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“Before beginning, prepare carefully”

Marcus Tullius Cicero
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Chapter 0. Research Purpose and Scope




0.1. Building a Comparative Genomics Framework

As this research was initiated mid 2007, it is important to consider the state of
plant comparative genomics at the time to fully understand our research goals.
At the start of this thesis very few plant genomes were sequenced, though Next
Generation Sequencing technologies were on the rise and a wave of novel plant
genomes was expected in the near future. Furthermore, the available data sets
were scattered here and there. To assist further research centralizing all genomic

data was necessary.

Additionally, it is of importance to understand that during the course of this
work new opportunities (within the general scope of this thesis) presented them-

selves, some of which worth pursuing and justified adjusting the initial goals.

0.1 Building a Comparative Genomics Framework

In order to efficiently deal with new plant genomes in a comparative analysis, a
(semi-)automatic pipeline needs to be developed that chains standard tools (like
BLASTY, Tribe-MCL2, MUSCLE®, ...), after adding all annotated plant genomes
in a database. By importing the output of these tools into this database, various
data types can be combined using relatively simple queries. As such, this database
will become a means to start a wide variety of analyses not only for myself, but

for group members as well.

Furthermore, this resource could contain valuable information for experimen-
tal biologists, therefore a user-friendly, web based, interface will be designed.
From this website, information becomes retrievable without knowledge of MySQL
queries and visualizations will be provided for complex data types. This will dras-

tically lower the learning curve necessary to use comparative genomics data.

Finally, to convincingly show the merits of the platform, appealing case stud-

ies would need to be designed and performed.



Chapter 0. Research Purpose and Scope

0.2 Improved Detection of Collinearity

While not included in our initial set of goals, it became apparent (during the de-
velopment of our pipeline) that i-ADHoRe 2.0, a tool essential to study genome
evolution, was no longer usable given the large set of plant genomes available.
As this tool is an essential step in our comparative genomics analysis pipeline,
improving this tool to be able to handle several dozens of genomes was a require-

ment to include additional organisms in our platform.

The statistics at the core of i-ADHoRe 2.0 will need to be revised, as well as
the alignment algorithm that is essential for the sensitive detection of collinearity.
Furthermore, to increase the speed, support for modern hardware (like multi-
threading and message passing interface) needs to be implemented. Additionally,
if the speed can be sufficiently increased, various parameter combinations can be
evaluated to determine optimal settings for different organisms. Finally, a case

study will be performed on the largest dataset available.

0.3 Study of Genome Evolution

From the start the study of genome evolution was a major objective of this thesis.
Initially, we envisioned a study of gene loss after a large-scale duplication and the
effects on speciation. Though, given the opportunity to study genome evolution
in the framework of a new genome project, this goal was shifted to studying the
effects of relatively recent whole genome duplications in these newly sequenced

plant species.



“Biology has at least 50 more interest-
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“Biology has at least 50 more interesting years.”

James D. Watson mentioned this in 1984, about 30 years after he discovered the
structure of DNA together with Francis Crick®. However just 50 years seems an
underestimation, could he have foreseen the enormous diversity and complexity
hidden in genomes of species around us? Scientists worldwide have had access to
the human genome for over a decade, and so far it raised more questions than it
gave answers®. Still many agree that, to date, the human genome continues to
contribute significantly to various branches of biology”. We have now entered the
post-genomic era, determining the genomic sequence of an organism is no longer
an obstacle, but making sense out of it has become the next grand challenge.
Numerous projects have appeared to fill the gaps in our knowledge using various
approaches. The ENCODE project® tries to generate comprehensive functional
data for a well defined portion of the genome of human and several model organ-
isms?10. Genome Wide Association Studies (GWAS) focus on linking variations
(such as Single Nucleotide Polymorphisms (SNP)) with phenotypic traits't. Here
we approach the problem using comparative genomics, using related genomes from
different species, we attempt to gradually gain insights in how species evolve on
the genomic level and thus how genomic changes ultimately allow them to adapt

to their specific niche.

In this chapter, first a brief overview is given how, by comparative genomics,
a better understanding can be gained in the evolution of genes and gene families.
The next section goes into detail on what these techniques have revealed in plant
genome evolution since the genome sequence of Arabidopsis thaliana was released
in 200012, The last section highlights what can be found in the other chapters
of this thesis.

Section has been redrafted from Proost et al.%?. See page [21] for author

contributions.
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1.1 Comparative Genomics

Theodosius Dobzhansky boldly titled his famous 1973 essay ‘Nothing in biology

makes sense except in the light of evolution4.

However while this title might
seem intentionally provocative at first, it harbors a great deal of truth. As differ-
ences observed in sequenced genomes contain adaptations to a specific ecological
niche, the evolutionary background should never be neglected in order to ulti-

mately understand the processes shaping genomes.

For instance, the evolutionary distance between species compared is of major
importance for the features that can be studied!®. Eg. while comparing yeasts
and humans (that have a large phylogenetic distance), only basal eukaryotic fea-
tures such as cell division and DNA replication can be studied. However, more
recent adaptations of humans, can be studied by comparing the human genome
to a closely related species such as Chimpanzeel® or Orang-utan?. To find out
what genomic features are associated with certain phenotypical marks (such as
eye color, ...) one would need to compare genomes from several individuals to

see which changes are usually associated with the trait of interest.

Most comparative studies will first attempt to detect similar features and
thus conserved features in the genomes. This doesn't only form the basis for
the comparative analyses itself, but it also allows unknown functional elements to
be found based on the their conservation in various organisms (as conservation
implies necessity and thus function). For most purposes one however can start
from an annotated genome, where functional parts of the genome (such as genes
with their introns and exons, RNA genes, transposable elements...) are already
detected (aka. the structural annotation). A logical first step is to find similar
genes in and between all compared organisms. This can efficiently can be done
using BLASTX. While one could assume that gene-pairs, displaying sufficient sim-
ilarity, are homologous (derived from a common ancestor), better results can be
obtained by clustering the BLAST output using tribe-MCL? (details can be found
in Section . The contents of such gene clusters is often referred to as a

8
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gene family. If one species has more genes in a gene family than others this point
toward a duplication and retention of genes that might be well suited for that
species’ lifestyle. However to obtain detailed information in which lineage such
expansions happened, the construction of a phylogenetic tree, that describes ac-
curate relations between homologous genes is necessary8(Section discusses
in detail how phylogenetic trees can be constructed). Using such trees, homolo-
gous genes can be further divided into orthologs and paralogs. Orthologs, on the
one hand, are homologous genes derived from a speciation event. For instance the
gene ADH1 (alcohol dehydrogenase 1A, the enzyme that breaks down ethanol)
in human and mouse was present in the common ancestor of both and thus the
human gene and its mouse counterpart were separated due to the speciation of
both species. Also note that orthologous genes are usually assumed to have simi-
lar functions in different species. Hence correct delineation of orthologs is crucial
to transfer knowledge from one (model-)organism to other (nonmodel-)organisms
(Figure [1.1]A). Paralogs, on the other hand, were created by duplication of the
ancestral gene. Though more complex scenarios are possible as well; a duplica-
tion predating a speciation creates out-paralogs (Figure ) while duplicates
constrained to a single lineage are referred to as in-paralogs (Figure ) In-
paralogs that have an orthologous gene are called co-ortholog with that gene.

Until now homology has been used in the context of genes, however the term
can be used in a broader context as well. As such, morphological structures
derived from the same structure in the common ancestor, are defined as homol-
ogous. Indeed, the wings of a bat, the flippers of a whale and our own arms
can be considered as homologous. In this work we've focused on homology at
the genomic level, as large stretches of DNA, chromosome arms and even com-
plete chromosomes can be homologous to each other. Though in this context
the term homeologous is often used. Unlike at the gene level, where through
BLAST and tribe-MCL homology is inferred based on sequence similarity, this
measure is unsuited for homology on a larger scale. The sequences here are up to
several orders of magnitude longer and, as they contain intergenic regions, more

diverged. Therefore two other measures are used to detect homology between

9
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A ADH1 Human — —
Orthologs
ADH1 Mouse —
:ICo—Orthologs
ADH1 Yeast —
(In-)Paralogs
ADH2 Yeast —

vy

AL6G14200

AT5G14420
AL3G00460 Out-Paralogs

AT3G01650

Figure 1.1: (A) Tree of alcohol dehydrogenase genes (pruned to clearly illustrate the rele-
vant concepts) that shows an orthologous gene pair between human and mouse, a pair of
(in-)paralogous genes in yeast that by definition can be considered co-orthologs with the human
and mouse genes. (B) This example shows Arabidopsis thaliana and Arabidopsis lyrata genes
that have been duplicated in their common ancestor, hence the two Arabidopsis thaliana genes
now should be considered out-paralogs.

10
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genomic regions, namely synteny and collinearity. Synteny requires a similar con-
tent in regions in and between genomes, while collinearity requires similar order
as well. Phrased differently, two regions that have sufficient homologous genes in
common can be considered syntenic. If those genes occur in (more or less) the

same order they can be considered collinear as well.

Numerous tools emerged to detect both syntenic and collinear regions within

19722 However few go beyond pairwise comparisons®23:24

and between genomes
and those who did weren't up to the task of analyzing dozens of genomes (See
Section and Figure . Therefore there was a clear need for a faster,
efficient tool to detect collinearity that would use the additional genomes to its

advantage to perform a more sensitive detection.

1.2 Platforms to Study Gene and Genome Evolu-

tion

At the end of 2007, when the development of PLAZA2% started, few other compar-
ative genomics resources for plants were available. Most contained only a subset
of the available species (eg. GreenPhylIDB?® and Genome cluster database®’
which contained at the time only rice and Arabidopsis thaliana) or offered few

2428) - Gramene?, while be-

data types (eg. Plant Genome Duplication Database
ing at the time rather comprehensive, was based on EnsemblY and lacked some
plant specific functionality (eg. tools to study whole genome duplications (see

Section [1.3]), find orthologs in the presence of multiple duplications, ...).

So, despite the information available to the plant community, there was a
clear need to centralize the available data and integrate it with tools specifically
designed towards exploring plant genomes. From this need the development of
PLAZA started (discussed in Chapter . An additional requirement was that
building the platform had to be automated to a high degree. At the time de-
velopment started we anticipated that the number of plant genomes would, like

11
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Figure 1.2: Overview of the number of published plant genomes (cumulative), and a prospect
what to expect in the next year.

the number of sequenced prokaryotic genomes, grow at an ever increasing rate.
Now we know this is indeed the case and the number of published plant genomes
rises nearly exponentially, doubling in less than two years (Figure . Without
a proper pipeline, rebuilding the platform to include newly sequenced organisms
would be extremely laborious. Especially in the context of genome projects (See
Chapter [5) a change in assembly or annotation requires restarting the analysis,

hence a swift building procedure is essential.

12
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1.3 Genome Evolution in Plants

1.3.1 The Ancestral Angiosperm Genome

(TP1, Figure

For several decades, Arabidopsis thaliana has been an excellent plant model or-
ganism for reasons well knownL. Additionally, various techniques are available to
genetically engineer Arabidopsis thaliana®?. Furthermore, within the family of the
Brassicaceae, many species are of major economical value. Important food crops
include broccoli, cabbage (both Brassica oleracea ssp.) and mustard (Brassica
rapa/nigra, Sinapis alba), while rapeseed (Brassica napus) is used to produce oils
and more recently became a source for biodiesel. All this contributed to the pop-
ularity of Arabidopsis thaliana in plant laboratories worldwide. Last but not least,
there is the small genome size of Arabidopsis thaliana. With the recent advances
in sequencing technologies, determining a genome sequence can be considered
almost routine. A decade ago, however, genome sequencing was still a daunting,
very expensive and laborious task and the size of the genome to be sequenced
was a major determinant in whether or not a genome project was initiated. Coin-
cidentally, with a size of about 125 Mb, the genome of Arabidopsis thaliana was
also one of the smallest plant genomes known and therefore an ideal target for

sequencing®?.

Analysis of the Arabidopsis thaliana genome, and comparison with other plant
genomes that have been determined subsequently, unveiled a very complex evo-
lutionary history of the genome and that of its dicot ancestors. Although being
a superb model system for plant geneticists, the genome of Arabidopsis thaliana
actually might be rather exceptional, with its many genome duplications, huge
amount of gene losses, and recent genome shrinkage (TP4-TP5, Figure . In
this section, covering some 150 million years of angiosperm evolution, we discuss
some milestones in the evolution of the Arabidopsis thaliana genome and that of

its ancestors, which eventually have led to the genome we know today.

13
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In earlier studies, based on a mathematical model that simulates the birth
and death of genes through small- and large-scale gene duplication events, we
estimated that the ancestral angiosperm genome contained no more than 14 000
genes3d. Although this was solely based on the analysis of the Arabidopsis thaliana
genome, similar values have been obtained through the comparison of different
plant genomes. For instance, comparing the Arabidopsis thaliana and poplar
(Populus trichocarpa) gene sets suggested an ancestral gene count of 12 0004,
whereas clustering of homologous genes from Arabidopsis thaliana, rice and 32

other plant species delineated 12 400 ancestral genes=>

. Recently, counting the
number of genes that show cross-species synteny between the genomes of Ara-
bidopsis thaliana, grapevine (Vitis vinifera), papaya (Carica papaya) and poplar,
suggested 10 000 — 13 000 ancestral angiosperm genes“®. In conclusion, it is
probably safe to say that the ancestral angiosperm genome contained around
12 000 — 14 000 genes. Gene counts in extant angiosperm genomes are all con-
siderably larger (data derived from PLAZA 2.(525), due to the continuous process

of gene duplication®® and, in numerous cases, genome duplications (see further).

Although the moss Physcomitrella patens seems to contain a number of
genes that is comparable to that of many angiosperms, probably also due to
a genome duplication event, the gene content is considerably different®”. Uni-
cellular green algae on the other hand contain much fewer genes, as might be
expected from their much simpler morphology, lifestyle, and ecology. Volvox car-
teri®® and Chlamydomonas reinhardtii®® contain more than 15 000 and 16 000
genes, respectively, while the picoeukaryotic algae Micromonas and Ostreococcus
contain about 10 000 and 8000 genes, respectively. It is interesting to note that
the difference in gene count between the prasinophytes Ostreococcus sp.“% and
Micromonas sp.*!' and the Chlorophyceae Volvox carteri and Chlamydomonas
reinhardtii seems to be mainly due to duplicated genes present in the latter two

species, but generally missing in the former ones.

2http://bioinformatics.psb.ugent.be/plaza/

14
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1.3.
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specific time points discussed in the text.
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1.3.2 The Hexaploid Ancestor of Core Eudicot Plants

(TP2, Figure [1.3)

Early analysis of the Arabidopsis thaliana genome unveiled several rounds of Whole
Genome Duplications (WGDs), although the exact number and timing has been
disputed2#3 For instance, it was initially suggested that one of the WGDs de-
tected in Arabidopsis thaliana occurred before the radiation of most eudicots,
and that the oldest WGD predated the divergence of dicots and monocots#344
By comparison with additional whole plant genomes however, a more complete
picture has emerged. In particular the genomes of grapevine and papaya revealed
conclusive evidence regarding the exact number of WGDs that occurred early in
the history of eudicots#04Z furthermore these finding added further constraints
on the possible time of the duplications. Grapevine is an early-diverging rosid and
regions in the grapevine genome typically show homology with two other regions
elsewhere in the same genome. Because of this triplicate genome structure, it
was concluded that, most likely, three ancestral genomes had contributed to the
grapevine lineage®®. The recently released papaya genome shows a similar tripli-

47 In-

cate genome structure, although papaya is not closely related to grapevine
stead, it belongs to the order Brassicales and is more closely related to Arabidopsis
thaliana from which it diverged 70 Million Years Ago (MYA)4248. Therefore, the
most plausible and parsimonious explanation would be that the triplicate genome
structure is ancient and shared between many, if not all eudicots. This is further
supported by analysis of partial genome data of the asterid Coffea*® and EST
data of several other Asteraceae, as well as by the recent completion of two addi-
tional rosid genomes, soybean (Glycine max)®" and apple (Malus domestica)>L.
By comparing the pattern of gene losses in homeologous segments in papaya and
grapevine, it was observed that two of three were more fractionated, suggesting
that a first duplication event generated a tetraploid, which then hybridized with
a diploid to generate a triploid. This triploid then underwent yet another WGD
event to generate a hexaploid, giving rise to the triplicate genome structure we

52

still find in species such as grapevine and papaya Uncovering the triplicate

genome structure in other plant genomes is more difficult because of additional
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WGD events that have occurred in several of these lineages®3.

The extant grapevine genome consists of 19 chromosomes, most of which are
clearly syntenic to two other chromosomes, hence the triplicate genome structure.
Furthermore, two chromosomes show synteny to two different chromosomes, indi-
cating chromosome fusions4®. This particular structure would suggest that, about
120 MYA, the ancestral pre-hexaploid genome from which all dicots have evolved,
consisted of seven chromosomes. This would also suggest that, subsequent to the
hexaploidy event, the ancestral post-hexaploid genome would have consisted of
21 chromosomes4®>4  Possibly, amongst the ones available at this moment, the
grapevine genome is the genome that still resembles that ancestral chromosomal

state most, due to its slow rate of evolution*?,

There is some evidence, albeit mostly circumstantial, that these early dupli-

cations can be linked to the origin and fast diversification of angiosperms>">L,

Gene and genome duplications potentially facilitate reproductive isolation36:>8760
and increase the diversifying potential of species thereby providing putative selec-

61564 Although their exact timing

tive advantages over their diploid progenitors
is uncertain, the hexaploidization event early in the evolution of flowering plants
might have facilitated the emergence of new, more complex, flower morphologies
and specialized pollination strategies®. This in turn might have been one of the
crucial factors in the rapid diversification and speciation of flowering plants in

5556166167

the Early Cretaceous and, if true, make the abominable mystery Darwin

referred to somewhat less of a mystery.

1.3.3 Two More Genome Duplications for Arabidopsis

(TP3, Figure

Apart from the hexaploidy shared by most eudicots, many plant lineages show

68H73 |

traces of additional, independent and more recent genome duplications n-

terestingly, many independent WGDs, such as those in the cereals, the legumes,
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the Solanaceae, the Compositae, cotton (Gossypium hirsutum), poplar, banana
(Musa sp.), and apple (Malus domestica) appear to have occurred somewhere
between 50 and 70 MYABHZETAED Recently, it has been suggested that these
duplication events might have coincided with the Cretaceous-Tertiary (K-T) ex-
tinction, the most recent large-scale mass extinction that wiped out around 80%

of plant and animal species, including the dinosaurs>(4,

Also the ancestors of Arabidopsis thaliana seem to have undergone two addi-
tional genome duplications. Again, this has been uncovered through comparison
with a close(r) relative, namely papaya, which has not shared these genome du-
plications. Figure shows several sets of homologous regions in the genomes
of papaya and Arabidopsis thaliana. As can be observed, the one genome copy in
papaya corresponds with four copies in Arabidopsis thaliana, providing convincing
support for two genome duplications in the lineage leading to Arabidopsis thaliana
since their divergence from papaya, about 70 MYA24284748 These findings were
unexpected as other methods, relying on fossil evidence and phylogenetic trees
to calibrate molecular clocks, placed both duplications considerably earlier. How-
ever, fossils for the Brassicales are rare and therefore few reliable age constraints
could be used. Only recently, more advanced methods have been developed that
can account for uncertainties in tree topology and allow evolutionary rates to be

uncorrelated across the tree’®.

Recent age estimates now also place one WGD
very close to the divergence from papaya and the most recent WGD within a

window of 23 to 43 MYA®LSI4

From Figure it also becomes clear why inferring the number of WGDs
proved difficult using only the Arabidopsis thaliana genome. Homologous seg-
ments in Arabidopsis thaliana are often highly degenerated due to extensive gene
loss. Indeed, as previously noted, high frequencies of gene loss (or gene fraction-
ation sensu Freeling et al.”’) reduce collinearity resulting in duplicated regions
that share very few, if any, homologous genes”®. Nevertheless, by comparing
chromosomal segments across multiple genomes, and in particular with genomes

that have not shared the duplication event(s), such highly degenerated regions
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Figure 1.4: Collinearity between papaya and duplicated regions in Arabidopsis thaliana. In
general, one region in papaya corresponds with four homologous regions in Arabidopsis thaliana,
providing strong evidence for two WGDs in Arabidopsis thaliana since its divergence from papaya,
approximately 70 MYA. Ath: Arabidopsis thaliana; Cpa: Carica papaya
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can often still be unveiled to be homologous#8°29.

Using the papaya genome, it also became possible to estimate how much gene
translocation has occurred in Arabidopsis thaliana, since their divergence. Start-
ing from collinear regions between both species, the chromosomal positions of
Arabidopsis thaliana genes were scored based on the conservation of homologous

neighboring genes in papaya’.

Although the frequency of translocation varied
among different gene families and functional categories, Freeling and coauthors
estimated that about 25% of all Arabidopsis thaliana genes had translocated since
the origin of the Brassicales. Therefore, both massive gene loss and gene translo-
cations seem to be responsible for the highly degenerated patterns of collinearity

observed in intra-genome Arabidopsis thaliana comparisons (Figure [1.3]).

Previously, we estimated that the number of genes created by the hexaploidy
event and surviving until today amounted to about 800. Furthermore, we es-
timated that the number of genes that have survived both of the more recent
WGDs in Arabidopsis thaliana is about 6700. The number of genes created
through continuous small-scale duplications since the core eudicot ancestor has
been estimated to be about 530033, Given the current size of the Arabidopsis
thaliana genome, with about 27 000 genes annotated (Figure , we estimate
that the ancestor of the core eudicots had around 14 000 genes. It should be
noted though that these values will be different for different plant species, depen-

dent on the rate genes get duplicated and lost again.

1.4 Chapter Overview

At the start of this work plant comparative genomics was, with only five genomes
available (three angiosperms, one moss and one alga), still in its infancy. There-
fore, a considerable amount of effort was put into developing a comparative ge-
nomics platform, that could be used as a basis for future analyses. This platform,

coined PLAZA, is described in Chapter However as time progressed more and
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more genomes were sequenced and additional updates of the platform were done.
For an overview of new features and the species currently included in PLAZA,
please visit http://bioinformatics.psb.ugent.be/plaza/.

As new genomes were continuously being released during the course of this
research it quickly became apparent that the tool used to study genome evo-
lution, i-ADHoRe, needed to be updated to be able to cope with the increase
in data. After implementing a more memory efficient way to store homologous
genes (version 2.4) i-ADHoRe could be used for the first public release of PLAZA
containing nine species. However as development of PLAZA continued and the
number of sequences surpassed this improvement alone proved to be insufficient
to cope with the increase in data. In Chapter [3]is describe how various improve-
ments ultimately reduced runtimes of i-ADHoRe significantly, while Chapter
introduced a novel alignment algorithm that was necessary as previous implemen-
tations did not perform adequately when then number of gene lists aligned grew

too large.

In Chapter several case studies, illustrating the merits of both PLAZA and
i-ADHoRe are presented. As the opportunity arose to show the full potential of
our tools on two newly sequenced genomes, the relevant sections of the resulting

publications have also been included in this chapter.

Finally conclusions about this research as a whole and thoughts of how we
can progress in the future are described in Chapter [6] In addition some of the
most recent novelties in the field, and their potential implications are discussed
here.

1.5 Author Contribution

As first author | wrote this review together with Yves Van de Peer. All images

shown in this chapter are made by me.
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“If we knew what it was we were doing,
it wouldn't be called research, would
it?"”

Albert Einstein

PLAZA Comparative Genomics in Plants
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Abstract

The number of sequenced genomes of representatives within the green lineage
is rapidly increasing. Consequently, comparative sequence analysis has signifi-
cantly altered our view on the complexity of genome organization, gene function,
and regulatory pathways. To explore all this genome information, a central-
ized infrastructure is required where all data generated by different sequencing
initiatives is integrated and combined with advanced methods for data mining.
Here, we describe PLAZA, an online platform for plant comparative genomic{]
This resource integrates structural and functional annotation of published plant
genomes together with a large set of interactive tools to study gene function and
gene and genome evolution. Precomputed data sets cover homologous gene fami-
lies, multiple sequence alignments, phylogenetic trees, intraspecies whole-genome
dot plots, and genomic collinearity between species. Through the integration of
high confidence Gene Ontology annotations and tree-based orthology between
related species, thousands of genes lacking any functional description are func-
tionally annotated. Advanced query systems, as well as multiple interactive visu-
alization tools, are available through a user-friendly and intuitive web interface.
In addition, detailed documentation and tutorials introduce the different tools,
while the workbench provides an efficient means to analyze user-defined gene sets
through PLAZA's interface. In conclusion, PLAZA provides a comprehensible and
up-to-date research environment to aid researchers in the exploration of genome

information within the green plant lineage.

This chapter is based on Proost et al.22. Author contribution, see page

2http://bioinformatics.psb.ugent.be/plaza/
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2.1. Introduction

2.1 Introduction

The availability of complete genome sequences has significantly altered our view
on the complexity of genome organization, genome evolution, gene function, and
regulation in plants. Whereas large-scale cDNA sequencing projects have gen-
erated detailed information about gene catalogs expressed in different tissues or
during specific developmental stages®’, the application of genome sequencing
combined with high-throughput expression profiling has revealed the existence
of thousands of unknown expressed genes conserved within the green plant lin-

cage 35l

The generation of high-quality complete genome sequences for the
model species Arabidopsis thaliana and rice (Oryza sativa) required large inter-
national consortia and took several years before completion?282  Facilitated by
whole-genome shotgun and next-generation sequencing technologies, genome in-
formation for multiple plant species is now rapidly expanding. The genomes of
four eudicots, Arabidopsis thaliana, poplar (Populus trichocarpa), grapevine (Vitis
vinifera), and papaya (Carica papaya), two monocots, rice and Sorghum bicolor,
the moss Physcomitrella patens, and several green algae® have been published,
and new genome initiatives will at least double the number of plant genome se-

quences by the end of this decade8485

Although the genomes of some of these species provide invaluable resources
as economical model systems, comparative analysis makes it possible to learn
more about the different characteristics of each organism and to link phenotypic
with genotypic properties. Hanada and coworkers demonstrated how the integra-
tion of expression data and multiple plant sequences combined with evolutionary

conservation can greatly improve gene discovery@0:87

. Whereas a detailed gene
catalog provides a starting point to study growth and development in model or-
ganisms, sequencing species from different taxonomic clades generates an evolu-
tionary framework to study how changes in coding and noncoding DNA affect the
evolution of genes, resulting in expression divergence and species-specific adap-

8890

tations Based on orthologous genes (i.e., genes sharing common ancestry

evolved through speciation), comparative genomics provides a powerful approach
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to exploit mapping data, sequence information, and functional information across
various species?l. Similarly, the analysis of genes or pathways in a phylogenetic
context allows scientists to better understand how complex biological processes
are regulated and how morphological innovations evolve at the molecular level.
For example, studying gene duplicates in poplar has revealed specific expansions
in gene families related to cell wall formation covering cellulose and lignin biosyn-
thesis genes and genes associated with disease and insect resistance®%. Similarly,
amplifications of genes belonging to the metabolic pathways of terpenes and tan-
nins in grapevine directly relate the diversity of wine flavors with gene content4?.
Besides the comparative analysis of specific gene families in higher plants, com-
parisons with other members of the green lineage provide additional information
about the evolutionary processes that have changed gene content during hundreds
of millions of years. Although the genomes of, for instance, moss and green algae
contain a smaller number of genes compared with flowering plants, they provide
an excellent starting point to reconstruct the ancestral set of genes at different
time points during plant evolution and to trace back the origin of newly acquired

genes3739

Gene duplication has been extensive in plant genomes. In addition, detailed
comparison of gene organization and genome structure has identified multiple
whole-genome duplication (WGD) events in different land plants. From a biolog-
ical point of view, the large number of small- and large-scale duplication events
in flowering plants has had a great influence on the evolution of gene function
and regulation. For instance, between 64 and 79% of all protein-coding genes in
Arabidopsis thaliana, poplar, and rice are part of multigene families, compared
with 40% for the green alga Chlamydomonas reinhardtii. Paralogs are gener-
ally considered to evolve through nonfunctionalization (silencing of one copy),
neofunctionalization (acquisition of a novel function for one copy), or subfunc-
tionalization (partitioning of tissue-specific patterns of expression of the ancestral
gene between the two copies)?493. The impact of the large number of duplicates
on the complexity, redundancy, and evolution of regulatory networks in multicel-

lular organisms is currently far from being well understood?425
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Performing evolutionary and comparative analyses to study gene families and
genome organization requires a centralized plant genomics infrastructure where
all information generated by different sequencing initiatives is integrated, in com-
bination with advanced methods for data mining. Even though general formats
have been developed to store and exchange gene annotation®, the properties of
available plant genomic data (i.e., structural annotation of protein-coding genes,
RNAs, transposable elements, pseudogenes, or functional annotations through
protein domains or ontologies) vary greatly between different sequencing cen-
ters, impeding comparative analyses for nonexpert users. Additionally, large-scale
comparisons between multiple eukaryotic species require huge computational re-
sources to process the large amounts of data. Here, we present PLAZA, a new
online resource for plant comparative genomics’} We show how PLAZA provides
a versatile platform for integrating published plant genomes to study gene func-
tion and genome evolution. Precomputed comparative genomics data sets cover
homologous gene families, multiple sequence alignments, phylogenetic trees, in-
traspecies whole-genome dot plots, and genomic collinearity information between
species. Multiple visualization tools that are available through a user-friendly web
interface make PLAZA an excellent starting point to translate sequence informa-

tion into biological knowledge.

2.2 Results

2.2.1 Data Assembly

The first version of PLAZA contained the nuclear and organelle genomes of nine
species within the Viridiplantae kingdom: the four eudicots Arabidopsis thaliana,
papaya, poplar, and grapevine, the two monocots rice and sorghum, the moss
Physcomitrella patens, and the unicellular green algae Chlamydomonas reinhardtii

and Ostreococcus lucimarinus. The integration of all gene annotations provided

2http:// bioinformatics.psb.ugent.be/plaza/
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by the different sequencing centers yielded a data set of 295 865 gene mod-
els, of which 92.6% represent protein-coding genes (Table [2.I)). The remaining
genes are classified as transposable elements, RNA, and pseudogenes (6.5, 0.6,
and 0.3%, respectively). Whereas most of the genes are encoded in the nuclear
genomes, a small set are from chloroplast and mitochondrial origin (0.4 and 0.2%,
respectively). For all genes showing alternative splicing, the longest transcript was
selected as a reference for all downstream comparative genomics analyses. De-
tailed gene annotation, including information about alternative splicing variants
is displayed using the Anno.ﬂ genome browser?”. Whereas genomes from model
species like Arabidopsis thaliana and rice are characterized by high sequence cov-
erage and a set of contiguous genomic sequences resembling the actual number of
chromosomes, other genome sequences, such as those of Physcomitrella patens
and papaya, are produced by the whole-genome shotgun sequencing method and
contain more than 1000 genomic scaffolds (Table . For poplar, grape, and
sorghum, a large fraction of the genome is assembled into chromosomes, but sev-
eral scaffolds that could not be anchored physically are still present in the data
set. In this case, we allocated the genes that were not assigned to a chromo-
some in the original annotation to a virtual chromosome zero. This procedure
reduces the number of pseudomolecules when applying genome evolution studies
while preserving the correct proteome size (i.e., the total number of proteins per

species) and the relative gene positions on the genomic scaffolds (Table .

Complementary to the structural annotation, we also retrieved, apart from
free-text gene descriptions, functional information through Gene Ontology (GO)
associations®, InterPro domain annotations®, and Arabidopsis Reactome| path-

100 Whereas GO provides a controlled vocabulary to describe gene

way data
and gene product attributes (using Cellular Component, Biological Process, and
Molecular Function), the InterPro database provides an annotation system in
which identifiable features found in known proteins (i.e., protein families, do-

mains, and functional sites) can be applied to new protein sequences. GO pro-

2http://www.annoj.org/
bhttp://www.arabidopsisreactome.org/
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Table 2.1: Summary of the Gene Content in PLAZA v1. (a) Size assembled (sequencing
method). PAC, phague artificial chromosome; TAC, transformation-competent artificial chro-
mosome; WGS, whole-genome shotgun. (b) percentage of protein coding genes. (c) Numbers in
parentheses refer to the number of genomic sequences in the original annotation; "+1" indicates
the creation of a virtual chromosome zero to group scaffolds. (d) Percentages in parentheses
include projected GO annotations, while the first value only reports original primary GO data.

Species Genome Size (a) Genes (b) Scaffolds (c) Coding GO (d) InterPro

Arabidopsis thaliana 115 Mb  (BAC, 33,284 5 27,228 63.62% 56.49%
PAC, TAC) (88.81%) (66.21%)

Carica papaya 271 Mb (3x 28,072 1,898 28,072 0.00% 57.75%
WGS) (99.84%) (22.88%)

Populus 410 Mb (7.5x 45,699 19+1 (5,724) 45,654 44.69% 61.91%

trichocarpa WGS) (99.90%) (52.89%)

Vitis vinifera 468 Mb (8.4x 38,127 19+1 (35) 37,987 40.09% 57.62%
WGS) (99.63%) (45.90%)

Oryza sativa 371 Mb  (BAC, 57,955 12 41,912 30.42% 63.69%
PAC) (72.32%) (30.91%)

Sorghum 626 Mb (WGS) 34,686 10+1 (217) 34,609 44.44% 67.79%

bicolor (99.78%) (48.13%)

Physcomitrella patens 480 Mb (8.6x 36,137 1,446 36,065 33.20%
WGS) (99.80%) 42.44%

Chlamydomonas rein- 121 Mb (13x 14,731 552 14,678 34.99% 49.29%

hardtii WGS) (99.64%)

Ostreococcus lucimarinus 13 Mb (WGS) 7,805 21 7,805 47.94% 62.86%

(100.00%)
Total 295,865 273,965 39.36% 44.88%
(92.60%)

vides a set of different evidence codes that indicate the nature of the evidence
that supports a particular annotation. The Arabidopsis Reactome is a curated
resource for pathways where enzymatic reactions are added to genes and a set of
reactions is grouped into a pathway.

Apart from the basic information related to gene structure and function (e.g.,
genome coordinates, mRNA coding and protein sequences, protein domains, and
gene description), different types of comparative genomics information are pro-
vided through a variety of web tools. In general, these data and methods can be
classified as approaches to study gene homology and genome structure within and
between species. Whereas the former focuses on the organization and evolution
of families covering homologous genes, the latter exploits gene collinearity, or the

conservation of gene content and order, to study the evolution of plant genomes

(Figure [2.1).
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Figure 2.1: Structure of the first PLAZA Platform. Outline of the different data types (white
boxes) and tools (gray rounded boxes) integrated in the PLAZA platform. White rounded boxes
indicate the different tools implemented to explore the different types of data available through
the website.

2.2.2 Delineating Gene Families and Subfamilies

As a starting point to study gene function and evolution, all protein-coding genes
are stored in gene families based on sequence similarity inferred through BLAST.
A gene family is defined as a group of two or more homologous genes. A graph-
based clustering method (Markov clustering implemented in Tribe-MCL?) was
used to delineate gene families based on BLAST protein similarities in a pro-
cess that is sensitive to the density and the strength of the BLAST hits between
proteins. Although this method is very well suited for clustering large sets of
proteins derived from multiple species, high false-positive rates caused by the
potential inclusion of spurious BLAST hits have been reported®. Therefore, we
applied a postprocessing procedure by tagging genes as outliers if they showed
sequence similarity to only a minority of all family members (see Methods .
The OrthoMCL method% was applied to build subfamilies based on the same
protein similarity graph. Benchmark experiments have shown that OrthoMCL
yields fewer false positives compared with the Tribe-MCL method and that, over-
all, it generates tighter clusters containing a smaller number of genes®®. Because
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OrthoMCL models orthology and in-paralogy (duplication events after dating spe-
ciation) based on a reciprocal-best hit strategy, the final protein clusters will be
smaller than Tribe-MCL clusters because out-paralogs (homologs from duplica-
tion events predating speciation) will not be grouped. Therefore, from a biological
point of view, subfamilies or out-paralogs can be considered as different subtypes
within a large protein family. In total, 77.62% of all protein-coding genes (212 653
genes) are grouped in 14 742 multigene families, leaving 61 312 singleton genes.
Sixty-two percent of these families cover genes from multiple species, and for
approximately one-fifth, multiple subfamilies were identified. Manual inspection
and phylogenetic analysis of multiple families revealed that in many cases, Or-
thoMCL correctly identified outparalogous groups that can be linked with distinct
biological subtypes or functions (see Section [2.3.2,19%). Examples of identified
subfamilies are different clathrin adaptors (Adaptor Protein complex subunits),
minichromosome maintenance subunits, ATP binding GCN transporters, cullin
components of SCF ubiquitin ligase complexes, replication factors, and a/b/g
tubulins (Figure . Although fast-evolving genes or homologs showing only
limited sequence similarity can lead to incorrect families, a similarity heat map
tool was developed to explore all pairwise sequence similarities per family (Figure
. This visualization provides an intuitive approach, complementary to the
automatic protein clustering and phylogenetic trees, to explore gene homology.
In addition, a BLAST interface is available that provides a flexible entry point to

search for homologous genes using user-defined sequences and parameter settings.

2.2.3 Projection of Functional Annotation Using Orthology

Phylogenetic studies generate valuable information on the evolutionary and func-
tional relationships between genes of different species, genomic complexity, and
lineage-specific adaptations. In addition, they provide an excellent basis to infer

orthology and paralogy%3.

Based on the gene families generated using protein
clustering, a phylogenetic pipeline was applied to construct 20 781 phylogenetic
trees covering ~172 000 protein-coding genes. Bootstrapped phylogenetic trees

were constructed using the maximum likelihood method PhyML"%* based on pro-
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Figure 2.2: Gene Family Delineation Using Protein Clustering, Phylogenetic Tree Construction,
and Similarity Heat Maps.

(A) Phylogenetic tree of clathrin adaptors (HOMO000575) with the AP1-4 subfamilies delineated
using OrthoMCL. Black and gray squares on the tree nodes indicate duplication and speciation
events identified using tree reconciliation, respectively. Only bootstrap values >70% are shown.
(B) Similarity heat map displaying all pairwise similarity scores for all gene family members.
BLAST bit scores were converted to a color gradient with white/bright green and dark green
indicating high and low scores, respectively. Clustering of the sequence similarities supports the
existence of the four AP subfamilies that were identified using protein clustering and confirmed
using phylogenetic inference. Note that subfamilies AP3 and AP4 are inverted in the heat map
compared with the tree. Species abbreviations as in Table @
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tein multiple sequence alignments generated using MUSCLE® (see Section .
In order to extract biological information from all phylogenies, we applied the NO-
TUNG tree reconciliation method to annotate, based on parsimony and a species
tree, tree nodes as duplication/speciation events together with a time estimate0°.
Detailed inspection of tree topologies revealed that, even for well-supported nodes
with high bootstrap values, a high number of nodes (53 to 64%) correspond with
falsely inferred duplication events. This problem is caused by the different rates
of amino acid evolution in different species, potentially leading to incorrect evo-
lutionary reconstructions®%. Therefore, we calculated a duplication consistency
score, originally developed by Ensembl1%” to identify erroneously inferred dupli-
cation events (see Section . This score reports, for a duplication node,
the intersection of the number of postduplication species over the union and is
typically high for tree nodes denoting a real duplication event. Consequently, the
reconciled phylogenetic trees provide a reliable means to identify biologically rel-
evant duplication and speciation events (or paralogs and orthologs, respectively).
In addition, the time estimates at each node make it possible to infer the age of

paralogs and correlate duplications with evolutionary adaptations.

Since speciation events inferred through phylogenetic tree construction provide
a reliable way to identify orthologous genes, these orthology relationships can be
used to transfer functional annotation between related organisms1%0:108:109 \ye
applied a stringent set of rules to identify a set of eudicot and monocot tree-based
orthologous groups and used GO projection to exchange functional annotation be-
tween species (see Section [2.3.4]and Figure 2.3). Whereas in the original annota-
tion, 39% of all proteins were annotated with at least one GO term, this fraction
greatly varies for different species (Table . Model species like Arabidopsis
thaliana and rice have a large set of functionally annotated genes with GO terms
supported by various experimentally derived evidence codes. In contrast, other
organisms only have annotations inferred through electronic annotation (e.g.,
grapevine and popular) or completely lack functional annotation (e.g., papaya;
see data overview on PLAZA website). Application of GO projection using eudicot

and monocot orthologous groups resulted in new or improved functional informa-
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Figure 2.3: GO projection using eudicot and monocot orthologous groups. The rounded boxes
indicate the orthologous groups extracted from the phylogenetic tree while green and yellow
shadings refer to eudicot and monocot clades, respectively. If for genes in an orthologous group
functional annotation was available (excluding GO annotations with an IEA evidence tag),
these terms were transferred to all other genes (with ISS evidence tag) in that group keeping
track of the source gene(s). Consequently, some un-annotated genes received new functional
annotations while other genes were re-annotated with a more specific GO term (black and
green arrows, respectively). In this example the green arrow denotes the re-annotation of the
GO term 'biosynthetic process’ (GO:0009058, depth 2) using 'galactolipid biosynthetic process’

(GO:0019375, depth 6).
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tion for 36 473 genes. This projected information covers ~105 000 new annota-
tions, of which one-fifth is supported by evidence from multiple genes. Overall,
11.8% of all genes lacking GO information in flowering plants could be annotated
based on functional data of related genes/species and for ~22 000 genes (17% of
protein-coding genes in angiosperms already annotated using GO) new or more
specific GO terms could be assigned. For papaya, initially lacking functional GO
data, 39% of all genes for which a phylogenetic tree exists have now one or more
associated GO term. To estimate the specificity of the functional annotations,
we used the GO depth (i.e., the number of shortest-path-to-root steps in the GO
hierarchy) as a measure for the information content for the different annotations.
Distributions per species reveal that the projected annotations are as detailed as
the original primary GO data and that for species initially lacking GO informa-
tion, detailed GO terms can be associated to most genes?®. Whereas Blast2GO,
a high-throughput and automatic functional annotation tool*2?, applies sequence
similarity to identify homologous genes and collect primary GO data, GO projec-
tion uses phylogenetic inference to identify orthologous genes prior to transfer of
functional annotation. Both methods incorporate information from different GO
evidence tags to avoid the inclusion of low-quality annotations while generating
functional information for uncharacterized proteins. It is important to note that
all pages and tools presenting functional annotation through the PLAZA website
can be used, including either all GO data or only the primary GO annotations
(i.e., excluding projected GO terms).

2.2.4 Exploring Genome Evolution in Plants

To study plant genome evolution, PLAZA provides various tools to browse ge-
nomic homology data, ranging from local synteny to gene-based collinearity views.
Whereas collinearity refers to the conservation of gene content and order, syn-
teny is more loosely defined as the conservation of similar genes over two or more
genomic regions. Moreover, genome organization can be explored at different
levels, making it possible to easily navigate from chromosome-based views to

detailed gene-centric information for one or multiple species. Based on gene fam-
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ily delineation and the conservation of gene order, homologous genomic regions
were detected using i-ADHoRe*. The i-ADHoRe algorithm combines gene con-
tent and gene order information within a statistical framework to find significant
microcollinearity taking into account different types of local rearrangements8.
Subsequently, these collinear regions are used to build genomic profiles that al-
low the identification of additional homologous segments. As a result, sets of
homologous genomic segments are grouped into what is referred to as a multipli-
con. The multiplication level indicates the number of homologous segments for a
given genomic region. The advantage of profile searches (also known as top-down
approaches) is that degenerate collinearity (or ancient duplications) can still be
detected ®111,

The Synteny plot is the most basic tool to study gene-centric genomic ho-
mology. This feature shows all genes from the specified gene family with their
surrounding genes, providing a less stringent criterion to study genomic homol-
ogy compared with collinearity. To ensure the fast exploration of positional or-
thologs, gene family members have been clustered based on their flanking gene
content. Investigating collinearity on a genome-wide scale can be done using the
WGDotplot (Figure ) This tool can be applied to identify large-scale dupli-
cations within a genome or to study genomic rearrangements within or between
species (e.g., after genome doubling or speciation, respectively). In a first view, a
genome-wide plot displays inter- or intraspecies collinearity, while various features
are available to zoom in to chromosomewide plots or the underlying multiplicon
gene order alignment. Intraspecies comparisons can also be visualized using circu-

lar plots that depict all duplicated blocks physically mapped on the chromosomes.

All collinear gene pairs (or block duplicates) have been dated using Kg, the
synonymous substitution rate (see Section [2.3.6). Kg is considered to evolve at
a nearly constant neutral rate since synonymous substitutions do not alter the
encoded amino acid sequence. As a consequence, these values can be used as a
molecular clock for dating, although saturation (i.e., when synonymous sites have

been substituted multiple times, resulting in Kg-values >1) can lead to underesti-
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Figure 2.4: Overview of Different Collinearity-Based Visualizations of the Genomic Region
around Poplar Gene PT10G16600. (A) The WGDotplot shows that the gene of interest, indi-
cated by the light-green line, is located in a duplicated block between chromosomes PT08 and
PT10. The orange color refers to a Kg value of 0.2 to 0.3, indicating the most recent WGD
in poplar. (B) The Skyline plot shows the number of collinear segments in different organisms
detected using i-ADHoRe. (C) The Multiplicon view depicts the gene order alignment of the
homologous segments indicated in (B). Whereas the rounded boxes represent the different genes
color-coded according to the gene family they belong to, the square boxes at the right indicate
the species the genomic segment was sampled from. The reference gene is indicated by the
light-green arrow in (B) and (C).
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mation of the actual age!2. The average K for a collinear (or duplicated) block
is calculated and colored accordingly in the WGDotplots (Figure ) Based
on the Kg-distributions of block paralogs, the Kg-dating tool can be employed
to date one or more large-scale duplication events relative to a speciation event
considering multiple species. As shown in Chapter ancient and more recent
WGDs can be identified in several plants species, although varying evolutionary
rates in different lineages due to, for instance, different generation times, might

interfere with the accurate dating of these events25:3,

When investigating genomic homology between more than two genomes, the
Skyline plot provides a rapid and flexible way to browse multiple homologous ge-
nomic segments (Figure ) For a region centered around a reference gene,
all collinear segments (from the selected set of organisms) are determined and
visualized using color-coded stacked segments. The Skyline plot offers a compre-
hensive view of the number of regions that are collinear in the species selected
(see Section . Navigation buttons allow the user to scroll left and right,
whereas a window size parameter setting provides a zooming function to focus
either on a small region around the reference gene or on the full chromosome.
Clicking on one of the regions of interest shows a more detailed view (Multiplicon
view; see Figure ) The gene alignment algorithm maintains the original gene
order but will introduce gaps to place homologous genes in the same column (if
possible).

2.2.5 Database Access, User Interface, and Documentation

An advanced query system has been developed to access the different data types
and research tools and to quickly retrieve relevant information. Starting from
a keyword search on gene descriptions, GO terms, InterPro domains, Reactome
pathways, or a gene identifier, relevant genes and gene families can be fetched.
Apart from the internal PLAZA gene identifiers, the original gene names provided
by the data provider are supported as well. When multiple genes are returned
using the search function, the view-associated gene families option makes it pos-

sible to link all matching genes to their corresponding gene families, reducing the
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complexity of the number of returned items. When searching for genes related to
a specific biological process using GO, this function makes it possible to directly
identify all relevant gene families and analyze the evolution of these genes in the
different species. Although for some species the functional annotation is limited,
even after GO projection, mapping genes related to a specific functional category
to the corresponding families makes it possible to rapidly explore functional an-

notations in different species through gene homology.

To analyze multiple genes in batch, we have developed a Workbench where,
for user-defined gene sets, different genome statistics can be calculated (Figure
[2.1)). Genes can be uploaded through a list of (internal or external) gene iden-
tifiers or based on a sequence similarity search. For example, this last option
enables users to map an EST data set from a nonmodel organism to a reference
genome annotation present in PLAZA. For gene sets saved by the user in the
Workbench detailed information about functional annotation (InterPro and GO),
associated gene families, block and tandem gene duplicates, and gene structure
are provided. In addition, the GO enrichment tool allows for determination of
whether a user-defined gene set is overrepresented for one or more GO terms (see
the Workbench tutorial on the PLAZA documentation page). This feature makes
it possible to rapidly explore functional biases present in, for example, differen-

tially expressed genes or EST libraries.

The organization of a gene set of interest (e.g., gene family homologs, genes
with a specific InterPro domain, GO term, or from a Reactome pathway, a Work-
bench gene set) in a genomewide context can reveal interesting information about
genomic clustering. The Whole Genome Mapping tool can be used to display a
selection of genes on the chromosomes (Figure , and additional information
about the duplication type of these genes (i.e., tandem or block duplicate) is pro-
vided. Furthermore, the Whole Genome Mapping tool allows users to view the
distribution of different gene types (protein-coding, RNA, pseudogene, or trans-

posable element) per species.
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Figure 2.5: Whole Genome Mapping tool. Overview of 664 Arabidopsis thaliana genes with a
Cyclin-like F-box domain (IPR001810).
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An extensive set of documentation pages describes the sources of all primary
gene annotations, the different methods and parameters used to build all com-
parative genomics data, and instructions on how to use the different tools. We
also provide a set of tutorials introducing the different data types and interac-
tive research tools. An extensive glossary has been compiled that interactively is
shown on all pages when hovering over specific terms. Finally, for each data type
(e.g., gene family and GO term) or analysis tool, all data can be downloaded as
simple tab-delimited text files. Bulk downloads covering sequence or annotation

data from one or more species are available through an FTP server.

2.2.6 Comparison with Other Plant Genomics Platforms

The availability of online sequence databases and genome browsers provides an
easy entry point for researchers to immediately investigate genome information
without having to install any software. Furthermore, such services usually provide
the possibility to link with an assembly of other web-based resources®’. There
has been a rapid growth in the number of plant genomics databases (Table .
A major difference between these databases is the number of organisms included:
whereas the Genome Cluster Database?” and GreenPhyIDBE]26 only include Ara-
bidopsis and rice, Grameneﬁzg, PLAZA, and CoGeE113 have the most comprehen-
sive set of species. CoGe includes, besides fully sequenced plant genomes, a large
collection of viral, bacterial, fungal, and animal genomes. Comparing the data
types, a noticeable trend is that most platforms focus on either gene families or ge-
nomic homology. Genome Cluster Database, GreenPhyIDB, Orthologl[ﬂll“, and
PlantTribed*f"¥ all provide detailed information about gene families and phyloge-
netic trees but do not have any means to study genomic homology. By contrast,
Plant Genome Duplication Databasdﬂzg, SynBrowsdElm, and CoGe provide meth-

2http://greenphyl.cirad.fr/
bhttp://www.gramene.org/
Chttp://synteny.cnr.berkeley.edu/CoGe/
dhttp://nypg.bio.nyu.edu/orthologid/
¢http://fgp.bio.psu.edu/tribedb/index.pl
fhttp://chibba.agtec.uga.edu/duplication/
http:/ /www.synbrowse.org/
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ods to study synteny and collinearity but do not include information about gene
families. Phytozomd?| and Gramene partially combine gene family and genome
evolution data types. Whereas the former provides family-based local synteny
plots, the collinearity framework in Gramene is based solely on genetic markers.
Intraspecies dot plots are available in the Plant Genome Duplication Database,
CoGe, and PLAZA and make it possible to investigate genes originating fromWGD
events. Finally, only Gramene, CoGe, and PLAZA provide a genome browser to

obtain a general overview of a genomic region of interest.

Other platforms provide data focused on specific gene functions or sequence
types but are not extensively described here. Plant transcription factors can be
studied using PInTFDBP[?, AGRISY®, and GRASSIUS™®. The complemen-
tary platforms Phytome20 and SPPG are hybrid systems integrating gene
information from genome sequencing projects with EST data for a comprehensive

set of plant species.

2.3 Methods

2.3.1 Data Retrieval and Delineation of Gene Families

All gene annotation is retrieved from the different data providers (for details, see
section Data content in PLAZA Documentation) and stored according to their
gene type (coding, RNA, pseudo and TE). When parsing the structural gene
annotation we verify if the original gene coordinates do generate the correct tran-
script and protein sequence (as reported by the primary data) and flag incorrect
gene models. Starting from all protein-coding genes, only retaining the longest

transcript if alternative splicing variants exist, protein sequences were used to

2http://www.phytozome.net
bhttp://pIntfdb.bio.uni-potsdam.de/
http://arabidopsis.med.ohio-state.edu/
dhttp://grassius.org/plantgenome.html
¢http://bioinformatics.psb.ugent.be/cgi-bin/SPPG/index.htpl
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Table 2.2: Features of Plant Comparative Genomics Tools (a) Species names are abbrevi-
ated: Arabidopsis lyrata (Aly), Arabidopsis thaliana (Ath), Brachypodium distachyon (Bdi),
Carica papaya (Cpa), Chlamydomonas reinhardtii (Cre), Glycine max (Gma), Lotus japon-
ica (Lja), Medicago trunculata (Mtr), Ostreococcus lucimarinus (Olu), Oryza sativa (Osa),
Physcomitrella patens (Ppa), Populus trichocarpa (ptr), Sorghum bicolor (Sbi), Selaginella
moellendorffi (Smo), Vitis vinifera (Vvi), Volvox carteri (Vca), and Zea mays (Zma).(b) Phy-
tozome has a synteny viewer instead of a genuine colinearity pipeline.(c) CoGe includes also
viral, prokaryotic, and other, nonplant, eukaryotic genomes.(d) Gramene has some features to
visualize macrocolinearity based on marker maps.
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construct homologous gene families by applying sequence based protein cluster-
ing. First, an all against all sequence comparison was performed using BLASTP
applying an E-value threshold of 1e-05 and retaining the best 500 hitst. Note
that applying less stringent E-value thresholds overall result in the inclusion of
more outliers genes. Next, the complete sequence similarity graph was processed
using Tribe-MCL (mclblastline, default parameters except | = 2 and scheme = 4)
and OrthoMCL to identify gene families and sub-families, respectively. In post-
processing, all genes assigned to a gene family but showing similarity (through
BLASTP) to less than 25% of the median number of within-family similarity hits
were annotated as outliers. The median number of within-family similarity hits
is defined by first counting for each gene within a family the number of family
members it shows similarity to and then determining the median number of hits
per family. Manual verification of multiple sequence alignments in combination
with similarity heat maps of all family members revealed that this threshold of
25% performs best to remove non-homologous false positive genes from the fam-
ily. Only sub-families delineated by OrthoMCL are retained if they overlap for
95% or more with a single gene family and if two or more sub-families can be
found for a given gene family defined by the Markov clustering. Thus, OrthoMCL
clusters that are identical to Tribe-MCL clusters are discarded since they represent

redundant information.

2.3.2 Comparison of OrthoMCL with Phylogenetic Trees

To verify the assumption that out-paralogs can correctly be identified using Or-
thoMCL, we validated a set 372 sub-families covering 129 large gene families
using phylogenetic tree construction and reconciliation (Supplemental Table 2
accompanying Proost et al.?). Typically, phylogeny-based methods exhibit very
low false positive rates (but also low coverage) because of the stringent criteria
used to construct trees and provide a robust approach to evaluate the quality of
the sub-families. Since these selected families contain multiple sub-families cov-
ering genes from all species in the dataset, they provide a good benchmark set

to evaluate the accuracy of the sub-families defined by OrthoMCL. Tree recon-
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ciliation reveals that 92% (251/273) of the OrthoMCL sub-families are dated as
originating in the ancestor of green plants, confirming that they represent ancient
sub-types. Comparing the gene content between both methods shows that 70%
(134/193) of all sub-families, for which a bootstrap supported (>70%) tree exists,
are fully covered by the orthologous groups delineated using phylogenetics. This
fraction increases to 76% (81/107) when considering only tree nodes with boot-
strap values >99%. Similar results were obtained by Hanada and co-workers who
found an overlap of 80% between similarity- and tree-based orthologous groups

when clustering proteins from Arabidopsis thaliana, poplar, rice and mossi%2,

An additional control experiment was performed to determine whether sub-
families were formed by OrthoMCL that do not represent ancient sub-types. First,
we assigned phylogenetic labels to the different sub-families (e.g. contains only
genes from moss, algae, eudicots, monocots, all land plants or all plants). When
studying the taxonomic range of the labels for the different sub-families within
a family, we observed that only rarely false sub-families were defined. For exam-
ple, when considering a set of 333 gene families having at least two sub-families,
one annotated with 'monocot’ and one with 'eudicot’, respectively, only 16 cases
(5%) were found where the family was erroneously split in a eudicot and monocot

sub-family not representing out-paralogs.

2.3.3 Alignments and Phylogenetic Trees

For all gene families multiple sequence alignments were created using MUSCLE®.
Alignment columns containing gaps were removed when a gap was present in
>10% of the sequences. To reduce the chance of including misaligned amino
acids, all positions in the alignment left or right from the gap were also removed
until a column in the sequence alignment was found where the residues were
conserved in all genes included in our analyses. This was determined as follows:
for every pair of residues in the column, the BLOSUMG62 value was retrieved.
Next, the median value for all these values was calculated. If this median was

>0, the column was considered as containing homologous amino acids. To pre-
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vent the emergence of low-branch attraction or badly-supported nodes yielding
uninformative trees, highly divergent and partial sequences were removed from
the alignment prior to phylogenetic tree construction if they contained in more
than 50% of the alignment columns gaps or two times or more gaps than the
average sequence in the alignment. Phylogenetic trees were constructed using
PhyML applying the JTT substitution model, 100 bootstrap samples, estimated
proportion of invariable sites, four substitution categories, estimated gamma dis-
tribution parameter, the BIONJ distance-based tree as starting tree and without
tree optimization (default parameters for protein sequences). Notung 2.@ was
used to root the trees and to infer speciation and duplication events using the tree
reconciliation mode and applying the Duplication/Loss Score to evaluate alter-
nate hypotheses. In the website JaIVieV\E] is used as multiple sequence editor’2
to view and transfer sequence data to the user's PC. ATV/Archaeoptery is used

for tree visualization®22.

2.3.4 Functional Annotation

Delineating correct othologous relations is a daunting task in plants due to many
ancient and species-specific WGD creating many paralogous genes. A main issue
for orthology projection is that an orthologous group covering for example genes
from different land plants will include many paralogs that originated before/after
the radiation of these species and that these duplicates might have diverged in
function or regulation. Consequently, sub-or neo-functionalization of ancient du-
plicates makes transfer of functional annotation at the 'land plant’ level heavily
unreliable. Therefore, we selected eudicot and monocot orthologous groups to
project functional annotation (Figure . The inherent drawback of this ap-
proach is that functional annotation from Arabidopsis cannot be transferred to
rice and sorghum and vice versa. This limitation however will result in a smaller,

but more reliable set of orthologous groups for projection. For the GO projection

2http://www.cs.cmu.edu/ durand/Notung/
bhttp://www.jalview.org/
Chttp://www.phylosoft.org/archaeopteryx/
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all primary gene annotations Inferred from Electronic Annotation (evidence code
IEA) were excluded as information source (see Supplemental Table 5 accompa-
nying Proost et al.??). Finally, all new gene-GO associations inferred through
projection were labeled with evidence tag Inferred from Sequence or Structural
Similarity (ISS).

The delineation of eudicot/monocot orthologous groups was done based on
the phylogenetic trees. A recursive algorithm was developed which traverses the
tree topology and checks each node based on its reconciled date and bootstrap
value (> 70). The consistency score (in case the node was labeled as a duplication
node) was used to determine if the node was a genuine duplication (consistency
score > 0.30 for duplication). Note that the last criterion prevents the inclusion
of ancient paralogous sub-types in the orthologous groups. Nodes that met this
set of criteria were extracted as valid orthologous groups (18 513 and 13 216
groups for eudicots and monocots, respectively) and all GO terms from genes
within such a group were collected. Redundancy caused by parent-child relations
between related GO terms was removed and this extended set of labels was pro-
jected to all genes in the group recording the source gene(s) for newly inferred
gene annotations. Consequently, some un-annotated genes received new func-
tional annotations while other genes were re-annotated with a more specific GO
term. Note that GO parent-child redundancy between primary and projected GO
annotations was not removed in order to keep both data sources clearly distin-

guishable.

GO and family enrichment analysis was performed using the hypergeometric
distribuiton and Bonferroni correction for multiple hypothesis testing.

2.3.5 Detection of Collinearity

To detect collinearity within and between species i-ADHoRe 2.4 was used?.
Whereas the algorithm is identical to the i-ADHoRe 2.0 version, a more effi-

cient way to store gene pairs in memory was implemented allowing the program
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to be executed with up to 11 species on a machine with 2 gigabytes of RAM.
Collinear regions can be used to study the conservation of genome organization
between different species or to study duplicated blocks within one organism. Ini-
tially, all chromosomes from all species are compared against each other and
significant collinear regions are identified. i-ADHoRe was run with the settings
alignment_method gg, gap_size 30, cluster_gap 35, q_value 0.9, prob_ cutoff
0.0001, anchor_points 4 and level_2_only false. The default run was done in-
cluding all organisms. For optimal results however it is recommended to limit the
number of species. Hence several other runs, with a subset of species, were done
and stored in the database. Where relevant the website will allow users to pick to
subset of species they're interested in (i.e. brassicales, eudicots, monocots, moss

and algae).

Whereas the Multiplicon View and WGDotplot present raw i-ADHoRe output,
the Skyline plot performs an additional processing step where several multiplicons
are combined to show as many collinear regions as possible. For genes in the
shown region all segments containing this gene are extracted and each of these
segments belongs to a certain multiplicon which is accessible through the Mul-
tiplicon View by clicking the segment. For each selected organism the highest
number of segments from this organism in one of these multiplicons will be deter-
mined and stored. This process is repeated for every gene in the reference region
and the stored values will be used to build the graph depicted in the Skyline plot.

2.3.6 Relative Dating using Synonymous Substitutions

Only collinear gene pairs were dated using Kg. Compared to dating all pair-
wise combinations of gene homologs per family, this has several advantages.
First, as tandem duplications are filtered out when detecting collinearity, the
L shaped curve caused by tandems isn't superimposed on Kg-plots obscuring
peaks from large-scale duplications. Second, no correction for the number of
K g-measurements versus the number of real duplications has to be applied®3 and

lastly, a reduction in the number of gene pairs to date results in a reduction of
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computational time. The coding sequences for the gene pairs were aligned with
CLUSTALW (version 1.83)12% using the protein sequences as alignment guides.
From this alignment bad positions were stripped as described for the gene family
alignments. The actual dating using synonymous substitutions was done using
codeml (part of PAML package)®%* with the settings verbose 0, noisy 0, run-
mode -2, seqtype 1, model 0, NSsites 0, icode 0, fix_alpha 0, fix_kappa 0 and
RateAncestor 0.

2.4 Summary and Future Prospects

The PLAZA platform integrates genome information from a wide range of species
within the green plant lineage and allows users to extract biological knowledge
about gene functions and genome organization. Besides the availability of differ-
ent comparative genomics data types, a set of interactive research tools, together
with detailed documentation pages and tutorials, are accessible through a user-
friendly website. Sequence similarity is used to assign protein-coding genes to
homologous gene families, and phylogenetic trees allow the reliable identifica-
tion of paralogs and orthologs. Through the integration of high confidence GO
annotations and tree-based orthology between related plant species, we could
(re-)annotate thousands of genes in multiple eudicot and monocot plants. Apart
from local synteny plots that facilitate the identification of positional orthologs,
gene-based collinearity is calculated between all chromosomes from all species and
can be browsed using the so-called Skyline plots. The WGDotplot visualizes all
duplicated segments within one genome and dating based on synonymous sub-
stitutions generates an evolutionary framework to study large-scale duplication
events. In addition, PLAZA’'s Workbench provides an easy access point to study
user-defined gene sets or to process genes derived from high-throughput experi-
ments. Based on a sequence similarity search or a list of gene identifiers, custom
gene sets can rapidly be created and detailed information about functional anno-
tations, associated gene families, genome-wide organization, or duplication events

can be extracted. Consequently, this tool opens perspectives for researchers gen-
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erating EST libraries from nonmodel species as these can easily be mapped onto a
model organism. PLAZA hosts a diverse set of data types as well as an extensive
set of tools to explore plant genome information.

Future efforts will be made to extend the number of available plant species
and to include novel types of data to further explore gene function and regula-
tion. Newly published plant genomes will be added on a regular basis to enlarge
the evolutionary scope of PLAZA. The availability of genome information from

125 will make it possible to explore the similarities

more closely related organisms
and differences between species at the DNA level and to identify, for example,

conserved cis-regulatory elements on a genome-wide scale.

In conclusion, PLAZA will be a useful toolkit to aid plant researchers in the
exploration of genome information through a comprehensive web-based research

environment.

2.5 Author Contribution

As a first author, | had a lead role (along with Michiel Van Bel and Klaas Vande-
poele) in the development of the PLAZA platform. Several visualizations shown
throughout this chapter are based on tools | designed and wrote (see Figure
and Figure . Development of new methods, such as GO-projection, was done
by myself as well was . Finally, the manuscript was written by Klaas Vandepoele

and myself.
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Cave Johnson

I-ADHoRe 3.0 - Fast and Sensitive
Detection of Genomic Homology in

Extremely Large Data Sets
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Abstract

Comparative genomics is a powerful means to gain insight into the evolutionary
processes that shape the genomes of related species. As the number of sequenced
genomes increases, the development of software to perform accurate cross-species
analyses becomes indispensable. However, many implementations that have the
ability to compare multiple genomes exhibit unfavorable computational and mem-
ory requirements, limiting the number of genomes that can be analyzed in one
run. Here, we present a software package to unveil genomic homology based on
the identification of conservation of gene content and gene order (collinearity),
i-ADHoRe 3.0, and its application to eukaryotic genomes. The use of efficient al-
gorithms and support for parallel computing enable the analysis of large-scale data
sets. Unlike other tools, i-ADHoRe can process the Ensembl data set, containing
49 species, in less than one hour. Furthermore, the profile search is more sensi-
tive to detect degenerate genomic homology than chaining pairwise collinearity
information based on transitive homology. From ultra-conserved collinear regions
between mammals and birds, by integrating coexpression information and protein-
protein interactions, we identified more than 400 regions in the human genome
showing significant functional coherence. The different algorithmical improve-
ments ensure that i-ADHoRe 3.0 will remain a powerful tool to study genome

evolution.

This chapter is based on Proost et al.®2%. Author contribution, see page
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3.1. Introduction

3.1 Introduction

During their evolution, genomes have been altered at various levels. At the small-

est scale, point mutations and small insertions and deletions2L

affect only a few
nucleotides. Larger modifications include duplication, deletion, translocation or
inversion of a single gene or genomic segment1<8. At the largest scale, the entire

23b7lell | dentifica-

genome can be doubled via genome duplication or merging
tion of these structural rearrangements provides insight into how genomes have
evolved and diverged over time. It is therefore of crucial importance to correctly
determine chromosomal regions that are homologous (i.e. derived from a com-
mon ancestor), either within a genome, or between genomes of related species.
Genomic homology can be inferred from collinearity, namely the conservation of
both gene content and gene order. Synteny, though initially defined as ‘the prop-

129 is often used to indicate the

conservation of gene content but not necessarily gene order®.

erty of being located on the same chromosome’
Like collinearity,
synteny also points to homology between different genomic regions based on a

number of shared genes 130,

Detection of collinear regions between the genomes of related species allows
for the identification of chromosomal fusions and fissions, along with inverted
or translocated regions. Additionally, gene loss and gain can be efficiently esti-
mated, and cross-species genome analysis provides a framework for transferring
gene annotation and biological information to newly sequenced genomes. Finally,
orthologous intergenic sequences derived from collinear regions can be screened
for conserved non-coding regions as a way to detect regulatory motifs and to
identify various types of RNA genes?”. As both gene loss and different types of
rearrangements accumulate over time, the resulting genome erosion gradually re-
duces the degree of collinearity between species. Therefore, gene order preserved

over a large phylogenetic distance can imply a biological constraint231,

Collinear regions within a genome can also hint at the occurrence of one

44|79

or more rounds of whole-genome duplications (WGDs) Based on within-
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genome collinearity, the loss of gene duplicates created during a WGD can be
estimated?132133 \yhereas the functions of genes retained in duplicate can be
linked to lineage or species-specific adaptations, including specific pathways and
biological processes. WGDs appear to have played a crucial role in the evolution
of all major eukaryotic lineages and, particularly in plants, they are often associ-

53134 and

ated with key events during evolution including fast adaptive radiation
survival of mass extinction events™. Additionally, gene family expansions critical
for the pome fruit development in apple (Malus domestica)®! have been linked
to a recent WGD, whereas expansions in genes producing aromatic compounds
have been observed in grapevine (Vitis vinifera)®. Although remnants of several
recent WGDs are abundant in the plant kingdom, WGDs in land vertebrates and

1350360 |n vertebrates, the complex body plan is

fishes are seemingly much older
often attributed to the duplication of developmental genes during two WGDs 450
Million Years Ago (MYA)3 The first traces of a WGD have been unveiled in
Saccharomyces cerevisiae based on comparative approaches®3. Additional proof
for the WGD in brewer's yeast has been provided later by comparison with the
genome of an unduplicated outgroup species, Kluyveromyces waltii*38. The more
complex carbohydrate metabolism of Saccharomyces cerevisiae and other post-
duplication yeast species is probably a direct consequence of this duplication32.
Therefore, the discovery of large-scale duplications, through the study of collinear
regions, has provided a remarkably detailed view on the genomic evolution and

adaptation of various species.

Here, we focus on the accurate detection of homologous chromosomal seg-
ments both within and between the genomes of related species. Specifically,
sensitive and accurate algorithms are needed for the identification and evolution-
ary analysis of duplicated regions that have undergone massive gene loss. Sev-
eral tools, by means of various approaches, have recently been proposed9-21140
Whereas most tools only perform pairwise comparisons, the iterative Automatic
Detection of Homologous Regions (i-ADHoRe)* was one of the first that simul-
taneously analyzed genomes of multiple species and allowed for the detection of

highly diverged collinear regions. On the one hand, i-ADHoRe has been used in
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several genome projects to uncover the remnants of large-scale duplications (e.g.,
apple (Malus domestica)®Y, soybean (Glycine Max)®Y, Arabidopsis lyrata’*! and
black cottonwood (Populus trichocarpa)*¥), and, on the other hand, to detect
inter-species collinearity in yeastsi42 and Archaeal#3, In contrast to tools that
infer genomic homology through a multiple sequence alignment of complete ge-

nomic DNA sequences1447147

, i-ADHoRe detects genomic homology through the
identification of gene collinearity and/or synteny. The core feature of i-ADHoRe
3.0, which is based on a new alignhment algorithm#® and improved statistical
evaluation, is the ability to handle large numbers of genomes. Due to the further
optimization of many algorithmic steps, the current version of i-ADHoRe 3.0 is
roughly 30 times faster than the previous version. In addition, i-ADHoRe 3.0
can now take advantage of a parallel computing platform, reducing the runtime
even further. For large data sets, the combination of improvements in the se-
quential algorithm and the parallelization results in overall speedup of a factor
of 1000. Here, we demonstrate that i-ADHoRe is capable of processing much
larger datasets than the current state-of-the-art tools. In particular, the complete
Ensembl release 57149 data set that contains 49 eukaryotic genomes can be ana-
lyzed in less than one hour (using 64 CPU cores), while producing highly accurate

results.

3.2 Material and Methods

3.2.1 Data Sets

The Arabidopsis thaliana and Vitis vinifera genomes together with gene family
information were retrieved from PLAZA, an on-line plant comparative genomics
resource?? that provides gene families constructed with Tribe-MCL clustering?
starting from an all-against-all BLASTY protein similarity search. The E-values
and bit-scores were saved, because these values are necessary for Cyntenator23
and MCScan”®. The lengths for Carica papaya gene lists were also obtained via

PLAZA. Animal genomes and families were downloaded from Ensembl (release
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57) with the Ensembl Perl API120. An all-against-all BLAST protein similarity
search was done to obtain bit-scores and E-values]

3.2.2 Detection of Collinearity

The initial steps of the algorithm (Figure are identical to i-ADHoRe 2.0;
tandem duplicated genes are mapped to a single representative and for each
pair of gene lists a gene homology matrix (GHM) is generated (Figure [3.2]A).
In this sparse matrix pairs of homologous genes are represented as dots and as
such collinear regions will appear as dense diagonals. Compared to the pre-
vious i-ADHoRe version, several major components of the algorithm were re-
implemented for a better performance. First, the statistical validation of the
clusters in the GHM was improved. To avoid inclusion of diagonals in the GHM
generated merely by chance, the significance of each cluster is now estimated
with a statistical model that takes into account the overall background density
of the matrix. When multiple seeds (i.e. clusters with at least three homologous
gene pairs that meet the initial criteria) were found, a correction for multiple
hypothesis testing was done either with the Bonferroni or False Discovery Rate
(FDR)323152 method.

Significant collinear regions found during this initial detection were converted
into a profile, both collinear regions were aligned, i.e. homologous genes are placed
in the same column adding gaps where necessary (Figure ) Like in previous
versions of i-ADHoRe this alignment can be done by progressively applying the
Needleman-Wunsch (pNW) algorithm or a greedy graph (GG) based alignment
strategy. In version 3.0, a novel greedy graph based alignment algorithm (GG2),
described in Fostier et al.1#¥ was implemented. Using this aligned profile a new
search is performed (Figure [3.2C), here a GHM is created with the profile and all
gene lists in the dataset. Significant regions are added to a new profile and the

profile search is repeated (Figure [3.2D). With a single profile, multiple segments

2An overview of all included species in PLAZA and Ensembl can be found on
http://bioinformatics.psb.ugent.be/plaza/ and http://www.ensembl.org/ respectively.
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Figure 3.1: Flowchart of the i-ADHoRe detection strategy. Steps indicated by green filled boxes

can be executed in parallel.
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Figure 3.2: Gene homology matrix (GHM) for the initial two segments (Seg | and Seg I1). In
a GHM collinear regions will appear as dense diagonals. (B) Alignment of shared homologs
between collinear regions; gaps are introduced to place as many homologous pairs in the same
column as possible (35). The alignment (or 'profile’) now contains the information of both
segments. (C) Start of the iterative process, GHMs are now created with the profile and
additional collinear regions can be found, e.g. Seg Ill. (D) Generation of a new profile. As long
as additional segments can be found steps (C) and (D) are repeated. In this example (E) and
(F) show how a single profile detects two additional segments that are mutually non-homologous
(Seg IV and V), leading to a split in the detection process.
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can be found that are homologous to the profile but not necessarily to each other
(Figure E and F). In this case, several profiles are generated and the detection
algorithm continues detection with the longest profile first. Once no additional
segments can be found the search continues with the next profile. Additionally,
the initial pairwise and profile searches can now be executed on a parallel comput-
ing platform (a multiprocessor/multicore systems or a computational cluster of
networked computers). If N denoted the number of gene lists provided as an input
to i-ADHoRe, the N(N +1)/2 pairwise comparisons could be processed indepen-
dently and, hence, distributed over different processes. The size of each gene list
was taken into account to ensure a good load balance between the processes. At
the end of this step, the detected collinear regions are communicated (using the
Message Passing Inteface (MPI)) among the processes. Similarly, a single profile
search can be parallelized by distributing the N gene lists among the different
processes, again taking the size of the chromosomes into account. At the end
of every profile search, the detected collinear regions were again communicated
between the processes. However, due to the much smaller task granularity of one

single profile search, a good load balancing was more difficult to achieve.

3.2.3 Synteny Mode

The input and initial steps were identical to the collinearity search mode. Only
after the pairwise GHMs had been built, a different clustering algorithm was used
(Figure . Clouds of dots contained by a bounding box were detected. Ini-
tially, the method started by considering all the dots of the GHM as potential
cloud seeds. Subsequently the seeding algorithm searched a rectangular area,
defined by the cloud_gap, for additional dots, and all dots in this window formed
the seed cloud. Next, all seed clouds would grow by adding all dots present in a
frame with a thickness equal to the cloud_gap to the current cloud. This process
was repeated as long as additional genes could be included in the cloud. Finally,
clouds within each other’s range, defined by the cluster_cloud_gap, were merged

into one single large cluster.

63



Chapter 3. i-ADHoRe 3.0 - Fast and Sensitive Detection of Genomic Homology
in Extremely Large Data Sets

In a final step, the statistical significance of the clouds was calculated. Two
methods were available. One method used a binomial distribution in which the
probability density was set to the number of dots divided by the area of the dot
matrix. The other method took into account the removal of the tandem duplicates
during a pre-processing step. Therefore, one dot per column and row was assumed
to be present. For boxes larger than the tandem_gap, this assumption might
be broken and the significance might be slightly overestimated. The binomial
distribution supposed that one dot might be present at every position in the box.
Hence, the second distribution would seemingly be a more realistic measure for
the statistical significance of a cloud. As clouds could not be aligned, the profile

search was automatically disabled with the cloud search.

3.2.4 Empirical Estimation of False Positive Rates

False positive (FP) rates were calculated with permutation tests in which 100
randomized data sets were compared with a real reference data set. Tandem
duplicated genes (homologs within a window of 70 genes) were removed prior
to shuffling the reference data set to generate a randomized version. This pre-
processing step guaranteed a comparable density in the randomized run because
breaking up tandem-clusters artificially increased the GHM background density.
All genes had their original orientation replaced with a randomly assigned one.
The lengths of the original gene lists were maintained during the randomization,
but genes could be moved from one gene list to another. To estimate the perfor-
mance with different settings, a permutation test was carried out for each of the
desired settings, generating parameter landscapes for Arabidopsis thaliana, hu-
man and yeast, with various combinations of g_value and gap_size parameters.
Settings that yielded the maximum amount of anchor points, while maintaining

a FP rate near the selected cut-off value were considered as optimal.
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3.2.5 Comparison with MCScan and Cyntenator

BLASTP pairs for MCScan were filtered and only the best five hits in each species
were retained?®. Because in MCScan first proteins are clustered to group homol-
ogous genes in gene families, this step was excluded when monitoring runtimes
for the different tools. Cyntenator was also run with filtered BLASTP output,
retaining only the top five hits for each species if their bit score was within 95%
of the highest bit-score (as described in Rédelsperger et al.2?). The gap and
mismatch penalties were set to -0.3, the threshold to 2 and the filter to 1000.
i-ADHoRe was run with a gap_ size of 30 and cluster_gap of 35, while keeping the
prob__cutoff on 0.01 and the g_value on 0.75. GG2 was used as the alignment
algorithm and correction for multiple hypothesis testing was done with FDR. The

minimal number of anchor points in a cluster was set to five.

3.2.6 Detection of Highly Conserved Regions Enriched for
Coexpressing and Interacting Gene Pairs

Phylogenetic profiles, describing the number of homologous regions per species
present in a multiplicon, a set of mutually collinear regions, were generated for
all multiplicons in the output from the high-quality Ensembl subset. Multiplicons
with one human and one bird (either chicken or zebra finch) segment and with
conserved segments of at least five other mammals were selected. From these re-
gions the human segment was identified and the genes collinear with genes from
other segments were stored. Expression data were derived from COXPRESdb
version c3.113 and highly expressed gene pairs were selected based on a mutual
rank below or equal to 50. Experimentally characterized interacting protein pairs
(41 088 binary interactions for 9142 human genes) were downloaded from In-
tAct?®%, Using Ensembl’s BioMart tool, a conversion table was generated to map
all gene identifiers in these data sets to the Ensembl genes. For each selected
multiplicon, the length of the human segment and number of human collinear
genes were determined. Then, the number of coexpressed or interacting pairs

was counted. When at least one human gene pair was found, the statistical sig-
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nificance was tested with a permutation test. Over 10 000 iterations, a random
segment from the human genome (with the tandem duplicated genes removed)
was sampled with the same length as the selected multiplicon. From the random
region, an equal number of genes was randomly selected as collinear and, the
number of coexpressed or protein-protein interaction pairs in this gene set was es-
tablished. The number of iterations in which a number of pairs was equal or larger
than that found in the real data set were counted and used to calculate a p-value

for each multiplicon. All regions with a p-value < 0.05 were considered significant.

3.2.7 Evaluation of Low-Quality Genomes

To artificially reduce the quality of the Arabidopsis thaliana genome, the gene
list length distribution of the papaya genome was used as a template to split
the Arabidopsis thaliana gene lists in fragments resembling a draft assembly.
i-ADHoRe was executed on both the Arabidopsis thaliana genome and the arti-
ficial low-quality version. The collinear fractions were measured by enabling the

write_stats option in i-ADHoRe.

3.3 Results and Discussion

3.3.1 The i-ADHoRe 3.0 algorithm

The detection strategy of i-ADHoRe 3.0 is shown in Figure 4153 First, tan-
dem duplicated genes are mapped onto one single representative gene, because
tandem clusters can hinder the detection of diagonals (see further). Next, for
each pair of chromosomes or scaffolds, a so-called gene homology matrix (GHM)
is generated. A GHM is a sparse matrix in which homologous gene pairs are
marked by dots and collinear regions appear as diagonals. For each detected di-
agonal, the statistical significance is evaluated (Figure [3.2]A). Significant collinear
regions are aligned into a profile (Figure ) that contains the combined gene
content of the two collinear regions and can hence be used as a more sensitive
probe to scan for additional collinear regions (Figure C and D). This step
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Table 3.1: FP-rate on the basecluster level on the Arabidopsis dataset. Parameter combinations
with a FP-rate equal or below the p-value cutoff specified (10~2) are indicated in bold.

r2 0,5 r2 0,6 r2 0,7 20,8 r2 0,9 r2 1,0

gap 15 2,74E-04 2,74E-04 2,74E-04 2,75E-04 3,33E-04 0,00E+00
gap 20 1,33E-03 1,34E-03 1,40E-03 1,39E-03 1,52E-03 0,00E+400
gap 25 4,72E-03 4,70E-03 4,54E-03 4,58E-03 4,33E-03 0,00E+00
gap 30 1,02E-02 1,00E-02 9,84E-03 9,21E-03 9,36E-03 0,00E+400
gap 35 2,17E-02 2,10E-02 1,98E-02 1,86E-02 1,81E-02 0,00E+00
gap 40 3,97E-02 3,76E-02  3,50E-02  3,22E-02  2,89E-02  0,00E4-00
gap 45 7,43E-02 7,00E-02 6,53E-02 5,92E-02 5,01E-02 0,00E+400
gap 50 1,27E-01 1,18E-01 1,11E-01  9,94E-02 8,36E-02  0,00E4-00
gap 55 1,97E-01 1,81E-01 1,65E-01 1,46E-01 1,21E-01 0,00E+400

is iterated as long as new collinear regions are found and mutually homologous
regions are grouped into a multiplicon. Even though the profile search requires
an increased computational cost, it has proven its merits as a means to detect

more degenerate genomic homology #4478,

In order to deal with increasingly large data sets, various parts of the original
i~ADHoRe code® have been replaced by equivalent algorithms with a reduced
computational complexity. A first major improvement was the development of an
efficient statistical model to estimate the significance of diagonals in the GHM,
because the computational cost to calculate the exact p-value®® increases expo-
nentially with the number of gene pairs that shape the diagonal. The Arabidopsis
thaliana data set was analyzed with different p-value thresholds and an empirical
false positive (FP) rate for each threshold was determined using permutation tests
(Figure [3.3)). The combination of better heuristics and the implementation of a
correction for multiple hypothesis testing (Bonferroni or FDR) resulted in a more
realistic estimation of p-values and consequently improved the control of the FP
rate compared to the previous statistical model. The effects of using different
parameter settings on Arabidopsis thaliana are reported in Tables but similar

results were obtained for other human and yeast.

In the iterative search procedure, additional collinear regions are identified

and the corresponding profiles are updated in every step. Therefore, an accu-

67



Chapter 3. i-ADHoRe 3.0 - Fast and Sensitive Detection of Genomic Homology
in Extremely Large Data Sets

FP-rate vs p-value
1
* *
*
0,1
*

0,01 %

@ No correction
FDR

X Bonferroni

Emperical FP-rate

0,001 —|deal

0,0001 T T T )
0,0001 0,001 0,01 01 1
p-value cutoff selected

Figure 3.3: Correlation between empirical FP rate and the selected p-value cut-off. Inclusion of
a correction for multiple-hypothesis testing (FDR and Bonferroni) results in an observed p-value
closely reflecting the selected value. The recommended p-value range is 1073 to 10~ 1.

rate alignment algorithm is imperative for the sensitive discovery of more de-
generate collinear regions (Figure C and D). Originally, i-ADHoRe relied
on the progressive application of the pairwise Needleman-Wunsch (pNW) algo-
rithm to align multiple homologous segments into profiles*®. Whereas with the
Needleman-Wunsch algorithm an optimal pairwise alignment of two segments
can be obtained, its quality quickly degrades due to the propagation of erroneous
decisions in early alignment steps when additional segments are added®®’. To
resolve this issue, a greedy, graph-based (GG) aligner had been introduced into
i-ADHoRe 2.0 that converted the alignment problem into a cycle-canceling prob-
lem in a graph®. Whereas this implementation provided a viable solution for the
‘once a gap, always a gap’ problem, it was unable to outperform the pNW aligner
in terms of number of correctly aligned homologous genes. In i-ADHoRe 3.0, a
novel greedy, graph-based aligner (GG2) was featured that, by means of maxi-
mum flow calculations in the graph, resolved efficiently unalignable sections in
the graph (conflicts). Even though this graph-based method is computationally
more intensive than the application of the pNW aligner, fast heuristics allow this

algorithm to be efficiently used*® (see Chapter 4)).
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Finally, two practical issues arise when multiple genomes are compared: the
processing time and the memory requirements. Whereas the runtime increases
super-linearly with the size of the data set, i.e. faster than the number of genomes
that are analyzed, the memory requirements are mainly determined by the number
of homologous gene pairs. To limit the runtime and, hence, facilitate the analy-
sis of large-scale data sets, the two most time-consuming parts of the algorithm
were parallelized (Figure green boxes): the initial all-to-all pairwise com-
parison (every gene list versus every gene list) and the iterative profile searches
(one profile versus every gene list). The parallelization of the all-to-all pairwise
step revealed that by using a dataset of 31 high-quality genomes (Ensembl release
57, all genomes sequenced up to 6x using WGS or better quality) and 64 CPU
cores, a 46-fold increase in speed (Figure was observed. Searching addi-
tional collinear regions in a gene list using a profile is more difficult to parallelize,
because of more intense communication requirements between the subtasks and
hence a larger communication overhead. Overall, the runtime for the complete
algorithm was reduced 32-fold on 64 cores, corresponding to a parallel efficiency
(relative reduction in runtime compared to one with one single core, over the

number of cores used) of approximately 50%.

3.3.2 The synteny mode and ancient duplications

Whereas collinearity is excellent to detect remnants of relatively recent dupli-
cations and homologous regions between closely related species, more ancient
homologous regions may remain undetected™. Synteny is a valid, albeit less
stringent, alternative than collinearity to detect ancient homology between re-
gions that experienced severe rearrangements, such as, for example, paralogous
regions that originated from the whole-genome duplication (WGD) in the common
ancestor of all vertebrates 350-450 MYAL3Y i-ADHoRe 3.0 features an additional
clustering algorithm to detect genomic homology based on shared gene content,

coined the synteny mode.
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Figure 3.4: Parallel speed-up in function of the number of processes used. The profile searches

have a harder load to balance (smaller granularity) and therefore are not as efficient to run in
parallel compared to the level 2 detection.

For the human data set, the empirical FP rate was determined with a permuta-
tion test on several datasets, every time gradually increasing the cloud_gap from
5 to 55 and setting the cloud_cluster_gap to the cloud_gap plus five. We found
that a cloud_gap of 15 (and thus a cloud_cluster_gap of 20) was the closest to
the selected p-value and thus optimal for the human genome. Therefore, these
settings were applied for further evaluation of the synteny mode. (Table [3.2)).
Note that a wrong choice of parameters might cause an avalanche effect in which

the bounding box keeps growing because new dots are found in the window frame.

On this data set with the collinear search, 544 anchor point pairs were re-
ported and while using the cloud search 2215 were found. For both runs the
p-value was set to 0.01. Comparison of the number of block-duplicated genes
revealed that the synteny mode detected nearly 4-fold more genes in significant
syntenic blocks. Therefore, the synteny mode is recommended to detect highly
diverged homologous regions, such as those derived from the WGD in vertebrates

but also between species with a large evolutionary distance.
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Table 3.2: Empirical Estimated FP-Rates using the synteny mode on the human dataset (p-
value cutoff 1072) In bold settings with a p-value near or better than the selected value are
indicated.

Cloud_gap Settings  FP-Rate

5 4,27E-04
10 5,25E-03
15 2,14E-02
20 5,42E-02
25 1,06E-01
30 1,78E-01
35 2,77E-01
40 3,98E-01
45 5,22E-01
50 6,47E-01
55 7,90E-01

3.3.3 Evaluation of gene-based collinearity detection tools

When genomes with remnants of WGDs are dealt with or when highly diverged
genomes are compared, gene loss and different types of rearrangements can inter-
fere with the accurate detection of duplicated or homologous collinear regions 2479,
To the best of our knowledge, only Cyntenator<3d, MCScan# and i-ADHoRe go
beyond simple pairwise comparison and combine, via different approaches, infor-
mation to find additional homologous regions. Cyntenator performs progressive
pairwise combinations based on a user-defined species tree that strictly imposes
the order in which genomes are compared. Only valid alignments including ho-
mologous regions from all species are retained to find collinearity with the next
genome in line. Unlike the profile search of i-ADHoRe, in MCScan each chro-
mosome is used as a reference and all pairwise collinear segments are mapped,
followed by a multiple alignment procedure of homologous genes, inspired by the
threaded blockset aligner*4”. MCScan allows pairing regions that had initially not
been detected based on their collinearity with the reference, a method referred
to as “transitive homology”222. Unlike some tools12721140  Cyntenator, MCScan
and i-ADHoRe use ordered gene lists rather than the actual genome sequence.
This level of abstraction allows for an efficient detection of collinearity. An addi-

tional advantage is that more diverged intergenic sequences do not interfere with
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Figure 3.5: Distribution of the fraction of genes (n) found in sets of homologous genomic
segments (multiplicons) with different levels (m) by MCScan and i-ADHoRe, respectively. Level
1 indicates the fraction of genes that was not found in any collinear region. The cumulative
curve (i.e. the sum of all genes with the indicated level or lower) remains lower for i-ADHoRe,
indicating that a larger fraction of the genome could be grouped into higher level multiplicons.

the discovery of ancient collinearity or synteny.

To benchmark the application of a profile search versus transitive homology
mapping of pairwise collinear segments, i-ADHoRe and MCScan were executed
on the Arabidopsis thaliana data set to identify degenerated duplicated segments.
Cyntenator was excluded from this experiment, because it does not allow detec-
tion of internal duplications. Figure shows the number of genes present in
regions with a certain level, indicating the total number of homologous segments.
Although i-ADHoRe and MCScan use very different approaches, the number of
genes in collinear regions was comparable (23 912 and 24 559, respectively), but
the profile search enabled i-ADHoRe to group more genes in regions with level four
(4499 versus 2669 genes), five (1223 versus 891) and six (1318 versus 340). This
result implies that the more advanced profile search allows for a more sensitive
detection of collinear regions compared to the progressive chaining in MCScan.

To evaluate the discovery of inter-species collinearity, the three tools were ap-
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plied to analyze a small subset of the genomes available in Ensembl, namely hu-

1590 (Mus mus-

man8 (Homo sapiens), chimpanzeel® (Pan troglodytes), mouse
culus), chicken® (Gallus gallus) and pufferfish’®l (Tetraodon nigroviridis). For
each gene, all overlapping homologous segments were retrieved and the highest
number of species found in one single alignment (or multiplicon) was scored.
In contrast to Cyntenator, MCScan and i-ADHoRe collapse tandem genes into
one single representative and, therefore, reported fewer genes. The predefined
species order applied by Cyntenator to compare genomes forms a major drawback
for large-scale analyses including multiple species. For instance, a region that is
collinear between human and mouse, but for which the homologous counterpart
in the chimpanzee lineage was lost, will not be reported because only collinear
regions from the first pairwise comparison (i.e. human and chimpanzee) are re-
tained to identify additional collinearity in mouse. Therefore, a fair comparison
was possible only for regions in which collinearity was conserved in all five species.
Whereas using MCScan and Cyntenator, 416 and 498 genes were assigned to
such regions, respectively, the profile search applied by i-ADHoRe allocated 3296

genes in multiplicons containing regions conserved in all five species (Figure [3.7)).

Fast algorithms that exhibit a favorable computational complexity are imper-
ative to keep pace with the ever-increasing number of available genomes. There-
fore, the runtime of all three programs was first monitored on the data set of the
five species. i-ADHoRe, the only tool that takes advantage of a parallel environ-
ment, was executed using a single and eight threads respectively on a multicore
machine. Because MCScan first clusters proteins into gene families, a step is not
part of the actual collinearity detection algorithm, the program runtime was mea-
sured without this pre-processing step (Figure . Whereas Cyntenator required
6.25 hours to analyze the five genomes, MCScan and i-ADHoRe were considerably
faster, analyzing the dataset in 19 and 14 minutes respectively. When i-ADHoRe

was run with eight cores, the runtime was reduced to only 3 minutes.

In a second experiment, the maximum number of genomes that could be an-

alyzed was determined by processing data sets of gradually increased size (Figure
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Figure 3.6: Runtime and memory usage comparison of Cyntenator, MCScan and i-ADHoRe
(this study). Each tool was run on subsets of the Ensembl data set each including a different
number of species.
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tor, MCScan and i-ADHoRe. For a fair comparison with Cyntenator, only the counts conserved
in all five species were considered.
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. Only i-ADHoRe succeeded in analyzing the complete Ensembl data set
covering 49 species (832 666 genes). Although Cyntenator could analyze up to
17 high-coverage genomes?®, the detection approach based on the strict usage
of a guidance species tree posed a problem for data sets that include genomes
sequenced at low coverage. As a result, inclusion of low-coverage or fractionated
genomes into a large data set quickly eroded the amount of collinearity found,
abruptly terminating the algorithm and leading to missing data when 10 or more
genomes were included in the benchmark data set. For MCScan, the largest pos-
sible data set that could be analyzed in less than 48 hours included 20 species
(Figure [.6); although within 168 hours also 30 species could be covered, this
duration however is impractically long for the efficient processing of extremely
large data sets. In contrast, i-ADHoRe finished the full Ensembl data set cover-
ing 49 genomes within 42 hours using a single CPU core. This runtime could be
reduced to less than six hours using the eight cores (88% efficiency). Finally, when
using eight such machines (i.e. 64 cores in total) that are connected through a
fast communication network (Infiniband), the runtime decreased to 40 minutes
(50% efficiency; Figure [3.4)). An additional advantage of i-ADHoRe is that gene
families rather than individual homologous gene pairs can be used to construct
the GHM, whereas in both Cyntenator and MCScan, per query gene, a limit of
five homologous genes in each other species (based on BLAST hits) is suggested.
Furthermore, the usage of gene families is a more memory-efficient alternative
than storage of all homologous gene pairs covering multiple genomes. Although
for small data sets, i-ADHoRe utilizes more memory than MCScan and Cyntentor,
the required memory scales linearly with the total number of genes and remains

below that of MCScan once the data sets include 20 or more genomes (Figure

3.6).

3.4 Conclusion

We show that the novel version of i-ADHoRe represents a major improvement

over the current state-of-the-art algorithms and can be successfully applied to
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some of the largest data sets currently available.

As new sequencing initiatives such as the 1000 human genome project192 the

125 163 will continue

1001 Arabidopsis genomes=<* and the 10k vertebrate genomes
to generate many more genome sequences, the improved scalability of i-ADHoRe
is imperative to keep runtimes acceptable. The support for parallel computing
platforms ensures that i-ADHoRe 3.0 will efficiently detect genomic homology
and will be instrumental to unveil genome evolution in the different kingdoms of

life.

3.5 Auvailability

The i-ADHoRe 3.0 software package is free for academic use. Source code, doc-
umentation and example data sets are provided in the package.
Download from: http://bioinformatics.psb.ugent.be/software
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“It is a capital mistake to theorize be-
fore one has data. Insensibly one begins
to twist facts to suit theories, instead of

theories to suit facts.”

Sherlock Holmes

A Greedy, Graph-Based Algorithm for the

Alignment of Multiple Homologous Gene
Lists
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Abstract

Motivation: Many comparative genomics studies rely on the correct identifi-
cation of homologous genomic regions using accurate alignment tools. In such
case, the alphabet of the input sequences consists of complete genes, rather than
nucleotides or amino acids. As optimal multiple sequence alignment is computa-
tionally impractical, a progressive alignment strategy is often employed. However,
such an approach is susceptible to the propagation of alignment errors in early
pairwise alignment steps, especially when dealing with strongly diverged genomic
regions. In this paper, we present a novel accurate and efficient greedy, graph-
based algorithm for the alignment of multiple homologous genomic segments,

represented as ordered gene lists.

Results: Based on provable properties of the graph structure, several heuristics
are developed to resolve local alignment conflicts that occur due to gene du-
plication and/or rearrangement events on the different genomic segments. The
performance of the algorithm is assessed by comparing the alignment results of
homologous genomic segments in Arabidopsis thaliana to those obtained by using
both a progressive alignment method and an earlier graph-based implementation.
Especially for datasets that contain strongly diverged segments, the proposed
method achieves a substantially higher alignment accuracy, and proves to be suf-

ficiently fast for large datasets including a few dozens of eukaryotic genomes.

Availability: http://bioinformatics.psb.ugent.be/software. The algorithm is im-
plemented as a part of the i-ADHoRe 3.0 package.

Contact: lyves.vandepeer@psb.vib-ugent.be

This chapter is based on Fostier et al.148. Author contribution, see page m
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4.1. Introduction

4.1 Introduction

In the past decades, considerable effort has been devoted to the development of al-
gorithms for the alignment of biological sequences at the nucleotide or amino acid
level. Using dynamic programming techniques, optimal pairwise global‘®® and lo-
cal’®® alignments can be obtained in O(I?) time, where [ denotes the length of the
sequences. A straightforward extension of these algorithms to N > 2 sequences
results in a computational complexity of O(I%), which renders the handling of se-
quences of realistic length impractical. Therefore, most Multiple Sequence Align-
ment (MSA) tools are based on progressive alignment, in which N sequences are
aligned through N — 1 applications of a pairwise alignment algorithm, usually
guided by a tree which determines the order in which the sequences are com-
bined. Many MSA tools that build on this principle have been implemented such
as the well-known programs CLUSTAL(W)1e0167 T_COFFEE1®®, MUSCLE" and
MAFFT29 Almost without exception, MSA tools target the alighment of amino
acid or nucleotide sequences.

In this paper, we focus on the alignment of multiple, mutually homologous
(i.e. derived from a common ancestor) genomic segments, represented as gene
lists. This means that the alphabet of the input sequences consists of individual
genes, rather than nucleotides or amino acids. Similarly to MSA at the nucleotide
or amino acid level, the goal is to align homologous genes, i.e. place genes that
belong to the same gene family in the same column. The homology relationships
between the individual genes have been established in a pre-processing step using
sequence similarity searches and protein clustering®. Whereas ancestral gene or-

der reconstruction®20

starts from homologous genomic segments to infer ancestral
genome states and quantify genome dynamics, the objective of our graph-based
approach is to create accurate alignments of homologous segments, in order to

facilitate the detection of additional homologous genomic segments.

The multiple sequence alignment of gene lists differs significantly from the

alignment of sequences at the nucleotide or amino acid level. First, the size of the
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alphabet of different nucleotides (four) or amino acids (twenty) is much smaller
than the typical number of different gene families that occur in the genome of
an organism. This means that a certain gene only has a very limited number of
homologous genes in other gene lists. Second, through evolution, nucleotide and
amino acid sequences mainly undergo character substitutions, whereas chromo-
somes mainly undergo gene loss/insertion, inversion and other types of rearrange-
ments (e.g. reciprocal translocation). These two major differences allow for the
development of a graph-based alignment approach, which will be demonstrated
to have a higher accuracy than a progressive approach, in terms of the number

of correctly aligned homologous genes.

We propose an algorithm similar to the so-called segment-based alignment
approach that is used in e.g. DIALIGNTZL. The first step in DIALIGN consists of
the identification of corresponding gap-free local alignments or ‘fragments’ be-
tween pairs of sequences. The alignment of some of these fragments can prohibit
the alignment of others. Finding the largest (weighted) subset of fragments that
can be incorporated into a multiple alignment is a difficult task, often referred to

22l |n the context of the gene list alignment prob-

as the consistency problem'
lem, the ‘fragments’ correspond to homologous genes. The consistency problem
then is to find the maximal number of homologous genes that can be included
in a multiple alignment. Optimal solution methods to this consistency problem
existl?3 but are NP-hard and therefore in general computationally impractical.
Here, fast heuristic methods are developed to remove inconsistent or conflicting
homology relationships between genes, from a graph-theoretic perspective. Sim-

ilar ideas have been developed by Pitschi et al. L%

The proposed alignment algorithm is part of the i-ADHoRe (iterative Auto-

matic Detection of Homologous Regions) software®1°>

, @ map-based method to
detect homologous genomic segments within or between the genomes of related
organisms. Rather than identifying primary sequence similarity, map-based meth-
ods look for statistically significant conservation of gene content and gene order

(collinearity). One of the key features of i-ADHoRe is the capability to uncover
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segmental homology, even between highly diverged segments. When two homol-
ogous segments have been identified, a so-called profile is constructed by aligning
both segments, hence combining the gene order and content of both homolo-
gous segments. This genomic profile can then be used by i-ADHoRe as a more
sensitive probe to scan the genome, in order to identify additional homologous

155

segments™>2. This iterative process of alignment and detection continues, until

no additional statistically significant genomic segments can be found.

It is clear that a high-quality alignment of the homologous gene lists within
a profile is imperative for a sensitive detection of additional homologous ge-
nomic segments within the i-ADHoRe software. The original i-ADHoRe™® im-
plementation relied on profile construction using a progressive application of the
Needleman-Wunsch (pNW) aligner. Especially when dealing with strongly di-
verged segments, one of the biggest problems with the pNW method is that erro-
neous alignment decisions in early pairwise steps propagate to the final alignment,
causing the alignment quality to degrade significantly when more segments are
added. This problem was already partially addressed in i-ADHoRe 2.0, through
the introduction of a greedy, graph-based (GG) aligner®. Rather than relying
on a progressive adding of segments, the GG-aligner considers the N segments
‘simultaneously’. Although this GG-aligner has its merits compared to the pNW-
aligner (e.g. it avoids the ‘once a gap, always a gap’ problem), it was unable to
outperform the latter in terms of the number of correctly aligned genes. This pa-
per introduces a new greedy, graph-based algorithm (called GG2), that builds on
the original GG-aligner. First, the basic graph-based alignment algorithm will be
explained, followed by the development of a heuristic to resolve consistency prob-
lems in this graph, so-called conflicts. In later sections, we demonstrate that the
new GG2-aligner outperforms both the pNW method and the original GG-aligner
in terms of alignment accuracy. The new GG2-aligner has been implemented in
the latest 3.0 version of i-ADHoRe and its C++ source code can be downloaded

for academic purposes (http://bioinformatics.psb.ugent.be/software).
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Figure 4.1: Example of the graph-based aligner for three simple gene lists. (a)—(e) Basic
alignment algorithm. The active nodes are contained in the dashed rectangle. Note that the
basic alignment procedure is ‘stalled’ in (c) and that two conflicting links have to be removed
first (d), to allow the aligner to continue. (f) Resulting

alignment.

4.2 Algorithm

4.2.1 Graph Structure

Consider a set of N unaligned genomic segments that are known to be mutually
homologous. Each of the segments is represented by an ordered list that contains
the genes in the same order as they appear on the corresponding segment. The
number of genes in the i*" list is denoted by [;. Every gene in a list is homologous
to zero or more genes in other lists. Although tandem duplicated genes on a ge-
nomic segment are largely filtered from the input by i-ADHoRe (see Section 3.1),
their presence within the unaligned segments does not interfere with the align-
ment procedure. The gene lists can be represented together as a single graph
G(V, E,w) as follows. First, the genes are represented by vertices (or nodes) V.
The 5" node (j = 1...1;) on the i*" gene list (i = 1...N) is referred to by
n; ;. The functions seg(.) and ind(.) return the gene list and the position index

of a node respectively, i.e. seg(n; ;) = ¢ and ind(n; ;) = j. Second, consecutive
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genes on a segment (i.e. n; ; and n; j41) are connected through a directed arc or
so-called edge pointed towards the gene with the highest index (the right-most
gene). These directed edges simply connect the genes on a segment in a linear
fashion. Finally, homologous genes located on different segments are connected
through an undirected arc or so-called /ink. No links are created between ho-
mologous genes on the same segment (tandem duplicates). A weight w can be
attributed to each link. The higher this weight is taken, the more likely it is that
the two nodes connected by this link, will show up in the same column in the
final alignment. This will be explained in later sections. The graph corresponds
to the ‘extended alignment graph’ as introduced by Lenhof et al.2%¥, although a
slightly different terminology has been adopted here.

4.2.2 Basic Alignment Procedure

The basic workflow of the alighment algorithm is illustrated in Figure Fig-
ure [4.T depicts three simple unaligned gene lists. The undirected links are rep-
resented by a solid line, the directed edges by a dashed line.

At any time, the basic alignment algorithm considers a set of N nodes, one
node from each segment. These nodes are referred to as active nodes. For each
segment ¢, the index a; refers to the active node n; ,,. At any time, all nodes on
segment ¢, located to the left of the active node n; 4, have already been aligned,
the nodes n; ; with an index j > a; still have to be processed. Links that are in-
cident to active nodes are called active links. The algorithm starts by considering
the leftmost node from each segment, i.e. nodes {ny1,...,nn1}.

If, among the N active nodes, a minimal set of nodes S = {nkak} can be
found, for which each node in S is linked only to other nodes within .S, this set
can be aligned. We say that S is alignable. Note that S can be a singleton,
and that more than one (disjoint) set can be found at a given time. The term
minimal therefore refers to the fact that S should not be the union of two other

alignable sets. Hence, all nodes within a minimal, alignable set .S, correspond to
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genes that are homologous to each other.

The next set of active nodes is obtained by incrementing the index a; for
each segment ¢ that has a node contained within one of the detected alignable
sets. In other words, on those segments, the subsequent node is considered. At
the corresponding position of all other segments, a gap is introduced. This is
illustrated in Figure .Th and [4.Ip. This process continues until either the end of
all segments is reached, or a so-called conflict is encountered. A conflict is imme-
diately detected when no alignable set S' can be found among the active nodes,
as illustrated in Figure [4.Ik. Conflicts can only be resolved by removing one or
more links (see Figure[d.1d). This procedure will be explained in sections[4.2.3)-
Once a conflict has been resolved, the basic alignment procedure can be
resumed (Figure ) Note that aligning all segments ‘simultaneously’ differs
conceptually from progressive alignment, where first two complete segments are
aligned before considering a third one, and so on. Finally, the resulting alignment
is obtained as shown in Figure [4.1f.

4.2.3 Conflicts and Cycles in the Graph

The basic alignment procedure described above is straightforward, as long as
no alignment conflicts are encountered. We define a conflict as a set of links
that cannot be aligned, i.e. the alignment of some links in the set prohibits the
alignment of other links. By the expression ‘alignment of a link’, we mean the
alignment of the two nodes connected by the link. Sources for alignment conflicts
are gene duplications, local inversions, translocations and false positive homology

assignment between genes.

In Section 4.2.5] we will be prove that if no alignable set S can be found
among the active nodes, such a conflict is always present. Conflicts can only
be resolved by removing one or more links that contribute to the conflict. This
means that certain homologous genes will not be placed in the same column in

the final alignment. Because the goal of the algorithm is to minimize this number
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of misaligned (taking the weight w of the links into account), it is imperative to

carefully select which links are removed.

The presence of links and edges induces an ordering of the nodes in the
graph G. Consider two nodes u and v, for which a path P in G exists from u to
v. In general, such a path consists of both links and edges. The latter can only
be traversed in the sense indicated by their arrow, i.e. from left to right. If a path
from vertex u to vertex v contains at least one edge, then the order relationship
u < v holds. This means that, if all links in P were to be aligned (suppose
that this is possible), node u would necessarily end up in a column left to the
column containing node v in the final result. We call such a path a blocking path
Pp with respect to to the nodes u and v, as opposed to a direct path Pp, that
contains only links and hence implies that nodes u and v should be aligned. This
is indicated by v ~ wv. A path from node u to node v imposes a direction on
the links that are part of that path. In this context, the functions tail(.) and
head(.) return the initial and terminal vertex of a such a link, respectively. This
directional property of links exists only in the context of the specified path. A
path P from node u to node v can unambiguously be described by only listing
the links —and not the directed edges (if any)— in the order of appearance in
the path, i.e. P = {L;} (i = 1...p), where seg(u) = seg(tail(L1)), ind(u) <
ind(tail(Lq)), seg(head(L;)) = seg(tail(L;+1)), ind(head(L;)) < ind(tail(Li+1)),
Vi=1...p—1, seg(v) = seg(head(L,)) and ind(head(L,)) < ind(v).

Given a link L, between nodes u and v, an alignment conflict occurs, when
there is at least one blocking path Pg = {L;} (i =2...p) from u to v. Indeed,
the presence of L; implies that u ~ v, whereas the presence of Pg implies that
u < v, a contradiction. Clearly, it is impossible to align all links in the set {L;}
(i = 1...p), hence they generate a conflict. The union Cc = {L; U Pg} is
a so-called conflicting cycle in the graph G. We define a conflicting cycle as a
closed path in G that contains at least one (directed) edge. By this reasoning,
one can immediately see that alignment conflicts correspond to conflicting cycles

in G and vice versa. We define the number of links p in the cycle Cc as the
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Figure 4.2: (a) The path Pg = {L2, L3, L4} defines an elementary blocking path from node
u to v. Similarly, Pp = {L2,L3a} is an elementary direct path between nodes z and y.
The cycle Cc = {L1 U Pg} is an elementary blocking cycle, corresponding to a minimal
conflict of degree 4. Removing any link from C¢c will resolve the conflict. (b) The path
Pp = {L2,L3, L4, L5} is a blocking path from u to v, however, the path is not elementary
since both links L3 and L5 originate from nodes on the same segment. Indeed, even though
Cc = {L1U Pg} is a blocking cycle in G, the removal of e.g. L1 does not resolve the conflict.
The cycle C, = {L3, L4} (hence Cf, C C¢) on the other hand is an elementary blocking
cycle. Removing either one of the two links in Cf, resolves the conflict.

degree of the conflict. Clearly, the degree is at least two. Also, note that the link
Ly does not play a special role in the conflict. Indeed, if we consider an arbitrary
link L; (i =1...p) in C¢, the links {L;41,...,Lp,L1,...,Li—1} also define a
blocking path from node head(L;) to node tail(L;).

As mentioned before, a conflict can only be resolved by removing one or more
links that contribute to the conflict. If the removal of any link L; (i = 1...p)
from its corresponding cycle Cc resolves all conflicts between the remaining links
(i.e. there are no conflicting cycles left in C \ {L;}), we say that the conflict is

minimal.

For any given cycle in the graph G, the number of links that terminate in
nodes on a certain segment s is equal to the number of links that originate from
nodes on the same segment s. If at most one link in the cycle originates from each
segment, we call it elementary. The maximum number of links in an elementary
cycle is therefore given by N. Similarly, an elementary path is defined as a path

where at most one link originates from each segment. The maximum number of

90



4.2. Algorithm

links in such a path is NV — 1.

Proposition 1: Minimal conflicts correspond to elementary conflicting cycles
C¢ and vice versa.

Proof: see supplementary data accompanying Fostier et al. 148,

As an immediate consequence, the maximum degree of a minimal conflict is

given by the number of segments N.

The importance of the concept of minimal conflicts stems from the fact that
such conflicts can be resolved by removing any link involved in the conflict. This is
not the case for conflicts associated with non-elementary blocking cycles (compare
e.g. the examples in Figures[4.2a and [4.2b). Also, from the proof of Proposition
1, it follows that any non-elementary conflicting cycle Cc corresponds to one
or more minimal conflicts, either by removing superfluous links from C¢, or by
decomposing C¢ into several elementary conflicting cycles. Therefore, in what
follows, we only consider elementary paths, elementary cycles and minimal con-

flicts, without explicitly mentioning the terms elementary and minimal.

4.2.4 Conflict Detection and Resolution

If the basic alignment procedure is stalled because of conflicts (i.e. no alignable
set can be found among the active nodes), we want to determine which links are
involved in these conflicts and which links are to be removed from G. For now,
we only consider the active links as candidates for removal. In the next section,

we will prove that this approach is indeed a valid one.

Consider an active link between nodes n; o, and n; , with i # j and k > qa;
(with a; the index of the active node n; ;). For the simplicity of notation, these
nodes are referred to as s and t respectively, the active link is denoted by L;.
The link Lg; contributes to a conflict, if there is a blocking path P between s
and ¢ or vice versa, between t and s. Indeed, the alignment of the link L (or
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Figure 4.3: Example of a simple alignment conflict and its solution. In (a), (b) and (c), the
link scores Sy, are calculated for the active links L1, L2 and L3 (indicated by a bold line)
respectively. All links have weight (and hence capacity) w = 1, the edges have unlimited
capacity. The numbers near the links denote the flow/capacity of that link. The maximum flow
from node s to ¢ through elementary blocking paths (indicated in red) is (a) f§ = 2 for link
Ly, (b) f§ =1 for link Lg, (c) £ =1 for link L. In all three cases, no conflicting flows are

possible from node ¢ to s, i.e. ftC: = 0. The maximum flow from node s to ¢ through direct
paths is f£ =1, in all three cases. Therefore, Sy, = —1, Sr, = 0 and SL3 = 0. (d) Resulting

alignment after the link with the lowest score (i.e. L1) is removed from G.
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any other direct path Pp between s and t) implies the ordering s ~ t. A blocking
path Pp from s to t implies s < ¢, and similarly, a blocking path from ¢ and s im-
plies s = t. We refer to these conflicts as st-conflicts and ts-conflicts respectively.

To quantitatively investigate the number of conflicts that L, is involved in,
we want to assess to which degree s and ¢ are connected through blocking paths.
In graph theory, such problems can be addressed by solving the well-known maxi-
mum flow problem. For a formal definition of the maximum flow problem, we refer

5 Intuitively, the maximum flow is the largest amount

to Ford and Fulkerson™
of ‘flow’ (e.g. fluid or current) that can be transported between two given nodes,
called source and sink respectively. Let fs; be the maximum flow from node
s to node t acting as the source and sink respectively. As an extra restriction,
it is imposed that a valid flow can only pass through elementary paths (either
blocking or direct) from s to t. The edges have unlimited flow capacity, however,
the flow can only pass in the sense indicated by the direction of the edge (from
left to right). The links have a capacity equal to their weight w, but impose no
direction on the flow. There exist many polynomial algorithms for the solution
of the maximum flow problem. This is more thoroughly discussed in the supple-

mentary text included in Fostier et al. 148,

Similarly, let f£ be the maximum flow from s to ¢ through direct elementary
paths. Note that this includes the flow through the link L. Then clearly,

C = fu — fL is the maximum flow from s to ¢ through elementary blocking
paths. As a consequence of the max-flow, min-cut theorem®, < is the minimum

link capacity that has to be removed from G to disconnect s and t through
elementary blocking st-paths, i.e. to resolve all st-conflicts. Similarly, f$ can be
calculated as the maximum flow through elementary blocking paths from ¢ to s.

We then use the following score to evaluate link L;:

Sp.= 13 =15 = Il

Since st-conflicts and ts-conflicts mutually conflict, at least min( S, fg) ca-

pacity will need to be removed from G, regardless whether or not s and t are
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aligned. The term |f$ — f| therefore denotes the minimal, net capacity that
will need to be removed from G if s and ¢ are aligned. Similarly, fZ denotes
the minimal capacity that will need to be removed from G if s and t will not
be aligned. Clearly, a positive score for Sr._, indicates that it is probably best to
align s and ¢, whereas a negative score for Sy, indicates that it is probably best

to remove the link Ly from the graph.

Note that if there are multiple st-paths, that these paths might be in mutual
conflict. This fact is not taken into account by the link score St._,. In other words,
there is no guarantee that the capacity | f§ — f<| will effectively be aligned, even
if s and ¢ are disconnected through direct paths.

The algorithm for conflict resolution can now be described as follows. If, dur-
ing the basic alignment procedure, described in Section [4.2.2] no alignable set S
can be found among the active nodes, all active links are considered. For each
of these links L, the score Sy, is calculated, and the link with the lowest score
(i.e. the most problematic link), is removed from G. This process is repeated,
until again, an alignable set S can be found among the active nodes. Figure [4.3]

presents a simple example.

4.2.5 Active Conflicts

In this section, a refinement to the conflict resolution algorithm is developed.
Consider a conflict situation in the graph G(V, E) (i.e. no alignable set S can be
found among the NV active nodes in G). Next, consider the subgraph G'(V, E’) C
G(V, E) that only contains the active links (i.e. the links incident to the active
nodes). We show that even in the reduced graph G'(V, E’), no alignable set can

be found among the active nodes.

Proposition 2: If, during the basic alignment procedure, no alignable set can
be found among the N active nodes in the graph G(V, E), at least one conflict

is present among the active links. Furthermore, no alignable set can be found
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Figure 4.4: Example of active conflicts and the improved heuristic. All links have weight w = 1.
(a) Although all active links have an equal score (S, = Sr, = Sr; = 0), only links L1 and Lo
are involved in an active conflict. The alignment of the upper two segments can not progress
as long as this conflict exists. (b) Situation after Ly has been removed. Now, links L/ and
L’ are involved in an active conflict, with scores SL{‘, = —2 and SLé = 0. (c) Final alignment

after L/, has been removed.

among the same active nodes in the subgraph G'(V, E').
Proof: see supplementary data accompanying Fostier et al. 148,

Proposition 2 provides a more fundamental understanding of alignment con-
flicts. First, it shows that active links are indeed good candidates for removal.
Indeed, even the removal of all non-active links would still not allow for the align-

ment of any of the active nodes.

Second, it shows that if the basic alignment procedure is stalled, at least one
conflict, consisting of active links, is present. Such a conflict is called an active
conflict. None of the active nodes that are incident to a link in an active con-
flict can be aligned, as long as this conflict exists. Active conflicts are therefore
high-priority conflicts that need to be resolved instantaneously. In the case of

conflicts, the active links can therefore be grouped into three categories: active
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links involved in at least one active conflict, active links involved in non-active
conflicts and active links that are not involved in a conflict. The conflict resolu-
tion algorithm is therefore modified as follows. For each of the links L involved
in at least one active conflict, calculate the score S;. The link with the lowest
score is removed from G. It is easily determined whether or not an active link is
involved in an active conflict, by calculating f& and f< in the reduced graph G'.
If any of the two flows is nonzero, an active conflict is present. A simple example
of the improved heuristic is illustrated in Figure

In the results section, it will be demonstrated that this approach indeed im-

proves the alignment quality.

4.2.6 Faster Heuristics for Conflict Resolution

The calculation of the maximum flow between two nodes in the graph is compu-
tationally expensive. However, upper bounds to the maximum flow can easily be
derived. Given an active link L,; between source node s = n; 4, and sink node
t = n; x, one can immediately notice that the final link in a blocking st-path nec-
essarily ends in a node n; s with &’ < k. Therefore, an upper bound to fSCt’UB
can be found by summing the weights w(L) of all links incident to these nodes:

k
g,UB: Z Z w(L),

k;’:aj LETLJ-JC/

with j =seg(t) and k =ind(¢). Similarly, blocking ts-paths necessarily end in
the source node s and an upper bound fg,UB can therefore be established by

summing the weights of the links L # Lg; incident to s.
ftC;,UB = Z w(L)
Len;,a;, L#Lst

Finally, a lower bound to the direct flow fZ is simply given by fg,LB =

w(Lgt). Therefore, a lower bound to the link score is given by
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D c c
SL.,LB = fst,LB - maX(fst,UBv fts,UB)'

Selecting the active link L with the lowest lower bound score Sp g yields
a much faster heuristic. Indeed, the calculation of Sy, 1,5 requires no maximum
flow problems to be solved. Even though this lower bound estimation may be
significantly underestimating the actual score S;_,, it still provides a powerful
method to select a link for removal, if we assume that the link with the lowest
lower bound score is also the link with the lowest score.

Taking this reasoning even a step further, the heuristic can even be further
simplified, if one assumes that the sum of the weights of the links, incident to a
node, is constant for all nodes, i.e. that the links are evenly distributed among the
nodes. Given a link Lg; between source node s = n; 4, and sink node t = n;j,
this means that fS 5 is proportional to (k — a;), while f 5 and fG 5 are
constant. This is clearly a rather rough approximation, however, it leads to the
very simple and fast heuristic: select the active link incident to node n; ) for
which the ‘length’ of the link (k —a;) is maximal (the ‘longest’ link). Such a link
has the most possibilities for conflicting st-paths, and is hence a good candidate

for removal.

We now summarize the heuristics for conflict resolution and introduce three
random methods. These random methods are not of any particular interest, but
it is always interesting to compare the more mathematically supported methods

to random methods.

Select, in the case of a conflict, among the active links, the following link for

removal:

= RA (RAndom): a random link.

= RC (Random Conflict): a random link that is involved in at least one (active

or non-active) conflict.
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Table 4.1: Comparison of the number of correctly aligned homologous genes in dataset |I. The
scores of the random methods are averaged over 1000 runs.

Z # correctly aligned homologous genes
# input GG2: the proposed greedy, graph-based aligner

N sets pNW GG RA RAC LL LLBS LS
2 447 4877 4719 4108 4109 4109 4843 4871 4874
3 169 2823 2704 2477 2544 2574 2810 2817 2852
4 119 2924 2769 2502 2611 2684 2921 2971 3008
5 49 1634 1533 1375 1454 1514 1627 1655 1697
6 41 1715 1516 1375 1485 1577 1773 1747 1814
7 39 2114 1803 1572 1732 1884 2149 2152 2275
8 24 1229 1062 882 995 1094 1278 1263 1358
9 16 807 713 623 725 773 880 885 921
10 13 703 670 602 704 741 810 822 825
11 4 211 228 203 239 246 263 259 259
> 921 19037 | 17717 | 15710 1659 17196 10354 19442 10883

» RAC (Random Active Conflict): a random link that is involved in at least

one active conflict.

» LL (Longest Link): the link L, involved in at least one active conflict,

incident to node n; j for which (k — a;) is maximum.

= LLBS (Lowest Lower Bound Score): the link L, involved in at least one

active conflict, with the lowest lower bound score S, 1,5.

» LS (Lowest Score): the link L, involved in at least one active conflict, with
the lowest score St.

4.3 Results and Discussion

4.3.1 Datasets

To test the performance of multiple sequence alignment tools, a number of bench-
marks have been introduced for both protein sequences (such as BALIBASELX,
OXBench?® PREFAB1? and SMART™™) and DNA sequences*®?. Because no
similar benchmark exists to test the performance of gene list alignment tools, two
ad hoc input datasets were generated by running the i-ADHoRe tool on the Ara-
bidopsis thaliana** genome separately (dataset |) and on the Arabidopsis thaliana,
poplar(Populus trichocarpa)®* and grapevine( Vitis vinifera)4® genomes (dataset
I). Arabidopsis thaliana is a good candidate to validate the aligners and heuris-

tics, since its genome contains both strongly diverged and more closely related
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homologous chromosomal regions28:2

et al.), the i-ADHoRe algorithm produces 921 and 7821 sets of homologous
genomic segments for datasets | and Il respectively. The number of genomic seg-

. Using the profile searches (see Simillion

ments N in these sets varies from 2 to 11 (dataset 1) and from 2 to 15 (dataset
[I). For both datasets, the i-ADHoRe settings were gap size = 30, cluster gap =
35, g = 0.75 and p = 0.01. Tandem duplicates within a distance of gap size / 2

were remapped onto the representative gene with the lowest index.

4.3.2 Alignment accuracy

To detect homologous segments, i-ADHoRe looks for statistically significant con-
servation of gene content and order. When two homologous segments are visu-
alized in a dot-plot, their collinearity shows up as a ‘diagonal’. The homologous
gene pairs between the two segments that are used by i-ADHoRe to detect these
‘diagonals’, are called anchors. These anchors are a subset of all homologous
gene pairs between the two segments. By giving a higher weight to the links
associated with anchors, they can effectively be used as an alignment guide to
improve the overall alignment quality. In all simulations, the weight w of the links
corresponding to anchors was set to 1, whereas the weight of the other links was
set to 0.1. These other links correspond to homologous genes that are further
off-diagonal, and therefore less likely to be aligned in the final result. Note that
more complex weight schemes could be incorporated, possibly improving align-
ment results. For example, the link weights could represent the probability that

two genes are truly homologous. In this work, such schemes were not investigated.

The proposed greedy, graph-based aligner (GG2) is compared to both a pro-
gressive application of the Needleman-Wunsch method (pNW) and the original
greedy, graph-based aligner (GG). The pNW-aligner first performs a pairwise
alignment of the two genomic segments that share the most anchor points, i.e.
the two most closely related segments. Subsequently, a third segment is added
to this intermediate result and so on. It should be noted that more advanced

improvements to this basic progressive approach have been implemented, e.g. by
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using a guide tree to determine the order in which the segments are added™%%, or

by incorporating consistency-objective functionst8L.

The original graph-based GG-aligner relies on the same ‘basic alignment pro-
cedure’ as the GG2-aligner, however, conflicts are handled in a more primitive
fashion. In short, based on the number of links and their lengths (cfr. Sec-
tion , the GG-aligner calculates a score for each active node (as opposed
to for each active link in the GG2-aligner). Instead of removing a single link, the
GG-aligners removes all links incident to the active node with the lowest score.
In the GG-aligner's heuristic, no thorough analysis of conflicting paths or links is
conducted.

In Table[4.T] the number of correctly aligned homologous genes for the profiles
generated by the different aligners are compared for dataset |. We consider two
homologous genes to be correctly aligned if they are placed in the same column
in the final result. This omits the need for a reference alignment. The numbers
in Table therefore correspond to the sum-of-pairs metric. Each row shows
the accumulated sum-of-pairs scores for all input sets with a specified number
of segments N (N = 2...11). The final row represents the sum-of-pairs over
all profiles, and can therefore be seen as a quality benchmark for the complete

dataset.

First, it is immediately clear that all random methods perform significantly
worse than the more mathematically supported heuristics. The score of the RA-
aligner is an indication of the number of homologous genes that can be aligned
‘for free’ by the basic alignment procedure. The fact that this score is rather high
means that a fairly large number of links is not involved in any conflict. Indeed,
if for example all input segments were identical (perfect collinearity and hence
no conflicts), all methods would produce identical (and optimal) results. When
comparing the numbers of the other aligners, it is important to keep this consid-
eration in mind. The RC-aligner improves the RA score, by making sure that no

active links are removed that do not contribute to any conflict. Interestingly, the

100



4.3. Results and Discussion

alignment score is again significantly improved by using the RAC-aligner, which
selects a random active link, involved in at least one active conflict. This provides
experimental evidence for the observations made in Section i.e. that active
conflicts are high-priority conflicts. Note that in the case of a conflict for N = 2,
all active links are necessarily involved in an active conflict. Therefore, the RA,

RC and RAC heuristics perform equally well for N = 2.

The LL, LLBS and LS heuristics strongly outperform both the random meth-
ods and the original GG-aligner, and, albeit to a somewhat lesser extent, also the
pNW-method. Unsurprisingly, the pNW-aligner is best for N = 2, since it pro-
duces optimal results. The LL, LLBS and LS methods however, also obtain close
to optimal results. For larger N, the relative difference in score between pNW on
the one hand and LL, LLBS and LS one the other hand increases. This is to be ex-
pected: erroneous alignment decisions in early pairwise steps of the pNW-aligner
propagate when more segments are added. The graph-based methods are more
robust in the sense that they take the links on all segments into consideration.
For higher N, the difference in score between LS and pNW is larger than 10%.
In total, the LS-method is able to align 846 (4.4%) more homologous genes than
the pNW methods. An alignment example of six homologous genomic segments

in the A. thaliana genome as produced by the pNW and the LS heuristic is given

in Figure [4.5]

The difference in alignment quality between the LL, LLBS and LS heuristics
is rather modest, however, it can be observed that LL < LLBS < LS, for nearly
all N. Despite the simplicity of the LL heuristic, this method still performs re-
markably well, and even outperforms the pNW method on this dataset. The
main difference between these methods lies in the alignment speed. This will be

discussed in more detail in the next section.

It is important to mention that the relative difference in alignment quality be-
tween the pNW on the one hand and the LL, LLBS and LS heuristics associated
with the GG2-aligner on the other hand, decreases for datasets that consist of ge-
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Figure 4.5: The alignment of six homologous genomic segments in the A. thaliana genome
as produced by the progressive Needleman-Wunsch (top) and the proposed greedy, graph-
based aligner (bottom). The genes that are misaligned by the progressive Needleman-Wunsch
approach are indicated by a red line.
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nomic segments that are less diverged. For instance, Table[4.2]lists the alignment
scores for dataset Il. Even though the ranking of the different alignment methods
remains the same, the relative difference in alignment score is smaller. This is due
to the fact that relatively fewer alignment conflicts exists in this dataset, which

can be seen from the high score of the random aligners.

4.3.3 Program runtime

A comparison for the alignment times of the different heuristic methods can be
found in Table[4.2] for the larger dataset Il. Except for the LS heuristic, the total
alignment times are very low. The unfavorable time complexity of the LS heuristic
prohibits the alignment of sequences with larger N. In practice, when N > 10,
the CPU time for the LS method rapidly increases. In i-ADHoRe, we therefore
offer the LLBS heuristic by default. Experiments on an extremely large dataset
consisting of dozens of eukaryotic species™*? have shown that this method can

easily handle N=50, enough for most practical problems.

A detailed analysis of the computational complexity of the algorithm is given

in supplementary data of Fostier et al. 148

4.3.4 Comparison of i-ADHoRe to related tools

The GG2-aligner is an important component of i-ADHoRe, which detects evolu-
tionary related genomic regions within or between related species through sensitive
iterative profile searches. In contrast to this approach, CYNTENATOR?? and the
method described by182 compute multiple gene order alignments progressively
using initial pairwise alignments and a guide tree. DRIMM-Synteny83 detects
non-overlapping synteny blocks to perform rearrangement analysis in duplicated
genomes and reconstruct ancestral genomes. Although our method does not infer
likely evolutionary paths of genome evolution events, the application of the profile

search on the Arabidopsis thaliana genome (dataset |) identifies a much larger
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alignment | alignment alignment
method score time (s)
pNW 518247 1.7
GG 497771 5.9
RA 489020 6.2
RC 501241 5.2
RAC 505 447 3.3
LL 525 665 2.3
LLBS 525652 2.2
LS 529633 6742

Table 4.2: Comparison of alignment scores and runtimes for dataset Il.

fraction of the genome in duplicated blocks, compared to DRIMM. Fractions of
66% and 8% are reported in duplicated blocks with a multiplicity of at least two
and at least four respective|y183, whereas i-ADHoRe detects 90.3% and 25.8%
respectively. In agreement with the yeast results reported by DRIMM, including a
more ancestral genome lacking a recent whole-genome duplication (e.g. grapevine
in dataset Il) serves as a reference backbone to identify and align highly diverged

Arabidopsis thaliana genomic segments>3,

4.4 Conclusion

We have developed a greedy, graph-based algorithm for the alignment of multiple,
homologous gene lists. Several properties of conflicts within the alignment graph
have been derived and proved. Three heuristics for conflict resolution were de-
veloped on these theoretical grounds, and have been demonstrated to be able to
outperform an older graph-based algorithm and a progressive approach in terms
of alignment accuracy. As is often the case, a trade-off between computational
requirements and alignment accuracy can be observed. The algorithm has been

implemented in the latest version of i-ADHore 3.0.
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“Although nature commences with rea-
son and ends in experience it is neces-
sary for us to do the opposite, that is
to commence with experience and from
this to proceed to investigate the rea-

1

son.

Leonardo Da Vinci

Using PLAZA and i-ADHoRe to Dissect

Eukaryotic Genomes
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Abstract

Any tool, no matter how well designed, is useless without any real-world applica-
tions. In previous chapters we have introduced PLAZA® and i-ADHoRe 3.0%29,
here we will present various case-studies how the application of these tools can
lead to novel insights in biological processes. Using these tools, as can be seen
in this chapter, duplicated genes can be further classified into tandem or block
duplicates. By combining duplication data with GO, the effects of small, local
duplications can be compared with the impact of large-scale duplications. Such
Whole Genome Duplications (WGD) are know to be a driving force for evolution

and adaptation.

The second part of this chapter focusses on the application of PLAZA and
i~ADHoRe on two newly sequenced genomes, namely that of apple®! and Med-

184 |n both cases the tools were shown to be of seminal impor-

icago truncatula
tance in unveiling the evolutionary history key processes, such as fruit develop-
ment in apple and nodulation in Medicago truncatula, along with the changes in
genome structure.

In conclusion, here we demonstrate the potential of PLAZA and i-ADHoRe as a
starting point for a wide variety of analyses, that lead to novel and interesting

biological insights.
This chapter is redrafted from the Proost et al.22120 along with sections from

Velasco et al.®!' and Young et al. 18 resulting from analyses using PLAZA3 and
i~ADHoRe 3.0%2%  Author contributions can be found on page
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5.1 Introduction

While earlier chapters of this thesis focus on the development of tools and tech-
niques to study various aspects of genome evolution. In this last research chapter
convincing evidence is provided of how powerful such tools exactly are while
dissecting Eukaryotic genomes. Both PLAZA% and i-ADHoRe 3.0%2% were pub-
lished along with some case studies to show potential users example applications.
In this chapter these case studies are presented along with the results obtained
on two newly sequenced genomes, namely that of apple®! and Medicago truncat-
ula®® As a whole these case studies show that both PLAZA and i-ADHoRe can
be used as a base for a wide range of different studies.

5.2 Analysis of Gene Duplicates Using PLAZA

To illustrate the applicability of PLAZA for comparative genomics studies, a com-
bination of tools was used to characterize in detail the mode and tempo of gene
duplications in plants. In the first case study, tree-based dating and GO enrich-
ment analysis were used to analyze the gene functions of species-specific paralogs.
Initially, gene duplicates were extracted from the reconciled phylogenetic trees for
all organisms. To ensure the reliability of the selected duplication nodes, we
only retained nodes with good bootstrap support (>70%) and consistency scores
(>0.30) (calculated as described in Vilella et al.1%%). By cross-referencing all
returned genes with the colinearity information included in PLAZA, all species-
specific duplicates were further divided into tandem and block duplicates. Sub-
sequently, enriched GO terms were calculated for each of those gene sets using
PLAZA's workbench. Whereas in the green alga Ostreococcus lucimarinus, 45%
of all species-specific duplicates are derived from a recent segmental duplication
between chromosomes 13 and 21, nearly half of all grapevine-specific duplicates
correspond with tandem duplications (see Supplemental Table 5 accompanying
Proost et al.”%). For many species, tandem duplications account for the largest
fraction (34 to 50%) of species-specific paralogs. The GO enrichment analysis

provides an efficient approach to directly relate duplication modes in different
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species with specific biological processes or evolutionary adaptations. Browsing

the associated gene families makes it possible to explore the functions of the dif-
ferent genes (Figure [5.1).

5.2.1 Duplicated Resistence Genes in Arabidopsis and poplar

The GO term response to biotic stimulus (GO:0009607) was enriched for the
tandem duplicates of Arabidopsis thaliana, poplar, and grapevine. When focus-
ing on the duplicated genes causing this enrichment, we observed that different
gene families involved in biotic response are expanded in different species (Fig-
ure ) Whereas in Arabidopsis thaliana, the Avirulence-Induced Gene and
anthranilate synthase family are associated with bacterial response, genes from
expanded families in poplar, covering a/b hydrolases, a set of proteins with a cur-
rently unknown function (DUF567), and proteinase inhibitors, have been reported
to be involved in response to fungal infection. Quantification of fungus-host dis-
tributions based on the fungal databases from the USDA Agricultural Research

Service and literature18®

reveals, for different regions worldwide, 1.5 to 106 times
more fungal interactions for poplar compared with Arabidopsis thaliana. These
findings indicate a strong correlation between the wide distribution of poplar - fun-

gal interactions and the adaptive expansion of specific responsive gene families.

5.2.2 Tandem and Block Duplicates in Chlamydomonas rein-
hardtii

In Chlamydomonas reinhardtii, both tandem and block duplicates exhibit a strong
GO enrichment for the term chromatin assembly or disassembly. Inspection of
the gene families responsible for this GO enrichment revealed that the four major
types of histones (H2A, H2B, H3, and H4) are included. When analyzing other
plant genomes, we observed that the histone family expansions were specific for
Chlamydomonas reinhardtii. Detailed analysis of these genes reveals that there

are 28 clusters that are composed of at least three different core histones (Figure
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HOM000070 Mitochondrial substrate carrier

HOMO000102 PSiI type Il chlorophyll a/b-binding protein
HOMO000560 Ribulose bisphosphate carboxylase, small chain

HOMO001140 Serine-type endopeptidas:
HOMO000744 Tetratricop TPR-1

HOMO001627 Avirulence induced gene (AIG) family protein
HOMO002109 Anthranilate synthase

, pathogenesis-related
HOMO001471 Dimeric alpha-beta barrel protein
HOMO000173 Alpha/beta hydrolase fold-1

HOMO00607 Protein of unknown function DUF567
HOMO001623 Lipase, class 3

HOMO000290 Glutathione S-transferase

HOMO01697 Accelerated cell death

HOMO00420 Protease inhi
HOMO000226 Auxin respo
HOMO000063 Auxin responsive SAUR protein
HOMO000357 Basic-leucine zipper (bZIP) transcription factor
HOMO000166 Sulfotransferase family protein

HOMO000076 Gibberellin (GA) receptor

HOMO001057 GCN5-related N-acetyltransferase
HOMO000221 Annexin

HOMO000390 zinc finger, CCCH-type

HOMO000202 zinc finger, C2H2-type
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(B) Family enrichments

indicate expanded gene families for different species. The gene sets are identical as in (A). The

GO Enrichment Analysis of Species-Specific Gene Duplicates. (A) The GO enrich-
gray bands link the enriched GO terms with the corresponding gene family expansions.

ment for species-specific block and tandem duplicates in different species is visualized using heat

maps. Colors indicate the significance of the functional enrichment, while nonenriched cells are

left blank. The number of genes per set is indicated in parentheses.

Figure 5.1
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. During the S-phase of the cell cycle, large amounts of histones need to be
produced to pack the newly synthesized DNA. In order to increase histone protein
abundance, gene duplication, as also observed in mammalian genomes, provides a
biological alternative compared with increased rates of transcription2897188  Apart
from sufficient histone proteins in rapidly dividing cells, exact quantities also are
required for correct nucleosome formation. The assembly of histones occurs in
a highly coordinated fashion: two H3/H4 heterodimers will first form a tetramer
that binds the newly synthesized DNA and subsequently the addition of two
H2A/ H2B dimers completes the histone bead?1%%  As shown in Figure
the histone pairs that form dimers, which therefore should be present in equimolar
amounts, occur very frequently in a divergent configuration (>95% of the histone
genes occur in head-to-head pairs with their dimerization partner). This specific
gene clustering suggests that bidirectional promoters guarantee equal transcrip-

tion levels for the flanking genes®.

5.2.3 Studying the Effects of WGDs

As a second case study, we used PLAZA to study large-scale duplication events
in different lineages. Counting all gene duplication events for the different organ-
isms confirms the presence of one or more WGD in Arabidopsis thaliana, moss,
and monocots?®. Interestingly, when analyzing the inferred ages of the differ-
ent duplication nodes using the reconciled phylogenetic trees, we observed that
the number of duplication events in the ancestor of angiosperms is larger than
those in the eudicot ancestor (1880 and 1146 duplication nodes, respectively). In
addition, these ancestral angiosperm duplications cover a larger number of gene
families compared with the eudicot duplications (1141 and 757 families, respec-
tively). This pattern suggests that, apart from the ancient hexaploidy detectable
in all sequenced eudicot plant genomes?#, older gene duplications have also sig-
nificantly contributed to the expansion of the ancestral angiosperm proteome.

It is now generally accepted that, after the divergence of papaya and Ara-

bidopsis thaliana, the latter species has undergone two rounds of WGD?28:46153
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Figure 5.2: Duplicated histon genes in Chlamydomonas reinhardtii. The genomic organization
of the core histone genes in Chlamydomonas reveals a pattern of dense clustering (indicated by
gray boxes). Genes are shown as arrows; the direction indicates the transcriptional orientation
and colors refer to the gene family a gene belongs to (families occurring only once are not
colored for simplicity).
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Table 5.1: Counting gene loss in Arabidopsis thaliana segment generated by the alpha and beta
WGD

Counts for the analyzed multiplicons

multiplicon ID

15 69 83 185 227 542 915 Total
No Genes Lost (a) 1 0 0 0 0 1 2
One Gene Lost (b) 2 1 1 1 1 0 0 6
Two Genes Lost (beta) (c) 5 7 4 4 7 5 5 37
Two Genes Lost (alpha) (d) 0 0 0 0 2 1 1 4
Three Genes Lost (e) 15 15 5 20 20 8 7 90
Loci before beta 139
Loci before alpha 151

Table 5.2: Summary counts of the gene loss in Arabidopsis thaliana since the alpha and beta
WGD

Summary counts for Tablelﬁl

Figenes lost Fgenes retained total olost Yretained
Beta WGD 127 12 139 91.37% 8.63%
Alpha WGD 104 47 151 68.87% 31.13%

PLAZA colinearity data were used to determine if levels of gene loss were dif-
ferent after the first (oldest) and second (youngest) WGD (also referred to as
beta and alpha, respectively). To this end, we selected multiplicons grouping four
aligned Arabidopsis thaliana duplicated regions with an unduplicated outgroup
region from either grapevine or papaya to count gene loss based on parsimony.
Grapevine/papaya-Arabidopsis thaliana 1:4 alignments reveal that massive gene
loss within Arabidopsis thaliana makes it very hard to link the homoeologous
segments without aligning them to either grape or papaya (Figure 53. Man-
ual inspection identified 26 reliable nonredundant multiplicons of which, in seven
cases, the Arabidopsis thaliana segments could, based on Kg, unambiguously be
grouped in two pairs that originated during the youngest duplication. Analyzing
all different patterns of gene loss using 139 ancestral loci (Table and
revealed that 3.6 times more genes have been retained after the youngest a than
after the oldest beta Arabidopsis-specific WGD (31.13 and 8.63% retention, re-
spectively). Consequently, this massive amount of gene loss masks most traces
of the oldest WGD and explains why, with only the Arabidopsis thaliana genome

available, the existence and timing of an older beta duplication was debated4<44,
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Figure 5.3: The gene order alignment of a grapevine region and four corresponding alpha/beta
WGD Aradidopsis thaliana regions. Example of a multiplicon used to estimate the gene loss
after the alpha and beta WGD. Whereas the rounded boxes represent the different genes color-
coded according to the gene family they belong to, the square boxes at the right indicate the
species the genomic segment was sampled from. Based on the presence of paralogs over the
different segments, the different patterns of gene loss were quantified starting from loci present
on the grapevine outgroup segment (Table . Consequently, some loci were excluded for
further analysis (e.g. locus 5). Whereas locus 1 indicates loss of an alpha paralog, locus 2 refers
to a loss after the beta WGD. Locus 3 reveals both a beta and alpha loss and locus 4 represent
complete retention of all duplicates.

5.3 Biological Significance of Ultra-Conserved Mul-

tispecies Collinearity

Starting from 25 293 genomic scaffolds present in the Ensembl data set, 319 245
multiplicons were identified, some of which contained homologous regions from
more than 20 species. The 'largest’ multiplicon contained 33 segments from 22
species and included several homeobox DIx proteins. Several HOX gene clusters
including homeobox transcription factors were also found in a few high-level mul-
tiplicons (HOX D, level 28; HOX C and HOX D, level 22; HOX A and HOX
D, level 25; HOX B and HOX D, level 20). This region is known to be highly
conserved across species because these genes, involved in development of the
body plan, require correct order to function?%. The HOX cluster was duplicated
and retained during two rounds of WGD in the ancestor of the vertebrates over
450 Mya3% and since then the HOX A, HOX B, HOX C and HOX D clusters

193

diverged significantly Many genes coding for interacting proteins are robust

131

against rearrangements=>* and clusters of coexpressed genes conserved between
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human and mouse have been reported?®. Given the large set of species, re-
gions where gene order is strongly conserved over a large phylogenetic distance
were delineated. Next, we assessed whether genes in these strongly conserved
regions showed significant functional clustering. Briefly, experimental protein-
protein interaction data and coexpression information were used to determine
whether a highly conserved region was significantly enriched for interacting pro-
teins or genes showing coordinated expression profiles. Coexpression is frequently
used as a strong indicator for functionally related genes ("guilt by association").
Also, interacting protein pairs are known to have a high chance to be involved

in the same biological process®®.

From the output of the high-quality subset,
multiplicons with a strong conservation between either chicken or the songbird
zebra finch (Taeniopygia guttata)t®®, human, and at least five other mammals
were extracted. Out of these 2863 multiplicons, 466 regions containing 2424
human genes, were significantly enriched (p-value < 0.05) for coexpressed pairs
and/or gene pairs coding for interacting proteins (Figure . Mapping of these
regions to a chromosome conservation plot depicting collinearity with all the 23

species included revealed that these regions are often among the most conserved
in the genome (Figure [5.5)).

Significant enrichment of coexpressed and interacting protein pairs points to-
ward an evolutionary constraint to conserve gene order in these regions. These
results provide further evidence that gene order in vertebrates is non-random and
might play a considerable role in regulation of gene expression. However, the pre-
cise mechanism of the observed coexpression remains an open question, because
both transcription factors, chromatin modifications®’, and long range enhancers
are likely candidates to play a role in this process.
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Figure 5.4: Gene order alignment of collinear regions conserved over a large phylogenetic dis-
tance (human-chicken). Species to which the segments belong are given on every line by the
boxes on the right: Homo sapiens (ho_sa), Pan troglodytes (pa_tr), Pongo pygmaeus (po_py),
Macaca mulatta (ma_mu), Mus musculus (mu_mu), Rattus norvegicus (ra_no), Cavia porcel-
lus (ca_po), Bos taurus (bo_ta), Equus caballus (eq_ca), Canis familiaris (ca_fa), Monodel-
phis domestica (mo_do) and Gallus gallus (ga_ga). Arrows indicate coding genes and their
orientation. Homologous genes are depicted in the same color. Coexpressed gene pairs are linked
by black curved lines, of which the thickness of the line corresponds to the coexpression level
(based on the mutual rank of the human genes in CoXPRESDB). Blue curved lines link pairs
of genes coding for interacting proteins (in human). This region was found to be significantly
enriched for coexpressed genes and, therefore, a biological constraint might cause gene order in
this region to be retained.
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Figure 5.5: Conservation plot of the human chromosome 3. The height of the bars marks the
number of species showing collinearity with that part of the chromosome. The areas in dark blue
correspond to multiplicons significantly enriched (p-value < 0.05) for coexpressing or interacting
gene pairs. The red line indicates the average conservation level whereas the horizontal gray
bar gives the 5% of genes with the highest conservation level.

5.4 The Genomic Evolution of the Domesticated

Apple

The domesticated apple (Malus x domestica Borkh., family Rosaceae, tribe Pyreae)
is the main fruit crop of temperate regions of the world. Therefore, to assist breed-
ing programs and the development of novel cultivars , recently a high-quality draft

genome sequence of the diploid apple cultivar 'Golden Delicious’ was generated@.

Pairwise comparison of 17 apple chromosomes highlighted strong collinearity
between large segments of chromosomes 3 and 11, 5 and 10, 9 and 17, and 13
and 16, and between shorter segments of chromosomes 1 and 7, 2 and 7, 2 and
15, 4 and 12, 12 and 14, 6 and 14, and 8 and 15 (Figure ) The distri-
bution of synonymous substitution rates (Kg), an indication of the relative age
of duplication, based on the number of synonymous substitutions in the coding
sequences-peaked around 0.2 for recently duplicated genes (Figure [5.6B), indi-
cating that a (recent) WGD has shaped the genome of the domesticated apple.

Dating of this WGD was based on the construction of penalized likelihood
trees, as described in Fawcett et al. 7. Given a node of grape to rosids fixed at
115 MYA, the WGD has been dated to between 30 and 45 MYA. If similar rates
of protein evolution are assumed for apple and poplar (Figure [5.6C), the recent
apple WGD may be as old as that of poplar, about 60 to 65 MYAB4,
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Figure 5.6: (a) Alignment of apple chromosomes shown by pairwise dot plots based on gene
homology. Strong collinearity of members of chromosome doublets, or of large chromosome
segments, indicates a recent WGD (red dots and bars in a and b, respectively). Unrelated chro-
mosomes 7 and 13 were compared as a negative control. (b) Reconstruction of the relationships
among apple chromosomes based on the most recent and the older WGD. The chromosomes
ends represented at bottom right corners in a are marked in black in b. Red bars, regions of
synteny that support the recent WGD. Size of chromosomes is proportional to their DNA con-
tent in megabases. Segments of chromosomes 1, 5, 6, 8, 10, 13, 14 and 15 have no syntenic
counterparts. Chromosome segments predicted to be the outcome of the older duplication are
highlighted with blue, green and yellow. Chromosomes 1, 2, 7, 8 and 15 do not show obvious
signs of the older duplications, although they may contain short blocks of genes that reveal old
paleopolyploid events. Inset graphs show that Kg from the comparisons between paralogous
genes has a peak at 0.2 when the recent duplication is considered, and between 1.4 and 1.6 for
the older paleopolyploid events. (c) Distributions of protein similarities for duplicated genes in
duplicated segments compared with grape (red), poplar (green) and apple (blue).
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Remnants of older large-scale gene duplications or WGDs were also evident
(Figure . Genes in these duplicated regions had average Kg-values around
1.6, as expected for paleoduplication events (Figure B). Most remnants of
these older duplications are found between chromosomes 5 and 10 and chromo-
somes 3 and 11, between chromosomes 3 and 11 and chromosomes 4 and 12, and
between chromosomes 6 and 14, 13 and 16, and 9 and 17 (Figure [5.6/A and B).
Chromosomes 1, 2, 7, 8 and 15 seem relatively devoid of older duplicated blocks;
however, short blocks of genes showing old polyploidy events were found on all
chromosomes. One region in the apple genome with an approximate size of 4 to
7 Mbp seems to be clearly present in six copies (regions in blue, Figure A and
B). Remapping those to the ancestral state reveals a triplicate structure among
parts of chromosomes 9 and 17, 6 and 14 and 13 and 16. Notably, we found
that these regions are collinear with chromosomes 1, 14 and 17 of grape (Figure
5.7)), which have been demonstrated to be homologous because of an ancient
hexaploidy“®. Additional chromosomal fragments that we found to be duplicated
in apple (green and yellow bars in Figure ) can also be interpreted as re-
mains of a paleohexaploid state of the eudicot progenitor on the basis of dot-plot
comparisons among other grape and apple chromosomes. This provides further

evidence for a paleohexaploid state shared by most eudicots2853,

The chromosome homologies derived from the recent WGD allow inference
of the cytological events that have led to the number and composition of the
extant apple chromosomes, starting from a putative nine-chromosome ancestor
(Figure [5.8). Each doublet of the eight apple chromosomes (3-11, 5-10, 9-17
and 13-16) is derived principally from one ancestor, although minor interchro-
mosomal rearrangements have occurred. Chromosomes 4, 6, 12 and 14 originate
from duplications of the ancient chromosomes V and VI, followed by a translo-
cation and a deletion event. Similar events have generated chromosomes 1, 2, 7,
8 and 15 from chromosomes VII, VIII and IX. Chromosome 15 could have been
produced from the translocation of an entire copy of chromosome IX into the cen-
tromeric region of chromosome VIII, following a model of dysploidy (reduction of

chromosome number) common in cereals?®. The second copy of ancient chro-
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Figure 5.7: Dot plots are based on gene homology. The apple chromosomes are those with
the segment triplication deriving from an old WGD (shown in blue in Figure ) Grape
chromosomes 1, 14 and 17 constitute a triplet having the same ancestor in common7. Chro-
mosome segments with homologous genes common both to grape and apple (16 of a total of
18 comparisons) are indicated by gray boxes connected with dashed lines. Green, red and blue
dots indicate increasing Kg-values, in that order. Perpendicular lines on the x and y axes mark
the middle of each chromosome. Green grid separates chromosomes.
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Figure 5.8: A WGD followed by a parsimony model of chromosome rearrangements is pos-
tulated. Shared colors indicate homology between extant chromosomes. White fragments of
chromosomes indicate lack of a duplicated counterpart. The white-hatched portions of chro-
mosomes 5 and 10 indicate partial homology. Black marks at chromosome ends correspond to

those in Figure .

mosome VIII has evolved into the extant chromosome 8. A conservative estimate
of the number of large chromosome rearrangements since the divergence of the
Pyreae subtribe, corresponding to the recent chromosome duplication, includes
one chromosome fusion (extant chromosome 15), three translocations (involving
extant chromosomes 1, 2 and 14), six deletions defined by telomeres that are not
currently duplicated (chromosomes 4, 6, 8, 10, 11 and 13), one intrachromosome
deletion (within chromosome 7, according to the chromosome 1-chromosome 7

comparison) and a deletion of a centromere (from ancient chromosome 1X).

An intriguing aspect of the apple's biology concerns its characteristic fruit, the
pome, which is found only in the Pyreae tribe™®. This indicates that the pome
probably evolved after a relatively recent Pyreae-specific WGD, a polyploidiza-
tion step that we hypothesize has contributed to the apple’s developmental and

metabolic specificity. Pome fruit is derived by enlargement of the receptacle,
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which is the region below the whorl of sepals in the apple flower. MADS-box
genes may regulate pome development, as they determine the eventual fate of
floral tissues in all plant species analyzed so fars?%. For example, it has recently
been shown that an apple MADS-box gene that is a member of the AP1 clade,

201

common to all flowering plants and closely related to Arabidopsis thaliana

FRUITFULL (FUL), is differentially expressed during pome development?%2. |

n
addition, a substantial number of apple type |l MADS-box genes belong, phy-
logenetically, to the StMADS11 subclade, a group named for its first reported

member, which was isolated from potato203.

This subclade includes only two
Arabidopsis genes, SVP and AGL24. Ectopic overexpression of SVP and related
genes in Arabidopsis thaliana leads to foliose sepal syndrome-that is, the forma-

204

tion of large sepals“™. In apple, this specific subclade not only includes two genes

expressed in the pome but is also expanded to include 15 other genes.

A number of models have been proposed to explain the uniquely high num-
ber of chromosomes in Pyreae, the most popular being the 'wide-hybridization’
hypothesis based on an allopolyploidization event between spireoid (x = 9) and

amygdaloid (x = 8) ancestors<0>:200/

More recent molecular phylogeny studies
point to the possibility that Pyreae originated by autopolyploidization or by hy-
bridization between two sister taxa with x = 9 (similar to extant Gillenia), followed
by diploidization and aneuploidization?Y! to x = 17. This hypothesis takes into
account that Gillenia and related taxa are New World species and that the earliest
fossil evidence of specimens belonging to extant genera of Pyreae are from North

America.

2 as the derivation

Our results support the autopolyploidization hypothesis?®
from a Gillenia-like taxon best fits the available data. First, the apple genome
derives from a relatively recent duplication. Relationships between its homologous
chromosomes based on genome sequence extend observations based on synteny
and collinearity of molecular markers“%209  The timing of such a WGD, as esti-
mated from our genomic data (Figure ) agrees with archeobotanical dates

of 48-50 MYA?2LY,
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In addition, a simple and parsimonious pattern of chromosome breakage and
fusion explains the derivation of the current x = 17 Pyreae karyotype from a
polyploidization event of two x = 9 genomes (Figure . The rate of chromo-
some rearrangements after polyploidization (12 chromosome events in 60 My) is
similar to that for poplar (~16 events in 60 My)3* and lower than in maize (at

)2 or in artificial neopolyploids?t2.

least 17 chromosome fusion events in 5 My
In this sense, molecular clocks of perennial woody species seem slower than those
of annual species, in terms of both nucleotide substitutions and chromosome rear-
rangements. For the genus Helianthus, a similar observation that only some of the
ancestor chromosomes are rearranged in the extant chromosomes has been dis-
cussed in detail. In this genus, such rearrangement was associated with chromo-
somal differences between two sister species contributing to a WGD allopolyploid

event2L3

5.5 Medicago truncatula Genome Evolution

Legumes (Fabaceae or Leguminosae) are unique among cultivated plants for their
ability to carry out endosymbiotic nitrogen fixation with rhizobial bacteria, a pro-
cess that takes place in a specialized structure known as the nodule. Legumes
belong to one of the two main groups of eurosids, the Fabidae, which includes

most species capable of endosymbiotic nitrogen fixation?14.

Legumes comprise
several evolutionary lineages derived from a common ancestor 60 million years
ago. Papilionoids are the largest clade, dating nearly to the origin of legumes and
containing most cultivated species®*®. Medicago truncatula is a long-established

model for the study of legume biology.

5.5.1 A WGD Shaped Legume Genomes

Recent analyses of plant genomes indicate a shared whole-genome triplication
preceding the rosid—asterid split at 140-150 MYA2%  Duplication patterns and
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genomic comparisons strongly suggest an additional WGD approximately 58 MYA
in the papilionoids?1%27  Near the time of this WGD, papilionoids radiated into
several clades, the largest of which split quickly into two subclades, the Holo-
galegina (including M. truncatula and L. japonicus) and the milletioids (including
G. max and other phaseoloids) at about 54 MYA“X We therefore compared M.
truncatula pseudomolecules with other sequenced plant genomes to learn more
about shared synteny and genome duplication history.

There is significant macrosynteny among M. truncatula, L. japonicus and G.
max (Figure and . Conserved blocks, sometimes as large as chromosome
arms, span most euchromatin in all three genomes. A given M. truncatula region
is typically syntenic with one other M. truncatula region as a result of the WGD
approximately 58 MYA, usually in small blocks showing degraded synteny (Figure
and . A given M. truncatula region is most similar to two G. max
regions via speciation at about 54 MYA and the Glycine WGD at, < 13 MYA®Y
and less similar to two other G. max regions resulting from the ~58 MYA and
< 13 MYA WGD events. A M. truncatula region is likewise most similar to one
L. japonicus region via speciation at about 50 MYA and less similar to a second
L. japonicus region as a result of the ~58 MYA WGD. Finally, each M. trun-
catula region and its homeologue typically show similarity to three Vitis vinifera
regions via the pre-rosid triplication. Exceptions to these patterns could be due
to gene losses, gains, or rearrangements specific to the M. truncatula lineage, re-
sulting in synteny being more evident between M. truncatula and other genomes
than in self-comparisons. Indeed, self-comparisons within M. truncatula reveal
few remnants of the legume-specific WGD (Figure and [5.10). Whereas
this seems paradoxical, it is probably explained by extensive gene fractionation
between WGD-derived homeologues in M. truncatula. In Figure two short
regions on Mtl and Mt3 resulting from the ~58 MYA WGD are displayed beside
microsyntenic regions of G. max and V. vinifera. As expected, many genes are
microsyntenic between M. truncatula and G. max (ranging from 7/19 between
Mt3 and Gm14 to 10/20 between Mtl and Gm17). Between the two M. trun-

catula homeologues, however, only 6 out of 33 genes (or collapsed gene families)
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Figure 5.9: Circos diagram illustrating syntenic relationships between Medicago, Glycine, Lotus
and Vitis. Homologous gene pairs were identified for all pairwise comparisons between M.
truncatula, G. max, L. japonicus and V. vinifera genomes. Syntenic regions associated with the
ancestral WGD events were identified by visually inspection of corresponding dot-plots. The
large Mt5—-Mt8 synteny block (yellow) was found to have two syntenic regions in L. japonicus
(red), four syntenic regions in G. max (blue) and three in V. vinifera (green).
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Figure 5.10: Medicago X Medicago Self-Comparison Dot-Plot. Axes represent the Mt genome
compared with itself with gridlines separating different chromosomes. In the matrix, homologous
gene pairs found in significant collinear regions (using i-ADHoRe) are indicated by a dot, colored
according to the average Kg-value of all pairs between collinear segments. Hence, collinear
regions appear as diagonal lines in the matrix, with their lengths and density roughly indicating
the conservation of collinearity.
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are microsyntenic, with a homeologue missing from one or the other duplicate.
Apparently, there have been many more changes, large and small, in M. truncat-
ula than in G. max since the legume WGD. This is borne out by the fact that
synteny blocks in M. truncatula are one-third the length of those remaining from
the papilionoid WGD in G. max (524 kb against 1503 kb) with the average num-

ber of homologous gene pairs per block correspondingly lower (12.4 against 31.0).

The M. truncatula genome also has undergone high rates of local gene du-
plication. The ratio of related genes within local clusters compared to all genes
in families is 0.339 in M. truncatula, 3.1-fold higher than in G.max and 1.6-fold
higher than in A. thaliana or P. trichocarpa. (‘Local clusters’ are defined as genes
in a family all within 100 gene models of one another.) The excess of local gene
duplications in M. truncatula is observed genome-wide and affects many families.
There are 2.63 times as many gene families with local duplications in M. trun-
catula compared with G. max (2980 against 1131), an excess that also is seen
in detailed comparisons of syntenic regions in M. truncatula and G. max. We
examined 16.3Mb of Mt05 showing synteny to two large regions of GmOL plus
homeologous blocks on Gm02, Gm09 and Gm11. In these regions, 25.8% of M.
truncatula genes are locally duplicated compared with just 8.0% in G. max. Local
gene duplications and losses have contributed both to synteny disruptions (Figure
and to high gene count (62 388) in M. truncatula - a value nearly as high
as the 65 781 total gene models in G. max despite its additional (<13 MYA)
WGD. Local gene duplications are evident in certain gene families, such as F-box
genes, which have undergone pronounced expansions. M. truncatula also has
experienced higher rates of base substitution compared to other plant genomes
(Figure . Assuming 58 Mya as the date of the legume WGD, then the rate
of synonymous substitutions per site per year in M. truncatulais 1.08 x 1078, 1.8
times faster than estimates in other vascular plants=¢. Higher rates of mutation
and greater levels of rearrangement in M. truncatula following the papilionoid du-
plication may have been driven by factors including short generation times, high
selfing rates or small effective population sizes, although these characteristics are

not unique to M. truncatula.
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+ Centromere A A Paralogous gene pair in which both
- TIR NBS-LRBs show nodule-enhanced expression
—— Non-TIR NBS-LRRs A Paralogous gene pair in which only one
—— Module-specific DEFLs shows nodule-enhanced expression

MNon-nodule DEFLs

Figure 5.11: Circos diagram illustrating the Medicago WGD and selected gene families. The
963 WGD-derived paralogous gene pairs were examined for overlap with the nodule-enhanced
gene list (Supplementary Data 2 accompanying Young et al.m). Resulting gene pairs were
joined and plotted as either blue triangles (only one of the duplicates is nodule-enhanced) or red
(both nodule enhanced). Gene densities of NBS-LRRs, NCRs and other defensin-like proteins
are plotted against chromosome position. Density was calculated using a sliding window (100
kb window with 50kb steps).
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Figure 5.12: Kg-Analysis of Legume Species. Proportions of gene pairs per Kg-range for
indicated species pairings. The species are Mt: Medicago truncatula; Lj: Lotus japonicus;
Vv: Vitis vinifera; Gm: Glycine max. Proportions are taken as the counts of synteny-block
paralogs within a Kg-range (with bin sizes of 0.05), divided by the count of all such paralogs
with Kg-values less than or equal to two. Detection of collinear synteny blocks and Kg-dating
are described in Proost et al. 20092 For Mt—Mt comparison, Kg-values of 0 were removed
(likely representing uncollapsed duplicate sequence contigs), as were paralogs values presumably
resulting from local duplications (occurring on the same chromosome, within 100 gene models
of one another). The shift of the legume WGD Kg-peaks in Mt-Mt vs. Gm—Gm is noteworthy
(0.6 vs. 0.4), indicating more rapid accumulation of point mutations in Mt than in Gm.

5.5.2 The Legume-Specific WGD and the Evolution of Nodu-
lation

Legumes and actinorhizal species are capable of forming a specialized organ, the
root nodule, a highly differentiated structure hosting nitrogenfixing symbionts.
Phylogenetic studies suggest that nodulation may have evolved multiple times in
the Fabidae, but the observation that all nodulating species are contained within
this single clade indicates that a predisposition to nodulate evolved in their com-
mon ancestor2X8. |t is unknown whether nodulation with rhizobia preceded the

divergence of the three legume subfamilies or evolved on multiple occassions2L9.
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Figure 5.13: Microsynteny comparison between Medicago homeologues and correspond-
ing regions of Glycine and Vitis. Microsyntenic genome segments are centred around
Medtr3g104510/Medtr1g015890, a duplicated region derived from the ~58 MYA WGD event
noted in orange. The <13 MYA G. max-specific WGD is coloured yellow. Ortholo-
gous/paralogous gene pairs are indicated through use of a common colour. White arrows
represent genes with no syntenic homologue(s) in this genome region. Some of these genes
may actually have a syntenic sequence in soybean but no corresponding model reported in the
current annotation (http://www.phytozome.net/soybean).

Nevertheless, rhizobial nodulation and the 58 MYA WGD are features common
to most papilionoid legumes and both occurred early in the emergence of the
group.  Given that WGDs generate genetic redundancy that potentially fa-
cilitates the emergence of novel gene functions without compromising existing

ones220

, we examined the M. truncatula genome to ask whether the 58 MYA
WGD might have had a role in the evolution of rhizobial nodulation in M. trun-

catula and its relatives.

Nod factors are bacterial signalling molecules that initiate nodulation. Pre-
vious studies have shown that several of the plant components involved in the
response to Nod factors also function in mycorrhizal signalling?2l. However, some
Nod factor receptors and transcription factors have distinctly nodulation-specific
functions. Among these nodulation-specific components, we found that the Nod
factor receptor, NFP, and the transcription factor, ERN1, each have paralogues,
LYR1 and ERN2 respectively, that trace back to the papilionoid WGD based on

genome location and synonymous substitution rate values.
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Figure 5.14: Expression profile NFP/LYR. Scaled transcript level of three replicates (+) and
mean over replicates (dots connected by line) are shown. Scaling was performed by dividing
each data point by maximum mean transcript level across experiments, independently for both
paralogs in order to cope with overall differences in gene expression between them. Genes were
mapped to the following probesets at http://bioinfo.noble.org/gateway/: Mtr.15789.1.S1_at
(MtNFP), Mtr.19870.1.S1_at (MtLYR1), Mtr.7556.1.S1_at (MtERN1), Mtr.43947.1.51_at
(MtERN2).

Both sets of gene pairs also show contrasting expression patterns and func-
tional specialization. NFP and ERN1 are expressed predominantly in the nodule
and are known to function in nodulation?22223 whereas LYR1 and ERN2 are
highly expressed during mycorrhizal colonization (Figure [5.14). These observa-
tions indicate that two important nodulation-specific signalling components in M.
truncatula might have evolved from more ancient genes originally functioning in
mycorrhizal signalling and then duplicated by the 58 MYA WGD. In the case of M.
truncatula NFP/LYR1, this conclusion is supported by the observation that the
apparent orthologue of NFP in the nodulating non-legume Parasponia andersonii
functions in both nodule and mycorrhizal signalling?®#. Thus, the 58 MYA WGD

seems to have led to sub-functionalization of an ancestral gene participating in
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both interactions, resulting in two homeologous genes that each performs just

one of the original functions.

To assess further the contribution of the WGD to M. truncatula nodulation,
we analysed expression of paralogous gene pairs using RNA-seq data from six dif-
ferent organs. A total of 963 WGD-derived gene pairs were found with 618 pairs
(1046 genes) having RNA-seq data for one or both homeologue. We then deter-
mined the number of genes showing organ-enhanced expression (defined as genes
with expression level in a single organ at least twice the level in any other) within
the pseudomolecule and the WGD-derived gene sets. In both cases, different
organs contained markedly different numbers of genes with enhanced expression
(X2 with 5 degrees of freedom, P:10*272); however, the rank order among the
organs was identical. Roots had the largest number of genes with enhanced ex-
pression followed by flower, nodule, leaf, seed/pod and bud. Among gene pairs
with nodule-enhanced expression, both paralogs were nodule-enhanced in eight
pairs, whereas just a single paralog was nodule-enhanced in the other 43 pairs.
This is consistent with nodulation pre-dating the WGD and further sub- and
neo-functionalization emerging afterwards. We went on to examine transcription
factors because they can act as regulators of plant growth and development. A
total of 3692 putative TF genes were discovered (Supplementary Data 3 accom-
panying Young et al.1®%) representing 5.9% of all M. truncatula gene models.
Of the 1513 TF genes on pseudomolecules with RNA-seq data, 142 genes (9.4%)
derived from the 58 MYA WGD (Supplementary Data 4 accompanying Young

|_184)

et a , consistent with previous observations indicating greater retention of

transcription factors following polyploidy233.

Nodule-enhanced expression was
significantly higher among transcription factors (92 out of 1513 or 6.1%) than
among all pseudomolecule genes (1111 out of 23 478 or 4.7%) (x? with 1 degree
of freedom, P=0.024). Nodule-enhanced expression was even higher in WGD-
derived transcription factors (11 out of 142 or 7.7%), although this enrichment
did not reach statistical significance (P=0.113). As expected, ERN1 is found

within this group of WGD-retained, nodule-enhanced transcription factors.
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5.6 Conclusion

From the numerous examples shown in this chapter it is clear both PLAZA and
i-ADHoRe are highly versatile tools and can be used for a wide variety of stud-
ies. From literature, additional examples can be found where data derived from

PLAZA was used in one way or another2257228

. Hence the tools presented here
are not just tailored to our own needs, but are well received in the scientific com-

munity as well.

5.7 Author Contribution

In this chapter case studies from Proost et al.22126/ are presented, these analyses
have been designed and performed by me. As a first author on these publications,
images and text were also generated by myself. From Velasco et al.®l Young

et al 184

sections that reflect my contributions have been extracted and redrafted
in this chapter. Additionally, downstream analyses based on data | generated are

included.
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“Science is simply common sense at its
best - that is, rigidly accurate in ob-
servation, and merciless to fallacy in
logic.”

Thomas H. Huxley

Conclusion and Future Prospects
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Genomics is currently among the fastest evolving fields. So called Next
Generation Sequencing (NGS) technologies, like Roche's 454 FLX222| |llumina's
HiSeq23023ll and Life Technologies' SOLID are now common practice. Mean-
while, third generation techniques, promising even faster,cheaper and/or longer
reads are emerging. Helicos?*? and PacBio?*3 being two examples that can do
single molecule sequencing, while lon Torrent?3# technology reduces the size of
the machines to fit comfortable on a desktop. For electronics progress seems to
follow Moore's Law, which states that ‘the number of transistors that can be
placed inexpensively on an integrated circuit doubles every two years', genomic
data however grows faster. Hence bioinformaticians worldwide are confronted
with a daunting amount of data, that grows at an ever increasing rate, while im-
provements in hardware cannot keep up. For bioinformaticians this can be seen as
a challenge, however for experimental biologists this potentially becomes a major
issue as the biological interpretation of such large data sets becomes problematic.

In this work we've successfully shown that using clever implementations and
support for modern hardware can significantly improve existing bioinformatics
tools. While integration of various datatypes in combination with a user-friendly
web-interface allows non-expert users to browse comparative genomics data effi-

ciently.

6.1 More Data Types

While more data, consisting out of extra genomes, is great for a comparative anal-
ysis, additional data types can help explain some findings and therefore should
not be neglected. Quite recently a whole arsenal of novel, high-throughput meth-
ods have become available, many based on the latest sequencing technologies
mentioned at the beginning of this chapter, that can give insights in different

235 Bisulfite sequencing is providing us a genome wide view of epi-

processes
genetic modifications?3®, RNAseq?3” povides us a remarkably detailed view of

the transcriptome and Chip-Seq<® allows for transcription factor binding sites
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(TFBS) to be found. Through integration of these new datatypes with existing
structural and functional information various relations between for instance epige-
netic changes and transcription levels can be observed, or if methylation patterns

influence the binding of transcription factors, ...

Especially RNAseq has increased tremendously in popularity and is well on
its way to replace microarrays entirely. The fact it doesn't rely on prior genomic

1.239) is a significant advantage over

knowledge of the organism (eg. Vera et a
traditional microarrays, as species-specific microarrays are bypassed. Additionally
RNAseq has a remarkable sensitivity, this has two main consequences. First it is
able to measure expression of genes expressed at very low levels, and thus gives
a more complete image of the genes transcribed in a sample. Secondly, it allows
samples with very little biological material to be analysed. Hence, in combination
with laser capture microdissection, this allows expression to be measured in a

single cell-type rather than a tissue?4Y.

Pushing technology even further would
allow analysis of one cell, so called single-cell genomics. While useful for studying
rare bacterias in microbial communities?L' in eukaryotic species this would allow
hypervariable regions (which play for instance a considerable role in the develop-

ment of cancer) of the genome to be studied42.

Currently it's difficult to foresee how these additional datatypes should be in-
tegrated. Given a comprehensive dataset of epigenetic modifications, TFBS and
expression levels, several biological questions can be answered. For instance, epi-
genetic modifications associated with high expression levels can be detected (and
potently used for breeders to improve traits), by combining genes expressed in
specific tissue- or cell-types with information of their TFBS detailed information
on how this tissue- or cell-specificity is regulated can be obtained. However, while
extremely interesting (and certainly the subject of currently ongoing research) this
is still within a single species and does not contain a comparative aspect.

A first step towards using this novel data in a comparative way, would be to

integrate an assembled transcriptome into PLAZA. Raw RNAseq reads (usu-
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ally short reads, about 30 bp in length) can be assembled into longer tran-
script sequences using Velvet/Oases?43, ABySS244 or Trinity?#®. Once the tran-
scripome has been assembled, Open Reading Frames (ORF) can be discovered
using FrameD?4¢! (if a training set is available) or FrameDP?4” (in the absence of
training data). Once assembled transcripts have an valid ORF assigned, these can
be seen as a short contig/scaffold with a single gene and thus entered as a new
"genome" in PLAZA (Figure . Evidently i-ADHoRe cannot be used here to
study the genome evolution, the gene families can be generated and studies much
in the same way one would do with sequences derived from a genome. In this
case some issues could occur due to read lengths (many transcripts only contain a
fragment of a gene) and coverage (here it's difficult to assess the completeness),
that might degrade the quality of the gene families generated and data generated
downstream like the multiple sequence alignments and phylogenetic trees. Ad-
ditionally, as a simple way to have an impression about the presence or absence
of any WGDs in the species where only a transcriptome is available, a Kg-based

dating system can be done.

While not a new idea, TFBS and epigenetic information can be mapped onto
the gene tree (much like, in current versions of PLAZA, InterPro domains and
intron-exon structure can be shown). This would allow to see how regulation
changes or becomes more complex in different lineages®. After duplication the

most likely fate of a copied gene is deletion'3®.

However duplicates that remain
can either remain unchanged (a way to boost mRNA production without increas-
ing expression of the gene), sub-functionalize (the original function is distributed
over both copies) or neo-functionalize (one copy retains the original function,
whereas one copy acquires a new function). These three scenarios should be re-
flected in the expression and thus in the TFBS present in the promoter region of
duplicated genes. Hence one can imagine in case of redundancy the TFBS remain
unchanged when compared the ancestral state (as can be found in an undupli-
cated outgroup). Neo-functionalization should be indicated by one copy retaining
the ancestral set of TFBS and one acquiring a new one, sub-functionalization

would show an intermediate pattern.
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Figure 6.1: PLAZA flowchart with a small modification to include transcriptome data. The
annotation of whole genomes can be used as a BLAST database for FrameDP to blast against.
As the genome evolution pipeline cannot be used on transcriptome data, a system based on

synonymous substitutions, also known as Kg, could be implemented to give an rough impression
if and when WGDs occurred.
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Similarly mapping epigenetic information on the gene tree could reveal recent
adaptations to species-specific niches. Gene loss usually is a process that requires
several generations, first through the accumulation of mutations the gene is re-
duced to a pseudogene and mutations continue to erode evidence of the gene until
it can no longer be distinguished from an intergenic. Silencing through methy-
lation however can turn expression of a gene off in a shorter timespan (and is

AZIB249) hence

widespread as a defense mechanism against foreign, eg. viral, DN
some of the genes we still find in genomes are in fact no longer necessary and
turned off, despite not having had enough time to be cleared from the genome.
Note that exceptionally methylation can also have a positive effect on the expres-

sion of a gene (eg. Makarevich et al.230).

A last thing worth giving some thought is how re-sequencing data needs to
be handled in an comparative genomics platform. PLAZA 2.0 and higher include
two distinct rice genomes, these still can be included in the ordinary fashion. But
can the output of the 1001 Arabidopsis genomes®2® still be handled as such?
Here another opportunity lies to expand the platform, mindlessly integrating hun-
dreds of genomes will result in a bulk, slow and ultimately unattractive, unusable
platform. One should note that in this case the similarities between the genomes
are of little importance, between individuals of the same species the differences
are important. Hence a preprocessing step might become important, based on
all sequences available a consensus genome could be obtained and differences
from various strains/individuals could be superimposed on that. This abstraction
not only leads to a considerable decrease in data to analyze, but also allows for
better retrieval of relevant data to answer biological questions. Though tools to

| 251

perform Genome Wide Association Studies, like Hancock et a and Fournier-

[ 252

Level et a , which should include geographical, climate, ... data, are quite

beyond the scope of PLAZA.
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6.2 Difficulties for Comparative Genomics

With the price for a draft-sequence a genome within the budget of smaller labs,
new genomes are published at an ever increasing rate (see Figure . Unfortu-
nately, the quality and completeness of these novel genomes cannot be compared
to the finished reference genomes. Usually these genomes are sequenced to solve
one specific question. Date palm (Phoenix dactylifera) is a recent example, here
the genome is mainly sequenced to develop a quick test to determine the sex

of seedlings#®3

. Integrating such genomes and using them for comparative pur-
poses however needs to be done with extreme caution. Genomes, such as Date
palm, are not assembled into chromosomes, and as a consequence the majority of
the scaffolds doesn't contain enough genes for i-ADHoRe to detect any collinear
regions within the genome or with other species. Therefore only a minor frac-
tion of the genome remains usable to study genome evolution, even large-scale
events, such as WGDs, can effectively remain undetected because of this. Also
the completeness of the genome should be considered an issue, if a large fraction
of the genomes is missing members of some gene families will be missed and one
might think this gene family to be contracted. The other way around if different
alleles of the same locus are present on different scaffolds, artificially an expansion
can be observed in certain gene families. Furthermore, sequence errors can lead
to annotations errors, if genes are predicted too short, introns or exons might be
missed and so on... All the above makes it difficult to discriminate genuine biolog-
ical findings from sequencing/assembly/annotation artifacts. While in a pairwise
comparison one might still account for these mistakes, when multiple species are

compared this might lead to unexpected and erroneous results.

A second recurring issue that emerged while working on this topic is the lack
of standards to release annotation. While in practice usually General Feature
Formatf| (GFF) or eXtensible Markup Language (XML) based formats are used,
these can come in different flavors. The GFF format in its pure form only defines

features on a strand, what those features are or which features (such as exons)

2http://www.sanger.ac.uk/resources/software/gff/
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belong together (to form a coding sequence) is ill defined and usually stored in
the free-form description field. XML has no restriction on the tags used to de-
scribe genes and their properties, hence different sequencing initiatives do wander
from the generally accepted scheme to specify certain features in a different way.
While time consuming, these issues can be overcome manually (!), by writing or
adjusting parsers to get the genomes in a single uniform format. A bigger concern
is the lack of a gold standard to generate the sequence and perform the anno-
tation. As described in the previous paragraph, quality is an issue, but the way
the sequence is produced differs vastly from one project to another. A striking
example of this can be found in the Selaginella moellendorffii genome?>*, here
both haplotypes are present in the genome sequence. The annotation is available
in two versions one with all genes included (hence both haplotypes are present) or
one with the different alleles hidden, retaining only those on the largest scaffold.
Regardless of what version is used, this can have serious consequences when such
a genome is used in a comparative environment. Retaining both alleles will show
up in WGDotplots as a recent whole genome duplication, the gene counts are too
large and gene families appear artificially expanded. When one allele is hidden,
intergenics can no longer be correctly measured or extracted, gene density is un-
derestimated, ... As such unconventional releases would take a considerable time
to convert to a standard format, one is confronted with the decision to integrate
the data as is with the risk of misinterpretation, correcting the annotation (what
would mean using a version different from the official one) or excluding such
genomes from the analysis entirely (and potentially loosing a whole community

as users).

Finally a problem intrinsic to the clustering algorithms used to build the gene
families is that for each update the whole pipeline needs to be run again. At
first, with only one or two new genomes a year, this was not an issue. However,
now it is no longer feasible to keep up with number genomes that are being pub-
lished. While evidently this is an issue of the tools to build PLAZA and not the
PLAZA pipeline itself, it is a problem we are currently confronted with. While

much thought has gone into building an update procedure, where a genome is
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added without re-running the entire pipeline, this is hard to achieve. A better
solution, is the expansion of a workbench to allow users to work with their own
sequences rather then mapping their genes to a species included. This will allow
users interested in working with data from a species not included in the database
to add sequences to gene families, generate multiple sequence alignments and

phylogenetic trees at the click of a button.

6.3 The Future of Comparative Genomics and Be-

yond

While merely five years ago, comparative genomics in plants was still in its in-
fancy, this is evidently no longer the case. Continuous efforts to sequence addi-
tional plant species have generated a comprehensive dataset for bioinformaticians
to work on. Genomics in any form is still very much in an explorative phase,
where researchers aim to observe traits (in this case the genome sequences) and
how ultimately they code for the wide variety of organisms that occur in nature.
Here only the slight scratches have been made in the proverbial surface, there is
still a large gap to bridge between changes we see in genome sequence and the
phenotypes linked with them. However new projects, such as the iPlant Collabo-

rativeE255, already have their minds set on closing this gap.

Such insights are of value for molecular breeders as this allows to pinpoint at-
tractive genes to increase yield, reduce contents of unwanted components (such
as lignin for biofuel crops), beautify flowers, improve resistance to pathogens, ...
Using either traditional crossing with marker assisted selection or through the
creation of Genetically Modified (GM) promising genes can be introduced into
commercially interesting varieties. However through classic crosses, this is limited
in phylogenetic distance and hence has limited applications (in addition this is also

a lengthy process). Using genetic, modification genes can be introduced in other

awww.iplantcollaborative.org/
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species regardless of the phylogenetic distance. Unfortunately these GM crops
are under constant attack by various environmental groups and specifically in the
EU, are bound to strict laws which limits their application. While obviously the
large-scale cultivation of new GM crops has to be approached with the necessary
test and studies, once found safe these new crops have significant potential to
improve the food industry, provide energy, ... So without a change in both legis-
lation and public opinion this will, quite unfortunately, stifle practical application

of results obtained through comparative genomics.

Metagenomics is another novel field which makes heavy use of comparative
genomics techniques. Here a whole community of (usually prokaryotic) organ-
isms is sequenced at once and through computational techniques one can assess
the abundance of certain species, the biodiversity of the sample, ... This is cur-
rently being used to study a wide range of bacterial communities with ecological
importance to health related human gut bacteria?%2>’ As the sensitivity of se-
quencing technologies increases, the amount of data generated in such projects
will increase (especially low abundant bacteria will appear). Hence to further
support such studies comparative genomics tools need to scale with the growing

amount of data.

Once a profound knowledge of the link between genotype and phenotype is
obtained®® the field of Synthetic Biology will boom. Pioneer studies performed
in the lab of J. Craig Venter (the first human to have his genome sequenced) were

259 However, this

already able to synthetically duplicate the DNA of a bacteria
effort was extremely labor intensive as it took a team of researchers 15 years to
accomplish this and the selected genome is with 1 Mb extremely small. So while
current DNA sequencing technology allows for fast reading of a genome, writing
DNA is far behind. But if technological advances in writing DNA follow the rapid,
exponential, growth we've seen in sequencing technology the last decade, it's a
matter of mere years before DNA molecules in the length range of eukaryotic

chromosomes can be written.
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So one thing is certain, for years to come there is a dire need for comparative
genomics and tools that give access to such data to researches worldwide. A
major challenge here will be to design tools that are not tailored towards one
specific study one would like to perform, but tools that despite the huge amount

of available data remain flexible, fast and user-friendly.
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“If I have done the public any service,

it is due to my patient thought.”

Sir Isaac Newton

Summary
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Since both the Arabidopsis thaliana and the rice genomes were sequenced,
comparative genomics finally started within the plant field as it did in prokaryotes,
fungi and animals already a few years earlier. While powerful to study genome evo-
lution, adaptation,... , comparative genomics comes with a steep learning curve,
extensive comprehension of tools involved is required as is a strong knowledge
of computer programming to write the necessary programs to extract biological
data from large data sets. As the number of sequenced plant genomes quickly
augmented, so did the hardware requirements to perform multi-species analysis.
Despite the fact many experimental biologists make frequent use of gene families,
functional annotation and genomic homology to explain their observations or to
exchange knowledge between different organisms, doing this without access to
high memory computers and computer clusters generating the necessary data has

become impossible.

During this thesis, a considerable amount of time has been spend on gener-
ating comparative genomics data in such a way it becomes accessible for plant
researchers worldwide. We opted for a web based interface linked to a relational
database, as such a user-friendly way to query the database can be provided,
additionally this provided an access point from which more complex tools, such
as visualizations and advances statistics, can be started. The main focus of this
platform, called PLAZA, is gene family evolution on the one hand and genome
evolution on the other. The gene families included allow users, for instance, to
quickly retrieve lineage- or species-specific gene families, those can be linked to
ecological adaptations. Additionally, by clearly defining homologous (derived from
the same ancestor) genes, in depth knowledge of a specific gene in one species
can be transfered to other organisms.

Plant genomes appear to be highly dynamic in comparison with animal genomes
and, the recent evolution of plants appears to be governed by several independent
whole genome duplications (WGD). To study the effects of these i-ADHoRe, a tool
to detect such duplications and to find homologous regions between genomes, has

been integrated in PLAZA. This allows users to retrieve genes duplicated during
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these large-scale duplication events as well as studying how genomes evolved after
the WGD. However while building PLAZA 2.0, the i-ADHoRe version available
at the time proved to be unable to cope with the number of genomes included.
Thus emerged the need for an update, three major issues hindered the detec-
tion of collinear (regions with homologous genes preserved in a similar order) and
duplicated regions, from the technical side the runtime and memory usage were
growing out of proportion, while the alignment strategy, a key component of the
detection algorithm proved to be unable to correctly align sets of ten or more
collinear genomic regions. To cope with the technical issues a new version was
developed which makes cunning use of optimization and support for modern hard-
ware to achieve a significant speedup and reduction in memory footprint. This
update also includes better statistical models and a novel alignment algorithm
that is able to generate high quality gene order alignments for several dozens of
segments.

Besides development of new and improvement of novel tools, a set of case
studies is described in this thesis. These show how a wide range of studies can
be performed using (a combination of) the tools developed during this thesis.
Ranging from estimating the gene loss in Arabidopsis thaliana to elaborating on
the biological significance of conserved collinear regions in vertebrates, these tools
show an remarkable potential as an starting point for a variety of analyses. To fur-
ther illustrate this the PLAZA pipeline was used as part of two genome projects, to
dissect the genomic evolution of the domesticated apple (Malus domestica) and
the barrel medic (Medicago truncatula). By integrating the newly sequenced and
annotated genomes along with some reference genomes and relevant outgroups
(such as the moss Physcomitrella patens and a few algae (like Chlamydomonas
reinhardtii and Ostreococcus lucimarinus) a wide range of the topics traditionally
discussed in genome papers (such as detection of WGD, presence of expanded
gene families, ...) could quickly and efficiently be obtained. Furthermore by com-
bining this knowledge with additional experimental techniques insights in how key

processes of those species evolved could be detected.
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To conclude, the recent increase in sequence data is a double-edged blade, that
while potentially giving remarkable insights in biology and evolution of species,
the analysis becomes increasingly complex. Here we present two tools that are
a considerable improvement over the current state-of-the-art and show how re-

searchers worldwide can use them on a wide variety of biological challenges.
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“I have nothing to declare except my

genius.”

Oscar Wilde
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Zodra naast het genoom van Arabidopsis thaliana ook dat van rijst beschik-
baar werd, kon ook in planten aan vergelijkend genoomonderzoek gedaan wor-
den. Dit enkel jaren nadat er reeds verschillende prokaryote, schimmel en dier-
lijke genomen gesequeneerd waren. Hoewel enorm krachtig, heeft dit veld een
zeer stijle leercurve en is een diepgaande kennis van verschillende programma's
vereist. Eveneens is ervaring met programmeer- of scripting-talen noodzakelijk
om uit zulke datasets biologische kennis te verwerven. Doordat het aantal gese-
queneerde plantengenomen bleef toenemen, was ook steeds krachtigere hardware
vereist voor zulk onderzoek te doen. Hoewel experimentele biologen veelvuldig
gebruik maken van genfamilies, functionele beschrijvingen van genen en genomis-
che homologie om hun observaties te verklaren of om kennis verworven in andere
soorten over te dragen naar het organisme van interesse, is dit zonder toegang

tot krachtige supercomputers of computer clusters niet meer mogelijk.

Gedurende deze thesis werd, naast het verelijken van genomen, een groot deel
van de tijd gewijd aan het ontwikkelen van technieken om deze data op een toe-
gankelijke manier te presenteren aan een breed publiek. Hiervoor werd gekozen
om een platform met web-interface te gebruiken. Via deze weg is het mogelijk
om in de bijhorende database met gerichte zoekopdrachten snel relevante data op
te vragen. Bovendien kunnen zo visualisaties en complexere berekeningen een-
voudig gestart worden. Deze website, die als naam PLAZA meekreeg, bestaat uit
twee luiken, ten eerste is een deel gewijd aan het bestuderen van gen families.
Het tweede deel is gericht op het ontrafelen van genoom evolutie. Genfamilies
laten gebruikers toe om snel expansies te vinden in soorten of groepen die gelinkt
kunnen zijn aan ecologische adaptaties. Bovendien laten correct afgelijnde gen-
families het toe om kennis, verworven in een (model-)organisme, over te dragen

naar een andere soort.

Recente ontdekkingen tonen aan dat plantengenomen zeer dynamisch zijn en
gekenmerkt zijn door de aanwezigheid van meerdere volledige genoomduplicaties.
Om de gevolgen van zulke duplicaties te bestuderen werd i-ADHoRe geintegreerd

in PLAZA. Deze integratie laat gebruikers toe om genen, gedupliceerd tijdens
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dergelijke grootschalige duplicaties, nader te bekijken alsook de gevolgen op het
genoom verder te onderzoeken. Echter, tijdens het ontwikkelen van PLAZA 2.0,
bleek dat de versie van i-ADHoRe waarover we op dat tijdstip beschikten, niet
in staat was de hoeveelheid beschikbare genomen te analyseren. Een update
drong zich op! Zo doken er drie problemen op, twee van technische aard; de
tijd die nodig was om de detectie van homologe gebieden uit te voeren en de
hoeveelheid werkgeheugen die hiervoor nodig was. Bovendien bleek het algoritme
om gen lijsten te aligneren niet in staat om tientallen homologe regio's correct
te aligneren. In de nieuwe versie werd, met behulp van efficiénte algoritmen en
ondersteuning voor moderne hardware, de snelheid gevoelig opgedreven terwijl
bovendien het gebruikte werkgeheugen binnen de perken kon worden gehouden.
Verder werd ook een nieuw alignerings algoritme ontwikkeld wat, in tegenstelling
tot voorgaande implementaties, wel in staat was tientallen gen lijsten correct te

aligneren.

Naast de ontwikkeling van nieuwe methoden en het verbeteren van bestaande,
worden in deze thesis ook meerdere toepassingen beschreven. Hiermee wordt
duidelijk aangetoond hoe deze tools (of de combinatie van beide) aan de basis
kunnen liggen van een brede waaier van analyses. De voorbeelden gaan van het
schatten van gen verlies in Arabidopsis thaliana tot het bestuderen van de biol-
ogische relevantie van regio's met sterk behouden genvolgorde, in gewervelden.
Om de kracht van PLAZA verder aan te tonen werd het ingeschakeld voor de anal-
yses van de genomen van appel en Medicago truncatula. Door een platform te
maken met de nieuwe genoomsequentie, enkele referentie genomen en outgroups
waaronder een mos en algen, konden resultaten die doorgaans in genoompubli-
caties verschijnen zeer snel bekomen worden. Bovendien was het mogelijk, door
deze data te combineren met experimenteel verkregen data, nieuwe inzichten te

krijgen in enkele commercieel interessante processen aanwezig in deze soorten.

Samengevat, in vele opzichten is de hoeveelheid sequentie data waarover
we momenteel beschikken een mes dat aan twee kanten snijdt. Enerzijds kan

deze data enorme inzichten verschaffen over diverse soorten, anderzijds wordt
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het steeds moeilijker om biologische inzichten te destilleren uit een dergelijke
hoeveelheid data. De software en technieken hier besproken zijn echter een be-
langrijke verbetering ten opzichte van de huidige stand van zaken in vergelijkend
genoomonderzoek. Zonder twijfel kunnen onderzoekers wereldwijd deze software

gebruiken om allerhande biologische vragen te beantwoorden.
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“DNA is an abbreviation for
deoxyribonucleicantidisestablishmentarianism, a

complex string of syllables.”

Dave Barry
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“I received the fundamentals of my ed-
ucation in school, but that was not
enough. My real education, the super-
structure, the details, the true architec-

ture, | got out of the public library.”

Isaac Asimov
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