoms are
listed in Table 3.1.
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3.1.4 Hypokinetic dysarthria

A part of the extrapyramidal system produces dopamine, an important neurotrans-
mitter. In case of an underproduction of dopamine, like e.g. in a patient with
Parkinson’s Disease, the inhibition of muscle tone and the initiation of movements
is weakened. This causes a higher muscle tone (hypertonicity) and a slower ini-
tiation of movements, hence the name hypokinetic. All muscles are hypertonic,
leading to rigid muscles. As the extrapyramidal system regulates automatic, invol-
untary movements, mostly automatic movements will be slowed down, weakened,
limited. Another typical symptom is the tremor (at about 6 Hz). In speech produc-
tion, the most striking symptoms are listed in Table 3.1.

3.1.5 Hyperkinetic dysarthria

Both hypo- and hyperkinetic dysarthria originate in the extrapyramidal system.
While the first is due to an underproduction of dopamine, slowing the initiation of
movements down, the latter is due to a lesion in this area disturbing the inhibition
of movements in the opposite way, causing more movement/activity. This leads to
hyperkinetic symptoms. Speech production symptoms are listed in Table 3.1.

3.1.6 Mixed dysarthria

If multiple regions in the nervous system are affected, one can develop a mix of
the dysarthrias described above. Speech production will be affected according to
the mix of dysarthrias.

3.2 Laryngectomy

While dysarthria points to a speech disorder, laryngectomy refers to a surgery lead-
ing to speech problems. This surgery is almost always a result of laryngeal cancer
and involves complete or partial removal of the larynx. While a total laryngec-
tomy used to be performed even for small cancers, the tendency nowadays is to
save the “voice box” as much as possible and to use radiation and chemotherapy
for smaller cancers [30]. As in dysarthria, the name “laryngectomy” covers a wide
range and variance of pathological speech symptoms, this time not only depending
on the severity of the cancer and thus of the surgery, but also on the used substitute
speech after surgery. In the next sections, I will describe both partial and total
laryngectomy and the consequences for speech after surgery.
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3.2.1 Causes

As described before, the larynx can be divided into a subglottal, glottal and supra-
glottal area. Laryngeal cancer can originate in all three regions, but glottal cancer
occurs the most [26]. Four stages of severity can be distinguished:

• T0: only a superficial layer is affected (called carcinoma in situ).

• T1: only the glottal area is affected, one or both vocal folds are affected

• T2: The supra- or subglottal area is affected as well, the vocal folds can be
less mobile

• T3: one or both vocal folds are fixated (immobile)

• T4: the tumor has metastases outside the larynx

Nowadays, small tumors (stage T1 or T2 or even some T3) will be fought with
radiation therapy. If this does not work, a partial laryngectomy will be performed.
Tumors of stage T3 and T4 will often lead to a total laryngectomy.

3.2.2 Partial laryngectomy

In this surgery, only a part of the larynx is removed to save the voice box and
swallowing functions as much as possible to keep life quality as good as possible.
There are different types of partial laryngectomy procedures, depending on the
type, location and metastases of the cancer.

CO2 laser surgery can be used to treat some stage T0 to T2 cancers. An endo-
scope is passed down the throat to locate the tumor, which is then excised using a
high-intensity laser on the tip of the endoscope [30, 31]. Although laser surgery is
an organ-preservation method, research indicates that voice quality after this kind
of partial laryngectomy is not better than after total laryngectomy [32]. It shows
that some parameters like shimmer and jitter are worse or equally bad as for total
laryngectomees with tracheo-esophageal speech (See Section 3.2.3). Intelligibility
however is considerably better after laser surgery [32].

Horizontal or supraglottic partial laryngectomy is an operation in the hori-
zontal plane to remove part of the supraglottis: the epiglottis (top of the larynx),
false vocal cords, and superior half of the thyroid cartilage. Vocal cords are saved.
Swallowing and aspiration problems are common after this operation, but voicing
and articulation should not be affected [31].
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Supracricoid laryngectomy includes removal of the entire supraglottis, the false
and true vocal cords, and the thyroid cartilage. Maximum one arytenoid (muscu-
lature around the vocal cord which regulates the frequency and position of the
vocal cord) may be resected. The remaining arytenoid(s) is/are sutured against
the tongue base, which will now serve as phonation organ instead of the resected
vocal cords. Respiratory function is dependent on the preservation of the cricoid
cartilage [31]. Although supracricoid laryngectomy is preferable over a total la-
ryngectomy as it does not need a permanent tracheostoma (see 3.2.3) and main
functions such as breathing, swallowing and phonation are (mostly) maintained,
speech performance after this surgery is very variable and not better and some-
times even worse than after a total laryngectomy [33–35]. While the fundamental
frequency is lower than in laryngeal speech, jitter and shimmer are much higher
and intensity and phonation time are very small [35].

Vertical partial laryngectomy is a vertical resection of the larynx. Usually, the
thyroid cartilage is divided medially and one false vocal fold and one true vocal
fold are removed (hemilaryngectomy). Sometimes the vertical plane has a differ-
ent orientation, removing the anterior 1/3 of the folds and cartilage (frontolateral
laryngectomy). Unlike all other types of laryngectomy, fundamental frequency af-
ter this type of surgery is on average higher than in laryngeal voice. This is due
to thinner, lighter and/or shorter vocal folds [36]. Jitter and shimmer are very ele-
vated again, sometimes even worse than after a total laryngectomy [37]. The voice
is also likely to be dysphonic but articulation should be unaffected [31].

3.2.3 Total laryngectomy

In this surgery, the complete larynx is removed. This includes all cartilages, folds,
hyoid bone, epiglottis and tracheal rings. An opening or stoma is made in the
trachea in the front of the neck, separating upper and lower airways permanently.
Air enters and leaves the trachea and lungs through the stoma. As the voice box
is completely removed, the patient will need to use another source for phonation.
Moreover, the complete separation of pharynx and trachea (see figure 3.1) also
omits the air passage through the oral cavities where resonance and phonation
take place. The patient will thus have to find an alternative way to speak, such
as esophageal speech, tracheo-esophageal speech, or to use an electrolarynx. All
three mechanisms will be described in the next paragraphs.

Esophageal speech The cheapest way of phonation after a total laryngectomy is
esophageal speech (E-speech). In this method, air is injected into the esophagus
and then expelled through the mouth. While the air passes the top of the esophagus,
which functions as the so-called pseudo-glottis, the local muscles will contract
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Figure 3.1: Total laryngectomy and substitute speech possibilities. (a) Scheme of the head-
neck area before laryngectomy. (b) Scheme of the head-neck area after laryngectomy: tra-
chea ends in a stoma and is separated from the oral and pharyngeal cavities. (c) Esopha-
geal speech. (d) Tracheo-esophageal speech (e) Electrolarynx. Full arrows denote in- and
exhalation, dotted arrows denote air injection and expulsion for speech purposes.

causing vibrations to produce phonation. While this technique is the cheapest as
no battery is needed (as in electrolarynx) and speech is hands-free (unlike tracheo-
esophageal speech), it is not the easiest one as intense speech therapy is needed to
learn how to force the air into the esophagus. Three methods are used for this [38]:

• Injection is a method where air in the mouth is compressed by backward and
downward movement of the tongue to be injected into the esophagus.

• Swallowing air into the esophagus is a second method. Drawback of this
method is that it takes more time to transport the air in and out again.

• Inhalation is a method that exploits the fact that the pressure in the esophagus
is lower than in the trachea after inhaling air into the stoma. Because of this
underpressure, air enters the esophagus when the pharyngo-esophageal (PE)
muscle is relaxed during inhalation.

Success rates for E-speech vary between 14% and 75% depending on the details
of the surgery and the health of the patient [39–41]. It requires 30 to 50 hours
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of intense speech therapy to master the technique, and the therapy often fails.
This can be due to a wide range of reasons, both physically (e.g. reflux) and men-
tally [38, 41].
Apart from the learning difficulties, a major drawback of esophageal speech is the
small air volume per injection: the air volume per injection is only about 50 (for
frequent injection) to 85 ml (for one injection only) while the capacity of the lungs
can reach about 3 liters [38]. This strongly reduces the length of an utterance to
maximum 2 seconds [42].
As the vocal source in esophageal speech (pseudo-glottis) is located in the top of
the esophagus, the produced sound will be very different from “normal” laryngeal
speech. Most striking characteristics are the following:
Phonation. First of all, the pseudo-glottis vibrates at a frequency of on average 60-
80 Hz [38, 43], which is far below the normal pitch range of 90-165 Hz in healthy
male speakers and 158-259 Hz in healthy female speakers [28]. Jitter and shimmer
are also higher than in normal speech, while the amplitude and intonation of the
voice are reduced [43].
Resonance. The velopharyngeal function is altered [44]. Because of the small air
volume in the mouth, esophageal speakers produce nasal phonemes with less cou-
pling of the oral and nasal cavities than nonlaryngecomtized speakers, which will
lead to a reduced or missing nasal air release, also called hyponasalization [45].
The same mechanism causes a higher oral pressure and no nasal airflow during
pronunciation of /p/.
Articulation. Apart from the reduced intelligibility of nasals [44], esophageal
speakers face other articulatory problems as well. As they do not have vocal folds,
they have difficulties in distinguishing voiced and voiceless consonants [46, 47].
Most errors occur in the voiceless stops, which are replaced by their voiced coun-
terpart, e.g. /p/ and /t/ will often be confused with /b/ and /d/ respectively, while
the voiced versus voiceless confusion is less frequent. Voiceless fricatives can also
be confused by their voiced counterpart, but not as often as in stops [47]. Accord-
ing to [46], the voice onset time, defined as the time interval between the release
of stop occlusion and the onset of the following vowel, is significantly shorter than
in normal speech. This can be explained by the fact that the pseudo-glottis (PE
- segment) is normally adducted when not involved in vibration while the vocal
folds are abducted in rest. In addition, the air volume between the sound source
and the lips is smaller than in laryngeal speakers. This means that the air pres-
sure drop needed to end the burst is reached in less time and the vibration of the
pseudo-glottis is started easier and earlier.

Electrolarynx The electrolarynx was introduced in the 1940s, at a time when
tracheo-esophageal speech (TE-speech, See Section 3.2.3) had not yet been in-
vented and esophageal speech was the only option in speech recovery. Since



CHAPTER 3 25

E-speech is not always possible, the electrolarynx became a popular alternative.
Nowadays, TE-speech is the most popular method, but for 11% [44] to 50% [48] of
the laryngectomees the electrolarynx is still used, sometimes just in the first weeks
after operation, sometimes as a backup method and sometimes as the only method.
The electrolarynx is a hand-held device with a battery-driven vibrator, which is
placed against the neck or into the mouth by a tube. Although the intra-oral type
leads to a better speech quality, the neck-type is used more often because it is eas-
ier and more comfortable to use [40]. The vibrations are passed into the pharynx,
replacing the vibrations of the vocal folds. The speaker then articulates with the
tongue, palate, throat and lips as usual [49]. This technique is very easy to learn as
the patient only has to learn where and how to place the device correctly. Another
advantage is the unlimited utterance length as electrolaryngeal speech (EL-speech)
does not need pulmonary support. Although EL-speech is very easy to acquire, it
suffers from many problems. First of all, the device is not hands-free. Secondly
and more important, it is known for its mechanical and monotonous sound, cannot
control the pitch and produces noise. It is generally agreed that EL-speech is less
intelligible than E- and TE-speech [40, 50]. In the last decade, some devices have
been developed to solve the monotonicity problem. Electrolarynges with finger-tip
pitch control are already commercially available. Electromyographic and expira-
tion pitch control are still in the experimental phase [40]. Those last two use effects
happening naturally in laryngeal speakers: neck muscle activity changes and ex-
piration pressure raises when persons raise their voice. Watson et al. [48] found
that EL-speech with a variable fundamental frequency was more understandable
by the listeners because it sounded more natural and the pitch variations indicated
the important words. This prosodic improvement does however not change intelli-
gibility. Most important phonation, velopharyngeal and articulation characteristics
of EL-speech are the following:
Phonation. The fundamental frequency of EL-speech depends on the type of de-
vice. It varies between 80 and 125 Hz and is monotonous. Although some new
devices can adapt intonation, the frequency changes still do not meet the normal
frequency changes [49]. The signal-to-noise ratios are also very low compared to
normal speech.
Resonance. Information about resonance function in EL-speech could not be
found.
Articulation. On the level of articulation, the main problem lies again in the voic-
ing domain. Because the electrolarynx is continuously pulsing during an utterance,
the voiceless sounds are perceived as being voiced. This is the most predominant
in voiceless stops, confused with their voiced cognates [39]. Voiceless fricatives
are less confused with their voiced counterpart. As EL-speech is independent from
breathing, patients have to take extra care of the fricatives and have to learn how
to use the air in their mouth to create strong frication noise without pulmonary
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airflow. Fricatives are the second least intelligible (after stops) [39]. Place and
manner errors are not so common in EL-speech.

Tracheo-esophageal speech Before 1980, the only valid options after a total
laryngectomy were esophageal speech and the use of an electrolarynx (see Sec-
tion 3.2.3). Since then, voice prostheses have become a valid alternative. Nowa-
days it is even the preferred option in many countries [42, 51]. A voice prosthesis
consists of a one-way valve placed in a surgically created hole between the tra-
chea and the esophagus. The prosthesis keeps food out of the trachea and lets
air from the trachea into the esophagus for so-called tracheo-esophageal speech
(TE-speech). As in esophageal speech, the pseudo-glottis is the PE-segment, but
the main difference lies in the air source, being the lungs instead of the esophagus,
making TE-speech more natural for the patient and also easier to learn. The patient
can already start speaking a couple of days after his/her operation. As the lungs
can contain a couple of liters of air, the utterances can be significantly longer than
in E-speech (using the 60-80 ml of the air injected in the esophagus) [42]. Voice
prostheses can be classified into two categories. Non-indwelling prostheses can be
removed, cleaned and placed back by the patient himself/herself, while the patient
needs a doctor to do so for an indwelling prosthesis. As this last type is easier to
clean and maintain for the patient and is designed to be more robust, the indwelling
prostheses are usually used nowadays [42]. Among the most popular prostheses
are the Provox and Provox II valve, the Groningen prosthesis and the Blom-Singer
prosthesis, all made to decrease the discomfort for the patient as much as possi-
ble by optimizing the speech and voice (low airflow resistance) characteristics and
improving lifetime and hygiene of the device [52, 53]. Currently, the average life-
times of prostheses vary between 5 to 6 months. This relative short life is caused
by candida growth on the silicone parts of the prosthesis. Because of this, the pros-
thesis does not fully shut the trachea off anymore, allowing leakage of fluid to the
trachea, making the patient cough. Anticandida and yogurt and other probiotics
could slow down the growth of candida [42, 54]. Another discomforting aspect of
the prostheses is the closing. Usually TE-speakers have to close the stoma with
a finger directly to divert the expiratory air through the PE-segment. Nowadays,
an automatic valve makes it possible to talk “hands-free”. This valve closes the
stoma whenever the air pressure rises (which indicates that the patient is trying to
speak) [42].
TE-speech is claimed to be the best intelligible alaryngeal speech [51,52]. Still the
absence of vocal folds and usage of the PE-segment as pseudo-glottis introduces
some typical articulatory and phonatory problems:
Phonation. As in E-speech, the fundamental frequency of speech is on average
80- 100 Hz, which is lower than in laryngeal speech. Jitter and shimmer are higher
than in normal speech, but already lower than in E-speech.
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Resonance. While coupling of oral and nasal cavities is reduced in E-speech, [45]
indicates that the nasalization of TE-speech is closer to normal. This could be due
to the fact that TE-speakers dispose of a higher air volume per utterance than E-
speakers.
Articulation. The main articulation problem lies again mainly in the voiced-voice-
less distinction. TE-speakers generally realize manner and place of articulation
of plosives and fricatives the right way, but voiced consonants can be perceived
as devoiced and - more often - voiceless consonants are perceived as their voiced
counterparts [51, 55]. This could be explained by the tendency of the PE-segment
to vibrate [51]. Jongmans [55] also found other kinds of confusions for nasals and
approximants, noticing especially a high percentage of missing fricatives, nasals
and approximants in word final positions of a word-based test. This could be be-
cause the intensity drops and articulation is less precise at the end of an utterance.

3.3 Cleft lip and palate

Cleft lip and cleft palate or a combination of both are quite common facial mal-
formations during embryonal development. They consist of a cleavage of lip, jaw,
palate or a combination of those. The cleft can be uni- or bilateral and exists in
many severities, ranging from a small dip in the lips to a cleavage from nose to
uvula [56]. Figure 3.2 shows several types of cleft. A cleft palate makes the sep-
aration of oral and nasal cavities impossible. Incomplete separation will lead to
disturbed swallowing, sneezing, breathing and blowing/whistling [56]. Children
born with cleft lip and/or palate will be monitored throughout their childhood by
a team of surgeons, speech therapists and social workers to make its development
as normal as possible despite all these problems. They will have to undergo a
number of surgeries to close the lip, soft and hard palate and possibly correct jaw
and teeth structure. This whole process is spread over the whole childhood, which
causes retardations and alterations in speech and language development [57]. As
described in 2.3, the separation is needed for proper nasalization of sounds. If the
velum is not capable of closing off the nasal cavity from the oral cavity, all speech
will sound hypernasal, as nasal resonance will occur more and stronger than in-
tended. Speech of patients with an insufficient velum closure have some typical
speech characteristics:

Phonation. During consonant production, the oral airflow is often accompa-
nied by or even replaced by a (sometimes audible) nasal airflow. It is best perceived
in voiceless stops and fricatives which require some air pressure, which then leaks
away through the nose. In voiced stops and fricatives, nasal turbulence can be ob-
served [58, 59].
Resonance. Hypernasality is considered the primary characteristic of cleft palate
speech, as described above.
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Figure 3.2: Different types of cleft. (a) Normal lip and palate. (b) Unilateral cleft lip. (c)
Unilateral cleft lip and palate. (d) Bilateral cleft lip and palate. (e) Cleft palate.

Articulation. Articulation errors are manifold in cleft palate speech [56, 58]:

• First of all, articulation is weak due to the reduced intraoral pressure. This
is perceived best in voiceless stops and fricatives.

• Double articulation occurs when a single contact between tongue and palate
is not enough to realize a consonant. The patient will then make two points
of contact, leading to a double articulation, e.g. /tk/,/dg/ etc.

• Another common error is the backing of consonants which are normally
produced at the front. /t/ can then be produced as /k/ and /k/ can be produced
at the uvular or glottal position. This backing process is typical for cleft
palate children and could be due to abnormal neuromotor learning due to
structural abnormality [58].

• Another consequence of reduced intraoral pressure is compensatory articu-
lation. Only glottal and pharyngeal plosives and fricatives are not produced
orally and can be realized correctly. Uvular and velar fricatives shift to more
glottal or pharyngeal positions, /s/ is frequently replaced by a palatal or lat-
eral fricative, and /f/, /s/, /S/ and /x/ are sometimes produced as a voiceless
nasal fricative (no or little oral airflow).
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• Nasal substitution is yet another consequence of the pressure reduction. Oral
sounds are replaced by nasal sounds, e.g. /b/ becomes /m/, /d/ becomes /n/
etc.

• Sometimes consonants can be lateralized or palatalized. In those cases, the
tongue is in a lateral position between the teeth or touching the palate during
articulation, like e.g. /s/ becomes /S/ etc. This is considered as a minor
articulation error.

As mentioned before, cleft palate and lip can be corrected by surgeries like palato-
plasty and velopharyngeal flap surgery [56]. While all surgical methods show good
results in the recovery of the clefting, the effect on the speech outcome can vary,
maybe also depending on the type of the surgery [60].

3.4 Hearing impairment

A last pathology I will briefly describe, is hearing impairment. Hearing disorders
are classified along three dimensions: the origin of the disorder, the severity and
the age and gradient of onset.
According to the origin of hearing disorders, two major types can be distinguished:
hearing sensitivity loss and suprathreshold hearing disorder [61]. Most common
is the hearing sensitivity loss, meaning that the ear is less sensitive in detecting
sound. Depending on the exact location, hearing sensitivity loss can be conductive
or sensorineural. The first type refers to an attenuation of sound in its mechanical
form as it travels through the outer ear. The second type refers to a problem in
the inner ear during transduction from mechanical pulses to neural impulses, the
form in which the hearing passes its data to the hearing nerve to the brain. Causes
of hearing sensitivity loss are manifold: both (genetic) embryologic malforma-
tions as structural changes secondary to infection or (acoustic) trauma are possible
causes, as are many others [61]. Some toxins and medications can also be a cause.
Suprathreshold hearing losses result from lesions in the nervous system affecting
the hearing nervous system. They are caused by a tumor, stroke, trauma or a de-
velopmental disorder or just by aging.
Hearing impairment is quantified by the use of an audiometer. This measures the
hearing sensitivity across the range of audible frequencies and its deviation from
normal. It returns a degree of loss, ranging from mild (24-40 dB hearing loss) to
profound (more than 90 dB hearing loss). More specific information such as the
curve of the spectrum of hearing loss, are also returned. This information enables
the speech therapist to predict which phones will be heard and which will not. It
also determines whether the hearing loss is unilateral or bilateral - in one or both
ears.
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Crucial for the impact of hearing loss is the age of onset. If it occurs before lin-
guistic development, also called prelingually, and if the hearing loss is profound
enough and intervention (e.g. cochlear implant, see further) is not done early
enough, the prognosis for adequate language and speech development is dimin-
ished. If the hearing loss occurs after linguistic development, called postlingually,
the prognosis is much better. Apart from the age of onset, the speed of onset is
also very important [61, 62]. The slower the hearing loss develops, the more time
the patient has to develop compensatory strategies for hearing (like lipreading and
learning contrasts between phones in the new situation) as well as for speaking.
Hearing losses can be (partially) compensated by the use of aids to hearing. Con-
ventional hearing aids basically consist of a microphone, an amplifier and a loud-
speaker, sending the incoming signals in an amplified version to the ear. They are
most often worn behind the ear. If the deafness is more profound, the problem
is mostly situated in the transduction of the sound waves into electrical impulses.
In this case, a cochlear implant might work. This consists of an external micro-
phone, amplifier and transmitter sending the electrical impulses to a receiver or
electrode which has been implanted into the cochlea to artificially stimulate the
hearing nerve. [61].

Speech characteristics of hearing impaired speakers Severity as well as age
and gradient of onset are known to affect speech intelligibility of the hearing im-
paired speakers as described above. Typical speech errors for hearing impaired
speakers are manifold and involve phonation, resonance and articulation.
Phonation. The fundamental frequency is often quite high in females, and slightly
too low in male speakers. Moreover, some speakers show highly irregular, inap-
propriate and strong pitch variations up to 100 Hz within an utterance [62]. Some-
times breathiness is observed. This is due to an excessive airflow during voicing
and slow vocal fold cycle, resulting in a turbulent waveform with high energy in
the low frequencies and low energy in the high frequencies.
Resonance. Velopharyngeal control is known to be difficult for hearing-impaired
speakers. Both hyper- as hyponasalization can occur [63], although excessive
nasality is more investigated. Studies report as much as 76% of the profound
hearing-impaired children producing excessive nasalization in at least half of the
vowels, and clusters containing a nasal and a stop seem to be the most difficult [62].
Articulation. Hearing impaired persons tend to make many articulation errors. In
general, the problem lies within the visibility of articulatory gestures. As the hear-
ing impaired do not have auditory feedback to learn the right pronunciation, they
need the visible aspect to understand how to produce a phone [62]. This explains
why phonemes produced in the front of the mouth are more often produced cor-
rectly than phonemes located in the back of the mouth. The latter are then replaced
by a phoneme with a close-by place of articulation. While place of articulation is
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still in the right range, especially for the visible phonemes, manner of articulation
is more problematic as coordination and timing of the movement of articulation
is sometimes difficult. As mentioned above, errors in nasality are common: non-
nasal phonemes are nasalized while nasal consonants are often replaced by a stop.
Again, most errors occur in phonemes produced in the middle or the back of the
mouth, like e.g. palatal plosives and fricatives and velar sounds. Alveolar sounds
are also prone to errors. This is due to the fact that more sounds are pronounced
centrally, which means that a higher accuracy is needed to produce those sounds
correctly. Hearing impaired speakers often lack accuracy as they only have the vis-
ible aspect, explaining why phonemes produced in the middle of the mouth are also
prone to more errors. Those phonemes are then substituted by another phoneme, or
- more commonly in severely and profoundly hearing impaired - simply omitted.

One of the most frequent errors in consonant production is the voiced-voiceless
confusion, most often voiced for voiceless substitution [62]. One hypothesis is
that this is due to a failure in coordination of timing of respiration, phonation and
articulation. More precisely, the voice onset time (VOT), being the time needed
to start voicing after a stop, is in many cases equally short for voiced and for
unvoiced stops, while the VOT should be longer after a voiceless stop. This leads
to misperceptions of unvoiced sounds as being voiced.

Although vowel errors are less common than consonant errors, it is known that
the formant frequencies of deaf children’s vowels tend toward the central vowel
/@/. The reduced phonological space is most present in the vowel place dimension.
Front-back tongue movement is less visible than jaw movements for vowel height
and thus less simple to mimic [62].
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4
Intelligibility Assessment

In clinical practice there is a great demand for fast and reliable methods for as-
sessing the communication efficiency of a person with a speech disorder. It is
argued in several studies (e.g. [64]) that intelligibility is an important criterion in
this assessment.

The concept of intelligibility is rather intuitive and leaves room for interpreta-
tion. The process of being understood depends on so many factors that covering
them all in one single measure is impossible. This is reflected in the large number
of tests and scales available for assessment of intelligibility, each measuring some
contributing aspects which are then converted to a test-specific score giving an im-
pression of the intelligibility. The test outcome - an intelligibility score - thus has
to be interpreted within the framework of the used test, and cannot be considered
as generally valid as another is bound to yield a different score.

Apart from the variety in available tests and scales, intelligibility can be mea-
sured on several linguistic levels, ranging from phoneme intelligibility to running
speech intelligibility (RSI). While the first aims to measure the intelligibility of
every single phoneme of a speaker, RSI measures the performance of the speaker
while reading more natural speech material like sentences or paragraphs.

In Section 4.1, I will first discuss some key factors for differentiating between
tests as well as some prerequisites for a reliable (perceptual) intelligibility test. I
will then introduce the DIA, the Flemish test my work was based on. A number of
automated intelligibility tests will be discussed in Section 4.2.
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4.1 Perceptual Evaluation
Nowadays, clinicians mainly rely on perceptual intelligibility tests. As these tests
are subjective in nature, all kinds of methods are used to make them as reliable as
possible. One of the primary prerequisites for getting reliable scores is that the test
is designed in such a way that the listener cannot guess the correct answer based
solely on contextual information. That is why these tests use random word lists,
varying lists at different trials, real words as well as pseudo-words, etc.

4.1.1 Variables in intelligibility testing

In this section, I will discuss some important parameters determining the linguistic
level, reliability, rating and profoundness of an intelligibility test.

4.1.1.1 Level of intelligibility

Intelligibility can be assessed at different linguistic levels, ranging from phoneme
intelligibility (PI) to running speech intelligibility (RSI). While the first investi-
gates a person’s ability to correctly pronounce every phoneme, the latter creates
a more global view of a person’s ability to communicate in a more realistic and
natural setting such as running speech as it is used for daily communication. As
one would tend to opt for RSI measures because of their naturalness, others argue
that PI measures are preferable in case of severely impaired speakers who are still
able to make themselves clear by uttering single words without having the strength
to produce intelligible phrases. Clearly pronounced phonemes are therefore more
important for them, making PI tests more preferable. PI tests also have the ad-
vantage of permitting to extract more detailed information about the underlying
articulation problems. A conclusion is that each linguistic level of intelligibility
testing has its own merits and contributes in its own way to the global assessment
of the speaker [2].

Note that intelligibility of a person can vary with the linguistic level. Moder-
ately pathological speakers can be fairly intelligible at sentence level but hardly
intelligible at a syllable or word level. On the other hand, severely pathological
speakers can score higher on single words than on sentences. This is reflected in
an only moderate correlation between PI and RSI [2].

4.1.1.2 Predictability of test material and utterance

The level of intelligibility testing and - more general - the type of test material does
not only influence the speaker’s ease and quality of uttering the speech but also the
listener’s ability to understand it.

First of all, test sets consisting of existing words and/or meaningful sentences
are to some extent predictable, which creates a positive bias in the intelligibility
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score as the listener is able to guess the words or sentences by linguistic and con-
textual information. This can be solved by using sets of phonetically similar words
or minimal pairs which are equally likely in the given context. Another possibility
is to include non-existing words or sentences without any meaning.

Secondly, every kind of test material gets predictable for a speech therapist
who is employing the same test regularly. The use of randomly generated test
items can circumvent this problem. Both the speech therapist and the patient will
then more often encounter new test items, reducing their familiarity with the test.
As a consequence, randomized tests are more reliable and valuable [12].

A third concern is the presentation of the test items. Most commonly, the test
items are presented in written form to the patient. This requires good reading
skills, which reduces the applicability on children. Young children therefore often
perform picture naming tests. A last option is repetition of the orally presented test
items: the speech therapist says the test item and the patient repeats it. In the last
case, the patient has obviously to be judged by a second person who did not hear
the speech therapist’s examples.

A last important factor is the examiners familiarity with the patient or with the
type of pathological speech. This possible influence can again be decreased if the
examinator is not the patient’s therapist.

4.1.1.3 Rating of intelligibility

Concerning the rating of intelligibility, there are two possible strategies: scaling
and measuring.

Scaling. The degree of intelligibility can be expressed on a Likert-scale [65].
Such a scale is often applied in ratings of RSI where it provides a quick, rough
overall index of intelligibility (e.g. on a scale from 1 to 5 where 1 denotes totally
unintelligible and 5 denotes very intelligible/normal). However, it does not provide
any information on the underlying problem and it is often not precise enough to
monitor progress during speech therapy [66].

Measuring. Another approach in intelligibility assessment is to measure and
quantify the degree of intelligibility by means of a quantitative score, e.g. a per-
centage of correctly recognized items. Such a score provides a more accurate index
of the functional limitation of the speaker. It is mostly used for word or phoneme
intelligibility assessment. Measuring intelligibility involves a comparison of the
listener’s interpretation of the patient’s production with the targeted one. To this
end, the speech therapist writes down what he/she perceived and later compares
this to the target or - if available - uses multiple choice forms to select the per-
ceived test items [66]. The intelligibility score can than for example be computed
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as the number of correctly identified words or phonemes. An advantage of this
method is that it can explore different speech pattern deficits. Disadvantages are
that this method is more time-consuming and that it sometimes needs multiple
persons to evaluate utterances in order to avoid familiarity issues.

4.1.1.4 More profound articulatory investigation

Intelligibility tests are primarily used to determine the severity of the speech dis-
order. However, speech therapists are also interested in the nature of the disorder
to determine the right personal therapy for every patient. Some intelligibility as-
sessments, like the DIA, embody an articulation inventory or phoneme analysis.

4.1.2 Dutch Intelligibility Assessment

The subjective test automated in this work is the DIA test [6], which was specifi-
cally designed to measure the intelligibility of Dutch speech at the phoneme level.
Each speaker reads 50 consonant-vowel-consonant (CVC) words1. The words are
selected from three lists: list A is intended for testing the consonants in a word
initial position (19 words), list B is intended for testing them in a word final po-
sition (15 words) and list C is intended for testing the vowels and diphthongs in a
word’s central position (16 words). To avoid guessing by the listener, there are 25
variants of each list and each variant contains existing words as well as pronounce-
able pseudo-words. For each test word, the listener must complete a word frame
by filling in the missing phoneme. In case the initial consonant is tested, the word
frame could be something like “.it” or “.ol”.

The perceptual intelligibility score is calculated as the percentage of correctly
identified phonemes. Previous research [6] has demonstrated that the intelligibility
scores derived from the DIA are highly reliable. A test with nine speech scientists
rating the same 30 speakers was used to investigate the inter-rater agreement. It
yielded an intra-class correlation [67] of 0.91 between the ratings of the different
raters. To measure the consistency of the ratings, the intra-rater correlation was
determined by letting the raters judge all of the 30 recordings twice, with a time
interval of more than a month. This lead to an intra-class correlation of 0.93. As
the DIA systematically assesses all Dutch phonemes in every word position they
may occur in, a qualitative analysis can be performed. Per list, a confusion matrix
can be made indicating the differences between targeted and perceived phonemes.
These differences can then be accumulated and interpreted in terms of shifts in
voicing, manner and/or place of articulation. Previous research [68] showed that
inter-rater agreement for phoneme identification however strongly depends on the
intelligibility of the speaker. Phoneme errors made by highly intelligible speakers

1The empty consonant is also allowed in initial or final position.
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were consistently identified by all raters, while the agreement decreased almost
linearly with intelligibility.

4.2 Automatic Evaluation

An important issue in intelligibility assessment is that the listener should not be too
familiar with the tested speaker since this creates a positive bias. While all other
aspects for obtaining a reliable test, like contextual information, can be avoided by
choosing the right test material, the listener’s knowledge of the speaker or its type
of speech can never be totally excluded. In particular, if one wants to use the test
for monitoring the efficiency of a therapy, one has to work with different listeners
over time. The latter automatically excludes the speaker’s therapist as a listener,
which is very unfortunate from a practical viewpoint. A possible way to create an
unbiased objective listener is to use the computer as a listener. Over the last couple
of years there has been a growing interest in trying to apply automatic speech
recognition for the automation of traditional perceptual tests and, more generally,
to obtain an intelligibility measure using an automatic speech recognizer (ASR).
The idea behind using an ASR for intelligibility measurement is quite logical: if
the effort a speech therapist has to make to decode a patient’s speech is inversely
related to his/her intelligibility, then the ease of automatic speech decoding might
also point to intelligibility.

Previous research indeed indicated that ASRs can be used for intelligibility
measurement. Ferrier et al. [69] experimented with repeated readings of the same
passage to a dictation system (Dragon Dictate). In a test on ten dysarthric speakers,
they obtained high correlations between mean recognition rate over eight readings
and the perceptually measured intelligibility scores. More recently, Vijayalakshmi
et al. [70, 71] proved that the phoneme recognition rate is valuable as a measure
for intelligibility. Again, only nine dysarthric speakers were tested. A handful
of other objective intelligibility assessments have been reported [70, 72–75], but a
major limitation of using ASR for intelligibility assessment is that it takes many
recordings of pathological speech before the outcome is reliable. As pathological
speech corpora are rather sparse, only a few tools are developed that can be used
by speech therapists in their daily therapy. Two tools for evaluation of pathological
speech will be discussed in more detail in the next subsections.

4.2.1 CFDA

A first tool for the evaluation of pathological speech is the Computerized Frenchay
Dysarthria Assessment (CFDA, [4]). This tool is based on the original Frenchay
Dysarthria Assessment (FDA, [76]), a perceptual test developed with the aim to
fully characterize the speech of a dysarthric speaker. The FDA and CFDA are thus
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designed specifically for dysarthric speakers, not for pathological speakers in gen-
eral. The FDA consists of 28 subtests, each evaluating one aspect of the patient’s
speech: reflexes (coughing, swallowing, etc.), respiration, and functioning of lips,
jaws, tongue, soft palate and larynx are measured. As a last test, intelligibility is
also investigated on three levels: word, sentence and conversation.
The CFDA assesses word and sentence intelligibility using the same test material
as the FDA. For the intelligibility test at word level, 12 test words are randomly
selected from a 50 word database. The first two words are practice items, the other
10 are the actual test words. The words are separately presented on a PC-screen.
For the sentence intelligibility 12 sentences are randomly selected from a set of
50.
While most objective intelligibility assessments use word recognition, this test
interestingly adopts a forced alignment strategy: a HMM-based ASR (see Sec-
tion 5.11), trained on speech of non-disabled (normal) English speakers, lines up
the patient’s utterance with the target words or sentences. The ASR returns a log-
likelihood score describing how well the utterance matches the target text, which is
called the goodness of fit (GOF). Comparison between the GOF of normal speak-
ers and that of dysarthric speakers renders a distance measure that appears to be
(cor)related to the perceptually evaluated intelligibility of these patients by means
of the FDA test. However, the precise nature of the (cor)relation was not deter-
mined. Moreover, only five dysarthric speakers were tested, which does not allow
the formulation of any statistically significant result. The author also noticed that
the GOF scores depend on the type of utterance: longer and more acoustically
complex utterances tend to return lower GOF scores. More research about nor-
malization and standardization of these scores is necessary.
Although the intelligibility aspect of the CFDA needs further elaboration, the tool
deserves attention because of its use of forced alignment instead of word recogni-
tion, and also because of its versatility and its high level of automation: 12 of the
28 subtests of the FDA have been automated with varying success, amongst which
the laryngeal functions and some of the palatal, lip and tongue functions. The
other subtests rely more upon visual assessment and/or require information gath-
ered over an extended period of time [4]. Objective assessment helps the speech
therapist to make the right diagnosis of a patient. Moreover, as soon as all anal-
ysis results are available, the program automatically derives the specific type of
dysarthria.

4.2.2 PEAKS

A second tool I wish to review is the Program for Evaluation and Analysis of all
Kinds of Speech disorders (PEAKS) [3]. This software package has been devel-
oped by the Pattern Recognition Group of the University of Erlangen to manually
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and automatically evaluate a variety of voice and speech disorders. It offers a
recording and analysis environment for both perceptual and automatic evaluation
and it is accessible via internet. To use this tool, the user only needs a PC or lap-
top with a web browser, a head set, a sound card and an up-to-date Java runtime
environment. The user can then choose between a number of possible recording
options, amongst which the “Nordwind und Sonne” passage for adults, which is
a phonetically balanced text composed of 108 words (71 disjunctive) and contain-
ing all phonemes of the German language. The text is frequently used in speech
therapy [7] in German speaking countries (see Appendix B for the full text).

Starting from this test, perceptual and automatic evaluation can be performed.
The automatic intelligibility score is derived by using an HMM-based ASR which
was trained on non-pathological German speech.

To test the performance of this tool, a group of 41 laryngectomees with TE-
speech were perceptually evaluated by 5 voice professionals. Per patient, the 5
intelligibility scores, expressed on a 5-point Likert scale [65] were averaged to one
reference score. Previous results showed high correlations between the reference
and automatic scores [3], which are in the range of the inter-rater agreement of the
5 raters. The results and methodology will be discussed in more detail in Chapter 8.
For young children, a pictogram test can be used, namely the “Psycho-Linguistische
Analyse Kindlicher Sprech-Störungen” (Psycho-Linguistic Analysis of Children’s
Speech Disorders (PLAKSS, [77]). This test consists of 99 pictograms of words
to be named by the child. These words cover all German phonemes in different
positions. Again, perceptual and automatic evaluation can be performed online.
In this case, the automatic intelligibility score is derived by using an HMM-based
ASR which was trained on “normal” children’s speech as well as adult’s speech
that was adapted by vocal tract length normalization [78]. The performance of this
part of the tool was tested on recordings of 31 children with cleft lip and palate,
which were also rated by 5 voice specialists. Similarly as for the TE-speakers, one
average rating on a 5-point scale was used as a reference score and the correla-
tions between the reference and the automatic score were almost as good as the
inter-rater agreement between the 5 raters. The methodology and results will be
discussed further in Chapter 8.
While the main aim of the PEAKS tool is to assess intelligibility of patients with
speech disorders, attempts are made to further extend its scope. So far, the only
extra feature implemented so far is a visualization tool, positioning the speaker
against a group of pathological speakers using a dimension-reduction algorithm
called Sammon Mapping [79].
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4.2.3 Need for a Flemish tool

Having presented the current tools for intelligibility assessment, two remarks can
be made. The first one is that there are only a few tools available. This strik-
ing lack of automatic measures is partly due to the fact that there is still insuffi-
cient confidence in the abilities of computer models, making the speech therapists
rather rely on perceptual tests. A second remark is that none of the few existing
Dutch/Flemish perceptual tests [66] have been automated yet. The rather new DIA
test (described in Section 4.1.2), developed in 2006, has proven to be highly reli-
able, and is therefore a good candidate for automation. During the SPACE-project,
I developed an automated test, but before describing my approach, there are some
fundamental concepts which need to be discussed. In fact, automating an intelli-
gibility test implies the creation of an intelligibility model. To build such a model,
one needs a suitable modeling technique and a database (corpus) on which it can
be trained and tested. Modeling techniques will be discussed in Chapter 5, the
used databases will be described in Chapter 6.



5
Speech recognition basics

In the field of speech recognition, researchers exploit a number of machine learn-
ing (ML) techniques to extract valuable symbolic information from a speaker’s
utterance, but also to characterize the speaker as a speech generator. As the field
of ML is very broad, this chapter only presents the ML techniques which were
used in this thesis. Subsequently, the principles of automatic speech recognizers
(ASR) are briefly explained.

Machine learning techniques always start from a set of examples, called the dataset.
Each example is represented by a number of characteristics called features. In case
of supervised learning, a target value or a symbolic interpretation (a label/a class)
is available and is also used during the learning of the model. In this case, a model
can be built to predict the targeted outcome as well as possible. This outcome can
be quantitative, i.e. a range of values, or qualitative, i.e. belonging to one of several
categories. In the first case, regression techniques are appropriate, while in the lat-
ter case classification techniques are in order. If no targeted outcome is available,
so-called unsupervised learning techniques can be applied to expose structure in
the data which can enhance insight in the properties of specific examples.

Models built with statistical learners need to be evaluated and compared. Sec-
tions 5.2 and 5.3 will deal with evaluation procedures and some performance mea-
sures.
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5.1 Symbols and notations

In the next sections, fixed values like dimensions will be denoted by a capital letter,
like e.g. N . Corresponding indices will be denoted by corresponding small letters,
e.g. n = 1, ..., N ;m = 1, ...,M . Vectors will be be denoted by the capital letters
X and Y , while matrices are denoted with bold capital letters, e.g. X. Parameters
will be denoted by Greek letters α, β etc. Small bold Greek letters denote vectors,
Capital bold Greek letters denote matrices.
Often, we will start from a dataset of N samples. Every sample n = 1, ..., N

consists of M features and can thus be represented as a (row) vector Xn with
M elements. These vectors can be collected in a NxM matrix X. In case of
supervised learning, the row vector Y of length N contains the desired outputs for
the examples in X and Ŷ denotes the prediction of Y .

5.2 Evaluation techniques

When searching for an appropriate model for a given task, it is important to inves-
tigate whether this model performs well on data that were in no way used during
the model development, and which are therefore called independent test data. It
is rather easy to design a model which completely fits to the training data. This
model however will lack any generalization power. Hastie et al. [80] show that
more complex models tend to generalize poorly as more parameters need to be
tuned on the same amount of training data. That is why testing on examples that
were not involved in the training is needed to expose this phenomenon.

Only a model which performs well on the independent test data is general
enough to provide reliable predictions for new examples. It is therefore a standard
procedure to split all available data into a training set, a validation set and a test
set. If several models are evaluated, those models are built (trained) on the training
set and then model selection is achieved on the validation set. Model selection
aims at identifying the model which is expected to yield the best performance on
an independent test set [80].

In many cases, there are insufficient examples to split them into three disjunct
parts. Another very widely used approach for estimating the prediction error is
then used, called (K-fold) cross-validation. For this method, the dataset is split
into K equal-sized parts. K − 1 parts are used for model training, and the Kth
part is used for testing. This is repeated for every possible combination of K − 1

parts out of K, leading to K performance estimates, which are then averaged in
order to provide the final cross-validation (CV) performance. Usually, K is set
to 5, 10 or the number of samples N . This last case is also known as leave-
one-out cross-validation. One should be careful in selecting the value of K. It
is shown in [80] that the higher the size of one part is, the more accurate the
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performance prediction is as the K training sets are similar, leading to similar
models. However, the similar models will also lead to a high variance on the K
performance predictions. On the other hand, low values for K will suffer from
a negative bias on the performance prediction as models are built with less data
which might not represent the diversity of the whole dataset, but the results will
be less variable as the K test sets are larger. Overall, recommended choices for K
are 5 or 10 [80].

5.3 Performance measures
In supervised learning, several performance measures exist. For regression, the
Pearson Correlation Coefficient (PCC) and the Root Mean Squared Error (RMSE)
between the computed and the targeted outputs are very popular. Starting from the
dataset X, the targeted outputs Y and the predictions Ŷ, the PCC is defined as:

PCC =

∑N
i=1(Yi − Ȳ )(Ŷi − ¯̂

Y )√∑N
i=1(Yi − Ȳ )2

√∑N
i=1(Ŷi − ¯̂

Y )2
(5.1)

The RMSE is defined as the square root of the mean squared prediction error:

RMSE =

√√√√ 1

N

N∑
i=1

(Yi − Ŷi)2 (5.2)

Both measures offer a different view on the results. While PCC quantifies the
linearity of the relationship between the outcomes and their predictions, RMSE
quantifies the absolute prediction error. RMSE has the advantage of being directly
interpretable. In case the discrepancies (errors) are normally distributed, 67% of
the computed scores lie closer than the RMSE to the measured (correct) scores.
During this research, we observed that if a model is designed to cover a large
range of outcomes, and if it is evaluated on a subgroup with a smaller subrange,
the PCC can become quite low for this subgroup even though the errors remain
acceptable. This happens when the rankings of the samples of this group along the
outcomes and their predictions respectively are significantly different. The RMSE
results were found to be much more stable across subgroups [13].

In case of classification, the misclassification error rate, defined as the percent-
age of misclassified samples, and the mean class misclassification rates, defined as
the percentage of misclassified samples per class, were used.

5.4 Linear Regression
The simplest prediction model in case of regression is the linear model. It pre-
sumes a linear relation between the observations and the outcomes. The parame-
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ters β = β0, .., βM need to be tuned to predict Y according to

Ŷ = Xβ, (5.3)

in which β0 denotes the intercept of the model and the rows of X also contain an
extra constant of 1 to condense the formulae. Tuning of the parameters depends
on how the error criterion is set. With the least squares method, the residual sum
of squares RSS(β) is minimized:

RSS(β) = ||(Y −Xβ)||2, (5.4)

which, in case (XTX)−1 exists, eventually leads to the solution

β̂ = (XTX)−1XTY, (5.5)

or
Ŷ = Xβ = X(XTX)−1XTY = HY, (5.6)

in which H is called the hat matrix (as it puts the “hat” on Y ). This matrix projects
Y orthogonally onto the space spanned by the observation vectors in X. Its trace
defines the model complexity, being the number of parameters to be tuned [80].
When the features (columns of X) are not independent of each other (and thus
creating redundancy), the matrix X is not full-rank. As a consequence, (XTX)

will be singular and the coefficients β are not uniquely defined anymore. A simple
solution to this problem is dimensionality reduction.

Dimensionality reduction. The problem of redundancy in the feature set can be
solved in- or outside the regression program. Apart from the redundancy problem,
the size of the feature set can be a source of overfitting as it directly determines the
model complexity. Dimensionality reduction involves the derivation of a subset of
uncorrelated features from the original feature set.

This derivation can be done by means of principal component analysis (PCA),
which projects the original (correlated) features onto a smaller set of uncorrelated
features, called the principal components [81]. Transforming the feature space
however has the drawback that the new PCA-dimensions do not always have the
same simple physical interpretation as the original dimensions might have. There-
fore, one could consider feature selection instead of feature transformation. Some
methods, like ANOVA [80], search for the features which best explain the out-
come variable. These methods however do not always retain the best feature set
as interactions between features are not taken into account or only to a limited
extent. Therefore, another approach is to simply build a model for every possi-
ble feature subset, to test these models on the validation set and to select the best
one. When the feature set is large, it is computationally inefficient to perform such
an exhaustive search and other search methods need to be applied. The simplest
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search algorithm is the greedy forward or backward selection. The forward proce-
dure starts with the best combination of a small number of features and adds one
feature (the best) at the time. The backward procedure starts with all the features
and removes one feature at the time. A variety of smarter feature selection tech-
niques exist, like e.g. the use of genetic algorithms [82], but again these techniques
are way more computationally expensive.

5.5 Regression and classification trees

Another simple though nonlinear modeling technique is a decision tree. In its
simplest form, a tree partitions the feature space into hyperrectangles in which the
fitted outcome has 1 particular value. More complex forms of decision trees are
discussed in [83]. Decision trees can be used for both regression and classification.

Growing trees The hyperrectangles in the feature space are obtained by consec-
utively splitting example sets according to the value of one feature. The following
process is repeated recursively:

• Per feature m = 1, ...,M , do:

– For all t between the minimum and maximum value of Xim, i =

1, ..., N , do:

∗ Split the set of examples into two groups: observations i with
Xim ≤ t and observations i with Xim > t.

∗ All observations of one region obtain the same prediction, being
the mean outcome (regression) or most likely class label (classifi-
cation) of all observations in that region.

∗ Determine the predictive power of this model in terms of RMSE
or PCC in case of regression and the misclassification error in case
of classification.

– Establish the split point tm that leads to the highest prediction power
over all possible values of t.

• Find over all tm,m = 1, ...,M the optimal split for this iteration.

This process is repeated in a recursive way. The recursion is completed when
splitting no longer improves predictive power. The final regions in the tree are
called the leafs.
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Pruning trees With each split, the complexity of the decision tree augments.
While growing a tree the risk of overfitting therefore rapidly increases. Therefore
it is important to prune the tree. One approach could be to only add split points
if this enhances the predictive power to the validation set. However, a seemingly
worthless split might lead to a very good split further in the process. Therefore,
the preferred strategy is to first grow the whole tree and to prune afterwards [80].

5.6 Combining weak classifiers
Both linear regression and decision trees are simple but powerful methods. They
are however known to be very sensitive to noise in the data and to produce highly
variable results [80]. Moreover they can easily overfit the training data, which
makes them in a sense weak learners. Bagging and boosting are two powerful
methods to overcome these shortcomings. They both aggregate many weak pre-
dictors to obtain one stronger model with lower variance.

Bagging The idea behind bagging is that averaging out the results of many weak
predictors leads to a more robust model. Therefore, many weak models of the
same kind, such as decision trees, are created and later aggregated. In order to do
so, B new training sets, each with the same size N , are created by randomly draw-
ing samples from the original set. Samples are drawn with replacement, which
implies that one example can occur more than once in one training set. The idea
behind this method is that we randomly draw samples of sizeN from the empirical
distribution of the data, of which the original dataset is only a part. This empirical
distribution is discrete and puts an equal weight on each observation in the dataset.
By sampling with replacement, it is likely that some examples will be repeated
in each new dataset. If N is large, every set is expected to have 0.632xN unique
examples and 0.268xN duplicates [80].

A weak model is trained on every training set. The final prediction for a sample
is then the average of all predictions (in case of regression), or the majority vote
(in case of classification).

Boosting Boosting originates from the same idea as bagging, but the way of
combining the weak models to stronger ones makes this method fundamentally
different. Boosting algorithms start with applying one weak predictor G1 : yi =

G1(xi), i = 1, ..., N . The observations are then weighted according to the quality
of their prediction: the better the quality, the lower the weight of the observation.
With this new dataset, in which the observations are weighted, the same learner
is used to create another model. Again, after training the model, the observations
are weighted according to the results. This iterative process is repeated K times,
creating a sequence of models G1, ..., GK . The K models are then combined in
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a weighted manner (weighted majority vote or weighted average) to produce the
final model G(xi) [80].

Random Forests Random forests (RF) is an improved implementation of the
bagging principles for decision trees. Like in bagging, RF grows a large number
of trees (hence a forest). The difference with bagging lies in the provided feature
set: each node in the tree can only split according to a randomly selected subset of
the features. It can be shown that this random feature selection prevents overfitting
to the training data [80], which is a major advantage as it gives rise to stable models
with reliable predictions.

Ensemble Linear Regression incorporating feature selection One regression
technique which can be used on a small data set is ensemble linear regression
(ELR), which combines the low model complexity of linear regression with a bag-
ging strategy [84]. The latter boosts the predictive power by using many simple
models (linear regression models in this case) which are each trained on a different
random subset of the training data. For the training of our ELR model, ten ran-
dom divisions of the training set into two equally large parts are created: one part
for estimating the regression coefficients and the other for assessing the model. If
the experiments involve a large number of features and as every division will only
comprise a very restricted number of speakers, some feature selection procedure is
indispensable. Every single model is created by adopting a greedy forward feature
selection procedure which starts with the feature leading to the best performance
on the validation part of the random split and continues to add features as long as
that performance rises.

The ten models emerging from the ten training set divisions are then combined
into one single model by just averaging the regression coefficients of these models.
This final model is then evaluated on the test set.

5.7 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) and the related Fisher’s linear discriminant
analysis are classification techniques which aim at finding the set of hyperplanes
in the feature space which maximize the separation of K classes. While LDA
assumes Gaussian class distributions with equal covariance matrices for all classes,
Fisher’s approach does not use this constraint to find the linear transformation
Z = aTX of the feature space according to which the variance of the class centers
(between-class variance) is maximized relative to the within-class variance. This
latter is the weighted average over all classes of the variance of the observations
around their class means. The weights are equal to the class probabilities. Starting
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from a dataset X, the between-class variance ΣB and the within-class variance
ΣW can be written as follows:

ΣB =

K∑
i=1

πi(µi − µ)(µi − µ)T , (5.7)

with πi the prior probability of class i, µi the mean value of X in class i and µ the
overall mean value of X, and

ΣW =

K∑
i=1

πiΣi, (5.8)

where Σi denotes the covariance matrix of class i. The matrix a of Fisher’s prob-
lem can then be found by maximizing the function A(a):

A(a) =
aTΣBa

aTΣWa
, (5.9)

which can be solved as an eigenvalue problem, with a the eigenvector correspond-
ing to the largest eigenvalue of Σ−1W ΣB [80]. All eigenvectors together determine
a new feature space of maximally K − 1 dimensions. This makes LDA very in-
teresting in case the feature space of X is much larger than K as it reduces the
feature space, which is useful for visualization purposes.

5.8 Multi Layer Perceptrons
A totally different kind of statistical learner is the multi layer perceptron (MLP).
This special type of neural network can be seen as a nonlinear regression or clas-
sification model, in which the outputs of each layer are computed as a function of
a linear combination of the outputs of the preceding layer. A typical architecture
of an MLP is depicted in Figure 5.1. This MLP consists of three layers, being the
input layer, the hidden layer and the output layer. The input layer consists of theM
input nodes, one for each component of theM -dimensional input vectorXn. Each
input node m,m = 1, ...,M can be connected to each hidden node q, q = 1, ..., Q

by means of an arc carrying an adjustable weight αmq . Similarly, each hidden
node q can be connected to each output node p, p = 1, ..., P by means of an arc
carrying a weight βqp, leading to the estimation Ŷn of the targeted p-dimensional
output Yn. Every node q of the hidden layer computes the value Fq(Xn) and every
node p of the output layer computes Ŷnp according to:

Fq(Xn) =
1

1 + e−anq
with anq =

M∑
m=1

αmqXnm, (5.10)

Ŷnp =
1

1 + e−bnp
with bnp =

Q∑
q=1

βqpFq(Xn). (5.11)
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The MLP can be designed to predict the classification or regression problem as
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Figure 5.1: Schematic of a multi layer perceptron with one hidden layer. Every circle
denotes a computing node, resulting in the value marked within the node.

well as possible. First of all, the number of hidden nodes Q can be chosen. This
number will determine the model complexity as it confines the number of possible
interconnections (arcs) in the network. Secondly, the interconnection scheme can
be defined to possibly restrict the number of arcs. These two parameters can be
chosen by the user and they define the number of weights to be tuned.

The weights are trained to minimize the sum of square errors R(α, β) between
the computed and the targeted outputs:

R(α, β) =

N∑
n=1

P∑
p=1

(Ypn − Ŷpn)2, (5.12)

with N the number of training instances. The minimization of this function of
α and β is usually done by applying the error back-propagation (EBP) algorithm
[80].
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5.9 Support Vector Machines

A Support Vector Machine (SVM) is a binary classifier that uses the optimal sep-
arating hyperplane between two classes Y = 1 and Y = −1. Such a hyperplane
can be represented by an equation like

f(X) = Xβ = 0. (5.13)

In case f(X) > 0, X is assigned to class Y = 1, otherwise X is assigned to class
Y = −1.

In case the data are separable, β is scaled so that the hyperplanesH1 for which
Xβ = 1 and H−1 for which Xβ = −1 form the class borders. Often there will
be many possible hyperplanes fully separating the classes. SVMs therefore define
the optimal separating hyperplane as the one maximizing the margin between H1

and H−1, as is depicted in Figure 5.2a.
As the distance between H1 and H−1 is equal to 2

||β||2 , the optimal hyperplane
can be found by solving

β̂ = argmin
β
||β||2 (5.14)

subject to

Yn
Xnβ

||β||
≥ 1; n = 1, ..., N. (5.15)

With these constraints, the solution is uniquely defined [85]. It can be shown [80]
that the direction of the optimal separating hyperplane can be found as a linear
combination of those datapoints for which Equation (5.15) is exactly met, meaning
the points which are on the boundary of the margin. Those points are called the
support vectors.
In most cases, the two classes are not fully separable, like in Figure 5.2b. To
this end, slack variables ξ = (ξ1, ..., ξN ) are introduced to create a so-called soft
margin [80]. The variable ξn allows datapoint Xn to fall at the wrong side of its
margin. Fixing the sum of the slack variables,

∑N
n=1 ξn = T , defines the maximal

allowed number of misclassified training points T . The optimal hyperplane is then
found by optimizing the following soft margin problem:

β̂ = argmin
β

[
1

2
||β||2 + C

N∑
n=1

ξn] (5.16)

subject to

Yn(Xnβ) ≥ 1− ξn; n = 1, ..., N, (5.17)

ξn ≥ 0; n = 1, ..., N. (5.18)
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(a) (b) 

(c) 
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H-1 H-1 

H1 

ξ 

φ(X) 

Figure 5.2: Schematic of a SVM. Figure a depicts the case of linearly separable classes:
squares and bullets can be separated linearly. Filled bullets/squares denote support vec-
tors. Figure b depicts the case of non-separable classes, introducing the slack variable
ξ. Figure c denotes the case of nonlinearly separable classes. Using a Gaussian kernel
transformation Φ(X), the classes are transformed into the linearly separable case.

In these equations, the parameter C, determining the penalty of misclassification,
can be chosen by the user. It can be shown [80, 85] that the solution for β can be
found by maximizing the function

α̂ = argmax
α

(α) =

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjYiYjX
T
i Xj (5.19)

subject to

N∑
i=1

αiYi = 0 (5.20)

0 ≤ αi ≤ C, (5.21)
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leading to

β̂ =

N∑
i=1

α̂iYiXi. (5.22)

As shown in [80], only those αi for which constraint (5.17) is exactly met are not
equal to zero. The corresponding Xi are called the support vectors. The resulting
β̂ is thus a linear combination of the support vectors of the non-separable class
problem, all lying on the margin (ξ̂i = 0) or on the wrong side of the margin
(ξ̂i > 0).
It can be noticed from Equation (5.19) that in the formulation of the problem the
training data only appear as dot products. This opens the possibility to generalize
the SVM classifier to non-linear separation boundaries. To this end, the train-
ing data are first subjected to a non-linear transformation Φ(x). In this new and
possibly infinite dimensional feature space, the optimal hyperplane is searched as
explained before. This is depicted in Figure 5.2c. As the training data only appear
as dot products in Equation (5.19), the transformation Φ(x) does not have to be
known exactly, as only the kernel function K(xi; xj) = Φ(xi).Φ(xj) is needed to
solve the equations, reducing the possibly infinite dimensional transformation to a
finite-dimensional criterion [80, 85]. Some frequently used kernels are:

• The linear kernel : K(xi,xj) = xixj

• The polynomial kernel : K(xi,xj) = (xixj + 1)p

• The Gaussian radial basis function kernel : K(xi,xj) = e( − ||xi−xj ||2
2σ2 )

As the solution is only dependent on the support vectors, the complexity of the
resulting SVM is determined by the number of support vectors rather than the
dimensionality of the transformed space.

Some parameters are user-defined and can be determined by an external cross-
validation loop: e.g. the number of allowed misclassifications C and, in case of a
radial basis function (RBF) kernel, γ = 1

2σ2 , are important parameters. Usually,
these are determined by a grid search or by using an alternative method like [86].

Support Vector Regression The ideas behind SVM can be adapted for regres-
sion. While SVM classifiers determine the boundary with the largest margin sep-
arating two classes, Support Vector Regression (SVR) determines the regression
hyperplane around which most observations lie closer than a distance ε. Like dat-
apoints on the correct side of the decision boundary do not play a role in the opti-
mization criteria for SVMs, an ε-insensitive error measure Vε(r) is defined which
is equal to zero in case the distance |r| = Yi − Ŷi between a datapoint and the
optimal hyperplane is smaller than ε:

Vε(r) = max(0, |r| − ε). (5.23)
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Starting with the linear case, the linear regression model f(X) = Xβ is then
solved by SVR by optimizing the problem

β̂ = min
β

[

N∑
i=1

Vε(Yi − f(Xi)) +
λ

2
||β||2]. (5.24)

It can be shown [80] that the minimization of this equation leads to a function
f̂(X) of the form

f̂(X) =

N∑
i=1

α̂iX
TX, (5.25)

with α̂i only different from zero for a subset of the datapoints Xi, called the sup-
port vectors. It can be noticed that the solution only depends on the datapoints
through a dot product, which again makes it possible to expand the use of SVR to
nonlinear regression using kernels like described above. A schematic of Support
Vector Regression can be found in Figure 5.3.

ξ 

ε 

Figure 5.3: Schematic of a nonlinear SVR. Using a RBF kernel, this problem will be reduced
to a linear SVR. The middle line denotes the regression line. ξ denotes the slack variable,
defined like in case of an SVM.

5.10 Gaussian Mixture Models
Gaussian Mixture Models (GMM) are often used in speech processing to model
the acoustic properties of a class of data, e.g. one phone or one (type of) speaker.
Samples X of such a class Cj , j = 1, ...,K with K equal to the number of pos-
sible classes, are then characterized by a probability density function pθ(X,Cj),
consisting of a weighted sum of M Gaussian densities:

pθ(x|Cj) =

M∑
i=1

WijNij(X) =

M∑
i=1

Wij
1

(2π|Σij |)
1
2

e−
1
2 (x−Mij)

T Σ−1
ij (x−Mij).

(5.26)
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Every GaussianNij(X) of classCj is characterized by its weight Wij , mean Mij

and covariance matrix Σij . These parameters θ = {W,M,Σ} can be optimized
during training of the GMM by applying Maximum-Likelihood Estimation (MLE)
[80]. This method aims at maximizing the log likelihood function llj(θ,X), which
describes the joint probability of all observations belonging to the modeled class
Cj with cardinality Nj under the trained model:

llj(θ,X) =

Nj∑
i=1

log(pθ(X|Cj)). (5.27)

The maximization of the log likelihood function can be achieved by using the
iterative Expectation-Maximization algorithm [80]. Starting from first estimates, θ
is iteratively adapted to increase llj(θ,X) until convergence. The resulting GMMs
can form the base of HMMs, which will be discussed in the next Section.

5.11 Hidden Markov Models

A Hidden Markov Model (HMM) is a finite state machine that can generate a
sequence of observations according to a stochastic Markov process. It is typically
represented by a graph in which each node denotes a state and each arc denotes a
transition, as depicted in Figure 5.4. Self-loops are also possible transitions.

Figure 5.4: Typical structure of an HMM. Each node denotes a state and each arc denotes
a transition.

Beginning in an initial state, the observation sequence is generated by mov-
ing from one state to another, following a path along the sequence of states S =

s1, ..., sN . Typically for this process is that the probability of being in a state at
time n only depends on the previous state: P (sn|s1, ..., sn−1) = P (sn|sn−1). The
process of moving through these states is characterized by the transition probabil-
ities aij = P (sn = j|sn−1 = i) between states i and j. The part of the process
that makes the Markov process a hidden Markov model, is the fact that the states
s1, ..., sN are not observable. In state sn = j, there is a certain emission proba-
bility bj(X) of generating the (visible) observation X. Based on this formulation,
the probability P (X|λ,S) according to a model with parameters λ = aij , bj , π of
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a given observation sequence X = X1, ...., XN of length N to be generated by a
sequence of states S can be computed as [87]:

P (X,S|λ) = P (S|λ).P (X|S, λ) (5.28)

If we now assume that observations are independent from each other, and since the
probability of being in a state only depends on the previous state, we can write

P (S|λ) = πs0

N∏
i=1

asi−1,si (5.29)

P (X|S, λ) =

N∏
i=1

bsi(xi) (5.30)

where πs0 denotes the prior probability of starting in state s0. The total probability
of the observation sequence X according to the model is obtained by summing
P (X,S|λ) over all possible state sequences S, resulting in

P (X,S|λ) =
∑
S

πs0

N∏
i=1

asi−1,si bsi(xi) . (5.31)

In speech recognition, HMMs are typically used to model phonemes or words.
Obviously, it is important to know the most probable state sequence as this will
provide us with the most likely phoneme or word segmentation. This state se-
quence is usually found using the Viterbi algorithm [87].

Training of an HMM. Before an HMM can be used, its topology needs to be
defined and its model parameters λ have to be trained. Typically, the HMM of a
phoneme consists of 3 states, which can be traversed from left to right without the
possibility of skipping a state, like in Figure 5.4. Self-loops are necessary. HMMs
for words consist of the concatenation of the HMMs for the phonemes constituting
the word.

Starting from a large speech corpus of so-called training examples of which the
phonemic transcriptions are known, the model parameters can be estimated during
training.

5.12 Domain Adaptation

During my research, I was often confronted with rather small datasets. Creating
models when data are scarce implies that the resulting models have to be of a low
complexity. Fortunately, sometimes the small dataset is part of, or is related to, a
larger dataset, on which a more robust and complex model can be trained, which is
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usually called a Universal Background Model (UBM). In that case, domain adap-
tation (DA) can be used to create a model for the scarce dataset (in-domain data)
by adapting the model for the larger dataset (out-of-domain data).

In case of GMMs, the adaptation is often done by maximum a posteriori esti-
mation of probability density functions, called MAP adaptation [88]. The advan-
tage of using domain adaptation here is not only to create robust models based on
much training data, but also to describe every model in terms of its deviations from
the UBM.

Apart from DA techniques such as MAP adaptation, some very simple alter-
natives are established to tackle the DA problem. In [89], four simple methods are
described to bias or adapt a model towards the in-domain data:

• Train a model on out-of-domain as well as in-domain data, but increase the
weight of the in-domain data. This way, the model will be biased towards
the in-domain data.

• Train an in-domain and an out-of-domain model and take the weighted sum
of both as the final model.

• Use the predictions of an out-of-domain model as an extra feature in the
feature space in which to create an in-domain model. This can be seen as a
cascaded approach.

• Adaptation can also be performed by feature augmentation. Instead of start-
ing from the original feature space with dimension M , a new feature space
is created with dimension 3M . The transformation rule is very simple:
if a sample xold = (x1, ..., xM ) is part of the in-domain data, the trans-
formed sample Φ(x) will be defined as the 3M-dimensional vector Φ(x) =

(x,0,x), consisting of a concatenation of the original features, followed
by M zeros, followed by again the original features. If the sample is an
out-of-domain sample, the transformation will insert M zeros behind the
concatenation of twice the original feature vector: Φ(x) = (x,x,0). The
key idea between this is that the in-domain and out-of-domain models share
some features and do not share some others. Building a model in this feature
space can then be seen as a mixture of a general model, an out-of-domain
model and a in-domain model with weights chosen by the statistical learner.

5.13 Automatic Speech Recognition
Although many types of ASRs exist nowadays, they are all based on the same un-
derlying fundaments. Basically, an ASR consists of five modules [90], represented
in Figure 5.5: an acoustical feature extractor, a pattern recognizer, a set of acoustic
models, a lexicon and a language model.
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Figure 5.5: Schematic of an Automatic Speech Recognizer. Based on [90]

Acoustical feature extractor. This module transforms the speech signal s(t)
into a sequence of acoustic parameter vectors Xn. These parameter vectors are
generated by consecutively analyzing small overlapping windows (frames) of s(t).
The most popular acoustic features are the Mel-frequency cepstral coefficients
(MFCCs) [91].

Pattern Recognizer. This module serves as a search engine to find the most
likely word sequence Ŵ given the acoustic input vectors X. It aims at maximizing
the posterior probability of a word sequence W given X:

Ŵ = argmax
W

P (W|X) (5.32)

According to Bayes’ law, this equation can be reformulated as follows:

Ŵ = argmax
W

P (X|W)P (W)

P (X)
= argmax

W
P (X|W)P (W), (5.33)

since P (X) does not depend on W. Denoting an arbitrary phone sequence as F,
this equation can be specified as follows [11]:

Ŵ = argmax
W

∑
F

P (X|F)P (F|W)P (W). (5.34)

This equation consists of three factors. P (X|F), the probability of an acoustic
parameter vector sequence given the phone sequence, is modeled by the acoustic
models. The second factor, P (F|W), the probability of a phone sequence given
the word sequence W, is modeled in the lexicon. Finally, the probability of a word
sequence P (W) is modeled by the language model.
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Acoustic Models. Each statistical model estimates the probability that a sequence
of acoustic vectors X can be observed given that a phone F is realized in a par-
ticular phonetic context. The simplest models do not take the phonetic context
into account. In that case there is only one model per phone. In modern recogniz-
ers however, the models are context-dependent (CD), meaning that there are many
models per phone. The number of models can be kept within limits by not creating
a model for all possible contexts, but to cluster on the basis of phonological ques-
tions [92]. Every leaf of the final (pruned) tree is represented by another acoustical
model.

Lexicon. The lexicon can be seen as a pronunciation dictionary. It comprises
all the possible words for the given recognition task, together with their phone-
mic transcription. If a word can be pronounced in several ways, several phonetic
transcriptions of that word are incorporated.

Language model. This module defines the a priori probability P (W) of a word
sequence W = w1, w2, .., wi in a specific task. Usually, a so-called N-gram lan-
guage model is used, which models the probability that words wi occur in succes-
sion with the words wi−N+1, ..., wi−1. These probabilities are typically derived
from large text corpora and smoothed and adapted towards the specific task. The
benefit of using a language model is that it reduces the search space of the pattern
recognizer as at every point in time only a small percentage of all theoretically
possible words are meaningful. This reduction of the search space implies a large
speed improvement.

When the language model is restricted to one possible word sequence, the ASR
is no longer used as a decoder which tries to reveal the exact words of an unknown
message, but rather to find where the different phone(me)s of a known message
(with a given transcription) are realized. This process is called forced alignment.



6
Flemish databases

During my research, I worked with several databases: one containing Flemish
“normal” speech, one with Flemish pathological speech and one with Flemish and
Dutch “normal” speech.

6.1 Corpus Gesproken Nederlands (CoGeN)

CoGeN, a corpus of spoken Flemish, was developed by the universities of Leuven
and Ghent [93]. It consists of a variety of speech types, ranging from spelled
and read isolated words over read continuous speech to simulated man-machine
interactions. Recordings took place in an office environment as well as over a
telephone. For my research, I only used the office recordings.

Read and spelled words. For this part, 174 Flemish speakers (73 women, 101
men) each spelled a list of 10 words (there were 4 variants of this list), read the 10
digits and read a list of 100 words (again there were 4 variants of this list), lead-
ing to 2.16 hours of spelled words and 5.83 hours of read words. The data were
provided with broad phonetic transcriptions (meaning no allophonic variation was
taken into account). Word boundaries were created using an ASR and the segmen-
tations and phonetic transcriptions were verified and adapted where necessary for
all words.

Starting from these verified transcriptions, an ASR was used to create a seg-
mentation at the phone level of the read words, leading to phone labels and time
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information for every segment as described in [93]. For 40 speakers, the automatic
segmentation was checked manually and corrected where necessary, leading to the
so-called manual labels.

Read paragraphs. Each of the 174 speakers read five paragraphs, leading to
7.02 hours of continuous speech. Every utterance was provided with an ortho-
graphic transcription of what was actually read. This transcription was then con-
verted into a phonetic transcription using a standard grapheme to phoneme con-
verter [94]. This automatically generated phonetic transcription was again used to
create a segmentation at the phone level with an ASR, leading to phone labels with
time information for all read paragraphs. For 30 paragraphs, this segmentation
and transcription were verified and adapted where necessary. A quantitative study
about the followed segmentation procedure and accuracy can be found in [93].

6.2 Dutch Corpus of Pathological Speech (COPAS)
The Dutch Corpus of Pathological Speech [95] was constructed within the frame-
work of the SPACE-project [5]. It served as a resource for the development of the
objective intelligibility assessment tool presented in this thesis. COPAS mainly
consists of recordings of the DIA test performed by both normal and pathological
speakers, but it also contains a variety of other samples like readings of text pas-
sages, isolated sentences and spontaneous speech. Since 2010, the corpus is made
publicly available through the Dutch Language Union1.

6.2.1 Speakers and tests

The speakers recorded in COPAS belong to 8 distinct pathological categories,
which are shown together with their abbreviation and cardinality (number of speak-
ers of that category) in Table 6.1. For pathologies dysarthria, laryngectomy, hear-
ing impairment and cleft, a wide range of subpathologies are represented. The
precise etiology, gender, age etc. of every speaker can be found in the information
part of the corpus, together with the exact date and conditions (see section 6.2.3)
of his/her recording(s).

As mentioned in the beginning of this section, several tests were recorded, but
not every speaker participated in every test. For a majority of the speakers (305),
only recordings of the isolated word test (DIA) are available, but for 122 speakers
there are also recordings of the standard Dutch text passage “Papa en Marloes” [96]
(hereafter denoted with ‘TM’) consisting of 8 phonetically rich sentences (see Ap-
pendix B). Other tests include the sustained vowel, diadochokinetic rate, formant
transition, readings of 2 sentences and (semi-) spontaneous speech. In my work, I

1http://www.inl.nl/en/producten
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Speakers cardinality
Normal (N) 122

Dysarthria (D) 75
Hearing impairment (H) 29

Laryngectomy (L) 30
Cleft (C) 38

Articulation disorders (A) 17
Voice disorder (V) 7
Glossectomy (G) 1

Total 319

Table 6.1: Speakers in COPAS. From [95]

focused on the recordings of the DIA and the passage “Papa en Marloes”.

For my experiments, I defined some subsets of COPAS. Concerning the DIA test,
I defined a development set of 231 samples, hereafter called 231 DIA. As most
of the time only one therapist judged the recordings, we chose for consistency
and used only the scores of the speech therapist that judged all samples. As the
main purpose is to examine pathological speech, the proposed set comprises the
181 pathological speakers that have performed the DIA. To restrict the influence
of the control (normal) speakers, the control group was restricted to 50 samples. If
a speaker was recorded multiple times, only the recording of the first session was
considered. However, there was one exception to this rule: if the second session
also included the reading of a paragraph, that second session was preferred over
the first session. Figure 6.1 shows a histogram of the intelligibility scores of these
231 speakers. The 50 control speakers have intelligibility scores between 82 to
100 with an average of 94.3. The pathological speakers’ intelligibility range from
28 to 100 with a mean of 81. The histogram shows that there are few examples of
very low intelligibility scores. This is probably due to the fact that persons with a
very low intelligibility score often suffer from other physical limitations as well,
making it difficult to perform the test.

To conclude, a subset of 121 speakers read both TM and the DIA-test. These
recordings yielded two datasets: 121 TM and 121 DIA.

6.2.2 Annotations

The recordings were annotated by a skilled speech therapist using the open source
program PRAAT [97]. Every annotation file (TextGrid) was organized in tiers:
the first tier contains the target text that was presented to the speaker, the second
tier represents the orthographic transcription of what the speaker actually read ac-
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Figure 6.1: Histogram of intelligibility scores in the development set.

cording to the annotator. For the read passages, the tiers were segmented on a
sentence level. For the DIA test, the segmentation was on a word level, including
non-speech indications for time-intervals not containing any speech of the patient.

6.2.3 Microphone issues

An important issue in COPAS concerns the used microphone. All recordings were
made in a quiet clinical setting without sound treated box. Two totally different
microphone settings were used: a Sony ECM-717 lying on the table at a distance
of about 30 cm from the mouth, and a Shure headset WH20-QTR. The reason for
using two different types of microphones is historical. Both microphone types are
intrinsically different as they not only show another frequency response but also
pick up different parts of the signals due to their different distance to the speaker.
Even if both microphones are unidirectional, the Sony microphone lying on the
table will capture way more background noise than the head set, simply because
its position further from the mouth. This also implies that reverberation could
be present in the Sony-recordings. On the other hand, the headset can have the
drawback that the signal of plosives formed too close to the microphone can be
clipped and that more mouth noises will be audible. For most recordings (249
persons), the recording circumstances are known. For the remaining recordings,
the used microphone could not be backtracked by the speech therapist. However,
as the two recording techniques differ substantially, a classifier could be trained
to retrieve the used microphone for the unknown cases. To demonstrate just how
different both recording techniques are, the mean MFCC-vector of the recordings
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of the DIA-test for the 249 speakers with known microphone were calculated.
Simply visualizing the first three components of this vector results in Figure 6.2.
It is clear that classifying between the two microphones is not such a hard job.

To unveil the used microphone of the other samples, an SVM with linear ker-
nel was trained using the R-project for Statistical Computing [98]. To this end,
the set of 249 samples with known microphone was split into a training and a test
set. Adopting a five-fold cross validation setup on the training set lead to a per-
fect classification (100%). Training one SVM on the whole training set lead to a
performance of 94% on the test set. This last classifier was then used to fill the
microphone information gaps in the corpus.
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Figure 6.2: First three mean MFCC coefficients of all COPAS speakers indicating differ-
ences between the two microphones.

6.3 Spoken Dutch Corpus (CGN)
The CGN (Corpus Gesproken Nederlands, [9, 99, 100]) is a corpus containing
Flemish and Dutch speech. It was built between 1998 and 2004 by several Dutch
and Flemish universities. It contains about 1000 hours of speech, two thirds origi-
nating from the Netherlands and one third from Flanders. It consists of 15 compo-
nents. Every component contains speech of a different communication setting and
acoustic background conditions. The components are summarized in Table 6.2.
In this study only the read speech (component-o) was used. All components
were orthographically transcribed. For part of the data, phonemic annotations and
segmentations were generated taking pronunciation variations into account [100].
These labels and segmentations were generated automatically and manually veri-
fied on a word level. Quantitative studies about segmentation procedure and accu-
racy can be found in [100, 101].
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CGN components
a Spontaneous conversations (”face-to-face”)
b Interviews with teachers of Dutch
c Spontaneous telephone dialogues (recorded via a switchboard)
d Spontaneous telephone dialogues (recorded on minidisc )
e Business negotiations
f Interviews and discussions broadcasted on radio or television
g Political discussions, debates and meetings
h Lessons recorded in the classroom
i Live (a.o. sports) commentaries broadcasted on radio or television
j News reports and surveys broadcasted on radio or television
k News broadcasted on radio or television
l Commentaries, columns and reviews, broadcasted on radio or television

m Sermons, speeches and ceremonious speeches
n Lectures and seminars
o Read speech

Table 6.2: Components distinguished in the Spoken Dutch Corpus.



7
Phoneme intelligibility of

monosyllabic words

Using the machine learning foundations layed out in the previous chapters, we are
now ready to describe how these fundaments can be used to construct an auto-
mated version of the DIA. During this research, several possible approaches were
explored. Broadly speaking, they all boil down to a three-stage process involving
a front-end analysis, a speaker feature extraction and an intelligibility prediction.

Starting from a speaker’s utterance, the front-end analysis extracts a stream of
acoustic parameter vectors from the waveform. Depending on the speaker feature
set, these can be MFCCs (mel-frequency cepstral coefficients [91]) or log-mel-
spectral coefficients.

The speaker feature extraction considers all these vectors of a speaker to
derive a number of global features that characterize this speaker. Deriving inter-
esting speaker features which carry enough information about individual intelli-
gibility problems was one of the main challenges in this research. Originally, all
speaker feature extracting methods involved the use of an ASR. As described in
Section 5.13, an ASR incorporates a set of reference acoustic models to link a se-
quence of acoustic feature vectors (MFCCs) to a phone sequence. The creation
of these models will be discussed in Section 7.1. Based on these reference mod-
els, two strategies were explored for deriving speaker features using an ASR. The
first and most straightforward strategy is to just imitate the perceptual test by let-
ting the ASR recognize the targeted phoneme of every word and by measuring the
phoneme accuracy (see Section 7.2). A second strategy, involving forced align-
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ment, measures how well the speaker’s utterance matches the expected phones of
the target speech (see Section 7.3).

The intelligibility prediction model (IPM) is finally responsible for convert-
ing the speaker features into an intelligibility score. Several ML techniques were
evaluated to develop robust IPMs. They are described in Section 7.4.

7.1 Reference acoustic models

Reference acoustic models of an ASR are used to describe the probability of a
phone being represented by a sequence of acoustic feature vectors X. Tradition-
ally, these models are trained on a large annotated database of speech recorded in
similar conditions as in the envisaged recognition task, e.g. all close-talking or far-
field speech, with or without noise, etc. Moreover, the type of speech is typically
selected to have the same properties as those in the envisaged task, e.g. speakers
have the same language and all read similar speech material: running speech or
words.

Since we consider non-pathological speech as the reference and as we intend
to measure severity of a speech disorder as the degree of deviation from the ref-
erence, we developed the reference models using the Flemish non-pathological
speech database CoGen. One could argue that this approach establishes that non-
pathological speech will be recognized more easily and that the ease of recognizing
the uttered speech can be regarded as a measure for intelligibility, as in [3, 102].

However, when confronted with severely disordered speech, the ASR is asked
to score sounds that are in many respects very different from the sounds it was
trained on. This means that acoustic models are asked to make extrapolations in
areas of the acoustic space that were not examined at all during training. One
cannot expect that under these circumstances a lower phone probability always
points to a larger deviation (distortion) of the observed pronunciation from the
norm.

It might therefore be interesting to consider another approach to modeling
speech. In [103] the authors describe an acoustic modeling technique employing
phonological models to generate an intermediate description of the speech sounds.
In this technique, reference acoustic models derive probabilities of a set of binary
phonological features given a sequence of acoustical feature vectors. These proba-
bilities are then transformed into a phone probability using a simple product model.
Although the reference models are again trained on non-pathological speech, they
might offer more potential than the traditional phonetic models typically used for
speech recognition when assessing pathological speech degradation. If a speech
disorder is localized in specific phonological dimensions, some of the other phono-
logical dimensions of a sound may still be more or less preserved. By deriving
phone probabilities from the phonological feature probabilities, there might be a
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chance that the ASR can still detect the right phones in the utterance although the
probabilities of the phones will be lower than in case of non-pathological speech.
In case of phonetic models, it cannot be predicted how the phone probabilities
will degrade since acoustic parameter vectors of pathological speech were never
examined during training. A second advantage of this phonological detour is that
phonological scores may possibly offer a more detailed insight into the articulatory
problems behind the speech disorder.

In this research, the potential of two ASRs, further referred to as ASR-ESAT
and ASR-ELIS, will be discussed. The next two subsections will dig deeper into
their respective acoustic modeling techniques.

7.1.1 State probabilities in ASR-ESAT

ASR-ESAT is a main-stream state-of-the-art ASR [104] developed at ESAT, Uni-
versity of Leuven, Belgium. It comprises three state Semi-Continuous HMMs as
the acoustic models. The models represent triphones with tied states. Mixtures
of Gaussians from a large set of state independent Gaussians are used as emission
distributions. State tying is defined by a global phonetic decision tree with 1567
leaf nodes.

The acoustic front-end derives log-mel-spectral coefficients. At every time
t = 1, .., T , referring to multiples of 10 ms, a Hamming-windowed segment of
30 ms centered around t is analyzed. Per time step it extracts a vector consisting
of 24 Mel spectral coefficients describing the shape of the log-spectrum. To reduce
microphone influences, noise masking [105] and spectral mean normalization was
performed. By adding the first and second order derivatives of these 24 features, 72
features are obtained. After feature selection using MIDA [106] and decorrelation
[107], 39 features Xt are retained.

Based on these parameter vectors, the HMMs compute likelihoods of the form
p(Xt|st) where st ∈ S represents a model state at time t. S denotes the set of all
possible states (there are 1567 tied states). The acoustic model scores are converted
to posterior probabilities as follows:

P (st|Xt) =
p(Xt|st)P (st)

p(Xt)
(7.1)

p(Xt) =
∑
s∈S

p(Xt|s)P (s) (7.2)

The models were trained on the Flemish read-speech part of CGN (component-o)
and use a set of 40 Flemish phonemes, being the phonemes which can be found in
Appendix A, except for /J/, /E:/, /O:/, /9:/, /E/̃, /A/̃ and /O/̃, which were mapped on
/nj/, /E+/, /A+/, /Y+/, /En/, /An/ and /On/ respectively.
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7.1.2 State probabilities for ASR-ELIS

ASR-ELIS was originally developed on American English data by Stouten et
al. [103]. We retrained it on Flemish data for this research. As mentioned above,
this ASR uses phonological models to create an intermediate description of the
speech.

At each time t, which refers to a multiple of 10 ms, the acoustic front-end
analyses a Hamming-windowed segment of 25 ms centered around t. Per time
step it extracts a vector Xt consisting of 12 MFCCs describing the shape of the
log-spectrum and a log-energy describing the total energy of the segment. To re-
duce microphone influences as described in Chapter 6, Cepstral Mean Subtraction
(CMS) was performed.

The phonological models then compute a 24-dimensional vector Yt for ev-
ery t. Each component Yti, i = 1, ..., 24 represents the posterior probability
P (Ai|Xt−5, .., Xt+5) that phonological class or propertyAi (i = 1, .., 24) is “sup-
ported by the acoustics” in a 125 ms window around time t, as will be described
below. The full list of phonological classes can be found in Table 7.1. The ta-
ble shows both American English and Flemish phonological classes. The Flemish
classes were derived from the standard classification of Flemish phonemes [7,29].
The Flemish classes differ only slightly from the English ones: /r/ is pronounced
retroflex in English while it is pronounced with a trill in Flemish. This explains
for instance why retroflex is a class in English but not in Flemish models. Also, no
Flemish sounds are classified as dental.

Once the vectors Yt are determined, they are used to compute posterior proba-
bilities of context-independent phone states at time t. Each phone has exactly one
state. The use of context-independent phone states can be justified by the fact that
co-articulations between phones are already handled implicitly as the phonologi-
cal class models make decisions on the basis of a time interval of 125 ms. In order
to link the phonological classes to phone states, the canonical values Aci of the
phonological classes Ai have to be supplied: Aci = 1 means that we desire Yti
to be 1 (on/present), Aci = 0 means that we desire Yti to be 0 (off/absent) and
Aci =? means that the class is irrelevant for that phone (= both values are equally
acceptable). Adhering to the work of Stouten et al. [103], P (st|Yt) is obtained as
follows:

P (st|Yt) =

 24∏
Aci(st)=1

i=1

Yti


1

Np(st)

(7.3)

where Np(st) is the number of phonological classes with a canonical value of 1
for state st.
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Broad Class English Subclasses Flemish Subclasses

voicing
voiced voiced

voiceless voiceless
no activation no activation

manner of articulation

closure closure
vowel vowel

fricative fricative
burst burst
nasal nasal

approximant approximant
lateral lateral
silence silence

- trill

consonant place of articulation

labial labial
labiodental labiodental

dental -
alveolar alveolar

post-alveolar post-alveolar
velar velar

glottal glottal

vowel place of articulation

low low
mid-low mid-low
mid-high mid-high

high high
back back
mid mid
front front

retroflex -
rounded rounded

Table 7.1: Phonological classes for English and Flemish. Italic classes are only used as
intermediate outputs and are not displayed as final classification results.

7.1.3 Phonological class probabilities in ASR-ELIS

The phonological features Yt are computed by a conglomerate of four MLPs,
placed in a three-layer architecture. First, the voicing classes (upper row in Ta-
ble 7.1) are detected. Subsequently, the second layer derives the manner classes
(second row in the table). Finally, the third layer consists of 2 MLPs for deriving
consonant and vowel place of articulation (third and fourth row in the table re-
spectively). This architecture is depicted in Figure 7.1. All MLPs are fed with the
acoustic feature vectors of the incoming speech as well as the outputs of all neural
networks higher in the hierarchy. This means that the voicing classes are derived
from the MFCCs only, while the other classes also rely on the outputs of MLPs
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X 

voicing 

manner 

consonant 

place 

vowel place 

Xt- 3,…,Xt+3 

Xt- 5,…,Xt+5 

Figure 7.1: Architecture of the phonological feature detector. Following [11].

of previous layers. One can easily understand that manner of articulation benefits
from knowledge of the voicing class.

While the voicing network is provided with only three context frames at each
side of frame t, the other networks are provided with a context of 5 frames at each
side. This extra context can be useful when differentiating between e.g. closure
and silence [11].

While the original phonological feature detector (PFD) developed by Stouten
et al. was trained on continuous speech uttered by non-pathological American En-
glish speakers [103] found in the DARPA TIMIT speech corpus [108], the Flem-
ish PFD was trained on the read speech part of CoGen (see Section 6.1). In a first
attempt, a PFD based on the available phone-level segmentation was created, here-
after called CoGeN-1. Also, the voicing and manner networks of the original PFD,
based on TIMIT, were reproduced after [11], with one alteration: Cepstral Mean
Subtraction was performed to produce equal preprocessing as in case of CoGeN-1.
This PFD will be denoted with TIMIT-1.

Classification accuracies of the first two layers (voicing and manner) for both
PFDs on independent test sets are shown in Table 7.2 and Table 7.3.

reference class TIMIT-1 CoGeN-1
voiced 92.4 89.8

voiceless 83.4 69.5
no activation 91.8 89.3

Table 7.2: Classification accuracy (percentage) for the first voicing networks trained on
CoGen versus trained on TIMIT. Results on TIMIT are reproduced following [11] but with
CMS.
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reference feature TIMIT-1 CoGeN-1
closure 80.0 66.3
vowel 92.7 87.8

fricative 85.8 78.3
burst 70.9 61.9
nasal 80.3 64.9

approximant 51.8 14.7
lateral. 55.2 26.4

trill - 26.0
silence 91.6 96.8

Table 7.3: Classification accuracy (percentage) for the first manner networks trained on
CoGen versus trained on TIMIT. Results on TIMIT are reproduced following [11] but with
CMS.

The results clearly show a discrepancy in performance between the networks
trained on TIMIT and those trained on CoGeN. The classification accuracies for
Flemish are not acceptable as they do not permit an accurate labeling and segmen-
tation by ASR-ELIS anymore. To prove this, a TIMIT-1-based segmenter was used
to align the TIMIT-test set and a CoGeN-1-based segmenter was used to align the
CoGeN-test set. The resulting segmentations were compared to the corresponding
manual phone segmentation delivered with the data. The comparison was made
using the Dynamic Time Warping (DTW) procedure described in [11].

As in [11], we mapped the 55 phones in CoGeN to 44 phones and the 58 phones
in TIMIT to 48 phones, in order to avoid that we measure substitutions between
allophones. Beside phone substitutions we also discern three kinds of segmenta-
tion errors: deletions (“del”, a manual segment boundary was omitted), insertions
(“ins”, an automatic boundary was inserted between two manual boundaries) and
boundary deviations (“far”, the placement of the automatic and the correspond-
ing manual boundary differs by more than 20 ms). The total error is the sum of
the segmentation and substitution errors. All errors are specified in percent, rel-
ative to the number of phones occurring in the manual labelings. The results in
Table 7.4 confirm that the CoGeN-1-based segmenter can not produce a reliable
segmentation.

err del ins far sub
TIMIT-1 24.2 7.5 6.8 6.3 3.5
CoGeN-1 43.1 13.1 14.4 8.0 7.6

Table 7.4: Evaluation of segmentation and labeling of TIMIT-1- and CoGeN-1-based seg-
menters. All numbers are percentages.
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Since the two PFDs were constructed using the same strategy, the only reason
for this discrepancy between English and Flemish results could be the difference
in used training database. One main difference is that the TIMIT phone labels
and time stamps were manually verified by phonetic experts whereas the CoGeN
phone labels were only partly verified and not by experts. Therefore, we wanted to
find evidence for the low quality of the CoGeN labels, and if possible, to replace
them by more accurate labels. To that end, an HMM-based ASR was trained using
the SPRAAK-software [109] to verify these phone labels. Training departed from
the orthographic transcriptions in CoGeN, but the given phonetic transcription was
supplemented with pronunciation variants as described in [100]. The training was
continued until the segmentations generated with the ASR did not change signif-
icantly anymore compared to the previous pass. The final segmentations were
then used as a reference for the training and evaluation of a second PFD, hereafter
called CoGeN-2. Table 7.5 and Table 7.6 show that the new networks for voicing
and manner improve significantly, and even do approach the accuracies that were
formerly measured on TIMIT.

reference class TIMIT CoGeN-1 CoGeN-2
voiced 92.4 89.8 92.3

voiceless 83.4 69.5 85.0
no activation 91.8 89.3 92.9

Table 7.5: Classification accuracy (percentage) for the voicing networks trained on CoGen
versus trained on TIMIT. Results on TIMIT are reproduced following [11] but with CMS.

reference feature TIMIT CoGeN-1 CoGeN-2
closure 80.0 66.3 67.9
vowel 92.7 87.8 89.4

fricative 85.8 78.3 85.6
burst 70.9 61.9 72.6
nasal 80.3 64.9 80.7

approximant 51.8 14.7 40.3
lateral 55.2 26.4 42.2

trill - 26.0 52.3
silence 91.6 96.8 96.2

Table 7.6: Classification accuracy (percentage) for the manner networks trained on CoGen
versus trained on TIMIT. Results on TIMIT are reproduced following [11] but with CMS.

As a last control, we also measured the segmentation accuracy of the new
models in an alignment task. Table 7.7 shows that the trend visible in the phono-
logical classification accuracy is confirmed: the total error rate drops from 43.1%
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to 23.9%.

err del ins far sub
TIMIT 24.2 7.5 6.8 6.3 3.5

CoGeN-1 43.1 13.1 14.4 8.0 7.6
CoGeN-2 23.9 6.6 9.0 3.4 4.9

Table 7.7: Evaluation of segmentation and labeling of TIMIT- and CoGeN-based PFD-
segmenters. All numbers are percentages.

Since the CoGeN-2-PFD-based segmenter attains a similar accuracy as the
original TIMIT-based PFD segmenter, the CoGeN-2 networks were used as a base
for the Flemish ASR-ELIS.

Now that the acoustic modeling techniques of both ASRs are introduced, we
can describe how they were used for appropriate speaker characterization.

7.2 Speaker characteristics based on recognition

A logical first step in the automation of the DIA-test is to let the ASR take the role
of the listener and to let it recognize the phonemes. Since the listener can select the
right phoneme from a restricted list of possibilities, we also presented only those
possibilities to the ASR.

7.2.1 Word Accuracy (WAR)

The simplest speaker feature one can derive from this recognition task is the word
accuracy rate (WAR), defined as the percentage of correctly recognized words.
A word is considered correctly recognized if the target word obtains the highest
score. By computing a WA for the three subtests A, B and C one obtains a set of
three WAR-features per ASR. This kind of features is also used in [110].

7.2.2 Log Likelihood Ratio (LLR)

As the WAR is based on a binary decision (word correctly or not correctly recog-
nized), it might be useful to try out a continuous measure to circumvent the effects
of discretization. This is done by using the Log Likelihood Ratio (LLR) measure.
This measure is defined as the log likelihood of the target (correct) word minus that
of the best other word. Here too, three LLR-features can be retrieved per ASR.
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7.3 Speaker characteristics based on forced align-
ment

It is possible to obtain a richer speaker characterization by analyzing the phonetic
segmentation made by an ASR which was configured to just align the speech with
the target word. There is evidence that measures derived from such an alignment
tend to correlate with intelligibility [102].

7.3.1 Phonemic features (PMF)

If the aligner assigns vector Xt to acoustic model state st, one can compute the
posterior probability P (st|Xt). In ASR-ESAT, this requires the conversion of
likelihoods p(Xt|st) to posteriors according to Equations (7.1) and (7.2). In ASR-
ELIS, posterior probabilities P (Ai|Xt−5, ..., Xt+5) are converted to P (st|Xt) ac-
cording to Equation (7.3).

If Fk(k = 1, ..., NF ) is a phone (ASR-ELIS) or phoneme (ASR-ESAT), a
phonemic feature PMF(k) for phone(me) Fk can then be derived by taking the
mean over the posterior probabilities P (st|Xt) of all frames Xt assigned to a state
st that contributes to phone(me) Fk:

PMF(k) = 〈P (st|Xt)〉t;st∈SFk
k = 1, ..., NF , (7.4)

with 〈a〉t denoting the average of a over all t. Repeating this process for every
phone(me) gives rise to 40 PMFs for ASR-ESAT and 55 PMFs for ASR-ELIS.

7.3.2 Phonological features (PLF)

Using ASR-ELIS, one can also average the phonological features Yti (i = 1,...,24).
In particular, one can take the mean of Yti (for some i) over all frames that were
assigned to one of the phones characterized by a canonical value Aci = A (ei-
ther 1 or 0). Such a mean score is thus generally determined by the realizations
of multiple phones. Consequently, since different speakers have uttered different
word lists, the different phones could have a speaker-dependent weight in the com-
puted means. In order to avoid this, the simple averaging scheme is replaced by
the following two-stage procedure:

1. take the mean of Yti over all frames that were assigned to a phone f hav-
ing Aci(f) = A (1 or 0), denote this mean as PLF(f, i, A), and repeat the
procedure for all valid combinations (f, i, A),

2. compute PLF(i, A) as the mean over f of the PLF(f, i, A) that were obtained
in the previous stage.
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This procedure gives equal weights to every phone contributing to PLF(i, A).
Written in mathematical notation, one gets

PLF(f, i, A) = 〈Yti〉t;st=f ;Aci(f)=A
∀ valid (f, i, A) (7.5)

PLF(i, A) = 〈PLF(f, i, A)〉f ;Aci(f)=A
i = 1 .. 24;A = 0, 1 (7.6)

Since for every of the 24 phonological feature classes there are phones with canon-
ical values 0 and 1 for that class, one always obtains 48 phonological features. The
24 phonological features PLF(i, 1) are called positive features because they mea-
sure to what extent a phonological class that was supposed to be present during
the realization of certain phones is actually supported by the acoustics observed
during these realizations. The 24 phonological features PLF(i, 0) are called nega-
tive features. We add this negative PLF set because it is not only important for a
patient’s intelligibility that phonological features occur at the right time, but also
that they are absent when they should be.

In the case of ASR-ESAT, one cannot compute a PLF with the same interpre-
tation, but one can nevertheless introduce the notion of phonological features by
adapting the procedure that delivered the PMFs. This is done in 3 steps:

1. Assign the first state of a plosive to a phone of type “closure” (e.g. /#b/, /#p/,
/#t/, ...) and the other two to a phone of type “burst”(e.g. /b/, /p/, /t/,...)

2. Compute the PMFs of the new phone set

3. Now calculate the PLF(i,A) as the mean of the PMF(f ) over all phones f
whose Aci = A.

Admittedly, constructing the PLF-ESAT is a bit indirect and gives only an im-
pression of the true phonological features, but nevertheless, using these features
we hope to find an answer to the question whether an IPM based on PMFs and
PLFs coming from ASR-ESAT can compete with an IPM based on PMFs and
PLFs coming from two different recognizers.

Repeating the PLF computation for all phonological features and for two values of
A (1 and 0) again results in 48 PLFs per ASR.

7.3.3 Context-dependent phonological features (CD-PLF)

It can be expected that pathological speakers encounter more problems with the
realization of a particular phonological class in some contexts than in others. Con-
sequently, it makes sense to compute the mean value of a phonological feature Yti
that takes not only the canonical value of feature class Ai in the tested phone into
account but also the properties of the surrounding phones. Since the phonological
classes are supposed to refer to different articulatory phenomena, it makes sense to
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consider them more or less independently. Due to the ternary nature of the phono-
logical class values (on, off, irrelevant), the number of potential contexts per (i, A)

is then limited to 3 x 3 = 9. If we further include “silence” as a special context to
indicate that there is no preceding or succeeding phone, the final number of con-
texts is 16. Taking into account that PLFs are only generated for two canonical
values of A, namely 0 and 1 (and not for irrelevant), the total number of context-
dependent phonological features (CD-PLF) is 24 x 2 x 16 = 768. This number is
however an upper bound since many combinations will not occur in the 50 word
utterances of the speaker.

In order to determine in advance all the combinations that are worthwhile to
consider in our system, we examined the canonical phonetic transcriptions of the
words in the different variants of the A, B or C-list respectively. We derived from
these lists how many times they contain a particular combinations. We then re-
tained only those that appeared at least five times in any combination of lists one
could make. To determine the number of occurrences of a combination, one just
needs to count how many times it occurs in A-list to get an A-count. Similarly one
determines a B and a C-count, and one takes the sum of these counts. For our test,
we found that 123 of the 768 combinations met the condition we set out.

If AL and AR represent the canonical values of feature class Ai in the left
and right context phone, the computation of a context-dependent feature for the
combination (A,AL, AR) is obtained by means of a two-stage scheme:

1. take the mean of Yti over all frames which were assigned to a phone f
having a canonical value Aci(f) = A (A can be either 1 or 0 here) and
appearing between phones whose canonical values of class Ai are AL and
AR, denote this mean as PLF(f, i, A,AL, AR) and repeat the procedure for
all combinations (f, i, A,AL, AR) occurring in the data,

2. compute PLF(i, A,AL, AR) as the mean over f of the PLF(f, i, A,AL, AR)

that were computed in the first stage.

Again, this procedure gives equal weights to all the phones that contribute to a
certain CD-PLF. In mathematical notation one obtains

PLF(f, i, A,AL, AR) = 〈Yti〉t;st=f ;Aci=A;AL
ci=A

L;AR
ci=A

R

∀ occurring (f, i, A,AL, A
R) (7.7)

PLF(i, A,AL, AR) =
〈
PLF(f, i, A,AL, AR)

〉
f ; occurring (f,i,A,AL,AR)

∀ occurring (i, A,AL, AR) (7.8)

with Aci, ALci and ARci being short notations for, respectively, the canonical values
of Ai in the state visited at time t, in the state from where this state was reached
at some time before t, and in the state which is visited after having left the present
state at some time after t.
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Note that the context is derived from the phone sequence that was actually
realized according to the alignment system. Consequently, if a phone is omit-
ted, a context that was not expected from the canonical transcriptions can occur,
and vice versa. Furthermore, there may also be fewer observations than expected
for the combination that has the omitted phone in central position. In the case
that not enough observations of a particular combination would be available, the
corresponding feature is replaced by its expected value (as derived from a set of
recorded tests).

7.4 Intelligibility Prediction Models

Once all speaker features are computed, they need to be converted into an objective
intelligibility score for the speaker. In doing so we use a regression model that is
trained on both the pathological and the normal speakers of COPAS.

7.4.1 Training and evaluation strategies

For these experiments, we used 231 DIA. Since the number of speakers (231) is
rather small, we opted for a five-fold cross-validation strategy for model training
and validation. Performance is expressed in terms of the Root Mean Squared Er-
ror (RMSE) and the Pearson Correlation Coefficient (PCC) between computed and
perceptual intelligibilities. The Wilcoxon signed-rank test [111] is used to investi-
gate whether results are significantly different at a confidence level of 0.05.

7.4.2 Experimental setup

A variety of statistical learners is available for optimizing regression problems.
However, in order to avoid overfitting, only a few of these can be applied to our
data set. We used Support Vector Regression (SVR), Random Forests (RF) and
Ensemble Linear Regression (ELR), all discussed in Chapter 5. The last two are
used in combination with feature selection.

During training of all models, we used RMSE and not PCC as optimization cri-
terion. The reason for this is that we wanted the computed scores to approximate
the correct scores directly while PCC actually quantifies the degree of correla-
tion between the correct scores and the best linear transformation of the computed
scores. Another reason for using RMSE is that it is directly interpretable. In case
the discrepancies (errors) are normally distributed, 67% of the computed scores lie
closer than the RMSE to the measured (correct) scores. Anticipating on the next
paragraphs, we used the Lilliefors test [111] to verify that in almost all experiments
the errors were indeed normally distributed.
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7.4.2.1 Ensemble Linear Regression

The ELR technique was implemented in C using the GNU Scientific Library [112]
for multilinear regression purposes. We implemented bagging strategies and fea-
ture selection processes. Per training fold, ten linear regression models incorporat-
ing feature selection are created. These models are then combined into one single
model by just averaging the regression coefficients of the submodels. The final
model is then evaluated on the validation fold. In a five-fold cross-validation setup
this leads to 50 submodels, all created with feature selection. The most important
features will appear in many submodels, leading to a feature ranking from which
potentially important relations between features and predictions can be derived.

7.4.2.2 Support Vector Regression

The SVR is achieved by a Support Vector Machine (SVM) built with libsvm [113]
with a Gaussian or a linear kernel. During the training of the SVR on a particular
training-validation partition, we select the learning parameters (kernel parameters,
fault threshold) by means of a grid search based on an internal 5-fold cross valida-
tion within the training part of the partition.

7.4.2.3 Random Forests

Random Forests were also evaluated for regression and feature selection. Using
a C++ implementation of Random Forests, we performed feature selection for
regression, and used the most important features to build a final regression model.

7.4.2.4 Evaluation of results

For every single feature set, three IPMs were evaluated: one using ELR, one for
RF and one for SVR. All IPMs are trained and evaluated using a 5-fold cross
validation (CV) strategy.

All statistical learners are programmed to optimize the RMSE. Validation re-
sults are summarized in Table 7.8. Per feature set, only the best performing learner
is displayed.

The Wilcoxon signed-rank test [111] revealed that differences between the best
results in this table (marked in bold) and all others are significant at a confidence
level of 0.05.

A first striking result is the fact that ELR delivers the best results for most
IPMs. ELR is thus a good choice for this regression problem: it does not only
achieve the best performance but it is also way simpler and faster to create. While
the results for RF are way worse, SVR attains almost the same accuracy as ELR,
using sometimes a RBF and sometimes a linear kernel. The relationship between
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feature set validation results best learnerRMSE PCC
WAR-ELIS 12.44 0.33 ELR

WAR-ESAT 9.04 0.73 SVR-RBF
LLR-ELIS 12.57 0.24 ELR
LLR-ESAT 11.98 0.46 SVR-RBF
PMF-ELIS 11.50 0.58 ELR
PMF-ESAT 9.24 0.70 ELR
PLF-ELIS 8.20 0.78 ELR
PLF-ESAT 9.56 0.69 ELR

CD-PLF-ELIS 9.44 0.72 SVR-LIN

Table 7.8: RMSE and PCC between computed and perceptual intelligibility scores for all
individual IPMs represented by the utilized feature set and the ASR system from which it
emerges. The last column indicates which statistical learner yielded the best validation
results. Results above the horizontal line originate from recognition-based feature sets,
while those under the line originate from alignment-based feature sets. The best result
under and above the line are marked in bold.

most feature sets and intelligibility score seems to be linear. Only WAR-ESAT
benefits from a RBF kernel.

If we now take a closer look at the results of the individual IPMs, we can no-
tice three important things. First of all, feature sets originating from recognition
tasks, i.e. simply repeating the perceptual task, correlate less well with intelligi-
bility scores than the feature sets derived from forced alignment. Furthermore,
feature sets deduced in a more natural way perform better than those deduced with
a deviation: PLFs derived from ASR-ELIS outperform those derived from ASR-
ESAT while PMFs derived from ASR-ESAT strongly outperform those derived
from ASR-ELIS. Notice that CD-PLFs, derived from ASR-ELIS, perform worse
than PLF-ELIS features. This might be because they extract too detailed informa-
tion, leading to overfitting to the training part in the submodels. The individual
feature set with the most predictive power is PLF-ELIS with a RMSE of 8.20 be-
tween computed and perceptual scores.

An interesting issue is the nature and the number of selected features. Using
ELR one can easily derive this information. Since every training fold was based
on 10 submodels, a total of 50 small linear regression models was built, each of
which was free to choose its own features. Having access to these 50 models, we
calculated the mean number of selected features as well as the popularity of each
feature. The latter is defined as the number of submodels in which a feature was
selected. Table 7.9 shows the mean number of features selected by a submodel.

For the recognition-based feature sets, which only have a cardinality of 3,
all features are selected in every model. Focusing on the two most predictive
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feature set Ns
WAR-ELIS 3
WAR-ESAT 3
LLR-ELIS 3
LLR-ESAT 3
PMF-ELIS 3
PMF-ESAT 4
PLF-ELIS 7
PLF-ESAT 4

CD-PLF-ELIS 4

Table 7.9: Mean number of selected features per random subfold in ELR.

alignment-based sets PLF-ELIS and PMF-ESAT, the 10 most popular features for
each feature sets are listed in Table 7.10.

PLF-ELIS PMF-ESAT
selected features N selected features N

not front 50 /i/ 50
fricative 48 /A+/ 38
silence 48 /s/ 27
voiced 36 /z/ 23
high 32 /p/ 23
front 27 /2/ 22

mid-low 17 /d/ 20
no silence 15 /w/ 16

burst 14 /k/ 11
mid 12 /l/ 10

Table 7.10: Most selected features and the number of submodels N in which they were used.

An important question is whether the selection of features by the two different
IPMs can be motivated from a clinical point of view. When analyzing Table 7.10,
seven groups of related features can be distinguished: (1) vowel-related features,
(2) silence-related features, (3) fricative-related features, (4) voicing-related fea-
tures, (5) plosive-related features, (6) lateral-related features and (7) approximant-
related features. It is clear that the most important features are related to vowels.
Half of the most predictive PLFs and 3 of the most predictive PMFs refer to vow-
els. In classic speech theory about the perception of normal speech, consonants
were seen as the primary information-bearing elements of speech [114]. How-
ever, more recent research suggests that vowels make an important contribution to
the intelligibility of normal as well as pathological speech. Persons with reduced
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tongue motility are known to show a strong correlation between intelligibility and
vowel trapezium size [115]. Ansel and Kent [116] found that word intelligibil-
ity in dysarthria associated with mixed cerebral palsy can be predicted with 62%
accuracy by three vowel-related phonological contrasts and only one consonant
contrast. The three vowel-related contrasts involved were: front-back, high-low
and tense-lax. A study of Kent et al. [117] revealed a strong correlation between
tongue height and word intelligibility in speakers with dysarthria secondary to
ALS.

Also for hearing impaired persons it is known that the formant frequencies
of vowels tend to converge toward those of the central vowel /@/. The reduced
phonological space is most present in the vowel place dimension. Front-back
tongue movement is not very visible from the outside and is thus not simple to
mimic [118]. Liu et al. also demonstrated that esophageal speakers had signifi-
cantly higher formant frequencies (F1, F2, and F3) and a significantly diminished
vowel space area compared to laryngeal speakers [119]. The correlation between
accurate vowel production and intelligibility has been stressed by two studies on
the vowel space area. The vowel space area, constructed from F1 (related to jaw
opening and tongue height) and F2 (related to place of constriction or horizon-
tal tongue position), is defined as the area of the trapezium connecting the corner
vowel representations in the F1-F2 space [114]. In many speech disorders, ar-
ticulatory displacements are often reduced, resulting in a compressed vowel space
area. Liu et al. [119] found a significant correlation between vowel space and intel-
ligibility at vowel (0.63) and word level (0.68). Consequently, the high prevalence
of vowel-related features in the IPMs is in agreement with these studies.

Two of the ten most important phonemic features are fricative related. Actu-
ally, two of the six Dutch fricatives are selected by the PMF intelligibility model.
The phonological feature “fricative” is also one of the features in the PLF model.
Previously, acoustic features of the fricative /s/ were shown to highly correlate with
dysarthric speaker’s overall intelligibility [120]. Additionally, three of the 19 pho-
netic contrasts assessed by the intelligibility test of Kent et al. [121] are related to
fricatives. Laryngectomees are also known to encounter problems with the voicing
of fricatives and plosives [47, 55], which also explains why the voiceless-voiced-
pair /s/ - /z/ occurs in the list of most important PMFs and both ‘fricative’ and
‘voiced’ are amongst the most important PLFs.

The intelligibility assessment of Kent et al. also indicates the importance of an
adequate production of plosives. The importance of plosives is supported by the
occurrence of /p/, /d/ and /k/ in the most important PMFs and the PLF ‘burst’ oc-
curring in 14 of the 50 submodels. Other pathologies also support the presence of
plosive, fricative and voicing related features: persons with cleft lip and palate lose
part of their mouth pressure through the nose when realizing voiceless fricatives
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and plosives [38] and for hearing impaired persons most errors occur in phones
produced in the middle or the back of the mouth, like e.g. palatal plosives and
fricative sounds. One of the most frequent errors in consonant production is the
voiced-voiceless confusion, most often voiced for voiceless substitution [62].

Silence was also found to be an important feature. A possible explanation for
this is that pathological speakers often make extraneous sounds before and after
an utterance or during closures. In this respect, the selection of silence could be
related to the selection of plosives.

Although the phonemic features /l/ and /w/ are seemingly necessary to achieve
a strong correlation between the perceptual and objective intelligibility measures,
no substantial evidence for the importance of these features could be found in
the literature. The fact that the contrasts /r/ - /l/ and /r/ - /w/ are included in
the single-word intelligibility test of Kent et al. [121] can however be interpreted
as an implicit acknowledgement. The test examines 19 phonetic contrasts which
were selected to present the speech problems experienced at the segmental level
by speakers with dysarthria.

7.4.3 Combination of feature sets

From the former experiments, it follows that none of the individual speaker fea-
ture sets leads to a correlation between the objective and the perceptual scores that
can compete with the inter-rater agreement of 91% observed between individual
raters. In this respect, we have investigated whether the combination of different
feature sets may bridge this gap. Since Table 7.8 showed that WAR-ESAT and
PLF-ELIS were the most predictive recognition-based and alignment-based fea-
ture set respectively, we only tried out combinations that contained at least one of
those two, and we only added feature sets that individually lead to a RMSE below
10, i.e. WAR-ESAT, PLF-ELIS, PLF-ESAT, PMF-ESAT and CD-PLF(-ELIS).

There are several ways of constructing an IPM that combines two feature sets.
In this work, we explored two strategies: early fusion and late fusion. Both are
displayed in Figure 7.2. Early fusion (IPM 3 in the figure) combines both feature
sets into one set, which is subsequently supplied to the IPM. Late fusion (IPM 4 in
the figure) uses the outputs of two IPMs trained on individual feature sets and com-
bines the results of these two models to obtain the final result. The combination
of two IPMs can again be accomplished in several ways, and can be as complex
as performing an extra SVR to map both individual model outputs to the intelli-
gibility score. However, this would require an extra cross-validation loop. Here,
we simply calculated the final intelligibility score as the mean of the individual
intelligibility scores.

Since RF was outperformed by far by the other learners in previous exper-
iments, early and late fusion were only combined with SVR- (linear and RBF
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Figure 7.2: Early and late fusion. Predictions of the Intelligibility Scores (IS)

kernel) and ELR-based IPMs. Results are shown in Table 7.11. For each learner,
only the best technique (early or late fusion) is displayed.

feature set ELR results SVR results
RMS PCC fus RMS PCC kernel fus

PLF-ELIS +
PMF-ESAT

7.91 0.79 late 7.96 0.80 RBF early

PLF-ELIS +
PLF-ESAT

8.20 0.78 early 8.31 0.78 LIN early

PMF-ESAT +
WAR-ESAT

7.96 0.80 late 7.64 0.82 RBF+RBF late

PLF-ELIS +
WAR-ESAT

7.86 0.80 early 7.44 0.82 RBF early

CD-PLF +
PLF-ELIS

8.19 0.78 early 8.18 0.78 RBF early

PLF-ELIS +
PMF-ESAT +
WAR-ESAT

8.00 0.79 early 7.66 0.81 RBF early

Table 7.11: RMSE and PCC between computed and perceptual intelligibility scores for
IPMs supplied with two feature sets. Per learner, the best result is put in bold. It is also
used as a reference for significance tests. Underlined results differ significantly from the
reference. The penultimate column indicates which kernel yielded best SVR results. In case
of late fusion, kernels are mentioned per feature set (in the same order as the first column).
RMS denotes RMSE, fus denotes fusion.

The results show that combining feature sets does generally not improve the
results. The Wilcoxon signed-rank test reveals that only the combination of the
individually best performing feature sets PLF-ELIS and WAR-ESAT leads to a
significant improvement at a confidence level of 0.05 over PLF-ELIS. The combi-
nation of PLF-ELIS and WAR-ESAT leads to a RMSE as low as 7.44 and a PCC
of 0.82 using a SVR with a RBF kernel. Note that the best results for SVR and
those using ELR are not significantly different. Adding more feature sets to this
best combination did not further improve the performance. A possible explanation
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for this is that the simple forward feature selection technique of ELR is inadequate
for searching the optimal feature combination in a high-dimensional feature space.
SVR on the other hand might lose generalization power in higher feature space
dimensions.

Given the performances in Table 7.11, we retain two feature set combinations.
First of all, WAR+PLF-ELIS because it reaches the best results, and secondly,
PLF-ELIS + PMF-ESAT because its results are not significantly worse than the
best results. Moreover, PMFs can provide more insight in important underlying
dimensions of intelligibility than WAR. Also, we retain ELR and SVR with a RBF
kernel as learners since SVR with a linear kernel is only selected once.

In order to assess the accuracy of our best system (PCC = 0.82) in relation to
human listeners’ performance (ICC = 0.91), we have to take into account that PCC
and ICC are different measures and that the reported ICC was obtained on a set
of only 30 samples. Since we do not have access to the data leading to this ICC,
we therefore cannot determine whether these 30 samples were representative or
not. Anticipating on the next paragraphs, we can easily select a group of about
30 samples (the hearing impaired speakers), out of the 231, for whom the current
model leads to a RMSE of 7.72 and a PCC of 0.94. This illustrates that a PCC
based on 30 samples does not necessarily prove a statement for a group of 231
samples.

In this respect, a speech therapy student in her final year recorded 61 new
speakers of different pathologies, reading the DIA test. These 61 samples were
judged by 2 speech therapists: the student and the experienced speech therapist
who judged the samples of COPAS. Having access to both ratings, a RMSE be-
tween the two of 7.0 and a PCC of 0.89 was determined [122]. Comparing this
to our best RMSE of 7.44, the latter experiment supports the conclusion that our
automatic system exhibits a close-to-human accuracy.

7.4.4 Pathology-specific models

If a clinician is mainly working with one pathology, he or she is probably more in-
terested in an intelligibility prediction model that is specialized to that pathology.
As a starting hypothesis, we assume that - since people with different pathologies
are bound to have different articulation problems - pathology-specific models can
differ from general models.

7.4.4.1 Establishing a baseline per pathology

Before exploring the pathology-specific models, we first investigate the prediction
results of the best general models (based on WAR+PLF-ELIS, hereafter called
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WAR+PLF, and PLF-ELIS+PMF-ESAT, hereafter called PLF+PMF) on the patho-
logy-specific samples. Since we did not record the validation performances per
pathology, we had to repeat the five-fold cross-validation experiments of these
models as before, but now with a measurement of the pathology-specific accura-
cies.

The performances of the general models for dysarthria (D), laryngectomy (L),
hearing impairment (H) and cleft (C) can be found in Table 7.12. We only eval-
uated early fusion because this was almost always the best strategy in Table 7.11.
Since the pathology-specific groups are rather small, we tested significance of dif-
ferences at the level of 0.05 and 0.10. If larger groups would be available, it would
maybe be possible to prove significances with more confidence. However, for the
moment this is only a hypothesis which needs experimental verification.

P N feature set ELR results SVR results
RMSE PCC RMSE PCC kernel

D 74 WAR + PLF 8.57 0.78 7.90 0.83 RBF
PLF + PMF 8.97 0.74 8.72 0.78 RBF

H 29 WAR + PLF 6.33 0.92 6.66 0.89 RBF
PLF + PMF 6.46 0.97 6.66 0.89 RBF

L 30 WAR + PLF 8.95 0.73 8.87 0.73 RBF
PLF + PMF 9.92∗ 0.72∗ 10.89 0.61 RBF

C 38 WAR + PLF 7.73∗ 0.43∗ 6.48 0.63 RBF
PLF + PMF 7.60∗ 0.38∗ 6.66 0.55 RBF

Table 7.12: RMSE and PCC between computed and perceptual intelligibility scores for the
most predictive general IPMs. The first column “P” denotes the pathology: D(ysarthria),
H(earing impairment), L(aryngectomy) or C(left). The second column denotes the number
(N) of persons per pathology. The last column indicates which kernel yielded the best
SVR results. Per pathology, the best results are indicated in bold, and results differing
significantly with p ≤ 0.05 are underlined, with 0.05 < p ≤ 0.10 are denoted with ∗.

A first result is that the best general model (IPM with WAR + PLF using SVR-
RBF) remains the best model for all pathologies, be it that for hearing impaired
and cleft speakers, the models based on PLF + PMF are not significantly worse.
Concerning the used learner, we can conclude that only ELR and SVR-RBF yield
satisfactory results.

Table 7.12 also illustrates that PCC and RMSE results do not always point in
the same direction. Take for example the results for the hearing-impaired and for
clefts, more specifically the results for an IPM based on PLF+PMF using an SVR
with a RBF kernel. Scatter plots of the total speaker group, clefts and of the hearing
impaired speakers are presented in Figure 7.3. While the RMSEs are exactly the
same, the PCCs differ more than 30% absolute. The difference lies in the range
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Figure 7.3: Results of the general model using PLF+PMF with SVR-RBF for all (top), cleft
lip and palate (middle) and hearing-impaired speakers (bottom).
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of the intelligibility scores. If a model (the general model in this case) is designed
to cover a large intelligibility range (28-100), and if it is evaluated on a subgroup
covering only a small subrange (clefts: 72-100, hearing impaired: 40-100), the
PCC can be quite low for this subgroup even though the errors remain acceptable.
This happens when the rankings of the speakers of this group are significantly
different along the perceptual and the objective scores respectively.

7.4.4.2 Pathology-adapted models

Having evaluated a baseline IPM, we can now construct pathology-specific IPMs.
The coefficients of the baseline IPM have been trained on all training samples and
validated on the pathology-specific samples of the validation fold. If we denote
the totality of the samples as T , then T consists of two parts: Tt and Tv , being
the training and the validation part respectively. In this section, we will use the
notations Pt and Pv for the pathology-specific samples of Tt and Tv respectively.
Note that Pt ∈ Tt and Pv ∈ Tv and that Pt and Pv together constitute P .

Nothing inside the baseline IPM was tuned to Pt. In an attempt to create
pathology-specific IPMs, we investigated how we could add Pt-related informa-
tion to the model.

The most simple approach would be to train and test a model on one pathology
only. However, we may have too few speakers per pathology (29-74) to com-
pute reliable regression coefficients of such a model. Therefore, we explored the
Domain Adaptation techniques offered by Daume et al. [89], as explained in Sec-
tion 5.12. Per pathology, per feature set combination (WAR+PLF or PLF+PMF)
and per learner (ELR or SVR-RBF), we created 6 IPMs, all using the same five-
fold division:

• baseline IPM (B), same as in Table 7.12: trained on Tt and validated on Pv ,

• weighted samples (WS): trained on Tt + (w − 1).Pt and validated on Pv ,
with w an external parameter denoting the weight given to the samples of Pt
(note that training on Tt + (w− 1).Pt gives weight w to Pt since Tt already
contains Pt once),

• weighted models (WM): Model 1 (M1) trained on Tt, Model 2 (M2) trained
on Pt, (M1 + w.M2)/(1 + w) validated on Pv , with w again an external
parameter denoting the weight.

• cascade model (C): Model 1 trained on Tt, resulting intelligibility scores are
used as an extra feature for Model 2 trained on Pt and validated on Pv .

• feature doubling (FD): Samples of P with feature vector X now obtain fea-
ture vector [X, 0, X], other samples of T obtain feature vector [X,X, 0].
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With these new feature vectors, a model is trained on Tt and validated on
Pv .

• P only (PO): trained on Pt and validated on Pv .

The extra weight w for WS was chosen in such a way that w times the cardinality
of Pt is about as high as the cardinality of Tt minus the cardinality of Pt so as
to give equal importance to the two parts in the cost to minimize (so w = 7 for
hearing impairment and laryngectomy, 5 for cleft and 2 for dysarthria). Table 7.13
reports the results for these 6 IPMs in terms of RMSE. It shows that domain adap-
tation techniques can sometimes improve the baseline results (a significance level
of 0.10), but none of the adaptation techniques is consistently the best. This sug-
gests that the few improvements which are achieved by using domain adaptation
might be rather chance hits since no conclusions on which adaptation method to
use can be drawn from these results. More data will help to clarify this point.

Table 7.13 also shows that the results of domain adaptation on ELR-based
models often outperform those of SVR-based models. This might be because with
SVR we are creating too complicated models for only a small dataset, while the
feature selection in ELR automatically corrects for that.

As expected, models PO trained only on one pathology do not improve upon
the baseline, but usually perform a lot worse. This is probably due to the low
cardinality of the number of samples for specific pathologies.

Since the general model for hearing-impaired speakers built with ELR and
based on PLF + PMF was significantly worse than the domain-adaptation model
(weighted samples, ELR, PLF + PMF), we investigated whether different features
were selected for the two models. Features appearing more than 10 times in the
general and in the specific model are listed in Table 7.14. Apparently there are
quite some differences between both IPMs. One vowel-related features was added,
reinforcing the importance of vowels. The addition of the feature ‘nasal’ confirms
the findings of [63, 123, 124] that hearing impaired speakers have trouble finding
the right nasality. Addition of the plosive /G/ complies with the fact that phonemes
produced in the middle or the back of the mouth are more prone to errors [62]. The
features ‘not fricative’ and ‘not closure’ could also be related to these visibility
issues.

7.5 Conclusions for this chapter
In this chapter, we described our first steps toward an automation of the percep-
tual DIA test. Basically, our methodology consists of three steps. Starting from
a speaker’s utterance, the front-end analysis extracts a stream of acoustic param-
eter vectors from the waveform. The speaker feature extraction considers all
these vectors of a speaker to derive a number of global features that characterize
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P method WAR + PLF PLF + PMF
ELR SVR ELR SVR

D

B 8.57 7.90∗ 8.97 8.72
WS 8.16∗ 7.45 9.35 8.50
WM 9.19 9.93 9.07 9.26

C 8.37∗ 9.39 8.81 9.22
FD 8.73 9.82 8.92 11.98
PO 9.25 9.93 9.20 9.26

H

B 6.33∗ 6.66∗ 6.46∗ 6.66∗

WS 5.96 7.46 5.15 6.35∗

WM 6.88∗ 9.51 6.76∗ 7.72
C 6.32∗ 9.72 6.94∗ 7.94

FD 6.56∗ 7.70 6.98∗ 10.79
PO 7.62 9.51 7.94 7.72

L

B 8.95 8.87 9.92∗ 10.89
WS 9.44 9.48 10.98 10.92
WM 9.69∗ 11.25 9.41 11.86

C 9.26 11.42 10.77 11.74
FD 8.97 9.79∗ 10.49 12.21
PO 10.39 11.25 9.99∗ 11.86

C

B 7.73∗ 6.48 7.60∗ 6.66
WS 7.82∗ 7.55∗ 7.33∗ 6.68
WM 6.76 8.05∗ 7.20∗ 8.52

C 6.95 8.00∗ 6.96 8.61
FD 7.32∗ 7.23∗ 6.96 7.17∗

PO 7.28∗ 8.05∗ 7.51∗ 8.52

Table 7.13: RMSE between computed and perceptual intelligibility scores after domain
adaptation of IPMs built with PLF+PMF and WAR+PLF. Per pathology, the best result is
marked in bold. Results differing significantly from the best result (p > 0.05) are under-
lined. If 0.05 < p ≤ 0.10, the result is denoted with ∗.

this speaker. The intelligibility prediction model (IPM) is finally responsible for
converting the speaker features into an intelligibility score.

For the speaker feature extraction, two strategies were explored. The first and
most straightforward strategy was just imitating the perceptual test by letting the
ASR recognize the targeted phoneme of every word and by measuring the word
accuracy rate (WAR). A second and novel approach was an alignment-based ap-
proach. Starting from a state-of-the-art ASR, using the traditional phonetic models
for Flemish (normal) speech, the pathological speaker’s utterance was aligned with
its target phonemic transcription, from which a number of global features that were
derived. The latter constitute the phonemic characterization of the speaker, de-
scribing how well on average the acoustic realizations of the phonemes are scored
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general hearing-impaired
voiced voiced

fricative fricative
burst burst

- nasal
silence silence

mid mid
front front

rounded rounded
- not closure
- not fricative
- not mid

not front not front
/d/ /d/
/k/ /k/
/s/ /s/
/z/ /z/
- G

/m/ /m/
/i/ /i/

/A+/ /A+/

Table 7.14: Features selected by the general IPM and the hearing-specific IPM based on
WAR+PLF+PMF. Features in bold indicate differences between both models.

by the phonetic models of the ASR. Since speech intelligibility is closely related
to articulation, we investigated whether phonological models of speech could offer
more potential than the traditional phonetic models. Starting from an ASR which
uses phonological models for (normal) Flemish speech, the pathological speaker’s
utterance was therefore aligned with its phonetic transcription, from which a num-
ber of global features were derived that constitute the phonological characteri-
zation of the speaker. The latter describe how well on average the phonological
realizations of the speaker are scored by the ASR.

The potential of the three feature sets was then explored by building several
IPMs, revealing that a combination of WAR and phonological features leads to in-
telligibility scores that correlate very well (Pearson Correlation Coefficient higher
than 0.80) with the perceptual ratings. Furthermore, using both alignment-based
feature sets, one achieves correlations which are not significantly lower than the
best results. Combining more than two feature sets did not lead to better results.

Departing from the general IPMs, domain adaptation techniques were explored
to build pathology-specific models. We showed that domain adaptation tech-
niques can slightly improve the general model’s results for hearing impaired and
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dysarthric speakers, leading to correlations up to 0.96 between perceptual and au-
tomatic intelligibility scores, but for laryngectomees and persons with cleft lip or
palate they provide little to no improvement.

The correlations for general and pathology-specific models compete with the
inter-rater agreements measured for perceptual intelligibility assessment. We can
therefore conclude that phoneme intelligibility can be predicted in a reliable way
by our methodology.

By investigating which features were important in automatic intelligibility pre-
diction, we found that all features frequently selected by the intelligibility predic-
tion models can be linked to known articulatory deficits of pathological speakers.
This opens the door for a more profound characterization of pathological speech.
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8
Running speech intelligibility

8.1 Introduction: why running speech?

In the previous chapter, we showed that an ASR can be used as an objective listener
for determining intelligibility. We showed that it is possible in this way to automate
the DIA and to obtain a reliable phoneme intelligibility score in this way.

There are however some minor drawbacks when using this test. A first problem
with the test is that phoneme intelligibility (PI) is only moderately correlated with
the ability to communicate in more realistic situations where running speech is
used [68, 121]. A second problem is that especially children tend to misread a
nonsense target word as a more common existing word. These errors obviously
induce a negative bias in the speaker’s intelligibility. Because of these problems,
we envision an automated test that utilizes running speech and that is robust against
reading errors, hesitations, etc. of the speaker.

8.2 Predicting running speech intelligibility for CO-
PAS

In order to develop and evaluate the envisaged running speech intelligibility (RSI)
models, we first conducted experiments with a part of COPAS, in particular the
subset of 121 speakers which have read the paragraph (TM) as well as the DIA. As
described in Chapter 6, 121 TM and 121 DIA consist of 47 dysarthric, 26 hearing
impaired, 15 laryngectomized, 6 voice disordered, 1 glossectomized and 26 con-
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trol speakers. Perceptual PI scores (derived from the DIA recordings) are available
for all speakers, but no RSI scores.

Relying on the known (moderate) correlation between PI and RSI [2], we con-
template that - if speaker features computed on running speech can be converted
to PI - they can be converted to RSI as well, provided that perceptual RSI scores
were available for model training.

Starting from the running speech recordings, we applied the same three-stage
process strategy as in Chapter 7, consisting of a front-end analysis, a speaker fea-
ture extraction and an intelligibility prediction.

The front-end analysis could be extended towards running speech without any
changes.

Concerning the feature extraction part, two feature set combinations led to re-
liable phoneme intelligibility scores in Chapter 7: WAR + PLF and PLF + PMF.
Although WAR was a very predictive feature set for 231 DIA, it cannot be em-
ployed for running speech in a straightforward way since it requires a continuous
speech recognizer which is much more complex than the isolated word recognizer
we used before, especially if we would like to develop a method that is also text
and language independent (see later). On the other hand, the alignment-based fea-
ture sets can be extended towards running speech without any change of concept.
We therefore only considered the feature sets PLF, PMF and their combination.

The process of creating IPMs could remain unchanged. To construct a baseline,
we first created IPMs based on PLF, PMF and PLF+PMF derived from 121 DIA,
which is just a subset of the samples used in Chapter 7. Then, new IPMs were
created based on PLF, PMF and PLF+PMF, but this time derived from the running
speech set 121 TM (same speakers uttering the paragraph). However, since no RSI
scores were available, we used the PI scores (targets of 121 DIA) as a proxy for
the RSI scores. Again, we developed two models per feature set (combination):
one based on ELR and one based on SVR with a RBF kernel.

Table 8.1 presents the results of these first PI predictions based on running
speech (right), compared to the results we obtained for the same speaker set by
employing the DIA recordings as train and validation data (left).

Firstly, the results on 121 DIA seem to be consistent with the results in Chap-
ter 7. The PLFs are again the most predictive features, leading to an average RMSE
of 7.71 between computed and perceptual PI scores. Adding other features does
not improve upon the results. The results on 121 TM confirm these conclusions
but the RMSE’s are slightly higher (see below).

Secondly, the results show that the PLFs perform worse on running speech
than they do on isolated words, while the PMFs perform equally well. Possible
phenomena which play a role in these differences are: (1) the used target scores
and (2) the used test material. Since we used PI scores based on DIA instead of RSI
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feature set results on 121 DIA results on 121 TM
RMSE PCC learner RMSE PCC learner

PLF 7.71 0.81 ELR 8.80 0.75 ELR
PMF 9.33 0.71 ELR 9.20 0.72 ELR
PLF + PMF 8.18 0.80 ELR-late 8.57 0.77 ELR-late

Table 8.1: RMSE and PCC between computed and perceptual PI scores starting from DIA
(left) and RSI recordings (right). Columns 4 and 7 show the used learner for these results.
ELR-late denotes late fusion of two IPMS built with one feature set. Results in the same
column differing significantly from the best result at a level of p < 0.05 (indicated in bold)
are underlined.

scores, a drop in performance could have been anticipated for all models trained on
121 TM since there is no 1-to-1 relation between PI and RSI. On the other hand,
since the acoustic models of both ASRs were trained on running speech, the new
test material of 121 TM offers contexts which match better with those seen during
training than the those seen in isolated (nonsense) words of 121 DIA. Especially
for ASR-ESAT, which employs context-dependent models, running speech models
can be expected to perform much better on running speech than on isolated words,
leading to higher posterior phoneme probabilities on running speech. Apparently,
for PMFs, the negative impact of the former effect is compensated by the positive
impact of the latter effect, while this is not the case for PLFs. Another effect of
using running speech material is that it takes forced alignment at a sentence level.
We argue that a forced alignment of isolated words is less prone to errors than
forced alignment of sentences, especially in case of pathological speech. This
could also cause a drop in performance for all IPMs trained on 121 TM.

Note that the RMSE of the best RSI-based IPM is still around 10% higher
than the best RMSE using DIA recordings. In this respect it is interesting to men-
tion that the differences between the DIA-based PLF results and the TM-based
PLF+PMF results are not statistically significant though.

At present, our system already achieves a very good prediction of phoneme
intelligibility starting from running speech, proving that it is possible to use more
natural text material than the 50 partially nonsense-words to obtain a reliable PI
score. We anticipate that our system will thus be able to predict RSI as well.



96 RUNNING SPEECH INTELLIGIBILITY

8.3 Towards an alignment-free characterization of
speech

Although we have made it plausible that RSI can be predicted with alignment-
based techniques, we would like to point out some limitations to this approach. As
already mentioned, especially children tend to make reading errors. These errors
obviously induce a negative bias in the speaker’s intelligibility.

We contemplate that reading errors and hesitations can give rise to alignment
errors (in alignment-based methods) or recognition errors due to Out-Of-Vocabula-
ry (OOV) words (in recognition-based methods). This is already the case for read-
ing errors made by normally speaking children [125], let alone for errors that are
made by children with a speech disorder where reading skills are often less devel-
oped. Because of these problems, we envision an automated test based on running
speech that is robust against reading errors, hesitations, etc. of the speaker. This is
why we propose a novel approach not involving any alignment or recognition.

A first attempt to predict speech intelligibility without alignment was made by
Bocklet et al. [126]. In that work, a speaker verification approach was adopted: a
GMM was trained for every speaker, and the parameters of that GMM were used
as features from which to predict the speaker’s intelligibility.

The approach proposed here relies on a phonological analysis of the uttered
speech using phonological feature detectors (PFDs). Two strategies were devel-
oped:

• In a first strategy, every output of the PFDs is statistically analyzed sep-
arately, leading to a phonological feature representation of the utterance,
called alignment-free phonological features (ALF-PLFs). This strategy re-
lies on the hypothesis that intelligibility reduction due to a certain speech
disorder could be owed to problems with the realization of individual phono-
logical classes.

• A second strategy uses the outputs of the PFDs to calculate posterior phone
probabilities which in turn are statistically analyzed, leading to a phonetic
representation of the utterance, called alignment-free phonetic features (ALF-
PMFs). This strategy relies on the hypothesis that intelligibility degradation
is correlated with problems in realizing a certain combination of phonolog-
ical classes as needed for producing the phones.

8.3.1 Alignment-free phonological features

Like for the other IPMs, derivation of RSI scores is a three-stage process involving
a front-end analysis, a speaker feature extraction and an intelligibility prediction.
The front-end analysis is the same MFCC-analysis as in ASR-ELIS.
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The phonological feature extraction is different. The vectors Xt−1, Xt and
Xt+1 are converted into 14 distinct phonological features describing voicing, place
of articulation, turbulence, nasality, etc. We now extract only phonological features
that are revealed by local information since we are not interested in modeling the
phonetic structure of the utterance here. This means that a modulation feature like
“trill” and a transient feature like “burst” are currently not considered.

The phonological feature extractor is composed of 25 MLPs which have been
trained on the read speech part of CoGeN. To prepare the training data, we first
create a table containing the canonical values of the 14 phonological features of
each phone. Nine phonological features, like “nasal” for instance, can be on/p-
resent, off/absent or irrelevant and are modeled by a tandem of two MLPs: one
that distinguishes between relevant (=1) and irrelevant (= 0) and another that dis-
tinguishes between on (= 1) and off (= −1). The latter MLP also takes the output
of the first MLP into account. Two other features, namely the vowel properties
“front-back” and “high-low”, are also modeled by two MLPs. Since pathological
speakers mainly experience problems to realize the vowels at the extremes of the
vowel trapezium rather than the central vowels, the first MLP distinguishes be-
tween “central” or “not a vowel” (= 0) and “non-central vowel” (= 1) while the
second MLP distinguishes between “front” or “high” (= 1) and “back” or “low”
(=−1) respectively. Finally, three binary features “voicing”, “silence” and “turbu-
lence” are modeled by a single MLP.

Given that there are 11 ternary and 3 binary features, the output Yt consists
of 25 continuously valued components Yti, i = 1, ..., 25, each representing the
degree of confidence for the presence/absence and the relevance/irrelevance of one
phonological feature at frame t.

We hypothesize that the fluctuations over time in a phonological feature, called
a feature pattern, can reveal an articulatory deficiency of the speaker, in spite of the
fact that the phonetic nature of the frames is unknown (that knowledge would have
to come from an ASR). If this hypothesis holds, it should be possible to derive
relevant features from a statistical analysis of the feature patterns Yt. Obviously,
this may not be true anymore if the utterance is too short to have a phonetic content
that is sufficiently representative of speech in general.

Although an analysis of subvectors of Yt could be interesting as well, we re-
stricted ourselves to an analysis of individual features Yti. If a component of Yt
either describes a binary feature or the relevance of a ternary feature, the statistical
analysis runs over all frames. If it is the presence/absence of a ternary feature, the
analysis runs over the frames with a positive relevance. We derive both frame-level
and segment-level statistics. To that end we define relevant (irrelevant) segments
as intervals of at least 4 consecutive frames where a ternary feature is relevant (ir-
relevant). Similarly, we define positive (negative) segments as intervals of at least
4 frames where a relevant feature is present (absent). For every component of Yt,
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the following features are derived:

1. mean value,

2. standard deviation,

3. percentage of relevant/positive frames,

4. percentage of relevant/positive segments,

5. mean over all relevant/positive frames,

6. mean over all irrelevant/negative frames,

7. mean duration of a relevant/positive segment,

8. mean duration of an irrelevant/negative segment,

9. mean of the peaks (maxima) in the relevant/positive segment,

10. mean of the valleys (minima) in the irrelevant/negative segment,

11. mean time needed to reach the maximum within a relevant/positive segment,

12. the mean time needed to reach the minimum within an irrelevant/negative
segment.

A block diagram of the phonological feature extraction can be found in Fig-
ure 8.1.
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Figure 8.1: Block diagram of the phonological feature extraction process.

Most features aim to reveal whether the speaker has difficulties in realizing
clear presence/absence/irrelevance distinctions, but others are more looking for
problems related to the switch between presence and absence. In total, a speaker
is characterized by 25 x 12 = 300 features. Obviously, one can expect high corre-
lations between some of these features.
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8.3.2 Alignment-free phonetic features

The ALF-PLF are expected to be powerful if the intelligibility reduction due to
a certain speech disorder can be attributed to problems with the realization of
individual phonological classes. Nevertheless, it may well be that this degrada-
tion mainly follows from problems that only arise when a certain combination of
phonological classes must be realized, e.g. the realization of “voicing” and “frica-
tive” in phone /z/. In that case, intelligibility prediction could benefit more from
features that take these interactions between phonological classes into account. An
obvious way to accommodate this is to consider the phons employed for deriving
the PLF as phonological class combinations and to examine how much evidence
for these combinations can be found in the speech utterance. .

In order to derive the envisioned phonetic features, we start from the phono-
logical description that is created by means of the PFD that was included in ASR-
ELIS as described in Section 7.1.2. The reason for this is that while the ALF-PLFs
only need a small context window, more context is needed to derive phonetic fea-
tures. Using Equation (7.3), we assign each frame to the phone Fk, k = 1, ..., NF
yielding the largest probability

P (Fk|Xt−5,..,t+5) =

 24∏
Aci(Fk)=1

i=1

Yti


1

Np(Fk)

(8.1)

with Np(Fk) being the number of positive phonological feature characteristics of
Fk.

We then consider all frames that were assigned to a particular Fk and we de-
rive four features of that Fk: the mean, the standard deviation, the mean of the
valleys and the mean of the peaks of the P (Fk|Xt−5,..,t+5). These four features
investigate how well the speaker’s utterances of phones which are perceived as Fk
match the acoustic models for Fk. What we also want to know is how well the
phone Fu the speaker really wanted to utter is recognized. To this end, we define
P (Fk, Fu, Fr|U,R) as the probability that Fk came out as the winner (largest pos-
terior probability according to Equation (8.1)) while the speaker actually tried to
utter Fu although according to the text it had to be Fr. Based on this definition,
we can express the probability that Fk is the winner, given the utterance and the
text, as

P (Fk|U,R) =

NF∑
u,r=1

P (Fk, Fu, Fr|U,R) k = 1, .., NF(8.2)

=

NF∑
u,r=1

P (Fr|R)P (Fu|Fr)P (Fk|Fu) k = 1, .., NF (8.3)
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The meanings of the probabilities in the right hand side are the following:

• P (Fk|Fu) is the probability that Fk is the winner when the speaker tries
to utter Fu. Obviously it depends on the quality of the phonological ana-
lyzer, but more importantly, on the difficulties the speaker experiences to
pronounce Fu.

• P (Fu|Fr) is the probability that the speaker tries to pronounce Fu when
according to the canonical transcription of the text it should have been Fr.
It is a measure of how many times the speaker is making a reading error.

• P (Fr|R) is the probability that Fr appears in the canonical transcription of
the text. This is strictly a property of the text, but if the text is long enough
it will be more like a property of the language.

If we assume that the speaker only makes very few reading errors, Equation (8.3)
can be simplified to

P (Fk|U,R) '
NF∑
r=1

P (Fr|R)P (Fk|Fu = Fr) (8.4)

Apparently, what we can measure, namely P (Fk|U,R), is a weighted sum of the
P (Fk|Fu = Fr) we would really like to measure. Moreover, the weights in that
sum depend on the properties of the text. In order to suppress that dependency, we
propose to compute the scaled posterior

P (Fk|U,R)

P (Fk|R)
'

NF∑
r=1

P (Fr|R)

P (Fk|R)
P (Fk|Fu = Fr) (8.5)

If the acoustic models achieve a sufficiently good performance, one can expect
that only those combinations (Fk, Fr) corresponding to confusable pairs will con-
tribute to that sum. Furthermore, since the MLPs are trained in a discriminative
way, Fr will only be confused frequently with Fk if the prior probability of Fk
is at least as high as that of Fr. This actually means that one can argue that the
dominant terms in the sum will have a ratio P (Fr|R)/P (Fk|R) that is close to 1,
and thus that the text-dependency will be low. Consequently, we propose to add
the scaled posteriors of the different phones as a new set of alignment-free fea-
tures. These posteriors P (Fk|U,R)/P (Fk|R) can be calculated in two ways. One
way is to consider per Fk the percentage of frames for which Fk was the winner
as an estimation of P (Fk|U), and divide that percentage by P (Fk|R). A second
way is to use the mean P (Fk|Yt) over the whole utterance as an approximation for
P (Fk|U) and divide this number by P (Fk|R). These two approximations consti-
tute the fifth and sixth alignment-free feature of Fk. This way, we finally obtain
6NF = 6 ∗ 55 = 330 new alignment-free phonetic features. Since most of the
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phones represent phonemes, we denoted these features as ALF-PMF in order to
maintain the duality between features associated with phonological classes and
features associated with phone(me)s.

8.3.3 Results on COPAS

Returning to the RSI prediction of 121 TM, we built IPMs based on the two new
feature sets ALF-PLF and ALF-PMF. We also evaluated some straightforward
combinations, such as ALF-PLF + ALF-PMF (all alignment-free feature sets to-
gether), PLF + ALF-PLF, the phonological feature sets together, and PMF + ALF-
PMF, the phone(m|t)ic feature sets together. Table 8.2 presents the results of these
experiments.

feature set RMSE PCC learner
PLF 8.80 0.75 ELR
PMF 9.20 0.72 ELR
PLF + PMF 8.57 0.77 ELR-late
ALF-PLF 9.89 0.64 ELR
ALF-PMF 9.23 0.71 ELR
ALF-PLF + ALF-PMF 8.94 0.73 ELR-early
PLF + ALF-PLF 8.88 0.74 ELR-late
PMF + ALF-PMF 8.69 0.76 ELR-late

Table 8.2: RMSE and PCC between computed and perceptual phoneme intelligibility scores
based on alignment-based and alignment-free methods. Results differing significantly at a
level of p < 0.05 from the reference PLF+PMF model (in bold) are underlined.

While for the alignment-based methods PLFs lead to stronger IPMs than PMFs,
this is not the case anymore for alignment-free methods. ALF-PLFs are outper-
formed by the ALF-PMFs, although not significantly. Results based on the latter
feature set are not significantly worse than those attained with the ASR-based fea-
ture combination PLF+PMF. This makes the ALF-PMF set a potential candidate
for further use. However, they don’t seem to add complementary information to
the ASR-based methods since PMF + ALF-PMF does not improve on the best
results. Both alignment-free feature sets together result in an IPM performing al-
most not significantly worse than the best alignment-based combination. Since
alignment-free feature sets are less complex, need less CPU time and are supposed
to be less dependent the text, they offer a valid alternative for the alignment-based
approach.
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8.4 Comparison with PEAKS

As described in Chapter 4, PEAKS is a German tool that was designed for auto-
matic intelligibility assessment of pathological speech. Since our research has the
same objectives, it is worthwhile to compare our strategy with that of PEAKS.

As opposed to the forced alignment method in the Computerized Frenchay
Dysarthria Assessment, the creators of PEAKS opted for a word recognition ap-
proach [3, 110]. The recognizer used for adult speech assessment is designed for
achieving a maximal performance on readings of a particular text passage which is
the same for all speakers. For intelligibility assessment, this is the “Nordwind und
Sonne” passage, a text which is frequently used in speech therapy [7] in German
speaking countries. It is composed of 108 words (71 disjunctive) and phonetically
balanced (it contains all phonemes of the German language). The HMM-based
ASR is trained on non-pathological German speech and the lexicon consists of
the words appearing in the targeted text passage and their expected pronuncia-
tions. The language model is an unigram model comprising the frequencies of
occurrence of the words in the text passage. Sentence per sentence, the outputs of
the ASR are compared with the targeted sentence, and from these comparisons, a
Word Accuracy (WA) is derived:

WA = 1− D + S + I

R
, (8.6)

with D the number of deletions, insertions I and substituted words S versus the
number of words R in the reference.

It was soon acknowledged that WA alone is not enough to achieve good intel-
ligibility predictions. Therefore, PEAKS also computes a number of acoustic and
prosodic features that characterize the speech of the speaker, like e.g. the mean and
variance of F0 of each recognized word, and some statistics about jitter, shimmer
and the number and length of the voiced and unvoiced segments over the whole ut-
terance. The way these speaker features are computed exhibits some resemblance
with how we do it, in the sense that the word segmentation created by the recog-
nizer is taken into account, but for the rest there are only few points of similarity.
Some of the PEAKS features describe F0-patterns in words and are in a sense re-
lated to the AMPEX features that we will be using for phonation quality prediction
later in Chapter 9. Other PEAKS features describe the number of voiced and un-
voiced segments encountered in the utterance and are somewhat related to some of
the alignment-free features we proposed in this work.

To map the speaker features to intelligibility scores, PEAKS embeds an IPM
which is based on SVR.
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8.4.1 Published performances of PEAKS

As described in [3], PEAKS was mainly tested on (partially) laryngectomized
adults and children with cleft lip and palate. We will focus on the first group
here since we ourselves do not dispose of running speech data for children to com-
pare against the German data. The IPM for (partially) laryngectomized adults is
supplied with the speaker features described above. It was trained and evaluated
on a group of 41 laryngectomees with TE-speech who read the “Nordwind und
Sonne” passage. For every patient, 5 voice professionals provided perceptual RSI
scores, expressed on a 5-point Likert scale [65]. These 5 scores per patient were
averaged to one reference score, being the ground truth for training of the IPM.

The training and evaluation is obtained by means of a leave-one-out procedure
which can be described as follows [3]:

• Consider all speakers except one as training speakers and the left-out speaker
as the test speaker.

• Select the n features showing the highest correlation with the reference
scores on the training dataset.

• Use this feature subset to train a SVR on the training set and validate it on
the left out speaker to determine the prediction accuracy.

• Repeat the above steps for every speaker and keep track of the predicted
speaker intelligibilities.

• Compute the PCC and the Spearman rank correlation coefficient [127] be-
tween predictions and reference scores to determine the prediction accuracy.

Starting from n = 1, the number of features is augmented until the prediction
accuracy on the leave-one-out samples does not further improve anymore. Note
that the best results of this approach will be optimistic since the test data are used
to find the free parameter n.

Following the sketched approach, high correlations between the reference and
the automatic scores [3], were found: while the inter-rater PCC was between 0.80
and 0.87, the PCC between the mean perceptual and the automatic scores was
around 0.90.

In a separate experiment, Maier et al. [3] tried to predict scores emerging from
one single rater instead of from the mean of five ratings. Using the same strategy
as before, the PCC between one rater’s scores and the automatic scores dropped to
values between 0.74 and 0.80 (depending on the targeted rater), which is slightly
under the inter-rater PCC.
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8.4.2 Comparison with our former experiments

Although this is not offering a direct comparison, we can consider the PI predic-
tions we obtained with pathology-specific models derived from running speech
on the group of laryngectomees in COPAS. Taking into account that our ground
truth was phoneme intelligibility and that it was delivered by a single human rater,
we argue that our results provide evidence that our strategy is at least competitive
with the PEAKS approach. Furthermore, it has been tested on a much more di-
verse population of disordered speech (the full COPAS), whereas there is no proof
yet that PEAKS will also scale up to that degree of diversity.

To gather more conclusive evidence concerning the relative performances and
the degree of complementarity of the two strategies, we should be able to apply
both methods on the same dataset and to investigate whether a combination of
methods can improve on the single model performances. This was one of our mo-
tivations for seeking collaboration with the group of Erlangen. Our collaborations
with third parties are discussed in the next section.

8.5 Collaborations with third parties

As mentioned earlier, we introduced two novel alignment-free feature sets for char-
acterizing a speaker. One of them, ALF-PLF, is the result of a phonological anal-
ysis of the speech which does not need any knowledge of what has been said. The
other one, ALF-PMF, is also the result of a phonological analysis, but this analy-
sis relies on the relations between phonemes and phonological classes and needs
phoneme frequencies that are being retrieved from the text the patient was sup-
posed to have read (the prompt). Since the alignment-free features seem capable
of well predicting phoneme intelligibility in COPAS, and since the link with what
has been spoken is rather weak, the method should be easily transferable to other
languages. In order to verify this, we have collaborated with the Chair of Pattern
Recognition of the University of Erlangen (LME). The results of that analysis will
be discussed in Section 8.6, and have been published in [19].

Similarly, a collaboration with the Netherlands Cancer Institute and the Insti-
tute of Phonetics of Amsterdam University (NKI-UVAFON) was set up in order
to investigate issues like text dependency, accent dependency and predictability of
articulatory variables other than intelligibility. The first results of that collabora-
tion will be discussed in Section 8.7 and have been published in [14]. The rest of
these collaboration results will be discussed in Chapter 9.
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8.6 Collaboration with LME

LME and ELIS are both research groups with a good background in pathological
speech analysis. While the DIA online tool was developed in ELIS [17], LME
developed the PEAKS-platform [3]. In both PEAKS and DIA, the speaker’s utter-
ance is analyzed in view of the prompted text.

In PEAKS, this analysis is made by an ASR with a small dictionary, limited
to the words in the prompted paragraph. The basic idea is that the ASR system
has increasing trouble recognizing pathologic speech with an increasing degree
of pathology. Intelligibility is measured as the percentage of correctly recognized
words.

In DIA, the speech is aligned with the list of prompted words, and from that
alignment a set of speaker features is retrieved and subsequently transformed into
an objective intelligibility score. As much as the above methods have proven to
work well for the task they were designed for, they are presumed to run into prob-
lems when the pathological speaker starts to make hesitations and reading errors,
as it often happens with children speakers.

Clearly, these errors should have no impact on the intelligibility, but they do
introduce out of vocabulary words which may on their turn cause an alignment or a
recognition system to derail. To circumvent this lexical problem, a new philosophy
of deriving speaker features was conceived almost simultaneously in LME [126]
and ELIS [18]. In this philosophy, no alignment (needing the prompts) nor recog-
nizer (needing a lexicon) is employed anymore.

A first attempt was made by Bocklet et al. [126] where a speaker verification
approach is adopted: a GMM is trained for every speaker, and the parameters of
that GMM constitute a supervector from which to predict the speaker’s intelligi-
bility. This supervector represents the acoustical properties of the speech. This
method led to high correlations between computed and perceptual intelligibility
scores for a German dataset consisting of 85 partially laryngectomized speakers.
As only acoustical properties of the speech are used, this approach is claimed to
be language-independent.

In the research work described in the previous sections an alignment-free fea-
ture set ALF-PLF, relying on nothing but a statistical analysis of the feature pat-
terns emerging from phonological feature detectors was introduced and showed
promising results on COPAS. The phonological feature set is claimed to be inde-
pendent of the used language as well. Moreover, it is presumed to relate directly to
the articulatory dimensions of speech, and as such, possibly suitable for conduct-
ing a more detailed assessment of the speaker’s articulation problems in a later
stage (see Chapter 9).

As both ASR-free approaches capture different characteristics of the speech
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signal, it makes sense to verify the claim of language-independence and to in-
vestigate whether combining them is beneficial. For this purpose, we conducted
experiments on the two datasets that were formerly used to test the individual ap-
proaches as presented in [126] and [18] respectively.

8.6.1 Datasets

In this subsection we describe the two datasets we used for training and evaluation
of the individual and combined models.

8.6.1.1 German Partial Laryngectomees (GPL)

The dataset used in [126] contains recordings of 85 patients who suffered from
cancer in different regions of the larynx. 65 patients had already undergone par-
tial laryngectomy and were recorded on average 2.4 months after surgery, while
the remaining 20 patients were still awaiting surgery. Each person read the Ger-
man version of “The Northwind and the Sun”. More details about the recording
conditions can be found in [126].

Five phoneticians and speech scientists rated every speaker’s intelligibility ac-
cording to a 5-point Likert scale [65]. The average of these five ratings is used as
a reference during the automated intelligibility assessment. Pearson Correlations
between scores of one rater and the average scores of the four others range from
0.76 to 0.86, with a mean of 0.81.

8.6.1.2 Flemish Pathological Speech (FPS)

This dataset is nothing else than the 121 TM set from COPAS. Here the name
points to the fact that the database is Flemish, in contrast to the GPL. As al-
ready explained, perceptual phoneme intelligibility (PI) scores (derived from the
DIA recordings) are available for all speakers, but there are no perceptual running
speech intelligibility (RSI) scores. Here we consider the PI score as a proxy for the
RSI score. Since we do not dispose of exact inter-rater agreements for this dataset,
the estimations for inter-rater agreements mentioned in Chapter 7 (PCC of 0.89)
were taken as a reference.

8.6.2 Feature extraction

For both derived feature sets, the same acoustic front-end was used, computing the
standard MFCCs with a frame rate of 10 ms and a frame size of 25 ms. For each
frame t, the first 12 MFCCs and the log energy are retained. LME also uses first
and second order derivatives, to constitute a 39-dimensional feature vector Xt. To
minimize the influence of the microphone, Cepstral Mean Subtraction (CMS) is
applied to all data.
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Based on the acoustic features, the approaches of [126] and [18] are applied
to create two alignment-free speaker feature sets, representing the acoustical and
phonological properties of the speech respectively.

8.6.2.1 Acoustical alignment-free features (ALF-AC)

The first system, described in [126], is based on the assumption that the acoustics
of pathologic speakers differ from those of non-pathological speakers. The degree
of pathology is measured as the distance between the pathologic speaker model
and a reference speaker model. The speaker model is a Gaussian Mixture Model
(GMM) representing all available MFCC vectors X of the speaker. The reference
model is a speaker-independent GMM that is trained on speech of healthy speak-
ers. This model is usually referred to as the Universal Background Model (UBM).

The UBM is trained in an unsupervised iterative manner by the Expectation-
Maximization (EM) algorithm [88] (5 iteration steps). It computes likelihoods by
means of Equation (5.27) and its free trainable parameters are the weights, mean
vectors and covariance matrices of the different mixtures. The number of Gaussian
mixtures is set to 128.

The speaker model of the diagnosed speaker is derived by adapting the param-
eters of the UBM to the data of the speaker. Since only a limited amount of data
per speaker is available, only the mean vectors are adapted. This is accomplished
by means of Maximum A Posteriori (MAP) adaptation [88]. The adapted means
constitute a so-called GMM-based supervector (see Figure 8.2). This vector is
expected to represent well the acoustic space of the speaker. It is referred to as
ALF-AC and it is composed of 39 x 128 = 4992 individual features.

MFCCs 
EM 

Training 
UBM 

ALF-AC 

Training 

Data 

Data of 

single 

speaker 
MFCCs 

MAP 

adaptation 

Figure 8.2: Composition of the GMM-based supervector by concatenation of the mean
vectors. After [19].

8.6.2.2 Phonological alignment-free features (ALF-PLF)

While the ALF-ACs describe the speaker in the acoustic space, the ALF-PLF de-
scribe him/her in the phonological feature space. The ALF-PLF feature set, de-
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scribed in 8.3.1, consists of 300 features.

8.6.3 Experimental setup

For experiments on FPS, the UBM for the ALF-AC methodology is trained on
all Flemish utterances of the TM paragraph. MAP-adaptation towards the tested
speaker leads to the speaker feature vector. The ALF-PLF methodology embeds a
phonological detector that was trained on “normal” Flemish speech as described
in Section 8.3.1. The speaker feature vector is extracted using the usual statistical
analysis.

For experiments on GPL, the UBM for the ALF-AC methodology is trained on
“normal” German utterances of the same paragraph. MAP-adaptation towards the
tested speaker again leads to the speaker feature vector. The ALF-PLF method-
ology embeds again the same phonological detector that was trained on “normal”
Flemish speech as described in Section 8.3.1. No adaptations were made towards
German speech. The speaker feature vector is extracted using the usual statistical
analysis.

Starting from the these alignment-free speaker feature sets, four different IPMs
were created per dataset. In an analogy with Figure 7.2, two of them (IPM 1 and
IPM 2) consider only one feature set and act as the baseline models. The two
others (IPM 3 and IPM 4) employ a combination of the two feature sets by using
an early and late fusion strategy respectively.

8.6.3.1 Training and validation procedure

For the training and validation of the IPMs we adopted a leave-one-out cross val-
idation scheme. We tried two statistical learners for every IPM: one based on
ensemble linear regression (ELR) with feature selection and one based on Support
Vector Regression.

Although experiments in Chapter 7 showed that SVR with a non-linear kernel
(RBF) usually outperforms SVR with a linear kernel, we did keep the linear kernel
as an option here because the ALF-AC feature space is a very high-dimensional
space in which there may be no need to any non-linear transformation to another
hidden space anymore.

The SVR experiments were conducted in Weka [128] and the learning param-
eters were set to the default values.

8.6.4 Results and discussion

In this subsection we present the results for the four IPMs in combination with
SVR and ELR as the training algorithm. As usual, we computed the Pearson Cor-
relation Coefficient (PCC) and the Root Mean Squared Error (RMSE) between the
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computed and the target outputs as evaluation measures. The RMSE is expressed
in percent of the full scale: 5 for GPL and 100 for FPS.

SVR ELR
data feature set kernel PCC RMSE PCC RMSE
FPS ALF-AC LIN 0.70 9.4 0.44 11.6

ALF-PLF RBF 0.68 9.6 0.64 9.9
early fusion LIN 0.71 9.2 0.65 9.8
late fusion - 0.74 8.7 0.64 10.2

GPL ALF-AC LIN 0.81 11.0 0.72 13.0
ALF-PLF RBF 0.81 11.0 0.69 12.8

early fusion LIN 0.81 11.0 0.73 12.8
late fusion - 0.84 10.4 0.73 12.6

Table 8.3: PCCs and RMSEs (see text) for the two datasets. In case of SVR, linear kernels
are denoted by LIN, Gaussian kernels by RBF. Per dataset, the result for the best single
feature set is put in bold and acts as a reference. Underlined figures indicate performances
differing significantly from the reference with p < 0.05.

A first major finding is that SVR outperforms ELR as a learning method in all
situations. We come back to this later. Looking at the SVR models, it appears that
both feature sets, ALF-AC and ALF-PLF, perform equally well on both datasets.
This is proof of the fact that these two feature sets can be used in a language
independent scenario, as claimed but not verified in the original papers where they
were introduced. Another result is that early fusion is not capable of exploiting the
complementarity of the two feature sets, whereas late fusion can, even though the
improvement on GPL is only significant at a confidence level of 0.08. Optimizing
the parameters of the SVR training instead of using the Weka default values and
adopting a more efficient late fusion technique might further improve the results
and lead to significant differences with a lower p-value on both datasets. That early
fusion is not capable of causing any improvement may well be a consequence of
the very unequal sizes of the combined sets.

Note that all models perform better on the GPL than on the FPS dataset when
comparing to the inter-rater agreements: all GPL models achieve at least the mean
inter-rater PCC of 0.81, while none of the FPS models achieves the inter-rater PCC
of around 0.89. One hypothesis is that the GPL dataset only comprises laryngec-
tomees and that the dominant cause of the diminished intelligibility of this type of
speakers resides in the diminished amount of voicing that is produced. This type
of deviation is obviously easier to model than a more complex articulatory defi-
ciency involving e.g. a combination of problems related to both the manner and
the place of articulation. Such complex deficiencies are bound to occur frequently
in the FPS-dataset. Another factor might be the mismatch between the reference
scores in the FPS dataset and the evaluated utterances. The reference scores were
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PI-scores which were measured on another type of utterance (DIA word test).

The fact that the ALF-AC features perform very badly on the FPS dataset when
used in combination with ELR can most likely be explained by noting that the
ALF-AC feature set consists of many strongly correlated components, and by ac-
knowledging that the simple strategy of adding one feature at the time (used in
ELR) is not a viable strategy in that case. To give an example, if the mean vector
of a mixture component in the speaker model differs from the corresponding mean
vector of the UBM, it is probably important to measure in which direction the mean
vector has moved. This direction information is encoded in a linear combination of
mean vector components and is not necessarily well reflected in any of the individ-
ual components of that vector. Consequently, the feature addition method may fail
to add any of these components to the subspace in which the regression will take
place. In SVR, the features are always examined together. That the phenomenon is
so much more apparent in the FPS dataset than it is in the GPL dataset is probably
a consequence of the larger complexity of the envisaged modeling task in the FPS
dataset.

8.6.5 Conclusions

Two ASR-free methods that were formerly shown to predict speech intelligibility
rather well on one dataset were now compared in a multilingual setting. Both
methods were evaluated on two datasets comprising Dutch and German speech
respectively. The fact that both methods achieve very similar results on each of
the two datasets proves that they are equally effective. The fact that each method,
when used in a cross-lingual setting (=tested on data in another language than the
data that were used in the original paper and, in case of the ALF-PLFs, tested
on data in another language than the data that were used for the training of the
acoustical models), competes with the other method in a native setting indicates
that the methods can indeed be considered as language-independent as claimed but
not verified in the original papers.

Another important result is that combining the two feature sets in one sys-
tem demonstrated to be beneficial, provided late fusion is employed as the fusion
technique. Since late fusion is achieved by just averaging the outputs of two intel-
ligibility production models, there is still room for improvement. Future work can
be directed towards the training of yet another regression model to better map the
two outputs onto the desired intelligibility score.

Now that both methods have been proven to work in a Flemish-German con-
text, we can start to explore more datasets covering more languages, in the hope
that the combined method will prove to be applicable in general.
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8.7 Collaboration with NKI-UVAFON
As mentioned earlier, another collaboration was set up with NKI-UVAFON, result-
ing in new challenges [14]. In fact, previous research in this dissertation has shown
high correlations between automatically generated scores and perceptual ratings,
but these correlations have always been measured on a large group of pathological
speakers where the aim was to compare one speaker against another. However, in
a clinical setting there is also a high need for tools that are able to monitor progress
made by an individual patient. Since NKI-UVAFON had developed a corpus con-
taining multiple recordings of the same person at 2 or 3 distinct times, one of the
first aims of the collaboration was to investigate whether the developed methods
are sufficiently accurate to predict the presence/absence of progress in the course
of a therapy.

Since the mentioned corpus also contains recordings of two text fragments of
each speaker, assessing the text-independence of our approach was another chal-
lenge.

8.7.1 The NKI-CCRT corpus

All speech material in the NKI-CCRT corpus comprises speech from patients
with advanced head and neck cancer that were treated with chemoradiotherapy
(CCRT, [129]). The perceptual evaluations are part of a larger longitudinal study
investigating the automatic evaluation of speech intelligibility and voice quality
for speakers treated for advanced head and neck cancer. Here we just provide a
synopsis of the information regarding participating speakers and perceptual evalu-
ations that have been performed on the data. We refer the reader to [129] and [130]
for more detailed information.

8.7.1.1 Speakers

The corpus contains recordings and perceptual evaluations of 55 speakers: 54 of
them were recorded before CCRT (T0), 48 speakers were recorded again ten weeks
after CCRT (T1) and 39 speakers were recorded twelve months after CCRT (T3)1.
As detailed in [129], the average age at pre-treatment was 57 years (range 32-79).
As summarized in Table 8.4, approximately one-third of the speakers had tumors
located in the laryngeal cavity (laryngo/hypopharynx). The remaining speakers
had tumors located above the laryngeal cavity (oral cavity, oropharynx, nasophar-
ynx). Based on perceptual categorization by a Dutch phonetician, 8 speakers were
categorized as non-native whereas the other 47 were categorized as native. Note

1There were also recordings for some of the patients at time T2, situated between T1 and T3, but
due to time constraints, these recordings were not perceptually rated, and therefore not used in this
study. However, to maintain numerical consistency with the publication of [129], we use the term T3
for the last recording moment.
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that all speakers lived in the Netherlands, and as such, their Dutch is an “accent”
of Flemish.

Evaluation moment
Total (%) T0 (%) T1 (%) T3 (%)

Characteristic n=55 n=54 n=48 n=39
Tumor location

Non-Laryngeala 36 (65) 36 (67) 31 (65) 23 (59)
Laryngealb 19 (35) 18 (33) 17 (35) 16 (41)

Sex
Male 45 (82) 44 (81) 39 (81) 30 (80)
Female 10 (18) 10 (19) 9 (19) 9 (23)

Lang. background
Dutch 1st 47 (85) 46 (85) 40 (83) 32 (82)
Dutch 2nd 8 (15) 8 (15) 8 (17) 7 (18)

Table 8.4: Speaker characteristics: tumor location, sex and probable language background.
aTumor located in oral cavity, oropharynx, nasopharynx. bTumor located in laryngophar-
ynx or hypopharynx.

As most speakers were recorded before CCRT and at two moments after CCRT,
this dataset makes it possible to monitor short-term and long-term changes in a
patient’s intelligibility. Preliminary results presented by [130] show however that
not all speakers actually exhibit significant changes.

8.7.1.2 Stimuli

Two fragments of a 189-word passage from a Dutch fairy tale were selected as
fragments A and B. Fragment A contains 70 words (tokens) while fragment B
contains 68 words long. Fragment A contains 49 unique words (types) and frag-
ment B contains 50 unique words (see Table 8.5). The two fragments have only
22 types in common, which makes them clearly lexically different. Each speaker

Text Diversity Sentence Length
Fragment Tokens Types TTR(%) mean (sd, range)

A 70 49 70.0 11.7 (6.3,4-21)
B 68 50 73.5 17.0 (5.8,12-23)

A&B 138 77 55.8 13.8 (6.4,4-23)

Table 8.5: Characteristics of the two text fragments: number of tokens, number of types and
type-per-token ratio (in %). Average sentence length is denoted in number of words. Data
are rounded to one decimal place.
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read at least one of the fragments, but most of them read both: the corpus contains
140 recordings of fragment A and 141 of fragment B. Average durations of the
recordings were 26.9 seconds for fragment A and 26.4 seconds for fragment B.

From the phoneme frequencies in fragments A and B (see [130]) it follows
that the two fragments have an almost identical phonemic balance.

8.7.1.3 Perceptual analysis

Thirteen recently graduated or about to graduate speech pathologists (all female,
native Dutch speakers, average age of 23.7 years) evaluated the speech recordings
in an on-line, self-paced experiment. The recordings were presented in a random-
ized order and listeners could replay a recording as many times as they wished.
Each recording contained the reading of a complete fragment by one speaker. The
listeners used their own anchors and received no feedback on performance. All
listeners completed an on-line familiarization module before evaluating the stim-
uli for the dataset. The retest recordings (repetitions of formerly rated recording)
and items for practicing are not included in the dataset.

Intelligibility was evaluated on a 7-point scale with labels provided for the
scale ends (’poor’ for 1 and ’good’ for 7). Preliminary results presented in [130]
indicate that although some listener’s test-retest reliability was low, the Interclass
Correlation Coefficient [67] assessing the between-rater reliability was 0.95 (based
on a sample of 37 items). This high value indicates that the mean intelligibility
scores (averages over listeners) are reliable. The percentage exact agreement for
the rater’s test-retest recordings ranged from 20 to 80 percent. The percent close
agreement (± 1 difference on the scale) ranged from 60 to 100 percent. In terms
of Pearson Correlation Coefficient (PCC), the correlation between one individual
rater and the mean of the 13 raters varies between 0.72 and 0.92, with a mean
of 0.84. Figure 8.3 depicts the histogram of the mean perceptual ratings for all
recordings.

8.7.2 Objective intelligibility assessment

The derivation of an objective intelligibility score is the same as always and con-
sists of the same front-end analysis (derivation of acoustic parameter vectors), a
speaker feature extraction and an intelligibility prediction.

8.7.2.1 Speaker feature extraction

Since one of our aims is to investigate the accent dependency of our method, we
have developed two sets of acoustic models: models trained on Flemish speech
and models trained on Dutch speech. The Flemish models are trained as discussed
in Chapter 7: the Flemish models for ASR-ELIS are trained on the read speech
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Figure 8.3: Histogram of the mean perceptual intelligibility scores in the NKI-CCRT cor-
pus.

part of CoGeN, those for ASR-ESAT on the Flemish read speech part of CGN.
The Dutch models are all trained on the Dutch read speech part of CGN.

Flemish and Dutch are known to differ e.g. in the voicing of fricatives and the
degree of diphtonguation of long vowels [131, 132]. These differences must be
taken into account when assigning canonical values Aci to the phone states (e.g.
the /g/ is pronounced with voicing in Belgium and can be either voiced or unvoiced
in the Netherlands). This is relevant for the PLF and the ALF-PMF feature sets.

In summary, we developed a Flemish version and a Dutch version of PLF, PMF,
ALF-PLF and ALF-PMF. The Flemish version of feature set F will be noted as
FL-F , the Dutch version as DU-F .

8.7.2.2 Intelligibility Prediction Model

Once all speaker features have been computed, they need to be converted to an
intelligibility score using a regression model, the Intelligibility Prediction Model
(IPM). We chose to use ELR as the only statistical learner this time since this offers
the possibility to identify the important dimensions for describing intelligibility.

8.7.3 Experimental evaluation

The main objectives of the experimental evaluation are to assess the accuracy of the
IPMs derived from the different speaker feature sets and their robustness against
changes in the read text and the spoken accent (Dutch or Flemish). In order to
reach these objectives we have derived IPMs from different text fragments (frag-
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ments A and B). To investigate accent dependency, we tested feature sets derived
by means of acoustic models trained on Flemish and Dutch normal speech respec-
tively. In case of acoustic models working in the phonological feature space, the
phonological description of the phone states was matched to the speech material
that was processed: Flemish descriptions for processing Flemish speech and Dutch
descriptions for processing Dutch speech and testing on the NKI-CCRT corpus.

Before describing our experimental results in more detail, we first take a closer
look at the evaluation strategy we have adopted. All IPMs will be trained and
evaluated using a 5-fold cross validation (CV) strategy. As most speakers were
recorded two or three times (at T0, T1 and/or T3) and since two fragments (A
and/or B) were recorded in most cases, 281 samples were available in total. These
samples were divided into five folds such that all recordings of one speaker are
always placed in one fold. Performance is again expressed in terms of the RMSE
and PCC. For all patients, the average of the thirteen intelligibility ratings is taken
as the reference score.

8.7.3.1 Individual speaker feature sets

In a first experiment we tested the Flemish and Dutch variants of the four feature
sets we proposed and we used these feature sets in combination with IPMs that
were trained and tested on the same fragment. In view of later experiments we
introduce the notation A → B for instance to express that the IPM is trained on
fragment A and tested on fragment B. The results for A→ A and B → B can be
found in Table 8.6.

fragment A fragment B
FL DU FL DU

features RMS PCC RMS PCC RMS PCC RMS PCC
PMF 0.82 0.60 0.65 0.77 0.68 0.73 0.60 0.77
PLF 0.83 0.58 0.79 0.60 0.75 0.63 0.68 0.72

ALF-PLF 0.77 0.63 0.77 0.62 0.74 0.66 0.73 0.66
ALF-PMF 0.68 0.73 0.68 0.73 0.70 0.70 0.70 0.70

Table 8.6: Performances of IPMs departing from Flemish (FL) and Dutch (DU) feature sets
and being trained and tested on text fragments A and B respectively. Per fragment, results
differing significantly at a level of p < 0.05 from the best result (indicated in bold) are
underlined. RMS denotes RMSE.

The main conclusion is that the phone(m|t)ic features (PMF and ALF-PMF)
outperform the corresponding phonological features in most cases. There is only
one exception to this rule, namely the Flemish PLF performing worse than ALF-
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PLF on fragment A. The difference between PLF and PMF can be partly ex-
plained by differences in the systems supplying the text-to-speech alignments that
are needed for constructing the speaker features: the state-of-the-art ESAT-ASR
usually leads to a better alignment than the much less complex ELIS-ASR. The dif-
ference between ALF-PMF and ALF-PLF on the other hand cannot be explained
in terms of the alignment (there is none) nor in terms of the phonological analyz-
ers that were used (they were actually very similar). The data seem to support the
hypothesis that intelligibility reductions are more correlated with co-occurrences
of phonological classes, as they materialize in specific phonetic units, than with
individual phonological classes.

The second conclusion we can draw is that the alignment-free features have a
more consistent performance across different configurations than the alignment-
based features. On the other hand, the alignment-based features do usually lead
to the highest performance (again with the exception of Flemish PLF on fragment
A). The latter is due to the fact that the speakers recorded in the NKI-CCRT corpus
were mostly native adults who did not make many reading errors which could have
derailed the alignment.

8.7.3.2 Robustness against the speaker accent

A very striking result with respect to the impact of the speaker accent is that the
alignment-based methods are sensitive to a change of accent whereas the alignment-
free methods are not. As expected, the alignment based models clearly perform
better when the acoustic models are matched to the accent of the speaker.

A possible explanation for this is that the alignment is better when it is achieved
with matched models, but that the statistical analysis (conducted to retrieve alignment-
free parameters) is not much affected by the fact that the models are sub-optimal.

8.7.3.3 Robustness against changes in the text

In order to investigate this aspect we have conducted an additional experiment
in which we tested the matched alignment-based feature sets (DU-PMF and DU-
PLF) and the matched alignment-free feature sets (DU-ALF-PLF and DU-ALF-
PMF) in combination with matched and unmatched IPMs. The IPM is called un-
matched if it was trained on recordings of text material that was different from the
text read during model evaluation. More specifically, we trained IPMs on record-
ings of fragment A and evaluated them on recordings of the same fragment A
and on recordings of another fragment B. We did the same with IPMs trained on
recordings of fragment B. The results of this experiment can be found in Table 8.7.
The data clearly demonstrate that all feature sets show the same performance on a
particular fragment, irrespective of whether the IPM was trained on the same or on
another text. However, the used test set does play a role. The differences between
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A→ A B → A B → B A→ B
feature set RMS PCC RMS PCC RMS PCC RMS PCC

DU-PMF 0.65 0.77 0.68 0.76 0.60 0.77 0.60 0.76
DU-PLF 0.79 0.60 0.80 0.61 0.68 0.72 0.66 0.72

DU-ALF-PLF 0.77 0.62 0.77 0.62 0.73 0.66 0.73 0.65
DU-ALF-PMF 0.68 0.73 0.70 0.72 0.70 0.70 0.71 0.70

Table 8.7: IPMs developed on fragment X (A or B) and tested on fragment Y (A or B) as
indicated by the notation X → Y .

the figures obtained by testing on A and B are much larger for the alignment-based
than for the alignment-free feature sets. This proves that the latter feature sets are
more robust to changes in the text during evaluation. We argue that this stems from
the fact that the quality of the alignment depends to some extent on the phonetic
content of the text (it is known that some sound sequences are much more difficult
to segment than others). The mismatch between the training and the evaluation
text does not seem to be a problem.

8.7.3.4 A combination of speaker features

From the former experiments it follows that none of the speaker feature sets leads
to a correlation between the objective and the perceptual scores that can compete
with the mean correlation of 0.84 observed between individual raters and the mean
of these raters. In this respect, we have investigated whether the combination of
different feature sets may bridge this gap. We have tested combinations of:

• DU-PLF and DU-PMF (the Dutch version of the best combination for RSI
as found in Section 8.2),

• the two alignment-free feature sets DU-ALF-PLF and DU-ALF-PMF,

• the two phonological feature sets DU-PLF and DU-ALF-PLF, and

• the two phone(mic) feature sets DU-PMF and DU-ALF-PMF.

The results obtained with these combinations are listed in Table 8.8.
Clearly all feature set combinations perform better than the individual feature

sets they are composed of, but in most cases the improvement is not significant.
The combination of DU-PMF and DU-ALF-PMF on the other hand leads to sig-
nificantly better results than the separate feature sets and it yields a PCC is as high
as the human inter-rater correlation. Figure 8.4 shows a convincing scatter plot of
the objective versus the perceptual scores emerging from the IPM designed for this
combination.
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feature combination RMSE PCC
DU-PLF + DU-PMF 0.61 0.80
DU-ALF-PLF + DU-ALF-PMF 0.68 0.73
DU-PLF + DU-ALF-PLF 0.64 0.74
DU-PMF + DU-ALF-PMF 0.52 0.85

Table 8.8: Predictive power of IPMs built on different combinations of two feature sets.
Listed are RMSE and PCC between the computed results and the means of the 13 perceptual
raters. Underlined results differ significantly (p < 0.05) from the best result, denoted in
bold.
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Figure 8.4: Correlation between perceptual and computed scores.

For the best combination we have also investigated in more detail how many
features and which features were selected. As we adopted a five-fold cross vali-
dation strategy, 5 models were created and each of these models was on its turn
obtained as a combination of 10 small models each selecting 7 - 8 features. On
average, the combined model incorporated 25 features (range 21-29). Per fold,
statistics were calculated on how many times a feature was selected in one of the
ten small models. Features selected 5 times or more are the PMF /r/,/A/,/@/,/i/ and
the ALF-PMFs /A min/ and /N max/, where /A/ is the vowel in the Dutch word
“man”, /@/ stands for the schwa in “de” and /i/ is the long vowel of “tien”. Fur-
thermore, /A min/ is the mean minimal posterior probability for /A/ and /N max/
is the mean maximum posterior probability for /N/, which is the final nasal sound
of the word “koning”. Apparently, four out of these six features are vowel-related.
If we take a closer look at them, we observe that these vowels define the diagonal
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of the vowel trapezium in the (place,height) plane: /i/ determines the upper-left
corner (as it is front and high) while /A/ determines the lower-right corner (as it
is back and low) and /@/ represents the center of this diagonal. Consequently, the
vowel features can represent the amount of variation from the neutral (central) po-
sition the speaker can achieve in two directions. Together they represent the size
of the speaker’s vowel trapezium as a potential factor affecting his intelligibility.

Although few articles describe the speech of people treated with chemo-radia-
tion therapy, it is known that even chemo-radiation therapy affects the organic
structures and tissues around the tumor location [129]. Swallowing problems are
common, and tongue and palate tissues are affected at least for part of the speak-
ers. Persons with reduced tongue motility are known to show a strong correlation
between intelligibility and vowel trapezium size [115, 133].

The fact that tongue motility can be affected in this patient group also ex-
plains the selection of features /r/ and /N max/ as realizations of the uvular /r/ and
/N/ need good functioning of the back of the tongue. Secondly, [129] shows that
nasality is significantly worsened by CRRT treatment. Nasality is thus an issue in
our dataset, and it is not so surprising then to notice that a nasal related feature
such as /N max/ is selected.

8.7.3.5 Patient monitoring

Now that we have established an IPM that can mimic evaluations made by a group
of listeners for the comparison of one speaker against another, the next challenge
is to prove that this model can also track changes in an individual patient’s intelli-
gibility over time.

First of all we have investigated whether such trends are exposed by the data.
To that end we have determined the differences between the ratings of the same
fragment read by the same speaker at times T0 and T1, T1 and T3 and T0 and
T3. A former analysis of these data [130] demonstrated that not all speakers show
a clear trend (neither progress nor deterioration) over time. For each speaker we
computed the score differences at times T0 and T1, T1 and T3 and T0 and T3 and
then we computed the PCC between the difference emerging from the scores of
one individual rater and that emerging from the mean scores over all raters. As
revealed by Table 8.9, the overall PCCs are rather low. Since we did not expect
our IPM to outperform human raters, we selected those speakers for which the
human raters seemed to agree on the presence and direction of the trend. The
correlations between one rater and the mean of the 13 ratings for these speakers
are listed in Table 8.9, together with the number of recordings for which this is
the case. Based on the inter-rater agreements listed in Table 8.9, we can conclude
that one can only measure a clear trend from T1 to T3 for 8 speakers. As this
is considered insufficient to measure reliable correlations, we will only consider
T1-T0 and T3-T0. The results of this analysis are listed in Table 8.10. In the case
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all trends only clear trends
times mean range number mean range number
T1-T0 0.56 0.45 - 0.70 93 0.70 0.40 - 0.84 26
T3-T1 0.44 0.17 - 0.62 74 0.75 0.43 - 0.96 8
T3-T0 0.62 0.45 - 0.75 78 0.78 0.60 - 0.89 28

Table 8.9: Inter-rater agreements (PCC) on speaker trends measured on all trend data and
on the data exhibiting a clear trend.

all trends only clear trends
times IPM mean range IPM mean range
T1-T0 0.41 0.56 0.45 - 0.70 0.51 0.70 0.40 - 0.84
T3-T0 0.62 0.62 0.45 - 0.75 0.82 0.78 0.60 - 0.89

Table 8.10: Correlations on speaker trend level. Results from the IPM are marked in bold.

of T3-T0, the mean human-machine-correlation is as good as the mean correlation
between one rater and the mean rating, and even better for the clear trends. For
T1-T0, the mean correlation between humans and the mean perceptual score is
higher, but nevertheless, the human-machine correlation is in the range of human
correlations, at least for the cases with a clear trend. We can therefore conclude that
the IPM we developed seems able to follow the progress of an individual speaker
as (un)reliably as human raters can.

Figure 8.5 shows the means and standard deviations of the T3-T0 differences
in the human ratings for the 26 cases that were categorized as exhibiting a trend.
Also on the Figure one finds the predicted trends. There is a lot of uncertainty on
the human ratings but for 10 out of 13 of the subjects exhibiting a negative trend,
the model also predicts a negative trend. The positive trends are less pronounced
and, likewise, not so well predicted. Needless to say that the plot for the T1-T0
differences is less convincing given the lower PCC. We conjecture that it takes
more reliable human ratings to generate better automatic trend predictions.

8.7.4 Conclusions for these experiments

Comparing results from IPMs (Intelligibility Prediction Models) built on Flemish
and Dutch acoustic models respectively, we could establish that alignment-based
methods are clearly sensitive to the language whereas alignment-free methods are
not. Comparing results emerging from IPMs built on different text fragments, we
discovered that alignment-based methods are more sensitive to changes in the text
material, even though the sensitivity to the text used during IPM training is low.

Our experiments show that by using one single speaker feature set, we were
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Figure 8.5: Measured and predicted intelligibility trends between T0 and T3 for the speak-
ers exhibiting a clear trend (see text).

unable to create an IPM that is as reliable as a human rater. On the other hand, by
combining the Dutch versions of the alignment-based PMF and PLF we already
get a human-machine correlation of 0.80, which is only slightly worse than human-
based evaluations. Combining alignment-free and alignment-based phone(mic)
features leads to a model that can compete with a human rater for comparing one
pathological speaker to another. Moreover, the IPM built on these two feature
is capable of detecting progress or deterioration of a patient to the same extent
humans can.

As the dataset not only contains speech intelligibility ratings but also ratings
concerning articulation, voicing etc., future work will focus on the further develop-
ment of a robust diagnosing system that also offers a more detailed speaker profile
concerning articulation, voicing etc. From such a profile one could then retrieve
objective and detailed information about the progress of a certain patient in the
course of a therapy as well as information which could help determining the right
personalized therapy for each patient.
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9
Towards a full characterization of

pathological speech

9.1 Introduction

In the previous chapters, we showed that the derived feature sets form the base of a
simple and robust intelligibility prediction system. We extended our system from
a word-based setting, as used in the DIA test, to a more general setting that can
achieve a very good prediction of intelligibility starting from running speech. The
developed methods even proved to work on another accent (Dutch) and a closely
related foreign language (German) and to be robust against changes in the text. In
addition, we demonstrated that our method shows close-to-human performance for
the tracking of changes in speech intelligibility of one person subjected to a treat-
ment. These achievements clearly show that -using the techniques developed in the
current thesis- speech intelligibility can be predicted reliably by a computer and
that it can help the speech therapist to judge a patient’s (progress in) intelligibility.

However, knowing how intelligible a person is, is not enough to determine the
right therapy for this person. The speech therapist also tries to determine the under-
lying reasons for a low intelligibility by investigating phonetic contrasts, phonation
of a sustained vowel, capabilities in terms of diadochokinetic rate, formant transi-
tions and many other possible aspects [12, 95, 121].
In this respect, an additional way of using the DIA test is not only to obtain the in-
telligibility, but also to derive from phoneme shifts between targeted and perceived
phonemes what the underlying articulatory problems might be: perceiving /b/ as
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/p/ points to voicing problems, /I/ as /E/ to centralization of the vowels (vowel
place problem), etc. For this purpose, the DIA test developed a confusion matrix
where all possible phoneme shifts are labeled as correct or incorrect with respect
to voicing, manner, place, vowel place, rounding, vowel height or as an addition
or omission. For more details regarding this matrix, we refer to the DIA man-
ual [6]. The resulting segmental analysis might contribute to a selection of the
right personal therapy [68]. A small study by Van Nuffelen et al [68] on 30 per-
sons with varying speech disorders, judged by nine experienced speech-language
pathologists, indicated that the inter-rater agreement at this level is proportional to
the speaker’s intelligibility. Only for slightly to moderately impaired speech, the
segmental analysis is reliable enough to be used as a base for therapeutic decisions.

The COPAS database provides such segmental analyses for many speakers, be
it on the basis of the scores of only one human rater. Starting from these analy-
ses of speakers in 121 TM, 121 DIA and 231 DIA, we investigated whether we
were able to automate the therapist’s analysis. Results on these experiments are
discussed in Section 9.2.

The NKI-CCRT-corpus provides another type of analysis. Here, thirteen listen-
ers had to rate different aspects of the 55 patients’ speech. Not only intelligibility,
but also phonation quality, accent, articulation, speed, voicing and nasality were
evaluated. These criteria may not be so fine-grained as the specific phoneme-shifts
available in DIA, but they are acknowledged to be important in the assessment of
a patient’s speech in clinical practice. Since all criteria were rated by 13 listen-
ers, this study enabled us to investigate other phenomena than intelligibility and
- equally important - to compare the performance of our models to the inter-rater
reliabilities on exactly the same data. Results on this database will be discussed in
Section 9.3.

9.2 Predicting articulatory problems using COPAS

9.2.1 Identifying specific phoneme shifts

A first objective was to search for ways to evaluate more than only intelligibility.
To this end, we aimed to imitate the segmental analysis which is available for all
persons who read the DIA test. Before starting this, we analyzed the perceptual
confusion matrix that forms the basis of the perceptual segmental analysis. Such
a confusion matrix between targeted and perceived phonemes is derived from the
50 tested phonemes of list A, B and C together: It contains mostly zeros, since no
more than 50 entries can be nonzero in this 41 × 41-matrix (41 equals the num-
ber of phonemes distinguished by ASR-ESAT, together with the possibility of an
omission). 50 or less than 50 values differ from zero. Since every tested phoneme
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appears once in every list, a matrix element describing the perception(s) of a con-
sonant can have values between 0 and 2 (since two lists examine consonants), and
a matrix element describing the perception(s) of a vowel can have values between
0 and 1 (since only one list examines vowels).

To have an idea which phoneme confusions were sufficiently present in CO-
PAS, we counted the number of occurrences of every possible confusion. Table 9.1
displays the phoneme confusions occurring at least 40 times over all speakers, to-
gether with a possible explanation for the specific confusions.

confusion explanation
/m/ heard as /n/ very close sounds
/n/ heard as /m/ very close sounds
/G/ heard as /h/ possibly a dialect issue rather than pathological
/d/ heard as /t/ voicing of plosives is a problem in laryngectomy

and hearing impairment
/f/ heard as /v/ voicing of fricatives is difficult for laryngectomees

and hearing impaired speakers
omission of /h/ voicing problem or dialect issue
/i/ heard as /I/ centralization of vowels occurs in hearing im-

paired speakers
/I/ heard as /E/ centralization of vowels occurs in hearing im-

paired speakers or a dialect issue
/A+/ heard as /u/ loss of diphtonguation, vowel height is a difficult

dimension for hearing impaired speakers

Table 9.1: Phoneme confusions frequently occurring in the perceptual DIA tests. The right
column gives a possible explanation for the confusion.

For these specific phoneme confusions, a score was created for every speaker,
indicating the percentage of times the targeted phoneme was confused with the
perceived phoneme. This resulted in scores between 0 and 1, which show a dis-
crete distribution with a major peak around 0, indicating that most speakers did
not realize that specific error. To model these scores, two possibilities were inves-
tigated: comparison with the automatically created confusion matrix and creating
a model per confusion via the previously derived feature sets.

9.2.1.1 Comparison of perceptual and automatic confusions

As described in Section 7.2, WAR-ESAT was derived by letting the ASR-ESAT
select the perceived phoneme from a list of possibilities, and by comparing it to
the target phoneme. This strategy is simply an imitation of the perceptual test, also
resulting in an automatically generated phoneme confusion matrix. Therefore, a
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direct comparison between the perceptual and the automatic confusion entries was
an option.

The results of this comparison are rather disappointing: PCCs on 231 DIA lie
between 0.25 and 0.50, which is far too low to be useful in therapy.

Note that ASR-ELIS was used for deriving the WAR as well, but in Chap-
ter 7 we showed that intelligibility predictions from this ASR are clearly inferior
to these of ASR-ESAT. Therefore we did not test ASR-ELIS for this even more
specific task.

9.2.1.2 Creating confusion models

Building regression models using the previously derived feature sets PLF, PMF
and WAR on 231 DIA and even trying the features emerging from running speech
(PLF, PMF, ALF-PLF and ALF-PMF) on 121 TM and possible combinations
thereof did not yield PCCs higher than 0.40.

9.2.1.3 Conclusion

These results clearly show that we are currently not able to predict specific phoneme
confusions as emerging from the perceptual confusion matrix of a single rater.
However, literature already proved that this perceptual analysis is not reliable for
speakers with a low intelligibility [68]. More importantly, since these phoneme
confusion scores are all based on a very small number of examples per phoneme,
they are definitely subject to a lot of noise. Obviously, the situation would improve
if scores from many human raters were available for all speakers.

9.2.2 Identifying problematic phonological dimensions

Since finding specific phoneme shifts proved to be too hard, we started to “zoom
out” on the ratings. Therefore, we tried to identify phonological problem classes.
Starting from the perceptual phoneme confusion matrix, we can determine for
every patient a set of phonological scores expressing how many voicing, man-
ner, place, vowel place, rounding or vowel height mistakes were made. We can
also construct these phonological class scores from the automatic confusion ma-
trix emerging from ASR-ESAT, leading to a feature set CONF-ESAT.

In trying to model the new phonological scores, we constructed regression
models using CONF-ESAT and also the previously derived feature sets on 231 DIA.
For 121 DIA, we used CONF-ESAT, PLF, PMF and combinations, for 121 TM
we used models derived from PLF, PMF, ALF-PLF, ALF-PMF and combinations
thereof.

Table 9.2 presents the best five-fold cross validation results for the six phono-
logical class scores.
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class range set RMSE PCC feature set learner

voicing 0-16 DIA 2.06 0.70 PLF ELR
TM 1.92 0.77 PLF + PMF ELR

place 0-8 DIA 1.80 0.49 PLF ELR
TM 1.81 0.48 PLF ELR

manner 0-11 DIA 1.96 0.59 PLF ELR
TM 1.96 0.61 PLF+ PMF ELR

v. place 0-6 DIA 0.77 0.55 PLF SVR-RBF
TM 0.76 0.54 PLF + PMF SVR-RBF

rounding 0-12 DIA 1.91 0.56 PLF SVR-RBF
TM 1.82 0.57 PLF + ALF-PLF SVR-RBF

height 0-7 DIA 1.33 0.50 PMF ELR
TM 1.26 0.48 PMF ELR

Table 9.2: Prediction results for phonological classes. v. place denotes vowel place. Range
describes the perceptual score range of the phonological class, set indicates from which
recording (DIA or TM) the features originate.

Three remarkable conclusions can be drawn from these results. Although the
perceptual scores originate from the DIA test, the prediction results based on fea-
tures derived from the TM can perfectly compete with these results. Secondly, the
PLF set seems to be the most informative set as it creates the best models for most
of the classes. This is not surprising since the targeted scores are phonological
dimensions and the PLFs almost directly point to these dimensions. Thirdly, only
the results for voicing yield a PCC higher than 0.70. All other PCCs are much
lower than 0.70, making them unusable in clinical practice. Figure 9.1 displays
the scatter plot of perceptual voicing errors versus computed voicing errors for
121 TM using the best feature set combination PLF + PMF.

9.2.3 Predicting partial intelligibility scores

Another research line that we followed was to see whether we could predict the in-
telligibility of list A, B and C separately. This would indicate whether the problem
is more consonant- or more vowel-related, and if it is consonant-related, whether
the problems are situated in the initial or final consonant. Van Nuffelen [12] shows
that the inter-rater agreement for the three subtests varies from an ICC of 0.80 to an
ICC of 0.86 for a set of 30 recordings judged by 9 experienced speech therapists.
Since we did not have access to these data, we could not calculate the correspond-
ing PCC or RMSE values. However, compared to the ICC of .91 for the total
intelligibility score, the inter-rater agreement drops considerably, especially for
list B (testing the final consonant) with an ICC of 0.80.
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Figure 9.1: Scatter plot of the voicing error prediction.

Adopting the same strategy as before, we trained and evaluated IPMs for list A,
B and C separately on 121 TM and 121 DIA. Table 9.3 shows the best prediction
results for the three lists.

list range rec. RMSE PCC feature set learner

A 3-19 DIA 2.01 0.77 WAR + PLF + PMF SVR-RBF
TM 2.22 0.70 PLF + PMF ELR

B 3-15 DIA 1.77 0.58 WAR + PLF ELR
TM 1.77 0.55 PMF + ALF-PMF SVR-RBF

C 3-16 DIA 1.59 0.73 WAR + PLF SVR-RBF
TM 1.87 0.67 ALF-PLF ELR

Table 9.3: Prediction results for intelligibility sublists.

While for other experiments results based on running speech and on words
were rather similar, here the word-based results are slightly better than the running
speech-based results. The reason for this is that for 121 DIA, we have access to
WAR, which scores point directly to the word accuracy of list A, B and C.

Apart from this, the PCCs seem to be acceptable for list A and list C, but
predicting the intelligibility of final consonants (list B) seems to be more problem-
atic. These results follow the trend of the inter-rater reliability, which was also the
lowest for list B.



CHAPTER 9 129

9.2.4 Displaying important dimensions for pathologies

Since in COPAS we only have little reliable information besides intelligibility, we
sought for a way to work around the problem. A possible strategy to learn about
a speech pathology and its specific characteristics is to determine the most im-
portant dimensions which distinguish it from normal speech. Since the feature
sets we created (except for WAR) are closely related to articulatory and phone-
mic dimensions, a limited number of features might be sufficient to get a detailed
characterization of the type and severity of the articulatory problems of a certain
speaker.

In order to get evidence in support of this argument, we examined the abilities
of all 2-dimensional subspaces of the alignment-based or alignment-free speaker
feature spaces to make a visualizable distinction between normal speakers and
either hearing impaired speakers, laryngectomees, clefts or dysarthric speakers.
Interesting subspaces are then defined as subspaces in which this distinction can
be made with high accuracy. Since this implies an exhaustive search in a 100- or
600-dimensional space, we searched for a simple and quick classifier scanning all
possible combinations of two dimensions to find the most distinctive dimensions.
Therefore, we opted for Linear Discriminative Analysis (LDA). This learner min-
imizes the within-variance of the class centers of normal speakers and of speakers
belonging to one specific pathology, while maximizing the between-class variance
according to a linear boundary.

As a baseline experiment, we worked on 231 DIA using the alignment-based
features except for WAR. We excluded WAR since these three features would not
provide more insight in the core problems underlying the speech pathology. Then,
we moved to 121 DIA and 121 TM. On the latter we could compare results ob-
tained with alignment-based and alignment-free features. The results on 231 DIA
remain interesting since there are no cleft lip and palate children in 121 DIA. We
used a 5-fold CV strategy to validate the LDA models. Results are summarized in
Table 9.4.

P 231 DIA 121 DIA 121 TM
alignment-based

121 TM
alignment-free

H 10 21 21 12
C 26 - - -
L 5 8 8 7
D 25 25 30 23

Table 9.4: Classification errors (in %) for discrimination between normal speech and
speech of one specific pathology.‘P’ denotes pathology: H(earing impairment), C(left lip
and palate), L(aryngectomy) or D(ysarthria).

This table reveals that alignment-based features derived from running speech



130 TOWARDS A FULL CHARACTERIZATION OF PATHOLOGICAL SPEECH

(121 TM) or from the separated words (121 DIA) lead to about equally well per-
forming models. One can thus as well opt for the more natural running speech
since also intelligibility can be predicted reliably from this type of speech. A sec-
ond striking result is that the alignment-free feature set is more discriminative than
the alignment-based set.

A last remark concerns the differences between 231 DIA and 121 DIA. While
the results are the same for class D, they are better for the other classes (H,L). If
the latter improvements are due to the presence of more training data, it is strange
that this does not hold for the D model. We did not really search for a reason
because the alignment-free feature sets are much better and they lead to about the
same results as obtained with the alignment-based features on the large DIA-set.

Figure 9.2 shows a scatter plot of the hearing impaired and the normal speakers
in the subspace of “mean maximum probability for nasality” and “mean duration
of alveolar segments”.
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Figure 9.2: Scatter plot of control speakers (N) and hearing impaired speakers (H) in the
most discriminative subspace of the speaker feature space.

The figure confirms the findings of [123, 124] that hearing impaired speakers
sound hypernasal. Alveolar sounds are also known to be prone to errors [62] since
those sounds are not visible and therefore difficult to master by hearing-impaired
persons. The depicted feature combination is the best in four of the five folds, and
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the second best in the fifth fold.
For the laryngectomees, features for voicing appear to be very discriminating,

as could be anticipated. However, less expected is the fact that all the best feature
pairs also contain at least one feature concerning turbulence, referring to fricative
and plosive sounds. This complies with the fact that in the ASR-based approach
(from which the classification accuracy is mentioned in the third column of Ta-
ble 9.4), we found fricative to be an important feature. Although this needs further
investigation, Figure 9.3 seems to support the hypothesis that laryngectomees have
difficulties to switch between voiced and unvoiced sounds, in particular between
vowels and fricatives or bursts.
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Figure 9.3: Scatter plot of control speakers (N) and laryngectomees (L) in the most discrim-
inative subspace of the speaker feature space.

In the same 5-fold cross-validation experiment, we used LDA to define the
optimal linear separation border between the pathological and the control class.
Starting from this border, we could determine the distance of each patient to this
border as a possible measure of severity of the pathology. Although we believe that
this measure can point to problems of speakers in the given dimensions, this dis-
tance is not necessarily correlated with the intelligibility score because the main
differences in speech characteristics between a pathological speaker and control
speakers do not necessarily correspond to the main causes of intelligibility degra-
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dation.

9.3 Predicting articulation and phonation problems
using NKI-CCRT

The NKI-CCRT dataset, used during our collaboration with NKI-UVAFON, not
only contains speech intelligibility ratings but also ratings concerning articulation,
phonation quality, etc. of 13 listeners. This allows us to investigate whether au-
tomatic methods can be applied for predicting other measures than intelligibility.
This would be a first step towards a robust system for automatically creating a full
speaker profile concerning articulation, phonation quality etc. From such a profile
one could then retrieve objective and detailed information about the progress of a
certain patient in the course of a therapy, as well as information which can help
determining the right personalized therapy for each patient.

In this section, we investigate the automatic evaluation of perceptual scores for
articulation, phonation quality and accent.

Articulation and phonation quality are often reported as correlates and pre-
dictors of speech intelligibility [75, 134]. If these dimensions could be reliably
evaluated by a machine and combined with an existing model of speech intelligi-
bility [14], one would have a powerful, multi-dimensional evaluation of a speaker.
We include the dimension accent as speakers have different regional dialects and
not all speakers were native Dutch speakers. Articulatory-acoustic variation be-
tween speakers can be an effect of regional variation or social background [135]
and mother tongue in the case of non-native speakers of Dutch. Although the
variable accent is not a clinically relevant aspect of speech that requires neither
evaluation nor intervention, “accentedness” has been linked to increased listener
processing time during signal decoding [136, 137]. By modeling this variable,
we envisage that clinicians can take the computed accent score into account when
interpreting automatic scores of speech intelligibility: that is, if accent is strongly
present caution may be warranted when drawing conclusions on the speaker’s com-
puted speech intelligibility score (which is then bound to be underestimated).

In this section, we will develop prediction models for the three perceptual vari-
ables and compare model performance to human performance. Subsequently. we
will investigate whether these models can track changes in ratings over time.

9.3.1 Perceptual scores in NKI-CCRT

Since the validation corpus and its intelligibility ratings were already discussed in
Section 8.7, we limit the description of perceptual ratings to the aspects articula-
tion, phonation quality, and accent.
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Articulation Listeners were instructed to evaluate the general precision of vowel
and consonant production as compared to normal running speech on a 5-point scale
with 1 being ‘extremely imprecise’ and 5 being ‘normal/precise’. Precise articula-
tion was defined as correct manner and place of production and clear coordination
between sounds.

Phonation quality Listeners were instructed to evaluate the degree to which
phonation quality deviated from what they considered normal. Listeners rated
phonation quality on a 5-point scale with 1 being ‘very deviant’ and 5 being ‘nor-
mal’.

Accent Listeners were asked to evaluate the weight of the speaker’s dialect or
accent as compared to standard Dutch (defined as the speech commonly heard on
radio and television). Listeners evaluated their perception of accent on a 5-point
scale with 1 being ‘heavy accent’ and 5 ‘normal/no accent’.

Inter-rater agreement Human performance was calculated as the average RMSE
and PCC between the ratings of one individual rater and the group mean score. We
use these coefficient averages as the target for model performance. These inter-
rater agreements are displayed in Table 9.5.

Mean Range
Articulation

RMSE 0.54 0.36-0.76
PCC 0.75 0.56-0.84

Accent
RMSE 0.57 0.43-0.91
PCC 0.78 0.65-0.89

Phonation quality
RMSE 0.56 0.36-0.79
PCC 0.66 0.47-0.78

Table 9.5: Summary of human inter-rater agreement for articulation, accent and phonation
quality. Performance is calculated using the RMSE and PCC between the ratings of one
individual rater and the group mean score.

9.3.2 Method

We adopt an evaluation strategy that is similar to the one presented in Section 8.7
and [14] where we combine several feature sets to model the reference scores.
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Although Table 9.5 shows that the PCC between one rater’s score and the aver-
age over all 13 perceptual scores can be rather low, the rater causing this low PCC
value is a different one for every aspect (articulation, accent, phonation quality).
Therefore, there is no single rater we can exclude as being unreliable for all as-
pects. We will thus continue to use the average over all 13 raters as our reference
score. In this way we compare computed scores against human scores as if the
computed scores were made by an additional rater.

9.3.2.1 Automatic evaluation

Automatic evaluation of any variable again involves the three stages of processing
explained in the previous chapters: (1) front-end analysis of the speech signal, (2)
extraction of speaker characteristics and (3) conversion of the feature information
to a score by means of a score prediction model.

The acoustic front-end extracts an acoustic parameter vector Xt of MFCCs
or mel spectra-based features. Starting from this frame-level information, all the
vectors Xt of a speaker are analyzed to derive a number of speaker-level charac-
teristics.

Tested feature sets Here, we consider phonological features (PLFs), alignment-
free phonological features (ALF-PLFs), phonemic features (PMFs) and alignment-
free phonetic features (ALF-PMF). All feature sets were based on acoustic models
trained on Dutch normal speech, as explained in Section 8.7. Since one of the
aims of this research line is to predict phonation quality, we also included the
AMPEX features which extract pitch-related speaker characteristics. The AM-
PEX program ( [138]) is a voice analysis tool developed by the Digital Speech and
Signal Processing research group of ELIS. The program performs a two-step pro-
cedure where acoustic information is extracted and is then converted into speaker
parameters. The AMPEX version used in this paper provides eight speaker fea-
tures that can be divided into voicing-related parameters (e.g. the percentage of
speech frames classified as voiced) and pitch-related parameters (e.g. average jit-
ter in voiced frames). See [139, 140] for further information.

Prediction model We utilize the same strategy as in Section 8.7 in which pre-
diction models are trained and evaluated using a 5-fold cross validation strat-
egy using ensemble linear regression models. In addition to the five individ-
ual features (PLF, PMF, ALF-PLF, PLF-PMF, AMPEX), we also tested four fea-
ture combinations: full forced alignment using both phonemic and phonologi-
cal features (PLF+PMF), combined phonological sets (PLF+ALF-PLF), combined
phonemic sets (PMF+ALF-PMF) and combined phonological features with AM-
PEX (PLF+ALF-PLF+AMPEX).
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9.3.3 Predicting articulation, accent and phonation quality

In a first study we investigated which individual feature sets or combined feature
sets produce the best prediction models for the three investigated variables. Per-
formances of all created models are listed in Table 9.6 together with model target
human rater performance for each variable. In cases where the RMSE is the same
between models, we use the PCC to differentiate between model performance.

Articulation Accent Phonation
Models RMS PCC RMS PCC RMS PCC
Inter-rater agreement 0.54 0.75 0.57 0.78 0.56 0.66
PLF 0.44 0.75 0.56 0.72 0.55 0.39
PMF 0.45 0.74 0.59 0.67 0.59 0.24
ALF-PLF 0.51 0.66 0.68 0.55 0.58 0.33
ALF-PMF 0.45 0.75 0.65 0.64 0.60 0.23
AMPEX 0.66 0.24 0.82 0.30 0.55 0.43
PLF+PMF 0.44 0.75 0.56 0.71 0.54 0.42
PLF+ALF-PLF 0.44 0.78 0.55 0.74 0.53 0.47
PMF+ALF-PMF 0.42 0.80 0.54 0.77 0.58 0.27
PLF+ALF-PLF+AMPEX 0.44 0.78 0.56 0.71 0.46 0.62

Table 9.6: Performance of prediction models using different feature sets for the variables
articulation, accent and phonation quality. The best performance is indicated in bold. Re-
sults differing significantly (p < 0.05) from the best result are underlined. Phonation stands
for phonation quality. RMS denotes RMSE.

9.3.3.1 Articulation prediction models

Four of the five single feature sets yield a performance which is competitive with
that of the average human listener. This could be partly due to the fact that hu-
man ratings are discrete values which will tend to agree less well with an average
(continuous) score than continuous automatic scores. Almost all single feature
sets yield similar results, except for AMPEX, which is obviously unable to predict
articulation as could be expected since it contains no features related to place and
manner of articulation. Combining feature models results in a small but significant
improvement compared to individual features. The combination of ALF-PMF and
PMF achieves the best performance with a RMSE 0.42, which is significantly
better than all prediction models based on one feature set. It is however not signif-
icantly better than combining both phonological feature sets ALF-PLF and PLF.
Adding AMPEX to this last combination does not improve on the results.

Figure 9.4 displays a scatterplot of computed and observed mean scores. This
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plot confirms the earlier findings of Van Nuffelen et al. [68] that articulatory prob-
lems are difficult to analyze in speakers with a low intelligibility. In both [12] and
our study, this may be due to the low prevalence of speakers with low perceptual
scores.
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Figure 9.4: Correlation between perceptual and computed scores for articulation.

Selected features in best performing models As we utilize an ensemble linear
regression approach to develop the prediction models, we can inspect how often
certain features are selected in the smaller models to gain insight into the important
dimensions for modeling articulation performance of the speakers.

Table 9.7 presents the features selected at least ten times in the most predictive
model based on ALF-PMF and PMF. Features related to the vowels /@/, /i/, /A/
and /A+/ and consonants /s/, /l/ and /n/, /d/ are selected.

Feature /i/ /s/ /n/a /l/ /l/a /A/ /u/ /s/a /d/ /@/ /A+/b

Frequency 44 36 28 25 23 22 16 16 15 15 11

Table 9.7: Features selected and their frequency in best performing articulation models.
apercentage of frames in which x was recognized. bmean evidence of feature x over all
frames where feature x was recognized.

As a whole, these features appear to represent the diagonal of the vowel trapez-
ium and production of anterior Dutch lingual consonants, suggesting that range
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and precision of tongue movement are important aspects in modeling perceptual
scores of articulation. Difficulty with production of anterior lingual consonants,
particularly alveolar fricatives, for speakers treated non-surgically for cancer of
the head and neck has also been reported [141].

The features selected for the articulation prediction model also overlap with
several of the features selected for speech intelligibility prediction models (see
Section 8.7 and [14]), for instance features of vowels from the diagonal of the
vowel trapezium (/i/, /@/, /A/) and selection of features related to /n/ production.
The similarities between the features in the models for articulation and speech
intelligibility are not surprising given that intelligibility is considered a very im-
portant factor of articulation.

9.3.3.2 Accent prediction models

For accent prediction, the same trends as for articulation are observed, but the
individual feature set models are now marginally worse than the average human
listener. The individual feature sets, except AMPEX, show again a rather similar
performance, be it that PLF stands out a little more now in a positive sense (lead-
ing to not significantly different results from the best model) and ALF-PLF a little
more in the negative sense. Although the improvements are not statistically signif-
icant yet, the data seem to indicate that PMF and ALF-PMF exhibit at least some
complementarity that can be exploited. Striking is that combining PMF with PLF
is not helping at all.
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Figure 9.5: Correlation between perceptual and computed scores for accent.
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Selected features in best performing models The combined phone(mic) accent
prediction model selects five features related to vowels /A/, /Y+/, /a/, /y/, and /E/
and three consonant features /h/, /n/ and /z/ (see Table 9.8). Unlike the articulation
prediction model, accent features do not focus on differentiation of vowels in the
trapezium, but rather seem to suggest that differentiations in high and low central
vowels are important acoustic indicators of speaker accent. Four of these vowels
(/A/, /Y+/, /a/ and /y/) are reported as being difficult for non-native Dutch speakers
[142] and may explain their inclusion as selected features.

Selection of the phonemic feature for the glottal fricative /h/ can be explained
in two ways: as a phoneme non-native Dutch speakers often produce incorrectly
[142] and/or as a phoneme with variable realizations in which speakers may not
apply the expected /h/ omission rule for unstressed syllables [29].

Feature /Y+/ /A/ /n/ /y/a /z/b /a/c /E/c /h/
Frequency 41 38 25 19 15 9 9 9

Table 9.8: Features selected and their frequency in best performing accent models.
apercentage of frames in which x was recognized. bstandard deviation of probability of
x. cmean evidence of feature x over all frames where feature x was recognized.

9.3.3.3 Phonation quality

The RMSE results for predicting phonation quality displayed in Table 9.6 again in-
dicate that all models based on one feature set perform about equally bad: although
single-feature they perform in the range of human raters, none of the models out-
performs the average human rater. Unlike the single feature models for articulation
and accent, the AMPEX model has a slight performance advantage over the phono-
logical and phonemic models. Combinations of one feature set plus AMPEX were
also tested but did not lead to significant improvements. Adding AMPEX features
to the best combination of two feature sets, namely PLF+ALF-PLF, does however
lead to a significant improvement. The performance of that combination seems to
be at the level of human performance (somewhat lower RMSE, somewhat lower
PCC). Figure 9.6 displays a scatter plot of computed and observed mean scores for
this top-performing model. Striking is that the prediction fails when the phonation
is really bad. This may have to do with the fact that the pitch and voiced/unvoiced
detector that is at the basis of the AMPEX features is not reliable anymore for
recordings with low voice quality.

The strong performance of the AMPEX features is not surprising as these fea-
tures are designed to analyze phonation-specific aspects of speech. Previous work
has already reported good correlations between AMPEX scores and perceptual
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judgments of overall phonation quality [139]. The equally strong performance of
the PLF and the AMPEX feature sets and the fact that their combination leads
to a higher performance suggests that the two feature sets constitute two partly
complementary views on voice quality.
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Figure 9.6: Correlation between perceptual and computed scores for phonation quality.

Features selected in the best models The PLF + ALF-PLF + AMPEX model
selected 10 features (2 AMPEX, 6 ALF-PLF and 2 PLF, see Table 9.9 for details).
Most features can be related to the rate of movement between extremes in lip
rounding (round vs. open), tongue position (back vs. front) and phonation control.
Other features point to the shape of the oral cavity (features related to lip rounding
and tongue position) and inclusion of the nasal cavity (features related to nasality
and ‘trill’ 1) as a resonator can cause changes to the acoustic spectrum. The model
features can also be understood in terms of the tumor location and treatment on
the one hand and the source-filter model on the other hand. We would expect that
a tumor at the level of the larynx would has effect on phonation and treatment
with radiotherapy and chemotherapy causes changes to tissue structures around
the tumor site. Likewise, we would expect that tumors and tumor treatment for
tumors in the nasopharynx or oropharynx has an effect on the ability to use the
oral and nasal cavity as a filter. The features selected in the prediction models
may indicate that listeners assess phonation quality on the basis of phonation and
resonance information.

1Dutch /r/ is highly variable and the trill variant can be produced as an alveolar or uvular trill [29]
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Feature AVEA PVSA PVF vowel unvoiced-voiceda

Frequency 35 28 22 22 19
Feature nasalityb front-backc trill vowel nas.d spread-rounde

Frequency 12 12 11 11 10

Table 9.9: Features selected and their frequency in best performing phonation quality
prediction models. AVE = average voicing evidence in voiced frames (AMPEX feature).
PVS = percentage of speech frames classified as voiced (AMPEX feature). PVF = percent-
age of voice frames. amean time needed to go from unvoiced to voiced. bmean minimum
value for relevance of consonant nasality. cmean time needed to go from relevant to not rel-
evant in front-back dimension. dstandard deviation of vowel nasality probability in frames
in which vowel nasality is present. emean time needed to go from spread lips to rounded
lips.

9.3.4 Tracking trends over time

Treatment for cancer of the head and the neck can have negative effects on phona-
tion quality and speech production [129, 141, 143]. We investigated whether the
models which could predict phonation quality and articulation for a population of
patients can also track changes over time of these variables for a single patient. We
do not include the dimension accent as we do not expect this aspect to change be-
tween evaluation moments. For predicting articulation we use the best combined
phonemic model (PMF+ALF-PMF). For predicting phonation quality we use the
best model supplied with a combination of phonological and AMPEX features
(PLF+ALF-PLF+AMPEX). We let the models compute scores for each speaker
at the different times T0, T1 and T3 and from these scores we derive differences
between T0 and T1, T1 and T3 and T0 and T3. Using the same methodology
as in Section 8.7, we estimate human performance by computing the RMSE and
PCC between the differences retrieved from the scores of one individual rater and
the mean over all raters. Similarly, we estimate model performance by computing
the RMSE and PCC between the automatic score differences and the mean score
differences. The results of all this lead to Table 9.10.

Since a lot of speakers did not exhibit any trend, we created per variable and
per time-pair an evaluation set consisting of all patients for which the human raters
seemed to agree on the presence and direction of the trend, just like we did in
Section 8.7. The results for the evaluation sets are listed in Table 9.11.

The data in Table 9.11 show that the model predictions are better than those of
the average human rater (lower RMSE and higher PCC) in case of T0-T3, but not
in the other cases involving T1. In order to establish a reason for this we first of all
inspected the histograms of the human score-differences between T0-T1, T0-T3
and T1-T3 (see Figure 9.7). Apparently, there is no significant difference between
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Perceptual Computed
Evaluation N RMSE (range) PCC (range) RMSE PCC
Articulation

T0-T1 93 0.71 (0.49-1.05) 0.46 (0.30-0.64) 0.45 0.35
T1-T3 76 0.73 (0.51-1.11) 0.49 (0.38-0.60) 0.45 0.19
T0-T3 76 0.67 (0.42-0.99) 0.48 (0.20-0.66) 0.36 0.55

Phonation quality
T0-T1 93 0.74 (0.51-1.05) 0.61 (0.50-0.77) 0.49 0.53
T1-T3 76 0.74 (0.45-0.98) 0.49 (0.37-0.66) 0.52 0.22
T0-T3 76 0.72 (0.45-1.05) 0.55 (0.37-0.74) 0.40 0.59

Table 9.10: Overall performance for computing changes in articulation and phonation
quality between two evaluation moments. Values in bold highlight computed results that
are better than the corresponding perceptual ones. N is to the number of recordings in-
cluded in the comparison.

Perceptual Computed
Evaluation N RMSE (range) PCC (range) RMSE PCC
Articulation

T0-T1 19 0.58 (0.37-1.04) 0.69 (0.43-0.92) 0.58 0.22
T1-T3 17 0.62 (0.38-0.89) 0.74 (0.55-0.85) 0.69 0.04
T0-T3 21 0.57 (0.42-0.77) 0.70 (0.28-0.84) 0.40 0.72

Phonation quality
T0-T1 27 0.73 (0.53-0.97) 0.77 (0.61-0.89) 0.60 0.76
T1-T3 18 0.60 (0.46-0.86) 0.75 (0.61-0.89) 0.61 0.45
T0-T3 17 0.64 (0.42-1.01) 0.79 (0.62-0.92) 0.45 0.86

Table 9.11: Performance for computing changes in articulation and phonation quality be-
tween two evaluation moments, but only in cases where human raters agree on the direction
of the trend. Values in bold highlight computed results that are better than the correspond-
ing perceptual ones. N is the number of recordings included in the comparison.
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the shapes of these histograms that correlates with the differences in performances
emerging from Table 9.11.
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Figure 9.7: Histograms of the human score-differences for articulation between different
evaluation moments.

Another hypothesis for the bad trend predictions in comparisons involving T1
was that the score predictions at T1 were worse than at other moments. To verify
this we have also computed the performances of the articulation and phonation
quality prediction model on all available recordings made at one evaluation mo-
ment. From Table 9.12 it follows that both the perceptual and the automatic scores
are roughly equally reliable for T0 and T1, and less reliable for T3.

Target Computed
Evaluation RMSE (range) PCC (range) RMSE PCC
Articulation

T0 0.53 (0.32-0.70) 0.79 (0.57-0.89) 0.45 0.83
T1 0.60 (0.40-0.80) 0.73 (0.55-0.85) 0.43 0.76
T3 0.50 (0.33-0.79) 0.67 (0.49-0.81) 0.36 0.75

Phonation quality
T0 0.56 (0.32-0.85) 0.65 (0.44-0.84) 0.50 0.63
T1 0.56 (0.38-0.72) 0.62 (0.47-0.70) 0.43 0.60
T3 0.61 (0.41-0.79) 0.53 (0.36-0.62) 0.60 0.45

Table 9.12: Model performance for recordings at each evaluation moment. Values in bold
highlight performance measures that meet or exceed target level. T0 = pre-CCRT. T1 = 10-
weeks post CCRT. T3 = 12-months post CCRT. N refers to the number of recordings in-
cluded in the comparison.

A third hypothesis was that there were maybe more, usually unreliable low
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scores (≤ 3) from which to derive the trends in the comparisons involving T1. The
percentages of low articulation scores were 7% for T0-T3, 11% for T0-T1 and
12% for T1-T3. The number of low phonation quality scores were 6%, 9% and
15% respectively. This seems to suggest that less low scores may lead to better
trend predictions.

Figure 9.8 shows some plots which illustrate that almost all automatic trend
predictions fall within the limits of the error bars, showing that they would be
acceptable human ratings. However, the mean human trends are close to zero,
with only a few speakers showing a clear difference higher than 1 or lower than
-1. This means that the PCC will mainly be determined by these few speakers: it
will be high or not if the trends observed for these few speakers are well predicted
by the model or not. Moreover, the high RMSE values between one rater’s scores
and the mean perceptual ratings suggest that the relatively poor performance of
the computed scores to track change over time is due to the variability in human
scores at the evaluation moments and is not due to a model’s lack of sensitivity to
change.

As a last experiment we performed an analysis of the model and rater capacities
to perform a three-fold trend classification: negative change (≤ -0.5), no change,
and positive change (≥ 0.5). Rather than evaluating all speakers we limit our anal-
ysis again to the recordings selected above for which all raters “agreed” about the
differences for the considered time-pair. This way, we retain 57 derived scores
for articulation (29 for T0-T1; 17 for T1-T3; 21 for T0-T3) and 62 for phonation
quality (27 for T0-T1; 18 for T1-T3; 17 for T0-T3). Using our best articulation
and phonation quality prediction models, trend classification accuracies are 72%
and 65% respectively. As can be seen in Table 9.13, all disagreements are within
one category: there is no case where the observed trend is positive and the pre-
dicted trend is negative or the observed trend is negative and the predicted trend is
positive.

Articulation Phonation quality
Predicted Observed Predicted Observed

- ± + - ± +
- 3 0 0 - 7 3 0
± 7 35 8 ± 14 26 4
+ 0 1 3 + 0 1 7

Table 9.13: Contingency table between predicted and observed articulation and phonation
quality trends for negative change (-), no change (±) or positive change (+).
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Figure 9.8: Trends derived from human ratings (curves connect the means, vertical lines
indicate the standard deviation over all raters) and trends predicted by the models (circles).
On the left one sees results for all speakers, on the right only for the selected speakers. On
top one sees the results for articulation differences between T1 and T3 (the lowest PCC in
Table 9.11). At the bottom one finds the results for phonation quality differences between
T0 and T3 (the highest PCC in Table 9.11.

9.3.5 Conclusions for this section

The prediction models presented in this section have been developed on a group
of Dutch speakers with cancer of the head and neck which were treated by means
of CCRT. The aims of this study were (1) to investigate whether mean perceptual
scores of articulation, accent and phonation quality can be automatically evaluated
at a level comparable with that of human raters and (2) to investigate if these
models can track changes in perceptual scores of one patient over time. This study
is unique as the prediction model is based on perceptual scores of a relatively large
number of listeners, and these listeners are also a group of semi-professionals.

We have shown that prediction models combining forced alignment and align-
ment-free speaker feature sets (and AMPEX features for phonation quality) yield
correlations between perceptual and computed scores that are within the range of
human performance. In the case of articulation prediction, the model performance
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even exceeds the performance level of the average human rater. However, artic-
ulation and phonation quality prediction models attain varying levels of success
when tracking change over time within a single speaker. There seems to be some
evidence that a part of that variability may stem from the difficulty human raters
experience when rating bad voices. If the low scores are less reliable, the trends
derived thereof may be even more unreliable and unreliable targets during model
training will of course lead to unreliable models as well. We envisage that future
work will focus on getting more reliable perceptual trend data, e.g. by normalizing
perceptual scores in order to reduce skew in the perceptual data.

It has been shown however that a categorization of the trends in three classes
(positive change, no change, negative change) can be achieved at human perfor-
mance level. In our experiments, it never happened that a positive perceptual trend
was classified as being negative and vice versa.
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10
The DIA tool

10.1 Introduction

Since this research led to a reliable system for automatic and therefore objective
intelligibility assessment, a logical next step is to make this system useful in clin-
ical practice. Software packages to measure intelligibility have been developed
before. In [4] one describes a tool for evaluating speech of English patients suf-
fering from dysarthria. In [3], one describes a system doing the same for German
laryngectomees and children with cleft lip and/or palate.
The former tool computes the so-called goodness of fit of the alignment between
the uttered speech and the target speech, the latter uses the word accuracy of an
automatic speech recognition of the uttered speech.

Here, we present the Dutch Intelligibility Assessment (DIA) tool for assisting
speech therapists in assessing patients suffering from pathological speech. The
tool is based on the methodology described in Chapters 7 and 8. The method
underlying the DIA tool extracts phonemic and phonological features from au-
tomatic speech alignment on the basis of acoustic models that were trained on
normal speech. Based on those features, intelligibility is predicted by means of
a compact model that was trained on pathological speech samples. The experi-
mental evaluation of the system has shown standard deviations between perceived
and computed intelligibilities that are lower than 8%. This was considered a suffi-
ciently strong result to convince speech therapists in Flanders and the Netherlands
to use an automated DIA test that could be made freely available to them via the
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internet.

10.2 The DIA Tool for adults

While the perceptual DIA test only uses the 50 tested phonemes, the computerized
version takes every phoneme of the 50 words into account. All uttered speech
is lined up (forced alignment) against the target words by two ASRs. These two
alignments result in two feature sets: phonemic features (PMFs) coming from
one ASR and phonological features (PLFs) coming from the other. These feature
sets are then used by a simple regression model to predict the intelligibility of the
speaker.

Different models have been designed: one general model, as well as pathology-
specific models for people with hearing impairment, dysarthria, laryngectomy and
for children with cleft lip and palate. Although we recently developed more ac-
curate models by adding extra features and by using SVR instead of ELR, these
models have not yet been included in the DIA tool so far, but they will be added
soon.

As shown in Chapter 7, the reliability of the predicted scores matches that of a
human rater. Therefore, the DIA tool offers an objective and less time-consuming
way to administer the test.

Our purpose was to design a user-friendly tool which does not require a com-
plex setup to administer the test. To use the DIA tool, the user only needs a PC or
laptop with a web browser, a head set , a sound card and an up-to-date Java runtime
environment. The tool works in a client/server environment and can be used both
in online or offline mode.

Once a user has an account, he/she can add and edit patients. As we respect
the privacy of the patients, every user can only access the data and recordings of
his/her own patients. Once a patient is added, the user can start the test of this
patient. We advice to do a microphone test first, to be assured that the recording
quality is good enough and the microphone is in the right position (e.g. not too
close to the mouth). When starting the test, a sequence of words is presented to the
patient (see Figure 10.1). Each word is recorded in a separate .wav file. If for any
reason the therapist wants the patient to repeat a word, he can achieve this. Only
the last recording is stored for subsequent analysis.

When the recording is finished, the speech therapist can perform a perceptual
analysis by listening to every word and by filling in the missing phoneme as shown
in Figure 10.2. This results in a perceptual score and a report of the segmental anal-
ysis displaying the nature of the errors, e.g. wrong place/manner of articulation, as
described in Chapter 9 and in the originally developed DIA perceptual test man-
ual [6]. Every recording can also be judged by several listeners, so as to get a
better perceptual score.
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Figure 10.1: Screenshot of the recording environment of the tool. The patient is presented
the word which has to be read. Under the buttons “next” etc. a volume control bar displays
the volume of the recorded word, with a blue zone for small volume, green for medium and
red for high volume.

The user can also run an automatic analysis though. This step results in an
objective intelligibility score, as well as a number of visual representations of the
analysis results as shown in Figure 10.3. These images show the speech profile
of the current patient, compared to normal speakers, as well as to a number of
well-defined pathologies according to Section 9.2.4.

Figure 10.2: Perceptual analysis of the recordings. When clicking on the button, the corre-
sponding .wav file is played, and the listener can fill in the missing part.

To validate the tool, a master student recorded 33 laryngectomees, 19 hear-
ing impaired, and 9 dysarthric patients. The recording settings were not always
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Figure 10.3: Comparison of patient with speaker groups. For every pathology, the cur-
rent speaker (denoted with ‘test’) is compared to the control speakers and the pathology
according to the two most distinctive dimensions.

ideal and sometimes a lot of background noise could be noticed. Every patient
performed the test, which was recorded using our DIA tool. Apart from the ob-
jective score calculation, the subjective evaluation of the speech intelligibility was
performed by two professional listeners. The inter-rater agreement between the
two listeners was measured using the Pearson correlation coefficient between their
scores. The measured PCC was as high as 94%. The Pearson correlation between
the mean of the listeners’ scores and the objective scores reached 90%, which is
almost as good [122]. Moreover, the DIA tool was described as a user-friendly and
time-saving device.

10.3 The DIA tool for children

Since the word-based DIA tool proved to produce reliable intelligibility scores, the
creators of the perceptual DIA test (Marc de Bodt et al, [6]) wondered whether the
DIA tool could evolve towards a tool that employs more natural words (since only
human listeners are then biased by their language knowledge but the computer
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stays unbiased) and towards a tool that could be used by children as well. For
that reason a new list of existing CVC words was developed and a visualization of
these words for children was included as an option.

The new word list was developed by a master’s thesis student. This list con-
sisted of 42 easily visualizable CVC-words [144]. These words were carefully
selected using the ‘Streeflijst Woordenschat voor Zesjarigen’, which is a list con-
taining the words which a six-year old child should know in its passive vocabulary.
Moreover, the words were chosen in such a way that - like in the original DIA test
- each consonant appears at least twice (in initial and final position) and all vowels
and diphtongs also appeared at least twice. The DIA tool includes this new test
as the D-list. All words are displayed as in the original test, but now they are also
illustrated with pictures from the same sizes and a uniform white background. See
Figure 10.4 for an example. Since the D-list is constructed to examine the same
phoneme set as the DIA test for adults, it can be analyzed using the same automatic
strategy.

Figure 10.4: Screenshot of the recording of the pictorial DIA test.

In a preliminary study, 14 dysarthric patients read the original DIA test words
(50 words) as well as newly included D-list. An automatic intelligibility score was
derived from both sets of recorded words. Comparing both automatic scores led to
a PCC of 0.78. In general, higher scores emerge for the new test items. This needs
to be investigated in more detail. Obviously, the differences can be caused by the
fact that fewer hesitations are made on existing words, less background noise was
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perceived and the fact that the words from DIA were first recorded so that the
patients were already used to the way of testing when arriving at the D-list [144].

10.4 Towards a DIA tool with running speech
Since we already showed the ability to predict phoneme intelligibility rather well
starting from running speech, another alternative for non-existing words is using
the paragraph ‘Papa en Marloes’ as test material. Therefore, we plan to include an
extra test in the DIA tool which will be available for automatic testing only. While
in the case of word tests only one word at the time is presented, the running speech
test will be displayed sentence by sentence. Using ALF-PLFs and ALF-PMFs, the
patient will be depicted against reference pathologies as described in Section 9.2.4.



11
Conclusion and future prospects

11.1 Conclusions

Automatic analysis of pathological speech is a challenging and very interesting
research topic. Knowledge of the complex human speech production system and
possible flaws in it, basics of phonetics and speech analysis have to be combined
in the search for suitable measures which can help speech therapists to objectively
measure severity of a pathology and to gain insight in the underlying causes.

In Chapter 1, I started with a motivation for this work. Intelligibility - a pop-
ular measure for severity of pathological speech - was introduced, as this com-
prised the main part of my research. Chapters 2 and 3 dealt with the medical
side of this interdisciplinary work, namely the human speech production and some
speech disorders. The current state-of-the-art intelligibility assessment techniques
of pathological speech were described in Chapter 4. Most of these tests are based
on perceptual measurements, which are subjective in nature. This opens the door
for objective, automatic intelligibility assessment tools.

Until now, there are only a few tools available. This striking lack of automatic
measures is partly due to the fact that the golden standard in intelligibility testing
still is the perceptual test because there is still insufficient confidence in the abil-
ities of computer models. Therefore, my main goal was to develop an automatic
intelligibility assessment model for Flemish, based on the perceptual Flemish DIA
test described in Chapter 4. In order to create the right model, the right machine
learning technique has to be adopted. Basics of machine learning techniques were
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therefore treated in Chapter 5. Since building a model requires a database, the used
Flemish databases were described in Chapter 6.

Chapters 7 to 10 describe the main part of my research, covering all strategies
for developing good speech analysis models. Chapter 7 describes the first steps
toward an automatic assessment of phoneme intelligibility by automating the per-
ceptual DIA. It is shown that alignment-based methods combining phonemic and
phonological features yield a correlation between the subjective (human) scores
and the objective (computed) scores of about 0.80 for a general model and up to
0.96 for a pathology specific model.

The correlations for general and specific pathologies compete with the inter-
rater agreements measured for the perceptual DIA. The feature set with the most
predictive power was the phonological feature set, describing speech in terms of its
articulatory aspects. By investigating which exact features are important, we dis-
covered that all features frequently selected by the intelligibility prediction models
can be linked to specific articulatory deficits of pathological speakers.

Since the DIA is based on isolated words, half of the time being nonsense
words, it lacks naturalness, leading to hesitations and reading errors. Therefore,
I searched for a way to circumvent these problems by using meaningful running
speech as the basis of a new intelligibility test. Using again a combination of
phonemic and phonological features, now based on forced alignment of speech
with sentences instead of words, I proved in Chapter 8 that phoneme intelligibility
scores of the DIA can also be reliably predicted from running speech recordings.
Still, forced alignment methods on a sentence level can fail in the case of reading
errors and hesitations. Therefore I developed a set of alignment-free phonemic
and phonological features. While the alignment-free phonological feature set does
not need any information at all about the read text, the alignment-free phonemic
feature set relies on phoneme frequencies derived from the text to compare the ut-
terance of the speaker against an expected distribution of phonemes. The proposed
features have been proven to work in a text-independent scenario and are usable
for different languages. Again, the features selected by the model could be linked
to specific problems in pathological speakers.

Using a combination of alignment-based and alignment-free features on the
NKI-CCRT corpus, I could develop a model for intelligibility which was as reliable
as a human listener. Moreover, it is capable of tracking changes in intelligibility
over time to the same extent a human listener can.

Having shown that intelligibility can be predicted in a reliable way by us-
ing phonemic and phonological (alignment-free) features, I moved on to extract
more detailed information quantifying the underlying speech deficits of a tested
speaker. In Chapter 9, I first explored some ideas using the COPAS corpus, but
this corpus only provides intelligibility scores and no detailed information about
specific deficits related to e.g. nasality, phonation etc. Moreover, since only one
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rater judged all samples, and since every phoneme shift could occur only a small
number of times, the segmental analysis appeared to be reliable only for patients
with high intelligibility scores.

Although a segmental analysis of the articulatory problems proved to be im-
possible, I did discover that the alignment-free feature sets can clearly distinguish
a specific type of pathology from normal speech in a two-dimensional subspace
that can be identified automatically, and that can easily be visualized. In addition,
the features of the best subspace can be linked to the specific pathologies.

Using the NKI-CCRT database, containing ratings for a.o. phonation, articula-
tion and accent by 13 human listeners, I could prove that the feature sets I devel-
oped in Chapters 7 and 8 can predict these aspects of speech to the same extent as
humans can. It is clear though that, once more specific speech aspects than over-
all intelligibility are investigated, human inter-rater agreement drops significantly,
and so does the automatic prediction of these aspects.

My research resulted in the development of the online DIA tool, which is de-
scribed in Chapter 10. This user-friendly tool is made freely available via the web.
To use it, the user only needs a PC or laptop with a web browser, a head set and
sound card, and an up-to-date Java runtime environment. The tool works in a clien-
t/server environment and can be used both in an online and an offline mode. The
isolated word test can be recorded and automatically analyzed, leading to a report
describing the patient’s current intelligibility and position against other pathologi-
cal speakers. Perceptual analysis of the isolated word test is also possible. Soon,
the RSI test I developed in Chapter 8 will become available as well.

11.2 Future prospects

At the end of this dissertation, I would like to stress some strenghts, weaknesses,
threats and opportunies of using an automatic analysis of pathological speech as
presented in this work.

A clear advantage of an automatic over a perceptual analysis is its objective
nature. It is insensitive to contextual information and unbiased by knowledge
about the patient, his/her pathology and the used text. Moreover, in favourable
circumstances my methods have proven to reach about the same reliability as a
human rater and they are less time-consuming than the perceptual test. The DIA
tool can therefore be considered as an extra “objective” listener that can quickly
and reliably measure intelligibility and position the patient against some reference
pathological speakers. It can help the therapist in screening patients. It can how-
ever never be used as a replacement for a thorough examination of the patient by
a speech therapist. Rather than replace the speech therapist, the tool should be re-
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garded as an objective, complimentary asset, used to enrich the therapist’s toolbox.

Until now, an important issue concerns the robustness against changes in back-
ground noise, room acoustics and microphone characteristics, which can be signif-
icant in recordings made in a clinical environment. Therefore, there is a need for
more robust acoustic features in the front-end and for speaker detection techniques
to separate the speaker from other voices in the background, including that of the
therapist giving hints to the speaker. The latter is especially true when one wants
to test children.

From field tests of the DIA tool, I learned that it would also be interesting to
incorporate automatic overflow and underflow detectors which ask to re-record an
utterance that was tagged as inappropriate. Clear instructions to the speech ther-
apist concerning the way of positioning the head set microphone and a manual
verification of the recordings could also enhance the quality of the recordings and
thus of the resulting analysis. More generally, the risk of improper use of the tool,
leading to wrong results and wrong conclusions, should be avoided by giving a
course to the speech therapist in how to obtain the best results and how to interpret
these results (know about the fault margin).

Another issue concerns the monitoring of trends. Although I proved that an
automatic analysis can detect progress or deterioration in one patient’s speech
according to independent perceptual evaluations of the sessions, it still needs to
be verified whether it can also predict the outcomes of an experiment in which
differences between sessions are scored. Likewise, the models for articulation,
phonation and accent are designed specifically for patients treated for head and
neck cancer. Patients with a different pathology (e.g. cleft lip/palate or hearing
impairment) might need a different model for these variables. Judging samples in
COPAS for these criteria would be a good start to attain these models.

Opportunities of the automatic analysis and the DIA tool are manifold. From
the technical point of view, the DIA tool provides us with the means to collect
more data, which allows us to build more robust and precise models. Of course,
one has to take into account that those new data will be labeled by speech thera-
pists whose labeling process may differ in many ways from the one that led to the
COPAS labels from which the models were trained. One way to overcome this
possible mismatch is to consider the difference between the score obtained by the
new labeler and the score obtained by the current objective intelligibility model
as a confidence measure. If this difference is below a threshold value, the percep-
tual score of the new labeler can be accepted and used as new training data for a
stronger model.
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Apart from the logical expansion of the DIA tool toward other pathologies,
a first direction could be to develop a robust diagnosing system that composes a
full speaker profile. From such a profile one could then retrieve objective infor-
mation about the progress of a certain patient in the course of a therapy. In order
to create robust models, a large dataset of well-annotated examples is necessary.
COPAS is a very good start since it already contains speech of many pathological
speakers. However, it is only judged by one human rater. This has two important
consequences: (a) inter-rater agreement cannot be determined, so that there is no
reference correlation to pursue, and (b) modeling one rater is dangerous since this
means that the model will be subject to “noise” created by this rater. Since every
human rater makes errors, it would be beneficial to have at least 5 ratings for every
sample. In that case, the average rating would be sufficiently reliable. In order
to investigate more sophisticated prediction models for monitoring a patient over
time, more longitudinal recordings of a speaker, rated by several listeners for sev-
eral perceptually measurable variables (intelligibility, articulation, phonation etc. )
are needed.

Another direction of expanding the DIA tool could be to develop more univer-
sal models which can be used in many languages without needing much perceptu-
ally scored pathological speech samples from that language.

From a therapeutical point of view, an interesting challenge is to create a tool
that can be used to steer the therapy. After a couple of general tests, such a
tool could detect the problematic phonemes or articulatory dimensions and use
this information to suggest exercises focusing on improving those dimensions or
phonemes. An intersting investigation would then be to check whether these rec-
ommended exercises lead to positive results. Likewise, the DIA tool could also be
useful as a tool for non-natives to learn Flemish or to correct for dialects.

In this respect, automatic visualizations of a patient’s progress and in general
in terms of his/her problematic phonological or phonetic dimensions could make
the DIA tool both more appealing and more informative. Displaying properties
of e.g. the vowel trapezium or, more general, situating a patient’s realization of
important articulatory dimensions against the “normal” range, could be very use-
ful for the speech therapist. Information for these dimensions could come from
a complete tool incorporating running speech and phoneme intelligibility tests as
well as other tests such as the diadochokinetic rate, sustained vowel etc, all helping
the speech therapist in gathering the global picture of a patient’s possibilities.

Of course, the current DIA tool is just a first small step in this direction, but
everything starts with a small step.
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A
Phonetic alphabets

This appendix gives an overview of all Flemish and English phones (except for
the closures and glottis closure) and their symbols according to several phonetic
alphabets. Table A.1 presents all Flemish vowels and Table A.2 presents all Flem-
ish consonants. Every phoneme is illustrated with a Flemish example. Table A.3
presents all English vowels and Table A.4 presents all English consonants. Every
phoneme is illustrated with an English example.
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IPA YAPA CGN SAMPA example
i i i i liep
I I I I lip
e e e e: leeg
E E E E leg
A A A A lat
y y y y buut
Y Y Y Y put
ø & 2 2: deuk
@ @ @ @ de
u u u u boek
o o o o: boom
O O O O bom
a a a a: laat
Ẽ E˜ E˜ / vaccin
Õ O˜ O˜ / congé
Ã A˜ A˜ / croissant
E: E: E: E: scène
O: O: O: O: zone (frans)
œ: @: 9: 9: freule (frans)
ĔI E:j/Eˆ E+ Ei wijs (diftong)
OŬ O:w/Oˆ A+ Au koud (diftong)
œY̆ @:9/@ˆ Y+ 9y huis (diftong)

Table A.1: Flemish vowels according to several phonetic alphabets.
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IPA YAPA CGN SAMPA example
p p p p put
b b b b bad
t t t t tak
d d d d dak
k k k k kat
g g g g goal
f f f f fop
v v v v vod
s s s s sap
z z z z zak
S S S S sjaal
Z Z Z Z ravage
x x x x licht
G G G G geen
h h h h heel
m m m m maan
n n n n nam
N N N N lang
ñ Jj J / oranje
l l l l loop
r r r r rook
j j j j ja

w/U w w w weer

Table A.2: Flemish consonants according to several phonetic alphabets.
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ARPABET IPA SAMPA example
aa 6,A Q,A lock
ae æ { bat
ah 2 V but
ao O: O bought
aw aU aU down
ax @ @ the

ax-h @h suspect
ax-r Ä er butter
ay aI aI buy
eh e E bet
el @l battle

em @m bottom
en @n button

eng @N Washington
er 3: 3‘ bird
ey eI eI bait
ih I I bits
ix roses
iy i i beat
ow @U @U boat
oy OI OI boy
uh U U book
uw u u boot
ux too
y j j you

Table A.3: English vowels according to several phonetic alphabets.
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ARPABET IPA SAMPA example
b b b bet
ch Ù tS church
d d d door

dh D D that
dx batter
f f f fat
g g g get

hh h h hat
hv H (voiced h)
jh Ã dZ judge
k k k kit
l l l let
m m m met
n n n now

ng N N sing
nx winter
p p p pet
r õ r rent
s s s sat

sh S S shut
t t t ten
th T T thing
v v v vat
w w w with
z z z zoo

zh Z Z pleasure

Table A.4: English consonants according to several phonetic alphabets.
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B
Test material in COPAS

This appendix gives an overview of the texts of test material in COPAS I used in
this dissertation.

B.1 DIA

There are 625 possible DIA tests. One set of 50 words can be found here.

List A (testing initial consonant): wop; piep; guis; leek; joen; kom; sar; baam;
vil; roos; on; meur; vee; faf; toes; doon; nuk; hoef; zout
List B (testing final consonant): geep; diet; zoef; daam; jong; peeg; zaag; paai; tik;
van; bool; lieuw; roor; toe; ries
List C (testing medial vowel): guil; zaat; dit; wiek; wan; hun; noet; vos; muul;
woul; soos; teek; eut; rijd; man; del

B.2 Papa en Marloes

Papa en Marloes staan op het station. Ze wachten op de trein. Eerst hebben ze een
kaartje gekocht. Er stond een hele lange rij, dus dat duurde wel even. Nu wachten
ze tot de trein eraan komt. Het is al vijf over drie, dus het duurt nog vier minuten.
Er staan nog veel meer mensen te wachten. Marloes kijkt naar links, in de verte
ziet ze de trein al aankomen.
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B.3 Sentences
Wil je liever de thee of de borrel?
Na nieuwjaar was hij weeral hier.
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ter, and E. Nöth, “PEAKS - A system for the automatic evaluation of voice
and speech disorders,” Speech Communication, vol. 51, pp. 425–437, 2009.

[4] J. N. Carmichael, “Introducing Objective Acoustic Metrics for the Fren-
chay Dysarthria Assessment Procedure,” Ph.D. dissertation, University of
Sheffield, 2007.

[5] http://www.esat.kuleuven.be/psi/spraak/projects/SPACE/.

[6] M. S. De Bodt, C. Guns, and G. Van Nuffelen, NSVO: Nederlandstalig
Spraakverstaanbaarheidsonderzoek. Herentals: Vlaamse Vereniging voor
Logopedisten, 2006.

[7] International Phonetic Association (IPA), Handbook of the International
Phonetic Association. Cambridge University Press, 1999.

[8] http://www.phon.ucl.ac.uk/home/sampa/.

[9] I. Schuurman, M. Schouppe, H. Hoekstra, and T. van der Wouden, “CGN,
an Annotated Corpus of Spoken Dutch,” in Proceedings of the 4th Interna-
tional Workshop on Linguistically Interpreted Corpora (LINC-03), 2003.

[10] D. H. Klatt, “Review of the ARPA Speech Understanding Project,” Journal
of the Acoustical Society of America, vol. 62, no. 6, pp. 1345–1366, 1977.

[11] F. Stouten, “Feature Extraction and Event Detection for Automatic Speech
Recognition ,” Ph.D. dissertation, Universiteit Gent, 2008.



168 REFERENCES

[12] G. Van Nuffelen, C. Middag, M. S. De Bodt, and J. P. Martens, “Speech
technology based assessment of phoneme intelligibility in dysarthria,” In-
ternational Journal of Language and Communication Disorders, vol. 44,
no. 5, pp. 716–730, 2009.

[13] C. Middag, J. P. Martens, G. Van Nuffelen, and M. S. De Bodt, “Automated
Intelligibility Assessment of Pathological Speech Using Phonological Fea-
tures,” EURASIP Journal on Advances in Signal Processing, vol. 2009, p. 9,
2009.

[14] C. Middag, R. P. Clapham, R. van Son, and J. P. Martens, “Robust automatic
intelligibility assessment techniques evaluated on speakers treated for head
and neck cancer,” Computer Speech and Language, submitted.

[15] G. Van Nuffelen, C. Middag, J. P. Martens, and M. S. De Bodt, “Speech
technology based assessment of dysarthric speech : preliminary results,”
in International Association of Logopedics and Phoniatrics, 27th World
congress, Proceedings. International Association of Logopedics and Pho-
niatrics (IALP), 2007, p. 5.

[16] C. Middag, G. Van Nuffelen, J. P. Martens, and M. S. De Bodt, “Objec-
tive intelligibility assessment of pathological speakers,” in Proceedings of
the International Conference on Spoken Language Processing, Brisbane,
Australia, 2008, pp. 1745–1748.

[17] C. Middag, J. P. Martens, G. Van Nuffelen, , and M. S. De Bodt, “DIA: a tool
for objective intelligibility assessment of pathological speech,” in Proceed-
ings of the 6th International Workshop for Models and Analysis of Vocal
Emissions for Biomedical Applications, 2009, p. 4.

[18] C. Middag, Y. Saeys, and J. P. Martens, “Towards an ASR-Free Objective
Analysis of Pathological Speech,” in Proceedings of the International Con-
ference on Spoken Language Processing, Tokio, Japan, 2010, pp. 294–297.

[19] C. Middag, T. Bocklet, J. P. Martens, and E. Nöth, “Combining phono-
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