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CHAPTER 1

General introduction

1.1 Rational choice hypothesis
Rational choice theory postulates that preferences determine choice. For example: if a is pre-
ferred to b, then b will not be chosen when a is available1. Preferences rank the alternatives and
individuals select from the available alternatives the ones that have the highest ranking. We call
this the ‘Rational choice hypothesis’ (RCH):

RCH: Individuals choose the alternatives that maximize their preferences.

The RCH is composed of two subhypothesises. The first states that choices are optimal with re-
spect to some binary relation, and the second states that this relation equals a preference relation.
The restrictions imposed on a preference relation depend to a large extent on the model under
consideration, for instance on whether the model is dynamic or static, deterministic or stochastic,
etc. But, there are two constraints that are widely, i.e. for almost all models, imposed. These are
the properties of completeness and transitivity. Completeness states that for any two alternatives
a and b, either a is at least as good as b or b is at least as good as a. A violation of completeness
results in situations where it is infeasible to choose between two alternatives. As an example, we
can imagine a shipwrecked person on a desolated island who starves to death because he is not
able to choose between eating chicken or coconut. Transitivity states that if a is at least as good
as b and if b is at least as good as c, then a is at least as good as c. Transitivity can be supported
on the same grounds as completeness: any violation of transitivity can lead to choice situations
where an individual is unable to attain a consistent choice.

1We say that a is preferred to b if a is at least as good as b while b is not at least as good as a, and we say that a
is indifferent to b if a is at least as good as b and b is at least as good as a.

1



Chapter: 1 Section: 3

1.2 Revealed preferences
Often, it is the case that preferences are not observable while choices are. A test for the RCH
should therefore focus on the constraints that these observations impose on the domain of poten-
tial preferences. For example, if a is selected while b was available and b is selected while c was
available, one should not observe instances where c is chosen and a is rejected. Otherwise, one
could deduce that a is at least as good as b, b is at least as good as c and c is preferred to a. This
contradicts transitivity.

If a is selected while b is available, we say that a is revealed preferred to b and we write (a, b) ∈
Rv. If (a, b) ∈ Rv and if, in addition, b is not selected, we say that a is strictly revealed preferred
to b and write (a, b) ∈ Pv. Evidently Pv ⊆ Rv. The relation Rv is derived from observations on
choices and is only indirectly (if the RCH holds) deduced from the genuine preference relation.

If the RCH applies and if (a, b) ∈ Rv, it ought to be that a is at least as good as b. Indeed, if on
the contrary, b is strictly preferred to a, a should not be chosen while b is available. As such, it is
sometimes possible to retrace the entire preference relation from the revealed preference relation.
For example, if we observe the choices from each two element choice set, we can specify for each
pair {a, b} whether (a, b) ∈ Rv or whether (b, a) ∈ Pv, and verify if the RCH holds.

1.3 Rationalizability
The difficulty arises if it is infeasible to reconstruct the true preference relation from the revealed
preference relation. For example: if (a, b) and (b, c) ∈ Rv but the agent has never been granted
the opportunity to choose between a and c, we are inept to verify whether the preferences are
transitive, i.e. whether a is at least as good as c. On the other hand, if (c, a) ∈ Pv we are certain
that preferences are not transitive and we may dismiss the RCH. Let us define the concept of
rationalizability

A collection of observations is rationalizable if there exist preferences which reproduces the
observations according to the RCH.

If the observations are not rationalizable, we reject the RCH with certainty. Nevertheless, it is
possible that the observations are rationalizable and the RCH is false, i.e. the power of the test is
less than one. For example, if a is at least as good as b, b is at least as good as c and c is preferred
to a, we must conclude that the preferences are not transitive, hence, the RCH is false. Assume
now that the agent has to select between a and b and between b and c. Thus, (a, b) ∈ Rv and
(b, c) ∈ Rv. These observations are rationalizable. Indeed, it is possible to conceive (transitive
and complete) preferences for which a is at least as good as b, b is at least as good as c and a is at
least as good as c. To conclude: if it is infeasible to derive the entire preference relation from the
revealed preference relation, there must exist a relation which induces the same behavior, but is
not a preference relation.
An elegant way to measure the reliability of the rationalizability criterion is via the computation
of a power measure (e.g. [Bronars, 1987]). In order to do this, one defines an alternative hypoth-
esis of how agents make their choices and one constructs (artificially) choices following choice

2
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rules that obey this alternative hypothesis. The power measure is computed as the fraction of
these choice rules that satisfy the rationalizability criterion. The development of an alternative
hypothesis and the computation of the power measure is a very fascinating topic, nevertheless, in
this research, we are more concerned with the construction of the rationalizability tests theme-
selves.

If (a, b) ∈ Rv and (b, c) ∈ Rv, we say that a is indirectly revealed preferred to c. Moreover,
we may broaden this definition to permit any finite number of alternatives, i.e. if (a, b) ∈ Rv,
(b, c) ∈ Rv, . . . , (p, q) ∈ Rv, then a is indirectly revealed preferred to q. Richter [1966] presents
following ‘congruence axiom’:

For all alternatives a and b, if a is indirectly revealed preferred to b, then (b, a) /∈ Pv.

Richter shows that a set of observations is rationalizable by a complete and transitive relation if
and only if they satisfy this congruence axiom.

It is easy to see why Richter’s congruence axiom is necessary. Indeed, if on the contrary, there
are a and b such that a is indirectly revealed preferred to b and (b, a) ∈ Pv, then for any transitive
preference relation, satisfying the RCH, it must be that a is at least as good as b and b is preferred
to a, a contradiction.

1.4 The congruence axiom and binary extensions
The sufficiency part of Richter’s rationalizability characterization requires some notation and
results from the theory on binary relations. Consider a set of alternatives X and the cartesian
product X × X = {(a, b)|a, b ∈ X}. A binary relation in X is a subset of X × X . For
example, the preference relation, R, where (a, b) ∈ R if a is at least as good as b and the revealed
preference relations Rv and Pv are all examples of binary relations. The pair {a, b} belongs to
the asymmetric part of R if (a, b) ∈ R and (b, a) /∈ R. We denote this also by (a, b) ∈ P (R). For
example, the strict preference relation is the asymmetric part of the preference relation. A pair
{a, b} belongs to the transitive closure of the relation R if there exist a number n and elements
a = x1, x2, . . . , xn = b such that (xi, xi+1) ∈ R for all i = 1, ..., n − 1. We also denote this
by (a, b) ∈ T (R). For example: the transitive closure of the revealed preference relation, Rv is
given by the indirect revealed preference relation, T (Rv).

A binary relation R′ is an extension of a relation R if R ⊆ R′ and P (R) ⊆ P (R′). A fundamental
result in the theory of binary extensions, better known as Szpilrajn’s lemma, [Szpilrajn, 1930],
states that:

Any transitive relation has a complete and transitive extension.

This result is generalized by Suzumura [1976] who demonstrated that:

A binary relation R has a complete and transitive extension if and only if for all a and b, (a, b) ∈
T (R) implies (b, a) /∈ P (R).

3
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Suzumura names this condition ‘consistency’2.

The indirect revealed preference relation, T (Rv), is transitive, hence, it has, by Szpilrajn’s
lemma, a complete and transitive extension. The proof of Richter’s rationalizability charac-
terization is completed by validating that (by using Richter’s congruence axiom) this complete
and transitive extension rationalizes the observations.

1.5 This research
In the consecutive chapters, we develop rationalizability tests for preferences that satisfy, be-
sides transitivity and completeness, other appealing properties. Let us look at the example of
monotonicity. Let X be a subset from a vector space where each vector represents a commodity
bundle. For two bundles a and b, we denote a ≥ b if the bundle a contains at least as much of
every good as the bundle b. A relation, R, is monotonic if for all a and b in X , a ≥ b implies
(a, b) ∈ R.

When are observations rationalizable by a complete, transitive and monotonic relation? Follow-
ing Richter, we solve this problem in two steps. In a first step, we identify the conditions for a
relation to have a complete, transitive and monotonic extension and in a second step, we apply
this outcome to the framework of revealed preferences. Let us commence with the first step.

1.5.1 Generalizing Suzumura’s consistency condition
The relation R is consistent if and only if T (R) extends R. Indeed, if R is consistent it is
impossible that (a, b) ∈ P (R) and (b, a) ∈ T (R). Together with R ⊆ T (R), this implies
that T (R) extends R. On the other hand, if consistency is violated, i.e. (a, b) ∈ T (R) and
(b, a) ∈ P (R), it is impossible that T (R) extends R.

It is easy to validate that this statement is true for any increasing function3 (see also lemma 2.1
in section 2.2):

Let us construct the transitive and monotonic closure in two steps. First, we consider the relation
R by adding to R all the elements (a, b) for which a ≥ b and second, we take the transitive
closure of R, T (R). This closure is increasing, hence, we can write:

The relation T (R) extends R if and only if for all (a, b) ∈ T (R), (b, a) /∈ P (R).

The transitive closure of R is the smallest (with respect to set inclusion) transitive relation that
contains R. Therefore, if R has a transitive extension, it is consistent. Indeed, if R is not
consistent, then there are alternatives a and b such that (a, b) ∈ T (R) and (b, a) ∈ P (R). Any
transitive extension R′ of R should therefore obey (a, b) ∈ R′ ⊇ T (R) and (b, a) ∈ P (R′), a
contradiction. Besides this, a relation R is transitive if and only if R = T (R) (see also section
2.3.1.i). Suzumura’s theorem therefore implies that:

2For further generalizations of Szpilrajn’s lemma, see Duggan [1999] and Donaldson and Weymark [1998]
among others.

3A function F is increasing if for all relations R, R ⊆ F (R).

4
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A relation, R, has an extension R′ = T (R′) if and only if it has a complete extension R∗ =
T (R∗).

In other words: the existence of a complete and transitive extension does not impose additional
restraints beyond the existence of a transitive extension. Can we find additional functions for
which this is true? In section 2.3.2 we show that:

A relation R has a complete and monotonic extension R′ if and only if for all (a, b) ∈ T (R),
(b, a) /∈ P (R), i.e. T (R) is an extension of R.

Let us now continue with the second step of our rationalizability result.

1.5.2 Rationalizability once again
The proof of this step is almost identical to Richter’s original proof but rather than Szpilrajn’s
lemma, we use the above given variant of Suzumura’s theorem. This provides following outcome
for the property of monotonicity (see also section 2.4):

A collection of observations is rationalizable by a monotonic complete and transitive relation if
and only if for all (a, b) ∈ T (Rv), (b, a) /∈ Pv.

In this research we discuss besides monotonicity (chapter 2) also the properties of convexity and
homotheticity (chapter 2), absolute (relative) time-consistency and impatience (chapter 3) and
independence (chapter 4)

1.6 Outline
Before we close this general introduction, we briefly summarize the coming chapters.

In chapter 2, we present a general extension result and we apply it to the properties of convexity,
homotheticity and monotonicity. As mentioned above, this general extension result generalizes
Suzumura’s theorem. If we substitute in Suzumura’s theorem the transitive closure with a general
function F we obtain that:

A relation R has a complete extension R∗ = F (R∗) if and only if for all (a, b) ∈ F (R), (b, a) /∈
P (R).

The initial part of chapter 2 (section 2.2) derives a class of functions for which this is true. In
the second part of this chapter (section 2.3), we apply this result to the properties of convexity,
homotheticity and monotonicity. For example, we develop a function C such that a relation R has
a complete, transitive and convex extension if and only if for all (a, b) ∈ C(R), (b, a) /∈ P (R).
In the closing section of the chapter (section 2.4), we apply these extension results to a choice
theoretic framework. We extend Richter’s congruence axiom and characterize the set of choice
functions that are rationalizable by a complete extension, R∗, that satisfies R∗ = F (R∗). For
example, we find that a choice function is rationalizable by a complete, convex and transitive
relation if and only if for all alternatives a and b, if (a, b) ∈ C(Rv), then (b, a) /∈ Pv.

5
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In chapter 3, we focus on dynamic models and we determine the class of choice functions that
are rationalizable by a complete, transitive, absolute (relative) time-consistent and impatient re-
lation. We construct an absolute (relative) time consistent, transitive and impatient closure and
we confirm that the following congruence condition characterizes the set of choice functions that
are rationalizable.

For all a, b, if (a, b) belongs to the absolute (relative) time-consistent, transitive and impatient
closure of Rv then (b, a) /∈ Pv.

Chapter 4 is joined work with Luc Lauwers. In this chapter, we focus on models with choice
under uncertainty. Lotteries are probability distributions over the set of alternatives and pref-
erences are defined over the set of lotteries. Besides completeness and transitivity, we impose
that preferences are independent, i.e. if lottery a is preferred to lottery b, then any mixture of a
with a third lottery c is preferred to the same mixture of b and c. We develop a transitive and
independent closure and consider following congruence condition:

If (a, b) belongs to the transitive and independent closure of Rv, then (b, a) /∈ Pv.

We prove that this congruence condition characterizes the set of choice functions that are ratio-
nalizable by a transitive, complete and independent relation (section 4.3). Then, we extend this
framework to multiple and interacting individuals. In this setting, each individual is confronted
with a set of actions from which he has to make a choice. Following Sprumont [2000], we can
define a joint choice function to be Nash rationalizable if there exist a profile of preference re-
lations over the set of strategy profiles such that the observed outcomes coincide with the Nash
equilibria based upon these preferences. We extend this framework to allow for lotteries over
action-profiles and define Nash rationalizability when individuals have a menu of mixtures at
their disposal. We characterize Nash rationalizability by two conditions (section 4.4):

A choice function is Nash rationalizable if it satisfies a modified version of Richter’s congruence
condition and the axiom of non-cooperation.

The first condition (modified congruence condition) is a congruence condition which is similar
to the one for the single person choice framework (see section 4.3). The second condition (non-
cooperation) connects the individual behavior to the collective behavior: if a strategy profile
belongs to the collective choice, it should also be selected when the actions of all but one indi-
vidual are kept fixed. We finalize the chapter by linking our result to the analysis of Sprumont
[2000] (section 4.5).

In the last chapter, chapter 5, we address some generalizations (section 5.1), discuss for each
property some implementation issues (section 5.2) and we give concluding remarks (section
5.3).

6



CHAPTER 2

A general extension method with applications to convexity,
homotheticity and monotonicity

2.1 Introduction
Consider a set of alternatives, X , and a binary relation, R, on X , with asymmetric part P (R).
The main objective of this chapter is to characterize the set of relations R for which there exists
a relation, R′, satisfying:

i R′ is an extension of R, i.e. R ⊆ R′ and P (R) ⊆ P (R′),

ii R′ is complete and transitive, and

iii R′ satisfies some additional properties like convexity, homotheticity or monotonicity.

A first step toward a solution is given by Suzumura [1976] who showed that a relation, R, has
a complete and transitive extension if and only if for all (a, b) in the transitive closure of R,
(b, a) /∈ P (R). He calls this condition consistency. The proof of this outcome can be split up in
two steps. In the first step, one shows that a binary relation, R, has a transitive extension if and
only if R is consistent. In the second step, one uses Szpilrajn’s lemma [Szpilrajn, 1930] which
states that any transitive relation has a complete and transitive extension.

Suzumura’s consistency condition characterizes the set of relations that satisfy requirements (i)
and (ii). Therefore, any relation that fulfills (i), (ii) and (iii) must also be consistent. On the
other hand, consistency it is not sufficient. Consider for example commodity bundles, a, b, c
and d, and assume that (a, b) ∈ R, (c, b) ∈ R, (b, d) ∈ P (R) and that there exist an α ∈]0, 1[
such that d = αa + (1 − α)c. The relation R meets consistency, and has thus a complete and
transitive extension. Even so, it has no complete, transitive and convex extension. Indeed, if R′

7
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is a complete transitive and convex extension of R, then it follows that (c, b) ∈ R′, (a, b) ∈ R′

and, by convexity, (d, b) ∈ R′. This contradicts that (b, d) ∈ P (R′).

The idea is to strengthen the requirement of consistency by replacing the transitive closure with
another function F . The adapted ‘consistency’ requirement reads: for all a and b, if (a, b) ∈
F (R), then (b, a) /∈ P (R). We develop a class of functions for which this adjusted ‘consistency’
condition characterizes the set of relations that have a complete extension, R∗ = F (R∗). The
remaining problem is to show that a complete relation R∗ equals F (R∗) if and only if R∗ is
transitive and fulfills requirement (iii).

In section 2.2, we introduce notation and basic definitions and deduce the main extension method.
As mentioned above, we construct a class of functions, F such that a relation R has a complete
extension R∗ = F (R∗) if and only if for all (a, b) ∈ F (R), (b, a) /∈ P (R).
In section 2.3, we apply this result to specific properties, i.e. convexity, homotheticity and
monotonicity. We define the corresponding functions C and H and we show that a relation
R has a complete transitive and (homothetic and monotonic) convex extension if and only if
((a, b) ∈ H(R)) (a, b) ∈ C(R) implies that (b, a) /∈ P (R). We derive akin results for mono-
tonicity and strict monotonicity.
In section 2.4, we build a bridge between the revealed preference literature and our result. By
generalizing the congruence axiom of Richter [1966], we characterize the set of choice functions
which are rationalizable by a complete and transitive relation, R∗ = F (R∗). By substituting the
functions C and H for F , we derive rationalizability results for the properties of convexity and
homotheticity.

Before we begin the next section, let us provide an example. Consider an individual with a
preference relation over three goods. We present his preferences as a binary relation over a
convex subset of R3. Consider six bundles in this set:

x1 = (10, 9, 3)

x2 = (9, 7, 8)

x3 = (12, 4, 8)

x4 = (4, 8, 12)

x5 = (8, 9, 7)

x6 = (8, 12, 4)

Assume that we have observations such that x1 is revealed preferred to x2 and x5, x3 is revealed
preferred to x4, x6 is revealed preferred to x4 and x4 is strictly revealed preferred to x1. These
observations satisfy the conditions of Richter’s congruence condition1, hence, there does exist a
complete and transitive relation that rationalizes these observations. However, at the end of sec-
tion 2.4 we will reconsider this example and show that these observations are not rationalizable
by a complete, transitive and convex relation.

1Recall from section 1.3 that Richter’s congruence condition states that, if a is indirectly revealed preferred to b
then b is not strictly revealed preferred to a. See also section 2.4 for a formal definition

8



Chapter: 2 Section: 2

2.2 A general extension method
Consider a set X of alternatives. A set R ⊆ X ×X is called a binary relation on X . We denote
the set of all binary relations on X by R. Given a relation R, we define its inverse R−1 by
(a, b) ∈ R−1 if and only if (b, a) ∈ R. The symmetric part of R is given by R ∩ R−1 and is
denoted by I (R), the asymmetric part R − I (R) is denoted by P (R) and the non-comparable
part X ×X − (R ∪R−1) is denoted by N (R).
A binary relation R is complete if for all a, b ∈ X : (a, b) ∈ R or (b, a) ∈ R. A binary relation
R is transitive if for all a, b, c ∈ X: if (a, b) ∈ R and (b, c) ∈ R, then (a, c) ∈ R.

Definition 2.1 (Extension). A relation R′ is an extension of the relation R, denoted R � R′, if
R ⊆ R′ and P (R) ⊆ P (R′).

The relation � is reflexive: for all R,R � R, and transitive: if R � R′ and R′ � R′′, then
R � R′′.

Consider a function F : R → R and let R∗ = {R ∈ R|R � F (R)}. In the ensuing section, we
provide several examples for F (.). Until then, it may be usefull to think of the transitive closure2

T (.) as an example.

The following result characterizes the setR∗.

Lemma 2.1. Let R ⊆ F (R). The relation R belongs toR∗ if and only if F (R) ∩ P (R)−1 = ∅.

Proof. (→) Let R � F (R). If (a, b) ∈ P (R), we derive that (a, b) ∈ P (F (R)), hence (b, a) /∈
F (R). Conclude that F (R) ∩ P (R)−1 = ∅.
(←) Let F (R) ∩ P (R)−1 = ∅. If (a, b) ∈ P (R), then (b, a) /∈ F (R). From R ⊆ F (R) and
P (R) ⊆ R, we derive that (a, b) ∈ P (F (R)). Conclude that R � F (R).

Recall, from the introduction (section 2.1), that Suzumura [1976] characterized the set of re-
lations R ∈ R that have a complete and transitive extension, by the requirement that T (R) ∩
P (R)−1 = ∅.
Likewise, we would like to characterize the relations R ∈ R that have a complete extension
R′ ∈ R∗ (or equivalently R′ = F (R′)), by the condition F (R) ∩ P (R)−1 = ∅.

Lemma 2.2. Let F : R → R and let R∗ = {R ∈ R|R � F (R)}. If F satisfies the following
conditions:

C1: for each well-ordered chain R0 ⊂ R1 ⊂ ... ⊂ Rα ⊂ ... of relations in R∗, the union⋃
0≤α Rα is also inR∗, and,

C2: for each relation R ∈ R∗ such that N(R) 6= ∅, there exists a non-empty subset T of N(R)
such that R ∪ T ∈ R∗,

2For a relation R ∈ R, we say that (a, b) ∈ T (R) if there exists a natural number n and elements x1, ..., xn in
X such that x1 = a, xn = b and (xi, xi+1) ∈ R for all i = 1, ..., n− 1.

9
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then in order for a relation R ∈ R with R ⊆ F (R), to have a complete extension R∗ = F (R∗)
it is sufficient that F (R) ∩ P (R)−1 = ∅.

Before we provide the proof, let us first outline the intuition behind C1 and C2. Remember,
from lemma 2.1, that for R ⊆ F (R), F (R) ∩ P (R)−1 = ∅ if and only if R ∈ R∗. The idea is
to enlarge R by repeatedly adding elements of N(R), such that these enlarged relations remain
in R∗. This is exactly what condition C2 allows to do. If X is finite, C2 is sufficient to end up
with a complete extension. This is no longer true if X is infinite. For these cases we added the,
rather technical, condition C1. Notice that this condition requires the index α to be an index over
ordinal numbers.

Proof of lemma 2.2. Let Ω = {R′ ∈ R∗|R � R′} collect all the extensions of R in R∗ including
R. Consider a well-ordered chain R0 ⊆ R1 ⊆ ... ⊆ Rα ⊆ ... in Ω and define B =

⋃
0≤α Rα.

Let us verify that Ω contains B. By C1, B � F (B). We are left to affirm that R � B. Clearly,
R ⊆ B. If, on the contrary, (a, b) ∈ P (R) and (b, a) ∈ B, there must exist an Rα in the well
ordering that contains (b, a). This violates Rα ∈ Ω.

We apply Zorn’s lemma and conclude that the set Ω has a maximal element. Let R∗ be such an
element.

We verify that R∗ is complete. If, on the contrary, N(R∗) 6= ∅, there exists, by C2 a relation
T ⊆ N(R∗) such that R∗∪T ∈ R∗. Let us verify that R∗∪T ∈ Ω by showing that R � R∗∪T .
The set Ω contains R∗, thus, R � R∗. Let (a, b) ∈ P (R∗) and assume on the contrary that
(b, a) ∈ N(R∗). Clearly R∗ � R∗ ∪ T , hence, by transitivity of � we derive that R � R∗ ∪ T .

We must conclude that R′ is not maximal, a contradiction. Hence, R∗ is complete.

We complete the proof by demonstrating that R∗ = F (R∗). As R∗ � F (R∗), we immediately
deduce that R∗ ⊆ F (R∗). To verify the reverse, assume that (a, b) ∈ F (R∗). If (b, a) ∈ P (R∗),
we would derive that (b, a) ∈ P (F (R∗)), a contradiction. Therefore, it must be that (b, a) /∈
P (R∗). From completeness of R∗, we conclude that (a, b) ∈ R∗. Hence, F (R∗) ⊆ R∗.

Lemma 2.3. Let F : R → R and let R∗ = {R ∈ R|R � F (R)}. Let F satisfy the following
condition:

C3: for all R and R′ ∈ R, if R ⊆ R′, then F (R) ⊆ F (R′).

Then, if a relation R ∈ R with R ⊆ F (R), has a complete extension R∗ = F (R∗), then
F (R) ∩ P (R)−1 = ∅.

Proof. Let R ⊆ F (R) extend to a complete relation R∗ = F (R∗). Assume, on the contrary, that
(a, b) ∈ F (R) and (b, a) ∈ P (R). Deduce that (b, a) ∈ P (R∗) and (by C3) (a, b) ∈ F (R∗) =
R∗, a contradiction

The combination of lemma 2.1, 2.2 and 2.3 leads to the following result.

10
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Theorem 2.1. Let F : R → R satisfy the conditions C1, C2, C3. Then in order that a relation
R ∈ R with R ⊆ F (R) has a complete extension R∗ = F (R∗) it is necessary and sufficient that
F (R) ∩ P (R)−1 = ∅.

In the remaining part of this section, we will impose restrictions on the function F beyond C1,
C2 and C3. There are multiple reasons for this. First of all, it allows us to impose a more familiar
structure on F : although the conditions C1, C2 and C3 are fairly general, they do not correspond
to a particular known class of functions. Second, we have been unable to find any economically
interesting applications for which the function F satisfies conditions C1, C2 and C3, but not
these extra conditions. Finally, imposing these additional restrictions here allows us to simplify
and shorten the proofs in the next section.

Definition 2.2 (Closure operator). The function F is a closure operator if it satisfies condition
C3,

C4: for all R ∈ R : R ⊆ F (R), and,

C5: for all R ∈ R : F (F (R)) ⊆ F (R).

A closure operator F is algebraic if

C6: for all R ∈ R and all (a, b) ∈ F (R), there is a finite relation R′ ⊆ R such that (a, b) ∈
F (R′).

Let us show how algebraic closure operators relate to the conditions C1 and C2.

Lemma 2.4. Let F : R → R be an algebraic closure operator and let R∗ = {R ∈ R|R �
F (R)}. If F satisfies,

C7: for all R ∈ R, if R = F (R) and N(R) 6= ∅, there exists a non-empty subset T of N(R)
such that R ∪ T ∈ R∗

then F satisfies C1 and C2.

Proof. Let us start by verifying that F satisfies C2. First, notice that C4 and C5 together imply
F (F (R)) = F (R) for all R ∈ R. Take any relation R ∈ R∗ for which N(R) 6= ∅.
If R = F (R), we have from F (F (R)) = F (R), that F (R) ∈ R∗. In this case, condition C2 is
equivalent to condition C7.
If R ⊂ F (R), we consider the set T = F (R) − R. Again, by F (F (R)) = F (R), we derive
that F (R) = R ∪ T ∈ R∗. The proof is complete if we can demonstrate that T ⊆ N(R).
Assume, on the contrary, that (a, b) ∈ T and (a, b) /∈ N(R). There are two options: (a, b) ∈ R
or (b, a) ∈ P (R). Let us show that both lead to a contradiction.

(i) (a, b) ∈ R. From the construction of T , we deduce that (a, b) /∈ T , a contradiction.

(ii) (b, a) ∈ P (R). From T ⊆ F (R), we deduce that (a, b) ∈ F (R). This contradicts with
R � F (R).

11
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Finally, we need to show that F satisfies C1. Consider a well-ordered chain R0 ⊆ R1 ⊆ . . . ⊆
Rα ⊆ . . . in R∗ and let B =

⋃
α≥0 Rα. We have to verify that B ∈ R∗. Applying condition

C4, we derive that B ⊆ F (B). Hence, from lemma 2.1, we only need to affirm that F (B) ∩
P (B)−1 = ∅. Assume, on the contrary, that (a, b) ∈ F (B) and (b, a) ∈ P (B). From C6, there
exists a finite subset B′ ⊆ B for which (a, b) ∈ F (B′). Consider a relation Rα in the well-
ordered chain for which B′ ⊆ Rα. The existence of such relation is guaranteed by finiteness
of B′. From C3, we derive that (a, b) ∈ F (Rβ) for all β ≥ α. Also, from the construction of
B, we deduce that there is an α′ ≥ 0 such that (b, a) ∈ P (Rβ′) for all β′ ≥ α′. Conclude that
(a, b) ∈ F (Rα′′) ∩ P (Rα′′)

−1 for all α′′ ≥ max{α, α′}. This violates Rα′′ ∈ R∗.

Theorem 2.1, together with lemma 2.1 and lemma 2.4, gives the following result:

Theorem 2.2. Consider an algebraic closure operator F : R → R that satisfies C7. Then, a
relation R ∈ R has a complete extension R∗ = F (R∗) if and only if F (R) ∩ P (R)−1 = ∅.

We finish this section by providing a characterization for closure operators which will be usefull
in the next section. This characterization is well-known (e.g. [Cohn, 1965]), but we prove it for
completeness.

Lemma 2.5. Assume that F satisfies F (X ×X) = X ×X . Then F is a closure operator if and
only if for all R ∈ R:

F (R) =
⋂
{Q ⊇ R|Q = F (Q)}.

Proof. (←) Let F (R) =
⋂
{Q ⊇ R|Q = F (Q)} for all R ∈ R. Let us demonstrate that F

satisfies C4, C3 and C5

(i) C4. If (a, b) ∈ R, then, (a, b) ∈ Q for all Q ⊇ R, hence, also for those relations Q that satisfy
Q = F (Q). Therefore (a, b) ∈ F (R).

(ii) C3. Let R ⊆ R′ and assume that (a, b) ∈ F (R). Then (a, b) ∈ Q for all Q ⊇ R that satisfy
Q = F (Q). As R′ ⊇ R, we must have that (a, b) ∈ Q′ for all Q′ ⊇ R′ that satisfy Q′ = F (Q′).
Hence, (a, b) ∈ F (R′).

(iii) C5. If (a, b) ∈ F (F (R)), then (a, b) ∈ Q for all Q ⊇ F (R) that satisfy Q = F (Q). If, on
the contrary (a, b) /∈ F (R), there must be a Q′ ⊇ R for which (a, b) /∈ Q′ and Q′ = F (Q′). As,
Q′ ⊇ R, we derive from C3 that F (Q′) ⊇ F (R). Together with Q′ = F (Q′), we deduce that
Q′ ⊇ F (R). This violates the assumption that (a, b) ∈ F (F (R)).

(→) Let F satisfy conditions C3, C4 and C5. From C3 and C5, we derive that F (R) = F (F (R))
for all R ∈ R. Hence, if (a, b) ∈ Q for all Q ⊇ R that satisfy Q = F (Q), we must also have
that (a, b) ∈ F (R). Conclude that

⋂
{Q ⊇ R|Q = F (Q)} ⊆ F (R). To see the reverse, let

(a, b) ∈ F (R). By C3, we find that (a, b) ∈ F (Q) for all Q ⊇ R. In particular, this must also
hold for all Q that satisfy Q = F (Q). Conclude that F (R) ⊆

⋂
{Q ⊇ R|Q = F (Q)}.

12
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2.3 Transitive, convex, monotonic and homothetic extensions
This section applies theorem 2.2 to several properties. The procedure that we will adopt for each
of these properties takes the following steps:

i. Define a function F .

ii. Demonstrate that a (complete) relation R∗ equals F (R∗) if and only if R∗ satisfies transi-
tivity and the desired properties

iii. Verify that F is an algebraic closure operator that satisfies condition C7. We do this in
three steps. :

iii.1 Proof that F is a closure operator, i.e. F (R) =
⋂
{Q ⊇ R|Q = F (Q)},

iii.2 show that the closure operator F is algebraic, i.e. F satisfies C6, and

iii.3 confirm that F satisfies C7.

iv. Use theorem 2.2 to conclude that a relation, R, has a complete extension R∗ = F (R∗) if
and only if F (R) ∩ P (R)−1 = ∅.

2.3.1 Transitive extensions
In this section, we reproduce the result of Suzumura [1976] that a relation has a complete and
transitive extension if and only if it is consistent3.

We start by introducing some notation and definitions.

Definition 2.3 (Sequence). A finite sequence s in X of length ns ∈ N is a function

s : {1, . . . , ns} → X : i→ s(i).

Let S collect all the finite sequences in X . Sometimes, it will be convenient to define the se-
quence s ∈ S by the enumeration of its image: s = s(1), . . . , s(ns).
For two sequences s1 and s2 ∈ S we may construct the compound sequence s′ ∈ S of length
(ns1 + ns2), given by s′ = s1(1), ..., s1(ns1), s2(1), ..., s2(ns2). We denote this sequence by s′ =
s1 ⊕ s2.

Definition 2.4 (Transitivity). A relation R in X is transitive if for all a, b and c ∈ X:

if (a, b) ∈ R and (b, c) ∈ R then (a, c) ∈ R.

3A relation R is consistent if for each natural number n and each sequence x1 . . . , xn of elements in X , if
x1 = a, xn = b and (xi, xi+1) ∈ R for all i = 1, . . . , n− 1, then (b, a) /∈ P (R).

13
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Now, we are set up to apply steps (i)-(iv) mentioned in the introductory paragraph of section 2.3
We start by introducing the function T .

i. Define the function T

The function T : R→ R is given by (a, b) ∈ T (R) if and only if there is a sequence s ∈ S such
that s(1) = a, s(ns) = b and for all i = 1, . . . , ns − 1:

(s(i), s(i + 1)) ∈ R.

In step (ii), we relate the function T to the property of transitivity.

ii. For all R ∈ R : R = T (R)↔ R is transitive.

Proof. (→) If (a, b) ∈ R and (b, c) ∈ R, we can construct the sequence s = a, b, c, and derive
from the definition of T that (a, c) ∈ T (R) = R. Conclude that R is transitive.

(←) Assume that R is transitive. Notice that T satisfies C4, i.e. R ⊆ T (R). In order to
verify that T (R) ⊆ R, assume that (a, b) ∈ T (R), i.e. there exist a sequence s ∈ S such that
s(1) = a, s(n) = b and for all i = 1, . . . , n − 1, (s(i), s(i + 1)) ∈ R. We have to proof that
(a, b) ∈ R. We proceed by induction on n.

For n = 1, we immediately derive that (a, b) = R.

Suppose the result holds up to n = `. Consider a sequence, s of length ` + 1 such that s(1) =
a, s(` + 1) = b and for all i = 1, ..., `, (s(i), s(i + 1)) ∈ R. From the induction basis, we obtain
(a, s(`)) ∈ R. From transitivity, and (s(`), b) ∈ R, we deduce that (a, b) ∈ R.

In step (iii), we show that T satisfies the requirements from theorem 2.2.

iii. The function T is an algebraic closure operator which satisfies property C7.

First we show that T is a closure operator.

iii.1 For all R ∈ R : T (R) =
⋂
{Q ⊇ R|Q = T (Q)}.

Proof. (⊆) Let (a, b) ∈ T (R) and assume that R ⊆ Q = T (Q). Then, there exist a sequence
s ∈ S such that s(1) = a, s(ns) = b and for all i = 1, . . . , ns − 1, (s(i), s(i + 1)) ∈ R ⊆ Q.
Conclude that (a, b) ∈ T (Q) = Q. Hence, (a, b) ∈

⋂
{Q ⊇ R|Q = T (Q)}.

(⊇) First, we verify that T (R) is transitive. Therefore, assume that (a, b) and (b, c) ∈ T (R).
Then, there are sequences s, s′ ∈ S such that s(1) = a, s(ns) = b = s′(1), s′(ns′) = c and for
all i = 1, . . . , ns − 1 and j = 1, . . . , ns′ − 1, (s(i), s(i + 1) and (s(j), s(j + 1)) ∈ R. If we
use the sequence s′′ = s(1), . . . , s(ns), s

′(2), . . . , s′(ns′) in the definition of T (.), we derive that
(a, b) ∈ T (R). Infer from section 2.3.1.ii that T (T (R)) = T (R) and that T (R) ∈ {Q ⊇ R|Q =
T (Q)}.

14
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Next, we show that T is algebraic.

iii.2 The function T satisfies condition C6.

Proof. Let (a, b) ∈ T (R). Then, there is a sequence s ∈ S for which s(1) = 1, s(ns) = b and
for all i = 1, . . . , ns − 1, (s(i), s(i + 1)) ∈ R. Construct the finite relation R ∩ D × D with
D = {s(1), . . . , s(ns)} and observe that (a, b) ∈ T (R ∩ D × D). Conclude that T (.) satisfies
C6.

Finally, we show that T satisfies C7.

iii.3 The function T satisfies condition C7.

Proof. Let R = T (R) and N(R) 6= ∅. Let us show that for (a, b) ∈ N(R), the relation F (R ∪
{(a, b)}) extends R ∪ {(a, b)}. Define R′ = R ∪ {(a, b)}.

By C4 and lemma 2.1, we only need to verify that T (R′) ∩ P (R′)−1 = ∅. Assume, on the
contrary that (c, d) ∈ T (R′) and (d, c) ∈ P (R′) and consider first the case where (c, d) 6= (a, b).
Then there exist a sequence s ∈ S with s(1) = c, s(ns) = d and for all i = 1, . . . , ns − 1,
(s(i), s(i + 1)) ∈ R′. Clearly, there is an i for which (s(i), s(i + 1)) = (a, b). Else, we would
deduce that (c, d) ∈ T (R) = R, a contradiction.

Let ` be the highest interger such that (s(` − 1), s(`)) = (a, b) and let f be the smallest in-
teger such that (s(f), s(f + 1)) = (a, b). Apply the definition of T to the sequence s′ =
s(`), . . . , s(ns), s(1), . . . , s(f) and conclude that (b, a) ∈ T (R) = R, a contradiction.

If (c, d) = (a, b), we apply the definition of T to the sequence s′ = s(`), ..., s(ns) (if there is no
i for which (s(i), s(i + 1)) = (a, b), we put ` = 1) and conclude again that (b, a) ∈ T (R) = R,
a contradiction .

iv. Conclusion

The function T is an algebraic closure operator that satisfies C7. We can use theorem 2.2 and
proof that R has a complete and transitive extension if and only if T (R) ∩ P (R)−1 = ∅.

2.3.2 Convex extensions
In this section, we look for the existence of complete, transitive and convex extensions (see also
Bossert and Sprumont [2001] and Scapparone [1999]). We assume that X is a convex4 subset of
Rn.

4It is possible to reproduce the results of this section without this condition. However, this would drastically
increase the notational complexity without really adding something fundamental to the analysis.
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For each finite set A ⊆ X , we denote by V (A) the interior of the convex hull spanned by the
elements of A:

V (A) =

{
a ∈ X

∣∣∣∣∣a =
∑
xi∈A

αixi where for all i, αi > 0 and
∑

i

αi = 1

}
.

The definition of convexity has many variants, depending on the additional requirements imposed
on the relation under consideration5 (e.g. completeness). We will use the following:

Definition 2.5 (Convexity). A relation R is convex if for all finite sets A ⊆ X and all b ∈ X:

• if (xi, b) ∈ R for all xi ∈ A, then for all a ∈ V (A) : (a, b) ∈ R, and

• if (xi, b) ∈ R for all xi ∈ A and there is an xj ∈ A for which (xj, b) ∈ P (R), then for all
a ∈ V (A) : (a, b) ∈ P (R).

Let us determine the condition for which a relation has a complete, transitive and convex ex-
tension by going through steps (i)-(iv) of the introductory paragraph of this section. The most
intuitive way to develop the function F (step (i)) is to work in a sequential manner. Indeed, it
is possible to define an algebraic closure operator C∗(.) such that (for all complete relations R∗)
R∗ = C∗(R∗) if and only if R∗ is convex. Then, one may define the function F (R) = T (C∗(R))
and verify that F (R∗) = R∗ if and only if R∗ is transitive and R∗ is convex (this is step (ii)).
Unfortunately, the function F (.) is not a closure operator, hence, it does not satisfy step (iii).
Therefore, it is necessary to impose both conditions (transitivity and convexity) simultaneously
in the same function. Let us define the function C.

i. Define the function C

Consider a finite number of sequences s1, ..., sm ∈ S. For an element sj(i), i < nsj
, we say that

the set A is compatible with sj(i) if

• A ⊆ {sk(v)|k ∈ {1, ...,m}, v ∈ {1, ..., nsk
}} and,

• sj(i + 1) ∈ A.

Given the list of sequences s1, ..., sm, we denote by A(sj(i); s1, .., sm) the collection of all sets
A which are compatible with sj(i).

To simplify notation, we also write A(sj(i)) instead of A(sj(i); s1, ..., sm).

The function C : R→ R is defined in the following way: for a relation R ∈ R we write (a, b) ∈
C(R) if there exists a finite number of sequences s1, ..., sm ∈ S such that for all j = 1, . . . ,m:
sj(1) = a, sj(nsj

) = b and for all j = 1, . . . ,m and i = 1, . . . , nsj
− 1:

• (sj(i), sj(i + 1)) ∈ R or

5See Mas-Colell et al. [1995, p.44] for the intuition behind the idea that preferences should be convex.

16



Chapter: 2 Section: 3

• there is a set A ∈ A(sj(i)) such that sj(i) ∈ V (A).

We will validate that C is an algebraic closure operator which satisfies C7, but let us begin by
indicating how C relates to the the property of convexity.

ii. If R is complete, then R = C(R) if and only if R is transitive and convex.

Proof. Necessity is straightforward, hence we only show sufficiency.

Assume that R is complete, transitive and convex. From convexity, we deduce that for all finite
sets A ⊆ X and all c ∈ V (A), it is not the case that:

• (xi, c) ∈ R for all xi ∈ A and (xj, c) ∈ P (R) for at least one element xj ∈ A.

Otherwise, we would deduce that (c, c) ∈ P (R), a contradiction. Completeness of R, allows us
to rewrite this conditions in the following way:
For all A ⊆ X , if c ∈ V (A) then:

• there is an xj ∈ A for which (c, xj) ∈ P (R) or (1)

• for all xi ∈ A : (c, xi) ∈ R. (2)

Assume that (a, b) ∈ C (R). Then, there are a finite number of sequences s1, . . . , sm such that
for each sequence j = 1, . . . ,m: sj(1) = a, sj(nsj

) = b and for each i = 1, . . . , nsj
− 1 either

(sj(i), sj(i + 1)) ∈ R or sj(i) ∈ V (A) for some A ∈ A(sj(i)). We must demonstrate that
(a, b) ∈ R.

We proceed by constructing a sequence s′ = s′(1), . . . , s′(ns′) such that s′(1) = a, s′(ns′) = b
and for all i = 1, . . . , ns′ − 1: (s′(i), s′(i + 1)) ∈ R. The result follows from transitivity of R
and section 2.3.1.ii. Consider the following algorithm:

1. Initiate s′(1) = s1(1) and set k = 1. To to step 2.

2. if s′(k) = b, we stop. Otherwise, we increase k by one, i.e. k := k + 1. Go to step 3.

3. for s′(k − 1) = sj(i), if (sj(i), sj(i + 1)) ∈ R, we set s′(k) = sj(i + 1) and return to step
2, otherwise, go to step 3.

4. for s′(k− 1) = sj(i), if sj(i) ∈ V (A) for some A ∈ A(sj(i)), we know from the first part
of the proof that there are two cases to consider:

(a) if (2) holds, we derive that (sj(i), sj(i + 1)) ∈ R. Then we put s′(k) = sj(i + 1),
and we return to step 2,

(b) if (1) holds, we derive that (sj(i), sw(v)) ∈ P (R), for some element sw(v) in some
sequence sw. Then we put s′(k) = sw(v) and we return to step 2,

17



Chapter: 2 Section: 3

The algorithm terminates only at step 2, i.e. at the value b. Therefore, the algorithm is well-
defined if it reaches this step after a finite number of steps. If, on the contrary, the algorithm does
not terminate after a finite number of steps, then, by finiteness of the sequences s1, . . . , sm,
there must be a loop in the sequence s′(1), s′(2), . . . , s′(f), . . . , s′(`), . . . Suppose that s′(f)
and s′(l) correspond to the same element in the same sequence. This only occurs if the algo-
rithm passes through step 4.b. Agree, that there must be a strict relation involved, for example
(s′(v), s′(v + 1)) ∈ P (R) (with f ≤ v ≤ `). Transitivity of R, and the result from section
2.3.1.ii, establishes that (s′(v + 1), s′(v)) ∈ R, a contradiction. Hence, the algorithm terminates
after a finite number of steps. Conclude that (a, b) ∈ R.

iii. The function C is an algebraic closure operator which satisfies condition C7

We start by showing that C is a closure operator.

iii.1 For all R ∈ R: C(R) =
⋂
{Q ⊇ R|Q = C(Q)}.

Proof. It is straightforward to verify that C(X × X) = X × X . Hence, for all R ∈ R, the set
{Q ⊇ R|Q = C(Q)} is non-empty.

(⊆) Let (a, b) ∈ C(R) and Q ∈ {Q′ ⊇ R|Q′ = C(Q′)}. Then, there exists a finite number
of sequences s1, . . . , sm where for all j = 1, . . . ,m, sj(i) = a, sj(nsj

) = b and for all i =
1, . . . , nsj

− 1, (sj(i), sj(i + 1)) ∈ R ⊆ Q or sj(i) ∈ V (A) for some A ∈ A(sj(i)). Hence,
(a, b) ∈ C(Q) = Q. Conclude that (a, b) ∈

⋂
{Q ⊇ R|Q = C(Q)}.

(⊇) Let us begin by showing that C(C(R)) = C(R). Evidently C(R) ⊆ C(C(R)). To see the
reverse, consider elements a and b ∈ X and assume that (a, b) ∈ C (C (R)). From the definition
of C, there must be a finite number of sequences s1, . . . , sm in S such that for all j = 1, . . . ,m:
sj(1) = a, sj(nsj) = b, and for all i = 1, . . . , nsj

− 1 either (sj(i), sj(i + 1)) ∈ C (R) or
sj(i) ∈ V (A), where A ∈ A(sj(i)). For each j = 1, . . . ,m and i = 1, . . . , ns − 1, there are two
cases:

(i) (sj(i), sj(i+1)) ∈ R. Then there are sequences s
(j,i)
1 , . . . , s

(j,i)

m(j,i) where for all v = 1, . . . ,m(j,i),
s
(j,i)
v (1) = sj(i), s

(j,i)
v (ns(j,i)) = sj(i + 1) and for all w = 1, . . . , n

s
(j,i)
v
− 1, (s

(j,i)
v (w), s

(j,i)
v (w +

1)) ∈ R or s
(j,i)
v (w) ∈ V (A) with A ∈ A(s

(j,i)
v (w)). Let q

(j,i)
v be the sequence s

(j,i)
v without its

last element.

(ii) sj(i) ∈ V (A). Let s
(j,i)
1 = s

(j,i)
1 (1), s

(j,i)
1 (2), where s

(j,i)
1 (1) = sj(i) and s

(j,i)
1 (2) = sj(i + 1).

Let q
(j,i)
1 be the sequence s

(j,i)
1 without its last element, i.e. the single element sequence q

(j,i)
1 =

s
(j,i)
1 (1).

For each j = 1, . . . ,m, each i = 1, . . . , nsj
−1 and each v = 1, . . . ,m(j,i), consider the following

compound sequence:

s(j,i,v) = q
(j,1)
1 ⊕ q

(j,2)
1 ⊕ ...⊕ q

(j,i−1)
1 ⊕ q(j,i)

v ⊕ q
(j,i+1)
1 ⊕ . . .⊕ q

(j,n
sj−2)

1 ⊕ s
(j,nsj−1)

1 .

Using these sequences in the definition of C, we deduce that (a, b) ∈ C (R). Hence C(C(R)) =
C(R). Conclude that C(R) ∈ {Q ⊇ R|Q = C(Q)}.
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Now we demonstrate that the closure operator C is algebraic.

iii.2 The function C satisfies condition C6.

Proof. Consider a relation R and assume that (a, b) ∈ C(R). Then, there exists a finite number
of sequences s1, ..., sm where for all j = 1, . . . ,m, sj(1) = a, sj(nsj

) = b and for all i =
1, . . . , nsj

− 1, (sj(i), sj(i+1)) ∈ R or sj(i) ∈ V (A) for some A ∈ A(sj(i)). Then, R∩D×D
with, D = {sj(i)|j = 1, . . . ,m; i = 1, . . . , nsj

}, is a finite relation and (a, b) ∈ C(R ∩D ×D).
Conclude that C(.) satisfies C6.

Finally we verify condition C7.

iii.3 The function C satisfies condition C7.

Proof. Let R = C(R) and assume that N(R) 6= ∅. We need to find a nonempty subset T of
N(R) such that R ∪ T ∈ R∗. Let (a, b) ∈ N(R) and consider the relation R′ = R ∪ {(a, b)}.
We will show that R′ � C(R′).

By C4 and lemma 2.1, we know that we can finish the proof if we demonstrate that P (R′)−1 ∩
C(R′) = ∅. Assume, on the contrary, that there are elements c and d ∈ X for which (c, d) ∈
P (R′) and (d, c) ∈ C(R′) and consider first the case where (c, d) 6= (a, b).
From the definition of C, we know that there exists a finite number m of sequences s1, . . . , sm ∈
S such that for all j = 1, . . . ,m, sj(1) = d, sj(nsj

) = c, and for all i = 1, . . . , nsj
−

1, (sj(i), sj(i + 1)) ∈ R′ or sj(i) ∈ V (A) for some A ∈ A(sj(i)). If for all sj(i) with
(sj(i), sj(i + 1)) ∈ R′ also (sj(i), sj(i + 1)) ∈ R, then (d, c) ∈ C (R) = R, a contradiction.
Hence, there must be at least one sj(i) for which (sj(i), sj(i + 1)) = (a, b).

For any sequence sj (j = 1, ...,m) there are two cases to consider.

1 There is an i = 1, ..., nsj
− 1 for which (sj(i), sj(i + 1)) = (a, b).

2 There is no i = 1, ..., nsj
− 1 for which (sj(i), sj(i + 1)) = (a, b).

As argued above, the set of sequences that fall under case 1 is not empty. Furthermore, for all
sequences sj that fall under case 1 and for all i = 1, . . . , nsj

− 1 for which (sj(i), sj(i + 1)) =
(a, b) there are again two cases to consider:

1.1 There is a v > i such that (sj(v), sj(v + 1)) = (a, b).

1.2 There is no v > i such that (sj(v), sj(v + 1)) = (a, b).

For each sequence sj under case 1 and for each i ∈ {1, . . . , nsj
− 1} under case 1.1, we consider

the smallest integer w > i such that (sj(w), sj(w + 1)) = (a, b) and we construct the sequence:

sj(i + 1), sj(i + 2), ..., sj(w − 1), sj(w). (2.1)
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For each sequence sj under case 1 and for each i ∈ {1, . . . , nsj
− 1} under case 1.2, we consider

the smallest integer w > 0 such that (sj(w), sj(w + 1)) = (a, b) and we construct the sequence:

sj(i + 1), ..., sj(nsj
), sj(1), ..., sj(w − 1), sj(w). (2.2)

Consider a sequence sk that falls under case 1 and Assume that ` is the largest integer for which
(sk(`), sk(`)) = (a, b). Assume that f is the smallest integer such that (sk(f), sk(f+1)) = (a, b).

For each sequence sj that falls under case 2, we construct the sequence:

sk(` + 1), ..., sk(nsk
), sj(1), sj(2), ..., sj(nsj

), sk(1), sk(2), ..., sk(f). (2.3)

Applying the definition of C to the finite number of sequences that are constructed by (2.1),
(2.2) and (2.3), we establish that (b, a) ∈ C(R) = R, a contradiction. The proof for the case
where (c, d) = (a, b) is very similar and is left to the reader.

iv Conclusion.

We see that the function C is an algebraic closure operator which satisfies C7. If we apply
theorem 2.2 to the function C, we can conclude that a relation R has a convex, transitive and
complete extension if and only if C(R) ∩ P (R)−1 = ∅.

2.3.3 Monotonic extensions
The third part of this section focusses on the properties of monotonicity and strict monotonicity6.
We assume that X is a subset of Rm and for two elements a and b in X , we say that a ≥ b if each
component of a is greater than the corresponding component of b. Further, a > b if a ≥ b and
a 6= b.

Definition 2.6 (Monotonicity). A relation R is monotonic if for all a, b ∈ X:

if a ≥ b then (a, b) ∈ R.

Definition 2.7 (Strict monotonicity). A relation R on X is strict monotonic if R is monotonic
and for all a, b ∈ X:

if a > b then (a, b) ∈ P (R) .

Given a relation R, we define the relation R as:

R = R ∪ {(a, b) ∈ X ×X |a ≥ b} .

Consider a function F : R→ R and assume that F is an algebraic closure operator that satisfies
C7, e.g. the function T or C.

6See Mas-Colell et al. [1995, p.42] for a discussion of monotonicity and strict monotonicity for preference
relations.
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In this section, we will characterize the set of relations which have a complete and (strict) mono-
tonic extension R∗ = F (R∗).

We begin by defining the function F .

i. Define the function F .

Consider a function F : R→ R. Then we can define the function F by:

F (R) = F
(
R
)
.

Let us indicate how F relates to the property of monotonicity.

ii. R = F (R) if and only if R is monotonic and R = F (R)

Proof. (→). (i) Monotonicity. If a ≥ b, then immediately (a, b) ∈ R. Furthermore, by C4,
R ⊆ F (R) = R. Conclude that (a, b) ∈ R.

(ii) R = F (R). By C4, R ⊆ F (R). By C3 and R ⊆ R, we derive that F (R) ⊆ F (R) = R.

(←). Let R = F (R) and assume that R is monotonic. Monotonicity implies R = R. Then
R = R = F (R) = F (R) = F (R).

iii. The function F is an algebraic closure operator that satisfies condition C7.

iii.1 For all R ∈ R : F (R) =
⋂
{Q ⊇ R|Q = F (Q)}.

Proof. Clearly F (X ×X) = X ×X . Therefore, the set {Q ⊇ R|Q = F (Q)} is not empty.

As F is a closure operator, we know that F (R) = {Q ⊇ R̄|Q = F (Q)}. Therefore, it suffices to
show that {Q ⊇ R|Q = F (Q)} = {Q ⊇ R|Q = F (Q)}.

(⊆) Let R′ ∈ {Q ⊇ R|Q = F (Q)}. From section 2.3.3.ii, R′ is monotonic and R′ = F (R′).
From monotonicity: R ⊆ R′. Conclude that R′ ∈ {Q ⊇ R|Q = F (Q)}.

(⊇) Let R′ ∈ {Q ⊇ R̄|Q = F (Q)}. From R ⊆ R′, we derive that R′ is monotonic. Together
with R′ = F (R′), we know from section 2.3.3.ii that R′ = F (R′). Conclude that R′ ∈ {Q ⊇
R|R′ = F (R′)}.

iii.2 The function F satisfies condition C6.

Proof. Let (a, b) ∈ F (R) = F (R). As F satisfies condition C6, we know that there exists a
finite subset R′ of R such that (a, b) ∈ F (R′). As R′ ⊆ R′, we derive from C3 that (a, b) ∈
F (R′) = F (R′). Conclude that F satisfies C6.

iii.3 The function F satisfies condition C7.
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Proof. Let R = F (R) and assume that N(R) 6= ∅. As R ⊆ R and R ⊆ F (R) = R we have
that R = R. Applying C7 to the function F verifies the existence of a set T ⊆ N(R) for which
R ∪ T � F (R ∪ T ). Clearly, R ∪ T = R ∪ T . Therefore F (R ∪ T ) = F (R ∪ T ) = F (R ∪ T ).
Conclude that R ∪ T � F (R ∪ T ).

iv. Conclusion.

We know that F is an algebraic closure operator that satisfies condition C4. Using theorem 2.2,
we establish that a relation R has a complete and monotonic extension R′ = F (R′) if and only
if F (R) ∩ P (R)−1 = ∅.
We can derive a similar result regarding the property of strict monotonicity:

If F is an algebraic closure operator satisfying C7, then a relation R has a strict monotonic and
complete extension R∗ = F (R∗) if and only if F (R) ∩ P (R)−1 = ∅ and for all b > a:

(a, b) /∈ F (R).

Proof. (←) First, notice that F (R) ∩ P (R)−1 = ∅ is a necessary condition to have a monotonic
and complete extension R∗ = F (R∗). Hence, it is also necessary to have a strict monotonic and
complete extension R∗ = F (R∗). Second, if on the contrary b > a and (a, b) ∈ F (R), we have
by C3 and R ⊆ R∗, that (a, b) ∈ F (R∗) = R∗, a contradiction.

(→) Assume that F (R) ∩ P (R)−1 = ∅ and for all b > a, (a, b) /∈ F (R). From the first result in
this section, we conclude that F (R) has a complete extension R∗ = F (R∗). This relation also
extends R. Let us verify that R∗ is strict monotonic. Consider two elements a and b ∈ X for
which a > b. We have that (a, b) ∈ F (R) and (b, a) /∈ F (R), hence, (a, b) ∈ P (F (R)). Deduce
that (a, b) ∈ P (R∗) and that R∗ is strict monotonic.

2.3.4 Homothetic extensions
The final part in this section concentrates on the property of homotheticity7 . We assume that X
is a subset of Rm

+ , where R+ is the set of positive reals. Further, we assume that X is a cone, i.e.,
if a ∈ X , then for all α ∈ R++ : αa ∈ X , where R++ is the set of strict positive reals.

Definition 2.8 (Homotheticity). A relation R is homothetic if for all elements a and b ∈ X and
all α ∈ R++

if (a, b) ∈ R then (αa, αb) ∈ R.

It turns out that homotheticity is much easier to analyze jointly with monotonicity. Thus, we
look for the necessary and sufficient conditions for a relation to have a complete, transitive,
homothetic and monotonic extension.

We start by defining the function H .
7See Mas-Colell et al. [1995, p.45] for the main reasons why preferences are assumed to be homothetic.
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i. Define the function H .

The function H is given by, (a, b) ∈ H (R) if there is a sequence s ∈ S with s(1) = a, s(ns) = b
and for all i = 1, . . . , ns − 1:

• s(i) ≥ s(i + 1), or

• there is an αi ∈ R++ for which (αis(i), αis(i + 1)) ∈ R.

In the step (ii), we relate the function H to the properties of homotheticity and monotonicity.

ii. For all R ∈ R, R = H(R) if and only if R is transitive, homothetic and monotonic.

Proof. Sufficiency is straightforward, so we only verify necessity.

Assume that R is transitive, homothetic and monotonic. Obviously R ⊆ H(R), hence, we
only need to verify that H(R) ⊆ R. Let (a, b) ∈ H(R). Then, there is a sequence s with
s(1) = a, s(ns) = b and for all i = 1, . . . , ns − 1, s(i) ≥ s(i + 1) or there is an αi ∈ R++

for which (αis(i), αis(i + 1)) ∈ R. From monotonicity and homotheticity, we deduce that
(s(i), s(i + 1)) ∈ R for all i = 1, . . . , ns − 1. Transitivity combined with the result from section
2.3.1.ii implies that (a, b) ∈ R.

iii. The function H is an algebraic closure operator which satisfies condition C7.

We start by showing that H is a closure operator.

iii.1 For all R ∈ R : H(R) =
⋂
{Q ⊇ R|Q = H(Q)}.

Proof. From condition C4: H(X × X) = X × X . This implies that {Q ⊇ R|Q = H(Q)} is
non-empty for all R ∈ R.

(⊆) Let (a, b) ∈ H(R) and let R′ ∈ {Q ⊇ R|Q = H(Q)}. Then, there exists a sequence
s ∈ S with s(1) = a, s(ns) = b and for all i = 1, . . . , ns − 1, s(i) ≥ s(i + 1) or there is an
αi ∈ R++ such that (αis(i), αis(i + 1)) ∈ R ⊆ R′. Then (a, b) ∈ H(R′) = R′. Conclude that
(a, b) ∈

⋂
{Q ⊇ R|Q = H(Q)}.

(⊇) Let us begin by demonstrating that H(R) is transitive, homothetic and monotonic.

(i) Transitivity. Let (a, b) ∈ H(R) and (b, c) ∈ H(R). Then, there are sequences s and s′ ∈ S
with s(1) = a, s(ns) = s′(1) = b, s′(ns′) = c, for all i = 1, . . . , ns − 1: s(i) ≥ s(i + 1) or there
is an αi > 0 for which (αis(i), αis(i + 1)) ∈ R and for all j = 1, . . . , ns′ − 1: s′(j) ≥ s′(j + 1)
or there is an αj > 0 for which (αjs

′(j), αjs
′(j + 1)) ∈ R. If we apply the definition of H to

the sequence s′′ = s(1), . . . , s(ns), s
′(2), . . . , s′(ns′), we find that (a, b) ∈ H(R). Hence, H(R)

is transitive.

(ii) Homotheticity. Let (a, b) ∈ H(R) and β > 0. Then, there is a sequence s ∈ S with s(1) = a,
s(ns) = b and for each i = 1, . . . , ns − 1: s(i) ≥ s(i + 1) or there is an αi ∈ R++ for which
(αis(i), αis(i + 1)) ∈ R. Construct the sequence s′ = βs(1), βs(2), . . . , βs(ns). If s(i) satisfies
s(i) ≥ s(i + 1), then s′(i) ≥ s′(i + 1), and if s(i) satisfies (αis(i), αis(i + 1)) ∈ R we can
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construct α′i = αi

β
> 0, to find that (α′is

′(i), α′is
′(i + 1)) ∈ R. Therefore, (βa, βb) ∈ H(R).

Conclude that H(R) is homothetic.

(iii) Monotonicity. Let a ≥ b. Using the sequence s = a, b, we immediately derive that (a, b) ∈
H(R).

From 2.3.4.ii, we infer that H(H(R)) = H(R). Conclude that
⋂
{Q ⊇ R|Q = H(Q)} ⊆

H(R).

Now we verify that H is algebraic.

iii.2 The function H satisfies condition C6.

Proof. Let (a, b) ∈ H(R). Then, there is a sequence s ∈ S with s(1) = a, s(ns) = b and for all
i = 1, . . . , ns − 1, s(i) ≥ s(i + 1) or there is an αi ∈ R++ for which (αis(i), αis(i + 1)) ∈ R.
The relation R ∩ (D × D), with D = {s(1), s(2), . . . , s(ns)} is finite and satisfies (a, b) ∈
H(R ∩ (D ×D)). Conclude that H satisfies C6.

Finally, we establish that H satisfies condition C7.

iii.3 The function H satisfies condition C7.

Proof. Let R = H(R) and (a, b) ∈ N(R). Construct the relation R′ = R ∪ {(a, b)}. We prove
that R′ ∈ R∗. By C4 and lemma 2.1, this simplifies to H(R′) ∩ P (R′)−1 = ∅. Assume, on the
contrary, that (c, d) ∈ P (R′) and (d, c) ∈ H(R′). Then, there is a sequence s ∈ S with s(1) = d,
s(ns) = c and for all i = 1, . . . , ns − 1: s(i) ≥ s(i + 1) or there is an αi ∈ R++ for which
(αis(i), αis(i + 1)) ∈ R′.

If for all i = 1, . . . , n− 1 for which (αis(i), αis(i + 1)) ∈ R′ also
(αis(i), αis(i + 1)) ∈ R, then (d, c) ∈ H (R) = R, a contradiction. Hence, there must be at
least one i = 1, . . . , ns − 1 with (αis(i), αis(i + 1)) = (a, b).

From finiteness of {s(1), . . . , s(ns)}, it follows that there is a number q ∈ N and a finite set I =

{β1, . . . , βq} of elements in R++ such that for all i = 1, . . . , q − 1:
(

1
βi

b, 1
βi+1

a
)
∈ H (R) = R,

and
(

1
βq

b, 1
β1

a
)
∈ H (R) = R. Consider the smallest value from the set I , say βj . If j > 1,

by homotheticity of R, we get
(
b,

βj−1

βj
a
)
∈ R and by monotonicity,

(
βj−1

βj
a, a
)
∈ R. By

transitivity of R, we derive that (b, a) ∈ R, a contradiction. If j = 1, we have that
(
b, βq

β1
a
)
∈ R

and
(

βq

β1
a, a
)
∈ R. Again by transitivity: (b, a) ∈ R, a contradiction. Conclude that H satisfies

C7.

iv. Conclusion.

The function H is an algebraic closure operator and satisfies C7. We can apply theorem 2.2 and
conclude that a relation R has a homothetic, monotonic, complete and transitive extension if and
only if H(R) ∩ P (R)−1 = ∅.
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2.4 F-rationalizability
Let X be a set of alternatives and let Σ be a collection of nonempty subsets of X . A choice
function K is a correspondence

K : Σ −→→ X : S → K (S) ⊆ S,

such that for all S ∈ Σ, K (S) is non-empty.

Definition 2.9 (F-rationalizability). A choice function K is F -rationalizable if there exists a
complete relation R∗ = F (R∗), such that for all S ∈ Σ:

K (S) = {a ∈ S |(a, b) ∈ R∗ for all b ∈ S } ,

i.e. the elements chosen from S are top-ranked according to R∗.

We assume that the function F contains the notion of transitivity, i.e. for all R ∈ R, if (a, b) ∈
T (R), then (a, b) ∈ F (R). For a choice function K, we define the revealed preference relation
Rv by (a, b) ∈ Rv if there is a set S ∈ Σ such that a ∈ K (S) and b ∈ S. If also b /∈ K (S), we
say that a is strictly revealed preferred to b and write (a, b) ∈ Pv.
We can now present the characterization result for F -rationalizability.

Theorem 2.3. If F satisfies C1, C2 and C3 then a choice function K is F -rationalizable if and
only if Rv ∩ P−1

v = ∅.

Proof. First of all, notice that by R ⊆ T (R) and T (R) ⊆ F (R), we have that F satisfies C4:
for all R ∈ R : R ⊆ F (R).

(→) If K is F -rationalizable, there exists a complete relation R∗ such that R∗ = F (R∗), and
a ∈ K (S) implies that (a, b) ∈ R∗ for all b ∈ S. As T (R∗) ⊆ F (R∗), we have that R∗ is also
transitive. Assume, on the contrary, that (a, b) ∈ F (Rv)∩P−1

v . It is easy to verify that Rv ⊆ R∗,
hence, by C3, we find that F (Rv) ⊆ F (R∗) = R∗. Hence, (a, b) ∈ R∗. From (b, a) ∈ Pv, there
is a S ∈ Σ such that b ∈ K (S) and a ∈ S −K (S). Let us deduce that (b, a) ∈ P (R∗).

From Rv ⊆ R∗, we derive that (b, a) ∈ R∗. If, on the contrary, also (a, b) ∈ R∗, then by
transitivity of R∗, (a, c) ∈ R∗ for all c ∈ S. This implies, from rationalizability of K, that
a ∈ K (S), a contradiction.

(←) Let F (Rv) ∩ P−1
v = ∅. It is easy to verify that this implies that Pv = P (Rv). Hence, by

lemma 2.1 and C4: Rv � F (Rv). By theorem 2.1, Rv has a complete extension, R∗ = F (R∗).
Let us establish that R∗ rationalizes F . If a ∈ K (S), by definition (a, b) ∈ Rv for all b ∈ S and
hence (a, b) ∈ R∗ for all b ∈ S. On the other hand, if a /∈ K (S), by non-emptiness of K, there
must be a b ∈ S such that b ∈ K (S). By definition, (b, a) ∈ Pv = P (Rv). As R∗ is an extension
of Rv, we must have that (b, a) ∈ P (Rv), hence it is not the case that (a, b) ∈ R∗ for all b ∈ S.�

This result is immediately applicable to the functions T, C, H , T and C defined in section 2.3. In
particular, if we substitute F with T , we reproduce Richter’s congruence result [Richter, 1966,
thm 1]:
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A choice function is rationalizable by a complete and transitive relation if and only if (a, b) ∈
T (Rv) implies (b, a) /∈ Pv.

Let us now return to the example given at the end of section 2.1. Consider the sequences s1 =
x1, x2, x3, x4 and s2 = x1, x5, x6, x4. Observe that x2 = 0.5 x3 + 0.25 x4 + 0.25 x6 and
that x5 = 0.5 x6 + 0.25 x4 + 0.25 x3. Then we have for sequence s1 that that (x1, x2) ∈
Rv, x2 ∈ V ({x3, x4, x6}), and (x3, x4) ∈ Rv and for sequence s2 that (x1, x5) ∈ Rv, x5 ∈
V ({x6, , x4, x3}) and (x6, x4) ∈ Rv. From this, we can conclude that (x1, x4) ∈ C(Rv). This
contradicts with (x4, x1) ∈ Pv, hence, the observations are not rationalizable by a complete,
transitive and convex relation.
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CHAPTER 3

Absolute and relative time consistent revealed preferences

3.1 Introduction
Consider a preference relation over a set of alternatives, X . In order to pick a best element out
of every two element choice set (subset of X), it is necessary that preferences are complete. If
we want to choose a best element out of any larger choice set, we must also impose transitiv-
ity. Additional requirements on preferences commonly require further structure on the set of
alternatives. This section investigates the significance of restrictions from intertemporal settings.

If we seek to impose properties that are linked to the time-instances at which the various alter-
natives are consumed, we can represent the set of alternatives by X × T , where X is a set of
consumption bundles and T is a set of time-instances. A preference relation is a transitive and
complete binary relation on this extended set.

Besides transitivity and completeness, this research deals with the implication of three additional
intertemporal properties.

Let us start with the property of impatience. An alternative a is labelled as a ‘good’ if for all time
instances t and v with t ≤ v, we have that the consumption of a at time t is at least as good as
the consumption of a at time v. An alternative a is labelled as a ‘bad’ if for all time instances t
and v with t ≥ v, the consumption of a at time t is at least as good as the consumption of a at
time v. We say that a preference relation R is impatient every alternative is either a ‘good’ or a
‘bad’ (or both). This excludes cases where we have time instances t < v < w and an alternative
a such that the consumption of a at time v is preferred to both the consumption of a at times t
and the consumption of a at time w. Since impatience is a basic requirement in an intertemporal
context, we maintain it throughout, and combine it successively with each of the two following
properties.

For the next property, consider two bundles (a, t) and (b, v) and assume that (a, t) is at least as
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good as (b, v). After a certain amount of time s ≤ t, v, the individual is asked to reconsider
the two bundles, which have now become (a, t − s) and (b, v − s). It would seem natural to
require that individuals do not change their judgement (preferences) as time goes by. Therefore,
we should have that (a, t − s) is at least as good as (b, v − s). This property is called absolute
time-consistency and it is one of the key assumptions in the characterization of the exponential
discounted utility model (see for example Fishburn and Rubinstein [1982]).

The final property is a variant of the second and is called relative time-consistency. It states,
contrary to absolute time-consistency, that preferences over alternatives depend on the ‘relative’
time differences between the two consumption periods instead of the absolute difference. Begin
by fixing an element δ ∈ R++. We say that preferences are relative time consistent if, whenever
the bundle (a, t) is at least as good as the bundle (b, v), then for any strict positive real number
k ≥ max

{
δ

t+δ
, δ

v+δ

}
, the bundle (a, k·(t+δ)−δ) is at least as good as the bundle (b, k·(v+δ)−δ).

This property is a key property for the characterization of the hyperbolic discounting model as in
Loewenstein and Prelec [1992] (see also al-Nowaihi and Dhami [2006] for a correction of their
paper)1.

Most research on the plausibility of the absolute or relative time-consistency (and impatience)
assumption, start from a particular functional form for the (instantaneous) utility function, and
try to fit the model to the observed data (e.g. Eisenhauer and Ventura [2006] and Angeletos et al.
[2001], for a good overview see Frederick et al. [2002]). In this section, we use the revealed
preference approach. This approach has a clear advantage: the axioms do not depend on a
particular functional form of the preference relation. In fact, the preference relation does not
even need to have a functional representation2. Choice theory departs from observations on
choice sets and the choices from these sets. If an alternative is selected, it is top ranked according
to the revealed preference relation. The transitive closure of this revealed preference relation is
called the indirect revealed preference relation. A choice function is rationalizable by the relation
R if the observed choices from a choice set agree with the alternatives that are top ranked by R.
Richter [1966] established that a choice function is rationalizable by a complete and transitive
relation if and only if it satisfies the congruence axiom:

For all alternatives a and b, if a is indirectly revealed preferred to b, then b is not strictly revealed
preferred to a.

This section presents two revealed preference axioms which characterize the set of choice func-
tions that are rationalizable by a complete, transitive, absolute or relative time-consistent and
impatient relation. These axioms, which we call the absolute and relative time-consistent axiom

1The hyperbolic discounting model, as in al-Nowaihi and Dhami [2006], departs from the assumption that there
exist functions v : X → R and σ : T → R such that the value (utility) of a at time t can be written as v(a)σ(t).
Their assumption (A3a) states that for a, b ∈ X and t ∈ T , if v(a) = v(b)σ(t) and s > 0, then v(a)σ(s) =
v(b)σ(s + t + αst). It is easy to see that this is equivalent to the condition that v(a)σ(t) = v(b)σ(v) if and only if
for all k ≥ max

{
δ

δ+t ,
δ

v+δ

}
, v(a)σ(k(t− 1/α)− 1/α) = v(b)σ(k(v − 1/α)− 1/α). Substituting δ = 1/α, and

using their condition A0 (σ(.) is strictly increasing and if 0 < x < y, then there is a t ∈ T such that x = yσ(t)), we
derive the desired transformation.

2See also remark 3 in section 3.2.
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of revealed preference (ATARP and RTARP), state that the absolute (relative) time-consistent,
transitive and time-monotonic closure of the revealed preference relation does not conflict with
the strict revealed preference relation. In particular:

For all alternatives (a, t) and (b, v), if ((a, t), (b, v)) belongs to the absolute (relative) time-
consistent, transitive and time-monotonic closure of the revealed preference relation, then (b, v)
is not strictly revealed preferred to (a, t).

Let us provide an example. Assume that X = {a, b, c} and assume that (b, 3) is revealed pre-
ferred to (a, 2), (a, 9) is revealed preferred to (b, 8), (a, 24) is strictly revealed preferred to (c, 20)
and (c, 3) is revealed preferred to (a, 4). In section 3.2, we will reconsider this example and show
that these observations satisfy ATARP. Hence, there exist a complete, transitive, absolute time-
consistent and impatient relation that rationalizes the choice function. On the other hand, we
can show that the observations violate RTARP for every δ < 8

3
. Therefore, if this condition is

satisfied, there does not exist a complete, transitive, relative consistent and impatient relation that
rationalizes the observed choices.

Section 3.2 presents notation and introduces the results. Section 3.3 presents the proofs.

3.2 Notation and results
Consider a set A. A binary relation, R, in A is a subset of A × A. Define R−1 as (x, y) ∈ R−1

if and only if (y, x) ∈ R. The asymmetric part, P (R), of the relation R is given by R − R−1,
the symmetric part, I(R), of R is given by R ∩ R−1 and the non-comparable part, N(R), of R
is given by (A × A) − R ∪ R−1. A relation R is transitive if for all x, y, z in A, (x, y) ∈ R and
(y, z) ∈ R implies that (x, z) ∈ R. The relation R is complete if for all x and y in A, (x, y) ∈ R
or (y, x) ∈ R. A complete and transitive relation is called an ordering. An extension R′ of R is
a relation which satisfies R ⊆ R′ and P (R) ⊆ P (R′).

Let X be the set of alternatives and let T = R+ denote the universal set of time instances.
The present is set at time equal to 0. An element (a, t) of X × T denotes the consumption of
alternative a at time t. Instead of the set A, we will work on the set X × T . A binary relation R
on X × T is a subset of (X × T )× (X × T ).

Consider the set L(R),

L(R) = {a ∈ X|there exists an ((a, t), (a, v)) ∈ R and t < v},

and the set U(R),

U(R) = {a ∈ X|there exists an ((a, t), (a, v)) ∈ R and t > v}.

Let us give the definitions of time-monotonicity, impatience, absolute time-
consistency and relative time-consistency.
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Definition 3.1 (time-monotonicity). A relation R in X × T is time-monotonic if for all t, v ∈ T
with t ≤ v and all a ∈ X ,

if a ∈ L(R), then ((a, t), (a, v)) ∈ R, and if

a ∈ U(R), then ((a, v), (a, t)) ∈ R.

Definition 3.2 (impatience). A relation R in X × T is impatient if it is time-monotonic and for
all a ∈ X , either a ∈ U(R) or a ∈ L(R) (or both).

It is easy to see that every complete and time-monotonic relation is also impatient. Therefore,
we will use the term of time-monotonicity only in cases where the relation is not required to be
complete.

Definition 3.3 (Absolute time-consistency). The relation R is absolute time-
consistent if for all a, b ∈ X; t, v ∈ T and all s ∈ R, s ≤ t, v:

if ((a, t), (b, v)) ∈ R then ((a, t− s), (b, v − s)) ∈ R.

Let us fix a parameter δ ∈ R++.

Definition 3.4 (Relative time-consistency). The relation R is relative time-
consistent if for all a, b ∈ X; t, v ∈ T and k ≥ max( δ

t+δ
, δ

v+δ
):

if ((a, t), (b, v)) ∈ R then ((a, k · (t + δ)− δ), (b, k · (v + δ)− δ)) ∈ R.

Let us define the absolute time-consistent and transitive closure3 of R as the smallest transitive
and absolute time-consistent relation that contains R. Before we give the formal definition, let
us begin with an example. Let us introduce B(R) as the absolute time-consistent and transitive
closure of R. Consider elements a, b and c in X and assume that

((a, 3), (b, 2)) ∈ R and ((b, 6), (c, 4)) ∈ R.

We know that B(R) contains R and satisfies absolute-time consistency, hence, we can add an
equal amount, 4, to 3 and 2 to deduce:

((a, 7), (b, 6)) ∈ B(R) and ((b, 6), (c, 4)) ∈ B(R).

As B(R) is transitivity, we establish that ((a, 7), (c, 4)) ∈ B(R). Following the calculations
through, we see that 7 was obtained as 3+(6−2), hence we can write 7−4 as (3−2)+(6−4).
Notice that by absolute time-consistency of B(R), only the absolute difference between 7 and

3Although it is possible to define the transitive closure of the absolute time-consistent closure and the absolute
time-consistent closure of the transitive closure, these two closures do not satisfy both conditions: the first is not
always absolute time-consistent and the second is not always transitive. Therefore, it is necessary to join the two
conditions in the same closure operator
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4 really matters. Therefore, we derive that for all t and v in T that satisfy t − v = 7 − 4 =
(3− 2) + (6− 4):

((a, t), (c, v)) ∈ B(R).

This example does not rely on the specific values of 3, 2, 6 and 4. Hence, we can substitute
3 = t1, 2 = v1, 6 = t2 and 4 = v2, and conclude that:

((a, t1), (b, v1)) ∈ R and ((b, t2), (c, v2)) ∈ R implies ((a, t), (c, v)) ∈ B(R),

where t and v satisfy t− v = (t1 − v1) + (t2 − v2).

Above example only relates to two element subsets of R. The generalization to all finite subsets
leads to the following definition4.

Definition 3.5 (Absolute time-consistent and transitive closure). The absolute time-consistent
and transitive closure B(R) of R is defined as:
((a, t), (b, v)) ∈ B(R) if there exist a number n ∈ N, a sequence a = x1, . . . , xn = b of
elements in X and sequences t1, . . . , tn−1 and v1, . . . , vn−1 of elements in T such that for all
i = 1, . . . , n− 1:

((xi, ti), (xi+1, vi)) ∈ R

and

t− v =
n−1∑
i=1

(ti − vi).

Let us abide to a similar deduction for the property of relative time-consistency. Let δ = 2 and
consider the relation R with:

((a, 3), (b, 2)) ∈ R and ((b, 6), (c, 4)) ∈ R.

Let S(R) be the relative time-consistent and transitive closure of R. Then we know that:

((a, 2 · (3 + 2)− 2), (b, 2 · (2 + 2)− 2)) ∈ S(R),

Hence,
((a, 8), (b, 6)) ∈ S(R) and ((b, 6), (c, 4)) ∈ R.

By transitivity of S(R), we derive that ((a, 8), (c, 4)) ∈ S(R). We see that the multiplicator 2
was obtained as the fraction 6+2

2+2
. Substituting t1 = 3, v1 = 2, t2 = 6 and v2 = 4, we see that 8

was obtained as
t2 + 2

v1 + 2
(t1 + δ)− δ.

From this it leads that:
8 + δ

4 + δ
=

t1 + δ

v1 + δ

t2 + δ

v2 + δ
.

4The proof that the relation B(R) in definition 4 coincides with the smallest transitive and absolute time-
consistent relation containing R is almost identical to the proof of Lemma 3.1 in section 3.3 and is therefore omitted.
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It is also easy to see5 that the fraction t+δ
s+δ

remains invariant if and only if we allow for time-shifts
fk(t)+δ
fk(t)+δ

with fk(t) = k · (t + δ)− δ. Hence, we can conclude that:

((a, t1), (b, t2)) ∈ R and ((b, t2), (c, v2)) ∈ R implies ((a, t), (c, v)) ∈ S(R),

where t and v satisfy
t + δ

v + δ
=

(t1 + δ)(t2 + δ)

(v1 + δ)(v2 + δ)
.

If we generalize this to all finite subsets of R, we are let to the following definition.

Definition 3.6 (Relative time-consistent and transitive closure). The relative time-consistent and
transitive closure S(R) of R is defined by: ((a, t), (b, v)) ∈ S(R) if there exist a number n ∈ N,
a sequence a = x1, . . . , xn = b of elements in X and sequences t1, . . . , tn−1 and v1, . . . , vn−1 of
elements in T such that for all i = 1, . . . , n− 1:

((xi, ti), (xi+1, vi)) ∈ R

and
t + δ

v + δ
=

n−1∏
i=1

ti + δ

vi + δ
.

For a relation R, we define the relation R̃ by,

R̃ = {((a, t), (a, v))|a ∈ L(B(R)) and t ≤ v}
∪ {((a, t), (a, v)|a ∈ U(B(R)) and t ≥ v}.

Then, we can define the relation R by

R = R ∪ R̃.

We call B(R) the absolute time-consistent, transitive and time-monotonic closure of R. Lemma
3.1 in section 3.3 shows that B(R) is indeed the smallest transitive, absolute time-consistent and
time-monotonic relation containing R.

Similarly, we define the relation R̂ by

R̂ = {((a, t), (a, v))|a ∈ L(S(R)) and t ≤ v}
∪ {((a, t), (a, v)|a ∈ U(S(R)) and t ≥ v}.

Then R = R∪ R̂ and S(R) is the relative time-consistent, transitive and time-monotonic closure
of R.

5Sufficiency is straightforward. To see necessity, let fk(t)+δ
fk(v)+δ = t+δ

v+δ . Setting v = 0 and setting fk(0) = δ(k−1),
we derive the desired result, namely, fk(t) = k(t + δ)− δ.
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Consider the set Λ = 2X×T − {∅} of all non-empty choice sets. A choice function, C, is a
function from a set Σ ⊆ Λ to Λ such that for all A ∈ Σ: C(A) ⊆ A. The set C(A) is to be
interpreted as the choices made from the set A.
A choice function C is rationalizable by an absolute time-consistent and impatient ordering if
and only if there exists an absolute time-consistent and impatient ordering R in X × T such that
for all A ∈ Σ:

C(A) = {(a, t) ∈ A|∀(b, v) ∈ A : ((a, t), (b, v)) ∈ R}.

In words: the choices made from A are the ones that are top ranked according to R.

Analogously, a choice function C is rationalizable by a relative time-consistent and impatient
ordering if and only if there exist a relative time-consistent and impatient ordering R on X × T
such that for all A ∈ Σ:

C(A) = {(a, t) ∈ A|∀(b, v) ∈ A : ((a, t), (b, v)) ∈ R}.

Given the choice function, C, we define the revealed preference relation Rv by ((a, t), (b, v)) ∈
Rv if and only if there is an A ∈ Σ such that (a, t) ∈ C(A) and (b, v) ∈ A. The strict revealed
preference relation Pv is defined by ((a, t), (b, v)) ∈ Pv if and only if there is an A ∈ Σ such that
(a, t) ∈ C(A) and (b, v) ∈ A− C(A).

Consider a choice function C and assume that C is rationalizable by an absolute time-consistent
and impatient ordering R. The choice function, C, is only defined over the set Σ, so in general
it is impossible to reconstruct the ordering R from C. On the other hand, we do observe the
relations Rv and Pv. From the rationalizability of C, we find that Rv ⊆ R and Pv ⊆ P (R). The
ordering R is transitive, absolute time-consistent and impatient, hence it must include the abso-
lute time-consistent, transitive and time-monotonic closure of Rv, i.e. B(Rv) ⊆ R. Therefore,
it must be that B(Rv) ∩ P−1

v is empty. If not, we would have that R ∩ P (R)−1 is non-empty
which contradicts the definition of the asymmetric part. We call this property the absolute time-
consistent axiom of revealed Preference.

Definition 3.7 (ATARP). A choice function C satisfies the absolute time-consistent axiom of
revealed preference (ATARP) if

B(Rv) ∩ P−1
v = ∅.

We define the relative time-consistent axiom of revealed preference similarly:

Definition 3.8 (RTARP). A choice function C satisfies the relative time-consistent axiom of re-
vealed preference (RTARP) if

S(Rv) ∩ P−1
v = ∅.

As demonstrated above, the ATARP (RTARP) is a necessary condition for a choice function to
be rationalizable by an absolute (relative) time-consistent and impatient ordering. Fortunately, it
turns out that it is also sufficient. We state this in the following theorems. The proof is given in
the next section.
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Theorem 3.1. A choice function C is rationalizable by an absolute time-consistent and impatient
ordering if and only if it satisfies the ATARP.

Theorem 3.2. A choice function C is rationalizable by a relative time-consistent and impatient
ordering if and only if it satisfies the RTARP.

Let us return to the example in the introduction. We have that ((b, 3), (a, 2)) ∈ Rv, ((a, 9), (b, 8)) ∈
Rv, ((a, 24), (c, 20)) ∈ Pv and ((c, 3), (a, 4)) ∈ Rv. Let us begin by showing that these observa-
tions satisfy ATARP.

Using the sequences b, a, b 3, 9 and 2, 8, in the definition of B, we see that:

a ∈ U(B(Rv)).

Using the sequences a, b, a 9, 3 and 8, 2, we see that b ∈ U(B(Rv)) and using the sequences
c, a, c, 4, 24 and 3, 20, we see that c ∈ U(B(Rv)). It can also be verified that none of the
elements a, b and c are in L(B(Rv)). Let us now show, by contradiction, that ATARP is satisfied.
We take the case where ((c, 20), (a, 24)) ∈ B(Rv) ∩ P−1

v . The other cases are very similar and
are left to the reader. Then there exist a sequence c = x1, . . . , xn = a and sequences t1, . . . , tn−1

and v1, . . . , vn−1 such that for all i = 1, . . . , n− 1:

((xi, ti), (xi+1, vi)) ∈ Rv ∪ R̃v

and

20− 24 =
n−1∑
i=1

(ti − vi) < 0.

As a, b and c are all in U(Rv) − L(Rv), we derive that the only factors (ti − vi) which can be
negative on the rhs are the ones where ((xi, ti), (xi+1, vi)) = ((c, 3), (a, 4)). Let L collect all
such i. If |L| = 1, then the sum

∑n−1
i=1 (ti− vi) is larger or equal to −1. However, 20− 24 = −4,

which is strictly smaller. Therefore, we must conclude that |L| > 1. However, for every j ∈ L
such that there is an i ∈ L with j < i it must be the case that there exists a k ≤ n with (j < k < i
for all i > j, i ∈ L) and ((xk, tk), (xk+1, vk)) = ((a, 24), (c, 20)). Therefore, we can conclude
that

∑n−1
i=1 (ti − vi) ≥ −1, a contradiction.

Now, we demonstrate that RTARP is violated for every δ < 8
3
. Consider the sequences a, c, a,

24, 3 and 20, 4. We see that for all δ < 8
3
:

(24 + δ)(3 + δ)

(20 + δ)(4 + δ)
< 1.

As such a ∈ L(S(Rv)). On the other hand, using the sequences a, b, a, 9, 3 and 8, 2, we see that
a ∈ U(S(Rv)) also. Let us verify that RTARP is violated by showing that ((c, 20), (a, 24)) ∈
S(Rv). Consider the sequences c, a, a, 3, t and 4, v such that t and v solves:

20 + δ

24 + δ
=

(3 + δ)(t + δ)

(4 + δ)(v + δ)
.
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It is always possible to find values of t and v in T that satisfy this condition. Conclude that
RTARP is violated by noticing that ((a, t), (a, v)) ∈ R̂v.

We close this section with a few remarks.

Remark 1. We assumed that T = R+, but it is easy to alter T to to a smaller set T ′ ⊂ R+,
e.g. T ′ = N, while the theorems remain valid. To see this, notice that we can restrict the set Σ
to select only sets Q that have alternatives with time instances in T ′. Theorems 3.1 and 3.2 give
rise to a rationalization R∗, which is defined over the entire set X × T . The restriction of R∗ to
the set X × T ′ provides us with a rationalization on the smaller domain.

Remark 2. Sometimes, time-consistency is defined in term of sequences,
(xi, t), (xi+1, t + 1)..., (xi+n, t + n), of consumption bundles instead of single consumption bun-
dles. In this sense, we can say that a relation R is n absolute time-consistent if for all t, v ∈ N,
s ∈ Z and s ≤ t, v:

(((xi, t), ..., (xi+n, t + n)), ((yi, v), ..., (yi+n, v + n))) ∈ R

if and only if:

(((xi, t− s), ..., (xi+n, t + n− s)), ((yi, v − s)..., (yi+n, v + n− s))) ∈ R.

Let us take X = X̃n with X̃ the set of alternatives and let (x1, ..., xn, t) = (x, t) ∈ X × T
denote the bundle ((x1, t), ..., (xn, t + n)). We verify immediately that the concept of absolute
time-consistency and of n absolute time-consistency coincide. If we take into account remark 1,
Theorem 3.1 carries directly over to this alternative definition of time-consistency. An analogous
result holds also for the property of relative time-consistency. Furthermore, setting X = X̃∞,
allows for infinite sequences.

Remark 3. The existence of an absolute (relative) time-consistent ordering on X × T does not
imply that there exist a functional (real valued) representation of such ordering. For example: let
X = XG and consider the lexicographic ordering R where:

((a, t), (b, v)) ∈ R if and only if t < v or [t = v and (a, b) ∈ Q],

with Q an ordering on the set X . The ordering R is absolute time-consistent, relative time-
consistent and impatient. Moreover, it is well known that such an ordering has no real valued
representation (see Debreu [1954]).

3.3 Proof of theorem 3.1.
We provide the proof for the case of rationalizability by an absolute time-consistent and impatient
ordering (theorem 3.1). The proof of theorem 3.2 is completely analogous and is left to the reader.

Consider the the absolute time consistent, transitive and time-monotonic closure B(R) of R. We
have the following result:
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Lemma 3.1. For a relation R, the closure B(R) is the smallest, transitive, absolute time-
consistent and time-monotonic relation containing R.

Proof. Consider a relation R and its absolute time-consistent, transitive and time-monotonic
closure B(R). We begin by verifying that B(R) is time-monotonic, absolute time-consistent and
transitive.

(i) Time-monotonicity. Assume that a ∈ L(B(R)). (The case where a ∈ U(B(R)) is very
similar and is left to the reader.) Then, there exist a sequence a = x1, . . . xn = a and sequences
t1, . . . , tn−1 and v1, . . . , vn−1 such that for all i = 1, . . . , n− 1

((xi, ti), (xi+1, vi)) ∈ R ∪ R̃

and

t− v =
n−1∑

i

(ti − vi) < 0

There are three cases to consider:

1) There is no i = 1, ..., n − 1 such that ((xi, ti)(xi+1, vi)) ∈ R̃. In this case, we have that
((a, t), (a, v)) ∈ B(R) and by definition of R̃, ((a, t′), (b, v′)) ∈ R̃ ⊆ B(R) for all t′ − v′ ≤ 0.

2) There is an i such that ((xi, ti), (xi+1, vi)) ∈ R̃. In this case, we remove all such ele-
ments xi, ti and vi from the sequences and we reenumerate these sequences to obtain that
a = y1, . . . , ym = a is a sequence in X and u1, . . . , um−1 and w1, . . . , wm−1 are sequences
in T such that ((a, t′), (b, v′)) ∈ B(R) for all:

t′ − v′ =
m−1∑
i=1

(ui − wi).

If t′ − v′ < 0, we have that ((a, t′′), (a, v′′)) ∈ R̃ ⊆ B(R) for all t′′ − v′′ ≤ 0, and we are done.

3) If t′ − v′ ≥ 0, we must have that there is an i = 1, ..., n − 1 such that ((xi, ti), (xi, vi)) ∈ R̃
and ti − vi < 0. Let us reintroduce the elements xi, αti and αvi (α ∈ R++) in the sequences to
get that ((a, t′), (a, v′)) ∈ B(R) for all:

t′ − v′ =
m−1∑

i

(ui − vi) + α(ti − vi),

Let us show that ((a, t′′), (b, v′′)) ∈ B(R) for all t′′ − v′′ ∈]−∞, 0]. Let α′ ∈ R solve:

t′′ − v′′ =
m−1∑

i

(ui − vi) + α′(ti − vi) = (t′ − v′) + α′(ti − vi).

As ti − vi < 0 and t′ − v′ ≥ 0, we have that α′ ∈ R++. Therefore, ((a, t′′), (b, v′′)) ∈ B(R) for
all t′′ − v′′ < t′ − v′. This includes the cases where t′′ − v′′ ∈]−∞, 0].
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(ii) Absolute-time consistent. Let ((a, t), (b, v)) ∈ B(R). Then, there is a sequence a =
x1, . . . , xn = b in X and sequences t1, . . . , tn−1 and v1, . . . , vn−1 in T such that for all i =
1, . . . , n− 1:

((xi, ti), (xi+1, vi)) ∈ R

and

t− v =
n−1∑
i=1

(ti − vi).

Immediately, we see that for any s ∈ R, s ≤ t, v:

(t− s)− (v − s) =
n−1∑
i=1

(ti − vi).

Therefore, ((a, t− s), (b, v − s)) ∈ B(R), hence B(R) is absolute time-consistent.

(iii) Transitive. Let ((a, t), (b, v)) ∈ B(R) and ((b, v), (c, w)) ∈ B(R) so that there are sequences
a = x1, . . . , xn = b and b = y1, . . . , ym = c in X and sequences t1, . . . , tn−1; v1, . . . , vn−1;
s1, . . . , sm−1 and w1, . . . , wm−1 in T such that for all i = 1, . . . , n− 1 and j = 1, . . . ,m− 1:

((xi, ti), (xi+1, vi)) ∈ R,

((yj, sj), (yj+1, wj)) ∈ R,

t− v =
n−1∑
i=1

(ti − vi)

and

v − w =
m−1∑
j=1

(sj − wj).

Construct the compound sequence a = x1, . . . , xn, y2, . . . , ym = c in X and the compound
sequences t1, . . . , tn−1, s1, . . . , sm−1 and v1, . . . , vn−1, w1, . . . , wm−1 in T . As:

t− v + v − w = t− w =
n−1∑
i=1

(ti − vi) +
m−1∑
j=1

(sj − wj),

. . . we can conclude that ((a, t), (c, w)) ∈ B(R), hence B(R) is transitive.

We are left to show that B(R) is the smallest transitive, absolute time-consistent and time-
monotonic relation containing R. Consider a transitive, absolute time-consistent and time-
monotonic relation R∗, that contains R. Let us show that B(R) ⊆ R∗.

First, we show that for all Q ⊆ R∗, B(Q) ⊆ R∗. Assume, on the contrary that ((a, t), (b, v)) ∈
B(Q) − R∗. Then, then is a sequence a = x1, . . . , xn = b in X and sequences t1, . . . , tn−1 and
v1, . . . , vn−1 in T such that for all i = 1, . . . , n− 1:

((xi, ti), (xi+1, vi)) ∈ Q
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and

t− v =
n−1∑
i=1

(ti − vi).

We proceed by induction on n. For n = 2, we have that:

((a, t1), (b, v1)) ∈ Q

and
t− v = t1 − v1.

Setting s = t1 − t and applying absolute time-consistency of R∗, we obtain that ((a, t), (b, v)) ∈
R∗, a contradiction. Suppose the result holds up to ` and there is a sequence a = x1, . . . , x`, x`+1 =
b and sequences t1, . . . , t` and v1, . . . , v` such that for all i = 1, . . . , `:

((xi, ti), (xi+1, vi)) ∈ Q

and

t− v =
∑̀
i=1

(ti − vi),

we can take two elements t′ and v′ from T such that:

t′ − v′ =
`−1∑
i=1

(ti − vi).

Hence t′−v′+t`−v` = t−v. From the induction hypothesis, we have that ((a, t′), (x`, v
′)) ∈ R∗.

Observe also that ((x`, t`), (b, v`)) ∈ R∗. If v′ ≥ t` put s = t` − v′. From absolute time-
consistency, we derive that: ((a, t′), (x`, v

′)) ∈ R∗ and ((x`, v
′), (b, v` − t` + v′)) ∈ R∗. From

transitivity, we establish that ((a, t′), (b, t′ − t + v)) ∈ R∗. Put s = t′ − t and apply absolute
time-consistency of R∗ to verify that ((a, t), (b, v)) ∈ R∗. The case where v′ ≤ t` is solved
similarly. Conclude that ((a, t), (b, v)) ∈ R∗, a contradiction. Hence, B(Q) ⊆ R∗.

From time-monotonicity of R∗ and B(R) ⊆ R∗, it follows that R̃ ⊆ R∗. Hence, R ∪ R̃ ⊆ R∗.
Applying above rule once more, we derive that B(R ∪ R̃) = B(R) ⊆ R∗.

Consider a relation R on X × T . Recall from section 3.2 that a relation R∗ is an extension of R
if R ⊆ R∗ and P (R) ⊆ P (R∗).

Lemma 3.2. A relation R has a time-consistent and impatient ordering extension if and only if
B(R) ∩ P (R)−1 = ∅.

Proof. The proof is similar to the proof of Szpilrajn’s lemma [Szpilrajn, 1930], which states that
every quasi-order (transitive and reflexive binary relation) has an ordering extension6.

6In fact, lemma 3.2 is a special case of theorem 2.1.
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To verify necessity assume that R has an absolute time-consistent and impatient ordering ex-
tension, R∗, and, on the contrary, ((a, t), (b, v)) ∈ B(R) ∩ P (R)−1. Lemma 3.1, states that
B(R) is the smallest absolute time-consistent, time-monotonic and transitive relation containing
R. As R∗ is an absolute time-consistent, impatient and transitive relation, we must have that
B(R) ⊆ R∗. This shows that ((a, t), (b, v)) ∈ R∗. Further, as R∗ is an extension of R, we derive
that ((b, v), (a, t)) ∈ P (R∗), a contradiction. Hence, B(R) ∩ P (R)−1 = ∅.

For sufficiency, consider the set Ω which selects all extensions, R′, of R for which B(R′) ∩
P (R′)−1 = ∅. This set is non-empty as R ∈ Ω. Let Ω′ be a chain in Ω, i.e. for all R′, R′′ ∈ Ω
either R′ ⊆ R′′ or R′′ ⊆ R′. Consider the relation Q =

⋃
R′∈Ω′ R′. Let us show that Q ∈ Ω. It is

easy to see that Q is an extension of R. To see that B(Q)∩P (Q)−1 = ∅, assume on the contrary
that there exist elements a, b ∈ X and t, v ∈ T such that ((a, t), (b, v)) ∈ B(Q) ∩ P (Q)−1.
Then, there exist a sequence a = x1, . . . , xn = b of elements in X and sequences t1, . . . , tn−1

and v1, . . . , vn−1 such that for all i = 1, . . . , n− 1:

((xi, ti), (xi+1, vi)) ∈ R′

and

t− v =
n−1∑
i=1

(ti − vi).

From the construction of Q, we see that there must be relations R1, ..., Rn−1 in Ω′ such that
for all i ≤ n − 1, ((xi, ti), (xi+1, vi) ∈ Ri. All these relations are ranked by set inclusion,
thus, there must be a largest one, lets say Rj . Further, from the definition of Q, there must be
a relation R0 ∈ Ω′ such that ((b, v), (a, t)) ∈ R0 and for all R′ ∈ Ω′ it is not the case that
((a, t), (b, v)) ∈ R′. The relations R0 and Rj are ranked by set inclusion so either Rj ⊆ R0 or
R0 ⊆ Rj . In the first case, we have that ((a, t), (b, v)) ∈ B(R0)∩P (R0)

−1, contradicting the fact
that R0 ∈ Ω. In the second case, we have that ((a, t), (b, v)) ∈ B(Rj) ∩ P (Rj)

−1, contradicting
the fact that Rj ∈ Ω. Therefore, we can conclude that R′ ∈ Ω. By application of Zorn’s lemma,
the set Ω has a maximal element. Let R∗ be such an element.

First of all, notice that by maximality of R∗: R∗ = B(R∗). Therefore, by lemma 3.1, R∗

is absolute time-consistent, time-monotonic and transitive. Let us show that R∗ is complete.
Assume, on the contrary, that N(R∗) 6= ∅,
There are two cases.

i). There exist an element a ∈ X − (U(R∗) ∪ L(R∗)).

ii). X = U(R∗) ∪ L(R∗).

Let begin by case (i). Consider two time instances t and v with t > v and let Q = {((a, t), (b, v))},
for some a ∈ X − (U(Rast)∪L(R∗)). Let us show that B(R∗ ∪ Q̃) is a time-monotonic, transi-
tive and absolute time consistent extension of R∗. By a simple adaptation of the proof of lemma
3.1, it is easy to show that, B(R∗ ∪ Q̃) is transitive and absolute time consistent. Let us show
that it is time-monotonic.
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First, take the case where there is an element b ∈ L(B(R ∪ Q̃)). Then there is a sequence
b = x1, . . . , xn = b in X and sequences t1, . . . , tn−1 and v1, . . . , vn−1 in T such that for all
i = 1, . . . , n− 1,

((xi, ti), (xi+1, vi)) ∈ R∗ ∪ Q̃,

and

t− v =
n−1∑

i

(ti − vi) < 0.

If there is no i such that ((xi, ti), (xi+1, vi)) ∈ Q̃, then ((b, t), (b, v)) ∈ B(R∗) = R∗ and we are
done. If there is an i such that ((xi, ti), (xi+1, vi)) ∈ Q̃ then we remove all such xi, ti and vi

from the sequences and renumber them such that we get a sequence b = y1, . . . , ym = b in X
and sequences u1, . . . , um−1 and w1, . . . , wm−1 in T where ((b, t′), (b, v′)) ∈ B(R∗) = R∗ for all

t′ − v′ =
m−1∑

i

(ui − wi).

If t′−v′ < 0, we are done (by time-monotonicity of R∗)), hence assume that t′−v′ ≥ 0. Consider
an ((xi, ti), (xi+1, vi)) ∈ Q̃ and let us reintroduce xi, αti and αvi (α ∈ R++) in the sequences.
Then we derive that for all α ∈ R++ and:

t′′ − v′′ =
m−1∑

i

(ui − wi) + α(ti − vi),

((b, t′′), (b, v′′)) ∈ B(R ∪ Q̃). This is especially true for all t′′ − v′′ ∈]−∞, 0].

Consider now the case where there is a b ∈ U(B(R∗ ∪ Q̃)). Then there is a sequence b =
x1, . . . , xn = b in X and sequences t1, . . . , tn−1 and v1, . . . , vn−1 in T such that for all i =
1, . . . , n− 1:

((xi, ti), (xi+1, vi)) ∈ R∗ ∪ Q̃,

and

t− v =
n−1∑

i

(ti − vi) > 0.

If there is no i such that ((xi, ti), (xi, ti+1) ∈ Q̃, we have that ((b, t), (b, v)) ∈ B(R∗) = R∗,
hence, by time-monotonicity of R∗, ((b, t′), (b, v′)) ∈ R∗ for every t′− v′ ≥ 0. Now, assume that
there is an i for which ((xi, ti), (xi+1, vi)) ∈ Q̃. Let L collect all such instances i. Then we have
that:

t− v =
∑
i/∈L

(ti − vi) +
∑
i∈L

(ti − vi) ≤
∑
i/∈L

(ti − vi).

By removing the elements xi, ti and vi from the sequences for each i ∈ L, we derive that
((b, t′), (b, v′)) ∈ B(R∗) = R∗ for all:

t′ − v′ =
∑
i/∈L

(ti − vi) > 0.

40



Chapter: 3 Section: 3

The conclusion follows from the fact that R∗ is time-monotonic.

Let us now show that B(R∗ ∪ Q̃) is an extension of R∗. If, on the contrary, ((b, t), (c, v)) ∈
B(R∗ ∪ Q̃) and ((c, v), (b, t)) ∈ P (R∗), we know that there exist a sequence b = x1, . . . , xn = c
in X and sequences t1, . . . , tn−1 and v1, . . . , vn−1 in T such that for all i = 1, . . . , n− 1:

((xi, ti), (xi+1, vi)) ∈ R∗ ∪ Q̃,

and

t− v =
n−1∑
i=1

(ti − vi).

As ((b, t), (c, v)) /∈ R∗, there must be at least one instance of i for which
((xi, ti), (xi+1, vi)) ∈ Q̃. Let L ⊆ {1, . . . , n− 1} be the set of all these instances. We have that,

t− v =
∑
i/∈L

(ti − vi) +
∑
i∈L

(ti − vi).

Introduce tn = v and vn = t and include the element ((b, v), (a, t)) =
((xn, tn), (x1, vn)) into the sequence in order to make a loop joining xn = b back to x1 = a. We
can divide this loop into |L| subsequences each starting with a and ending with a. Denote the set
of i’s falling in the l-th sequence by Ll. This gives us that ((a, t`), (a, v`) ∈ B(R∗) for all:

t` − v` =
∑
i∈L`

(ti − vi).

We also have that:

0 =
∑
i/∈L

(ti − vi) +
∑
i∈L

(ti − vi) =
∑
`∈L

(t` − v`) +
∑
i∈L

(ti − vi).

The second term is less than zero, which implies that there must be an ` ∈ L for which t`−v` 6= 0,
contradicting the assumption that a ∈ X− (U(R∗)∪L(R∗)). We can conclude that B(R∪ Q̃) is
a time-monotonic, transitive and absolute time consistent extension of R∗. This contradicts with
the maximality of R∗. Therefore, case ii), i.e. X = U(R∗) ∪ L(R∗), must hold.

Now, let ((a, t), (b, v)) ∈ N(R) and consider Q = B(R∪{((a, t), (b, v))}). Let us show that Q is
a transitive, absolute time-consistent and time-monotonic extension of R∗. A simple adaptation
of the proof in lemma 3.1 shows that Q is transitive and absolute time-consistent.

To see that Q is time-monotonic, consider first the case where there is an element c ∈ L(Q). (the
case where c ∈ U(Q) is analogue and is left to the reader). If c ∈ L(R∗), we are done, hence
assume that c ∈ U(R∗)− L(R∗).

Then there is a sequence c = x1, . . . , xn = c and sequences t1, . . . , tn−1 and v1, . . . , vn−1 such
that for all i = 1, . . . , n− 1,

((xi, ti), (xi+1, vi)) ∈ Q,
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and,

t′ − v′ =
n−1∑

i

(ti − vi) < 0.

From c ∈ U(R∗) − L(R∗) we derive that ((c, v′), (c, t′)) ∈ P (R∗). If there is no i such that
((xi, ti), (xi+1, vi)) = ((a, t), (b, v)) then ((c, t′), (c, v′)) ∈ B(R∗) = R∗, a contradiction. There-
fore, conclude that there is an i such that ((xi, ti), (xi+1, vi)) = ((a, t), (b, v)). Let L collect all
such instances of i. Then we have that:

t′ − v′ =
∑
i/∈L

(ti − vi) +
∑
i∈L

(ti − vi).

Introduce tn = v′ and vn = t′ and include the element ((c, v′), (c, t′)) =
((xn, tn), (x1, vn)) into the sequence in order to make a loop joining xn = b back to x1 = b. We
can divide this loop into |L| subsequences each starting with b and ending with a. Denote the set
of i’s falling in the l-th sequence by Ll. This gives us that ((b, v`), (a, t`)) ∈ B(R∗) for all:

v` − t` =
∑
i∈L`

ti − vi.

Consider first the case where a ∈ L(R∗). Observe that:

0 =
∑
`∈L

(t` − v`) + |L|(t− v).

This implies that either v − t is equal to v` − t` for each ` ∈ L which cannot occur (because
((b, v), (a, t)) /∈ B(R∗) = R∗) or there are elements `, `′ ∈ L such that v`− t` > v− t > v`′− t`′ .
Together with a ∈ L(R∗) we have that ((b, v`), (a, t`)) ∈ B(R∗) and ((a, v + t`), (a, t + v`)) ∈
R∗. Hence ((b, v), (a, t)) ∈ B(R∗) = R∗, a contradiction. If a ∈ U(R∗), we derive that
((b, v`′), (a, t`′) ∈ R∗ and ((a, v + t`′ + t), (a, t + v`′)) ∈ R∗. Hence ((b, v), (a, t)) ∈ B(R∗),
again a contradiction.

In order to show that Q is an extension of R∗, we can assume, on the contrary, that there exist a
pair ((c, t′), (d, v′)) ∈ Q and ((d, v′), (c, t′)) ∈ P (R∗). The proof that this leads to a contradiction
is very similar to the proof that Q is time-monotonic and is left to the reader.
In both cases i) and ii), we have that there exist an element of Ω that extends R∗ and which
contains elements that are not in R∗. This contradicts the maximality of R∗. Therefore, we can
conclude that R∗ is complete.

Now, we confirm that ATARP is a necessary and sufficient condition for rationalizability by an
absolute time-consistent an time-monotonic ordering.

Proof. Assume that R∗ rationalizes the choice function C and assume, on the contrary, that
((a, t), (b, v)) ∈ B(Rv) and ((b, v), (a, t)) ∈ Pv. By absolute time-consistency, transitivity and
time-monotonicity of R∗, and from the definition of Rv and lemma 3.1, we establish that R′

v ⊆
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R∗. Further, from the definition of Pv, we can deduce that Pv ⊆ P (R∗). Conclude that that
((a, t), (b, v)) ∈ R∗ and ((b, v), (a, t)) ∈ P (R∗), a contradiction.

To see the converse, let C satisfy ATARP, i.e. B(Rv) ∩ P−1
v = ∅. First we show that Pv =

P (Rv). To verify Pv ⊆ P (Rv), observe that from the definitions Pv ⊆ Rv. If, on the contrary,
((a, t), (b, v)) ∈ Pv and ((b, v), (a, t)) ∈ Rv, we find a contradiction with B(Rv) ∩ P−1

v = ∅,
hence Pv ⊆ P (Rv). To prove that P (Rv) ⊆ Pv, assume that ((a, t), (b, v)) ∈ P (Rv). Then, there
is an A ∈ Σ such that (a, t) ∈ C(A) and (b, v) ∈ A. If, on the contrary ((a, t), (b, v)) /∈ Pv, we
deduce that (b, v) ∈ C(A). This implies that ((b, v), (a, t)) ∈ Rv, a contradiction. Conclude that
P (Rv) = Pv.

Now, it is possible to rewrite B(Rv) ∩ P−1
v = ∅ as B(Rv) ∩ P (Rv)

−1 = ∅. Lemma 3.2 implies
that Rv has a time-consistent and impatient ordering extension R∗. If (a, t) ∈ C(A), we find
that ((a, t), (b, v)) ∈ Rv for all (b, v) ∈ A, hence ((a, t), (b, v)) ∈ R∗ for all (b, v) ∈ A. If
(a, t) /∈ C(A), we find, from the non-emptiness7 of C(A), that there is an (b, v) ∈ A such that
((b, v), (a, t)) ∈ Pv = P (Rv). As R∗ extends Rv, we establish that ((b, v), (a, t)) ∈ P (R∗).
Conclude that

C(A) = {(a, t) ∈ A|∀(b, v) ∈ A, ((a, t), (b, v)) ∈ R∗}.

Hence, R∗ is an absolute time-consistent and impatient rationalization of C.

7This follows from the assumption that the set Λ does not contain the empty set.
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CHAPTER 4

Nash rationalization of collective choice over lotteries
Joint work with Luc Lauwers

4.1 Introduction
A recent track of research seeks to identify the testable implications of various theories of multi-
agent decision making. Along these lines we set up a test to verify whether players have inde-
pendent preference relations and select a Nash equilibrium. Let us start the exposition with an
example.

Consider a two person game in normal form. Each player has two pure strategies: U (p) and
D(own) for player 1, L(eft) and R(ight) for player 2. Each player is informed about the meaning
of a mixture over pure strategies and about the payoff such a mixture generates. Denoting by x
(resp. y) the weight attached to the pure strategy U (resp. L). The players may select the mixture

x×U + (1− x)×D and y×L + (1− y)×R,

with x and y in the closed interval [0, 1], and communicate the selected value of x (resp. y) to
the experimental designer.1 In this setup, we observe the values x = 0.4 and y = 0.3. Then,
a second experiment is executed. For player 1, the set of pure strategies {U,D}, is modified to
{U,D′} with

D′ = 0.4×U + 0.6×D.

For player 2, the set {L, R} is modified to {L′, R} with

L′ = 0.42×L + 0.58×R.

1Sopher and Narramore [2000] carry out an experiment to test consistency and (in)transitivity of individual
choice over lotteries and mixtures of lotteries. In the spirit of their questionnaire, we propose the players to select
from a menu of mixtures over pure strategies.
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The lottery x′×U + (1− x′)×D′ coincides with (x′ + (1− x′) 0.4)×U + (1− x′) 0.6×D and
the lottery y′×L + (1−y′)×R coincides with 0.42 y′×L + (1−0.42 y′)×R. Given these sets of
pure strategies, player 1 selects 0.4 U + 0.6 D (i.e. x′ = 0) and player 2 selects 0.42 L + 0.58 R
(i.e. y′ = 1). Similar experiments generate the following data:

pure strategies 7−→ selected mixtures

player 1 player 2

{U,D} {L, R}
{U,D′ = .4 U + .6 D} {L′ = .42 L + .58 R , R}
{U ′′ = .5 U + .5 D,D} {L′′ = R′′ = .5 L + .5 R}

player 1 player 2

.4 U + .6 D .3 L + .7 R

.4 U + .6 D .42 L + .58 R

.5 U + .5 D .5 L + .5 R

TABLE 1: OBSERVED DATA.

The following question arises. Given such data, is it possible to check whether or not these
players are rational in the sense that they optimize with respect to an independent preference
relation and select a Nash equilibrium? In section 4 we return to this example and we will argue
that the above data are not Nash rationalizable. The remaining part of the introduction positions
this research in the literature and introduces our main results.

Many theories on behavior start from assumptions on the individual preference relation over the
feasible set of alternatives (e.g. transitivity, completeness). As soon as one accepts that binary
relations are not observable while actual choices are observable; it is important to test whether
the actual choices support or reject the assumptions. This issue has been discussed by, among
others, Arrow [1959], and Sen [1971].

There are at least two ways to tackle this problem. One approach [Sen, 1971] studies how the
selection reacts upon particular changes in the set of feasible alternatives. Obviously, if the in-
dividual consults a transitive and complete preference relation, then he should not reconsider his
choice when the choice set shrinks while his selected alternative remains feasible. Analogously,
when he selects the same alternative from two different choice sets, then he should select again
this alternative from the union of these two choice sets. As such, the hypothesis of revealed
preference becomes testable. A second approach is offered through the theory of revealed pref-
erences. If an alternative is chosen from a set, then it is top ranked in this choice set according
to the revealed preference relation. Thetransitive closure of this revealed preference relation is
called the indirect revealed preference relation. Richter’s [1966] congruence axiom provides
necessary and sufficient conditions for a choice function to be rationalizable: if an alternative a
is indirectly revealed preferred to b, then b should not be strictly revealed preferred to a.

Sprumont [2000] extends the problem of rationalizability to situations involving different and
interacting individuals. He defines a joint choice function to be Nash rationalizable if there
exists a profile of complete and transitive preference relations over the sets of actions, so that
the observed outcomes coincide with the Nash equilibria based upon these preferences. In the
spirit of Sen’s approach, he characterizes Nash rationalization through the combination of an
expansion and a contraction property. Ray and Zhou [2001] perform a similar study for subgame
perfect Nash equilibria.

We extend one of the results of Sprumont [2000] and tackle the Nash rationalizability of collec-
tive choice when individuals have a menu of mixtures at their disposal (each mixture defines a
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probability distribution over the set of pure strategies). For example, Table 1 might result from an
experiment. Following the tradition in game theory, we interpret the rational behavior of a player
in terms of expected utility maximization. In particular, besides completeness and transitivity
we impose an independence demand upon the preference relations of the (rational) players. This
independence condition states that the relationships between two lotteries (over the set of pure
strategies profiles) are not affected when they are mixed in the same way with a third lottery.
Myerson [1997, p11] discusses the strength of the independence axiom in the expected utility
maximization theorem. In addition, he indicates some of the difficulties that arise in decision
theory when independence is dropped. As a matter of fact, Clark [2000] introduces a ‘revealed
Archimedian axiom’ (a continuity axiom) to capture the difference between rationalization by an
independent ordering and maximizing expected utility.

Furthermore, in contrast to Sprumont [2000], we follow the track of revealed preferences. If only
one individual is involved, it is sufficient to check the transitive closure of the revealed preference
relation. The present setting with more than one individual, however, is more demanding. We
modify Richter’s axiom and require that the ‘transitive and independent’ closure of the revealed
preference relation does not conflict with the strict revealed preference relation. Besides that,
we need an axiom that connects the individual behavior to the collective behavior. We assume
that a strategy profile belongs to the collective choice if each player keeps his selected strategy
when he is assured that he is the only player allowed to deviate. We refer to this condition as
the collective choice being noncooperative. Later on, we will argue that this condition has some
flavor of an expansion-contraction axiom. Our main result reads (see theorem 4.3 in Section 4.4
for the exact formulation):

Theorem. A collective choice correspondence is Nash rationalizable if and only if it is nonco-
operative and satisfies the modified version of Richter’s congruence axiom.

Let us highlight two intermediate results towards this theorem. First, we need a condition that is
strong enough to guarantee that a binary relation extends to a transitive, complete, and indepen-
dent relation. Here, we learn from Suzumura [1976], who showed that consistency is sufficient
and necessary for a relation to have an ordering extension. We shift Suzumura’s result to a setup
involving choices over lotteries, and we use the term ‘lottery-consistency’ as a reference. Sec-
ond, we study the behavior of a single individual choosing from a set of lotteries. Here, we show
that the extended version of Richter’s congruence axiom—restricted to one player—is sufficient
and necessary for the individual choice function to be rationalizable by an independent ordering.2

Then, we broaden the setup from one individual to a finite number of interacting players. We
apply the axiom of noncooperation behavior and conclude the above theorem.3

This theorem can be used in an experimental setting to test whether players have independent
preference relations and select a Nash equilibrium. First, each player is told the structure of the
game: the number of players, the sets of pure strategies, the concept of a mixture (and its in-

2Section 4.3 discusses similar results obtained by Clark [1993, thm 3] and by Taesung [1996, thm 3.1].
3Galambos [2005] considers a related set-up where the strategy space is restricted to consists only of pure

strategies. He introduces an analogous condition (I-congruence) for the Nash rationalizability. See section 4.4
for a discussion.

46



Chapter: 4 Section: 2

terpretation as a probability distribution over the set of pure strategies), and the payoff function.
Subsequently, each individual is informed about the menus available to all of the players, and is
asked to choose from ‘his’ menu of mixtures. The size of such a menu is either finite (e.g. [Mac-
Donald and Wall, 1989], [Conlisk, 1989], [Oliver, 2003]) or infinite ([Sopher and Narramore,
2000], [Shachat, 2002]). Once each player has independently chosen a mixture from his menu,
the experimenter determines the resulting lottery over the pure strategy profiles and the corre-
sponding outcome. This setup allows the experimental designer to control the sets of available
mixtures. Moreover, the experimenter observes the mixtures selected by each individual sepa-
rately. In order to check whether individuals play a Nash equilibrium, we propose to proceed in
two stages. In a first experiment, the players are screened according to whether they maximize
with respect to an independent preference relation. This can be done, for instance, through some
Allais-paradox test (e.g. [Conlisk, 1989], [Oliver, 2003])4 . This step filters out those individuals
who violate the expected utility criterion. In the second step, one confronts the remaining play-
ers with a noncooperative game. As such, one can judge on the basis of observations whether in
mixed strategies the Nash criterion is rejected or supported.

The next section introduces the notation and studies binary relations and their independent and
transitive extensions. Section 4.3 introduces the concept of lottery-consistency as a test for the
rational behavior of an individual choosing over lotteries, and discusses related results of Clark
[1993] and Taesung [1996]. Section 4.4 extends the notation to collective choice and proves the
main result. Here, we also return to the data in Table 1. Section 4.5 links our result to the analysis
of Sprumont [2000].

4.2 Independent ordering extensions
This section establishes the notation, introduces the concept of independence of a binary relation,
and provides conditions for a relation to have an independent ordering extension.

Let H ⊂ Rn be the hyperplane of n-vectors the coordinates of which add up to 1, and let
∆ = ∆n ⊂ H be the (n − 1)-dimensional simplex. An element a = (a1, a2, . . . , an) in ∆ is an
n-tuple of nonnegative real numbers adding up to 1, and is called a lottery. The i-th coordinate
ai of the lottery a gives the probability that state i occurs.

Throughout, the set D refers to either ∆ or H . A binary relation R in the set D is a subset
of the cartesian product D × D. The symmetric component R ∩ R−1 is denoted by I(R), the
asymmetric part R \ I by P (R), and the non-comparable part D × D \ (R ∪ R−1) by N(R).
For the binary relation R′ we denote these induced relations by I(R′), P (R′), N(R′); for R∗ we
use I(R∗), P (R∗), N(R∗); etc. A reflexive and transitive relation is said to be a quasi-ordering.
A complete quasi-ordering is said to be an ordering. The binary relation R′ in D extends the
relation R if R ⊆ R′ and P (R) ⊆ P (R′).

Next, we introduce the notion of independence. This condition studies the behavior of a binary
relation on compound vectors. For a and b in H and for α a nonnegative real number, the vector

4This step should be complemented with a power-test, e.g. [Bronars, 1987]
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[α, a, b] denotes the linear combination α a + (1− α)b. For α in between 0 and 1, the compound
vector [α, a, b] is a convex combination of a and b. And, for α > 1 the compound vector is a
point on the ray starting in b and going through a and does not belong to the closed interval [a, b].
A relation R in D is said to be independent if for each pair in R the composition with a third
vector in D preserves the initial relationships. Formally, R is independent if for each a, b, and c
in D, we have

if (a, b) ∈ R, α ≥ 0, [α, a, c] ∈ D, and [α, b, c] ∈ D;

then ([α, a, c], [α, b, c]) ∈ R. (1)

This condition implies the reflexivity of R (put α = 0). Observe that α is allowed to take values
larger than 1. As a consequence of this, an independent relation satisfies the ‘strict’ version of
condition (1):

if (a, b) ∈ P (R), α > 0, [α, a, c] ∈ D, and [α, b, c] ∈ D;

then ([α, a, c], [α, b, c]) ∈ P (R).

Indeed, let us assume that (a, b) ∈ P (R) and α > 0, while ([α, a, c], [α, b, c]) /∈ P (R). Since R
is independent and (a, b) ∈ P (R) ⊆ R, it follows that
([α, a, c], [α, b, c]) ∈ R. The assumption ([α, a, c], [α, b, c]) /∈ P (R) implies that ([α, b, c], [α, a, c]) ∈
R. Therefore,

(b, a) =

([
1

α
, [α, b, c], c

]
,

[
1

α
, [α, a, c], c

])
∈ R.

A contradiction is obtained: (b, a) ∈ R and (a, b) ∈ P (R). Note that α and 1/α simultaneously
occur (one of these values is larger than 1).
In case R happens to be a complete binary relation, a similar argument implies that R is inde-
pendent if and only if R is reflexive and for each a, b, c in D, and each α, we have

if (a, b) ∈ R (resp. P (R)) and 0 < α ≤ 1,

then ([α, a, c], [α, b, c]) ∈ R (resp. P (R)). (2)

Obviously, condition (1) entails condition (2). Let us check that (2) implies (1). Suppose the
antecedent clause of (1) holds, and let α > 1. Then, the opposite conclusion—in the assumption
that R is complete—reads: “( [α, b, c], [α, a, c] ) ∈ P (R)”. Again, we obtain a contradiction:
(b, a) ∈ P (R) while (a, b) ∈ R.
Condition (2) only considers convex combinations and is therefore, in the present setting, perhaps
a more natural property.

There is an obvious relationship between the class of independent orderings on H and the class
of independent orderings on ∆. If R is an independent ordering on H , then its restriction to ∆ is
an independent ordering on ∆. The next lemma looks at the reverse relationship.

Lemma 4.1. An independent, transitive, and complete relation R in ∆, uniquely extends to an
independent, transitive, and complete relation R′ in H .
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Proof. Let a and b belong to H . Let c be an element in the interior of ∆. Choose α > 0
sufficiently close to 0, such that a′ = [α, a, c] and b′ = [α, b, c] belong to ∆. Let the ordering R′ on
{a, b} agree with the ordering R on {a′, b′}. The ordering R′ on {a, b} does not depend upon the
choice of c and α. We show this by contradiction. Let a′′ = [β, a, u] ∈ ∆ and b′′ = [β, y, u] ∈ ∆
and assume that (a′, b′) ∈ R while (b′′, a′′) ∈ P (R). By independence, we have([

β

α + β
, a′, b′′

]
︸ ︷︷ ︸

v1

,

[
β

α + β
, b′, b′′

]
︸ ︷︷ ︸

v2

)
∈ R

and

([
α

α + β
, b′′, b′

]
︸ ︷︷ ︸

v3

,

[
α

α + β
, a′′, b′

]
︸ ︷︷ ︸

v4

)
∈ P (R).

Observe that v2 and v3 coincide. Transitivity of R implies that (v1, v4) ∈ P (R). One can write
v1 and v4 in terms of a, b, c, and u and verify that v1 = v4. Hence, we obtain (v1, v1) ∈ P (R).
This contradicts the definition of the asymmetric component P (R) of the relation R. Therefore,
R′ is well defined. Transitivity and independence of R′ follows from the definition of R′ in
combination with the transitivity and independence of R.
Finally, we show that the extension R′ is unique. Let the independent, transitive, and complete
relations R′ and R′′ extend R. Let a and b belong to H . Let c be an element in the interior of
∆. Choose α > 0 sufficiently close to 0 such that a′ = [α, a, c] and b′ = [α, b, c] both belong to
∆. Since R′ and R′′ extend R and are independent, it follows that R′ and R′′ rank a and b in the
same way. Hence, R′ = R′′.

Now, we focus on conditions that are strong enough to guarantee that a binary relation has an
extension that is complete, transitive, and independent.
Let us insert here a result of Suzumura [1976, thm 3] who solved a similar exercise. Suzumura
started from a relation R and looked for a complete and transitive relation R∗ such that R ⊂ R∗

and P (R) ⊂ P (R∗). A natural way to proceed is to check whether the transitive closure T (R)
of R respects the asymmetric part, i.e. P (R) ⊂ P (T (R)). Apparently, this provides sufficient
(and necessary) conditions: R has an ordering extension if and only if

for each a, b, we have (a, b) ∈ T (R) implies (b, a) /∈ P (R).

Suzumura labelled this condition as consistency.
We proceed similarly. Let R be a relation in D. The independent order relation R∗ in D is said
to be an independent ordering extension of R if R ⊂ R∗ and P (R) ⊂ P (R∗). The transitive and
independent closure of R is the smallest (for inclusion) relation in D that includes R, satisfies
transitivity and independence.
The next lemmas provide further insight in the transitive and independent closure of a relation in
the hyperplane H . Let R be a relation in H . Define the binary relation RTI in H by (a, b) ∈ RTI
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if there exists a natural number n, elements x1 = a, x2, . . . , xn+1 = b and z1, z2, . . . , zn in H ,
and positive real numbers α1, α2, . . . , αn such that

for each i = 1, 2, . . . , n, we have ([αi, xi, zi] , [αi, xi+1, zi]) ∈ R.

Lemma 4.2. Let R be a relation in H . The above defined relation RTI is its transitive and
independent closure.

Proof. It is easy to see that RTI is transitive. To check independence, let (a, b) ∈ RTI , β ≥ 0,
and let q ∈ H . We have to show that (a′ = [β, a, q] ; b′ = [β, b, q]) belongs to RTI . Since
(a, b) ∈ RTI , there exist elements xi (x1 = a and xn+1 = b), zi in H , and positive real numbers
αi such that

([αi, xi, zi] , [αi, xi+1, zi]) ∈ R, for each i = 1, 2, . . . , n.

Define vi = (1−αi)βzi−(1−β)αiq
β−αi

and x′i = [β, xi, q] in H . In case β = αi, the element vi has no
role and can be chosen arbitrarily, e.g. put vi = 0. It follows that([

αi

β
, x′i, vi

]
,

[
αi

β
, x′i+1, vi

])
∈ R, for each i = 1, 2, . . . , n.

Hence, (a′, b′) ∈ RTI .
Finally, we have to show that RTI is the smallest (for inclusion) independent and transitive rela-
tion containing R. Let R′ be an independent and transitive extension of R. For each (a, b) in RTI ,
there exists elements x1 = a, x2, . . . , xn+1 = b; z1, z2, . . . , zn in H and positive real numbers
α1, α2, . . . , αn such that

([αi, xi, zi] , [αi, xi+1, zi]) ∈ R, for each i = 1, 2, . . . , n.

The independence of R′ and the fact that R ⊆ R′ imply that (xi, xi+1) ∈ R′ for each i =
1, 2, . . . , n. The transitivity of R′ implies that (a, b) ∈ R′. Therefore, RTI ⊆ R′.

Lemma 4.3. Let R be a relation in H . Then, (a, b) belongs to the transitive and independent
closure RTI of R if and only if

• either, (a, b) belongs to the transitive closure of R;

• or, a − b = Σ`
i=1βi(xi − yi), with (xi, yi) in R and βi > 0 for each i, and βj 6= 1 for at

least one j.

Proof. First, let (a, b) ∈ RTI . The elements a and b are linked through a finite sequence a =
x1, x2, . . . , xn+1 = b; and there exist z1, z2, . . . , zk in H and α1, α2, . . . , αk > 0 such that

( [αi, xi, zi], [αi, xi+1, zi] ) ∈ R, for each i = 1, 2, . . . , n.

50



Chapter: 4 Section: 2

For each i we obtain [αi, xi, zi] − [αi, xi+1, zi] = αi (xi − xi+1). Multiply these equations by
1/αi > 0, and add them up:

a− b = x1 − xk+1 = Σk
i=1

[αi, xi, zi]− [αi, xi+1, zi]

αi

.

In case α1 = α2 = · · · = αk = 1, then (a, b) belongs to the transitive closure of R.

Next, assume a− b = Σ`
i=1βi(xi − yi) with (xi, yi) in R, βi > 0, and βj 6= 1. We have to prove

that (a, b) ∈ RTI . We proceed by induction on `.
For ` = 1, it suffices to observe that the vector z = (a− β1x1)/(1− β1) in H allows us to write
a = [β1, x1, z] and b = [β1, y1, z].
Suppose the result holds up to `. Consider a positive linear combination of length ` + 1. Assume
that β1 6= 1. Consider (a′ − b′) = (1/β) × Σ`+1

i=2 βi(xi − yi), with 0 < β 6= 1 such that at least
one of the coefficients βi/β differs from 1. From the induction basis, we obtain (a′, b′) ∈ RTI .
Hence, we can write

a− b = β1(x1 − y1) + β(a′ − b′), with 0 < β1 6= 1 and 0 < β 6= 1.

Let z and b̃ in H solve the equations x1 = [1/β1, a, z] and y1 = [1/β1, b̃, z]. Independence implies
(a, b̃) ∈ RTI . Next, let z′ and y∗ in H solve the equations a′ = [1/β, b̃, z′] and b′ = [1/β, y∗, z′].
Then, (b̃, y∗) ∈ RTI . The transitivity of RTI implies (a, y∗) ∈ RTI . Finally, the equations
x1 − y1 = (a− b̃)/β1 and a′ − b′ = (b̃− y∗)/β imply that y∗ = b.

Now, we are able to shift the result of Suzumura towards the present setting. We extend the
definition of consistency and we state the main result of this section.

Definition 4.1 (Lottery consistency). The relation R in D is said to be lottery-consistent if for
each a and b in D, we have that (a, b) ∈ RTI implies (b, a) /∈ P (R).

Theorem 4.1. Let R be a relation in ∆. Then, R has an independent ordering extension in ∆ if
and only if R is lottery-consistent.

Proof. Let R∗ be an independent ordering extension of R. Then, by lemma 4.2, R ⊆ RTI ⊆ R∗

and by the definition of extension P (R) ⊆ P (R∗). Hence, it cannot happen that (a, b) ∈ RTI

and (b, a) ∈ P (R); otherwise the combination (a, b) ∈ R∗ and (b, a) ∈ P (R∗) would occur.
Conclude that R is lottery-consistent.

The proof of the reverse implication is more involved. We indicate that the non-comparable part
of an incomplete, independent, and transitive extension of R can be further reduced by adding
one single couple. We use this result, in combination with a free ultrafilter on an appropriate set,
to define a complete, independent, and transitive extension of R.
Hence, let R∗ be an incomplete, independent, and transitive extension of R. Let (a, b) ∈ N(R∗).
Define the relation Q = R∗ ∪ {(a, b)} and let QTI be the transitive and independent closure of
Q. We show that QTI extends R. First, observe the inclusions R ⊆ R∗ ⊆ QTI . The inclusion
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P (R) ⊆ P (RTI) is shown by contradiction. Therefore, assume the existence of a couple (c, d)
in P (R) such that (d, c) ∈ QTI . Apply lemma 4.3 upon QTI and obtain

d− c = Σ`
i=1 βi(xi − yi), with (xi, yi) ∈ Q, and βi > 0 for each i.

As R∗ extends R and (c, d) ∈ P (R) ⊆ P (R∗), the pair (a, b) occurs at the right hand side; say
(x1, y1) = (a, b). Rewrite the previous equation:

b− a = γ(c− d) + Σ`
i=2 γi(xi − yi), with γ > 0, γi > 0 for each i.

lemma 4.3 implies that R∗ is able to compare a and b. This conflicts with (a, b) ∈ N(R∗).
Next, let [D]<∞ be the collection of all finite subsets of D. For each A in [D]<∞, let S(A) collect
all the finite supersets of A. For example, S(∅) = [D]<∞. Let U be an ultrafilter that extends
the filter generated by the family {S(A) |A ∈ [D]<∞}.5

For each set A ∈ [D]<∞, let the relation Q be an independent and transitive extension of R that
is able to compare all pairs in A. The relation Q either coincides with RTI or can be obtained by
adding a finite number of couples to RTI (as explained above). Denote the restriction of Q to the
set A by RA, i.e. RA = Q ∩ (A× A). Finally, define the relation R∗ in D as follows:

(a, b) ∈ R∗ if and only if {A ∈ [D]<∞ | (a, b) ∈ RA} ∈ U .

We check that R∗ extends R, is independent and transitive, and complete.
(i) R∗ extends R. Let R be able to compare a and b. For each set A in S({a, b}) the relation
RA agrees with R on the pair {a, b}. As S({a, b}) belongs to the ultrafilter U , the relation R∗

extends R.
(ii) R∗ is transitive and independent. Let a−b =

∑`
i=1 αi(xi−yi) with (xi, yi) ∈ R∗ and αi > 0

for each i = 1, 2, . . . , `. By definition, the sets Ui = {A | (xi, yi) ∈ RA} belong to U . The finite
intersection property implies that U = U1 ∩ U2 ∩ . . . ∩ U` and U ∩ S({a, b}) both belong to U .
Since each relation RA is transitive and independent, we have (a, b) ∈ RA∪{a,b} for each A in U .
Hence, (a, b) ∈ R∗.
(iii) R∗ is complete. Consider the pair {a, b}. The collection S({a, b}) splits up into three parts,

S({a, b}) = {A | (a, b) ∈ P (RA)} ∪ {A | (b, a) ∈ P (RA)}
∪ {A | (a, b), (b, a) ∈ RA}.

Since U is an ultrafilter and S({a, b}) ∈ U , exactly one of these three parts belongs to U . Con-
clude that R∗ is able to compare a and b.

5A filter F on a set Ω is a subset of 2Ω that (i) does not contain the empty set (∅ 6∈ F), (ii) satisfies the
intersection property (if A,B ∈ F , then A ∩ B ∈ F), and (iii) is closed for supersets (if A ∈ F and A ⊂ B ⊂ Ω,
then B ∈ F). If the filter F contains, for each A ⊂ Ω, either A or its complement Ω − A; then F is said to be
an ultrafilter. An ultrafilter is a maximal (for inclusion) filter. Zorn’s lemma implies that each filter extends to an
ultrafilter. An ultrafilter that does not contain finite sets, is said to be free.
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4.3 Rationalizability of choice over lotteries
This section extends Richter’s result towards the rationalizability of individual choice over lotter-
ies. At the end of this section we shortly discuss similar studies by Clark [1993] and by Taesung
[1996].
Consider the (n − 1)-dimensional simplex ∆ and let S be a collection of nonempty subsets of
∆. A choice correspondence C is a correspondence

C : S −→→ ∆ : S 7−→ C(S) ⊆ S.

The choice correspondence C is said to be rationalizable if there exists an independent ordering
R∗ in ∆ such that for each S in S the set C(S) collects the maximizers of the restriction of R∗

to S, i.e.

for each S in S : C(S) = M(R∗|S) = {a ∈ S | for all b in S : (a, b) ∈ R∗} .

Observe that for a (rationalizable) choice correspondence the choice set C(S) might be empty;
e.g. if S ⊂ ∆ is an open (in the Euclidean topology) set and if the ordering R∗ happens to be
continuous, the set M(R∗|S) of maximizers might be empty. As it is unclear what one should
conclude on the basis of an empty choice set, we impose the choice correspondence to be decisive
on S, i.e. a set S for which C(S) = ∅ is excluded from S.

For a choice correspondence C : S →→ ∆, the revealed preference relations Rv and Pv in ∆ are
defined as follows. The pair (a, b) belongs to the revealed preference relation Rv if and only if
there is a set S in S such that a ∈ C(S) and b ∈ S. Furthermore, the pair (a, b) belongs to the
strict revealed preference relation Pv if and only if there is a set S in S such that a ∈ C(S) while
b ∈ S \ C(S).

We extend the congruence axiom of Richter [1966]. A choice correspondence C : S →→ ∆ is
said to satisfy the congruence axiom if for each x and y in ∆ we have

(a, b) ∈ Rv, T I implies (b, a) /∈ Pv,

where Rv, T I is the transitive and independent closure of the revealed preference relation Rv.

We will show that this congruence axiom is strong enough to guarantee the choice correspon-
dence to be rationalizable. The next lemma is a first step towards this result.

Lemma 4.4. If the choice correspondence C : S →→ ∆ satisfies the congruence axiom, then the
asymmetric part P (Rv) of the revealed preference relation Rv coincides with the strict revealed
preference relation Pv.

Proof. (i) : P (Rv) ⊆ Pv. If (a, b) ∈ P (Rv), then (a, b) ∈ Rv and (b, a) /∈ Rv. Hence, there
exists a set S such that a ∈ C(S) and b ∈ S; and for each set T containing a and b, it holds that
b /∈ C(T ). Put T = S and conclude that a ∈ C(S) while b ∈ S \ C(S), i.e. (a, b) ∈ Pv.
(ii) : Pv ⊂ P (Rv). If (a, b) ∈ Pv, then (a, b) ∈ Rv. In case also (b, a) ∈ Rv, the congruence
axiom is violated: (b, a) ∈ Rv ⊂ Rv, T I and (a, b) ∈ Pv. Therefore, (b, a) /∈ Rv and (a, b) ∈
P (Rv).
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As a corollary we obtain that if a choice correspondence satisfies the congruence axiom, then the
revealed preference relation is lottery-consistent. The main result of this section reads:

Theorem 4.2. Let the choice correspondence C : S →→ ∆ be decisive on S. Then, C is
rationalizable if and only if it satisfies the congruence axiom.

Proof. Let the independent ordering R∗ in ∆ rationalize the choice correspondence C. Obvi-
ously, R∗ extends the revealed preference relation: Rv ⊆ R∗ and Pv ⊂ P (R∗). As R∗ is transi-
tive and independent, R∗ includes the transitive and independent closure Rv, T I of Rv (use lemma
4.2). Suppose now that (b, a) ∈ Pv. Then, (b, a) ∈ P (R∗) and (a, b) /∈ R∗. As a consequence, if
(b, a) ∈ Pv, then (a, b) /∈ Rv, T I .
Let C satisfy the congruence axiom. By lemma 4.4, the revealed preference relation is lottery-
consistent. Apply theorem 4.1 and extend the revealed preference relation Rv to an independent
ordering R∗ in ∆. Now, we have to verify whether C(S) = M(R∗|S) holds for each set S in S.
Let a ∈ C(S). Hence, for each b in S we have (a, b) ∈ Rv ⊆ R∗, i.e. a ∈ M(R∗|S). Next, let
a ∈ S \ C(S). By assumption, C is decisive on S: there exists a b in S such that b ∈ C(S). It
follows that (b, a) ∈ Pv ⊆ P (R∗). Conclude that a /∈M(R∗|S).

The ultimate goal is to establish a test for the null hypothesis

H0 : the individual choice correspondence C : S −→→ ∆ is rationalizable.

Of course, one can extract the binary relation behind the choice correspondence (by checking
all the pairs in ∆) and verify whether this relation is an independent ordering. In an empirical
setting, however, this is impossible to manage. Theorem 4.2 allows us to test on the basis of a
finite data set whether or not the null hypothesis should be rejected. As usual, not rejecting H0

does not imply that H0 is shown to hold. The next section returns to this issue.

We now point out some differences with the work of Taesung [1996], who also studied the pref-
erence relation on lotteries revealed through a choice correspondence. Where Taesung [1996,
Appendix] uses a generalization of the theorem of the alternative, we follow the axiomatic ap-
proach and start from the theory of binary extensions. Furthermore, Taesung [1996, thm 3.1]
restricts the attention to finite choice sets. We do not impose restrictions on the size of the choice
set. However, recall from theorem 4.2 that we need the choice correspondence to be decisive
on the choice sets. Finally, as the revision of this paper was being completed, we learned of a
result of Clark [1993, thm 3] which is very similar to our theorem 4.2. Let us highlight the main
differences. First, Clark formulates different independence axioms. In the presence of transitiv-
ity and completeness, however, the combination of these axioms turn out to coincide with our
independence condition. Second, Clark applies the Hausdorff maximality principle to obtain a
complete relation. In contrast, we obtain completeness by means of a free ultrafilter (Cf. theorem
4.1). Hence, both proofs rely on non-constructive methods. The existence of a free ultrafilter,
however, is a weaker assumption than the Hausdorff principle (which is equivalent to the axiom
of choice). Third, we believe that our lemma 4.3 provides additional insights to the concept of
independency.
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4.4 Nash rationalization of collective choice
Assume an experimental setting with individuals playing a game allowing mixtures over the set of
pure strategies. The experimenter observes the mixtures selected by each individual separately.
In case the profile of revealed preferences extends to a profile of independent orderings such
that the selection corresponds to a Nash equilibrium, then we say that the observations support
the hypothesis of Nash rationalizable behavior. If the data reject this hypothesis, then either
some player does not consult a complete, transitive, and independent binary relation, or the Nash
equilibrium is not the right equilibrium concept. This section develops such a test procedure.

We start by introducing some further notation. Let J = {1, 2, . . . , k} be the set of players,
k ∈ N. Individual j has nj pure strategies, his strategy space ∆j is the (nj − 1)-dimensional
simplex ∆nj . A strategy profile is a vector a = (a1, a2, . . . , ak) with aj in ∆j the strategy of
player j. The product set ∆J = ∆1 ×∆2 × · · · ×∆k collects all the strategy profiles:

∆J =
{
a = (a1, a2, . . . , ak) | aj = (aj 1, aj 2, . . . , aj nj

) ∈ ∆j

}
.

In order to distinguish the strategy aj in ∆j of player j from the strategies of his opponents, we
denote the strategy profile a also by (aj, a−j) with a−j = (a1, . . . , aj−1, aj+1, . . . , ak) collecting
the strategies of j’s opponents.
A choice set S is a cartesian product S1×S2×· · ·×Sk ⊂ ∆J with Sj a nonempty subset of ∆j for
each j. A choice set represents an experiment in which players are confronted with restrictions
within their strategy spaces. In the example in Section 4.1 (Table 1) the choice sets are convex
hulls of finite sets of points. The results below do not hinge on this convexity assumption.
For a choice set S, a strategy profile a in S, and a player j in J , we denote the cartesian product
Sj × {a−j} by Sa

j . In the choice set Sa
j the strategy space of player j is reduced to Sj while the

opponents only have one option (opponent i selects ai from his strategy space {ai}).
Let S be a collection of choice sets. A joint choice correspondence C is a correspondence

C : S −→→ ∆J : S 7−→ C(S) ⊆ S.

We assume that the choice correspondence C is individually decisive, that is, we assume that
C(Sa

j ) is nonempty for each choice set in S of the form Sa
j . In words, when the choice of all but

one players is limited to only one option, then this one player should be able to select a strategy.6

In order to employ individual decisiveness, we impose that for each choice set S in S all one-
person choice sets Sa

j derived from S also belong to S; Sprumont [2000] and Galambos [2005]
impose the same condition.

In contrast to the previous section, we do not equip the players with a preference relation on the
set ∆J of strategy profiles. Instead, we assume that the players have preferences over the proba-
bility distributions of pure strategy profiles (e.g. via the payoffs corresponding to the pure strate-
gies). As each player j has nj pure strategies, these pure strategies generate m = n1 n2 · · · nk

6Decisiveness is usually assumed in this context. Clark [1995] discusses indecisive choice functions.
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pure strategy profiles.7 The (m − 1)-dimensional simplex ∆m collects all the distributions over
these profiles. Let d denote the map that converts a strategy profile in ∆J into a probability
distribution in ∆m:

d : ∆J −→ ∆m : a 7−→ d(a), with di1,i2,...,ik(a) = a1 i1 a2 i2 · · · ak ik ,

where ij runs over the pure strategies 1 to nj of player j. Within this notation, we can define
Nash rationalizability of choice over lotteries.

Definition 4.2 (Nash rationalizability). The joint choice correspondence
C : S →→ ∆J is said to be Nash rationalizable if there exists a profile
(R∗

1, R
∗
2, . . . , R

∗
k) of independent orderings in ∆m such that for each S in S, we have

a ∈ C(S) if and only if d(a) ∈M
(
R∗

j | d(Sa
j )
)

for each j in J.

In words, a joint choice correspondence is Nash rationalizable if each player consults an inde-
pendent ordering to select his own strategy conditional upon his opponents’ strategies.

For a Nash rationalizable choice correspondence it holds that, whenever Sa
j is in the domain S,

a ∈ C(Sa
i ) if and only if d(a) ∈ M(R∗

i | d(Sa
i )). Hence, if C is Nash rationalizable and Sa

j ∈ S
for each j in J , then a ∈ C(S) if and only if a ∈ C(Sa

j ) for each j in J . The noncooperative
behavior of the players is clearly incorporated in the definition of Nash rationalizability: a joint
strategy is chosen if no single player has an incentive to deviate.

We modify the definitions of the revealed preference relations from the previous section towards
the present setting. Let x, y ∈ ∆m.
We start with the revealed preference relations Rv, 1, Rv, 2, . . . , Rv, k. We have (x, y) ∈ Rv, j if
there exist an a in ∆J and an Sa

j in S such that b ∈ Sa
j , a ∈ C(Sa

j ), and (x, y) = (d(a), d(b)).
Next, we consider the strict revealed preference relations Pv, 1, Pv, 2, . . . , Pv, k. We have (x, y) ∈
Pv, j if there exist an a in ∆J , Sa

j in S, and b in Sa
j such that a ∈ C(Sa

j ), b ∈ Sa
j \ C(Sa

j ), and
(x, y) = (d(a), d(b)).
These modifications imply that a player is only able to reveal preferences conditional upon a
status quo of his opponents’ strategies. A player is able to select x above y only if he has x and y
at ‘his’ disposal, i.e. only if he is able to switch between x and y without the cooperation of any
other player.

Similar to the previous section, we search for conditions upon the revealed preferences to guar-
antee the Nash rationalizability of a choice correspondence

C : S →→ ∆J .

Definition 4.3 (Congruence axiom). The joint choice correspondence C is said to satisfy the
congruence axiom if for all x and y in ∆m and for each j in J , we have

(x, y) ∈ Rv, j T I implies (y, x) /∈ Pv, j,

with Rv, j T I the transitive and independent closure of the revealed preference relation Rv, j .
7The example in Section 4.1 exhibits four pure strategy profiles: (U,L), (U,R), (D,L), and (D,R).
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The next lemma states that if a joint choice correspondence satisfies the congruence axiom, then
the revealed preference relations are lottery-consistent. Its proof only involves minor modifica-
tions of the proof of lemma 4.4 and is omitted.

Lemma 4.5. If C satisfies the congruence axiom, then for each player j the asymmetric part
P (Rv, j) of the revealed preference relation Rv, j coincides with the strict revealed preference
relation Pv, j .

At this point we are ready to provide conditions for the rationalizability of the individual choice
correspondence Sa

j 7→ C(Sa
j ). In order to obtain rationalizability of the joint choice correspon-

dence S →→ ∆J , we need some ‘local-global’ condition to link the collective choice from a set
S with the individual choices from the sets Sa

j . Here, we return to the noncooperative nature of
the Nash equilibrium.

Definition 4.4 (Noncooperative). The correspondence C : S →→ ∆J is said to be noncooperative
if for each S in S we have

a ∈ C(S) if and only if a ∈ C(Sa
j ) for each j in J.

In words, if a strategy profile a is selected from S then each player j selects this profile when the
choice set S contracts or shrinks into his individual choice set Sa

j . And, if the group of players
jointly select a from the choice sets Sa

j , then the group of players jointly select a from the union
S = Sa

1 ∪Sa
2 ∪ . . .∪Sa

k . As such, this axiom has some flavor of a contraction-expansion property.

Noncooperation might be observed even in those cases where the individuals do not select a Nash
equilibrium or do not consult an ordering. The axioms of congruence and noncooperation are
independent: the former axiom only relies on choice sets of the type Sa

j for some a and j, in
contrast the latter axiom is a global-local condition and always depend on other types of choice
sets. Hence, a correspondence may satisfy one axiom and violate the other axiom. Also, the
axioms of congruence and noncooperation only depend on the choice sets and the choices made
from these sets. As such, these axioms are testable. The combination of noncooperation and the
congruence axiom implies the rationalizability of the joint choice correspondence.

Theorem 4.3. Let the joint choice correspondence C : S →→ ∆J be individually decisive and
assume that S satisfies the domain condition. Then, C is Nash rationalizable if and only if C is
noncooperative and satisfies the congruence axiom.

Proof. Let C be Nash rationalizable through the profile (R∗
1, R

∗
2, . . . , R

∗
k) of independent order-

ings in ∆m. To prove that C satisfies the congruence axiom, one can apply theorem 4.2 upon
the individual choice correspondences C : Sj →→ ∆j , where Sj collects all the choice sets of
the form Sa

j with S running through the collection S. That C is noncooperative has been argued
above (see definition 4.4).
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Now, suppose that C is noncooperative and satisfies the congruence axiom. Then, each revealed
preference relation Rv, j is lottery-consistent and extends to an independent ordering R∗

j in ∆m

(use theorem 4.2). We have to check whether for each S in S, for each a in S, it holds that

a ∈ C(S) if and only if d(a) ∈M(R∗
j |d(Sa

j )) for each j in J.

Let a ∈ C(S). As C is noncooperative, it follows that a ∈ C(Sa
j ) for each j in J . Hence, for

each b in Sa
j we have (d(a), d(b)) ∈ R̃v, j ⊆ R∗

j . It follows that d(a) ∈ M(R∗
j |Sa

j ) for each j in
J .
Finally, let a ∈ S \ C(S) and assume that d(a) ∈ d(S). As C is noncooperative, there exists at
least one player j for which a /∈ C(Sa

j ). Since C is individually decisive, there exists a b in Sa
j

such that b ∈ C(Sa
j ). Therefore (d(b), d(a)) ∈ Pv, j ⊆ P (R∗

j ). It follows that for player j we
have that d(a) /∈M(R∗

j |d(Sa
i )).

This theorem establishes a rule to judge whether or not the hypothesis

H0 :
the collective choice correspondence C : S −→→ ∆J

is Nash rationalizable

should be rejected. The test is exact in the sense that as soon as the observations conflict with
the axiom of congruence, the null hypothesis is false with certainty. The probability to reject the
hypothesis when it is actually true is zero. Let us apply the test upon the data (Table 1) presented
in Section 4.1.

Denote a = C(S), a′ = C(S ′), and a′′ = C(S ′′). Let us list the four pure strategy profiles:
(U,L), (U,R), (D, L), and (D, R). We have that d(a) =
(0.12, 0.28, 0.18, 0.42).
Use the axiom of noncooperation to conclude that player 1 reveals to (weakly) prefer (0.4, 0.6)
above any other strategy available to him, such as (0.3, 0.7). Let us write b = (0.3, 0.7) ×
(0.3, 0.7), and d(b) = (0.09, 0.21, 0.21, 0.49). As such we learn that (d(a), d(b)) ∈ Rv, 1 TI .
Similarly, d(a′) = (0.168, 0.232, 0.252, 0.348). Since also the strategy (0.42, 0.58) is at the
disposal of player 1, it follows (again, use the axiom of noncooperation) that (d(a′), d(b′)) ∈
Rv, 1 TI , with d(b′) = (0.2205, 0.3045, 0.1995, 0.2755) ∈
∆4.

Finally, d(a′′) = (0.25, 0.25, 0.25, 0.25). The available strategy (0.2, 0.8) leads to the distribution
d(b′′) = (0.1, 0.1, 0.4, 0.4). The data imply (d(a′′), d(b′′)) ∈ Pv, 1.
One can check that 2(d(a)− d(b)) + 4(d(a′)− d(b′)) + (d(a′′)− d(b′′)) = 0. Solve this equation
for d(b′′) − d(a′′) and conclude (use lemma 4.3) that (d(b′′), d(a′′)) belongs to the independent
and transitive closure of Rv, 1. This contradicts our extended version of Richter’s congruence
axiom. Therefore, the data reject the hypothesis H0.

We close this section with a discussion of work by Galambos [2005], who obtains a single
condition—labeled I-congruence—for the Nash rationalizability in pure strategies. Define the
binary relation R∗

j in the product strategy space ∆J by (a, b) ∈ R∗
j if (i) the strategies ai and bi
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coincide for each i 6= j and (ii) there exists an S in S for which a ∈ C(S). In the assumption
that the axiom of noncooperation holds, the relations R∗

j and Rv, j coincide. Let R∗
j T I be the

transitive and independent closure of R∗
j . We rephrase the I-congruence axiom as follows. For

each choice set S and for each strategy profile a,

if (a, b) ∈ R∗
j T I for each b in Sa

j and each j in N, then a ∈ C (S) .

This I-congruence condition combines the axioms of congruence and noncooperation and there-
fore provides an alternative rationalizability condition. The above theorem 4.3 uses two axioms
that represent two separate ideas. The axiom of congruence reflects the idea that each individual,
independently of the behavior of his opponents, consults an independent preference relation. The
axiom of noncooperation reflects the idea of the Nash equilibrium that each individual takes the
behavior of the opponents as given.

4.5 Persistence axioms of Sprumont
In this section we show that the persistence conditions of Sprumont are equivalent to our con-
ditions for Nash rationalizability (when restricted to the setting of pure strategies). As such we
indicate that our theorem 4.3 extends theorem 4.2 of Sprumont [2000] to cases involving mix-
tures over pure strategies.

Let Aj be the set of pure strategies available to player j and let A = A1 × A2 × · · · × Ak be
the set of all joint pure strategies. When restricted to the pure strategies, the map d from the
space ∆J of strategy profiles to the space d(∆n) of distributions over the pure strategy profiles
remains one-to-one. Observing a (degenerate) distribution in ∆m boils down to observing the
pure strategies selected by the players.

Sprumont [2000] considers the collection S of cartesian products S1 × S2 × · · · × Sk with ∅ 6=
Sj ⊂ Aj and studies joint choice correspondences C : S →→ A that are decisive on S.
Such a correspondence C is said to be persistent under expansion if for each S and T in S it
holds that C(S) ∩ C(T ) ⊂ C(S ∨ T ), with S ∨ T the smallest choice set in S that includes S
and T .
Furthermore, C is said to be persistent under contraction if (i) for each S and T in S with T ⊂ S
it holds that C(S)∩T ⊂ C(T ) and (ii) for each S and T in S with T ⊂ Sa

j and C(Sa
j )∩T 6= ∅,

it holds that C(T ) ⊂ C(Sa
j ).

The next proposition phrases the equivalence between the two approaches. Of course, this propo-
sition mutually supports our results and those of Sprumont.

Proposition. Let C : S →→ A be a decisive joint choice correspondence. Then, C is noncooper-
ative and satisfies the congruence axiom (taking only the transitive closure into account) if and
only if C is persistent under expansion and persistent under contraction.
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Proof. First, assume C is noncooperative and satisfies the congruence axiom. Let us check
whether C is persistent under expansion. Let S and T in S. If a ∈ C(S) ∩ C(T ), then (use
noncooperation) a ∈ C(Sa

j ) ∩ C(T a
j ) for each j in J . Hence, the players reveal (a, b) ∈ Rv, j

for each b in Sa
j ∪ T a

j . If for player i in J we have a /∈ C ((S ∨ T )a
i ), then this player reveals to

strictly prefer some action b (the decisiveness of C implies the existence of such an action) over
a, i.e. (b, a) ∈ Pv, i. This contradicts the congruence axiom. Hence, a ∈ C

(
(S ∨ T )a

j

)
for each

j in J . Noncooperation implies a ∈ C(S ∨ T ).
We now verify persistence under contraction. Condition (i). Let T ⊂ S and a ∈ C(S) ∩ T .
Noncooperation implies that each player j selects a from the individual choice set Sa

j . The
congruence axiom implies that each player j selects a from the smaller choice set T a

j . Conclude
that a ∈ C(T ).
Contraction condition (ii). Let T ⊂ Sa

j , b ∈ C(Sa
j ) ∩ T , and a ∈ C(T ). As a consequence,

(a, b) ∈ Rv, j . Hence, if this player does not select a from Sa
j , there exists a d in Sa

j such that
(d, a) ∈ Pv, j . As b ∈ C(Sa

j ) and d ∈ Sa
j , it follows that (b, d) ∈ Rv, j . These observations

contradict the congruence axiom: (a, d) belongs to the transitive closure of Rv, j , while (d, a) ∈
Pv, j .

Next, suppose that C satisfies the persistence axioms. Let us check the congruence axiom.
Hence, assume (a, b) belongs to the transitive closure of Rv, j with j in J . Denote the sequence
from a to b by a = x1, x2, . . . , xt+1 = b, i.e. we have (x1, x2), (x2, x3), . . . , (xt, xt+1) ∈ Rv j .
As player j is only able to reveal preferences conditional upon a status quo of his opponents, it
must be the case that x1, x2, . . . , xt+1 ∈ Aj × {a−j}, remember that a−j collects the strate-
gies of j’s opponents. Persistence under contraction (part i) allows us to focus on the sets
S` = {a1, a2, . . . , a`} with ` = 2, 3, . . . , t + 1. One can check that C(S`) ∩ S`−1 6= ∅. From
persistence under contraction (part ii) it follows that C(S`−1) ⊂ C(S`). Therefore, a ∈ C(St+1),
and a ∈ C({a, b}). Conclude that (b, a) /∈ Pv, j and (a, b) /∈ Rv, j .
Finally, we check for noncooperation. Let a ∈ C(Sa

j ) for each j in J . Persistence under expan-
sion implies a ∈ C(Sa

1 ∨ Sa
2 ∨ . . . ∨ Sa

k) = C(S). And, if a ∈ C(S), then a ∈ C(Sa
j ) for each j

(use persistence under contraction).
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CHAPTER 5

Conclusion

This chapter presents some generalizations (section 5.1), implementation issues (section 5.2) and
concluding remarks (section 5.3).

5.1 Generalizations
In subsection 5.1.1, we show that all the results from chapters 2 and 3 can be derived from
the assumption of the existence of a free ultrafilter instead of the stronger assumption of Zorn’s
lemma. In subsection 5.1.2, we discuss the generalization of Nash rationalizability (Cf. section
4.4) towards other properties. In section 5.1.3 we generalize the extension results that were
derived for the properties of monotonicity and strict monotonicity (Cf. section 2.3.3).

5.1.1 Ultrafilters and Zorn’s lemma
This section shows that we can strengthen the rationalizability results in chapters 1 and 2 by
using the existence of ultrafilters instead of Zorn’s lemma to derive theorem 2.2.

Theorems 3.1 and 3.2 in section 3.2 (ATARP and RTARP) can be derived from theorem 2.3 in
section 2.4 (F -rationalizability). In particular, lemma 3.1 in section 3.3 shows that the absolute
time consistent, transitive and impatient closure is a closure operator and the proof of lemma 3.2
in section 3.3 shows that this closure satisfies C7 (see section 2.2). Theorem 2.3 is derived from
theorem 2.1 in section 2.2 and this theorem relies on Zorn’s lemma.

It would appear that theorem 4.2 in section 4.3 (rationalizability by an independent ordering) is
also a special case of theorem 2.3 in section 2.4. However, this is not true, for the following
reason.

61



Chapter: 5 Section: 1

Theorem 4.2 is based on theorem 4.1 which is based on the existence of a free ultrafilter1. The
existence of a free ultrafilter is guaranteed by Zorn’s lemma. However, Zorn’s lemma can not be
derived from the existence of free ultrafilters alone.

It turns out that it is still possible to prove the rationalizability results in chapters 2 and 3 by only
using the existence of free ultrafilters. In order to do this, we adjust theorem 2.2 from section 2.2
in the following way.

Theorem 5.1. Let F be an algebraic closure operator and let R∗ = {R ∈ R|R � F (R). If F
satisfies:

C7’ For all R = F (R), if N(R) 6= ∅, then for all (a, b) ∈ N(R), there exists a relation
T ⊆ N(R) that contains (a, b) and R ∪ T ∈ R∗.

Then, in order that a relation R has a complete extension R∗ = F (R∗) it is necessary and
sufficient that F (R) ∩ P (R)−1 = ∅.

The proof is very similar to the proof of theorem 4.1 in section 4.2 and is left to the reader. Con-
dition C7′ is stronger than condition C7 but it is satisfied for every closure operator encountered
in this monograph2. The difference between C7 and C7′ is that the latter requires that R can be
extended to a larger relation (in R∗) in any possible ‘direction’. This allows us to find for any
finite set of alternatives an extension of R in R∗ which is complete over this finite set. C7 only
states that R should be extendible to a larger relation inR∗.

A straightforward consequence of Theorem 5.1 is the following corollary:

Corollary 5.1. Let F : R → R be an algebraic closure operator that satisfies C7′ and assume
that T (R) ⊆ F (R) for all R ∈ R.
Then, the choice function C is rationalizable by a complete relation R∗ = F (R∗) if and only if:

F (Rv) ∩ P−1
v = ∅.

Corollary 5.1 implies that we can reproduce all the rationalizability results in chapter 2 and 3 via
the existence of free ultrafilters instead of Zorn’s lemma. This strengthens the derived rational-
izability results. However, we should keep in mind that the results remain non-constructive.

5.1.2 Nash rationalizability
In this section, we generalize the Nash rationalizability characterization (theorem 4.3 in section
4.4) towards other properties. We derive Nash rationalizability results for profiles of preference

1A filter F on the set X is a collection of subsets of X such that i) ∅ /∈ F , ii) for all A,B ∈ F , A ∩B ∈ F and
iii) if A ∈ F and A ⊆ B, then B ∈ F . An ultrafilter is a maximal filter and a free ultrafilter is an ultrafilter which
does not contain a finite subset of X .

2The method for proving the validity of condition C7 in chapters 2 and 3 was to take any element (a, b) ∈ N(R)
and verify that R ∪ {(a, b)} ∈ R∗.
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orderings which are convex, homothetic, monotonic or absolute (relative) time-consistent and
impatient.

We develop a similar frameword as in section 4.4. Let J = {1, ..., k} be the set of players and
correspond to each player j a set of actions Aj . The set of action profiles is given by A =
A1 × A2 × ...× Ak. We denote a strategy profile a ∈ A also as (aj, a−j) where a−j collects the
strategies of j’s opponents. An outcome function d : A → X corresponds with each element
a ∈ A an element, d(a) from the set of alternatives X . A choice set S is a cartesian product of
S1 × S2 × . . . × Sk ⊆ A with Sj a non-empty subset of Aj . For aj ∈ Sj , we denote the choice
set {a1} × . . .× {aj−1} × Sj × {aj+1} × ...× {ak} also by Sa

j .

Let S be a collection of choice sets. A joint choice function K is a correspondence

K : S −→→ ∆J : S 7−→ K(S) ⊆ S.

We assume that for all S ∈ S and all a ∈ S, j ∈ J , Sa
j ∈ S. Furthermore, we assume that for all

S ∈ S, j ∈ J and a ∈ S, K(Sa
j ) 6= ∅. Let F : R → R be a function that satisfies C1, C2 and

C3 (Cf. section 2.2) and assume that T (R) ⊆ F (R) for all relations R in X (where T (R) is the
transitive closure of R).

Following section 4.4, we say that a choice function K is Nash-rationalizable if there exist com-
plete relations R∗

1 = F (R∗
1), R

∗
2 = F (R∗

2), . . . , R
∗
k = F (R∗

k) in X such that for all j ∈ J and all
S ∈ S:

a ∈ K(S) if and only if d(a) ∈M(R∗
j |d(Sa

j )).

Where a ∈ M(R∗
j |d(S)) if and only if a ∈ S and (d(a), d(b)) ∈ R∗

j for all b ∈ S. We define
the revealed preference relations Rv, j and Pv, j as in section 4.4: (x, y) ∈ Rv, j if there exist an
a ∈ A and an Sa

j ∈ S such that b ∈ Sa
j , a ∈ K(Sa

j ), and (x, y) = (d(a), d(b)). We say that
(x, y) ∈ Pv, j if there exist an a ∈ A and an Sa

j ∈ S such that a ∈ K(Sa
j ), b ∈ Sa

j −K(Sa
j ), and

(x, y) = (d(a), d(b)).

We can now present following generalization of theorem 4.3 in section 4.4.

Theorem 5.2. Let F : R→ R be an algebraic closure operator and assume that T (R) ⊆ F (R)
for all R ∈ R.

Then, the choice function K is Nash rationalizable if and only if K is noncooperative (a ∈
K(S)↔ a ∈ K(Sa

j ) for all j ∈ J) and for all j ∈ J: F (Rv, j) ∩ P−1
v, j = ∅.

The proof is a simple adaptation of the proof of theorem 4.3 in section 4.4 (with the use of
theorem 2.3 in section 2.4) and is left to the reader. Theorem 5.2 can easily be applied to the
closures C, H , C̄, and B from chapter 2 and 3.

5.1.3 Generalizing (strict) monotonicity
In this section, we generalize the extension results for the properties of monotonicity and strict
monotonicity. This leads to a characterizations that gives necessary and sufficient conditions
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for a set of relations R1, . . . Rn to have a common extension R∗ = F (R∗) which satisfies the
additional property that Rj ⊆ R∗ for all relations Rj in some set {Rn+1, . . . Rm}. We give an
example at the end of this section.

Recall from definitions 2.6 and 2.7 in section 2.3.3 that a relation R is monotonic if (a, b) ∈ R
for all a, b ∈ X with a ≥ b and it is strict monotonic if in addition a > b implies (a, b) ∈ P (R).
Now, let (a, b) ∈ Q if and only if a ≥ b. Then, R is monotonic if and only if Q ⊆ R and R is
strict monotonic if and only if Q � R (i.e. R is an extension of Q).

Let F : R → R be an algebraic closure operator that satisfies condition C7 (see section 2.2).
From section 2.3.3 we know that a relation R has a complete and monotonic extension R∗ =
F (R∗) if and only if:

F (R ∪Q) ∩ P (R)−1 = ∅.

And a relation has a complete and strict monotonic extension R∗ = F (R∗) if and only if:

F (R ∪Q) ∩ P (R)−1 = ∅ and F (R ∪Q) ∩ P (Q)−1 = ∅.

Let us abstain from the property of monotonicity and assume that Q represents an arbitrary
relation in X . The above extension results generalize to:

Lemma 5.1. Let F : R → R be an algebraic closure operator. A relation R has a complete
extension R∗ = F (R∗) with Q ⊆ R∗ if and only if

F (R ∪Q) ∩ P (R)−1 = ∅.

A relation R has a complete extension R∗ = F (R∗) with Q � R∗ if and only if

F (R ∪Q) ∩ P (R)−1 = ∅ and F (R ∪Q) ∩ P (Q)−1 = ∅.

The validity of this lemma can be established along the lines of the argument developed in section
2.3.3 and is left to the reader. Let us insert a result from Suzumura [2004], which is a special
case of lemma 5.1:

Proposition. Let R be a binary relation on X , S a subset of X such that x 6= y and x, y ∈ S
then x, y /∈ T (R), and Q an ordering on S. Then there exists an ordering extension R∗ of R such
that the restriction of R∗ on S coincides with Q if and only if

T (R) ∩ P (R)−1 = ∅.

To see that this proposition is indeed a special case of lemma 5.1, observe first that T (R) ∩
P (R)−1 = ∅ is a necessary condition. To see sufficiency, notice that R∗ can be defined as
an ordering extension of both R and Q. The existence of such extension is, by lemma 5.1,
characterized by the conditions

i. T (R ∪Q) ∩ P (R)−1 = ∅ and,
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ii. T (R ∪Q) ∩ P (Q)−1 = ∅.

Let us show that a violation of one of these conditions implies that T (R) ∩ P (R)−1 6= ∅.
i) Assume that (a, b) ∈ T (R ∪ Q) and (b, a) ∈ P (R). Then there is a sequence3 s such that
s(1) = a, s(ns) = b and for all i = 1, . . . , ns−1, (s(i), s(i + 1)) ∈ R ∪ Q. Let ` be the largest
integer such that (s(`), s(`+1)) ∈ Q and let f be the smallest integer such that (s(f), s(f +1)) ∈
Q. (If there is no such ` and f , then (a, b) ∈ T (R), which provides the required contradiction.)
Then, we derive that (s(` + 1), s(f)) ∈ T (R) which contradicts {s(` + 1), s(f)} ⊆ S.

ii) Assume that (a, b) ∈ T (R ∪ Q) and (b, a) ∈ P (Q). Then there is a sequence s such that
s(1) = a, s(ns) = b and for all i = 1, . . . , ns, (s(i), s(i + 1)) ∈ R ∪ Q. Let ` be the largest
integer such that (s(`), s(` + 1)) ∈ Q. (If there is no such `, then (a, b) ∈ T (R), contradicting
{a, b} ⊆ S.) Conclude that (s(` + 1), b) ∈ T (R), contradicting {s(` + 1), b} ⊆ S.

Lemma 5.1 above can be further generalized to include any finite number of relations. In partic-
ular:

Theorem 5.3. Let F : R → R be an algebraic closure operator. Then, a set of relations
R1, ..., Rn has a (common) complete extension R∗ = F (R∗) with Rj ⊆ R∗ (j = n + 1, . . . ,m)
if and only if:

F

(⋃
j≤m

Rj

)
∩ P (Ri)

−1 = ∅ for all i ≤ n.

Theorem 5.3 may have some importance for establishing existence results. Let us give an exam-
ple from social choice theory.

Consider a finite number of individuals J = {1, . . . , k} each with a complete and transitive re-
lation Ri over X × J . We say that ((a, l), (b, j)) ∈ Ri if individual i judges being in position
l when state a prevails at least as good as being in position j when state b prevails. The prefer-
ence relations Ri are called extended preference orderings (see, among others, Suzumura [1983,
chapter 5]). Let Ri = Ri ∩ (X × {i}). The Pareto relation S on X is given by (a, b) ∈ S if
(a, b) ∈

⋂
i∈J Ri. We say that the social welfare ordering R∗ on X satisfies the Pareto property

if S � R∗.

Let H(x) ⊆ J × J be the relation given by (i, j) ∈ H(x) if ((x, j), (x, i)) ∈ P (Ri), i.e.
individual i judges being in position j better then being in position i when x prevails. In other
words, individual i envies j at x. We can define the equity relation E on X by (x, y) ∈ E if
H(x) ⊆ H(y). We have that (x, y) ∈ E if and only if (if i envies j at state x) then (i envies
j at state y). We say that the social welfare ordering, R∗ on X satisfies the equity property if
E � R∗.

We can use theorem 5.3 to characterizes the set of relations {Ri}i∈J such that there exists a Pareto
and equitable social welfare ordering, i.e.

T (S ∪ E) ∩ P (S)−1 = ∅ and T (S ∪ E) ∩ P (E)−1 = ∅.
3The definition of a sequence is given by definition 2.3 in section 2.3.1
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5.2 Implementation issues
The ultimate goal for the rationalizability tests in this dissertation is to be used in empirical
research to test whether the rational choice hypothesis holds (see also chapter 1). An empirical
setting consists of (a finite number of) observations (A, A′), A ∈ Σ ⊆ 2X − {∅} where A is a
set of alternatives and A′ is the set of alternatives that are chosen from A. In terms of a choice
function K, we can write K(A) = A′. From this choice function we can construct the revealed
preference relations Rv and Pv and verify whether the rationalizability test, F (Rv) ∩ P−1

v = ∅
(Cf. section 2.4), holds.

The verification of this test may be computationally very demanding. In most occasions (when
the choice sets are infinite) we have that Rv, and hence also, F (Rv) are infinite. In this chapter,
we give some results, which considerably simplify the rationalizability tests. We also point out
which issues remain to be solved in order to operationalize the tests.

5.2.1 Monotonicity
Let X ⊆ Rm. From section 2.4, we know that a choice function can be rationalized by a
transitive, monotonic and complete relation if and only if:

T (Rv) ∩ P−1
v = ∅.

Let Q represent the transitive relation≥, i.e. (a, b) ∈ Q if and only if a ≥ b. Then we can rewrite
the rationalizability condition as:

T (Rv ∪Q) ∩ P−1
v = ∅.

Let D =
⋃

A∈Σ K(A). The aim of this section is to rewrite the above rationalizability conditions
as a condition involving only subrelations of D×D. For a relation R, define R = R ∩ (D×D)
and for two relations R and T let us write (a, b) ∈ R◦T if there exits a c ∈ X such that (a, c) ∈ R
and (c, b) ∈ T . Obviously R ◦ (T ◦ S) = (R ◦ T ) ◦ S, hence, we can abuse notation without
introducing ambiguities and write also R◦T ◦S. Furthermore, it is easy to see that (a, b) ∈ T (R)
if and only if there exist an n ∈ N such that

(a, b) ∈ R ◦R ◦ . . . ◦R︸ ︷︷ ︸
n times

.

We have the following result.

Lemma 5.2.
T (R ∪Q) = Q ∪ [Q ◦ T (Rv ◦Q) ◦Rv ◦Q].

Proof. (⊆). Let (a, b) ∈ T (Rv ∪Q). Then there exist an n ∈ N such that:

(a, b) ∈ (Rv ∪Q) ◦ (Rv ∪Q) ◦ . . . ◦ (Rv ∪Q)︸ ︷︷ ︸
n times

.
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We show that (a, b) ∈ Q∪ [Q ◦ T (Rv ◦Q) ◦Rv ◦Q] by induction on n. If n = 1, we derive that
(a, b) ∈ Rv ∪Q. If (a, b) ∈ Q, we are done, so assume that (a, b) ∈ Rv. By reflexivity of Q and
a ∈ D, we derive that (a, a) ∈ Q, (a, a) ∈ T (Rv ◦Q), (a, b) ∈ Rv and (b, b) ∈ Q. Conclude
that (a, b) ∈ Q ∪ [Q ◦ T (Rv ◦Q) ◦Rv ◦Q].

Assume that the property holds for n = ` and take the case where n = ` + 1. From the induction
hypothesis we derive that there is an element c such that (a, c) ∈ Q∪[Q◦T (Rv ◦Q)◦Rv◦Q] and
(c, b) ∈ Q ∪ Rv. If (a, c) ∈ Q and (c, b) ∈ Q, we derive from transitivity of Q that (a, b) ∈ Q.
If (a, c) ∈ Q and (c, b) ∈ Rv, we derive from reflexivity of Q and c ∈ D that (a, c) ∈ Q,
(c, c) ∈ T (Rv ◦Q), (c, b) ∈ Rv and (b, b) ∈ Q. Conclude that (a, b) ∈ [Q ◦T (Rv ◦Q)◦Rv ◦Q].
If (a, c) ∈ [Q ◦ T (Rv ◦Q) ◦ Rv ◦ Q] and (c, b) ∈ Q, we derive that (a, b) ∈ [Q ◦ T (Rv ◦Q) ◦
Rv ◦Q] ◦Q = [Q ◦ T (Rv ◦Q) ◦Rv ◦Q]. If (a, c) ∈ [Q ◦ T (Rv ◦Q) ◦Rv ◦Q] and (c, b) ∈ Rv.
Then (a, b) ∈ [Q ◦ T (Rv ◦Q) ◦Rv ◦Q] ◦Rv ⊆ [Q ◦ T (Rv ◦Q) ◦Rv ◦Q].

(⊇). This follows from observing that Q ⊆ T (Rv ∪Q), T (Rv ◦Q) ⊆ T (Rv ∪Q) and Rv ◦Q ⊆
T (Rv ∪Q).

Theorem 5.4. A choice function is rationalizable by a complete, monotonic and transitive rela-
tion if and only if

T (R ◦Q) ∩ (Pv ◦Q)−1 = ∅,

and
Q ∩ P−1

v = ∅.

Proof. From lemma 5.2 we know that a choice function is rationalizable by a complete, transitive
and monotonic relation if and only if(

Q ∪ [Q ◦ T (Rv ◦Q) ◦Rv ◦Q]
)
∩ P−1

v = ∅.

This holds if Q ∩ P−1
v = ∅ and [Q ◦ T (Rv ◦Q) ◦Rv ◦Q] ∩ P−1

v = ∅. Let us rewrite this second
condition.

Q ◦ T (Rv ◦Q) ◦Rv ◦Q ∩ P−1
v = ∅

l

Q ◦ T (Rv ◦Q) ◦Rv ◦Q ∩ P−1
v = ∅

l

Q ◦ T (Rv ◦Q) ∩ P−1
v = ∅

l

T (Rv ◦Q) ∩ (Pv ◦Q)−1 = ∅

l

T (Rv ◦Q) ∩ (Pv ◦Q)−1 = ∅
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The advantage of the condition in theorem 5.4, i.e. T (Rv ◦Q)∩(Pv ◦Q) = ∅ is that the relations
Rv ◦Q and Pv ◦Q contain, in general, less elements then the relations R ∪ Q and Pv. In order
to test the rationalizability criterion, we can take the following procedure:

i. Compute the relations Rv ◦Q and Pv ◦Q.

The easiest way to do this is by a reverse procedure. For each b ∈ D, consider

A(b) =

{
a ∈ D

∣∣∣∣ ∃A ∈ Σ with a ∈ K(a)
and ∃c ∈ A with c ≥ b

}
.

Then (a, b) ∈ Rv ◦Q if and only if b ∈ D, and a ∈ A(b). Observe that for all a ∈ D,
(a, a) ∈ Rv ◦Q. Consider the set

B(b) =

{
a ∈ D

∣∣∣∣ ∃A ∈ Σ with a ∈ K(A)
and ∃c ∈ A−K(A) with c ≥ a

}
.

Then (a, b) ∈ Pv ◦Q if and only if b ∈ D and a ∈ B(b)4.

ii. Compute the transitive closure of Rv ◦Q.

The transitive closure T (Rv ◦Q) can be computed along the lines of
Warschall’s algorithm (see Varian [1982]). Consider an enumeration of the elements in
D = {d1, d2, . . . dn} and consider the n× n matrix r1 where ri, j = 1 if (di, dj) ∈ Rv ◦Q
and ri, j = 0 if (di, dj) /∈ Rv ◦Q. Consider following algorithm:

1. Initialize t = 1. Go to step 2.

2. Construct rt+1 such that for all i and j in {1, . . . , n}:

rt+1
i, j = max

k∈{1,...,n}
{min{rt

i, k , rt
k, j}}.

Go to step 3.

3. If rt+1 = rt, then we define r = rt and we stop. Else, we augment t by one (t = t+1)
and return to step 2.

The matrix r satisfies that ri, j = 1 if and only if (di, dj) ∈ T (Rv ◦Q).

iii. Verify that T (Rv ◦Q) ∩ (Pv ◦Q)−1 = ∅ and that Q ∩ P−1
v = ∅.

4Observe that if all choice sets A ∈ Σ are comprehensive (i.e. if x ∈ A and x ≥ y then y ∈ A), then A(b) =
{a ∈ D|(a, b) ∈ Rv} and B(b) = {a ∈ D|(a, b) ∈ Pv}, which would imply that Rv ◦Q = Rv , Pv ◦Q = Pv , and
as a consequence T (Rv ◦Q) ∩ P−1 ◦Q

v
= ∅ if and only if T (Rv) ∩ Pv

−1 = ∅.
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5.2.2 Strict monotonicity
A choice function is rationalizable by a strict monotonic, transitive and complete relation if and
only if

T (Rv) ∩ P−1
v = ∅ and a > b implies (b, a) /∈ T (Rv).

Define the relations W as (a, b) ∈ W if and only if a > b. A choice function is rationalizable by
a strict monotonic, transitive and complete relation if and only if:

T (R ∪Q) ∩ P−1
v = ∅ and T (R ∪Q) ∩W−1 = ∅.

Theorem 5.5. A choice function is rationalizable by a strict monotonic, transitive and complete
relation if and only if

T (Rv ◦Q) ∩ (Pv ◦Q)−1 = ∅,

Q ∩ P−1
v = ∅,

and
T (Rv ◦Q) ∩ (Rv ◦W )−1 = ∅.

Proof. The first two conditions are similar to theorem 5.4, so we only verify the last.

T (Rv ◦Q) ∩W−1 = ∅

l
Q ◦ T (Rv ◦Q) ◦Rv ◦Q ∩W−1 = ∅

l
T (Rv ◦Q) ◦Rv ∩ (Q ◦W ◦Q)−1 = ∅

l
T (Rv ◦Q) ◦Rv ∩W−1 = ∅

l
T (Rv ◦Q) ∩ (Rv ◦W )−1 = ∅

l
T (Rv ◦Q) ∩ (Rv ◦W )−1 = ∅.

The relation Rv ◦W can be computed in the same manner as the relation Rv ◦Q: for each b ∈ D,
construct the set,

C(b) = {a ∈ D|∃A ∈ Σ with a ∈ K(A) and ∃c ∈ A with c > b}.

We have that (a, b) ∈ Rv ◦W if and only if b ∈ D, and a ∈ C(b).
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5.2.3 Homotheticity
Let X be a cone in Rm

+ . From section 2.4, we know that a choice function is rationalizable by a
complete, transitive, homothetic and monotonic relation if and only if

H(Rv) ∩ P−1
v = ∅.

Let X ⊆ Rn
+ and define the relation R•S as (a, b) ∈ R•Q if there exist a c ∈ X and α, β ∈ R++

such that (αa, αc) ∈ R and (βc, βb) ∈ S. Clearly (R • S) • T = R • (S • T ) hence we can
again abuse notation without introducing ambiguities and write this also as R • S • T . It is easy
to establish that (a, b) ∈ H(R) if and only if there exist an n ∈ N such that:

(a, b) ∈ (R ∪Q) • (R ∪Q) • . . . • (R ∪Q)︸ ︷︷ ︸
n times

.

Define the function T̃ by (a, b) ∈ T̃ (R) if there exists an n ∈ N such that:

(a, b) ∈ R •R • . . . •R︸ ︷︷ ︸
n times

.

Consider the set

D =

{
a ∈ X|∃α ∈ R++ such that a = α a′ and a′ ∈

⋃
A∈Σ

K(A)

}
.

For a relation R in X , define R = R ∩ (D ×D). Observe that if (a, b) ∈ Rv •Q, then a ∈ D.

Lemma 5.3.
H(Rv) = Q ∪ [Q • T̃ (Rv •Q) ◦Rv •Q].

Proof. (⊆) Let (a, b) ∈ H(Rv). Then there exists an n ∈ N such that:

(a, b) ∈ (Rv ∪Q) • (Rv ∪Q) • . . . • (Rv ∪Q)︸ ︷︷ ︸
n times

.

We validate the proof by induction on n. If n = 1, we have that (a, b) ∈ Rv ∪ Q. If (a, b) ∈ Q,
there is nothing to proof, so assume that (a, b) ∈ Rv. From reflexivity of Q and a ∈ D, we derive
that (a, a) ∈ Q, (a, a) ∈ T̃ (Rv •Q), (a, b) ∈ Rv and (b, b) ∈ Q.

Assume that the result holds for n = ` and consider the case where n = ` + 1. Then there is an
element c ∈ X and elements α and β ∈ R++ such that (αa, αc) ∈ Q∪ [Q • T̃ (Rv •Q) •Rv •Q]
and (βc, βa) ∈ Rv ∪ Q. If (αa, αc) ∈ Q and (βc, βb) ∈ Q, we derive that (a, b) ∈ Q and
we are done. If (αa, αc) ∈ Q and (βc, βb) ∈ Rv, we derive from reflexivity of Q and c ∈ D

that (αa, αa) ∈ Q, (βc, βc) ∈ T̃ (Rv ◦Q), (βc, βb) ∈ Rv and (βb, βb) ∈ Q. Conclude that
(a, b) ∈ [Q • T̃ (Rv •Q) • Rv • Q]. If (αa, αc) ∈ [Q • T̃ (Rv •Q) • Rv • Q] and (βc, βb) ∈ Q,
we derive that (a, b) ∈ [Q • T̃ (Rv •Q) •Rv •Q] •Q = [Q • T̃ (Rv •Q) •Rv •Q]. If (αa, αc) ∈
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[Q • T̃ (Rv •Q) • Rv • Q] and (βc, βb) ∈ Rv, then (a, c) ∈ [Q • T̃ (Rv •Q) • Rv • Q] • Rv ⊆
[Q • T̃ (Rv •Q) •Rv •Q].

(⊇) The conclusion follows from the fact that Q, Rv and T̃ (Rv ∪Q) are subsets of T̃ (Rv ∪
Q).

Theorem 5.6. A choice function is rationalizable by a complete, homothetic and complete rela-
tion if and only if

T̃ (Rv •Q) ∩ (Pv •Q)−1 = ∅.

and
Q ∩ P−1

v = ∅.

The proof of this theorem is very similar to the proof of theorem 5.4 and is left to the reader. In
order to test the rationalizability criterion one can follow following procedure:

i. Compute Rv •Q and Pv •Q.

The relation Rv •Q can be computed in the following way: for each b ∈
⋃

A∈Σ K(A) let

A(b, γ) = {a ∈ X|∃A ∈ Σ with a ∈ K(A) and ∃c ∈ A with γ c ≥ b}.

Then for all b ∈
⋃

A∈Σ K(A), γ ∈ R++, a ∈ A(b, γ) and α ∈ R++, we have that5

(α a, α
γ

b) ∈ Rv •Q. Observe that if a ∈ A(b, γ), then a ∈ A(b, δ) for all δ ≥ γ.

Therefore, if
⋃

A∈Σ K(A) is finite, then we can construct a finite set V of elements (a, b, γ̃) ∈(⋃
A∈Σ K(A)×

⋃
A∈Σ K(A)× R++

)
such that (a, b, γ̃) ∈ V if and only if for all α ∈ R++

and all γ ∈ R++ with γ ≥ γ̃ we have that (α a, α
γ

b) ∈ Rv •Q.

The relation Pv •Q can be computed in a similar manner by using the set B(b, γ) instead
of A(b, γ).

B(b, γ) =

{
a ∈ X

∣∣∣∣ ∃A ∈ Σ with a ∈ K(A)
and ∃c ∈ A−K(A) with γ c ≥ b

}
.

ii. Compute T̃ (Rv •Q).

This function may be computed in the following way. Consider an enumeration of the
elements in

⋃
A∈Σ K(A), i.e. {d1, . . . , dn} and let r1 be the n × n matrix where ri, j = γ

if (a, b, γ) ∈ V and r1
i, j = 0 if there is not an element γ ∈ R++ such that (a, b, γ) ∈ V .

Observe that for all i ∈ {1, . . . , n}, 0 < r1
i i ≤ 1. Consider the following algorithm:

5In cases where all sets A ∈ Σ are comprehensive (i.e. if x ∈ A then for all y ≤ x, y ∈ A), this simplifies to
(α a, α

γ b) ∈ Rv •Q if and only if (a, 1
γ b) ∈ Rv .
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1. Initialize t = 1. Go to step 2.

2. Construct the matrix rt+1 such that for all i, j ∈ {1, . . . , n}:

rt+1
i, j = min

k∈{1,...,n}
{γ · δ|rk

i, k = γ > 0 and rt
k, j = δ > 0},

if it exists and set rt+1
i, j = 0 otherwise. Go to step 3.

3. if rt+1 = rt then we define r = rt and we stop. Else, we return to step 2.

We have that ri, j = γ̃ if and only if for all α ∈ R++ and all γ > γ̃, (α di,
α
γ

dj) ∈
T̃ (Rv •Q).

iii. Verify that T̃ (Rv •Q) ∩ Pv •Q = ∅ and that Q ∩ P−1
v = ∅.

5.2.4 Convexity
From section 2.4 we know that a choice function is rationalizable by a convex, transitive and
complete relation, if and only if:

C(Rv) ∩ P−1
v = ∅.

Consider the function C ′:

Definition 5.1. The function C ′ : R → R is given by (a, b) ∈ C ′(R) if there exists a sequence
s ∈ S where s(1) = a, s(ns) = b and for all i = 1, ..., ns−1, (s(i), s(i+1)) ∈ R or s(i) ∈ V (A)
for some A ∈ A(s(i)).

The function C ′ only uses one sequence in contrast to the function C that uses a finite number of
sequences. However, it turns out that C(Rv) ∩ P−1

v = ∅ if and only if C ′(Rv) ∩ P−1
v = ∅.

Lemma 5.4. A choice function satisfies C(Rv) ∩ P−1
v = ∅ if and only if C ′(Rv) ∩ P−1

v = ∅.

Proof. (→) Straightforward as C ′(Rv) ⊆ C(Rv).

(←) Let C ′(Rv)∩P (R)−1 = ∅ and assume that, on the contrary, (a, b) ∈ C(Rv) and (b, a) ∈ Pv.
Then there are sequences s1, . . . , sm where for all j = 1, . . . ,m, sj(1) = a, sj(nsj

) = b and for
all i = 1, . . . , nsj

− 1, (sj(i), sj(i + 1)) ∈ Rv or sj(i) ∈ V (A) where A ∈ A(sj(i)).

Construct the sequence s′ = s1 ⊕ s2 ⊕ s3 ⊕ ... ⊕ sm and observe that (a, b) ∈ C ′(Rv). Hence,
(a, b) ∈ C ′(Rv) and (b, a) ∈ Pv, a contradiction.

The function C ′ has the advantage that it uses only a single sequence. The computation of the
relation C ′(Rv) may still be very complicated, so it should be interesting to see if it is possible
to further simplify the condition C ′(Rv) ∩ P−1

v = ∅. We leave this for future research.
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5.2.5 Time-consistency and impatience
Let us return to chapter 3 where our set of alternatives was given by X × T . Theorem 3.1
in section 3.2 states that a choice function can be rationalized by a complete, absolute-time
consistent, transitive and impatient relation if and only if:

B(Rv) ∩ P−1
v = ∅.

Where Rv = Rv ∪ R̃v and

R̃v = {((a, t), (a, v))|a ∈ L(B(Rv)) and t ≤ v}
∪ {((a, t), (a, v))|a ∈ U(B(Rv)) and t ≥ v}.

Let us define R̂v as R̃v ∪ {((a, t), (a, t))|a ∈ X, t ∈ T}. For two relations R and S we write
((a, t), (b, v)) ∈ R ∗ S if there exist an element c ∈ X and elements t1, t2, v1 and v2 ∈ T such
that ((a, t1), (c, v1)) ∈ R, ((c, t2), (b, v2)) ∈ S and t−v = t1−v1 + t2−v2. It is easy to establish
that (R ∗ S) ∗ T = R ∗ (S ∗ T ), hence we can abuse notation without introducing ambiguities
and write also R ∗ S ∗ T . Further, we have that ((a, t), (b, v)) ∈ B(R) if there exist an n ∈ N
such that:

((a, t), (b, v)) ∈ R ∗R ∗ . . . ∗R︸ ︷︷ ︸
n times

.

Let

D =

{
(a, t)|∃v ∈ T such that (a, v) ∈

⋃
A∈Σ

K(A)

}
.

We have the following result:

Lemma 5.5.
B(Rv ∪ R̃v) = R̂v ∪ [R̂v ∗B(Rv ∗ R̂v) ∗Rv ∗ R̂v].

Proof. (⊆). Let ((a, t), (b, v)) ∈ B(Rv ∪ R̂v). Then there exist a number n ∈ N such that:

((a, t), (b, v)) ∈ (Rv ∪ R̂v) ∗ (Rv ∪ R̂v) ∗ . . . ∗ (Rv ∪ R̂v)︸ ︷︷ ︸
n times

.

We work by induction on n. For n = 1, we have that ((a, t), (b, v)) ∈ Rv∪R̂v. If ((a, t), (b, v)) ∈
R̂v, there is nothing to prove so assume that ((a, t), (b, v)) ∈ Rv. From reflexivity of R̂v and
(a, t) ∈ D, we derive that ((a, t), (a, t)) ∈ R̂v, ((a, t), (a, t)) ∈ B(Rv ∗ R̂v), ((a, t), (b, v)) ∈ Rv

and ((b, v), (b, v)) ∈ R̂v. From t − v = t − t + t − t + t − v + v − v, we conclude that
((a, t), (b, v)) ∈ [R̂v ∗B(Rv ∗ R̂v) ∗Rv ∗ R̂v].

Assume that the result holds for n = ` and take the case where n = ` + 1. Then there exists an
element c ∈ X and t1, v1, t2, v2, such that ((a, t1), (c, v1)) ∈ R̂v ∪ [R̂v ∗ B(Rv ∗ R̂v) ∗ Rv ∗ R̂v],
((c, t2), (b, v2)) ∈ R̂v ∪Rv and t− v = t1 − v1 + t2 − v2.
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If ((a, t1), (c, v1)) ∈ R̂v and ((c, t2), (b, v2)) ∈ R̂v, we derive that a = c and c = b. If t1− v1 = 0

and t2 − v2 = 0 then t − v = (t1 − v1) + (t2 − v2) = 0 and ((a, t), (a, v)) ∈ R̂v by definition
of R̂v. If t1 − v1 > 0 and t2 − v2 ≥ 0 (or t1 − v1 ≥ 0 and t2 − v2 > 0), we derive that
t− v = (t1− v1) + (t2− v2) > 0 and ((a, t), (a, v)) ∈ R̂v by definition of R̂v. The same applies
if both are negative. If t1− v1 < 0 and t2− v2 > 0 (or (t1− v1) > 0 and (t2− v2) < 0), we have
that ((a, t), (a, v)) ∈ R̂v for all t and v hence also for t− v = (t1 − v1) + (t2 − v2).

If ((a, t1), (c, v1)) ∈ R̂v and ((c, t2), (b, v2)) ∈ Rv, we derive from reflexivity of O and (c, t2) ∈
D that ((a, t1), (c, v1)) ∈ R̂v, ((c, t2), (c, t2)) ∈ B(Rv ∗O), ((c, t2), (b, v2)) ∈ Rv and ((b, v2), (b, v2)) ∈
R̂v. Noticing that t − v = t1 − v1 + t2 − t2 + t2 − v2 + v2 − v2, we may conclude that
((a, t), (b, v)) ∈ [R̂v ∗B(Rv ∗ R̂v) ∗Rv ∗ R̂v]. If ((a, t1), (c, v1)) ∈ [R̂v ∗B(Rv ∗ R̂v) ∗Rv ∗ R̂v]

and ((c, t2), (b, v2)) ∈ R̂v, we derive that ((a, t), (b, v)) ∈ [R̂v∗B(Rv ∗ R̂v)∗Rv∗R̂v]∗R̂v = [R̂v∗
B(Rv ∗ R̂v)∗Rv∗R̂v]. If ((a, t1), (c, v1)) ∈ [R̂v∗B(Rv ∗ R̂v)∗Rv∗R̂v] and ((c, t2), (b, v2)) ∈ Rv,
then ((a, t), (b, v)) ∈ [R̂v ∗B(Rv ∗ R̂v) ∗Rv ∗ R̂v] ∗Rv ⊆ [R̂v ∗B(Rv ∗ R̂v) ∗Rv ∗ R̂v].

(⊇) The result follows from noticing that R̂v, Rv and B(Rv ∗ R̂v) are subsets of B(Rv∪R̂v).

Theorem 5.7. A choice function is rationalizable by a complete, absolute time-consistent, tran-
sitive and impatient relation if and only if,

B(Rv ∗ R̂v) ∩ (Pv ∗ R̂v)
−1 = ∅.

and
R̂v ∩ P−1

v = ∅.

The proof is analogous to the proof of theorems 5.4 and 5.5 and is left to the reader. The (first
two) conditions for theorem 5.7 may be verified by following algorithm:

i. Compute the relations B(Rv ∗ R̂v) and Pv ∗ R̂v.

Observe that Rv ∗ R̂v = Rv ∗ R̂v. The relation Rv may be computed in the following way:
compute for any (b, v), (a, t) ∈

⋃
A∈Σ K(A), the set

A((a, t)(b, v)) =

{
q ∈ R

∣∣∣∣ ∃A ∈ Σ with (a, s) ∈ K(A)
and (b, s− q) ∈ A

}
.

Notice that A((a, t), (b, v)) does not depend on t and v, hence, we can write A((a, t), (b, v)) =
A(a, b). Consider the set D′,

D′ =

{
a ∈ X|∃v ∈ T, (a, v) ∈

⋃
A∈Σ

K(A)

}
.

Assume that the set D′ is finite. Consider an enumeration of the elements in D′ =
{d1, . . . , dn} and consider the n × n matrix r1 with elements in 2R (i.e. subsets of R).
If A(di, dj) exists, we set r1

i, j = A(di, dj) and if A(di, dj) does not exist, we set r1
i, j = ∅.

Observe that 0 ∈ rt
i, i for all i ≤ n. Consider the following algorithm:
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1. Initialize t = 1. Go to step 2.
2. Construct the matrices rt+1 and s such that for all i, j ∈ {1, . . . , n}:

a If for all dk ∈ D′ either rt
i, k = ∅ or rt

k, j = ∅, then si, j = ∅.
b If (a) does not hold, then

si, j = {a + b ∈ R|∃dk ∈ D′ with a ∈ rt
i, k and rt

k, j = b}.

c For all i ≤ n if si, i ∩ R++ 6= ∅, we set rt+1
i, i = si, i ∪ R+. If si, i ∩ R−− 6= ∅, we

set rt+1
i, i = si, i ∪ R+. If si, i ∩ R++ 6= ∅ and si, i ∩ R−− 6= ∅, we set si, i = R.

d For all i, j ≤ n with i 6= j, we set rt+1
i, j = si, j .

3. If rt+1 = rt, we stop and define r = rt. Else, we augment t by one (t = t + 1) and
we return to step 2.

The matrix r satisfies that q ∈ ri,j if and only if ((di, t), (dj, v)) ∈
B(Rv ∗ R̂v) for all t− v = q.

The set Pv ◦ R̂v may be computed in the following way. Observe first that for all i ≤ n,
((di, t), (di, v)) ∈ R̂v if and only if t− v ∈ B(Rv ∗ R̂v). Consider also the set B(a, b).

B(a, b) =

{
q ∈ R

∣∣∣∣ ∃A ∈ Σ for which (a, t) ∈ K(A)
and (b, t− q) ∈ A−K(A)

}
.

Construct the n × n matrix s1 with elements in 2R such that s1
i, j = B(di, dj) and define

for all i, j 6= n: si,j = {a + b ∈ R|a ∈ s1
i, j, b ∈ rj, j}. We have that q ∈ si, j if and only if

((di, t), (dj, v)) ∈ Pv ∗ R̂v for all t− v = q.

ii. Verify whether B(Rv ∗ R̂v) ∩ (Pv ∗O)−1 = ∅ and R̂v ∩ Pv = ∅.

The results in this section carry directly over to the property of relative time-consistency. In order
to do this, we need to redefine R ∗ S by (a, b) ∈ R ∗ Q if there exist a c ∈ X and t1, t2, v1 and
v2 ∈ T0 such that ((a, t1), (c, v1)) ∈ R, ((c, t2), (b, v2)) ∈ S and t+δ

v+δ
= (t1+δ)(t2+δ)

(v1+δ)(v2+δ)
.

5.2.6 Independence
From section 4.3, we know that a choice function is rationalizable by a complete, transitive and
independent relation if and only if

(a, b) ∈ Rv, T I implies (b, a) /∈ Pv,

where (a, b) ∈ Rv, T I if there exists a finite set {(xi, yi)i≤n} ∈ Rv and elements α1, . . . , αn in R+

such that

a− b =
n∑

i=1

αi(xi − yi).

Consider the set D = {x ∈ Rn|
∑

i xi = 0} of n-dimensional vectors whose elements sum to
zero. The rationalizability condition can be verified by the following algorithm:
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i. For each set A ∈ Σ and for each a ∈ K(A) and b ∈ A, compute the vectors a− b ∈ D.

ii. For each set A ∈ Σ, compute the smallest convex cone6 in D that contains the elements
from step i), i.e. compute the set {x =

∑
i αi(ai − bi), αi ≥ 0, ai ∈ K(A), bi ∈ A}.

iii. Compute the smallest convex cone in D that contains all convex cones from step ii).

iv. Compute for each set A ∈ Σ and each a ∈ K(A), and b ∈ A−K(A), the element x = a−b
in D. Verify if these elements are not contained in the cone constructed in step iii).

5.3 Concluding remarks
In the previous chapters, we developed extension (and rationalizability) characterizations for or-
derings which satisfy the additional property of convexity, monotonicity, homotheticity, absolute
time-independence and impatience or independence.

These characterizations have in common that they can be described by the condition:

F (R) ∩ P (R)−1 = ∅,

for some algebraic closure F : R→ R.

The collection of properties which were not discused can (roughly) be divided in three groups: i)
properties for which there exist characterizations that are easily deduced from characterizations
provided in this text, ii) properties for which the characterizations (if they exist) do not fit the
above framework and iii) properties which may have characterizations that fit into the above
framework but require further research. We conclude this thesis by giving an example for each
group of properties.

i). As an example of the first group of properties, we can refer to section 5.1.3 which discussed
generalizations for the extension results for (strict) monotonic relations.

ii). A relation R is said to be continuous if the sets LR(a) = {b ∈ X|(a, b) ∈ P (R)} and
UR(a) = {b ∈ X|(b, a) ∈ P (R)} are open sets for each a ∈ X . The relation R is upper
semicontinuous if LR(a) is open for each a ∈ X and it is lower semicontinuous if LR(a) is open
for each a ∈ X .

The existence of continuous ordering extensions depends on the topology under consideration,
e.g. if we take the discrete topology7, then every relation is continuous and the property of
continuity does not impose any additional requirement.

Jaffray [1975] and Bossert et al. [2002] start from a binary relation R in a set X and consider
the topology LR generated by the sets {LR(a)|a ∈ X}. Obviously, this implies that R is upper
semicontinuous. Their question reads:

6A cone is a subset A ⊆ D such that if x in A and α ≥ 0, then αx ∈ A. A cone, A is convex if for all a, b ∈ A
and α ∈ [0, 1], (αa + (1− α)b) ∈ A.

7A topology on X is discrete if every subset of X is open
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When does a relation R have an ordering extension which is upper semicontinuous with respect
to the topology LR.

Jaffray showed that transitivity of R is a sufficient condition. Bossert et al. relaxed this con-
dition towards consistency (i.e. T (R) ∩ P (R)−1 = ∅) in combination with a condition called
PI-comparability (i.e. if (a, b) ∈ P (R) and (b, c) ∈ I(R), then (a, c) /∈ N(R)) and towards
consistency in combination with PI-continuity (i.e. for all x ∈ X , the set {y ∈ X|∃z ∈
X such that (x, z) ∈ P (R) and (z, y) ∈ T (I(R))} is open in X). Similar results can be es-
tablished for the property of lower semi-continuity.

These results provide sufficient conditions but do not give a characterization. Two other disad-
vantages are that they focus only on semicontinuity and that they start from relations that are
already semi continuous. In order to relax these assumptions we have to start with a predefined
topology L on a set X , and an arbitrary relation R in X . The question then becomes:

When does the relation R have an ordering extension which is continuous with respect to L.

Herden and Pallack [2002] offer a first step towards an answer but they do not get to a ‘full
characterization’. In particular, they characterize the existence of continuous ordering extensions
by the existence of another mathematical structure8 (R-separable systems).

Unfortunately, the property of continuity is not easily applicable to the framework that we de-
veloped. To grasp some intuition for this, consider for instance an algebraic closure operator,
F , that relates to the property of continuity, i.e. we would like to have that R has a continuous
ordering extension if and only if F (R) ∩ P (R)−1 = ∅.

Consider a relation R in the set Rm that violates continuity, e.g. (b, a) ∈ P (R) and there is a
sequence {ai}i∈N that converges to a, such that for all n ∈ N, (an, b) ∈ R. As F is a closure
operator, we should have that F (R) =

⋂
{Q ⊇ R|Q = F (Q)} (see lemma 2.5). Each Q = F (Q)

should not violate continuity. Indeed if it does, then it has no continuous ordering extension
(which contradicts F (Q) ∩ P (Q)−1 = ∅). Hence, we should have that (b, a) /∈ P (Q′) for all
Q′ ∈ {Q ⊇ R|Q = F (Q)}. Using (b, a) ∈ P (R), we can conclude that (a, b) ∈ Q′ for all
Q′ ∈ {Q ⊇ R|Q = F (Q)}, hence (a, b) ∈ F (R).

If F is algebraic, there should exist a finite subset R′ of R for which (a, b) ∈ F (R′). How-
ever, from finiteness of R′, there does not exist a sequence {ai}i∈N converging to a that satisfies
(an, b) ∈ R′ for all n ∈ N. As such there seems to be no particular reason why (a, b) ∈ F (R′)
for any finite R′ ⊆ R.

iii). For the third set of properties, we give the example of separability. A relation R in X ×X
is separable if ((a, c), (b, c)) ∈ R implies that ((a, d), (b, d)) ∈ R for all d ∈ X .

Define (a, b) ∈ QR if there exist an element c ∈ X such that ((a, c), (b, c)) ∈ R. Then clearly,
for the existence of a separable ordering extension R∗ it should be the case that both T (R) ∩
P (R)−1 = ∅ and that T (QR) ∩ P (QR)−1 = ∅. However, these conditions are not sufficient.

8In contrast, our characterization results demonstrates the equivalence between a statement (in prenex normal
form) that involves an existential quantifier: there exists a complete extension R∗ = F (R∗) of R, and a statement
(in prenex normal form) that involves only universal quantifiers: for all (a, b) ∈ F (R), (b, a) /∈ P (R).
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Indeed, let X = {a, b, c, d, e} and assume that

R = {((a, b), (c, d)), ((c, d), (e, b)), ((e, d), (a, d))}.

Then T (R) ∩ P (R)−1 = ∅ and T (QR) ∩ P (QR)−1 = ∅. But R has no separable ordering
extension. If, on the contrary, R∗ were such an extension then ((a, b), (e, b)) ∈ T (R) ⊆ R∗ and
((e, d), (a, d)) ∈ P (R) ⊆ P (R∗), contradicting separability.

The development of an algebraic closure operator that relates to the property of separability and
satisfies C7 is, to our knowledge, until now not yet established. We leave this for future research.
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