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Abstract

Chords and keys are two ways of describing music. They are exemplary
of a general class of symbolic notations that musicians use to exchange in-
formation about a music piece. This information can range from simple
tempo indications such as “allegro” to precise instructions for a performer
of the music. Concretely, both keys and chords are timed labels that de-
scribe the harmony during certain time intervals, where harmony refers to
the way music notes sound together. Chords describe the local harmony,
whereas keys offer a more global overview and consequently cover a se-
quence of multiple chords.

Common to all music notations is that certain characteristics of the mu-
sic are described while others are ignored. The adopted level of detail de-
pends on the purpose of the intended information exchange. A simple de-
scription such as “menuet”, for example, only serves to roughly describe
the character of a music piece. Sheet music on the other hand contains
precise information about the pitch, discretised information pertaining to
timing and limited information about the timbre. Its goal is to permit a per-
former to recreate the music piece. Even so, the information about timing
and timbre still leaves some space for interpretation by the performer.

The opposite of a symbolic notation is a music recording. It stores the
music in a way that allows for a perfect reproduction. The disadvantage of
a music recording is that it does not allow to manipulate a single aspect of
a music piece in isolation, or at least not without degrading the quality of
the reproduction. For instance, it is not possible to change the instrument-
ation in a music recording, even though this would only require the simple
change of a few symbols in a symbolic notation.

Despite the fundamental differences between a music recording and a



symbolic notation, the two are of course intertwined. Trained musicians
can listen to a music recording (or live music) and write down a symbolic
notation of the played piece. This skill allows one, in theory, to create
a symbolic notation for each recording in a music collection. In practice
however, this would be too labour intensive for the large collections that
are available these days through online stores or streaming services. Auto-
mating the notation process is therefore a necessity, and this is exactly the
subject of this thesis. More specifically, this thesis deals with the extrac-
tion of keys and chords from a music recording. A database with keys and
chords opens up applications that are not possible with a database of mu-
sic recordings alone. On one hand, chords can be used on their own as a
compact representation of a music piece, for example to learn how to play
an accompaniment for singing. On the other hand, keys and chords can
also be used indirectly to accomplish another goal, such as finding similar
pieces.

Because music theory has been studied for centuries, a great body of
knowledge about keys and chords is available. It is known that consecutive
keys and chords form sequences that are all but random. People happen
to have certain expectations that must be fulfilled in order to experience
music as pleasant. Keys and chords are also strongly intertwined, as a
given key implies that certain chords will likely occur and a set of given
chords implies an encompassing key in return. Consequently, a substantial
part of this thesis is concerned with the question whether musicological
knowledge can be embedded in a technical framework in such a way that
it helps to improve the automatic recognition of keys and chords.

The technical framework adopted in this thesis is built around a hidden
Markov model (HMM). This facilitates an easy separation of the different
aspects involved in the automatic recognition of keys and chords. Most
experiments reviewed in the thesis focus on taking into account musicolo-
gical knowledge about the musical context and about the expected chord
duration. Technically speaking, this involves a manipulation of the trans-
ition probabilities in the HMMSs. To account for the interaction between
keys and chords, every HMM state is actually representing the combina-
tion of a key and a chord label.

In the first part of the thesis, a number of alternatives for modelling the
context are proposed. In particular, separate key change and chord change
models are defined such that they closely mirror the way musicians con-
ceive harmony. Multiple variants are considered that differ in the size of
the context that is accounted for and in the knowledge source from which
they were compiled. Some models are derived from a music corpus with
key and chord notations whereas others follow directly from music theory.

In the second part of the thesis, the contextual models are embedded
in a system for automatic key and chord estimation. The features used
in that system are so-called chroma profiles, which represent the saliences
of the pitch classes in the audio signal. These chroma profiles are acous-



tically modelled by means of templates (idealised profiles) and a distance
measure. In addition to these acoustic models and the contextual models
developed in the first part, durational models are also required. The latter
ensure that the chord and key estimations attain specified mean durations.

The resulting system is then used to conduct experiments that provide
more insight into how each system component contributes to the ultimate
key and chord output quality. During the experimental study, the system
complexity gets gradually increased, starting from a system containing
only an acoustic model of the features that gets subsequently extended,
first with duration models and afterwards with contextual models. The
experiments show that taking into account the mean key and mean chord
duration is essential to arrive at acceptable results for both key and chord
estimation. The effect of using contextual information, however, is highly
variable. On one hand, the chord change model has only a limited positive
impact on the chord estimation accuracy (two to three percentage points),
but this impact is fairly stable across different model variants. On the other
hand, the chord change model has a much larger potential to improve the
key output quality (up to seventeen percentage points), but only on the
condition that the variant of the model is well adapted to the tested music
material. Lastly, the key change model has only a negligible influence on
the system performance.

In the final part of this thesis, a couple of extensions to the formerly
presented system are proposed and assessed. First, the global mean chord
duration is replaced by key-chord specific values, which has a positive ef-
fect on the key estimation performance. Next, the HMM system is modi-
fied such that the prior chord duration distribution is no longer a geomet-
ric distribution but one that better approximates the observed durations in
an appropriate data set. This modification leads to a small improvement of
the chord estimation performance, but of course, it requires the availability
of a suitable data set with chord notations from which to retrieve a target
durational distribution. A final experiment demonstrates that increasing
the scope of the contextual model only leads to statistically insignificant
improvements. On top of that, the required computational load increases
greatly.






Samenvatting

Akkoorden en toonaarden zijn twee manieren om muziek te beschrijven.
Het zijn voorbeelden van de ruimere klasse van symbolische (muziek-) no-
taties die gebruikt worden door muzikanten om informatie over een mu-
ziekstuk uit te wisselen. Deze informatie kan gaan van eenvoudige tempo-
aanduidingen zoals “allegro” tot precieze instructies voor de uitvoerder
van een stuk. Concreet zijn toonaarden en akkoorden beiden tijdgebonden
labels die de harmonie beschrijven gedurende bepaalde tijdsintervallen,
waarbij harmonie slaat op het samenklinken van muzieknoten. Akkoor-
den beschrijven de lokale harmonie, terwijl toonaarden een meer globaal
overzicht geven en dus per definitie een opeenvolging van akkoorden be-
strijken.

Alle symbolische notaties hebben met elkaar gemeen dat ze bepaalde
karakteristieken van een muziekstuk beschrijven en andere aspecten ne-
geren. Hoe gedetailleerd dit gebeurt, hangt af van de reden waarom de
informatie uitgewisseld wordt. Een eenvoudige beschrijving zoals “me-
nuet”, bijvoorbeeld, dient slechts om het karakter van een muziekstuk grof
te benoemen. Een muziekpartituur daarentegen, bevat precieze informa-
tie over de toonhoogtes, gediscretiseerde informatie met betrekking tot de
timing en beperkte informatie over de klankkleur. Haar doel is dan ook
om het recreéren van een muziekstuk mogelijk te maken. De informatie
over timing en klankkleur moet niettemin nog aangevuld worden met de
interpretatie van de uitvoerder.

Tegenover de symbolische notatie staat de muziekopname, die een ge-
trouwe reproductie van het muziekstuk toelaat. Het nadeel van een mu-
ziekopname is echter dat deze niet toelaat om één enkel aspect van het
muziekstuk apart te wijzigen, tenminste niet zonder de reproductiekwali-
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teit te verminderen. Het is bijvoorbeeld niet mogelijk om de instrumentatie
in een muziekopname te wijzigen, terwijl dit slechts een eenvoudige ver-
andering van een paar symbolen vereist in een symbolische notatie.

Hoewel een opname dus fundamenteel verschilt van een symbolische
notatie, zijn beiden uiteraard nauw aan elkaar gerelateerd. Getrainde mu-
zikanten kunnen muziekopnames (of live-muziek) beluisteren en een sym-
bolische notatie voor het gespeelde stuk uitschrijven. Deze vaardigheid
staat dus in theorie toe om een symbolische notatie te maken voor elke
opname in een muziekcollectie. In de praktijk zou dit echter veel te ar-
beidsintensief zijn voor de grote collecties die vandaag beschikbaar zijn
via webwinkels of streamingproviders. Het is dus noodzakelijk om dit
proces te automatiseren, en dat is precies het onderwerp van deze thesis.
Het gaat hier specifiek om het extraheren van akkoorden en toonaarden uit
muziekopnames. Een databank met akkoorden en toonaarden maakt toe-
passingen mogelijk die niet haalbaar zijn met een databank van opnames
alleen. Enerzijds kunnen akkoorden op zichzelf gebruikt worden als be-
knopte weergave van een muzieknummer, bijvoorbeeld om een passende
begeleiding voor zang te leren. Anderzijds kunnen toonaarden en akkoor-
den ook indirect gebruikt worden om andere toepassingen mogelijk te ma-
ken, zoals het vinden van gelijkaardige nummers.

Omdat muziektheorie al eeuwenlang bestudeerd wordt, bestaat er heel
wat kennis over toonaarden en akkoorden. Zo is geweten dat opeenvol-
gende toonaarden en akkoorden sequenties vormen die allesbehalve wil-
lekeurig zijn. Mensen hebben nu eenmaal een bepaald verwachtingspa-
troon waaraan muziek moet voldoen om als aangenaam ervaren te wor-
den. Toonaarden en akkoorden zijn ook nauw verwant, een gegeven toon-
aard impliceert dat bepaalde akkoorden verwacht kunnen worden en ge-
geven akkoorden impliceren op hun beurt een bepaalde overkoepelende
toonaard. Daarom draait een substantieel deel van deze thesis om de vraag
of musicologische kennis geintegreerd kan worden in een technisch kader
zodanig dat ze bijdraagt aan het verbeteren van het automatische afleiden
van toonaarden en akkoorden.

Het technisch kader dat gebruikt wordt in deze thesis bestaat uit een
hidden Markov model (HMM). Dit biedt de mogelijkheid om de verschil-
lende aspecten die komen kijken bij automatische akkoord- en toonaardex-
tractie eenvoudig van elkaar gescheiden te beschouwen. Het merendeel
van de experimenten in deze thesis focust op het in rekening brengen van
musicologische kennis over de muzikale context en over de verwachte ak-
koordduur. Technisch gesproken gaat het dan om het manipuleren van de
transitieprobabiliteiten in de HMMSs. Om de interactie tussen toonaarden
en akkoorden samen te beschouwen, stelt elke toestand van een HMM de
combinatie van een toonaard en een akkoord voor.

In het eerste deel van deze thesis worden een aantal alternatieven voor
de contextmodellering voorgesteld. Meer bepaald worden aparte akkoord-
wissel- en toonaardwisselmodellen gedefiniéerd zodat het resultaat nauw
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aansluit bij de manier waarop muzikanten harmonieleer opvatten. Meer-
dere varianten worden voorgesteld. Ze verschillen van elkaar in de grootte
van de context die in rekening wordt gebracht en in de bron van de mu-
sicologische kennis die eraan ten grondslag ligt. Sommige modellen zijn
afgeleid van een muziekcorpus met akkoord- en toonaardannotaties, ter-
wijl anderen volgen uit de muziektheorie.

In het tweede deel van deze thesis worden de contextmodellen gebruikt
als onderdeel van een systeem dat automatisch toonaarden en akkoorden
afleidt uit opnames. De features waarmee gewerkt wordt zijn zogenaamde
chromaprofielen. Ze stellen de intensiteit van het audiosignaal per toon-
klasse voor. Deze chromaprofielen worden akoestisch gemodelleerd met
behulp van templates (geidealiseerde chromaprofielen) en een afstands-
maat. Naast deze akoestisch modellen en de contextmodellen uit het eerste
deel zijn ook nog duurmodellen vereist. Die laatsten zorgen er voor dat de
gewenste gemiddelde duur voor de akkoorden en de toonaarden bekomen
wordt.

Met het bekomen systeem worden vervolgens experimenten uitgevoerd
die inzicht verschaffen in de bijdrage van elke systeemcomponent tot de
kwaliteit van de bekomen akkoorden en toonaarden. Hiervoor wordt de
complexiteit van het systeem langzaam verhoogd, te beginnen met een sys-
teem dat enkel een akoestisch model van de features bevat en dat dan eerst
met duurmodellen en vervolgens met contextmodellen wordt uitgebreid.
Uit de experimenten blijkt dat het in rekening brengen van de gemiddelde
akkoord- en toonaardduur essentieel is om aanvaardbare resultaten te be-
komen voor zowel akkoord- als toonaardextractie. Het gebruik van con-
textuele informatie heeft daarentegen een wisselend effect. Enerzijds is de
positieve invloed van een akkoordwisselmodel op de gevonden akkoorden
beperkt (twee a drie procentpunten), maar wel grotendeels onafhankelijk
van de gebruikte variant van het akkoordwisselmodel. Anderzijds heeft
dit model een groter potentieel om de toonaarduitvoer te verbeteren (tot
zeventien procentpunten), maar enkel op voorwaarde dat de variant van
het model goed aangepast is aan het geteste muziekmateriaal. Tenslotte
blijkt de invloed van het toonaardwisselmodel in al zijn varianten een ver-
waarloosbaar effect te hebben.

In het laatste deel van deze thesis worden enkele uitbreidingen van het
gepresenteerde systeem voorgesteld en geévalueerd. Eerst wordt de glo-
bale waarde voor de gemiddelde akkoordduur vervangen door variabele
waarden die afhangen van de specifieke toonaard-akkoordcombinatie, wat
een gunstig effect heeft op de toonaardprecisie. Vervolgens wordt het HMM
systeem gewijzigd zodat de a priori akkoordduurdistributie niet langer
een geometrische distributie is, maar beter de distributie van de geobser-
veerde duur in een geschikte dataset benadert. Deze wijziging leidt tot
een kleine verbetering van de akkoordprecisie, maar vereist uiteraard dat
een passende dataset met akkoordannotaties beschikbaar is om de vereiste
duurdistributie uit af te leiden. Het laatste experiment toont aan dat het
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vergroten van de reikwijdte van het akkoordcontextmodel slechts statis-
tisch niet significante verbeteringen teweegbrengt. Bovendien stijgt de be-
nodigde rekenkracht aanzienlijk.
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This introductory chapter will explain what exactly is meant by the estim-
ation of keys and chords from audio and what it can be used for. Further-
more, the main contributions of this thesis will be discussed and finally, an
overview is given of the remainder of the text.

Situating key and audio estimation from
audio

1.1.1 Different ways of storing music

Listening to music does not require a special skill, it can be done by every
hearing person, regardless of his musical education. People are also able
to describe in natural language what they have been listening to, but these
descriptions are rather vague and generally inconsistent. When two per-
sons are asked to create sounds based on the description made by a third,
these sounds will seldom sound remotely similar. However, trained musi-
cians are able to do exactly this, name what they have been hearing (even
if it is just in their head) in a way such that the description can be passed
along to others who can then consistently replicate what was meant. This
kind of accurate representation is called a symbolic (musical) notation.
Many types of symbolic notation exist, ranging from simple, coarse de-
scriptions to complex, detailed ones. The simple ones just give a broad
characteristic of a piece, whereas the most detailed ones can be used by

1
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a performing musician to recreate the described piece in a way that it is
recognisable as such, without requiring that he himself has heard the ori-
ginal beforehand. The most known example is sheet music, which is one
of the more detailed examples. Because of the infinite number of subtle
variations in music, no representation exists that is accurate enough to re-
produce every single nuance. Instead, each type of notation emphasises
different aspects of a piece by making different trade-offs between what is
more and what is less accurately described. A general approach to keeping
a description manageable, is to describe but a limited number of character-
istics that are then discretised into a finite number of categories, to con-
strain the number of symbols. This explains why there is such a multitude
of notations: different applications require descriptions that are adapted in
content and granularity to different purposes.

Symbolic notation, going back as far as 2000 BC, used to be the only
way to store music until the invention of the audio recording with Edison’s
phonograph in 1877. In some ways, audio recordings are the opposite of
symbolic notation. Whereas even the most detailed symbolic notation al-
lows for some freedom in interpretation due to its incompleteness, a re-
cording consistently recreates music in exactly the same way, time after
time. However, it is a single, holistic description which is not aware of its
composing parts. Symbolic notation on the other hand is self-aware. It
consists of a description of what is going on in the music piece on multiple
levels, with a meaningful hierarchy between its constituting components.
This is apparent in the sense that it is easy in symbolic notation to make
changes to a single musical aspect without changing the other aspect. E.g.
one can change the instrumentation or tempo, while it is hard to impossible
to do that in an audio recording. That is why symbolic notation is said to
be a semantically rich description, i.e. the meaning of the music it represents
is readily apparent, while audio recordings are semantically poor, i.e. mean-
ing is absent in the representation. Because of their high fidelity and ease
of use, audio recordings have become the dominant means to store music
for playback since the 1920s. Nevertheless, symbolic music notations per-
sist because the semantically rich information they provide is needed for a
number of other applications.

We can conclude that music can be stored either in the symbolic do-
main or in the audio domain, each with their advantages and disadvant-
ages. Luckily, these domains are not isolated from each other. It is perfectly
possible to convert music from one domain to the other. We are especially
interested in the conversion of semantically poor, high definition audio re-
cordings into semantically rich symbolic notations, a process called mu-
sic transcription. This conversion can be easily done by humans, using a
skill called musical hearing, although some musical training might be re-
quired once the intended symbolic notation goes beyond the most trivial
ones (e.g. labelling music as either “slow” or “fast”). The idea here is to
automate this human capability in order to reap the benefits of automa-
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tion: scalability, consistency and cost effectiveness. These properties make
it possible to open up a whole new range of applications that would not
be feasible when relying on manual labour. Looking beyond the musical
domain, other fields of study are also concerned with semantic audio ana-
lysis, such as speech recognition and the detection of well-defined events
in audio, ranging from goals in sports commentary to gun shots in secur-
ity footage. On an even higher level, semantic audio analysis is part of the
larger scope of content based analysis, where an analysis can be performed
on signals other than audio, such as moving or still images, biometric data
or a combination thereof. The corresponding applications include facial
recognition in pictures and heart-rate monitoring, among others.

1.1.2 Levels of abstraction in symbolic notation

In order to illustrate the different types of symbolic notation, with their
distinct levels of abstraction, let us draw a parallel to natural speech. Here
too we have two very different types of media to store it. On one hand, we
have a symbolic notation, namely text, which is good at capturing mean-
ing, but does not allow to perfectly reconstruct speech because it looses a
number of characteristics of the voice, such as intonation. And on the other
hand, the same recording technology used for music can also store speech
in a perfectly reproducible way. We can also make an exact transcription of
what is said in a recording, thereby transitioning between the semantically
rich and semantically poor domains. A word for word transcription is the
most detailed way to store speech in the symbolic domain, but this level
of abstraction is not always appropriate for the intended application. A
condensed textual representation, a summary, can be more useful for cer-
tain applications. Take the case of a student attending a lecture. When he
later wants to study the content of that lecture, it is much more useful for
him to have notes that are a synopsis of what has been said, instead of the
exact wording of the lecturer. Such notes can exist on different levels of
abstraction: the initial notes taken during the lecture, which contain most
of the information in shorthand, and a general outline made afterwards,
which only contains the most important points. For this example, the final
textual representation will still contain a lot of variation, because the topic
of a lecture can be anything, but for other textual representations used in
more specific cases, limiting syntax and vocabulary of the summary can be
helpful.

Let us imagine that a non-specified governmental agency is investigat-
ing a money laundering case. A person is suspected of trafficking money to
accomplices in cover-up shops. The agency now wants to find out which
of the shops on High Street are involved and have planted a bug on the
suspect. At one point, the government agent on listening duty might hear
the following scene:
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At bakery 24/12/1965
16:56:51-16:56:52 Suspect greeted
16:56:52-16:56:54 Bread ordered
16:56:59-1655 7201 2.20 requested
16:57:05=16257:07 Suspect thanked
16:57:07=16:57:08 Baker greeted

Figure 1.1: Flash card reporting a conversation at a bakery

e “Good morning”

e “One rye bread, please.”

e “That will be 2.20 euro.”

¢ <sound of money being handed over>
e “Thanks, have a nice day.”

e “Bye.”

The agency now wants to keep a record of every visit to every shop. This
could easily be done by constantly recording the suspect, but the agency
has decided that this is not the most practical way of storage for them. At
one point in the future, they would like to compare all the transactions to
see if patterns arise in these seemingly innocent visits and if they can be
linked to the money laundering. They do not want to listen to all these
conversations over and over again, but want the essential information in a
readily available form. Therefore they have come up with a strict proced-
ure. The officer on duty needs to summarise every conversation in every
shop on a flash card according to a well defined scheme. Then they can
pin all these flash cards to a whiteboard and start drawing arrows between
them and all other things detectives usually do. As an example, the card
that has been created from the aforementioned conversation is displayed
in figure 1.1.

As you can see, the transcripts follow a well defined set of rules. Every
line of conversation is summarised by a two word “noun-verb” scheme
together with precise timing information. The entire dialogue is also de-
scribed by a single “preposition-noun” scheme that describes the overall
setting of the conversation. This type of note-taking system is especially
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adapted to its intended use: it provides a good description of the aspects of
the scene that are deemed important, namely an overview of the dialogue
without getting lost in the exact wording, but completely ignoring other,
less important aspects, such as the tone of the voices and the background
noises. It is therefore tailored to this specific type of use, but would be in-
sufficient for other cases, such as writing down a comedy sketch, where
the exact words and how they are spoken are at least as important as the
general meaning of what is said. We could come up with other schemes to
describe a dialogue for other use-cases, such as a script for a radio drama,
which would focus on other aspects and would require a different level
of detail, but this one contains exactly the right level of abstraction for its
intended purpose.

1.1.3 Keys and chords

Similar to the rigid dialogue summary scheme, musical notation in terms
of chords or keys follows a well-defined syntax and serves a specific pur-
pose. Together, they do not constitute the most thorough notation of music:
instrumentation is not included, nor is there an exact description of each
separate note, for instance. Sheet music contains more details, although
some aspects are still ignored, and can be considered the equivalent of full
text. Key and chords describe one specific aspect of a music piece, namely
the harmony. All information that does not contribute to the harmony is
left out, while all essential information is retained and made more explicit
in comparison to a list of notes. Consequently, this type of music descrip-
tion is only applicable in the context of Western tonal music, which is based
on harmony. It therefore makes no sense to use chord and key notation
with Indian music or contemporary electro-acoustic music, just as you do
not tell a joke by only listing key words.

In our flash card example, the “noun-verb” descriptors take on the
same role as chords in music: they are concise descriptions of audio seg-
ments with a certain time span. In fact, not every point in time has such a
description associated with it, e.g. the sound of money has none. The au-
dio segments can vary in duration, and form a first level of abstraction of
the exact words that are chosen and how they are spoken. The description
is not exact enough to reconstruct the specific wording, but the abstrac-
tion is however close enough to the actual events such that an exemplary
instance can be given for each exchange, without changing its meaning
significantly. Instead of “good morning”, “hello” or “good day” could be
used, and baguettes or raisin bread could be bought instead of rye bread,
all without fundamentally changing the situation. A more detailed de-
scription would only be distracting for its specific use.

The scene as a whole on the other hand, can be summarised on a higher
time-scale as “at bakery”. This is equivalent in abstraction level to a mu-
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sical key. Starting from this description, it is nearly impossible to recon-
struct the entire conversation: there is too much possible variation. A cus-
tomer can order multiple items, with multiple price tags, engage himself in
smalltalk with the baker, and so on. Nonetheless, it is a valid description
of the scene, and it can be used to distinguish itself from other scenes, like
“at butcher’s” or “at mechanic”. The abstraction level is therefore strongly
tied to a temporal scale: a group of words in a summary corresponds to a
larger span of time than a group of words of the same length in a full text
transcription. A more formal definition of keys and chords will follow in
the next chapter.

The process of key and chord estimation from audio is thus one specific type
of music transcription, where the target symbolic notation consists of keys
and chords. Although we call it a transcription when done by humans, in
the context of research towards automating this process, the term estimation
is often used to underline the imperfect nature of the current technology.
The difference between key and chord estimation and related transcription
tasks targeting other semantically rich musical notations, such as beat ex-
traction and genre classification, is that we can use domain specific know-
ledge about harmony to facilitate the task. The many forms of knowledge
and the sources they come from will be the topic of the following chapters.
Later on in this introductory chapter, we will discuss some of the possible
applications of key and chord estimation.

A final note on the estimation process concerns the time scale. In some
of the most common symbolic notations, such as sheet music, the duration
of the symbols is quantised into a limited number of categories and ex-
pressed relative to the overall tempo (crotchets or quarter notes, quavers or
eight notes, etc.). In actual performances, a substantial part of the express-
iveness of music comes from small deviations from these discretised dura-
tions. So this quantisation can be seen as an extra level of abstraction. We
do not make this quantisation in this work. Instead, all timing information
is expressed exactly in seconds. In this regard, the result of our proposed
conversion process is more similar to symbolic MIDI notation. Working
with digital systems, a certain discretisation is of course inevitable, but if it
is sufficiently precise, the timing can be considered continuous.

1.1.4 The interdependence between keys and
chords

A recurring theme in this thesis is the study of how prior knowledge can
be used in the estimation of keys and chords from audio. Such knowledge
is also deeply ingrained in humans. Through our exposition to music, a
certain musical norm is established: we have a clear expectancy of what
“real music” is and this notion is much narrower than all the theoretically
possible combinations of notes. This is illustrated by the fact that some
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music genres such as be-bop or trash metal are not appreciated by every-
one. These genres are called “difficult”, “unaccessible” or plainly “not mu-
sic”. In reality, these genres simply strain the listener’s notion of music too
much, and this varies strongly between individuals. Even though there is
a personal part to it, some preferences arise that are more universal. Just
like a greeting does not happen in the middle of a conversation, there are
some rules in music that are rarely violated. The scholarly study of music
theory is concerned with capturing this subliminal knowledge.

We will try to quantify this knowledge, by capturing parts of it in stat-
istical models and by interpreting parts in the context of the theory of clas-
sical harmony. This quantified knowledge will then be used to facilitate
the estimation of keys and chords from audio. The function of this extra
information is slightly different for keys than for chords. Chords on the one
hand, are close to acoustic events, so in theory they can be estimated using
just the local acoustic properties. A musicological knowledge model can
only help to resolve ambiguities, to discriminate between melody and ac-
companiment notes, and to recover from errors. Translated to our wiretap-
ping example, suppose that the wireless connection to the suspect is noisy,
and at one point the officer hears the following, incomplete line: “One rye
**ead, please”. It is then very likely that the officer will write down that
the suspect ordered “bread”, not “head” or “lead”, because that is what is
expected in the context of a bakery. Neither will he note down the words of
the song played on the radio in the background, because it is obvious from
the context that this is not relevant. Chord knowledge can similarly resolve
noise, present in the signal itself or arising from a faulty initial estimation.
Finding a key on the other hand, requires by definition more than local ob-
servations, so a musicological knowledge model can be used to decide on
the time interval in which the key is constant. In our example, this means
that it should be decided when there is a change in location and how the
location should be named.

The fact that keys and chords both describe the musical content, but
on different abstraction levels, leads to a challenging circularity in model-
ling harmony. If the key is known, some assumptions can be made about
the chords, but the reverse is also true. Suppose that it has already been
established that our suspect has entered a bakery, then it is much more
likely that the subsequent conversation will contain phrases such as “One
baguette, please” or “Would you like a bag with that?”. It would be very
unlikely to hear a sentence such as “Could you check the oil level?” in
such a setting. But upon hearing the latter phrase, it will be clear that it
is very likely that the suspect has entered a garage. In itself, all possible
phrases can be uttered in all possible situations, but one has to be very
absent-minded to ask for a tyre change at a butcher’s. There is just a large
difference in probability that the latter is actually going to happen. Ex-
actly the same can be said for the relation between keys and chords: any
combination is possible, but some are more likely than others. The signi-
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ficance of a certain observation in establishing a particular context is also
variable, and not necessarily tied to probability. For example, chit-chatting
about the weather is common, but not indicative for a specific shop. On the
other hand, a line like “One baguette, please” will strongly suggest that the
subject is standing in a bakery, and simultaneously weaken the evidence
that he is at the car mechanic. Other sentences such as “Would you like a
bag with that?” are not very helpful to decide whether the suspect is at a
bakery or at a butcher’s shop, but can very likely rule out that he is at the
mechanic.

1.2 Applications of key and chord estim-
ation

1.2.1 Therole of symbolic annotationsin an ap-
plication

A particularity of all but the most trivial symbolic musical notation, is that
it is understood by a far smaller percentage of the population than other
symbolic notations, such as the alphabet. Natural language-like descrip-
tions such as “fast, energetic music” are still understandable for all, but
using the specific musical vocabulary, which includes keys and chords, re-
quires some degree of formal musical education. Therefore the raw output
of key and chord symbols is not meaningful for everyone. This allows us
to divide applications of key and chord estimation into direct applications
versus indirect applications. For applications of the former category, the in-
teraction with the final product is done in terms of chords and/or keys
themselves. In the latter, estimated chord and/or key sequences are only
used, without the end-user realising it, as an intermediate representation
of a music piece in order to reach a different goal. The purpose of key
and chord estimation here is that a recording is first converted into a se-
mantically rich representation before information retrieval techniques are
applied, which is much easier on symbolic notation than on audio itself.
One of the consequences is that indirect applications have the potential to
reach a much larger audience.

In addition to being understood by only a part of the population, be-
ing able to read a symbolic notation does not automatically mean that one
can listen to music and write down what has been played. This again con-
trasts with natural language, where any hearing person who can read can
also write text transcriptions. Being able to read a symbolic representation
evidently is a prerequisite for being able to create it by listening to mu-
sic. However, training one’s hearing such that it can perceive what has to
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be represented takes a considerable amount of time, except for some rare,
gifted people. So a substantial portion of amateur musicians can read a
symbolic notation, but would nevertheless benefit greatly from an auto-
matic generation of that notation from audio. Its appeal lies in the fact that
they can then use this automatic transcription to learn how to play any
song they have a recording of, instead of needing to look first for a man-
made transcription, which might be expensive or unavailable altogether.
In our specific case of chord estimation, the end product is a so-called chord
sheet, which contains just the sequence of chords that is played in a song.
This description is not exact enough to precisely recreate the piece of mu-
sic, which is deemed necessary for classical music, but it is sufficient as a
compact notation for jazz and pop music, which has a larger tradition of
interpreting songs differently and making personal adaptations.

A second way to separate the different applications, is the distinction
between small-scale and large-scale applications. The former means that the
application only needs to extract chords and/or keys from a single piece of
music in order to be useful, while large-scale applications are only able to
fulfil their goal if a large set of music has been processed, often the larger
the better. Of course, producing already useful results for a single file does
not prevent a small-scale application from processing large data sets.

1.2.2 Categories of applications

The combination of the two previously introduced distinctions allows us to
split the type of applications into four categories. This grouping will facil-
itate a systematic exploration of the kinds of applications in the following
paragraphs. If any commercial implementations of these types of applica-
tion already exist, they will be mentioned under the appropriate category.
Otherwise, some ideas for potential applications will be outlined. Note
that this categorisation of applications is not specifically tied to chord and
key estimation, but can be applied to any task of music transcription.

Direct, small-scale applications

Driven by the great number of amateur musicians who can read music
notation, but cannot transcribe from audio themselves, the most obvious
direct application is automatic chord transcription. A number of commer-
cially available products are therefore competing on this market. Some of
these are marketed as stand-alone programs, such as D’ Accord’s “iChords”!,
Luxand Development’s “Chord Pickout”2, MusProjects” “AnySong Chord

1http ://wuw.daccordmusic.com/eng/site/application.php?idProduto=42
http://www. chordpickout . com
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Rec:ogni’tion”3 ,EUMLab’s “Chordec”, Martian Storm’s “Chord Detector”>.
Others are built as a web service, such as “Chordify”® or are integrated in
more extensive tools for learning music, such as PG Music’s “Chord Tool”
(included with “Band-in-a-box””), SuperMegaUltraGroovy’s “Capo”® or
“Riffstation”®. A number of programs acknowledge the imperfection of
automatic transcription beforehand, and position their application merely
as an aid for manual transcription, requiring extra guidance such as the
indication of chord boundaries. In addition, almost all programs provide
an editor for manual correction of the automatically generated results. Per-
forming a rigorous evaluation on their output is not possible because of the
closed nature of their file formats and/or the absence of absolute timing in-
formation, but most of them fall into one of the following two cases. Either
its makers are closely associated with a research group that has published
the underlying algorithm, or it is clear enough from informal experiments
that their performance leaves much to be desired for. But even for state-of-
the-art research spinoffs, independent reviewers find the performance of
the estimation still lacking!®. Most of the reviewers praise the idea, but not
the implementation.

The audio that is being transcribed does not have to come from a third-
party. Even when a user is playing himself, and therefore already knows
what he is playing, automatic transcription can be useful. Its purpose is
then to take notes of what is being played, avoiding the manual labour of
writing down chords on paper or entering them into a computer program.

Another use for chords in an direct way can be seen in the music train-
ing app “Yousician”!'. Here, a user is presented with a chord sequence
that he tries to play to the best of his abilities. The sound is recorded and
converted back into symbolic notation, which then gets compared with
the target sequence. The user then gets points according to how well he
played. The app keeps track of your progress and turns the learning pro-
cess into a visually attractive game.

Indirect, small-scale applications

In indirect, small-scale applications, the generated key and chord sequences
of a piece of music control another process. One possibility is that the
chords or keys control playback of supplemental audio, e.g. for gener-
ating automatic accompaniment. This ensures that the accompaniment is

Snttp://wuw.musprojects.com/anysong- chord-recognition/
4http://eumlab.com/

Shttp://www.chord-detector.com

®http://chordify.net

"http://pgmusic.com/bbwin.htm
8http://supermegaultragroovy.com/products/capo/
http://www.riffstation.com

Ohttp://www.gizmag. com/riffstation-guitar-learning-review/27705/
Unttp://get.yousician. com/
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always in perfect harmony with the played music. The musician can then
change his playing on the spot and improvise at will, and the accompani-
ment will follow. Otherwise, if a prerecorded accompaniment is used, the
musician is tied to follow exactly what has been planned beforehand, lim-
iting his freedom of expression. Processes beyond the audio domain can
also be controlled, such as the colour and intensity of stage lights or other
types of visualisation.

Direct, large-scale applications

The automation of key and chord estimation allows us to build large data-
bases of symbolic music. Enriched with meta-data like the title, composer,
genre and year of the piece, such databases can answer many questions
posed in musicological research. For example, one can find the most typ-
ical chords or keys for a certain composer or genre, study the evolution
of chord usage over time or look for relations using knowledge discovery
techniques. Another possibility is the retrieval of information that matches
a query, such as finding all chord or key sequences in a database that are
similar to a given snippet of symbolic music.

A specific example of a retrieval application that has seen multiple com-
mercial implementations is key estimation for deejays. The idea is that a
deejay uses automatic key estimation to assign a key label to all of the songs
in his collection before the start of his deejay set. He can then use the key of
the currently playing song as a query to list all song in his collection with
the same key. The songs returned by the program are then all good candid-
ates for the next song, guaranteed to fit well after the current song. The dee-
jay can use this information to make a more informed decision such that he
is sure that overlapping parts in the mix will sound pleasant together. Be-
cause deejays typically have collections that are so big that labelling them
all would require a lot of manual labour and because a great number of
them lack the training to do so themselves anyway, they form an ideal
public for automatic key estimation. It is therefore not surprising that all
major deejay software packages include such functionality as part of their
program. Examples are Native Instruments’ “Traktor”!?, “Serato DJ”!3,
MixVibes’ “Cross DJ”* or “MixMeister Studio”’®. In addition, this func-
tionality is also available in some stand-alone, deejay-oriented media man-
agers, e.g. “Mixed In Key”'®, MixShare’s “Rapid Evolution”!?, Tagtraum
Industries’ “BeaTunes”!® or Pioneer’s “rekordbox”!®. Reviews by inde-

Phttp://www.native- instruments.com/en/products/traktor/dj-software/
traktor-pro-2/

Bnttp://serato.com/dj

Ynttp: //www.mixvibes. com

Bhttp://mixmeister.com/products-mmstu?.php

http://www.mixedinkey . com

Yhttp://www.mixshare.com/software . html

Bnttp://beatunes. com

Pnttp://rekordbox. com/


http://www.native-instruments.com/en/products/traktor/dj-software/traktor-pro-2/
http://www.native-instruments.com/en/products/traktor/dj-software/traktor-pro-2/
http://serato.com/dj
http://www.mixvibes.com
http://mixmeister.com/products-mmstu7.php
http://www.mixedinkey.com
http://www.mixshare.com/software.html
http://beatunes.com
http://rekordbox.com/
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pendent deejay websites show that the best of these products achieve a
correct key recognition of more than 90 % on typical dance music?®, but

this quickly drops to less than 45 % for general pop music?!.

Indirect, large-scale applications

Indirect, large-scale applications also make use of a large database of sym-
bolic music, just like direct, large-scale applications do, but the interaction
of the end-user with that database does not involve manipulating keys or
chords. These applications can often be seen as the combination of a direct,
large-scale application with some additional automation that interprets the
key or chord information and derives another property from it.

For instance, a database such as the one used to suggest songs in a sim-
ilar key to deejays, can be combined with logic that groups songs based
on key and possibly other properties, leading to automatic playlist gener-
ation. The query is then no longer the key of the currently playing song,
but the song itself and it is completely transparent to the user that the res-
ulting list of compatible songs is based on them having the same key. The
advantage is that the end-user no longer needs to be able to interpret mu-
sical notation to make use of the application, but the challenge lies in the
fact that the additional decision logic should approach the same level of
quality and creativity as a human.

Another example where queries no longer need to be specified in mu-
sical notation, is the retrieval of cover versions of a specified recording.
Key and chord estimation are in these cases used at two stages: once for
filling a database beforehand with semantically rich information and an-
other time to convert the query recording into the same high-level repres-
entation, after which the answer can be found using traditional pattern
matching techniques.

1.3 Main conftributions

In this thesis, the task of automatically estimating keys and chords from
audio is discussed. In particular, the focus lies on exploiting musicological
knowledge about keys and chords in the course of that estimation. This is
complementary to studying keys and chords as acoustic events, which is
equally necessary to come to a working system. The main novelty of this
work is situated in that it addresses the following points:

e How can the interdependency between keys and chords be modelled
in a consistent way?

Opttp://www.djtechtools.com/2014/01/14/key-detection-software- comparison-2014-edition/
2lpttp: //www.djtechtools.com/2012/01/26/key-detection-sof tware-showdown-2012-edition/


http://www.djtechtools.com/2014/01/14/key-detection-software-comparison-2014-edition/
http://www.djtechtools.com/2012/01/26/key-detection-software-showdown-2012-edition/
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e How can knowledge about key and chord sequences coming from
different sources be combined?

e How can the resulting knowledge be integrated into a system for
automatic key and chord estimation from audio?

e How much do the separate components of the model contribute to
the overall performance?

e How can information about expected chord durations be used in the
system and how does it improve results?

e How can the context information in consecutive chords be exploited
and how does this affects the performance?

The current text is the culmination of previous work that has been pub-
lished in the following papers, in chronological order of publication:

e Johan Pauwels and Jean-Pierre Martens: “Integrating musicological
knowledge into a probabilistic system for chord and key extraction”
in Proceedings of the 128th Convention of the Audio Engineering Society
(AES), 2010.

e Johan Pauwels, Jean-Pierre Martens and Marc Leman: “Improving
the key extraction accuracy of a simultaneous local key and chord
estimation system” in Proceedings of the IEEE International Conference
on Multimedia and Expo (ICME), 2011.

e Johan Pauwels, Jean-Pierre Martens and Marc Leman: “Modeling
musicological information as trigrams in a system for simultaneous
chord and local key extraction”, in Proceedings of the IEEE International
Workshop on Machine Learning for Signal Processing (MLSP), 2011.

e Johan Pauwels, Jean-Pierre Martens and Marc Leman: “The influence
of chord duration modeling on chord and local key extraction”, in
Proceedings of the IEEE International Conference on Machine Learning and
Applications (ICMLA), 2011.

¢ Johan Pauwels and Jean-Pierre Martens: “Combining musicological
knowledge about chords and keys in a simultaneous chord and local
key estimation system” in Journal of New Music Research (INMR), 43(3),
2014.

The methods and results presented in these publications have been used
to formulate the unifying framework that is presented in this text and that
supersedes all previous work.

If the reader is interested in reconstructing how the final proposition
emerged, and in finding the motivations behind some of the directions,
he is advised to read these preceding publications in the given order. The
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reason is that there are some dependencies between the papers. In partic-
ular, the original research for the AES paper has been continued and led
to the additional results proposed at ICME. Both have been combined and
extended to form the JNMR paper. The work in the MLSP and ICMLA
papers are both further extensions of this system, but in orthogonal direc-
tions, and can therefore be read separately from each other.

1.4 Thesis outline

The remainder of this text is constructed as follows. First, the background
knowledge that is necessary to make the rest of this thesis comprehensible
is introduced. This part first provides an overview of the music theory
concepts and associated terminology in chapter 2. Then a summary of
related work on key and chord extraction from audio is given in chapter 3.
Special attention is paid to the way the relationship between chords and
keys is incorporated in the systems under discussion.

Next, the proposed approach to modelling sequences of chords and
keys is discussed in chapter 4. A distinction is made between models
learned on a set of symbolic annotations and models derived from a musi-
cological theory. The data sets used in this work are also introduced here.
The predictive power of the resulting models is then evaluated in relation
to the data sets.

In chapter 5, a system for the simultaneous extraction of chords and
keys is proposed. Itis introduced gradually, evolving from a simple system
that only uses acoustic information to a more complex one encompassing
more musically relevant components, among which the models of the pre-
ceding chapter. A detailed evaluation after each step allow us to quantise
the benefits of each added component.

Subsequently, the duration model of the system resulting from chapter 5
is extended in chapter 6 in two ways. First, the prior chord duration is
made dependent on the relative chord-mode combination. Afterwards, a
solution is presented that changes the prior chord duration model from a
standard geometric distribution to a musicologically more plausible distri-
bution.

A further extension is examined in chapter 7, where the more advanced
musicological models as calculated in chapter 4 are incorporated into the
system. The necessary adaptation of the search procedure is explained and
an evaluation of the resulting system is performed in order to assess how
well the theoretically more predictive models translate into an increase in
key and chord extraction results.

Finally, some conclusive remarks are drawn in chapter 8 and possible
directions for future work are touched upon.



2.1

Music theoretical
background information

Throughout the centuries, a rich language has been developed to describe
musical concepts. However, no strict definitions have been established for
these terms and often the same terms are reused in multiple situations.
They are therefore ambiguous and rely on the context to be fully compre-
hensible. This might be acceptable for day-to-day, informal conversations,
but in a scientific work like this, it is undesirable. Moreover, this loose us-
age of language makes it unnecessarily complex for novices to get a basic
grasp of music theory. Therefore we will start by defining all musical terms
used in the remainder of this work, in order to establish a strict frame of
reference. We have tried to stray as little as possible from the common
consensus, but where deemed necessary, clarity was preferred over con-
formity, for instance by retaining only one meaning in cases of terminology
reuse. Consequently, the reach of these definitions is strictly confined to
this text. This section also serves as a musical primer for readers not famil-
iar with music theory. Lastly, mathematical notations will be introduced
for some concepts such that they can be used in the more formula-heavy
approach described in the following chapters.

Musical notes and physical tones

As we have already mentioned in the introduction, there are two worlds of
music that we would like to reconcile in this work. On the one hand, there
is the acoustical side of the story where music is seen as a series of changes
in air pressure, which can be fully captured by a music recording. On the

15
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other hand, there is the symbolic side which aims to encode those pressure
waves into meaningful symbolical descriptions. Because these symbols
need to be descriptive for humans, human perception is an integral part of
this notation process.

We see music in the symbolic domain as a sequence of notes, where a
note is a perceptual unit of music which is completely defined by 4 proper-
ties: pitch, duration, loudness and timbre. The pitch is the perceived height
of the note and allows it to be ordered on a scale from low to high. The
duration is the amount of time the note is audible (falling above the hear-
ing threshold). The loudness of the note is its perceived intensity. Finally,
the timbre is the colour of the note, grouping all aspects which distinguish
notes of the same pitch, duration and loudness from each other.

The acoustic counterpart of a symbolic note is a (physical) tone. From
now on, we will consider a music recording as a sequence of tones. A tone is
here defined as a sound composed of one or more sinusoidal components
whose frequencies are related to each other by an integer, a so-called har-
monic relation. It is perceived as a single sound rather than a compound of
separate components. Not every sound is a tone however. The sound of a
strike on a cymbal or other untuned percussion, for example, does not con-
sist of sinusoidal components. It therefore is not a tone, and consequently
is not perceived as a note by humans. On the other hand, all notes have a
physical realisation as a tone when they are produced by an instrument or
a voice.

Each of the four note properties has an equivalent tone property (Flet-
cher, 1934), although their relation is not always very straightforward. The
pitch of a note is related to the fundamental frequency of a tone, defined as
the frequency of which every other frequency is an integer multiple. The
other sinusoidal components are called harmonics. The duration of a note
can be linked to the duration of the physical excitation, but taking the hear-
ing threshold into account. The loudness is related to the energy of a tone,
but this relation is non-linear and depends on the frequency, among others.
Equal-loudness contours, first measured by Fletcher and Munson (1933),
try to express this for an average listener. The timbre can be linked to the
relation between the energies of the sinusoidal components and their depend-
ence over time. Some special cases of a tone can then be seen as having a
particular timbre, like a tone where the fundamental itself is absent (a vir-
tual fundamental frequency) or a pure tone, where only the fundamental
is present.

According to our definition, a tone can have any fundamental frequency,
such that there are an infinite number of tones between two frequencies.
On the other hand, the number of different pitches that a note can take is
well-defined. Although there is no formal limit placed on the pitch range,
in practice this is limited by the range of human hearing. In mathemat-
ical terms, the number of pitches is countably infinite in theory, but count-
able in practice. Which fundamental frequencies are considered as leading
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to the perception of a note and which ones are not, is determined by a
tuning (system). A tuning is a convention about the number and the posi-
tions of fundamental frequencies on the frequency scale that get assigned
to pitches of notes. It can thus be seen as a discretisation of the frequency
axis. Many tunings have been proposed and used through the centuries.
Some of them are based more on physical properties than others. Their
adoption is also culture dependent. When a tone is produced with a fun-
damental frequency that is not on a position allowed by the tuning (and
the deviation is larger than the just noticeable difference), it is perceived as
out-of-tune.

2.2 Octaves and chromas

Both in acoustics and in musicology, the term octave is used in virtually
the same way. Two tones are said to be an octave apart when their fun-
damental frequencies have a ratio of 2:1. These tones lead to the percep-
tion of two notes and the distance between them is also named an octave.
Two notes that are an octave apart are perceived to be more similar than
any other note pair, a phenomenon which is called the octave circularity or
octave equivalence. This phenomenon is so dominant that it is reflected in
all tuning systems. Concretely, this means that a tuning is defined as the
division of an octave into a number of sections, expressed as proportions
of the octave. This division is then replicated over all octaves!. For this
reason, Shepard (1964) proposed to represent pitch perception as a two-
dimensional helix structure rather than a one-dimensional line. This pitch
helix can be seen in figure 2.1. We will call the vertical and the angular
dimension the register and the chroma respectively. Notes whose pitches
are one or multiple octaves apart are thus said to have the same chroma,
or alternatively, they belong to the same pitch class. This bi-dimensional
representation of pitch, such as “C4” or “c’”, has been already apparent in
Western musical notation long before Shepard’s research. We can clearly

distinguish separate notations for chroma (“C” or “c”) and register (“4” or
) I/)

Since the 18th century, the 12-tone equal temperament (12-TET) is the de
facto standard tuning for Western music, so logically, it is also the tuning
used in this work. It is obtained by dividing an octave into twelve parts,
equally distributed on the logarithmic frequency axis. Consequently, there
are twelve different chromas. The frequencies of the 12-tone equal tem-

In theory, nothing stops you from coming up with a tuning system where the spacing of
notes is different from octave to octave, or even a system that ignores the octave equivalence
altogether, but this is so counterintuitive to human perception (and the underlying physical
harmonic series) that this is not done in practice.
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Figure 2.1: The pitch helix proposed by Shepard and its projection onto the chro-
matic circle

perament are
f=20f V2€Z @.1)

Nowadays, the reference frequency f,¢ from which the other notes are de-
rived is set to 440 Hz most of the time, which even became an ISO standard
(1975), but historically this has varied widely.

The distance between two adjacent frequencies is called a semitone. The
major benefit of the 12-TET tuning is that it keeps the distance between two
adjacent notes constant. This greatly simplifies the calculation of distances
between notes, a simplification on which we will rely heavily for the fol-
lowing definitions. This also means that some of those definitions do not
hold for other tunings.

Chromas can be represented using a simple index as follows

index = (12 log, (f)> mod 12 (2.2)
f ref
where the reference frequency gets assigned the index 0 and the others
range up to 11. Most commonly however, a letter notation is used. Strik-
ingly enough, this letter notation does not assign a single, unique name
to each chroma. Rather, seven out of the twelve chromas are assigned a
letter from A to G, starting with A for the chroma of index 0. In addition,
two modifiers are introduced: the sharp § which increases the chroma by
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index sharps naturals flats

0 A
1 At Bb
2 B Ch
3 Bt C
4 Ct Db
5 D
6 Dt Eb
7 E Fb
8 E4 F
9 F4 Gb
10 G
11 G4 Ab

Table 2.1: The most common names for the twelve chromas

one semitone and the flat b which decreases the chroma by one semitone.
The collective musical name for these modifiers is accidentals. Combining
natural names, defined as names without accidentals, with modifiers per-
mits us to give a name to the remaining five chromas, but it also implies
that one chroma can have multiple names?, as can be seen in table 2.1. The
reason that these five chromas can only be named indirectly is entirely due
to historical reasons. Under no circumstances should this be interpreted
as a distinction between more and less important chromas. Moreover, just
because a chroma can be named using a simple natural name, does not
mean that it is always called that way, e.g. a “B” chroma is still called “Cb”
in some cases. Which name is used when is determined by a set of music
theory rules that take the context into account, but a priori all names are
used, because they imply different musical relations. Two different letter
notations referring to the same chroma are said to be enharmonically equi-
valent. They only differ in their spelling. In the remainder of this work,
the spelling will be ignored under certain circumstances. If this is the case,
every chroma name can be replaced by an equivalent name.

The register of a note is often expressed by referring to a reference
octave. Therefore, the pitch axis is divided into sections of one octave wide
which get assigned a number. Curiously, the convention is to let these sec-
tions range from one C to the next C, lower boundary included, rather than
from A to A. The register of a note is then indicated by giving the num-
ber of the octave which encloses its natural note>. According to the ASA

2It is also possible to apply the modifiers multiple times which leads to a whole new set of
alternative names for the chromas, e.g. Bbb as an alternative name for the chroma with index
0. This causes every chroma to have multiple possible names, even though it does not appear
so in the table because it lists only the most common ones.

3The fact that the register number is determined based on its natural note name, before an
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scientific pitch notation (Young, 1939), the octave ranging from 261.6 Hz
to 523.2 Hz gets number 4 assigned to it. It thus ranges from C4 to C5,
such that the reference note of 440 Hz is called A4. Another convention
is the Helmholtz notation, where the reference octaves are not indicated
by numbers but by typographic changes to the chroma letters, e.g. “C” or
“ C// ”.

Mathematically, the collection of all notes will be represented as N and
the collection of all twelve chromas as P, such thata € N and b € P means
that the variable a represents a note and b a chroma.

2.3 Pitch intervals between notes

The pitch distance between two notes is called a (pitch) interval (and is unre-
lated to the mathematical notion of interval). We have already encountered
the most important interval, the octave, in the previous section. The other
intervals are divided into those that are smaller than an octave, which we
call simple intervals, and those that are larger, called compound intervals. The
latter are called this way because they can be represented as the sum of
one or more octaves and a simple interval. We notate the pitch interval
between two notes a and b as D(a, b),Va, b € N.

Intervals can be expressed in a number of ways, much like a distance
between two points can be expressed in multiple units, such as centimetres
or inches. A first option is to count the number of semitones between the
notes, e.g. D (Eb4, G4) = 4. This representation is not able to take the dif-
ference between enharmonically equivalent notes into account however:
both D (Eb4,G4) = 4 and D (D4, G4) = 4. Although for some uses, like
ours, this might be an advantage rather than a disadvantage. A more gen-
eral option is to give the interval a name. This name consists of two parts:
a generic (interval) number and its quality. The generic number counts the
number of natural chroma names, thus without accidental, that lie between
the two notes, start and end note included. For example, the generic num-
ber of the interval between D#4 and G4 is 4 (D-E-F-G, four natural chroma
names in between), whereas it is three for the interval between Eb4 and
G4. The quality can be either perfect, major, minor, diminished or augmented,
which gets abbreviated as P, M, m, d or A, and it depends on the number
of semitones between the notes. The quality therefore serves to distinguish
between intervals with the same generic number, but where the accidentals
of the constituting notes differ. For instance, the intervals between D#4-G4
and D#4-Gf4 both have generic number four, but they are a diminished
fourth (d4) and a perfect fourth (P4) respectively. Not every combination

optional modifier is applied, implies that notes of the same pitch do not necessarily have the
same register number, a B3 note has the same pitch as Cb4 for instance.
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of generic number and quality gives a valid interval, however. A table of
allowed combinations can be found in table 2.2 together with the equival-
ent distance in semitones. The final names for our example intervals are
thus D (Eb4,G4) = M3 and D (D4, G4) = d4. It can be seen from these
examples that the multiple spellings for naming a note cause intervals to
have multiple possible names too, known likewise as enharmonically equi-
valent intervals. Note that these are aurally indistinguishable because the
constituting notes are the same, only named differently*. Analogous to
note names, we will encounter situations in which the spelling of intervals
is ignored in the remainder of the text.

2.4 Chroma intervals

A pitch distance can also be defined between chromas. But because the
register information is lost, the relative positions of both chromas on the
frequency axis becomes ambiguous. In our definition of the upwards chroma
interval Dyp(a,b),Va,b € P between two chromas a,b, we always assume
that the second chroma b falls within the octave above a. The distance
between them is therefore always a simple interval: P1 < Dup(a, b) < P8
when expressing the chroma interval as a name or 0 < Dyp(a,b) < 12
when expressing it as a number of semitones (the top half of table 2.2). A
chroma interval thus becomes directional, Dyp(a,b) # Dyp(b,a), unlike
a pitch interval, whose direction is determined by the pitch values itself>,
D(a,b) =D(b,a),Va,b € N.

2.5 Spatial representations of chroma

From the spatial organisation of notes as a helix and the definition of chro-
mas, it directly follows that chromas can be represented on a circle that
arises from the projection of the helix on the ground plane. This can be seen
in figure 2.1. The order of the note axis inside an octave is preserved and
every chroma appears only once. It does not matter which chroma is used
as the starting point, they all lead to the same result. This arrangement of
chromas is called the chromatic circle. The distance in semitones between

This is the main instance where the choice for 12-TET tuning greatly simplifies music
theory. It both explains the popularity of 12-TET and the reason why there are multiple names
for the same notes and intervals in the first place: they are not necessarily the same in other
tunings.

5To be complete, we can also define the downwards chroma interval Dyoun (2,b) where
b is assumed to fall within the octave below a. The upwards and downwards chroma inter-
val then form symmetrical pairs Dyp(a,b) = Dgown (b, a), but we only require the former to
understand the remainder of this text.
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semitones interval names
0 pure unison (P1) diminished second (d2)
1 augmented unison (A1) minor second (m2)
2 major second (M?2) diminished third (d3)
3 augmented second (A2) minor third (m3)
4 major third (M3) diminished fourth (d4)
5 augmented third (A3) perfect fourth (P4)
6 augmented fourth (A4) diminished fifth (d5)
7 perfect fifth (P5) diminished sixth (d6)
8 augmented fifth (A5) minor sixth (m6)
9 major sixth (M6) diminished seventh (d7)
10 augmented sixth (A6) minor seventh (m7)
11 major seventh (M7) diminished octave (d8)
12 augmented seventh (A7) pure octave (P8) diminished ninth (49)
13 augmented octave (A8) minor ninth (m9)
14 major ninth (M9) diminished tenth (d10)
15 augmented ninth (A9) minor tenth (m10)
16 major tenth (M10) diminished eleventh (d11)
17 augmented tenth (A10) perfect eleventh (P11)
18 augmented eleventh (A11) diminished twelfth (d12)
19 perfect twelfth (P12) diminished thirteenth (d13)
20 augmented twelfth (A12) minor thirteenth (m13)
21 major thirteenth (M13) diminished fourteenth (d14)
22 augmented thirteenth (A13) minor fourteenth (m14)
23 major fourteenth (M14) diminished double octave (415)

Table 2.2: Pitch intervals in 12-TET. The first twelve double as chroma intervals.
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Figure 2.2: Chromatic circle

two chromas can be counted by traversing in a clockwise direction along
the circumference of this circle, given that two chromas are spaced one
semitone apart. A graphical depiction can be seen in figure 2.2.

The chromatic circle is not the only spatial organisation of chromas that
is perceptually motivated. An alternative configuration is based on the
interval of a perfect fifth (P5), whose notes sound very well together and
therefore are perceptually close, second only to an octave relationship. This

can be explained by looking at the ratio of two consecutive harmonics of a

234 3
tone. They form a sequence of the form 123 and the ratio > is almost

(for 12-TET) or even exactly (for some other tunings) equal to the ratio of
the fundamental frequencies of two notes a perfect fifth apart. Because a
perfect fifth equals seven semitones, this ratio for 12-TET is equal to

47
Afps = 2 tret 0% 1498vie Z (23)
zﬁfref

As a consequence, two notes a perfect fifth apart will have a large number
of overlapping harmonics, which gives the impression that they are per-
ceptually close. When we form a chain of chromas increasing by a perfect
fifth from one to the next, all chromas are encountered exactly once before
arriving back at the starting chroma. The circular figure that appears in this
way is called the circle of fifths, shown in figure 2.3. Adjacent chromas are
said to be one step on the circle of fifths apart, or one circle step for short.
The circle of fifths gives us another way to numerically express a chroma
interval, in addition to the distance in semitones which is counted on the
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9 10 11
3 10 5

semitones 0

1 2 3 4
circlesteps 0 7 2 9 4 11

Table 2.3: Conversion between distance in semitones and in circle steps

chromatic circle. We can likewise count the number of circle steps on the
circle of fifths, again in the clockwise direction for an upwards chroma in-
terval. This number does not distinguish between enharmonically equi-
valent chromas, like the number of semitones in between them. These
two representations must be seen as different numerical expressions of the
same musical distance, as they can unambiguously be converted from one
to another. Each of them emphasises a different perceptual relation and
a corresponding spatial organisation. A conversion table can be found in
table 2.3.

2.6 Chords and keys

In a music piece, notes do not appear in isolation, but together. The study
of how notes sound together is called harmony, from the Latin “harmonia”,
signifying agreement. It encompasses both the study of notes that sound
simultaneously, forming a chord, and of notes sounding sequentially, form-
ing a melody. These two terms are also called the vertical and the horizontal
components of harmony, in allusion to the horizontal time axis. Most West-
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ern music contains both aspects of harmony, where chords provide an ac-
companiment over which a melody is played. However, the distinction
between which notes belong to a chord accompaniment and which ones
belong to the melody, can be questionable in some cases. These two as-
pects converge in the study of the broader musical context, established by
both chords and /or melody notes in succession. This broader musical con-
text is called a key.

2.6.1 Chords

We define a chord as an unordered set of 2 or more simultaneously sound-
ing chromas coming from at least 3 different notes. A chord is thus a
compact representation of a collection of simultaneously sounding notes,
where the register and number of played notes is lost. The extra inform-
ation needed to expand a chord into a collection of notes, i.e. the number
of notes of each pitch class and their register, is called the chord voicing. A
subset of the voicing information is the inversion of a chord. It just states
the chroma of the lowest note in the chord, without giving its exact register
nor specifying whether it is repeated in any higher registers. In our defin-
ition of chord estimation, the goal is only to obtain the chord information
from a recording, not the inversion or complete voicing.

Suppose we have the collection of notes {C4, E4, G4, C5}. It consists of
4 notes with 3 different chromas, so it complies with our definition of a
chord. Specifically, the chord would be {C, E, G}. The order of the chro-
mas does not matter, but we naturally need to write them from left to right
in some order, so {E,G,C} or {C,G,E} would be equivalent notations.
Counterexamples of a chord are {C3,C4,C5,C6} or {C4, E4}, where the
reason for excluding them as chord is the fact that the collection of notes
only contains one chroma, or that there are only two notes respectively.
The voicing information to get back to the example note collection we star-
ted from is {C — 4,5, E — 4; G — 4}, but other voicings of {C,E, G} lead
to other note collections such as {E3, C4, E4, G4} or {G6,C7,G7,C8, E8}.
This clearly illustrates the loss of information associated with labelling a
collection of notes as a chord, but the voicing information is not necessary
for the study of harmony. So, this is a deliberate choice to get rid of super-
fluous information.

Without loss of generality, one chroma (which does not necessarily need
to be a part of the chord, but in most cases it is) can be picked as a refer-
ence chroma and all chord chromas can be expressed as distances to this
reference. In this representation, the reference chroma is called the root of
the chord and the set of chroma intervals is called the chord type. These
two components make up the name of a chord. If we choose C as the root
of our example chord {C, E, G}, the associated chord type is { P1, M3, P5}.
Other possible root-chord type combinations that describe the same set of



26

Music theoretical background information

chromas are E {P1,m3,m6}, G {P1,P4, M6} and D {M2, P4, m7}. Which
chroma is chosen as the root depends on the context, so in absence of any
contextual information, all representations are equally valid. In practice
however, some chord types appear more often than others and if a chord
can be written as one of those common chords, it most likely will. We des-
ignate the collection of all considered chords as C and of that of all chord
types as T. A variable that represents a chord is therefore symbolised as
¢ € C, aroot chroma variable as r € P and a chord type as p € T, such that
¢=(rp)

Chords can be divided into categories according to the number of chro-
mas they are made of. Three-chroma chords are called trichords and four-
chroma chords are called tetrachords. Both trichords and tetrachords con-
tain a subset of common chords fulfilling an extra constraint, namely those
formed by stacking intervals of a third on top of each other. These chords
are said to be triadic and are perceived as very pleasant combinations of
chromas. Therefore most music consists predominantly of triadic chords.
A triadic trichord is called a triad and similarly, a triadic tetrachord is a tet-
rad. Triadic chords can be easily recognised because the generic numbers
of their composing chroma intervals form the sequence 1,3,5, (7).

Representing a chord type as a collection of chroma intervals might be
the most unambiguous and complete way, but it is also rather long and
cumbersome. The most common chroma interval collections therefore get
a name assigned to them. Some of the most popular chord type names are
listed in table 2.4a together with their abbreviations as defined by Harte
et al. (2005). Our example collection of chromas {C, E, G} will therefore
most commonly be interpreted as a Cmaj chord, because the alternatives
for the root lead to chord types that are absent from this list of common
chord types. These other representations are not wrong however, and
could be preferred in specific circumstances, given enough support from
the context. It is not always that obvious to decide what is the most appro-
priate chord representation. For example, the chromas {A,C,E, G} can be
interpreted as either an Amin?7 or a Cmaj6 chord, which are both common.
The context will be decisive in choosing one over the other in this case.

2.6.2 Keys

The broader musical context called key introduces a certain hierarchy to the
chromas, centred around a principal chroma, called the fonic. This tonal
centre is perceived as the most stable chroma over a period of time. It acts
as a centre of balance around which other chromas shift. Therefore the
tonic is more often than not the last note of a music piece, because it has a
sense of finality and completion. Given this tonic, it is decided for every
other chroma whether it belongs to the key (which is always true for the
tonic) or not. The subset of chromas that belong to a key form the basic
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2.6 Chords and keys



28

Music theoretical background information

building blocks for constructing melodies and chords in that key. Chromas
not belonging to the key are therefore far less likely to appear in music
played in that key than chromas that do belong to it. Similar to a chord
type, the collection of chromas that belong to a key is represented as a set
of upwards chroma intervals starting from the tonic. Together they form
the mode of the key. The most common modes are listed in table 2.4b with
their name.

The complete name of a key is formed by combining the letter notating
of the tonic with the mode name. Example keys are therefore “G# major”
and “B minor”. Unfortunately, there is some overlap between the mode
and the chord type names, but we will try to minimise confusion by al-
ways abbreviating chord type names, e.g. “maj”, and always writing mode
names in full, e.g. “major”. We represent the collection of all keys as K and
the collection of all modes as M. A key variable is mathematically repres-
ented as k € K, and its tonic and mode as t € P and m € M, such that
k= (t,m).

2.6.3 The interdependence between keys and
chords

Chords and keys are examples of symbolic labels that convey a certain
meaning. Both describe aspects of harmony, i.e. they both interpret notes
by aggregating certain aspects and ignoring others. The two terms are dis-
tinguished from each other by their difference in time scale, and accord-
ingly, in abstraction level. A chord describes a blend of notes at a single
point in time, so it covers multiple simultaneously sounding notes. There-
fore, there is a direct relation between the physical tones that are sounding
at that single moment and the chord label. A key on the other hand, is
concerned with longer time spans containing multiple notes in succession,
not necessarily overlapping in time. It is therefore a higher level descriptor
that cannot be used to represent a single time instance, only a sequence of
notes.

This difference in abstraction and temporal level between chords and
keys can be illustrated by the following observation. Speaking in the strict-
est sense, it is not possible to play any chord or key, only notes can be
played by generating the corresponding physical tones. Neither chords
nor keys contain enough information to do this unambiguously. However,
when asked to produce a certain chord, a musician will fulfil this request
without hesitation. He will then play a number of simultaneously sound-
ing notes that are exemplary for that chord label, but there is no unique
answer. Its exact manifestation will vary depending on the musician’s
background and instrument. Other options are equally valid due to the
incomplete chord description, but all will sound reasonably similar. You
can therefore play a chord of a given label, but not the chord.
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2.7

On the other hand, when asked to play a certain key, a musician will
say that this is impossible. No single combination of notes is exemplary
enough to represent the myriad of possible variations. Moreover, estab-
lishing a sense of key requires a longer exposure over time. In other words,
a chord can be created by a single action of a musician, but a key requires
multiple actions. Musicians therefore do not speak about playing a key
with a certain label, only about playing multiple notes or chords in a key.
So when creating music from symbolic notation, a key has multiple or-
ders of magnitude more possible appearances with a larger variety than a
chord, but the latter still has a non-trivial amount of different appearances.

The concepts of keys and chords are strongly intertwined. On the one
hand, a key indicates a preference over certain chromas, such that it is more
likely that those chords are played that contain only chromas belonging to
the key. These chords are said to be diatonic with respect to the key. On
the other hand, a sequence of chords gives a strong indication of what the
encompassing key might be®.

At times, a key or a chord will be absent from a music piece. We will
designate these special cases as the none key and none chord. The silence at
the beginning and end of a piece is an obvious example of instants without
key or chord, but there are some instances where music is audible, yet no
chord or key is present. For instance, a melody sung by a single voice has
a key but no chords, and a drum solo has neither. We can thus segment a
music piece into regions in which the key or chord stays constant and label
those regions. The resulting two sequences provide a compact representa-
tion of the harmony of the piece. These timed sequences are the objective of
key and chord estimation algorithms. Just the succession of chords or keys
in a piece, without timing information, are also called the chord changes and
the key changes. A key change is also referred to as a modulation, so there
are N — 1 modulations in a sequence of N keys.

Reasoning about keys and chords fo-
gether

2.7.1 Relative chords in a key

In order to use the most informative representation of music, we always
consider keys and chords together in this work. We assume that every

®The constituting chromas of all chords in a sequence form a non-uniform histogram in
which one can identify the division between chromas that belong to the key and those that do
not belong. This becomes clearer when the chord sequence gets longer. Another indication
are the chroma intervals between subsequent roots, where certain fixed patterns are strongly
indicative for a certain key.
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point in time can be labeled with a key k and a chord ¢ (where the key
and chord can also be “none”). From the definitions it follows that a key-
chord pair (k,c) can equivalently be described as a quadruple (t,m,r, p)
of tonic ¢, mode m, root r and chord type p. The tonic and root represent
chromas having an absolute interpretation, whereas the mode and chord
type are collections of chroma intervals that are relative to the tonic and
the root. An example key-chord combination is depicted in figure 2.4a.
We can now, without losing information, replace the absolute root by the
chroma interval i between the tonic and the root: i = Dy (t,7), such that
(t,m,r,p) = (t,m,i, p). We will call the combination (i, p) the relative chord
¢’. Now every component of the key-chord combination, except the tonic
itself, is expressed in relation to the tonic. The mode and root as distances
to the tonic and the chord type as distances to the root (itself is expressed as
a distance to the tonic). The corresponding key-relative chord combination
of our example is given in figure 2.4b. We thus end up with four different,
equivalent representations of the same key-chord combination which can
be easily derived from each other: (k,c) = (t,m,r,p) = (t,m,i,p) = (k,¢').
In cases where confusion can arise between a chord c and a relative chord
¢/, we might underline the difference by calling the former an absolute chord.

The reason for introducing the concept of a relative chord, is that this
makes the relation between key and chord more explicit. More specific-
ally, it makes it easier to take transposition invariance into account. By this
we mean the phenomenon that the identity of a music piece stays largely
intact when all notes are moved over the same number of semitones up
or down (and consequently the keys and chords are also moved over the
same distance) (Cuddy and Cohen, 1976). It is easy to see that moving each
note a fixed number of semitones is easier in a key-relative chord combin-
ation (k,¢’) than in a key-chord combination (k, ¢) because the former re-
quires only a single change to the tonic, whereas both the tonic and the
root need to be synchronously adapted in the latter representation. For
the aforementioned reason, one is mostly concerned with the changes of
chords relative to the key when studying harmony. The absolute chroma
of the tonic therefore does not matter very much and any musicological
knowledge about chord sequences would best be expressed in terms of
(m,i,p) = (m,c’). This line of thought reflects the way scholars have been
analysing harmony for centuries.

The root chroma interval i can be expressed like any chroma interval
through its name or its numerical distance, but for upwards chroma inter-
vals starting at the tonic of a given key, a special naming scheme is cus-
tomary. If the root interval is diatonic in the key, it is represented by its
generic number stylised as a Roman number. If the root interval is non-
diatonic, it is derived from these Roman numbers by adding modifiers,
much like chroma names are derived from the natural chroma names. This
representation therefore depends on the mode, which means that it can



2.7 Reasoning about keys and chords together 31

, tonic C
key C major
modeP1 M2 M3P4 P5 M6 M7
) root D
chord Dmin r~— >
chord type P1 m3 P5

(a) A key-chord combination expressed separately with absolute tonic and root

degrees | N v o v Vi
tonic C

key C major ‘

modeP1 M2 M3P4 P5 M6 M7
\ . . .

root interval M2=//
Sy

relative chord /imin N/ >

chord typeP1 m3 P5

(b) A key-relative chord combination with the root expressed relatively to the tonic

Figure 2.4: The difference between considering a key-chord pair as two separate
entities or as a key-relative chord pair where the root is expressed relative to the
tonic. The latter representation is easier to move around because it contains only
one absolute chroma such that changes to key and chord always stay synchronised.
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I oI 1m I1v. v VI VI

major P1 M2 M3 P4 P5 M6 M7
minor P1 M2 m3 P4 P5 m6 M7

Table 2.5: The degrees and names of the corresponding chroma interval starting
from the tonic for two modes

only be used when the key is known. Moreover, the Roman numbers refer
to different chroma intervals according to the mode in which they are in-
terpreted. When referring to a chroma relative to the tonic of a key, this
chroma is called a degree of the key. A list of the corresponding chroma
interval names for the degrees of the major and minor mode can be found
in table 2.5. Because the major and minor mode differ in the quality of
their third and sixth chroma interval, the I1Ird and V Ith degree also differ.
In our example in figure 2.4b, the root chroma interval M2 can therefore
be written as II. It is also easy to see that the Dmin chord is diatonic in C
major, because the chord is entirely composed of key degrees.

2.7.2 Diatonic chords in a key

Degrees take on a principal role in the study of harmony. More specific-
ally, the diatonic triadic chords created on the degrees of a key are very
commonly used. They are constructed by considering each of the degrees
in turn as the root of a chord, and by stacking thirds on top of this root
such that all chromas in the resulting chord are diatonic in that key. For in-
stance, if we want to construct the diatonic triad on the I1Ird degree of the
major mode, its root chroma interval must be M3, starting from the tonic.
By stacking thirds on this root, we get the chord consisting of the chroma
intervals { M3, P5, M7} upwards from the tonic. This can easily be found
by alternating chroma intervals in the first row of table 2.5, starting from
the desired root. These chroma intervals are now expressed in reference to
the tonic, which can technically be considered as the chord I{ M3, P5, M7},
where the tonic is chosen to be the root. It is however more convenient to
change the root to be 11, as was intended from the beginning, giving us
11T {P1,m3, P5} or I1Imin. Therefore the diatonic triad on the IIIrd degree
in a major key is always a min chord. The whole process is illustrated in
figure 2.5. The resulting chord type depends on the quality of the chroma
intervals that form the chord, which themselves are determined by which
degree is chosen as the root and therefore varies from degree to degree.
The triad on the IVth degree of the major mode, for instance, is always a
maj one.

The diatonic chords on the key degrees are closely related to the concept
of harmonic function. Music can be seen as a constant shift of balance between
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Figure 2.5: Constructing diatonic chords

tension and relaxation (Bigand et al., 1996), between stability and surprise.
Some chords are very effective in creating a relaxing effect on the listener,
while others cause a more unnerving effect, and this alternation is used
to make music interesting. The diatonic chords on the degrees now have
a well-defined correspondence to this whole spectrum of effects on the
listener, e.g. in the major mode, the chord on the Ist degree is always
perceived very stable, whereas the one on the VIIth builds up tension.
The function of a chord therefore refers to the purpose of that chord in this
spectrum of emotional effects. An important part of the study of harmony
is to identify the harmonic function of all chords. This can then provide a
deeper insight into the music, as it is a sort of explanation of what is going
on in the piece. Furthermore, it also gives an indication of how variations
of the piece can be created without fundamentally altering the piece. Clas-
sically trained composers rely on this reasoning while writing music, as do
jazz musicians when they reharmonise a piece to make it novel and more
interesting.

2.7.3 The diatonic circle

By now it is clear that the degree representation is strongly connected to
the concept of diatonicity. There is one spatial representation that under-
lines this, which is called the diatonic circle (of fifths). It can be seen in
figure 2.6. It is formed by placing the degrees on a circle with a distance of
a fifth between adjacent degrees. In contrast to the previous circular con-
stellations, the labels on the circle are no longer the twelve chromas, but
the seven degrees of a mode. Another difference with the circle of fifths
in figure 2.3, is that the distances clockwise along the circle are not always
perfect fifths, but rather those fifths that are required to end up in the next
diatonic degree. This depends on the specific mode, because the chroma
intervals corresponding to the degrees are also mode-dependent. For ex-
ample, the distances on the major mode diatonic circle are perfect fifths for
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Figure 2.6: The diatonic circle

all except between VII and IV, which is Dyp (M7,P4) = d5, a diminished
fifth. Similarly, on the minor mode diatonic circle all clockwise distances
are perfect fifths, except between II and VI, which is Dyp (M2, m6) = d5.

As a final note, it should be stressed that the interpretation of a chord
as a relative chord in a key is purely a music theoretical concept, intended
to reason about the effect that a certain chord sequence has on the listener,
which is directly related to his expectancy. It does not have an equivalent
acoustic phenomenon. In other words, the key of a piece has no implication
on the sound of a chord. One can therefore only speak about a relative
chord when the key at that time is known.



Past and current trends in key

3.1

and chord estimation

In this chapter, we review the existing literature about chord and key es-
timation. Therefore we first divide the existing systems based on the out-
put they produce and focus especially on the way the interdependence
between the two is taken into account. Later on, we make abstraction of
the specific output generated by the system and discuss both key and chord
estimation in a unifying framework. By abstracting away the label type, we
can focus on the parallels between key and chord estimation. We can then
more easily study the specific components that make up a system and their
role in the estimation process.

An overview of systems according to
output

We first make the distinction between systems that handle either keys or
chords separately and those that estimate them together. The first group
will be called separate key and chord estimation systems and they are naturally
divided into key-only estimation systems and chord-only estimation systems.
The second group are the combined key-and-chord estimation systems. The
latter systems incorporate both keys and chords somewhere in the process,
either as inputs, as outputs or in between. A first subcategory herein is that
of sequential key-and-chord estimation systems, where the output of the key
estimation is used as supplementary input to the chord estimation, or vice
versa. We also include all systems that start from symbolic key or chord
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labels, irrespective of how they are obtained (automatically or manually).
They can be considered as just the second part of a sequential system. In
contrast, simultaneous key-and-chord estimation systems estimate both types
of symbolic labels in one integrated process. The system we will propose
in the subsequent chapters is one of this last subtype.

Another differentiator, specific to key estimation systems, is whether
the global key or local keys are estimated. In the former case, a single key
label is assigned to the whole music piece. For the latter, the piece is di-
vided into segments of a constant key and each one is labelled. Global
estimation has the advantage that it is easier, as there are more observa-
tions to base the decision on and no segmentation needs to be done. Its
disadvantage is that in songs with key changes, it will inevitably lead to a
loss of information, namely the secondary keys and the location of the key
changes.

3.1.1 Separate key and chord estimation sys-
tfems

Automatic key and automatic chord estimation started out as two separate
fields. The early attempts at key recognition (Purwins et al., 2000; Pauws,
2004; Gémez and Herrera, 2004) were greatly influenced by earlier efforts
on symbolic key estimation (Takeuchi, 1994; Vos and Van Geenen, 1996;
Temperley and Sleator, 1999). These, in turn, were developed in close rela-
tion with experiments on musical perception, partly in the hope that suc-
cessful automatic estimation methods would also offer an insight into the
mechanisms governing human key recognition. Seminal in this regard was
the work of Krumhansl and Kessler (1982).

In parallel, the first systems for chord estimation were being developed
(Fujishima, 1999; Nawab et al., 2001; Su and Jeng, 2001). Especially the
method of Fujishima (1999) gained a lot of traction, because of the type of
features and feature modelling it introduced. The work of Harte and Sand-
ler (2005); Oudre et al. (2011) for instance, are direct descendants of this.
Starting with Sheh and Ellis (2003), information about chord changes starts
to be taken into account. Their work can be considered as a first attempt at
modelling the wider musicological context. Alternative formulations were
proposed by Bello and Pickens (2005); Papadopoulos and Peeters (2007);
Burgoyne et al. (2007).

3.1.2 Combined key and chord estimation sys-
fems

The first systems that exploit the interdependence between keys and chords
gradually started to appear from 2004 on. Note that we do not consider a
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simple grouping of independent key and a chord estimation algorithms
into one system, as in Ryynédnen and Klapuri (2008), as a “combined” sys-
tem. There needs to be some interaction between the two algorithms to
be qualified as such. One possible approach to link a key estimation and
a chord estimation system together consists of supplying the output of
one system to the other. Because either direction of the key-chord rela-
tion results in valid information, both key-after-chord and chord-after-key
approaches are possible.

For key-after-chord systems, the idea is that a key can easily be de-
rived from a sequence of chords. The chords estimated in the first stage
can therefore be used as features for the key estimation. This avoids the
need for lower-level spectral features. The key estimation procedure it-
self is either rule-based (Shenoy and Wang, 2005; Maddage, 2006) or based
on an HMM with individual chords (Papadopoulos and Peeters, 2012) or
chord pairs (Noland and Sandler, 2009) as observations. The resulting out-
put can be both global (Shenoy and Wang, 2005) or local keys (Maddage,
2006; Noland and Sandler, 2009; Papadopoulos and Peeters, 2012). In most
cases, only the best chord sequence produced by the first stage is used in
the second stage, meaning that any errors made in the first stage propag-
ate to the second one. We call this a deterministic dependency between
the chord and key estimation process. To overcome this disadvantage,
Papadopoulos and Peeters (2012) do not just use the best chord sequence
as input for the key estimation, but the probabilities of each chord label at
each frame. These probabilities are the intermediate results of the chord
estimation in the first stage. They establish that this probabilistic use of the
chord results outperforms the deterministic approach of using only the op-
timal sequence. Another disadvantage of key-after-chord systems is that
the chord information can be used for the key estimation, but not the other
way around. Shenoy and Wang (2005); Maddage (2006) resolve this draw-
back by making the process iterative. They refine the first-stage chords by
exploiting the newly found key information in a third stage. This refine-
ment is done through heuristics based on music theory.

Chord-after-key systems make use of the fact that a given key gives a
strong indication towards which chords can be expected. The key inform-
ation can then be used to restrict the number of chords that are still eligible
[Zenz and Rauber, 2007, the second chord iterations of Shenoy and Wang,
2005; Maddage, 2006], to create context models that depend on the key
(Sailer and Rosenbauer, 2006; Khadkevich and Omologo, 2009b) or to con-
sider only those parts of the spectrum that correspond to diatonic tones in
the given key (Wang and Wechsler, 2013). The last system is an example
of local key estimation, the other systems limit themselves to finding the
global key. Similar to key-after-chord systems, chord-after-key systems
cannot benefit from knowledge about the chords during the key estima-
tion phase. All key errors therefore propagate into the chord estimation
step, especially because only deterministic information is considered in
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the given examples. Wang (2013) proposes an iterative system to over-
come this problem, where he first determines all the local keys present in
the song without pinpointing their exact location. This information is then
used to restrict the parts of the spectrum that are considered for chord es-
timation. Finally, the estimated chords and their boundaries are employed
to locate the exact boundaries of the local keys in a third stage.

Estimating keys and chords simultaneously resolves most of the prob-
lems inherent to a sequential approach. By delaying all hard decisions un-
til both the optimal key and chord sequences are jointly determined, all
key-chord label pairs are considered at all times. The dependency between
keys and chord is inherently probabilistic. Therefore there is no chance of
a preemptive rejection of a chord or a key that would become optimal after
considering additional information. The greatest disadvantage of such an
integrated approach is of course its increased complexity, both conceptu-
ally and computationally. One possibility to restrict the complexity is to
consider only the global key of a piece, like in the system of Yoshioka et al.
(2004), which is rule-based. More recent systems commonly use a probab-
ilistic framework, mostly HMMs. We can distinguish both global key (Lee
and Slaney, 2008) and local key (Burgoyne and Saul, 2005; Catteau et al.,
2007) approaches. The differences between these systems lie in the way
keys, chords and their interaction are modelled. This will be discussed in
more detail in section 3.3.

3.1.3 Joint estimation with other musicological
concepts

Apart from keys and chords, other musical concepts can be labelled in
the estimation procedure as well. Similar to using the interdependence
between keys and chords, one can try to exploit the dependency between
such a third concept and keys or chords. The extra information can then
help to restrict key or chord labels to more specific positions and combina-
tions.

One example of such a concept is the metric position, i.e. the position of
a beat within a measure. Here the premise is that a chord change is more
likely to happen at some positions in the measure than at others. An intu-
itive example would be that it is more likely to change chords on the first
beat of a measure than on the second. This dependency has been taken into
account to form a combined metric position/absolute chord estimation
system (Papadopoulos and Peeters, 2011), as well as a larger simultaneous
estimation of keys, chords and metric position (Mauch and Dixon, 2010b).
Also in the iterative sequential key-and-chord system of Maddage (2006),
a metric structure estimator early in the chain can revise chord changes
based on their metric position.

Another musical concept that is intertwined with chords is the bass line.
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The bass note that is played together with a chord often gives an indication
of the chord itself. Because the bass note is the lowest note by definition,
its fundamental frequency cannot be obscured by interfering harmonics of
any other note in the spectrum. It can therefore be estimated comparatively
easy. The combination of these two qualities makes the bass line a valu-
able contribution to a chord context model. The bass line information has
both been included deterministically as a preceding step (Yoshioka et al.,
2004), or probabilistically integrated into a hypothesis-search-based sim-
ultaneous bass-line, global key and chord estimation system (Sumi et al.,
2008) or into a completely probabilistic bass-line and chord system (Itoy-
ama et al., 2012).

3.1.4 Related work in the symbolic domain

It is not uncommon that researchers start with a symbolic key and/or
chord estimation system and later extend it such that it can process audio
as well. For instance, Chew (2002) presented a system for symbolic local
key-only estimation based on a new geometric model of tonality, called the
spiral array, which later gained the ability to handle audio signals (Chuan
and Chew, 2005). The sequential key-after-chord system of Noland and
Sandler (2009) was also first conceived to work with symbolic data (No-
land and Sandler, 2006). The simultaneous local key and chord audio
estimation of Rocher et al. (2010) was preceded by work of the same au-
thors on symbolic key estimation (Robine et al., 2008) and chord estimation
(Rocher et al., 2009). The final examples of symbolic/audio system pairs
are the key-only estimation systems of Hu and Saul (2009b) and Hu and
Saul (2009a), or the chord-after-local-key systems in Wang and Wechsler
(2012) and Wang and Wechsler (2013). In most of these cases, the adapta-
tion from symbolic system to audio system was achieved by replacing the
feature extraction stage such that the audio equivalent of the symbolic fea-
tures is calculated. For a sequential key-after-chord system such as the one
by Noland and Sandler (2009), this means that the symbolic chords used
as input for the key estimation are replaced by chord labels estimated from
audio. Other systems usually substitute the symbolic notes that are used
as input for their spectral estimates. The remainder of the system can then
stay the same.

These examples already show that there is a close link between audio
and symbolic estimation systems, but there are other examples of work
on symbolic music that has not been reused by the original authors them-
selves, but served as inspiration to others. We have already mentioned the
links between the early audio key-only systems and their symbolic coun-
terparts, but also the simultaneous key-and-chord estimation of Raphael
and Stoddard (2003) preceded all efforts on its audio equivalent. Finally,
some notable works on chord-only estimation in the symbolic domain are
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the preference-rule-based system of Temperley and Sleator (1999) and the
graph-search approach of Pardo and Birmingham (2002).

3.2 A unifying view on key and chord es-
timation

In general, key estimation and chord estimation are conceptually similar.
Both are concerned with labelling the harmonic content of audio. There
is of course the difference in time-scale, but the same techniques can eas-
ily be reused. Therefore we will discuss them together in the remaining
part of this chapter. Before we can explore the differences and similarities
between various systems, we first describe a categorisation of the differ-
ent components that form a general key and/or chord estimation system.
The input signal is always an audio file, but it is transformed to a feature
vector sequence by means of a feature extraction stage. The feature stream
represents the audio information in a shape that is more adapted to the
next stage. To this end, some facets of the information are accentuated and
some are ignored, but no supplementary information is created. The cal-
culated features form a new time-changing signal vector with a certain fea-
ture rate, which is independent of the sample rate of the audio input. This
feature rate determines the maximal time precision or granularity of the
final output labels. In the subsequent feature decoding stage, the output la-
bels are estimated based on these features. This involves both segmenting
the feature stream into sections in which the label stays constant and nam-
ing those sections. The way this is done can be characterised according to
three aspects, which we will call the acoustic, durational and contextual char-
acteristics of the feature decoding. The acoustic characteristic covers the
method of testing how well a candidate label is supported by the feature
stream. Both the durational and the contextual aspect deal with techniques
that favour certain “expected” labels over others. These techniques can in-
corporate musicological knowledge similar to the human expectancies of
music. The durational aspect encompasses techniques that favour certain
label durations over others and the contextual aspect involves looking at
the broader musical context to promote certain label combinations over
others.

The different aspects of a key and/or chord estimation system are not
isolated from each other. There are strong dependencies between them.
Least dependent on the other aspects is the contextual aspect of the feature
decoding. It is possible to ignore all context information and to decide on
a label by only considering locally available information. The contextual
aspect can therefore be absent in a system. On the other hand, the dur-
ational aspect is strongly connected to the feature extraction stage. They
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work together to decide on the segmentation of the feature stream and con-
sequently need to be matched to each other. Even if no component of the
system takes explicit care of the durational aspect, an intrinsic preference
for certain label durations is still present and at least partly determined by
the feature extraction rate. If the feature rate is close to the label change
rate, every feature vector can be labelled independently, whereas in the
case of a feature rate that is much higher than the label change rate, the
system will have to take into account that subsequent labels are correlated.
The feature rate also puts a lower bound on the label duration and it de-
termines the precision of the label localisation. Feature extraction and the
durational aspect of the decoding are therefore complementary. Lastly, the
requirement of a match between the feature extraction stage and the acous-
tic aspect of the feature decoding is quite obvious. In order to test for the
accordance between the features and a label, each label requires an internal
representation of what the features would ideally look like. This repres-
entation is specific to a particular feature extraction method, such that the
label representations and the feature set always needs to be considered to-
gether. As a result, it is very hard to evaluate the feature extraction step in
isolation.

Global key estimation can take an extra constraint on the key label into
account in either the feature extraction stage or the feature decoding phase.
The former approach calculates a single feature vector to represent the
whole duration of a music piece, instead of a stream of feature vectors.
This single feature vector can then be calculated with high precision be-
cause lots of data are available (Pauws, 2004; Gémez and Herrera, 2004).
The second strategy is to calculate a sequence of local features as before,
but to further restrict the durational aspect of the decoding such that only
a single key covering the whole feature sequence is generated (Zhu et al.,
2005; [zmirli, 2005b). By definition, no contextual aspect is present in both
types of system. The first approach also needs no durational aspect.

3.2.1 Common frameworks for feature decod-
iNng

The different aspects of the feature decoding stage do not always have a

one-on-one correspondence with the components of the technical frame-

work that is used for decoding. We will now list some of the more common

frameworks that are used to implement the feature decoding and point out

how their components relate to the individual aspects.

A first technique consists of making a frame-based estimation of the
probability of each symbolic label at each time step, accounting for the
acoustic aspect. The local probabilities are then optionally smoothed over
time (Fujishima, 1999; Harte and Sandler, 2005; Oudre et al., 2011). The
acoustic probabilities can be calculated by a variety of models, discussed
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later. The smoothing provides the durational aspect by promoting labels
that stay constant for the duration of the smoothing window. If it is not
present, the durational aspect is implicitly provided by the feature rate. Itis
less common to take the context into account with this set-up, although the
system by Cheng et al. (2008) shows that it is possible to perform a greedy
search where the acoustic probabilities are augmented with probabilities
for the next chord label, based on the the previously found chords.

The most commonly used framework for key and chord estimation is
a hidden Markov model (HMM) (Sheh and Ellis, 2003; Bello and Pickens,
2005; Noland and Sandler, 2009; Papadopoulos and Peeters, 2012). The
acoustic aspect is again taken care of by a frame-wise calculation of ob-
servation probabilities. These are then probabilistically combined with
transition probabilities to decode the globally optimal label sequence. The
elements on the diagonal of the transition matrix provide the durational
aspect and the off-diagonal elements the contextual aspect. When the off-
diagonal elements all have the same value, such as in Chai and Vercoe
(2005), no contextual aspect is present.

In a conditional random field (CRF), the different aspects are harder
to isolate. The whole sequence of observations is modelled together here,
meaning that the observations are explicitly assumed to depend on each
other. All aspects are therefore strongly intertwined. An example of a
linear-chain CRF for chord estimation can be found in Burgoyne et al.
(2007). Another example of a system where the different decoding aspects
cannot be isolated, is the convolutional neural network of Humphrey and
Bello (2012).

In contrast to other high-level discussions of estimation systems, such
as in Cho and Bello (2014), we do not distinguish an extra filtering step
between feature extraction and feature decoding. We argue that this filter-
ing (with optional resampling) is an integral part of the feature calculation.
After all, only the result of the feature extraction stage, possibly includ-
ing filtering, is conceptually important for the decoding of the features.
Whether the features are calculated directly over a certain window size
with the desired feature rate or whether they are calculated by smoothing
over multiple finer windows and/or downsampling from a higher rate,
is an implementation issue. It could influence the quality of the resulting
features, but is not conceptually relevant for the rest of the system. Sim-
ilarly, Cho and Bello (2014) also split the feature decoding stage into two
parts: a so-called pattern-matching step followed by a filtering step. We
feel that this distinction is too specific, as it does not accommodate systems
that integrate these two steps.
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3.2.2 General tendencies

Comparing the performance of different estimation systems is not straight-
forward. One reason is the difference in chord vocabularies generated by
the various systems. Other factors are the distinct evaluation measures, the
variation in test sets between papers and the extent to which the systems
are optimised for a certain set. Of paramount importance for levelling out
some of these differences is the yearly Music Information Retrieval EX-
change (MIREX)'. It is an informal competition to which researchers can
submit a system which then gets tested on the same data set and evalu-
ated with the same measures. Since 2008 there has been a chord estimation
task. Top performing algorithms estimate chords correctly around 70% to
80% of the time, depending on the data set, with the reservation that the
chord evaluation vocabulary is limited and that the data sets are publicly
available. There is no local key estimation task, but a global key estimation
task has been organised in 2005 and again from 2010 on. A top performing
system recognises the key correctly for 87% of the files, where the test set
is secret, but synthesised from MIDI. The number of submissions is usu-
ally considerably less than for the chord estimation task (average number
of participating teams is 3.4 versus 7, some teams have multiple submis-
sions).

When analysing the chord estimation submissions through the years, a
couple of tendencies can be discovered. First of all, the number of particip-
ating teams is steadily declining, from 11 to 3, although the task is far from
solved?. Second, submissions rely increasingly on machine learning tech-
niques. This is undoubtedly the result of an increase in available training
data. Early systems had to be based on musicological knowledge simply
because of the scarcity of labelled data. Furthermore, the complexity of
chord estimation systems is rising. This is partly because they are more
and more integrated into larger systems that estimate chords jointly with
keys, metric position and/or bass line and use more of the context (see
section 3.1.3).

Due to the fewer submissions for the key estimation task, it is harder
to find global trends. Here too the number of participants declines, from
a maximum of 6 to 1. The submitted systems generally estimate only keys
and are rather basic. One reason is that the focus on global keys does not
encourage more complex systems that can handle key changes.

Evaluating the performance of a system is one thing, explaining why
a certain score is achieved is another. If we look at the top performers
for chord (Cho, 2013; Khadkevich and Omologo, 2013b) or key estima-
tion (Purwins et al., 2000; Izmirli, 2005a), they have in common that they

Ihttp://www.music-ir.org/mirex/wiki/MIREX_HOME

2The number of participants at MIREX is far from the definite measure for the popularity
of chord estimation research. There are multiple research groups that have simply never
submitted their system. Nonetheless, these numbers give an indication of the general trend.


http://www.music-ir.org/mirex/wiki/MIREX_HOME

44

Past and current frends in key and chord estimation

estimate keys or chords separately. It seems that the supplementary in-
formation present in the interaction between keys and chords has not been
effectively exploited by any of the joint systems. We are particularly in-
terested in examining to what extent both tasks can reinforce each other.
Therefore we will propose our own joint system for key and chord estima-
tion in chapter 5, where we carefully study the importance of the relations
between keys and chords and other decoding aspects. We will formulate
this system in terms of an HMM, because it allows us to easily separate the
different decoding aspects.

3.3 A discussion of system components

After having discussed entire key and chord estimation systems, we now
look at their constituting components in more detail. Unless absolutely
necessary, we make abstraction of the fact whether a component has been
used for key or chord estimation. After all, an improvement in the feature
extraction proposed in a key estimation system might also be beneficial
to a chord estimation system. This way, we can more easily compare the
innovative parts across different systems.

3.3.1 Feature extraction

An overwhelming majority of key and chord estimation systems uses chro-
magrams as the acoustic features. This is a time-frequency representation
much like the short-time Fourier transform (STFT). A time signal is split
into segments, which are then converted to frequency spectra. The spec-
trum is calculated on a logarithmic frequency scale and collapsed into a
single octave by grouping together the logarithmic bins that are spaced an
integer number of octaves apart. This type of transform was independently
suggested by Fujishima (1999) and Wakefield (1999). The appeal of this
transformation is immediately obvious when we consider the music theor-
etical knowledge presented earlier: notes are logarithmically spaced on the
frequency axis and only their chromas are required to determine to which
key or chord they contribute. The definition of the chroma transformation
therefore comes very naturally as a mathematical formalisation of musi-
cological knowledge. The result is therefore a 12-dimensional vector, al-
though sometimes multiples of 12 are also used to maintain a greater spec-
tral resolution (Sheh and Ellis, 2003; Chai and Vercoe, 2005). Collapsing
the bins into one octave makes the features more robust against all pos-
sible variations of the chord voicing, which we do not want to discern.
The process also reduces the sensitivity to localised errors in the frequency
analysis, because the bins are smoothed over all octaves.
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There are however also examples of systems that use other features. In
some of the pioneering work, alternative features such as complete spectro-
grams (Nawab et al., 2001), wavelets (Su and Jeng, 2001) or mel-frequency
cepstral coefficients (MFCCs) (Sheh and Ellis, 2003) were tried. Izmirli
(2005a) compared full spectra and chromas for key estimation and found
that chroma representations outperformed spectra in his system. In spite
of this, the usage of complete spectra has been picked up again recently
with the advent of deep learning techniques, which preferably deal dir-
ectly with spectrograms. The underlying idea behind these machine learn-
ing algorithms is to keep the features relatively simple such that the most
optimal internal representation of a label can be automatically discovered,
without steering the system towards to human-influenced chroma features
(Humphrey and Bello, 2012; Boulanger-Lewandowski et al., 2013). A dir-
ectly contrasting approach is to restrict the features to the so-called “tonal
centroids”, which have only six dimensions (Harte et al., 2006; Lee and
Slaney, 2008). Like in the chroma transform, octave information is ignored,
but the vector elements now represent coordinate pairs in each of the three
circularities of the Tonnetz space (Cohn, 1998). Because this is a geomet-
rical model of the pitch space, small deviations in the coordinates will only
cause small changes in perception. Therefore this representation is com-
pact as well as robust to external noise. Another way to reduce the dimen-
sionality of the spectral representation is to keep only a smaller orthogonal
set of basis functions that is determined through the use of principal com-
ponent analysis (Morman and Rabiner, 2006; Izmirli, 2006; Nichols et al.,
2009; Boulanger-Lewandowski et al., 2013). In contrast to tonal centroids,
this reduction is data-dependent. A final alternative for the use of chroma
features has already been mentioned when discussing related symbolic es-
timation systems. Key or chord estimation can also be performed by first
transcribing all notes present in the signal and then feeding these note es-
timates into a symbolic system. Naturally, this approach suffers from a
propagation of errors in the polyphonic transcription step. Because note
estimation is very much an unresolved problem in itself, this approach
(Katayose et al., 1988; Martin, 1996, Kashino and Hagita, 1996; Kashino
et al., 1998) has been mostly abandoned once the first systems working
directly on audio came into being. The more recent system of Mearns et al.
(2011) is the proverbial exception that proves the rule.

3.3.1.1 Logarithmic spectrum calculation

Irrespective of whether the final features are spectrograms, chromagrams
or tonal centroids, the first stage of a feature extractor is a time-frequency
analysis. The most widespread time-frequency transformation, the STFT,
provides spectra with bins that are equidistantly spaced on a linear fre-
quency scale. Because music notes are distributed on a logarithmic fre-
quency scale, the linear bins of the spectra then need to be reassigned. This
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redistribution can be seen as a filter bank with logarithmic spacing and
both the shape and the width of the filters varies considerably across im-
plementations. The filters can be rectangular to let each linear bin within a
local area contribute equally, or peaked around their centre, such that lin-
ear bins closer to a theoretical note position contribute more. A number of
shapes are compared in the study by Cabral et al. (2005). These filter banks
can sum to unity (required for perfect reconstruction), such that each fre-
quency contributes equally to the logarithmic spectrum, or not, such that
some sort of equalisation is performed around theoretical note positions.

The resampling and interpolation associated with the Fourier trans-
form followed by a filter bank creates of course additional noise due to
rounding errors and quantisation, which is undesired. Therefore an altern-
ative that directly calculates a logarithmic spectrum would be very useful.
The concept of such a transformation, the constant-Q transform (where the
quality Q stands for the ratio of the centre frequency to the bandwidth of a
filter), has already been introduced to the music domain in 1991 by Brown.
Here, the time signal is directly analysed by a filter bank with frequency-
dependent analysis windows instead of fixed length windows such as for
the STFT. Unfortunately, a direct implementation was not efficient, which
lead to the widespread use of an efficient algorithm that is based on the
STFT (Brown and Puckette, 1992). Therefore the constant-Q transforma-
tion is in those cases, although conceptually different, in practice the same
as an STFT followed by a logarithmic filter bank. Nonetheless, it has found
widespread adoption in chroma calculation due to the appeal of its under-
lying idea, but it should be regarded as one of the many variations of the
previously outlined variations in filter width and shape.

Recently however, an alternative formulation of the constant-Q in terms
of non-stationary Gabor frames has been developed that is both efficient
and perfectly invertible (Holighaus et al., 2013). Unfortunately, the typ-
ical level of detail reported in literature is generally not enough to know
whether the implementation of the constant-Q transform was genuine or
just a two-pass approach based on the STFT. Therefore it is hard to assess
the influence of this factor in past and future papers. Some overview pa-
pers (Varewyck et al., 2008; Stein et al., 2009; Jiang et al., 2011) compare dif-
ferent chroma implementations, and do contrast constant-Q transforms to
interpolated STFT transforms, but the difference between constant-Q im-
plementations has never been examined. At the moment, only the system
of Humphrey and Bello (2012) is known to use the Gabor-based imple-
mentation, but whether this increases the recognition performance has not
yet been established. The recent availability of a toolbox that offers an ac-
cessible implementation of this improved algorithm (Schorkhuber et al.,
2014) may promote the usage of constant-Q implementations that both
conceptually and practically avoid the drawbacks of the current way of
calculating logarithmically spaced spectra.

If the spectra are not used directly as features themselves, the logar-
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ithmic spectrum sometimes has a resolution that is a multiple of 12 logar-
ithmic bins per octave (Harte and Sandler, 2005; Gémez, 2006a; Zhu and
Kankanhalli, 2006). The extra spectral precision can then be used to in-
crease the accuracy of the optional steps described in the next paragraphs.

3.3.1.2 A multitude of chroma calculations

Although the idea of using a chromagram has achieved broad consensus,
there exists a multitude of ways to calculate it. We can informally conjec-
ture that a chroma vector represents the salience of each pitch class in the
signal, but what does “salience” stand for? And what does “note” mean if
we can only analyse frequencies? Even at the most basic level, no answers
to these questions have been agreed upon. To illustrate this in its simplest
manifestation, the spectral properties that are summed per octave can be
magnitudes (Harte and Sandler, 2005), squared magnitudes (Fujishima,
1999), log-compressed magnitudes (Morman and Rabiner, 2006) or percep-
tually weighted magnitudes (Pauws, 2004; Schuller et al., 2009a). Through-
out the years, many signal processing techniques have been used to solve
specific issues with the simplest chroma calculation schemes. These will
be discussed in the following paragraphs.

DETERMINING THE REFERENCE FREQUENCY A first problem is that a sing-
le reference frequency for the notes on the frequency axis is assumed. As
said before, this is often considered to be 440 Hz, but in practice this can
vary slightly. This can simply be the result of instruments that are tuned
differently, but it can also arise during the post-production process, e.g.
due to a different tape playback speed during mastering. The result is in
either case that harmonic peaks are not present where they are expected
to be, leading to a spectrum that is less clear. In order to compensate for a
constant deviation of the reference frequency from 440 Hz, algorithms have
been developed that estimate the actual reference frequency as a first step
of the feature calculation, such that the spectrum can be centred around
the true harmonic peaks. These methods mostly use the magnitudes of a
high-precision spectrogram to find the deviation from the standard refer-
ence frequency. This deviation can be found through interpolating a pitch
peak histogram (Harte and Sandler, 2005; Bello and Pickens, 2005; Zhu and
Kankanbhalli, 2006), from the biggest single peak (Ellis and Poliner, 2007),
by comparing the energy at all theoretical note positions for an enumera-
tion of deviation candidates (Peeters, 2006a), or through circular statistics
(Dressler and Streich, 2007). In contrast to these methods, Khadkevich and
Omologo (2009a) use both magnitudes and phases in a similar way as the
frequency estimation in a phase vocoder (Flanagan and Golden, 1966). A
wider discussion of the different approaches and their characteristics can
be found in the overview paper by Degani et al. (2014). Besides a different
reference frequency, a tuning can also differ in other ways from the impli-
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citly assumed 12-tone equal temperament tuning. A study of these aspects
can be found in Lerch (2006).

HANDLING HIGHER HARMONICS A second complication of simply fold-
ing logarithmic bins into one octave, is that the higher harmonics of a note
will add evidence to chromas that are not necessarily present in the sig-
nal. For instance, the third harmonic of a note will lead to the presence
of a chroma a perfect fifth above (or a perfect fourth below) the chroma
of the fundamental. This does not correspond with our music theoret-
ical notion that each note should only lead to one chroma. Therefore a
variety of approaches have been developed to mitigate the contribution of
higher harmonics to the chromagram. A first method is to make use of
a Harmonic Product Spectrum, which emphasises fundamental frequen-
cies by multiplying the spectrum with increasingly more compressed ver-
sions of itself (Morman and Rabiner, 2006; Lee, 2006a). The same goal is
achieved with the related Harmonic Peak Subtraction of Peeters (2006b),
where the spectrum is multiplied by a score that is high for fundamental
frequencies supported by higher harmonics. Another option is to apply
pitch-tracking techniques to link higher harmonics to their fundamental
frequencies. Multiple techniques have been proposed for this. Some keep
only those peaks in the spectrum for which a sufficient amount of support-
ing higher harmonics can be found, leading to a sparse chroma representa-
tion (Sailer and Rosenbauer, 2006; Varewyck et al., 2008). Others perform a
partial transcription by replacing frequency values with pitch saliences in-
dicating the probability of being a fundamental frequency(Ryyndnen and
Klapuri, 2008) or with the activation patterns that best reconstruct the spec-
trum as a combination of idealised note bases, found as the result of a
non-negative least squares decomposition (Mauch and Dixon, 2010a). A
last way to deal with the contribution of higher harmonics to the logar-
ithmic spectrum, is to use machine learning techniques to learn the optimal
mapping from spectrum to chroma vector. Izmirli and Dannenberg (2010)
use a multi-layer perceptron, whereas Glazyrin (2013) proposes stacked
denoising auto-encoders to this effect. As mentioned before, Boulanger-
Lewandowski et al. (2013) directly feed spectrograms into a deep belief
network, but they constrain their network to generate a chromagram rep-
resentation as an intermediate target, so the first layer of their network can
also be seen as a machine learned chroma transform. Similarly, Humphrey
et al. (2012) use a deep belief network for finding the optimal mapping
from spectrum to tonal centroid features instead of chromas. Whether the
removal of harmonics is beneficial for the entire chord or key estimation
system depends on the feature decoding, but removing them has at min-
imum the advantages that the resulting chromagram is more suitable for
visualisation.
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REDUCING TIMBRE DEPENDENCY The third issue with chroma calcula-
tion is its robustness to timbre changes. The idea here is to calculate the
chromas in such a way that the impact of the spectral envelope that char-
acterises different instruments or voices is reduced. Because this difference
in timbre is manifested as a difference in the ratio of harmonics, making
chromas robust against timbre changes is somewhat related to the pre-
vious problem of handling the contributions of higher order harmonics.
Pitch-tracking techniques that retain only a sparse number of fundamental
frequencies, such as those of Sailer and Rosenbauer (2006); Varewyck et al.
(2008), also implicitly remove timbre information. When the higher har-
monics are not entirely removed, the strategy is often the opposite: rather
than reducing the higher harmonics in the signal, their amplitudes are put
on a fixed level such that the timbral variance between instruments de-
creases. This approach is called spectral whitening. Two traditional signal
processing techniques achieve spectral whitening: high-pass cepstral lifter-
ing (Morman and Rabiner, 2006; Miiller and Ewert, 2010) and background
spectrum subtraction (Catteau et al., 2007; Mauch and Dixon, 2010a). A
more simple method consists of binarising the spectrum on the basis of a
threshold (Zhu and Kankanhalli, 2006; Cranitch et al., 2007). In the feature
extractors of Morman and Rabiner (2006); Mauch and Dixon (2010a), the
spectral whitening is subsequently followed by one of the methods that
aim to reduce the higher harmonics discussed above.

MINIMISING ATONAL SIGNAL COMPONENTS The last complication that
arises when computing chromas is that not every sound in the signal is
tonal. Notably untuned percussion produces sound that is wide-banded
and noise-like (in the signal processing sense). It can therefore mask other,
harmonically significant sounds. A trivial first step is to consider only the
frequency range that tonal instruments can produce. Frequencies outside
this range are guaranteed to be noise. Furthermore, some algorithms have
been proposed to reduce the impact of percussive sounds in the range
where tonal and atonal instruments overlap. In the work of Ono et al.
(2008), used by Ueda et al. (2010); Ni et al. (2012), the spectrogram is iter-
atively decomposed into a harmonic and a percussive part based on the
assumption that the spectrogram gradients in the horizontal, respectively
the vertical, direction form independent Gaussian distributions. The res-
ulting harmonic component is then transformed back to the time-domain
to generate a signal from which a better chromagram can be calculated. As
such, it can be easily combined with any method for chroma calculation.
Schuller et al. (2009b) suggest a similar decomposition of the signal into
a harmonic and a percussive part using non-negative matrix factorisation.
However, they remark that using the resulting harmonically enhanced sig-
nal does not improve the performance of their key estimation system.
Apart from these methods that really try to separate the harmonic and
percussive part into two different signals, there are also techniques to high-
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light the harmonic part, without paying attention to the significance of
the residual signal. Gémez (2006a) uses a transient detector as a prepro-
cessing step to exclude noisy regions from the spectral analysis. Peeters
(2006a) achieves the same goal by running the audio file through a sinus-
oidal analysis/resynthesis algorithm first. Another approach is proposed
by Glazyrin and Klepinin (2012). They use a technique borrowed from
image processing to keep only the horizontal edges in a spectrogram by
means of a Prewitt filter. Lastly, Wang and Wechsler (2013) perform audio
denoising by means of an undecimated wavelet transform.

IMPROVING SPECTRAL PRECISION Besides trying to avoid the noise com-
ing from non-harmonic contributions to the signal, other attempts have
been made to make the spectral analysis more precise. Zhu and Kankan-
halli (2006) search for local maxima in a high-resolution spectrogram to
handle vibrato and they keep only those partials that form a diatonic set,
starting from the strongest peak. This technique is called consonance filter-
ing. Ellis and Poliner (2007) make use of the phase derivative to improve
the frequency resolution to a sub-bin precision. This method is known
as instantaneous frequency estimation and it is especially relevant for low
frequencies where notes are spaced much more closely together on a lin-
ear scale. Similarly, Khadkevich and Omologo (2013b) use a spectral re-
assignment technique based on the complex STFT values to redistribute
the energy centred on the bins over the intervals between bins and to fil-
ter out noisy components. A simpler way to achieve sub-bin resolution is
quadratic interpolation of the bins, as proposed by Gémez (2006a).

LEVERAGING REPETITION Apart from the methods that try to compensate
for one of the pitfalls inherent to chroma or spectral calculation, other en-
hancements have been proposed as well. For instance, all techniques that
try to make use of repetition in the signal fall under this category. It often
happens in music that some parts are repeated. If we could detect these
repetitions, the number of observations on which we can base our estim-
ation would increase and therefore be more robustness against random
noise. A possible drawback is that minor variations in the repetitions get
lost, because they are also considered to be noise. Mauch and Dixon (2009)
look for fixed-length sections around the diagonal of a self-similarity mat-
rix constructed by calculating Pearson correlation coefficients between all
beat-synchronised segments. The corresponding chromagram sections are
then averaged and the resulting labels are then used for all instances. Cho
and Bello (2011) use recurrence plots to this end, which are thresholded
matrices of similarity between all fixed length sequences of frames instead
of between all isolated frames. According to them this has the advantage
that smaller units of repetitions can be identified. Therefore the averaging
can also take place over repetitions of single chords instead of over re-
peated chord sequences, which increases its applicability. Finally Glazyrin
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and Klepinin (2012) also compute a beat-synchronised self-similarity mat-
rix, just like Mauch and Dixon (2009), but they weigh the different repe-
titions according to their similarity before averaging them into the final
features. In this way, they adhere to the work of Cho and Bello (2011).

3.3.1.3 Feature usage

A lot of key or chord estimation systems, especially the earlier ones, cal-
culate just a single feature sequence which is subsequently decoded. An
alternative which became widespread after its introduction by Mauch and
Dixon (2008), is to extract a secondary chromagram from the lower fre-
quency region of the spectra, often called a bass chromagram. This supple-
mentary 12-dimensional chromagram is then either simply concatenated
to the primary chromagram to form 24-dimensional observations (Mauch
and Dixon, 2008; Ni et al., 2012) or used as an independent stream (Khad-
kevich and Omologo, 2011; Mauch and Dixon, 2010b). The original mo-
tivation for extracting a bass spectrogram was that the lowest note in the
spectrum acts as a strong indicator towards the chord and that it permits
to find the chord inversion. It has been shown, however, that employing
a bass spectrogram is ineffective in estimating chord inversions (Pauwels
and Peeters, 2013). Considering that the bass cutoff frequency is arbitrarily
predetermined, and no mechanism is put into place to ensure that the bass
chromagram contains exactly one tone, this is entirely logical. If multiple
notes fall into this bass range, their order is therefore lost through the in-
trinsic character of the chroma transform and if no tone is present in this
region, the inversion estimation is based on random noise. Nevertheless,
a bass chromagram adds extra observations such that the subsequent fea-
ture decoding is less susceptible to mistakes in the primary chromagram
(due to masking effects or noise for instance). It is explicitly demonstrated
by Khadkevich and Omologo (2011) that such an increase in the number
of observations can lead to better chord estimation results. This idea can
be extended further by increasing the number of chroma streams extracted
from the same spectrogram up to four (Cho, 2013). The original premise
that bass notes can aid in estimating chords, and specifically chord inver-
sions, is valid though, but it requires separate handling of the lowest notes,
as done by the systems described in section 3.1.3. In general, all systems
that co-estimate keys and chords with another musical concept, require ad-
ditional features specific to this third concept, for example the output of a
bass line estimator.

The approach of Rocher et al. (2010) also works with multiple obser-
vation streams, but here the multiple streams do not cover different fre-
quency ranges, but multiple time windows. In their simultaneous key and
chord estimation system, the observations used for the chord estimation
are chromas averaged over three different windows, whereas the key es-
timation only uses the largest time window. A parallel can be drawn to the
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deep-learning system of Boulanger-Lewandowski et al. (2013), where the
inputs of the layers are complemented with their aggregated means and
variances over different windows. As much as eight different windows are
fed into the system, where not only the size of the window can vary, but
also the offset, such that windows no longer need to be all centred around
the time instant that is being analysed. However, because of the nature of
their machine learning system, it is not guaranteed that all windows play
a significant role in determining the output.

3.3.1.4 Feature timing

Features are calculated locally such that label changes can be precisely loc-
ated. Their timing is determined by the size of the windows over which the
features are determined and the time shift between subsequent windows.
We have already touched on the connection between the feature timing
and the durational aspect of the feature decoding. So, before we start ex-
ploring the latter, we will quickly review the options for segmenting the
audio stream. A first possibility is to use an arbitrary, fixed feature rate.
This rate should be high enough to permit a precise localisation of label
changes, but the windows should be long enough to contain a sufficient
number of periodic signal repetitions. The solution is to employ overlap-
ping windows with a rate as high as the required temporal precision. An
increase in rate comes at an increased computational cost though.

A significant reduction in computational time can be achieved by syn-
chronising the features to the metrical grid. For example, a popular prac-
tice is to make the features beat-synchronous, as pioneered by Shenoy et al.
(2004). The underlying assumption is that labels only change precisely on
the position of a beat and that they consequently are constant within every
interval between two consecutive beats. If this is the case, the feature rate
can be increased without the loss in temporal precision it normally causes.
Usually, the time between beats is also considered long enough for the sig-
nal to be stable, such that the inter-beat interval is taken as the window size
(creating disjoint segments), but this is not necessarily so (Glazyrin and
Klepinin, 2012). A more conservative speedup with less strict assumptions
can be achieved by tracking a subdivision of the beat, but for key estima-
tion, tracking a higher metric level, such as measures (Hu and Saul, 2009b),
is also arguable. As mentioned before, one possible way to apply the global
key constraint is to make the feature analysis window as long as the entire
music piece, creating a single feature vector instead of a feature stream.

In practice, if a feature stream is following a metric level, its calculation
is rarely done straightaway over the corresponding metrical windows. Be-
cause the size of these windows is variable due to changes in metre, the
features are usually calculated over fixed size windows with a high rate
and then filtered over the desired time period, with optional resampling.
The result is that it is not always trivial to determine exactly which au-
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dio samples have contributed to a particular feature segment and to what
extent.

3.3.2 Feature decoding

Each of the three aspects of the feature decoding can be determined through
musical knowledge or through machine learning. Note that the technical
framework used for the models is not necessarily discriminating for this di-
vision. For instance, the observation probabilities in the HMM of Bello and
Pickens (2005) are set manually based on musical theory, whereas they are
trained using the Baum-Welch algorithm by Sheh and Ellis (2003). Neither
do all aspects of one system need to be specified in the same way. While
the observation probabilities of Bello and Pickens (2005) are set on the basis
of knowledge, their transition matrix is trained without supervision. The
division between knowledge-based and data-driven techniques is not al-
ways strict though. For instance, many machine learning techniques need
an initialisation step, in which musicological knowledge can be used. On
the other hand, the used musicological knowledge can emerge from an
analysis of a large corpus. We will consider a method as data-driven if
it contains an (iterative) refinement of its parameters on a data set some-
where in the process. In knowledge-based methods, the parameters are set
through human reasoning about readily interpretable parameters, eventu-
ally complemented by a small set of free control parameters.

In practice, we will mostly discuss the components of systems in which
the acoustic aspect is taken care of by a framewise acoustical model. They
represent the large majority of systems in the literature. Alternative sys-
tems consist of a monolithic, all-integrated decoding step in which the dif-
ferent aspects cannot be discerned. Few things can be said about them,
except for the fact that they use machine learning to optimally match their
parameters to the used features.

It is common for data-driven acoustic models of keys and chords to
transpose the training labels to one common tonic, respectively root. This
increases the number of examples per model and ensures that the prior
probability of the acoustic models stays equal for each tonic or root. The
resulting generalised mode or chord type model is then transposed back to
each of the chromas, such that all key or chord models are circularly shif-
ted versions of each other. Although widespread, this step is not univer-
sally applied, as the system of Ni et al. (2012) proves. Relating the acoustic
models of the same type or mode to each other in this way could be con-
sidered an example of musicological knowledge in a data-driven method.
In knowledge-based models, this type/mode relation arises naturally.
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3.3.2.1 Knowledge-based acoustic models

Musicological knowledge in knowledge-based models is usually represen-
ted in the form of idealised chroma templates (also named profiles) for all
distinct labels. Consequently, these templates have the same dimensions
as the chroma vectors and are derived from music theory or from percep-
tual experiments. The simplest templates are binary, reflecting the inclu-
sion or exclusion of a certain chroma in a chord (for chord templates), or
the chroma’s diatonicness in a key (for key profiles). For instance, a Gmaj
chord template would have its ones corresponding to the G, B and D chro-
mas and zeros for the remainder. Such binary templates has been used by
the early chord estimation system of Fujishima (1999) and by many others
since. For key estimation, it is more popular to use templates that stem
from music perception experiments. Very influential in this regard were
the tone-probing experiments of Krumhansl and Kessler (1982). A num-
ber of human subjects rated how well single notes of all chromas fit in a
given key, which is established by first playing a characteristic sequence
of notes or chords in that key. The results were found to be highly similar
for all keys with the same mode (demonstrating transposition invariance).
Consequently, a single tone profile relative to the tonic was derived for
each mode (major or minor) by averaging the profiles over the tonics. The
resulting templates were then used for symbolic key estimation, and later
also found their way to audio key estimation, in the work of Purwins et al.
(2000). izmirli (2005a) established that they work better than binary pro-
files. Based on Krumhansl and Kessler (1982)’s work, Temperley (1999)
proposed a variant that has been specifically designed for automatic key
estimation. An alternative way to obtain key templates is through statist-
ical analysis of corpora of symbolic music (Chai, 2005; Noland and Sand-
ler, 2009). A good comparison between all aforementioned templates and
some other variants is made by Gémez (2006b).

We have already established that an appropriate acoustic model should
be matched with the features it processes. The previously described tem-
plates all assume theoretical chromas, where one note leads to just a single
chroma. Therefore they are a good match for chroma extraction methods
that suppress the harmonics of the notes. An orthogonal approach, is to
take the existence of the harmonics explicitly into account in the acoustic
model. The appropriate features therefore still need to contain them, oth-
erwise there would be a strong mismatch between the features and the fea-
ture decoding. Accounting for harmonics can be combined with any of the
preceding theoretical chroma profiles. First, a theoretical shape of the amp-
litudes of the harmonics has to be hypothesised, commonly an exponential
decay a' with the harmonic index i going up to n harmonics. For every
chroma, the resulting series is then scaled by the theoretical chroma tem-
plate value. The theoretical harmonics are finally folded into one octave,
similar to the chroma calculation, and contributions to the same chroma
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are added. In case of a binary chord or key template that contains a C, this
would give a value for the C chroma of a + a? +a* +28 + ... + 4" and for
the G chroma of a® +a® 4+ a'2 4 ... + a". The other notes in the key or chord
with overlapping harmonics can add even more to these values. This way
of template calculation has been first applied by Gémez (2006a) for key
estimation and by Papadopoulos and Peeters (2007) for chord estimation.
Instead of hypothesising a harmonic distribution, Izmirli (2005a) used real
harmonic ratios that were measured on a collection of monophonic piano
sounds.

The resulting templates are used as parameters in the acoustic models.
The most prevalent model consists of calculating the distance between a
chroma vector and all templates. The distance is then inversely propor-
tional to the probability of the corresponding label. Oudre et al. (2011)
studied a variety of distance measures that can be used in this context.
Alternatively, the templates can be used to set the means of multivariate
Gaussians, as done by Bello and Pickens (2005); Mauch and Dixon (2010b),
or half-Gaussians (Catteau et al., 2007). The advantage of knowledge-
driven acoustic models is that no labelled training data is needed. This
also reduces the risk that the model is too tailored to one specific data set.

3.3.2.2 Data-driven acoustic models

A number of different machine learning techniques and associated models
have been used to create optimal representations for specific feature calcu-
lation methods. A first technique is the learning of parameterised distribu-
tions such as multivariate Gaussians (Sheh and Ellis, 2003), Gaussian mix-
ture models (GMMs) (Morman and Rabiner, 2006; Burgoyne et al., 2007)
or Dirichlet distributions (Burgoyne and Saul, 2005) through expectation-
maximisation (Dempster et al., 1977). Another option is to train a topic
model without supervision such as latent Dirichlet allocation (LDA) (Hu
and Saul, 2009a) or an infinite Gaussian mixture model (Wang, 2013). This
contrasts to the application of discriminative models, such as support vec-
tor machine (SVM) classifiers (Morman and Rabiner, 2006; Weller et al.,
2009; Schuller et al., 2009a).

Another category of methods is based on the use of artificial neural net-
works. Both unsupervised learning, with self-organising maps for stand-
alone key (Purwins et al., 2000) and chord (Su and Jeng, 2001) estimation,
and supervised learning systems have been applied. An example of the lat-
ter is the chord classifier of Zoia et al. (2004), where a three-layer perceptron
(MLP) is trained for each chord label. As for supervised key estimation,
Sun et al. (2009) use a time-delay neural network that can detect key mod-
ulations. Finally, the most recent approaches are based on deep-learning.
They incorporate different types of neural networks, such as stacked de-
noising auto-encoders (Glazyrin, 2013) or deep restricted Boltzmann ma-
chines (Boulanger-Lewandowski et al., 2013). For a comparison of a num-
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ber of machine learning techniques to each other and to a knowledge-based
acoustic model based on their applicability to key estimation, see Gémez
and Herrera (2004).

In order to link knowledge-driven and data-driven acoustic models, it
can be enlightening to interpret the trained models in a musicological way.
For instance, the means of a multivariate distribution trained over a set of
chromas can easily be seen as a kind of template containing musicological
knowledge. It could be used with a distance metric to act more or less like
a profile as used for knowledge-based models. Moreover, a musicological
interpretation of the generated models is even required for strictly unsu-
pervised training systems, where the resulting models need to be manually
assigned to musical labels before they can be used in a decoder.

3.3.2.3 Durational aspect

Algorithms that model sequences of observations directly, such as CRFs
or convolutional neural networks, take care of both the acoustic and dur-
ational aspect. In the majority of systems however, the acoustic models
process single frame observations, assuming independence between sub-
sequent frames. The result is that there is nothing to prevent excessive
fragmentation in the output, leading to spurious short labels or oscilla-
tions between labels. A realistic sequence consists of the opposite, clusters
of labels with clear cuts. Duration models, which come in different degrees
of complexity, can help to prevent this fragmentation. The necessity of a
duration model for framewise acoustic models can be somewhat reduced
by using delta features to compensate for the independence assumption.
The features are then supplemented with their time derivatives, as done
by Ueda et al. (2010). This only accounts for local correlation however, and
is no substitution for proper duration modelling.

As we have already pointed out, the simplest way of taking the expec-
ted duration of the labels into account is to do this deterministically by
filtering the estimated label sequences (Harte and Sandler, 2005) or filter-
ing the output of the acoustic model (Oudre et al., 2011). Both mean and
median filters over a fixed amount of frames have been used. The exact
amount can be made dependent on the tempo by using the output of a
beat-tracker. An extreme case is when the global key is determined, the
filter window then encapsulates the whole music piece and takes the mean
of all local estimations (Zhu et al., 2005; Cranitch et al., 2007).

When an ergodic HMM is used as the system’s framework, the smooth-
ing happens probabilistically. The self-transition probabilities on the di-
agonal of the transition matrix regulate how easy or how difficult it is to
change between labels. They are either manually set using musicological
knowledge (Burgoyne and Saul, 2005) or trained (Sheh and Ellis, 2003). In
contrast to a filtering of output labels, the Viterbi (1967) algorithm used in
an HMM decoder does not just consider the best output of each frame for
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the temporal smoothing. It rather considers all options for each frame, also
the locally suboptimal, to find the sequence of labels that optimally com-
bines the observations and the requirement of temporal stability. A draw-
back of modelling duration with an HMM, is that a standard HMM implies
that state durations follow a geometric distribution. This downside can be
alleviated by the use of an extended duration HMM, where the duration
distribution can be trained as well (Chen et al., 2012). In hypothesis-search
based systems such as those of Yoshioka et al. (2004); Sailer and Rosen-
bauer (2006); Sumi et al. (2008), chord duration is part of the information
that determines whether the hypothesised labels are retained and further
expanded.

Finally, the feature decoding can also be explicitly split into two stages.
First, the signal is segmented into regions in which the label stays con-
stant. Afterwards, the features are averaged over the found segments and
labelled. The final label segmentation is in this case already determined be-
fore any acoustic model is used. This presegmentation of the features can
be accomplished by harmonic change functions, such as the ones of Goto
and Muraoka (1999); Harte et al. (2006); Li and Bello (2007). The systems
of Morman and Rabiner (2006) for chord estimation and Izmirli (2007) for
key estimation demonstrate that such an approach works in practice.

3.3.2.4 Contextual aspect

Besides modelling the duration of the labels, more musicological know-
ledge can be applied to estimate the likelihood of a label in the present
context (determined by the surrounding labels). This way, one tries to take
into account that music is not composed of labels that follow each other in
a random order. Certain sequences are more likely to appear than others.
For example, many of the rules that are taught in music theory relate to
particular sequences of labels that are either strongly favoured or discour-
aged. Much like the acoustic models, the context models can be based on
a musicological theory or trained on an annotated data set using machine
learning techniques.

The most common way to integrate context information into a system
is to use an HMM as feature decoder. The off-diagonal probabilities, or
change probabilities, of the transition matrix can then take care of the con-
textual aspect. Examples for the case of chord estimation are the construc-
tion of a data-driven model on an annotated data set (Sheh and Ellis, 2003)
or the use of a doubly-nested circle-of-fifths (Bello and Pickens, 2005) as a
knowledge-based model of the distance between subsequent chords. As
was the case for acoustic models too, the distinction between data-driven
and knowledge-driven approaches is not always strict. The doubly-nested
circle-of-fifths is used by Bello and Pickens (2005) to initialise the training
process, but it can also be used on its own, as proven by Papadopoulos
and Peeters (2007). Similar procedures exist for local key estimation. For
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instance, the key transitions of Noland and Sandler (2006) are based on
Krumhansl’s key profile correlations (Krumhansl, 1990) (not to be confused
with Krumhansl’s probe tone ratings used for the acoustic model). They
test these key transitions both as they are and as training initialisation.

A logical extension of the distinct key and chord change models is a
change model in terms of relative chords in a key. After all, we know from
music theory that harmony is mostly analysed as the movement of chord
degrees in a key. Therefore we need the key while we recognise the chords.
Two types of systems are suitable for this: either a sequential chord-after-
key estimation or a simultaneous key-and-chord estimation system. Se-
quential chord-after-key systems use the generated key deterministically.
The states of the chord-producing HMM then represent relative chords in
the found key, which keeps the complexity constant in comparison to a
chord-only decoder (Khadkevich and Omologo, 2009b). If keys and chords
are recognised simultaneously, the states of the HMM represent key-chord
combinations. The optimal key and chord sequences are then jointly de-
coded. This leads to a strong increase in the number of states and the
size of the transition matrix. The number of states increases even more
when concepts such as metric position or bass line are taken into account
as well. To keep the number of variables tractable, the transition prob-
abilities can be decomposed into smaller parts. The different approaches
of context modelling in an HMM distinguish themselves by the relations
they model and whether the information they encode is knowledge-based
or data-driven. Burgoyne and Saul (2005) first proposed a model with key-
chord states based on a theoretical classification of triads in a key. Catteau
et al. (2007) used the same state space and derived their probabilities from
Lerdahl (1988)’s theory on tonal distance. The states of Papadopoulos and
Peeters (2011) were composed of chords and metric positions, with trans-
itions set by expert logic. Mauch and Dixon (2010b) extended the search
space to combinations of keys, chords (including inversions) and metric
positions and used a dynamic Bayesian network (DBN), which is a gener-
alisation of an HMM. The DBN parameters were set using musicological
knowledge. This configuration inspired Ni et al. (2012) to create an en-
tirely data-driven equivalent, although the DBN was reformulated to its
equivalent HMM and the metric position was dropped as a variable. The
required computation can optionally be limited by prematurely pruning
unlikely key-chord combinations, as in Rocher et al. (2010), where the used
knowledge is also based on Lerdahl’s theory. Another way of reducing the
complexity is to consider only the global key, such that a majority of entries
in the transition matrix can be set to zero. This can equivalently be seen as
constructing a separate key-dependent HMM for each key, instead of one
large HMM. This approach was adopted by Lee and Slaney (2008) in their
data-driven system.

A drawback of the usage of a standard HMM, is that it can only ac-
count for the immediate context, whereas we know from music theory that
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looking at a wider context can be much more enlightening. For instance,
a Dmin-G7-Cmaj sequence is more representative of a C major key than
either Dmin-G7 or G7-Cmaj sequences. Khadkevich and Omologo (2009b)
therefore used a two-pass decoding of the bigram HMM by rescoring the
lattice produced in the first pass with a trigram or tetragram model prob-
abilities.

A few non-HMM feature decoders also contain a contextual aspect.
In hypothesis-search systems, context is one of the elements to determ-
ine whether a candidate label is retained and expanded in the search, just
like the durational aspect is another factor. The score for each frame can
depend on the fitness of a chord in a key (Sailer and Rosenbauer, 2006), or
the chord transitions in a key and the compatibility between bass-line and
chord Yoshioka et al. (2004); Sumi et al. (2008). The greedy-search decoder
of Cheng et al. (2008) even uses higher order models up to tetragrams to
this effect.

Finally, it should be remarked that sequential systems can contain two
context models, one for each stage. The first context model is necessarily
formulated in terms of either keys or chords. The results of the first stage
allow the second context model to be expressed as relative chords in a key,
as described previously, but this is not required. The second model can
very well be formulated in terms of either chords or keys, whichever has
not been used in the first stage, or even be absent altogether. In order to
be considered a sequential system, the second stage decoder needs to use
some information that is produced by the first stage, but it suffices that
this information is used for the acoustic modelling. For instance, in the
key-after-chord systems of Noland and Sandler (2009); Papadopoulos and
Peeters (2012), the chords estimated in the first stage are used as features,
but the states of the HMM that forms the second stage represent just keys.
The chord information is therefore only used for the acoustic models, and
the context aspect is the same as for a key-only estimation system. Actually,
the transition matrix of such a system is perfectly interchangeable with the
one of a key-only estimation system with chroma features, for example the
one of Peeters (2006a). Going further, the system of Maddage (2006) also
uses estimated chords as features in its second stage, without considering
any context. The same can of course be said of all systems that determ-
ine a global key after estimating the chords (Shenoy and Wang, 2005; Weil
et al., 2009). In contrast, simultaneous key-and-chord estimation systems
can estimate keys without relying on a key acoustic model, as Burgoyne
and Saul (2005) have demonstrated. The keys are then entirely derived
from the context model in combination with the simultaneously estimated
chords.






4.1

Modelling musicological
knowledge

One of the main objectives of this thesis is to establish whether the addition
of prior musicological knowledge can improve the estimation of keys and
chords from audio. This background knowledge is what humans, music-
ally schooled or not, acquire through exposition to music. It is thus cultur-
ally determined at least to some extent, although certain physical observa-
tions provide a very elegant explanation for some phenomena (Cook and
Hayashi, 2008). The question of nature-versus-nurture therefore remains
unsolved. This, however, is a question for musicologists, experimental
psychologists and the like, and will not be answered in this work. We make
abstraction of where this knowledge comes from, and are only interested
in making a statistical model of it, such that it can be used in a probabilistic
framework. In this chapter, and the subsequent chapters that build fur-
ther on this one, musicological knowledge is interpreted in the strict sense
of knowledge about key sequences, chord sequences and their interaction.
As we have seen in the previous overview of the literature, other musical
concepts such as metric structure and repetition can be included in a model
of musicological knowledge, but we focus on the combination of keys and
chords because relatively few works have explored their relation in depth.

Intfroduction

Both the temporal dependency and the intertwining relation between keys
and chords that we have tried to make clear with words in the previous
chapters, can be mathematically expressed as the joint probability P(K, C).
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Here C = cq,c2,...,c; is the sequence of chords up to a certain point |
in time and K = ky,ky, ...,k is the sequence of corresponding keys up
to that point. The used indices j = 1,...,] increase each time a chord
changes, so by definition ¢; # ¢j+1,Vj. The chord sequence therefore de-
termines the segmentation and we assume that the chord segments form
indivisible units of time. Key changes can therefore only occur together
with chord changes, but they happen less frequently than chord changes,
so Jj : kj = kjx1. To illustrate exactly on which information we rely to
build our model, we present an example. This will also serve to explain
the further processing steps. In figure 4.1a, we can see the first eight meas-
ures of the jazz standard “Perdido”! in standard musical notation. We do
not take the melody into account, so we only copy the chord sequence and
discard timing information. The key labelling is not explicitly written out
in the sheet music, but we do add it in our representation of the piece. The
indexed result in table 4.1b is the raw format of the information that we
will use to build our model with. Note that the derivation of this format
from sheet music is just done for illustrative purposes. One of the reasons
for using this specific sub-selection of musical information is precisely that
it is easier to obtain than complete sheet music and that it is easier to reason
about because it is more compact.

A first approximation we make in order to come to a model of feasible
proportions, is to assume that there is a limit to how far in time a chord
or key can exert influence on the following chords and keys. We assume a
horizon that limits the influence of previous keys and chords to the n — 1
most recent ones. Earlier chords or keys therefore become insignificant.
This can be expressed as the (n — 1)-th order Markov property

J
K C 7’l HP (k], C]'|k]',1, C]',l, ce /kj7n+1/cjfn+1) (4.1)
j=1

The conditional variables are called the context, therefore the context size is
n — 1. For the remainder of the text, we will use a more compact style of

notationP(kj,c]|k] i cj 'f“) for P (kj, cjlkj—1,¢j—1, - kj—nt1, Cjmns1)-

By applying Bayes’ rule, the joint probability can be decomposed even fur-
ther into

J
P(K,C;n) ]_{P(k |c], o n+1 kJ n+l> p( |kJ n+1 C; 1_Z+1> 4.2)
]:

key transition probability ~ chord change probability

We name the two resulting terms respectively the key transition probability
and the chord change probability. The difference in naming comes from the

1 As is typical for jazz standards, many different harmonisations and interpretations of this
melody exist. For the purpose of this example, we just assume that this particular version and
its harmonic annotation is given as irrefutable ground truth.
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fact that a change in index j implies a chord change, but not necessarily a
key change. A key transition from segment j to j + 1 can either be a key
change or a key self-transition. We now want to separate the key change
probabilities from the key self-transition probabilities because they repres-
ent different musicological concepts. This way, the resulting key change
probability will be analogous in scope to the chord change probability. We
can then propose similar ways to model these probabilities later on in the
chapter. To this end, we apply the law of total probability to the key trans-
ition probability

) j—n+1l  j-n+1\ _
P(k]|c],k Cig )-

_ j—n+1  j—n+l . _
P (ki = kjalei K3 o)) ifk; = ki1
_ j—n+1  j—n+1
(1= P (k= Kiale K5 )

| (4.3)
P(k\],k] e ”“,k £k ) ifk # ki

key change probability

In this formulation, we can recognise a separate key change probability.

The term P (k]- = k]-_l |c], k] "+1 c; ’11+ ) is concerned with the duration of
a key in terms of the number of chords it contains. It will be treated in the
following chapters. In the next sections, we will define numerical models
for both change probabilities that map the variables to probability values

in the range [0, 1]. We thus require both a key change model fj,

fre + (Kjimnt1s Cjmntts - - - Kjm1, ¢j-1,Kj ¢j, ) = [0,1] (4.4)

and a chord change model f,,

fee t (Kjmns1, Cjmns1s - - kj—1,¢j-1,¢5) > [0,1] (4.5)

Not all of these variables need to be engaged in these models however.
A part of the modelling can include deeming some context variables to be
conditionally independent, and therefore not contributing to the model, or
some of these variables can be tied or transformed to make some musico-
logical relations more explicit. This is exactly what we will discuss next.

4.2 A case for relative models

We are not looking at chord and key sequences in isolation, but we are in-
terested in their interaction instead. We will therefore make the relation
between the two more explicit by using the musicologically more inform-
ative representation of relative chords in a key, as introduced in chapter 2.
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This also reflects more closely the way scholars analyse harmony by hand.
To recapitulate, we define a key k as the combination of a tonic t and a
mode m and chord ¢ as the combination of a root ¥ and a type p. A key-
chord pair is therefore equivalent to the quadruple of tonic, mode, root
and type (k,c) = (t,m,r,p). By expressing the root r as the chroma in-
terval (") between the tonic and the root: i(f") = Dup(t,r), we arrive
at the definition of a relative chord ¢’ with respect to a key k. Therefore
we can equivalently express a key-chord pair as a key-relative chord pair

(k,c) = (t,m,r,p) = (t,m,i(”),p) = (k,c").

4.2.1 Relative chord change models

\k] e ] "H) we will

To calculate the chord change probabilities P(c

reason in terms of relative chords and key modes In partlcular, we express
all chords ¢;_;11, ..., ¢; as relative chords c}_nﬂ, s, c} with respect to key
kj—1. We then assume that the chord change probability does not depend
on the whole key k;_1, but only on its mode m;_1. This allows us to build
distinct transition models for keys that differ only in mode, but not in tonic,
for which distinct idiomatic chord sequences exist. On the other hand, the
shift-invariance between keys that differ in tonic, but not in mode is also
taken into account. This is our main motivation for modelling keys and
chords together. It allows for a reasoning that closely follows the principles
used in scholarly analysis of harmony. Systems such as the ones by Sheh
and Ellis (2003); Bello and Pickens (2005); Papadopoulos and Peeters (2007)
only estimate chords, and cannot make these distinctions. For sequences
of two chords, we end up with just a mode and a pair of relative chords as
a representation for the local harmony:

feer: (Sfr Sfpmia ) = [0,1] (4.6)

For sequences of three chords or more, we have more context information
at our disposal, but all chords are still interpreted as relative chords in the
most recent key of the context k;_1, of which we again only consider the
mode m;_1. For a trigram model (where n = 3), this amounts to

fcc3 : (C/j_2/ c/j_l,C}, TYZ]'_1> — [O, 1] (47)

We advocate that the interpretation of the chords ¢;_;,41,...,¢; in the
context of the already hypothesised key k; 1 and not in the context of their
corresponding keys k;_,,11,...,k; is in accordance with common practice
in harmonic analysis. As such, it is more than just a simplification to reduce
the number of parameters. Let us illustrate this with an example. Consider
chords 4-8 of our example song in table 4.1b, giving us the fairly com-
mon chord sequence: Dmin7-G7-Cmin7-F7-Bbmajé. Its last three chords
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(Cmin7-F7-Bbmaj6) form a II — V — I movement in the key of Bb major.
The first two chords Dmin7-G7 do not fit in this key, but they forma I] — V
in the key of C major. We will now take a closer look at the chord change
from G7 to Cmin?, since that is the only instance where k; 1 # k;. First of
all, even though both chords are labelled with different keys, it does not
make sense to interpret them in their respective keys (a movement from a
V in C major to a IT in Bb major in this case). In order to reason about this
transition, we must interpret both chords in one and the same key. This can
either be the key of the starting chord (a V to I movement in C major) or
in that of the target (a VI to II movement in Bb major). We now argue that
it is musically more intuitive to interpret the transition between G7 and
Cmin? as a chord transition in C major and the transition between Cmin7
and F7 as a transition in key Bb major because of the forward movement
in music: the past context prepares the ear for what is coming, so the new
chord ¢; will be interpreted in the key of established context, irrespective of
whether that new chord also marks the start of a new key or not. In prac-
tice, this means that each transition between the n — 1 chords that form
the context and the current chord should be interpreted in the key k; 1
of the last context chord. We will propose different chord change models
in section 4.3, but all of them share this principle. They will therefore all

have the same input domains, (c?fl,c}, mj_1) in case of bigram models

and ( Ci_os ] 1/ ],mj,l) in case of trigram models.

4.2.2 Relative key change models

For the key change probabilities P (k]- |C], k] n+1 ] n+1 k # k] 1) , we will
also perform a number of transformations Unhke the chord change prob-
abilities, we choose to define multiple models with different input do-
mains. A first, simplified bigram model is obtained by considering the
previous key to be the dominant factor in determining the current key.
We therefore assume that the key k; is conditionally independent from the
chords ¢j, ¢j—1, given the context key kj,l, such that the chords do not con-
tribute to the probability:

P (kjlcj kj—1,¢j—1,kj # kji—1) = P (kjlkj—1,k; # kj_1) (4.8)

The shift-invariance of music, which means in this case that transposing
both keys over the same amount is perceptually insignificant, is here taken
into account by making the model only a function of the chroma interval
i](tt)
ics themselves. The simplest bigram model is therefore expressed in terms
of

between the two tonics t and ti1, instead of considering the two ton-

freza : (i}tt),mj, mjfl) = [0,1] (4.9)
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Two more complex models are derived from this by simply imposing extra
conditions on its applicability, i.e. if the conditions are satisfied the model
values are the same as fi,, otherwise they are 0. The aforementioned
conditions depend on the diatonicity of the chords in their key. Concretely,
we derive 2 models

(ki ki1, c; _ 0 ¢éD(k)
freaw + (ki kj—1,¢j) = [0,1] = {fkaa oD (k) (4.10)
and
freae (k]',kj,1,Cj,Cj71) — [0, 1]
_ 0 Cj ¢D (k]) \/C]'_1 ¢D (k]—l) (411)
fre2a ¢ € D (k]') /\C]'_1 eD (kj—l)

For fi.op we add the condition that when a new key is started, the first
chord in the new key should be diatonic (in that key). The underlying
motivation is that in order to communicate a new key to the listener, the
played chord should be exemplary enough for this new key. This exem-
plarity is expressed by the binary condition of diatonicity. More differen-
tiating ways to express the exemplarity of a chord for a key can be easily
conceived, but those are left for future work. The fi.o. model keeps this
condition, but additionally requires that also the last chord of a key should
be diatonic, such that the transition between two keys is clearly underlined.

Trigram models are formed very similarly, the extra variables are again
used to impose more conditions that need to be satisfied before a non-zero
value will be assigned. The larger context will be used to restrict the key
change rate. Remember that the index j follows the chord changes, so when
analysing a sequence of three keys, this does not imply that there are two
key changes present. On the contrary, that would mean that the middle key
would only last one chord and this does not comply with the definition that
a key is a content label on a higher temporal level than a chord. A harmonic
analysis returning such results would therefore be undesirable, and that
is why we explicitly forbid this. The simplest trigram model, where we
again consider the key k; to be conditionally independent of all chords, is
therefore:

0 ki # ki1

(4.12)
freaa kj—2 =kjq

fkc3a : (k]',kj,l,k]',2) — [O, 1] = {

When we add the contribution of the chords again, we get the more com-
plex models
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freav + (kj kj-1,kj—2,¢j) = [0,1]

_ 0 kj72 #* k]',l Ve ¢D (k]) (4.13)
frcza kj—2 =kj—1 Acj € D (k)
and
ka3C : (k]‘,k]‘,l,k]',z, Cj,s ijl) — [O, 1]
_ 0 kj—z #+ kj—l V¢ ¢D (kj) Vi ¢D (kj—l) (4.14)
fre2a kj—2 = kj—l NcjeD (k]) Acj-1 €D (kj—l)

All together, we can see that we only need to define one model f.,, from
which we can derive a number of alternatives. One possible definition of
fre2a Will be explained in section 4.4.

4.3 Constructing relative chord change mod-
els

We will consider three types of relative chord change models: a uniformly
distributed model that serves as a base-line, data-driven models learned
from multiple annotated data sets, and a theoretical model based on Ler-
dahl’s chord distance (Lerdahl, 2001, p.55). Irrespective of the model type,
we first need to decide which chord and key vocabularies C and K to use.
The vocabulary sizes are N, and Ny, such that C = {Cy,Cy,...,Cn, } and
K = {Ky,Ky, ..., Ky, }. In practice, the chords are obtained by distinguish-
ing Np chord types and 12 possible roots, such that N; = 12Np. Similarly,
a number of modes Nj; and 12 possible tonics define N = 12Ny keys.
For the remainder of this text, we will use four triads — maj, min, dim and
aug — leading to a N. = 48 and limit the modes to major and minor, giving
N = 24. This selection is in line with earlier work (Harte and Sandler,
2005; Burgoyne et al., 2007) and provides a maximal harmonic discrimina-
tion with a minimum number of chord types and modes.

4.3.1 Learning models from a symbolic data
set using Kneser-Ney smoothing

Given a corpus of symbolic key and chord labels, we can learn the probab-
ilities of key and chord sequences, similar to the way humans build up cer-
tain expectations after listening to music. If a certain combination appeared
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Original chords Bsus4 Ffmaj Emaj/F§ Emaj Bmaj7
Reduced chords X Ffimaj Emaj Emaj Bmaj
Merged chords X Ffimaj Emaj Bmaj

Figure 4.2: Preprocessing of chord labels

a lot, it will likely appear again. An easy way to exploit this information
is to count all occurrences of a certain sequence in a corpus and to use its
relative frequency as a measure of its probability. The drawback of this ap-
proach is that the resulting probabilities will be too specific to the data set.
In particular, any unseen sequence gets a zero probability, even though it is
entirely possible that the sequence appears in another data set. To alleviate
this problem, we construct a backoff model with Kneser-Ney smoothing
(Kneser and Ney, 1995). This technique, originally developed for natural
language models for speech recognition, derives the strictly positive prob-
ability of an unseen combination from the probabilities of its lower order
subsequences. The procedure that leads to these probabilities, along with
some chord-specific adaptations, is detailed below for n =1 to 3.

PREPROCESSING  First of all, the chord and key annotations in the data
set are reduced to the vocabularies of the model. This mapping is based on
the presence or absence of certain chroma intervals in the chord. Complete
details can be found in appendix A. If no musically meaningful mapping
can be found for a chord or if no chord is annotated, it is replaced by the
unknown symbol “X”. For example, a sus4 chord cannot reasonably be
mapped to one of the 4 triads in our example, so it is replaced by X. As a
final preprocessing step, identical labels in succession, whether due to the
vocabulary reduction (e.g. maj7 and 7 chord types both mapping to maj)
or whether present in the original annotation, are merged. An example of
this process for a sequence of chord labels can be seen in figure 4.2.

RELATIVE CHORD COUNTING The next step is simply counting occur-
rences of relative chord and mode combinations. This implies that we are
no longer working with key and chord labels of vocabularies K and C, but

with the corresponding relative chord vocabulary C' = {C{, Ch ..., Cf\lc}

and mode vocabulary M = {M; M,,..., My,,}. To obtain sequences of
relative chords in a mode, we slide a window of length n over the chords
and process the chords in that window. If all n — 1 chords of the context
are in the same key, all n chords are interpreted in the context key and the
count of the relative chord sequence is increased. If there is a key change
in the context (only possible when n > 3), the n-gram gets discarded be-
cause it is not representative enough. In case there is an X anywhere in the
n-gram, the n-gram is ignored as well. For the case of n = 1 where there is
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unigram counts bigram counts

cnt (IImin, major) 2 cnt (IImin — Vmaj, major) 2
cnt (Vmaj, major) 2 cnt (Vmaj — Imaj, major) 2
cnt (Imaj, major) 2 cnt(Imaj — VImin, major) 1

(@) (b)

trigram counts

cnt (IImin — Vmaj — Imaj, major) 2
cnt (Vmaj — Imaj — VImin, major) 1

(©

Table 4.1: Resulting counts for the example sequence in figure 4.3

no context, a chord c; is always interpreted in its own key k;. This process is
illustrated for unigram, bigram and trigram counts in figure 4.3, where the
reason for rejecting an n-gram is also stated if applicable. The result is that
each combination of relative chords and modes (c’l, e Ch 1 Chy m), where
¢y, Cy_q,¢p € Cand m € M, has a non-negative counter associated
withit: ent (¢}, ..., ¢},_y, ¢, m) > 0. The non-zero counts for our example
can be found in table 4.1. Using Kneser-Ney smoothing, these counters
are subsequently used to get strictly positive probabilities, also for com-
binations that were not encountered in the corpus. The idea behind this
technique is that the probabilities of all encountered combinations are set
slightly below their ratio of occurrence in the data set. The freed probabil-
ity mass is then distributed over the unseen combinations in proportion to
the probabilities of their subsequences. This procedure works iteratively

starting from unigram probabilities.

UNIGRAM MODEL (N=1) The calculation of the unigram probabilities still
starts out as the proportion of the counts to all relative chords in the data
set:

ent (¢, m)
P / — ns
(Cn|m) ZCIECI cnt (c’,m)

Depending on the choice of data set and chord vocabulary, it is definitely
possible that a particular relative chord is never encountered and there-
fore gets probability zero. However, due to the shift of key that is used
for interpreting chords in key k; 1 in higher order n-grams, this does not
preclude it from appearing in a longer chord sequence. An example of this
is the VImin relative chord in figure 4.3, which arises as the interpreta-
tion of Amin in Cmajor in the bigram and trigram case, but not in the uni-
grams. Note that the unigram probabilities are required to be strictly posit-

(4.15)
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ive when they are needed as back-off for higher order probabilities. There-
fore we introduce an extra smoothing step specifically for the unigrams in
case the (mode-specific) number of unseen relative chords Ny, (m) > 0. We
add a fixed amount U to each of the unigram counters in order to make
them strictly positive:

U + cnt (¢}, m)
P (c|m) = L 4.16
(c1fm) NU + Y ecrent (¢!, m) (4.16)

where N is the size of the chord vocabulary.

We can make this amount U musicologically more meaningful by re-
lating it to the fraction P, of the total probability mass that is reserved to
distribute uniformly over the unseen unigrams. As a result, every unseen

Py

Ny, (m)

unigram get assigned a probability of , and all unigrams present in

the data set get a higher probability:

P u
N, (m)  NU+ Yy ent (¢!, m)
Py

Ny (m) — N:P,

u= Y ent(c,m) (417)

e

BIGRAM MODEL (1 = 2) From the bigram probabilities on, we have the
possibility to back off to the model of one order below in case there are not
enough occurrences of a certain bigram to reliably estimate its probability.
The Kneser-Ney smoothing we use takes two parameters: the pruning limit
L, which gives the minimum number of times an n-gram needs to occur in
order to be deemed representative enough, and the discount D, which gives
the amount that is subtracted from the counts to create probability mass for
the unseen combinations. They are linked by the requirement D < L. The
bigram probabilities are then calculated as

ent (¢}, ¢, m) — D

Y  sec. ont (C’l,c’,m)
cnt(c’l,c’,m)>L

P (cp|ch,m) = (4.18)

ent (¢}, ch,m) > L
71 (¢}, m) P (ch|m)

ent (¢}, ch,m) <L

We can see that the frequent bigrams get probabilities that are roughly
equal to their proportion of occurrence (after subtraction of the discount),
but less frequent bigrams fall back on the probabilities of the unigram
model, weighted by a so-called backoff factor 1. This backoff factor is calcu-
lated such that the total probability is preserved: Y P (¢’|c}, m) = 1. This
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requirement is satisfied by the following equation:
1-X (C’GC’:) p (C/|Ci’ T’I’l)
, ent(cf,c’,m)>L
1{¢,m) =
[ B e (G

cnt(cﬁ,c/,m)>L

(4.19)

TRIGRAM MODEL AND HIGHER (1 > 3) Probabilities for the trigram model
and higher follow the same pattern as the bigram: frequently observed
combinations are calculated as a discounted proportion of the occurrences
and infrequent ones are based on the lower order probability weighted by
the backoff factor v, _1

P(cylch, ... cp_q,m) =

ent (cf,...,¢,_y,¢h,m)—D

7 7171’
Z dec’: cnt (Cll, e ’Cilfl’cl’ m)
cnt(c’l,...,cflfl,c’,m)>L
ent (¢}, ... ¢, _q,cpm) > L (4.20)
Yuo1 (¢}, ... ¢l m) P (chlch, ... cl,_q,m)
ent (¢}, ... c),_q,cpm) <L
with
1-% dec!: P(c|c}, ... c,_q,m)
, , cnt(ci,...,c;fl,c’,m)>L
Yn1 (c},...,c,_q,m) =
n-1 (1o ) 1-Y% dec!: P (c'|ch, ... c _,m)
cnt(ci,...,c;_l,c’,m)>L
(4.21)

In order to use a model of order #, it suffices to store the probabilit-
ies of all orders up to n that are common enough in the data set and their
corresponding back-off factors up to order n — 1. For natural language
modelling, this generally results in a model that takes less memory com-
pared to one that stores the probabilities of all combinations of order n. For
chord sequence modelling however, this advantage is of rather limited sig-
nificance, because typical chord vocabularies are rarely of such a size that
memory becomes an issue.

The data sets we use to derive these models from will be described
in section 4.5 and some ways to quantify the expressive power of these
models in section 4.6.

4.3.2 Deducing models from Lerdahl’s chord
distance

The drawback of any probabilistic model derived from symbolic annota-
tions, is that the model is only as good as the data set. Specifically, if the
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data under test is significantly different from the data used to build the
model, the statistics encoded in the model are no longer relevant. The ef-
fect is that the model is no longer helpful for automatic estimation and may
even worsen the outcome by supporting outputs that conform to inappro-
priate probabilistic distributions. Therefore, a data set should preferably
be large and cover a variety of musical genres. Due to the non-triviality
of the annotation process, the data sets at our disposal do not fully comply
with these requirements. This does not mean that the models derived from
these sets are completely useless. It just means that the results attained
with these models might be overly pessimistic or optimistic, depending on
the data they are tested on.

As an alternative, we also constructed a model based on musical theory,
because such a model does not require any data set at all. Unfortunately,
there is no theory offering a numerical expression of the probability of oc-
currence of a chord sequence. On the other hand, expressions of percep-
tual musical distance between chords in a key do exist. We can then use
these distances to approximate the sequence probabilities required for our
model by assuming that chords that are perceptually close to each other
are more likely to follow each other in sequence than perceptually more
distant chords.

In analogy to the distances between notes and between chromas as
mentioned in chapter 2, music theorists have come up with different nu-
merical distances between chords in keys. A well known one, and also the
one we will be using, is Lerdahl’s chord distance. It has previously been
used to construct the model incorporated in the system of Catteau et al.
(2007).

4.3.2.1 Lerdahl’'s chord distance

Lerdahl’s theory in its most general form expresses the distance between a
chord in a key and another chord in a possibly different key. However, to
stay in line with the models annotated on a symbolic set, we only need the
distances between chords in the same key, a more specific version of his
general theory. The Lerdahl distance between chords in a constant key is
only dependent on the relative chord and the mode, just like we assumed
in our derivation (thereby justifying this decision). To make this explicit,
the distance will be expressed between relative chords in a mode. The cal-
culation of the distance itself is based upon the definition of a hierarchy
of chroma intervals in a chord, implying that some classes are more im-
portant than others in the perception of a chord. This is represented by
the so-called basic space. Note that this is not a geometric space wherein
the geometric distance is related to the perceptual distance, but an algebraic
space, i.e. just a tool to visualise the calculations involved. This basic space
organises the chroma intervals of a chord into five levels of decreasing sta-
bility with a top-down propagation, meaning that every chroma interval in
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root space 2
fifth space 2 9
triad space 2 5 9
diatonic space 0 2 4 5 7 9 11
chromaticspace 0 1 2 3 4 5 6 7 8 9 10 11

Figure 4.4: Lerdahl’s basic space for IImin in major

one level also appears in all lower levels. The topmost level in the hierarchy
is called the root space, only the root is present there. It is followed by the
fifth space and the triad space at levels two and three. As the name implies,
respectively the fifth and the remaining chroma intervals of the chord are
added at these levels. The fourth level is named the diatonic space, encom-
passing all chroma intervals of the mode. The basic space is completed by
the chromatic space at level five, which includes all twelve chroma intervals
in an octave.

We do not use the usual representation for relative chords, where the
chord type is expressed as a set of distances to the root, because we require
a representation that is independent of the root chroma interval. Instead,
all components of the relative chord are expressed as distances to the tonic,
just like the components of the mode. Because the difference between en-
harmonically equivalent chroma intervals is ignored, these distances to the
tonic chroma intervals are noted as the number of semitones from the tonic.
For example, a IImin chord, which is shorthand for 11 {Pl, m3, P5}, can
be noted in semitone distances as 2 {0,3,7}. Factoring out the depend-
ence of the chord type on the root chroma interval is accomplished by
simply adding the numeric value of the root to all chord components, giv-
ing {2,5,9}. Representing this chord (determining levels one to three) in
the major mode (determining levels four to five) gives the basic space de-
picted in figure 4.4.

From the basic space representations of chords, Lerdahl’s chord dis-
tance can be calculated as a sum of two parts. The first part is the num-
ber of chroma interval differences, which is defined as the combined number
chromas over all levels of the hierarchy that are present in the destination
chord, but not in the starting chord. For example, for the distance between
IImin and Vmaj in major (notated as Dy ¢ (IImin, Vmaj, major)), the num-
ber of chroma interval differences is 4. This example is visualised in fig-
ure 4.5, where the basic space of Vmaj (= V{P1,M3,P5} = 7{0,4,7} =
{7,11,2}) is given and the chroma intervals that are not present in IImin
are marked in boldface. We can see that in each of the two highest levels
(root space and fifth space), there is one chroma present in the destination
chord that is not present in the starting chord (i.e. 7). In the third level (triad
space), two new chromas are present (i.e. 7 and 11). There is no difference
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root space 7

fifth space 2 7
triad space 2 7 11
diatonic space 0 2 4 5 7 9 11
chromaticspace 0 1 2 3 4 5 6 7 8 9 10 11

Figure 4.5: Lerdahl’s basic space for Vmaj in major. The numbers in boldface
indicate the chroma interval differences with respect to the basic space of 11min in
major (seen in figure 4.4)

between the two lowest levels of IImin in major and Vmaj in major?. The
sum of the chroma interval differences over all levels is therefore equal to
4. Mathematically speaking, the construction of a multi-level basic space
effectively serves as a kind of weighting curve such that changes in some
chroma intervals are accounted for more than others.

The second part of the chord distance is the minimum number of steps
along the diatonic circle (as seen in figure 2.6) between the two root chroma
intervals. For root chroma intervals II and V, this is 1, such that in total
Dic (IImin, Vmaj, major) =4+ 1 =5.

4.3.2.2 Converting distances to probabilities

Because Lerdahl’s theory gives a distance between two relative chords,
there is no obvious way to derive a trigram model from it. In order to

derive a trigram probability P(c}|c;_;,¢;_5,m;1) that cannot be trivially

decomposed into the combination of two bigrams (c;-_z, c;-_l,m]-_l) and

/

(C;‘—y ¢ m]-_l) , the relative chord C;‘—z needs to exert some influence on ¢’

J
as well. The only solution, given that Lerdahl’s distance works pairwise,

would be to take the triangular distance D;c (c;;z, c;, mj,l) into account

as well. However, this would lead to a disproportionate high probability
for trigrams of the form (c;-, C;el/ c;, mj,l), which is musically unwanted.
Therefore we will only derive bigram probabilities from Lerdahl’s chord
distance.

As mentioned before, we convert distances to probabilities based on
the assumption that chords that are close to each other are more likely
to follow each other in succession. Small distances therefore need to be
converted to large probabilities and this is done by applying a normalised
exponential, or softmin function, of the form e~ "Pic, where v is inversely
proportional to the mean chord distance. A consequence of the use of the

2As long as the two chords are considered in the same key, as is required for the relative
chord change model, there will never be any chroma interval differences in the lowest two
levels.
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diatonic circle in the definition of Lerdahl’s chord distance, is that it is un-
defined for distances involving one or two non-diatonic roots. Therefore,
we use Lerdahl’s chord distance only when both chords are diatonic. How
the other probabilities are determined will be explained next.

The total probability mass is first divided into a part P; which is avail-
able for transitions to a relative chord that is diatonic in m; 1 and a part
1 — P; which is available for non-diatonic targets. As we already men-
tioned, transitions originating from a diatonic relative chord as well as end-
ing in a diatonic relative chord (hereafter called diatonic transitions) are
distributed according to Lerdahl’s chord distance. The other transitions,
from or to a non-diatonic chord or both, get assigned a uniform distribu-
tion. The final formulation of the theoretical relative chord model is then
as follows

P(C;‘C;_l, m]-_l) =

Dyc(ce!
vcPjexp (—LC(C’CH)) ci,ci_y € D(mj_q)

Dc ]‘r ]_
P, , )
deﬁl) ¢;eD(mj 1) Acj 4 & D(mjq) (422)
— /
N 1) ¢; & D(m; 1)

where D(m) represents the set of relative chords that are diatonic in mode
m. The quantities N;(m) and N,;(m) represent the number of diatonic,
respectively non-diatonic chords for mode m. The factor D, is the mean
Lerdahl distance between two diatonic chords in a key. The normalisation
factor v, makes sure that:

Veiy €Cmpqp €M) P(cjlej_q,mjq) =1 (4.23)
C],»GC,
c};écLl

Even though the Lerdahl distance is symmetric® and therefore the diatonic
transitions are too, the resulting model is asymmetric due to the non-diatonic
transitions. The P; factor controls how strong relative chords are steered
towards diatonicity. The degenerate cases of setting it to 1 or 0 will only
allow sequences with strictly diatonic, respectively non-diatonic, relative
chords.

4.4 Constructing a key change model

Since the number of key changes in a corpus of music typically is an order
of magnitude lower than the number of chord changes, we do not have

3To be precise, Lerdahl’s chord distance is symmetric as long as the two involved chords
consist of the same number of chromas, which is the case for our choice of chord vocabulary.
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enough data available to reliably learn the probabilities of key changes. As
such, we will only rely on a theoretical model for the key change probab-
ilities. Luckily, Lerdahl’s theory also defines a distance between two keys,
which we can convert to a probability in a similar manner as the chord
distance. This so-called regional distance has also been used for aligning
a query key sequence with all sequences in a database in order to retrieve
the most similar one (Izmirli, 2005b). The resulting theoretical key change
model has been previously developed at our lab (Catteau et al., 2007).

4.4.1 Lerdahl’'s regional distance

Lerdahl’s regional distance (region is Lerdahl’s term for key) (Lerdahl,
2001, p.68) is a special form of his more general distance between two key-
chord combinations. This means that the two keys are expanded to two
key-chord pairs before the actual calculation begins. The diatonic triad
on the first degree is considered as the most exemplary for a key, so the
regional distance is actually defined as the distance between the diatonic
triads on the first degree of the respective keys. This is Imaj for major
keys and Imin for minor keys. The distance only depends on the chroma
interval between the two tonics, not on the tonics themselves, as well as
on both modes. Here too, we will make this dependency explicit by for-
mulating the regional distance in terms of the two modes and the interval

between the two tonics. It is symbolised by D r (i](tt), mj_q, m]->.

Because the keys involved in the key distance are expanded to key-
chord combinations, they also can be represented in the basic space. The
only additional specification required is that the distance is now expressed
in semitones from the starting tonic. Therefore the representation of the
target key most likely does not have its tonic on 0, contrary to the start-
ing key and to the key-chord combinations involved in the chord distance
within one key as used for the relative chord change model. The starting
key in Drr (P5, major, major) is therefore depicted in figure 4.6. By defin-
ition, choosing the major mode for the starting key means that its repres-
entation is equal to that of a “Imaj in major” key-chord combination. The
basic space representation of the target key can be seen in figure 4.7. The
target tonic is a perfect fifth higher than the starting tonic, which is equal
to 7 semitones, so it is at position 7. Each component of the major mode
{0,2,4,5,7,9,11} therefore has to be increased by 7, applying modulo 12,
giving {7,9,11,0,2,4, 6} at the diatonic space level. Similarly, we also need
to add 7 to the formula of the Imaj chord 0{0,4,7} to get {7,11,2}. The
topmost three levels are thus equal to the representation of “Vmaj in ma-
jor”, as can be seen by comparing figure 4.7 to figure 4.5. In both cases,
the maj chord {0, 4,7} is placed 7 semitones higher than the reference tonic
(which is 0). For Vmaj in major, this is due to the root being a perfect fifth
higher, but in the same key (7 + 0), whereas in the case of Imaj in +P5 ma-
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root space 0
fifth space 0 7
triad space 0 4 7
diatonic space 0 2 4 5 7 9 11
chromaticspace 0 1 2 3 4 5 6 7 8 9 10 11

Figure 4.6: Lerdahl’s basic space for a major mode starting key

root space 7

fifth space 2 7
triad space 2 7 11
diatonic space 0 2 4 6 7 9 11
chromaticspace 0 1 2 3 4 5 6 7 8 9 10 11

Figure 4.7: Lerdahl’s basic space for the major mode target key a perfect fifth higher
than the starting key. The numbers in boldface indicate the chroma interval dif-
ferences with respect to the basic space of a major mode starting key (seen in fig-
ure 4.6)

jor, it is due to the tonic of the target key being a fifth higher, but with the
root of the chord equal to the tonic (0 + 7). The result is two times the same
chord, attained through different reasonings. On the other hand, the differ-
ence between the two is clearly visible on the diatonic space level. Again,
the chroma interval differences on multiple hierarchical levels can be inter-
preted mathematically as a balancing factor in order to weigh changes in
chroma differently according to their position in the key. For a full musico-
logical justification of the different hierarchical levels, the reader is referred
to Lerdahl (2001).

The numerical value of the key distance is further calculated in a fa-
miliar fashion. Again the number of new chroma intervals in the target
basic space with respect to the starting basic space is counted, as indicated
in figure 4.7. This is 5 for our example, and now also includes a contri-
bution on the diatonic level (1 chroma interval difference in each of the
root space, fifth space and diatonic space level, and 2 in the triad space
level). We add this to the minimum number of steps between the roots
(per definition equal to the tonics) along the diatonic circle of the target
key, 1 in our example. This implies that the starting tonic needs to be
diatonic in the target key for the regional distance to be defined. A third
part is added to the calculation of the distance, in addition to these two
parts that are the same as for the chord distance calculation. The minimum
number of steps between the tonics along the circle-of-fifths, as seen in
figure 2.3, is also added to the sum. This gives us a total key distance of
D1 r(P5,major, major) = 5+ 1+ 1 = 7. Because the definition uses once
more the diatonic circle, on which not all chroma intervals are present,
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to major
60 1 2 3 4 5 6 7 8 9 10 11

frommajor 0 23 14 14 16 7 30 7 16 14 14 23
fromminor 7 16 21 7 23 14 21 14 9 21 10 23

to minor
0 1 2 3 4 5 6 7 8 9 10 11

frommajor 7 23 10 21 9 14 21 14 23 7 21 16
fromminor 0 23 14 14 16 7 30 7 16 14 14 23

Table 4.2: Lerdahl’s regional distance for all combinations of modes and chroma
intervals between the tonics

only the distance between nearby keys can be calculated this way. The
distance to keys that are further away is calculated by splitting it into a
chain of multiple distances between keys that are pairwise nearby. The ex-
act division into smaller distances is selected on the basis of a minimum
distance rule, but the precise details are outside the scope of this text. A
summary of the resulting distances can be found in table 4.2. The bold
numbers indicate the 14 distances that can be directly calculated using
the procedure described above, the others are subsequently derived from
these 14 by adding the distances that form the shortest chain. For example,
Drr (M7, major, minor) can be split into

D1 r(P5, major, major) + Dy (M3, major, minor) =
D1 r(7, major, major) + Dy r (4, major, minor) =7 +9 =16 (4.24)

4.4.2 From distance to probability

To convert Lerdahl’s key distances to probabilities, we make the assump-
tion again that keys close to each other are likely to appear in sequence
and thus receive a high transition probability. One of the weaknesses in
this assumption is that this gives inadequate probabilities for some key
changes such as the so-called “gear change” or “one up” which are com-
mon in pop music, but not in music of the Common Practice period on
which Lerdahl’s theory is based. This illustrates that although theoretical
models do not have a bias towards a particular data set, their applicabil-
ity is still data-dependent to some extent. In this case, the dependency is
determined by the degree to which the data set complies with the theory.

The change transitions are determined by Lerdahl’s regional distance,
following a procedure similar to the chord change model.
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Drrlki1,k) ) (4.25)

P(k]|k]_1,k] # kj—l) = Vg exp (— ﬁ
k

with Dy, being the mean distance between two keys, and with v represent-
ing a normalisation factor. The latter must ensure that,

Vki1 € K: ) P(kjlkj—q) =1 (4.26)

k/'EK
kﬁékj,l

4.5 Data sets

In order to build the data-driven models and to evaluate their quality, we
need a set of annotated music files. There are two types of data sets. First
there exists annotated audio with its keys and chords transcribed and syn-
chronised to the audio. This kind of data is the most versatile in use be-
cause the annotations can be used on their own to build key and chord
change models. Furthermore, it exposes the exact durations of the labels in
the data. The annotated audio can also be used to evaluate the automatic
estimation of keys and chords from audio in the following chapters. We
have two such sets at our disposal. The first one is called SEMA. It com-
prises 142 song excerpts of 30 seconds in a variety of genres and tempi.
The excerpts have been annotated at our lab by a professional musician
with absolute pitch hearing. This set was originally assembled to provide
a broad sample of rhythmic figures (Varewyck and Martens, 2007). There-
fore it also contains some excerpts that are mostly rhythmically oriented.
The original selection contained nineteen more files, but the human annot-
ator judged that there was no harmony present in these files. As such, the
remaining 142 songs range from straightforward harmony to borderline
inharmonic, but each of these files was deemed by the human annotator
to have at least one segment with a chord and a key. The complete list of
artists and song titles can be found in appendix B.

The second data set is called Isophonics. It has been annotated at the
Centre for Digital Music at Queen Mary, University of London (Mauch
et al.,, 2009). More specifically, we take the subset that was used for the
audio chord estimation task at MIREX 2009 and all editions since®*. Tt con-
tains 210 complete songs sourced from 12 studio albums by the Beatles
(174 songs), 2 compilations by Queen (18 songs) and one cover-album by
Zweieck (18 songs). Because of the limited number of artists in the set, it
contains less sonic variety. All songs are also textbook examples of pop
harmony, the few experimental album tracks by the Beatles have been ex-
cluded.

4http://www.music-ir.org/mirex/wiki/2009:Audio_Chord_Detection
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Other types of data we have at our disposal consist of chord and key
sequences in symbolic form, without associated audio files. Therefore they
can only be used to construct symbolic models, and not to evaluate auto-
matic keys and chord estimation. The symbolic sequences can come with
some basic timing information, expressed in terms of a number of meas-
ures for instance, or without any timing information at all, meaning that
the exact duration is not available either. One such data set comes from
the University of Alicante and is called 9GDB. It consists of 856 files in
total, divided into three groups containing three genres each, leading to
nine different genres in total. The “academic” group contains 235 pieces
split over the genres “baroque” (56), “classical” (50) and “romanticism”
(129). The “jazz” group has 338 files divided over “pre-bop” (178), “bop”
(94) and “bossa nova” (66). Finally, the “popular” group consists of 283
files in the genres “blues” (84), “pop” (100) and “celtic” (99). The annota-
tions can be downloaded from their website®. They were originally used
to automatically classify music pieces into genres based on their harmony
(Pérez-Sancho et al., 2009). Due to limitations of the Band-in-a-Box file
format the files were initially encoded in, each file is only annotated with a
single global key. We therefore expect the models to be more noisy, because
possible key changes are not annotated. On the other hand, this data set is
substantially bigger than the two audio sets, and is therefore expected to
lead to higher and more reliable counts.

Our last source of data is just a readily available set of bigram change
probabilities from the MySong program (Simon et al., 2008). This is an ap-
plication that generates chord accompaniments for a given melody, which
requires the same kind of probabilities we need in order to produce likely
chord sequences. These sequences are obtained from 298 so-called “lead-
sheets”, a type of sheet music that serves as a blueprint of a song, con-
taining just the melody, lyrics and chord symbols. The annotated songs
reflect a broad spectrum of popular music, including pop, rock, R&B, jazz,
and country. The drawback of using these probabilities, which are avail-
able on-line®, is that we do not have any control over the exact method of
calculation. We can learn from Simon et al. (2008) that one of the notable
differences to our approach is the fact that the key modes were annotated
automatically based on the chord sequences and the key signature. This
suggests that the granularity of the key annotations might be too rough, as
most short key modulations are not marked by a change of key signature
and neither are modulations between relative keys, which share the same
key signature. Obviously, because the raw data is not available, we cannot
calculate probabilities other than bigrams. These drawbacks notwithstand-
ing, the MySong data will provide an interesting point of comparison.

We created a relative chord model for each of the data sets using the

Shttp://grfia.dlsi.ua.es/cm/projects/prosemus/database.php
®http://research.microsoft.com/en-us/um/people/dan/chords/
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unigrams bigrams trigrams
dataset  major minor major minor major minor

SEMA 985 1269 731 983 461 685
Isophonics 12862 2192 12216 2024 11338 1776
9GDB 34011 6026 32403 5459 30051 4728

Table 4.3: Number of retained n-gram tokens in the back-off model per data set

unique unigrams unique bigrams unique trigrams
dataset major minor major minor major minor

SEMA 30 29 49 50 57 68
Isophonics 43 28 234 111 563 207

9GDB 47 41 594 303 1775 620
maximum 48 48 2256 2256 106032 106032

Table 4.4: Number of unique n-gram types per data set

procedure described in section 4.3.1. To give an idea of the size of the data,
the number of n-gram tokens in each set is displayed in table 4.3. These
are the retained n-grams when using our chord vocabulary of 48 chords.
They cover 95% or more of the chords in the data sets. It can be seen that
the proportion of major to minor mode strongly varies between sets. In the
SEMA set the majority (56%) of chords is in the minor mode, whereas in the
Isophonics and 9GDB set the major mode is much more prevalent (85%).
Because we only consider relative chord changes in one mode and because
we let key changes be handled by a theoretical model, the undesired ef-
fect of skewing the models towards one mode will be avoided however.
In table 4.4, the number of unique n-gram types per mode and model or-
der are shown together with their theoretical maxima. This gives us an
idea of the breadth of the data sets. There is obviously a clear correlation
between the number of types and the number of available tokens. The data
suggests that the SEMA is too small to be generalise well. The major Iso-
phonics model and both 9GDB models cover almost all unigrams, but this
is not a necessarily indicative of the model’s quality. From music theory
we know that some relative chords will indeed be very rare. Remember
that the 9GDB data set is only annotated with a global key, so this almost
complete relative chord coverage can be overrated due to the erroneous in-
terpretation of a relative chord in the global key instead of its correct local
key. The number of n-gram types increases at a much slower pace than
the theoretical number of n-grams, indicating that sequences are not just
chained randomly together. Finally, the most common bigrams and tri-
grams per mode are displayed in table 4.5 and in table 4.6, together with
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SEMA

major mode
Isophonics

9GDB

Vmaj-Imaj (9.01%)
[Vmaj-Imaj (7.97%)
Imaj-IVmaj (6.35%)
Imaj-Vmaj (4.73%)
Vmaj-IVmaj (4.04%)

Vmaj-Imaj (10.93%)
Imaj-1Vmaj (10.55%)
IVmaj-Imaj (10.54%)
Imaj-Vmaj (5.38%)
IVmaj-Vmaj (4.44%)

Vmaj-Imaj (13.65%)
Imaj-Vmaj (7.10%)
Imaj-IVmaj (6.01%)
IImin-Vmaj (5.62%)
I'Vmaj-Imaj (3.66%)

SEMA

minor mode
Isophonics

9GDB

Vmaj-Imin (8.78%)
V1Imaj-Imin (6.74%)
Imin-V IImaj (6.48%)
Imin-IVmin (4.79%)
Imin-I1Imaj (4.61%)

Vmaj-Imin (8.86%)
Imin-1Vmin (6.60%)
IVmin-Imin (4.05%)
Imin-VImaj (3.76%)
V Imaj-Imin (3.23%)

Vmaj-Imin (10.05%)
Imin-Vmaj (5.34%)

VIImaj-I1Imaj (5.14%)

Imin-V IImaj (3.30%)
V IImaj-Imin (3.30%)

Table 4.5: Common bigrams in three data sets
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the percentage of tokens they represent. There is a fair amount of consist-
ency between the models, and the obtained n-grams are all very plausible
according to music theory.

4.6 Quantifying model fitness: perplexity

4.6.1 Quantifying the benefits of context size

Later on, we will use chord change models to support automatic key and
chord estimation and we will see what the influence is of the different mod-
els. However, there are already ways to compare these models on their
own. The principal ideas behind the definition of sequence models, is that
some sequences are more likely than others. In other words, the context
reduces the uncertainty about a symbol after having seen the preceding
symbols. This remaining uncertainty is conveniently expressed by the en-
tropy H (in nats):

Y (Eh e g chlm) g P (chIch . g m)

o o /
ClrerCy1/ C,,EC

Z—ZP(CHW)EP(CHCQM
q &
Y P(cylel, ... ch_y,m)log P (cplch, ... ch_y,m)  (427)
C/

From the entropy we can derive the perplexity of a model as
PProgel (1, m) = eHm) (4.28)

This measure represents the number of symbols that can follow the con-
text under the assumption that these symbols were all equally likely. For
example, a model with N; = 48 and PP,,,4,; = 9 contains the same amount
of information as a uniformly distributed model with N, = 9. The case of
a uniformly distributed model is also known as the 0-gram model, which
has a perplexity that is equal to the number of possible chords N..

The reasoning behind the use of larger contexts to build our models,
is that larger contexts will hopefully lead to less uncertainty and thus de-
crease the perplexity, but there is no guarantee that raising the order will
give rise to a significant drop in perplexity. We calculated the perplexity
of each of the chord change models derived from the data sets presented
in section 4.5 and plotted them in figure 4.8. As can be seen in the picture,
the perplexity decreases steadily with an increase in context size. This in-
dicates that it is worth investigating if the use of higher order models also
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Figure 4.8: Model perplexities for the major and minor chord change models de-
rived from three different data sets

improves the key and chord estimation from audio. The major models ex-
hibit larger differences between each other than the minor models, which
is likely due to the fact that the number of tokens available for the construc-
tion of the major models can differ up to an order of magnitude, whereas
the number of tokens involved in the construction of the minor models is of
the same order. We also notice that the rate of decrease in perplexity slows
down quickly, which shows that the expected improvement will converge
to a point after which an increase in context size will no longer change the
results.

4.6.2 Quantifying model specificity

Another characteristic of our relative chord models, is that a model built on
one set may not well represent the data from another set, even though the
Kneser-Ney smoothing tries to mitigate this lack of generalisation some-
what. This gives rise to the eternal adage of “generality versus specificity”:
the less internal variation there is within a data set, the better it can be mod-
elled (leading to a more useful model) at the cost of being less applicable
to significantly different new data. It is therefore interesting to measure
whether a model is more generally applicable, but of limited power, or
more specific and of greater power. For this, we can use the fest set per-
plexity. Suppose that we have a we have a data set S = {sy,8,,...,5n, }
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1 2 3 P, L
SEMA (leave-one-out) 11.99 11.00 10.62 009 3
2
1

Isophonics (20-fold)  11.70 7.69  7.83 0.03
9GDB (5-fold) 1634 791 711 0.01

— N W[

Table 4.7: Mean validation set perplexities per data set and model order and cor-
responding free parameter values

of N5 music pieces and that s is characterised by the key-chord sequence

(k1,c1), (ka,c2),..., <k|s 1-€)s |> of length ‘gy’. The likelihood of a piece
=y =y

sy as generated by the n-gram model defined by the probabilities

A /
P (C]|C]7l’ .. .,Cj7n+1,mj_1)

|s
= exp ( log P (c;-|c;-_1, . .,c;-_n+1,m]-_1> (4.29)
i—1

From the probabilities P (gy), the test set perplexity of the entire data set

PPiest (S; 1) can be calculated as as the reciprocal of the geometric mean of
the likelihoods of all music pieces in the data set:

N, TN ]
PPyt (S;n) = | [P <§Y) ’
y=1
N, (s
Zyzl 2]|=yl| logP (C;“C;'—l" T C;’—n-&-l’ m]'*l)

Ns
Zy:] ‘ﬁy‘

=exp | —

(4.30)

This measure” has also been used by Scholz et al. (2009) to demonstrate
that sequences of relative chords in their keys are more informative than
sequences of absolute chords and by Rohrmeier and Graepel (2012) to com-
pare the predictive power of n-grams to alternative types of harmonic mod-
elling. We first used the test set perplexity to optimise the free parameters

7although expressed in bits instead of nats
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Figure 4.9: Test set perplexity of the theoretical model in function of the probability
of a diatonic chord

of the smoothing procedure (pruning limit L, discount D and the probab-
ility of unseen unigrams P,). We performed a multi-fold cross-validation
per data set with a grid search over a number of parameter combinations
in order to obtain the combination with the lowest mean trigram perplex-
ity. The mean validation set perplexities per data set and model order are
displayed in table 4.7 together with the corresponding smoothing paramet-
ers. As expected, the optimal value for P, is proportional to the number of
unseen unigrams, but in general, the test set perplexities are not very sens-
itive to changes in these parameters. For the theoretical model, we have
examined how the test set perplexity is affected by the probability P; of
going to a diatonic chord. A plot of the test set perplexities for all three
data sets in function of P; can be seen in figure 4.9. Its optimal value con-
sistently lies around 0.75, which is about the proportion of diatonic chords
measured in the data sets.

We then calculated the test set perplexity results for all combinations of
models and test sets, where the models are again constructued using the
entire data set. The results can be found in table 4.8. A first conclusion that
can be drawn from the data is that the lowest perplexities arise when the
test set matches the model learning set, despite the usage of Kneser-Ney
smoothing. When we compare bigram to trigram test set perplexities, we
see that the decline present in the model perplexity (calculated with the
same smoothing parameters) is only reflected in the cases where the test
set matches the model. Based on the validation set perplexities however,
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test set
bigram model SEMA Isophonics 9GDB
SEMA 7.45 10.14 13.21
Isophonics 10.65 6.25 11.16
9GDB 10.81 8.56 7.20
MySong 12.31 8.93 10.94

Theoretical 16.51 15.16 18.47

(a) bigram models

test set
trigram model SEMA Isophonics 9GDB
SEMA 6.52 10.43 13.45
Isophonics 11.74 490 11.43
9GDB 10.59 8.71 5.20

(b) trigram models

Table 4.8: Test set perplexities for all combinations of models and test sets

which show little to no decline between bigrams and trigrams, we can de-
duce that the decline is due to overfitting. When the models are applied
to different test sets, the perplexities for bigram and trigram models are
close to each other. We conclude that the larger context adds information
that is mostly specific to that data set. The theoretical model clearly lags
behind in performance compared to the models based on data. A possible
explanation could be that our assumption that chord sequences are com-
posed of perceptually close chord pairs does not always lead to realistic
sequences. In addition, the probabilities for non-diatonic transitions might
not be distinctive enough, because they are not covered by Lerdahl’s the-
ory. This causes roughly 25% of the relative chord changes to be uniformly
distributed . An indication that this large unaccounted fraction effectively
proves problematic, is the fact that the theoretical model has its lowest per-
plexity in combination with the Isophonics set, which we know is the most
compliant with classical harmony theory and therefore contains the most
diatonic transitions. Of the corpus-based models, the SEMA model per-
forms consistently worse when applied to a different test set, confirming
our hypothesis that the set is too small to generalise well.
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4.7 Conclusion

In this chapter, the modelling of musicological knowledge in the form of
key and chord sequence probabilities has been discussed. We first presen-
ted the general ideas and motivation behind our proposed models. Then
we gave detailed procedures to create these models based on annotated
data sets or music theory. Finally, we quantified the resulting models in
terms of size and specificity. This allowed us to compare multiple models
coming from different sources of knowledge and to draw some conclu-
sions concerning their applicability. In the next chapters, we will embed
the models in a system for the automatic estimation of keys and chords
from audio. We will then see if the mutual relations between the models of
different origin are also reflected in the results of the estimation procedure.






9.1

A probabillistic system for
estimating chords and local
keys

In this chapter, a system for the automatic estimation of keys and chords
from audio will be presented. We will use the bigram context model presen-
ted in the previous chapter as one component, but we will also introduce
the other components of the system. The resulting system will be subjected
to a series of experiments in order to examine its accuracy and to assess the
effects of different context models on this accuracy. The final system will
then serve as a base-line that will be further enhanced in the next chapters.

Architecture of the system

The proposed approach can be classified as a knowledge-based simultan-
eous local key and chord estimation system. It is based on the frame-
work of a hidden Markov model (HMM), where the different aspects of
the system — acoustic, duration and context — are controlled by musicolo-
gical knowledge, as opposed to optimising them on a data set. This implies
that only a few free parameters are needed to balance the different aspects
and that the majority of the parameters have a clear and directly inter-
pretable musicological meaning. As outlined in chapter 3, the system can
be divided into separate feature extraction and processing phases.

93
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5.1.1 Feature extraction

An input audio file is converted to a chroma-based feature stream in three
steps. In the first stage, the waveform is resampled to 8 kHz and converted
to mono. The resulting waveform is then subjected to a spectral analysis
with the following characteristics: the analysis is performed on 150 ms
long fragments (called frames), the frames are weighted with a Hamming
window and for each windowed frame, a chroma vector is calculated. The
analysis shift T,, defined as the time between subsequent frames, is 20 ms.
Finally, the local spectral analysis is followed by a smoothing of the chro-
mas.

CHROMA VECTOR ANALYSIS As in most other systems, our acoustic ob-
servation vectors are chroma vectors. In its simplest form, a chroma vector
is just a log-frequency representation of the spectral content, folded into
a single octave. The problem with such a representation is that e.g. the
third harmonic of a pitch folds into a chroma that is located at +7 or —5
semitones with respect to the fundamental. Consequently, it will add evid-
ence to a second pitch class that is not necessarily present as a played note
in the signal. In chapter 3, we listed a number of approaches to mitigate
this problem. To recapitulate, the higher harmonics can be cleared from the
spectrum by assigning them to a fundamental frequency, or they can be left
intact and be accounted for in the later feature processing phase. We chose
to deal with the higher harmonics in the feature extraction phase and to
use the multi-pitch tracking approach of Varewyck et al. (2008), developed
at our lab. It is publicly available through the MARSYAS audio software
framework (Tzanetakis and Cook, 2000). We configure it such that a fun-
damental frequency should be supported by at least one harmonic. Given
that the sampling frequency is reduced to 8 kHz, the highest detectable
fundamental frequency is therefore equal to 2000 Hz. To reduce the sens-
itivity to the sound volume, the elements of non-zero chroma vectors are
rescaled by dividing them by the L; norm, defined as ||x||; = X; |x;|, such
that they add up to one.

SMOOTHING CHROMA VECTORS A smoothing of the observations is achie-
ved by calculating the mean chroma vectors over a number of successive
frames. This can in principle be performed in two ways: either by taking
the mean over fixed length frame sequences, or by taking the mean over
variable length frame sequences that are presumed to reveal an interesting
segmental context (e.g. intervals between subsequent beats). We only con-
sider the fixed length smoothing approach because it is not burdened by
errors made by the beat-tracking algorithm.

The smoothed chroma vectors are calculated by letting a smoothing win-
dow slide over the observations and by taking the mean over all frames
whose centre falls inside the smoothing window. We call the number of
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frames in the window the smoothing size (S). The distance between suc-
cessive smoothing windows gives rise to the final rate of the observations
that will be used in the feature processing phase later on. This time shift
between subsequent smoothed frames is hereafter called the observation
shift, and denoted as Tx. It is either equal to the analysis shift, or to a mul-
tiple s thereof: T, = sT,. The observation shift is limited by the smoothing
size S: s > S would imply that some frames are not used in the smooth-
ing, resulting in an unnecessary loss of information, so s = {1,2,...,S}.
By varying the observation shift Ty, we can trade off computational load
for time resolution, and possibly accuracy. If the observation shift is smal-
ler than the smoothing size, the resulting smoothed chroma vectors are
overlapping in time. In that case, we turn them into disjoint segments
by keeping only sections of observation shift length, centred around the
middle. The outcome forms the acoustic observation vector sequence X =
{x1,.,xn} that will be fed into the feature processing phase. A diagram
depicting the smoothing for the two extreme cases of the observation shift
(s =1and s = S) can be seen in figure 5.1.

Smoothed chroma vectors whose power falls below a certain threshold
are not fed into the probabilistic framework, but immediately get the no-
chord and no-key assigned. In practice, this means that the silence at the
beginning and end of a music piece is not processed further.

5.1.2 Probabilistic framework

The feature processing phase implements a unified probabilistic frame-
work for the simultaneous recognition of chords and keys. Its objective
is to retrieve the most likely sequence of states Q = {4y,...,4y,} for the
acoustic observation sequence X of length N,. Each state g consists of the
combination of a key k and a chord c, and the state sequence is equival-
ent to a sequence of (key, chord) pairs: in what follows, g, is equivalent to
(ku, cu)!. Using Bayes’ rule, it follows that
Q = argmax P(Q|X)
Q (5.1)
= argmélx P(Q)P(X|Q)

The acoustic likelihood P(X|Q) gets further factorised by making the
standard assumption that acoustic observations emitted from a state are
independent of each other:

Ny
P(X|Q) = [ [ P(xulkn,cn) (5.2)
n=1

INote that the letter 7 is used in this and subsequent chapters as an index of time steps.
There is no relation with the use of n for generalised n-grams of the last chapter. We only use
bigram models here.
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Figure 5.1: Schematic of the smoothing procedure. The black circles represents the
chroma vectors calculated on all frames, and alternating grey circles the resulting
smoothed chroma vectors that are used as observations in the probabilistic frame-
work. The smoothing windows used for the computation of the latter are indicated
by boxes, here for S = 3, where only the shaded boxes need to be computed. The
upper pane shows the situation when the observation shift is equal to the ana-
lysis shift (Tx = T,), the lower when the observation shift is equal to S times the
analysis shift (Ty = ST;).
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Because of the temporal dependencies in music, which get even amplified
by the smoothing in the feature extraction, this assumption is clearly an
oversimplification, although common. In speech processing, this simpli-
fication is often compensated by the introduction of delta-features, which
take the differences between subsequent observations into account. How-
ever, while it is relatively straightforward to derive acoustic models for
chroma features from music theory, there is no obvious link between delta-
features and music theory. Therefore we do not use them in our knowledge-
based system. Accounting for the temporal dependency between observa-
tions will be taken care of by the prior musicological model, which will be
discussed later.

We further simplify the model by assuming that keys and chords can
be independently tested for an accordance between observation and label:

P(X|Q) = H P (xnkn)™ P (xnlen)™ (5.3)

key acoustic model chord acoustic model

These two terms will respectively be calculated by a key and a chord acous-
tic model. We also added balance parameters «; and «. so that we can later
control the contribution ratio of the two acoustic models in the final sys-
tem.

On the other hand, the prior probability P(Q) is computed by making
the first order Markov assumption. This means that

Ny
=T1P(gnlgn-1) (5.4)
n=1

It is here that we would like to use the bigram musicological knowledge
models proposed in chapter 4. The major difference between the construc-
tion of the models there and in the current case, is that we no longer dispose
of a chord-wise segmentation. We have to follow the fixed, blind observa-
tion rate determined by the feature extraction phase instead. This means
that a change of state 4 now no longer implies a chord change. We keep the
requirement that key changes can only occur together with chord changes,
such that any movement between consecutive observations falls into one
of three cases:

o the chord and key stay the same
o the chord changes, but the key stays the same
e both chord and key change

The transition probability related to each of these cases gets calculated by
the combination of four submodels: a chord change model, a key change
model, a chord duration model and a key duration model, where the change
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models are those of the previous chapter. Not all submodels are used in all
cases though, the change models are obviously only active when their cor-
responding change takes place. The main rationale for this factorisation
into smaller models is that in this way, the different submodels can be ma-
nipulated on their own and the prior knowledge they encode can come
from different sources. Furthermore, because fewer variables are involved
in the combination of these models compared to the original monolithic
model, there are considerably fewer parameters in the model.

Formally, the decomposition of the prior probability into the different
cases goes as follows. We distinguish two types of state transitions: self-
transitions (7, = q,—1) and transitions to another state (7, # q,—1). By
applying the law of total probability, we get the following expression:

P(qnlgn-1) =
P (Gn = Gu-1]qn-1) Bgn =1 (55
P (qn # dn-1lGn-1) P (@nln-1,9n # Gn-1) i qu # Gna

Because we jointly estimate keys and chords, these conditions can also be
written as g, = g1 <= kn = ky_1Acyw = cyp—1and g, # g1 =
ky # ky—1Vcy # cy—1. To simplify the model even more, we impose
that key changes are only allowed to co-occur with chord changes. Con-
sequently, the condition g, # g§,-1 can actually be narrowed down to
¢n # ¢y—1. Formulating the probabilities in terms of keys and chords in-
stead of state variables g, then gives us

P (kn/ Cn |kn—1/ Cn—l) =

P (kn =ky_1,0n = Cn71|knflr Cnfl)

self-transition probabilities
ifk, =k,_1Ncyn =cp_1
P(cn # cn-1lkn—1,cn-1) P (kn,culkn—1,¢n—1,cn # cn1)

state-changing probabilities

(5.6)

ifey # cpa

The self-transition probabilities follow from a state duration model. It
accounts for the fact that keys and chords are likely to last longer than one
observation shift. We decompose it further, such that

P (kn = kn—l/ Cn = Cn—1|kn—1/ Cn—l) =
P(Cn = Cn—l‘kn—lz Cn—l) p (kn = kn—l‘kn—lzcn—ll Cn = Cn—l) (5.7)

chord duration probabilities =1

Because keys can only change together with chords, the chord equality in
the conditional part of P (k, = kj,_1|k,—1,¢n—1,¢n = ¢y—1) also implies a
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key equality, so the whole term reduces to 1. The co-occurrence require-
ment therefore also implies that the state duration model that calculates
P (qn = Gu-1|qn—1) is actually a chord duration model that calculates the
chord duration probabilities P (¢cy = ¢_1|kn_1,¢n_1)-

To model the transitions that change state, we start with the same de-
composition as for the self-transitions:

P(Cn 7£ Cn—1|kn—1lcn—l) P(knzcn‘kn—lrcn—llcn 7& Cn—l) =

1-P (Cn = Cn—l‘kn—lzcn—l)

chord duration probabilities (5.8)
P (Cn |kn—1/ Cn—1,Cn 7& Cn—l) P (kn |kn—1/ Cn,Cn—1,Cn 7& Cn—l)
chord change probabilities key transition probabilities

In this formulation, we can recognise the bigram chord change probabilities of
chapter 4 in the term P (¢, |k, —1,¢—1,¢n 7 ¢4—1)- Only those indices n that
follow a chord change take part in this term, which makes it equivalent
to the term P (cj|kj_1,cj—1) of the previous chapter where the successive
indices j are by definition increasing with chord changes.

We have also encountered the key transition probabilities in the previ-
ous chapter. Just like there, we use the law of total probability to decom-
pose it into separate key duration probabilities and key change probabilities,
giving us:

P(kn|knflzcnrcnflrcn # Ci’l*l) =
P(kn = kn—1|kn—1zcn/cn—1zcn ?é Cn—l)

key duration probabilities

if kn = kn,1 Ay 7& Cpn—1

1—P(kn = kn-1lku—1,Cn,Cn1,6n # Cn-1) (5.9)
key duration probabilities
p (kn|kn—1/ CnsCn—1,Cn ?é Cn—1, ky, ?é kn—l)

key change probabilities
if kn 75 kn,1 Ay 7& Cpn—1

Because the key duration probabilities contain the requirement c,, # ¢, —1
in the conditional part, key duration is not expressed as a number of time
steps 1, unlike chord duration. Instead it is expressed as a number of chord
changes, which is musicologically more intuitive.

To summarise, we have factorised the prior probability into four terms,
each with a distinct, musicologically interpretable role. We introduce the
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following short notation for them:

Py =P (cn = cu—1lkn—1,¢n-1) (5.10)
Peca =P (culkn-1,¢n-1,n # cn—1) (5.11)
Peg =P (kn = ky—1|kn—1,Cn, Cu—1,Cn 7 Cp—1) (5.12)

Pro =P (knlkn—1,¢n,cn1,6n # cn1,kn # kn-1) (5.13)

We will use multiple alternatives for the models that calculate these prob-
abilities. Our proposals for the bigram key and chord change models have
already been presented, so we only need to elaborate the key duration and
chord duration models. In practice, the models work together to calculate
the prior model probability in a way that can be broken down into the pre-
viously introduced three cases (plus the disallowed combination of a key
change without chord change):

P (knr Cn |kn—1/ Cn—l)

0 ifky k1 ANew =c¢yq
P ifk, =k,_1/Ncyn =c,_
cd N 1 n n—1/\Cn = Cp—1 (5.14)
(1-P, )PCCZPkd ifky =k,_1 Ney # cuq
(1= Pog) PP, (1= Pog) PP if ke # k1 A # €

We have introduced two additional parameters . and i to have more
control over the relative importances of the key and chord change mod-
els. If set to zero, all change probabilities will be the same, which comes
down to turning the change models off completely. Increasing the value
of the exponents therefore allows us to gradually raise the influence of the
change models. However, the normalisations of equation (4.23) and equa-
tion (4.26) need to be reapplied after this exponential weighing in order to
conserve the total probability.

The final decoding of the state sequence that optimally explains the
observation sequence under the musicological model constraints is per-
formed according to the Viterbi (1967) algorithm. In order to prevent nu-
merical underflow and to reduce the computational requirements, we work
in the logarithmic domain. For our key-chord states, this means that the
main Viterbi iteration to calculate the intermediary forward variable 4,
defined as the probability of the best path that ends in (K3, C;) at time 7,
takes the following form:
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Pl m2 M2 m3 M3 P4 d5 P5 A5 M6 m7 M7

maj 1 0 0 0 1 o 0 1 0 0 0 0
mn 1 0 0 1 0 o o0 1 0 0 0 0
dim 1 0 0 1 0 0o 1 0 0 0 0 0
aug 1 O 0 0 1 0o 0 0 1 0 0 0
Table 5.1: Binary templates for four chord types
VK, € K,VC, € C: loglo On (kn =Ky, ¢, = Cz) =
logy P (Xnlkn = Ky, cn = Cp)
1 Op—1(ky-1 =Ky, cn=C
+II<?2§{ 0810 0n-1 (kn—1 = Ky, cn = C1) (5.15)

CieC

+1ogo P (kn = Kz, cn = Caolky—1 = Ky, 041 = Cl)}

The optimal key and chord sequences K and C for the observation se-
quence X can then be retrieved as K, C = arg maxdy, (kn,, cn, )-

Because of the requirement that key changes should co-occur with chord
changes, the resulting system is reminiscent of a hierarchical hidden Markov
model, as proposed by Fine et al. (1998). Keys would then be a first layer
in the hierarchy that can emit chord sequences in a second layer. How-
ever, all hierarchical HMMs can be written as regular HMMs and the ad-
vantage of the former, namely that the hierarchy can be taken into account
when training the system with a Baum-Welch procedure, is irrelevant here
because we only decode a manually fixed HMM. Therefore we chose to
formulate our system in the simpler framework of a regular HMM. In the
following sections, we will have a more detailed look at the acoustic and
duration models and the different options for calculating them.

5.1.2.1 Acoustic models

The chord acoustic model calculates the likelihood of an acoustic observa-
tion vector given a proposed chord. We consider two simple approaches
which both rely on the definition of a 12-dimensional binary template t(c)
to represent chord c. The v-th element #,(c) of t(c) is 1 if chord ¢ implies
a component of chroma v, and 0 in the other case. The 48 chord templates
needed for our chord vocabulary arise as all the possible rotations of the
four chord type templates depicted in table 5.1. Since we limit the estim-
ation to triads, all considered chords will have a template with three non-
zero values.
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The first approach is to consider the cosine similarity (or scaled in-
ner product) between the observation vector and the chord template as
an acoustic posterior probability.

oo lxa) = (t(cn)  xn)
Plenbn) = 18 @0, Tl (5.16)

Since the elements of the observation vectors and the chord templates are
positive numbers, the cosine similarity ranges from 0 (no evidence found
for any of the chromas present in the chord) to 1 (the observation vector
only has contributions on the chromas present in the chord). In order to
convert this posterior probability to a likelihood, it technically needs to be
scaled by the mean posterior probability in the data set, Pyupp = P (cu|Xn):

P (cn|xn)

5.17
Py (5.17)

P (Xn|cy) o

This introduces a dependency on the data set, however, which we want
to avoid in our acoustic models. Since measuring the Pyps revealed that
their values are relatively close to each other anyway, we opted to fix Pyypp
to1.

The second approach is the one adopted by Catteau et al. (2007). It
assumes that the elements of the observation vector can be considered in-
dependent of each other, and that the acoustic likelihood can thus be fac-
torised as

12
P(xnlcn) = [ ] P(xnolto(cn)) (5.18)
v=1

Since ty(c) is either 1 or 0, there are only two probability distributions to
model. A simple model is the following

P(x|0) = o <P0 +(1—Pp) exp (—;;)) (5.19)
P(x[1) = {1/1 (Po +(1—Py)exp (_ (xz—‘g)z)) x € (0,%) (5.20)
151 x € (%,1)

The quantities vy and v; are normalisation factors whereas P is an off-
set which preserves some probability density at x = 0 or x = 1 for a tem-
plate value of 1 and 0 respectively. Since we assume triads, and since the
observation vectors are normalised, it follows that ¥ = 0.33 is an appropri-
ate choice. In order to obtain sufficiently discriminating distributions, we
chose o = 0.13 (sufficiently smaller than X). The parameter Py was set to
0.05. We will refer to this model as the (half-)Gaussian model.

The key acoustic model P (xq|ky) is calculated very similarly to the
chord acoustic model. Here we use the non-binary templates defined by
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Pl m2 M2 m3 M3 P4 T P5 mé6 M6 m7 M7

major 5 2 35 2 45 4 2 45 2 35 15 4
minor 5 2 35 45 2 4 2 45 35 2 15 4

Table 5.2: Temperley templates for four modes

Temperley. These are vectors representing the stability of the 12 pitch
classes relative to a given key. They are based on the Krumhansl profiles,
but specifically adjusted for computational key-finding (Temperley, 1999).
The templates for the two modes that are rotated to form the 24 key tem-
plates we need are shown in table 5.2. We use them in combination with the
cosine similarity in the same way as we did for the chord acoustic model.

5.1.2.2 Duration models

As a first option for the chord duration model, we consider a general geo-
metric model, obtained by using a single value for all chords:

P (Cn = Cn71|knflr Cnfl) =P

We can relate this chord self-transition probability P to the mean chord
duration d., which is expressed in seconds. By setting the mean chord dur-
ation expressed in observation time steps (obtained by dividing the mean
chord duration by the observation shift Ty) equal to the mean of the geo-
metric distribution, one obtains

ﬁ: 1 — PC:1—2 (5.21)

c

This mean duration can for example be measured in an annotated data set.
In the SEMA set, d. = 1.71. We round this up to 1.76, such that P. = 0.875
for disjoint smoothing or P, = 0.989 for sliding smoothing.

The key duration model is calculated similarly, also by setting a single
value for all keys:

P(kn = kn71|kn71rcnrcn71/5n #* Cnfl) = B

The difference with the chord duration model is that the key duration
model is only active when a chord changes, so the time scale we are work-
ing on is defined by the chord changes. Therefore the mean of the geomet-
ric distribution can be set to the average number of chords per key dy.

_ 1 1
dk_l_Pk<:>Pk_1—d:k (5.22)
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Because the number of key changes per song is generally a lot less than
the number of chord changes, we do not think it is advisable to measure a
mean key duration dy on a data set. This might not be representative for
unseen data, given the current amount of annotated data available. There-
fore we fix this value to 8, leading to P, = 0.875, such that it is not very
difficult to change key.

5.2 Experimental evaluation

The experimental evaluation of our system first of all aims to determine op-
timal values for the free balance parameters (ag, &c, Br, Bc). Furthermore,
we will evaluate different configurations of our system in order to get a
better insight into the impact of changes to the individual components.
Therefore, we will use the label-synchronised audio of the SEMA and Iso-
phonics data sets presented in section 4.5 together with some evaluation
measures. In general, we will use the SEMA set to search for good bal-
ance parameters and then apply the resulting system configurations to the
Isophonics set to test the generalisation capabilities of the system.

5.2.1 Evaluation measures

The performance of our system is measured as the percentage of time the
extracted key or chord equals the annotated key or chord. What we mean
by being “equal to the annotation”, is that the two should have the same
tonic or root and the same mode or chord type. Their pitch spelling may
differ however. Estimating related keys or chords will therefore not add to
the score. We restrict the chord evaluation to segments where one of the
basic triads (maj-min-dim-aug) has been annotated. This is so in 62.55%
of the data for the SEMA set and 77.44% of the data for the MIREX set. By
doing so instead of mapping the complex chord annotations to triads as
we did in the chord change model derivation, we will get results that are
clearer to analyse. Besides the triad starting on the root, other triads can
be found in most complex chords. So if a complex chord annotation would
get reduced to the single triad on its root, it is impossible to distinguish
between an incorrect estimation that is somewhat understandable because
all of its chromas are present in the audio signal (e.g. an Emin estimation
for a Cmaj7), and one that is plainly wrong because the signal contains
just the triad. We therefore prefer an increase in meaningfulness of the
evaluation over an increase in amount of evaluation data. Key estimation
performance on the other hand, is measured over the whole data set.

In practice, the evaluation score is calculated by taking the union of
both annotated and estimated label boundaries, and by then comparing
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the annotated with the estimated label for all of the resulting segment pairs
(limited to those annotated with a basic triad for chord evaluation). The
binary score (1 for equal labels, 0 otherwise) for a segment is then mul-
tiplied by its duration and these weighted scores are summed together.
Finally, this sum is divided by the total duration of all segments withheld
for evaluation.

When comparing different configurations of the same system, we also
check whether the differences in the evaluation results are statistically sig-
nificant, or if these differences can just be attributed to statistical noise. Be-
cause the experiments are carried out over the same data sets for all config-
urations, we can use paired difference tests to this end. For chord estima-
tion results, we employ Wilcoxon (1945)’s signed rank test, which operates
under the assumption that both sets of results are distributed symmetric-
ally around their median. This is the case for most chord outputs: the test
results display some variance due to the range of inherent complexity of
the different songs, but there is no underlying process that causes a signi-
ficant skew towards either direction. This is not the case for key estimation
results however. Because key labels extend over a long period of time,
especially when no key changes happen in a song, we expect our system
in the majority of cases to estimate the key either correctly or incorrectly
over the whole duration of the music piece. This leads to two clusters of
results around 0% and 100%, and a significant asymmetry if the median
result deviates from 50%. Therefore we use the sign test when the results
are asymmetrically distributed, because it does not make the symmetry
assumption, though at the expense of a lower statistical power.

5.2.2 Impact of the feature extraction

In a first experiment, we evaluate the chord acoustic model on its own and
illustrate the influence of the feature extraction phase in case no explicit
duration model is present. Therefore we use a simple frame-wise system
that returns the most likely chord label (calculated independently from the
key) for each feature vector, without any duration or change models. This
means that we optimise the probability

P(K,C|X) = HP (Xn|kn) P (xn|cn) (5.23)

We investigate the Gaussian and the cosine similarity chord acoustic mod-
els outlined in section 5.1.2.1 and alter only the smoothing step of the fea-
ture extraction. We combine a number of smoothing sizes S with the two
extreme cases of the observation shift. In the first case, we employ a shift
equal to the analysis shift T, (maximal temporal precision) and we refer
to this case as sliding smoothing. In the second case, we employ an obser-
vation shift that is equal to ST, (maximal computational speed-up). This
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Figure 5.2: Influence of smoothing size on the SEMA chord results for two chord
acoustic models and two smoothing approaches

approach is therefore called disjoint smoothing. The chord estimation results
on the SEMA set for the four configurations as a function of the smoothing
size are depicted in figure 5.2.

Averaging the observations (S > 1) clearly has a positive effect on the
chord score. For the sliding window approach, the score increases until
S = 67. For longer smoothing sizes, the drawback of possibly averaging
over multiple chords, and thus smearing information, outweighs the ad-
vantage of creating a more stable input. In the case of disjoint smoothing,
the optimal point is significantly lower and located at S = 41. As soon as
S > 11, a loss of time resolution (T, > T,) causes a loss in accuracy. How-
ever, this loss is restricted to 5%. The difference between the two choices
of the chord acoustic model is negligible.
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Sliding smoothing with Gaussian chord acoustic model
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Figure 5.3: Influence of smoothing sizes on short chords

Although the results point to an optimal smoothing size that is relat-
ively long, we argue that such a long smoothing is unacceptable because it
leads to a large number of undetected short chords. Because of the nature
of our evaluation measure, wrongly recognised short chords have a smal-
ler impact on the total score than they would have in an evaluation where
the performance of chords is not weighted by their length. In order to visu-
alise this phenomenon, we have compared the results for multiple smooth-
ing sizes on the entire evaluation data set with the results on subsets that
only consist of chords below a certain duration (as determined from the
reference annotations). The results for the Gaussian chord acoustic model
are shown in figure 5.3, where we use sliding smoothing to exclude the ef-
fects of a diminishing temporal resolution associated with disjoint smooth-
ing. We considered subsets of chords that were shorter than 2 s, 1.5 s and
1s. They respectively account for 56%, 39% and 19% of the evaluation
data. The fact that the curves diverge more and more as the smoothing
size increases, illustrates that short chords are increasingly discarded. Con-
sequently, the optimal smoothing size depends on the chord length, where
shorter chords obviously require shorter smoothing sizes.

As we believe that the detection of short chords is important, we choose
to fix the smoothing size to 11, which we support by the following argu-
ments. First of all, this point is a good compromise between keeping the
largest part of the initial surge in the score (the curves of figure 5.2 are
not increasing as fast any more) while still making it possible to recognise
short chords (the curves in figure 5.3 are still close to each other and none
has passed its maximum). Second, for this smoothing size, there are only
small (though significant) differences between disjoint and sliding smooth-
ing, so that we can continue to examine both types of smoothing. Finally,
we argue that by including a duration model, we will be able to restore
the performance to the level of the optimal smoothing by preventing the
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generation of spurious short chords, even when limited smoothing is used.

Note that the key acoustic model works on the same smoothed obser-
vations with a smoothing size of 11. This means that the extrema of the
frames involved in the smoothing are only 350 ms (= 150 + 10 x 20) apart
from each other. Usually, the features for stand-alone key estimation al-
gorithms (Pauws, 2004) and combined key-chord estimation algorithms
(Rocher et al., 2010) are calculated over much longer intervals than this,
since a key is by definition established over a longer time. However, we
feel that the previously made reasoning applies here as well. Although the
benefits of a long smoothing window may be even more substantial, such
windows may lead to imprecise key boundary locations. The fact that we
employ a short smoothing window means that the results of the key acous-
tic model on its own are not very informative though. Therefore they are
not reported in detail here. As could be expected, the results are mediocre
and keep on increasing with a larger smoothing size beyond the smoothing
sizes we examined. In fact, the key acoustic model output tends to track
chords rather than keys. It hence needs to be stabilised in the full system
by imposing keys to change more slowly than chords.

5.2.3 Impact of the duration models

To assess the impact of the duration models, we use the full system, but
with the change models switched off (8y = 0, 8. = 0). The probability to
optimise then is

P (K,C|X) =
P4 ifk, =k,_1 ANcp = cpq
Ny (1= Peg) Pra
TP (xalkn)™ P (xalcn)™ ifky =kp_1Acy #cu_1 (5.24)
=t (1= Pea) (1 = Pra)

ifky, #ky_1 Ncy # cq

The acoustic balance factors ay and «a, are then altered in a grid search on
the SEMA set to arrive at the optimal combination of acoustic and dura-
tion models. Because both key and chord acoustic models and key and
chord duration models depend on either the key or the chord and because
the change models that account for the key-chord interaction are switched
off (i.e. uniformly distributed), the key and chord sequences can be optim-
ised almost independently from each other. Changing the balance of the
key acoustic model influences the chord sequence only minimally and vice
versa. This configuration is therefore almost equal to fusing two separate
HMMs, one for chord estimation and one for key estimation, except for the
requirement that key changes should co-occur with chord changes.
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chord acoustic only with duration models
chord acoustic model disjoint  sliding disjoint sliding
Gaussian 54.93 55.33 7117 71.83
cosine similarity 55.02 55.42 69.34 70.27

Table 5.3: Chord results on the SEMA set

key acoustic only with duration models
chord acoustic model disjoint  sliding disjoint sliding
Gaussian 25.89 25.75 54.33 53.63
cosine similarity 25.89 25.75 53.10 53.65

Table 5.4: Key results on the SEMA set

The chord and key results on the SEMA set presented in table 5.3 and
table 5.4 show that the addition of the duration models leads to a sub-
stantial improvement. These improvements are all highly significant with
p < 1078 or less. In contrast to the experiments with acoustic-only sys-
tems, the chord results show a consistent difference between the two chord
acoustic models. The Gaussian model outperforms the cosine similarity
model by more than one percentage point with significance of p < 0.01.
The differences in key results are not significant, however. In fact, the
number of files with a different key output between the two is so small
that significance tests are rejected by default. The difference between slid-
ing and disjoint smoothing remains small as well (<1), nevertheless it is
statistically significant (p < 0.02 or less). The key estimation performance
is notably lower than the chord estimation performance. The explanation
is that the key acoustic model works on the same relatively short feature
segments as used for the chord estimation, which we conclude to be too
short to reliably track the correct key. Nonetheless, we previously stated
our reasons not to increase the observation length. So far, the hypothesised
chords only influence the duration of the key candidates, so the key-chord
interaction is barely exploited. Even though this already leads to an abso-
lute improvement of almost 30 %, we expect another large improvement
in the key output when the actual chord labels can suggest the implied key
through a non-uniform chord change model.

We now take a closer look at the results of the system with disjoint
smoothing and a Gaussian chord acoustic model. In figure 5.4, the acous-
tic model balance factors a; and a. are altered around their optimal point
(0c = 1.2,a5 = 2.74), while keeping the other constant. We can see that
changing the chord acoustic balance factor « strongly influences the chord
results and has little effect on the key results, as was expected from this
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Figure 5.4: Influence of acoustic model balance factors on the SEMA set
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Sliding smoothing with Gaussian chord acoustic model and duration models
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Figure 5.5: Influence of the chord acoustic model balance factor on short chords

configuration without change models. Changing «; similarly does not in-
fluence the chord results. The fact that changes in one acoustic model
balance exert such little influence on the other, show that imposing the
requirement that key changes should co-occur with chord changes is reas-
onable. Only when . gets very large will this assumption force the chord
changes to follow the superfluous key changes that arise when the key
acoustic model strongly dominates the duration models. The chord results
are then dragged down with the key results as can be seen in the right part
of figure 5.4b, but since this only happens for such degenerate configura-
tions with no practical use anyway; it is not really a problem. In addition,
the sensitivity of the key output to &, is also minimal. When aj takes small
values, the duration model becomes dominant and the output contains no
key changes. Because of the relative rarity of key changes, this does not
fundamentally alter the results. However, since the key acoustic model is
the only component responsible for labelling key segments, setting ay = 0
would lead to random key output (with the chord output unaffected).

To end this section, we quickly look at the performance on short chords
again to see if the addition of the duration models has changed the sys-
tem’s behaviour. In figure 5.5, the chord results of the sliding smooth-
ing/Gaussian chord acoustic model configuration are displayed in rela-
tion to a; !, split out according to maximal chord length. On the x-axis we
put a1, such that going to the right equals an increase in dominance of
the duration model, comparable with the increase in smoothing size of fig-
ure 5.3. Short chords still prove to be harder to estimate correctly, which
is expected because less observations are available to make this estima-
tion, and the globally optimum amount of duration modelling is still too
aggressive for the shortest chords. On the other hand, the difference in
performance between chords shorter than 1 s and all chords, measured



112

A probabilistic system for estimating chords and local keys

at the globally optimal point, has decreased slightly. Moreover, although
aligning the optimal duration model setting such that all chord lengths
achieve their maximal improvement at the same time has proven to be im-
possible, the results for each of the chord-length categories at the globally
optimal setting are still better than best results achieved through adapting
the feature smoothing size to each of the chord lengths separately in an
acoustic-only system (which cannot be done in practice because it requires
knowledge of the reference chord segmentation). So all-in-all, the intro-
duction of the duration models does allow us to improve the performance
compared to a system with more aggressive smoothing and no duration
models.

5.2.4 Impact of chord change models

5.2.4.1 Adding a chord change model

Next, we evaluate the contribution of the chord change model by introdu-
cing a positive chord change balance factor .. The probability to optimise
then takes the following form:

P(K,C|X) =
P4 ifk, =k,_1Ncyp =cpq
N, (1— Pug) PP Py
[ 1P (xalkn)™ P (xnlcn)™ if ky = k1 Acn #cy1 (5.25)
"= (1= Peg) Pl (1= Prg)

if kn 75 kn—l Ny 7& Cpn—1

We use a system with a Gaussian chord acoustic model and disjoint smooth-
ing to calculate the results, as this turned out to be the optimal trade-
off between accuracy and speed in the previous experiments. All chord
change models described in section 4.5 are put to test and the SEMA set is
used as a development set for seeking the optimal combination of (ay, ac, Bc)
for each of these chord change models.

With the introduction of the chord change models, a new complica-
tion arises. Previously, the key and the chord output exerted so little in-
fluence on each other that it was feasible to attain the best chord and the
best key performance with a single parameter configuration. Now it is
possible that the two transcription tasks compete with each other instead
of reinforcing each other, especially when the chord change model is not
matched to the data set. It might be better to insert more chord changes or
to choose slightly suboptimal chords that fit the mismatched chord change
model better, such that the correct key is found over a longer time span.
The reverse case is also true, optimising the detection of short-term chords
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might cause the key estimation to lose track. This makes it generally im-
possible the get the best key and chord sequence with the same config-
uration. Therefore we first determined for each chord change model the
parameter combination that maximises the chord score (displayed in the
left column of table 5.5a), and then the combination that maximises the
key score (right column of table 5.5a). In order to understand better how
the optimal key and optimal chord configuration relate to each other, we
show the average over all files of the ratio of the estimated number of chord
segments CS,s; to the number of chord segments in the reference annota-
tions CS;,r. A value higher than one signifies over-segmentation, below
one means under-segmentation.

The eleven optimal balance parameter configurations (and not twelve
because the optimal chord and optimal key configuration are the same for
the uniform chord change model) that follow from this parameter sweep
are subsequently used to calculate the output on the Isophonics data set.
However, the balance parameters (a., ag, B¢) for the SEMA and the Iso-
phonics chord change model are interchanged for this experiment in order
to follow the match between data set and chord change model. The result-
ing key and chord scores can be found in table 5.5b.

CHORD ESTIMATION RESULTS ~ The results show that all of the chord chan-
ge models improve the chord estimation results, and all improvements on
both sets are statistically significant with a minimum of p < 0.02 with
respect to the uniform chord change model. However, in absolute terms
the improvement is rather limited, with an increase of about 2 %-points.

KEY ESTIMATION RESULTS The impact on the key estimation can be high-
er, with an increase up to 17.5 %-points on the SEMA set and 8 %-points on
the Isophonics set. But here we see that results vary greatly across chord
change models. On the SEMA set, the MySong and theoretical models
are only able to achieve small improvements, even non-significant in the
case of the theoretical model (the other improvements are statistically sig-
nificant). These key results mirror the trends of the model specificity tests
of table 4.8 very well. On the Isophonics set, only the matched Isophon-
ics Chord3change model is able to significantly improve the key output
(p <1073).

DATA GENERALISATION AND PARAMETER SENSITIVITY Despite the use
of parameters that are optimised for the SEMA data set, the figures reveal
that chord and key estimation is inherently easier on the Isophonics set.
This does not come as a surprise, since the Beatles songs that form the
majority of the Isophonics set are known for their harmony based compos-
itions, while the SEMA set was not assembled particularly for chord and
key estimation and thus contains a number of more rhythmically oriented
songs. The fact that especially key estimation is harder for the SEMA set
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chord key (@, ok, Be) Cest chord  key (oe, ap, Be) Cest
ﬁm‘m\. ﬁm\m\
uniform  71.17 54.33 (1.2,2.74,0) 1.72 7117 54.33 (1.2,2.74,0) 1.72
SEMA 7346 71.15 (0.75,0.27,0.65) 1.46 7328 71.85 (0.75,0.27,0.75) 1.48
Isophonics 7292 62.43 (0.75,1,1) 1.53 7164 6790  (1.33,1,1.78) 2.51
9GDB 7315 62.65  (0.75,0.56,1) 1.55 7247 6747  (1,0.56,1.78) 1.95
MySong  73.43 4731 (0.87,0.1,2.05) 1.80 69.75 5853 (2.05,2.37,1.33) 3.51
theoretical  73.08 51.19 (0.75,7.5,1.33) 1.51 66.30 54.96 (0.42,2.37,0.32) 0.75
(a) SEMA data set
optimal chord configuration optimal key configuration
chord key (ae, ek, Be) CSest chord key (ae, g, Be) CSest
CSpe f CSpe f
uniform  76.45 68.54 (1.2,2.74,0) 0.90 76.45 68.54 (1.2,2.74,0) 0.90
SEMA 78.16 71.33 (0.75,1,1) 0.84 7818 66.86  (1.33,1,1.78) 1.19
Isophonics  78.56 76.00 (0.75,0.27,0.65) 0.81 78.83 76.66 (0.75,0.27,0.75) 0.82
9GDB 7841 66.65 (0.75,0.56,1) 0.85 7837 66.78  (1,0.56,1.78) 1.04
MySong  78.50 57.64 (0.87,0.1,2.05) 0.94 75.84 6523 (2.05,2.37,1.33) 1.55
theoretical 77.26 61.51 (0.75,7.5,1.33) 0.82 69.93 69.08 (0.42,2.37,0.32) 0.47

114

(b) Isophonics data set

Table 5.5: Key and chord score of the configurations that maximise chord (left column) or key score (vight column) for different chord
change models. The best results per chord change model are set in boldface.
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than for the Isophonics set possibly explains why only the matched Iso-
phonics chord change model can improve the key results: there is simply
less room for improvement. Another reason could be due to the differ-
ence in parameter sensitivity between chord and key estimation. The chord
score hypersurface formed by varying the balance parameters for the SEMA
set is smooth and monotonous, such that it is easy to find the optimal con-
figuration. The resulting configurations carry over well to the unseen Iso-
phonics data set. The key score hypersurface on the other hand is rough,
with irregular ripples that can change the score by multiple percentage
points between nearby parameter combinations. This in turn can be ex-
plained by the fact that the longer temporal nature of a key makes a single
change in key label affect a longer time span than a single change in chord
label. The effect is that finding the optimal key configurations is harder
and that they generalise worse to the Isophonics data than the optimal
chord configurations. The latter is apparent when the SEMA chord change
model is used with the Isophonics data set, for instance. The supposedly
optimal chord configuration here has a better key estimation result than
the supposedly optimal key configuration, and the other way around. Fi-
nally, it can be argued that the degree to which the test data complies with
a chord change model is inherently data-dependent and that the balances
need to reflect this. This would prove problematic for unseen data, as there
is no way to find the optimal balance beforehand then. The model spe-
cificity tests of table 4.8 particularly suggest that the 9GDB model should
be capable of an increase in key estimation results on the Isophonics set
too. Where the configuration lies that achieves this result and if this con-
figuration is also satisfactory for the SEMA data set can only be answered
through a new parameter sweep on the Isophonics data. Future research
with additional data sets will hopefully resolve this question of data gen-
eralisation.

CHORD SEGMENTATION ANALYSIS The chord segmentation ratio brings
another data-dependency to light. The system without a chord change
model produces over-segmented chord sequences on the SEMA data, but
under-segmented sequences on the Isophonics set. For both sets, adding a
chord change model and configuring it for optimal chord estimation gen-
erally results in a decrease of the estimated number of chord segments, irre-
spective of whether the base uniform system was already under-segmenting
or not. However, improving the chord rate and a better chord score do not
necessarily go hand in hand. For instance, using the MySong chord model
instead of the uniform model on the SEMA set leads to a significant im-
provement in chord score, but also increases the over-segmentation. Even
when using the same chord change model, i.e. the 9GDB model on the Iso-
phonics set, we can see that the chord scores of both configurations are the
same, although the optimal key configuration has a better segmentation.
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KEY-CHORD REINFORCEMENT We notice that when using the worst chord
change models (MySong and theoretical), the improvements with respect
to the uniform model in both key and chord estimation are only possible
at the expense of the complimentary task, whose result drops below the
baseline set by the uniform model. This further confirms their unsuitabil-
ity for the current data sets. The matched chord change model is of course
most capable of combining both tasks in a single configuration. Surpris-
ingly, the correlation between key results and chord results is rather low. It
is possible to improve chord output while the key output deteriorates com-
pared to the uniform model case. We will investigate how this is possible
in the next section.

SUMMARY In summary, the choice of chord change model does not make
a huge difference as far as chord estimation is concerned, whereas it is
clearly a major factor for key estimation. Consequently, the effects of a
mismatch between chord change model and data set or between model
balance and data set are more severe for the key estimation results, to the
extent that a mismatch can easily degrade key estimation performance un-
til it is worse than when a base-line uniform model is used. For chord
estimation, the effect of adding a chord change model is much more con-
sistent, such that a performance increase over the uniform model is almost
guaranteed, although unseen data sets might not get all the potential out of
them. As can be expected, the relative chord change models that match the
test set perform the best, both for key and chord estimation. The test set
perplexity described in section 4.6 gives a good indication of this match.
More in general, the bigger the mismatch between chord change model
and data set, the harder it is to achieve a synergetic effect between the two
tasks of key and chord estimation.

5.2.4.2 Error analysis

The fact that the key and chord results are not strongly correlated shows
that the key and chord estimation processes do not use the information
contained in the chord change models in the same way. In order to get a
better understanding of the effect of the chord change models, we make
an in-depth analysis of the type of errors our system makes. We use the
experiments on the Isophonics data, as this has not been used to tune the
parameters and therefore its results are most representative.

CHORD ERROR CATEGORISATION We divide the chord estimation errors
into four categories. A first class comprises all wrongly estimated chords
that differ only one chroma from the correct chord (or even have all chromas
correct but got the root wrong for augmented chords). A second category
consists of the chords that are shifted a perfect fifth up or down with respect
to the reference chord. The chord type is therefore correctly estimated, but
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Results for the Isophonics data set
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Results for the Isophonics data set
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the estimated root is adjacent to the reference root on the circle of fifths
(e.g. Fmaj and Gmaj for a Cmaj annotation). Note that these chords have at
most one chroma in common with the annotated chord (1 for maj and min
chords, 0 for dim and aug chords). The third class consists of the chords
that are shifted a semitone, such that the chord type is again correct but the
root is a semitone higher or lower than the annotation (e.g. Cmaj and Bmaj
for a Cmaj annotation). These chords have no chromas in common with the
annotated chord. The remaining chords share maximum one chroma with
the annotation and are grouped together in a fourth category.

KEY ERROR CATEGORISATION  For the key estimation results, we identify
five categories of errors. The first one consists of the adjacent keys, whose
modes are correct but whose tonics are adjacent to the annotated tonic on
the circle of fifths. The second category contains the relative keys, that share
the same key signature, but where the mode is flipped (e.g. A minor for
a C major annotation and Eb major for a C minor annotation). Third are
the parallel keys where the tonic is correct, but the mode is flipped (e.g.
C minor for a C major annotation). Fourth are the chromatic keys, whose
mode is correct, but whose tonic is a semitone off the correct key. Finally,
all remaining key errors form the last category.

CHORD ERROR ANALYSIS  The breakdown per chord category in figure 5.6
tells us that the addition of a chord change model is most effective in re-
ducing chords that differ in one chroma from the correct chord, the other
categories decrease less or not at all. Missing just one of the chromas is
acoustically quite likely, because of various causes of noise in the short-
time signal. On the other hand, harmonically this can lead to chords that
are very different in function. It is therefore understandable that the chord
change model is best able to correct these errors that are very conspicuous
in the harmonic sense. Another notable observation from the chord errors
is the large proportion of fifth shift errors. This is somewhat surprising, as
they are acoustically not very similar to the chords they replace (maximum
one shared chroma). It is even more remarkable when one realises that
they form only 4% of the possible confusion pairs, while the chords with
one wrong chroma represent a 16% share. The fact that these errors are
also prevalent with the uniform chord change model indicates that these
errors originate before the harmony modelling. It seems plausible to as-
sume that these errors stem from mistakes in the chroma analysis, as fifth
confusions between chromas (due to erroneous tracking of the first partial)
are acoustically a lot more common than confusing two chords a fifth apart.
More intelligent chord change models do not help to decrease these fifth
shift errors, on the contrary. This might seem counterintuitive, but chords
that are shifted a fifth still fit in the original key in most cases, so trans-
itioning to them instead of to the annotated chord will not be penalised by
the chord change model. For that reason, we hypothesise that using the
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more restrictive chord change models also has the unwelcome side-effect
that once an error has been made (e.g. because of the tracking of a partial
instead of a fundamental frequency in the chroma analysis), the stronger
harmonic constraints make it more difficult to quickly recover from the er-
rors in the acoustic model. Luckily, the benefits of a better adapted chord
change model still outweigh this unwanted drawback. Chromatically shif-
ted chords are both acoustically and harmonically unrelated, so the only
cause of these errors would be tuning problems in the chroma extraction
step. The unvaryingly low numbers show that this is not the case. Finally,
the use of chord change models leads to a decrease of the uncategorised
errors, which can be expected because the chord change model makes it
more difficult to generate chords that are completely unrelated to the sur-
rounding chords.

KEY ERROR ANALYSIS The counter-productive effect of using better chord
change models is less visible in the key errors, shown in figure 5.7: an in-
crease in correct key estimations does not lead to a systematic increase in
a specific error category. Instead, all error percentages decrease or at least
stay constant with respect to the uniform chord change model®. This is
undoubtedly because a single wrongly estimated chord does not disrupt
the key estimation that much. The gain of the best performing configura-
tions seems to lie in a reduction of adjacent key errors and of the unrelated
keys. The former are strongly harmonically related keys of the same mode,
so here the chord change model is able to clear up the confusion between
nearby tonics. The relative and parallel keys are also closely related har-
monically, but differ in mode. The fact that these two error categories are
much more stable shows that the chord change models are less success-
ful in correcting wrong modes. In general, the harmonically related key
errors (adjacent, relative and parallel) account for the majority of the er-
rors, despite that they only represent 17.39% of the possible confusion pairs
(8.70% adjacent, 4.35% relative and parallel each). The chords belonging
to these harmonically related keys are greatly overlapping, which explains
why roughly speaking the same chord scores can be achieved by systems
that differ almost 20% in key score. Chromatic errors are indicative of tun-
ing problems and therefore are indifferent with respect to chord change
model, as expected. Finally, because a chord change model forces the sys-
tem to take the chord sequence into account when estimating the key, we
see that in the best performing configurations, where there is a synergetic
effect between the two tasks, the unrelated key errors decrease significantly
as well.

SUMMARY We conclude that the information contained in the chord chan-
ge models is mostly used to reject chords that are acoustically close, but

2We ignore the degenerate configurations where the percentage of correctly estimated keys
decreases. At least some error categories obviously need to increase in these cases.
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harmonically far off, not only in the correct key, but also in the related
keys. Finding the exact key is therefore not an absolute requirement for the
chord estimation to benefit from a chord change model, as the key-chord
relation is quite loose and only the extrema of the probabilities are used.
It is consequently also less important that the data set matches the chord
change model perfectly. The key estimation on the other hand uses the full
spectrum of information present in the chord change models. Subtle dif-
ferences in the probability of one and the same chord sequence between
models can thus easily steer the key estimation towards a related key.

5.2.4.3 Without key acoustic model

Since the role of the chord change model is so decisive for the key results, it
would be interesting to know to what extent the key acoustic model plays
a role in the estimation. Therefore we look at the best performance we can
get from the system without using the key acoustic model (a; = 0), which
means that the probability to optimise is

P (K, C|X) =
N, P4 ifky =k, 1Ncy =c¢p1
TP (xalen)™ { (1= Pg) PP Py ifkp =kp_1Acp #cu1  (5.26)
n=1 (1= Pg) PP (1= Pry) ifkn # kno1 Acu # cna

The estimated key is then completely determined by how well the estim-
ated chords fit the chord change model. This sort of configuration has been
examined before by Burgoyne and Saul (2005); Catteau et al. (2007), and
it also resembles the first experiments that ultimately culminated in this
thesis (Pauwels and Martens, 2010). The best performing chord and key
configurations on the SEMA set and their corresponding scores for the dif-
ferent chord change models can be found in table 5.6a. As before, these
configurations are then reused on the Isophonics set which leads to the
results in table 5.6b. The differences with respect to table 5.5a, respectively
table 5.5b, are added in brackets to the results.

Comparing the results with and without key acoustic model tells us
that including a key acoustic model is beneficial for both key and chord
estimation performance. For chord estimation, the effect is rather limited,
setting «ay to zero only leads to a decrease less than 1% on the SEMA set and
less than 2% on the Isophonics set. The decrease is consistent across chord
change models, which proves the presence of a synergetic effect between
key and chord estimation. The influence of the key acoustic model on the
key estimation results is understandably much bigger. Switching it off
leads to absolute decreases ranging between 5% and 20% on the SEMA
set and between 3% and 37% for the Isophonics set®>. The decrease in es-

3We ignore the key results of the uniform model here, because without key acoustic model
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optimal chord configuration

optimal key configuration

chord key (@, o, Be) chord key (o, o, Be)
uniform  71.16 (-0.01)  7.76 (-46.57) (1.2,0,0) 71.16 (-0.01)  7.76 (-46.57) (1.2,0,0)
SEMA 73.16 (-0.30)  63.49 (-7.66) (0.75,0,0.87) 71.06 (-2.22)  66.92(-4.93) (1.78,0,0.75)
Isophonics  72.84 (-0.08) 55.27 (-7.16)  (0.87,0,0.87) 71.03 (-0.61)  62.88(-5.02) (1.54,0,1.07)
9GDB 72.88 (-0.27) 49.85(-12.80) (0.75,0,0.87) 7124 (-1.23) 57.28 (-10.19)  (1.33,0,0.87)
MySong  73.37 (-0.06) 42.27 (-5.04)  (0.87,0,2.05) 70.68 (+0.93) 51.43 (-7.10) (1.78,0,1.15)
theoretical ~ 72.54 (-0.54) 32.33(-18.86) (0.75,0,1.07) 71.63 (+5.33) 35.82(-19.14) (0.65,0,1.24)
(a) SEMA set
optimal chord configuration optimal key configuration
chord key (ae, ek, Be) chord key (ae, g, Be)
uniform  75.20 (-1.25) 16.64 (-51.90) (1.2,0,0) 75.20 (-1.25)  16.64 (-51.90) (1.2,0,0)
SEMA 77.36 (-0.80)  62.49 (-8.84) (0.87,0,0.87) 76.15(-2.03)  60.27 (-6.59)  (1.54,0,1.07)
Isophonics  77.67 (-0.89) 72.71(-3.29)  (0.75,0,0.87) 75.48 (-3.35)  71.16 (-5.50)  (1.78,0,0.75)
9GDB 76.98 (-1.43) 58.19 (-8.46) (0.75,0,0.87) 76.46 (-1.91) 55.13 (-11.65) (1.33,0,0.87)
MySong  77.16 (-1.34) 54.15(-3.49) (0.87,0,2.05) 75.38 (-0.46)  61.41(-3.82) (1.78,0,1.15)
theoretical ~ 76.22 (-1.04) 33.44 (-28.07) (0.75,0,1.07) 75.44 (+5.51) 32.02 (-37.06) (0.65,0,1.24)

Table 5.6: Key and chord score of the configurations without key acoustic model that maximise chord (left column) or key score (right
column) for different chord change models. The best results per chord change model are set in boldface. The difference with respect to

(b) Isophonics set

the corresponding configurations with key acoustic model is displayed in parenthesis.
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timation performance also seems to reflect more or less the level of mis-
match between chord change model and data set (as seen in table 4.8).
The key acoustic model is thus able to compensate for the mismatch in
chord change model to some extent. On the other hand, with a well-
matched chord change model, the system already gets fair results without
key acoustic model. In that ideal case, the latter configuration («x; = 0)
even outperforms the best system with both key and chord acoustic mod-
els but no chord change model (8, = 0, the uniform case of table 5.5a and
table 5.5b). Naturally, the best results are achieved when all models are
used together.

The results on the Isophonics set in table 5.6b show once more that the
optimal configurations do not translate perfectly to other data sets, which
is for example apparent in the fact that in most cases the optimal chord
configuration also has a better key estimation score than the optimal key
configuration. Most likely another configuration can be found that im-
proves this score even more, but this cannot be done without performing a
balance parameter search over the Isophonics set. Nonetheless, the trends
for the key estimation score are the same as for the SEMA set, showing that
the key acoustic model and the chord change model reinforce each other.

5.2.5 Impact of key change models

Finally, the influence of the key change models is assessed. Therefore we
use the full modelling capacities of our system

P(K,C|X) =
Pcd if kn = kn,1 NCpy = Cp_1
Ny (1—-Py) Pﬁczpkd
TP (xalkn)™ P (xalcn)™ ifky =kp 1 Acp #cpo1 (5.27)
= (1— Pg) P25 (1 Pg) P

ifky # kn-1/Ncn # cn1

Two separate points are being examined here. The first is whether swap-
ping the uniformly distributed key change model, used so far, for the Lerdahl-
based model, presented in section 4.4, leads to a difference in the estim-
ation of the local keys. The second question is whether the extra chord
diatonicity constraints imposed around key changes (see section 4.2.2) change
the estimated key output. To examine these issues, we let the key change
parameter By gradually increase from zero such that the uniform key change
model evolves into the Lerdahl-based one and we try each variant f.,,

and without chord change model, all keys are considered equally likely and stay constant.
Due to implementation details, a constant A major is generated for each file. The better than
random results are therefore just lucky guesses.
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freop and freo. of the diatonic constraints. These experiments are repeated
for multiple chord change models.

Because the SEMA data set contains only 30 s snippets, and because
key changes are relatively rare, only 3.52% of the files contain at least one
key change. Any conclusions with respect to key change models drawn
from the experiments performed on this set would therefore be unreliable.
Consequently, we exceptionally carry out the parameter sweep over i on
the Isophonics data. In this set, at least one key change is present in 19.5%
of the files.

Using the Lerdahl key change model and adding the diatonic chord
constraints around key changes turns out to have extremely little impact
on the estimated keys. The maximal improvement compared to the uni-
form key model tested over all combinations of chord change models and
key change model variants is 0.23%, which naturally is non-significant. On
multiple occasions the Lerdahl key change model does not improve the es-
timation at all. Specifically comparing the fi.2,, ficop and fieo. variants to
each other shows that their results all lie within 0.5% of each other. None of
the variants is consistently better than the others and no difference is sig-
nificant. A positive consequence of this is that the fi.,. variant can be used
by default without loss in performance, but it has the advantage that the
number of key change candidates gets reduced by an order of magnitude
compared to the fi, variant. A significant decrease in the required com-
putational power can therefore be achieved by exploiting these diatonicity
constraints in the system implementation.

The fact that the Lerdahl key change model and the diatonicity con-
straints fail to change the estimated key output significantly does not mean
that these models are a bad fit for the data. Strongly mismatched models
would lead to a deterioration. Instead it is more likely that the other com-
ponents of the system already cause the system to generate outputs that fit
the key change model close enough such that it does not lead to additional
improvements. Another obvious explanation for the lack of influence of
the key change models would be that the combination of acoustic and dur-
ation models makes the system generate no key change at all. In this case,
the variants would cause changes in the intermediate results, but nothing
different would be visible in the generated output. This however is not the
case in our experiments: the ratio of generated files with at least one key
change ranges from 12.4% to 44.8%. The highest number appears when
the uniform chord change model is used. Only in combination with the
matched Isophonics chord change model does the number of files with at
least one key change drop below 19.5%, the ratio in the annotations. All
used system configurations therefore support the ability of the key change
model to manipulate the estimation process, but not (yet) in a way that
leads to improved results.
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5.3 Conclusion

We presented a probabilistic framework for the simultaneous estimation
of keys and chords. First, we formulated it as a combination of acoustic
models, duration models and change models, where the latter two encode
prior musical knowledge. Multiple alternatives for each of the compon-
ents were proposed, where the change models are those we derived in the
previous chapter. Through multiple experiments, we tested a number of
configurations and the alternatives for each of the models. This way we
could determine the impact of the different components on the system’s
performance. We started from a baseline acoustic-only system that embeds
no prior musicological knowledge to examine the effect of the feature ex-
traction. We extended the system with increasing amounts of prior know-
ledge. We discovered that the inclusion of information about the mean key
and chord duration leads to a significant gain in performance for both key
and chord estimation. On the other hand, extra context information in the
form of chord change models only yields a small additional improvement
of 2 to 3% to the chord performance. Since we first established this find-
ing (Pauwels and Martens, 2010), it has been independently confirmed by
others as well (Chen et al., 2012; Cho and Bello, 2014). This result seems
to explain why a system that ignores all musicological context, the one
of Oudre et al. (2011), was one of the best performing submissions at the
MIREX 2009 chord estimation competition. Since then, there has been a
tendency to move to more complex systems that contain much more con-
text information, but there is no proof yet that the subsequent increase in
performance is due to the advanced modelling of musicological context. It
can as well be owed to improvements in acoustic or duration modelling.

However, in this chapter we showed that a chord change model that is
well adapted to the data set helps to achieve a better key estimation. The
improvement can be as high as 17.5%. Unfortunately, key estimation is also
more susceptible to a mismatch between chord change model and data set.
Here we could link our results to the data specificity of the model as stud-
ied in the previous chapter. Through an in-depth analysis of the errors our
system makes, we have been able to explain this difference in system sens-
itivity between the chord and key estimation tasks, despite their strong
intertwinement and the fact that they use the same models. Finally, we
found out that the impact of the key change model is negligible. The sup-
plementary prior knowledge it contains does not alter the system’s output,
so we conclude that the same information is already covered by the other
system components.






6.1

A detailed investigation of
duration modelling

In this chapter, we will examine the benefits of extending the system presen-
ted in the previous chapter with a better chord duration modelling. We
perform experiments to deepen our understanding of the role the duration
model plays in the estimation process and to assess the benefits of exten-
ded duration modelling. First, we consider making the prior mean chord
duration a function of the relative interpretation of that chord in the associ-
ated key. Then, we explore the influence of alternative shapes for the prior
chord duration distribution. In particular, we propose to use a negative bi-
nomial shape that fits the actual chord distribution observed for some data
sets.

Relative chord-specific prior mean dur-
ations

One of the assumptions we made in the previous chapter is that each chord
has the same prior mean duration. In the remainder of this section, we con-
sider a prior duration that is chord and key specific. We believe that there is
no theoretical foundation to assume different mean durations for absolute
chords, not interpreted in a key, e.g. we do not believe that a Cmaj chord
lasts longer on average than an Amin chord. However, we feel that some
distinction can be made when interpreting chords in a key. In a similar way
as for the change models, we further let the prior duration only depend on
the mode of the key, not on the tonic, such that P,y : (m,c’) — [0,...,1].
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This means that we add an extra N, N — 1 parameters (95 for our choice of
key and chord vocabularies), which represent the mean durations of each
relative chord-mode combination.

We call the chord duration models with a value for each relative chord-
mode combination specific chord duration models, as opposed to the original
global model with a single constant value. An intuitive musicological as-
sumption would be that the duration of a diatonic chord is on average
longer than that of a non-diatonic chord, as it provides a perceptually
stable point of support in a musical phrase. Such an intuition is hard to
quantify however. That is why we simply measure mean durations in data
sets instead.

We consider two chord duration models, one derived from the SEMA
set and one derived from the Isophonics set. To this end, we measured
the mean duration per relative chord-mode combination in both data sets.
The minimum duration (equal to the observations shift Ty = 220ms) was
assigned to every combination that has no observations. Especially relev-
ant will be how good the SEMA chord duration model performs on the
Isophonics set and the other way around. Our aim is to verify whether an
increase in performance can be achieved universally, and is not just a con-
sequence of the increase in degrees of freedom coming from the better fit
of the data.

The two specific chord duration models replace the global models in
each of the eleven chord change model configurations found in section 5.2.4.1
(the eleven configurations arise from the fact that the best chord and best
key configurations are the same for the uniform chord change model). The
newly formed 22 configurations are then run on each of the two data sets.
The score differences with respect to the corresponding global duration
results, as shown in table 5.5a and table 5.5b, are calculated. These differ-
ences are then aggregated per specific duration model as Tukey box-plots
in figure 6.1 and figure 6.2 (where the whiskers indicate the extrema that
lie within 1.5 times the interquartile distance from the quartiles).

The results indicate that key estimation generally benefits from having
a relative chord specific duration model. This is most apparent from the
experiments on the Isophonics set, where the improvement is almost unan-
imous, with an absolute average of 2 — 3%. The experiments on the SEMA
set are less convincing, with an average increase of only 1% and with a
number of decreasing scores. On closer inspection of the non-aggregated
results, there are just two of the eleven configurations with specific chord
durations that yield a strong decrease in performance. The configurations
in question are the best-chord and best-key settings for the matched SEMA
chord change model. These give the overall best results, but are overly
optimistic because they are best tuned to the data set. The other, more real-
world configurations are still able to exploit the specific chord durations to
close the gap with the SEMA chord change configurations.

Furthermore, the specific duration models learned on one set seem to
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Figure 6.1: Aggregated difference in key and chord scores obtained on the SEMA
set by replacing the global mean chord duration by relative chord specific durations
retrieved from the SEMA and Isophonics sets
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Figure 6.2: Aggregated difference in key and chord scores obtained on the Iso-
phonics set by replacing the global mean chord duration by relative chord specific
durations retrieved from the SEMA and Isophonics sets
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generalise well to the other set. As can be expected, the cases where the
specific chord durations are matched to the test set perform the best, but
most of the improvement survives in the other cases. This implies that
the specific chord duration models capture some musicological knowledge
that is shared between the two data sets. A bit surprisingly, the chord es-
timation results are mostly insensitive to differences in the duration model,
but then, this result confirms our previous finding that musicological mod-
elling has only a small influence on chord estimation performance. An
analysis of the key errors shows that most of the improvement comes from
adjacent key errors and to a lesser extent from relative key errors that are
being corrected. This means that the generated keys are not dramatically
different in comparison to the global duration configurations. In this situ-
ation, the coupling between keys and chords is too weak to cause an indir-
ect effect on the chord output.

6.2 Alternative chord duration distributions

6.2.1 Intfroducing explicit duration hidden Markov
models

A consequence of the hidden Markov model (HMM) framework that we
adopted up to now, is that the prior chord duration is implicitly mod-
elled by a geometric distribution. We used single states for each key-chord
combination, and the probability of staying in a state for n time steps is
Py (d) = P71 (1— P.), where P, is the self-transition probability. This
topology is shown in figure 6.3a. However, the shape of the geometric
distribution implies that the shorter the chord, the more likely it is. This
obviously does not agree with our musical intuition that a chord duration
distribution should peak at a duration (or multiple durations) higher than
Zero.

A first effort to improve the chord duration model was made by Mauch
and Dixon (2008). They substituted each single-state chord model by a lin-
ear left-to-right model of three states with equal emission probabilities (a
type A topology according to Russell and Cook (1987)), which is visual-
ised in figure 6.3b. Such an approach is called an expanded state hidden
Markov model. This same procedure has been used in their later public-
ations (Mauch and Dixon, 2010b; Mauch, 2010) and by Khadkevich and
Omologo (2009b). Unfortunately, they produce no experimental data from
which the effect of the duration modelling alone can be derived. Such a
direct comparison between systems with and without duplication has been
made by Cho et al. (2010) though. The conclusion was that the perform-
ance gain is similar to that of smoothing the output with a mean filter of 3
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Figure 6.3: Expanded state topologies leading to different combined duration dis-
tributions
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frames.

The reason for their small improvement is that they used a standard Vi-
terbi algorithm for decoding, which gives rise to an overall state duration
distribution of Py (d) = 0,Vd < 3 and Py (d) = P43 (1—-P.)%,vd > 3.
The overall chord duration distribution is therefore a shifted and rescaled
geometric distribution, which forces every chord to have a minimum dur-
ation of three frames, but that is the only difference compared to a single-
state topology. The original intention of Mauch and Dixon (2008), how-
ever, was to construct an overall chord duration distribution that follows
a negative binomial distribution. This distribution arises as the sum of in-
dependent geometric distributions. Decoding algorithms that estimate the
optimal path by consider all paths through a state, such as pointwise max-
imum a posteriori (PMAP) decoding!, do make this summation such that
the topology in figure 6.3b effectively leads to an overall negative bino-
mial duration distribution, but not the Viterbi algorithm. When the latter
is used, all state self-transitions except one can be removed from the topo-
logy without affecting the outcome.

The property of the geometric distribution that makes it arise naturally
in a state network, is that it is memoryless. The geometric probability de-
creases by P, for every additional time step, regardless of the total number
of time steps that have already passed. Therefore a state can have a con-
stant self-transition probability and the total time spent in a state does not
need to be recorded during the decoding. In order to change the prior state
duration distribution to a distribution without the memorylessness prop-
erty, the state self-transition probability needs to be a function of the time
already spent in the state. One way to look at this, is that self-transition
probabilities are removed from the network and that states emit obser-
vation sequences of a variable length. An explicit duration distribution
P, (d) then determines the duration probability associated with a state se-
quence length d, giving explicit duration hidden Markov models (EDHMMs)
(Yu, 2010). Duration probabilities can only be calculated when a state is
exited, i.e. a chord has ended in our case. For every possible duration,
we need bookkeeping of previous states, which strongly increases the re-
quired computation time and memory. If we want to allow the possibility
of a chord that never changes, this means that we should keep track of all
probabilities and optimal paths all the way from the beginning of the mu-
sic piece. Therefore, chords are in practice limited to a maximal duration
of D time steps, after which a chord change is forced. An equivalent way
of achieving general duration distributions, is to replace each single-state
model with a chain of D states as presented in figure 6.3c, called a “Fer-
gusson topology” by Russell and Cook (1987). The number of states in

IThis decoding algorithm is also called posterior decoding or maximum gamma decod-
ing, amongst many others. For a complete list of alternative names and more decoding al-
gorithms, see Lember and Koloydenko (2014).
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the network then strongly increases and the duration probabilities are de-
termined by the different transitions that leave from the chain of expanded
states.

Decoding EDHMMSs requires a corresponding extended version of the
Viterbi algorithm. In comparison to the regular Viterbi algorithm, the chord
duration P,; (d) is now separated from the state change probabilities

P (kn/ Cn‘knflz Chn1,Cn # Cnfl)

In the expanded state interpretation, the state transitions within the same
key-chord combination are handled differently from the transitions between
key-chord combinations. The duration of a completed key-chord candid-
ate gets evaluated together with all acoustic probabilities P (xy|k,, ¢v) pro-
duced during the duration 4 of the chord (in a key) and the previous op-
timal path J,,_; that started the key-chord d time steps ago. The search for
the optimal path that ends the candidate key-chord does not only need to
be performed over all previous key-chords, as is the case for the regular Vi-
terbi algorithm, but additionally also over all allowed chord durations (up
to D time steps). The exact formulation of the extended Viterbi algorithm
can be found below. For comparison, the regular Viterbi algorithm is de-
scribed in equation (5.15) on page 101.

VKZ S K,VCZ eC: loglo On (kn =Ky, ¢, = Cz) =

n
ES G L

+ ?}2? {10g10 On—d (knfl =Ky, cn = Cl)
GieC\{G}

(6.1)

+logyo P (kn = Ko, cn = Colky—1 = Ky, 01 = Cl)}}

6.2.2 Using negative binomial prior chord dis-
fributions

EDHMMs can be used with arbitrary distributions, for example a duration
histogram retrieved from a data set. However, in order to avoid a signi-
ficant increase in the number of parameters, we stick to a fixed parametric
distribution. We specifically focus on the negative binomial distribution, a
family of distributions described by two parameters. The geometric distri-
bution also belongs to this family. The negative binomial distribution has
some appealing properties for our use. First and foremost, it can take a
shape that approaches a typical duration distribution more closely than a
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geometric distribution. Secondly, it allows us to apply a pruning step in
the decoding which permits a significant reduction in computation time.

The probability mass function fnp (T, p, ¢) of the negative binomial dis-
tribution? is

funtrp) = (70T a—gren v =0 62)

where p is a shape parameter and ¢ a scaling parameter. For our applica-
tion, it gives the probability that a chord lasts d = 7 + 1 time steps, corres-
ponding to (T + 1) Ty seconds,

As can be seen, the special case of p = 1 is equal to the geometric
distribution. In order to test the influence of the duration distribution
shape in isolation, we keep the shape parameter p as a controlling vari-
able, but use the marginal duration distribution for a given ¢, such that
P (d,p) = fnp(d—1,p;¢). We derive ¢ such that the expected value of
fng (d—1,p; ¢) is equal to the mean chord duration d.. Just like in sec-
tion 5.1.2.2, we consider a duration of 1.76 seconds for each relative chord.

The mean of the negative binomial distribution is 4 , which gives us

the following expression for ¢, an extension of the geometric distribution
case in equation (5.21):

ﬂ:ﬁ_l — (P:* dc_Tx

_— (6.3)
1_90 Tx dc+(p—1)Tx

where Ty is still the observations shift. In figure 6.4, the negative binomial
distribution is depicted for a couple of values for p. We can see that its
shape morphs from the geometric distribution into one that has a single
peak which moves towards the mean.

Our usage of a parametric distribution is the main difference with the
work of Chen et al. (2012), who performed experiments with an EDHMM
for a chord-only estimation system. They examined a strongly data driven
system which includes training an arbitrary global distribution on their
data set through cross-validation. We, on the other hand, are more inter-
ested in a knowledge-based approach that examines the effect of letting the
chord duration shape morph from a geometric distribution to one that fits
the data better, without increasing the number of parameters.

2 A number of equivalent definitions for the negative binomial distribution exist, that dif-
fer in their support domain and parameter interpretation. The variant we use arises as the
probability that we need to observe T successes in a sequence of independent and identically
distributed Bernoulli trials with success probability ¢, before p failures occur.
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Fiqure 6.4: The class of negative binomial distributions

6.2.3 Optimising EDHMM decoding through path
pruning

The decoding of an EDHMM can be significantly sped up if its duration
distribution is logarithmically convex, meaning that the second derivative of
its logarithm is strictly non-positive:

(log Py (d))" < 0,vd (6.4)

In the case of the negative binomial distribution,
(log fns (1,0,9))" <0 <= ¢ > ;% (6.5)

For our choice of ¢, this translates to the requirement d. > 3Ty, which is
true for our configuration with d, = 1.76 and T, = 0.220. We therefore can
apply the pruning step proposed by Bonafonte et al. (1993) to reduce the
search space of the modified Viterbi algorithm. Briefly summarised, it puts
an adaptive upper limit on the state durations that need to be considered
as candidates for the optimal path based on the previous optimal path. The
pruning theorem says® that if the best path that exits a state at time 7 has
entered the state at time 7, then the best path that exits the same state at
time n 4 1 will have entered the state no sooner than 7. Instead of consid-
ering all state durations up to D to calculate 6,41 (k11 = Ky, ¢;41 = C2)
in equation (6.1), only the durations up to n + 1 — 57 need to be investig-
ated. This threshold time  is a function of (K, C;) and depends on the

3Simplified version: the complete theorem also takes into account from which previous
state the optimal path enters the last state to perform extra pruning, but this simplified version
accounts for the majority of the speedup.
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data, therefore no expected speedup can be calculated beforehand, nor can
a minimum be guaranteed at all. The original authors report that they were
able to reduce the required computation time to 3.2 times that of the stand-
ard Viterbi algorithm with geometric distribution. As a reference, decod-
ing an EDHMM without pruning takes D times longer. In our experiments,
the reduction was at least as significant, even going down to two times the
standard case, although at least part of this is because we put far less effort
into optimising our baseline HMM implementation. Even more important
is that the factor two turns out to be almost independent of D, such that the
trade-off between speed and accuracy is no longer an issue. The maximal
state duration D now only influences the memory requirements, which are
so modest that we can invariably set D to the entire number of frames in
the music piece.

6.2.4 Experimental evaluation

Before we discuss our experimental results, we first take a look at the ob-
served duration distributions in both the SEMA and Isophonics data sets.
In figure 6.5, histograms of the measured chord durations are displayed
together with the geometric distribution and the best-fitting negative bino-
mial distribution for p between 2 and 7 (respectively p = 2 and p = 3). The
fit between histogram and negative binomial distribution was calculated
by means of the symmetric Kullback-Leibler divergence. We can see that
the duration distributions differ in more than just their means (respectively
1.71 s and 2.15 s). The chord durations of the SEMA set follow the geomet-
ric distributions fairly closely, whereas those of the Isophonics set do not.
Changing the prior chord duration distribution for the SEMA set from a
geometric to a negative binomial duration distribution with p = 2 appears
to improve the fit for the shortest chord durations a bit, but diminishes the
match for chords between one and three seconds. This ambivance is also
apparent in their divergence values, which are very similar with a slight
advantage for p = 1 over p = 2. For the Isophonics data, a negative bi-
nomial chord distribution with p = 3 is able to model the peak in chord
duration between one and two seconds. The improvements in chord es-
timation results will therefore likely be more significant than for the SEMA
set.

We conducted an experiment in which p was changed from 1 (the geo-
metric model baseline) to 7. For each value, the system ran with the four
best chord change model configurations from section 5.2.4.1: uniform and
best-chord SEMA, Isophonics and 9GDB. The corresponding estimation
results on the SEMA and the Isophonics set are displayed in figure 6.6 and
figure 6.7. The chord results show consistent trends over all configurations.
As we predicted from the measured chord durations, the chord estimation
performance on the SEMA set decreases with increasing p. The results on
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Figure 6.5: Chord duration histograms with geometric and best-fitting negative
binomial distributions
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Chord estimation results
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Figure 6.6: Influence of the chord duration distribution shape on SEMA data set
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Figure 6.7: The evolution of key and chord results in function of a changing chord
duration model. Each negative binomial shape was tested with four chord change
model configurations on the Isophonics data set. The baseline geometric duration
model is shown as p = 1.
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the Isophonics set however, exhibit an increase up to p = 3, which corres-
ponds to the best fit of the negative binomial distribution to the measured
chord durations. Although the absolute increase at that point is only 0.6
percentage points, it is highly significant with p < 10~%. For the key es-
timation, the effect of changing the duration model shape is unsystematic.
The effect is therefore likely limited, but as we explained before, because
key labels span a longer time, a single random change immediately has a
visible effect the numerical results.

The final conclusion is that it is not recommended to swap in the negat-
ive binomial model at all times, because the results on the SEMA set show
that in case of a mismatch with the data set, the results can degrade be-
low those when a geometric model is used. However, if a rough estimate
of the chord duration histogram of the data under test can be obtained,
the Kullback-Leibler divergence can determine the best duration model.
Although Chen et al. (2012) did not observe an increase in chord estim-
ation when using a single, trained EDHMM, they were were able to im-
prove their score slightly by training multiple systems on different chord
duration distributions and then selecting the system that maximised the
probability of the observations as the final feature decoder. Despite the
fact their system operates under completely different assumptions (beat-
synchronised features where the hypothesis is that the difference in dura-
tion distribution stems from different time signatures), this approach could
be tested in future research on our own system as a possible solution for
selecting the most appropriate chord duration model.

6.3 Conclusion

In this chapter, we performed a number of experiments that provide us a
deeper insight into the influence of chord duration modelling on an auto-
matic chord and key estimation system. These findings have also been
used to improve the estimation performance, where applicable. We started
by making the mean chord duration dependent on the relative chord in-
stead of fixing it globally. This improved the key estimation performance
and turned out to scale well to unseen data. Next, we experimented with
alternative shapes for the chord duration distribution. We found that a
better fitting distribution has the potential to slightly improve the chord es-
timation. However, the chord duration distribution can vary significantly
from data set to data set. Therefore the risk of introducing a performance
degrading mismatch is present when more specific distributions are used
in the system. Finally, we established that the actual influence of the shape
of the distribution used for chord duration modelling is rather limited.



7.1

Increasing the scope of the
musicological context

After having delved deeper into the duration modelling part of our sim-
ultaneous key-chord estimation system, we now investigate a further ex-
tension of the context modelling in our system. Specifically, we propose a
new system that maximally reuses components from the previous one, but
which employs trigram change models, as described in Chapter 4, instead
of bigram change models. There we saw that increasing the scope of the
musicological context leads to models that are theoretically more power-
ful in predicting future chords, but that the generalisation to unseen data
is weak. Now we will verify whether these models can help to increase
chord and key estimation performance. We first explain the modifications
we need to make in order to incorporate trigram models. Then we detail
the supplementary steps we can take to mitigate the increase in computa-
tional requirements that come with these modifications. Finally, we assess
the results of the new trigram system.

A probabilistic trigram framework

In order to integrate the additional information of a larger musicological
context into our system, we need to revisit some of the simplifications that
we made in Chapter 5. Remember that we are searching for the most likely
sequence of states Q = {4y,...,4n} for the acoustic observation sequence
X of length N,. We then established that this would be computed by max-
imising the product of two terms: the acoustic likelihood P(X|Q) and the
prior probability P(Q).

141



142 Increasing the scope of the musicological context

A

Q= argm(gxP(Q)P(XIQ) 7.1)

In this chapter, we keep the decomposition of the acoustic likelihood
in separate key and chord terms as proposed in (5.3), but we reconsider
the simplification of the prior probability in (5.4). We no longer make the
first order Markov assumption, but the second order Markov assumption
instead:

Nx
P(Q) = H p (QHMn—l/ Qp(n)) (7.2)

n=1

This means that we assume that the transitions to the current state hypo-
thesis g, do not only depend on the immediately preceding state g,,_1, but
also on the previous distinct state q,,(,). Note that our index n again enu-
merates the feature segments. The previous distinct state of g,,_; is there-
fore not necessarily at n — 2. We define p(n) as the time index where the
preceding distinct state ends: Jp (1) : qp(u) # Gn-1 A\ Gp)+1 = Gn-1- A
state still consists of the combination of a key and a chord, g, = (ky, ¢y ), s0
the equivalent notation is

Ny
P(K/ C) = H P(knr Cn|knfl/ Cnflrkp(n)/cp(n)/cnfl 7é Cp(n)) (73)

n=1

We keep the requirement that key changes can only occur together with
chord changes. That is why 9,1 # g,(,) can be simplified to c¢,—1 #
Cp(n)- Note that k,(,) represents the corresponding key of the previous
chord Cp(n) and not the previous key, so there is no constraint for k, with
respect to k).

Just like in Chapter 5, we want to decompose the prior transition prob-
ability into four different submodels, a duration and a change model for
chords and keys each, that are combined in different ways according to
one of three cases. These cases are a simultaneous key and chord change, a
chord change without key change, and chord and key invariance. To arrive
at a formal decomposition into these terms, we follow a derivation sim-
ilar to the one of the bigram system. Once more, we make the distinction
between self-transitions (k, = k,,_1 A ¢, = ¢,,_1) and transitions to another
state (¢, # c,_1) and we use the law of total probability to separate those
terms:
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p (kn/ Ci’t|kn71/Cnflrkp(n)rcp(n)rcnfl 7é Cp(l’l)) =

P (kn = kl’l*lrcn =Cp-1 ‘knfll Cn—1, kp(n)/ Cp(n)/ Cn—1 7é Cp(n))
trigram self-transition probabilities
ifky =k, 1 ANcp=cp1 (74)
P(cn # cn1lkn-1,cn-1, kp(n)/C (n)r€n—1 # Cp
) cnyécnﬁéc )ifcn¢cn_1
Following a similar decomposition as we did in (5.7) and making use
again of the requirement that key changes can only take place together with

chord changes, the trigram self-transition probabilities also get reduced to
chord duration probabilities

P (ky,cn |kn 1,Cn-1,k

P (CTl - Cn—l|kn—1/cn—1rkp(n)/cp(n)/Cn—l # Cp(n))

By assuming that this term does not depend on the preceding chord c, ;)
and its key ky,,, it gets reduced to the same chord duration probabilities
P(cp = cy—1lky—1,c4—1) as in the bigram system. This means that we can
reuse the global or specific chord duration models proposed in the previ-
ous chapters to calculate these chord duration probabilities.

For the state-changing probabilities, we further decompose the joint
probabilities and apply the above simplification of the chord duration prob-
abilities:

p (Cn # Cn71|kn71/ Cnflrkp(n)/ Cp(n)s Cn—1 # Cp(n))
(knrcn|kn 1, Cn— 1rkp( C1’l # Cn—1 # C ) =

1- P(CH = Cn—l‘kn—lrcn—l)

bigram chord duration probabilities

(Cn|kn 1/, Cn— lrkp( CYl # Cn—1 # C ) (75)

trigram chord change probabilities

P (kﬂ|ci’llkn—llcn—1/kp(n)/ Cp(n)/ Cn 7& Cn—1 7& Cp(n))

trigram key transition probabilities

The term P (cn|kn_1,cn_l,kp(n),cp(n),cn + ¢y 1 F# cp(n)> in this expression
are the trigram chord change probabilities, which we have encountered in
Chapter 4 along with a number of options f..3 to model them.
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We then want to split the trigram key transition probabilities into dur-
ation and change probabilities, just like we did with the chord transition
probabilities. This leads us to a final decomposition using the law of total
probability:

p (kn|cn/kn7]/Cnflrkp(n)rcp(n)/ Cn 7é Cn—1 7é Cp(n)) =

P (kl’l = kn71|cnrknflrcn71/ kp(n)/ Cp(n)/ Cn # Cn—1 # Cp(n))

trigram key duration probabilities

ifkn =ky 1 /Acn #cn1 # Cp(n)

1-P (kn = le*l|Cn/knfllcn71/kp(n)/Cp(n)/ Cn 7é Cn—1 7é Cp(n))

trigram key duration probabilities
p (kn|cn, kn—llcn—l/kp(n)/cp(n)/cn 7& Cpn—1 75 Cp(n)/ki’l 75 kn—l)

trigram key change probabilities

ifky #kn1/Ncn #cn1 # Cp(n)
(7.6)

Similarly to the chord duration probabilities, we assume that the trigram
key duration probabilities are independent of the preceding chord c;(,;) and
its key k(,,), such that they get reduced to the bigram key duration probab-
ilities P (kp, = ky—1|cn, kn—1,¢n—1,¢n # cy—1). The trigram key change probab-
ilities are calculated by means of the fi.3 models proposed in Chapter 4.

In summary;, just as for the bigram case, the entire prior probability can
be broken down into four different cases that are calculated as the com-
pound of up to four different probabilities: duration and change probabil-
ities for both keys and chords. We simplified both duration probabilities by
assuming that the value (not duration) of the preceding label influences the
determination of the current label duration only indirectly. The calculation
of the chord duration probabilities P,; and key duration probabilities Py
can therefore reuse the bigram models, as do the chord acoustic and key
acoustic probabilities (Pe; and Py,;). Only the chord change probabilities
P,.3 and key change probabilities Py 3 are changed from bigram to trigram.
Their influence on the estimation results is what will be investigated in the
remainder of this chapter. The way the different submodels work together
to calculate the complete prior knowledge probability closely mirrors the
bigram case, seen in (5.14), including the introduction of the balance factors
Bc and By such that the relative importance of change models can be con-
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trolled:

P (kn/ cnlkn-1,¢n-1, kp(n)r Cp(n)) =
0 ifky #ky_1Ncp=cu_1Vep1=c¢

p(n)
Pcd if kn = kn,] NCp = Cp_1 N\ Cp_1 75 Cp(n)
cc3

(1—Puy) Pﬁc P4 ifky =ky_1ANcp #cy_1Ncp1 ¢ (n)
(

P
(1~ Peg) PPS (1= Pua) PPS ik # Kyt ACn # st A Cuct # i)
(7.7)

/.2 Exploiting musicological constraints to
reduce computational requirements

Conceptually, the move from bigram to trigram prior information is not
very complicated. In the previous sections, we went over the required
changes and how we can maximally reuse components from the bigram
system. The actual challenge lies in finding a method that can decode the
optimal path in a feasible way, because the required changes bring along
an exponential increase in the search space that needs to be considered.
If Ny is the number of keys and N, the number of chords, then the num-
ber of states in the bigram system is equal to the number of distinct key-
chord combinations, NyN, and maximally N?NZ? outgoing transitions have
to be to tested per time step, because every key-chord combination can be
reached from a previous key-chord combination. In the trigram case, we
need to consider maximally N,fNC2 states (NyN; (NN — 1) to be exact be-

cause the previous state needs to be different) and NyN. (N¢N — 1)? out-
going transitions at every time step (because the states are no longer fully
connected). The corresponding Viterbi algorithm to find J, (K3, C3, K3, Cp),
the probability of the best path arriving in (K3, C3, Ky, C) at time 7, is now
given by

VK>, K3 € K,VCy,C3 € C:
5?1 (le = K3/ Cn = C3/ kn,1 = KZ/ Cn—1 = CZ) =
P(Xn|kn =Kz, ¢y = C3)

12?21)2 {5"_1 (k"_l =Ko en1 = Cokpny = Ky cpn) = Cl)
C]EC

(K1,C1)#(K2,Ca)

P (kn = K3/ Cn = C3‘kn71 = KZ/ Ch—1 = CZ/kp(n) = Klrcp(n) = Cl)}
(7.8)



146

Increasing the scope of the musicological context

This Viterbi algorithm is generally applicable to any trigram based sys-
tem, but there are properties of the specific system we derived in the pre-
vious section that can be exploited to reduce the computational require-
ments. The first is that key changes can only occur together with chord
changes. This is already incorporated in (7.7) and it reduces the inher-
ent trigram condition of distinct consecutive states to distinct consecutive
chords, such there are only NZN, (N, — 1) eligible combinations in (7.8)
instead of Ny N; (NyN; — 1).

A further reduction in the number of transitions to examine can be
achieved specifically for the key change models fi3, which we have pro-
posed in Chapter 4. Recall that the proposed models have in common that
they are essentially of bigram type, but with supplementary conditions im-
posed on their applicability. Concretely, the trigram key change model is
used to forbid key labels that last only for the duration of a single chord.
We can directly integrate these validity conditions into the decomposition
of the prior musicological model into four distinct cases:

p (kn/ cnlkn—1,cn-1, kp(n)r Cp(n)) =

0 ifky # kyp1 A (Cn =cp1Vky1 # kp(n)) Viep—1 = Cp(n)

fcd ifky =k, 1 ANcn=cy_1Ncp1# Cp(n)

(1- fcd)fcﬁ:?,fkd ifky =kp_1ANcn #cn1 ANep1 # Cp(n) (7.9)

(1= fed) £55 (1= fia) £y
ifky Zkyp_1Ncy #cno1 Nk = kp(n) ANCp_1 # Cp(n)

The benefit of integrating the trigram key change constraints directly
into the prior probability decomposition is that the number of transitions
falling under the case of probability zero now form the majority. The four
cases in which the prior probability is decomposed are far from uniformly
distributed. This is illustrated by listing all possible pairwise combinations
of the key and chord variables kp(n), k,—1,k, and Cp(n)s Cn—1/Cn in Table 7.1
on page 147. Only five combinations lead to a non-zero probability. A
textual description of those five combinations is added together with the
amount of transitions per time step they represent. The latter one is de-

rived from the fact that the first key-chord combination (kp(n),c(n)) can

be chosen freely and any subsequent equality between key or chord pairs
happens once, whereas an inequality accounts for the other N — 1, respect-
ively No — 1 times. To make these numbers a bit more concrete, we have
listed them as the proportion of the total possible transitions they repres-
ent when N = 24 and N, = 48, the configuration assumed throughout
this thesis.
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The remainder of the table contains all transitions that are disallowed
according to (7.9), listed with the reason why. All possible combinations
sum to NPN2 possible transitions per time step. We can see that only
7.915% of the possible transitions can lead to a non-zero probability. Mostly,
this stems from the rule that three key changes in a row are not allowed,
which makes 88.053% of the transitions impossible. If we can implement
a Viterbi algorithm in such a way that the 92.085% impossible transitions
are not even calculated, a large speedup can be expected. However, the
memory requirements stay the same. The number of valid trellis points per
column stays equal, but the number of future points that can be reached is
now variable. Even though the reduction of the number of transitions is
significant (compared to an unrestricted trigram system), the increase in
transitions with respect to a bigram system is still as large as

NgNe (Ne — 1) 2NN, — N — Ne + 1)
N2N; (Ne — 1)

= 93.042

Incorporating the musicological constraints directly into the search pro-
cedure allows us to reduce the number of computations without comprom-
ising the theoretical optimality of the solution. To reduce the computa-
tional requirements even more, we can use a beam search, although the
solution is then no longer guaranteed to be theoretically optimal. The un-
derlying idea is that not every trellis point at time n — 1 is considered as a
candidate starting point for the transitions at time 7, only those that are the
most likely. We use as criterion to expand a starting point to all possible
targets that its probability é,_; should be within a given distance, called
the beam width, of the maximal §,_;. Through the combination of the tech-
niques in this section, we managed to bring down the computational re-
quirements of our implementation such that a music piece is processed in
431% of real time (for comparison, the bigram system takes 13 % of real
time).

/.3 Experimental results

We tested the trigram system in combination with all trigram chord change
models derived in Chapter 4. We also used a uniform chord change model
such that we could test the effect of the trigram key change model in isol-
ation. As before, we first used the SEMA data set to find the parameter
combinations (a., &k, Bc) that optimise the chord performance and the key
performance for each chord change model. The resulting seven configura-
tions are then run on the Isophonics data set. The corresponding results for
the SEMA and the Isophonics set can be found in Table 7.2a on page 151
and Table 7.2b on page 151. The differences with respect to their bigram
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equivalents have been added in parenthesis, followed by the percentage of
files in the data set whose output is changed compared to the bigram case.

The results once again show that key extraction is more sensitive to a
chord change model than chord extraction. The chord results on the SEMA
set generally display a slight increase in performance, but this is not statist-
ically significant. The key result differences vary more in amplitude and in
direction, but also turn out statistically not significant. The improvement of
the key output predicted by the test set perplexities in Table 4.8 on page 90
fails to occur. Notable is the observation that the usage of trigram change
models only influences the key and chord output in a restricted number of
files, respectively 10-25 % and 50-70 %. The number of unique trigrams in
the SEMA chord change model is so low (see Table 4.4 on page 83) that the
low number of changed output files can be expected, as it means that the
trigram model mostly backs off to the bigram probabilities anyway. How-
ever, using the more distinct 9GDB trigram chord change model does not
necessarily result in more altered files.

Applying the trigram system to the Isophonics data set causes a greater
number of files to change. At least one chord is altered in almost all files
and a key is modified in 20-57 % of the pieces. After all, the songs in this set
are longer such that the possibility of a modification increases and the fact
that the configurations were optimised on the SEMA set likely causes more
random variations in the Isophonics output. Apart from this, the general
trend is the same: slight, not significant chord improvements and larger
key fluctuations where only the optimal key configuration with the 9GDB
model shows a significant improvement (p < 0.03). Analysing the error
categories gives the same tendencies as for the bigram system, slightly in-
tensified. A little more chords with one chroma wrong are corrected and
the number of fifth shift chord errors increases a bit.

The only noticeable difference with the bigram system is that the com-
plementary task suffers less when the system is configured either for op-
timal key or optimal chord output. The effect is that all chord change mod-
els improve both key and chord output in all configurations when com-
pared to the uniform chord change model. The matched model obviously
still leads to the biggest increase in performance. Whether this is due to the
parameter configurations being more robust to data set changes or simply
due to luck, or whether this means that trigram models are intrinsically
better at capturing the key-chord relation cannot be concluded from these
experiments however.

Finally, the identical performance of the uniform chord change model
in comparison to the bigram system shows that the beam width is set
sufficiently large and that the trigram key change model does not change
the results. The latter could be expected, because the trigram key change
model is identical to the bigram one with the additional condition that a
key cannot last for the duration of just one chord. Because the bigram
system never generated such unwanted output, the trigram model has no
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influence. Similar to the bigram case, all variants fy.3, fiap and fi.sc lead
to the same results. This means that the diatonicity conditions imposed in
frese could be directly integrated into (7.9) in order to achieve an additional
speedup.

So far, other uses of higher order context models have been rarely re-
ported in the literature.Cheng et al. (2008) use models up to tetragrams in a
greedy-search chord-only decoder and Khadkevich and Omologo (2009b)
rescore a bigram lattice with trigram or tetragram probabilities. Our search
procedure is therefore more exhaustive in covering all trigram combin-
ations. Khadkevich and Omologo (2009b) report that adding a trigram
model to a baseline system comprising no contextual modeling at all yields
a chord estimation improvement of less than two percentage points. How-
ever, substituting the trigram by a tetragram model does not offer any ad-
ditional improvement. Surprisingly, the authors do not report any figures
for a bigram model, while our experiments in the previous chapters show
that this already increases the chord extraction performance by two per-
centage points. Another difference is that their system first estimates one
global key before it starts to estimate chords. This means that the influence
of higher order contextual modeling on key estimation was not investig-
ated. Cheng et al. (2008) do report an additional increase in chord estima-
tion of 3.5 percentage points when going from bigram to trigram models,
but also see no further improvement when using tetragram models. How-
ever, their experiments are performed on a small data set of only 28 songs
and they use absolute chords without keys.

/7.4 Conclusion

In this chapter, we presented a system for automatic key and chord es-
timation that makes use of trigram context information. We formulated a
new probabilistic framework in which the acoustic and duration models
of the previous bigram system are reused. Only the key change and chord
change models are different, such that we could separately test the effect
of increasing the scope of the modelled context. The resulting trigram sys-
tem needs significantly more computational power, however. We therefore
explored some options to reduce this load, by integrating the desired mu-
sicological constraints directly into the search procedure and by searching
for a close approximation of the optimal key and chord sequences instead
of the theoretically optimal ones. We gather from the experimental eval-
uation that taking a trigram context into account has little impact on the
generated keys and chords. The key output is altered in just a minority
of the music pieces in comparison to the equivalent bigram system. The
chord output changes in more than half of the files. Nonetheless, the key
results display a larger numerical variation (up to five percentage points)
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than the chord results (less than one percentage point), but this is due to
the inherently wider time span of keys. In general, both the differences in
key and chord score are statistically not significant though. Therefore we
conclude that extending an automatic key and chord estimation system
with trigram context information only leads to a significant increase in the
required computational power.



8.1

Conclusions and
perspectives

This chapter summarises the work performed in this thesis and draws
some general conclusions from it. We conclude with some directions for
future research and some related work that uses automatically generated
key and chord sequences.

Summary

In this thesis, we performed a thorough study of the role prior knowledge
can play in the automatic estimation of keys and chords. We started by
situating the field of automatic key and chord estimation and its applic-
ations. Then we rigorously defined the musical terminology of this text.
A subsequent study of the available scientific literature showed that key
and chord estimation can be done either by handling the two estimation
tasks separately or by combining them in an integrated system. The mo-
tivation behind the latter approach is that it allows to take more musicolo-
gical knowledge into account, as keys and chords are intrinsically linked
and jointly reasoning about them resembles more closely the way scholars
study harmony. However, so far handling both keys and chords together
has not been demonstrated to effectively lead to better estimated output.
Therefore a large part of the text has been dedicated to proposing ways
to exploit this key-chord interdependence and to quantify their effect on
the produced results. We chose to formulate our experiments in the frame-
work of a hidden Markov model (HMM), both because it has been proven
popular in the relevant literature and because it allows us to isolate the
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musicological knowledge involved in a key and chord estimation system.
This musicological knowledge covers a durational and a contextual aspect
which have to be incorporated into the feature decoder, an HMM in our
case. The decoder converts the stream of features produced during a fea-
ture extraction phase into a sequence of key and chord labels.

We first concentrated on modelling musicological context as the com-
bination of a key change model and a relative chord change model. We
explained the reasoning behind this decomposition and went over a num-
ber of options for calculating both models, based on either an annotated
corpus or musicological theory as the knowledge source. Then we used in-
formation theoretical metrics to quantify them. The bigram change models
were then used in combination with a simple chord duration model and a
key duration model to build a simultaneous estimation system. The com-
plexity of this system was gradually increased, such that the influence of
each of its components could be measured. We began by testing the acous-
tic component and its relation to the features and we subsequently intro-
duced different duration models, chord change models and key change
models. We then went on to propose a chord duration models that is more
musically informed. Finally, trigram models that capture more of the con-
text are tested as replacements for the bigram models.

8.2 Conclusions

In general, we can conclude that musicological knowledge can be exploited
to aid in estimating keys and chords from audio, but the gain it offers var-
ies greatly between keys and chords. First of all, duration modelling is es-
sential in order to achieve acceptable results, both for keys and for chords.
This does not come as a surprise, as the duration model needs to stabil-
ise the acoustic model whose output rate (equal to the observation rate) is
much higher than the expected rate of the labels, particularly the key la-
bels. On the other hand, the observation rate cannot be decreased without
loosing temporal precision of the label changes. Adding more durational
knowledge by differentiating expected chord duration on the basis of their
role in a key, improves the key estimation results. This extra knowledge
is universally applicable. Finally, adapting the chord duration model to
better match the shape of the duration distribution in the data set leads to
slightly better chord output, but requires that the actual distribution can be
approximated in advance.

The influence of the chord change model on chord estimation differs
considerably from its influence on key estimation. The inclusion of a bi-
gram chord change model only leads to limited improvements in the chord
results, but large improvements in the key results. Although the chord
improvements are small, they are consistent across all proposed models.
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A detailed error analysis showed that the reason is that a chord change
model mostly corrects errors that are acoustically close, but harmonically
far off. The probabilities involved in rejecting these chord confusion pairs
form only a minor part of a chord change model and all proposed mod-
els capture this information sufficiently well. Incorporating any of them
therefore has a beneficial result on chord estimation. For estimating keys
on the other hand, the chord change model is of the greatest importance.
A chord change model that fits the data well greatly improves the per-
formance, but if there is a significant mismatch between model and data,
the performance can become worse than in the case when no context in-
formation is used at all. Analysing the errors revealed that key estimation
uses the full range of probabilities that constitute the chord change model,
so the differences between the different models are more apparent in the
resulting output. Because most of the key errors are confusions with re-
lated keys, the varying results for the different chord change model are
not necessarily reflected in the chord results. Because related keys produce
chords that are similar, an approximate key estimation is enough to reap
the benefits of the chord change model on chord estimation. The key-chord
coupling is therefore not very strong. Increasing the horizon of the context
further by employing trigram models instead of bigram models only leads
to small, statistically insignificant changes in both the key and chord out-
put. Moreover, moving to trigram models requires a strong increase in
computational power.

Finally, a key change model is not able to influence either key or chord
estimation in a significant way. Including it leads to the same output as
when it is left out, although the diatonicity constraints of some variants
can be used to reduce the decoding search space.

8.3 Future research prospects

8.3.1 Extending the chord or key vocabulary

An obvious candidate for further extension of our system is the addition of
more chord types and/or key modes to the estimation vocabulary. The big-
ger the vocabularies, the richer the produced output. The current vocab-
ularies of four chord types and two modes allows to give a basic tran-
scription of the harmony in a music piece, but a greater level of detail is
necessary for some applications.

A vocabulary extension will bring along both opportunities and pos-
sible pitfalls. On the plus side, the more acoustic models are introduced,
the less variation they need to account for. In the current situation, all
chords based on the same triad are grouped together, but the additional
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chromas in complex chords can result in chords that are harmonically sim-
ilar, but acoustically different. We did not include these complex chords
in our evaluation for precisely this reason, but this is not an option in real
life applications, although the occurrence of such complex chords depends
strongly on the music genre.

On the other hand, more acoustic models increase the possibility of con-
fusing two labels, especially when some labels are subsets of others, e.g.
when mixing triads and tetrads. The challenge for the context modelling
will then be to deal with chord types that are different in form, but nev-
ertheless have essentially the same harmonic function. This will definitely
be the case when taking chord tensions into consideration. When only
triads are used, the relation between harmonic form and harmonic func-
tion is relatively straightforward, i.e. swapping a chord for another leads
to a significant difference in perception, so their probabilities should dif-
fer to reflect this. When complex chords are used however, some chords
can be swapped for each other without significantly changing the chord
sequence. For example, removing the D chroma in a C9 chord (i.e. the
9th) gives a C7 chord that is acoustically different, but this substitution
does not significantly alter the harmony. Since the knowledge captured
by the chord change model should be based on its harmonic function, the
transition probabilities that involve such equality pairs (or tuples) should
be equal too. If the model is learned from a data set, one of the equival-
ent chords might be favoured, based on its non-relevant higher frequency
in the set. The risk of overfitting therefore increases. An option to over-
come this would be to use chord change models that are truly based on
harmonic function instead of full chord type by tying probabilities of such
transitions. Determining the exact transitions to pair requires a whole new
amount of musicological knowledge though. The non-functional aspects
of a chord, such as its tensions, are in that case determined solely by the
acoustic models.

8.3.2 Focussing on acoustic modelling and fea-
fure design

So far, we have used standard acoustic features and knowledge-based acous-
tic models in order to keep our study of the influence of prior musicological
knowledge as unbiassed as possible. In our analysis of the chord errors,
we saw that a significant proportion of errors is most likely introduced in
the feature extraction stage. Musicological knowledge cannot be used to
recover from these errors because they are also musically sensible. There
will always remain some rare ambiguities in the acoustic signal that can
only be resolved by musicological modelling, such as determining the root
of augmented chords, but the current performance leaves plenty of room
for improvement in acoustic modelling and feature design. Based on a
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study of the literature and the MIREX results, the most promising direc-
tions seem to be to use multiple feature streams and data-driven acoustic
modelling.

8.4 Further processing of estimated key and
chord sequences

In spite of the limitations of the current system, leading to imperfect tran-
scriptions in terms of a restricted vocabulary, its output can already be
used as input for other processes. First of all, we mention some possible
post-processing to unearth information that is already present in the gen-
erated key and chord sequences themselves, but not yet in an explicit man-
ner. An example is the field of automatic functional analysis (Pachet, 2000;
de Haas et al., 2013a; Keller et al., 2013), where the goal is to represent har-
mony in a way that is closer to a human interpretation. Currently, this is
done as a post-processing step on the deterministic output, but as men-
tioned previously, probabilistically integrating such an analysis into the
system could be a way to overcome the problems associated with increas-
ing the chord vocabulary. Another example are pitch spelling algorithms
(Meredith, 2004; Chew and Chen, 2005). This step is usually not included
in estimation systems, because intermediate key and chord results are not
helpful for determining the pitch spelling of the final output. If the res-
ulting keys and chords are to be read by humans however, applying this
post-processing is advised.

For most direct applications (see the terminology introduced chapter 1),
the currently produced output is too restricted to be useful. When users
want to learn a music piece, they want a transcription that is 100 % correct,
not close to correct. In addition, the limited chord vocabulary becomes a
problem for all but simple pop music. The same is true when large data-
bases of estimated sequences need to be analysed for the intricacies of cer-
tain genres or composers, such as the specific patterns and rules in jazz
music (Steedman, 1984; Gillick et al., 2010). Often, the most interesting
parts for musicologists are the details and the exceptions, not the rough
outline that automatic estimation is currently able to provide.

These limitations are a lot less important for indirect applications, where
the generated keys and chord labels are used as input to achieve a higher
objective. Some of the following applications were originally reported to-
gether with a specific implementation of a key or chord estimation system,
others were presented using manually annotated labels, but the techniques
they use are general enough to be applied in combination with any key
and/or chord estimation system.

A first example of an indirect, small-scale application is the system for
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chord-based genre classification proposed by Pérez-Sancho et al. (2009).
Its underlying idea is that certain chords or chord sequences are indicat-
ive of a genre. Different symbolic chord representations were tested for
their ability to classify music pieces into three categories, and further into
eight subcategories. The representations varied in chord complexity (using
only triads or also more complex chords), in the usage of absolute chords
versus relative chords in a key or in the length of the chord subsequences
that were considered. One of the conclusions was that a decrease in chord
complexity can be compensated by the use of longer subsequences.

A similar effort has been undertaken by Cheng et al. (2008) for emo-
tion classification. Low level spectral features were compared with fea-
tures derived from chord sequences for assigning a positive or a negative
valence to a music piece by means of a nearest neighbour classifier. These
chord features were either chord histograms or the longest common chord
sequences between the song query and each of the songs in the emotion
annotated database.

Chord sequences have been used by Bello and Pickens (2005) and de Haas
et al. (2013b) to derive a structural segmentation of music. In both papers,
a way to find the boundaries of structural segments and to label similar
segments with a same, non-semantic identifier (i.e. “A”, “B” instead of
“chorus”, “verse”) is presented. The approach of Bello and Pickens (2005)
consists of clustering short-time histograms obtained by sliding an ana-
lysis window over an estimated chord sequence, whereas de Haas et al.
(2013b) relies on a suffix-tree based algorithm to detect repetition in a chord
sequence. Finally, harmony is also one of the controlling parameters for
the visualiser of the interactive-listening web-service Songle! (Goto et al.,
2011).

In the category of indirect, large-scale applications, the work of Hanna
et al. (2009) and de Haas et al. (2013c) is aimed at finding songs with sim-
ilar harmony in a data set. The method of Hanna et al. (2009) is based on a
local alignment between all possible pairs of chord sequences. A dynamic
programming algorithm calculates a score based on how many elementary
operations (insertions, deletions or modifications of labels) have to be per-
formed in order to transform one sequence into the other. De Haas et al.
(2013c¢) introduce a geometric distance between chord sequences, which
extends Lerdahl (2001)’s distance between chord pairs, to calculate the de-
gree of similarity. For both methods, different representations of chord
sequences are examined, varying in complexity from single roots only to
complex chords. Both absolute chord representations or ones that are re-
lative to a key are tried. The local alignment approach consistently out-
performs the geometric distance based one, but the latter has a much more
favourable runtime, which is another relevant point for the deployment of
large-scale applications.

Ihttp://songle. jp/
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Similarity in harmony is also more specifically used to discover cover
versions or live versions of a song in a database of music. Izmirli (2005b);
Lee (2006b) use a Dynamic Time Warping algorithm to this end, while Bello
(2007) examined approximate string-matching techniques to improve the
robustness against estimation errors and key and tempo changes. Recog-
nising the dependency of the previous approaches on pairwise comparis-
ons between all songs in the data set, which makes scaling to large data
sets impractical, Khadkevich and Omologo (2013a) propose an approach
based on Locality Sensitive Hashing to overcome this problem.






Mapping of chord types to
four friad types

Input: chordttype
Output: triadtype

begin

triadtype < undefined

if chordtype = no-chord then
| triadtype < no-chord

else if M3 € chordtype then

if A5 € chordtype N\ P5 & chordtype then
| triadtype < aug

else if P5 € chordtype v d5 & chordtype then
| triadtype < maj

end

else if m3 € chordtype then

if d5 € chordtype A\ P5 ¢ chordtype then
| triadtype < dim

else if P5 € chordtype V A5 ¢ chordtype then
| triadtype <+ min

end

end

end

Algorithm 1: Triad type classification algorithm
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List of songs in the SEMA data
set

The SEMA (harmony) set is a collection of 142 song excerpts of 30 seconds
in one of nine genres: Pop (37), Classical (26), World (24), New age/ Ambient
(13), Rock (11), Jazz/Blues (11), Dance/Techno (10), Rap/Hip-hop (6) and
R&B/Reggae (4). It is a subset of the complete SEMA (metre) set that con-
tains 161 song excerpts annotated with full metrical structure, described in
Varewyck and Martens (2007).

ID Artist Title Genre

1 Barry White  You're The First, The Last, My Pop

Everything

2 Billy Bragg A New England Pop

3 Chitra Kehna Hi Kya World

5 Beijing Opera Monkey King World

6 Perotinus Viderunt Omnes Classical

7 MC Solaar Ganster Moderne Rap/Hip-hop
9 Gasconge Courante World

10  Wim Mertens Struggle For Pleasure Classical
11  Jean-Baptiste Air Pour Madame La Classical

Lully Dauphine (Idylle Sur La Paix)
13 Peru El Contrapunto World
14  Erykah Badu Green Eyes New
age/Ambient

15  Duke Ellington Black Beauty Jazz/Blues
16 Bjork Human Behavior Pop

17 De Kift Molenaar Pop

18 John Coltrane Giant Steps Jazz/Blues
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List of songs in the SEMA data set

ID Artist Title Genre
20 Tielman Susato Passe E Medio, Den Iersten Classical
Gaillard
21 Adriano Banchieri Il Diletto Moderno Licenza E Classical
Di Nuovo Invita

22 Maurice Ravel Bolero Classical

23 Enya Orinoco Flow New
age/Ambient

24 Portishead Sour Times New
age/Ambient

25 Tracy Chapman Fast Car Pop

26 Faithless Insomnia Dance/Techno

27 Waldemar Bastos Mbiri-Mbiri World

28 NAS Ouchie Wally Wally R&B/Reggae

29 Urban Trad. Quimper-Moscou World

30 Jesus and Mary April Skies Rock

Chain

32 China Dolls Wo Ai Ni Pop

33 Prince Cream Pop

34 Carrapicho Tic Tic Tac World

35  Art Garfunkel Bright Eyes Pop

36  Ella Fitzgerald A Tisket A Tasket Jazz/Blues

37 Angelo Laurens Walking Pop

Badalamenti

38 Bob Marley Corner Stone R&B/Reggae

39 Gotan Project Queremos Paz Jazz/Blues

40 Olla Vogala Samra World

41  Mostafa Amar Habib Hayati Pop

42 Einsturzende Blume New

Neubauten age/Ambient

43 Dolly Parton Jolene Pop

44  Nine Inch Nails March Of The Pigs Rock

45 Lucilla Galeazzi Ah, Vita Bella World

47  Astor Piazzolla Oblivion Classical

48 Johannes Brahms Hungarian Dance No. 1In G Classical

Minor
49  Gustav Mahler  Sehr Behaglich (Symphonie Classical
No. 4 In G Major)

51 Varttina Itkin New
age/Ambient

52  Maurice Ravel = Pavane De La Belle Au Bois Classical

Dormant (Ma Mere L'oye)
53 Aphex Twin Film Dance/Techno
54 Wolfgang Dies Irae (Requiem Kv 626) Classical

Amadeus Mozart
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ID Artist Title Genre

55 Novastar Never Back Down Pop

57 Lou Reed Perfect Day Pop

59  Astor Piazzolla Libertango Classical

60 St. Germain Land Of... Jazz/Blues

61 Cirque du Soleil Alegria Pop

62 Buena Vista Social Chan Chan World

Club

63 Sean Paul Get Busy Rap/Hip-hop

64 Bob Dylan Hurricane Pop

65 Claudio Deus In Adjutorium (Vespro Classical

Monteverdi Della Beata Vergine)
66 Jonathan Richman Egyptian Reggae Pop
67 Christoph ~ Che Faro Senza Euridice (Orfeo Classical
Willibald von Ed Euridice)
Gluck

68 Orbital The Box New
age/Ambient

69 Richard Wagner  Vorspiel (Die Walkiire, First Classical

Act)

71 Korea Piri World

72 16 Horsepower Haw Rock

73 Johannes Ciconia Le Ray Au Soleil Classical

74  Salomon Islands Panflute Polyphony World

76 DJ Tiésto Traffic Dance/Techno

77 Blur Song 2 Rock

78  Franz Schubert Allegro (Stringquartett No. 14 Classical
In D Minor "Der Tod Und Das

Madchen")
79 Django Reinhardt Minor Swing Jazz/Blues
80 Zillertaler Komm Nach Tirol Pop
Schiirzenjéger
81  Daler Mehndi Tunak Tunak Tun Dance/Techno
82  Las Ketchup The Ketchup Song Pop
83 O-zone Dragosta Din Tei Dance/Techno
84 King Sunny Adé Kiti Kiti World
85 Rammstein Du Hast Rock
86 Madredeus O Pastor Classical
89 Kraftwerk The Robots Dance/Techno
90 Air Cherry Blossom Girl New
age/Ambient
91 David Rosenboom The Seduction Of Sapientia Classical
92 Massive Attack Teardrop New
age/Ambient

93 Gipsy Kings A Tu Vera World
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ID Artist Title Genre
94 Velvet Sunday Morning Pop
Underground
95  Goran Bregovic Kalashnikov World
97 Tatu Not Gonna Get Us Dance/Techno
98 Fuyumi Sakamoto Yumehotaru World
99 Children of Warheart Rock
Bodom
100 Lata Mangeshkar Dil To Pagal Hai World
& Udit Narayan
101 Usher Yeah! Rap/Hip-hop
102 Ludwig van Allegro Con Brio Classical

Beethoven (Stringquartett In F Minor Op.
95 "Serioso")

103  Duke Ellington Caravan Jazz/Blues
105 Enigma Age Of Loneliness New

age/Ambient
106 Beastie Boys Intergalactic Rap/Hip-hop
107 Coldplay Yellow Rock
108 Nick Cave and Into My Arms Pop

The Bad Seeds
109  John Coltrane My Favorite Things Jazz/Blues
111 Johann Sebastian Kommt, Ihr T6chter, Helft Mir Classical
Bach Klagen (Mattdus-Passion, BWV
244)

112 Mano Negra Le Bruit Du Frigo World

113 Wolfgang Andante Grazioso, Variation III Classical
Amadeus Mozart (Klaviersonata In A Major KV

331)
114 John Lee Hooker Boom Boom Jazz/Blues
115  Anonymous Folia Classical
116 Carl Orff O Fortuna Classical
117  Athanasius La Carpinese Classical
Kircher
118 PJ] Harvey Hair Rock
119 Joe Zawinul Potato Blues New
age/Ambient
120 Temple of the Dog All Night Thing Pop
121  Costa Cordalis Eleni Classical
122 Johan Hoogewijs Witse Twijfelt New
age/Ambient
123 Stefan Remmler Vogel Der Nacht World

124 Stooges We Will Fall World
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125 King Kalakaua Akahi Hoi Jazz/Blues
(adapt. John
Kalapana)

126 Sezen Aksu Gel Kavusalim Artik World

128  Toto Cotugno Adulele R&B/Reggae

129 Baby VOX Nae Sarang Ee Gi Reul Pop

130 Sezen Aksu Tutuklu Kaldim New
age/Ambient

131 Marco Borsato Waarom Nou Jjj Pop

132 Sezen Aksu Yanarim World

133 Mini Moni I Love Blues Jazz/Blues

134 Weezer Half Japanese Girl Rock

135 Boyzone Love Me For A Reason Pop

136 Akino Arai Kirei Na Kanjou Pop

137 ~ Manu Chao Mama Call World

138 Ayumi Hamasaki Seasons Pop

139  Baby V.O.X. Betrayal Pop

140 Derek R. Audette Right In The Face Plate Rock

141 Hanson Penny And Me Rock

142 Ayumi Hamasaki Powder Snow New
age/Ambient

144 Mini Moni Mini Moni Bus Guide Pop

145 Rie Tanaka Hitomi No Tonneru Pop

146 Turbo Tonight Pop

147 The Pretenders Don’t Get Me Wrong Pop

148 FinKL Noon Dong Ja R&B/Reggae

149  Beastie Boys Intergalactic Rap/Hip-hop

150 MC Solaar La Vie Est Belle Rap/Hip-hop

151 INXS Elegantly Wasted Pop

152 Megumi Kimi Sae Ireba Pop

Hayashibara

153  Baby V.O.X. Come To Me Pop

154 Zone Shiroi Hana Pop

155 Calin vs Fantastic Samba De Minha World

Plastic Machine Namoradinho
156 Madonna True Blue Pop
157  Fragile State Every Day A Story (4 Hero =~ Dance/Techno
Electric Fusion Remix)

158 Harry Anand  Kantaa Laga (DJ Doll Remix) Pop

159 Junior Jack Da Hype (Original Club Mix)  Dance/Techno

160 MC Sar & The Another Night Dance/Techno

Real McCoy
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