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Samenvatting

De voorbije jaren hebben we een gigantische toename gezien van het aantal
draadloze digitale communicatiediensten. Deze nieuwe diensten zorgen voor
een steeds toenemende vraag naar hogere datadebieten. Bovendien willen
meerdere gebruikers terzelfdertijd informatie versturen over hetzelfde draad-
loze kanaal. Dit alles gecombineerd met de reeds bestaande schaarste van
het beschikbare radiospectrum leidt tot het gebruik van steeds hogere draag-
golffrequenties en bandbreedtes. In traditionele singlecarriermodulatietech-
nieken, zorgen hogere bandbreedtes voor steeds korter wordende zendpulsen.
Na het verzenden van het informatiesignaal, dat bestaat uit een som van die
korte zendpulsen, over een dispersief kanaal, zien we dat de verzonden pulsen
wijd verspreid zijn in de tijd. Dit komt omdat de duur van de zendpulsen
veel korter is dan de duur van het impulsantwoord van het kanaal. Aan de
ontvangerzijde, zien we dat de ontvangen pulsen overlappen en daardoor in-
terfereren met elkaar. De ontvanger moet dan die intersymboolinterferentie
(ISI) ongedaan maken om de verstuurde informatie te kunnen reconstrueren.
Typisch wordt de interferentie weggewerkt door gebruik te maken van een
egalisatiefilter. Deze aanpak vraagt een hoge rekencomplexiteit, zeker bij hoge
datadebieten.
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SAMENVATTING

Om het complexe egalisatieprobleem bij singlecarriermodulatie te vermij-
den, zoeken we onze toevlucht tot multicarriermodulatie. De te versturen
datastroom wordt opgesplitst in verschillende parallelle datastromen, die alle
een lager debiet hebben dan de oorspronkelijke datastroom. Elke datastroom
wordt dan gemoduleerd op een sinusoïdale drager met een specifieke draag-
golffrequentie. In dit werk beschouwen we een speciaal geval van multicarri-
ermodulatie: alle dragers worden toegewezen aan dezelfde gebruiker. In dat
geval spreken we van ’orthogonal frequency division multiplexing’ (OFDM).
Door het verlagen van het debiet van het verstuurde signaal, wordt de ISI sterk
verminderd omdat de zendpulsen nu enkel overlappen gedurende een kleine
fractie van hun totale duur. Het multipathkanaal wordt omgezet in een aan-
tal vlakke kanalen. De verstuurde pulsen overlappen nog steeds gedurende
een korte tijd, dus moet de zender een ’guard interval’ voorzien tussen twee
OFDM-blokken om interblokinterferentie (IBI) te vermijden. Het signaal dat
uitgezonden wordt gedurende het guard interval kan niet gebruikt worden
voor de detectie van de verstuurde data. Als gevolg daarvan kan de zender
zelf beslissen wat er verstuurd wordt tijdens het guard interval. In dit werk
beschouwen we known symbol padding (KSP) voor het vullen van het guard
interval. In deze techniek wordt er een sequentie van gekende pilootsymbolen
verstuurd tijdens het guard interval.

Om een betrouwbare communicatie op te zetten tussen zender en ont-
vanger, moet de ontvanger gesynchroniseerd zijn met de zender. Bovendien
moet de ontvanger het impulsantwoord van het kanaal kennen. De lokale os-
cillatoren aan de zenderzijde en aan de ontvangerzijde kunnen onmogelijk een
draaggolf genereren met exact dezelfde draaggolffrequentie, met als gevolg
dat er steeds een draaggolffrequentieafwijking bestaat tussen zender en ont-
vanger. Het verstuurde signaal heeft ook een bepaalde tijd nodig om de weg
af te leggen van de zender naar de ontvanger. Dit zorgt voor een tijdsvertrag-
ing tussen zender en ontvanger. Om te kunnen synchroniseren met de zen-
der, moet de ontvanger de tijdsvertraging en de draaggolffrequentieafwijking
schatten. Om dan het egalisatieproces te kunnen uitvoeren moet de ontvanger
bovendien ook een schatting maken van het impulsantwoord van het kanaal.

De eerste vier hoofdstukken van dit werk vormen de basis voor de overige
hoofdstukken. Het KSP-OFDM systeem dat we wensen te bestuderen, wordt
geïntroduceerd in hoofdstuk twee. De verschillende stappen die nodig zijn
aan de zenderzijde om een bitsequentie om te zetten in een gepaste vorm die
kan verstuurd worden over het kanaal en de corresponderende stappen aan
de ontvangerzijde om de verstuurde bitsequenctie te detecteren, komen aan
bod. Verder worden er verschillende detectiestrategieën om de verstuurde
informatie te reconstrueren uit het ontvangen signaal besproken, waarbij we
veronderstellen dat de ontvanger perfect gesynchroniseerd is met de zender
en dat het impulsantwoord van het kanaal gekend is. De performantie van de
verschillende detectiealgoritmes wordt uitgedrukt aan de hand van de gemid-
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delde bitfoutprobabiliteit (bit error rate of BER).

In een KSP-OFDM systeem worden sommige dragers enkel gebruikt om
pilootsymbolen te versturen, die dan gebruikt worden bij uitvoeren van het
synchronisatieproces en de kanaalschatting. Hier in dit werk, stellen we
verschillende synchronisatie- en kanaalschattingsalgoritmes voor die gebruik
maken van zowel de pilotsymbolen die verstuurd worden tijdens het guard
interval als de pilootsymbolen op de pilootdragers. Hoofdstuk vijf behandelt
het invoegen van pilootdragers in het KSP-OFDM systeem en geeft ook een
overzicht van verschillende algemene strategieën om parmeterschattingsalgo-
ritmen af te leiden.

In hoofdstukken zes tot acht worden de schattingen van het impulsant-
woord van het kanaal, de tijdsvertraging en de draaggolffrequentie afwijking
behandeld. Eerst komt de kanaalschatting aan de beurt. We beginnen met het
berekenen van de Gaussiaanse Cramer-Rao-grens en de limiet voor respec-
tievelijk een hoge en een lage signaal-ruisverhouding (signal-to-noise ratio
of SNR). Deze performantiegrenzen geven een idee over welke gemiddelde
kwadratische fout (mean squared error of MSE) een praktische kanaalschatter
kan bereiken. Daarna bespreken we twee bestaande kanaalschattingsalgo-
ritmes die kunnen toegepast worden in een KSP-OFDM systeem. De MSEs
van beide kanaalschatters vertonen een horizontale asymptoot (error floor)
voor matige tot hoge waarden van de SNR. Deze error floors worden veroor-
zaakt door de interferentie afkomstig van de onbekende datasymbolen. Wan-
neer alle dragers gebruikt worden voor het versturen van pilootsymbolen, dan
geven beide algoritmes hetzelfde resultaat. De performantie van deze tijds-
domein (TD) ’all pilots’ schatter dient als waardemeter voor de performantie
van iteratieve ’decision aided’ algoritmes. Wij hebben een frequentiedomein
(FD) ’data aided’ kanaalschatter geïntroduceerd. Het algoritme schat het im-
pulsantwoord van het kanaal op basis van de fast Fourier transform (FFT)
uitgangen van het ontvangen signaal die corresponderen met de posities van
de pilootdragers. Deze schatter heeft geen last van de interferentie van de
onbekende datasymbolen, omdat in het FD de datadragers perfect kunnen
gescheiden worden van de pilootdragers. Er is dan ook geen error floor voor
de MSE van deze schatter. Indien alle dragers als pilootdragers gebruikt wor-
den, dan bekomen we de FD ’all pilots’ schatter. De kwaliteit van de schatting
van het impulsantwoord van het kanaal kan nog verder verbeterd worden
door het toepassen van zogenaamde ’decision aided’ schattingsalgoritmes. Dit
zijn iteratieve algoritmes die itereren tussen kanaalschatting en het detecteren
/ decoderen van de datasymbolen. In dit werk stellen we er 3 verschillende
voor. Het eerste decision aided algoritme werkt in het TD en gebruikt de
harde decisies van de datasymbolen als extra pilootsymbolen. Een tweede
TD algoritme is gebaseerd op het expectation maximization (EM) algoritme.
In dit algoritme gebruikt de kanaalschatter zachte informatie in verband met
de datasymbolen om het kanaal te schatten. Deze zachte informatie wordt
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aangereikt door de detector / decoder. Het derde algoritme werkt in het FD
en is een uitbreiding van FD data aided schatter. In dit algoritme worden
alle carriers beschouwd om het kanaal te schatten. Naast de pilootsymbolen
worden ook de harde decisies van de datasymbolen gebruikt. De numerieke
resultaten tonen aan dat de TD decision aided algoritmes dezelfde perfor-
mantie halen als de TD all pilots schatter voor de MSE op voorwaarde dat de
SNR voldoende hoog is. Het FD decision aided algoritme werkt iets slechter
en bereikt de performantie van de FD all pilots schatter. Voor ongecodeerde
transmissie, wordt de BER van een ontvanger die het kanaal perfect kent,
bereikt. Voor gecodeerde transmissie is er een kleine degradatie.

In hoofdstuk zeven wordt het probleem van de tijdsvertraging aangepakt.
Het hoofdstuk begint met een studie van de invloed van een tijdsvertraging
op de performantie van een KSP-OFDM systeem. Het blijkt dat er een inter-
val van toelaatbare tijdsvertragingen bestaat. Een tijdsvertraging die binnen
het interval ligt, veroorzaakt geen degradatie. Tijdsvertragingen buiten dit in-
terval, veroorzaken IBI en interferentie tussen de verschillende dragers (inter
carrier interferentie of ICI). Daarna bespreken we enkele bestaande algoritmes
die oorspronkelijk voorgesteld werden in een time domain synchronous (TDS)
OFDM systeem. Dit is een OFDM systeem zonder pilootdragers, er wor-
den enkel pilootsymbolen verstuurd tijdens het guard interval. Na enkele
kleine aanpassingen kunnen deze algoritmes ook toegepast worden in een
KSP-OFDM systeem. Ze werden echter afgeleid in de veronderstelling dat de
transmissie over een vlak kanaal gebeurde. In een dispersief kanaal is hun
werking daarom ook minder goed. Wij hebben enkele TD data aided schat-
tingsalgoritmes afgeleid, waarbij we een laag SNR regime veronderstellen.
Deze algoritmes maken gebruik van zowel de pilootsymbolen in het guard
interval als de pilootsymbolen verstuurd op de pilootdragers. De kansfunctie
kan benaderd worden door de eerste twee termen van haar Taylorreeks. Voor
het eerste algoritme, wordt de kansfunctie uitgemiddeld over de onbekende
datasymbolen. De gezamenlijke schatting van de tijdsvertraging en het im-
pulsantwoord van het kanaal valt uiteen in een lineaire zoekmethode voor de
tijdsvertraging, waarna de schatting van het impulsantwoord van het kanaal
analytisch kan berekend worden. Het tweede TD data aided algoritme is heel
gelijkaardig aan het eerste, maar nu worden de datasymbolen gewoon ver-
waarloosd. De schatting van de tijdsvertraging wordt opnieuw gevonden door
middel van een lineaire zoekmethode. Beiden vertonen een degelijke perfor-
mantie. Daarna hebben we een alternatief met lage complexiteit voorgesteld.
Dit algoritme is gelijkaardig aan de voorgaande maar het beschouwt enkel de
pilootsymbolen in het guard interval om de tijdsvertraging te schatten. De
performantie is echter niet zo goed, zeker niet voor systemen met korte guard
intervals. Ten slotte wordt er een FD data aided algoritme voorgesteld. Dit
algoritme schat de tijdsvertraging op basis van de FFT uitgangen van het ont-
vangen signaal die corresponderen met de posities van de pilootdragers. Deze
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schatter heeft de beste performantie van alle tijdsvertragingsschatters die aan
bod komen in dit werk.

In hoofdstuk acht wordt de schatting van de draaggolffrequentieafwijking
behandeld. Een niet gecompenseerde draaggolffrequentieafwijking kan de-
satreuze gevolgen hebben voor de BER, want de draaggolffrequentieafwijking
veroorzaakt ICI en een attenuatie van de nuttige signaalbijdrage. Opnieuw
worden er eerst enkele bestaande algoritmes voor TDS-OFDM besproken.
Twee algoritmes veronderstellen opnieuw een vlak kanaal, en vertonen bij-
gevolg een niet zo goede performantie voor een multipath fading kanaal. Een
derde algoritme, het algoritme dat de draaggolffrequentie afwijking schat op
basis van het guard interval, werkt wel goed en kan dus toegepast worden in
een KSP-OFDM systeem. Wij hebben een TD data aided schatter voorgesteld
die robust is tegen tijdsvertragingen. De performantie van deze TD data aided
schatter is echter wat slechter dan de performantie van de guard interval
gebaseerde schatter. Daarna hebben we de FD pilot aided schatter afgeleid.
Dit algoritme schat de draaggolffrequentieafwijking op basis van de FFT uit-
gangen van het ontvangen signaal die corresponderen met de posities van de
pilootdragers. Dit algoritme vertoon de beste performantie van alle in dit werk
besproken data aided algoritmes. Maar, zelfs voor de FD pilot aided schatter
is er nog steeds een error floor zichtbaar voor de MSE bij hoge SNR. Uitein-
delijk hebben we ook een iteratief FD decision aided algoritme voorgesteld.
Dit algoritme gebruikt in elke iteratie de harde decisies van de data symbolen
zodat alle dragers in aanmerking komen om de draaggolffrequentie afwijking
te schatten. De error floor is volledig verdwenen na één iteratie voor de hier
beschouwde SNR waarden.

Hoofdstuk negen is het laatste hoofdstuk. Hierin herhalen we de belang-
rijkste verwezenlijkingen van dit werk. Bovendien geven we nog enkele sug-
gesties voor toekomstig onderzoek.
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Summary

In recent years, we have seen a huge increase in the number of wireless dig-
ital communication services. The scarcity of the radio spectrum and the de-
mand for higher data rates combined with a lot of different users who want
to transmit simultaneously over the same wireless channel, have resulted in
transmission at ever increasing carrier frequencies and with ever increasing
bandwidths. In single carrier modulation, higher bandwidths result in shorter
durations of the transmitted pulses. After transmission of the data signal over
a dispersive channel, the transmitted pulses are widely spread in time because
the duration of the transmitted pulses is much smaller compared to the du-
ration of the impulse response of the channel. At the receiver, the received
pulses overlap and interfere with each other. To detect the transmitted data,
the receiver needs to make use of an equalizer to remove the inter symbol
interference (ISI). This approach results in prohibitively high computational
complexity, especially at high data rates.

To reduce the computational requirements for the equalizer in single car-
rier communications, multicarrier modulation is proposed. The data stream
is split up in several parallel data streams, each having a lower rate than the
original data stream. Each data stream is then modulated on a sinusoidal
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carrier with a different carrier frequency. In this work we consider a special
case of multicarrier modulation where all the different carriers belong to one
user: orthogonal frequency division multiplexing (OFDM). Lowering the rate
of the transmitted signal, results in a reduction of the ISI caused by the multi-
path fading channel because the transmit pulses only overlap during a short
fraction of their total duration. The multipath fading channel is transformed
into several parallel flat fading channels. The transmitted pulses still over-
lap for a short time, so the transmitter needs to introduce a guard interval
between two OFDM blocks to avoid inter block interference (IBI). The trans-
mitted signal during the guard interval cannot be used for data detection, so
the transmitter can choose what to transmit during the guard interval. In this
work, the guard interval is filled with a known pilot sequence. This technique
is called known symbol padding (KSP).

To enable a reliable communication between transmitter and receiver, it
is important that the transmitter and the receiver are synchronized, and that
the receiver knows the channel impulse response. The local oscillators at the
transmitter and receiver side do not generate a carrier wave with exactly the
same carrier frequency, which causes a carrier frequency offset. The transmit-
ted signal needs a certain time to travel from the transmitter to the receiver,
so there exists a time delay offset between transmitter and receiver. For the
synchronization process, the receiver needs to estimate the time delay offset
and the carrier frequency offset. Furthermore, to perform the equalization in
order to detect the transmitted data, the receiver needs to estimate the channel
impulse response.

The first four chapters of this work serve as the basis for the remaining
chapters. The considered KSP-OFDM system is introduced. The different
steps to transform a bit sequence into a suitable form that can be transmitted
over the channel at the transmitter side and their corresponding steps at the
receiver side are briefly discussed. Furthermore, some different approaches to
recover the transmitted data sequence from the received signal are reviewed
under the assumption that the receiver is perfectly synchronized with the
transmitter and that the channel impulse response is known. The performance
of the different data detection algorithms is expressed in terms of the bit error
rate (BER). This is the probability that a bit is erroneously detected by the
receiver.

For the synchronization and the channel estimation some carriers are re-
served as pilot carrier in a KSP-OFDM system. In this work we propose sev-
eral synchronization and channel estimation algorithms that exploit both the
time domain pilot symbols, which are transmitted during the guard inter-
val, and the pilot symbols transmitted on the pilot carriers. Chapter 5 deals
with the insertion of the pilot symbols and gives an overview of some general
strategies to derive parameter estimation algorithms.

Chapters 6 to 8 deal with channel estimation and the estimation of the time
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delay offset and the carrier frequency offset. First we take care of the chan-
nel estimation problem for KSP-OFDM. We start with the derivation of the
Gaussian Cramer-Rao bound (GCRB) and a high and low signal-to-noise ratio
(SNR) limit. This lower bounds give an idea of what could be achieved by a
practical channel estimator in terms of the mean squared error (MSE). Then,
in the next step we review two existing channel estimators. The MSE’s of both
estimators show an error floor for moderate to high SNR values. These error
floors are caused by the interference from the unknown data symbols. When
all of the available carriers are used to transmit pilot symbols, both algorithms
result in the same estimate. The time domain (TD) all pilots estimator serves
as a benchmark for the performance of iterative decision aided channel esti-
mators. We have proposed a frequency domain (FD) data aided (DA) channel
estimation algorithm. This estimator estimates the channel impulse response
based on the fast Fourier transform (FFT) outputs of the received signal which
correspond to the pilot carrier positions. This estimator does not suffer from
the interference from the unknown data symbols, because in the FD, the pilot
carriers and the data carriers can be perfectly separated. When all carriers
are used as pilot carriers, we obtain the FD all pilots estimator. To further
improve the quality of the obtained pilot based channel estimate, we have
proposed three decision directed channel estimators. They are iterative algo-
rithms that iterate between data detection / decoding and channel estimation.
A first algorithm operates in the TD and uses hard decisions on the data sym-
bols as extra pilot symbols to obtain a new channel estimate. A second TD
algorithm is based on the expectation maximization (EM) algorithm. In this
approach the channel estimator uses soft information about the unknown data
symbols to update the channel estimate. The soft information is provided by
the detector / decoder. The third one is an extension of the FD DA channel es-
timator. It considers the hard decisions on the data symbols as pilot symbols.
The numerical results show that the TD decision aided estimation algorithms
reach the performance of the TD all pilots estimator for moderate to high
SNR, while the FD decision aided algorithm reaches the performance of the
FD all pilots estimator. For an uncoded transmission, the BER performance
of a receiver with perfect channel knowledge is achieved. For the coded case
there is a small degradation.

In chapter 7, we have derived algorithms to estimate the time delay offset.
First of all, we have investigated the influence of a timing error on the perfor-
mance of a KSP-OFDM system. It turns out that there is a range of tolerable
time delay offsets which do not cause any degradation. Timing errors outside
of this range, cause IBI and inter carrier interference (ICI). Then some existing
algorithms, which are proposed for time domain synchronous (TDS) OFDM,
are described. TDS-OFDM is a kind of OFDM system without any pilot carri-
ers, there are only pilot symbols transmitted during the guard interval. With
some small adaptions these algorithms can be also applied for KSP-OFDM.
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However they were developed for a flat fading channel, so their performance
is degraded in a dispersive channel. We have derived some TD pilot aided
estimation algorithms while assuming the low SNR regime. These algorithms
exploit both the pilot symbols in the guard interval as the pilot symbols trans-
mitted on the pilot carriers. The likelihood function is approximated by the
first two terms of its Taylor series expansion. In a first algorithm, the like-
lihood function is first averaged over the unknown data symbols. The joint
estimation problem of the channel impulse response and the time delay off-
set boils down to a one-dimensional search for the time delay offset followed
by an analytical computation of the channel impulse response estimate. The
second TD pilot aided estimator ignores the data symbols. The estimate of
the time delay offset is also found by a one-dimensional search. They both
show a good performance but have a high computational complexity. Then,
a low complexity algorithm based on the pilot symbols in the guard interval
only is proposed. It does not show such a great performance especially for
short guard intervals. Then finally an estimation algorithm is proposed that
estimates the time delay offset based on the FFT outputs of the received signal
at pilot carrier positions. It turns out, that among all the time delay offset
estimators discussed in this work, the FD pilot aided estimator shows the best
performance.

Chapter 8 deals with the estimation of the CFO. An uncompensated CFO
causes ICI and attenuates the useful signal component, resulting in a severely
BER degradation. First we have looked into existing estimators (which were
proposed for TDS-OFDM). Two algorithms assume a flat fading channel and
do not perform well in a multipath fading channel. A third one, the guard
interval based estimator shows a good performance and can be applied in a
KSP-OFDM system. We propose a TD pilot aided estimator, which is robust
against a time delay offset, but it performs a bit worse than the guard interval
based estimator. Then, the FD pilot aided estimator is proposed. It estimates
the CFO based on the FFT outputs of the received signal corresponding to
the pilot carrier positions. This estimator shows the best performance among
all the pilot aided estimators that are discussed in this work, but there is still
an error floor in terms of the MSE. Finally an FD decision aided estimator
is proposed which considers both the pilot carriers and the data carriers for
the estimation of the CFO. The algorithm uses the hard decisions on the data
symbols. The error floor is completely removed after one iteration for the
considered range of SNR values.

In the concluding chapter 9, the main achievements of this work are sum-
marized. Furthermore we have formulated some suggestions for future re-
search.
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1
Introduction

1.1 Background

During the last few years, we have seen an explosion of the number of ap-
plications of wireless digital communications (mobile cell phones, tablet pcs,
wireless home networks, ...). As a result, there is a demand for constantly in-
creasing data rates, and the available radio spectrum becomes more and more
saturated. Due to the scarcity of the available spectrum and the increasing
demand in bandwidth, these new wireless technologies have to resort to ever
increasing carrier frequencies.

In conventional single carrier modulation, to achieve large bandwidths
the transmit pulses become very short. Transmission over a multipath fading
channels results in lots of interference and the receiver structures become very
complex because they need to apply an equalizer which has a high compu-
tational load to be able to restore the transmitted data symbols. Therefore,
there was need for an alternative. Luckily this alternative has been discovered
already some years ago, i.e. multicarrier modulation. This technique trans-
forms the multipath fading channel in several parallel flat fading channels.
The equalization in a flat fading channel is very easy because only a one tap
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CHAPTER 1. INTRODUCTION

Figure 1.1: Typical scattering environment.

equalizer is necessary.
Multicarrier modulation shows attractive features to be the supporting

technology for these new wireless digital communication services. As a re-
sult multicarrier modulation has been a hot research topic for some years and
it still is.

1.2 Multipath Fading Channels

Radio wave propagation through wireless channels is typically characterized
by multipath propagation where transmitted radio waves are reflected and /
or absorbed by obstacles (buildings, cars, vegetation, ...) in the environment
[1, 2]. An example of a typical scattering environment is shown in figure
1.1. The different lines between the transmitter and the receiver represent the
different rays that are picked up by the receiver. When it is not blocked, the
line of sight ray (dotted line) arrives first at the receiver because it follows the
shortest path between transmitter and receiver. The other rays are reflected
from the obstacles present in the environment and exhibit an attenuation, a
phase shift and a time delay.

In practical situations, it often happens that several different paths arrive
at approximately the same time and combine constructively or destructively
at the receiver [3]. This is called a cluster. Each cluster is characterized by
an arrival time and an attenuation. Because the multipath fading channel
consists of different paths that arrive with different delays, information that
is transmitted over such a channel is spread in time; the channel is called a
dispersive channel.

2
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Figure 1.2: The single carrier signal and the corresponding multicarrier signal,
N = 4.

1.3 Multicarrier Modulation

In conventional single carrier systems the symbols are transmitted at a rate
Rs [1, 2, 4]. Each data symbol is represented by a pulse which has a duration
that is proportional to 1/Rs. The pulses are modulated on a sinusoidal carrier
with fixed frequency. The resulting signal is transmitted over the dispersive
channel. When the duration of the transmitted pulses is small compared to
the duration of the impulse response of the channel, the transmitted pulses
are widely spread in time. As a result the received pulses will overlap and
interfere with each other: the channel causes ISI. Typically, the receiver makes
use of an equalizer to remove the ISI. The major drawback of this approach is
its high computational complexity at high data rates [2, 4, 5].

To tackle the equalization problem encountered in single carrier communi-
cations, multicarrier modulation was proposed [6, 7]. The data stream at rate
Rs is split in N parallel data streams, each having a lower rate equal to Rs/N.
Each data stream is modulated on a sinusoidal carrier wave with a different
carrier frequency. Figure 1.2 [4, Figure 1.1] shows the single carrier signal and
the multicarrier signal (for N = 4 carriers) in the time domain. The number of
carriers N is selected high enough so that the resulting symbol duration N/Rs

is much larger than the duration of the channel impulse response. Lowering
the rate Rs/N by increasing N reduces the effect of the ISI introduced by the
multipath fading channel, as the transmitted pulses only overlap during a
short fraction of their total duration. This is illustrated in figure 1.3 [4, Figure
1.2]. Further, as the duration of the symbols is much larger than the impulse
response duration, the multipath channel is transformed into N flat fading
subchannels. The data symbols on the different carriers are therefore only

3
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Figure 1.3: The transmitted and received multicarrier signal after transmission
over a multipath fading channel.

scaled and rotated. The receiver uses only the ISI-free part of the signal for
further processing, to avoid the detrimental effects of the ISI [8]. As the N

data streams are all transmitted at the same time, an appropriate choice for
the carrier frequencies has to be made in order to avoid interference between
symbols on different carriers. It is known that harmonic sinusoids are orthog-
onal on a period corresponding to the fundamental frequency [7], so they are
good candidates. To avoid ISI, the period of the fundamental sinusoid is cho-
sen smaller than the duration of the ISI free zone from figure 1.3. Because
each carrier exhibits flat fading, it suffices to perform at the receiver one-tap
equalization at all the N carriers.

In this contribution we are considering a special case of multicarrier mod-
ulation named orthogonal frequency division multiplexing (OFDM). It is a
single user modulation technique. As the name suggests, the data stream that
has to be transmitted is divided in a number of substreams which are all mul-
tiplexed together in one new signal where each substream is assigned its own
carrier to be transmitted on. At the receiver, the modulation of the data sym-
bols on the different carriers can computationally efficient be performed by
using the inverse fast Fourier transform (IFFT). Similarly, the receiver applies
the fast Fourier transform (FFT) to demodulate the multicarrier signal.

These advantageous properties make multicarrier modulation a strong
candidate for communication over multipath fading channels. In recent years,
OFDM has been applied in numerous wired and wireless applications. For the
transmission over twisted pair cables, the broadband digital subscriber line
(DSL) standards heavily rely on OFDM: the asymmetric DSL (ADSL) and the
very high-bit-rate DSL (VDSL) standards implement discrete multitone mod-

4



1.4. KNOWN SYMBOL PADDING

ulation (DMT), which is basically the same as OFDM [9–11]. Furthermore
the broadcast of digital audio and video also use OFDM as the underlying
modulation standard. See the digital audio broadcasting (DAB) standard [12]
for audio transmission, and the digital video broadcasting (DVB) and digital
terrestrial television broadcasting (DTTB) standards [13–16] for the implemen-
tation of digital television. Also several standards for high speed wireless local
area networks (LAN) and metropolitan area networks are OFDM based, e.g.
the IEEE 802.11 standard [17], WiMAX (IEEE 802.16) [18], ... Power line com-
munications, which are systems for carrying data on a conductor also used
for electric power transmission, are also heavily relying on the OFDM tech-
nique [19, 20]. Amongst others, they can be used to set up LANs. Moreover,
OFDM has been proposed for LTE [21] and its successor LTE advanced [22]
which are standards to increase the speed and capacity of mobile telephone
networks.

1.4 Known Symbol Padding

As already mentioned in the previous section, the transmitted pulses corre-
sponding to the OFDM blocks slightly overlap in the time domain (see figure
1.3). So only the middle part, that is free of ISI, can be used to detect data.
This also means that we can choose what to transmit during the time interval
between two of such ISI-free parts. This interval is called the guard interval.

In the literature, the most popular technique to fill the guard interval is
called the cyclic prefix (CP) technique [7, 23]. The last samples of each OFDM
block are copied and transmitted before the actual OFDM block. The main
advantage of the CP is that for the samples in the ISI-free part it transforms the
linear convolution of the transmitted signal and the channel impulse response
into a circular convolution. This results in low complexity data detection
and equalization algorithms. A drawback of this approach is the loss of the
multipath diversity: if one of the N subchannels exhibits a deep fade, all the
information transmitted over that subchannel might be lost [24].

A second technique is called zero padding (ZP). In this case, each two
OFDM blocks are separated by an empty guard interval [23, 24]. In con-
trast with CP-OFDM, ZP-OFDM guarantees symbol recovery, regardless of
the presence of channel fades [25]. Furthermore, a received ZP-OFDM signal
offers the possibility to be transformed into a CP-OFDM signal, which means
it can benefit from the low complexity equalization algorithms for CP-OFDM
systems. We can conclude that ZP offers a higher flexibility than CP: equal-
ization complexity can be traded off for symbol detectability [25].

Both the CP and the ZP technique do not offer much freedom in what
to transmit during the guard interval. As a result, the guard interval can
hardly be used for channel estimation and is sometimes insufficient for syn-
chronization purposes [26]. To have more control about the content of the
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Figure 1.4: The structure of the transmitted signal for CP-OFDM, ZP-OFDM
and KSP-OFDM respectively.

guard interval, recently a third guard interval technique was proposed: the
known symbol padding (KSP) technique [23, 26, 27]. The guard interval is
now filled with a sequence of known symbols, which can be optimized to
have beneficial properties for synchronization and/or channel estimation. In
the literature, there is already an extensive knowledge about sequence design
for synchronization purposes available (pseudo noise sequences, ...), which
can be exploited to optimize the training sequence in the guard interval. A
KSP-OFDM system can be seen as a ZP-OFDM system where an extra train-
ing sequence is transmitted during the guard interval. As a result, KSP-OFDM
exhibits the same (beneficial) properties in terms of symbol detectability as a
ZP-OFDM. In this work we will mainly focus on KSP-OFDM.

Figure 1.4 illustrates the three discussed guard interval techniques.

6



1.4. KNOWN SYMBOL PADDING
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Figure 1.5: The structure of the transmitted signal for KSP-OFDM and TDS-
OFDM.

1.4.1 Time Domain Synchronous OFDM

Time domain synchronous (TDS) OFDM is a technique that is very similar
to KSP-OFDM and that is extensively used in the Chinese digital television
standard [16]. The guard interval also consists of a known pilot sequence.
The structure of one transmitted block is shown in 1.5.

TDS-OFDM is similar to KSP-OFDM but not identical. There are some
differences. First of all the structure of one transmitted block is different: in a
KSP-OFDM system a transmitted block consists of the IFFT outputs followed
by the known time domain pilot sequence, while in a TDS-OFDM system the
known time domain pilot sequence is transmitted first and then followed by
the IFFT outputs.

Secondly, the known time domain pilot sequence exhibits a special struc-
ture in a TDS-OFDM system (see figure 1.5). It consists of a prefix, a main part
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and a postfix. A pseudo noise sequence of length NPN forms the main part.
The last Npre samples of this pseudo noise sequence are copied and placed
before the actual pseudo noise sequence and they are the prefix. Same goes
for the postfix: the first Npost samples of the pseudo noise sequence are copied
and appended at the end of the pseudo noise sequence. As a result, we obtain
a guard interval consisting of Npre + NPN + Npost samples.

Finally, the last difference is whether there are pilot carriers available or
not. In a general OFDM system some carriers are used to transmit additional
pilot symbols in the frequency domain, as we will see later on. They are
used for synchronization and channel estimation. This is also the case in a
KSP-OFDM system, but not in a TDS-OFDM system.

1.5 Motivation

Two important aspects in setting up a reliable communication between trans-
mitter and receiver involve the synchronization of the receiver with the trans-
mitter and the channel estimation. In the literature, there are hardly any
publications which propose synchronization algorithms or channel estimation
algorithms for a KSP-OFDM system. Therefore, we investigate and propose
several algorithms for the estimation of the frequency offset and the time delay
in this work . Furthermore we develop some algorithms to obtain an estimate
of the channel impulse response. With the rise of the very powerful error
correcting codes, iterative processing became very important in signal pro-
cessing to lower the complexity of the complicated decoding process, while
still achieving nearly optimum performance. The decoding has been com-
bined with iterative parameter estimation algorithms, exhibiting very good
results even in high noise environments. So a part of this work consists of
finding iterative synchronization and channel estimation algorithms that can
be combined with one of the powerful error correction schemes.

1.6 Outline

The remaining part of this work is organized as follows. In the next chapter, a
typical KSP-OFDM system is introduced. The building blocks of the transmit-
ter and the receiver are discussed. Furthermore, a signal model is developed,
which is then used in the remaining part of this work.

In chapter 3, some basic principles from the estimation and detection the-
ory that are useful for digital communications are reviewed. They form the
basis for the derivation of algorithms to perform the estimation of the un-
known synchronization parameters and the detection of the transmitted data.

In chapter 4, the detection of the data symbols for a KSP-OFDM system is
treated. Several approaches are reviewed. Two low complexity methods are
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compared with the optimal, but computationally intractable detection algo-
rithm. Both uncoded and coded transmission is considered.

The chapters 5-8 treat the estimation of synchronization parameters and
the channel impulse. In chapter 5, a general introduction to the different types
of estimation strategies is given. One of the important aspects is the insertion
of pilot symbols in the transmitted OFDM symbol. Chapter 6 deals with chan-
nel estimation. First of all, some theoretical lower bounds on the achievable
performance of practical channel estimators are derived. Then some existing
algorithms are studied. In the last part of the chapter, we propose several
estimation algorithms starting from a rather simple pilot aided algorithm and
then moving on to more advanced algorithms. The chapter contains some
numerical results to illustrate the achievable performance of the different pro-
posed algorithms. Chapter 7 treats the problem of time delay estimation. First
the effect of a possible time delay offset is investigated on the performance of
a KSP-OFDM system and the required accuracy of practical estimation al-
gorithms is derived. Then some existing algorithms that are proposed in a
TDS-OFDM context are reviewed. In the remaining part different algorithms
are proposed and compared with each other. Their performance is extensively
illustrated by means of some numerical results. Chapter 8 deals with the es-
timation of unknown frequency offsets. Some existing methods are discussed
first and then some new approaches are proposed. The here in this work
developed frequency offset estimation algorithms range from very simple pi-
lot aided estimators to more advanced iterative frequency offset estimation
algorithms. At the end of the chapter some numerical results are shown to
give an idea of the achievable performance of the proposed frequency offset
estimation algorithms.

Finally chapter 9 sums up the most important achievements of this work.
Furthermore, the chapter provides some ideas for future research.
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2
System Description

In this chapter we will give a thorough description of a typical KSP-OFDM
communication system. The structure is similar to a standard multicarrier
system, which can be found in [2]. Figure 2.1 shows the three main parts

• the transmitter, described in section 2.1

• the channel, described in section 2.2

• the receiver, described in section 2.3

In the last part of this chapter (see section 2.4), we introduce the time delay
offset and the carrier frequency offset which are besides the channel impulse
response the synchronization parameters that have to be estimated by the
receiver before the data detection can be performed.

2.1 Transmitter

The main task of the transmitter consists of transforming the information bit
stream into a physical wave form, which can be transmitted over the phys-
ical channel. We consider a bandpass communication system, which means
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Figure 2.1: Building blocks of a KSP-OFDM system.

that the transmitter is only allowed to transmit its information in a certain fre-
quency band of 2B around a carrier frequency fc. The process of transforming
the bit stream in to a bandpass signal xBP (t) comprises several steps:

• channel coding

• symbol mapping

• multicarrier modulation

• guard interval insertion

• pulse shaping

• up conversion

which will be described in the following subsections.

2.1.1 Channel Coding

To be able to set up reliable communication in sometimes severe conditions,
the information bit stream is first sent through a channel encoder. The bit
stream is made more robust against bit errors by adding some redundant
information in a systematic way. The information bit stream is divided in
groups of Nb bits, which are called the information words. Each information
word b is then encoded into a new bit sequence of Nc bits (Nc > Nb), which
is called the code word c, according to an encoding rule c = C (b). When
the information bits themselves are included in the coded bits, one speaks
of a systematic code. In this case, the code word can be separated in the Nb
information bits and the Nc − Nb parity-check bits. When the code word does

12
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not contain the original information bits, the code is called non systematic. The
ratio ρc = Nb/Nc is called the code rate and gives an idea of the amount
of redundancy that is introduced by the code: the lower ρc, the higher the
amount of redundancy. The set of legitimate code words is denoted as ζC .

An important class of error correcting codes are the linear codes. A code is
linear when the sum of two code words is another code word. The code words
of a linear code are obtained by modulo-2 multiplication of the information
words with a binary generator matrix G:

c = Gb. (2.1)

The matrix G defines the properties of the code. Well known examples of lin-
ear codes are convolutional codes, turbo codes and low-density parity-check
codes [28–30].

2.1.2 Symbol Mapping

The second step of the transmission process is the conversion of the coded
bitstream c, consisting of Nc bits, into a sequence of Nd complex-valued data
symbols a = (a (0) , a (1) , . . .) (see also [31, subsection 2.2.2]). First the coded
bits are grouped in Nd = Nc/ms groups of ms bits; the k-th group is defined as
ck = (ck (0) , . . . , ck (ms − 1)). Then each group of bits ck is mapped to one of
the Ms = 2ms complex numbers of the constellation ΩMs = {ω0, . . . , ωMs−1}.
We call Ms the order of the constellation. In this work, only normalized con-
stellations are considered: 1

Ms
∑

Ms−1
i=0 |ωi|2 = 1. The mapping function is de-

noted as:

Ms : {0, 1}ms → ΩMs : a (k) = Ms (ck) .

The mapping of the code word c on to the sequence of data symbols a will
be denoted as M. The set of legitimate data symbol sequences is denoted
as ζD . A data symbol sequence a is legitimate if and only if there exists an
information word b for which a = M (C (b)). Further we assume that the first
order and second order moments of the coded data symbols are equal to the
corresponding moments of uncoded data symbols. For uncoded transmission,
the symbol mapping is expressed as: a = M (b) , because the coded bits c are
equal to the information bits b. As a result, the first order and second order
moments of the data symbols are equal to:

E [a (k)] = 0

E
[

a (k1)
∗ a (k2)

]

= δk1−k2

E [a (k1) a (k2)] = 0 (2.2)

In practice, the most frequently used constellations are

13
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Figure 2.2: 8-PSK constellation with Gray Mapping.

• Ms-ary Pulse Amplitude Modulation (Ms-PAM) with

ΩMs =

√

3
M2

s − 1
{±1, ±3, . . . , ± (Ms − 1)} .

• Ms-ary Quadrature Amplitude Modulation (Ms-QAM) with

ΩMs =
{

ω : <{ω} ,={ω} ∈
√

Ms-PAM
}

.

The real part of ω, denoted as < (ω), and the imaginary part of ω,
denoted as ={ω} are both members of a

√
Ms-PAM constellation. Note

that we only consider rectangular QAM constellations, which means that
Ms has to be a power of 4.

• Ms-ary Phase Shift Keying (Ms-PSK)

ΩMs =
{

ej2π k
Ms : k = 0, . . . , Ms − 1

}

.

The mapping of the Ms possible sequences of m information bits to the Ms

possible constellation points, can be done in Ms! different ways, where n! is
the factorial of the non negative integer n, i.e. n! = n · (n − 1) · . . . 1 . The
choice of the mapping function affects the performance of the communication
system [2]. For uncoded transmission, the preferred mapping function is the
one in which adjacent constellation points only differ in one bit. This is called
Gray Mapping. During the demodulation process of the signal, the most likely
errors caused by noise will result in the selection of an adjacent constellation
point. When we consider Gray Mapping, selecting erroneously an adjacent
constellation point results in only a single bit error in the sequence of m bits.

14
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Figure 2.3: Multicarrier modulation.

Hence, of all mapping functions, Gray mapping will minimize the probability
of an erroneous bit. Figure 2.2 shows an example of Gray Mapping for the
8-PSK constellation.

After the mapping of the bits to the complex symbols, the resulting se-
quence of complex numbers is multiplied with

√
Es, where Es is the average

symbol energy.

2.1.3 Multicarrier Modulation

The multicarrier modulation building block (see also [2]) from figure 2.1 is
depicted more in detail in figure 2.3. The available bandwidth is divided
into N subchannels. We call the parameter N the number of carriers of the
OFDM system. The different subchannels are made orthogonal by selecting
the carrier spacing equal to the per carrier symbol rate [4].

The stream of symbols to be transmitted is divided in blocks of N symbols
ai = (ai (0) , . . . , ai (N − 1))T , where i denotes the block index. The N time-
domain samples si = (si (0) , . . . , si (N − 1))T to be transmitted during the
i-th block are easily generated by applying the N symbols of block ai to the
IFFT. The samples of si are defined as

si (k) =
1√
N

N−1

∑
n=0

ai (n) ej2π kn
N , k = 0, . . . , N − 1. (2.3)

This can also be formulated using the matrix notation:

si = FHai, (2.4)

where F is the N × N FFT matrix, which is defined as

(F)k,n =
1√
N

e−j2π kn
N . (2.5)

Note that F is a unitary matrix: FFH = FHF = IN where IN is the N × N
identity matrix.
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carrier spacing

f

Figure 2.4: Spectrum of a part of the OFDM carriers.

As we already know from chapter 1, we want to achieve a rate equal to Rs,
which means that we have a time frame of duration N/Rs to transmit each
OFDM block. A part of this time frame is reserved for the guard interval,
which is inserted between each two OFDM blocks to avoid interference be-
tween them. We divide the available time frame in N + ν intervals of equal
duration T: N intervals to transmit the samples si (k) and ν samples for the
guard interval. We call T the sample period, which is given by

T =
1

N + ν

N

Rs
. (2.6)

The rate per carrier is equal to 1/NT, which means that the carrier spacing
also has to equal 1/NT to guarantee orthogonality [4, 7]. The different carri-
ers are located at the frequencies fn = n/ (NT), n = 0, . . . , N − 1. Figure 2.4
shows a part of the spectrum of the OFDM signal. It is given by a sum of fre-
quency shifted sinc functions, that are spaced by the carrier spacing 1/ (NT).
We see that the different carriers spectrally overlap, but, as at frequency fn,
the contributions from other carriers with fn′ 6= fn are zero, the carriers do
not interfere at the carrier frequencies fn.

2.1.4 Guard Interval Insertion

At the end of each OFDM block si, a guard interval consisting of ν samples is

appended [23]. Those samples are denoted as ag =
(

ag (0) , . . . , ag (ν − 1)
)T

and consist of known pilot symbols which have the same energy per symbol
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p(t)si xBB (t)

∑
N+ν−1
k=0 δ (t − i (N + ν) T − kT)

Figure 2.5: Pulse Shaping.

as the symbols modulated on the carriers:

E

[

∣

∣ag (l)
∣

∣

2
]

= E

[

|ai (n)|2
]

= Es. (2.7)

As already mentioned in chapter 1, the purpose of the guard interval is
twofold in a KSP-OFDM system [32–35]. First of all, it is inserted between two
OFDM blocks to avoid inter block interference. Secondly, the actual content
of the guard interval, which is a known training sequence, can be exploited
for synchronization tasks and channel estimation.

The energy of the total block si is normalized so that the energy transmit-
ted per OFDM block is equal to NEs which yields for the N + ν time domain
samples si = (si (0) , . . . , si (N + ν − 1))T

si =

√

N

N + ν

(

FHai

ag

)

. (2.8)

The average symbol energy Es can be related to the average energy per
information bit Eb by

Eb =
total number of transmitted OFDM blocks

total number of transmitted information bits
NEs. (2.9)

In the special case that one information word of Nb bits is transmitted in one
OFDM block Eb becomes

Eb =
NEs

Nb
=

NEs

ρcmsNd
. (2.10)

2.1.5 Pulse Shaping

The discrete time sequence si (2.8) has to be transformed into a continuous
time baseband signal xBB (t) to be able to be transmitted. This process is
called pulse shaping and is shown in figure 2.5. The sequence of samples si
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Figure 2.6: Up conversion.

is multiplied with the transmit clock signal which consists of a sequence of
Dirac impulses occurring at time instants i (N + ν) T + kT. The parameter T

is called the sample period. The resulting sequence of weighted Dirac impulses
is then applied to the transmit filter with transfer function P ( f ) and impulse
response p (t). This filter is band limited and has a one sided bandwidth B:
P ( f ) = 0 when | f | > B. The transmit pulse is considered to have unit energy:

ˆ ∞

−∞

|p (t)|2 dt =

ˆ B

−B
|P ( f )|2 d f = 1. (2.11)

The resulting base band signal xBB (t) is then given by

xBB (t) = ∑
i

N+ν−1

∑
k=0

si (k) p (t − i (N + ν) T − kT) . (2.12)

In this work the considered transmit pulse is a square root raised cosine pulse
with respect to the symbol period T which means that

ˆ ∞

−∞

p (t − kT) p∗ (t) dt = δk. (2.13)

2.1.6 Up Conversion

Every communication system is only allowed to transmit in a frequency band
centered around a certain carrier frequency fc. So the baseband signal has to
be upconverted to the allocated frequency band. This operation is performed
by multiplying the baseband signal xBB (t) with the sinusoidal ej2π fct. This
yields for the bandpass signal xBP (t) (see also figure 2.6)

xBP (t) =
√

2<
{

xBB (t) ej2π fct
}

. (2.14)

The presence of the factor
√

2 is necessary to ensure that the power of the
bandpass signal xBP (t) is equal to the power of the baseband signal xBB (t).
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Figure 2.7: Channel.

This guarantees that the transmitted energy per symbol does not change after
the up conversion. Note that the bandpass signal xBP (t) is a real-valued signal
while the baseband signal xBB (t) is complex-valued. The bandpass signal is
then transmitted over the channel.

2.2 Channel

We consider a multipath fading channel with L̃ paths. Each path l is char-
acterized by a real valued path gain γl and a path delay τl . The bandpass
impulse response h̃BP (t) is given by1

h̃BP (t) =
L̃−1

∑
l=0

γlδ (t − τl) . (2.15)

The channel also adds real-valued additive white Gaussian noise (AWGN),
denoted as wBP (t) with zero mean and power spectral density equal to N0/2
with double sided bandwidth 2B around the carrier frequency fc. The total
bandpass signal rBP (t) that arrives at the receiver is given by

rBP (t) =
L̃−1

∑
l=0

γlxBP (t − τl) + wBP (t) . (2.16)

We can express the bandpass signal rBP (t) as a function of an equivalent base
band signal rBB (t):

rBP (t) =
√

2<
{

rBB (t) ej2π fct
}

. (2.17)

1Note that in general, the parameters L̃, {γl} and {τl} depend on t, but here we assume block
fading which means that the channel parameters do not change much over several OFDM symbol
durations.

19



CHAPTER 2. SYSTEM DESCRIPTION

When we substitute xBP (t) by (2.14) and rBP (t) by (2.17) in (2.16), we find that
the baseband representation of (2.16) is given by

rBB (t) =
L̃−1

∑
l=0

γle
−j2π fcτl xBB (t − τl) + wBB (t) (2.18)

where wBB (t) is complex-valued AWGN with independent real and imagi-
nary parts each a having a zero mean and a power spectral density equal to
N0/2 in the frequency band [−B, B]. The base band representation of h̃BP (t)
can be expressed as

h̃ (t) =
L̃−1

∑
l=0

γle
−j2π fcτl δ (t − τl) . (2.19)

Note that h̃ (t) is in fact an infinite bandwidth signal, but since xBB (t) is lim-
ited to the frequency band [−B, B], the convolution

(

h̃ ? xBB
)

(t) is also ban-
dlimited and yields the same result as the convolution

(

h̃BB ? xBB
)

(t) with
h̃BB (t) defined as

h̃BB (t) =
L̃−1

∑
l=0

γle
−j2π fcτl 2Bsinc (2B (t − τl)) . (2.20)

Defining h̃l as the complex-valued path gain of the l-th channel path:

h̃l = γle
−j2π fcτl , (2.21)

we can express the channel impulse response h̃ (t) as

h̃ (t) =
L̃−1

∑
l=0

h̃lδ (t − τl) (2.22)

We assume that the different paths are generated by different scatterers, so

they have negligible correlations [3]. As a result, the amplitudes
{

h̃l

}L̃−1
l=0 can

be considered as statistically independent random variables. Furthermore it
is assumed that there is no line of sight path. In that case, the Rayleigh fading
model is frequently used to describe the multipath fading, which means that
the real and imaginary parts of each complex amplitude h̃l are modeled by
independent and identically distributed zero-mean Gaussian variables [2, 3].

2.3 Receiver

The most important purpose of the receiver is the reconstruction of the trans-
mitted bits from the received signal. To achieve this goal, several steps have
to be completed:
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Figure 2.8: Down Conversion and Lowpass Filtering.

• down conversion

• lowpass filtering

• matched filtering

• sampling

• parameter estimation

• data detection

Most of these steps are the reverse operations of the ones performed at the
transmitter side. Only the parameter estimation step has no counterpart at the
transmitter side. During this step, the channel and synchronization param-
eters (e.g. time delay offset, frequency offset and channel impulse response)
are estimated.

2.3.1 Down Conversion and Lowpass Filtering

The first steps consist of transforming the received bandpass signal rBP (t)
to a base band signal rBB (t) as shown in figure 2.8. The bandpass signal
rBP (t) is first multiplied by the sinusoidal e−j2π fct, which is in fact the inverse
operation of the up conversion which is performed in the transmitter. The
spectrum of rBP (t) is shifted to the left by this operation and has a contribution
around 0 Hz and −2 fc. Sending the resulting signal through an ideal low pass
filter with single sided bandwidth equal to B removes the high frequency
components around −2 fc and results in the desired base band signal rBB (t),
which is defined as (2.18). The extra factor

√
2 guarantees that the energy of

the useful signal in rBB (t) remains unaltered.

21



CHAPTER 2. SYSTEM DESCRIPTION

2.3.2 Matched Filtering and Sampling

The base band signal rBB (t) is sent through a filter with an impulse response
matched to the impulse response p (t) of the pulse shaping filter from the
transmitter. The impulse response of the matched filter is given by p∗ (−t).
Then the resulting signal z (t) is sampled at a rate 1/T, resulting in the sam-
ples z (k) which are given by

z (k) =

ˆ +∞

−∞

rBB (t) p (t − kT) dt. (2.23)

Using (2.18) and (2.12), we can rewrite (2.23) as

z (k) =
+∞

∑
i=−∞

L̃−1

∑
l=0

N+ν−1

∑
k′=0

αlsi

(

k′
)

g
((

k − k′
)

T − i (N + ν) T − τl

)

+ w (k) ,

(2.24)
where g (t) =

´ +∞

−∞
p (t + u) p∗ (u) du and w (k) =

´ +∞

−∞
wBB (t) p (t − kT) dt.

We define h (t) as the overall pulse shape: h (t) consists of the cascade of
the transmit pulse p (t), the channel impulse response h̃ (t) and the impulse
response of the matched filter p∗ (−t). This yields for h (t):

h (t) =
L̃−1

∑
l=0

h̃l g (t − τl) . (2.25)

Rewriting (2.24) using (2.25) results in

z (k) =
+∞

∑
i=−∞

N+ν−1

∑
k′=0

si

(

k′
)

h
((

k − k′
)

T − i (N + ν) T
)

+ w (k) . (2.26)

We assume that h (t) has only a limited duration: h (t) = 0 for t < 0 and
t ≥ LT. The vector h = (h (0) , . . . , h ((L − 1) T))T collects the samples of the
impulse response.

2.3.3 Estimation and Detection

After the analog to digital conversion of the received signal, the samples are
fed to the estimation unit and the detection/decoding unit. The estimation
task of the receiver consists of providing estimates of unknown synchroniza-
tion parameters (which are introduced in section 2.4) and the channel coef-
ficients to the detection/decoding unit. The detector/decoder will then use
those estimates to try to recover the transmitted information bits. Some pos-
sible estimation algorithms will be treated in chapters 6-8.

There exist several possible detection strategies for KSP-OFDM. Since the
detection is an important task of the receiver, we dedicate chapter 4 to this
subject. Sometimes, information from the detector/decoder is fed back to the
estimator unit to improve the quality of the estimates. The receiver iterates
between estimation and detection/decoding.
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Figure 2.9: Matched filtering and sampling.

2.4 Imperfectly Synchronized Receiver

In general, the transmitter and receiver are not perfectly synchronized. The
main parameters that have to be estimated by the receiver in an OFDM sys-
tem are the starting point of the FFT window (or the time delay offset), the
frequency offset due to the inaccuracies of the transmitter and receiver oscil-
lators, and the channel impulse response [36]. The channel impulse response
has already been introduced in section 2.2. In this section we will discuss:

• the time delay offset

• the carrier frequency offset

2.4.1 Time Delay Offset

At the receiver, we consider a block of 2 (N + ν) + L − 2 received signal sam-
ples z′ = (z′ (0) , . . . , z′ (2 (N + ν) + L − 3))T (see figure 2.10). The samples
of z′ are given by

z′ (k) = z (k − k0) , k = 0, . . . , 2 (N + ν) + L − 3 (2.27)

where z(k) is defined in (2.26). Every transmitted OFDM block has a duration
of N + ν samples, so after transmission over a channel with an impulse re-
sponse consisting of L samples, every transmitted OFDM block contributes to
N + ν + L − 1 successive samples of the received signal. Because of its length,
the vector z′ contains the total contribution from only one OFDM block (along
with partial contributions from adjacent blocks). Without loss of generality we
can give this block the index i = 0. To be able to detect the transmitted in-
formation during this block, the receivers needs to know which samples in z′

correspond to this transmitted OFDM block, and more precisely the starting
point k0 of this block in the received signal vector z′. The parameter k0 is
called the time delay offset. Chapter 7 is dedicated to the estimation of k0.
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k0block i = −1 block i = 0 block i = 1

block of received samples z′

Figure 2.10: Definition of the received signal vector z′.

2.4.2 Carrier Frequency Offset

The transmitter and the receiver have both an oscillator that operates at fre-
quency fc for the up conversion and down conversion respectively. In theory
both oscillators should be equal, but in practice it is impossible to create two
free running oscillators with exactly the same central frequency and the same
phase, so there exists a frequency offset and a phase difference between trans-
mitter and receiver. The phase difference is not much of an issue as it can be
incorporated in the channel impulse response. Secondly, the movement of the
transmitter and/or the receiver results in a Doppler shift which also adds to
the frequency offset. The difference between the carrier frequency at the re-
ceiver side and the transmitters side is called the carrier frequency offset (CFO).
We can model the carrier frequency fc,r at the receiver side as

fc,r = fc,t − ∆ f (2.28)

where fc,t is the carrier frequency at the transmitter and ∆ f is the CFO. We
define ε as the frequency offset normalized by the carrier spacing:

ε = ∆ f NT. (2.29)

Up until now we assumed that fc,r = fc,t in section 2.3. The received signal
after down conversion and lowpass filtering is no longer given by (2.18). The
down conversion can be expressed as:

√
2rBP (t) e−j2π fc,rt =

(

rBB (t) ej2π fc,tt + r∗BB (t) e−j2π fc,tt
)

e−j2π( fc,t−∆ f )t

= rBB (t) ej2π∆ f t + r∗BB (t) e−j2π(2 fc,t−∆ f )t (2.30)

After lowpass filtering, the received signal is given by

r (t) = rBB (t) ej2π∆ f t, (2.31)

where we assume that ∆ f is much smaller than the one sided bandwidth B of
the low pass filter2. As described in subsection 2.3.2, the signal r (t) is then

2In a practical situation, the CFO is very small so the assumption is valid.
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passed through a matched filter and sampled. We assume that ej2π∆ f t does
not change much during the duration of p (t) so

ˆ +∞

−∞

p(t + u)ej2π∆ f (t+u)p∗ (u) du = g (t) ej2π∆ f t. (2.32)

This yields for z (k):

z (k) =
+∞

∑
i=−∞

N+ν−1

∑
k′=0

si

(

k′
)

h
((

k − k′
)

T − i (N + ν) T
)

ej2π εk
N + w (k) . (2.33)

2.5 Chapter Summary

In this chapter, we have introduced the basic parts of a communication sys-
tem: the transmitter, the channel and the receiver. At the transmitter side we
have described how to transform the information bits into a continuous time
bandpass signal that can be transmitted over the channel. The receiver trans-
forms the received signal to a discrete time representation and tries to detect
the transmitted bits. The estimation and detection process are only briefly
discussed. In the last part of this chapter, the received signal model was al-
tered so that a frequency offset and a time delay also can be incorporated. The
detection process itself, will be treated in depth in chapter 4, and more details
about the parameter estimation can be found in chapters 6-8. But first we will
give some theoretical background about estimation and detection.
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3
Estimation and Detection
Theory

In this chapter we review some basics of estimation and detection theory,
which are part of the statistical inference theory. Some common statistical
techniques that are widely used in the field of digital communications are
introduced. The basic goal of those techniques is to obtain a value for a set of
parameters from a set of observations which are contaminated with noise.

First, we introduce the concepts of maximum likelihood decision and es-
timation, which are the starting points for many estimation and detection
algorithms. Then, some performance measures are defined and finally, the
expectation-maximization (EM) algorithm is discussed.

3.1 Problem Description

We start from an observation vector r = [r (1) , . . . , r (M)]T which depends
on a specific realization of a vector of parameters u = [u1, . . . , uK]T . The pa-
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rameter space of u is denoted as U = U1 × . . .×UK, where Uk is the parameter
space of the parameter uk. The main goal is to obtain a value of the unknown
parameter vector u. The statistical relationship between u and r is described
by the conditional probability density function p (r|u). When an observation r is
given and u has to be estimated, p (r|u) can be viewed as a function of u. In
that case, p (r|u) is called the likelihood function of u and the natural logarithm
of the likelihood function ln p (r|u) is called the log likelihood function of u. We
denote the obtained value as û (r) = [û1 (r) , . . . , ûK (r)]T. When the compo-
nents of u are continuous values or discrete values, we call û (r) the estimate of
u or the decision of u respectively.

Sometimes the observation vector r depends on other unknown parame-
ters v besides u. We call the components of v latent or nuisance parameters.
In a communication system, the channel parameters are typical examples of
nuisance parameters for the detection of the transmitted data symbols, while
the data symbols themselves are nuisance parameters for the estimation of the
channel parameters. In this case the observation r corresponds to the statisti-
cal model p (r|u, v), which is the conditional probability density function of r

given u and v. To obtain û (r), we need to compute the likelihood function of
u by averaging p (r|u, v) over the a priori distribution p (v) of v:

p (r|u) = Ev [p (r|u, v)] . (3.1)

In the last part of this chapter, we will introduce the expectation-maximization
(EM) algorithm which comes in handy to deal with nuisance parameters.

3.2 Bayesian versus Non-Bayesian Approach

The Bayesian Estimation Theory associates a joint a priori probability density
function p (u) = p (u1, . . . , uK) to the unknown parameters u and treats them
as random variables. Basically, all parameters (also the nuisance parameters)
are assumed to be random variables which results in a consistent approach.
This is in contrast with the non-Bayesian approach which assumes that the
unknown parameters are deterministic, while the nuisance parameters are
usually treated as random variables. However it is easy to incorporate the
non-Bayesian approach into the Bayesian framework by ignoring the a priori
information about u and assuming that u follows a uniform distribution over
U .

The a priori information about u and the information obtained from the
observation r are combined by applying Bayes’ rule to compute the a posteri-
ori distribution of the unknown parameter vector u

p (u|r) =
p (r|u) p (u)

p (r)
. (3.2)
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Note that p (r) is given by

p (r) = Eu [p (r|u)] , (3.3)

which is in general too complex to compute.

3.3 Estimation

In this part we will discuss the problem of Bayesian parameter estimation.
We speak of estimation when the components of the parameter vector u are
continuous-valued. Furthermore, the components of u are assumed to be
real-valued. This is not a restriction since complex-valued parameters can be
expressed as their real and imaginary parts which are both real-valued.

There exist several criteria to obtain an estimate of the parameter vector
u. One option is to search for the estimate of u that results in the highest a
posteriori probability. This estimate is called the maximum a posteriori (MAP)
estimate and is given by

ûMAP (r) = arg max
u

p (u|r) . (3.4)

This expression can be simplified by applying Bayes’ rule (3.2), which yields

ûMAP (r) = arg max
u

p (r|u) p (u) , (3.5)

where we neglected the denominator p (r) in (3.2) because it does not depend
on u. Note that the expression (3.5) does not require the computation of p (r)
in contrast with (3.4).

When the parameter vector u has a uniform a priori distribution, there is
no a priori information available about u and the MAP estimate of u from
(3.5) reduces to the maximum likelihood (ML) estimate of u, which is given
by

ûML (r) = arg max
u

p (r|u) . (3.6)

Since the ML estimator does not exploit any a priori information about u, it
can also be considered as a non-Bayesian estimator.

To compare the performances of different estimators we need some kind
of performance measure. The performance of an estimator of a continuous-
valued parameter vector, is usually illustrated by means of its mean squared
error (MSE) which is defined as

MSE (u) = Er|u
[

|u − û (r)|2
]

. (3.7)

The MSE as a performance measure has the advantage that there are already
lots of results available for all sorts of estimators in the literature. Besides
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that, there exist a number of theoretical lower bounds for the MSE. The most
well known is called the Cramer-Rao Lower bound (CRB). The CRB is a lower
bound on the MSE of an unbiased estimate1 of a deterministic parameter [37].
It results from the following inequality

Er|u
[

(u − û (r)) (u − û (r))T
]

≥ J−1
u , (3.8)

where the matrix Ju is the Fischer Information Matrix. The elements of Ju are
defined as

(Ju)m,n = Er|u

[

∂ ln p (r|u)

∂um

∂ ln p (r|u)

∂un

]

= −Er|u

[

∂2 ln p (r|u)

∂um∂un

]

, (3.9)

or using matrix notations:

Ju = Er|u

[

(

∂ ln p (r|u)

∂u

)(

∂ ln p (r|u)

∂u

)T
]

. (3.10)

From (3.8) it follows that

Er|u
[

(uk − ûk (r))2
]

≥
(

J−1
u

)

k,k
, (3.11)

so the lower bound for the MSE is given by

MSE (u) ≥ tr
(

J−1
u

)

(3.12)

where tr (X) returns the trace of the square matrix X.
The comparison of the MSE with the CRB gives an idea about the perfor-

mance of an unbiased estimator: the CRB is a lower bound on the achiev-
able variance for an unbiased estimator and any estimator which has an MSE
which equals the CRB, is called an efficient estimator. An unbiased estimator
which has a lower variance than all other unbiased estimators is called the
minimum variance unbiased (MVU) estimator. As a consequence, when an
efficient estimator exists, it is necessarily also the MVU estimator. Note how-
ever that if the MVU estimator exists, it is not necessarily efficient: having the
lowest variance does not mean that the equality holds in (3.12).

3.4 Detection

This part treats the Bayesian detection problem. We speak of a detection prob-
lem when the components of the unknown parameter vector u are discrete-
valued random variables. In contrast with the estimation problem where we

1We call û (r) an unbiased estimate of u when the expected value Er|u [û (r)] is equal to u.
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seek estimates which are closely located to the actual parameter, the detection
reduces to a hypothesis testing. Based on the observation r we have to make
a decision about the parameter vector u.

The most well known detection algorithm is MAP detection. The MAP
detector maximizes the a posteriori probability p (u|r) with respect to u:

ûMAP (r) = arg max
u∈U

p (u|r) .

= arg max
u∈U

p (r|u) p (u) . (3.13)

The second step is obtained after applying Bayes’ rule and neglecting p (r)
because it is independent of u. This detector minimizes the probability for an
erroneous detection, i.e Pr [û 6= u] [1].

When there is no a priori information available about u, the MAP detector
yields the same results as the ML detector which is defined as

ûML (r) = arg max
u∈U

p (r|u) . (3.14)

In a communication system, the transmitted data bits are an example of
unknown discrete-valued random variables which have to be detected. The
probability for an erroneous detection of a bit is called the bit error rate (BER).
It is an important measure for the performance of a detection algorithm. In
the literature, numerous examples of MAP and ML bit detectors can be found.
As already mentioned those detectors have the favorable property that they
minimize the BER. The performance of other detectors is usually compared
with the ML or MAP detector and expressed in terms of the BER. Another
class of detectors are the MAP and ML symbol detectors which in their turn
result in the minimal symbol error rate (SER).

Sometimes the a posteriori probability of a single information bit or a sym-
bol are too complex to obtain. In that case the total sequence of symbols is
detected at once. The MAP and ML sequence detectors minimize the proba-
bility that the detected data sequence differs from from the transmitted data
sequence.

3.5 The Expectation-Maximization Algorithm

As we have already mentioned in section 3.1, the presence of nuisance param-
eters gives rise to difficulties in obtaining the likelihood function. This makes
parameter estimation often intractable in the presence of nuisance parame-
ters. To solve this problem the iterative EM algorithm was proposed in [38]. It
avoids the direct computation of (3.1). In this subsection we try to give an un-
derstandable reasoning behind the EM algorithm. This part is largely inspired
by the part about the EM algorithm for the MAP estimator in [39, Section 2.2].
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3.5.1 Problem Statement

We want to obtain an estimate of a parameter vector u ∈ U based on the
observation r. Besides u, the observation r also depends on the unobserved
parameter vector v ∈ V . The observation corresponds to the following statis-
tical model

p (r|u, v) . (3.15)

Since the parameter vector v is unknown, we have to average the conditional
probability density function over v:

p (r|u) =

ˆ

v
p (r, v|u) dv

=

ˆ

v
p (r|u, v) p (v|u) dv (3.16)

and then we can apply the estimation / detection algorithms from the pre-
vious sections starting from the likelihood function p (r|u). The integral in
(3.16) is in general difficult to compute, so we need a different solution which
avoids this problem. So let us consider the ML estimator in the presence of
nuisance parameters, which yields the following maximization problem:

û = arg max
u∈U

ln p (r|u)

= arg max
u∈U

ln
ˆ

v
p (r, v|u) dv. (3.17)

Compared to (3.6), we have inserted an extra logarithm but this does not affect
the result since the logarithm is a monotonically increasing function. Now we
want to simplify the function that has to be maximized and that’s in fact what
the EM algorithm does.

3.5.2 A Lower Bound on the Likelihood Function

The maximization of the log likelihood function ln p (r|u) is too complex so
we are going to derive a function which is easier to maximize. We start with
deriving a lower bound on ln p (r|u).

The derivation is based on the Kullback-Leibler divergence [40], which is a
widely used concept in the field of information theory. The Kullback-Leibler
divergence measures the difference between two probability functions and is
defined as follows

D (q (v) || p (v)) =

ˆ

v
q (v) ln

q (v)

p (v)
dv, (3.18)

where p (v) and q (v) are probability functions. A well known property about
D (q (v) ||p (v)) is that it is non-negative [40]. This fact can be exploited to
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obtain a lower bound on ln p (r|u):

F (u, q) = ln p (r|u) −
ˆ

v
q (v) ln

q (v)

p (v|r, u)
dv (3.19)

≤ ln p (r|u) ,

where q (v) represents an arbitrary distribution. By applying Bayes’ rule,
F (u, q) can be rewritten as

F (u, q) = R (u, q) + H (q) (3.20)

where R (u, q) and H (q) are defined as

R (u, q) =

ˆ

v
q (v) ln p (v, r|u) dv (3.21)

H (q) = −
ˆ

v
q (v) ln q (v) dv ≥ 0. (3.22)

Based on this lower bound, a new estimator of u can be defined:

û = arg max
u

F (u, q) = arg max
u

R (u, q) , (3.23)

where the last step is valid because H (q) is independent of u. The maximum
of R (u, q) is easier to obtain than the maximum of (3.17) because the integral
in R (u, q) is outside the logarithmic function. Since probability functions
usually consist of exponential functions, the logarithmic and the exponential
functions cancel out each other in R (u, q), which is a desirable property. As
a result, the maximum with respect to u can be written in a closed form
expression in many cases. This decreases the computational complexity of
the maximization problem considerably. The next step consists of making an
appropriate choice for the probability function q (v), which is handled by the
EM algorithm.

3.5.3 The actual EM algorithm

The EM algorithm starts from an initial estimate û [0], which is used to make
a choice about q (v): the function q (v) is chosen in such a way that the lower
bound F (u, q) is equal to the true log likelihood function for u = û [0]. From
(3.19), we see that

F (û [0] , q0) = ln p (r|û[0]) (3.24)

for
q0 (v) = p (v|r, û [0]) . (3.25)

The estimate of u can be updated by maximizing the obtained lower bound
F (u, q0)

û [1] = arg max
u

F (u, q0) = arg max
u

R (u, q0) . (3.26)
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The new estimate û[1] exhibits a higher log likelihood than û [0], because

ln p (r|û[1]) ≥ F (û [1] , q0)

≥ F (û [0] , q0)

= ln p (r|û [0]) , (3.27)

where we have used (3.19), (3.26) and (3.24). In every iteration i that follows,
this process is repeated by the EM algorithm: First a new lower bound is
computed based on the latest obtained estimate û [i − 1]. This lower bound is
then maximized with respect to u and a new estimate û [i] is obtained which
has a higher log likelihood than û [i − 1].

The first step of each EM iteration is called the expectation step (E-step)
and consists of the computation of the function Q (u|û [i − 1]) = R (u, qi−1).
The second step is called the maximization step (M-step), which maximizes
the obtained function Q (u|û [i − 1]):

E-step: Q (u|û [i − 1]) =

ˆ

v
p (v|r, û [i − 1]) ln p (v, r|u) dv (3.28)

M-step: û [i] = arg max
u

Q (u|û[i − 1]) . (3.29)

When u and v are independent, the E-step can be further simplified to

Q (u|û [i − 1]) =

ˆ

v
p (v|r, û [i − 1]) ln p (r|v, u) dv, (3.30)

where we have omitted the term independent of u.
The E-step and M-step are repeated until convergence is reached. The

obtained estimates û [0], û [1], ... exhibit a non decreasing log likelihood, so
when the initial estimate û [0] is close to the ML estimate of u, the EM algo-
rithm converges towards the ML solution.

However, when the initial estimate û [0] is in the neighborhood of a local
maximum, the EM algorithm will get stuck in this local maximum.

3.6 Chapter Summary

In this chapter we have briefly introduced some topics from the detection and
estimation theory which will come in handy in the next chapters.

The estimation theory will be used to obtain estimates about the channel
and synchronization parameters. We have reviewed some well known estima-
tors (MAP and ML). The performance of a particular estimator is measured
by its MSE and is compared to the corresponding CRB, which is a theoretical
lower bound.

The detection theory and its algorithms are necessary to the detect the
transmitted data symbols at the receiver. The MAP and ML detector were
defined in this chapter.
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In the last part of this chapter, the EM algorithm has been treated. It
is a suboptimal iterative algorithm, which can be applied when the optimal
estimators (ML) are too complex.
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4
Data Detection

This chapter deals with data detection. We assume a perfectly synchronized
receiver, which means that all synchronization parameters are assumed to
be known. For the actual data detection in a KSP-OFDM system, there are
several possibilities. Basically, the different data detection algorithms can be
categorized in two categories:

• Time-domain data detection, see section 4.1

• Frequency-domain data detection, see section 4.2

In the last part of this chapter we compare the performance of the different
proposed data detection algorithms by means of some numerical results.

4.1 Time-domain Detection

Figure 4.1 shows a part of the time domain signals at the transmitter and the
receiver respectively. For the data detection of block i = 0, we take the N + ν
samples of the received signal from the observation interval corresponding to
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block i = 0 shown in figure 4.1. The vector z0 = [z (0) , . . . , z (N + ν − 1)]T

collects the N + ν received signal samples and can be expressed as

z0 = Hchs0 + w0 (4.1)

where the (N + ν) × (N + ν) channel matrix Hch is defined as

(Hch)l,m = h
(

|l − m|N+ν T
)

. (4.2)

The notation |x|K denotes the modulo-K reduction of x, returning a result in
the interval [0, K[. Note that h (lT) = 0 for l < 0 or l ≥ L. The vector w0
collects the noise samples w (k), for k = 0, . . . , N + ν − 1, and s0 is defined in
(2.8).

The contributions from the time-domain pilot symbols (dark grey areas on
figure 4.1) are first subtracted from the received signal. The resulting signal
vector y0 is given by

y0 = z0 −
√

N

N + ν
Hch

(

0(N−ν)×1
ag

)

(4.3)

=

√

N

N + ν
HFHa0 + w0 (4.4)

where the (N + ν) × N channel matrix H is defined as

(H)l,m = h ((l − m) T) , (4.5)

and the notation 0m×n denotes an m × n matrix with all entries equal to zero.
The likelihood function associated with a0 is given by

p (y0|a0 = ω) ∝ exp



− 1
N0

∥

∥

∥

∥

∥

y0 −
√

N

N + ν
HFH

ω

∥

∥

∥

∥

∥

2


 . (4.6)

We assume that the receiver knows H perfectly.

4.1.1 Optimal Detection

In this section, we consider the detection of the transmitted data based on the
observation model (4.4).

4.1.1.1 Uncoded System

Since a frequency selective fading channel is not memoryless, bit by bit de-
cision or symbol by symbol decision are not easily performed because they
respectively comprise the computation of the likelihood function of every bit
of a0 or every component of a0. Therefore the symbol vector a0 is detected
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a) transmitter

b) receiver
+

t

t

block i = 0block i = −1 block i = 1

NT Tν

observation interval for detection

Figure 4.1: Time-domain signal of a KSP-OFDM block a) transmitted signal b)
received signal and observation interval for detection.

at once. The theoretical optimal detector is called the ML sequence detector
(MLSD) [2] and is defined as:

â0 = arg max
ω∈ΩN

Ms

p (y0|a0 = ω)

= arg min
ω∈ΩN

Ms

∥

∥

∥

∥

∥

y0 −
√

N

N + ν
HFH

ω

∥

∥

∥

∥

∥

2

. (4.7)

This detector is called optimal because it minimizes the probability that the
detected symbol vector â0 differs from the transmitted symbol vector a0.

The problem from (4.7) can only be solved by an exhaustive search over
all MN

s possible symbol vectors a0 ∈ ΩN
Ms

, which means that the complexity
grows exponential with the number of carriers. The ML sequence detector is
not suitable in a practical situation, but its performance serves as a benchmark
for practical suboptimal detection algorithms.

4.1.1.2 Coded System

For a general error correcting code, the a posteriori probability of every infor-
mation bit is not easily obtained, so the MAP information bit detector, which
minimizes the BER, can not be applied. The optimal decoder is similar to the
optimal detector for an uncoded system. An exhaustive search is performed
over all 2Nb possible legitimate symbol vectors a0 ∈ ζD . The computational
complexity grows exponentially with the number of information bits.
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For a turbo code, the standard detection algorithm is an iterative algorithm
which approximates the MAP information bit detector [31, 41, 42]. The algo-
rithm is an application of the sum-product algorithm to a factor graph. For
the observation model from (4.4), the factor graph shows short cycles. As a
result the iterative algorithm may not converge or converge to a wrong result.

The detection algorithm for a low-density parity-check (LDPC) code is also
an application of the sum-product algorithm [41, 42]. The algorithm tries to
iteratively estimate the a posteriori probabilities of the coded bits. After the
computation of the MAP estimate of every code bit, the encoding process is
reversed to determine the corresponding information bits. For a systematic
LDPC code, this last step is trivial, since the Nb information bits are a part of
the code word. When the algorithm converges, the performance of the MAP
code bit detector is reached. However, the factor graph corresponding to the
observation model from (4.4) exhibits short cycles. Convergence is not guar-
anteed and even if the algorithm converges, the result still might be wrong.

4.1.2 Zero-Forcing Detection

As convergence of the algorithms for data detection in the previous section is
not assured for the observation model (4.4), we change the observation model
by applying the observation vector y0 from (4.4) first to an equalizer.

The zero-forcing (ZF) detector belongs to the class of the linear receivers.
We speak of a linear receiver when the detection algorithm consists of the
following two steps (for an uncoded system):

• The considered observation vector y0 is multiplied by a N × (N + ν)
matrix G, i.e. the equalizer

y
′
0 = Gy0. (4.8)

• The detection problem is then reduced to finding the symbol vector
which is closest to y

′
0

â0 = arg min
ω∈ΩN

Ms

∥

∥

∥y
′
0 − ω

∥

∥

∥

2
. (4.9)

There exist several criteria to select the optimal matrix G. The ZF detector
wants to remove all the interference between the different data symbols that
is present in y0, so an appropriate choice for the matrix G is given by

GZF =

√

N + ν

N

(

FHHHFH
)−1

FHH . (4.10)

It can be easily verified that GZF indeed removes all the ISI:

y
′
0 = GZFy0

= a0 + GZFw0, (4.11)
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where we have replaced y0 by (4.4) in the second step. We see that the noise
vector w0 is also multiplied by GZF, resulting in a noise vector with a covari-
ance matrix RZF equal to

RZF = E

[

GZFwwHGH
ZF

]

=
N + ν

N
N0

(

FHHHFH
)−1

. (4.12)

The variance of the components of this new noise vector is usually increased
as compared to the variance of the original noise samples w, we call this
effect noise enhancement. As a result, the performance of the ZF detector is
worse than the optimal ML detector from 4.1.1, however the main advantage
is the lower computational complexity of the ZF detector. Since GZF cannot
be precomputed because it needs the inversion of a matrix which depends on
the channel, its computational complexity might still be too high [24].

For the coded case, we see from (4.11) that the likelihood of the symbol
vector a0 is given by:

p
(

y
′
0|a0

)

∝ exp
{

−
(

y
′
0 − a0

)H
R−1

ZF

(

y
′
0 − a0

)

}

. (4.13)

The noise contribution in (4.11) is not white, so it is not easy to obtain the
likelihood of the different symbols a0 (n), n = 0, . . . , N − 1, from (4.13). Nev-
ertheless, we assume that the noise contribution is white and we approximate
its covariance matrix RZF by a diagonal matrix with the diagonal elements
equal to the diagonal elements of RZF. With this approximation, the n-th out-
put of the ZF filter y

′
0 (n) consists of the n-th symbol a0 (n) plus an AWGN

sample with variance equal to (RZF)n,n. The different data symbols are now
decoupled. The likelihood of a0 (n)is now given by

p
(

y
′
0 (n) |a0 (n)

)

∝ exp






−

∣

∣

∣y
′
0 (n) − a0 (n)

∣

∣

∣

2

(RZF)n,n






. (4.14)

The obtained likelihood functions can now be used by the channel decoder to
perform MAP bit detection.

4.2 Frequency-domain Detection

The data detection for CP-OFDM has a very low computational complexity:
The CP is dropped from the received signal and the remaining N samples
are transformed to the frequency domain by applying the FFT. Then per car-
rier single-tap equalization is performed and the data detection reduces to
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symbol-by-symbol detection. The useful part of the N received signal sam-
ples in a CP-OFDM system is given by [25]

yCP =

√

N

N + ν
HCPFHa0, (4.15)

where HCP is the N × N channel matrix:

(HCP)l,m = h (|l − m|N T) . (4.16)

This matrix is a circulant matrix. It is well known that N × N circulant ma-
trices are diagonalized by pre- and post-multiplication with N-point FFT and
IFFT matrices [7, 25]: FHCPFH = diag (H (0) , . . . , H (N − 1)). The elements
H (n) , n = 0, . . . , N − 1 are the N outputs of the N-point FFT of the channel
impulse response h, and are given by

H (n) =
L−1

∑
l=0

h (l) e−j2π nl
N . (4.17)

So applying an FFT to yCP transforms the samples of yCP into samples which
only depend on one data symbol. Equalization is easy and involves only a
simple division.

We want to achieve something similar for our KSP-OFDM system. After
removing the contributions from the guard interval pilot samples from the
received signal, we obtain a system which is in fact a ZP-OFDM system [24].
The received signal is given by (4.4). To convert H into a circulant matrix,
we have to add the last ν samples of y0 to the first ν samples [24, 25]. This
operation can be formulated as follows

y
′
0 = Ωy0, (4.18)

where Ω is defined as:

Ω =
(

IN
Iν

0(N−ν)×ν

)

. (4.19)

The resulting samples y
′
0 are given by

y
′
0 =

√

N

N + ν
HCPFHa0 + w

′
0. (4.20)

We see that the useful part in y
′
0 is similar to (4.15). The noise samples

w
′
0 (n) , n = 0, . . . , N − 1, are slightly colored and have a covariance ma-

trix equal to

R
w

′ = N0ΩΩ
H . (4.21)
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The received signal samples y
′
0 are transformed to the frequency domain,

which yields:

ỹ0 = Fy
′
0

=

√

N

N + ν
H̃a0 + w̃0, (4.22)

where H̃ and w̃ are the channel matrix and noise vector respectively, which
are defined as

H̃ = FHCPFH

= diag (H (0) , . . . , H (N − 1)) (4.23)

w̃0 = Fw
′
0 (4.24)

The components of w̃0 are zero mean and have a covariance matrix Rw̃ which
is defined as

(Rw̃)n1,n2
= N0

(

δn2−n1 +
1
N

ν−1

∑
k=0

ej2π
(n2−n1)k

N

)

. (4.25)

The optimal detector based on the observations ỹ0 is defined as

â0 = arg min
ω∈ΩN

Ms

(

ỹ0 −
√

N

N + ν
H̃ω

)H

(Rw̃)−1

(

ỹ0 −
√

N

N + ν
H̃ω

)

. (4.26)

The optimal detector does not reduce to symbol-by-symbol detection because
the noise samples w̃ are correlated. As a consequence this minimization prob-
lem can only be solved by an exhaustive search over all MN

s possible symbol
vectors a0 ∈ ΩN

Ms
, which comes with a high computational cost, as we have

already mentioned in subsection 4.1.1.
However, the optimization problem of (4.26) can be simplified by noting

that the non-diagonal elements of Rw̃ are much smaller than the diagonal
elements, so we can approximate Rw̃ by a diagonal matrix:

Rw̃ ≈ N0
N + ν

N
IN . (4.27)

When we substitute Rw̃ by its approximation in (4.26), the detection problem
reduces to N symbol-by-symbol detection problems

â0 (n) = arg min
ω∈ΩMs

∣

∣

∣

∣

∣

ỹ0 (n) −
√

N

N + ν
H (n) ω

∣

∣

∣

∣

∣

2

, n = 0, . . . , N − 1. (4.28)

For a coded system, we can again assume that the noise samples w̃ (n),
n = 0, . . . , N − 1, are white and approximate the covariance matrix Rw̃ by the
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Figure 4.2: BER as a function of Eb/N0 , N = 8, ν = 4, L = 4.

diagonal matrix from (4.27). The likelihood of a0 (n) based on the observation
ỹ0 (n) is given by

p (ỹ0 (n) |a0 (n)) ∝ exp






−

∣

∣

∣ỹ0 (n) −
√

N
N+ν H (n) a0 (n)

∣

∣

∣

2

N+ν
N N0






.

Similar, as for the ZF detector, these likelihoods can now be used by the
decoder to obtain the a posteriori probabilities of the code bits or information
bits and MAP bit detection can be performed.

4.3 Performance Comparison and Discussion

4.3.1 Uncoded System

In this section we will illustrate the performance of the different detectors
which were proposed in the previous sections.

To give an idea of the differences in performance between the various
detection algorithms, we have simulated a simple KSP-OFDM system with
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Figure 4.3: Influence of L on the BER of the MLSD, N = 8, ν = 4.

N = 8 carriers and a guard interval consisting of ν = 4 samples. The trans-
mitted data symbols are randomly generated BPSK symbols. The channel is
a frequency selective Rayleigh fading channel consisting of 4 symbol spaced
taps (τl = lT, l = 0, . . . , 3, L̃ = 4) with equal variance. The impulse response
of the cascade of transmit pulse, channel impulse response and receiver filter
is given by

h (t) =
L̃−1

∑
l=0

h̃l g (t − lT) . (4.29)

Because g (t) is a Nyquist pulse, the samples of the channel impulse response
are given by h (kT) = h̃k, k = 0, . . . , 3 and L is equal to the number of taps,
i.e L = L̃ = 4.

Figure 4.2 shows the BER versus the signal-to-noise ratio (SNR). As ex-
pected, the MLSD algorithm results in the lowest BER. The ZF algorithm
gives rise to some degradation compared to the optimal detector, but still
has a performance which is close to the BER of MLSD. Only for high values of
Eb/N0, the degradation can become significant. The FD detection algorithms
result in a somewhat worse BER performance compared to the TD detection
methods. The low complexity detection algorithm reaches the performance of
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Figure 4.4: BER for coded and uncoded transmission as a function of Eb/N0,
N = 1024, ν = 100, L = 50.

the optimal FD algorithm. So instead of using the optimal FD detector, the
symbol-by-symbol FD detector is a valuable alternative with only a negligible
loss in performance.

For high SNR, the BER has a constant slope, which is determined by the
diversity of the considered data detection algorithm. The multipath diver-
sity provided by the frequency selective fading channel is lost in the FD [24],
while the MLSD achieves the maximum diversity which is equal to L in this
example (see the appendix at the end of this chapter for more details, con-
cerning the diversity order of the MLSD). The ZF detector introduces some
noise enhancement and loses some of the available diversity.

Figure 4.3 illustrates the difference in diversity between the optimal TD de-
tection algorithm and the optimal FD detection algorithm. We have simulated
a channel with 2, 3 and 4 taps respectively, which means that L varies from 2
to 4. The BER of the optimal FD algorithm does not depend on the value of
L and has a diversity equal to 1, while the BER of the MLSD decreases as L
increases.
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4.3.2 Coded System

To illustrate the different detectors in a coded system, we have simulated a
more realistic KSP-OFDM system with N = 1024 carriers, which are all used
as data carriers. The guard interval consists of ν = 100 samples. The channel
has a similar impulse response as the channel in the previous section, but
now the number of paths L is equal to 50. The considered channel code is a
turbo code that consists of the parallel concatenation of two identical 16-state
rate-1/2 recursive systematic convolutional codes with generator sequences
(37)8 and (21)8 (in octal notation) through a uniform interleaver of length
Nb = 1019 bits. The parity bits are punctured so that the length of 1 code
word Nc is equal to 2048 bits. The considered symbol constellation is a 4-
QAM constellation, which means that 1 code word is mapped on Nd = 1024
symbols, or in other words, 1 OFDM block contains exactly 1 code word.

Due to the high computational complexity of the optimal detector, it is not
possible to show some numerical results for this detector. Only the results
for the ZF and the frequency detectors are shown. To illustrate the error
correcting capabilities of the considered turbo code, we also show the results
for an uncoded system. The error correcting code results in a large gain,
regardless which detection method is applied. These results illustrate that the
approximations made about the noise to obtain the likelihoods of the different
data symbols in 4.1.2 4.2, are valid. In contrast with the uncoded case, there
is not much difference between the ZF detector and the FD detector for the
considered range of Eb/N0 values. There is a small degradation of less than
0.5 dB though for the FD detector.

4.4 Chapter Summary

In this chapter we have discussed several data detection algorithms. First we
have shown that the optimal detection algorithm, i.e. MLSD, has a very high
computational complexity. To tackle this problem we have proposed some al-
ternatives. The first candidate was the ZF detector, which is a linear receiver
that operates in the time domain. Compared to the MLSD, the ZF combines a
lowered computational complexity with some loss in performance, although it
still might be too complex. So, we have continued our search for low complex-
ity alternatives. By transforming the received signal to the frequency domain,
the multipath interference is removed and symbol-by-symbol detection can be
performed. This comes at a price, though: the available multipath diversity
can not be exploited, while the MLSD has full diversity. There is a trade off
between complexity and performance.

For a coded transmission, the results show that the ZF detector and FD
detector are valuable alternatives for the computationally prohibitive optimal
detector. The difference in performance between the ZF detector and the FD
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detector is not as explicit as in the uncoded case. Although there is a small
gap between the BER performances of both detectors, with the ZF detector
yielding the better performance.
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4.A Diversity of the ML Sequence Detector

In this appendix we are going to compute the diversity order of the ML se-
quence detector. In terms of the BER, the diversity order is defined as [3]
the increase in the slope of the BER versus Eb/N0 curve, compared to the BER
curve of a system with no diversity where the BER is assymptotically inversely
proportional to Eb/N0. The BER is upper bounded by the union bound [2, 3]
based on the pairwise error probability (PEP). So the diversity of the MLSD
can be determined by computing the (worst case) PEP between two arbitrary
symbol vectors. The probability that the likelihood of the symbol vector a

′
0 is

larger than the likelihood of the symbol vector a0, when the symbol vector a0
is originally transmitted and all the symbol vectors are equiprobable, is given
by

p
(

a0 → a
′
0

∣

∣

∣ h
)

= Q

(
√

N

N + ν

1
2N0

∥

∥HFH
(

a0 − a
′
0

)∥

∥

2

)

(4.30)

where the function Q (x) is defined as [2]

Q (x) =
1√
2π

ˆ ∞

x
exp

(

−u2

2

)

du. (4.31)

This result still depends on the channel impulse response. In its current form,
it is not that easy to average the PEP over the channel parameters. Therefore
we are going to rewrite the argument of the Q-function and replace the Q-
function by an appropriate upper bound. First we define s̄d as the IFFT of the

difference between the symbol vectors a0 and a
′
0, i.e. s̄d = FH

(

a0 − a
′
0

)

, and

the (N + ν) × L Toeplitz matrix S as

(S)l:l+N−1,l =
1√
Es

s̄d l = 0, . . . , L − 1. (4.32)

The samples from the channel impulse h response are given by (2.25), which
yields in vector format

h = Gh̃ (4.33)

where the vector h̃ collects the complex path gains h̃l , l = 0, . . . , L̃ − 1 and
the L × L̃ matrix G is defined as

(G)k,l = g (kT − τl) . (4.34)

With these definitions the PEP can be expressed as

p
(

a0 → a
′
0

∣

∣

∣ h
)

= Q

(
√

1
2

N

N + ν

Es

N0
h̃

H
GHSHSGh̃

)

. (4.35)
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The Q-function can be upper bounded by its Chernoff bound [2] :

Q (x) ≤ 1
2

e−
x2
2 , (4.36)

which results in the following upper bound for the PEP from (4.30):

p
(

a0 → a
′
0

∣

∣

∣
h
)

≤ 1
2

exp

(

− N

N + ν

Es

N0

h̃
H

GHSHSGh̃

4

)

. (4.37)

We assume that the path delays are constant so that we only have to average
over the complex path gains. The components of the vector h̃ are i.i.d. com-
plex Gaussian random variables with zero mean and variance equal to 1/L̃.
To simplify things, we express the vector h̃ as a unitary transformation of the
vector h̃

′
:

h̃ = Vh̃
′

(4.38)

where V is a unitary matrix. The components of the vector h̃
′

have the same
statistical properties as the components of h̃. Now we still have to make
an appropriate choice for V. The matrix GHSHSG can be expressed as its
eigendecomposition:

GHSHSG = UΥUH (4.39)

where U collects the eigenvectors and Υ is a diagonal matrix with the eigen-
values υl , l = 0, . . . , L̃ − 1, on its diagonal. Because GHSHSG is a Hermitian
matrix, the matrix U is a unitary matrix so we choose V equal to U. Substitut-
ing h̃ by (4.38) in (4.37) results in
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(4.40)

and averaging this result over the distribution of h̃
′

yields
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where σ2
l =

(

L̃ + N
N+ν

Es
N0

υl
4

)−1
.

The diversity is then given by the total number of non zero eigenvalues υl ,
which corresponds to the rank of the matrix GHSHSG. The rank of the matrix
G is equal to L̃ while the rank of the matrix S is always equal to L no matter
which symbol vectors a0 and a

′
0 we consider. Since the number of resolvable

paths L̃ is always smaller than L, we can conclude that the matrix GHSHSG

has full rank and the diversity of the MLSD is equal to L̃.
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5
Parameter Estimation:
General Concepts

In this chapter we will give a short introduction to the general concepts about
parameter estimation. Instead of averaging the probability function over the
unknown parameters, which is in general a complex operation, the receiver
makes an estimate of the unknown parameters and replaces the unknown
parameters in the probability function by the obtained estimates, assuming
that those estimates are equal to the true values of the unknown parameters.

First of all, data aided parameter estimation is mentioned. An important
aspect of data aided estimation algorithms is the insertion of pilot symbols
in the data stream which has to be transmitted. We show some examples of
possible pilot transmission schemes.

When the possibilities of the pilot symbols are exhausted to obtain esti-
mates of the unknown parameters, one can resort to decision aided estima-
tion algorithms. This class of algorithms consists of two subcategories. The
first category consists of the hard decision aided algorithms. In this case, after
an initial estimation of the unknown parameters, the detected data symbols
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are considered as known and are used as extra pilot symbols to improve the
estimates of the unknown parameters. With these new ’pilot symbols’, usu-
ally more accurate estimates of the unknown parameters can be obtained. A
second class of decision aided estimation algorithms, consists of estimation
algorithms that use some soft information about the unknown data symbols.

5.1 Pilot Aided Estimation

A first class of estimation algorithms makes use of known training symbols
which are inserted in the data stream that has to be transmitted. Those algo-
rithms are called pilot aided estimation algorithms. In a KSP-OFDM system, a
part of the training symbols is transmitted during the guard interval between
two adjacent OFDM blocks, i.e. the time domain pilots and the other part is
transmitted on some of the data carriers, i.e. the frequency domain pilots. The
receiver knows which pilot symbols have been transmitted by the transmitter
and tries to exploit this knowledge to extract an estimate of the unknown pa-
rameters. This type of algorithm is usually easy to implement and exhibits
good performance provided that the number of transmitted pilot symbols is
high enough and that the placement of the pilots in the frequency domain is
well thought-out.

The downside of this approach is the fact that the transmission of the pilot
symbols costs bandwidth and consumes power. The main purpose of a com-
munication system is to transmit unknown data symbols to the receiver, so we
want to keep the part of the available resources that is spent on the transmis-
sion of pilot symbols as low as possible. Especially in low SNR environments
providing good parameter estimates might be impossible without wasting to
much resources at transmitting pilot symbols.

Since there are also data symbols available, which are not considered for
the estimation process, a pilot aided estimation algorithm is not optimal in
the sense that it does not make use of all the available information.

5.2 Pilot Symbol Arrangement

The placement of the time domain pilot symbols is straightforward and has
been discussed already in chapter 2. After every OFDM block a total number
of ν pilot symbols are transmitted.

In the frequency domain we have more possibilities to place the pilot sym-
bols. Usually the number of pilot carriers is much smaller than the total
number of carriers, so there are a lot of possibilities to choose which carriers
are data carriers and which carriers are designated for the transmission of pi-
lot symbols. Furthermore the pilot symbol arrangement in frequency domain
may vary per transmitted OFDM block. In this work, we assume that a total
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number of M pilot symbols are transmitted during 1 OFDM block + guard
interval, which means that besides the ν pilot symbols in the guard interval,
there are also M − ν pilot symbols which are transmitted on the pilot carriers.
The set of carrier indices is divided in two subsets:

Sp = {α0, . . . , αM−ν−1} , (5.1)

which is the set of pilot carriers, and

Sd = {β0, . . . , βN+ν−M−1} , (5.2)

which contains the data carriers.
In this work we consider two possible pilot structures, e.g. the comb-type

pilot structure [43, 44] and a random pilot structure. For the comb-type pilot
structure, the pilot carrier positions are given by

Sp =
{

α0 + mλpc| m = 0, . . . , M − ν − 1
}

, (5.3)

where λpc is the distance between two pilot carriers expressed in number of
carriers and defined as

λpc =

⌊

N

M − ν

⌋

, (5.4)

where bxc is the floor function x, yielding the largest integer which is smaller
than x. The position of the first pilot carrier α0 is chosen from {0, . . . , ρ},
where ρ is given by

ρ = N − 1 − (M − ν − 1) λpc. (5.5)

In the random pilot structure, as the name already suggests, the pilot carrier
positions are randomly selected. Figure 5.1 illustrates the two considered pilot
structures.

We can rewrite the time domain samples of the i-th block si (see also 2.8)
as the sum of a vector sp, which collects the contributions from both the pilot

symbols in time and frequency domain, and a vector s
(i)
d , which consists of

the contributions from the unknown data symbols:

si = sp + s
(i)
d . (5.6)

The contribution of the pilot symbols sp is given by:

sp =

√

N

N + ν

(

FH
p ac

ag

)

, (5.7)

where Fp is a (M − ν) × N matrix which consists of a subset of rows of
the FFT matrix F corresponding to the set Sp of pilot carriers. The vector

ac = (ac (0) , . . . , ac (M − ν − 1))T collects the frequency domain pilot sym-
bols, while the vector ag consists of the time domain pilot symbols and is
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Figure 5.1: The comb-type pilot scheme (left) and the random pilot scheme
(right).

defined in subsection 2.1.4. The contribution of the data symbols from the i-th

OFDM block s
(i)
d is defined as:

s
(i)
d =

√

N

N + ν

(

FH
d a

(i)
d

0ν×1

)

. (5.8)

The matrix Fd is a (N − M + ν) × N matrix consisting of a subset of rows
of the FFT matrix F corresponding to the set Sd of data carriers. The vector

a
(i)
d =

(

a
(i)
d (0) , . . . , a

(i)
d (N − M + ν − 1)

)

contains the data symbols from

the i-th OFDM block.

5.3 Decision Aided Estimation

In general, a decision aided estimation algorithm is an algorithm that exploits
some information about the unknown data symbols from the detector or the
decoder to perform the estimation process [45, 46]. It is expected that the
estimator can benefit from the symbol information provided by the symbol
detector or decoder.

A decision aided estimation algorithm is an iterative algorithm that usu-
ally starts from an initial estimate of the parameters obtained from a pilot
aided initialization algorithm. This initial estimate is then used by the symbol
detector / decoder to obtain some information about the unknown data sym-
bols. The decision aided algorithm iterates between improving the parameter
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estimation exploiting the pilot symbols and the data symbol information pro-
vided by the detector / decoder, and updating the data symbol information
by applying the improved parameter estimates. This procedure is repeated
several times until convergence has reached.

Now the question remains which information about the unknown data
symbols is fed back to the parameter estimation unit. There exist several pos-
sibilities. The most straightforward decision aided estimation algorithm uses
the hard decisions on the data symbols which are provided by the detector /
decoder and assumes that they are correct. So the data symbols are assumed
to be known by the estimation unit and are considered as extra pilot sym-
bols. The extension of the pilot aided estimation algorithms that are applied
to obtain the initial parameter estimates, to estimation algorithms that also
consider the unknown data symbols, is straightforward.

In a second class of decision aided estimation algorithms the detector /
decoder does not feed the estimation unit with hard decisions on the data
symbols, but provides a measure about the symbol knowledge after detection
/ decoding [46]. This measure can be for example the a posteriori probabilities
of the data symbols. This information about the unknown data symbols is
called soft information. The EM algorithm which estimates the unknown
parameters and considers the unknown data symbols as nuisance parameters,
is a well known decision aided estimation algorithm which makes use of soft
information.

5.3.1 Practical Implementation for Coded Systems: Embed-
ded Estimation

Every iteration of the estimation process, the marginal a posteriori probabil-
ities of the data symbols need to be computed to obtain the necessary hard
decisions or soft information. When the computation of these marginal a pos-
teriori probabilities is performed according to the sum product algorithm, as
is the case with turbo codes and LDPC codes, then this operation itself is
already iterative. So in theory, for every iteration of the estimator, the de-
coder needs to perform enough decoding iterations until convergence for the
a posteriori probabilities is reached. This might result in a high computational
complexity and makes it almost impossible to implement [47, 48].

To keep the number of computations tractable, we resort to the concept
of embedded estimation [31, 39, 47, 48]. After every update of the estimates
of the unknown parameters, the decoder performs only a single iteration, but
the state information of the decoder is not reset but kept for the next itera-
tion. So after every application of the estimation process, the detector is not
reinitialized but starts from the state information from the previous step. The
iterations from the estimator and the iterations from the sum product algo-
rithm are intertwined, or in other words, the estimation process is embedded
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in the decoding process. By doing so, the computational load is considerably
reduced.

Note that performing only one decoding iteration at each estimation itera-
tion might result in very coarse approximations of the actual marginal symbol
a posteriori probabilities, particularly in the first estimation iterations. Fur-
thermore, the decoder is not reinitialized every iteration, which means that
the computed a posteriori probabilities depend on all the parameter estimates
from previous iterations. This means that when the EM algorithm is embed-
ded in the decoding process, it is no longer an EM algorithm, because the
EM algorithm requires that the a posteriori probabilities used in the E-step,
only depend on the parameter estimates from the M-step from the previous
estimation iteration [31].

5.4 Conclusion

In this chapter, we have discussed some general approaches to perform pa-
rameter estimation. The most conventional approach is to obtain estimates
based on the transmission of pilot symbols. In a KSP-OFDM system, the pilot
symbols consist of time domain pilot symbols which are transmitted during
the guard interval and frequency domain pilot which are transmitted on the
pilot carriers. We have mentioned two possible pilot symbol structures: the
comb-type pilot structure and the random pilot structure. The major draw-
backs of data aided estimation are the inefficient use of energy and bandwidth.

To improve the quality of the obtained estimates, more advanced algo-
rithms exist which exploit information about the unknown data symbols pro-
vided by the detector / decoder. They form the class of decision aided esti-
mation algorithms. The decision aided algorithms typically iterate between
a parameter estimation process and a detection / decoding process. For the
more advanced coding schemes (turbo codes, LDPC codes, ...), the decoding
process itself is already an iterative algorithm. To reduce the computational
complexity of the decision aided estimation algorithms, the concept of em-
bedded estimation is introduced. The estimation iterations and the decoding
iterations are intertwined: after every estimation iteration, only one decoding
operation is performed, while saving the state information of the decoder for
the next iteration.
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6
Channel Estimation

In this chapter we investigate several algorithms to estimate the channel im-
pulse response. After the problem statement, we start with the CRB, which
gives us a benchmark for the achievable performance in terms of the MSE.
Secondly, we review the state of the art by discussing some existing channel
estimation methods which can be applied for a KSP-OFDM system.

In the remaining part of this chapter we introduce our proposed channel
estimators, starting with a pilot aided channel estimator which operates in
the frequency domain. The quality of the estimate is then further improved
by applying an iterative decision aided estimator. First hard decision aided es-
timation is introduced both in the time domain and in the frequency domain.
Then a soft decision aided estimator based on the EM algorithm is proposed.

Finally the different estimators are compared with the CRB and the state-of
the-art by means of some numerical results for the MSE and the BER.
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6.1 Problem Statement

We consider a KSP-OFDM system with N carriers and a guard interval of
length ν. Besides the time domain pilot symbols, there are also M − ν pilot
carriers available, so per OFDM block + guard interval, there are M pilot
symbols transmitted.

The OFDM blocks are transmitted over a frequency selective channel with
an impulse response h, consisting of L taps. We assume that the timing off-
set and frequency offset are perfectly known and compensated. The N + ν

received signal samples corresponding to one block are given by (4.1):

z = Hchs + w, (6.1)

where we have dropped the block index for notational convenience. For the
data detection, the receiver needs to know the matrix Hch. Since the compo-
nents of Hch are all samples from the channel impulse response h, it suffices
to estimate h.

First of all, the received signal vector z must be rewritten in a more conve-
nient form:

z = Hch
(

sp + sd
)

+ w

= Bh + HFH
d ad + w, (6.2)

where the time domain pilot vector sp and the time domain data vector sd are
given by (5.7) and (5.8) respectively. The (N + ν)× L pilot matrix B is defined
as:

(B)k,l = sp
(

|k − l|N+ν

)

. (6.3)

Now, the problem consists of obtaining an estimate of h, based on the received
signal z (6.2), which still depends on the unknown data symbols ad.

In the literature, several channel estimation techniques have been pro-
posed [27,49–52]. It turns out that channel estimation in KSP-OFDM is harder
than in CP-OFDM and ZP-OFDM, because of the combination of frequency-
domain pilots and time-domain pilots. ML channel estimation in KSP-OFDM
is very complex and suboptimal estimation techniques must be used. The al-
gorithms from [27,49,50] assume that the unknown data symbols are Gaussian
distributed. In [27], a suboptimal ML-based channel estimation algorithm is
proposed. However, [27] assumes that the autocorrelation matrix of the dis-
turbance (containing contributions from the noise, the data symbols and the
channel) is known. Hence, before this channel estimator can be used, first
the autocorrelation matrix must be estimated from the received signal. Fur-
ther, even if the autocorrelation matrix is perfectly known, the resulting MSE
shows an error floor at high SNR, indicating that the presence of the unknown
data symbols disturbs the channel estimation. In [50] channel estimation for
KSP transmission over stationary frequency-selective channels is considered,
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which is a special case of the situation considered in [27]. In [51], the signals
transmitted on the pilot carriers are selected such that the last IFFT outputs
correspond to the pilot symbols from the KSP sequence. Before the OFDM
block, the same samples are transmitted, so we can consider this situation
as a special case of CP-OFDM. An equalizer is then trained based on the re-
ceived KSP sequences of several consecutive blocks. The transmitted signals
on the pilot carriers also contain a contribution of the unknown data sym-
bols, so only the KSP sequence in the time domain can be used to perform
synchronization. For TDS-OFDM, several channel estimators are proposed,
e.g. [53–55]. Since there are no pilot carriers available in a TDS-OFDM sys-
tem, it is hard to perfectly separate the pilot symbol contributions from the
data symbol contributions. As a result, the existing algorithms all estimate
the channel impulse response in an iterative way, where an initial estimate of
the channel impulse response is obtained by exploiting the presence of the
pseudo noise sequence in the guard interval.

In the next sections we will introduce some possible solutions to tackle the
presence of the unknown data symbols. First of all, we will start by deriving
a CRB, which serves as a lower bound for the MSE of the proposed channel
estimators.

6.2 Cramer-Rao Bound

This part is based on the paper from Steendam et al. [52]. The presence of the
unknown data symbols in (6.2) makes it not straightforward to obtain the CRB
of the estimation of h. Therefore, we assume that the vector FH

d ad is Gaussian
distributed with zero mean. This approximation is good when the number
of data carriers N + ν − M is large. Typically, the number of pilot carriers is
small, so we can say that the approximation is especially reasonable for large
block sizes. The obtained CRB is called the Gaussian CRB (GCRB). It has been
shown (see [56]) that the GCRB is the worst case CRB and so the GCRB is an
upper bound for the CRB which considers the true distribution of FH

d ad. We
define the vector w̄ as the total noise vector:

w̄ = HFH
d ad + w (6.4)

We define the vector θ as

θ =

(

<{h}
= {h}

)

. (6.5)

The Fisher information matrix for θ is given by (3.10):

Jθ = Ez|θ

[

(

∂

∂θ
ln p (z|h)

)(

∂

∂θ
ln p (z|h)

)T
]

. (6.6)
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We assume that sd = FH
d ad is zero-mean Gaussian distributed, so z given h is

Gaussian distributed with autocorrelation matrix given by

Rw̄ = Es
N

N + ν
HFH

d FdHH + N0IN+ν. (6.7)

Hence the log likelihood function of h is equal to

ln p (z|h) = C − 1
2

ln det Rw̄ − (z − Bh)H R−1
w̄ (z − Bh) . (6.8)

The autocorrelation matrix Rw̄ depends on the components of the parameter
vector θ, so we need the derivatives of det Rw̄ and R−1

w̄ with respect to <{h}
and ={h} to obtain the Fisher information matrix. These derivatives are in
general difficult to obtain, so the computation of the GCRB is in general very
complex. To simplify things, the contribution of the data symbols HFH

d ad
can be approximated by F̃H̃ad, where the (N + ν) × (N + ν − M) matrix F̃ is
given by:

(

F̃
)

k,n =
1√
N

ej2π
kβn
N , βn ∈ Sd (6.9)

where Sd is the subset of data carriers (5.2), H̃ is a diagonal matrix with
diagonal elements H (βn):

H (βn) =
L−1

∑
l=0

h (l) e−j2π
lβn
N . (6.10)

Basically, this approximation comes down to neglecting the transient of the
contribution from ad at the edges of the received block z. Especially for large
blocks when the duration of an OFDM block is much larger than the guard
interval, i.e. N � ν, this approximation is valid.

Note that H̃ad contains only N + ν − M < N + ν components, so it is
possible to find an invertible linear transform T that transforms z into an

(N + ν)× 1 vector z′ =
[

zT
1 zT

2

]T
, where z1 is a (N + ν − M)× 1 vector which

depends on the transmitted data symbols and z2 is a M × 1 vector which
is independent of ad. Furthermore, an invertible linear transform of the ob-
servation vector z does not affect the GCRB. The transform can be found by
performing a QR decomposition of the matrix F̃. The QR decomposition of
a (N + ν) × (N + ν − M) matrix factors the considered matrix as a product
of a unitary (N + ν) × (N + ν) matrix and an upper triangular (N + ν) ×
(N + ν − M) matrix of which the M bottom rows consist entirely of zeros.
The matrix F̃ can be written as

F̃ = QV = Q

(

U

0M×(N+ν−M)

)

, (6.11)

where Q is a unitary (N + ν) × (N + ν) matrix and U is a (N + ν − M) ×
(N + ν − M) triangular matrix. The matrix of the desired linear transform is

62



6.2. CRAMER-RAO BOUND

now given by T = Q−1 = QH . Applying this transform to the observation
vector z yields

z′ = Tz =

(

z1
z2

)

=

(

B1
B2

)

h +

(

U

0

)

H̃ad +

(

w1
w2

)

. (6.12)

The noise samples
(

wT
1 , wT

2

)T
= Tw have the same mean and variance as the

original noise samples w, because T is a unitary matrix. The transformation
of the total noise vector w̄ is denoted as w′ and has an autocorrelation matrix
Rw′ which is given by

Rw′ = TRw̄TH =

(

R1 0

0 R2

)

(6.13)

where R1 and R2 are respectively defined as

R1 = Es
N

N + ν
UH̃H̃HUH + N0IN+ν−M (6.14)

R2 = N0IM. (6.15)

Since the autocorrelation matrix R
w

′ is a block diagonal matrix, the observa-
tion vectors z1 and z2 given h are statistically independent. As a result, the
Fischer information matrix is given by Jθ = J1 + J2, where (with i = 1, 2)

Ji = Ezi|θ

[

(

∂

∂θ
ln p (zi|h)

)(

∂

∂θ
ln p (zi|h)

)T
]

, (6.16)

ln p (zi|h) = C − 1
2

ln det Ri − (ri − Bih)H R−1
i (ri − Bih) . (6.17)

The determination of J1 is based on the observation z1 only which is given by

z1 = B1h + UH̃ad + w1. (6.18)

One notices immediately that the autocorrelation matrix R1 of the contribution
of the data symbols and the noise vector depends on h. As a result, we
need the derivatives of det R1 and (R1)

−1 with respect to h. We start with
expressing R1 in a more convenient form, using the following approximation:
when the number of pilot carriers is much smaller than the total number of
carriers, i.e. M − ν � N, the matrix product F̃F̃H can be approximated by the
identity matrix IN+ν. Under this assumption, R1 can be rewritten as

R1 = T1F̃∆F̃HTH
1 , (6.19)

where T1 is given by the first N + ν − M of the linear transformation matrix
T, and ∆ is a diagonal matrix with elements λn defined as

λn = N0 +
N

N + ν
Es |H (βn)|2 , βn ∈ Sd. (6.20)
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The matrix T1F̃ is a square matrix, so R1 is the product of square matrices.
The determinant of the product of three square matrices A, B and C is given
by det ABC = det A · det B · det C . Using this property, ln det R1 can be
expressed as

ln det R1 = ln det
(

T1F̃F̃HTH
1

)

+ ∑
βn∈Sd

ln λn. (6.21)

The matrix F̃ has a rank equal to N + ν − M, so the product T1F̃ is a full-rank
matrix. Using this last result, the inverse of R1 is computed as

(R1)
−1 =

(

F̃HTH
1

)−1
∆
−1 (T1F̃

)−1 . (6.22)

The derivatives of ln det R1 and (R1)
−1 are easily obtained using (6.21) and

(6.22). For the interested reader, more details about the computation of these
derivatives and the final expressions for the Fisher information matrix can be
found in appendix 6.A. The resulting Fisher information matrix J1 can be
expressed as a block matrix containing 4 L × L parts:

J1 =

(

J1,a J1,b
JT

1,b J1,c

)

, (6.23)

where the parts J1,a, J1,b and J1,c are given by

(J1,a)l,l ′ = 2<
{

(

BH
1 R−1

1 B1

)

l,l ′

}

+4



<{ηl}<
{

η
l
′
}

+ ∑
βn∈Sd

<
{

γl,n
}

<
{

γ
l
′ ,n

}

λ2
n



 (6.24)

(J1,b)l,l ′ = −2=
{

(

BH
1 R−1

1 B1

)

l,l ′

}

−4



<{ηl}=
{

η
l
′
}

+ ∑
βn∈Sd

<
{

γl,n
}

=
{

γ
l
′ ,n

}

λ2
n



 (6.25)

(J1,c)l,l ′ = 2<
{

(

BH
1 R−1

1 B1

)

l,l ′

}

+4



={ηl}=
{

η
l
′
}

+ ∑
βn∈Sd

=
{

γl,n
}

=
{

γ
l
′ ,n

}

λ2
n



 . (6.26)

The parameters γl,n and ηl are defined as

γl,n =
N

N + ν
EsH∗ (βn) e−j2π

lβn
N (6.27)

ηl = −1
2 ∑

βn∈Sd

γl,n

λn
. (6.28)

64



6.2. CRAMER-RAO BOUND

The computation of J2 is based only on the observation vector z2, which is
given by

z2 = B2h + w2. (6.29)

Obtaining J2 is much more straightforward as the determination of J1; the
details can be found in appendix 6.B, which yields for the Fisher Information
matrix J2:

J2 =
2

N0

(

<
{

BH
2 B2

}

−=
{

BH
2 B2

}

=
{

BH
2 B2

}

<
{

BH
2 B2

}

)

. (6.30)

The total Fisher information matrix Jθ, which is based on both the obser-
vation vectors z1 and z2 is given by

Jθ = J1 + J2

=

(

Jθ,a Jθ,b
JT

θ,b Jθ,c

)

(6.31)

where the different parts Jθ,a, Jθ,b and Jθ,c are defined as

(Jθ,a)l,l ′ = 2<
{

(

BHR−1
w̄ B

)

l,l ′

}

+4



<{ηl}<
{

η
l
′
}

+ ∑
βn∈Sd

<
{

γl,n
}

<
{

γ
l
′ ,n

}

λ2
n



 (6.32)

(Jθ,b)l,l ′ = −2=
{

(

BHR−1
w̄ B

)

l,l ′

}

−4



<{ηl}=
{

η
l
′
}

+ ∑
βn∈Sd

<
{

γl,n
}

=
{

γ
l
′ ,n

}

λ2
n



 (6.33)

(Jθ,c)l,l ′ = 2<
{

(

BHR−1
w̄ B

)

l,l ′

}

+4



={ηl}=
{

η
l
′
}

+ ∑
βn∈Sd

=
{

γl,n
}

=
{

γ
l
′ ,n

}

λ2
n



 , (6.34)

where we have used the fact that

BH
1 R−1

1 B1 +
1

N0
BH

2 B2 =
(

BH
1 BH

2

)

R−1
w

′

(

B1
B2

)

= (TB)H
(

TRw̄TH
)−1

TB

= BHR−1
w̄ B. (6.35)

The channel impulse response vector is a linear function of the parameter
vector θ: h = <{h} + j={h} =

(

I jI
)

θ = Cθ. As a result, the GCRB on
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the estimate of h can be expressed as

E

[

(

h − ĥ
) (

h − ĥ
)H
]

= CE

[

(

θ− θ̂
) (

θ− θ̂
)H
]

CH (6.36)

≥ CJ−1
θ

CH (6.37)

To gather some insight about the obtained results, we are going to look at the
behavior of the GCRB for low and high values of Es/N0. From the definitions
of λn, γl,n and ηl , we can see that for (very) low values of Es/N0, the second
and third terms in (6.108)-(6.110) are proportional to (Es/N0)

2, whereas the
first terms in (6.108)-(6.110) are proportional to Es/N0. Furthermore, the au-
tocorrelation matrix Rw̄ can be approximated as Rw̄ = N0IN+ν. As a result
the Fischer Information matrix Jθ reduces to

Jθ,low =
2

N0

(

<
{

BHB
}

−=
{

BHB
}

=
{

BHB
}

<
{

BHB
}

)

. (6.38)

It is easily shown that the inverse of Jθ,low is given by

J−1
θ,low =

N0

2





<
{

(

BHB
)−1
}

−=
{

(

BHB
)−1
}

=
{

(

BHB
)−1
}

<
{

(

BHB
)−1
}



 . (6.39)

The GCRB for low Es/N0 is then given by

GCRBlow = N0tr
(

(

BHB
)−1

)

. (6.40)

The same result can be obtained by immediately neglecting the contribution
of the unknown data symbols in the observation vector z (6.2). This GCRB still
depends on the specific values of the transmitted pilot symbols. The averaging
of GCRBlow is carried out in appendix 6.C and yields

Eac,ag [GCRBlow] ≥ L

M

N + ν

N

N0

Es
. (6.41)

Hence, GCRBlow is inversely proportional to the number of pilot symbols M.
For high values of Es/N0, the second and third terms (6.108)-(6.110) are

independent of Es/N0. When we express the first term as

BHR−1
w̄ B = BH

1 R−1
1 B1 +

1
N0

BH
2 B2, (6.42)

we see that BH
1 R−1

1 B1 also becomes independent of Es/N0 and the second
term is proportional to Es/N0. Hence the Fisher information matrix Jθ is
dominated by 1

N0
BH

2 B2 for high values of Es/N0. As a result, the high SNR
limit of the GCRB is given by

GCRBhigh = N0tr
(

(

BH
2 B2

)−1
)

. (6.43)
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Note that this GCRBhigh is equal to the GCRB corresponding to the observa-
tion z2 only. We can conclude that for high Es/N0, the observation z1, which
depends on the unknown data symbols, does not contain much additional
information about the channel impulse response compared to the observation
z2.

In the special case that an OFDM block consists entirely of pilot symbols,

the GCRB is exactly equal to GCRBlow = N0tr
(

(

BHB
)−1
)

and averaged over

the pilot symbols, this all pilot GCRB is lower bounded by

Eac,ag

[

GCRBallpilot

]

≥ L

N

N0

Es
. (6.44)

This lower bound is obtained by substituting M by N + ν in (6.41).

6.3 Low SNR ML Based Estimator

The first practical channel estimator is proposed in [23]. The algorithm is
an ML based estimator and is a simplified version of the estimator proposed
in [27] . The algorithm from [27] is slightly modified to take into account all
pilot symbols, and not only the guard interval pilots.

For low Es/N0, the presence of the data symbols in the observation z (6.2)
can be neglected:

z ≈ Bh + w. (6.45)

Based on this observation, the ML estimate is given by

ĥ =
(

BHB
)−1

BHz. (6.46)

The MSE of this estimator is given by

E

[

∣

∣

∣h − ĥ
∣

∣

∣

2
]

= tr
(

(

BHB
)−1

BHRw̄B
(

BHB
)−1

)

. (6.47)

For low Es/N0, this MSE is approximately equal to N0tr
(

(

BHB
)−1
)

because

Rw̄ reduces to N0IN+ν. Hence at low Es/N0, the MSE is inversely proportional
to Es/N0. This estimator shows an error floor for high Es/N0 due to the
presence of the unknown data symbols in the observation vector z (6.2): the
MSE becomes equal to:

MSE = Es
N

N + ν
tr
(

(

BHB
)−1

BHHFH
d FdHHB

(

BHB
)−1

)

. (6.48)

Since B is known by the receiver, the matrix
(

BHB
)−1

BH can be precom-
puted and the estimate (6.46) can be obtained with a low computational com-
plexity.
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6.4 Subset Estimator

In section 6.2, it is shown that after applying the transform T, the observa-
tion vector z2 is independent of the unknown data symbols and linear in the
channel impulse response vector h (6.12):

z2 = B2h + w2. (6.49)

Based on the observation z2, the authors from [52] derive the ML estimate of
h

ĥ =
(

BH
2 B2

)−1
BH

2 z2. (6.50)

The MSE of this estimate is given by

E

[

∣

∣

∣
h − ĥ

∣

∣

∣

2
]

= N0tr
(

(

BH
2 B2

)−1
)

. (6.51)

This MSE is equal to the GCRB based on the observation z2. Unfortunately,
one should recall that the observation model for z2 is only valid when the
assumption HFd = F̃H̃ holds. This is only the case for infinite block sizes. For
finite block sizes the observation z2 is affected by a residual contribution from
the unknown data symbols. So, for finite block sizes the MSE is given by [52]

E

[

∣

∣

∣
h − ĥ

∣

∣

∣

2
]

= tr
(

DRw̄DH
)

, (6.52)

with the matrix D defined as D =
(

BH
2 B2

)−1
BH

2 T2, where the matrix T2
consists of the last M rows of T.

For low Es/N0, the autocorrelation matrix Rw̄ can be approximated by
N0IN+ν and the MSE of the subset estimator reaches (6.51), while for high
Es/N0, the contribution of the data symbols becomes dominant and the MSE
shows an error floor equal to Es

N
N+ν tr

(

DHFH
d FdHHDH

)

.
The main advantage of this estimator is its low computational complexity,

because the necessary transform T and the pilot matrix B2 are known by the
receiver. As a result the matrix D can be precomputed and the estimate is
then given by

ĥ = Dz, (6.53)

where the observation z is given by (6.2).

6.5 Special Case 1: The All Pilots ML TD Estimator

When all the carriers are used as pilot carriers, i.e. Sp = {0, . . . , N − 1}, the
observation is exactly given by

z = Bh + w. (6.54)
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In that case, both the estimators from section 6.3 and 6.4 result in the same
estimator, which is the ML estimator based on the observation z:

ĥ =
(

BHB
)−1

BHz. (6.55)

Its MSE is given by

E

[

∣

∣

∣h − ĥ
∣

∣

∣

2
]

= N0tr
(

(

BHB
)−1

)

. (6.56)

This MSE is equal to the Cramer Rao bound and the MSE averaged over the
pilot symbols is lower bounded by (6.44)

E

[

∣

∣

∣h − ĥ
∣

∣

∣

2
]

≥ L

N

N0

Es
= MSEallpilots,LB,TD. (6.57)

Of course this estimator does not have any practical value, it only serves as a
benchmark for other more practical estimation algorithms.

6.6 FD Data Aided Estimator

The major drawback of both estimators from the previous sections is the fact
that their MSE shows an error floor at high Es/N0 because the unknown data
symbols are also present in the observation z (6.2). In this section, we derive
a new channel estimator following a similar reasoning as in section 6.4. We
consider an invertible transform independent of the parameter to be estimated
that results in a part of the observation to be data-free. However in contrast
with section 6.4, we do not make any approximations. The obvious way to
separate the data carriers from the pilot carriers, is by transforming the obser-
vation to the FD. First we multiply the observation vector z with the matrix
Ω (see section 4.2, equation (4.19)) which corresponds to adding the last ν
samples of z to the first ν samples of z, and the resulting first N samples are
then applied to an FFT:

z̃ = FΩz. (6.58)

The M − ν FFT outputs corresponding to the pilot carriers are given by

z̃2 = (z̃ (α0) , . . . , z̃ (αM−ν−1))
T , αn ∈ Sp

= B̃2h + w̃2. (6.59)

The noise vector w̃2 is zero-mean Gaussian distributed with an autocorrelation
matrix equal to

(

R̃2
)

n,m = N0

(

δn−m +
1
N

ν−1

∑
l=0

e−j2π
(αn−αm)l

N

)

, (6.60)
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while the pilot matrix B̃2 is a (M − ν) × L matrix which can be expressed
as the sum of a part that depends on the pilot symbols on the pilot carriers,
denoted as B̃c and a part that depends on the TD pilot symbols in the guard
interval, denoted as B̃g:

B̃2 = B̃2,c + B̃2,g. (6.61)

The contribution of the pilot symbols in the pilot carriers B̃2,c is defined as

(

B̃2,c
)

n,l =

√

N

N + ν
ac (n) e−j2π αnl

N , αn ∈ Sp, l = 0, . . . , L − 1; (6.62)

where ac (n) is the pilot symbol transmitted on the n-th pilot carrier (see sec-
tion 5.2). The matrix B̃g is given by

B̃2,g =

√

N

N + ν
Fν,pBg,ν (6.63)

where
(

Fν,p
)

n,k = 1√
N

e−j2π αnk
N and

(

Bg,ν
)

k,l = ag (|k − l|ν), αn ∈ Sp, k =

0, . . . , ν − 1, l = 0, . . . , L − 1.
The ML estimate of h based on the observation z̃2 is easily found to be

ĥ =
(

B̃H
2 R̃−1

2 B̃2

)−1
B̃H

2 R̃−1
2 z̃2, (6.64)

and its MSE is easily found by substituting z̃2 by its definition (6.59):

E

[

∣

∣

∣h − ĥ
∣

∣

∣

2
]

= tr
(

(

B̃H
2 R̃−1

2 B̃2

)−1
)

. (6.65)

The MSE is proportional to N0/Es, so there is no error floor for N0/Es → 0.
This MSE still depends on the actual values of the pilot symbols ac and ag.
The averaging of (6.65) over all possible pilot sequences is not straightforward,
so we derive a lower bound instead. In appendix 6.D we show that

E

[

(

B̃H
2 R̃−1

2 B̃2

)−1
]

≥ N + ν

N

1
M − ν

N0

Es
IL, (6.66)

so the MSE is lower bounded by

E

[

∣

∣

∣h − ĥ
∣

∣

∣

2
]

≥ N + ν

N

L

M − ν

N0

Es
, (6.67)

i.e. the MSE lower bound is inversely proportional to the number of pilot
carriers.

The matrices B̃2 and R̃2 depend only on the known pilot symbols and the
known pilot carrier positions. Hence, B̃2 and R̃2 are known at the receiver

and the matrix
(

B̃H
2 R̃−1

2 B̃2

)−1
B̃H

2 R̃−1
2 can be precomputed. Therefore, the

estimate (6.64) can be obtained with low complexity.
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6.7 Special Case 2: The All Pilots FD Estimator

Similar as in section 6.5, we can consider the all pilot case, i.e. all the data
symbols are known by the receiver. This case serves again as a benchmark for
the achievable performance of a channel estimation algorithm that operates in
the FD.

The estimate of h is given by (6.64) but where Sp contains all the N carriers.
The MSE averaged over the pilot symbols is lower bounded by

E

[

∣

∣

∣h − ĥ
∣

∣

∣

2
]

≥ N + ν

N

L

N

N0

Es
= MSEallpilots,LB,FD. (6.68)

It is interesting to compare this lower bound with the lower bound on the
MSE of the TD all pilots estimator from section 6.5:

MSEallpilots,LB,TD =
L

N

N0

Es
. (6.69)

There is an extra factor N+ν
N in the lower bound MSEallpilots,LB,FD, suggesting

that the achievable performance in FD is slightly worse than the achievable
performance in the TD. This is caused by the fact that before the FFT is ap-
plied, the last ν samples of the observation vector are added to the first ν
samples. This operation causes noise enhancement. We can see this from the
definition of the autocorrelation matrix of the FD noise samples R̃2 (6.60). The
diagonal elements are equal to N+ν

N N0, while the variance of the TD noise
samples is given by N0.

6.8 Iterative Hard Decision Aided Channel Estima-

tion

To improve the performance of the already proposed data aided channel es-
timation algorithms, we need to resort to iterative decision aided algorithms.
The most simple type of a decision aided algorithm updates every iteration
the channel impulse response estimate using the obtained hard decisions on
the data symbols from the previous iteration. Then after every update of
the channel impulse response estimate, new hard decisions on the unknown
data symbols are obtained using the most recent channel impulse response
estimate. Here we propose two strategies than can be applied.

6.8.1 TD Hard Decision Aided Channel Estimation

A first one operates on the TD observation vector z (6.2). The signal model
from (6.2) can be expressed as

z = Bh + Ah + w, (6.70)
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where we have rewritten the contribution of the data symbols HFH
d ad as Ah,

where A is a (N + ν) × L matrix which solely depends on the unknown data
symbols:

(A)k,l = sd
(

|k − l|N+ν

)

, (6.71)

with k = 0, . . . , N + ν − 1, l = 0, . . . , L − 1 and the components of the vector
sd are defined by (5.8).

When the matrix A is known, the ML estimate of the channel impulse
response given the observation z can easily found to be

ĥ =
(

CHC
)−1

CHz, (6.72)

where the matrix C is defined as

C = A + B. (6.73)

Of course the matrix A is not a priori known by the receiver. Now suppose
that we have obtained a hard decision on every data symbol, we then can
use an estimate Â of the matrix A, by replacing the unknown data symbols
in the vector sd (5.8) by their hard decisions. So the expression (6.72) for the
estimate of the channel impulse response remains the same but we replace C

by an estimate Ĉ.
Now we still have to obtain the hard decisions on the data symbols. Since,

we are working in the TD, it seems reasonable to apply the ZF detector from
section (4.1.2).

So every iteration the algorithm performs two steps: i) a new channel im-
pulse response estimate is obtained by applying (6.72) using the obtained hard
decisions from the previous iteration, and ii) using this new channel impulse
response estimate to apply the ZF detector to make new hard decisions on the
unknown data symbols. For the initialization of the algorithm, the data aided
FD channel impulse response estimator (6.64) generates the initial estimate of
the channel impulse response, which is used to apply the ZF detector for the
first time.

6.8.2 FD Hard Decision Aided Channel Estimation

A second approach starts from FD observation z̃ (6.58), which can be ex-
pressed as

z̃ = C̃h + w̃, (6.74)

where the matrix C̃ is the FD version of the matrix C from the previous sub-
section 6.8.1: C̃ = FΩC. The components of C̃ are given by

(

C̃
)

αn,l =

√

N

N + ν
ac (n) e−j2π αnl

N +
(

B̃g
)

αn,l , (6.75)

(

C̃
)

βn,l =

√

N

N + ν
ad (n) e−j2π

βnl
N +

(

B̃g
)

βn,l , (6.76)
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with αn ∈ Sp, βn ∈ Sd and l = 0, . . . , L − 1. The N × L matrix B̃g collects the
contributions from the guard interval pilot symbols and is defined as

B̃g =

√

N

N + ν
FνBg,ν

where (Fν)n,k = 1√
N

e−j2π nk
N and

(

Bg,ν
)

k,l = ag (|k − l|ν), n = 0, . . . , N, k =

0, . . . , ν − 1, l = 0, . . . , L − 1. The components of the noise vector w̃ are
Gaussian distributed with zero mean and an autocorrelation matrix equal to
Rw̃ (4.25).

When the data symbols ad would be known by the receiver, the ML esti-
mate of h based on the observation z̃ would be given by

ĥ =
(

C̃HR−1
w̃ C̃

)−1
C̃H z̃. (6.77)

Since the data symbols are not a priori known by the receiver, we can
replace them by their hard decisions in the matrix C̃. To obtain the necessary
hard decisions the FD symbol by symbol detector from (4.28) is applied.

Every iteration the channel impulse response estimate is updated by ap-
plying (6.77) using the latest obtained hard decisions on the data symbols. To
get new hard decisions in the unknown data symbols, the receiver makes use
of the most recent estimate of the channel impulse response. The initialization
of this algorithm is carried out by the data aided frequency domain channel
impulse response estimator from section 6.6.

6.9 EM based Channel Estimation

To deal with the unknown data symbols, we can apply the EM algorithm.
In [57], EM-based channel estimation algorithms operating in the frequency
domain are proposed for CP-OFDM. However, when this algorithm is applied
to KSP-OFDM, the pilot symbols from the guard interval cannot optimally be
used for the channel estimation, as in the algorithm from [57], the samples
from the guard interval are thrown away. The extension of this algorithm to
take also into account the guard interval samples to estimate the channel in
the frequency domain is not straightforward. Therefore, we propose an EM
based channel estimator for KSP-OFDM operating in the time domain, using
both the samples from the data part and the samples from the guard interval.

We consider the channel impulse response as the parameter vector that
needs to be estimated, while the unknown data symbols are nuisance param-
eters. Every iteration, the algorithm performs the E-step and the M-step. In
the E-step of the i-th iteration, the log likelihood ln p (z|h, ad) is averaged
over the unknown data symbols, given the observation z and the most recent
estimate of h:

Q
(

h|ĥ [i − 1]
)

= Ead

[

ln p (z|h, ad) |z, ĥ [i − 1]
]

. (6.78)
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The vector of received samples z (6.70), given the channel impulse response h

and the data symbols ad, is Gaussian distributed with mean Ch (see (6.73) for
the definition of C) and autocorrelation matrix N0IN+ν, so the log likelihood
ln p (z|h, ad)is given by

ln p (z|h, ad) = C − 1
N0

(z − Ch)H (z − Ch) , (6.79)

where C is a constant which is independent of the channel impulse response
h and the data symbols ad. The averaging of the log likelihood ln p (z|h, ad)
over the unknown data symbols yields

Q
(

h|ĥ [i − 1]
)

= Ead

[

ln p (z|h, ad) |z, ĥ [i − 1]
]

=

C − 1
N0

(

zHz − zHC̄h − hHC̄Hz + hHR̄Ch
)

, (6.80)

where the matrices C̄ and R̄C are defined as

C̄ = Ead

[

C|z, ĥ [i − 1]
]

(6.81)

R̄C = Ead

[

CHC|z, ĥ [i − 1]
]

. (6.82)

Taking into account (6.73), the former equations can be rewritten as

C̄ = B + Ead

[

A|z, ĥ [i − 1]
]

(6.83)

R̄C = BHB + Ead

[

BHA + AHB + AHA|z, ĥ [i − 1]
]

. (6.84)

To obtain C̄ and R̄C, we need to compute

E

[

ad (n) |z, ĥ [i − 1]
]

= ∑
ad(n)

ad (n) p
(

ad (n) |z, ĥ [i − 1]
)

(6.85)

and

E

[

ad (n) a∗d
(

n′) |z, ĥ [i − 1]
]

=











∑
ad(n)

|ad (n)|2 p
(

ad (n) |z, ĥ [i − 1]
)

n = n′

E

[

ad (n) |z, ĥ [i − 1]
] (

E

[

ad (n′) |z, ĥ [i − 1]
])∗

n 6= n′
(6.86)

For an uncoded system, the a posteriori distribution of the data symbols ad
given the observation z and the last obtained estimate of the channel impulse
response ĥ[i − 1], is given by

p
(

ad|z, ĥ [i − 1]
)

=
p
(

ad, z|ĥ [i − 1] , ad

)

p
(

z|ĥ [i − 1]
)

∝ p
(

z|ad, ĥ [i − 1]
)

p (ad) . (6.87)
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We assume that all data sequences are equiprobable, so the a posteriori distri-
bution of the data symbols is proportional to

p
(

ad|z, ĥ [i − 1]
)

∝ exp



− 1
N0

∣

∣

∣

∣

∣

(

z − Bĥ [i − 1]−
√

N

N + ν
Ĥ [i − 1] FH

d ad

)∣

∣

∣

∣

∣

2


 . (6.88)

Looking at the a posteriori distribution (6.88) of the data symbols ad, we see
that the data symbols ad are not statistically independent because of the pres-
ence of the matrix FdĤH [i − 1] Ĥ [i − 1] FH

d , which is not a diagonal matrix.
To obtain the a posteriori distribution of one data symbol ad (n) we have to
average the joint a posteriori distribution of all the data symbols ad over all the
data symbols ad (n′) with n′ 6= n. This is a computationally hard operation so
we are going to look for an alternative.

The a posteriori distribution of the data symbols ad given z and ĥ [i − 1]
can be rewritten as

p
(

ad|z, ĥ [i − 1]
)

∝ exp
(

− (ad − ma)
H R−1

a (ad − ma)
)

(6.89)

where the matrix Ra and the vector ma are given by

Ra =
N + ν

N
N0

(

FdĤ [i − 1]H Ĥ [i − 1] FH
d

)−1
(6.90)

ma =
1

N0

√

N

N + ν
RaFdĤ [i − 1]H

(

z − Bĥ [i − 1]
)

. (6.91)

Note that the vector ma corresponds to the output of the ZF filter (see subsec-
tion 4.1.2) when the signal z − Bĥ [i − 1] is sent through the ZF filter. Further,
the matrix Ĥ [i − 1]H Ĥ [i − 1] is a Toeplitz matrix. For large N we can approx-
imate Ĥ [i − 1]H Ĥ [i − 1] by a circulant matrix. The eigenvectors of a circulant
N × N matrix are given by the columns of the N × N FFT matrix F. The matrix
Fd consists of a subset of those eigenvectors so (Ra)

−1 can be approximated
by a diagonal matrix in (6.89). This means that the data symbols ad, given z

and ĥ [i − 1] can be considered as (approximately) statistically independent.
So, this yields for the a posteriori distribution of the data symbols ad given z

and ĥ [i − 1]:

p
(

ad|z, ĥ [i − 1]
)

≈
N−M+ν−1

∏
n=0

p
(

ad (n) |z, ĥ [i − 1]
)

(6.92)

with

p
(

ad (n) |z, ĥ [i − 1]
)

∝ exp
(

−
(

R−1
a

)

n,n
|ad (n) − ma (n)|2

)

. (6.93)
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Now (6.93) can be used in (6.88) and (6.86) to compute the soft information

E

[

ad (n) |z, ĥ [i − 1]
]

and E

[

ad (n) a∗d (n′) |z, ĥ [i − 1]
]

respectively.

In a coded system, the decoder provides every iteration the necessary a
posteriori probability of every data symbol ad (n).

The M-step of the i-th iteration of the EM algorithm comprises the maxi-

mization of Q
(

h|ĥ [i − 1]
)

(6.80). The new estimate ĥ [i] is given by

ĥ [i] = (R̄C)
−1

C̄Hz. (6.94)

The algorithm terminates once the estimate has reached convergence.
Note that the same expressions for the a posteriori probabilities of the

data symbols could have been obtained as in (6.93) by assuming that the ZF
detector is used to obtain the a posteriori probabilities of the data symbols.
This means that the here proposed EM-based algorithm and the TD hard
decision aided algorithm from subsection 6.8.1 can be respectively seen as the
soft decision version and the hard decision version of the same TD decision
aided algorithm.

6.10 Numerical results and Discussion

In this section, we illustrate the obtained CRBs, MSE lower bounds and the
performance of the different proposed channel estimation algorithms in terms
of the MSE and the BER.

Unless otherwise mentioned, we consider the comb-type pilot structure.
The pilot symbols and the data symbols are both 4-QAM modulated. The
channel impulse response is given by (4.29). We consider Rayleigh fading [3],
so the samples of h are Gaussian distributed with zero mean and variance
equal to 1/L. We consider two different systems. Table 6.1 shows the param-
eters for the two considered systems. For the second system, we have also
simulated a coded system. The considered channel code is a turbo code that
consists of the parallel concatenation of two identical 16-state rate-1/2 recur-
sive systematic convolutional codes with generator sequences (37)8 and (21)8
(in octal notation) through a uniform interleaver of length Nb = 919 bits. The
parity bits are punctured so that the length Nc of one code word is equal to
1848 bits. The modulation of this code word on 4-QAM symbols results in 924
data symbols, so that the data symbols corresponding to the code word can
be transmitted on the data carriers of exactly one OFDM symbol.

6.10.1 CRB

In this subsection, we evaluate the GCRB (6.37) and its low SNR limit GCRBlow
(6.40) and high SNR limit GCRBhigh (6.43) for both system 1 and system 2.
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Parameter System 1 System 2

N 1024 1024

M 40 200

ν 7 100

L 8 50

Table 6.1: Simulation parameters.

In figures 6.1 and 6.2 we show the results for the normalized CRB, which
is defined as:

NCRB = CRB · SNR, (6.95)

where SNR is defined as

SNR =
N

N + ν

Es

N0
. (6.96)

Besides the NCRB, the low SNR limit NGCRBlow and its lower bound L/M
and the high SNR limit NGCRBlow are also shown. The curve L/M is the
normalized version of the lower bound (6.41) on the low SNR limit GCRBlow
(6.40). First of all, we see for both systems that the NGCRB is almost con-
stant over the considered range of Es/N0. This means that the GCRB is ap-
proximately inversely proportional to Es/N0. The low and high SNR limits
NGCRBlow and NGCRBhigh do not change and are independent of Es/N0, so
the corresponding GCRB’s are inversely proportional to Es/N0.

For system 1, one can see that the GCRB coincides with its low SNR limit
GCRBlow for (very) low Es/N0 and with its high SNR limit GCRBhigh for
(very) high Es/N0, respectively for Es/N0 < −50 dB and for Es/N0 > 50 dB.
Only for moderate values of Es/N0, the GCRB distinguishes itself from its
limits. The low SNR limit and the high SNR limit are very close to each other
and are approximately equal to the lower bound on GCRBlow (6.41), which
is equal to (L/M) SNR−1. Especially for GCRBlow, the lower bound (6.41) is
very tight.

For the second system, the results are similar as those for system 1. How-
ever, the difference between the low SNR and high SNR limit is more pro-
nounced. The GCRB still coincides with GCRBlow for low values Es/N0
(< −30 dB) and with GCRBhigh for high values of Es/N0 (> 30 dB). Com-
pared for the results of system 1, the difference between the GCRB and its lim-
its is smaller for moderate Es/N0, because there are less data carriers in sys-
tem 2 and their contribution to the GCRB is less important. In the limit, when
there are only pilot carriers, the GCRB and its lower bounds GCRBlow and
GCRBhighwill perfectly coincide. Furthermore, the lower bound L/M · SNR−1

is less tight in situation 2 than in situation 1.
In practice, the GCRB itself is not that useful, since it is not that simple to
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Figure 6.1: NGCRB as a function of Es/N0 , N = 1024, ν = 7, L = 8, M = 40.
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Figure 6.2: NGCRB as a function of Es/N0 , N = 1024, ν = 100, L = 50,
M = 200.
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find a data aided estimation algorithm that can exploit the extra information
about the channel impulse response in the noise vector w̄ (6.4). For a practical
algorithm, one should compare the MSE with GCRBlow (6.40) and its lower
bound L/M · SNR−1 (6.41), and GCRBhigh (6.43).

6.10.2 MSE

6.10.2.1 Pilot Aided Estimators

First, we evaluate the performance of the pilot aided estimators, which can be
used in the initialization phase of the iterative decision aided estimators.

In figures 6.3 and 6.4, the MSE of the low SNR ML based estimator, the
subset estimator and the FD estimator are shown as function of Es/N0 for sys-
tem 1 and system 2, respectively. In addition, the low SNR limit of the GCRB
(GCRBlow), the high SNR limit of the GCRB (GCRBhigh) and the lower bound
on the MSE of the FD DA estimator L/ (M − ν) · SNR−1 are also shown. As
can be observed, the FD estimator does not suffer from an error floor at high
Es/N0, in contrast with the subset estimator and the low SNR ML based esti-
mator.

For situation 1, the performances of the different pilot aided estimators
are very close to each other and to the lower bounds for low Es/N0. Both the
subset estimator and the low SNR ML based estimator show an error floor
at high Es/N0. This error floor is caused by the interference of the unknown
data symbols. In this case, the subset estimator yields the lowest error floor.

For situation 2, the MSE results are similar but there are some differences.
First of all we see that the MSEs of the different pilot aided estimators remain
close to the corresponding lower bounds. For low Es/N0, the low SNR ML
based estimator results in the lowest MSE followed by the subset estimator.
In fact for this case, the low SNR ML based estimator totally outperforms
the subset estimator: although both estimators show an error floor at high
Es/N0, the low SNR ML based estimator yields the lowest error floor. The
performance of the low SNR ML based estimator is better in this situation
because of several factors. There are less data carriers in situation 2 so the
presence of the data carriers is less dominant. Secondly the length of the
guard interval ν is also larger in situation 2, so the assumption that we made
for the derivation of the subset estimator, i.e. N � ν is less realistic in situation
2 than in situation 1. The FD estimator has the highest MSE for low Es/N0, but
does not show any error floor for high Es/N0. The lower bound L/ (M − ν) ·
SNR−1 is not as tight as in situation 1. For moderate to high Es/N0, it seems
that the FD estimator yields the best performance in terms of the MSE and as
a result the FD estimator is the most appropriate choice for the initialization
phase of the iterative decision aided algorithms.

To further evaluate the MSEs, we consider the normalized MSE (NMSE),
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Figure 6.3: MSE as a function of Es/N0 , N = 1024, ν = 7, L = 8, M = 40.
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Figure 6.4: MSE as a function of Es/N0 , N = 1024, ν = 100, L = 50, M = 200.
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Figure 6.5: NMSE as a function of Es/N0 , N = 1024, ν = 7, L = 8, M = 40.
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Figure 6.6: NMSE as a function of Es/N0 , N = 1024, ν = 100, L = 50,
M = 200.
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defined as

NMSE = SNR · MSE. (6.97)

From figures 6.5 and 6.6 it follows that at low Es/N0, the low SNR ML based
estimator and the subset estimator slightly outperform the FD estimator. This
follows from the fact that the low SNR ML based estimator uses the total con-
tribution of the pilot symbols and the subset estimator uses a larger subset
of observations than the frequency domain estimator (i.e. M observations for
the subset estimator versus M − ν observations for the frequency domain es-
timator). The NMSE of the FD estimator is constant with Es/N0, whereas the
NMSEs of the low SNR ML based estimator and the subset estimator strongly
increase for high Es/N0. This can be explained as in the FD estimator, the
observations are data-free and therefore the data symbols have no influence
on the performance of the estimator, whereas in the low SNR ML based esti-
mator and the subset estimator, the data symbols cause an increasing amount
of interference, resulting in the error floors in figures 6.3 and 6.4. From figure
6.5, it also can be observed that for situation 1 the NMSE of the frequency-
domain estimator is very close (the curves can not be distinguished from each
other) to the theoretical lower bound L/(M − ν) corresponding to (6.67), as
was shown in section 6.6. For situation 2, the difference between the theoreti-
cal lower bound L/ (M − ν) and the NMSE of the FD estimator is visible, but
they are still close to each other. These results verify the approximations made
to obtain the lower bound (6.67).

Figure 6.7 shows the influence of the number of pilots on the MSE of the
FD estimator for situation 1. We first assume that the pilot carriers are equally
spaced. As expected (see (6.67)), the MSE is essentially equal to L/(M − ν) ·
SNR−1 for a wide range of M, i.e. the MSE is inversely proportional to the
number of pilot carriers. For large M, the pilot spacing (5.4) becomes λpc = 2
(for N/4 = 256 < M− ν < N/2 = 512) and λpc = 1 (for M− ν > N/2 = 512);
in that case pilots are not evenly spread over the carriers but grouped in one
part of the spectrum, such that (6.139) can no longer be approximated by
SNR · (M − ν)IL. This causes the peaks in the figure.

The influence of random pilot carrier positions on the frequency domain
estimator performance is also shown in figure 6.7. The MSE is shown for 50
randomly generated pilot carrier positions, along with the average over the
simulations. For small M, we observe that the performance of the FD esti-
mator strongly depends on the pilot positions, whereas for large M, the FD
estimator becomes essentially independent of the pilot positions (as long as
the pilot positions are not equally spaced for really large M). This indicates
that for small M, the second approximation (i.e. the pilots are evenly dis-
tributed, see appendix 6.D for more details) to obtain the MSE lower bound
(6.67) is no longer valid. Hence, for small M, fixed, equally spaced pilot posi-
tions are preferred. For large M, equally spaced pilot positions are not suitable
because of the peak in the MSE. Therefore, at large M, random pilot positions

82



6.10. NUMERICAL RESULTS AND DISCUSSION

10
1

10
2

10
3

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

10
10

 

 
L/(M−ν)
equal spacing
average
simulation

M

N
M

S
E

Figure 6.7: NMSE as a function of M , N = 1024, ν = 7, L = 8.

are advised.

6.10.2.2 Decision Aided Estimators

First, we consider the hard decision aided estimator in the time domain (6.72)
from subsection 6.8.1. In figures 6.8 and 6.9, the MSE of the TD hard decision
aided estimator (6.72) is shown as function of Es/N0 for different number of
iterations. The necessary initial estimate of the channel impulse response is
provided by the FD DA estimator (6.64). In addition, the MSE (6.65) of the FD
DA estimator and the lower bound on the MSE of the TD all pilots estimator
(6.57) are shown. The MSE lower bound of the all pilots estimator is equal to
L/ (N + ν) · SNR−1. At high Es/N0, the MSE of the TD hard decision aided
estimator (6.72) converges to the MSE of the TD all pilots estimator, whereas
at low Es/N0, the decisions on the data symbols are not reliable and disturb
the channel estimation; at low Es/N0, the unreliable data decisions may even
increase the MSE as compared to the FD DA case, as is the case for system 1.
For both considered systems, the MSE converges after 2-4 iterations.

Additionally, in figure 6.9 the results are also shown for the coded system.
In this case the turbo decoder performs one decoding iteration and provides
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Figure 6.8: MSE as a function of Es/N0 , N = 1024, ν = 7, L = 8, M = 40.
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Figure 6.9: MSE as a function of Es/N0 , N = 1024, ν = 100, L = 50, M = 200.
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the a posteriori probabilities of the coded bits, which are then used to de-
termine the necessary hard decisions on the data symbols. One can see the
large improvement of coded transmission: the MSE of the TD hard decision
estimator already reaches the MSE (6.57) of the TD all pilots estimator for
considerably lower values of Es/N0.

Secondly, the performance of the hard decision aided estimator in the fre-
quency domain (6.77) from subsection 6.8.2 is illustrated. Figures 6.10 and
6.11, show the results for the MSE of the FD hard decision aided estimator
(6.77) as function of Es/N0 for different number of iterations. The FD hard
decision aided estimator is initialized by the FD DA estimator (6.64). Addi-
tionally, the MSE (6.65) of the FD DA estimator and the lower bound on the
MSE (6.57) of the TD all pilots estimator are shown. For situation 1, at high
Es/N0, the MSE of the FD hard decision aided estimator essentially converges
to the MSE of the TD all pilots estimator (when N � ν, the MSE of the TD and
the FD all pilots estimators become essentially equal), whereas at low Es/N0,
the decisions on the data symbols are not always very reliable and disturb the
channel estimation. At low Es/N0, erroneous data decisions even increase the
MSE as compared to the FD DA case. If we compare the results for the TD
hard decision aided estimator (6.72) from figure 6.8 with the results for the FD
hard decision aided estimator (6.77) from figure 6.10, it is difficult to make a
distinction between the two estimators for situation 1.

For situation 2, the results are slightly different. For high Es/N0 the MSE
of the FD hard decision aided estimator (6.77) becomes very close to the MSE
(6.57) of the TD all pilots estimator, but both curves do not coincide. In fact,
later on in this section it is shown that the MSE of FD hard decision aided
estimator converges to the MSE of the FD all pilots estimator (see section 6.7,
(6.68)). At low Es/N0, the results are not as dramatic as in situation 1: for the
considered range of Es/N0, the MSE of the FD hard decision aided estimator
is never higher than the MSE of the FD DA estimator. Now there is a notable
difference between the performance of the TD hard decision aided estimator
(6.72) and the performance of the FD hard decision aided estimator (6.77) if
we compare figures 6.9 and 6.11. For low Es/N0 (≤ −5 dB), the FD hard
decision aided estimator does not give any improvement compared to the FD
DA estimator (6.64), while the TD hard decision aided estimator clearly yields
a visible, albeit small, improvement compared to the FD DA estimator (6.64).
Furthermore, the TD hard decision aided estimator reaches the performance
of the TD all pilots estimator for a lower value of Es/N0. The convergence
rate is similar for both hard decision aided estimators, regardless of which
situation (situation 1 or 2) we consider: the MSE converges after 2-4 iterations.

For the considered turbo coded system, it can be seen from figure 6.11, that
the FD hard decision aided algorithm (6.77) converges to the performance of
the FD all pilots estimator for an Es/N0 higher than 5 dB. The coded system
results in substantial gain in performance compared to the uncoded system.
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Figure 6.10: MSE as a function of Es/N0 , N = 1024, ν = 7, L = 8, M = 40.
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Figure 6.11: MSE as a function of Es/N0 , N = 1024, ν = 100, L = 50, M = 200.
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Figure 6.12: MSE as a function of Es/N0 , N = 1024, ν = 7, L = 8, M = 40.
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Figure 6.13: MSE as a function of Es/N0 , N = 1024, ν = 100, L = 50, M = 200.
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Finally, the EM based estimator (6.94) from section 6.9 is considered for
channel estimation. The EM algorithm uses the FD DA estimator (6.64) to
initialize the estimation, and then iteratively updates the channel estimates in
a soft decision aided way. Figures 6.12 and 6.13 show the MSE of the EM al-
gorithm as function of Es/N0 for different numbers of iterations. Also shown
are the MSE (6.65) of the FD DA estimator and the lower bound on the MSE
(6.57) of the TD all pilots estimator are shown. The MSE of the EM algorithm
converges to the MSE of the TD all pilots estimator for high Es/N0, while
for low Es/N0 this is not the case. However, there is still an improvement in
performance if we compare with the MSE of the FD DA estimator. From fig-
ures 6.12 and 6.13, we observe that less than 10 iterations of the EM-algorithm
are necessary to obtain convergence. In contrast with the TD and the FD hard
decision aided estimators, the EM algorithm always results in a significant im-
provement in terms of the MSE for the considered range of Es/N0. Compared
to the hard decision aided estimators (both TD and FD), the EM algorithm
results in far better performance at low Es/N0. Furthermore, for both consid-
ered situations, the EM algorithm reaches the performance of the TD all pilots
estimator for a larger range of Es/N0 (> 15 dB) than the hard decision aided
algorithms (> 20 dB) . The convergence speed of the hard decision aided al-
gorithms is somewhat faster than the convergence speed of the EM algorithm:
the hard decision aided algorithms converge after 2-4 iterations while the EM
algorithm needs at least 5 iterations (the EM algorithm is known to yield slow
convergence).

To apply the EM algorithm in the coded system, the necessary soft infor-
mation about the data symbols is computed by the receiver every iteration
using the a posteriori probabilities of the coded bits, which are provided by
the decoder. The MSE results for the EM algorithm applied to the coded sys-
tem are similar to the results for the hard decision aided algorithms, as can
be seen from figure 6.13. The performance of the TD all pilots estimator is
already reached for Es/N0 equal to 5 dB. The differences in performance be-
tween the EM algorithm and the hard decision aided algorithms are not as
pronounced as in the uncoded case.

Figure 6.14 compares the NMSE (6.97) (after 10 iterations, for system 2,
uncoded) for the different proposed iterative decision aided algorithms with
the theoretical lower bounds for the NMSE of the TD (6.57) and the FD all
pilots estimator (6.68). Besides that, the lower bound (6.67) and the NMSE of
the FD DA estimator (6.65) are also displayed at the figure. For low Es/N0, the
hard decision aided estimators yield hardly any better performance than the
FD DA estimator, this is caused by unreliable decisions on the data symbols.
The EM algorithm, on the contrary, still yields in a noteworthy performance
improvement. For high Es/N0, both the TD hard decision aided and the EM
algorithm converge to the NMSE lower bound of the TD all pilots estimator,
which equals L/ (N + ν). This is clearly not the case for the FD hard decision
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Figure 6.14: NMSE as a function of Es/N0 , N = 1024, ν = 100, L = 50,
M = 200.

aided estimator. The latter converges to the NMSE lower bound of the FD
all pilots estimator, which is given by L/N. We see although the EM based
estimator and the TD hard decision aided estimator converge to the same
lower bound for high Es/N0, the EM algorithm results in a lower NMSE for
low to moderate Es/N0. We can conclude that the EM algorithm results in
the smallest MSE for the whole range of considered Es/N0, while the FD hard
decision aided estimator has the highest MSE of the three considered iterative
decision aided algorithms.

6.10.3 BER

Figures 6.15 and 6.16 show the BER performance when using the EM algo-
rithm (6.94), the TD hard decision aided estimator (6.72), the FD hard decision
aided estimator (6.77) and the FD DA estimator (6.64). The performances of
a receiver with perfect channel knowledge which uses the ZF detector (4.10)
and a receiver with perfect knowledge which uses the FD detector (4.28) are
also added.

First we consider uncoded transmission. We see that all three of the it-
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Figure 6.15: BER as a function of Eb/N0 , N = 1024, ν = 7, L = 8, M = 40.
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Figure 6.16: BER as a function of Eb/N0 , N = 1024, ν = 100, L = 50, M = 200.
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erative decision aided algorithms converge to the respective curves for per-
fect channel knowledge. The application of the decision aided estimators to
estimate the channel yields a considerable performance gain compared to a
receiver which only considers the FD DA estimator. These results highlight
again the advantage of considering the ZF detector instead of the FD detec-
tor: the receivers that use the ZF detector take advantage of the multipath
diversity, especially at high Eb/N0. The BER curves corresponding to the EM
estimator and the TD hard decision aided estimator are almost indistinguish-
able from one another and from the BER of the receiver with perfect channel
knowledge for the considered range of Eb/N0. Only at very low Eb/N0 they
show a degradation compared to the BER for perfect channel knowledge. For
this situation the decision aided algorithms tend to result in the same BER as
the FD DA estimator.

The BER results for a turbo coded transmission in system 2 are shown
in figure 6.16. The BER results are shown for 11 decoder iterations. First of
all, the BER for a ZF receiver and an FD receiver both with perfect channel
knowledge are shown. They serve as references for the results of the decision
aided algorithms. The EM estimator and the TD hard decision aided estima-
tor yield approximately the same performance. Compared to the uncoded
situation, the BER for a receiver with one of both considered TD estimators
(the TD hard decision aided algorithm and the EM algorithm), now shows a
degradation compared to the TD reference curve, i.e. the ZF receiver (4.10).
However, the gap remains small and is less than 1 dB. Similar conclusions can
be drawn for the FD hard decision aided estimator, its performance in terms
of the BER is somewhat worse than the performance of the FD detector with
perfect channel state information. Nevertheless, the degradation is limited
and smaller than 1 dB.

6.10.4 Optimization of the Number of Iterations

To obtain the results for the decision aided algorithms in a coded system, we
have considered the concept of embedded estimation (see subsection 5.3.1). In
order to to keep the computational complexity under control, every estimation
operation is followed by only one iteration of the decoder. Typically a channel
decoder (e.g. a turbo decoder or an LDPC decoder) needs to perform several
iterations before the transmitted information bits can be recovered, while the
channel estimate converges usualy much faster. So the computational com-
plexity is further reduced by only updating the channel estimate during the
first few iterations.

In this subsection we will illustrate this for the turbo coded transmission
in system 2. From figures 6.9, 6.11 and 6.13 it can be seen that the estimates
obtained with one of the proposed decision aided estimators (the TD hard
decision aided (6.72), the FD hard decision aided (6.77) and the EM based es-
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timator (6.94)) converge already after a few iterations. To optimize the compu-
tational complexity, we look at the MSE of the proposed decision aided chan-
nel estimators as a function of the number of performed updates. The results
are shown in figure 6.17. First, We consider the situation for Es/N0 = 10 dB.
The MSEs of the three proposed decision aided estimators show similar trends
as a function of the number of iterations. Iteration ’0’ corresponds to MSE of
the FD DA estimator, which provides the initial channel estimate. After two
iterations, the channel estimates have almost converged. However, there is still
a (very) small improvement in the third iteration. So after two or three itera-
tions, the channel estimate does not need another update and in the remainig
iterations only decoder operations need to be performed. To prove that this
strategy is valid, we investigate the BER performance of the coded system
with a reduced number of channel updates. For the channel estimation, the
FD hard decision aided algorithm (6.77) is applied while for the data detec-
tion, the FD detector is considered. Figure 6.18 shows the BER as a function
of Eb/N0. To obtain these results we have applied 11 decoder iterations. First
of all, we see the BER of a receiver with perfect channel knowledge, which
serves as an absolute lower bound. Secondly, the BER curve for the coded
system which applies the FD hard decision aided estimator and updates the
channel estimate every iteration (which is the same as the one in figure (6.16)
is also displayed (labeled as ’FD HD 10 it.’ in the figure). Furthermore, the
BER results are shown for a receiver which only applies the FD DA estimator
to obtain a channel estimate. Finally, the BER results are shown for the situa-
tion where the channel estimate is kept constant after 2 and 3 iterations of the
FD hard decision aided estimator, respectively. It can be seen, that applying
the FD hard decision aided estimation algorithm (even if its only in a few it-
erations) yields a large improvement in terms of BER compared to a receiver
which only performs the FD DA channel estimation. For Eb/N0 > 10 dB, we
see that performing only 2 iterations of the FD hard decision aided estimator
yields a BER that is already close to the BER of a receiver which updates the
channel estimate every decoder iteration, while applying 3 iterations of the FD
hard decision aided estimator yields essentially the same performance as per-
forming the channel estimation every iteration. However for Eb/N0 between
4 and 9 dB, there is a degradation. This means that in this region, the FD
DA channel estimation algorithm has not converged after 2-3 iterations. We
have added the MSEs of the proposed decision aided algorithms as a function
of the number of iterations for Es/N0 = 7 dB to figure 6.17 to illustrate this:
the results show that for Es/N0 = 7 dB, convergence is only reached after 5
iterations.
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6.11 Conclusion

In this chapter we have treated the problem of an unknown channel impulse
response by the receiver. First we have derived the GCRB and a low and high
SNR limit, to gain more insight on what could be achieved in terms of the
MSE for a channel estimator. We have also reviewed two existing channel
estimators from the literature. Both suffer from an error floor for moderate
to high SNR because they both neglect the presence of the unknown data
symbols. For the all pilots case they both result in the same estimator, i.e.
the TD all pilot estimator. This estimator has no practical use but serves as a
benchmark for the performance of the TD iterative decision aided algorithms.

We have proposed a DA estimator that operates on the FFT outputs of
the received signal at the pilot carrier positions. The main advantage of this
estimator is the fact that its MSE does not show any error floor for high SNR.
The FFT perfectly separates the contributions of the pilot carriers and the
data carriers, although the total contribution of the pilot symbols that are
transmitted during the guard interval is spread over all the available carriers
by applying the FFT. As a result the guard interval pilot contributions on the
data carriers are lost, resulting in a MSE that is a little bit higher for low SNRs
compared to the MSE of the existing estimators. For the all pilots case, the
proposed FD DA estimator yields a second all pilots estimator, i.e. the FD
all pilots estimator. Its performance serves as benchmark for the MSE of the
iterative FD decision aided algorithm.

The quality of the obtained channel estimate based solely on the presence
of pilot symbols, can be further improved by applying decision aided esti-
mation algorithms. We have proposed three of them. A first one operates in
the TD and uses every iteration the hard decisions, which are provided by
the detector / decoder to update the channel estimate. A second algorithm is
based on the EM algorithm and exploits the soft information about the data
symbols that is available from the detector / decoder to obtain a better chan-
nel estimate. The third one operates in the FD and is in fact an extension of
the proposed FD DA estimator: the hard decisions provided by the detector
/ decoder are considered as extra pilot symbols, so that all the carriers are
considered as pilot carriers. An algorithm similar to the FD DA estimator is
then applied but considering also the data carriers besides the pilot carriers.

In the last part of this chapter some numerical results are shown to illus-
trate the performance of the different proposed algorithms. We have consid-
ered two reference systems. First of all, the GCRB has been studied to verify
the validity of the proposed low and high SNR limits and their lower bounds.
Then the proposed estimators are compared with existing methods and the-
oretical lower bound in terms of the MSE. The FD DA estimator shows good
results at high SNRs making it an appropriate candidate to serve as the initial-
ization algorithm of the iterative decision aided estimators. For moderate to
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high SNR, the EM based algorithm and the TD hard decision aided estimator
both reach the performance of the TD all pilots estimator, while the MSE of the
FD hard decision estimator converges to the MSE of FD all pilots estimator.
For a coded system, this performance is already achieved for a considerably
lower range of SNR values. In terms of the BER, the performance of a receiver
with perfect channel state information is reached for uncoded transmission,
while in a coded system, there is a small degradation.

The research described in this chapter has yielded 4 publications. The
derivation of the FD DA estimator and a study of its performance have been
treated in [33]. The TD hard decision aided estimator is proposed in [58],
while the EM based algorithm is derived and studied in [59]. Furthermore we
have written one journal paper ( [34]) that combines the results for the FD DA
estimator and the EM based algorithm.
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6.A Appendix A

For the computation of the Fisher information matrix J1 based on the obser-
vation z1 = B1h + w′

1 (6.18) we need the derivatives of ln det R1 and R−1
1 . It

is easily shown that those derivatives are given by

∂

∂<{h (l)} ln det R1 = −4<{ηl} (6.98)

∂

∂={h (l)} ln det R1 = 4={ηl} (6.99)

∂

∂<{h (l)}R−1
1 = Q̃<,l (6.100)

∂

∂={h (l)}R−1
1 = Q̃=,l (6.101)

where Q̃<,l and Q̃=,l are defined (for the definition of λn, γl,n and ηl , see
(6.20), (6.27) and (6.28)) as

Q̃<,l =
(

F̃HTH
1

)−1
<{Xl}

(

T1F̃
)−1 (6.102)

Q̃=,l =
(

F̃HTH
1

)−1
={Xl}

(

T1F̃
)−1 (6.103)

Xl = diag
(

γl,n

λ2
n

)

. (6.104)

The log likelihood function of h given the observations z1 is given by

ln p (z1|h) = C − 1
2

ln det R1 − (z1 − B1h)H R−1
1 (z1 − B1h) . (6.105)

Taking into account equations (6.98)-(6.104), yields for the derivatives of the
log likelihood function (6.105) with respect to <{h (l)} and ={h (l)}:

∂

∂<{h (l)} ln p (z1|h) = 2<{ηl} + 2<
{

(z1 − B1h)H R−1
1 B11l

}

+2 (z1 − B1h)H Q̃<,l (z1 − B1h) (6.106)

∂

∂={h (l)} ln p (z1|h) = −2={ηl} − 2=
{

(z1 − B1h)H R−1
1 B11l

}

−2 (z1 − B1h)H Q̃=,l (z1 − B1h) (6.107)

for l = 0, . . . , L − 1, 1l is a vector of length L with a one in the l-th position
and zeros elsewhere. Hence, the elements of the different blocks of J1 are
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easily obtained:

(J1,a)l,l ′ = E

[

∂

∂<{h (l)} ln p (z1|h)
∂

∂<{h (l′)} ln p (z1|h)

]

(6.108)

= 2<
{

(

BH
1 R−1

1 B1

)

l,l ′

}

+ 4<{ηl} < {ηl ′}

+4<{ηl} tr
(

Q̃<,l ′R1
)

+ 4<{ηl ′} tr
(

Q̃<,lR1
)

+4tr
(

Q̃<,lR1
)

tr
(

Q̃<,l ′R1
)

+4tr
(

Q̃<,lR1Q̃<,l ′R1
)

(J1,b)l,l ′ = E

[

∂

∂<{h (l)} ln p (z1|h)
∂

∂={h (l′)} ln p (z1|h)

]

(6.109)

= −2=
{

(

BH
1 R−1

1 B1

)

l,l ′

}

− 4<{ηl}= {ηl ′}

−4<{ηl} tr
(

Q̃=,l ′R1
)

− 4={ηl ′} tr
(

Q̃<,lR1
)

−4tr
(

Q̃<,lR1
)

tr
(

Q̃=,l ′R1
)

−4tr
(

Q̃<,lR1Q̃=,l ′R1
)

(J1,c)l,l ′ = E

[

∂

∂={h (l)} ln p (z1|h)
∂

∂={h (l′)} ln p (z1|h)

]

(6.110)

= 2<
{

(

BH
1 R−1

1 B1

)

l,l ′

}

+ 4={ηl}= {ηl ′}

+4={ηl} tr
(

Q̃=,l ′R1
)

+ 4={ηl ′} tr
(

Q̃=,lR1
)

+4tr
(

Q̃=,lR1
)

tr
(

Q̃=,l ′R1
)

+4tr
(

Q̃=,lR1Q̃=,l ′R1
)

These expressions can be further simplified: taking into account the defini-
tions of R1, Q̃<,l and Q̃=,l (see (6.19), (6.102) and (6.103)) and one of the prop-
erties of the trace of a product of matrices, i.e. tr (XY) = tr (YX), then it
follows that

tr
(

Q̃<,lR1
)

= tr (<{Xl}∆)

= −2<{ηl} (6.111)

tr
(

Q̃=,lR1
)

= tr (={Xl}∆)

= −2={ηl} (6.112)

tr
(

Q̃<,lR1Q̃<,l ′R1
)

= tr (<{Xl}∆<{Xl ′}∆)

= ∑
βn∈Sd

<
{

γl,n
}

<
{

γl ′,n
}

λ2
n

(6.113)
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tr
(

Q̃<,lR1Q̃=,l ′R1
)

= tr (<{Xl}∆={Xl ′}∆)

= ∑
βn∈Sd

<
{

γl,n
}

=
{

γl ′,n
}

λ2
n

(6.114)

tr
(

Q̃=,lR1Q̃=,l ′R1
)

= tr (={Xl}∆={Xl ′}∆)

= ∑
βn∈Sd

=
{

γl,n
}

=
{

γl ′,n
}

λ2
n

(6.115)

The substitution of equations (6.111) to (6.115) in (6.108), (6.109) and (6.110)
yields

(J1,a)l,l ′ = 2<
{

(

BH
1 R−1

1 B1

)

l,l ′

}

+4

(

<{ηl}< {ηl ′}+ ∑
βn∈Sd

<
{

γl,n
}

<
{

γl ′,n
}

λ2
n

)

(6.116)

(J1,b)l,l ′ = −2=
{

(

BH
1 R−1

1 B1

)

l,l ′

}

−4

(

<{ηl}= {ηl ′}+ ∑
βn∈Sd

<
{

γl,n
}

=
{

γl ′,n
}

λ2
n

)

(6.117)

(J1,c)l,l ′ = 2<
{

(

BH
1 R−1

1 B1

)

l,l ′

}

+4

(

={ηl}= {ηl ′}+ ∑
βn∈Sd

=
{

γl,n
}

=
{

γl ′,n
}

λ2
n

)

. (6.118)

6.B Appendix B

In this appendix, we are going to compute the Fischer information matrix J2
which is based on the observation vector z2 (6.29).

The observation z2 is independent of the unknown data symbols ad and is
given by

z2 = B2h + w2. (6.119)

The log likelihood function of h given the observations z2 is defined as

ln p (z2|h) = C − 1
N0

(z2 − B2h)H (z2 − B2h) . (6.120)

The derivative of ln p (z2|h) with respect to θ =
(

<{h}T , ={h}T
)T

can eas-

ily be obtained:

∂

∂θ
ln p (z2|h) =

2
N0

(

<
{

BH
2 (z2 − B2h)

}

=
{

BH
2 (z2 − B2h)

}

)

. (6.121)
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Using this result the computation of the Fisher information matrix becomes
straightforward and yields

J2 =
2

N0

(

<
{

BH
2 B2

}

−=
{

BH
2 B2

}

=
{

BH
2 B2

}

<
{

BH
2 B2

}

)

(6.122)

6.C Appendix C

The averaging of N0tr
(

(

BHB
)−1
)

(6.40) over the pilot symbols is not that

easy, so instead we are going to compute a lower bound. Therefore, we apply
Jensen’s inequality for the inverse of a matrix [60]:

E

[

(

BHB
)−1

]

≥
(

E

[

BHB
])−1

. (6.123)

The average E
[

BHB
]

consists of two parts and is given by

E

[

BHB
]

= E

[

BH
g Bg

]

+ E

[

BH
c Bc

]

. (6.124)

This last equation is valid because the pilot symbols in the guard interval are
independent of the pilot symbols on the pilot carriers.

Since the different guard interval pilot symbols are independent of each

other, i.e. E

[

ag (k1) a∗g (k2)
]

= Esδk1−k2
, the first contribution E

[

BH
g Bg

]

re-

duces to a diagonal matrix with components given by

E

[

(

BH
g Bg

)

l,l

]

=
N

N + ν

ν−1

∑
k=0

E

[

∣

∣ag (k)
∣

∣

2
]

=
N

N + ν
νEs. (6.125)

The components of the second contribution E
[

BH
c Bc

]

consist of sums of terms

like E

[

sp (k1) s∗p (k2)
]

, k1, k2 = 0, . . . , N − 1, which are given by:

E

[

sp (k1) s∗p (k2)
]

=
1

N + ν ∑
αn1 ,αn2∈Sp

E [ac (n1) a∗c (n2)] ej2π
αn1 k1−αn2 k2

N

=
Es

N + ν ∑
αn∈Sp

ej2π
αn(k1−k2)

N . (6.126)

For the comb-type pilot structure (see section 5.2), this yields:

E

[

sp (k1) s∗p (k2)
]

=
M − ν

N + ν
Esδk1−k2

. (6.127)
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For the random pilot structure, this is not entirely true, but we will assume
that (6.127) is valid anyway. Using this last result, one can show that E

[

BH
c Bc

]

is a diagonal matrix with components defined as:

E

[

(

BH
c Bc

)

l,l

]

=
N−1

∑
k=0

E

[

∣

∣sp (k1)
∣

∣

2
]

=
N

N + ν
(M − ν) Es. (6.128)

Substituting (6.125) and (6.128) in (6.124) yields

E

[

BHB
]

=
N

N + ν
MEsIL. (6.129)

So the average of GCRBlow over the pilot symbols is lower bounded by

E [GCRBlow] ≥ L

M

N + ν

N

N0

Es
. (6.130)

6.D Appendix D

The averaging of
(

B̃H
2 R̃−1

2 B̃2

)−1
(6.65) over the pilot symbols is really difficult,

so as an alternative, we are going to compute a lower bound for the expec-

tation E

[

(

B̃H
2 R̃−1

2 B̃2

)−1
]

. Since the inverse of a matrix is a matrix convex

function, Jensen’s inequality for matrices can be applied [60]:

E

[

(

B̃H
2 R̃−1

2 B̃2

)−1
]

≥
(

E

[

B̃H
2 R̃−1

2 B̃2

])−1
. (6.131)

The matrix E

[

B̃H
2 R̃−1

2 B̃2

]

consists of two parts, one part corresponding to the

pilot carriers and one part corresponding to the pilot symbols transmitted dur-

ing the guard interval: E

[

B̃H
2 R̃−1

2 B̃2

]

= E

[

B̃H
2,cR̃−1

2 B̃2,c

]

+ E

[

B̃H
2,gR̃−1

2 B̃2,g

]

.

For the computation of E

[

B̃H
2,cR̃−1

2 B̃2,c

]

and E

[

B̃H
2,gR̃−1

2 B̃2,g

]

, we approximate

R̃2 (6.60) by a diagonal matrix:

R̃2 ≈ N0
N + ν

N
IM−ν (6.132)

because typically
(

R̃2
)

n,m �
(

R̃2
)

n,n for m 6= n. In that case, E

[

B̃H
2,cR̃−1

2 B̃2,c

]

and E

[

B̃H
2,gR̃−1

2 B̃2,g

]

are essentially equal to

(

E

[

B̃H
2,cR̃−1

2 B̃2,c

])

l,l ′
=

(

N

N + ν

)2 Es

N0
∑

αn∈Sp

ej2π
αn(l−l′)

N (6.133)
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and

(

E

[

B̃H
2,gR̃−1

2 B̃2,g

])

l,l ′
=

(

N

N + ν

)2 1
N0

1
N ∑

αn∈Sp

ν−1

∑
m,m′=0

ej2π
αn(m−m′)

N Rg
(

m, m′, l, l′
)

, (6.134)

where Rg (m, m′, l, l′) = E

[

a∗g (|m − l|ν) ag (|m′ − l′|ν)
]

. When the comb-type

pilot structure (see section 5.2) is considered and M − ν divides N, the contri-
bution of the pilot carriers (6.133) reduces to a diagonal matrix:

(

E

[

B̃H
2,cR̃−1

2 B̃2,c

])

l,l ′
=

(

N

N + ν

)2

(M − ν)
Es

N0
δl−l ′. (6.135)

The computation of the contribution from the guard interval pilot symbols
(6.134) is somewhat more complex: when the pilot symbols are equally spaced

over the carriers (comb-type pilot structure),
(

E

[

B̃H
2,gR̃−1

2 B̃2,g

])

l,l ′
can be ex-

pressed as
(

E

[

B̃H
2,gR̃−1

2 B̃2,g

])

l,l ′
=

(

N

N + ν

)2 1
N0

1
N

ν−1

∑
m,m′=0

1 − ej2π(m−m′)

1 − ej2π
(m−m′)

M−ν

Rg
(

m, m′, l, l′
)

. (6.136)

When the total number of pilot carriers M − ν is larger than ν − 1, (6.136)
reduces to
(

E

[

B̃H
2,gR̃−1

2 B̃2,g

])

l,l ′
=

(

N

N + ν

)2 1
N0

M − ν

N

ν−1

∑
m=0

E

[

a∗g (|m − l|ν) ag
(∣

∣m − l′
∣

∣

ν

)

]

. (6.137)

Now we only need to determine for which values of the indices l and l′ the

expectation E

[

a∗g (|m − l|ν) ag (|m − l′|ν)
]

is not equal to zero: When the dura-

tion of the guard interval ν exceeds the length of the channel impulse response
(which is normally the case), ν > L − 1, we only have a contribution for l = l′,

so E

[

B̃H
2,gR̃−1

2 B̃2,g

]

reduces to a diagonal matrix with diagonal elements given

by
(

E

[

B̃H
2,gR̃−1

2 B̃2,g

])

l,l
=

ν

N

(

N

N + ν

)2

(M − ν)
Es

N0
. (6.138)

In the special case that ν = L − 1, we have besides contributions for l = l′,
also contributions for (l, l′) = (0, L − 1) and (L − 1, 0) which are also equal to
the right hand side of (6.138).
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Combining the obtained results for the expectations E

[

B̃H
2,cR̃−1

2 B̃2,c

]

and

E

[

B̃H
2,gR̃−1

2 B̃2,g

]

yields1

E

[

B̃H
2 R̃−1

2 B̃2

]

=

(

N

N + ν

)2

(M − ν)
(

1 +
ν

N

) Es

N0
IL

=
N

N + ν
(M − ν)

Es

N0
IL (6.139)

1For the special case that ν = L − 1 we have shown that E

[

B̃H
2 R̃−1

2 B̃2

]

has 2 non-diagonal

elements, but they are much smaller than the diagonal elements, so we neglect them.
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7
Time Delay Offset Estimation

In this chapter, we tackle the problem of time delay offset estimation. First
we start with investigating what the influence is of a time delay offset on the
performance of a KSP-OFDM system. Then some algorithms which are pro-
posed in a TDS-OFDM context, are reviewed. These algorithms, however, are
not suitable for transmission over dispersive channels as their performance
degrades rapidly. This is mainly caused by the fact that they cannot exploit
pilots in the frequency domain and the presence of the unknown data sym-
bols. Therefore, we propose some new algorithms to estimate the time delay
offset, that exploit both the pilots in the time domain and in the frequency
domain. These new algorithms turn out to be more robust to channel disper-
sion. First we start from the observations in the TD and derive two low SNR
approaches to obtain an estimation algorithm for the time delay offset. These
two algorithms exhibit a high computational load, so we also search for alter-
natives. An important simplification is obtained by only considering the TD
pilot symbols which are transmitted during the guard interval. However, the
performance of this algorithm is not always satisfactory. Finally a pilot aided
FD algorithm is derived. The performance of the proposed algorithms is il-
lustrated by means of some simulation results in the last part of this chapter.
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A comparison is made with the existing algorithms for TDS-OFDM.

7.1 Problem Statement

An important issue with OFDM systems is their much higher sensitivity to
some synchronization errors, as compared to single carrier systems [36], so
synchronizing with the transmitter is an important task of the OFDM receiver.
One aspect of the synchronization process comprises finding the starting point
of the OFDM symbol; accurate time delay offset estimation is necessary be-
cause time offsets can cause inter carrier interference (ICI) and IBI [61, 62].

Several time delay offset estimation algorithms for CP-OFDM have already
been proposed in the literature. In [63], the maximum likelihood (ML) esti-
mator for a time delay offset in the presence of additive white Gaussian noise
(AWGN) has been presented. The algorithm exploits the redundancy of the
cyclic prefix and the pilot symbols on the carriers. The blind estimator of [64]
is a special case of the previous estimator and only makes use of the cor-
relation of the cyclic prefix and the last samples of the transmitted OFDM
block. In [65], the authors propose an estimator that uses a specially designed
training symbol for the AWGN channel. However in multipath fading envi-
ronments, the mentioned estimators result in inaccurate estimates with large
biases. To guarantee a good performance, the OFDM system would require
a long guard interval, which reduces efficiency in terms of both power and
bandwidth. In the literature, there are some contributions which take the fre-
quency selective nature of the channel in to account. In [66] and [36], the
performance from the algorithm from [65] is improved by optimizing the spe-
cially designed training symbol, but the performance can still suffer from a
dispersive channel. The authors of [67] derive the ML time delay offset es-
timator in the case of a dispersive channel under the assumption of perfect
channel knowledge. The algorithm exploits the cyclic prefix only. However, in
practice this estimator is not applicable because it is very difficult to obtain a
channel estimate without knowledge about the time delay. This estimator can
only serve as a lower bound on the performance of an estimator which does
not assume any knowledge about the channel. In [68], a coarse time delay
estimate is obtained by applying the correlation method based on the cyclic
prefix. The coarse estimate is further improved by employing a path time de-
lay estimation method. The algorithm can show a good performance, but it
is not that easy to choose an appropriate value for the correction term of the
coarse estimate and for the threshold value for the path time delay estimation.

For a TDS-OFDM system, there exist some time delay offset estimation
algorithms [69,70]. They estimate the time delay offset exploiting the presence
of the pseudo noise sequence which is transmitted during the guard interval.
A drawback of both algorithms, is that they both assume a flat fading channel
for the transmission, which is hardly realistic in an OFDM context. As a result,
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their performance is deteriorated in a dispersive environment.
For a KSP-OFDM system, no research has been done about algorithms

for the timing synchronization problem. Our goal is to develop timing offset
estimation algorithms that exploit both the pilot symbols in the guard interval
and the pilot symbols on the pilot carriers.

As already briefly mentioned in chapter 2 (see subsection 2.4.1), the re-
ceiver considers a vector z′ consisting of 2 (N + ν) + L − 2 received samples.
This vector z′ contains the total contribution from only one OFDM block, i.e.
the OFDM block with index i = 0, besides partial contributions from adjacent
blocks (see figure 2.10). Regardless of which detector is used, the receiver
needs a window of N + ν received samples that contains all the N + L − 1
samples that depend on the data symbols transmitted during block i = 0. The
starting point k0 of this block of samples in the received signal vector z′ is
unknown and has to be estimated. Note that we consider here, in this chap-
ter, time delay offset estimation under the assumption that there is no carrier
frequency offset.

7.2 Effect of a Timing Error

Suppose we have obtained an estimate of the time delay, which we denote as
k̂0. First of all we investigate the influence of a timing error k0 − k̂0 on the
performance of a KSP-OFDM system. We consider two types of timing errors:
i) timing errors to the right (k̂0 > k0) and ii) timing errors to the left (k̂0 < k0).

Case of timing errors to the right (k̂0 > k0)

In this case, an error of k̂0 − k0 samples to the right side has occurred.
The receiver selects the N + ν samples z′(k̂0), . . . , z′(k̂0 + N + ν − 1) . As a
result, the k̂0 − k0 samples z′(k0), . . . , z′(k̂0 − 1) are missed by the receiver for
the detection of the OFDM block i = 0. For the FD detector, this means that
the orthogonality of the carriers can not be restored anymore, which causes
ICI. For the other detectors, this means that some information about the data
symbols from block i = 0 is lost.
Furthermore, the block of N + ν samples contains the k̂0 − k0 samples z′(k0 +
N + ν), . . . , z′(k̂0 + N + ν − 1), which depend on the data symbols from the
next OFDM block i = 1. The presence of these samples causes IBI.

Case of timing errors to the left (k̂0 < k0)

In this case, an error of k̂0 − k0 samples to the left side has occurred. The
consequences are not always as bad as for timing errors to the right. The
receiver considers the N + ν samples z′(k̂0), . . . , z′(k̂0 + N + ν − 1) for data
detection. The channel impulse response has a duration of L samples, so
the last received sample which depends on the data symbols of the previous
OFDM block i = −1 is z’(k0 − ν + L − 2). This means that if k̂0 is greater
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than or equal to k0 − ν + L − 1, the N + ν samples that are selected to perform
the data detection are independent of any other OFDM blocks. After the
removal of the guard interval contributions, we have in fact a shifted version
of the original samples z0. The data symbols can be detected without any
interference from other OFDM blocks. For the FD data detector, we see a
similar effect as for a CP-OFDM system [4,62]: the timing error k0 − k̂0 causes

a phase rotation equal to exp
(

−j2πn(k0 − k̂0)/N
)

at the output of the FFT at

the n-th carrier, but does not cause any ICI in the FD. This phase rotation in
the frequency domain still has to be corrected. However, its estimation can be
incorporated in the channel estimation. Let us define the ν + 1 size vector h′,
given by:

h′ =







0(k0−k̂0)×1

h

0(ν−L+1+k̂0−k0)×1






, (7.1)

where we have added zeroes before and / or after the actual channel impulse
response h, and k̂0 is asumed to be in the desired range [k0 − ν + L − 1, k0].
It is easily verified that the N-point FFT of h′ is given by

H′ (n) =
ν

∑
l ′=0

h′
(

l′
)

e−j2π nl′
N

=
L−1

∑
l=0

h (l) e−j2π nl
N e−j2π

(k0−k̂0)n
N

= H (n) e−j2π
(k0−k̂0)n

N , (7.2)

where we have used the definition of H (n) (4.17). We see indeed that every
new FD channel coefficient H′ (n) is given by a rotation of H (n) over an angle
−2πn(k0 − k̂0)/N. Hence, by incorporating the phase rotation estimation in
the channel estimation, the KSP-OFDM system is made robust to these small
timing errors.

When the time delay estimate k̂0 is less than k0 − ν + L − 1, the receiver se-
lects the N + ν samples z′(k̂0), . . . , z′(k̂0 + N + ν − 1). The k0 − ν + L − 1− k̂0
samples z′(k̂0 + N + ν), . . . , z′(k0 + N + L− 2) are missing for the detection of
the OFDM block i = 0. This results in similar effects as for timing errors to the
right. In the FD, the orthogonality of the carriers is lost, which causes ICI. The
missing samples are replaced by the samples z′(k̂0), . . . , z(k0 − ν + L − 2),
which all depend on the previous OFDM block i = −1. As a consequence, the
performance of the considered detectors is degraded by IBI.

Figure 7.1 shows the three possibilities for k̂0: i) when the estimate of
k0 is larger then k0 (k̂0 > k0), some samples which are necessary to be able
to restore the orthogonality of the carriers are missed and they are replaced
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OFDM block i=0

guard interval guard interval

N + ν samples

N + ν samples

N + ν samples
k̂0 > k0

t

k0

k0 − ν + L − 1 ≤ k̂0 ≤ k0

k̂0 < k0 − ν + L − 1

Figure 7.1: The earliest and latest possible timing instants for the detection of
the OFDM block i = 0.

with samples belonging to the next OFDM block. This results in IBI and
ICI. ii) When the estimate of k0 is in the interval [k0 − ν + L − 1, k0], there
is no IBI and no ICI in the FD. As a result, optimal detection without any
loss in performance can be guaranteed. iii) Finally when the estimate of k0
is too small (k̂0 < k0 − ν + L − 1), again some essential samples are missed
which are necessary to be able to restore the orthogonality of the carriers
and additionally some samples belonging to the previous OFDM block are
considered for the detection of the OFDM block i = 0, which results in ICI
and IBI.

7.3 Existing algorithms for TDS-OFDM

In this section we review some existing algorithms for TDS-OFDM because
with some modifications they can also be applied in a KSP-OFDM system.

7.3.1 Slide Auto-correlation Based Estimation

In [69], the authors show that the guard interval in a TDS-OFDM can be inter-
preted as an OFDM block preceded by a CP (see also figure 7.2). As we have
already described in subsection 1.4.1, the guard interval consists of a pseudo
noise sequence of length NPN preceded by a prefix consisting of the Npre last
samples of the pseudo noise sequence, and followed by a postfix consisting
of the Npost first samples of the pseudo noise sequence. This means that the
first NCP = Npre + Npost samples of the guard interval are equal to the last
NCP samples. The last NPN samples of the guard interval are denoted as a′PN
and they form a cyclic shifted version of the original pseudo noise sequence
(which we denote as aPN). If we regard a′PN as an OFDM block of an OFDM

107



CHAPTER 7. TIME DELAY OFFSET ESTIMATION

OFDM BlockGuard Interval

PN sequence (’OFDM block’)CP

Figure 7.2: The interpretation of the TDS-OFDM guard interval as a CP-OFDM
block.

system with NPN carriers, then a′PN corresponds to the NPN-point IFFT out-
puts of the frequency domain symbols ã′PN, where the samples ã′PN (n) are
defined as

ã′PN (n) =
1√
NPN

NPN−1

∑
k=0

a′PN (k) e
−j2π kn

NPN , n = 0, . . . , NPN. (7.3)

Now we can consider the guard interval as a CP-OFDM training block. The
authors from [69] apply a slide auto-correlation based on the cyclic prefix
from [64] to obtain an estimate of the time delay offset. For our KSP-OFDM
system, the slide auto-correlation is given by

Rc (k) =
NCP−1

∑
l=0

(

z′ (k0 + N + l)
)∗

z′ (k0 + N + l + NPN) . (7.4)

For a flat fading channel, the magnitude of Rc (k) shows a maximum at the
correct value of the time delay offset, so the estimate of k0 is then given by

k̂0 = arg max
k

|Rc (k)| . (7.5)

The major drawback of this algorithm is that it has been derived under the
assumption that the channel is nondispersive and that the transmitted signal
is only affected by AWGN [64]. A multipath fading channel degrades the
performance of the algorithm. This algorithm can only be applied in a KSP-
OFDM system if the time domain pilot sequence ag is adjusted so that it has
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the same structure as the guard interval in a TDS-OFDM system (see figure
7.2).

7.3.2 Composite PN-Correlation (CPC) Based Estimation

A second existing time delay estimation method can be found in [70]. This
algorithm computes the pointwise conjugate product of two phase-shifted PN-
correlations. First we compute the NPN-length linear correlation between the
received signal samples of z′ and aPN:

C1 (k) =
NPN−1

∑
l=0

z′
(

k + N + Npre + l
)

(aPN (l))∗ . (7.6)

For a flat fading channel and at the correct timing instant k0, the correlation
C1 (k0) reaches a peak. This peak corresponds to the correlation of the PN
sequence and the part of the received block i = 0 which corresponds tot the
transmitted PN sequence aPN. Similarly, another NPN-length linear correlation
is computed but this time with another part of the received signal:

C2 (k) =
NPN−1

∑
l=0

z′
(

k + 2N + ν + Npre + l
)

(aPN (l))∗ . (7.7)

This second correlation also reaches the same peak at the correct timing in-
stant k0 for a flat fading channel, and is the correlation of the PN sequence aPN
and the part of the received block i = 1 which corresponds to the transmitted
PN sequence aPN.

The Composite PN-correlation is now defined as

RCPC (k) = (C1 (k))∗ C2 (k) . (7.8)

The time delay estimate is then given by

k̂0 = arg max
k

|RCPC (k)| . (7.9)

This algorithm has the same major drawback as the previous one: it is
derived under the assumption that the channel is a flat fading channel. Again,
the multipath fading will degrade the performance of the algorithm. This
algorithm can be applied in a KSP-OFDM without any modifications.

7.4 Pilot Aided TD Estimation

In this section an estimator for k0 is derived, starting from the joint likeli-
hood function of k0 and h for the observation z′. To simplify the derivation
of the estimator, we assume that z′ only contains noise besides the contri-
bution of the considered transmitted OFDM block s0

1. We define the vector
1This assumption is only used to derive the estimator, for the simulations we will consider a

continuous transmission of consecutive OFDM blocks.
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z0,EXT as the subvector of z′ that contains the contributions from s0: z0,EXT =

(z′ (k0) , . . . , z′ (k0 + N + ν + L − 2))T . Because of the already made assump-
tion, the vector z0,EXT can be expressed as

z0,EXT = HEXTs0 + w0,EXT (7.10)

where s0 is defined in (2.8) (with i = 0), and the vector w0 collects the noise
samples: w0,EXT = (w (k0) , . . . , w (k0 + N + ν + L − 2))T . The samples w (k)
are i.i.d. additive white Gaussian noise samples with variance N0 and zero
mean, and HEXT is an (N + ν + L − 1)× (N + ν) matrix with a Toeplitz struc-
ture. The entries of HEXT are given by (HEXT)l:l+L−1,l = h; l = 0, . . . , L − 1.
The useful signal in (7.10) can be written as the sum of the contribution of the
data symbols and the pilot symbols:

HEXTs0 = BEXTh + AEXTh (7.11)

where BEXT and AEXT are the (N + ν + L − 1) × L Toeplitz matrices with re-

spective entries (BEXT)l:l+N+ν−1,l = sp and (AEXT)l:l+N+ν−1,l = s
(0)
d ; l =

0, . . . , L − 1 (See equations (5.7) and (5.8) (with i = 0) for the definition

of sp and s
(0)
d respectively).

The joint probability of the samples of z′ given k0, the channel impulse

response h, and the data symbol vector a
(0)
d is given by

p
(

z′
∣

∣

∣k0, h, a
(0)
d

)

=

C exp

{

− 1
N0

(

k0−1

∑
k=0

∣

∣z′ (k)
∣

∣

2
+

2(N+ν)+L−3

∑
k=k0+N+ν+L−1

∣

∣z′ (k)
∣

∣

2

)}

.

exp
{

− 1
N0

‖z0,EXT − (BEXT + AEXT) h‖2
}

(7.12)

where C is some irrelevant constant. This expression is still dependent on the

unknown data symbols a
(0)
d . To get rid of this vector, we have two options. A

first option is to average (7.12) over the unknown data symbols. This averaging
is rather complicated so (7.12) has to be simplified first. For small values of x,
exp (x) can be approximated by the first two terms of its Taylor series, i.e.

exp (x) = 1 + x for |x| � 1. (7.13)

So for low signal to noise ratios (Es/N0 � 1), expression (7.12) can be approx-
imated by

p
(

z′
∣

∣

∣k0, h, a
(0)
d

)

= C − C

N0

(

k0−1

∑
k=0

∣

∣z′ (k)
∣

∣

2
+

2(N+ν)+L−3

∑
k=k0+N+ν+L−1

∣

∣z′ (k)
∣

∣

2

)

− C

N0
‖z0,EXT − (BEXT + AEXT) h‖2 . (7.14)
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The averaging of (7.14) over the unknown data symbols is easily performed
as we only need to compute the averages of AEXT and AH

EXTAEXT. Using the
equalities from (2.2) and the definition of AEXT, it is not hard to show that
E [AEXT] = 0. The average of AH

EXTAEXT is a little bit more difficult to obtain.
First of all we introduce the notation RA for this average: RA = E

[

AH
EXTAEXT

]

.

Note that AH
EXTAEXT is a Hermitian symmetric matrix, so it is sufficient to

only consider the elements (k, l) with l ≥ k for the computation of RA. The
elements of AH

EXTAEXT are given by

(

AH
EXTAEXT

)

k,l
=

N−1−(l−k)

∑
m=0

s
(0)
d (m)

(

s
(0)
d (m + l − k)

)∗
(7.15)

l ≥ k, k = 0, . . . , L − 1 (7.16)

where s
(0)
d (m) are the elements of the vector s

(0)
d , defined in (5.8). To obtain

the (k, l)-th member of RA, e.g. (RA)k,l = E

[

(

AH
EXTAEXT

)

k,l

]

, we need to

compute the average of
(

s
(0)
d (m2)

)∗
s
(0)
d (m1):

E

[

s
(0)
d (m1)

(

s
(0)
d (m2)

)∗]
=

1
N + ν

N−M+ν−1

∑
n1,n2=0

E [ad (n1) a∗d (n2)] ej2π
m1βn1−m2βn2

N ,

m1, m2 = 0, . . . , N − 1, (7.17)

where βn1 and βn2 are members of the set of data carriers Sd. Exploiting (2.2),
this expression can be further simplified, yielding

E

[

s
(0)
d (m1)

(

s
(0)
d (m2)

)∗]
=

Es

N + ν

N−M+ν−1

∑
n1=0

ej2π
(m1−m2)βn1

N . (7.18)

Replacing E

[

s
(0)
d (m1)

(

s
(0)
d (m2)

)∗]
by equation (7.18) in the expression for

the elements (RA)k,l results in

(RA)k,l =
Es

N + ν

N−1+k−l

∑
m=0

N−M+ν−1

∑
n1=0

ej2π
(k−l)βn1

N (7.19)

=
N + k − l

N + ν
Es

N−M+ν−1

∑
n1=0

ej2π
(k−l)βn1

N (7.20)

l ≥ k, k = 0, . . . , L − 1 (7.21)
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This yields for p (z′ |k0, h )

p
(

z′ |k0, h
)

= C

{

1 − 1
N0

[

z′Hz′ − zH
0,EXTBEXTh − hHBH

EXTz0,EXT

]

− 1
N0

hH
(

BH
EXTBEXT + RA

)

h

}

. (7.22)

The ML estimates of k0 and h are obtained by maximizing the probability
function of (7.22) with respect to k0 and h. The estimate ĥ can be expressed
as a function of k0 and is obtained by equating to zero the derivative of (7.22)
with respect to h. This yields

ĥ (k0) =
(

BH
EXTBEXT + RA

)−1
BH

EXTz0,EXT. (7.23)

To find the ML estimate of k0, we substitute the estimate of h in (7.22), where
we neglect the terms that are independent of h and k0. We obtain the function
ΓTD,1 (k0), which only depends on k0:

ΓTD,1 (k0) =
1

N0
zH

0,EXTBEXT

(

BH
EXTBEXT + RA

)−1
BH

EXTz0,EXT. (7.24)

The estimate of k0 is then given by

k̂0 = arg max
k0

{ΓTD,1 (k0)} . (7.25)

A second approach to cope with the presence of the unknown data sym-
bols in (7.12) is to totally neglect the contributions of the unknown data sym-
bols. This means that we neglect A in (7.12) and (7.14). In that case the
estimate of h given k0 is given by

ĥ (k0) =
(

BH
EXTBEXT

)−1
BH

EXTz0,EXT (7.26)

and the estimate of k0 is then given by

k̂0 = arg max
k0

{ΓTD,2 (k0)} (7.27)

with

ΓTD,2 (k0) =
1

N0
zH

0,EXTBEXT

(

BH
EXTBEXT

)−1
BH

EXTz0,EXT. (7.28)

The maximization of both ΓTD,1 (k0) and ΓTD,2 (k0) cannot be performed ana-
lytically and therefore a one-dimensional search procedure is applied.

Although (7.23) or (7.26) can be used to estimate h after obtaining k̂0 from
(7.25) or (7.27), we are not planning to use these estimates, because they per-
form poorly at high Es/N0. Neglecting the contributions from the data sym-
bols in (7.14) and (7.22) results in an error floor in the MSE of h and in the
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resulting BER (see chapter 6 and [23, 27]). Actually, (7.23) and (7.26) are only
used to obtain ΓTD,1 (k0) and ΓTD,2 (k0). We have derived channel estima-
tors that perform better at high Es/N0 than the estimators (7.23) and (7.26) in
chapter 6.

The functions ΓTD,1 (k0) and ΓTD,2 (k0) have a similar structure. They both
compute the correlation between the received signal and the pilot vector sp

at L successive time instants as be can be concluded from the matrix product
BH

EXTz0,EXT:

(

BH
EXTz0,EXT

)

l
=

N−1

∑
k=0

z′ (k0 + l + k)
(

sp (k)
)∗

+

√

N

N + ν
(

ν−1

∑
k=0

z′ (k0 + l + N + k)
(

ag (k)
)∗ (7.29)

where l = 0, . . . , L − 1. Both the estimators (7.25) and (7.27) search for
the k̂0 that maximizes a function of the L successive correlations between the
received signal and the pilot vector.

The major drawbacks of these two proposed algorithms are: i) the fact
that eventually at high Es/N0 they will suffer from the interference of the
unknown data symbols, and ii) the high computational load.

To illustrate this we are going to compute the number of complex multi-
plications and the number of complex additions that are necessary to obtain
the functions ΓTD,1 (k0) and ΓTD,2 (k0) for one test value of k0. The functions
ΓTD,1 (k0) and ΓTD,2 (k0) have both a similar structure: they consist of the mul-
tiplication of the Hermitian conjugate of a vector of length N + ν + L − 1 with
the product of a square matrix with dimensions equal to N + ν + L− 1 and the
same vector. This results in a total number of (N + ν + L) · (N + ν + L − 1)
complex multiplications and (N + ν + L − 1) · (N + ν + L − 2) + 1 complex
additions. We can conclude that it takes O

(

N2
)

arithmetical operations per
test value of k0.

7.5 Estimation Based on the Guard Interval

The time delay estimator from the previous section exhibits a high computa-
tional load, so we are looking for alternatives. The first solution that comes
in mind is to try to estimate the time delay offset only based on the time
domain pilot symbols that are transmitted during the guard interval. We
consider again the block of samples z′, but this time we assume that z′ only
contains the contribution of the guard interval pilot symbols ag and noise.
The subvector of z′ that contains the contributions from ag is denoted as zg:

zg = (z′ (k0 + N) , . . . , z′ (k0 + N + ν + L − 2))T. Based on the assumption

113



CHAPTER 7. TIME DELAY OFFSET ESTIMATION

made in this section, the received signal vector zg can be written as

zg = B′
gh + wg, (7.30)

where B′
g is a (ν + L − 1)× L Toeplitz matrix which is defined as

(

B′
g

)

l:l+ν−1,l
=

√

N

N + ν
ag; l = 0, . . . , L − 1, (7.31)

and the noise vector wg contains the corresponding noise samples w (k0 + N),
..., w (k0 + N + ν + L − 2).

The joint log likelihood function ln p (z′|k0, h) of the time delay offset k0
and the channel impulse response h given the observation vector z′ is ex-
pressed as

ln p
(

z′|k0, h
)

= − 1
N0

(

k0+N−1

∑
k=0

∣

∣z′ (k)
∣

∣

2
+

2(N+ν)+L−3

∑
k=k0+N+ν+L−1

∣

∣z′ (k)
∣

∣

2

)

− 1
N0

∥

∥

∥zg − B′
gh
∥

∥

∥

2
. (7.32)

Rearranging the terms in (7.32) yields for the joint log likelihood function
ln p (z′|k0, h)

ln p
(

z′|k0, h
)

= − 1
N0

(

z′Hz′ − zH
g B′

gh − hHB′H
g zH

g + hHB′H
g B′

gh
)

. (7.33)

The first term does not depend on k0 nor on h, so it has no further use
for the estimation problem and can be neglected. The joint maximization
of ln p (z′|k0, h) with respect to k0 and h can be reduced to a one dimensional
search over the time delay offset k0 followed by the analytical computation of
the estimate of the channel impulse response h: the estimate of h is given by

ĥ (k0) =
(

B′H
g B′

g

)−1
B′H

g zg. (7.34)

Substituting h by its estimate ĥ (k0) in the log likelihood function ln p (z′|k0, h)
yields a function that only depends on k0

Γg (k0) =
1

N0
zH

g B′
g

(

B′H
g B′

g

)−1
B′H

g zg. (7.35)

The maximization of this function with respect to k0 yields the estimate of k0:

k̂0 = arg max
k0

Γg (k0) . (7.36)

The function Γg (k0) has a similar structure as the functions ΓTD,1 (k0) (7.24)
and ΓTD,2 (k0) (7.28) from the previous section: Γg (k0) consists of the multi-
plication of the Hermitian conjugate of a vector with the product of a square
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matrix and the same vector. The only difference are the dimensions: the vec-
tor has a length equal to ν + L − 1 and the square matrix is a (ν + L − 1) ×
(ν + L − 1) matrix. This results in a total number of (ν + L) · (ν + L − 1) com-
plex multiplications and (ν + L − 1) · (ν + L − 2) + 1 complex additions. Usu-
ally the length of the guard interval ν and the length of the channel impulse
response L are of the same order, so we can conclude that it takes O

(

ν2
)

arithmetical operations.
Note that we have neglected the contributions from the actual OFDM

blocks in zg (7.30), so depending on how the guard interval length ν com-
pares to length L of the channel impulse response, the performance might be
different. When ν is somewhat larger than L, this algorithm will work better
than when ν has the minimal length of ν = L − 1.

7.6 Pilot Aided FD Estimation

We have seen that the estimators which operate in the time domain (see sec-
tion 7.4 and section 7.5) suffer from the interference from the unknown data
symbols, because it is impossible to separate the data symbol contributions
from the pilot symbol contributions.

However, in the frequency domain we have a whole different story. We
know already from the previous chapter (see section 6.6) that when the block
of N + ν samples z0 = (z′(k0), . . . , z′(k0 + N + ν − 1) )T are transformed to
the FD, by adding the last ν samples of z0 to the first ν samples of z0 and
applying the resulting N samples to an FFT, the orthogonality of the carriers
is restored. This means that the FFT outputs at the pilot carrier positions only
depend on both the TD pilot symbols ag and the pilot symbols transmitted
on the pilot carriers ac. We can exploit this fact to derive an estimator for the
time delay k0.

We consider the N + ν samples z0, which are needed for the detection of
the OFDM block i = 0. To restore the orthogonality of the carriers, the last ν

samples are added to the first ν samples, resulting in N samples that are fed
to the FFT:

z̃ (k0) = FΩz0. (7.37)

The M − ν FFT outputs at the pilot carrier positions are given by

z̃2 (k0) = B̃2h + w̃2, (7.38)

where we have used the same notations as in section 6.6, see (6.61) for the def-
inition of the pilot matrix B̃2. The noise samples w̃2 are zero mean Gaussian
distributed with an autocorrelation matrix R̃2 given by (6.60). Note that the
data symbols are not present in z̃2 (k0). The log likelihood function of k0 and
h given the observation z̃2 (k0) is defined as

ln p (z̃2 (k0) |k0, h) = −
(

z̃2 (k0) − B̃2h
)H

R̃−1
2

(

z̃2 (k0) − B̃2h
)

. (7.39)
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Now the ML estimates of k0 and h based on the log likelihood function
ln p (z̃2 (k0) |k0, h) can be obtained. The ML estimate of h can be written
as a closed form expression and is a function of k0 and is given by

ĥ (k0) =
(

B̃H
2 R̃−1

2 B̃2

)−1
B̃H

2 R̃−1
2 z̃2 (k0) . (7.40)

This estimate h̃ corresponds to the estimate obtained with the FD DA estima-
tor from section 6.6. When we use (7.40) to replace h in the log likelihood
function (7.39), a function is obtained that only depends on the time delay k0:

ΓFD (k0) = −z̃H
2 (k0)

(

R̃−1
2 − R̃−1

2 B̃2

(

B̃H
2 R̃−1

2 B̃2

)−1
B̃H

2 R̃−1
2

)

z̃2 (k0) . (7.41)

The ML estimate of k0 is given by

k̂0 = arg max
k0

ΓFD (k0) . (7.42)

The maximization of ΓFD (k0) can not be carried out analytically, so we have
to resort to a linear search.

This estimation algorithm is very similar to the TD algorithms we have
proposed in section 7.4. But in contrast with the TD algorithms, there is no
interference from the unknown data symbols and also the computational load
has been reduced: The function ΓFD (k0) has the same structure as the TD
functions ΓTD,1 (k0) and ΓTD,2 (k0), it consists also of the multiplication of the
Hermitian conjugate of a vector of observations z̃H

2 (k0) with the product of a
square matrix and the same vector of observations z̃2 (k0), but the dimensions
are different. The observation vector z̃2 (k0) has a length of M− ν samples. So
the computation of ΓFD (k0) needs (M − ν + 1) · (M − ν) complex multiplica-
tions and (M − ν) · (M − ν − 1) + 1 complex additions for every test value of
k0. Additionally, the algorithm operates in the FD, so to obtain the observa-
tion vector z̃2 (k0), we need an extra (N/2) · log2 N complex multiplications
and ν + N · log2 N complex additions. Usually the number of pilot carriers
M − ν is much smaller than the total number of carriers N, so the computa-
tional complexity is dominated by the transformation to the FD. As a result,
the complexity is of the order O (N · log2 N) per test value of k0.

When we compare this with the computational complexity of the TD algo-
rithms, we can conclude that despite the extra FFT, which is needed for every
test value of k0, the FD estimation algorithm relaxes the number of necessary
arithmetical operations.

7.7 Numerical Results

This section shows some numerical results for the proposed algorithms and
compares them with the existing algorithms from the literature.
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We consider N = 1024 carriers and a guard interval of length ν = 100.
The total number of pilot symbols M is equal to 200, which means that there
are 100 pilot symbols who are transmitted during the guard interval and 100
carriers are selected as pilot carrier. For the pilot symbol placement in the fre-
quency domain, we have considered the comb-type pilot scheme (see section
5.2 for more details). The transmitted symbols consist of randomly generated
QPSK symbols. The channel impulse response is given by (4.29). We consider
Rayleigh fading [3], so the samples of h are Gaussian distributed with zero
mean and variance equal to 1/L, with L = 50. Note that this channel model
corresponds to a worst case scenario: the power delay profile is uniform which
means that there is a lot of multipath interference, even from paths with high
delays. This interference makes the estimation of the time delay offset based
on the TD received signal more difficult. For an exponentially decaying power
delay profile the interference from the paths with the highest delays will be
less severe.

7.7.1 Histogram of the estimation error k̂0 − k0

The performance of the time delay offset estimation algorithms is first shown
by means of a histogram of the probability of the estimation error P(k̂0 − k0)
as a function of the estimation error k̂0 − k0. To obtain the histograms of the
different considered estimation algorithms, the SNR Es/N0 is set to 20 dB. An
estimate k̂0 of the time delay offset k0 is considered sufficiently accurate if it
is in the desirable range [k0 − ν + L − 1, k0]. Furthermore a small variance on
the estimate k̂0 is also considered an advantageous property because in that
case we can reduce the length of the guard interval ν.

To obtain the numerical results for the TDS-OFDM algorithms from section
7.4, we have generated a guard interval with the structure given / shown in
subsection 1.4.1. The pseudo noise sequence is given by a maximum length
sequence of NPN = 26 − 1 symbols. The prefix has a length of Npre = 19
samples and consists of the last 19 symbols of the maximum length sequence,
while the postfix has a length of Npost = 18 samples and consists of the first
18 symbols of the maximum length sequence. The guard interval has a length
of ν = Npre + NPN + Npost = 100 samples.

First of all we review the performance of the existing methods for TDS-
OFDM that are described in section 7.3. Figure 7.3 and 7.4 show the results
for the slide auto-correlation based algorithm from subsection 7.3.1 and the
composite PN-correlation based algorithm from subsection 7.3.2 respectively.
The performances of the TDS-OFDM algorithms are poor in the considered
KSP-OFDM system: less than 3% of the estimates of the time delay offset are
in the desirable range [k0 − ν + L − 1, k0] for the composite PN-correlation
based algorithm from subsection 7.3.2, while for the slide auto-correlation
based algorithm from subsection 7.3.1 it is even worse: less than 1% of the
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Figure 7.3: Histogram of the time delay estimation error for the TDS-OFDM
estimator from subsection 7.3.1, N = 1024, ν = 100, L = 50, M = 200,
Es/N0 = 20 dB.
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Figure 7.4: Histogram of the time delay estimation error for the TDS-OFDM
estimator from subsection 7.3.2, N = 1024, ν = 100, L = 50, M = 200,
Es/N0 = 20 dB.
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estimates are in the desirable range. Applying these algorithms will result in
interference from other OFDM blocks and additionally when the estimation
error is to large, the orthogonality of the carriers can not be restored, which
gives rise to ICI (see also section 7.2). Both algorithms are derived under
the assumption of a flat fading channel, which is clearly not the case in the
simulated system. This explains their bad performance. However it can be
noticed that the main part of the estimates is in the interval [k0, k0 + L]: for
the algorithm from subsection 7.3.2 this is true in approximately 83% of the
cases (see figure 7.4), while for the algorithm from subsection 7.3.1 it is true
in 96% of the considered cases (see also figure 7.3). The performances of the
two considered algorithms can be improved by exploiting the fact that most of
their estimates are in the range [k0, k0 + L]: the new estimate is then given by
k̂′0 = k̂0 − L, where k̂0 is given by (7.5) or (7.9) . Unfortunately, this solution is
only an ad hoc method to improve the estimate. For another channel model,
this solution might not work that well.

Next, we consider the pilot aided time domain algorithms from section
7.4. The results are shown in figure 7.5. The left side of the figure corresponds
to the estimator (7.25) which averages the likelihood function first over the
unknown data symbols. The results for the algorithm (7.27) which ignores the
unknown data symbols, are shown in the right part. Both algorithms have a
similar performance: their histogram shows a pronounced peak for k̂0 = k0.
The TD estimator which takes the data symbols into account (7.25), finds the
correct value of k0 in more than 83% of the simulated cases, while the TD
estimator which ignores the data symbols (7.27) yields an estimation error
equal to zero in more than 92% of the cases. Furthermore, the estimates are

all in the neighborhood of the correct value k0: the estimation error
∣

∣

∣k̂0 − k0

∣

∣

∣

is smaller than two samples in more than 97% of all simulated cases for the
TD estimator which takes the data symbols into consideration (7.25), while
for the TD estimator which ignores the data symbols, the probability that the

estimation error
∣

∣

∣k̂0 − k0

∣

∣

∣ is smaller than two samples, is more than 99%.

Compared to the existing TDS-OFDM estimators from section 7.3, these
two KSP-OFDM TD estimation algorithms yield a much better performance.
The variance of the estimates obtained with the KSP TD estimators (7.25) and
(7.27), is much smaller than the variance of the estimates obtained with the
two TDS-OFDM estimators from section 7.3. However, the KSP-OFDM TD
algorithms have a much higher computational complexity, i.e. O

(

N2
)

, than
the TDS-OFDM algorithms.

To lower the computational complexity, we now consider time delay offset
estimation based on the guard interval with the estimator (7.36) from section
7.5. The histogram of the estimation error k̂0 − k0 is shown in figure 7.6. The
correct value of k0 is found by the estimator in more than 60% of all the cases.
Compared to the TDS-OFDM estimators from section 7.3, the performance of
the guard interval based estimator (7.36) is significantly better, as most of the
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Figure 7.5: Histogram of the time delay estimation error for the KSP-OFDM
TD estimators, N = 1024, ν = 100, L = 50, M = 200, Es/N0 = 20 dB, (a):
(7.25) (b): (7.27).
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Figure 7.6: Histogram of the time delay estimation error for the KSP-OFDM
guard interval based estimator, N = 1024, ν = 100, L = 50, M = 200, Es/N0 =
20 dB.
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Figure 7.7: Histogram of the time delay estimation error for the KSP-OFDM
FD estimator, N = 1024, ν = 100, L = 50, M = 200, Es/N0 = 20 dB.

estimates are close to the correct value of k0: the estimation error
∣

∣

∣k̂0 − k0

∣

∣

∣

is 5 samples or less in 99% of all the simulated cases. If we compare this
result with the histograms for TDS-OFDM (figures 7.3 and 7.4), we see that
this is clearly not the case for the TDS-OFDM estimators. However, the per-
formance of the KSP-OFDM TD estimators (7.25) and (7.27) from section 7.4
is not reached. The lower computational complexity has its price: estimat-
ing the time delay offset, based on the presence of the pilot symbols in the
time domain only results in a degradation, or in other words exploiting the
presence of the pilot symbols on the pilot carriers gives rise to a performance
improvement (besides a higher computational complexity).

Finally we consider the frequency domain based time delay offset estima-
tion (7.42) from section 7.6. Figure 7.7 shows the results for the histogram of
the estimation error k̂0 − k0. The FD estimator yields by far the best result.
The correct value of the time delay offset k0 is found in 98% of all the simu-
lated cases. The variance of the estimate k̂0 is very small: almost every time,

the estimation error
∣

∣

∣k̂0 − k0

∣

∣

∣, if it is not equal to zero, is no more than 1 sam-

ple, i.e. P
(∣

∣

∣k̂0 − k0

∣

∣

∣ ≤ 1
)

> 99%. Compared to the TDS-OFDM estimators

from section 7.3, this estimator gives rise to a way better performance. This
KSP-OFDM FD estimator (7.42) even outperforms the KSP-OFDM TD estima-
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tors (7.25) and (7.27) (not to mention the TD guard interval based estimator
(7.36) from section 7.5). However, in terms of the computational complexity,
the KSP-OFDM FD estimator (7.42) needs a lot more arithmetical operations
than the TDS-OFDM estimators or the KSP-OFDM guard interval based esti-
mator. Compared to the KSP-OFDM TD estimators, it still yields a significant
improvement.

Now, if we review the obtained results for the KSP-OFDM TD estimators
(see figure 7.5) and the results for the KSP-OFDM FD estimator (see figure
7.7), we conclude that the variance on the estimate of the time delay offset is
rather small. We have selected the length of the guard interval ν equal to 100
samples resulting in a ’safety’ margin of ν − L = 50 samples for the estimate
of the time delay offset, or in other words, the estimate of the time delay offset
must be in the range [k0 − ν + L − 1, k0]. For the KSP-OFDM TD estimators
(7.25) and (7.27), and the FD estimator (7.42), this margin might be a bit to
large. On the other hand we want to keep the duration of the guard interval
as short as possible, because a longer guard interval reduces the throughput
of the system. Therefore, it is interesting to investigate the performance of the
different proposed algorithms in an OFDM system with a much shorter guard
interval. Now we set ν equal to 50 samples, the other parameters remain the
same except the total number of pilot symbols M which reduces to 100 pilot
carriers plus 50 time domain pilot symbols, e.g. M = 150.

First of all we start with the existing estimators for TDS-OFDM from sec-
tion 7.3. To obtain the results for the TDS-OFDM algorithms, we have kept the
structure of the guard interval of a TDS-OFDM system (see subsection 1.4.1
for more details), but we have scaled the different lengths NPN, Npre and Npost:
the pseudo noise sequence is now given by a maximum length sequence of
NPN = 25 − 1 = 31 symbols. The prefix has a length of Npre = 10 samples and
consists of the last 10 symbols of the maximum length sequence, while the
postfix has a length of Npost = 9 samples and consists of the first 9 symbols of
the maximum length sequence. This results in a guard interval length equal
to ν = Npre + NPN + Npost = 50 samples.

The histogram of the estimation error k̂0 − k0 for the slide auto-correlation
based estimator (7.5) and the one for the composite PN-correlation based esti-
mator (7.9) are shown in figures 7.8 and 7.9 respectively. The results are pretty
bad, the estimation variance is very large and as a result the performance of
the receiver is deteriorated by IBI and ICI. Due to the short guard interval
there is almost no tolerance: to guarantee optimal performance, the time de-
lay estimate k̂0 must be in the range [k0 − ν + L − 1, k0] (see section 7.2). For
the simulated system, this means that the estimate k̂0 must be equal to k0 or
k0 − 1. So the TDS-algorithms are not reliable for the time delay offset esti-
mation in this case. For the previous system with the larger guard interval,
there was an ad hoc solution to improve the estimate, but here in this case,
applying the same solution does not lead to a significant improvement.
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Figure 7.8: Histogram of the time delay estimation error for the TDS-OFDM
estimator from subsection 7.3.1, N = 1024, ν = 50, L = 50, M = 150, Es/N0 =
20 dB.
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Figure 7.9: Histogram of the time delay estimation error for the TDS-OFDM
estimator from subsection 7.3.2, N = 1024, ν = 50, L = 50, M = 150, Es/N0 =
20 dB.
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Figure 7.10: Histogram of the time delay estimation error for the KSP-OFDM
guard interval based estimator, N = 1024, ν = 50, L = 50, M = 150, Es/N0 =
20 dB, (a): (7.25) (b): (7.27).
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Figure 7.11: Histogram of the time delay estimation error for the KSP-OFDM
guard interval based estimator, N = 1024, ν = 50, L = 50, M = 150, Es/N0 =
20 dB.
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Next we look at the performance of the pilot aided TD estimation algo-
rithms (7.25) and (7.27) for KSP-OFDM from section 7.4. Figure 7.10 shows
the histogram of the estimation error k̂0 − k0 for the KSP-OFDM with a shorter
guard interval (ν = 50). The results are very similar to the ones displayed in
figure 7.5 (ν = 100). The performance is a little bit worse: the KSP-OFDM TD
estimator which averages first over the data symbols (7.25) finds the correct
value of the time delay offset in more than 81% of all simulated cases and for
the KSP-OFDM TD estimator which ignores the data symbols (7.27), this is
true for more than 88% of the estimates. The variance of the estimation er-
ror remains small for both estimators: the estimation error

∣

∣

∣k̂0 − k0

∣

∣

∣ is smaller

than two samples in more than 96 % of the simulated cases for the KSP-OFDM
TD estimator which takes the presence of the data symbols into account (7.25),
while for the KSP-OFDM TD estimator which ignores the data symbols, the

estimation error
∣

∣

∣k̂0 − k0

∣

∣

∣ remains smaller than two samples in more than 98

% of all simulated cases. So we can conclude that both KSP-OFDM TD estima-
tors do not suffer from the shortening of the guard interval. This means that
it is not necessary to make the guard interval much longer than the duration
of the channel impulse response in order to guarantee interference free data
detection.

Next we investigate the influence of the length of the guard interval on the
performance of the low complexity alternative for the KSP-OFDM TD estima-
tors: the guard interval based estimator (7.36) from section 7.5. Figure 7.11
shows the histogram of the estimation error k̂0 − k0. Similarly to the existing
TDS-OFDM algorithms from section 7.3, the guard interval based KSP-OFDM
estimator does not function well when the guard interval becomes very short.
As a consequence the correct value of the time delay offset k0 is only found in
approximately 7% of all the simulated cases and the estimation error exhibits
a large variance. Only considering the guard interval pilot symbols for the
estimation of the time delay offset is only applicable when the guard interval
is sufficiently longer than the duration of the channel impulse response.

Finally, the KSP-OFDM FD estimator (7.42) from section 7.6 is used for the
time delay offset estimation in the KSP-OFDM with the short guard interval
(ν = 50). The results for the histogram of the estimation error k̂0 − k0 are
shown in figure 7.12. The results are almost identical as the results for ν =
100. The correct value of k0 is found in 98% of all the simulated cases. The
estimation error

∣

∣

∣k̂0 − k0

∣

∣

∣ is almost always smaller or equal than 1 sample:

P
(∣

∣

∣k̂0 − k0

∣

∣

∣ ≤ 1
)

> 99%.

The KSP-OFDM FD estimator yields again the best performance of all the
considered time delay offset estimation algorithms. Furthermore, it does not
show any loss in performance at all when the guard interval is shortened. The
KSP-OFDM TD estimators also exhibit a good performance but there is small
degradation compared to the case where ν = 100.
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Figure 7.12: Histogram of the time delay estimation error for the KSP-OFDM
FD estimator, N = 1024, ν = 50, L = 50, M = 150, Es/N0 = 20 dB.

7.7.2 BER

In this subsection we investigate the BER performance of a receiver which
applies one of the proposed time delay estimation algorithms. We have used
the frequency domain symbol by symbol detector (4.28) from section 4.2 to
determine the transmitted data symbols.

In figure 7.13, the BER results are shown as a function of Eb/N0 for a KSP-
OFDM with a guard interval length ν of 100 symbols. Two benchmark curves
are also added to the figure for comparison. One curve corresponds to the
BER of a receiver which is perfectly synchronized and has perfect knowledge
about the channel state information (CSI) and is the absolute lower bound
for receivers which have to estimate both the channel impulse response and
the time delay offset. The other reference curve shows the BER for a receiver
which is perfectly synchronized but estimates the channel impulse response.
There is already a degradation caused by the imperfect channel estimation.

First of all, we consider the TD time delay offset estimation algorithms
(7.25) and (7.27) from section 7.4. For low to moderate SNR (Eb/N0 ≤ 20 dB),
the performance of a receiver which uses one of the TD estimators is equal
to the performance of a receiver with perfect knowledge of the time delay
offset. Only for high SNR, there is an error floor visible. The error floor is
caused by the assumptions made for the derivation of the estimators: we have
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Figure 7.13: BER as a function of Eb/N0, N = 1024, ν = 100, L = 50, M = 200.
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Figure 7.14: BER as a function of Eb/N0, N = 1024, ν = 50, L = 50, M = 150.
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assumed a low SNR to obtain (7.14). The TD time delay offset estimator which
averages first over the data symbols (7.25), results in the highest error floor.
For the TD time delay estimation algorithm which ignores the presence of the
data symbols (7.27) the error floor is not yet fully visible and the degradation
remains small for the considered range of Eb/N0 values. Next we look at the
BER of a receiver which applies the guard interval based algorithm (7.36) from
section 7.5 to estimate the time delay offset. The BER results clearly indicate
that the time delay offsets obtained with the guard interval based algorithm
are not accurate enough, and as a result there is a large degradation for the
BER. Finally, the BER results of a receiver which employs the FD estimator
(7.42) from section 7.6 to obtain the time delay offset estimate are shown.
For low Eb/N0, there is a small degradation compared to the performance
of the receiver with perfect knowledge about the time delay offset and the
receiver with one of the TD estimation algorithms from section 7.4. Note that
we have shown in section 7.2 that, to make the system robust against certain
timing errors, the channel impulse response needs to be extended to the whole
duration of the guard interval. In that case, the timing error is taken into
account in the estimate of the channel impulse response h′ (7.1). A drawback
of this extension is the increase of the number of channel impulse response
samples that need to be estimated: the actual channel impulse response h

consists of L samples, while h′ has a length of ν samples (of which only L of
them are not equal to zero). From (6.67), it can be seen that the MSE of the
channel estimate depends on the number of estimated samples. So estimating
h′ results in a higher estimation variance and a loss in performance. For the
guard interval based time delay offset estimator (7.36), the variance of the time
delay offset estimate is very large so for this estimator we have to estimate the
samples of h′ to be able to make the system robust against some timing errors.
The TD time delay offset estimators (7.25) and (7.27), and the FD time delay
offset estimation algorithm (7.42), exhibit a very small variance of the estimate.
So in most of the cases, they provide the correct value of the time delay offset.
If the time delay offset estimate k̂0 is equal to the correct k0, then the extended
channel impulse response h′ is given by

h′ =

(

h

0(ν−L)×1

)

. (7.43)

The last ν − L samples of h′ are always equal to zero if k̂0 = k0. So for time
delay offset estimators which almost always deliver the correct k0, it is not
necessary to estimate ν channel impulse response samples, we only have to
estimate the L samples of h. We see from figure 7.13 that this approach works
perfect for the FD time delay offset estimation algorithm: the BER of a receiver
with perfect knowledge about the time delay offset is reached (except for very
low Eb/N0). For the TD time delay offset estimators, there is a degradation
for (very) high values of Eb/N0. As we can see from figure 7.5, there are some
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timing errors to the left (k̂0 < k0), which could be incorporated in the channel
estimation by estimating the ν samples of h′. As we did not estimate h′ but
h, these timing errors are partially responsible for the error floor in the BER
(timing errors to the right always result in a degradation).

To illustrate the influence of a short guard interval on the performance of
the proposed estimation algorithms, figure 7.14 shows the BER results for a
KSP-OFDM system with a guard interval consisting of ν = 50 pilot symbols.
The BER of a receiver which estimates the time delay offset with one of the
TD estimators from 7.4 is equal to the BER of a receiver which is perfectly
synchronized for low to moderate SNR (Eb/N0 ≤ 15 dB), although the error
floor appears already at lower Eb/N0 than in figure 7.13. Again the TD es-
timator (7.27) which ignores the presence of the data symbols results in the
lowest error floor, but the degradation is also in this case a bit larger than for
the KSP-OFDM system with ν = 100. The BER results for a receiver which
is equipped with the guard interval based time delay estimation algorithm,
are catastrophic. These results are of course as expected if we look at the
histogram of the estimation error k̂0 − k0 (see figure 7.11). For the receiver
with the FD estimator, there is no difference with the situation ν = 100. There
is a small gap with the BER performance of a receiver with perfect knowl-
edge about the time delay offset for low Eb/N0. For moderate to high SNR
(Eb/N0 ≥ 0 dB) the receiver with the FD estimator reaches the performance
of the perfectly synchronized receiver.

We can conclude that of all proposed time delay offset estimators, the FD
estimator yields the best performance in terms of the BER for moderate to
high SNR. Only for low SNR, the TD estimators result in a lower BER. For the
time delay offset estimation we can not really rely on the guard interval based
estimator as its BER performance is really poor.

7.8 Conclusion

In this chapter the problem of time delay offset estimation has been tackled.
First we have shown that there is a range of tolerable time delay offsets which
do not cause any degradation. Outside this range, a time delay offset causes
IBI and ICI. Secondly two existing time delay offset estimation algorithms for
TDS-OFDM have been discussed: the slide auto-correlation based estimator
and the composite PN-correlation based estimator. They both try to estimate
the time delay offset by exploiting the presence of the pseudo noise sequence
in the guard interval. With some small modifications they can easily be ap-
plied in a KSP-OFDM context. Their major drawback is their assumption of a
flat fading channel. The numerical results show that especially for short guard
intervals, their performance is rather poor.

Next we have proposed some TD pilot aided estimation algorithms. They
both estimate the time delay offset using the pilot symbols transmitted during
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the guard interval and the pilot symbols transmitted on the pilot carriers. For
their derivation we have assumed the low SNR regime. In a first approach we
have replaced the likelihood function by the first two terms of its Taylor series
expansion and have averaged them over the unknown data symbols. The joint
estimation problem of the channel impulse response and the time delay offset
reduces to a linear search for the time delay offset (and an analytical compu-
tation of the channel impulse response estimate). In a second approach, the
contribution of the data symbols is ignored. Following a similar reasoning as
for the first approach, the estimate of the time delay offset is found by per-
forming a one-dimensional search. The numerical results show that they both
exhibit good performance even for a very short guard interval. The major
drawback of both algorithms is their high computational load. Therefore we
have searched for a low complexity alternative. A major reduction in compu-
tational complexity is achieved by only considering the pilot symbols in the
guard interval (but still assuming a frequency selective channel). However, for
very short guard intervals, the performance of the guard interval based time
delay offset estimator is not that great.

The last proposed time delay offset estimator operates in the frequency
domain. It estimates the time delay offset based on the FFT outputs of the
received signal at the pilot carrier positions. The algorithm exploits both the
time domain pilot symbols from the guard interval and the pilot symbols on
the pilot carriers. The log likelihood function shows a sharp peak for the
correct value of the time delay offset; there is no interference from the data
symbols. This algorithm exhibits an excellent performance independent of
the length of the guard interval. The computational complexity is somewhere
between the one of the KSP-OFDM TD estimators and the one from the guard
interval based estimator.

The derivation of the TD pilot aided estimation algorithms and the study
of their performance has been carried out in [35, 71, 72].
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8
Carrier Frequency Offset
Estimation

In this chapter we look into the estimation of an unknown carrier frequency
offset. After the problem formulation, we first review existing algorithms for
TDS-OFDM. These algorithms are based on the pilot symbols in the guard
interval and thus they can be applied (possibly after some modifications) in a
KSP-OFDM system. In a second part of this chapter, we propose some new
carrier frequency offset estimation algorithms that make use of the presence
of the pilot symbols in the guard interval and the pilot symbols on the pilot
carriers, and that are robust against an unknown channel impulse response. A
first algorithm operates in the time domain and is robust against possible time
delay offsets. The algorithm is based on the periodicity of the transmitted pilot
signal. A second class of algorithms that we introduce in this work, operates
in the frequency domain. One algorithm estimates the carrier frequency offset
based on the FFT outputs at pilot carrier positions. A second algorithm is a
decision aided algorithm and makes use of all of the FFT outputs. The last
part of the chapter consists of numerical results to illustrate the performance
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of the proposed estimation algorithms and to compare them with the existing
algorithms for TDS-OFDM.

8.1 Problem Statement

One of the problems in an OFDM system is its sensitivity to a frequency mis-
match between the oscillators in the transmitter and the receiver. The BER per-
formance can be severely degraded when the carrier frequency offset (CFO)
(even of the order of a fraction of the carrier spacing) is not compensated [73],
because the frequency offset causes inter carrier interference and attenuates
the useful signal. For CP-OFDM several algorithms have been proposed. The
authors from [64] propose the joint ML estimation of the time delay offset
and the CFO. The estimator provides the time delay offset and the CFO es-
timates exploiting the presence of the CP. However, the authors assume an
AWGN channel and as a result the performance of the proposed algorithm is
degraded in a frequency selective fading channel. The same authors propose
a CFO estimation algorithm for CP-OFDM in a frequency selective channel
in [67], but they assume that the channel impulse response is known by the
receiver, which is hardly realistic. In [74] and [65], estimation algorithms are
proposed which are based on specially designed training symbols.

In the literature several CFO estimation algorithms for TDS-OFDM can be
found. In [69], it is shown that the content of the guard interval in a TDS-
OFDM system can be viewed as a CP-OFDM training symbol. The algorithm
from [64] is then applied. The authors from [70] introduce the method of
composite PN-correlation, which computes the point-wise conjugate product
of two phase-shifted PN-correlations. The obtained product is then used to
estimate the CFO. In [75], the guard interval of one OFDM block is correlated
with the guard interval of the next OFDM block. When the channel only
varies slowly during two consecutive OFDM blocks, there is only a difference
in phase between the two received guard intervals. This phase difference
depends linearly on the CFO and so it can be exploited to estimate the CFO.
These algorithms for a TDS-OFDM system only make use of the time domain
pilot symbols while there are also frequency domain pilot symbols available
in a general KSP-OFDM system. We want to develop some frequency offset
estimation algorithms that exploit both the time domain pilot symbols and
the frequency domain pilot symbols, but we do not use specially designed
training symbols that do not contain any data symbols.

The OFDM blocks are transmitted over a frequency selective channel with
impulse response h with L channel taps. The N + ν received time-domain
samples corresponding to the observation interval of the i-th OFDM block
shown in figure 4.1.b are given by

zi = ej2π
i(N+ν)

N εE (ε) Hchsi + wi. (8.1)
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The unknown parameter ε denotes the CFO between the transmitter and re-
ceiver oscillators expressed as a fraction of the intercarrier spacing. We assume
that the timing offset is already known and that a rough estimation of the fre-
quency offset already has been performed so that |ε| < 0.5N/ (N + ν). The
(N + ν) × (N + ν) channel matrix Hch is given by (4.2). The diagonal matrix
E (ε) depends on the unknown CFO and is defined as:

(E (ε))k,k = ej2π k
N ε. (8.2)

As the performance strongly degrades if a (small) CFO is present, we need
an estimate of the CFO ε to compensate its presence in (8.1), before the data
detection can be performed.

8.2 Existing TDS-OFDM Algorithms

First, we start with reviewing some existing frequency offset estimation algo-
rithms for TDS-OFDM.

8.2.1 Slide Auto-correlation Based Estimation

The principle of the slide auto-correlation has already been introduced in the
previous chapter for the time delay offset estimation (see subsection 7.3.1).
The authors from [69] also propose a frequency offset estimation algorithm in
the same paper. As we have shown in figure 7.2 (and subsection 7.3.1), the
guard interval in a TDS-OFDM system can be seen as a CP-OFDM block: the
first NCP time domain pilot symbols transmitted during the guard interval
are equal to the last NCP time domain pilot symbols a′PN (NPN − NCP), ...,
a′PN (NPN − 1). If we assume transmission over a flat fading channel with
channel coefficient h, then we can express the received samples zi (N), ...,
zi (N + NCP − 1) corresponding to the first NCP pilot symbols as

zi (N + k) =

√

N

N + ν
h · a′PN (NPN − NCP + k) ej2π

i(N+ν)+N+k
N ε + wi (N + k) ,

k = 0, ..., NCP − 1, (8.3)

while the received samples zi (N + ν − NCP), ..., zi (N + ν − 1) corresponding
to last NCP pilot symbols of the guard interval are given by

zi (N + ν − NCP + k) =

√

N

N + ν
h · a′PN (NPN − NCP + k) ej2π

(i+1)(N+ν)−NCP+k
N ε

+ wi (N + ν − NCP + k) , k = 0, ..., NCP − 1, (8.4)
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where h denotes the unknown channel coefficient. The slide auto-correlation
is defined as1

RC,i =
NCP−1

∑
k=0

(zi (N + k))∗ zi (N + ν − NCP + k) . (8.5)

It is easily seen that the useful part of RC,i is given by

NCP
N

N + ν
|h|2 Esej2π

NPN
N ε (8.6)

and its phase is equal to 2π NPN
N ε, so the estimate of the frequency offset is

given by

ε̂ =
N

NPN

1
2π

∠ (RC,i) , (8.7)

where ∠ (x) returns the argument of the complex number x in the interval
[−π, π[. From (8.8) it can be seen that the slide auto-correlation based CFO es-

timator can return the correct value of ε, if ε is in the interval
[

− 1
2

N
NPN

, 1
2

N
NPN

[

.

Now if we have K received OFDM blocks, the estimator is easily extended to
use all of the K received blocks:

ε̂ =
N

NPN

1
2π

∠

(

K−1

∑
i=0

RC,i

)

(8.8)

8.2.2 Composite PN-Correlation Based Estimation

As already discussed in subsection 7.3.2, the composite PN-correlation based
estimation algorithm computes the point wise conjugate product of two phase-
shifted PN-correlations.

After transmission over a flat fading channel with channel impulse re-
sponse equal to h, the received signal samples which correspond to the guard
interval of the i-th OFDM block are given by

zi (N + k) =

√

N

N + ν
h · ag (k) ej2π

i(N+ν)+N+k
N ε + wi (N + k) ,

k = 0, . . . , ν − 1 (8.9)

The NPN-length linear correlation C1 is computed between the received sam-

1unlike the slide auto-correlation (7.4) from subsection 7.3.1, there is no time delay offset
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ples zi

(

N + Npre + k
)

from (8.9) and aPN:

C1,i =
NPN−1

∑
k=0

zi

(

N + Npre + k
)

(aPN (k))∗

=

√

N

N + ν
h · Esej2π

i(N+ν)+N+Npre
N ε

NPN−1

∑
k=0

ej2π k
N ε

+
NPN−1

∑
k=0

wi

(

N + Npre + k
)

(aPN (k))∗ . (8.10)

A second NPN-length linear correlation C2 is obtained by correlating the sam-
ples from the next OFDM block zi+1

(

N + Npre + k
)

with aPN:

C2,i =
NPN−1

∑
k=0

zi+1
(

N + Npre + k
)

(aPN (k))∗

=

√

N

N + ν
h · Esej2π

(i+1)(N+ν)+N+Npre
N ε

NPN−1

∑
k=0

ej2π k
N ε

+
NPN−1

∑
k=0

wi+1
(

N + Npre + k
)

(aPN (k))∗ , (8.11)

where the samples zi+1 (N + k) are given by (8.9) (where we have replaced i
by i + 1).

The composite PN-correlation is defined as

RCPC,i = (C1,i)
∗ C2,i. (8.12)

From the definition of C1,i (8.10) and C2,i (8.11) it is easily seen that the useful
part of RCPC,i is given by

N

N + ν
E2

s |h|2
∣

∣

∣

∣

∣

NPN−1

∑
k=0

ej2π k
N ε

∣

∣

∣

∣

∣

2

ej2π N+ν
N ε. (8.13)

The estimate of the CFO is given by

ε̂ =
N

(N + ν)

1
2π

∠ (RCPC,i) . (8.14)

The estimation range of the composite PN-correlation based CFO estimator is

equal to: ε ∈
[

− 1
2

N
N+ν , 1

2
N

N+ν

[

. For K received OFDM blocks the extension of

the estimator to consider all of the received OFDM blocks is given by

ε̂ =
N

(N + ν)

1
2π

∠

(

K−1

∑
i=0

RCPC,i

)

. (8.15)
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8.2.3 Guard Interval Based Estimation

In [75], the authors propose a CFO estimation algorithm based on the pilot
symbols transmitted during the guard intervals of two consecutively trans-
mitted OFDM blocks. It was initially proposed for a TDS-OFDM system, but
because it does not demand any special structure about the time domain pi-
lot sequence, it can be applied directly without any changes in a KSP-OFDM
system.

The algorithm starts from the received signal vectors corresponding to the
guard interval zg,i = (zi (N) , . . . , zi (N + ν − 1))T , i = 0, . . . , K − 1, which
are defined as

zg,i = ej2π
i(N+ν)

N εEg (ε) Hg

(

sp + s
(i)
d

)

+ wg,i (8.16)

where Hg consists of the last ν rows of Hch, Eg (ε) is a diagonal matrix given

by
(

Eg (ε)
)

k,k = ej2π N+k
N ε and wg,i collects the noise samples. We compute the

product of the Hermitian transpose of zg,i with zg,i+1 for i = 0, . . . , K − 2.
The summation of those K − 1 products yields a quantity that can be used to
estimate ε:

K−2

∑
i=0

zH
g,izg,i+1 = (K − 1) ej2π N+ν

N ε
∣

∣Hgsp
∣

∣

2
+

K−2

∑
i=0

ni (8.17)

where ni collects the contributions from zH
g,izg,i+1 which depend on the noise

and the unknown data symbols. The estimate of ε is then given by

ε̂ =
1

2π

N

N + ν
∠

{

K−2

∑
i=0

zH
g,izg,i+1

}

. (8.18)

Inspecting (8.18), we conclude that the guard interval based estimator can

estimate the CFO, if ε is in the range
[

− 1
2

N
N+ν , 1

2
N

N+ν

[

.

8.3 TD Pilot Aided Estimation

Besides the TD pilot symbols in the guard interval there are also pilot sym-
bols available on the pilot carriers, which can be used to estimate the CFO.
Therefore, a straightforward extension of the algorithm from [75] would be to
consider the total received symbol vectors zi instead of only the parts corre-
sponding to the guard intervals zg,i. However, the received signals that corre-
spond to the actual OFDM blocks depend on the unknown data symbols. As
a result the contributions of the pilot carriers are heavily contaminated by the
interference from the data symbols. So extending the algorithm from [75], so
that it also takes the received signals corresponding to the pilot carriers into
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account and estimates the CFO based on the total received symbol vectors zi

results in a less accurate estimate and a degradation of the performance. The
advantage of this approach is its robustness against a time delay offset.

The proposed algorithm starts from the received signal samples of K (≥ 2)
consecutively transmitted OFDM blocks. We denote them as z0, ..., zK−1,
which are given by (8.1):

z0 = E (ε) Hch

(

sp + s
(0)
d

)

+ w0 (8.19)

...

zK−1 = ej2π
(K−1)(N+ν)

N εE (ε) Hch

(

sp + s
(K−1)
d

)

+ wK−1

We see that the pilot symbol contribution in zi (i.e. the contribution from
sp), with i = 1, . . . , K − 1, is equal to the pilot symbol contribution in z0

multiplied by a factor ej2π
i(N+ν)

N ε. We will exploit this fact to estimate the CFO
ε.

When we consider the unknown data symbols as an additional noise term
in (8.19), we can rewrite (8.19) as

zi = ej2π
i(N+ν)

N εE (ε) Hchsp + w̄i (8.20)

where w̄i = wi + ej2π
i(N+ν)

N εE (ε) Hchs
(i)
d . We compute the product of the Her-

mitian transpose of zi with zi+1 for i = 0, . . . , K − 2. The summation of those
K products yields a quantity that can be used to estimate ε:

K−2

∑
i=0

zH
i zi+1 = (K − 1) ej2π N+ν

N ε
∣

∣Hchsp
∣

∣

2
+

K−2

∑
i=0

ni (8.21)

where ni collects the contributions from zH
i zi+1 which depend on the noise

and the unknown data symbols. The estimate of ε is then given by

ε̂ =
1

2π

N

N + ν
∠

{

K−2

∑
i=0

zH
i zi+1

}

. (8.22)

This CFO estimator has the same estimation range as the guard interval based

estimator (8.18): the correct estimate of ε if ε ∈
[

− 1
2

N
N+ν , 1

2
N

N+ν

[

.

The main advantage of this approach is that we do not need to know the
time delay offset (TDO) first before an estimate of the CFO can be obtained.
Figure 8.1 shows the transmitted time domain pilot signal (top of the figure):
in every block, the first N samples correspond to the IFFT outputs of the pilot
carriers and they are followed by the ν pilot symbols of the guard interval.
The bottom of the figure shows the received pilot signal. When there is no
TDO, the received vectors corresponding to every OFDM block are given by
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t

t

νTNT

Transmitter

Receiver

TDO z′0 . . . z′K−1

z0 . . . zK−1

Figure 8.1: The time domain pilot signal: transmitted signal (top), and re-
ceived signal without and with a TDO (bottom).

zi (8.20). In the presence of a TDO, the pilot contribution in each received
vector, which we now denote as z′i, is a circular shift of the pilot contribution
in zi with i = 0, . . . , K − 1 as can be seen from figure 8.1. The summation of
the K products of the Hermitian transpose of z′i with z′i+1, i = 0, . . . , K − 2,
yields

K−2

∑
i=0

(

z′i
)H

z′i+1 = (K − 1) ej2π N+ν
N ε

∣

∣Hchsp
∣

∣

2
+

K−2

∑
i=0

n′
i, (8.23)

which is equal to (8.21) except for the contribution from the unknown data
symbols and the noise. The estimate of the CFO ε is obtained by applying the
same estimator as (8.22) where zi is replaced by z′i for i = 0, . . . , K − 2.

8.4 FD Pilot Aided Estimation

From the previous section we know that estimating the CFO based on the time
domain received signal corresponding to both the guard interval pilot symbols
and the pilot symbols transmitted on the pilot carriers, results in a degradation
compared to estimating the CFO based on the received signal corresponding
to the guard interval pilot symbols only. From the previous chapters, we know
that for channel estimation (see section 6.6) and TDO estimation (see section
7.6) and without the presence of an CFO, the best results are obtained if the
received signal is transformed to the frequency domain. The main problem in
the time domain is the presence of the unknown data symbols, which interfere
with the pilot contributions. In the frequency domain, the pilot carriers and
the data carriers are orthogonal, so the FFT outputs of the received signal
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on the pilot carriers only depend on the pilot symbols (from both the pilot
carriers and the guard interval). However, in the presence of an CFO it has
been shown in [73], that the orthogonality of the carriers is destroyed so there
exists ICI. But fortunately for small values the CFO, the interference of the
unknown data symbols which is present in the received signal on the pilot
carriers is a lot weaker than in the time domain signal. So in this section
we are deriving an CFO estimation algorithm that operates in the frequency
domain.

First we transform the received vectors zi, i = 0, . . . , K − 1 to the fre-
quency domain. To achieve this, the last ν samples of each vector are added
to the first ν samples, and the first N samples of the resulting vectors are then
applied to an FFT:

z̃i = FΩzi, (8.24)

where the matrix Ω represents the summation and is defined as (4.19) and F

is the FFT matrix (2.5). The output of the FFT of OFDM block i at carrier n is
given by

z̃i (n) = ej2π
i(N+ν)

N ε

(

H̃ (ε, n)
M−ν−1

∑
m=0

ac (m) Iαm−n (ε)

+ H̃ (ε, n)
N+ν−M−1

∑
m=0

a
(i)
d (m) Iβm−n (ε) +

L−1

∑
l=0

B̃g (ε, n, l) h (l)

)

+ w̃i (n)

(8.25)

where Im (ε), H̃ (ε, n) and B̃g (ε, n, l) are given by

Im (ε) =
1

√

N (N + ν)

1 − ej2π(m+ε)

1 − ej2π
(m+ε)

N

(8.26)

H̃ (ε, n) =
L−1

∑
l=0

h (l) e−j2π
(n−ε)l

N (8.27)

B̃g (ε, n, l) =
1√

N + ν

(

l−1

∑
k=0

ag (ν + k − l) ej2π
(ε−n)k

N

+
ν−1

∑
k=l

ag (k − l) ej2π
(ε−n)(N+k)

N

)

(8.28)

and αm and βm are carrier indices belonging to the subsets of carrier indices
of pilot carriers Sp (5.1) and data carriers Sd (5.2), respectively. The samples
w̃i (n), with n = 0, . . . , N − 1, are Gaussian noise samples with zero mean and
have an autocorrelation matrix Rw̃ defined as (4.25). The factor I0 (ε) shows
that the useful component in (8.25) is attenuated due to the CFO. Secondly, it
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is also clear from (8.25) that the CFO also causes ICI as in (8.25), not only the

symbol ac (n) (or a
(i)
d (n)) occurs but also other symbols.

We collect the M − ν FFT outputs from the K OFDM blocks corresponding
to the set Sp of pilot carriers in the vectors z̃2,i, i = 0, . . . , K − 1 :

z̃2,i = [z̃i (α0) , . . . , z̃i (αM−ν−1)]
T

= ej2π
i(N+ν)

N ε
(

b̃ + ãi

)

+ w̃2i (8.29)

where b̃ is the vector that contains the contributions from both time and fre-
quency domain pilots. The vector ãi collects the contributions from the un-
known data symbols from the i-th OFDM block and w̃2i contains the noise
samples at the pilot carrier positions of the i-th block. The summation over
i of the multiplications of the Hermitian transpose of z̃2,i with z̃2,i+1 for i =
0, . . . , K − 2 results in a function which is used to estimate ε:

K−2

∑
i=0

z̃H
2,iz̃2,i+1 = (K − 1) ej2π

(N+ν)
N ε

∣

∣b̃
∣

∣

2
+

K−2

∑
i=0

ñi (8.30)

where ñi collects the contributions from the unknown data symbols and the
noise samples from z̃H

2,iz̃2,i+1. The estimate of ε is then given by

ε̂ =
1

2π

N

N + ν
∠

{

K−2

∑
i=0

z̃H
2,iz̃2,i+1

}

. (8.31)

The provided estimate is limited to the range
[

− 1
2

N
N+ν , 1

2
N

N+ν

[

, so the CFO

than can be estimated with the FD pilot aided CFO estimator (8.31) should
also be in this range.

8.5 Decision Aided FD Estimation

In a decision aided CFO estimator, initially, an estimate of the CFO ε̂0 is ob-
tained by applying some CFO estimation algorithm (see for example the pro-
posed algorithms in sections 8.3 and 8.4). This estimate is used to compensate
the CFO in the time domain. In a second step, an estimate of the channel im-
pulse response h is obtained based on the received signal with compensated
CFO using one of the data aided algorithms from chapter 6. The channel
estimate is then used to detect the transmitted data symbols with one of the
detectors from chapter 4.

We can now start an iterative algorithm which iterates between the follow-
ing processes: i) obtaining an estimate of the remaining CFO using the latest
obtained estimate of h and the detected data symbols, ii) re-estimating h after
compensation of the remaining CFO and using the detected data symbols, and

140



8.5. DECISION AIDED FD ESTIMATION

iii) refining the detection of the data symbols using the most recent estimate
of h. This procedure is repeated until convergence is reached.

In the p-th iteration, the remaining CFO is denoted as εp and defined as

εp = ε −
p−1

∑
k=0

ε̂k. (8.32)

The FFT output of OFDM block i at carrier n, denoted by z̃
(p)
i (n), is given

by (8.25) where we replace ε by εp. When εp is very small, the inter carrier
interference can be neglected: Im

(

εp
)

≈ 0, for m 6= 0, which yields for the FFT
outputs at the pilot carrier positions:

z̃
(p)
i (αm) = ej2π

i(N+ν)
N εp

(

ac (m) I0
(

εp

)

H̃
(

εp, αm

)

+
L−1

∑
l=0

B̃g
(

εp, αm, l
)

h (l)

)

+ w̃
(p)
i (αm) , (8.33)

where αm ∈ Sp (5.1). The signal component of z̃
(p)
i (αm) is the product of a

factor which depends on the block index i and a factor which is independent
of the block index. We exploit this fact to estimate the CFO.

The FFT outputs at the data carrier positions are given by

z̃
(p)
i (βm) = ej2π

i(N+ν)
N εp

(

a
(i)
d (m) I0

(

εp

)

H̃
(

εp, βm

)

+
L−1

∑
l=0

B̃g
(

εp, βm, l
)

h (l)

)

+ w̃
(p)
i (βm) , (8.34)

where βm ∈ Sd (5.2). The signal component of z̃
(p)
i (βm) can not be expressed

as the product of a factor which depends on the block index and a factor
which is independent of it, so we have to modify the FFT outputs at the
data carrier positions first. There are two possible options: i) subtracting the
contribution from the unknown data symbols (using previous data symbol
decisions), or ii) subtracting the contribution from the guard interval pilot
symbols and multiplying the results with the complex conjugates of the latest
obtained hard decisions of the unknown data symbols. One can prove that
the power ratio of the data symbols and the guard interval pilot symbols

contribution in z̃
(p)
i (βm) is approximately equal to N/ν. Since N is usually

much larger than ν, the second option will lead to a smaller estimation error
as the variance of the guard interval pilots is smaller. Therefore, we choose to
follow the second option.
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First, we have to subtract the contribution from the guard interval pilot
samples2:

ỹ
(p)
i (βm) = z̃

(p)
i (βm) −

L−1

∑
l=0

Bg (0, βm, l) ĥ(p−1) (l) , (8.35)

where βm ∈ Sd and ĥ(p−1) (l) , l = 0, . . . , L − 1, are the estimated samples of
the channel impulse response obtained in the (p − 1)-th iteration. We assume
that the estimated channel impulse response is equal to the true channel im-
pulse response so that the contribution of the guard interval can be perfectly
removed:

ỹ
(p)
i (βm) = ej2π

i(N+ν)
N εp a

(i)
d (m) I0

(

εp
)

H̃
(

εp, βm
)

+ w̃
(p)
i (βm) . (8.36)

Multiplying ỹ
(p)
i (βm) by the complex conjugate of the latest obtained hard

decision of a
(i)
d (m) results in

ỹ
′(p)
i (βm) = ej2π

i(N+ν)
N εp Es I0

(

εp
)

H̃
(

εp, βm
)

+
(

a
(i)
d (m)

)∗
w̃

(p)
i (βm) , (8.37)

where we assume that the decisions about the data symbols from the previous
iteration are correct, and x∗ denotes the complex conjugate of the complex
number x.

Both (8.33) and (8.37) correspond to the following model:

ũi (n) = ej2π
i(N+ν)

N εp x (n) + ṽi (n) , (8.38)

where x (n) can be seen as an unknown coefficient and ṽi (n) is the additive
noise. Note that x (n) does not depend on the block index i. Rewriting every-
thing in vector format yields

ũi = ej2π
i(N+ν)

N εp x + ṽi, (8.39)

where the components of the vector ũi are defined as:

ũi (n) =

{

z̃
(p)
i (n) n ∈ Sp

ỹ
′(p)
i (n) n ∈ Sd.

(8.40)

The next step is to obtain the least squares estimates of εp and x, which are
given by

(

ε̂p, x̂
)

= arg min
εp , x

K−1

∑
i=0

∣

∣

∣

∣

ũi − ej2π
i(N+ν)

N εp x

∣

∣

∣

∣

2

. (8.41)

2Again we assume that εp is small: e j2π
i(N+ν)

N εp Bg
(

εp, βm, l
)

≈ Bg (0, βm, l).
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The estimate x̂ can be expressed as a function of εp and is given by

x̂
(

εp
)

=
1
K

K−1

∑
i=0

e−j2π
i(N+ν)

N εp ũi. (8.42)

Substituting x by its estimate (8.42) in (8.41) yields

ε̂p = arg max
εp

∣

∣

∣

∣

∣

K−1

∑
i=0

e−j2π
i(N+ν)

N εp ũi

∣

∣

∣

∣

∣

2

(8.43)

where we have omitted irrelevant terms and a constant factor. Rearranging
the terms of the squared magnitude results in3

ε̂p = arg max
εp

K−1

∑
m=1

2<
{

R (m) e−j2π N+ν
N mεp

}

(8.44)

where the correlation R (m) is defined as

R (m) =
K−1−m

∑
i=0

ũH
i ũi+m. (8.45)

Now we differentiate the function from (8.44) with respect to εp and equate
the derivative to zero:

K−1

∑
m=1

=
{

mR (m) e−j2π N+ν
N mεp

}

= 0. (8.46)

This can be rewritten as

K−1

∑
m=1

m |R (m)| sin
[

∠ (R (m)) − 2π
N + ν

N
mεp

]

= 0, (8.47)

We assume that the noise contribution in R (m) is small so that ∠ (R (m)) ≈
2π N+ν

N mεp. As the function sin (x) can be approximated by x for small values
of x, expression (8.47) can be approximated by

K−1

∑
m=1

m |R (m)|
(

∠ (R (m)) − 2π
N + ν

N
mεp

)

= 0. (8.48)

Solving this equation with respect to εp yields the estimate of εp. To expand
the range of possible values of εp that can be estimated and / or to reduce the
numerical complexity of the algorithm, the interval of the summation index

3We have omitted the term for m = 0, because it is independent of εp
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m can be limited to [P1, P2], where 1 ≤ P1 ≤ P2 ≤ K − 1. The estimate of εp is
then given by

ε̂p =
1

2π

N

N + ν

∑
P2
m=P1

m |R (m)|∠ (R (m))

∑
P2
m=P1

m2 |R (m)|
. (8.49)

This estimator can only be applied when the remaining CFO εp (8.32) is in

the range
[

− 1
2

1
P2

N
N+ν , 1

2
1
P2

N
N+ν

[

, which does not necessarily have to be a big

problem provided that the previous estimates are good enough so that the
remaining CFO is small enough. A special case of the algorithm is obtained
when we choose P1 = P2 = P, where 1 ≤ P ≤ K − 1. This yields for the
estimate of εp:

ε̂p =
1

2π

N

N + ν

∠ (R (P))

P
. (8.50)

The estimation range of this special case is equal to:
[

− 1
2

1
P

N
N+ν , 1

2
1
P

N
N+ν

[

.

In the next step, the remaining CFO is compensated using the estimate ε̂p

and a new estimate of the channel is obtained per block i, i = 0, . . . , K − 1,
by applying one of the decision aided channel estimation algorithms from
chapter 6.

8.6 Numerical Results

In this section, the performance of the proposed frequency estimation algo-
rithms is evaluated. We consider a frequency selective Rayleigh fading chan-
nel with an impulse response given by (4.29) consisting of L = 50 channel
taps with equal variance 1/L. For the pilots transmitted on the carriers, the
comb-type pilot arrangement from section 5.2 is used. The pilot symbols
are randomly selected QPSK symbols. We consider an OFDM system with
N = 1024 carriers and a guard interval of length ν = 100. Besides the 100
pilot symbols in the guard interval, an additional 100 carriers are selected as
pilot carriers which means that a total number of M = 200 pilot symbols are
transmitted. The data symbols are QPSK symbols. For the CFO estimation
we consider K = 10 received OFDM blocks. It is assumed that the simulated
OFDM system does not suffer from any time delay offset.

8.6.1 MSE

First we evaluate the performance of the estimators in terms of the MSE, which
is defined as:

MSE (p) = E





∣

∣

∣

∣

∣

ε −
p

∑
k=0

ε̂k

∣

∣

∣

∣

∣

2


 , (8.51)

where p is the iteration number, so MSE (p) is the MSE after p iterations.
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Figure 8.2: MSE versus |ε| for guard interval based (left) and FD pilot aided
(right) estimation, ν = 100, N = 1024, M = 200, K = 10.

8.6.1.1 Pilot Aided Estimation

Figure 8.2 shows the MSE of the guard interval based algorithm (8.18) which
was originally proposed for TDS-OFDM in [75] and our proposed FD pilot
aided estimation algorithm (8.31) versus |ε| for different values of Es/N0. In
theory, the estimators should be able to estimate the CFO if |ε| < 0.5 N

(N+ν)
.

However, the simulations results indicate that both estimators have a bad per-
formance for |ε| > 0.3. This is due to the discontinuity of the ∠ {.} function in
(8.18) and (8.31): when x is slightly bigger than π, the argument ∠ {exp (jx)}
returns x − 2π instead of x (a similar effect can be seen for x slightly less than
−π). Therefore for the following simulation results we will assume that ε is
randomly selected from a uniform distribution over the interval [−0.3, 0.3].
For the guard interval based estimation algorithm (8.18) we see that the MSE
is only weakly dependent on ε and for high SNR, it even becomes indepen-
dent of the SNR. The performance of the FD pilot aided estimator (8.4) on
the contrary, strongly depends on the value of ε, especially for high SNR. For
large values of ε, the MSE becomes independent of the SNR. As a result, both
estimators will show an error floor for high values of the SNR when we plot
the MSE versus the Es/N0, as can be seen from figure 8.3. This error floor is
caused by the unknown data symbols, which interfere with the pilot symbols.
We see that the FD pilot aided estimation algorithm (8.4) yields the lowest
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Figure 8.3: MSE as a function of Es/N0, ν = 100, N = 1024, M = 200, K = 10.

error floor. This behavior is expected because for very small values of ε, the
ICI will become very small. In that case the interference of the unknown data
symbols will be much smaller in the FD (and eventually equal to zero when
ε = 0), while the interference in the TD is independent of the presence of a
CFO.

Figure 8.3 compares the performance of the two proposed pilot aided es-
timators (8.22) and (8.31) in terms of the MSE. Additionally the results for the
discussed TDS-OFDM estimators from section 8.2 are also shown. The per-
formance of both the slide auto-correlation based estimation algorithm (8.8)
and composite PN-correlation based estimation algorithm (8.15) is rather poor.
Both show an error floor which is rather high, making the obtained CFO es-
timates not accurate enough. Both estimators were derived in a flat fading
channel and as a result they do not function very well in a multipath fad-
ing environment. The third considered TDS-OFDM estimation algorithm, e.g.
the guard interval based estimator (8.18), exhibits a much better performance.
The error floor is several orders of magnitude lower than the error floors of
the two other considered TDS-OFDM estimation algorithms. Next we con-
sider the TD pilot aided estimator (8.22) for the estimation of the CFO. The
results for the TD pilot aided estimator (8.22) confirm what was already said
in section 8.3: exploiting the contribution of the pilot carriers in the TD re-
ceived signal besides the contribution of the guard interval pilot symbols de-
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teriorates the quality of the CFO estimate compared to only considering the
received signal corresponding to the guard interval pilot symbols as is done
in the guard interval based estimation algorithm (8.18). The received signal
corresponding to the actual OFDM blocks is dominated by the contributions
of the unknown data symbols besides the contribution from the pilot carri-
ers and the channel noise. The interference from the data symbols prevents
the estimation algorithm from obtaining any improvement in performance
compared to the guard interval based estimator (8.18). The TD pilot aided
estimator still results in a large improvement in terms of the MSE compared
with the other two discussed TDS-OFDM CFO estimation algorithms (8.8) and
(8.15). Finally, the FD pilot aided estimation algorithm (8.31) is applied to esti-
mate the CFO. It outperforms all of the previously discussed CFO estimation
algorithms in terms of the MSE. For high values of Es/N0 this algorithm still
exhibits an error floor, which is caused by the presence of the unknown data
symbols. However, contrary to the situation in the time domain, the interfer-
ence strongly depends on the CFO: for small values of |ε| the ICI becomes
small. Furthermore, the interference at one pilot carrier is mainly caused by
the adjacent data carriers, which results in a less severe interference compared
to the received signal in the time domain.

8.6.1.2 Decision Aided Estimation

In this part we investigate how the decision aided CFO estimation algorithm
from section 8.5 performs. The initial estimate of the CFO is provided by the
guard interval based estimator (8.18) or the FD pilot aided estimator (8.31)4.
Every iteration, after the CFO estimation, the channel needs to be estimated
and the data symbols need to be detected. In this section we consider the
FD pilot aided estimator (6.64) to provide the initial channel estimate. In the
other iterations, the FD hard decision aided channel estimator (6.77) is used.
The data symbols are detected using the symbol by symbol FD data detector
(4.28). We recapitulate from section 8.5 that the proposed estimators (8.49)
and (8.50) still depend on some parameters, i.e. P1 and P2, which have an
influence on the performance and on the computational complexity.

To properly evaluate the performance of the decision-directed CFO estima-
tion algorithm, we have first done some simulations to determine the optimal
values for the parameter P1 and P2. We have considered two situations:

• in the first case we select P1 equal to 1 and let P2 be equal to P (which
corresponds to the more general estimator (8.49)),

• in the second case we select both P1 and P2 equal to P (which is the
special case (8.50)).

4In the figures, ’GI init.’ means ’initialized by the guard interval based estimator’, while ’FD
init.’ means ’initialized by the FD pilot aided estimator’.
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Figure 8.4: MSE of the decision aided estimators versus P, for Es/N0 = 25 dB,
ν = 100, N = 1024, M = 200, K = 10.

The parameter P varies from 1 to K − 1. Figure 8.4 shows the MSE as a
function of P for Es/N0 = 25 dB. For the first case, the lowest MSE is reached
when P2 is chosen equal to K − 1 = 9, which is the maximum value for P2. The
curve is almost independent of P when P ∈ [4, 9] , so choosing P2 = 4 instead
of the optimal value 9, results in a near optimum performance in terms of the
MSE while the numerical complexity is reduced.

For the second case, the performance of the estimator is optimal when
both P1 and P2 are chosen equal to 3 or 7. To explain this, we look at the
performance of the all pilots case of the estimator (8.50), also shown in the
figure. It can be observed that the performance in the second case is (essen-
tially) proportional to that of the all pilots case. In the appendix 8.A the MSE
performance of the all pilots case is derived. The minimum value of the MSE
is indeed reached for P1 and P2 both equal to the values of P closest to 10/3
and 20/3. The second case gives rise to a small loss in performance com-
pared to the first case. These results are independent of which initialization
algorithm was used first: from figure 8.4 it can be seen that initializing the
decision aided algorithms with the guard interval based estimator (8.18) or
the FD pilot aided estimator (8.31) yields essentially the same result, with the
decision aided estimator initialized by the FD pilot aided estimator resulting
in a marginally lower MSE.
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Figure 8.5: MSE as a function of Es/N0 (decision aided estimation) , N = 1024,
ν = 100, L = 50, M = 200, K = 10.

The MSE of the decision aided CFO estimation algorithms (8.49) and (8.50)
as a function of Es/N0 is shown in figure 8.5. Both the guard interval based
estimator (8.18) and the FD pilot aided estimator (8.31) are used to obtain
the initial estimate of the CFO to start up the decision aided estimators. The
results are shown for P1 = 1 and P2 = 4; and P1 = P2 = 3. Compared to the
results of the initialization algorithms, a large improvement is reached after
only one iteration: independent of which initialization algorithm has been
applied, the error floor is completely removed for the considered range of
Es/N0 values.

Both considered choices for P1 and P2 result in a similar performance. Only
for low to moderate Es/N0, there is a small difference in performance.

8.6.2 BER

Figure 8.6 shows the BER results as a function of Eb/N0, where Eb is the trans-
mitted energy per information bit. We have only considered our proposed FD
initialization method to obtain these results, because we have seen from fig-
ure 8.5 that the performance of our proposed decision-directed algorithm is
independent of the initialization algorithm.

For the uncoded case, the BER of a receiver which only applies the FD
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Figure 8.6: BER as a function of Eb/N0, N = 1024, ν = 100, L = 50, M = 200,
K = 10.

initialization algorithm for the estimation of the CFO, is close to the case when
the CFO is perfectly known (but with estimated channel). After one iteration,
the decision aided algorithm results in a performance which is close to the
BER of a receiver with perfect knowledge about the channel and the CFO.
Additional iterations are not necessary for the considered range of Eb/N0
values, as the potential improvements are negligible.

During the derivation of the iterative decision-directed algorithm, we have
made some assumptions concerning the correctness of the obtained channel
impulse response estimate and the hard decisions of the data symbols. The
BER curves show that those assumptions are valid for moderate to high Eb/N0
values.

For the coded case, we have considered a turbo code that consists of two
identical 16-state rate 1/2 recursive systematic convolutional codes with gen-
erator sequences (37)8 and (21)8 (in octal notation) through a uniform random
interleaver of length 919. The parity bits are punctured to obtain an overall
rate of approximately 1/2. Every iteration, the turbo decoder provides the
necessary hard decisions on the transmitted data symbols for the decision
aided CFO and channel estimation algorithm. After 9 iterations convergence
is reached. The application of our proposed algorithm results in a small loss
in performance compared to the BER of a receiver with perfect knowledge
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about the channel and the CFO. The gap between the two curves is less than
1 dB.

8.6.3 Optimization of the Number of Iterations

To obtain the results from figure 8.6, every iteration the decision aided CFO
estimation algorithm provides an estimate of the remaining CFO, which is
then used to update the channel estimate and finally a new decoding iteration
is performed. Similarly like in subsection 6.10.4, the number of the iterations
of the decision aided CFO estimator (8.49) can be reduced to lower the compu-
tational complexity in a coded system. Here we consider the same turbo code
as in the previous subsection 8.6.2. To determine the number of necessary
iterations of the decision aided CFO estimator we first look at the MSE ver-
sus the number of performed iterations. Here we consider the decision aided
FD estimator (8.49) with parameters P1 and P2 equal to 1 and 4 respectively.
Figure 8.7 shows the MSE of the decision directed CFO estimation algorithm
as a function of the number of iterations, for two different values of Es/N0,
i.e. 7 dB and 10 dB. Iteration ’0’ corresponds to the MSE of the FD pilot aided
CFO estimator (8.31). For both values of Es/N0, the FD decision aided CFO
estimator converges after 4-5 iterations, so it is not necessary to do more than
5 estimator iterations. After only 1 iteration of the FD decision aided CFO es-
timator, we see that the MSE is already very low (≤ 5e− 7), so we are going to
reduce the number of CFO estimation iterations to 1 (which means that after
the pilot aided initial estimate, only 1 extra estimate of the remaining CFO is
obtained). The resulting BER for the FD detector from section 4.2 is shown in
figure 8.8 as a function of Eb/N0. The BER results for a perfectly synchronized
receiver with perfect channel knowledge and for a receiver which updates the
CFO estimate every iteration (labeled as ’FD init. + 9 it.’ in the figure) are
also added. We can see that only updating the CFO estimate once yields es-
sentially the same performance as updating the CFO estimate every iteration.
Only when Eb/N0 is in the range [6 dB, 9 dB], there is a small degradation
visible.

8.7 Conclusion

In this chapter we have looked into CFO estimation for a KSP-OFDM system.
An uncompensated CFO causes interference between the different carriers
and attenuates the useful signal component. As a result the BER performance
can be severely degraded. First we have reviewed some existing estimation
algorithm that have been proposed in a TDS-OFDM context. Two of them, i.e.
the slide auto-correlation based estimator and the composite PN-correlation
based estimator assume a flat fading channel and as a result they do not per-
form very well in a multipath fading environment. The guard interval based
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Figure 8.7: MSE as a function of the number of iterations , N = 1024, ν = 100,
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estimation algorithm, on the other hand, yields a satisfying performance and
can be applied in a KSP-OFDM system. As the name already suggests, the
CFO is estimated based solely on the presence of the guard interval pilot
symbols. To exploit also the pilot carriers which are typically available in
a KSP-OFDM system, we have proposed the TD pilot aided estimator. The
results show that exploiting the presence of the pilot carriers in the time do-
main, results in a degradation in performance compared to the guard interval
based estimator. However, due to the periodic nature of the TD transmitted
pilot signal (guard interval pilot symbols + pilot carriers), the TD pilot aided
estimator is robust against any time delay offset and therefore this algorithm
can be applied to first obtain an estimate of the CFO before the time delay
offset is estimated. Next, the FD pilot aided estimator was derived. This esti-
mator operates in the frequency domain and estimates the CFO based on the
FFT outputs of the received signal at pilot carrier positions. This algorithm
outperforms all of the other pilot aided CFO estimators that are discussed in
this chapter. Nevertheless, the MSE shows an error floor for high SNRs. Fi-
nally a decision aided approach is derived to further improve the quality of
the CFO estimate. Every iteration the decision aided algorithm estimates the
residual CFO based on the FFT outputs of both the pilot carriers and the data
carriers. The error floor wich is present for the MSE of the pilot aided CFO
estimators is completely removed after one iteration for the considered range
of SNR values.

The derivation of both the TD pilot aided CFO estimator (8.22) and the
FD pilot aided CFO estimator (8.31), and a study of their performance have
been published in [76]. The FD decision aided CFO estimator is derived and
studied in [77].
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8.A MSE of the all pilots FD estimator

In this appendix we derive the MSE of the CFO estimator from (8.50) in the
case that only pilot symbols are transmitted. The estimate is given by

ε̂p =
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2π

N

N + ν

∠ (R (P))

P
. (8.52)

where R (P) is defined in (8.45). First we rewrite R (P) as
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where we have neglected the second order noise terms.
For a complex number x with |x| � 1, the function ∠ (1 + x) is approxi-

mated by ={x}. We can use this approximation in (8.50) for sufficiently high
Es/N0, which yields for ε̂p
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The MSE is given by
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for P ≤ K/2 and by
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for P ≥ K/2. The matrix Rṽ is the autocorrelation matrix of the samples of
the noise vector ṽi: Rṽ = E

[

ṽiṽ
H
i

]

. The MSE is symmetric with respect to
P = K/2: the values P = Q and P = K − Q result in the same MSE, and the
minimum value of the MSE is reached for the values of P which are closest to
K/3 and 2K/3.
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9
Conclusions and Ideas for
Future Work

In this chapter we give a summary of the most important achievements of this
work. Furthermore some directions for future research are briefly introduced.

9.1 Conclusions

In this work we have studied an OFDM system. Between every two transmit-
ted OFDM systems a guard interval is inserted to avoid IBI between adjacent
blocks. The most popular guard interval techniques are the CP and the ZP
technique. In the CP technique, the last part of the OFDM block is copied
and transmitted before the actual OFDM block, while in the ZP technique the
guard interval is left empty. Here we have considered a third guard interval
technique called KSP. The guard interval is filled with a known pilot sequence.
Contrary to the CP and the ZP technique, we have full control about the con-
tent of the guard interval. As a result the guard interval can be optimized and
exploited for the synchronization and channel estimation purposes. The main
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focus of this dissertation is the derivation of synchronization and channel esti-
mation algorithms that exploit both the pilot symbols in the time domain and
the pilot symbols that are transmitted on the pilot carriers.

After the introductory chapters in which we have derived a system model
(chapter 2) and have reviewed some general techniques for detection and esti-
mation problems (chapter 3), we have discussed data detection for a perfectly
synchronized KSP-OFDM system in chapter 4. After the removal of the guard
interval contributions, the system under study can be considered as a ZP-
OFDM system. Two main categories of detection algorithms exist: i) the ones
that operate in the time domain and ii) the ones that operate in the frequency
domain. The optimal time domain detection algorithm, i.e. MLSD, exhibits a
very high computational complexity. Luckily low complexity alternatives ex-
ist: in the time domain we have the ZF detector and in the frequency domain
we have the simple symbol-by-symbol detector. The time domain detectors
yield the better performance, especially for high SNR because they can ex-
ploit the multipath diversity. On the other hand, the FD detector exhibits the
lowest computational complexity. For a coded transmission, the ZF detector
and the FD detector are good alternatives for the computationally prohibitive
optimal detector. There is no big difference in performance between the ZF
detector and the FD detector as is the case for uncoded transmission.

In the remaining chapters (5-8), the estimation of several system parame-
ters is carried out. Chapter 5 serves as an introductory chapter. A first major
issue in a communication system is the estimation of the channel impulse
response. In chapter 6 we investigate several channel estimation algorithms.
First a lower bound on the achievable performance, i.e. the GCRB, is derived
together with a low and high SNR limit. We have shown that the MSE’s of
the existing channel estimators which we discuss in this work, suffer from an
error floor for moderate to high SNR because they neglect the presence of the
unknown data symbols. For the all pilots case, both algorithms are equal and
do not show an error floor. This TD all pilots estimator serves as a benchmark
for the performance of iterative decision aided algorithms. We have proposed
a DA estimator that operates on the FFT outputs of the received signal at the
pilot carrier positions. The FFT outputs at the pilot carrier positions only de-
pend on the pilot symbols (both the transmitted time domain as the frequency
domain pilot symbols) and as a result, the MSE of our FD DA estimator does
not shown any error floor. A minor drawback of this algorithm is the fact
the contribution of the guard interval pilot symbols is spread over all of the
carriers, so the parts of their contribution which appear at the FFT outputs
corresponding to the data carrier positions can not be exploited for channel
estimation. As a result for low SNR, the performance of the FD DA estimator
is slightly worse compared to the existing estimators. For the all pilots case,
the proposed FD DA estimator yields a second all pilots estimator, i.e. the FD
all pilots estimator. The channel estimate obtained by only exploiting the pilot
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symbols is further improved by applying decision aided channel estimation
algorithms. Here we propose three different decision aided algorithms. The
first one is the TD hard decision aided estimation algorithm. As the name
suggests, it considers the detected data symbols which are provided by the
detector /decoder as extra pilot symbols and uses them to improve the chan-
nel estimate. The algorithm operates on the time domain received signal. A
second algorithm which is closely related to the TD hard decision based es-
timator, is the EM based channel estimator. Instead of using hard decisions
of the data symbols, the algorithm uses soft information about the data sym-
bols. Both algorithms reach the performance of the TD all pilots estimator for
sufficiently high SNR values. The third proposed decision aided algorithm is
the FD hard decision aided algorithm. It can be seen as an extension of the
FD DA estimator: after the detection / decoding of the data symbols, they are
considered as extra pilot symbols and their hard decisions are used to esti-
mate the channel by applying the FD DA estimator to all of the carriers. The
FD hard decision aided estimator reaches the performance of the FD all pilots
estimator provided that the SNR is high enough.

Chapter 7 deals with the estimation of the time delay offset. First of all
the consequences of a timing error are discussed. It is shown that there is a
range of timing errors which can be tolerated (depending on the length of the
guard interval): the receiver can deal with them by incorporating them into
the channel estimation without any loss in performance caused by IBI. Then
some existing algorithm for TDS-OFDM are discussed. They assume trans-
mission over a flat fading channel, which leads to inaccurate estimates in a
multipath fading environment. We have developed two pilot aided time do-
main estimation algorithms which exploit both the pilot symbols in the guard
interval and the pilots transmitted on the pilot carriers. Both of them are de-
rived under the assumption that the SNR is low. A first algorithm considers
the first two terms of the Taylor series expansion of the joint likelihood func-
tion of the time delay offset and the channel impulse response and averages
over the unknown data symbols. The second algorithm ignores the presence
of the unknown data symbols. In both algorithms the estimate of the channel
impulse response is expressed as a function of the time delay offset and as
a result the joint estimation problem reduces to a one-dimensional search for
the time delay offset (and an analytical computation of the channel impulse
response estimate). Both pilot aided TD algorithms show a good performance
even for a very short guard interval. A drawback of both of them is their high
computational complexity. We have tried to solve this by only considering
the pilot symbols transmitted in the guard interval for the time delay offset
estimation. Despite the reduction of the computational complexity, its perfor-
mance is not that great, especially for short guard intervals. A last time delay
offset estimation algorithm operates in the frequency domain. The time delay
offset is estimated based on the FFT outputs of the received signal at the pilot
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carrier positions. The algorithm considers both the pilot symbols on the pilot
carriers and the pilot symbols transmitted in the time domain. For the correct
value of the time delay offset, there is no interference from the unknown data
symbols. As a result, the algorithm exhibits an excellent performance inde-
pendent of the length of the guard interval. The computational complexity
of this algorithm is somewhere between the computational complexity of the
guard interval based estimator and the pilot aided TD estimators.

In chapter 8 we take care of the CFO estimation. A CFO that has not been
compensated, attenuates the useful signal component and causes interference
between the different carriers. Both effects might result in an unacceptable
increase of the BER. First some existing algorithms for TDS-OFDM are re-
viewed. Two of them assume a flat fading channel, which deteriorates their
performance in a multipath fading channel. The third existing algorithm, i.e.
the guard interval based estimation algorithm exhibits a good performance
and can also be applied in a KSP-OFDM system. Besides the guard interval
pilot symbols, also the pilots transmitted on the pilot carriers can be exploited
for the CFO estimation. A first possibility is to extend the guard interval
based estimation algorithm so that it also considers the time domain contri-
butions of the pilot symbols on the pilot carriers. However the performance
of this TD pilot aided estimator is worse than the performance of the guard
interval based estimator. This is caused by the interference of the unknown
data symbols. The main advantage of this approach is its robustness against a
time delay offset due to the periodic nature of the TD transmitted pilot signal
(guard interval pilot symbols + pilot carriers). So when the receiver needs to
estimate both the CFO and the time delay offset, which is normally the case,
the TD pilot aided estimator can provide an estimate of the CFO before the
time delay offset is estimated. Next, we have introduced the FD pilot aided
estimator. This estimation algorithm operates in the frequency domain and
estimates the CFO based on the FFT outputs of the received signal at the pi-
lot carrier positions. Of all the DA CFO estimators that are discussed in this
work, the FD pilot aided estimator yields the best performance. However, its
MSE still shows an error floor for high SNR. This error floor is caused by the
interference from adjacent data carriers. To improve the estimate of the CFO, a
decision aided algorithm, which operates in the frequency domain, is derived.
Every iteration the decision aided algorithm estimates the residual CFO based
on the FFT outputs of both the pilot and the data carriers. As a result, the er-
ror floor which is present for the MSE of the pilot aided CFO estimators is
removed after one iteration for the considered range of SNR values.

Table 9.1 gives an overview of the different algorithms that we have pro-
posed in this work to estimate the channel impulse response, the TDO and
the CFO respectively . The table also indicates whether an algorithm operates
on the received signal in the time domain or on the received signal in the
frequency domain. For the pilot aided algorithms we have seen that the ones
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Parameter Time Domain Frequency Domain

Channel
HD Aided (sec. 6.8.1) Pilot Aided (sec. 6.6)

EM based (sec. 6.9) HD Aided (sec. 6.8.2)

TDO
Pilot Aided (sec. 7.4)

Pilot Aided (sec. 7.6)
GI based (sec. 7.5)

CFO Pilot Aided (sec. 8.3)
Pilot Aided (sec. 8.4)

HD Aided (sec. 8.5)

Table 9.1: Overview of the proposed algorithms.

that operate in the FD yield the better performance. The main advantage of
FD pilot aided algorithms is that they do not suffer from interference from the
unknown data symbols (or at least the interference is a lot weaker), although
they do not fully exploit the TD pilot symbols because some of their contribu-
tions appear at the FFT outputs corresponding to the data carrier positions.

9.2 Future Work

In this section we give some possibilities to further improve the proposed
estimation algorithms. Furthermore we provide some future research ideas
for other systems which are related to our considered KSP-OFDM system.

9.2.1 Joint Frequency and Timing Estimation

For the derivation of the time delay offset estimation algorithms in chapter 7,
we have assumed that there was no CFO. In chapter 8, we have assumed that
the time delay offset was perfectly known by the receiver for the derivation
of the CFO estimation algorithms. In practice, the receiver has to deal with
both effects (time delay offset and CFO). The proposed time delay offset es-
timation algorithms are not robust against a CFO. So when there is a CFO,
their performance will be degraded. Same goes for the FD pilot aided CFO
estimator (8.31) and the guard interval based CFO estimator (8.18). So the
joint estimation of both the time delay offset and the CFO is an important
topic that needs to be looked into further. One possible solution might be
given by the TD pilot aided CFO estimator (8.22). We have shown that this
estimator is robust against any time delay offset but has limited performance.
The estimate provided by this estimator can be used to compensate the CFO.
Then one of our time delay offset estimators can be applied to estimate the
time delay offset and then in a next step another (fine) estimation of the CFO
can be performed by applying the guard interval based CFO estimator (8.18)
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or the FD pilot aided CFO estimator (8.31).

9.2.2 Selection of the Pilot Carrier Positions

In chapter 5 we have introduced two different pilot schemes, i.e. the comb-
type pilot scheme with equally spaced pilot cariers and the random pilot
scheme. It has been shown in the literature ( [78]) that equally spacing pi-
lot carriers result in the best performance in terms of the MSE on the estimate
of the channel impulse response when the number of carriers N is a multiple
of the number of pilot carriers M − ν. Figure 6.7 illustrates this. However,
when N is not a multiple of M − ν the equally spaced pilot carriers can result
in a very large degradation. See for example figure 6.7, for 593 pilot carriers
(M = 600), the MSE is much larger than the theoretical lower bound. The
results also indicate that when the number of pilot carriers is large, the ran-
dom pilot scheme might give better results, but this pilot scheme is not very
practical.

In [78], the authors give a hint of how to choose the pilot carriers when N

is not a multiple of M − ν. Instead of only considering one pilot spacing, as is
the case when the pilot carriers are equally spaced, we now have to consider
two pilot carrier spacings: one pilot carrier spacing is equal to bN/ (M − ν)c
and the other one is equal to bN/ (M − ν)c + 1. We then have to uniformly
interleave these two pilot spacings. We will illustrate this with an example:
suppose we have N = 32 carriers and we want to select M − ν = 5 pilot
carriers. Figure 9.1 shows the pilot carrier positions for both the equal spacing
and the quasi-uniform spacing of the pilot carriers from [78]. When the pilot
carriers are equally spaced, the distance between every two pilot carriers is
equal to 6 except for the distance between the last and the first pilot carrier.
This distance is equal to 8. When we apply the quasi-uniform spacing, we see
that the distance between the pilot carriers alternates between 6 and 7. The
distance between the last and the first pilot carrier is equal to 6. The pilot
carriers are more evenly spread over all of the carriers. In [79], these results
have been confirmed and are further extended. It turns out that the different
pilot carrier positions for the quasi-uniform spacing are given by

αm = round
(

mN

M − ν

)

, m = 0, . . . , M − ν − 1, (9.1)

where round (x) rounds x to the nearest integer.
This new pilot carrier scheme can also be applied in a KSP-OFDM system.

To give a first impression of the improvement in performance that can be
achieved with quasi-uniform spaced pilot carriers, we review the BER results
for the guard interval based TDO estimator (7.36) from chapter 7. In figure
7.13 we have seen that the BER results for the guard interval based TDO
estimator were rather poor. These results were obtained with equally spaced
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Figure 9.1: Illustration of the equal spacing and the suboptimal spacing of the
pilot carriers for N = 32 and M − ν = 5.

pilot carriers. When we apply the quasi-uniform spacing of the pilot carriers,
we see in figure 9.2 that there is a large improvement especially for high values
of Eb/N0.

9.2.3 Comparison with CP-OFDM

Now that we have derived some estimation algorithms for different parame-
ters, a logical next step is to make an extensive comparison with CP-OFDM.
Note that the proposed algorithms that operate in the FD can easily be adopted
so that they also can be applied in a CP-OFDM system. It is expected that esti-
mation algorithms which only consider the TD pilot symbols in a KSP-OFDM
system will outperform algorithms for CP-OFDM which only exploit the pres-
ence of the CP for the estimation process. However for algorithms that operate
in the FD the conclusion might be entirely different because we have seen that
in a KSP-OFDM the transformation of the received signal to the FD results in
an increase of the noise variance, which is not the case in a CP-OFDM system.
In [23] it has already been shown that CP-OFDM results in a (slightly) higher
SNR of the received signal in the FD in the case of perfect channel knowledge
and perfect synchronization.

9.2.4 Parametric Channel Estimation

In chapter 6, we have introduced some channel estimation algorithms which
perform well. The decision aided algorithms reach the performance of the
all pilots estimators. So in terms of the MSE, the achieved performance is
excellent. However if we look at the BER (see for example figures 6.16 and
6.18), there is a gap between the performance of a receiver with perfect channel
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Figure 9.2: BER as a function of Eb/N0, N = 1024, ν = 100, L = 50, M = 100.

knowledge and a receiver which applies one of the decision aided channel
estimation algorithms.

The proposed channel estimation algorithms belong to the class of the
non-parametric channel estimators. They estimate the samples of the channel
impulse response h (t) (2.25). They do not make any assumptions about the
underlying channel model, while we have shown in chapter 2 that h (t) is the
cascade of the transmit pulse p (t), the channel impulse response h̃ (t) and the
impulse response of the matched filter p∗ (t). The transmit pulse p (t) and the
impulse response of the matched filter p∗ (t) are both known by the receiver.
So if the receiver estimates h̃ (t), estimates of the samples of h (t) can be recon-
structed. Each path of the channel model h̃ (t) is defined by its parameters,
i.e. the complex amplitude h̃l and the path delay τl. Channel estimation algo-
rithms which provide estimates of the complex path gains h̃l and the path de-
lays τl , l = 0, . . . , L̃ − 1, are called parametric channel estimation algorithms.
Usually, the number of paths L̃ is much smaller than the number of samples
in the channel impulse response L. We have shown (see [80,81]) that paramet-
ric channel estimation results in a better performance than non parametric
channel estimation. So to improve the quality of the estimate of the channel
impulse response h, we want to develop parametric channel estimators. For
CP-OFDM, there exist already some algorithms in the literature [82, 83] that
consider parametric channel estimation. They can not be directly applied in
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Figure 9.3: The structure of the transmitted signal for KSP-OFDM and UW-
OFDM respectively.

a KSP-OFDM system due to the presence of the contributions of the guard
interval pilot symbols on the FFT outputs (see 6.59).

9.2.5 Unique Word OFDM

Unique word (UW) OFDM is a novel way of constructing OFDM symbols
[84, 85]. In conventional OFDM systems adjacent OFDM blocks are separated
by a guard interval (see also sections 1.3 and 1.4). The time domain pilot
sequence is part of the FFT interval in UW-OFDM, whereas in KSP-OFDM
this is not the case. Figure 9.3 compares the transmit data structures of KSP-
OFDM and UW-OFDM. Looking at the transmit structure of UW-OFDM, we
can see that cyclicity is also ensured as in CP-OFDM.

To generate a UW-OFDM block there exist two approaches [86], i.e. a direct
approach and a two-step approach. Both approaches make use of redundant
carriers. In order to obtain the desired pilot sequence at the last ν positions of
the IFFT operation, at least ν carriers must be reserved and cannot be used for
data transmission. Appropriate values have to be transmitted on these redun-
dant carriers to yield the UW at the output. The direct approach generates
the unique word directly at the output of the IFFT. The two-step approach
tries to generate an IFFT output of which the last ν samples are equal to zero.
In a second step the unique word is added in the time domain. It turns out
that the two-step approach needs to transmit much less energy than the direct
approach [86], so the two-step approached is preferred. A critical aspect of
UW-OFDM is the choice of the redundant carriers. A suboptimal placement
may result in very high values of the peak-to-average-power-ratio (PAPR) [84].
A high PAPR is undesirable because it causes poor power efficiency.

The redundant carriers can be used at the receiver side to improve the
detection of the data symbols [85]. Especially when the channel frequency
response shows deep fades at carrier positions, a UW-OFDM systems exhibits
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a better performance in an uncoded system than a CP-OFDM system.
In the literature, there are some publications ( [84, 85]) which deal with

the data detection in a UW-OFDM. However, they consider a perfectly syn-
chronized receiver which knows the channel impulse response perfectly. To
our knowledge there exist no publications which deal with channel estimation
nor the estimation of synchronization parameters, so an extension of the work
presented in this dissertation, would be to investigate if the here proposed
estimation algorithms can be applied (possibly with some adjustments) in a
UW-OFDM system.
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