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3 Preface

4 Introduction

Equations in physics are in most cases represented in the form F (x4, x5, ..., X,) = 0 where the x;
represent physical quantities. In any case, the equation has to be dimensionally homogeneous to be
able to add two terms together. If we consider an equation of state like PV = nRT , which
represents the equation of state of an ideal gas, one may wonder if there is any underlying
mathematical structure in these equations . This type of question was discussed by James Clerck
Maxwell in his presentation to the London Mathematical Society (Maxwell, 1874). He made clear in



his presentation that this problem should be investigated to increase the efficiency in finding new
laws. Maxwell addressed clearly the problem when discussing the quantity “velocity”. We
guote(Maxwell, 1874):

Thus, in the ordinary theory of fluids, in which the only motion considered
is that which we can directly perceive, we may define the velocity equally well
in two different ways. We may define it with reference to unit of length, as
the number of such units described by a particle in unit of time; or we may
define it with reference to unit of area, as the volume of the fluid which
passes through unit of area in unit of time. If defined in the first way, it
belongs to the category of forces; if defined in the second way, to the category
of fluxes.

Can we define categories for the physical quantities on a mathematical basis and develop a
formalism for their relations? Is it possible to consider the product of physical quantities as a
chemical formula which represents chemical bonds between atoms and deduce for the physical
guantities a “Table of Mendeleyev” based on their respective relations?

It is the purpose of this research to find an answer to the above questions which could result in a
classification of the physical quantities and their respective relations.

The simplification of the equation F (x4, X3, ..., X,) = 0 in physics, where the x; represents
dimensional physical quantities, has been studied by Buckingham resulting in the famous
Buckingham m-theorem.

The foundations of dimensional analysis were worked out episodically by Bertrand, Vaschy,
Buckingham, Campbell, Bridgman, O’Rahilly, Palacios, Birkhoff and many others(Roche, 1998). Many
famous physicists have used the technique of dimensional analysis as tool to find “their” equation.
Among these physicist we find names as Fourier, Maxwell, Rayleigh, Reynolds, Bohr(Roche, 1998).
Rayleigh applied the dimensional analysis on the problem of the effect of temperature on the
viscosity of a gas(Rayleigh, 1899-1900).

Unanswered questions of dimensional analysis according to Barenblatt (Roche, 1998) are typically:

“Which cluster of related quantities fixed the value of the quantity being investigated, and did not
under or over-determine it?”

“Which variables, material constants and universal constants should appear multiplied together in a
trail law?”

“Which quantities should be excluded?”

It is the hope of this research that the mathematical classification of the physical quantities and their
relations will give an answer to the above questions.



5 Definitions

A quantity in the general sense is a property ascribed to phenomena, bodies, or substances that can
be quantified for, or assigned to, a particular phenomenon, body, or substance. Examples are mass
and electric charge.

A quantity in the particular sense is a quantifiable or assignable property ascribed to a particular
phenomenon, body, or substance. Examples are the mass of the moon and the electric charge of the
proton.

A physical quantity is a quantity that can be used in the mathematical equations of science and
technology.

A unit is a particular physical quantity, defined and adopted by convention, with which other
particular quantities of the same kind are compared to express their value.

The value of a physical quantity is the quantitative expression of a particular physical quantity as the
product of a number and a unit, the number being its numerical value. Thus, the numerical value of a
particular physical quantity depends on the unit in which it is expressed.

6 Base units in physics

Physical quantities are used to describe physical processes. The physical quantities are expressed in

units. The units are used according to international convention which is the “Systéme International”
(SI). The Sl units recognize seven base units. The base units are defined as meter, kilogram, second,

Ampere, Kelvin, mole, candela.

SIBASEUNITS | whnecispeia | SIDERIVED UNITS WITH SPECIAL NAMES AND SYMBOLS
Names Solid lines indicate multiplication, broken lines indicate division

kilogram
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FLUX
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Figure 6.1-1 Sl base units

These Sl base units correspond respectively to the base quantities of length, mass, time, electric
current, thermodynamic temperature, amount of substance and luminous intensity. So, each physical



guantity can be described by a n-tuple. In the case of the Sl base units the value of n =7. A 7-tuple is
also called septuple.

6.1 Impact of the number of base units on physics

We can consider the evolution of the number of base units as an historical variable. How more we
know about physics, how better the description and so how more in detail we have to model the
reality. This process of increase of base units can also be modelled as a growth and evolution of
graphs. Several physicists have studied the impact of the base units on the equations and quantities
of physics(Roche, 1998)(Uzan & Leclercq, 2005).

6.1.1 Description with one unit resulting in the graph v,v;.
In this case we work in the space Z,+

6.1.2 Description with two units resulting in the graph vyv,v, .
In this case we work in the space Z2, +

6.1.3 Description with three units resulting in the graph vyv,v,v;.
In this case we work in the space Z3, +

In the past a lot of physics equations have been expressed in this space. This space is also referred to
as Gaussian units. An example of a conversion table(Grant & Phillips, 1979) is given in Figure 6.1-1.

CONVERSION FACTORS BETWEEN SI AND GAUSSIAN UNITS

Dimensions of Gaussian No. of Gaussian units

Quantity SI unit SI unit unit in one SI unit
Force newton [MLT™?] dyne 10° (i.e. 10° dyne = 1 newton)
Energy joule IML?T %] erg 107
Power watt [ML?T 3] erg/s. 107
Charge coulomb [Q] es.u. 3 x 10°
Current ampere [T™'Q] e.s.u./s. 3 x 10°
Potential volt [ME2T2051] statvolt 1/300
Capacitance farad [MEEE 212075 9 x 10!
Resistance ohm [ML T 1Q7%] 1/(9 x 10'Y)
Inductance henry [ML2Q 2] 1/(9 x 10'Y)
E volt/metre [MLT2Q™ 1] statvolt/cm. 1/(3 x 10%)
D coulomb/sq. 1L 54{0)) statvolt/cm. 12m x 10°

metre
B tesla MT™!Q™ 1] gauss 10*
H ampere/metre [Letrt ol oersted 4 x 1073

In this table ¢ has been taken as 3 x 10% m/sec.

Figure 6.1-1 Conversion factors to Sl units

6.1.4 Description with four units resulting in the graph vyv,v,v;v, .
In this case we work in the space Z4 +

6.1.5 Description with five units resulting in the graph vyv,v,v3v4v5
In this case we work in the space Z5 +



6.1.6 Description with six units resulting in the graph vyv{v,v3v4V5v¢
In this case we work in the space Z8 +

6.1.7 Description with seven units resulting in the graph vov,v,v3v,V5v4V4
This description is at the basis of the present study where we work in Z”.

6.1.8 Description with n units resulting in the graph vov v, v3v,V5V¢ ... Vv,
In this case we work in the space Z™, +

10



7 Properties of Z7 for mathematical modelling of physics equations

7.1 General mathematical properties and definitions applicable for Z’
Z7, + is an Abelian group.

Z" isaZ module if Z7 is an additive Abelian group and there exist a mapping Z X Z’ — Z”7 where
the following axioms are valid: For any vectors a, b,c € Z7 and any integer i,j € Z:

ja+b) = ja+jb
(i+j)a=ia+ja
(iHNa =i(ja)
la=a

Quotient set Z7/R which is the set of equivalence classes under the equivalence relation R on the set
Z7. We will see in §7.4 the application of such an equivalence relation on Z7.

V,= set of vectors of Z7 having norm = 1. The number of elements in this set is 7.
V.= set of vectors of Z7 having norm = r. The number of elements in this set is ?

GL(7,2) is the general linear group of dimension 7 on the field Z (Penrose, 2005). It is the
multiplicative group of 7 x 7 non-singular matrices.

SL(7,Z) is the normal subgroup of dimension 7 on the field Z (Penrose, 2005). It is the multiplicative
group of 7 x 7 non-singular matrices having their determinant = 1.

7.2 Z7 integer lattice as representation of physical quantities
The physical quantities represented by 7-tuples are elements of the set Z”.

So, each coordinate of the 7-tuple(septuple) is an integer.

A physical quantity a can be considered as a vector in a 7 dimensional integer lattice say
a=(aq,a,,..,ay)

where a; € Z are the coordinates of a.

The coordinate a, represents the exponent of the unit meter.

The coordinate a, represents the exponent of the unit kilogram.

The coordinate a3 represents the exponent of the unit second.

The coordinate a, represents the exponent of the unit Ampere.

11



The coordinate as represents the exponent of the unit Kelvin.
The coordinate a, represents the exponent of the unit mole.

The coordinate a, represents the exponent of the unit candela.

7.3 Vector operations in Z’
The seven Sl base units represent an ortho-normal basis for Z”. One has the following base vectors

e; = (1,0,0,0,0,0,0)
e, = (0,1,0,0,0,0,0)
e; = (0,0,1,0,0,0,0)
es = (0,0,0,1,0,0,0)
es = (0,0,0,0,1,0,0)
e = (0,0,0,0,0,1,0)
e, = (0,0,0,0,0,0,1)

We follow the classical treatment from linear algebra(Lipshutz, 1968) but applied to the special case
VAS

The representation of two physical quantities a and b is equal, a = b, if they have the same number
of coordinates and if the corresponding coordinates are equal.

7.3.1 Addition in Z’
The sum of a and b, written a + b is obtained by adding the corresponding components:

a+b=(a1+b1,a2+b2,...,a7+b7)

The sum of the representation of two physical quantities corresponds to the multiplication of
these physical quantities in the equations used in physics theories.

Consider the representation of the quantity pressure P and the quantity volume V then the product
of PV has the dimension of the quantity energy E=PV.

In Z7 this is represented by the sum of the vectors P and V :
P=(-1,1,-2,0,0,0,0) and V=(3,0,0,0,0,0,0)
P+V=E=(2,1,-2,0,0,0,0)

The product of an integer number k by the vector a, written ka, is the vector obtained by
multiplying each coordinate of a by k:

ka = (kal, kaz, . ka7)

The vector 0 = (0,0,...,0) in Z7 is called the zero vector . We will see later that the zero vector
represents a dimensionless product of physical quantities.

12



For any vectors a, b,c € Z7 and any integer i,j €Z:

(a+b)+ c=a+(b+c)

a+0=a
a+(—a)=0
a+b=b+a

jla+b)= ja+jb
(i+j)a=ia+ja
(iNa = i(ja)
la=a

7.3.2 Dot productin Z’
A “dot product” can be defined between the physical quantities a and b.

a- b = a1b1 + azbz + -+ a7b7
The vectors a and b are orthogonal whena - b = 0.

The vector F, representing a force, is given by F=(1,1,-2,0,0,0,0) and the vector v, representing a
velocity, is given by v=(1,0,-1,0,0,0,0)

The dot product between force F and velocityvis F-v = 3

Let the speed of light be represented by ¢ =(1,0,-1,0,0,0,0)

Let the Newton gravitation constant G be represented by G =(3,-1,-2,0,0,0,0)

Let the Planck constant be represented by h=(2,1,-1,0,0,0,0)

The dot product betweencand Gisc- G = 5

The dot product betweencandhisc-h =3

The dot product betweenGandhisG-h =7

The vector representation of the physical constants ¢, G and h are not orthogonal.

What is the impact of the condition of orthogonality of the physical quantities on the set of
possible equations F(xq, x5, ..., Xx,) = 0 describing the physical system?

We can calculate all vectors x which are perpendicular to the vector representing the physical
quantity energy E.

So, we want to solve the equation E - x = 0 where x € Z”. This equation represents a hyperplane
inZ’.

The equation becomes : 2x; + x;, — 2x3 + 0x4 + 0x5 + 0xg + Ox; =0 and x; €Z
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A sample of the solution space expressed in (x4, x5, X3) is given in the table below:

x1|10| 9| -8| -7| 6| -5| 4| -3| -2| -1| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9|10

10| 15| -14| 13| -12| 11| -10 -9 -8 -7

)]
(6}
A
w
N
[uN
o
[
N
w
N
(0}

-8| 14| 13| 12| ‘11| ‘10| 9| -8 7] -6 5 4 3 2 -1 0 1 2 3 4 5 6
-6| 13| ‘12| ‘11| -10 -9 8| -7 6| -5 4 3 2 1 0 1 2 3 4 5 6 7
4| -12] 11 -10] 9 8] -7| -6 -5 -4 3 2 1 0 1 2 3 4 5 6 7 8

-2| -11| -10| 9| -8| -7| -6| -5| -4| -3

N
[y
o
[any
N
w
H
(%]
(o)}
~
(o]
o

0| -10] -9| -8 71 -6 5 4] -3 2 1 0 1 2 3 4 5 6 7 8 9| 10
2| o 8| -7 6| 5| -4 3] -2 1 0 1 2 3 4 5 6 7 8 9] 10| 11
4] 3| 7| 6 5] -4 3 2 1 0 1 2 3 4 5 6 7 8 9| 10| 11| 12
6| 7| 6| -5 4] -3 2 1 0 1 2 3 4 5 6 7 8 9| 10 11| 12| 13
8| 6 5| 4 3] -2 1 0 1 2 3 4 5 6 7 8 9| 10| 11| 12| 13| 14

It can be seen from this table that the quantity mass (m) and the square of the velocity (c?) are not
elements of this table. Checking all the variables and constants reported in this article shows that no
guantity fulfils the above relation.

It is also clear that all quantities which are not containing the units m, kg and s will be orthogonal to
the vector E.

Conjecture “Exclusion principle”: A physical quantity represented by its vector a will form no
meaningful physical relation with a physical quantity b ifand onlyifa -b = 0.

So, the set {G, h, c} is a meaningful set of physical quantities because they are not orthogonal to each
other.

For any vectors a, b, ¢ € Z7 and any integer i,j € Z:
(a+b)-c=a-c+b-c
(ja)-b=j(a-b)
a-b=b-a
a-az0anda-a=0ifa=0

The coordinates of the physical quantities represent points in a 7 dimensional integer lattice. We
want to define the distance d(a, b) between two lattice points in the following way:

d(a,b) = J(a1 b2 + (g — by)? + -+ (ay — by’

The distance between force F and velocity vis d(F,v) = 12 + 02 + 12 = /2
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The norm of the vector a, written ||a|| is defined as the nonnegative square root of a - a

lall = \/af + a3+ -+ a?

d(a,b) = |la—b]|
d(a,0) = |lal

Consider now a 6-sphere in Z7, then one can calculate how many lattice points are elements of the
6-sphere surface for each possible distance of a lattice point to the origin. The creation of finite
subsets based on d(a, 0) = ||a|| is a first step in the classification of the physical quantities.

The unit 7-dimensional hypercube has 27 = 128 lattice points(Banchoff, 1996).

It is interesting to observe that the vector E has a norm || E|| = 3 which is a large value with respect
to the other physical quantities.

The norm of the force Fis || F|| = 12+ 12+ (=2)2 =6

The norm of the velocity vis ||v|| = /1% + (=1)? =2

A vector u is a unit vector if its norm is 1.

The Cauchy-Schwarz theorem applies for any vector a,b € Z7 : |a- b| < ||a]| ||b||

The angle 6 between any two nonzero vectors a,b € Z7 is defined by

0 a-b
c0sfg=—
llall [IB]|

The angle 6 between force F and velocity v is given by:

cosO = =

IFIvl - Vevz
6 =30°

F-v 3 V3
2

7.4 Map SUM()
Define SUM() as the mapping SUM:Z7 — Z, written as SUM(a), as the “sum of the coordinates” of
the vector a

7

SUM(a) = Z ai

i=1

We will see further in §7.15 that the “sum of coordinates” is used by Coxeter(Banchoff, 1996) to
classify polytopes in an integer lattice.

The sum of the force Fis given by SUM(F)=14+1—-2=0

The sum of the velocity v is given by SUM(v) =1—-1=0
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Consider the Cartesian product Z7 x Z of the two sets Z” and Z having a propositional function
(Lipshutz, 1964, pp. 81-87) P(a,j) = "SUM(a) is equal to j"

Let’s call S a relation from Z7 to Z and denote it by S = (Z7, Z, P(a, j)).
If P(a,j)) is true then we write “vector a has the sum j” as

asj
If P(a,j)) is false then we write “vector a has not the sum j” as

aNSj

LetS = (Z7,Z, P(a,j)) be a relation. The solution set S* of the relation S consists of the elements
(a,j) in Z7 x Z for which P(a,]) is true.

S*={(aj)la € Z7,j € Z,P(a,j) is true}
S* is a subset of Z7 X Z. We can rephrase P(a,j) as “the ordered pair (a,j) belongs to $*”.

7.5 Subgroups of Z7 for classification of physical quantities
One can form subgroups of Z7 relevant for classification of physical quantities in the following way.

Let the set CL(7_y n) be defined as
CLi7-nmy) = {(ar, a3, ...,a7)la; #0 fori <7—-m,a; =0fori >7—-nandi,n=12,..,7}

So, we have the set CLg; = {ala € Z7 and a, = 0} with forms an Abelian group CLg ; , +.

The same steps can be repeated for the subgroups: CLg,,+; CLy3,+;CL34,+;CLys,+;
CL1,6, + ; CLO‘7 ) + .

The subgroup CLg 7, + contains all the physical quantities that are dimensionless products.
The subgroup CL4 ¢, + contains all the multiples of the physical quantity length (1,0,0,0,0,0,0).

The subgroup CL; 5, + contains all the physical quantities that are formed by combinations of length
(1,0,0,0,0,0,0) and mass (0,1,0,0,0,0,0).

The subgroup CL3 4, + contains all the physical quantities that are formed by combinations of length
(1,0,0,0,0,0,0) , mass (0,1,0,0,0,0,0) and time (0,0,1,0,0,0,0).

The subgroup CL4 3, + contains all the physical quantities that are formed by combinations of length
(2,0,0,0,0,0,0), mass (0,1,0,0,0,0,0) , time (0,0,1,0,0,0,0) and current (0,0,0,1,0,0,0).

The subgroup CLg , , + contains all the physical quantities that are formed by combinations of length
(1,0,0,0,0,0,0) , mass (0,1,0,0,0,0,0) , time (0,0,1,0,0,0,0), current (0,0,0,1,0,0,0) and temperature
(0,0,0,0,1,0,0).

The subgroup CLg 1, + contains all the physical quantities that are formed by combinations of length
(1,0,0,0,0,0,0), mass (0,1,0,0,0,0,0) , time (0,0,1,0,0,0,0), current (0,0,0,1,0,0,0), temperature
(0,0,0,0,1,0,0) and amount of substance(0,0,0,0,0,1,0).
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7.6 Equivalence relation R as a classifier
Let R = (Z7,Z7,P(a, b)) be a relation in the set Z”. The propositional function is defined as
P(a,b) ="aand b are equivalent if SUM(a) = SUM(b)".

The relation R is reflexive if (a, @) € R

The relation R is symmetric if (a, b) € R implies (b,a) € R

The relation R is transitive if (a, b) € R and (b,c) € R implies (a,c) €R
The relation R is an equivalence relation in the set Z”.

The equivalence relation R in the set Z7 partitions the set Z7 by putting the physical quantities
which are related to each other in the same equivalence class.

Theset C, = {x| (x, @) € R} is the equivalence class determined by a.
The set of equivalence classes is denoted Z7 /R and called the quotient set.
The set C, = {x| (x,0) € R} is the equivalence class determined by 0.

The vector L=(1,0,0,0,0,0,0), representing the quantity length, is selected to represent the set
C; = {x|(x,L) € R}

In this equivalence class one has a € Cj so that SUM(a) = 1.

The vector A =(2,0,0,0,0,0,0), representing the quantity area, is selected to represent the set

Cq = {x]|(x,A) ER}.

In this equivalence class one has a € (4 so that SUM(a) = 2.

The vector V = (3,0,0,0,0,0,0), representing the quantity volume, is selected to represent the set
Cy = {x|(x,V) €R}.

In this equivalence class one has a € Cy so that SUM(a) = 3.

The vector k = (-1,0,0,0,0,0,0), representing the quantity wave vector, is selected to represent the set
Cr = {x| (x, k) € R}.

In this equivalence class one has a € Cj so that SUM(a) =-1.

The vector P = (-1,1,-2,0,0,0,0), representing the quantity pressure, is selected to represent the set
Cp = {x| (x,P) € R}.

In this equivalence class one has a € Cp so that SUM(a) = -2.
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The vector o = (0,1,-3,0,-4,0,0), representing the quantity Stefan-Boltzmann constant, is selected to
represent the set

Cs,= {x|(x,0) €R}.

In this equivalence class one has a € C, so that SUM(a) = -6.
Com = {x|(x,QM) € R}.

In this equivalence class one has a € Cgp so that SUM(a) = 4.
Cgp = {x| (x,EP) € R}.

In this equivalence class one has @ € Cgp so that SUM(a) = 5.
Cigp = {x| (x,1HP) € R}.

In this equivalence class one has a € Cigp so that SUM(a) =7.
Cogp = {x| (x,2HP) € R}.

In this equivalence class one has a € Cyyp so that SUM(a) =9.
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Classification of physical quantities

SUM | CLO7 CL16 CL25 CL34 CL43 CL52 CL61 z7
-6 Stefan-Boltzmann constant
-5
-4
-3 Loschmidt atomic unit of electric field gradient
constant
-2 Space-time Newtonian | Energy density, Pressure, Magnetic flux density, Magnetic constant, Amount of substance
curvature constant of | Energy-momentum tensor, Electrical resistance, Characteristic Impedance of concentration
gravitation | Fermi coupling constant vacuum, von Klitzing constant
over h-bar
c
-1 Wave number Frequency, activity, Inductance, Electrical potential difference Current density Avogadro constant, Luminance
Acceleration, vorticity Molar gas constant,
alpha particle molar
mass
0 |Plane Velocity, Mass frequency, Magnetic field, Charge surface density, Electrical | Entropy, Specific heat, Catalytic activity
angle, Force, Absorbed dose, Dose | polarisation, Magnetic induction, Magnetic Boltzmann constant
solid equivalent, Specific energy, moment, Specific resistance, Josephson
angle Newtonian constant of constant, mag. flux quantum, elementary charge
gravitation, Power over h
1 Length Mass Time, Linear momentum, Electric current Thermodynamic Faraday constant Luminous flux
Diffusion constant, Energy, temperature
vorticity flux
2 Area, Planck constant, Specific Electric charge, Electric constant, conductance second radiation constant molar volume of ideal
Thomson volume, first radiation guantum gas
cross section constant, angular momentum
3 Volume Electrical capacitance, atomic unit of electric
dipole moment, Bohr magneton
4 Atomic unit of electric quadrupole moment
5 Atomic unit of electric polarizablity, atomic unit of
magnetizability
6
7 Atomic unit of 1st hyperpolarizability
8
9 Atomic unit of 2™ hyperpolarizability
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7.7 Classification using Principal Component Analysis (PCA)

We will apply the PCA-method (or equivalently the Singular Value Decomposition method) on the

integer lattice Z7 and project the coordinates of the physical quantities on 3D. For this purpose we
will use the program VisuMap. VisuMap implements PCA to project high dimensional dataset to 3D
space.

PCA is the simplest of the true eigenvector-based multivariate analyses. Often, its operation can be
thought of as revealing the internal structure of the data in a way which best explains the variance in
the data. If a multivariate dataset is visualised as a set of coordinates in a high-dimensional data
space (1 axis per variable), PCA supplies the user with a lower-dimensional picture, a "shadow" of
this object when viewed from its (in some sense) most informative viewpoint.

The result of the projection on the XY-plane is given in Figure 7.7-1.
One can recognize a grid of straight lines grouping physical quantities.

The eigenvalues and eigenvectors are

Eigenvalues | C1 C2 C3 C4 C5 C6 C7
8.74003 -0.380847 -0.245838 0.827484 0.32897 0.0387645 0.00725913 | 0.00364446
1.70506 0.919703 -0.17726 0.317277 0.132191 0.0297565 -0.0523389 | -0.0309959

0.449004 -0.0110769 | -0.0620704 | 0.101363 -0.421437 0.896498 0.0635429 0.0198704

0.191312 0.0352802 | 0.388944 0.436249 -0.722168 -0.355369 -0.0934721 | 0.0247813

0.152376 -0.0456714 | -0.837368 -0.0969575 | -0.410073 -0.257398 0.214653 0.0826978

0.0727539 -0.061773 -0.209711 -0.0668717 | -0.0447139 | 0.0360651 -0.960526 0.147729

0.0364027 -0.0428044 | -0.0885934 | -0.0120772 | -0.0707795 | -0.00785344 | -0.125489 -0.984558

The PCA view can also be rotated which results in interesting information as shown in Figure 7.7-2.

One can remark that by overlapping points A and B of physical quantities in the map and observing
the changes close to the origin reveals that any quantity C that coincides in projection with the origin
forms a set of dimensionless products. This is demonstrated in Figure 7.7-4 where the overlapping of
E(energy) and m(mass), which automatically creates an overlap with p(linear momentum), moves the
guantity v(velocity) to overlap with the origin. So, the quantities (E,m,p,v) form a dimensionless set.
One can conclude that the PCA 3D view of the physical quantities shows graphically which sets of
physical quantities from dimensionless products. The missing quantities in the set are these points
that move in projection to the origin. If we try this for the electric constant and the magnetic
constant which was done in Figure 7.7-3 we find no overlap with the origin. This is because the
square of the velocity is not an element of the dataset. The electric constant, the magnetic constant
and the square of the velocity form a dimensionless product.

One can recognize 7 classes visible in Figure 7.7-5,Figure 7.7-6 and Figure 7.7-7.

In the Figure 7.7-8 one can observe the overlap process for the quantity time as it approaches the
origin. We can recognize the following dimensionless product sets using the graphical method:

Parameter t = { (G, specific volume, t), (Volume, c3, t), (c?, Diffusion constant, area, t), (Power,
energy, h, t), (Potential difference, B, t), (Vacuum impedance, Inductance, t), (acceleration, velocity,
length, t), (force, linear momentum, t), (current, e, t), (frequency, t), (mass frequency, t)} (see
Figure 7.7-8.
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Parameter e = {(space-time curvature, charge surface density, e), (magnetic flux density, mass
frequency, e), (area, atomic unit of electric quadrupole moment, e), (vacuum impedance, B, h, e),
(Potential difference, energy, e)} (see Figure 7.7-9)

Parameter T = {(Current density, space-time curvature, T), (energy, entropy, T)}

Parameter H = {(Length, current, H), (B, force, H), (Magnetic constant, Magnetic flux density, energy
density, H), (Specific resistance, Power, H)}

Parameter capacitance = {(area, atomic unit of electric polarisation, capacitance), (vacuum
impedance, t, capacitance), (wave number, electric constant, capacitance), (potential difference, e,
capacitance)}

Parameter magnetic constant = {(length, inductance, magnetic constant), (velocity, vacuum
impedance, magnetic constant), (H, magnetic flux density, magnetic constant)}

Parameter mass = {(t, mass frequency, mass), (acceleration, force, mass), (c?, energy, mass),
(velocity, linear momentum, mass), (diffusion constant, h, mass), (volume, specific volume, mass)}

Parameter force = {(space-time curvature, energy-density, force), (t, linear momentum, force),
(velocity, power, force), (length, energy, force), (G, c”4, force)}

Parameter linear momentum = {(wave number, mass frequency, linear momentum), (force,
frequency, linear momentum), (power, acceleration, linear momentum), (velocity, energy, linear
momentum), (length, h, linear momentum)}

Parameter potential difference = {(atomic unit of electric quadrupole moment, atomic unit of
electric polarisation, potential difference), (energy, e, capacitance, potential difference), (B, t,
potential difference), (power, current, potential difference)}

Parameter energy ={(force, wave number, energy), (h, t, energy), (power, frequency, energy)}

Parameter h = {(space-time curvature, mass frequency, h), (linear momentum, wave number, h),
(energy, frequency, h)}

Parameter energy-density = {(force, area, energy-density), (energy, volume, energy-density)}
Parameter G = {(mass-frequency, c3, G), (force, c"4, G)}

Parameter diffusion constant = {(h, mass, diffusion constant), (velocity, wave number, diffusion
constant), (c?, frequency, space-time curvature, diffusion constant), (energy, mass frequency,
diffusion constant), (area, t, diffusion constant), (current, charge surface density, diffusion constant),
(potential difference, magnetic flux density, diffusion constant), (acceleration, c3, diffusion constant)}

Parameter velocity = {(diffusion constant, length, t, velocity), (H, charge surface density, velocity),
(power, force, mass frequency, velocity), (energy, linear momentum, mass, velocity), (specific
resistance, B, velocity), (vacuum impedance, magnetic constant, velocity)}
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Parameter atomic unit of electric polarisation = {(capacitance, space-time curvature, atomic unit of
electric polarisation), (potential difference, atomic unit of electric quadrupole moment, atomic unit
of electrical polarisation)}

Parameter acceleration = {(c”4, area, acceleration), (c3, diffusion constant, acceleration), (c?, length,
acceleration), (velocity, t, acceleration), (linear momentum, power, acceleration), (force, mass,
acceleration)}

Parameter current = {(e, t, current), (H, wave number, current), (force, B, inductance, current),
(power, potential difference, vacuum impedance, current)}

Parameter length = {(electric constant, capacitance, atomic unit of electric polarisation, length),
(charge surface density, e, atomic unit of electric quadrupole moment, length), (H, current, length),
(current density, temperature, length), (frequency, velocity, diffusion constant, length), (mass
frequency, linear momentum, h, length), (acceleration, c?, length), (energy density, force, energy,
length), (magnetic flux density, B, length), (magnetic constant, inductance, length), (potential
difference, specific resistance, length)} (see Figure 7.7-10)
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7.8 Classification using RPM mapping
We will apply the RPM-method on the integer lattice Z” and project the coordinates of the physical
guantities on 3D-torus. For this purpose we will also use the program VisuMap.

Relational perspective map (RPM), developed by James X. Li(Li, 2004), is a general purpose method
to visualize distance information of data points in high dimensional spaces.

The starting point of the RPM algorithm is a set of data point s; i=1,...,N, and a distance matrix 6;. The
matrix &;, called the relational distance, is the numeric representation of a relationship between the
data points. The goal of the RPM algorithm is to map the data points s; into a two or three
dimensional map so that Euclidean distances dj; between the image points visually approaches §;as
much as possible. The resulting lower dimensional map is called relational perspective map, the
matrix dj is called the image distance matrix. From geometric point of view, a RPM map attempts to
preserve as much as possible distance information of the original dataset.

The following picture shows the RPM algorithm works to create 2D maps: it first maps data points to
the surface of a torus, then unfolds the torus surface by a vertical and a horizontal cut. The second
step is more or less straightforward, so the RPM algorithm focus on how to map the data points to
the torus surface so that the distances between the image points resembles the distances between
data points.

Dataset with 4 points in 4 image points on RPM map ofthe
high dimensional space the torus surface dataset

In order the find the best mapping RPM algorithm defines an energy function as follows:

0.
Ep= > —— with Eg:=->. 6, In(d;)

£
i< de =

where p is an algorithm parameter called the rigidity, d; is the geodesic block distance between two
image points on the torus surface. The RPM algorithm then uses gradient descent optimization
method to find a configuration with minimum energy. The rigidity parameter, which is normally a
value between -1 and +1, alters the energy landscape in a global manner, so that the resulting RPM
maps have different characteristics.

To better understand the RPM algorithm it is helpful to consider the image points on the torus as a
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force directed multi-particle system with mutual repulsive forces between them; and consider the
energy E, as a kind of total potential energy. According to physical law the repulsive force is
characterized by following form:

CE, op

ad d I.:f’“

Above form says that the repulsive force between two points is proportional to their relational
distance. Thus the process to minimize the energy E, is actually a process that simulates the dynamic
system directed by the force defined by above form. Since points with larger relational distances
between them correspond to larger repulsive force on the torus, their image points on the torus
should be further apart from each other.

The key idea of RPM algorithm, that distinguish it from other known algorithms like those listed in
the next section, is that RPM successfully exploited the property of closed manifold (the torus) to
keep the configuration in balance. Whereas other non-linear methods apply, directly or indirectly,
attractive force to map closely related points to closely located positions, RPM algorithm maps
closely related points to closely location area by the collective repulsive force of all points. This
characteristics make RPM the true, and the only (as far as we know), global mapping algorithm.

It should be noted here that RPM algorithm made a significant relaxation to the original problem
setting: the resulting map is not a normal rectangle map, but a map on the torus. That means the

opposite edges of the map should be considered as stuck with each other.

The result of the projection is given in Figure 7.8-1.

This method doesn’t seem to reveal structure.
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7.9 C(lassification using Sammon map
We will apply the Sammon(Sammon, 1969) map on the integer lattice Z” and project the coordinates
of the physical quantities. For this purpose we will also use the program VisuMap.

The result of the projection on a rectangle is given in Figure 7.9-1.
The result of the projection on a cube is given in Figure 7.9-2.

This method reveals some structure. One can observe also a grid of straight lines.
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7.10 Classification using Curvilinear Component Analysis
We will apply the Curvilinear Component Analysis (CCA) on the integer lattice Z7 and project the
coordinates of the physical quantities. For this purpose we will also use the program VisuMap.

Curvilinear Component Analysis (CCA) algorithm is a variation of the Sammon algorithm that tries to

preserve more short distance information (local information) while relaxing the constraints posed by
long distance information. Mathematically, CCA uses the gradient descent algorithm to minimize the
following stress function:

g;zz{ﬁﬁ_dﬁ}zﬁm,}_ A¢) With F(dy, /4) =

i<j

{ 1 ifff;‘j < At
0 ifﬂ’;j}flr.

Where §;; and d;; are respectively the relational distance and image distance between two bodies i
and j. A, is a time dependent parameter that changes from a given initial value 4; gradually to 0

during the optimization process.
The result of the projection on a rectangle is given in Figure 7.10-1
The result of the projection on a cube is given in Figure 7.10-2

This method reveals some structure. One can observe also a grid of straight lines.
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7.11 Graph of dimensionless products in Z’

2
A dimensionless product as the fine-structure constant(Peter J. Mohr, 2008) a = 2: =
0

7.297 3525376 x 1073 can be represented by the sum of vectors in the following way:
0=2e—€e—h-c

Explicitly we have the following 7-tuples:

2e = (0,0,2,2,0,0,0), e = (—3,-1,4,2,0,0,0), h = (2,1,-1,0,0,0,0), c = (1,0,—1,0,0,0,0)

0=0+3-2-1,0+1-1-0,2—4+1+1,0,0,0,0)

The zero vector is giving no useful information over the dimensionless product. To alleviate to this
problem we will use graph theory(Epp, 1993)(Diestel, 2000) in the integer lattice Z7 .

2

Graph of Zeghe
Vectors m kg S A K mole Cd
2e 0 0 2 2 0 0 0
epsilon -3 -1 4 2 0 0 0
h 2 1 -1 0 0 0 0
[ 1 0 -1 0 0 0 0
Vertices
o) 0 0 0 0 0 0 0 v0
2e 0 0 2 2 0 0 0 vl
2e-epsilon 3 1 -2 0 0 0 0 v2
2e-epsilon-h 1 0 -1 0 0 0 0 v3
2e-epsilon-h-c 0 0 0 0 0 0 0 vO
Edges w
vOvl 2,828
v1iv2 5,477
v2v3 2,449
v3v0 1,414
Total weight of cycle 12,169
Adjacency matrix of cycle v0 vl v2 v3 vO

v0 0 1 0 0 0

vl 1 0 1 0 0

v2 0 1 0 1 0

v3 0 0 1 0 1

v0 0 0 0 1 0

This simple cycle vov,v,v3V, is symmetric and has no loops. It is a weighted cycle in 4
representing the dimensionless product a. The weight (W) of an edge is the Euclidean distance
between the two vertices of the edge. In the above case the order( number of vertices) of the cycle
is 5. The size(number of edges) of the cycle is 4.
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Let us form the graph representing the dimensionless product

Gm?

hc

Graph of Gh—":‘z’

Vectors m kg | s A | K | mole| Cd
G 3] ‘1] -2 O 0 0 0
2m 0| -2 0| O 0 0 0
h 2 1] 1] 0 0 0 0
c 1 0] ‘1] O 0 0 0
Vertices
0 0 0 0, O 0 0 0] |vO
G 3| ‘1] 2] O 0 0 0] |vi
G+2m 3] 3] 2] O 0 0 0] [v2
G+2m-h 1] 4] -1] O 0 0 0] |v3
G+2m-h-c 0| 4 0] O 0 0 0] |vO
Edges w
vOvl 3,742
viv2 2,000
v2v3 2,449
v3v0 1,414
Total weight of cycle 9,605
Adjacency matrix of cycle vO vl | v2 | v3 ]| vO

v0 0 1 0 0] 0

vl 1 0 1 0] 0

v2 0 1 0 1|0

v3 0 0 1 0 1

v0 0 0 0 1|0
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. . . E
Let us form the graph representing the dimensionless product —
0

E
Graph of —
Vectors m kg | s A | K | mole| Cd
E 2 1] -2 0] O 0
m 0 1 0/ 0] O 0 0
2c 2| 0] -2 0] O 0
Vertices
0 0] O 0/ 0] O 0 0
E 2 1] -2 0] O 0 0
E-m 2| 0] -2 0] o© 0 0
E-m-2c 0] O 0/l 0] O 0 0
Edges W
vOvl 3,000
viv2 1,000
v2v0 2,828
Total weight of cycle 6,828
Adjacency matrix of cycle | vO | vl | v2 | VO

v0 0 1 0 0

vl 1 0 1 0

v2 0 1 0 1

v0 0 0 1 0
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. . . FG
Let us form the graph representing the dimensionless product e

Graph of i—f

Vectors m kg | s A mole | Cd
F 1 1] -2 0] O 0 0
G 3] ‘1] -2 0] O 0 0
4c 4/ 0| -4 0] O 0 0
Vertices
0 0] O 0/ 0] O 0 0| |vO
F 1 1] -2 0] O 0 0] |v1
F+G 4/ 0| 4] 0] O 0 0] |v2
F+G-4c 0| O 0] 0] O 0 0| |vO
Edges w
vOvl 2,449
vlv2 3,742
v2v0 5,657
Total weight of cycle 11,848
Adjacency matrix of cycle | vO vl | v2 | VO

v0 0 1 0 0

vl 1 0 1 0

v2 0 1 0 1

v0 0 0 1 0
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Let us form the graph representing the dimensionless product

-

mgoC

14
Graph ofm—oc
Vectors m kg | s A mole | Cd
p 1 1| -1 0| O 0 0
m 0 1 0/ 0] O 0 0
c 1] 0] -1] 0] O 0 0
Vertices
O 0] O 0/ 0] O 0 0] |vO
p 1 1] -1] 0] O 0 0| |v1
p-m 1] 0] -1] 0] O 0 0| |v2
p-m-c 0 0 0] O 0 0 0 vO
Edges W
vOvl 1,732
vlv2 1,000
v2v0 1,414
Total weight of cycle 4,146
Adjacency matrix of cycle | vO | vl | v2 | vO

v0 0 1 0 0

vl 1 0 1 0

v2 0 1 0 1

v0 0 0 1 0
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Let us form the graph representing the dimensionless product

q

Gegm

2

2
0

q

2
Graph of Geont?
Vectors m kg | s A | K | mole| Cd
2e 0| O 2| 2| 0 0 0
G 3] -1 -2 0] O 0 0
epsilon 2 1] 1| O 0 0 0
2m 0 2 0/ 0] O 0 0
Vertices
O 0] O 0/l 0] O 0 0| |vO
2e 0] O 2] 2] 0 0 0| |v1
2e-G 3 1 4 2| 0 0 0| |v2
2e-G-epsilon 1 0 5| 2 0 0 0| |v3
2e-G-epsilon-2m 1| -2 5| 2 0 0 0| |vO
Edges w
vOvl 2,828
vliv2 3,742
v2v3 2,449
v3v0 2,000
Total weight of cycle 11,020
Adjacency matrix of cycle vO vl | v2 | v3 | VO

v0 0 1 0 0|0

vl 1 0 1 0| O

v2 0 1 0 1|0

v3 0 0 1 0| 1

v0 0 0 0 1|0
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Let us form the graph representing the dimensionless product

tc3

Gmgy

tc3
Graph of G
Vectors m kg | s A | K | mole| Cd
t 0] O 1] 0] O 0 0
3c 3] 0] -3] 0] O 0 0
G 3] -1 -2 0] O 0 0
m 0 1 0/ 0] O 0 0
Vertices
0 0] O 0/ 0] O 0 0] |vO
t 0] O 1] 0] O 0 0] |vi1
t+3c 3] 0] -2 0] O 0 0| |v2
t+3c-G 0 1 0/ 0] O 0 0| |v3
t+3c-G-m 0] O 0/ 0] O 0 0] |vO
Edges W
vOvl 1,000
viv2 4,243
v2v3 3,742
v3v0 1,000
Total weight of cycle 9,984
Adjacency matrix of cycle| vO | vl | v2 | v3 | VO

v0 0 1 0 0] 0

vl 1 0 1 0| O

v2 0 1 0 1|0

v3 0 0 1 0|1

v0 0 0 0 110
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. . . 2nE
Let us form the graph representing the dimensionless product %

2TmE

Graph of —
Vectors m kg | s A mole | Cd
E 2 1] -2 0] O 0 0
h 2 1] -1 0] O 0 0
f 0] 0] 1] 0] O 0 0
Vertices
O 0] O 0/ 0] O 0 0] |vO
E 2 1] -2 0] O 0 0| |v1
E-m 0] 0] -1 0] O 0 0| |v2
E-m-2c 0] O 0/ 0] O 0 0] |vO
Edges W
vOvl 3,000
vliv2 2,449
v2v0 1,000
Total weight of cycle 6,449
Adjacency matrix of cycle | vO | vl | v2 | vO

v0 0 1 0 0

vl 1 0 1 0

v2 0 1 0 1

v0 0 0 1 0
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Weighted cycles in the lattice formed by the 7-tuples of Z7 can be formed for each dimensionless
product of physical quantities.

It is the purpose of this study to create a catalogue of all the dimensionless products and to classify
these dimensionless products.

Graph . . .
Dimensionless product Weight
Order
4 P 4,146
myc
2nE
4 il 6,449
hw
E
4 > 6,828
mycC
F
4 kG 11,848
C4
2
5 Gmy 9,605
hc
tc3
5 ¢ 9,984
Gmy
2
5 7 11,020
Gegmg
2
5 © 12,169
2&e9hc

A straightforward classification is based on the order of the graph and on the weight of the graph.

All physical equations can be reduced to dimensionless products.

. . . . E .
The equation E = mc? can be rewritten as dimensionless product — = 1 and the equation

hw . . 2nE
E = 5, €an also be transformed to the dimensionless product o = 1.

These dimensionless products represent different weighted cycles of order 4 and each weighted
cycle has its weight(W) and size(S).
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7.12 Graph spectrum and graph eigenvalues
To find the graph spectrum we will form the Laplacian matrix of the graph G.

The definition of the Laplacian matrixis: L =D — A

e Listhe Laplacian matrix (n x n symmetric matrix)
e Disthe degree matrix of the graph, which is the diagonal matrix formed from the vertex

degrees;
e Aisthe adjacency matrix.

A graphical partitioning can be performed based on the eigenvalues and eigenvectors of the

Laplacian matrix.
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7.13 Minimal spanning tree of a graph representing the physical quantity

“force” in Z’
Consider the graph G consisting of the vertices V={(0,0,0,0,0,0,0),(1,1,-2,0,0,0,0)} and the edge
e=[(0,0,0,0,0,0,0),(1,1,-2,0,0,0,0)]. This graph represents the physical quantity force F.

We will now study the variation of F by considering the “closest paths” between the vertex 0 and the
vertex F. We will restrict the description of the paths to the 1-2-3 coordinate hyper plane of Z”.

Path 0: {(0,0,0),(1,1,-2)} (order = 2)(which is the shortest path, trivial solution)

Path 1:{(0,0,0),(1,1,-1)},{(1,1,-1),(1,1,-2)} (order = 3)

Path 2:{(0,0,0),(0,0,-1)},{(0,0,-1),(1,1,-2)} (order = 3)

Path 3:{(0,0,0),(0,1,-1)},{(0,1,-1),(1,1,-2)} (order = 3)

Path 4:{(0,0,0),(0,1,-2)},{(0,1,-2),(1,1,-2)} (order = 3)

Path 5:{(0,0,0),(1,0,-2)},{(1,0,-2),(1,1,-2)} (order = 3)

Path 6:{(0,0,0),(1,0,-1)},{(1,0,-1),(1,1,-2)} (order = 3)

Path 7:{(0,0,0),(0,0,-2)},{(0,0,-2),(1,1,-2)} (order = 3)

Path 8:{(0,0,0),(1,0,0)},{(1,0,0),(1,1,-2)} (order = 3)

Path 9:{(0,0,0),(0,1,0)},{(0,1,0),(1,1,-2)} (order = 3)

Path 10:{(0,0,0),(1,0,-1)},{(1,0,-1),(1,0,-2)},{ (1,0,-2),(1,1,-2)} (order= 4)

Path 11:{(0,0,0),(0,0,-1)},{(0,0,-1),(0,0,-2)},{ (0,0,-2),(1,1,-2)} (order= 4)

Path 12:{(0,0,0),(0,1,-1)},{(0,1,-1),(0,1,-2)},{ (0,1,-2),(1,1,-2)} (order= 4)

Path 13:{(0,0,0),(1,1,0)},{(1,1,0),(1,1,-1)},{ (1,1,-1),(1,1,-2)} (order= 4)

Path 14:{(0,0,0),(1,0,0)},{(1,0,0),(1,0,-1)},{ (1,0,-1),(1,0,-2)},{ (1,0,-2),(1,1,-2)} (order=5)
Path 15:{(0,0,0),(0,1,0)},{(0,1,0),(0,1,-1)},{ (0,1,-1),(0,1,-2)},{ (0,1,-2),(1,1,-2)} (order=5)

The paths are weighted with the Euclidean distance and so for each path the distance can be
calculated. The values are in the next table.

53



Path weight for representations of the physical quantity "force"

Weight of Edge

Weight of total path

ORDER 2

Path 0 o] o 0 0,000 2,449
1 1| -2 2,449

ORDER 3

Path 1 0| o 0 0,000 2,732
1 1| 4 1,732
1] 1| =2 1,000

Path 2 o] o 0 0,000 2,732
o] o] -1 1,000
1l 1| -2 1,732

Path 3 o] o 0 0,000 2,828
o] 1| -1 1,414
1l 1| =2 1,414

Path 4 o| o 0 0,000 3,236
o| 1| -2 2,236
1 1| =2 1,000

Path 5 0| o 0 0,000 3,236
1] o] -2 2,236
1 1| =2 1,000

Path 6 o] o 0 0,000 2,828
1] o 1 1,414
1 1| -2 1,414

Path 7 o] o 0 0,000 3,414
o] o] -2 2,000
1] 1| =2 1,414

Path 8 o| o 0 0,000 3,236
1| o 0 1,000
1] 1| =2 2,236

Path 9 0| o 0 0,000 3,236
o] 1 0 1,000
1 1| =2 2,236

ORDER 4

Path 10 o] o 0 0,000 3,414
1] o] 41 1,414
1] o] -2 1,000
1 1| -2 1,000

Path 11 o] o 0 0,000 3,414
o] o] -1 1,000
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0] O -2 1,000
1| 1 -2 1,414
Path 12 0] O 0 0,000 3,414
o[ 1 -1 1,414
0] 1 -2 1,000
1] 1 -2 1,000
Path 13 0] O 0 0,000 3,414
1] 1 0 1,414
1| 1 -1 1,000
1] 1 -2 1,000
ORDER 5
Path 14 0] O 0 0,000 4,000
1] 0 0 1,000
1] 0 -1 1,000
1] 0 -2 1,000
1] 1 -2 1,000
Path 15 0] O 0 0,000 4,000
0] 1 0 1,000
0] 1 -1 1,000
0] 1 -2 1,000
1] 1 -2 1,000

Classification of the paths based on the minimum weight of the total path and on the order of the
path results in the table below:

Order Path Weight of total path Dimensional Equation
2 0 2.449 F=F
3 1 2.732 F= d
. = (Gpp
3 2 2.732 F =pf
4 10 3.414 F = d
. = m(dt)v
4 11 3.414 F= d
- = mx( dt)f
d\y m
4 12 3.414 F= (_) m
*\at) P
d\/d
4 13 3.414 F= (_) (_)
at) \ag) ™0
d d
5 14 4.000 F = x(—)(—
x(dt)(dt)m
d_d
5 15 4.000 = m(—)(—
F=m( dt)(dt)x
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We find that the well known formula F = % has the lowest weight(W=2.732), except the trivial

solution F = F.

The method of minimizing the weight of the total path, for a certain order of the path, will allow for a
classification of the representation of the physical quantity in Z7 . It can be compared to variation
analysis where a minimum for the cost functional is searched for.

In some cases the weight of the total path will be identical as we can see for some paths in the above
table. It will mean that the graphs G and G’ are isomorphic because the property “simple cycle of
length k” is an isomorphic invariant(Epp, 1993).

7.14 Syntax and semantics of “energy equations”

We see also from the previous minimal spanning tree calculation that if the path is considered as a
directed graph a syntax is generated for the representation of the “dimensional equation”. It is also
valid for dimensionless products which as we have seen previously are represented by a cycle.

We should explore in this study both the syntax and the semantics of the physical equations to find
the rules.

Let us consider as case the physical quantity energy represented by the vector E.
The vector E can has the coordinates E=(2,1,-2,0,0,0,0).

We can also represent the syntax of the vector E using M,L, T labels respectively for Mass, Length and
1471;1
Time. We find the following ratio: E = % which we will represent as the code {%}. We will

now form all possible codes of the physical quantity energy and obtain the following table:

SYNTAX OF QUANTITY ENERGY
Syntax N° Codification Representation
! {%} G
2 {%} C, x (Mass)
3 {%};{%} C; x (Mass Length)
4 {%} Cy x (Mass Length?)
° SYRdsTy. Cp x resstenent
6 & e e
7 {%};{%} C; x (Length)
8 {%} Cg x (Length?)
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011, 011

Time

K SrEiers) Cy x (221
10 ) oo (228
1 GGG Cua x (5228
2 &7 o
13 AT Cisx ()
14 {%} Crax ()
> {%} Cisx (TI:I:LS:Z)
16 o or Cux et
17 g} {ﬂ} {g}; {g €, x (Moss Lenaty
10 1 10 01 Time

The C; ‘s represents proportionality constants.

If we assume that all the syntaxes represents “real” equations and that the constants C; can be

constructed from the following set C = {G, e, h, iy, £y, N4, R} of physical constants then one finds a

set of “interesting” equations by solving a system of linear equations in the dimensions of the

physical constants.

7.14.1 Energy syntax N°2

The solution is E = (upge) ™! X mass = c¢§ X mass. The constant C, represents the square of the

speed of light in vacuum.

7.14.2 Energy syntax N°3

cq

1
The solutionis E = (=-)z X (Mass Length) . The constant C3 is “unknown” and has dimension

Gh

m s™2. The constant C; represents a constant acceleration.

7.14.3 Energy syntax N°5

7.14.4 Energy syntax N°7

4
The solutionis E = (%0) X (Length) . The constant C; is proportional to the string tension.

7.14.5 Energy syntax N°8

11 1
The solutionis E = (%)5 X (Length?) . The constant Cg is “unknown” and has dimension kg s 2.

5 1 2

. . Co N Mass Length

The solutionis E = (-2)z x (——rtd
Gh Time
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7.14.6 Energy syntax N°9

Length?

3
The solutionis E = 2 x ( i

G

) The constant Cq is proportional to a mass frequency.

7.14.7 Energy syntax N°10
hc
°) ;

Length

The solutionis E = (— ) - The constant Cy is proportional to the Planck mass.

7.14.8 Energy syntax N°13
The solutionis E = h X (ﬁ) . The constant C; 3 is the Planck constant.

7.14.9 Energy syntax N°14

Gh3.2
The solutionis E = (—)2 X

Co Ti
7.14.10 Energy syntax N°15

The solutionis E = ( ) X (Tl\fass

) . The constant C; 5 is proportional to the Planck area which

occurs in the Hawking—Bekensteln radiation.

7.14.11 Energy syntax N°16
1
The solutionis E = (i—g)i X (%e;gth) . The constant Cy is proportional to the Planck length.
0
7.14.12 Energy syntax N°17
The solutionis E = ¢y X (%r:ngth) The constant C; is the speed of light in vacuum.
7.14.13 Energy syntax N°18

The solutionis E = / (Mass) The constant C; g represents a diffusion constant or a flux of
Co

VOFUCWV.

7.15 n-polytopes in Z7
Conjecture: The theory of polytopes created by H. Coxeter(Banchoff, 1996) could be considered as
framework for classification of the physical quantities.

The study of the n-polytopes and especially their lattice points should reveal symmetries that could
be associated to the laws relating physical quantities.

It is known that sections of a unit cube in 3 dimensions ( which is applicable for the case Z3 where
we have 3 units to describe the physical quantities e.g. length, mass and time) by a plane
perpendicular on the long diagonal starting at (0,0,0) up to (1,1,1) generates the following series of
lattice points:

Lattice points in the unit cube Number of lattice points Sum of coordinates
(0,0,0) 1 0
(1,0,0);(0,1,0);(0,0,1) 3 1
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(0,1,1);(1,0,1);(0,1,1)

(1,1,1)

It is known that sections of a unit cube in 4 dimensions ( which is applicable for the case Z* where

we have 4 units to describe the physical quantities e.g. length, mass, time and current) by a hyper

plane perpendicular to the long diagonal starting at (0,0,0,0) up to (1,1,1,1) generates the following

series of lattice points(Banchoff, 1996):

Lattice points in the unit hypercube

Number of lattice

Sum of coordinates

points
(0,0,0,0) 1 0
(1,0,0,0);(0,1,0,0);(0,0,1,0);(0,0,0,1) 4 1
(1,1,0,0);(1,0,1,0);(1,0,0,1);(0,1,1,0);(0,1,0,1);(0,0,1,1) 6 2
(1,1,1,0);(1,1,0,1);(1,0,1,1);(0,1,1,1) 4 3
(1,1,1,2) 1 4

The number of lattice points in the unit hypercube of dimension n with sum k is given by

C(Tl,k) = W

— 1!

which are the binomial coefficients(Abramowitz & Stegun, 1972).

Applied to Z7 we find:

Number of lattice points in the unit hypercube in
7 dimensions

Sum of coordinates

21

35

35

21
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We see from the above table that we can start classifying the physical quantities which are elements
of the unit hypercube in Z”. Based on their sum. The “intuitive” equivalence class generated by the
function SUM() is hereby founded on a more solid mathematical ground. However, it was applied on
the complete lattice instead of the unit hypercube.

The n-simplex is the smallest shape that contains n+1 points in the n dimensional space and that are
not part of a lower dimensional space(Banchoff, 1996).

Dimension of n-simplex 0 1 2 3 4 5 6 7

# 0-simplex 1 2 3 4 5 6 7 8

# 1-simplex 0 1 3 6 10 (15 |21 |28
# 2-simplex 0 0 1 4 10 |20 |35 |56
# 3-simplex 0 0 0 1 5 15 |35 |70
# 4-simplex 0 0 0 0 1 6 21 |56
# 5-simplex 0 0 0 0 0 1 7 28
# 6-simplex 0 0 0 0 0 0 1 8

# 7-simplex 0 0 0 0 0 0 0 1
Sum of k-simplices 1 3 7 15 (31 |63 | 127 | 255

The number of k-dimensional simplices in a n dimensional simplex is given by(Banchoff, 1996):

(n+ 1)!

C+Lk+ D= G D rm—n!
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Let us describe by Q(n,k) the quantity of k-cubes in a n-cube. The formula for Q(n, k) is(Banchoff,
1996):

Q(n,k) = C(n, k)2nFk

Dimension of n-cube 0 1 2 3 4 5 6 7

# 0-cube 1 2 4 8 16 (32 |64 |128
# 1-cube 0 1 4 12 |32 |80 |192 |448
# 2-cube 0 0 1 6 24 | 80 | 240 | 672
# 3-cube 0 0 0 1 8 40 | 160 | 560
# 4-cube 0 0 0 0 1 10 |60 | 280
# 5-cube 0 0 0 0 0 1 12 | 84

# 6-cube 0 0 0 0 0 0 1 14

# 7-cube 0 0 0 0 0 0 0 1
Sum of k-cubes 1 3 9 27 |81 | 243 | 729 | 2187

One can remark that the number of all k-cubes for a n-cube is given by 3™.
We know that in Z7 there are three kinds of regular 7-dimensional polytopes(Erich W. Ellers, 2003):

e simplex
e cube
e cross-polytope

7.16 Closest neighbour lattice points in Z” for the quantity “energy “
The physical quantity energy represented by the vector E in Z7 has closest lattice points. We will now
investigate these dimensional relations:

Dimensional relation 1: E = h (%) where h is the Planck constant.

Dimensional relation 2: E = v?(m) where m is the mass and v the velocity.
Dimensional relation 3: E = F (1) where lis the length.

Dimensional relation 4: E = p? (%) where p? is the square of the linear momentum. This form is

used in the Hamiltonian.

. . . 1
Dimensional relation 5: E =W (?) where W represents the power.

Dimensional relation 6: E = FA(%) where F represents the force and A the surface area.
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a dv

. . , . . d .
The dimensional relation 6 suggests the existence of an equation E = = (m EE) where V is the

volume.

The product FA = hc or FA = Gmj can be considered as a constant. In that case the energy is
inversely proportional to the length [ . For FA = hc we find the known Planck relation between
energy and wavelength of an electromagnetic wave.

The form FA = hc suggests a possible quantisation in the form [[ F(x,y)dxdy = nhc. If we put

2.3 2
F(x,y) = m;’: then we have [[ dxdy = ;:g; =n (LC) . This can be interpreted as a force acting

mo

h
along the normal on a surface with as area the square of the Compton wavelength.

The total number of closest lattice points of Ein Z7 is ?
Test the compression algorithm on E in Z7 and obtain the graph(Delahaye, 2006).

Test minimal spanning tree algorithms to classify E in Z7.

7.17 Grassmann algebra of Z7 over Z for classification of physical quantities
We denote A(Z7) as the Grassmann algebra of Z7 over Z.

We have A: A(Z7) x A(Z7) - A(Z"):(a,b) > aAb

The basic properties of the “wedge product” are(G.Grosche, Zeidler, Ziegler, & Ziegler, 2003):
aMha=0 foralla € Z7

aAb=—-bAa foralla,b € Z7

vy Avy A... Avi = 0 whenever vy, v, ...vi € Z7 are linearly dependent.

1
e=14 a+ §a2+-~-= 1+ a

The most general function is f(a) = m + na with m and n elements from Z.
The derivative of a function is Df(a) = n

The integral is defined as [(m + na)da =n

The integral is insensitive for addition of a constant [ f(a)da = [f(a+ c)da

The Grassmann algebra is a graded-algebra in the sense that it contains rth-order elements (where r
is the number of v;'s that are ‘wedge-producted’ together within the expression)(Penrose, 2005).
The number r (wherer=0, 1, 2, ..., 7) is called the grade of the element of the Grassmann algebra.

We give as example 1: the wedge product between hand v :
h - 261 + ez - e3

V=—¢3
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hAv= —-2(e;Ae3) — (epAe3)

The wedge product e; A e; is a 2-order element representing a signed area spanned by the vectors
e; and ez. So, the absolute value of the coefficient “-2” represents the area of the parallelogram.

We can allocate to h A v a measure representing the sum of the absolute values of the coefficients
of the r-order element. For h A v we find a value of 3.

We give as example 2: the wedge product between m and ¢2:
m=e,
c>=—2e; —2e;g
mA 2= —2(e;Aey) — 2(e, Aes)

Form A c? we find a value of 4.

Further analysis of the equations in the Grassmann algebra should lead to a classification of relations
between physical quantities. Is this classification related to the Coxeter polytopes?
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8 Dimensional exploration of physics equations using dimensionless
products

8.1 Dimensional analysis
The most famous of the dimensionless numbers is the number m = g where P is the perimeter of a

circle and D is the diameter of the circle.

Background examples: Rayleigh scattering(Silverman, 1998) , onset of thermal instability in
fluids(Bénard cells) (Chandrasekhar, 1961).

8.2 Buckingham m theorem
“If an equation is dimensionally homogeneous, it can be reduced to a relationship among a complete
set of dimensionless products” (Buckingham, 1914)

“A set of dimensionless products of given variables is complete, if each product in the set is
independently of the others, and every other dimensionless of the variables is a product of powers of
dimensionless products in the set.”(Langhaar, 1951)

“The number of dimensionless products in a complete set is equal to the total number of variables
minus the maximum number of these variables that will not form a dimensionless product.”(Driest,
March 1946)

“The number of dimensionless products in a complete set is equal to the total number of variables
minus the rank of their dimensional matrix.”(Langhaar, 1951)

8.3 Dimensional matrix for SI units

The dimensional matrices that will be considered will be 7 x n matrices where n represents the
number of physical quantities used in the modelling of the physics. The dimensional matrix will be
build up by the transposed vectors of the representation of the physical quantities.

The unit 7 x 7 dimensional matrix(Langhaar, 1951) build up from the Sl base units is represented by

10000 0 0
0100000
0010000

[N=l0001000
0000100
0000010
000000 1

8.4 Dimensional exploration of “a particle in a box “

We will now illustrate the technique of “dimensional exploration”(Roche, 1998) by searching a
universal relation expressing the force F (or equivalent the tension 1) as function of “important”
physical quantities. It can be considered as a “one particle in a box”-problem.

Today physics describes all known processes based on 4 interactions: electromagnetic interaction,
weak interaction, strong interaction and the gravitational interaction.

We also know “absolute” conservation laws which are valid for the following physical quantities:

64



e EnergyE

e Linear momentum p

e Total angular momentum J
e Baryon number A

e Electricchargee

All interactions between particles comply with these conservation laws. It is straightforward that we
want to express the force F as function of physical quantities occurring in the conservation laws.

A dimensional matrix representing the physical quantities (F, E,p,J, T, q,t,my, G, Uy, €9, k) is given

below
1 2 1 2 0000 3 1-3 27
1 1 1 1 0001-1 1-1 1
-2-2 -1 -1 0110-2-2 4-=-2
M]=] 0 O 0 0 0100 0-2 20
0 0 0 01000 O O 0-1
0 0 0O 0 000OO O O OO
L 0 0 0 0 0000 O O 0 of

By inspection one can see that the columns in the matrix represent the coordinates of the
representation of the physical quantity in Sl units which is an integer lattice in Z”.

This 7 x 12 matrix has rank[M]= 5.
The above 7 x 12 dimensional matrix results in 12 — 5 = 7 dimensionless products.

Buckingham has pointed out that we obtain the maximum amount of experimental control over the
dimensionless variables if the original variables that can be regulated each occur in only one
dimensionless product. The dependent variable of the problem must also be considered. It is desired
to know how this variable depends on the other variables. The dependent variable consequently
should not occur in more than one dimensionless product. The following rule should be applied

“In the dimensional matrix, let the first variable be the dependent variable. Let the second variable be
that which is easiest to regulate experimentally. Let the third variable be that which is next easiest to
regulate experimentally, and so on.” (Langhaar, 1951)

Conjecture: The dot product of two columns from the dimensional matrix should be different from
zero to have a physically meaningful dimensional matrix.

The above 7 x 12 matrix is not in agreement with the above proposition. It means that solving this
dimensional matrix will result in finding dimensionless products that are not related to the physical
system under study. Inspection of the matrix suggests removing column 5 which represents the
temperature T, from this dimensional matrix. As column 5 is removed, one can immediately see that
column 12 can also be removed because it is in a one-to-one relation with column 5. Using the above
conjecture the dimensional matrix can be made more meaningful and results in a 7 x 10 matrix of
rank 4, which has 6 dimensionless products as solutions.

The dimensionless products are:
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1_FG 2 _ E 3 _ Y4 4 _ Jc 5 _ q2 6 _ tC3

— mw- = n" = ——, T =
ct’ mgc2’ mgc Gm3’ Gegm3 '’ Gmyg

Ill

form of the relevant variables in the framework of SI
units. It means that theory if physics should be best expressed in terms of these dimensionless
products.

These dimensionless products are the “natura

So, the equation @ (F,E,p, ], q,t,my, G, Uy, £) = 0 could be reduced in complexity to an equation of
the form: w(rt, 2, w3, %, m% m®) = 0 . We use here the Einstein notation for the 7’ coordinates of

the manifold(G.Grosche, Zeidler, Ziegler, & Ziegler, 2003).

The configuration space CS of our “one particle in a box”-problem is reduced to a non-Euclidean 6-
manifold M having 6 degrees of freedom, where w is a smooth function defined on M.

These dimensionless products should all play an important role in a “theory of everything”. To see
the importance of them a short qualitative discussion follows:

8.4.1 !
. . FG . . .
This dimensionless product 7! = —& represents the ratio of a force to the string tension up to a

constant factor.

8.4.2 m?

. . . E
This dimensionless product 2 = —
0

represents the ratio of the total energy of a system to the

rest-mass energy of a particle of the system.

843 =
- . . . . h
This dimensionless product 3 = % can be transformed using the “de Broglie” relation A 5 = -
0
for a wave-packet to the ratio of the Compton wavelength to the “de Broglie” wavelength of a

. . . G Gm3\ h Gm3
particle of rest-mass my. It is interesting to remark that (%) = (%) — where the factor ( :;0)
0

can be considered as an dilution coefficient because it reduces the Compton wavelength.

Ep
. . . . . . E - .
It is also interesting to see the following dimensionless product w3 = £ = —2 | which
m2c3 mgc3

h
represents the ratio of two forces.

844 w*

- . . ho.
This dimensionless product 7* = G]nCLZ can be transformed using | = n-, with n= quantum number,
0

for a wave-packet to the ratio of the atomic interaction to the gravitational interaction of a particle
of rest-mass my.

8.4.5 1w’

q2

2
Geomy

This dimensionless product 7° = represents the ratio of the electromagnetic interaction to

the gravitational interaction of a particle of rest-mass m,.
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8.4.6 mw°

t . . .
can be represented as m® = ano which is the ratio of the

0 o2
distance travelled by an electromagnetic wave in vacuum to a term proportional to the Schwarzschild
radius ( ) - The

quantity t is considered to be the proper time.

tcd

This dimensionless product 7° =

Gmyg
CZ

Gmyg

) of a black hole of rest-mass my. The exact Schwarzschild radius is rg = 2 ( 2

8.4.7 Approximation of w(w!, 7%, 3, %, n°, %) = 0

The equation w(rt!, w2, 73, %, >, m®) = 0 can further be transformed to

4

c
F = T 9(712,713,714, 3, 7'[6)

4
Based on the magnitude of % = 1.21 x 10** N one expects that the function

0(m?, 3, %, m%, m®) < 1 and that it rapidly decreases as time increases.
We assume that 72 € [1,0[ and that 3 € [0, 0.

We also know that for a free particle one can write E2 = ¢?p? + m3c* . This can be rewritten in
two ways using dimensionless products:

Type 1:
(mo—cz) 24+ (%) 2=1 or with dimensionless notation (L)z + (71—3)2 =1
E E 2 2
3
It represents a unit circle x> + y? = 1 where (x, y) represent the dimensionless products (#,%) .
Type 2:
(Lz) Z_ (iz) 2=1 or with dimensionless notation (2)? — (m3)? =1
mgpcC mgoC

It represents a hyperbola x? - y? = 1 where (x, y) represent the dimensionless products (72, 73) .

The type 2 equation is the most used in quantum electrodynamics theory. In the absence of an
external field the Dirac equation possesses only continuum solutions with energies in agreement
with type 2 equation. The vacuum state is determined by the requirement that all positive energy
states are empty and all negative energy states are occupied. Therefore, the physically observable
vacuum (without electromagnetic field) is free of particles and is electrically neutral (Greiner &
Reinhardt, 1992, 1994).

The type 1 equation is useful if one realizes that the inner circle represents a region where excited
states of the free particle can occur. If the total energy of the system rises then the particle state will
move towards (0,0). This picture can be in an elegant way being treated with holomorphic functions
and can also be treated in respect to the z-transform used in the modelling of discrete systems.

In the present discussion of the function 8(m?, 3, %, 7>, %) it is more appropriate to consider the

. ) . 1 .
type 1 equation which helps us to transform the function to 6, (;,%, 7'[4,7'[5,7'[6) so that its

67



5

2
variables are <1. It is also interesting to remark that the ratio % =

2puge? 2a
= 2Hf 22 and a =

2

q —_— —_—
Jeeo  2h()

1

————— . The constant a is nothing else than the fine-structure constant if g = e. It should also be
137.035999070

5 2
remarked that the form % = ]ze could also be used for expressing the weak interaction. If one
0

interprets q as the “effective charge” and J as the “effective total angular momentum”, one could

. md 1 4e? . . . .
write 2 = —— (E + g?) where electromagnetic and weak interactions are combined. To have a
0

h .
general treatment of the problem one could represent | = n- wheren € Z so that fermions and

. 1 = -
bosons can be treated by the function 6, (—Zn—z 4, 7'[6). So, let us change m° by the ratio —.
Y3 Y5 A
m 4

. 1 . . . .
We have now the equation 8, (F’F’” ’F’”()) in which 3 coordinates are < 1. We still have to
find a suitable transformation for * and ® so that we can perform a MacLaurin series expansion

on the function 8, where we assume that the first term of the expansion is equal to 0.

We need initial conditions for this equation. So, we define that at t = t; the force F = F,. This force
F, is a constant force. A good candidate, based on dimensional analysis, for this constant force is

2.3
mge
Fy =

with rest-mass m,.

. It represents the ratio of the rest-mass energy to the Compton wavelength of the particle

. . F-F 1w ™
We can consider now the function m—= = 6, (P’_’”4'_’7T6)'

The variable t in g represents the time interval in which the force changes from F;, to F. So, At is the
time interval in which the force F changes from F, to Fy + AF.

Let us assume that the dynamics are determined by ° ,so in first crude approximation we can state

3 5
1 m° 4T
05 s et

that the equation CfF = describes the dynamics of the system in which
—-F

Gmy
G c?
1 w4 w5, . i
03 (F’F’n ey )IS a function of the mt.
3 5
. ) ) c* 93(7%2,2—2,114,2_4 )ct
Integration of the equation results in In (F - ?) = — g + constant.

c2

The constant must be chosen to render the equation dimensionally homogeneous and to satisfy the
initial condition thatatt = ¢, the force F = F,.

173 47 4
93(11_2’?'”4rn—4 )ct I <C__

F
T L 0>. This equation determines the time t in which the force
0 [4

Cz G

We find now

G
changes from F to F.

173 ,m’
. F~Fy ~0( et Jet
We can also write that — =1-—exp o
[4 0
G fo ez
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3 5
This type of equation is typical for diffusion phenomena. The function 05 ( 12 ’ZZ , n‘*,% ) has still to

be further investigated.

. o . 1
Instead of using * it is better to use the reciprocal because = < 1. So, we transform

93(L sl 7-[4’ — )t004(i o1 ”_5)

n2’ 2’ n2’ n2’ o4’ ot

5 5
Conjecture : one trial function for 94( L ) = [(nz)2 —) — (1 —agep — T i)2].

z'ﬂz'ﬂ4'ﬂ4 b m#
This dimensional exploration/analysis results in the equation :

F—F (= )2+( )2 (1-aqcp— ,t4 ,t4)
= 0 :1—exp< [ g ] [1]

2

Conjecture: The above equation describes the time evolution of the total force(or tensiont)ina
particle with rest-mass m,.

It can be seen that for a free particle the equation reducesto F — F; =0 because[(—)2 + ( )2

5
(1 —agep — % — %) ] = 0. According to classical mechanics one would suggest that F, =

0 at t = 0. However, in quantum mechanics one can derive a term known as

“Zitterbewegung” (Merzbacher, 1970) (frequency = moc?

= LC) that is probably
Mo

related to the constant force F;.

2.3
. . . . méc
Conjecture: Any particle with rest-mass m, experiences a constant force Fy = —
2mgoc? _ 4mmjc’
cr~(eh)_ eh ,» SO
2mmgc

we have F,

Ccr:

Caianiello (Fradkin, I.A.Batalin, C.J.Isham, & Vilkovisky, 1987).

A rough estimate tells us that pair production becomes considerable if the potential changes by a
value of two rest-masses over a characteristic length scale which is set by the Compton wavelength
of the particle(Greiner & Reinhardt, 1992, 1994).

The magnitude of this force formy = m, is Fy = 3.37 x 1072 N .

2.3 2 4 2
mg§c am c Gm
One can also remark that —2— = (—0) — where the factor ( hCO

) can be considered as an “dilution
h he ) G

4
. . . . c
coefficient” because it weakens the constant force or tension e

4
The magnitude of this force formy = mp is Fy = % N . The equation [1] is in the limit for

my — mp also valid.
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h

S 2.3
It can be verified that myc? = ["°° Fods where Fy = e

.This would mean that the rest-mass

energy is created by a constant force acting over a distance equal to the Compton wavelength of the
particle.

This view can also be interpreted in another way.

hc3

Gmo

Consider the energy E; = (ﬁ) (L) =

G mqocC

and E, = (%) (GC";O) = mgyc?. Performing the ratio

E, Gm?2 my\ 2 . _— - .
E—Z = h—c" = (m—o) results in the “dilution coefficient” which for a proton has a value of
1 P

approximately 10738 It can be seen that the “dilution coefficient” is the square of the ratio of the
rest-mass of the particle to the Planck mass.

Conjecture: We suspect that the equation [1] is valid for dimensions ~ Compton wavelength.

Could the equation [1] be experimentally verified by probing an electron for detection of a constant
force or constant tension of magnitude F, = 3.37 X 10™2 N? This will be difficult especially
considering already the problems that have been encountered with the Lamb shift measurement and
the electron self-force problem(Venkataraman, 1994).

A “curious” coincidence is:

o= (5) (229) - () (o)

(6
The first equality myc? = (%) ( CWZLO) is clearly related to the general relativity theory.

2.3 h
The second equality myc? = (m‘;lc ) (E) is clearly related to quantum mechanics.
0

Both equations express the relation “energy = force x length” or E = [ Fds

If we want to combine both equations we could form the geometric average which results in

5 ¢\’ (Gmg\2  (m2c3\° [/ h \?
me = (7)) (F) +(5) e
G c h mgyc

which should be applicable for quantum gravity.

8.4.8 Relations involving the dilution coefficient

. Gm2\ hc3 mg\2 hc3 mg\2 (2hc
Energy relation: mec? = (—0) = (_0) _ (_0) (_)
hc / Gmgy mp/ Gmy mp Ts
2.3 2 4 2 .4
. mgcC am c m c
Force relation: 0 — ( 0) L= (_0) <
h hc G mp G
. em Gm3\ h mo\2 h
Length relation: ( 20) - (_0)_= (_0) _h
c hc / myc mp/ mgc

From dimensional point of view one can write “energy = force x length”. If we apply this on the above
relations we get :
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m3c3 (Gmo) Gmic Gm3 5 (m0>4 c* ( h )
= = macC = |— —_— —
h c? h hc 0 mp G ) \myc
A “dilution coefficient” is natural in a hyperbolic geometry(Delahaye, 2006). On a Poincaré disc the

size of an object becomes smaller when it moves away from the centre. This is a dilution effect.
Consider now my = mp ,as a geometric entity, at the centre of the disc then m, will be diluted by

aGm

2
hc" when it moves toward the outer circle of the Poincaré disc.

the factor

. . T . . Gm3
Another hypothetical explanation for the “dilution coefficient” is to consider the factor ( :Clo) as a

canonical projection(Penrose, 2005) from the fibre bundle B to the manifold M which collapses each
entire fibre V down to a particular point of M. The product space of M with V contains pairs of
elements (a,b) where a belongs to M and b belongs to V. Here we have the following pairs:

2.3 4 3
mgc c Gm h hc
( o ); ( % ) and (mocz’ )
h G ¢z "myc Gmg

8.4.9 Dimensional exploration of total angular momentum J

8.4.9.1 Present status
“The elementary particles are grouped according to one of their fundamental properties, namely
spin(Veltman, 2003).”

Particles related to matter(electrons,...) have all spin %.

Particles associated to the electromagnetic force (photon), weak force( W and Z vector-bosons) and
strong force(gluon) have spin 1.

The particle associated with the gravitational force has spin 2.
The hypothetical particle Higgs-boson has probably spin 0.

The interaction strength of the 4 interaction forces are different functions of the energy E of the
particle and the interaction strength is not a basis for classification of the interaction forces(Veltman,
2003).

Jc

From previous calculations we know that the dimensionless product % = is related to the total

2
0
angular momentum of the particle with rest-mass m,,.

m*Gmf (71'4G

. h
It means that we have the relation ] = T) 2 where ] = n- andn € Z.

This relationship is a straight line, in the assumption that *is a constant, between the total angular
momentum and the square of the rest-mass of the particle. This straight line is known as the Regge
trajectory (Veltman, 2003) and is at the cradle of the string theory.

8.4.9.2 Whatifwe don’t know the Planck constant?
It is interesting to ask the question “What if we don’t know the Planck constant?” It can be shown
that solving the system of equations for a constant with dimension kg m? s~ from the set of

constants C = {G, e, l1y, €} results in an constant angular momentum of Jy = e? /? which could
0
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have been considered as the basic “natural” form of the angular momentum quantum. It could have
been derived before the year 1900. The following correspondence exists h = 2aJy . One could have
objected, based on the magnitude of [, that J, is more fundamental.

m?m®

Conjecture: The parameter = x is proportional to a quantum number.

T4

2.6 3 2
We show by inspection that “—— = x with x € Q. We have (LZ) ( & ) (Gm") = (2) ~ (i)
T mocC Gmg Jc ] hw

8.4.10 Interaction of external fields on free particles
Dimensional analysis on the equation @(F,E,p,J,q,t,m,, G, o, €9) = 0 has shown that the known
relation for free particles could be written in function of dimensionless products:

mocz)z (Q)Z_ . . . . (L)z 2 _
(—E +tlg) =1 or with dimensionless notation (—) +(5)"=1

. L . 1 =l
The equation represents a unit circle in the (;,% )—plane.

We can now consider the switching on of an external field on the state of a free particle. We assume
that the particle is subjected to a field which increases the total energy E of the system under

. . . S 1 7wl .
consideration. In that case the coordinates of the particle in the ;,%—plane will move towards the

origin. It means that these states will be described by a circle with a radius < 1.

Conjecture: We propose to describe the perturbation of free particles by a dimensionless equation of

1\2 (3 5 1
(@) *(m) = (1%~ - 1

where the mathematics is performed using holomorphic functions in the complex plane C (see § 9).

the following type:

2

2
1 . . . .
Where a,, = % = 3, representing the weak interactions, ag¢cp ~ 1 representing the strong

interactions at low energy, agy = representing the electromagnetic interaction(Veltman,

137,04

. . N . L 1 -
2003). The fourth interaction, the gravitational interaction, is represented by =~ 10738 for a rest-

mass like the electron and proton a becomes 1 for the Planck mass.

5 1 4 2 . .. .
We represent % = e (i + g?) as the combined weak and electromagnetic interaction.
0
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8.5 Dimensional exploration of “vacuum states”

8.6 Dimensional exploration of “a box containing charged particles”
Let us consider the following physical quantities:

e [ =characteristic size of the box
e mg =mass of the particle

e e =total charge of the particle
® &y = electric constant

® iy = magnetic constant

We assume the following equation f (I, m,, Ze, &y, 1ty) = 0 to be valid.

The dimensional matrix M becomes:

r1 0 0 =3 1 7
0o 1 0 -1 1
0 0 1 4 =2
M=]0 0 1 2 =2
0 0 O 0 0
0 0 O 0 0
L0 0 O 0 0 -
2
The solution after some calculus is 7! = % .
0
One can see that it is more appropriate to consider % = p lgz)z if we want to use series expansions
0

lmo
ro(Ze)?

because then Imy — 0 will not create infinities. So, we have now f; ( ) = 0. Expansion in

MacLaurin series gives f; (L")z) = f,(0) + fl’(O)( o ) +

uo(Ze Ko(Ze)?
lmg _ —f£(0) _ _
So we have (#O(Ze)z) =T constant = A .

2
We recall that the fine-structure constant is given by a = ﬁ and pgeoc? = 1.
0

h
. . Apo(Ze)? A(Ze)? 2hA(Z)? e mgc.
Reworking the terms we find 1 = 2£Z¢" _ A9 ~ = @ e _ (m{’C) AZa.
Ilmg Imgyggc Ilmgoc  2gphc (5)
. N _ 2 h . . L. .
So, we can write (E) =A7%x (m) . If the box is considered as a sphere then S s the radius of the
0

sphere.
A(ge)
)

thati represents the ratio of the diameter of a “fibre” to the length of the “fibre”. The “fibre”

1
If we consider that Z=1, then for one electron in a box we find = The geometric interpretation is

represents the “volume” occupied by the particle. So, we can define a characteristic angle
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6, = arctan (%) ~ 89,581°. It means that the volume of the “fibre” resembles to a very thin flat disc

propagating at a speed v along the axis of the “fibre”.

Within the box we have the quantum condition [ = nl, gz withn € Z.

%)
(™)

We know that % is a constant which means that we have for Z=1 a straight line defined by

n(dgp) 1
2 (A¢) AZ?

So, we have finally a = . We will see in §9.1 that this can be written asé = % AZ?.

1 1 A . L .
(2) === — (m"c ) with n € Z. This equation is valid for all m,.
E)  az2az2 \E

8.7 Dimensional exploration of “Casimir force”

8.8 Dimensional exploration of “a rotating body”
Let us consider the following physical quantities f(J, 7, ¢y, G) = 0 where we have

e J=angular momentum of the object

e r=radius of the rotating object

e (, =speed of light in vacuum

e (G =Newtonian constant of gravitation

Let us form the dimensional matrix M. So, we find:

r 2 1 1 3 7
1 0 0 -1
-1 0 -1 -2
M= 0 0 0 O
0 0 0 0
0 O 0 O
L0 O 0 0
We can find after some calculus that ! = rjz—;
0
As ] is normally a vector quantity we can write t! = % The dimensionless product 7'should
0

play an important role in all phenomena involving rotations. Is this also true for the total angular
momentum of an elementary particle?

n\ ,Gm3

then we obtain ! = (;) (

If yes then we put ] = n% andr = Ywithn € Z. This result is in

MmoCo hcy

accordance with§ 8.4.4.

8.9 Parametric “dimensional exploration” of physics equations
We have seen that dimensional analysis is looking for dimensionless products. This technique can be
modified by solving the system of equations for a dimensional quantity.
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A question could be “Could you find a quantity with dimension length build up from the following
constants G, h, c?”.

It was this question, that | found as exercise in a book of physics(Borowitz & Beiser, 1971), that
triggered in 1978, during my first year at the University of Ghent, my search for structure in the
physical quantities.

The answer to the questionis L = /i—? which is proportional to the Planck length.

8.9.1 Solution for the quantity “Length” as function of the parametric set {h, c,, m,, G}
Solve the equation for a physical quantity with dimension length L.

() 5 g )
The solution L ,as function of the parameterr, is L = h\ z (o 2 mG\z ),

It is interesting to explore the equation by entering a value for the parameter r, so that the exponent
of the variable/constant vanishes.

8.9.1.1 Length independent of h

We have the condition (%) =0 sowe haver=1.

We find the equation L = Gcnzl" which is proportional to the gravitational radius of an object (Landau
0

& Lifchitz, Physique Statistique, 1967). It is described by Landau in relation to the equilibrium of a

neutron star.

8.9.1.2 Length independent of c

We have the condition — (32i) =0 sowe haver=-3

2

i . h L i .
We find the equation L = P which is “unknown”. For a proton one finds a length having the value
0

L = 1,406 X 10%* m which is equal to 1,487 x 108ly. The radius of the universe is estimated to be
not smaller than 24 Gpc(Cornish, Spergel, Starkman, & Komatsu, 2003) which is approximately

78 x 10° ly. So, a proton fits in that universe. What now with an electron?

For an electron we find the value L = 8,702 X 1033 m which is equal to 9,205 X 1071y. This is
much larger than the 24 Gpc. Is it possible that we should consider an ellipse for the topology of the
universe based on the maximum wavelength of an electron and a proton? Is their any anisotropy to
be found in the behaviour of an electron or a proton when the particle is rotated?

h (h h 2
The “unknown” length can be represented as L = — ( Cz) = — (ﬂ) .
moc \Gmg moc \mg
We could interpret this length as the largest wavelength of the particle. So, it creates a cut-off for the
wavelength of the particle. Using the standard quantum mechanical description of a particle in a box
we can conclude that the basic cavity allowing this wavelength has the size of half the wavelength.

2
The cavity length L, becomes L. = L (@) .

2mgyc \mg
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2
Is it possible that (%) always has to be an integer?
0

Conjecture: The “de Broglie” wavelength of an elementary particle is bounded by the following

h h?
values: A 5 € [— ,—3].
moc " Gmg

.. . . . . h Gm3
So, the minimum linear momentum of a particle with rest mass my is P;in = T 2 and the
dB

maximum linear momentum of a particle with rest mass my is pjgx = MoC.

8.9.1.3 Length independent of m,
We have the conditionr = 0 so we haver=0

We find the equation L = /i—? which is proportional to the Planck length.
0

8.9.1.4 Length independent of G

We have the condition (%) =0 sowe haver=-1

We find the equation L = % which is the Compton wavelength.
0

8.9.2 Solution for the quantity “Energy” as function of the parametric set {h, ¢y, m, G}
Solve the equation for a physical quantity with dimension energy E.

() o) g )
The solution E ,as function of the parameterr, is E = h\2/c;?  myG\z /.

8.9.2.1 Energy independent of h

We have the condition (%) =0 sowe haver=1.

We find the equation E = myc3 which is the equation of Einstein for the rest-energy.

8.9.2.2 Energy independent of c
We have the condition (%) =0 sowe haver=5

542
mgyG

w2z~ Whichis “unknown”.

We find the equation E =

8.9.2.3 Energy independent of m,
We have the conditionr = 0 sowe haver=0

5
We find the equation E = fhci which is proportional to the Planck energy.

8.9.2.4 Energy independent of G

We have the condition (%1) =0 sowe haver=1.

We find the equation E = mgc3 which is the equation of Einstein for the rest-energy.

76



What is the relation between all these equations. It can be shown that one has as function of the
parameter r the following equation:

moc§ hcg

21‘—1
E2=( %> withr €N

8.9.3 Solution for the quantity “Force” as function of the parametric set {h, ¢y, m,, G}
Solve the equation for a physical quantity with dimension force F.

—-r 8-T r—2
The solution F ,as function of the parameterr, is F = h(T) cg 2 ) mg G(T)
8.9.3.1 Force independent of h

We have the condition (_TT) =0 sowe haver=0.

4
We find the equation F = %" which is appearing in the string theory as the tension of a string and

also appears in the field equations of Einstein. The fact that this force is independent of h suggest
according to the “old” Copenhagen school that this force is mainly relevant for the non-quantum
world. We will see however in §8.9.3.4 that this “constant” force can be derived from another force
relation by considering the rest-mass mg as a variable.

4 2.3
Conjecture: replace the term %" by % in the field equations of Einstein when the mass my < mp.

4
The magnitude of the force F = %" is F = 12 x 10*3 N which is a huge force(tension).
8.9.3.2 Force independent of c
We have the condition (?) =0 sowehaver=8

m8G3
h4

We find the equation F =

which is “unknown”. The magnitude of this force for a proton is

F =9 x 107113 N which is extremely small. However if we substitute for mg the Planck mass mp ,

4
then we obtain the value F = %" We therefore assume that this force is only of importance for very

heavy elementary particles of a mass similar to the Planck mass.

8.9.3.3 Force independent of m,
We have the conditionr = 0 sowe haver=0

4
We find the equation F = %" which is appearing in the string theory as the tension of a string. This
2.3
force is related to the force F = % through the Planck mass. Subsituting the Planck mass in the

4
equation results in the force F = %" .

8.9.3.4 Force independent of G

We have the condition (rz;z) =0 sowe haver=2.

mgcs

We find the equation F =

which is the force related to the critical field for pair production.
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. . . ap > S .
The equation suggest the existence of an equation d—i = mcék where p is the linear momentum and

k is the wave vector of the particle.

8.9.3.5 Force linearly dependent on m, (Newton’s Law)
We observe that in the case of r = 1 we have a situation as in the law of Newton F = ma but where

here the acceleration is a constant based on fundamental physical constants. We find a constant
1
13\ o
acceleration a = (CGLh)S which has a magnitude a = 1.563 x 10° ms~2.

Conjecture: Is there any relation of this constant acceleration with the inflation theory (Guth, 1997)?

Constant acceleration relation to inflation theory

Parameter Value

t1 (start inflation) [s] 1,000E-37
t2 (end inflation) [s] 1,000E-35
dt 9,900E-36
a[m/s?] 1,563E+19
dv=a dt [m/s] 1,547E-16
dx=a (dt)’[m] 7,659E-52

In chapter 10 of his book “The inflationary Universe”, Alan H. Guth gives a rough value of x =
10752 m (Guth, 1997) for the size of the observed universe which seems to be roughly in agreement

with the naive calculation in the above table, which assumes the existence in the universe of a
1

. c3\s
constant acceleration a = (H) .

What is the relation between all these equations. It can be shown that one has as function of the
parameter r the following equation:

withr € N

If we combine now the generic equation for energy and the generic equation for the force we could
derive a generic equation for length [ which represents the ratio of energy to force. The calculus

hCO
. . l N S .
results in the equation: (G— = m—G which is independent of the parameter r. From the relation
m0>

0
2
€0

one can find the value of [ whichis [ = /i—f = [p ,nothing else than the Planck length.
0

2

We derive from this relation the following invariant ? = ;no = %0 having dimension kg m™1.
2
€0

We have seen that the parametric dimensional exploration of physical quantities can give a hint
about the relations and constants to be considered. One should ask the question if the results of this
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parametric exploration are biased by the set UC = {h, ¢y, my, G} and if this set UC is the correct
choice.

We know that c2&, = 1 so it is more appropriate to select as basic constants &, and i, as
characteristics of vacuum.
We have also seen that the Planck constant could have been defined as Jy = e? ?

0
It can also be proven that the vector representing the physical quantity G which is G =(3,-1,-2,0,0,0,0)
cannot be written as a linear combination of the vectors pg = (1,1,—2,-2,0,0,0) and gy =
(-3,—-1,4,2,0,0,0).

It can also be proven that the vector representing the physical quantity e which is e =(0,0,1,1,0,0,0)
cannot be written as a linear combination of the vectors yo = (1,1,-2,-2,0,0,0) and gy =
(-3,-1,4,2,0,0,0).

Let us now consider a new set UCN = {u,, &, e, G} of 4 “fundamental constants”. We have
deliberately eliminated the rest-mass to obtain constants that are totally independent of the physical
guantity mass. These constants should be “universal”.

8.9.4 Solution for the quantity “Length” as function of the parametric set {u,, £, e, G}
Solve the equation for a physical quantity with dimension length L.

One finds L = epg /Gy which is smaller than the Planck length and could thus be more
fundamental. The magnitude of this constant length is L = 4.8935 x 1073® m.

8.9.5 Solution for the quantity “Frequency” as function of the parametric set {u,, £, €, G}
Solve the equation for a physical quantity with dimension frequency f.

1
g€ /Gug

Is this constant frequency related to the vibrations of the “vacuum-state”?

One finds f = . The magnitude of this constant frequency is f = 6.125 x 10%3 s71

8.9.6 Solution for the quantity “Energy” as function of the parametric set {1, £y, e, G}
Solve the equation for a physical quantity with dimension energy E.

One finds E = ecg I% . This constant energy has the magnitude E = 5.923 x 10%8].
0

We compare this energy with the rest energy of an electron whichis E, = 8.187 x 10714,

If the constant energy would correspond to an elementary particle then this elementary particle has
arest-massmg = 6.591 x 1079 kg.

If the constant energy would correspond to annihilation with generation of photons with this energy,
then the wavelength is 1 = 3.3454 x 1073* m and the thermodynamic temperature T = 4.290 X
1031 K.
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What is special to this constant energy? Can we detect the remnant of these photons? Which value
for the red shift? Is it the temperature at which symmetry breaking occurs between gravitational
interaction and electromagnetic interaction?

The total energy of the observable universe is 10°8 ] (Davies, Superforce - The search for a grand

he§
G

unified theory of nature, 1995). Can we divide this energy by the Planck energy to obtain the

quantity of Planck particles at the Planck time and consider a decay process as generator of the
elementary particles? The total quantity of Planck particles would be 2 X 10%8? The total quantity of
elementary particles in the observable universe is estimated to 108° (Delahaye, 2006).

8.9.7 Solution for the quantity “Magnetic moment” as function of the parametric set

{MOJ €0, €, G}
Solve the equation for a physical quantity with dimension magnetic moment [A m?].

One finds u,, = e2,/Gu, . This constant magnetic moment has the magnitude yu,,, = 2.3505 x
1076 Am?2.

What is special to this constant magnetic moment?

8.9.8 Solution for the quantity “mass/magnetic moment” as function of the parametric
set {uy, £, e, G}

One finds the equation gyu3 with as numerical value 1.398 x 10723 kg A™1m™2
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8.9.9 Listing of constants as function of the parametric set {G, h, c,, e}
We give a list of constants that can be calculated in the same way as explained above.

Physical quantity Equation Value Units
Gh
Length — 4,05 x 10735 m
Co
Gh
Time ,—5 1.35 x 10743 s
Co
Mass % 5.456 x 1078 kg
) cs
Mass density h—gz 8.21 x 10%° kg m™3
Velocity Co 2.997 x 108 ms~1
1
13\3
Acceleration (i)g 1.563 x 10%° ms—2
Gh
. Gh
Length x Time = 5.47 x 10778 ms
0
3
Linear momentum hﬂ 16.358 kgms™!
G
5
Energy heg 49 x10° J
G
h3c
Pressure GZO 859 x 107140 Nm™2
o
Force(Tension) % 1.21 x 10%* N
5
Power % 3.62 x 1052 w
5
Frequency % 7.401 x 1042 Hz
Gh
Electrical Charge e 1.602 x 1071° As
5
Electrical potential hc_oz 3.060 x 1028 |4
Ge
Ge*
Electrical capacitance = 5.234 x 10748 F
Co
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Electrical resistance % 25812.82 Q
e
: h -15
Magnetic flux — 4.1357 x 10
e
3
Magnetic induction ' 2.52 x 1054
eG
Gh
Diffusion constant — 384 x 10—(52—3) m? st
Co :
Gh3
Induction - 3.487 x 1073%°
)
cge
CZ
Mass per length unit 20 1.347 x 10%7 kg m~1
G

8.10 Some relativistic invariant equations
Dimensionless products are by definition relativistic invariant which makes them “pure”
mathematical objects..

8.10.1 Relation mass, temperature and entropy
It is known(Menzel, 1960) that for the mass m we have:

m v
m=-—=and f = —.
Co

It is also known(Menzel, 1960) for the temperature T that we have:
_ _ n2 —_
T=Tyy1—p%andp =
It is also known(Menzel, 1960) for the entropy S that we have:
S = So.
If we consider the three physical quantities then we can write: mT S = my T, S.

The product m T S has the dimension of the “square of the linear momentum”.

. hcd
So we could consider thatmT S = my Ty S ~ %

8.10.2 Relation mass and temperature
From the above equations we have also m T = mg T, as relativistic invariant. It represents a
hyperbolic relation which is typically scale invariant.

It is also known(Menzel, 1960) that the ratio % is relativistic invariant.
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mcoy

We can derive now that - kT = Zo%

kT,. This equation has the dimension of a force. The value

of this force is relativistic invariant!

In the case that kT, = myc2 which is valid for a relativistic plasma then the force can be written as:

2 .3
mg C . . . .
Fy = % which occurs in the pair creation process.

A “phase diagram”(Weinberg, 1977) can be created based on the hyperbolic relationm T =
constant.

The following dimensionless equation m2 = ©* where E = kT results in the hyperbolic relation
hcd

mT = .
Gk

hed . . z . .
The hyperbola mT = % crosses the straight line T = %mo in the coordinates (mp, Tp).

The hyperbolic relation, derived from dimensional exploration, is fully in agreement with the

3
temperature Ty of the Bekenstein-Hawking radiation of a black hole given by: mgy Ty = é (hc%)

where mpy represents the mass of the black hole. The black hole with the smallest rest-mass is when
Mgy = Mp.

hcd . .
The constant % can also be dived from the following:

Consider relativistic baryonic mass m;, = = Twuap and its “conjugate black hole mass” mgy =
0

constant

Twmar

We want to determine the “constant”. We know that at the crossing of the straight line and the

hyperbola we have the Planck conditions, so we suppose (see page 125 of(Hawking & Penrose,
k constant _ kconstant _ hcy

1994)) that we can write mympy = — Tywmar = 5 = —, which results in
CO TWMAP CO G
hcd
constant = —2.
Gk

2 3
The (m, T) phase diagram showing the straight line T = %mo, the hyperbola mT = %, the line

T = Tp (isotherm) and m = mp is made up from 8 regions.

The physical significance of these 8 regions is still unclear and should be investigated. It is possible

that Tp should be considered as a critical point as well as mp. The graph should then be expressed as
% and ;—0 where at the critical point the ratios are equal to 1.
P P
8.11 Dimensionless products in characteristic polynomials
Consider the following dimensionless products of the problem f(a;1,a,;) = 0 where
aq = (i)z and a,, = (B)2 and form the characteristic polynomial |* .11 0 =0
11 - 22 HZ poly 0 X — ay,
which resultsin (x — a;1)(x — a,,) = 0.
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2.4 2,2
Explicitly we find (x - mLZCO) (x - %) = 0. Some calculus results in the characteristic polynomial
E E

moco Cop moco c§p?
x2 —o1x+ g, = 0. Identlfylng the terms we have: o, = a1 + a,; and 0y, = a11a;;.

= 0. We known that for elementary symmetric function one has

2 (m"c0 + C"p ) X + m°c° cop? represents parabola trajectories where the

The functiony = x =z £z

parameters are (E,p, m,). For free particles we have ( 63 | cop ) =1.
It could be interesting to study the roots of the general equation.

The method described above could be applied to the problem of § 8.4.7. Could this method of
characteristic polynomials be generalized and under which conditions is this true?

Can we assume that each solution of a dimensional analysis can be written in the form:
?zl(ni — x) = 0 being the characteristic polynomial of det(T — AI) = 07?

So, we have as “trial function” for the problem of § 8.4.7 a polynomial equation in x of degree 6:

FG E p Jc q? tc
(——x)( —x)(——x) —— X 5= X —x|=0
ct moc? myc Gm§ Gegm§ Gm,

8.12 Heisenberg uncertainty principle applied to dimensionless products
Let us consider the following dimensionless products:

E tc3
m? = 6= :
Gmo
2 6 AE  Atc® AEAt (&)
We can form the product: ©°n®° = — — = —5 = %
myc? Gmy (Gm0> (Gm0>
[ [

8.13 Planck era parameters and relations
At the Planck era it is assumed that we have the following parameters:

hc
Planck mass mp = <
Gh h
Planck lengthLp = | == —= 4
g P C3 mpc CVP

Planck area of the Planck sphere Ap = 47Tﬂ

3
Volume of the Planck sphere Vp = %n( g—h>

hcs
Planck energy Ep = mpc? = kTp = % = % ?S
Schwarzschild radius of a Planck particle “maximon” : rg = 2 Lp
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|Il

. - . L
The quantum-mechanical “cavity” would have a size equal to TP .
Let us follow Bohr’s correspondence principle and consider constructive interference of de Broglie
waves in the “cavity” containing the Planck particle resulting in allowed stable orbits. We put
2.3
mgc
h
within the cavity. We assume that the particle is executing a “circular motion” that results in the

¢ pds = nh and considerp = t to be the linear momentum of the particle with restmass m,

existence of a total angular momentum J. We also consider that vt = 2nr with r the radius of the
orbit of the particle.

X X 2.3 4 2012 ~3,.2
We have now to calculate for the circular path the integral § pds = %f tds = % =nh.

The orbits for the “cavity” are given by r;, = L (L) \/? withn € Nj,.

2w \mgc

. . L nv
For the “Planck particle cavity” we have my = mp andsor, = — [—.If
n 2 c

. . . L
“Zitterbewegung”(Merzbacher, 1970) is applicable then we can assume r;, = i vn, so the smallest

L L
orbitisr, = ﬁ.

4
The energy of each “orbit” could be given by E, p = %g—; Vn withn € N,.
These “energy levels” could be compared to string theory or quantum loop gravity.

8.14 Flux of vorticity
One can find that a constant with dimension m?s~1 and based on G,h and c exists (see §8.9.9).

It could be interpreted as a “flux of vorticity” and expressed as [ @ - dS; = [ w - dS, = %

This property of “space” could be interpreted as a vortex tube connecting one area dS; of “inner
space” with another area dS, of “inner space” while passing the vortex tube through “outer space”
making the “energy/mass” visible to “outer space”. Inner space is filled with a scalar field having

. c*
magnitude el

,Gh Gh . . fch
One can remark that — = cLp . An area equal to =S swept by the line element Lp = P moved

. Gh Gh
over the distance cAt = ¢ /—5 .We see that thearea dp = — = At [w-dSy .
c c
8.15 Mass frequency
3
We expect the following relation to be valid: | = % A where A is the area of the “surface” and J the
3 d
total angular momentum. The constant % represents a constant mass frequency d—T or rate of

change of mass.
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8.16 Geometric representations of an elementary particle

8.16.1 Torus model
Let us consider a torus with radii:

R .

R, = — being the radius from the centre of the tube to the centre of the torus;
0

R, = GZO being the radius of the tube.

The equation in Cartesian coordinates for a torus radially symmetric around the z-axis is:
2
(x2+y2 + 2%+ R;* — R,%)" = 4R, *(x? + y?)

The surface area of the torus is A = (2mR,)(2nR,) = 4m? (i—?) = 41?3 which is independent

from the rest mass m of a particle!

2
The interior volume of the torusis V = (mR2)(2nR,) = 2n? % .

: .V _1Gm
The ratio of volume to area is 1= 3 620 .

8.16.2 Torus-sphere model

Let us consider a torus with cross-sectional diameter of L = and a sphere concentric with the

2mqgc
axis of torus.

Figure 8.16-1 Torus-sphere model

Let us assume that the following equation is valid:

E Foo B F_ . ,
I, 5 av = [ff,, 5 dV'and let the scalar fields — = div X and - = div ¥ , where V is the outer

space volume and V’ the inner space volume. The inner space volume is filled with virtual particles.
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We have now [ff, divX dV = [ff, div¥ dV'and using the divergence theorem results in in

ffaVeN -XdS = ffaV,eN YdS’

The outer surface of the cylinder is S; and the inner surface of the cylinder is S,.

We have now ffsl ny-Xds+ ffsz ny-XdS = ff52 ny -Y dS which results in

ﬂsl ny-Xds = ﬂsz ny - (Y —X)dS

Let now
, E 2 2 . . .
o divX= o= mOVC =3 ot —— Where V is approximated by the difference of volume of
571’(7‘3—641"363)
0

two spheres, one sphere V with a variable radius r and the other internal sphere V' with

. h .
radius o and the speed of the particleisv = 0.
0
F mac3 1 16mgc’ L méc3
e div¥=g5= — 77— = —,—5 for asphere inside the torus where F = =
n16m(2)c2
hZ
S, = 4-7'[—22
16m2c

We have now approximatively:

2

5 3
moc v 16mgcs dv’ = 16mgc® 4 h myc
—_— = T[ =
fffV 31 4mh3 ﬂfvr 4mh3 3" 64m3c? 4
3 64m3c3

which means that fffV % avr =1
7(

3.3
64mycC

Let us try to make a better approximation for the volume V and V’ by considering the cross-section of
a cylinder and a sphere of radius R.

We will calculate the left side of the equation where we need to know the volume V in spherical
coordinates and we put:

rsm(p—#and0<9<—andarc5m( )<<p<—and—<r<R
( s s A
E 3E rdr
fdeV=8 —nfdG f singdep f P
V | arcsinc—wizoa | i () Reose
n n
E e 2 2 R
[[[&a - {E [a0 [ singar [ ER hmm]
v 0 arcsin(‘m#moc) 4-7:110C 64m c? J

d ,
Putx = r3 and dr® = 3r?dr and we have | (x_x = In|x — a| + constant. So, we find

a)

87



=In (
hleRCOS(p]

2
64m3c

e
|

4m0c

ﬂEdV—S
4 N
4

3

3{/— h2mRcosg
64m2c2

ln<§/§—

nl? h h?mRcosp \| . 4
— In - sinpdep
4moc  64mac?
Solution in Maple gives:
1 2 2 2 .2
3 2 2 16 R mgl ¢ —-h
-256 R mulc +h" R —_—
2 2
R m02c 2
EE —6144m02c Rln(2)+768m02c - A R+2816m02c 2
mo c

) - 1n(3\/I06—

h?mRcos¢
64m3c?

|

7384)::02(; 2
2
mﬂzc
1 2 2 .2
3 2 2 16 R mﬂzc —h
—256 R molc +h R I e— 5
16R2 2 2_h2 R2 3.2 -
mgd ¢ mgl ¢ 3) 5
-3 > 2 I — 2 R hm
R m02c m02c

16 8% my2 2 — i
+3

m0202+h nR

2
2

16 R mozt:th

2

R2 m02 (:2

Inj
2

Rz m02 c
5

/L)

My

2.2

R

h2mRcosg )
64m2c?

)

™y

l)
A (3 2, 1682 my2 c* - i
mozc +h TR —_— 2
P22 2
M= € 3
R

B, : (é)[

B - 256 mg2 P m(R)R+ 128 my2e” 2

When we calculate the right hand side for the volume V' we have

T T
3 (7 2 R 2y ]
Jf — dV' = {jd@ _[ sinpde f I A }
k0 arcsin(m) %OC[Z 21 4m0CRCOS(p]J

. h
n arcsin(m— ) 2
amic3 4R . R redr
This results in fffV, 5 av' == {foz ao [ % sinpde [Tn 1—} =
arcsin 2Rmgc amge [121t4m CRCOS(p]
. h
32m3ct K3 - arcsm(rr—m—) 32m3ct K3 .
—02(R3 - - )— ™ tanpdp = — (R3 - —3) {ln(sec (arcsm (n -
3nRh 64mgc3/ 2 Yarcsing - 6Rh 64mgc3
4RmgcC

h

)) - ln(sec(arcsin(

i)}

In Maple we find the solution:

4RmMyC
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If we create now [ff, 5 av - [ff,, g dV' = 0 we get an equation in R as function of the

parameters (mg, E). So, we have f(R;mg, E) = 0.

The equation in Maple is then:

> oplossing:=vgll-vgl2=0

Solving for a set of parameters (mg, E) one can find the “radius” of a particle according to the
proposed geometrical model of an elementary particle. We tried to solve the equation in Maple but
Maple fails to find a solution. (To do: find solution for f(R; m, E) = 0)

If the particle is at rest we have E = myc? and f(R;my,E) = g(R;my) =0

It is known from topology that this “torus-sphere model” has a total curvature 2y (s) =
2m2(n — 1) = 0 because n = 1 with n = genus of the orientable surface. The genus n is the
number of handles(tori) on the sphere.
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. . . . moc? cp
9 Mathematical modelling of physics in (TF) state plane

m()CZ

9.1 Representation of particles in the ( %) state plane

The following equation E? — p%c? = m&c* (Feynman, 1963) is valid for any free particle.

2 2\ 2
We can rewrite this equation in terms of dimensionless products: 1 — (%) = (%)

2
We define the dimensionless products: x = (%) andy = (%)

So, the equation becomes: 1 — y? = x?2. One recognizes the equation of the unit circle x* + y? = 1.

So, the unit circle is the set of all possible states that a free particle can occupy in a system with total
energy E. It is clear that it is a continuum of states in accordance with classical physics.

We now see that each particle with rest-mass my and linear momentum p for a system with total
2

energy E can be represented in the (mzc ,%) state plane. The states of particles are in most cases

not lying on the unit circle because the particles are subject to “varying” forces. Any deviation in

position from the unit circle brings the particle in a “force field”.

We can form the complex number z = x + iy ,so that all mathematical formalism for the complex
plane can be used in helping to describe the states of particles and how these states evolve with time
z(t) = x(t) + iy(t). We will be interested in paths between points in the complex plane

myc? ¢
( 2 ,—p) state plane .
E 'E

The system under study can be anything (a bubble chamber, the universe, ...) as long as it can be
characterized by the configurational space variables (mg, E, p) where p? = p - p.

moc?
E

The points in the ( ,%) state plane are “universal” states once the system is defined.

The free particles on the unit circle can be represented using the Euler formalism by z =

. 2 .
i arctan(=£—) i arctan(l—c i arctan(
moc” = e dB" = e

Ja—? with A, the Compton wavelength and 4,45 the “de
Broglie” wavelength of the particle and v is the velocity of the particle .

A . . . -
When 3 £ = 1 then the particle state is represented by a point P on the unit circle that makes an
dB

angle of 45° with the x-axis. The condition ;—C = 1is described in QED as the boundary where
dB

“virtual” particles start playing an important role. It can be assumed that pair creation will

. T
spontaneously start when z = 0.5e" . So, the lines y=x and y=-x should be considered as special
boundaries because the condition 1,5 = A, is fulfilled.

The condition ;—C = 1 divides the unit disc in 4 regions:
dB
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.TT .TT
. . bl ol —
“Region 1” contains all states wherere  + <z <re'+ and r € Rt

.TT .31
“Region 2” contains all states where re's < z < re's and r € R*

.37

5T
. . 11— —_—
“Region 3” contains all states where re's < z<re's and r € R*

.51 .7TC

“Region 4“ contains all states wherere's <z <re's and r € R*
Region 1 represents the states of “real” particle states

Region 3 represents the states of “real” anti-particle states in line with the Dirac sea formalism.

|II

Region 2 and region 4 represent “virtual” particle states

It is possible to define in the (x, y) plane two elementary symmetric functions(Siegfried Gottwald,
1995):

o (x,y)=x+y (straight lines)

a,(x,y) = xy (hyperbola)

The equation x* + y? = 1 is equivalent to 62 — 2 0, = 1. It can be important to write the equations
in function of their symmetric functions, because symmetry and symmetry-breaking are interesting
properties in physics.

The symmetric form g, (x, y) = xy is very interesting because it express a hyperbolic relation that is
scale invariant. Several equations like the Heisenberg uncertainty principle have that
form(Schroeder, 1990). Itis also found in a lot of dimensionless products.

The half plane where x<0 is to be considered as anti-matter particles. The axis x=0 is the set of all
particles with rest-mass my = 0. So, photons are always located on the y-axis. The photon is the
prime responsible for the electromagnetic interaction. We define a photon to be located in the
coordinate (0,1) and the anti-photon in the coordinate (0,-1).

2
A point with coordinates (mz_c %) has a distance to the origin given by d = %w/mgc“ + c?p?

where d=1 for free particles. From the equation one can see that if d decreases that E increases.

Consider as example the case of plasmas having a total energy E = kT and my = m, ,the rest-mass of

mgc?

an electron, then all the points where
9.1-1).

> 1 are classified as non-relativistic plasmas (see Figure
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COLLISION.FREE PLASNAS
/

T =
RT= g

Figure 9.1-1 Plasma classification

If one puts a particle with rest-mass m in a box at energy E; and then one increases the total
energy to E, then the locus of the particle states will be a circle with a radius r < 1.

Suppose that the energy increase is AE then the (x, y)-coordinates will transform in the following
way:

myc? moc?  myc? 1

- =
E E + AE E (1+ATE)

cp cp _cp 1

— >

E E+AE E (1+ATE)

. . . - . 1
One can see that an increase in energy results in the application of a scaling factor of( =5~ to the

E

original coordinates. This is equivalent to a homothetic at the origin with factor r = m.
+_
E

AE 1 2 AE\3
As? < 1thenwehave(1+—%5)~1+ ?+(—) +(?) + .-
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We have defined z = (%ﬁ) + i (%)

We consider now the holomorphic function that imagesz — f(z) = z
dF(Z)
We know that [, zdz = F(z;) — F(z1) where f(z) =z = —=

7, to z,.

( z?) and k is the path from

So, we find [ zdz = F(z5) — F(z)) = %(Z% —z%)

Consider now the function f:z — mz. This function results in a mapping of all the points of
+_
E

—%-|- There is no rotation
E

2
(m;’; ,%) plane according to a homothetic with centre 0 and factor

becauseﬁ € Rt = Arg (ﬁ) = 0.

E. E.

The function f:z — e?Z has the property to transform the imaginary axis y in an unit circle. We have
i — e = cos() + isin(9) . This means that the function e? can be considered as a “creator of
free particles” starting from particles with rest-massmy = 0.

Which function represents the annihilator?

What is the representation of the interaction of 2 particles or n-particles?

2
9.2 Lyapunov’s stability of states in the (moC %) state plane

We will discuss Lyapunov’s stability criterion(DiStefano, Stubberud, & Williams, 1967) applied to

moc? cp , moc? cp
( 2 ’F) state plane. We recall that we have z(t) = x(t) + iy(t) and x = (OT) andy = (?)

Let us consider the following equations:

d(mo c?

e R

dt E 'E

If we eliminate time as the independent variable, we obtain the single equation

(") (%)
(@ e

moc?
E

Whose solution describes a trajectory in the ( %) plane.

A point (m° ) in the (moc p) plane simultaneously satisfying the two equations

moc? cp myc? P\ _ . .
fi ( E) =0 and f, ( E) = 0 is called a singular point.
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We can let the origin (0,0) be a singular point. The origin is said to be stable if, for any circular region
2

S(A) in the (%%) state plane centred at (0,0), having radius A, there exists a circular region S(B),

centred at the origin with radius B < 4, in which any trajectory beginning in S(B) remains in S(A) ever

after.

The origin is asymptotically stable if it is stable and all trajectories tend to the origin as time goes to

infinity.

Lyapunov’s stability criterion states that if the origin is a singular point, then it is stable if a function

1% (moc Cp) can be found such that:

E 'E
moc? [ZAW
a) V( E '’ E)
2
Tt =2 —-0;and
E E
b) — < 0 (multi-dimensional one has @) _ %WV < 0 which means that cos(0) < 0)
If Z—‘Z = 0 at the origin then the origin is asymptotically stable.
. . moc? 2 cp\?
Consider the function V = ( = ) + (F) which is positive for all B and — except for
moc? moc? cp
i ? = 0 where V=0. The selected function IV ( E) represents concentric circles around
the origin.

The derivative & = 2 (Te<” ("¥) 2(2)4E) < g on b
e erlvatlvea— (T)T‘l‘ (E) dt < to have a sta e0r|g|n

Let us assume that we have now the pair of equations

*F)_,, () 40 (D)

dt E E

cp
d(f) =a Moc” ta (Q)
dt S\ E *\E
A sufficient condition for asymptotic stability of the origin is(DiStefano, Stubberud, & Williams, 1967):

a; <0, aps<0anda, = —ay

If we want a “stable” universe we will have to request that as time passes the circles must inevitably

2
shrink. Time is implicit in the (mz_c ,%) state plane
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2
= . = aa = mocC C
9.3 Maximum linear momentum per time unit in the ( 2 ,Ep) plane
. . . Ap _ mic3 . ,
Let us consider the following equation v which express Newton’s law where the

3
. . . . meoC . .
acceleration is replaced by the maximum acceleration + Let us now assume that the time interval

Gh

is the shortest time difference that we can define, which is the Planck time At = e

If the linear momentum of the particle is 0 at time t=0, then we find that the maximum change in
. . 2 |Gc
linear momentum is pyax = Mg -

moc?
E

The trajectory in the ( %) plane formed by all points where p = py,4 is found in the following

way:

2 2
mpoC mpC Gc
) —) so we search for:

The points have the coordinates ( ,
E E h

2

mic [Gc _ (mocz) (mocz)_
. \/Z_f —— ). We assume that f (—2—) = a(m,)

proportionality factor that is only function of the rest mass m,.

moc”® . . .
; is a good choice where a(m,) is a

After some calculus we find a(m,) = %
P
2
The equation of the trajectory becomes (Q) = (ﬂ) (M)
E mp E
3
If (%) = 1 ,which is a physical boundary for the particles, then we have the relation E = m3 G% .

2

9.4 Variational principles in the (mgc ,%) state plane

We will discuss the “maximum principle” of Pontryagin(Elgerd, 1967) applied to the
moc® cp

( L E) plane.

E 'E
We seek now a set of nonlinear differential equations representing the dynamics of the universe in

9.5 Model of Planck era in the (m"cz Cp) state plane

the Planck era.

2
We consider a point with coordinates (mz_c

.CE—p ) We consider the coordinates to depend on the

variable t representing time. We calculate the time derivative of each coordinate.

We have now the system of first order differential equations:

d mOCZ
dx _ E ) _ c2 {dmo modE} _ {dmo dE }
dt dt Edt EZdt mydt  Edt
C
dy_d(Fp)_ C{dp pdE}_ {dp dE}
at . at  S\gac  Etat) 7Y pdt Edt
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. . dmy dE d
We will now estimate d—t",a,d—f so that the system can be solved.

. . . dE
For a free particle we have an equation where E = f(p, m) so we will seek P Ay

dp dmg

Consider E2 = m3c* + c?p? and differentiate it. Then 2EdE = 2mydmyc* + 2c?pdp can be

dE _ mgctdm c?pd ctdm cd
transformed to — = -0 4 ZPAP ( 0) x + (—p)y
E E E E E

Substituting this result in the system of first order differential equations results in:

dx (dmo)x (czdmo) X2 (cdp)x — dix — X — dax
dt ~ \mpdt Edt Fat) XY = %4 2 3Xy

2= ()7~ () ()57 = ey ey - e

We have as parameters:

dp ) (czdmo) (cdp) ( dmg )
a, = \—— aA, = \—— az = \— a, =
1 (pdt 142 Edat /'3 Edt)’ 4 modt

We make the following assumptions :

° dmo
dat

. . x 1
“time step”. The consequence is that a, = 3 and a, = 3

dp _ mic®
dt h

= %mo ,which means that we assume that the restmass is divided by two for each

,which means that we assume that the “maximum acceleration” is acting on a

. . d méc®  mdc* méc* méc*E
particle of restmass m,. We find a; = (—p) ===t ==
pdt hp hep — En(F)  E2n(E)

cdp) m3c* (E) 2
n = —_— = = _
and a; (Edt hE n)*

We find as special case the following system of differential equations:
e bam 3ot (ot - e e ()
=) =3y = () = () -3y - (7))

The parameter (%) has the dimension of s 1
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The system of differential equations was solved using the MATLAB “phase portrait” Java applet
pplane of John Polking.
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Figure 9.5-1 Parameter (%) = 10*2 571 (corresponds to the Planck frequency ;—"h)

All trajectories in Figure 9.5-1 ,where y > -1, are ending in the point (0,1). The point (0,1) represents
the state of a “mass less” free particle moving at the speed of light.
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Figure 9.5-4 shows two states located on the unit circle representing two free particles moving at
constant velocity.
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Figure 9.5-5 Parameter (g) =0s1

Figure 9.5-5 shows two states (-1,0) and (1,0) representing 2 particles at rest.

m()Cz

9.6 Particle interaction representation in the ( %) plane

Create within the unit disk the following processes:
Pair annihilation e +et > y+y

Solution: Consider the points with coordinates (a,b) and (-a, -b) on the unit circle. Move both points
to the coordinates (0, 1) and (0, -1) so that they are on the imaginary axis.

Compton scattering e +y->y+e”

Solution: Consider the points with coordinates (a, b) and (0, 1) on the unit circle. Move both points to
the coordinates (0, -1) and (a, -b).

Pair creation y+vy o et+e”

Solution: Consider the points with coordinates (0, 1) and (0, -1) on the unit circle. Move both points,
by physically increasing the external field, to the coordinates (0, 0.5) and (0, -0.5) so that they are on
the circle |z| = 0.5e'? where the energy E has reached the critical value for pair production. Perform
a clockwise rotation of gwhich gives the coordinates (0.5, 0) and (-0.5, 0). Decrease physically the

external field, so that the points move to coordinates (1, 0) and (-1, 0).

moc2 cp
"E

9.7 Evolution of Planck mass in the ( ) plane

Info to be investigated:

e Study the period(Compton wavelength, de Broglie wavelength) doubling cascade and model

in function of Feigenbaum number (4.669)(Stewart, 1995)(Davies, 1995)?

e Bifurcation process for z = 0.5¢7?

99



m0C2

cp
) E) plane

In this analysis we consider E as the total energy of the universe which is a constant. It is assumed

9.8 Evolution of masses of elementary particles in the (

that the elementary particles are a result of a “pair creation” process. So, we expect that this process
moc?
E

can be visualized in the ( %) plane as jumps from one point to another point as time evolves.

According to J. Rosen, one is not able to visualize this evolution process at the scale of the universe
(Rosen, 1995).

However, according to the ideas of I. Prigogine, the laws of physics should include the parameter
“evolution” in their equation (Prigogine & Stengers, 1984).

The number of particles in the universe is not relevant in our picture, only the number of types of
particles is relevant. So, we seek solutions for m; “variable”.

We expect to find “evolving symmetry” in the solution.

We expect to find the solutions on the unit circle or in the close vicinity of the unit circle.

2
A potential solution could be a “simple” equation of the type z™ = 1 in the (mif

cp
) E) plane.
What could be the value of the exponent m?

Four basic interactions(strong, weak, electromagnetic and gravitation) can be observed. We could
choose a base-4 (0,1,2,3) and identify the elementary particles as number strings of these 4 coding
numbers in a similar way as genes and amino acids. This scenario will give us at time level n=1 a
number of 41 = 4 observable particles, at time level n = 2 we have 42 = 16 new ”observable”
particles resulting in 4+16= 20 particles.

This scheme is different from the combinatorial hierarchy scheme designed by Frederick Parker-
Rhodes and the variant from Pierre Noyes presented in his Bit-String Physics model(Noyes, 1994).

That scheme is similar to the “creation of the amino acids”(Raeymaekers, 2001) from the 4 bases
(G,T,CA).
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Glycine el

Gl Phe
Glu =

Leu

Asp NP\ CAG|TClag /) Tyrosine
RGN G/ R
Alanine 4 Cy
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R _C - i 6.9
P [ L STOP
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/ $a \ 4 U
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G G Trp  Tryptofaa
1 T T
C
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G A @
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S A 4 Proline
<& G
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Methionine
Isoleucine Arginine
Ook startcodon

Figure 9.8-1 Genetic code

100



This scenario could then be in line with the “Anthropic Principle”(Barrow & Tipler, 1986).

Hypothetical elementary particle distribution
Time Level 1 2 3 4
Quantity of particles in each time level 4| 16| 64| 256
Cumulative number of particles 4| 20| 84| 340

According to Veltman (Veltman, 2003) we can observe 61 elementary particles including the
graviton.

According to Christiansen(Christiansen, 2003) we count in the Standard Model the following number
of particles:

e 12 leptons including their respective anti-particles

e 12 quarks including their respective anti-particles

e 10 “spin 3/2” baryons (sss,dss,uss,dds,uds,uus,ddd,udd,uud,uuu)

e 7 “spin 1/2” baryons (dss,uss,dds,uds,uus,udd,udd(neutron),uud(proton))
e 4 “spin 0” mesons

e 6 “spin1” mesons

e 3 vector bosons(W*, W™, Z)

e 8gluons

e 1 Higgs boson (not yet found)

Where is the photon in the list of Christiansen?

To observe the particles of time level 1,2 we need much more energy.
So, the unit circle at time level n=1 will have the equation z*4 =1
The unit circle at time level n=2 will have the equation =1

The unit circle at time level n=3 will have the equation 2% = 1. As observers today we probably live
in time level n=3.

The masses of the particles will decrease as function of the length of the “string” code and the length
of the code increases as function of the time level.

The fundamental hypothesis is that the number of observable elementary particles is generated as
the law 4™ , where n is the time level of the observer.

Further info to be investigated:

e Unit circle partitioning according to the “Pizza theorem” of L. Upton in 8, 12, 16, 20, 24, ...
“equal parts”(Delahaye, 2006).

e Fractal structure based on §9.7. Bifurcation is expected. What is the equation of the fractal?

e “A mathematical model of genes” from George C. Nelson, University of lowa.
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cp
,— ) plane

;)P
It is possible to define in the (x,y) plane two elementary symmetric functions(Siegfried Gottwald,
1995):

9.9 General particle states represented in the (

o (x,y)=x+y (straight lines)

a,(x,y) = xy (hyperbola)

We have already seen that the equation x* + y* = 1, representing the locus of the free particle
states, is equivalent to 012 — 20, =1.

We are looking for an expression representing the bounded states. We expect that bounded states

2
will be represented by points in (mzc

,%) plane fulfilling the condition |z| > 1, which are all the

points outside the unit disc.

Where are the loci of the bounded states?

2 3
Let us consider the product g, (x,y) = xy = mz: % = m‘)’;z P = constant].

212
We can form an orthogonal trajectory(Ayres, 1972) to 0, (x, y) giving the equation (mgc ) —

2
(%) = constant?2.

2y 2 2 2
We choose the constant?2 so that we have (%) — (%) (%) = 1 the equation of a family of

hyperbolas, where b is a parameter to be further defined.

moc?

When p =0 then we have ( B

2
) = 1 which is in line with the condition of a free particle.

2 2 2
We have now a general equation (mzc ) =4+ [1+ (l) (%) for bounded states .
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10 Appendices

10.1 Appendix 1: Detailed classification parameters of physical quantities
To get a better understanding of the elements of the different equivalence classes a non-exhaustive

list of common physical quantities is given in the next table.

Subgroup | Class Quantity 7-tuple SUM NORM PATH
LENGTH
CLoy Co Plane angle (0,0,0,0,0,0,0) 0 0 0
CLoy Co Solid angle (0,0,0,0,0,0,0) 0 0 0
CLyg Cp Space-time curvature(Rij) (-2,0,0,0,0,0,0) -2 2 2
CLig Cr Wave number (-1,0,0,0,0,0,0) -1 1 1
CLyg Cy Length (L) (1,0,0,0,0,0,0) 1 1 1
CLyg Cy Planck length (Ip) (1,0,0,0,0,0,0) 1 1 1
CLig o Area (A) (2,0,0,0,0,0,0) 2 2 2
CLig Cy Volume (V) (3,0,0,0,0,0,0) 3 3 3
CLys Cr Mass (m) (0,1,0,0,0,0,0) 1 1 1
CLys C Planck mass (mp) (0,1,0,0,0,0,0) 1 1 1
CLj4 Cp Energy density (-1,1,-2,0,0,0,0) -2 2.449 4
CL3, Cp Pressure (P) (-1,1,-2,0,0,0,0) -2 2.449 4
CL34 Cp Energy-momentum tensor (-1,1,-2,0,0,0,0) -2 2.449 4
(Tij)
CL34 Cr Frequency (v) (0,0,-1,0,0,0,0) -1 1 1
CLs, Cy activity (0,0,-1,0,0,0,0) -1 1 1
CLs, Cy Acceleration (a) (2,0,-2,0,0,0,0) -1 2.236 3
CL3, Co Velocity (v) (1,0,-1,0,0,0,0) 0 1.414 2
CL34 Co Speed of light in vacuum (c) (1,0,-1,0,0,0,0) 0 1.414 2
CL3 4 Co Mass frequency (0,1,-1,0,0,0,0) 0 1.414 2
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CLj4 Co Force (F) (2,1,-2,0,0,0,0) 0 2.449
CL3, Co Absorbed dose (2,0,-2,0,0,0,0) 0 2.828
CL3, Co Dose equivalent (2,0,-2,0,0,0,0) 0 2.828
CL3 4 Co Specific energy (2,0,-2,0,0,0,0) 0 2.828
CL3 4 Co Newtonian constant of (3,-1,-2,0,0,0,0) 0 3.742
gravitation (G)
CLsy Co Power (2,1,-3,0,0,0,0) 0 3.742
CL3, C Time (t) (0,0,1,0,0,0,0) 1 1
CL3, C Planck time (tp) (0,0,1,0,0,0,0) 1 1
CL34 Cy Linear momentum (p) (1,1,-1,0,0,0,0) 1 1.732
CL3, Cp Diffusion constant (D) (2,0,-1,0,0,0,0) 1 2.236
CL3, Cp Energy (E) (2,1,-2,0,0,0,0) 1 3
CL3 4 Cyq Planck constant (h) (2,1,-1,0,0,0,0) 2 2.449
CL34 Cyq Specific volume (3,-1,0,0,0,0,0) 2 3.162
CLys Cp Magnetic flux density (0,1,-2,-1,0,0,0) -2 2.449
CLys Cp Magnetic constant () (1,1,-2,-2,0,0,0) -2 3.162
CLys Cp Electrical resistance (h/e?,R) (2,1,-3,-2,0,0,0) -2 4.243
CLys Cp Characteristic Impedance of (2,1,-3,-2,0,0,0) -2 4.243
vacuum (Z)
CLys (% Inductance (2,1,-2,-2,0,0,0) -1 3.606
CLys Cr Electrical potential (2,1,-3,-1,0,0,0) -1 3.873
difference(V)
CLys Co Magnetic field (H) (-1,0,0,1,0,0,0) 0 1.414
CLys Co Charge surface density (-2,0,1,1,0,0,0) 0 2.449
CLys Co Electrical polarisation (-2,0,1,1,0,0,0) 0 2.449
CLys Co Magnetic induction (B) (2,1,-2,-1,0,0,0) 0 3.162
CLys Co Magnetic moment (2,1,-2,-1,0,0,0) 0 3.162
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CLys Co Specific resistance (p) (3,1,-3,-1,0,0,0) 0 4.472 8
CLys Cy Electric current (I) (0,0,0,1,0,0,0) 1 1 1
CLys Cy Electric charge (e) (0,0,1,1,0,0,0) 2 1.414 2
CLys Cy Electric constant(eg) (-3,-1,4,2,0,0,0) 2 5.477 10
CLys Cy Electrical capacitance (-2,-1,4,2,0,0,0) 3 5 9
CLys Com Atomic unit of electric (2,0,1,1,0,0,0) 4 2.449 4
guadrupole moment
CLys Cep Atomic unit of electric (0,-1,4,2,0,0,0) 5 4,583 7
polarizablity
CLys Cimp Atomic unit of 1st (-1,-2,7,3,0,0,0) 7 7.937 13
hyperpolarizability
CLys Canp Atomic unit of 2" (-2,-3,10,4,0,0,0) 9 11.358 19
hyperpolarizability
CLs, Cy Stefan-Boltzmann constant(o) (0,1,-3,0,-4,0,0) -6 5.099 8
CLs, (% Current density (-2,0,0,0,1,0,0) -1 2.236 3
CLs, Co Entropy (S) (2,1,-2,0,-1,0,0) 0 3.162 6
CLs, Co Specific heat (2,1,-2,0,-1,0,0) 0 3.162 6
CLs, Co Boltzmann constant (k) (2,1,-2,0,-1,0,0) 0 3.162 6
CLs, Cr Thermodynamic temperature (0,0,0,0,1,0,0) 1 1 1
(T)
CLs, Cp Planck temperature (Tp) (0,0,0,0,1,0,0) 1 1 1
Cle Cp Amount of substance (-3,0,0,0,0,1,0) -2 3.162 4
concentration

CLg, Cy Avogadro constant (Ny) (0,0,0,0,0,-1,0) -1 1 1
Cle Cr Molar gas constant (R) (2,1,-2,0,-1,-1,0) -1 3.317 7
Clg Co Catalytic activity (0,0,-1,0,0,1,0) 0 1.414 2

z7 Cr Luminance (-2,0,0,0,0,0,1) -1 2.236 3

z7 CL Luminous flux (0,0,0,0,0,0,1) 1 1 1
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10.2 Appendix 2: Table with SI constants
The table below has been modified and classified starting from the table created by M. R. Sheppard

(Sheppard, 2008) which was based on the NIST table of Physical constants.

Exponents for

Quantity Units Units SUM | NORM
m kg | s | A| K |[mol|cd

Stefan-Boltzmann constant W m"-2 K*-4 1] -3 -4 -6 4,12
atomic unit of electric field gradient V m~-2 1| -3] -1 -3 1,41
Loschmidt constant (273.15 K, 101.325 kPa) | m”-3 -3 -3 3,00
Boltzmann constant in Hz/K Hz KA-1 -1 -1 -2 1,00
Wien frequency displacement law constant Hz K"-1 -1 -1 -2 1,00
Boltzmann constant in inverse meters per

Kelvin mA-1 KM-1 -1 -1 -2 1,41
standard atmosphere Pa -1 1] -2 -2 1,41
atomic unit of mag. flux density T 1| -2 -1 -2 1,41
atomic unit of electric field V m~-1 1 1| -3] -1 -2 1,73
Newtonian constant of gravitation over h-bar

c (GeV/c"2)M-2 -2 -2 2,00
mag. constant N A"-2 1 1| -2| -2 -2 2,45
inverse of conductance quantum ohm 2 1| -3] -2 -2 3,00
von Klitzing constant ohm 2 1 3] -2 -2 3,00
characteristic impedance of vacuum ohm 2 1| -3] -2 -2 3,00
conventional value of von Klitzing constant ohm 2 1| -3] -2 -2 3,00
Fermi coupling constant GeV~-2 4] -2 4 -2 4,47
Avogadro constant mol*-1 -1 -1 0,00
atomic mass unit-hertz relationship Hz -1 -1 0,00
electron volt-hertz relationship Hz -1 -1 0,00
hartree-hertz relationship Hz -1 -1 0,00
joule-hertz relationship Hz -1 -1 0,00
Kelvin-hertz relationship Hz -1 -1 0,00
kilogram-hertz relationship Hz -1 -1 0,00
Rydberg constant times c in Hz Hz -1 -1 0,00
inverse meter-hertz relationship Hz -1 -1 0,00
standard acceleration of gravity m s"-2 1 -2 -1 1,00
atomic mass unit-inverse meter relationship mh-1 -1 -1 1,00
electron volt-inverse meter relationship mh-1 -1 -1 1,00
hartree-inverse meter relationship mh-1 -1 -1 1,00
joule-inverse meter relationship mh-1 -1 -1 1,00
Kelvin-inverse meter relationship mh-1 -1 -1 1,00
kilogram-inverse meter relationship mh-1 -1 -1 1,00
Rydberg constant mh-1 -1 -1 1,00
hertz-inverse meter relationship m”-1 -1 -1 1,00
molar gas constant J molr-1 KA-1 2 1| -2 -1 -1 -1 2,45
atomic unit of electric potential \Y 2 1| 3] -1 -1 2,45
atomic unit of charge density Cm~-3 -3 1] 1 -1 3,16
tau-electron mass ratio 0 0,00
proton mag. shielding correction 0 0,00
tau-muon mass ratio 0 0,00
alpha particle-electron mass ratio 0 0,00
alpha particle-proton mass ratio 0 0,00
deuteron-electron mag. mom. ratio 0 0,00
deuteron-electron mass ratio 0 0,00
deuteron g factor 0 0,00
deuteron mag. mom. to Bohr magneton ratio 0 0,00
deuteron mag. mom. to nuclear magneton

ratio 0 0,00
deuteron-neutron mag. mom. ratio 0 0,00
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deuteron-proton mag. mom. ratio 0 0,00
deuteron-proton mass ratio 0 0,00
electron-deuteron mag. mom. ratio 0 0,00
electron-deuteron mass ratio 0 0,00
electron g factor 0 0,00
electron mag. mom. anomaly 0 0,00
electron mag. mom. to Bohr magneton ratio 0 0,00
electron mag. mom. to nuclear magneton

ratio 0 0,00
electron-muon mag. mom. ratio 0 0,00
electron-muon mass ratio 0 0,00
electron-neutron mag. mom. ratio 0 0,00
electron-neutron mass ratio 0 0,00
electron-proton mag. mom. ratio 0 0,00
electron-proton mass ratio 0 0,00
electron-tau mass ratio 0 0,00
electron to alpha particle mass ratio 0 0,00
Electron to shielded helion mag. mom. ratio 0 0,00
Electron to shielded proton mag. mom. ratio 0 0,00
fine-structure constant 0 0,00
helion-electron mass ratio 0 0,00
helion-proton mass ratio 0 0,00
inverse fine-structure constant 0 0,00
muon-electron mass ratio 0 0,00
muon g factor 0 0,00
muon mag. mom. anomaly 0 0,00
muon mag. mom. to Bohr magneton ratio 0 0,00
muon mag. mom. to nuclear magneton ratio 0 0,00
muon-neutron mass ratio 0 0,00
muon-proton mag. mom. ratio 0 0,00
muon-proton mass ratio 0 0,00
muon-tau mass ratio 0 0,00
neutron-electron mag. mom. ratio 0 0,00
neutron-electron mass ratio 0 0,00
neutron g factor 0 0,00
neutron mag. mom. to Bohr magneton ratio 0 0,00
neutron mag. mom. to nuclear magneton ratio 0 0,00
neutron-muon mass ratio 0 0,00
neutron-proton mag. mom. ratio 0 0,00
neutron-proton mass ratio 0 0,00
neutron-tau mass ratio 0 0,00
neutron to shielded proton mag. mom. ratio 0 0,00
proton-electron mass ratio 0 0,00
proton g factor 0 0,00
proton mag. mom. to Bohr magneton ratio 0 0,00
proton mag. mom. to nuclear magneton ratio 0 0,00
proton-muon mass ratio 0 0,00
proton-neutron mag. mom. ratio 0 0,00
proton-neutron mass ratio 0 0,00
proton-tau mass ratio 0 0,00
Sackur-Tetrode constant (1 K, 100 kPa) 0 0,00
Sackur-Tetrode constant (1 K, 101.325 kPa) 0 0,00
shielded helion mag. mom. to Bohr magneton

ratio 0 0,00
shielded helion mag. mom. to nuclear

magneton ratio 0 0,00
shielded helion to proton mag. mom. ratio 0 0,00
shielded helion to shielded proton mag. mom.

Ratio 0 0,00
shielded proton mag. mom. to Bohr

magneton ratio 0 0,00
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shielded proton mag. mom. to nuclear

magneton ratio 0 0,00
tau-neutron mass ratio 0 0,00
tau-proton mass ratio 0 0,00
triton-electron mag. mom. ratio 0 0,00
triton-electron mass ratio 0 0,00
triton g factor 0 0,00
triton mag. mom. to Bohr magneton ratio 0 0,00
triton mag. mom. to nuclear magneton ratio 0 0,00
triton-neutron mag. mom. ratio 0 0,00
triton-proton mag. mom. ratio 0 0,00
triton-proton mass ratio 0 0,00
weak mixing angle 0 0,00
alpha particle molar mass kg mol”-1 1 -1 0 1,00
deuteron molar mass kg mol"-1 1 -1 0 1,00
electron molar mass kg mol”-1 1 -1 0 1,00
helion molar mass kg mol*-1 1 -1 0 1,00
muon molar mass kg mol”-1 1 -1 0 1,00
neutron molar mass kg mol”-1 1 -1 0 1,00
proton molar mass kg mol”-1 1 -1 0 1,00
tau molar mass kg mol”-1 1 -1 0 1,00
triton molar mass kg mol”-1 1 -1 0 1,00
molar mass constant kg mol~-1 1 -1 0 1,00
molar mass of carbon-12 kg mol~-1 1 -1 0 1,00
atomic unit of velocity m s”-1 1 -1 0 1,00
natural unit of velocity m s”-1 1 -1 0 1,00
speed of light in vacuum m s”-1 1 -1 0 1,00
atomic unit of force N 1 1| -2 0 1,41
mag. flux guantum Wb 2 1 2] -1 0 2,45
Josephson constant Hz V-1 20 -1 2] 1 0 2,45
elementary charge over h AJN-1 20 -1 21 1 0 2,45
conventional value of Josephson constant Hz V-1 2| -1 21 1 0 2,45
Boltzmann constant in eV/K eV Kn-1 2 1| -2 -1 0 2,45
Boltzmann constant J KA1 2 1| -2 -1 0 2,45

m”3 kgh-1 s-

Newtonian constant of gravitation 2 3] ‘1| -2 0 3,16
atomic unit of time 7s 1 1 0,00
natural unit of time s 1 1 0,00
Planck time S 1 1 0,00
Faraday constant C molr-1 1] 1 -1 1 1,00
alpha particle mass kg 1 1 1,00
atomic mass constant kg 1 1 1,00
atomic mass unit-kilogram relationship kg 1 1 1,00
atomic unit of mass kg 1 1 1,00
deuteron mass kg 1 1 1,00
electron mass kg 1 1 1,00
electron volt-kilogram relationship kg 1 1 1,00
hartree-kilogram relationship kg 1 1 1,00
helion mass kg 1 1 1,00
hertz-kilogram relationship kg 1 1 1,00
inverse meter-kilogram relationship kg 1 1 1,00
Kelvin-kilogram relationship kg 1 1 1,00
muon mass kg 1 1 1,00
natural unit of mass kg 1 1 1,00
neutron mass kg 1 1 1,00
Planck mass kg 1 1 1,00
proton mass kg 1 1 1,00
tau mass kg 1 1 1,00
triton mass kg 1 1 1,00
unified atomic mass unit kg 1 1 1,00
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alpha particle mass inu u 1 1 1,00
deuteron mass in u u 1 1 1,00
electron mass inu u 1 1 1,00
electron volt-atomic mass unit relationship u 1 1 1,00
hartree-atomic mass unit relationship u 1 1 1,00
helion mass inu u 1 1 1,00
hertz-atomic mass unit relationship u 1 1 1,00
inverse meter-atomic mass unit relationship u 1 1 1,00
joule-atomic mass unit relationship u 1 1 1,00
Kelvin-atomic mass unit relationship u 1 1 1,00
kilogram-atomic mass unit relationship u 1 1 1,00
muon mass in u u 1 1 1,00
neutron massin u u 1 1 1,00
proton mass in u u 1 1 1,00
tau mass inu u 1 1 1,00
triton mass in u u 1 1 1,00
joule-kilogram relationship kg 1 1 1,00
proton rms charge radius m 1 1 1,00
deuteron rms charge radius m 1 1 1,00
{220} lattice spacing of silicon m 1 1 1,00
Angstrom star m 1 1 1,00
atomic unit of length m 1 1 1,00
Bohr radius m 1 1 1,00
classical electron radius m 1 1 1,00
Compton wavelength m 1 1 1,00
Compton wavelength over 2 pi m 1 1 1,00
Cu x unit m 1 1 1,00
lattice parameter of silicon m 1 1 1,00
Mo X unit m 1 1 1,00
muon Compton wavelength m 1 1 1,00
muon Compton wavelength over 2 pi m 1 1 1,00
natural unit of length m 1 1 1,00
neutron Compton wavelength m 1 1 1,00
neutron Compton wavelength over 2 pi m 1 1 1,00
Planck length m 1 1 1,00
proton Compton wavelength m 1 1 1,00
proton Compton wavelength over 2 pi m 1 1 1,00
tau Compton wavelength m 1 1 1,00
tau Compton wavelength over 2 pi m 1 1 1,00
atomic mass unit-Kelvin relationship K 1 1 1,00
electron volt-Kelvin relationship K 1 1 1,00
hartree-Kelvin relationship K 1 1 1,00
hertz-Kelvin relationship K 1 1 1,00
inverse meter-Kelvin relationship K 1 1 1,00
joule-Kelvin relationship K 1 1 1,00
kilogram-Kelvin relationship K 1 1 1,00
Planck temperature K 1 1 1,00
atomic unit of current A 1 1 1,00
Bohr magneton in Hz/T Hz TA-1 -1 1] 1 1 1,41
electron gyromag. ratio over 2 pi MHz T~-1 -1 1] 1 1 1,41
neutron gyromag. ratio over 2 pi MHz T~-1 -1 1] 1 1 1,41
nuclear magneton in MHz/T MHz T/-1 -1 1( 1 1 1,41
proton gyromag. ratio over 2 pi MHz TA-1 -1 1] 1 1 1,41
shielded helion gyromag. ratio over 2 pi MHz TA-1 -1 1] 1 1 1,41
shielded proton gyromag. ratio over 2 pi MHz T~-1 -1 1] 1 1 1,41
electron gyromag. ratio sN-1TA-1 -1 1| 1 1 1,41
neutron gyromag. ratio sh-1 TA-1 -1 1] 1 1 1,41
proton gyromag. ratio sh-1 TA-1 -1 1] 1 1 1,41
shielded helion gyromag. ratio sN-1TA-1 -1 1] 1 1 1,41
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shielded proton gyromag. ratio sh-1TA-1 -1 1 1 1,41
electron charge to mass quotient C kg"-1 -1 1 1 1,41
proton charge to mass quotient C kg"-1 -1 1 1 1,41
natural unit of momentum in MeV/c MeV/c 1 1| 1 1 1,41
atomic unit of momentum kg m s™-1 1 1) -1 1 1,41
natural unit of momentum kg m s”-1 1 1) -1 1 1,41
Bohr magneton in inverse meters per tesla mA-1TA-1 1) -1 2 1 1,73
nuclear magneton in inverse meters per tesla | m"-1 T-1 1) -1 2 1 1,73
gquantum of circulation m”2 s™-1 2 -1 1 2,00
guantum of circulation times 2 m”2 s™-1 2 -1 1 2,00
inverse meter-hartree relationship E_h 2 1| -2 1 2,24
joule-hartree relationship E_h 2 1| -2 1 2,24
Kelvin-hartree relationship E_h 2 1| -2 1 2,24
kilogram-hartree relationship E_h 2 1| -2 1 2,24
atomic mass unit-electron volt relationship eV 2 1| -2 1 2,24
hartree-electron volt relationship eV 2 1| -2 1 2,24
Hartree energy in eV eV 2 1| -2 1 2,24
hertz-electron volt relationship eV 2 1| -2 1 2,24
inverse meter-electron volt relationship eV 2 1| -2 1 2,24
joule-electron volt relationship eV 2 1| -2 1 2,24
Kelvin-electron volt relationship eV 2 1| -2 1 2,24
kilogram-electron volt relationship eV 2 1| -2 1 2,24
Rydberg constant times hc in eV eV 2 1| -2 1 2,24
alpha particle mass energy equivalent J 2 1| -2 1 2,24
atomic mass constant energy equivalent J 2 1| -2 1 2,24
atomic mass unit-joule relationship J 2 1| -2 1 2,24
atomic unit of energy J 2 1| -2 1 2,24
deuteron mass energy equivalent J 2 1| -2 1 2,24
electron mass energy equivalent J 2 1| -2 1 2,24
electron volt J 2 1| -2 1 2,24
electron volt-joule relationship J 2 1| -2 1 2,24
Hartree energy J 2 1| -2 1 2,24
hartree-joule relationship J 2 1| -2 1 2,24
helion mass energy equivalent J 2 1| -2 1 2,24
hertz-joule relationship J 2 1| -2 1 2,24
inverse meter-joule relationship J 2 1| -2 1 2,24
Kelvin-joule relationship J 2 1| -2 1 2,24
muon mass energy equivalent J 2 1| -2 1 2,24
natural unit of energy J 2 1| -2 1 2,24
neutron mass energy equivalent J 2 1| -2 1 2,24
proton mass energy equivalent J 2 1| -2 1 2,24
Rydberg constant times hc in J J 2 1| -2 1 2,24
tau mass energy equivalent J 2 1| -2 1 2,24
triton mass energy equivalent J 2 1| -2 1 2,24
kilogram-joule relationship J 2 1| -2 1 2,24
tau mass energy equivalent in MeV MeV 2 1| -2 1 2,24
hertz-hartree relationship E_h 2 1| -2 1 2,24
Planck mass energy equivalent in GeV GeV 2 1| -2 1 2,24
alpha particle mass energy equivalent in MeV | MeV 2 1| -2 1 2,24
atomic mass constant energy equivalent in

MeV MeV 2 1] -2 1 2,24
deuteron mass energy equivalent in MeV MeV 2 1| -2 1 2,24
electron mass energy equivalent in MeV MeV 2 1| -2 1 2,24
helion mass energy equivalent in MeV MeV 2 1| -2 1 2,24
muon mass energy equivalent in MeV MeV 2 1| -2 1 2,24
natural unit of energy in MeV MeV 2 1] -2 1 2,24
neutron mass energy equivalent in MeV MeV 2 1| -2 1 2,24
proton mass energy equivalent in MeV MeV 2 1| -2 1 2,24
triton mass energy equivalent in MeV MeV 2 1] -2 1 2,24

110




atomic mass unit-hartree relationship E_h 2 1| -2 1 2,24
electron volt-hartree relationship E_h 2 1| -2 1 2,24
molar Planck constant times c J m mol*-1 3 1| -2 -1 1 3,16
atomic unit of charge C 1] 1 2 1,00
elementary charge C 1] 1 2 1,00
second radiation constant m K 1 2 1,41
Wien wavelength displacement law constant | m K 1 2 1,41
Thomson cross section m”2 2 2 2,00
natural unit of actionin eV s eVs 2 1) -1 2 2,24
Planck constantin eV s eVs 2 1) -1 2 2,24
Planck constant over 2 piineV s eVs 2 1) -1 2 2,24
atomic unit of action Js 2 1 -1 2 2,24
natural unit of action Js 2 1 -1 2 2,24
Planck constant Js 2 1 -1 2 2,24
Planck constant over 2 pi Js 2 1| -1 2 2,24
molar Planck constant Jsmolr-1 2 1| 1 2 2,24
conductance quantum S 2| -1 3| 2 2 3,00
molar volume of ideal gas (273.15 K, 100

kPa) m”3 mol*-1 3 -1 2 3,00
molar volume of ideal gas (273.15 K, 101.325

kP m”3 mol*-1 3 -1 2 3,00
molar volume of silicon m”3 mol”-1 3 -1 2 3,00
Planck constant over 2 pi times c in MeV fm MeV fm 3 1] -2 2 3,16
atomic unit of permittivity Fm~-1 -3 -1 4| 2 2 3,74
electric constant F m~-1 -3 -1 4| 2 2 3,74
first radiation constant W m”2 4 1| -3 2 4,12
first radiation constant for spectral radiance W m”2 sr™-1 4 1| -3 2 4,12
atomic unit of electric dipole mom. Cm 1 1] 1 3 1,41
Bohr magneton in K/IT K TA-1 -1 2| 1 3 1,73
nuclear magneton in K/T K TA-1 -1 21 1 3 1,73
Bohr magneton in eV/T eV TA-1 2 1 3 2,24
nuclear magneton in eV/T eV TA-1 2 1 3 2,24
atomic unit of mag. dipole mom. JTA1 2 1 3 2,24
Bohr magneton JTA1 2 1 3 2,24
deuteron mag. mom. JTAN1 2 1 3 2,24
electron mag. mom. J 11 2 1 3 2,24
muon mag. mom. JT™1 2 1 3 2,24
neutron mag. mom. JT™1 2 1 3 2,24
nuclear magneton JT™-1 2 1 3 2,24
proton mag. mom. JT™1 2 1 3 2,24
shielded helion mag. mom. JTA-1 2 1 3 2,24
shielded proton mag. mom. JTA-1 2 1 3 2,24
triton mag. mom. J 1M1 2 1 3 2,24
atomic unit of electric quadrupole mom. C m”"2 2 1] 1 4 2,24
atomic unit of electric polarizablity Cr2 m"2 M1 -1 4] 2 5 2,24
atomic unit of magnetizability JT™-2 2| -1 2| 2 5 3,00
atomic unit of 1st hyperpolarizablity Cr3 m"3 JN-2 1 -2 7] 3 7 3,74
atomic unit of 2nd hyperpolarizablity CM m~M JN-3 2| -3] 10| 4 9 5,39

111




11 References
Abramowitz, M., & Stegun, I. A. (1972). Handbook of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables. New York: Dover Publications.

Anderson, J. D,, Laing, P. A, Lau, E. L., Liu, A. S., Nieto, M. M., & Turysheyv, S. G. (1998). Indication,
from Pioneer 10/11, Galileo, and Ulysses data, of an apparent anomalous, weak, long-range
acceleration. Phys. Rev. Lett. 81, 2858 - 2861.

Ayres, F. (1972). Theory and problems of differential equations in S| metric units. New York: McGraw-
Hill International Book Company.

B.Baumslag, B. C. (1968). Theory and problems of Group theory. McGraw-Hill book company.

Banchoff, T. F. (1996). BEYOND THE THIRD DIMENSION, Geometry, Computer Graphics, and Higher
Dimensions. (V. Magazines, Trans.) Scientific American Library.

Barrow, J. D., & Tipler, F. J. (1986). The Anthropic Cosmological Principle. New York: Oxford University
Press Inc.

Borowitz, S., & Beiser, A. (1971). Essentials of Physics. Addison-Wesley Publishing Co.

Buckingham, E. (1914). On Physically similar systems; lllustrations of the Use of Dimensional
Equations. Phys. Rev., Vol IV, no. 4, 345.

Cartan, E. (1946). Lecons sur la Géométrie des espaces de Riemann, deuxiéme edidition. Paris: Jacques
Gabay, Guathier-Villars.

Chandrasekhar, S. (1961). Hydrodynamic and Hydromagnetic stability. London: Oxford University
Press.

Christiansen, P. V. (2003). The semiotic flora of elementary particles. In Semiotiske UndersOgelser.
Glydendal: Thellefsen andDinesen.

Cornish, N. J., Spergel, D. N., Starkman, G. D., & Komatsu, E. (2003). Constraining the Topology of the
Universe. arXiv:astro-ph0310233v1 .

Davies, P. (1995). Superforce - The search for a grand unified theory of nature. London: Penguin
Books.

Davies, P. (1995). The Cosmic Blueprint. Harmondsworth: Pengiun Books Ltd.

Delahaye, J.-P. (2006). Complexités - Aux limites de mathématiques et de l'informatique. (P. Smitt, &
A. Frehan, Trans.) Belin.

Diestel, R. (2000). Graph Theory 2nd edition . New York: Springer-Verlag.

DiStefano, J. J., Stubberud, A. R., & Williams, I. J. (1967). Feedback and Control Systems. Las Angeles:
McGraw-Hill.

Dittus, H. J., & Lammerzahl, C. (2006). Is Physics in the Solar System really understood? Firenze.

112



Driest, E. V. ( March 1946). On Dimensional Analysis and the Presentation of Data in Fluid Flow
Problems. Journal Applied Mechanics, Vol . 13, N° 1, A-34.

Elgerd, O. I. (1967). Control Systems Theory. Tokyo: McGraw-Hill Kogakusha.
Epp, S. (1993). Discrete Mathematics with applications. PWS Publishing Company.

Erich W. Ellers, B. G. (2003). H.S.M. Coxeter (1907-2003). Notices of the AMS, Volume50, Number 10,
1234-1240.

Feynman, R. P. (1963). Six not-so-easy pieces : Einstein's relativity, symmetry, and space-time. New
York: Addison-Wesley Publishing Company, Inc.

Fradkin, E., I.A.Batalin, C.J.Isham, & Vilkovisky, G. (1987). Quantum Field Theory and Quantum
Statistics. Bristol: Adam Hilger.

G.Grosche, Zeidler, E., Ziegler, D., & Ziegler, V. (2003). Teubner-Taschenbuch der Mathematik - Teil l.
Wiesbaden: B.G. Teubner Verlag.

Grant, ., & Phillips, W. (1979). Electromagnetism. Bristol: John Wiley & Sons.

Greiner, W., & Reinhardt, J. (1992, 1994). Quantum Electrodynamics 2nd Edition. Berlin Heidelberg:
Springer-Verlag.

Guth, A. H. (1997). The Inflationary Universe. (U. Contact, Trans.)

Hawking, S., & Penrose, R. (1994). The nature of space and time. Oxford: Oxford University Press.
Landau, L., & Lifchitz, E. (1967). Physique Statistique. Moscou: Editions MIR.

Landau, L., & Lifchitz, E. (1970). Théorie des Champs. Moscou: Editions MIR.

Langhaar, H. L. (1951). Dimensional Analysis and Theory of Models. Wiley.

Li, J. X. (2004). Visualization of High Dimensional data with Relational Perspective Map. Information
Visualization, Vol3 No.1 , 49-59.

Lipschutz, M. M. (1969). Theory and problems of Differential Geometry. New york: McGraw-Hill.
Lipshutz, S. (1968). Theory and problems of Linear Algebra. McGraw-Hill book company.

Lipshutz, S. (1964). Theory and problems of Set theory and related topics. McGraw-Hill book
company.

Maxwell, J. C. (1874). On the Mathematical Classification of Physical Quantities. Proceedings of the
London Mathematical Society , 258-266.

Menzel, D. H. (1960). Fundamental formulas of physics. New York: Dover Publications Inc.
Merzbacher, E. (1970). Quantum Mechanics second edition . New York: John Wiley & Sons .

Noyes, P. H. (1994). Bit-String Physics: a Novel "Theory of Everything". SLAC-PUB-6509 .

113



Penrose, R. (2005). The road to reality - A Complete Guide to the Laws of the Universe. London:
Vintage Books.

Peter J. Mohr, B. N. (2008). CODATA recommended values of the fundamental physical
constants:2006. J.Phys.Chem. Ref.Data, Vol. 37, No. 3, 1187-1284.

Prigogine, I., & Stengers, |. (1984). Order out of Chaos. Bert Bakker.
Raeymaekers, P. (2001). Genen en gezondheid. Amsterdam: Veen Magazines.

Rayleigh, L. (1899-1900). On the Viscosity of Argon as affected by Temperature. Proc. Roy. Soc.
London, Vol LXVI, 68-74.

Roche, J. (1998). The mathematics of measurement. The Athlone Press.

Rosen, J. (1995). Symmetry in science: an introduction to the general theory . New York: Springer-
Verlag.

Sammon, J. (1969). A nonlinear mapping algorithm for data structure analysis. IEEE Transaction on
Computers, C18 , 401-409.

Schroeder, M. R. (1990). Fractals, chaos, power laws: minutes from an infinite paradise. New York:
W.H. Freeman and Company.

Sheppard, M. R. (2008, April 28). Systematic Search for Expressions of Dimensionless Constants using
the NIST database of Physical constants. Retrieved from
https://www.msu.edu/~sheppa28/constants/constants.html

Siegfried Gottwald, H. K. (1995). Meyers Kleine Enzyklopddie Mathematik. Mannheim:
Bibiographisches Institut & F.A. Brockhaus AG.

Silverman, M. P. (1998). Waves and Grains: reflections on light and learning. Princeton: Princeton
University Press.

Stewart, . (1995). Nature's numbers: the unreal reality of mathematics. New York: BasicBooks.

Uzan, J.-P., & Leclercq, B. (2005). De I'importance d'étre une constante. (B. Mizon, Trans.) Paris:
Dunod.

Veltman, M. (2003). Feiten en mysteries in de deeltjesfysica. Amsterdam: Veen Magazines.

Venkataraman, G. (1994). Qunatum Revolution II: QED: the jewel of physics. Hyderabad: University
Press (india) Private Limited.

Weinberg, S. (1977). The first three minutes - A modern view of the origin of the universe. (H. v. Herk-
Kluyver, Trans.) New York: Basic Books Inc.

114



