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Samenvatting

In onze maatschappij is het gebruik van beeld- en videodata zeer wijdverbreid
geworden, en de geproduceerde hoeveelheid beeld- en videodata is navenant
gegroeid. Omgaan met deze enorme datahoeveelheden is duur en technisch
uitdagend. Bovendien is niet alle opgenomen data nuttig. Een groot deel is ir-
relevant (heeft geen belang) of redundant (bevat geen nieuwe informatie). Om
de gigantische hoeveelheid data geproduceerd door visuele systemen tot han-
delbare proporties te reduceren, zijn technieken die irrelevantie en redundantie
in de data verminderen van groot belang. Het filteren van relevante data en de
samenvatting ervan omvat twee uitdagingen: irrelevante data identificeren zo-
dat die kan verwijderd worden, en redundante data samenvatten zodat dezelfde
informatie slechts één keer weerhouden wordt.

Vermindering van irrelevantie en redundantie kan in verschillende gradaties
gerealiseerd worden:

e Compressie: een basisstap is de opgenomen beeld- of videodata - ver-
liesloos of met verlies - te encoderen zodat de voorstellingsgrootte gecom-
primeerd wordt.

e Fusie: de volgende stap is informatiefusie, waarbij gegevens van verschil-
lende bronnen gecombineerd worden tot één enkel resulterend product.
Dit bevat in het ideale geval alle informatie die interessant is voor de taak
die men wenst uit te voeren.

e Selectie: bovendien kan men enkel informatie die interessant is voor de
taak selecteren en de rest verwijderen.

Deze thesis behandelt fusie en selectie van informatie in visuele systemen. De
ontwikkelde algoritmen evolueren van technieken voor de selectie en fusie van
visuele data op pixelniveau tot methoden die het mogelijk maken op een hoger
niveau van abstractie te redeneren over het belang van observaties en manie-
ren om ze te combineren tot een bruikbaar resultaatproduct. We ontwikkelen
technieken voor fusie en selectie van informatie in twee types beeldsystemen:
lichtmicroscopen en netwerken van slimme camera’s.

Een lichtmicroscoop heeft een beperkte scherptediepte. Daarom is het vaak
onmogelijk om een beeld van een 3D object op te nemen waarin alle delen scherp
zijn afgebeeld. Een standaardtechniek om de scherptediepte van de microscoop
virtueel uit te breiden is een ‘stapel’ beelden op te nemen van het 3D object. De
afstand tussen de beeldsensor en het object is in elk beeld anders. Zo verkrijgt
men een aantal beelden die snedes genoemd worden, en waarin telkens een
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ander deel van het object scherp is afgebeeld. Deze techniek leidt duidelijk tot
een beeldstapel die zeer nuttige informatie bevat (scherpe afbeeldingen van alle
delen van het object), maar helaas ook heel wat irrelevante informatie (wazige
beeldgebieden) of redundante informatie (beeldgebieden die meermaals scherp
afgebeeld zijn in de beeldstapel).

Wij stellen een techniek voor om alle interessante informatie in een beeldsta-
pel te selecteren en te fuseren tot een enkel resulterend beeld dat alle delen
van het object scherp weergeeft. Meer bepaald buiten we de richtingsgevoelig-
heid van de curvelettransformatie uit om fusieresultaten van hoge kwaliteit te
verkrijgen, zowel voor echte microscoopdata als voor kunstmatig gegenereerde
beeldstapels. We tonen dat het toevoegen van consistentie- en ruimtelijke glad-
heidscontroles over het algemeen leidt tot betere fusieresultaten. Voor echte
testdata leidt het opleggen van deze voorwaarden tot een verminderd aantal
artefacten in het gefuseerde beeld.

Ruis, aanwezig in alle beeldvormingssystemen, heeft een verstorend effect op
de voorgestelde beeldfusietechniek. We stellen meerdere oplossingen voor om
de invloed van ruis op het fusieproces te beperken. We tonen dat het opleggen
van de veronderstellingen van ruimtelijke gladheid in en consistentie tussen de
curveletdecompositiebanden een regularizerend effect heeft en de fusiekwaliteit
bevordert. We wijzen ook op de alternatieve oplossing van het ontruizen van
de curveletcoéfliciénten alvorens te fuseren.

Om een op curvelets gebaseerde ruisonderdrukkingstechniek te ontwikkelen, on-
derzoeken we de verschillen in statistisch gedrag tussen curveletcoéfficiénten die
een significant ruisvrij signaal bevatten en die waarin geen interessant signaal
aanwezig is. We ontwikkelen een ruisonderdrukkingsmethode voor curvelets
die we ProbShrinkCurv noemen en die een aanpassing is van de op wavelets ge-
baseerde ProbShrink ruisonderdrukkingsmethode |[Pizurica and Philips, [2006].
Daartoe maken we gebruik van de kennis opgedaan in onze statistische studie
om een geschikte lokale activiteitsmaat te ontwerpen voor de nieuwe methode.
Ontruizen van de curveletcoéfficiénten van de ruizige snedes met ProbShrink-
Curv alvorens ze te fuseren, verbetert het fusieresultaat aanzienlijk. De beste
fusieresultaten worden verkregen wanneer ontruizing voor fusie gecombineerd
wordt met een fusieproces waarin ruimtelijke gladheid en subband-consistentie
opgelegd worden.

Cameranetwerken met overlappende gezichtsvelden vormen het tweede type vi-
suele systemen dat we in deze thesis bestudeerd hebben. Omdat zulke netwer-
ken verschillende zichten op dezelfde scene weergeven, hebben ze aanzienlijke
voordelen tegenover een enkele camera met een vast gezichtspunt. Zo kunnen
cameranetwerken bijvoorbeeld occlusieproblemen verhelpen; in gebaarherken-
ning kunnen aanwijzingen van verschillende gezichtspunten tot een robuustere
beslissing leiden.

Recente hardwareontwikkelingen hebben de invoering van ‘slimme’ camera’s
mogelijk gemaakt. Dit zijn camera’s waarin communicatie- en verwerkings-
hardware is geintegreerd. Ze laten toe flexibelere en schaalbaardere netwerken
te bouwen omdat de vereiste beeldverwerking verdeeld kan worden over de ca-
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mera’s. Het gezamenlijk verwerken van de uitvoerdata van de slimme camera’s
kan gebeuren in een basisstation of op een van de camera’s.

Gegevensverwerking in een netwerk van slimme camera’s brengt enkele speci-
fieke uitdagingen met zich mee. De hardware die geintegreerd is met de beeld-
sensor, wordt doorgaans speciaal ontworpen voor beeldverwerking (hoge graad
van parallellisatie), wat een voordeel is, maar hij heeft ook enkele beperkingen
wat betreft geheugen en rekenkracht. Als de hoeveelheid uitvoergegevens van
de slimme camera’s laag wordt gehouden, wordt draadloze operatie mogelijk.
Dit is een voordeel voor de flexibiliteit van het systeem. Werking op batterijen
met lange autonomie is in dit geval ook wenselijk.

De algoritmen ontwikkeld voor cameranetwerken in deze thesis zijn alle ont-
worpen rekening houdend met hun mogelijke implementatie in netwerken van
slimme camera’s, ofwel in hun huidige vorm, ofwel in een aangepaste, afgeslank-
te vorm. Daartoe is aandacht besteed aan aspecten zoals gegevenssnelheid en
processorbelasting.

Wanneer de camera’s in een netwerk dezelfde gebeurtenis of hetzelfde object
vanuit verschillende gezichtspunten observeren, verhoogt dit niet enkel de hoe-
veelheid nuttige informatie. Een groot deel van de gegevens geproduceerd door
het netwerk is redundant of zelfs irrelevant. We hebben twee hoofdbenade-
ringswijzen gevolgd om dit probleem aan te pakken: informatiefusie, waarbij
relevante data van verschillende bronnen in een enkel resulterend product ge-
combineerd wordt, en informatieselectie, waarbij de gegevens die het waarde-
volst zijn voor een specifieke taak geidentificeerd worden.

We stellen een nieuwe methode voor om bezettingsinformatie van verschillen-
de camera’s te fuseren om een 2D overzicht van de bezetting van een sceéne
te verkrijgen. Dit 2D overzicht wordt een bezettingskaart genoemd. Deze
methode is gebaseerd op fusie van vloerbezettingskaarten van individuele ca-
mera’s m.b.v. de Dempster-Shafer-theorie van bewijsvoering. Experimenten
en een vergelijking met de state of the art tonen duidelijke verbeteringen aan
van de gefuseerde vloerbezettingskaarten wat betreft concentratie van het be-
zettingsbewijs rond daadwerkelijke personenposities. We demonstreren ook de
doeltreffendheid van de voorgestelde methode in een cameranetwerk dat uit
vier sensoren bestaat en dat in ware tijd opereert.

Om de implementatie van deze methode in een netwerk van slimme camera’s
te vergemakkelijken, onderzoeken we een alternatieve versie die slechts een lage
gegevenssnelheid vereist en een lage processorbelasting met zich mee brengt.
Deze versie vereist dat de personen in de sceéne voldoende groot in de camera-
beelden verschijnen. Als dit het geval is kunnen camera’s een compacte scanlijn
van de gedetecteerde voorgrond doorsturen i.p.v. het ganse voorgrondbeeld.
Verder introduceren we een praktische methode om te bepalen welke deelverza-
meling van camera’s in een netwerk van slimme camera’s het beste zicht heeft
op de personen in een scéne en hun vorm. Het bestaat uit gedistribueerde
en centrale processen. Om een geschikte overzichtscamera te kiezen houdt het
algoritme rekening met het aantal gezichten gedetecteerd door elk van de came-
ra’s, en met de snelheid en de posities van de objecten t.o.v. de kijkrichting en
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de kijkhoek van de camera’s. Dit hoofdzicht wordt aangevuld met bijkomende
zichten die de observatie uitbreiden en die toelaten de 3D vorm van de per-
sonen in de scéne te reconstrueren. Om deze bijkomende zichten te selecteren
gebruiken we de bezettingskaart als een ruwe benadering van de 2D vorm van
de mensen in de scene.

Bovendien stellen we een cameraselectie-algoritme voor dat geschikt is voor
ware-tijd-operatie. Experimentele resultaten tonen aan dat het voorgestelde
algoritme een performantie heeft die dicht bij de optimale resultaten ligt. Ook
worden twee verschillende netwerkoperatieprotocollen voorgesteld. Het eerste
heeft als doel de observatiefrequentie van de sensoren te verhogen, het tweede
vermindert de vertraging tussen observatie en beeldverzending. Experimentele
resultaten tonen aan dat de voorgestelde protocollen de observatiefrequentie
verhogen en de vertraging verminderen zonder de performantie van 3D vorm-
reconstructie sterk te verminderen.

Een cruciale component in een doeltreffend cameraselectiesysteem is het kwan-
tificeren van de bijdrage van een of meerdere camera’s tot het vervullen van
een taak. We beschrijven een nieuw, algemeen raamwerk om de kwaliteit te
evalueren waarmee een deelverzameling van camera’s een netwerktaak vervult.
De voorgestelde geschiktheidsmaat is afgeleid van de Dempster-Shafer-theorie
van bewijsvoering en kan toegepast worden op een breed gamma van compu-
tervisieproblemen.

Als demonstratietoepassing gebruiken we de maat om sensoren te selecteren in
een cameranetwerk waarin meerdere objecten worden gevolgd. Deze methode
is getest op duizenden beelden in verschillende omgevingen en laat toe personen
te volgen met een dynamische selectie van slechts drie camera’s met dezelfde
nauwkeurigheid als wanneer steeds alle camera’s (zeven, acht of tien) worden
gebruikt. Wanneer met slechts twee camera’s gevolgd wordt, is er slechts een
lichte afname in performantie. De voorgestelde methode presteert duidelijk
beter dan andere cameraselectiemethodes voor het volgen van personen.
Samengevat zijn de belangrijkste bijdragen van dit proefschrift:

e cen nieuwe beeldfusiemethode om de scherptediepte uit te breiden van
een optisch systeem zoals een lichtmicroscoop [Tessens et al., |2007a}b];

e een statistische studie van curveletcoéfficiénten, op basis waarvan we een
nieuwe ontruizingsmethode hebben voorgesteld [Tessens et al., 2006blcl
2008c|. Van deze ontruizingsmethode werd aangetoond dat ze de fusiere-
sultaten op beeldstapels besmet met ruis verbetert;

e cen nieuwe methode om vloerbezettingskaarten te berekenen in een ca-
meranetwerk door de vloerbezetting van elke camera afzonderlijk te fuse-
ren m.b.v. de Dempster-Shafer-theorie van bewijsvoering [Morbee et al.
2008, 2010aj; | Tessens et al., 2008b];

e cen nieuwe methode om doeltreffend camerazichten te selecteren om men-
sen in een scene te observeren en hun 3D vorm te reconstruéren in een
netwerk van slimme camera’s [Lee et al.| [2008; Tessens et al., [2008b;
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e cen nieuw algemeen raamwerk om de kwaliteit te kwantificeren waarmee
in een netwerk een deelverzameling van camera’s een netwerktaak vervult
[Tessens et al., 2010].

In totaal leidde het onderzoek gedurende dit doctoraat tot twee publicaties
in internationale tijdschriften met collegiale toetsing [Morbee et al. [2010a;
[Tessens et al., 2008¢|, een ingediende [Tessens et al., 2010] en een tijdschriftpu-
blicatie in voorbereiding [Morbee et al.,|2010b]. Er is ook een octrooiaanvraag
ingediend [Morbee and Tessens| 2010]. Bovendien werden dertien conferentie-
artikels gepubliceerd in internationale conferenties |Lee et al., [2008; [Morbee
et al 2008, [2009; [Soleimani et al [2010; [Tessens et all]
20075”:], [2008b), [2009].







Summary

In our society the use of image and video data has become very widespread,
and the produced amount of image and video data has grown accordingly.
Handling these huge amounts of data is costly and technically challenging.
Moreover not all of the recorded data is useful. A large portion is irrelevant
- it is of no importance - or redundant - it does not provide new knowledge.
To reduce the huge amount of data produced by imaging systems to workable
proportions, techniques that decrease irrelevance and redundancy in the data
are of paramount importance. The process of filtering out the relevant data
and summarizing it encompasses two challenges: identifying irrelevant data
such that it can be discarded, and summarizing redundant data such that the
same information is only retained once.

Irrelevance and redundancy reduction can be realized in different gradations.

1. Compression: a basic step is to - losslessly or lossily - encode the
recorded image or video data such that its representation size is com-
pressed.

2. Fusion: the next step is information fusion, which combines data from
different sources into a single output product. This ideally contains all
information of interest to the task at hand.

3. Selection: additionally, one can select only information of interest to
the task at hand and discard the rest.

This thesis deals with fusion and selection of information in visual systems.
The developed algorithms evolve from techniques for visual data selection and
fusion at the pixel level to methods for reasoning about the importance of
observations and ways of combining them into a useful output product at a
higher level of abstraction. We develop techniques for effective fusion and
selection of information in two types of imaging systems: conventional light
microscopes and smart camera networks.

A conventional light microscope has a limited depth of field. For this reason,
it is often not possible to acquire an image of a 3D object in which all parts
of the object appear in focus. A standard technique to virtually extend the
depth of field of a microscope is to record an image ‘stack’ of the 3D object.
The distance between the image sensor and the object is varied in each image,
such that a set of images called slices is obtained in which each time a different
part of the object is in focus. Clearly this technique results in an image stack,
which contains very useful information (sharp images of all object parts), but
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unfortunately also a lot of irrelevant information (blurred image regions) or
redundant information (image regions that are imaged sharply in several slices
of the stack).

We propose a technique to select and fuse all information of interest in an image
stack for depth of field extension into a single output image that contains all
parts of the object in focus. More precisely we exploit the directional sensitivity
of the curvelet transform to produce high quality fusion results, both on real
microscopy data and on artificially generated image stacks. We show that
adding consistency and spatial smoothness checks to this curvelet-based fusion
method generally leads to better fusion results. For real test data, imposing
these constraints leads to a reduced number of artifacts in the fused image.
Noise, present in all image capturing systems, has a disturbing effect on the
proposed image fusion technique. We propose several solutions to temper its
influence on the fusion process. We show that imposing the assumptions of
spatial smoothness within and consistency between the curvelet decomposition
sub-bands has a regularizing effect and improves the fusion quality. We also
point out that denoising the slices in the curvelet domain prior to fusion is an
alternative solution.

In order to develop a curvelet-based denoiser, we investigate the differences in
statistical behavior between curvelet coefficients containing a significant noise-
free component and those in which no signal of interest is present. We develop
a denoising method for curvelets called ProbShrinkCurv, which is an adaptation
of the wavelet-based ProbShrink denoising method [Pizurica and Philips| 2006].
To this end, we put the knowledge gained from our statistical study to use in
the design of an appropriate local spatial activity indicator (LSAI) for this new
method.

Using ProbShrinkCurv to denoise the curvelet coefficients of noisy slices prior
to fusion improves the fusion result considerably. The best fusion results are
obtained when denoising prior to fusion is combined with a fusion process in
which spatial smoothness and sub-band consistency constraints are imposed.
Camera networks with overlapping fields of view are the second type of visual
systems that we have treated in this PhD dissertation. Because such networks
present different views on the same scene, they have substantial advantages over
a single fixed viewpoint camera. E.g., in scene monitoring, camera networks can
alleviate occlusion problems; in gesture recognition, cues coming from different
viewpoints can lead to a more robust decision; in free viewpoint television, the
quality of the rendered intermediate views benefits from a larger number of
cameras.

Recent hardware developments have made the introduction of ‘smart cameras’
possible. These are cameras with on-board processing and communication
hardware. They allow for the construction of more flexible and scalable camera
networks because the required image processing can be distributed over the
cameras. The collaborative processing of the output data of the smart cameras
can take place either in a base station or on one of the cameras.

Data processing in a smart camera network entails some specific challenges.
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The hardware embedded with the image sensor is usually especially designed
for image processing (high degree of parallelization), which is an advantage,
but it also has some limitations in terms of memory and processing power. If
the amount of output data of the smart cameras is kept low, wireless operation
becomes possible. This is a huge advantage for the flexibility of the system.
Battery operation is in this case also desirable.

The algorithms for camera networks developed in this thesis are all designed
taking into account their possible implementation in smart camera networks,
either as they are or in a modified, more light-weight form. To this end, atten-
tion has been paid to issues such as data rates and computational load.
When the cameras in a network observe the same event or subject from different
viewing perspectives, this not only increases the amount of useful information.
A large part of the data produced by the network is redundant or even irrele-
vant. We have followed two main approaches to solve this problem: information
fusion, which combines relevant data from different sources into a single output
product, and information selection, which identifies which data is most valuable
for a specific task.

We propose a new method for fusing occupancy data from different cameras
to obtain a 2D overview of the occupancy of a scene, called an occupancy
map. This method is based on Dempster-Shafer based fusion of single view
ground occupancy maps. Experiments and a comparison with the state-of-the-
art show clear improvements in the fused ground occupancy maps in terms of
concentration of the occupancy evidence around ground truth person positions.
We also demonstrate the effectiveness of the proposed method in a four camera
network operating in real time.

To facilitate the implementation of this method in smart camera networks, we
modify it into a low data rate and low load version. This version requires that
the persons in the scene appear sufficiently large in the camera views. If this is
the case, cameras can send only scan-lines of the detected foreground, not the
full foreground image.

Furthermore we introduce a practical method to determine which sensor sub-
set in a smart camera network has the best view on the persons in a scene
and their shape. It consists of distributed and central processes. To choose an
appropriate key camera the algorithm takes into account the number of faces
detected by each of the cameras, and the velocity and positions of the objects
relative to the viewing direction and viewing angle of the cameras. This princi-
pal view is complemented with additional views, which extend the observation
and which allow reconstructing the 3D shape of the people in the scene. To
select these additional views we use the occupancy map as a crude 2D shape
approximation of the people in the scene.

Moreover, we propose a greedy camera selection algorithm for real time network
operation. Experimental results show that the proposed algorithm provides a
performance very close to the optimal results. Also, two different network
operation protocols are proposed. The first scheme aims to improve the sen-
sor observation frequency and the second scheme decreases the delay between
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view observation and image transmission. Experimental results demonstrate
that the proposed protocols improve observation frequency and latency without
much degrading the performance of 3D shape reconstruction.

A crucial component in an effective camera selection system is quantifying the
contribution of one or more cameras to the accomplishment of a task. We
present a novel, general framework to evaluate the quality with which a subset
of cameras accomplishes a network task. The proposed set suitability value is
derived from the Dempster-Shafer theory of evidence and can be applied to a
wide range of vision problems.

As a proof of concept, we use it for sensor selection in a camera network in
which multiple targets are tracked. This method has been tested on thousands
of frames in different environments and allows to track persons using a dynamic
selection of as little as three cameras with the same accuracy as when using
all cameras (seven, eight or ten) all the time. When tracking with two cam-
eras, there is only a minor performance drop. The proposed method clearly
outperforms other camera selection schemes for tracking.

To summarize, the main contributions of this thesis are:

e anovel image fusion method to extend the depth of field of optical systems
such as conventional light microscopes |Tessens et al.l [2007alb];

e a statistical study of curvelet coefficients, based on which we have pre-
sented a novel denoising method [Tessens et al., [2006blic, 2008c]. This
denoising method has been shown to improve fusion results on image
stacks that are contaminated with noise;

e a novel method to calculate ground occupancy maps in a camera network
by fusing ground occupancies from each view separately according to the
Dempster-Shafer theory of evidence [Morbee et al., 2008| 2010a} Tessens|

et L, 200D

e a novel method to effectively select camera views for observing people in
a scene and reconstructing their 3D shape in a network of smart cameras
[Lee et al., 2008; Tessens et all [2008b];

e a novel general framework to quantify the quality with which in a network
a subset of cameras accomplishes a network task |[Tessens et al., |2010].

In total, the research during this PhD resulted in two publication in interna-
tional peer-reviewed journals [Morbee et al., 2010a; |Tessens et al., |2008c|. One
article is under review |Tessens et al.) 2010] and one in preparation [Morbee|
et al.L . A patent application has been submitted [Morbee and Tessens),
2010]. Furthermore thirteen conference papers have been published in the pro-
ceedings of international conferences [Lee et al. |2008; Morbee et al., 2007ajb
2008, [2009; [Soleimani et all [2010} [Tessens et al., [2006alblic, [2007alb, 2008b
2009|.
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Introduction

1.1 Introduction

In the last decades image and video data have developed into a convenient and
widely used aid to assist people in a multitude of application areas: surveillance,
video conferencing, medical care, traffic monitoring, etc.

As visual information becomes more and more widespread, the produced
amount of image and video data grows accordingly. Handling these huge
amounts of data is costly and technically challenging. Moreover not all of the
recorded data is useful. A large portion is irrelevant - it is of no importance -
or redundant - it does not provide new knowledge.

To reduce the huge amount of data produced by imaging systems to workable
proportions, techniques that decrease irrelevance and redundancy in the data
are of paramount importance. Indeed, the transmission, storage and processing
of irrelevant and/or redundant data only leads to wasted resources (transmis-
sion bandwidth, storage capacity, processing power). The process of filtering
out the relevant data and summarizing it encompasses two challenges:

e identifying irrelevant data such that it can be discarded or not processed;

e summarizing redundant data such that the same information is only re-
tained once.

Note that irrelevance and redundancy have to be defined with respect to the
information we wish to extract from the visual data, i.e., the task we want
to accomplish. Consider the example of two cameras with overlapping fields
of view. Part of their images display the same region of the scene twice. If a
human observer wishes to see what is happening in the scene, the second view of
the same region is redundant, and only the image region in which a new part of
the scene is visible is of interest. However, if we use the two images to estimate
a stereoscopic 3D reconstruction of the scene, it is exactly the overlapping part
of the views that interests us. The rest of the images are useless for stereoscopic
3D reconstruction.

Irrelevance and redundancy reduction can be realized in different gradations.
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1. Compression: a basic step is to - losslessly or lossily - encode the
recorded image or video data such that its representation size is com-
pressed. Obviously encoding each video stream will reduce the necessary
transmission bandwidth and storage capacity in our two camera example.
It will however not reduce the computational burden of processing the
data.

2. Fusion: a next step is information fusion, which combines data from
different sources into a single output product. This ideally contains all
information of interest to the task at hand. If in our two camera example
we are interested in a 3D reconstruction of the scene, this fusion product
can, e.g., be the depth map of the part of the scene which is visible in
both views.

3. Selection: additionally, one can select only information of interest to the
task at hand and discard the rest. In our two camera example this can
be achieved by selecting regions of interest in one or both of the camera
images.

Data fusion and selection always entail the risk of losing information of interest,
either by mistakenly deleting it, or in the fusion case by operations inherent
to the combination process. A big research challenge is to develop data fusion
and selection techniques that minimize this loss.

In this thesis we develop techniques for effective fusion and selection of infor-
mation in two types of imaging systems: conventional light microscopes and
smart camera networks. The choice for these two imaging systems has grown
organically during the course of this PhD. More precisely, the opportunity to
perform research on smart camera networks arose from the collaboration with
Prof. Aghajan. He kindly offered the possibility of a research stay at the
Wireless Sensor Networks Lab at Stanford University.

A conventional light microscope has a very limited depth of field. For this
reason, it is not always possible to acquire an image of a 3D object with it
in which all parts of the object appear in focus. Instead, a stack of images is
captured in which each time a different part of the object is imaged sharply.
Such a stack, which in practical applications contains tens of images, is not user-
friendly for visual inspection. It is therefore desirable to ‘extend’ the depth of
field of the microscope by fusing all information of interest in the images (here:
sharp object parts) into one single output image, which contains a sharp view
on every object part. We propose a novel method for the fusion of such image
stacks and we also look into depth of field extension for noisy input images.
The second category of imaging systems considered in this work are smart
camera networks. Recent years have seen an explosive growth of the number of
cameras deployed in our society. From surveillance cameras observing public
spaces over IP cameras showing the weather conditions in skiing areas to web
cameras for communicating over the Internet, cameras are everywhere. We call
a camera smart when it has on-board image processing and communication
hardware. A number of cameras form a network when their video data is
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at some point processed jointly - by a person or by a machine - to extract
the desired information from it. In this thesis we present a novel method to
fuse ground occupancy maps computed from a set of overlapping camera views.
Furthermore we develop data selection techniques that automatically determine
which camera views are most suited for a particular task. The tasks covered
in this thesis are visual scene inspection and people tracking.

1.2 Contributions and Publications

The main novelties and contributions presented in this thesis are:

e anovel image fusion method to extend the depth of field of optical systems
such as conventional light microscopes. This method uses the curvelet
transform to distinguish between in-focus and blurred image regions. The
curvelet transform is a wavelet-like image transformation that decom-
poses the image in several frequency scales and orientations. Because of
its high directional sensitivity, it is well suited to identify high frequency
image content. Using this method we have improved image fusion results
for depth of field extension in terms of PSNR by several dBs.

This research has been published at ICASSP [Tessens et al.l 2007b] and
at the SPS-Darts conference |[Tessens et al.|, 2007a].

e a statistical study of curvelet coefficients, distinguishing between two
classes of coefficients: those that contain a significant noise-free com-
ponent, which we call “signal of interest”, and those that do not. By
investigating the marginal statistics, we have developed a prior model
for curvelet coefficients. The analysis of the joint intra- and inter-band
statistics has enabled us to develop an appropriate local spatial activity
indicator for curvelets. Finally, based on our findings, we have presented
a novel denoising method, inspired by a recent wavelet domain method
ProbShrink. The new method outperforms its wavelet-based counterpart
and produces results that are close to those of state-of-the-art denoisers.
This work has led to one journal publication (|Tessens et al., [2008c|) and
several conference publications ([Tessens et al., 2006blc|).

This denoising method is used to improve fusion of image stacks that are
contaminated with noise.

e a novel method to calculate ground occupancy maps with a set of cal-
ibrated and synchronized cameras. In particular, we have proposed
Dempster-Shafer based fusion of the ground occupancies computed from
each view separately. The method yields very accurate occupancy de-
tection results and in terms of concentration of the occupancy evidence
around ground truth person positions it outperforms the state-of-the-art
probabilistic occupancy map method and fusion by summing.

This method has been published as a letter in [Morbee et al., 2010a].
Preparatory work has been published in [Morbee et all 2008; |Tessens
et al.| 2008b].
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e a novel method to effectively select camera views for observing people in
a scene and reconstructing their 3D shape in a network of smart cameras.
Within a network, the contribution of a camera to the observation of a
scene depends on its viewpoint and on the scene configuration. This is
a dynamic property, as the scene content is subject to change over time.
The proposed selection is based on the information from each camera’s
observations of persons in a scene, and only low data rate information is
required to be sent over wireless channels since the image frames are first
locally processed by each sensor node before transmission. The selected
set of views constitutes a significantly more efficient scene representation
than the totality of the available views. This is of great value for the
reduction of the amount of image data that needs to be stored or trans-
mitted over the network.

This work has been presented at the ICDSC conference [Tessens et al.
2008b] and at the ACIVS conference |Lee et al., 2008].

e a novel, general framework to quantify the quality with which a subset
of cameras accomplishes a network task. This is a crucial component in
effective sensor selection schemes. The proposed set suitability value is
derived from the Dempster-Shafer theory of evidence and can be applied
to a wide range of vision problems. As a proof of concept, we have used
it for sensor selection in camera networks in which multiple people are
tracked. With the proposed camera selection method, we dynamically
assign as little as three cameras to each tracking target and track it in
difficult circumstances of occlusions and limited fields of view with the
same accuracy as when using seven, eight or ten cameras. The proposed
method clearly outperforms other camera selection schemes for tracking
in terms of average position error and number of target losses.

This work is expected to lead to one journal publication which is currently
under review |Tessens et al.| 2010].

In total, the research during this PhD resulted in two publication in interna-
tional peer-reviewed journals [Morbee et al.,|2010a} [Tessens et al, [2008c]. One
article is under review [Tessens et al., [2010] and one in preparation [Morbeg|
et all 2010b]. A patent application has been submitted [Morbee and Tessens,
@H. Furthermore thirteen papers have been published in the proceedings of
international conferences [Lee et al., |2008; Morbee et al., 2007ayb, 2008, |2009;
[Soleimani et all 2010} Tessens et al., [2006alblcl 2007aybl 2008b, 2009].

The work on camera networks has been performed in close collaboration with
my colleague Marleen Morbee. Some of the general concepts of the developed
methods also appear in her PhD dissertation. However, there is always an
essential difference in focus between the two theses. The work on occupancy
calculation in this thesis elaborates on the different possibilities for fusing the
ground occupancy data. This aspect is not treated in my colleague’s thesis,
where the emphasis lies on an efficient calculation and usage of scan-lines. This
aspect is merely briefly mentioned in this thesis.
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View selection for observing people in a scene and reconstructing their shape
is not discussed at all in my colleague’s thesis.

The method for quantifying the quality with which a subset of cameras accom-
plishes a network task has been used in this thesis as a tool to select cameras
for a single task at a time. The emphasis lies on a thorough study of the dif-
ferent aspects of task quality quantification and its effect on the final quality
of the accomplished task. In my colleague’s dissertation, the potential of this
framework for task assignment is explored. More precisely, a technique to dis-
tribute several tasks over the network cameras in an optimal way with respect
to the achievable frame rate is proposed in her thesis. Solutions to the related
optimization problem are also investigated.

Some other colleagues in the Image and Interpretation group at Ghent Uni-
versity, and in Vision Systems at Hogeschool Gent have also worked on multi-
camera problems, though no one really focused on smart camera networks.
Note for example the work of [Teelen| [2010] on geometric uncertainty models
for correspondence problems between cameras.

1.3 Outline

The outline of this thesis is as follows.

In Chapter [2] we study image fusion for depth of field extension of conventional
light microscopes. We discuss the most common methods for such image fusion
and introduce our own method based on the curvelet transform (a wavelet-like
multi-resolution geometric transform). We also present a performance compar-
ison with other methods.

Chapter [3| focuses on the influence of noise on image fusion for depth of field
extension. We demonstrate how noise severely reduces fusion quality and we
present denoising in the curvelet transform domain as an effective and efficient
solution to this problem. We present an extensive statistical study of curvelet
coeflicients and use it to develop a novel curvelet-based image denoiser. Finally,
we use this denoiser to improve image fusion in the presence of noise.
Chapter [ covers the fusion of visual information in a camera network with
the purpose of reaching a decision about the location of people in a scene. We
introduce the Dempster-Shafer theory of evidence as an effective way of fusing
evidence of the occupancy of ground positions.

In Chapter [5| we move on to data selection in camera networks. We develop a
method to automatically determine in a network of smart cameras with cor-
related views which views are best suited for visual inspection purposes and
shape reconstruction.

Chapter [6] presents a general framework to quantify the quality with which
a subset of cameras in a smart camera network accomplishes a network task.
We discuss why in camera networks generalized information theory is better
suited for this than its classical counterpart. We use the introduced camera
set suitability value for camera selection in networks. As a proof of concept,
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we apply the developed camera selection method to a multiperson tracking
scenario.
Chapter [7] presents the general conclusions of this dissertation.



Image Fusion for Depth of
Field Extension

All optical imaging systems have a limited depth of field. Parts of 3D objects
or scenes that fall outside the focusing range of the imaging system appear
blurred in the image. This problem is particularly prevalent in conventional
light microscopy. There, the object under investigation is often thicker than
the depth of field of the microscope. By moving the object along the optical
axis of the microscope, all object parts can be consecutively moved into the
in-focus region of the microscope. In this way, a stack of images called slices
is produced, each containing blurred and in-focus parts of the objects. To
reduce the number of images one has to inspect to get a complete picture of an
object or a scene, it is desirable to transform this stack into one single image
that contains all the in-focus parts of the image stack . This can be achieved
through fusion of the slices.

2.1 Related Work

An overview of existing image fusion algorithms can be found in [Valdecasas
et all 2001]. In this work as well as in [Li et al) [1995], it is shown that
wavelet-based approaches generally perform better than other methods for ex-
tended depth of field processing of images. Pyramid representations of images
in general are powerful tools for image fusion because they are better suited to
separate high and low frequency image content than methods that operate in
the image domain. Compared to other pyramids such as the Laplacian pyramid,
the wavelet representation offers some advantages such as directional informa-
tion about features (horizontal, vertical, diagonal) and information about their
scale.

Forster et al. developed a very promising technique based on the complex
wavelet transform rather than on the real wavelet transform [Forster et al.l
2004]. Using complex wavelets allows to distinguish between the detail infor-
mation of the images (represented by the phase of the complex wavelet coef-
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ficients) and the weighting or strength of this detail information (encoded in
the magnitude of the wavelet coefficients). In this work, the importance of the
choice of the image transform was illustrated.

In recent years, many novel geometric image transforms have been developed,
such as the ridgelet transform |[Candes and Donoho, [1999], the wedgelet trans-
form [Donoho, (1999], the contourlet transform [Do and Vetterli, [2005] and the
curvelet transform [Candeés and Donohol, [1999], just to name a few. These new
transforms truly capture the geometric information present in images, and in
this sense overcome the limitations of classical wavelets.

These geometric transforms all provide the potential to improve wavelet-based
image fusion techniques because they can represent geometric features that are
naturally present in images more efficiently. The geometric transforms that
have been proposed in literature all possess different properties, the differences
between particular transforms being larger on some points than on others. The
wedgelet transform for example is an image representation that adapts to the
image content, whereas the ridgelet, contourlet and curvelet transforms are
fixed transforms. Ridgelets are particularly well suited for line singularities
in images, contourlets and curvelets can handle general curvilinear discontinu-
ities. Curvelets are directional basis functions that are highly localized, both
in space and frequency. They have been originally designed in the continuous
domain but also have a discrete implementation. The contourlet transform is a
curvelet-like transform that has been designed directly in the discrete domain.
It is implemented as a filter-bank decomposition of the image in scale and ori-
entation. However, depending on the choice of filters, contourlets may be not
well localized in the frequency domain. Moreover, the curvelet transform is
better founded mathematically, which made it possible to prove that curvelets
provide an optimally sparse representation of piecewise smooth images with
singularities along smooth edges, with the best M-term non-linear approxima-
tion |[Candes and Donohol 2004} |Candes et al., [2006]. The approximation error

3
decays as O((log M ) M 2) and hence the observed decay of the absolute

values of the curvelet coefficients is known to be very fast. The combination
of these properties of the curvelet transform (i.e., a fixed transform, suited to
represent general curvilinear image structures and with a strong mathematical
basis), motivated us to develop a curvelet-based image fusion technique.

In Section we will present some practical background information on the
curvelet transform. In Section [2.4] we introduce our curvelet-based image fu-
sion method. Results are summarized in Section 2.5 and we end with some
concluding remarks in Section [2.6] The contributions of this chapter are listed
in the following section.

2.2 Contributions

We propose an image fusion technique that exploits the excellent ability of the
curvelet transform to separate high and low frequency image content. Because
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of the high directional sensitivity of the curvelet transform, all high frequency
information present in an image, regardless of its orientation, is contained in
the highest frequency sub-bands. These sub-bands are processed with a max-
imum absolute value selection rule commonly used in wavelet-based image fu-
sion methods. For the remaining low-frequency sub-band, we propose a novel
selection method that is based on inter-sub-band consistency.

We also describe how some general assumptions about spatial smoothness and
consistency can further improve the selection of in-focus image areas using the
curvelet transform.

2.3 The Curvelet Transform

A first formulation of the curvelet transform was based on the ridgelet trans-
form [Candes et al.,|2000]. This first generation curvelet transform has been re-
designed into a new mathematical construction that is simpler and more trans-
parent. It is this second generation curvelet transform that we use throughout
this dissertation.

In the following, we briefly summarize the main concepts of this transform
necessary for understanding the techniques developed in this dissertation. The
interested reader is referred to [Candes and Donohoj, 2004] and [Candes et al.|
2006| for a comprehensive description of curvelets.

Conceptually, the curvelet transform is a multi-scale pyramid with many di-
rections and positions at each scale. To introduce curvelets mathematically,
let = denote the spatial coordinate in two dimensions, w the frequency domain
coordinate in two dimensions, and r and 6 polar coordinates in the frequency
domain. Second generation curvelets are defined at a scale j as rotations and
translations of a ‘mother’ curvelet ;. Let 0; be a sequence of equispaced rota-
tion angles: 6; = 2w2~U/2]] 1=0,1,... such that 0 < 6; < 27, and k a sequence
of translation parameters k = (k1, k2) € Z.

A curvelet at orientation [ and position z,(cj’l) = Re_ll(kﬂ’j,kﬂ*j/?), with
Ry(.) the rotation over 6 radians, is defined as:

ik(T) = @; (Rel (z — 37;(571)))7 (2.1)

with ¢; the mother curvelet at scale j. This mother curvelet is defined by
means of its Fourier transform ¢;(w) = U;(w), which is known as the frequency
window. In the Fourier domain U; is given by

9li/2]0

or 7’

Uj(r,0) = 2739/4W (279 1)V (

(2.2)

with W (r) and V(6) smooth, non-negative, real-valued windows such that the
support of U; is a polar ‘wedge’. The induced tiling of the frequency plane is

depicted in Fig.
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Figure 2.1: Left: induced tiling of the frequency plane. Right: Cartesian grid in the
spatial domain for the scale j and orientation [ of the shaded wedge. The dots indicate
the positions x,(j’l), k = (ki,k2) € Z, of the curvelets of this scale and orientation.
The ellipses roughly delineate the support of some curvelets.

A curvelet coefficient is the inner product between an image f and a curvelet
Pl k:

Uil k) = (2 pi.00) = / (@) Prn(@) de, (2.3)
]RQ

or equivalently:

J

c(g, k) == ﬁ /f(w)¢j,l7k(w) dw = ﬁ /Jg(w)Uj(Relw)ei<m;(c"L)vw> dw.

At the coarsest scale, isotropic wavelets are used as basis functions.

This continuous transform [Candes and Donohol, [2004] has several digital imple-
mentations. The two most recent ones were introduced in [Candes et al., |2006].
In these implementations the tiling of the frequency space as shown in Fig.
is replaced by a Cartesian-friendly digital tiling depicted in Fig. Based on
this tiling two digital formulations of curvelet coefficients are proposed.

The first proposed Cartesian curvelets are of the form

Giuk(z) =2%/4p; (SoTz(m - Sosz))’ (2.4)

where b takes on the discrete values (k1277 ky277/2) and Sy, is the shearing
matrix

=Lk ]
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Figure 2.2: Digital coronization of the frequency plane.

The curvelet coefficients are now given by

c(j; L, k) = / F@)T3(55 e’ doo (26)

Evaluating this expression requires evaluating the inverse discrete Fourier trans-
form on the sheared grid AS’Q_ZT(IQQ*J7 k2277/2), which is not possible with the

classical FFT algorithm. A solution is to pass the shearing operation to f :

c(j, 1, k) = /f(S’glw)(jj(w)e“b’“) dw (2.7)

and to evaluate this expression by applying the unequally-spaced fast Fourier
transform, USFFT. This requires interpolation of f for each scale and ori-
entation. The interpolation is the computationally most expensive step. By
organizing this step such that related interpolation problems (i.e., for different
scales and orientations) are done simultaneously, the complexity of the algo-
rithm is O(n? logn), where n? is the number of pixels.

An alternative is to translate curvelets at each scale and orientation on a regular
rectangular grid instead of a tilted grid and define Cartesian curvelets as

(g, 1, k) = / Fw)U;(Sg w)e ™) duw (2.8)

where b takes on values on the rectangular grid (k1277, k2277/2). Because the
frequency window Uj is now sheared, a periodization of the frequency samples
(i.e., ‘wrapping’ them around the origin by re-indexing) is necessary to avoid a
dramatic oversampling of the coefficients.

As the latter implementation exhibits a somewhat faster running time, espe-
cially for the inverse transform (see [Candes et al.,[2006]), we use it throughout
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this work. The use of the USFFT-based digital curvelet transform would lead
us to similar results and conclusions.

Because of boundary and periodicity issues, the design of digital curvelets at
the finest scale (highest frequencies) is not straightforward. For this reason in
[Candes et al.l |2006] one can choose between a wavelet and a curvelet decom-
position at this scale. Using curvelets at all scales leads to a transform that
provides approximate rotation invariance (sharp directional selectivity), which
is beneficial for many applications. This is why in this work we always choose
a curvelet decomposition at the finest scale, in spite of disadvantages such as
some possible aliasing and an increased redundancy of the transform. Here,
the redundancy of the transform is the proportion of the number of curvelet
coefficients needed to represent an image to the number of pixels of the image.
E.g., for a 512 x 512 image, 4 scales in the curvelet decomposition and 16 ori-
entations at the coarsest curvelet level, redundancy increases from 2.74 to 7.16
with curvelets at the finest scale.

Fig. [2.3pb shows the curvelet decomposition of the test image in Fig. into 4
frequency scales with 8 orientations at the coarsest curvelet scale. The low-pass
image is located at the center of the representation. The curvelet coefficients are
arranged around it. For representation purposes, we display the magnitudes of
the coefficients. Those with value zero are marked in white, whereas coefficients
with large magnitudes are dark. From the prevalent white color of Fig. 2:3p,
it is clear that the curvelet decomposition of this image is extremely sparse.
The curvelet coefficients are grouped according to orientation and scale. The
concentric coronae represent the different scales, starting with the lowest scale
(low frequencies) in the center. Sub-bands of the same scale are ordered within
these coronae so that the orientation suggested by their position matches the
spatial frequencies they represent. E.g., the diagonal lines in Fig. produce
high curvelet coefficients in the sub-bands along the direction perpendicular
to them. One can clearly discern four quadrants in each corona, which we
will number in a clockwise direction, starting with the upper one. Quadrant
1 contains the magnitudes of the real parts and quadrant 3 of the imaginary
parts of the (complex) curvelet coefficients produced by mostly horizontally
oriented curvelet functions. Mutatis mutandis, the same holds for quadrant 2
and 4.

2.4 Curvelet-based Image Fusion

To select the in-focus image parts throughout an image stack of a 3D object, we
must be able to distinguish between in-focus and out-of-focus regions. Concep-
tually, edges and details appear to be ‘smeared out’ in blurred image regions.
Mathematically, this means that a blurry image region contains fewer high
frequency components than an in-focus one.

The sub-bands in the curvelet decomposition of an image can be considered
band-pass filtered versions of this image. This means high and low frequency
image content are separated by this transform. As was mentioned before, the
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Figure 2.3: (a) A 256 x 256 test image. (b) Its curvelet decomposition into 4
scales with 8 orientations at the coarsest scale. The low-pass image is located at
the center of the representation. Curvelet coefficients with value zero are marked in
white, whereas coefficients with a large magnitude are dark. The dotted lines mark
the border between the four quadrants.

curvelet decomposition of a piece-wise smooth image is extremely sparse (a
consequence of the high directional sensitivity of the curvelet transform) and
virtually all information about high frequency image features is contained in the
high frequency sub-bands of the decomposition. This means that blurring will
primarily have an effect on the high frequency sub-bands, and the distinction
between in-focus and out-of-focus image regions must thus be made here. We
will discuss how to do this in Section 2.4.2]

Because of the extreme sparseness of the curvelet decomposition, a small num-
ber of scales suffices to identify the in-focus image regions within the stack. In
this work, we have used a decomposition into 3 scales (including the low-pass
image). Using more scales increases redundancy in the transform and does not
lead to better fusion results.

We will now first describe the assumptions underlying the proposed image
fusion algorithm, after which we will discuss its different parts.

2.4.1 Assumptions
We assume the slices in the image stacks satisfy the following constraints.

e Perfect registration: the slices need to share a common coordinate sys-
tem. This guarantees that a pixel with certain coordinates corresponds
to the same part of an object for all images in the stack. If the observed
specimen is not moving, this constraint is not a problem in microscopy
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because the objective lens is only moved along the optical axis to capture
the slices. Similarly, in conventional photography or video, perfectly reg-
istered images are obtained when the scene is still and the optical axis
does not change between capture. If it is not possible to obtain perfectly
registered images by controlling the capturing set-up or the scene, rigid
or non-rigid registration of the slices is necessary. A plethora of image
registration methods have been described in literature (see |Zitova and
Flusser} 2003] for an overview). We refer the reader to these techniques
and will not treat image registration in this thesis.

e Absence of noise: As we have briefly mentioned previously, our dis-
tinction between in- and out-of-focus image regions is based on their
frequency content. If the image is degraded by noise in the high fre-
quency range, the algorithm will mistakenly classify noise as information
of interest at the expense of real image features and this will deteriorate
fusion results. Chapter [3] of this thesis is dedicated entirely to fusion of
noise-degraded images.

2.4.2 Processing of the High Frequency Sub-Bands

Big curvelet coefficients in the high-frequency sub-bands correspond to image
features with high spatial frequency components. We assume these features lie
in an in-focus image region. By selecting the coefficients throughout the stack
with the highest absolute value at each position, orientation and scale, we
assure that the most salient image features throughout the stack are preserved.
This maximum absolute value selection rule is the selection rule used in many
wavelet-based image fusion schemes (see [Forster et al.| 2004; [Li et al.l [1995;
Zhang and Blum), [1999]). It actually consists of two steps:

e quantifying the degree to which a coefficient corresponds to a salient
image feature. This process is commonly referred to as activity level
measurement. In the maximum absolute value selection rule, the absolute
value of a coefficient is its activity level;

e combining the coefficients of the slices. In the maximum absolute value
selection rule, the coefficient with the maximal activity level is selected
as the output coefficient.

For both steps, alternatives exist.

Instead of considering coefficients separately to determine their activity level,
many authors have proposed window-based activity measures which consider
coefficients in a small (typically 3x3 or 5x5) window centered at the current
coeflicient. Popular methods include weighted averaging of the coefficients in
the window [Valdecasas et al., 2001; |Zhang and Blum)| [1999], or applying a
rank filter which picks the ith largest coefficient in the window [Li et al., |1995;
Valdecasas et al., 2001; |Zhang and Bluml| [1999]. The idea of window-based
approaches is to detect the presence of a dominant feature in the local neigh-
borhood. Region-based activity measures rely on segmentation and determine
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the activity of an entire region, for example as the average absolute value of all
the coefficients associated with this region [Zhang and Blum)| |[1999]. The ratio-
nale underlying these alternative methods of activity measurement is essentially
the same as in the basic approach of taking the magnitude of a coefficient as its
activity level, namely that salient image features give rise to coefficients with
a high magnitude.

These variations on the basic activity level measurement can potentially im-
prove the fusion results. However, they would also introduce extra parameters
that influence the results. For example for the window-based activity measure,
fusion results will vary with the window size and the rank filter choice. For the
region-based approach, high quality image segmentation will be very important
to achieve high quality fusion. In this work we focus on the influence of the
image transform on the fusion results. Therefore we do not investigate these
variations on the basic activity level measurement. Instead, we restrict our-
selves to measuring the activity level of a coefficient by its absolute value and
we note that more elaborate activity measures hold the potential for improving
the results.

A different method of coefficient combination than choosing the coefficient with
the highest activity level is calculating the output coefficient as a weighted aver-
age of the coefficients of the different slices. The weight assigned to a coefficient
typically depends on its activity level [Zhang and Bluml 1999]. In [Zhang and
Blum), [1999] this method was found to exhibit the same performance as choos-
ing the coefficient with the highest activity level. Selecting the coefficients
corresponding to in-focus image pixels can also be treated as a classification
problem. In [Li et al| |2004], support vector machines are used to this effect.
A disadvantage of this approach is the training required for the support vector
machines. In this work we select the coefficients with maximal activity level as
the output coefficients.

2.4.3 Consistency and Smoothness Checks

When selecting curvelet coefficients from different slices, one can naturally
assume some spatial smoothness within and consistency between the decompo-
sition bands. To impose these assumptions, consistency and smoothness checks
must be performed.

A first possible check is based on the assumption of inter-sub-band consistency:
all curvelet coefficients corresponding to a feature at a specific spatial location
in the image should in theory be taken from the same slice, regardless of the
orientation and the scale of the feature. In practice, this is not always the
case after the previous image fusion step described in Section A feature
with a particular orientation and scale gives rise to curvelet coefficients with a
high absolute value in a small number of sub-bands. In the other bands, the
corresponding coefficients from the sharply imaged slice have a small magni-
tude. Some minor fluctuations and disturbances in the other slices may give
rise to curvelet coefficients that have a slightly bigger magnitude than the cor-
rect ones. The maximum absolute value selection rule will select the slightly
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bigger coefficients, which leads to inconspicuous false features being incorpo-
rated in the fused image. To prevent this, we can impose the constraint that
all corresponding curvelet coefficients should be selected from the slice which
supplied among these coefficients the one with the largest absolute value after
the previous step.

A second check assumes some spatial smoothness of the sharp image regions.
Indeed, the slice in which a realistic 3D-sample appears in-focus might change
abruptly over the sample, but this will happen in a piece-wise continuous man-
ner. Therefore, if a majority of neighboring coeflicients in a 3 x 3-window are
from the same slice, the current coefficient is taken from that slice too.

2.4.4 Processing the Low-Pass Image

By definition, the low-pass image contains the low frequency features in the
image. The saliency of these features cannot be determined in the same manner
as for the high frequency features that show up in the detail sub-bands of the
curvelet decomposition.

Because low frequency features are not affected as strongly by blurring as high
frequency image content, in literature, the low-pass image of the fused image
is obtained by averaging the low-pass images of all slices. However, in our
case where the number of scales in the decomposition is very low, the blurring
does influence the low-pass image as well. In this case, averaging is too crude
a technique to obtain the low-pass image of the fused image and a correct
selection of the low-pass coeflicients becomes very important. Therefore we
propose a novel strategy to perform this task: we select the low-pass coefficients
based on the assumption of inter-sub-band consistency. This means that the
curvelet coefficients in the low-pass image should be taken from the same slice
as the corresponding curvelet coefficients in the high-frequency sub-bands. If
no inter-sub-band consistency check has been performed for the high-frequency
sub-bands, not all corresponding curvelet coefficient may have been selected
from the same slice. In this case we select the low frequency coefficient from
the slice which supplied among all corresponding high frequency coefficients
the one with the largest absolute value. In general this assures that at each
spatial position in the low-pass image, the curvelet coefficient from the correct,
in-focus slice is selected.

2.4.5 Image Fusion Algorithm

Our curvelet-based image fusion technique can be summarized as follows:

1. All images of the image stack are decomposed into their complex curvelet
coefficients C; ; .(x,y), where z denotes the slice index, ¢ the scale and j
the orientation within the scale. x and y are spatial coordinates.

2. For each position in every sub-band, the curvelet coefficient with the
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highest absolute value over all the slices in the stack is selected:
Fij(zy) = Ci,j,argmaxz(|ci,,-,z(x,y)\)(x,y). (2.9)

3. Consistency and smoothness constraints are imposed (see Section [2.4.3)).
4. The low-pass image is processed (see Section [2.4.4)).

5. The inverse curvelet transform of the curvelet coefficients F; ;(z,y) is
calculated and the fused image f is obtained.

2.4.6 Pre- and Post-Processing

As a pre-processing step, multi-channel slices are first converted into gray-scale

images s, (x,y) by a weighted linear combination of the color channels s (z,9):

s.(x,y) =D, wksgk)(z,y). As was proposed by Forster et al., the weights wy
are obtained from a principal component analysis and are chosen such that the
color channels are projected on the direction in the color channel space with
maximal variance [Maloney| 1999]. In this way, images with a predominant
color lead to gray-scale images with more contrast and saliency than if fixed
weights are used [Forster et al., 2004).

Note that these grayscale images are only intermediate products of the al-
gorithm, necessary to perform the image fusion. If the input of the fusion
algorithm is a stack of color images, the output is a color image that is the
fusion product of the multi-channel slices, as will be explained now.

After the inverse curvelet transform, the fused image may contain false gray-
scale values. These are gray-scale values that were not present in any of the
slices and thus may introduce artifacts. As Forster et al. suggested, we remove
them through ‘reassignment’. Multi-channel reassignment for each channel k
can be expressed as:

0" (2,9) = Sirgmin, | f(z.g)—s. (2| (T2 ): (2.10)

2.5 Results

To evaluate our curvelet-based image fusion method, we test it both on artifi-
cially generated test data and on real microscopy images. We compare it with
the complex wavelet-based method of Forster et al. with and without sub-band
and spatial smoothness checks |[Forster et al.l 2004], and with a pixel domain
variance-based one. In this last method, the distinction between in-focus and
out-of-focus image regions is made based on the local variance. This local vari-
ance is calculated in a 3 X 3 window around every pixel in every slice. At each
spatial position in the fused image, the pixel from the slice with the highest
local variance throughout the slice is selected.

For all methods, the images are pre- and post-processed as described in Sec-
tion
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(e) Eggs (f) Algae (g) Clouds (h) Leaves

Figure 2.4: The test images used for the creation of artificial test data.

2.5.1 Results on Artificial Test Data

To test our method in a quantitative way, we have generated some artificial
image stacks. Four stacks were obtained by mapping Brodatz textures (see
Figure [2.4p-d) onto a 3D surface and blurring them with a Gaussian blurring
kernel with a size that varies with the slice number (1 to 7E|
. Four other stacks containing three slices were obtained based on the
images in Figure 2.4p-h. The images Fggs and Algae are 512 x 512 gray-scale
microscopy images, the other images are 512 x 512 color images of textures
taken from the MIT Vision Texture Database. An example stack can be seen
in Figure[2.5] In each of the slices, another part is left unblurred. The blurring
is introduced through convolution with a 5 x 5 Gaussian blurring kernel with
standard deviation 1.

First we investigate the influence of the different types of checks (sub-band and
spatial). Each stack is processed with the proposed curvelet fusion method
without checks, with only a sub-band check, with only a spatial check and with
a spatial check after the sub-band check. The result is compared to the original
image and the peak signal-to-noise ratio (PSNR) is calculated. The results are
shown in Table 211

From Table 2.1l we see that for most stacks the introduction of smoothness and
consistency checks is beneficial for the curvelet-based image fusion method.
The gain in PSNR ranges from 0.05 dB for the D22 texture to 4.52 dB for
the Clouds image. For some stacks, both smoothness and consistency checks
deteriorate the performance of the fusion. This is for example the case for the

1These stacks were kindly provided by D. Van De Ville, BIG EPFL.
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Figure 2.5: Example of an artificial image stack.

Table 2.1: Image fusion results in terms of PSNR for different gray-scale and color
image stacks, using the curvelet-based method without checks, with only a sub-band
check, with only a spatial check and with a spatial check after the sub-band check.
For each image the best result is marked in bold.

No Sub-band | Spatial All
Checks Check Check | Checks

D18 34.50 34.80 34.64 34.82
D22 29.56 29.61 29.60 29.61
D23 35.64 36.09 35.86 36.17

D112 33.23 33.62 33.37 | 33.69
Eggs 64.35 | 62.55 63.74 | 60.65
Algae | 66.39 | 63.14 64.42 | 61.20
Clouds | 52.70 54.77 57.15 | 57.22
Leaves || 40.79 | 38.92 39.73 | 38.32

microscopy images Eggs and Algae. In these images, as well as in Clouds and
Leaves, the transitions between the in-focus and blurred image regions are very
abrupt.

Around such transitions, the assumption of spatial smoothness is not valid.
When the transitions are very abrupt, such as in the last four stacks of our
test set, any error causes considerable changes in the output image, leading to
a quality drop that is more important than the beneficial effect of the checks
in the image regions that are not near transitions. Moreover, a very abrupt
transition might itself get detected as a feature. Enhancing such a false feature
by spatial and sub-band checks will reduce the quality of the fused image. These
effects play less for the first four stacks of our test set, where the transitions
between sharp and blurred image regions are more gradual.

To verify that indeed the abruptness of the transitions and not the nature
of the images underlies the quality drop caused by spatial and smoothness
checks for, e.g., Eggs and Algae, we generate artificial image stacks with smooth
transitions from these images. We do this following the same procedure as
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Table 2.2: Image fusion results in terms of PSNR for the Eggs, Algae, Clouds and
Leaves image stacks, generated to have smooth transitions between the blurred and
the in-focus image regions. Fusion is done using the curvelet-based method without
checks, with only a sub-band check, with only a spatial check and with a spatial check
after the sub-band check. For each image the best result is marked in bold.

No Sub-band | Spatial All
Checks Check Check | Checks

Eggs (smooth transitions) 37.73 42.52 38.93 | 44.60
Algae (smooth transitions) 40.52 46.00 41.00 | 46.40
Clouds (smooth transitions) || 41.09 44.41 4230 | 45.60
Leaves (smooth transitions) 31.29 31.42 3144 | 31.51

used for generating artificial stacks from the Brodatz textures, i.e., we map the
images Eggs, Algae, Clouds and Leaves onto a 3D surface and blur them with
a Gaussian blurring kernel with a size that varies with the slice number (1 to
7). These stacks are then processed with the proposed curvelet fusion method
without checks, with only a sub-band check, with only a spatial check and with
a spatial check after the sub-band check. Fusion results are listed in Table 2.2}
From Table it is clear that for these stacks with gradual transitions between
blurred and in-focus image regions, performing spatial and smoothness checks
improves the fusion results.

Note that the image stacks used for generating the results of Table are only
used here to demonstrate that abrupt transitions between blurred and in-focus
image regions can lead to a deterioration of the fusion results when performing
checks. In the remainder of this thesis, these stacks will not be used anymore
and the proposed methods will only be tested on the image stacks described at
the beginning of this section.

The contribution of the spatial and the sub-band checks to the quality improve-
ment of the fused image is almost equal, and their combined application leads
to the best results.

Apart from the fused image, the proposed fusion algorithm also outputs a
slice selection decision for each coefficient in the curvelet decomposition of the
fused image. As one pixel in the image corresponds to more than one curvelet
coefficient, there is more than one selection decision per image pixel. A slice
selection decision per pixel can serve directly as a (discrete) estimate of the
distance between the object part that is projected onto this pixel and the
imaging sensor. To briefly explore the potential of our technique as a ‘depth
from defocus’ method, we propose here to transform the coefficient selection
decisions in a selection decision per pixel by majority voting. L.e., for each pixel
we check from which slices the curvelet coefficients corresponding to this pixel
are selected in the curvelet decomposition of the fused image. A pixel is said to
be in focus in the slice from which the majority of coefficients in the curvelet
decomposition of the fused image is selected.
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Table 2.3: Percentage of pixels in the fused image selected from the correct slice for
different gray-scale and color image stacks, using the curvelet-based method without
checks, with only a sub-band check, with only a spatial check and with a spatial check
after the sub-band check.

No Sub-band | Spatial All
Checks Check Check | Checks

D18 97.31 97.72 98.01 98.28
D22 97.33 97.40 98.15 98.06
D23 97.17 97.28 97.98 97.87

D112 97.52 97.63 98.24 98.14
Eggs 99.59 99.58 99.63 99.62
Algae 99.77 99.74 99.79 99.76
Clouds || 99.64 99.61 99.66 99.60
Leaves 99.41 99.35 99.48 99.43

In Table[2:3] we list the percentage of image pixels that using this technique has
been selected from the correct in-focus slice. For the first four stacks, where
the distance z between object and sensor varies smoothly (see, e.g., Fig. 3.1h),
the correct slice is the slice which is at a distance of the image sensor closest
to z (see, e.g., Fig. [3.1p). As can be observed, the percentage of correctly
selected pixels is quite high for all tested stacks. The performance is generally
higher for the last four stacks in our test set, where transitions between slices
are abrupt and less confusion is possible. In line with expectations, sub-band
and spatial checks improve the depth estimation results for nearly all stacks.
A visual result is shown for the D112 texture in Fig. 2.6k-d. We see that apart
from irregularities at the transitions between slices, the slice selection decisions
are nearly all correct. The irregularities are smoothed out to some extent when
checks are performed.

We now compare the performance of the proposed curvelet-based fusion with
the variance method described above and with the complex wavelet-based
method of Forster et al. with and without sub-band and spatial smoothness
checks. The PSNR-values for all methods are grouped in Table[2.4] Let us first
discuss fusion without imposing any smoothness or consistency constraints.
From Table 2.4] we can see that the curvelet-based method outperforms the
other methods. The average gain in PSNR over the variance method is 7.88 dB.
The complex wavelet method lags behind the curvelet method by 3.23 dB on
average. Spatial and sub-band checks have a similar influence on the complex
wavelet-based method as on the proposed curvelet-based one so the relative
performance of the two methods is the same with checks as without checks.
However, the average difference between the two shrinks by a little more than
a dB to 2.21 dB.

It is interesting to note that the curvelet-based method performs particularly
well for the Fggs and Algae images, which have many very clear edges. On the
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(a) Ground truth distance to object (b) Ground truth selection map
) Selection map without checks ) Selection map with checks

Figure 2.6: For the D112 Brodatz texture, (a) ground truth distance to object,
(b) ground truth selection map and selection map obtained from the proposed fusion
algorithm, (c) without and (d) with checks. The different gray tones correspond to
different distances between object and image sensor.
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Table 2.4: Image fusion results in terms of PSNR for different gray-scale and
color image stacks, using the variance method, the complex wavelet-based method
of Forster et al. [Forster et al.,|2004] with and without checks and the curvelet-based
method with and without checks. For each image the best result is marked in bold.

Variance | Complex | Complex Db6 | Curvelets | Curvelets
Db6 with checks with checks
D18 29.29 31.13 34.35 34.50 34.82
D22 24.00 27.52 29.08 29.56 29.61
D23 27.81 32.98 35.29 35.64 36.17
D112 28.38 29.27 32.59 33.23 33.69
Eggs 47.76 59.80 59.73 64.35 60.65
Algae 53.34 62.17 58.77 66.39 61.20
Clouds 54.79 49.26 49.21 52.70 57.22
Leaves 28.75 39.20 34.97 40.79 38.32

contrary, the variance method produces poor results for these images. Indeed,
the curvelet transform is particularly well suited for piece-wise smooth images,
whereas the variance method tends to introduce artifacts around abruptly-
changing image structures. For the Clouds image, roles are reversed and the
variance method even outperforms both multi-resolution methods.
Computation time experiments were performed on an AMD Athlon 64 3400+
2.40 GHz processor using the SSE (Streaming SIMD extensions) instruction
set. The performed computations were floating-point computations. In Mat-
lab code, with the computation intensive parts implemented in ¢, averaged over
10 experiments curvelet-based fusion without checks of a stack of 15 512x512
images took 71.48 s to execute. Imposing smoothness and consistency con-
straints took an additional 77.50 s. In other words fusion with checks takes
71.48 s + 77.50 s = 148.99 s, or about twice the time of fusion without checks.
With and without checks the speed limitation of the execution of the algorithm
was the computational power of the processor and not the memory bandwidth.
In an implementation with a comparable level of optimization, the complex
wavelet-based method of Forster et al. without checks required on average over
10 experiments 41.38 s to execute. This is less than the curvelet-based method.
The explanation lies in the higher redundancy of the curvelet transform. For 3
decomposition levels and 8 orientations at the coarsest level, this redundancy
is 7.25. The redundancy of the complex wavelet-transform of 2D images is
fixed at 4. The ratio between the two execution times is thus in line with the
ratio between the redundancies of the two transforms. Executing the complex
wavelet-based method with checks took on average 56.28 s, or only 14.90 s for
the checks. This is a lot less than for the checks in the curvelet-based method.
An important factor here is the smaller number of sub-bands in the complex
wavelet decomposition compared to the number of sub-bands in the curvelet
decomposition of an image.
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Figure 2.7: Some slices of a stack of 15 microscopic images of Peyer plaques from
the intestine of a mouse.

The variance method, which operates in the image domain, is a lot faster
than the other two methods. In an implementation with a comparable level of
optimization as for the other two methods, averaged over 10 experiments, this
algorithm took 3.07 s to execute.

2.5.2 Results on Real Test Data

We now test the methods on a stack of 15 512 x 512 color microscopic images
of Peyer plaques from the intestine of a mouseEl The same images are used in
[Forster et al., [2004]. Some slices are shown in Figure

First, we visually compare the fusion result of the curvelet-based fusion method
when imposing smoothness and consistency constraints versus the fusion result
when not performing any checks. As no ground-truth image is available, only
this visual evaluation of the results is possible. Figure 2.90d-e shows the fused
images. Figure zooms in on small cut-outs of the upper right corner of
the fused images. One can see that small artifacts (see delineated regions) are
removed thanks to the constraints.

In Figure the image fusion results of the variance method, the complex
wavelet-based method without and with spatial and sub-band checks and the
curvelet-based method without and with spatial and sub-band checks are com-
pared. We can see that in the image produced by the variance method, sharp
edges are surrounded by artifacts. The complex wavelet-based method, both
with and without checks, leaves some image regions blurred (see delineated
regions). The curvelet-based method leads to a complete in-focus image, with-
out introducing artifacts. This demonstrates that curvelets can be successfully

2The images are courtesy of Jelena Mitic, Laboratoire d’Optique Biomédicale at EPF
Lausanne, Zeiss and MIM at ISREC Lausanne.
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(a) Without checks. (b) With checks.

Figure 2.8: Detail of the fused image produced by the curvelet-based fusion method
(a) without performing checks and (b) with checks. One can see that small artifacts
(see delineated regions) are removed thanks to sub-band and spatial checks.

used for image fusion of real microscopy image stacks.

2.6 Conclusion

In this chapter we have demonstrated that the directional sensitivity of the
curvelet transform and its excellent ability to separate high and low frequency
image content can be turned to good account to extend the depth of field
of imaging systems. The proposed method produces high quality fusion re-
sults, both on real microscopy data and on artificially generated image stacks.
Our method outperforms state-of-the-art fusion algorithms. The average per-
formance gain is 3.23 dB over the complex wavelet-based technique of
and 7.88 dB over the common pixel domain variance-based method.
Moreover, we have shown that adding consistency and spatial smoothness
checks to this curvelet-based image fusion method generally leads to better
fusion results. For real test data, imposing these constraints leads to a reduced
number of artifacts in the fused image. This demonstrates the suitability of
our curvelet-based method for the artifact-free extension of the depth of field
of imaging systems.

Additionally, we have hinted at the potential this method holds as a depth
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from defocus technique by identifying which slice contains a sharp image of
each object part.
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(a) Variance method. (b) Complex wavelet-based method without

checks |Forster et al.|, [2004].

(c) Complex wavelet-based method with (d) New curvelet-based method without

checks 2004]. checks

(e) New curvelet-based method with checks.

Figure 2.9: Image fusion results of the tested methods. In the image produced by the
variance method, sharp edges are surrounded by artifacts. The complex wavelet-based
method leaves some image regions blurred (see delineated regions). The curvelet-
based method leads to a complete in-focus image, without introducing artifacts.






Fusion of Noise-Degraded
Images

All image recording systems suffer to some degree from different types of degra-
dation of the recording quality. Part of these degradations are inherent to
capturing light (photon shot noise). Other disturbances are introduced by the
recording equipment, such as reset noise, thermal noise, transistor dark cur-
rents, readout noise and dark-current shot noise. Digitization of the signal
causes quantization noise, and further digital processing inside the camera,
such as demosaicing and image enhancement, can also give rise to noise. See
[Boie and Cox, [1992; Irie et al., |2008| for a detailed discussion of camera noise.
Although this is an oversimplification of reality, the joint effect of all these noise
sources is very often modeled as additive white Gaussian (AWG) noise. This
is the noise model we adopt in this thesis.

As mentioned in Section [2:4.1] the fusion method outlined in Chapter [2]is very
sensitive to white noise because the algorithm assumes that high-frequency
image content always indicates the presence of salient image features, whereas
in a noise-contaminated image it may sometimes be caused by noise. Sensitivity
to noise is a common problem among image fusion methods [Petrovic and
Xydeas|, 2000]. We will now discuss this problem more in depth.

3.1 Influence of Noise on Image Fusion

Noise in the input image stack deteriorates the quality of the fused image in
two ways. Firstly, as explained, the noise severely disrupts the fusion process
itself. Secondly, the output image is corrupted by the noise present in the input
slices. For example, the average PSNR of the slices in the Fggs image stack,
contaminated with additive white Gaussian noise with standard deviation o =
10, is 28.12 dB. Fusing these noisy slices with the method presented in the
previous chapter results in an output image with a PSNR of 26.70 dB. This
result is lower than the average PSNR of the noisy input slices because the noise
has disturbed the fusion process. If each noisy curvelet coefficient is selected
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from the same slice as the corresponding coefficient in the noise-free case, the
fusion of the noisy stack leads to an image with a PSNR of 28.32 dB, i.e.,
approximately the average PSNR of the input stack.

In this thesis we focus on the first effect of noise in the input stack, namely the
degradation of the fusion process. Improving the fusion process itself in the
presence of noise is important because it results in more correct slice selection
decisions. As explained in Section these decisions are a useful basis for
depth estimation. Moreover, as illustrated by the above example, more correct
slice selection decisions allow to maintain the quality level of the input stack
for the fused image.

To assess the influence of the noise on the fusion process independently of the
fused image degradation caused by noisy input images, we adopt the following
procedure. We determine for each curvelet coefficient from which slice it is
to be selected based on the noisy input stack. We use this ’selection map’ to
actually select the coefficients from the noise-free image slices. Mathematically,
this can be formulated as follows. Let C; ; .(x,y) denote the noise-free curvelet
coeflicient at scale 4, orientation j and spatial coordinates x and y, of the slice
with index z. Let CP*; ,(z,y) be the corresponding noise-contaminated curvelet

0,J,%
coeflicient. Coefficients of the fused image are then selected as:

ﬂ,j (I7 y) = Ci,j,argmaxz(|Cﬁj’z(w,y)\) (l’, y) (31)

In a real situation, the noise-free coefficients would of course not be available
and the fused image obtained from these coefficients F; j(z,y) is an artificial
one that is used here only for evaluation purposes. From Equation the
disrupting effect of noise on the fusion process is clear. A curvelet coefficient
amplitude may be large because of a prevalent, sharply imaged feature, but
also because of noise. Equation [3.1|cannot distinguish between these two cases.
Thus, at a particular position in a sub-band, a specific slice z may be selected
because of noise, and not because the slice is in focus.

To highlight the effect of noise on the fusion process, we artificially contaminate
the image stack of the D22 Brodatz texture with additive white Gaussian noise
with a standard deviation of o = 10 (for other standard deviations of the
noise, we would reach similar conclusions). As the noise originates from the
light recording equipment, after blur due to limited depth of field is introduced
by the optical system of the imaging device, the noise standard deviation is
assumed constant across slices.

Fig. 31k shows for this noisy image stack the fused image obtained using the
selection rule of Eq. As a reference, the ground truth image and the fused
image obtained from the noise-free stack are shown in Fig. B.Ih-b. Clearly,
the noise has disturbed the fusion process and important artificially introduced
structures show up in the fused image, caused by coefficients being selected from
blurred regions. Performing the smoothness and consistency checks described
in Section [2:4.3 has a regularizing effect, as is apparent from Fig. [3.Id. Many
of the wrong coefficient selections have been corrected and virtually no blurry
patches remain visible in the fused image.
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Noise-free Input Stack Noisy Input Stack

No checks [ All checks [ No checks | All checks
D18 34.50 34.82 21.99 29.11
D22 29.56 29.61 19.64 28.58
D23 35.64 36.17 22.33 29.08
D112 33.23 33.69 22.04 28.97
Eggs 64.35 60.65 40.68 40.55
Algae 66.39 61.20 38.53 38.53
Clouds 52.70 57.22 39.32 39.28
Leaves 40.79 38.32 36.84 37.03

Table 3.1: Fusion results in terms of PSNR (dB) of noise-free input slices based
on a selection map obtained from noise-free slices, without and with consistency and
smoothness checks, and from slices contaminated with additive white Gaussian noise
of 0 = 10, without and with consistency and smoothness checks.

These observations are confirmed numerically in Table Here, the results
in terms of PSNR are shown for fusion using the selection rule of Eq. with
noisy image stacks contaminated with AWG noise with standard deviation
o = 10. To facilitate comparison with the results of noise-free fusion, the results
from the previous chapter are repeated in this table. Clearly the noise severely
disrupts the fusion process and the quality of the fused images based on a noisy
stack is far below that of the noise-free case. Imposing spatial smoothness
and sub-band consistency constraints raises the quality of the fusion result
for most image stacks, especially the first four ones in which the transition
between blurry and in-focus image regions is not abrupt (see Section for
a discussion of the influence of checks on the fusion result). The improvement
is quite large, e.g., 8.94 dB for the D22 texture.

An alternative possibility to improve the fusion result in the presence of noise is
to remove noise from the slices prior to fusion. In Section [3.8 we will illustrate
that this is an effective way of improving fusion quality in the presence of A WG
noise in the input image stack.

Image denoising is a very well studied problem. The most effective denois-
ing methods developed in recent years include BiShrink |Sendur and Selesnickl
2002], BLS-GSM |Portilla et al.| 2003], the BM3D method [Dabov et al., [2007]
and the ProbShrink method for wavelets |[Pizurica and Philips, 2006]. The
curvelet transform already used for image fusion in Chapter [2] also holds the
potential to improve existing image denoising techniques because of its truly
two-dimensional nature and its associated high directional sensitivity. For our
purpose, using a curvelet-based denoiser is also advantageous because it re-
duces the computational requirements of the combined denoising and fusion
algorithm. The curvelet transform, already used for image fusion in Chapter [2]
also for image denoising holds the potential to improve existing techniques be-
cause of its truly two-dimensional nature and its associated high directional
sensitivity. For our purpose, using a curvelet-based denoiser is also advan-
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tageous because it reduces the computational requirements of the combined
denoising and fusion algorithm. More precisely, as the fusion method is per-
formed after each slice has been denoised using a curvelet-based technique, a
curvelet transform per slice is saved. On an AMD Athlon 64 3400+ 2.40 GHz
processor using the SSE (Streaming SIMD extensions) instruction set, in Mat-
lab code, averaged over 10 experiments the curvelet transform of a 512 x 512
image took 3.36 s to execute. This means that for a stack of 15 512 x 512 slices,
50.41 s of computation time can be saved.

In the following Sections [3.2] to [3.7] we present the curvelet-based denoising
method that we have developed and show that it produces results that are close
to those of state-of-the-art denoisers. In Section we show how denoising
prior to fusion improves the performance of our fusion algorithm in the presence
of noise.

3.2 Denoising in the Curvelet Domain

As mentioned in Section [2:3] the curvelet transform is one in a series of new
geometric transforms that have been developed in recent years. The potential
that these geometric transforms hold for denoising of images has been investi-
gated by many researchers, e.g., in [Candes| [2001; [da Cunha et al [2006;
[and Dol [2006} [Starck et al., 2002]. As is the case when denoising images using
the classical wavelet transform, noise reduction in the new transform domains
results from greatly reducing the magnitude of coefficients that contain pri-
marily noise, while reducing others less. Thresholding as it has been applied
in the wavelet domain has also been successfully used in the
curvelet and the contourlet domains [da Cunha et al.l |2006; |Starck et al., 2002].
Optimizing the choice of the threshold between these two classes of coefficients
improves the denoising performance of a method, for wavelets [Abramovich
et all 1998; |Chang et al. [2000a] as well as for other transforms [da Cunha
et a1.|, .

A very broad class of wavelet-based denoisers is based on estimating the
noise-free coefficients by minimizing a Bayesian risk, either by minimum mean
squared error or maximum a posteriori estimation [Chipman et al., 1996 Clyde|
let al., |1998; Moulin and Liu, |1999; Simoncelli and Adelson, 1996]. These meth-
ods are optimized with respect to the marginal statistics of the coefficients
within each sub-band by imposing a prior distribution on the noise-free trans-
form coefficients. A particular success has been exhibited by denoising methods
where the local context is considered in the choice of one or more parameters
of the prior model |Chang et al., 2000b; |Guerrero-Colon and Portillal {2005}
Mihcak et al., [1999; [Pizurica and Philips, 2006} [Portilla et al., 2003} |Romberg]
et al. [1999; [Sendur and Selesnick| 2002]. Recently, Po et al. have transferred
this reasoning to the contourlet domain [Po and Dol 2006]. To enable this
transfer, marginal and joint image statistics on oriented multi-scale pyramids,
of which curvelets are a special case, have previously been studied by Po et al.
for the contourlet case and by Boubchir et al. and Alecu et al. for the curvelet
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case |Alecu et al. 2006} Boubchir and Fadili, 2005alb} [Po and Do, [2006]. Addi-
tionally, Boubchir et al. have proposed a multivariate prior model for curvelet
coefficients [Boubchir and Fadili, [2005alb].

Over the past years mixture priors have been shown very effective in
wavelet processing |[Abramovich et al., |1998; |Abramovich and Sapatinas} [1999;
Abramovich et al.l [2002; |Chipman et al. [1996; |Clyde et al., 1998} [Pizurica and|
Philips| 2006} [Vidakovic, |1998} [Vidakovic and Ruggeril 2001]. During this PhD
work, we have investigated how to develop a related prior for curvelet coeffi-
cients |[Tessens et al., 2006a], more in particular similar to the one proposed by
the authors in [Pizurica and Philips, 2006]. As part of this endeavor, we have
extended the statistical analyses of [Alecu et al., 2006; Boubchir and Fadili
2005alb} [Po and Do, [2006] by investigating the different behavior of curvelet
coefficients containing a significant noise-free component on the one hand, and
coefficients in which such a “signal of interest” is absent on the other hand
[Tessens et al.l [2006alc|. Based on our findings and inspired by the wavelet
domain ProbShrink estimator [Pizurica and Philips, 2006|, we have also de-
fined and analyzed different intra-band [Tessens et all 2006a] and inter-band
Tessens et al.l [2006c| local spatial activity indicators (LSAIs) in the curvelet
domain. In |Tessens et all 2008¢|, next to carrying out our previous statistical
studies in a more comprehensive way, we have introduced and analyzed a new
LSAT that includes both intra- and inter-band dependent curvelet coefficients.
Using this new LSAI in the curvelet-based denoising method ProbShrinkCurv
that we have developed in [Tessens et all 2006a] has allowed us to improve
upon our previous denoising results, reported in [Tessens et all [2006a] and
[Tessens et al., [2006¢].

The remainder of this chapter is organized as follows: in Section the no-
tations and terminology used in this chapter are introduced. In Section [3.4] a
comparative statistical analysis of the two classes of curvelet coefficients men-
tioned above is presented. Section discusses a novel curvelet-based context
adaptive denoising method, whereas Section [3.6] studies the parameter that
marks the threshold between the coefficient classes. Section 3.7 summarizes
the main results and conclusions of this work on curvelet-based denoising. In
Section [3:8] we use the developed ProbShrinkCurv denoiser to improve the per-
formance of our fusion algorithm in the presence of noise. The conclusions of
this chapter are presented in Section [3.9

3.3 Terminology and Notations

We will use the same notations and terminology as Po et al. [Po and Dol 2006],
Boubchir et al. [Boubchir and Fadili, 2005b] and Alecu et al. [Alecu et al.,
2006]. Given a curvelet coefficient X, we will denote by

e N; the neighboring curvelet coefficient in the same sub-band (all neigh-
bors are numbered from 1 to 8, starting with the neighbor located at the
upper left and proceeding clockwise).
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e ('} the cousin curvelet coefficient located at the same relative position
as X in a different sub-band at the same scale. k denotes the sub-band
(all sub-bands within each corona are numbered, starting from 1 with the
sub-band at the upper left and proceeding clockwise).

— C is an adjacent cousin of X if sub-band k lies next to the sub-band
in which X is located.

— CY% is an opposing cousin of X if sub-band k lies opposite the sub-
band in which X is located, or in other words, if Cj is the real
(imaginary) part of the complex curvelet coefficient of which X is
the imaginary (real) part.

e P the parent curvelet coefficient, located at the same relative position as
X in the same sub-band but at a coarser scale.

3.4 Curvelet Statistics

Image statistics in the curvelet domain have been recently studied by Boubchir
et al. [Boubchir and Fadili, 2005alb] and Alecu et al. [Alecu et all 2006],
with a comparative analysis to wavelet domain statistics. Po et al. [Po and
Do, 2006] have done the same for the contourlet transform. We will now take
a step further in this direction by analyzing the statistics of two classes of
curvelet coefficients: those containing a significant noise-free component (to
which we will refer as significant coefficients), and the coefficients in which no
signal of interest is present (which we will call insignificant). Note that for
this statistical analysis we will make use of both noise-free and noisy image
versions. The use of noise-free image versions will enable the development of
contextual models that we employ in the actual denoising procedure presented
in Section [3.5] where noise-free image versions are not available.

In our approach, significant coefficients are defined as those that have a noise-
free component larger, in absolute value, than a threshold 7. We call such a
component our “signal of interest”. In our statistical analysis experiments,
we determine the locations of the significant noisy curvelet coefficients by
thresholding their noise-free counterparts. Hence, a noisy curvelet coefficient is
marked as significant if the corresponding curvelet coefficient of the noise-free
image version exceeds a threshold T in magnitude.

An important issue at this point is the choice of the parameter 7. This choice
cannot be considered independently from the goal of this statistical analysis:
developing a denoising method for curvelets which is aimed at minimizing the
mean squared error between the denoised and the noise-free image (the method
will be described in detail in Section . Therefore, we postpone a discussion
of this parameter to Section[3.6] Let it suffice for now to say that the threshold
will be related to the standard deviation of the noise through a constant factor.
All the statistics in this section have been obtained from the curvelet decom-
positions of images contaminated with additive white Gaussian (AWG) noise
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Figure 3.2: Histograms of noisy curvelet coefficients (a) with noise-free compo-
nent larger than a threshold T' and (b) in which no signal of interest is present.
Overlayed on the histograms, the estimated pdfs of the significant and insignificant
noise-contaminated curvelet coefficients: f(z|H"') * ¢(0,0").

with standard deviation ¢ = 20, unless explicitly mentioned otherwise. The
threshold between significant and insignificant coefficients was set to 1.30”, with
o’ the standard deviation of the noise in the sub-bands.

3.4.1 Marginal Statistics

Fig. shows the 256-bin histogram of the significant curvelet coefficients of
a sub-band of the finest scale of the curvelet decomposition of a noisy version of
Peppers. Fig.[3:2b shows the same but for the insignificant curvelet coefficients
of this sub-band.

In [Alecu et al., [2006; Boubchir and Fadili, [2005alb] the authors showed that the
probability density functions (pdfs) of noise-free curvelet coefficients z follow
well a generalized Laplacian (also called generalized Gaussian) distribution. In
the following, we denote the probability density function of = by f(x), so

1) = sray ee(-151): (3.2

where s and v are parameters of the generalized Laplacian distribution.

We adopt the modeling framework proposed by Pizurica and Philips
[and Philips|, |2006] for the significant and insignificant wavelet coefficients, and
we apply it in the curvelet domain as follows. Let H' denote the hypothesis
that a curvelet coefficient x is significant, and let H° denote the opposite. By
our definition of significant curvelet coefficients, the pdf of these coefficients
can be modeled by the tails of the generalized Laplacian that models the pdf




FuUsioN OF NOISE-DEGRADED IMAGES 37

f(z) of a:
f(z|HY) = Af(x) for |2| > T and f(z|H") = 0 otherwise, (3.3)

with A a normalizing constant. Similarly, the pdf of noise-free insignificant
coefficients has the shape of the central part of f(x), or:

f(z|H®) = Bf(x) for |z| < T and f(x|H®) = 0 otherwise, (3.4)

where B is a normalizing constant.

Now we investigate the distributions of the noisy curvelet coefficients when
the input noise is AWG with standard deviation o. The curvelet transform,
which is a linear transform, transforms AWG noise into additive correlated
Gaussian noise in each sub-band. The first order pdf of the noise in the sub-
bands is a normal distribution ¢(0,c’). Since the second generation curvelet
transform we are using corresponds to a tight frame, the standard deviation
o' is o/y/a, with « the redundancy factor of the transform. The pdfs of the
significant and insignificant noisy curvelet coefficients can be modeled by the
distribution of their respective noise-free counterparts, convolved with this nor-
mal distribution ¢(0,0"): f(x|H%!) * ¢(0,0’).We estimate f(z), necessary for
the calculation of f(x|H') and f(x|H®), from the noise contaminated curvelet
coefficients by using the method of Simoncelli et al. [Simoncelli and Adelson),
for estimating the generalized Laplacian distribution from wavelet coeffi-
cients contaminated with additive white Gaussian noise. Although, as pointed
out before, the noise in the curvelet sub-bands is not white, Fig. [3.2] shows that
this approximate model matches well with observations.

Note that the proposed prior model belongs to a broader class of finite mixtures
of two distributions, one modeling the statistics of “significant” coefficients
and the other one of the “insignificant” coefficients [Abramovich et al., [1998
[Abramovich and Sapatinas, 1999} [Abramovich et al. 2002; [Chipman et al.
1996} [Clyde et all 1998} [Johnstone and Silverman), 2005}, [Vidakovic], [1998}
dakovic and Ruggeri, [2001]. In earlier models of this class, the mixed distri-
butions are usually two normal distributions (e.g., in [Chipman et al., 1996]),
a normal distribution and a point mass at zero (e.g., in |[Abramovich et all
[1998; [Clyde et al., [1998]) or a Laplacian distribution and a point mass at zero
[Johnstone and Silvermanl [2005]. For such prior models, the mixing proportion
(i.e., P(H")) as well as the hyperparameters are usually estimated jointly us-
ing a maximum likelihood (ML) estimator with an expectation-maximization
(EM) algorithm. The proposed prior, on the contrary, has the double ad-
vantage that the parameter estimation procedure is simpler (no iterative joint
estimation necessary) and that it can cope with a more complicated model of
the noise-free coefficients (generalized Laplacian). The only parameter which
cannot be directly estimated from the data is the threshold T'. The choice of
this parameter is discussed in Section [3.6
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3.4.2 Joint Statistics

Previous studies revealed that noise-free curvelet coefficients are strongly cor-
related in local intra-band neighborhoods and that these local correlations are
stronger than their inter-scale and inter-orientation counterparts [Alecu et al.l
2006} |[Boubchir and Fadili, [2005alb]. We will now investigate whether the joint
statistics of significant coefficients differ from the joint statistics of coefficients
in which no signal of interest is present. Such a difference would facilitate the
denoising of the coefficients. More in particular, we will focus on the magnitude
of the coefficients.

The correlation coefficients in this section have been calculated as the average
of the correlation coefficients obtained from the magnitudes of the next to high-
est frequency scale curvelet coefficients of a test set of 44 images. Note that if
the insignificant coefficients were pure noise, their correlation coefficients could
also be obtained by calculating the sample covariance matrix of the curvelet
decomposition of a scaled delta function (which has the same power spectrum
as AWGN) [Portilla et al., |2003]. However, although the relative influence of
the noise is much bigger on the insignificant coefficients than on the signifi-
cant ones, insignificant coefficients are not exactly the same as noise, and we
will therefore not adopt this theoretical method for the computation of their
correlation coefficients.

As test images we chose the images from the Miscellaneous volume of the
USC-SIPI image database (converted to gray-scale) [USC-SIPL [2009]. We de-
liberately chose different images than the ones on which we test our fusion
algorithm to avoid developing a tailor-made denoiser that only works on that
test set. To evaluate the general validity of the results better, we also report
the correlation coefficients for 4 specific images: House, Peppers, Barbara and
Baboon.

3.4.2.1 Intra-Band Correlations

In |Alecu et all [2006; [Boubchir and Fadili, |2005allb|, it was shown that each
curvelet coefficient is strongly correlated with its eight direct neighbors. Alecu
et al. additionally showed that the correlation is not equally strong for all the
neighbors. By construction, curvelet coefficients are more correlated with the
neighbors that lie in the direction parallel to the main direction of the curvelet
function by which they were produced. In this section, we examine whether
the same holds for the two categories of coefficients that are of interest to us :
the significant and the insignificant ones.

Recall from Section [2:3] that in the wrapping-based digital curvelet implemen-
tation, which we use throughout this dissertation, the spatial grid on which
the curvelets are translated at each scale and orientation is a regular rectan-
gular grid, not one adapted to the orientation of the curvelet (as in Fig. .
To recover the neighboring coefficients of a curvelet coefficient along the main
direction of the curvelet basis function, interpolation is needed.

Consider for example a curvelet coefficient and its four neighbors, arranged as
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Figure 3.3: A curvelet coefficient and four of its neighbors (marked by N;). The
curvelet basis function is oriented in the direction 6.

in Fig. B3] As the direction of the curvelet function, characterized by 6, does
not coincide with one of the grid lines, none of the four neighbors lies exactly
in the direction of the curvelet. N3 and N4 are closest and we therefore linearly
interpolate them :

a
a+b

with a = s;tanf and b = s, — sgtan, where s, is the horizontal and s,
the vertical sampling period. For other values of 6§, N3 and N, need to be
substituted by the appropriate neighbors and the interpolation weights a and
b should be adapted accordingly.

In the following we will always analyze the correlation between a reference
coefficient and this coefficient N’, calculated from its neighbors. We will refer
to N’ as the neighbor lying in the direction of highest or maximal correlation.
Of course, by symmetry, each coefficient has two such neighbors. A similar
reasoning applies to the analysis of correlation in the direction perpendicular
to the direction of highest correlation, i.e., the direction of smallest or minimal
correlation.

Table B.2h shows in the second column the mean correlation coefficient be-
tween the significant coefficient magnitudes and one of their two neighbors in
the direction of maximal correlation, calculated from the next to highest scale
sub-bands of our image test set. Table column 4 shows the mean corre-
lation coefficient between the insignificant coefficient magnitudes and one of
their two neighbors in the direction of maximal correlation. These big mean
correlation coefficients match with theoretical expectations of high correlation
in the direction of the curvelet basis function. In the perpendicular direction
of minimal correlation, one observes that this correlation has virtually dis-
appeared for the insignificant coefficients and has become very small for the
significant ones (cfr. Table 3.2b). For the significant coefficients, the standard
deviation of the correlation coefficients calculated over the image test set is
rather high. This means that correlation with this kind of coefficients is highly
image-dependent. Indeed, correlation is quite high for Barbara and Baboon
but has almost disappeared for Peppers and House (see Table ) Unlike

b
N’ |N3| + m|N4|7 (3.5)
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. .. lati ffici
Coefficients conditioned Correlation coefficients

on Significant coeff. || Insignificant coeff.
Mean | Std. Dev. || Mean | Std. Dev.

a) Neighbors max correlation || 0.46 0.06 0.26 0.04

b) Neighbors min correlation 0.10 0.11 0.03 0.02

¢) Adjacent cousins 0.16 0.08 0.03 0.02

d) Opposing cousins 0.14 0.07 0.02 0.02

e) Parents 0.17 0.07 0.04 0.02

Table 3.2: Mean correlation coefficients between significant curvelet coefficient mag-
nitudes on the one hand and on the other hand (a) neighbors in the direction of
maximal correlation, (b) neighbors in the direction of minimal correlation, (¢) adja-
cent cousins, (d) opposing cousins and (e) parents. Similar for insignificant curvelet
coefficients.

Barbara and Baboon, Peppers and House both correspond better to the image
model for which curvelets are especially suited, namely piece-wise smooth with
discontinuities along curvilinear edges. Indeed, Barbara and Baboon both have
a less sparse curvelet representation than Peppers and House. In a decompo-
sition into 4 scales and with 16 orientations at the coarsest level, 11.81% of
the coefficients is classified as significant for Baboon and 5.08% for Barbara vs.
only 2.62% for Peppers and 3.49% for House. Thus the achieved decorrelation
of the transform coefficients is higher for these two images.

As mentioned at the start of Section [3.4] the images from the test set were
contaminated with AWGN with ¢ = 20 to obtain the correlation coefficients
in Table [3.2] Figure [3.4] shows the evolution of the correlation coefficients
between (in)significant coefficients and neighbors in the direction of highest
and lowest correlation as a function of the standard deviation o of the AWGN
with which the images in the test set were contaminated. In order not to
overload the graph, error bars were omitted. The authors have verified that the
standard deviations of the correlation coefficients are approximately constant
for all values of o, and for o = 20, these numbers can be found in Table[3.2] For
significant coefficients, the relative relationship of the two curves is maintained
for all values of ¢. For insignificant coefficients, correlation with neighbors in
the direction of minimal correlation remains negligible, regardless of o, whereas
the correlation with neighbors in the direction of maximal correlation displays
a rising trend.

3.4.2.2 Inter-Band Dependencies

In the studies of Boubchir et al. |[Boubchir and Fadili, [2005alb] and Alecu et
al.|Alecu et al.l 2006], it was found that curvelet coefficients of different sub-
bands are approximately decorrelated, but some dependencies between sub-
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Coefficients conditioned Significant coefficients

on House | Peppers | Barbara | Baboon
a) Neighbors max correlation || 0.43 0.50 0.51 0.45
b) Neighbors min correlation 0.07 0.08 0.35 0.19
¢) Adjacent cousins 0.11 0.19 0.11 0.18
d) Opposing cousins 0.08 0.19 0.22 0.19
e) Parents 0.22 0.25 0.04 0.17

Table 3.3: Correlation coefficients for some specific images between significant
curvelet coefficient magnitudes on the one hand and on the other hand (a) neighbors
in the direction of maximal correlation, (b) neighbors in the direction of minimal
correlation, (c) adjacent cousins, (d) opposing cousins and (e) parents.

Coefficients conditioned Insignificant coefficients

on House | Peppers | Barbara | Baboon
a) Neighbors max correlation || 0.28 0.28 0.27 0.23
b) Neighbors min correlation 0.02 0.02 0.03 0.03
¢) Adjacent cousins 0.02 0.03 0.04 0.03
d) Opposing cousins 0.02 0.02 0.02 0.03
e) Parents 0.03 0.04 0.03 0.03

Table 3.4: Correlation coefficients for some specific images between insignificant
curvelet coefficient magnitudes on the one hand and on the other hand (a) neighbors
in the direction of maximal correlation, (b) neighbors in the direction of minimal
correlation, (c¢) adjacent cousins, (d) opposing cousins and (e) parents.
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Figure 3.4: Correlation coefficients between (in)significant coefficients and neigh-
bors in the direction of maximal and minimal correlation, adjacent and opposing
cousins and parents, as a function of the standard deviation o of the contaminating
additive white Gaussian noise.

bands do exist. Boubchir et al. and Alecu et al. observed dependency between
a curvelet coefficient and its parent, as well as between a curvelet coefficient and
its cousins. The strength of these inter-orientation dependencies decreases with
the increase of the difference in orientation, but one also observes dependency
with respect to the opposite orientation [Alecu et all [2006]. We will now
further extend this study of inter-band curvelet statistics to the two categories
of coefficients that we consider in this study: the significant and the insignificant
curvelet coefficients.

The average correlation coefficients between significant, resp. insignificant co-
efficient magnitudes and the magnitudes of their adjacent and opposing cousins
and their parents are indicated in Table [3.2c-e. The same observations can be
made here as in the previous section for the correlation coefficients in the di-
rection of smallest correlation : correlation has virtually disappeared for the
insignificant coefficients and is small for the significant ones. Fig. [3.4] confirms
that this observation also holds for other values of the standard deviation of
the contaminating AWGN. The high standard deviation of the correlation co-
efficients for the significant coefficients implies that the correlation is highly
image-dependent (see Table —e). This is confirmed by the values in Ta-
ble [B.3k-e.

3.4.3 Local Spatial Activity Indicators

Inspired by the ProbShrink wavelet domain denoising method of [Pizurica and
Philips, [2006], we now define and analyze different local spatial activity indi-
cators (LSAIs) in the curvelet domain. In general, for each curvelet coefficient
we define the LSAI as a function of those coefficients that are well correlated
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when the coefficient is significant. We have investigated this last property in
the previous section about joint curvelet statistics (Section , and this
study leads us to propose four LSAIs that will potentially perform well in the
curvelet denoiser that will be developed in Section two intra-band [Tessens
et al| 2006a), one inter-band [Tessens et al. [2006¢] and one novel combined
intra-inter-band LSAI. We will evaluate these LSAIs, firstly by investigating
the correlation between the magnitudes of the curvelet coefficients and their
corresponding LSAI, since this is the correlation which is exploited in our newly
developed denoising method (see Section , and secondly by plugging them
into this denoising method. The second evaluation will be performed in the
next section.

As in the previous section, the correlation coefficients in this section have been
calculated as the average correlation coefficients obtained from the next to
highest frequency scale sub-bands of the USC-SIPI image test set, and results
are also reported for 4 specific images (House, Peppers, Barbara and Baboon).

3.4.3.1 Anisotropic Intra-Band LSAIs

Because of the correlation properties of curvelet coefficients, an anisotropic
LSAI seems appropriate. We propose two anisotropic LSAI candidates z that
are calculated as the mean absolute value of the n — 1 coefficients N’ within
a small 1 x n neighborhood § (that excludes the reference coefficient itself)
oriented in the direction of either highest or lowest correlation:

- il )R] (3.6)

n .
1€ (un)corr

The coefficients N/ within this window ¢ are interpolated from their neighbors
as explained in Section formula [3.5

In Table 3.5h-b the average correlation coefficients between the curvelet co-
efficient magnitudes of the next to finest scale sub-bands of the images from
the test set and the LSAI oriented in the direction of maximal and minimal
correlation are indicated (in both cases, n is set to 5).

The correlation coefficients for these LSAIs follow the trend of those between
a coefficient and its neighbor, discussed in Section (see Table —b).
Indeed, the anisotropic LSAI oriented in the direction of maximal correlation
is highly correlated with both the significant and the insignificant coefficients.
Again, this correlation is higher for the significant coefficients than for the in-
significant ones. For both classes, it is also bigger than the correlation between
a coefficient and just one neighbor, indicated in Table [3.2h, as the LSAI sum-
marizes information from more coefficients (here 4 as opposed to only 1) and
can also capture correlations over longer distances. For the anisotropic LSAI
oriented in the direction of minimal correlation, correlation is low in both cases,
although slightly higher for the significant coefficients. Again, the standard de-
viation of the correlation coefficients is very high in the significant case, which
means that this correlation is highly image-dependent (see Tables and



44 CHAPTER 3

for correlation coefficients of some specific images). We can again observe that
the decorrelation of the curvelet coefficients in the direction of minimal correla-
tion is highest for Peppers and House, both sparsely represented in the curvelet
domain.

3.4.3.2 Adjacent, Opposing and Parents (AOP) Inter-Band LSAI

In |Tessens et al., 2006¢c], we have defined and discussed several inter-band
LSAIs. These different LSAIs were calculated for each curvelet coefficient as the
average magnitude of the adjacent cousins; the adjacent and opposing cousins;
the adjacent cousins and the parent; or the adjacent and opposing cousins and
the parent (AOP). The last LSAT proved to be the best performing one in terms
of denoising capabilities. Therefore, we will discuss only this inter-band LSAT
here.

For a coefficient y in a sub-band k, it is defined as

1
z= Z(|Ck71| +|Ck+1) mod K|+ Cliet K /2) mod x| + |P|), (3.7)
ke {1,...,[(} and Cy = Ck

where mod stands for the modulo operation, K is the number of orientations at
the scale to which y belongs and notations introduced in Section [3.3| are used.
In Table the average correlation coefficients between the curvelet coeffi-
cient magnitudes and the AOP LSAI are indicated. One can notice that the
insignificant curvelet coefficients are approximately decorrelated with this LSAT
whereas between the significant coefficients and this LSAT some correlation ex-
ists. From Tables and we can see that this behavior is present for all

our example images.

3.4.3.3 Combined Intra- and Inter-Band LSAI

In order to exploit both the intra- and inter-band correlations between curvelet
coefficients, we now define a novel LSAI that combines the best performing
intra- and inter-band LSAIs. Specifically, we define an intra-inter-band (IIB)
LSAT as the average of the anisotropic intra-band LSAT oriented in the direction
of lowest correlation and the AOP inter-band LSAI :

1

1
z=3 [4(|Ck1| +|Crt1 mod K| + |CrtK/2 mod K| + |P|)

nil > |N{|],ke{1,...,K}andco—cK (3.8)
1€0uncorr

In Table the average correlation coefficients over our image test set be-
tween the curvelet coefficient magnitudes and this candidate LSAI are indi-
cated. From Table [3:5d, one can again notice that the insignificant curvelet
coefficients are approximately decorrelated with this LSAI. The average corre-
lation coefficient for the significant coefficients is lower than in the AOP LSAI
case.
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Correlation coefficients
LSAI Significant coeff. Insignificant coeff.
Mean | Std. Dev. || Mean | Std. Dev.
a) An. LSAI max correlation || 0.62 0.06 0.33 0.06
b) An. LSAT min correlation || 0.12 0.13 0.04 0.03
¢) AOP LSAI 0.26 0.09 0.06 0.02
d) Combined ITB LSAT 0.20 0.12 0.05 0.03

Table 3.5: Average correlation coefficients between the magnitudes of significant
curvelet coefficients and (a) the anisotropic LSAI oriented in the direction of highest
correlation, (b) the anisotropic LSAI oriented in the direction of lowest correlation, (c)
the adjacent, opposing and parents LSAI and (d) the combined intra- and inter-band
(IIB) LSAI Similar for insignificant curvelet coefficients.

Coefficients conditioned Significant coefficients

on House ‘ Peppers ‘ Barbara | Baboon
a) An. LSAI max correlation || 0.58 0.67 0.65 0.60
b) An. LSATI min correlation 0.11 0.07 0.42 0.27
¢) AOP LSAI 0.27 0.35 0.25 0.30
d) Combined IIB LSAT 0.20 0.21 0.44 0.31

Table 3.6: Correlation coefficients for some specific images between the magnitudes
of significant curvelet coefficients on the one hand and on the other hand (a) the
anisotropic LSAI oriented in the direction of highest correlation, (b) the anisotropic
LSALI oriented in the direction of lowest correlation, (c) the adjacent, opposing and
parents LSAT and (d) the combined intra- and inter-band (IIB) LSAI

Coefficients conditioned Insignificant coefficients

on House ‘ Peppers ‘ Barbara ‘ Baboon
a) An. LSAI max correlation || 0.35 0.37 0.33 0.27
b) An. LSATI min correlation 0.03 0.04 0.05 0.04
¢) AOP LSAI 0.05 0.06 0.07 0.06
d) Combined IIB LSAT 0.04 0.05 0.06 0.05

Table 3.7: Correlation coefficients for some specific images between the magnitudes
of insignificant curvelet coefficients on the one hand and on the other hand (a) the
anisotropic LSAI oriented in the direction of highest correlation, (b) the anisotropic
LSALI oriented in the direction of lowest correlation, (c) the adjacent, opposing and
parents LSAI and (d) the combined intra- and inter-band (IIB) LSALIL
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3.5 Context Adaptive Image Denoising using
Curvelets

Based on our findings of Sections and |3.4.3] we now develop a curvelet
domain version ProbShrinkCurv of the ProbShrink denoising method [Pizurica
and Philips| [2006].

3.5.1 The ProbShrinkCurv Denoiser

Consider an input image, contaminated with additive white Gaussian noise.
After transforming the image to the curvelet domain, the noise is transformed
into additive correlated Gaussian noise in each sub-band. This correlation is
not modeled in the following. Let y; denote, for a given scale and orientation,
the curvelet coefficient at position [. Let y; be composed of an unknown noise-
free curvelet coefficient x; and of a noise component n;: y; = x; + n;, where
the variables n; are identically distributed Gaussian random variables which
are statistically independent from y;. Let H}' denote the hypothesis that z;
represents a significant image feature and H} the hypothesis that z; contains
no signal of interest. The hypothesis H} is specified as |z;| > T, whereas H}
is equivalent to |z;| < T, with T a chosen threshold (see Section . Finally,
let z; be any arbitrary indicator of the local spatial activity, defined as in
Section B.4.3]

The minimum mean squared error (MMSE) estimate of x; is [Ephraim and
Malah 1984} McAulay and Malpass|, [1980]

&1 = E(zilyi, 21) = E(wi|yi, 20, H ) P(H ]y, 1) + E(wi|yi, 20, HY ) P(H [yi, 21).

As H) refers to the absence of a signal of interest, E(z|y;, 2, HY) = 0. We
further assume we can approximate E(z;|y;, z;, H') by y;. This leads to

& = P(H} i, 21)u. (3.9)

Using Bayes rule, we can rewrite this expression as

A
1+ A

& = ol (3.10)

where A; is the general likelihood ratio A; = p Qv with p, = P(H})/P(HY),
G = p(z|H}Y)/p(z|HY) and v, = p(y|H})/p(yi|HY). Applying the inverse
curvelet transform to the estimated noise-free curvelet coefficients Z; yields the
denoised image.

We will now comment in detail on the calculation of each of the factors of Ay,
namely p;, v; and (.
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3.5.2 Calculation of the Generalized Likelihood Ratio

p1 can be rewritten as [Pizurica and Philips| [2006]

P}y [ o HYd

P(H}) — [*2° f(a)| HO)day

o fade [ fadn 1 [T fa)de
f,TT fa)day f,TT fxy)da .

It has been shown in [Alecu et al. [2006; Boubchir and Fadili, 2005alb] that the
noise-free curvelet coefficients = follow well a generalized Laplacian distribution.

So with their pdf f(z;) = Fy(l) exp(—\%r’) and by substituting t = (%),
we find that ’

/i f(xl)dxl = srilz%) /OT exp<_(%)l/)d$l

TR DA T, 1
= —— tv teTtdt = Tine( (&)Y, = ), 12
r(;)/o ‘ ($77) (3.12)

pL=

(3.11)

where I';,.(y,a) = ﬁ foy t*~le~tdt is the incomplete gamma function. p1 NOW
becomes

1- ch((%)ya %)
Pac((2),2)

For the calculation of v, = p(y|H}')/p(yi|HY), we have shown in Section
that p(yl|Hlo’1) can be modeled as f(x|H%!) x ¢(0,0"), with f(x|H*') as de-

fined in Egs. and As both ¢’ and f(z;) = W@exp(ﬂ%r’) can be
estimated from the noisy coefficients [Donoho and JohngtoneL 11994; [Simoncellj|
land Adelson, 1996, this allows us to obtain .

The calculation of ; depends on which of the LSAIs proposed in Section [3.4.3
is used. The choice of this LSAI will be based on the study of joint curvelet
statistics of Section We will discuss this choice later on in this section.
First we focus on the derivation of the pdf of the LSAI z;, conditioned on either
the hypothesis HlO or H ll. For compactness of notation, we will suppress the
position index [ in what follows.

When z is an intra-band LSAIL ie., z = ﬁ Z |N/|, it is calculated

1€ (un)corr

from coefficients that lie within a small spatial neighborhood ¢ around the cen-
tral coefficient. The statistical characterization of the LSAI is greatly simplified
by assuming, as in [Mihcak et all [1999; [Pizurica and Philips| [2006], that all
the coefficient magnitudes |y| within this small neighborhood, including the
ones that are interpolated from their neighbors, are identically distributed and
are conditionally independent (given H® or H'). Under these assumptions,

o= (3.13)
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p(z|H®) can be obtained by convolving p(|y||H") n — 1 times with itself, and
p(z|HY) similarly.

To verify experimentally that the assumption of conditional independence
holds, we have plotted in Figure the joint histogram of the magnitudes
of a significant coefficient and its significant neighbors within a 1 x 5 spatial
neighborhood 4, for a sub-band of the next-to-highest scale of Barbara, con-
taminated with AWGN with ¢ = 10. In this experiment ¢ is oriented in the
direction of minimal correlation because this neighborhood will prove to be the
most useful for denoising in the next section. We have verified that experi-
ments with § oriented in the direction of maximal correlation lead to similar
conclusions. The correlation coefficient between the magnitudes of significant
coefficients and their neighbors in the direction of minimal correlation is 0.44
for the sub-band used in this experiment. In Figure the approximation by
a conditionally independent model p(|y||H')*p(|y||H') is shown. A comparison
of Figures and b reveals that the model matches well with the empirical
histogram, despite the correlation between the coefficients. Figures[3:5k and d
show the same but for Baboon, contaminated with AWGN with o = 20. For this
sub-band, the correlation coefficient between significant coefficient magnitudes
and their neighbors in the direction of minimal correlation is 0.07.

For the calculation of the pdf of the AOP inter-band LSAI, we make similar
assumptions. More precisely, we assume that the coefficients from other sub-
bands that are incorporated in the LSAT are insignificant if y; is insignificant
and similarly for the significant case. We also assume that these coeflicients
are conditionally independent (given H® or H'). Thus, in this case, p(z|H?)
can be approximated by convolving p(|y||H®) with the pdfs of the coefficient
magnitudes of each other sub-band, conditioned on H°, and similar for H'.
As the combined intra- and inter-band LSAI is computed as the average of the
intra-band LSAT oriented in the direction of minimal correlation and the AOP
LSALI its pdf can be obtained through the convolution of the pdfs of the LSAIs
it is calculated from.

3.5.3 Choice of the LSAI

We will now evaluate the denoising potential of the LSAIs that we have pro-
posed and studied in Section based on the results of Section [3.4.2] We
have used the ProbShrinkCurv method (4 scales in the curvelet decomposi-
tion, 16 orientations at the coarsest level) with the different LSAIs proposed
in Section to denoise some 512x512 gray-scale images contaminated with
AWG noise with standard deviations 5, 10, 20, 30 and 50. The PSNR results
are shown in Table They have been averaged over 10 noisy versions of
each image, and in the last column, the standard deviation of these results is
indicated for each LSAIL

From these results it can be noticed that for an anisotropic LSAI the orientation
is important. Except for the case where o = 5, the denoising result is better
when the anisotropic LSAI is oriented in the direction of minimal correlation
compared to when the LSAT is oriented in the direction of maximal correlation.
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Figure 3.5: Joint histogram of a significant coefficient and its significant neighbors
within a 1 x 5 spatial neighborhood ¢, oriented in the direction of minimal correlation,
for a sub-band of the next-to-highest scale of (a) Barbara, contaminated with AWGN
with ¢ = 10, (c) Baboon, contaminated with AWGN with ¢ = 20. (b) and (d)
Approximation by a conditionally independent model p(|y||H*') * p(|y||H").
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PSNR (dB
LSAL 7 | TLena | Barb | (Pep)p | Bab OPSNR
a) An. LSAT max corr 38.61 | 37.16 | 36.56 | 34.69 0.013
b) An. LSAT min corr || 5 38.53 | 37.14 | 36.45 | 34.59 0.015
c) AOP LSAI 38.80 | 37.27 | 36.70 | 34.92 0.013
d) IIB LSAI 38.64 | 37.16 | 36.37 | 34.63 0.014
a) An. LSAT max corr 35.36 | 33.62 | 33.97 | 3041 0.023
b) An. LSAI min corr || 10| 35.65 | 33.84 | 34.12 | 30.38 0.023
¢) AOP LSAI 35.71 | 33.71 | 34.20 | 30.59 0.022
d) IIB LSAI 35.85 | 33.89 | 34.22 | 30.48 0.022
a) An. LSAT max corr 31.54 | 29.90 | 30.94 | 26.58 0.026
b) An. LSAI min corr || 9¢ | 32.24 | 30.36 | 31.34 | 26.60 0.026
c) AOP LSAI 32.34 | 30.15 | 31.49 | 26.82 0.025
d) IIB LSAI 32.57 | 30.45 | 31.63 | 26.76 0.018
a) An. LSAT max corr 29.08 | 27.68 | 28.69 | 24.61 0.046
b) An. LSAI min corr || 30| 30.08 | 28.29 | 29.37 | 24.73 0.044
c) AOP LSAI 30.18 | 28.02 | 29.55 | 24.92 0.043
d) IIB LSAI 30.44 | 28.37 | 29.73 | 24.87 0.043
a) An. LSAI max corr 26.17 | 24.79 | 25.62 | 22.39 0.059
b) An. LSAI min corr || 50| 27.38 | 25.49 | 26.53 | 22.66 0.056
c) AOP LSAI 27.45 | 25.02 | 26.69 | 22.78 0.053
d) IIB LSAI 27.70 | 25.45 | 26.81 | 22.75 0.054

Table 3.8: ProbShrinkCurv denoising results of some 512x512 gray-scale images,
using the different LSAIs of Section The noisy input images are contaminated
with AWG noise with different standard deviations o. This table shows the denoising
results in terms of PSNR using (a) a 1x5 anisotropic LSAI, oriented in the direction of
maximal correlation, (b) a 1x5 anisotropic LSAI, oriented in the direction of minimal
correlation, (¢) an adjacent, opposing and parent LSAI and (d) a combined intra-
and inter-band (IIB) LSAI The last column shows the estimated standard deviation
of the results for each LSAIL
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The difference in terms of PSNR depends on the image and increases with in-
creasing standard deviation of the added noise. The explanation for this trend
is that additive white Gaussian noise is transformed into correlated noise by
the curvelet transform [Starck et all [2002]. When calculating the LSAT of a
coefficient in a neighborhood that coincides with the direction of this correla-
tion, it will be contaminated by the same noise that disturbed the coefficient
and thus will not be a good indicator of the local spatial activity, even though
the significant coefficients are highly correlated along this direction (see Ta-
ble[3.5p). This is increasingly so for higher noise levels (cfr. the rising trend of
the correlation between insignificant coefficients and neighbors in the direction
of highest correlation in Figure . Because significant coefficients are still
somewhat correlated along the direction of lowest correlation (see Table )7
calculating the LSAT in a neighborhood oriented in this direction will lead to
a better denoising performance. For very small noise standard deviations, e.g.,
for 0 = 5, the neighboring coeflicients in the direction of highest correlation
are a better indicator of the local spatial activity than the neighbors in the
perpendicular direction because the disturbing influence of the noise is small.
For such small noise levels, calculating the LSAI in a neighborhood oriented in
this direction leads to better denoising results.

Table[3.8|further shows that the AOP LSAT outperforms the intra-band LSAT in
the direction of lowest correlation for all the tested images except for Barbara.
This result confirms our observations of Section Indeed, the correlation
of the intra-band LSAI in the direction of lowest correlation with significant
coefficients is smaller than in the AOP LSAI case (see Table and c and
Table and c¢). Barbara is the exception here, because the correlation of
the significant coefficients with the intra-band LSAI in the direction of lowest
correlation is extremely high, much higher than the correlation with the AOP
LSAI, and much higher than for the other tested images. The importance of
this intra-band correlation for Barbara explains why the LSAI exploiting this
correlation performs better in the denoising method.

For standard deviations bigger than 5, the denoising performance of the com-
bined intra- and inter-band LSAT is superior to that of the AOP LSAI. This
is somewhat surprising, as we have not observed a greater average correlation
between this LSAT and the significant coefficients for the images of our test set
(see Section . A possible explanation is that the intra- and inter-band
LSAIs contribute complementary information to the denoiser. The LSAI con-
tributes to the determination of the level of ‘significance’ of each coefficient to
be denoised. When adding intra- to inter-band information, individual coeffi-
cients that correlate well with the inter-band LSAT but not with the intra-band
one will be judged as ‘less significant’, but others will behave in the opposite
way. In other words, the total fraction of significance over all the coefficients
in the sub-bands is not increased, but spread over more coefficients. This leads
to a better denoising result for the tested images (except for a small deteriora-
tion for Baboon). For o = 5, the information contributed by the uncorrelated
intra-band LSAI to the combined intra- and inter-band LSAI deteriorates the
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denoising performance. We had already observed that the uncorrelated intra-
band LSAT performs poorly for such low noise levels.

Because of the superior denoising performance of the intra-inter-band LSAT for
all noise levels except for very low ones we will choose it in our ProbShrinkCurv-
method to compare it with state-of-the-art denoising methods (see Section.
The execution times of the denoising methods using the different LSAIs have
also been measured. Experiments were performed on an AMD Athlon 64 3400+
2.40 GHz processor using the SSE (Streaming SIMD extensions) instruction
set. The performed computations were floating-point computations. In Matlab
code, with the computation intensive parts implemented in ¢, averaged over 10
experiments, denoising a 512 x 512 image with the anisotropic LSAI oriented
in the direction of maximal and minimal correlation took 3.43 s, respectively
3.57 s to execute. For the AOP inter-band LSAT we measured 3.13 s and for the
combined intra- and inter-band LSAI 8.87 s. Note that the denoising methods
using LSAIs of similar size exhibit similar execution times. The intra- and
inter-band LSAI combines the coefficients of the inter-band and an intra-band
LSAT and therefore has a slower running time.

3.6 Choice of the Threshold T

A crucial issue that has not been addressed up to this point is the choice of
the threshold T'. This threshold determines what our signal of interest actually
is. This signal of interest should be chosen such as to minimize the MSE of
the denoised image. An analytical derivation seems intractable for the assumed
prior. To make this choice nonetheless in a theoretically founded way, we follow
the approach of Jansen et al. and Pizurica et al. in [Jansen and Bultheel, |2001}
Pizurica and Philips, 2006] and base ourselves on oracle thresholding [Mallat]
1998| (see below). Oracle thresholding provides us with the MMSE estimate
of transform coefficients corrupted with AWG noise by zeroing the ones with
noise-free component below the standard deviation o’ of the noise in the sub-
bands. Thus, T' = ¢’ marks the boundary between significant and insignificant
coeflicients.

Direct application of this estimator to our denoising method is unrealistic, and
for several reasons. Firstly, this approach requires an oracle to inform us of the
value of the noise-free coefficient in order to make our classification decision
about the noise-contaminated coefficient. As the noise-free coefficients are not
known to us during denoising because they are what we wish to estimate from
the noise-contaminated coefficients, such an oracle is not available in a realistic
scenario. Secondly, this choice minimizes the MSE when denoising is achieved
by hard thresholding the noisy coefficients. Our denoiser soft shrinks rather
than thresholds the coefficients. Finally, the noisy curvelet coefficients that we
consider are not contaminated with white but with colored noise. Considering
all these factors, we expect the optimal value of the threshold 7" not to coincide
exactly with the standard deviation of the contaminating noise in the sub-bands
but to peak in its vicinity.
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Figure 3.6: Denoising performance of the ProbShrinkCurv method as a function
of the ratio threshold to sub-band noise standard deviation T'/o" for several images
of the USC-SIPI image test set and for several image noise levels (from left to right
o = 5,20 and 50). Recall that for the curvelet transform the noise standard deviation
in the sub-bands ¢’ is 0/+/a, with a the redundancy factor of the transform. The
optimal choice of the ratio T'/o’ for each image is marked by a cross. The solid vertical
line marks T' = 1.30".

The standard deviation of the noise is often not known to the denoising tech-
nique in practical situations, but can be estimated from the corrupted data,
e.g., using the MAD estimator of Donoho et al. [Donoho and Johnstone} [1994].
The influence of an inaccurate estimate of the standard deviation of the noise
on the denoising performance will be discussed in Section In subsequent
experiments, we assume that the standard deviation of the noise is known.

To verify the expectation of the optimal value of T' being proportional to the
standard deviation of the contaminating noise in the sub-bands, we investigate
in Figure [3.6] the influence of the threshold T" on the denoising performance of
ProbShrinkCurv for several noise levels and for the images of the Miscellaneous
volume of the USC-SIPI image test set (images used in Sectionwere removed
from the test set to avoid overfitting of T). For each image we calculated the
results for 7 different values of T, each time averaged over 10 noisy versions,
and this for image noise standard deviations ¢ = 5, 20 and 50 (recall that
for the curvelet transform the corresponding noise standard deviation in the
sub-bands ¢’ is o/+/a, with a the redundancy factor of the transform). In
Figure the resulting curves are plotted for half of the images (not for all to
avoid overloading the graphs). The optimal choice of the ratio T/’ for each
image is marked by a cross. From these figures it can be noted that the optimal
value for T" indeed always lies in the vicinity of 7' = o but also that it is image
and noise level dependent. The overall trend is that at lower noise levels the
best denoising performance is achieved for lower values of T'/o”.
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T/o'
g
0.4 \ 0.7 \ 1.0 \ 1.3 \ 1.6 \ 1.9

5 0.7591 | 0.0714 | 0.0374 | 0.3707 | 0.4502 | 1.1447
10 1.9985 | 0.6963 | 0.1253 | 0.1089 | 0.3646 | 1.0022
20 3.8806 | 1.4579 | 0.3252 | 0.0754 | 0.2777 | 0.7480
30 4.6897 | 2.2665 | 0.4825 | 0.0761 | 0.2404 | 0.6448
50 5.4500 | 2.4833 | 0.7104 | 0.1028 | 0.2328 | 0.5495

Table 3.9: Average denoising quality drop (in dB) over all the images in the USC-
SIPI test set when fixing the ratio threshold 7" to sub-band noise standard deviation
o’ to a particular value. Recall that for the curvelet transform the noise standard
deviation in the sub-bands ¢’ is o /1/c, with « the redundancy factor of the transform.

The average quality drop over all the images (except for the images used in
Section when fixing the ratio T'/¢’ to a particular value has been quantified
in Table for noise levels ¢ = 5, 10, 20, 30 and 50. Firstly, we can notice
that at moderate noise levels, the average quality drop when choosing a value
for T'/o’ within 23% of the optimum does not exceed 0.5dB. Secondly, we can
observe that the trend of lower noise levels favoring a lower threshold and vice
versa is confirmed. From o = 10 onwards, however, the smallest overall drop
in performance is achieved when keeping T'/¢’ constant, namely at 1.3. From
these experiments, we have chosen T' = 1.3¢” throughout this chapter (also for
the statistical analysis of Section .

In a specific set-up where a camera is always used in the same circumstances
to capture similar images, it is possible to fine-tune the threshold T to the
application. In such a controlled environment, a calibration of the camera
system with regard to the introduced noise is also possible.

3.7 Results

In this section, we report on the denoising performance of our newly developed
method and we provide a comparison with some state-of-the-art denoisers.

3.7.1 ProbShrinkCurv Denoising Results

Denoising results of the ProbShrinkCurv method on some 512 x 512 and 256 x
256 gray-scale images are reported in Table When possible, we have used
the versions of the images included with the online implementation of [Portilla
et al. 2003]. In these experiments, the standard deviation of the AWGN was
assumed known. Results have been averaged over 10 noise realizations for each
image and for each noise level. The standard deviation of the results for each
noise level are reported in the last column of Table [3.10] We used 4 scales in
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lena | barbara \ boats \ baboon house
512 x 512 256 x 256 || TPSNR

2/ 42.03 42.38 | 42.58 42.35 | 42.00 43.49 0.014
5/ 34.13 37.86 | 37.16 36.19 | 34.63 38.26 0.015
10 / 28.13 || 35.20 | 33.86 33.12 | 30.48 34.84 0.033
15 / 24.61 || 33.38 | 31.83 31.23 | 28.15 32.92 0.049
20 / 22.13 || 32.02 30.38 29.93 | 26.76 31.50 0.032
25 /20.23 || 30.97 | 29.23 28.88 | 25.63 30.41 0.042
30 / 18.70 || 30.01 28.29 28.01 24.87 29.45 0.057
35 /1744 | 29.21 27.43 27.23 | 24.15 28.59 0.123
50 / 14.61 || 27.14 | 25.32 25.35 | 22.75 26.60 0.102

o/PSNR

Table 3.10: Denoising results in terms of PSNR (dB) of some 512x512 and 256x256
gray-scale images. The last column shows the estimated standard deviation of the
results for each noise level.

the curvelet decomposition and 16 orientations at the coarsest level. Varying
these parameters alters the denoising results. The optimal numbers are image-
dependent, but we found that this choice produces satisfying results for a broad
class of images.

There are several ways to use ProbShrinkCurv to denoise color images. A naive
approach would be to denoise each color band separately using the proposed
method. A better option is to extend the proposed method to exploit the
correlation between color bands. In [Pizurica and Philips| [2006] it has been
proposed to incorporate the correlation between color bands in the definition
of the LSAI i.e., to also include correlated coefficients from other color bands in
the calculation of the LSAI. The application of the ProbShrinkCurv technique
to the denoising of color images has not been studied in this thesis because
this study is not expected to provide any different insights than the study of
denoising gray-scale images.

3.7.2 Comparison With Other Denoisers

In Fig. we compare the results of the newly developed method to some
state-of-the-art denoisers, namely BiShrink using a dual tree complex wavelet
decomposition [Sendur and Selesnick| 2002], BLS-GSM with the parameters
set as in [Portilla et al., [2003] and operating on a full steerable pyramid decom-
position of the image, the BM3D method as reported in [Dabov et al. |2007]
and the ProbShrink method for wavelets in its redundant wavelet transform
implementation |[Pizurica and Philips, 2006]. A comparison to simple curvelet
domain hard thresholding is also provided (4 scales in the curvelet decompo-
sition, 16 orientations at the coarsest level and threshold at ko with k = 4 at
the finest scale and 3 otherwise). Implementations of curvelet hard threshold-
ing and of the methods of [Sendur and Selesnickl [2002], [Portilla et al., 2003|,
[Dabov et al. 2007] and [Pizurica and Philips, 2006] are publicly available and
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Figure 3.7: Output PSNR as a function of input PSNR for several 512 x 512 images
for the following methods: BiShrink using a dual tree complex wavelet decomposition
|Sendur and Selesnick, 2002, BLS-GSM with the parameters set as in |[Portilla et al.}
2003|, the BM3D method as reported in [Dabov et al., 2007], the ProbShrink method
for wavelets in its redundant wavelet transform implementation [Pizurica and Philips]
2006|, curvelet hard thresholding and the proposed ProbShrinkCurv method.

were used to produce the results of Fig. [3.7] Results have been averaged over
10 noise realizations for each image and for each noise level. For all methods,
we assume that the standard deviation of the noise is known to the denoising
technique. Denoising results on images with unknown noise variance will be
discussed in Section

From these results, we can observe that the ProbShrink method adapted to
curvelets outperforms or matches its wavelet-based counterpart for all images.
Improvements are smallest for Lena and Baboon and biggest for Barbara and
Peppers (up to 1.08 dB). Differences are more pronounced for big standard
deviations of the AWGN. In fact, for small standard deviations, starting from
o = 5 and smaller, the ProbShrink method for wavelets performs better. These
results were not included in Fig. [3.7] in order not to overload it. This trend
complies with our observations from Sections and where we found
that for small noise levels the AOP LSAT and a smaller threshold T" would be
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more appropriate than the intra-inter-band LSATI and the T = 1.3¢” which we
have chosen because of the other noise levels.

The improvements of ProbShrinkCurv over simple curvelet domain hard thresh-
olding are considerable for all images at all noise levels, but they are most
notable for Barbara and Baboon, i.e., for images that are not sparsely repre-
sented in the curvelet domain. For these images, the more complex Bayesian
and neighborhood-adaptive approach of ProbShrinkCurv provides a clear ad-
vantage over simple hard thresholding.

The performance of ProbShrinkCurv in comparison with other state-of-the-
art techniques is somewhat image and noise level dependent, but overall we
can observe that our new denoiser is competitive with BiShrink (based on a
transform of similar redundancy as ProbShrinkCurv, which is about 7.2 for our
choice of parameters) but numerically outperformed by BM3D for all images
and by BLS-GSM for all images except for Barbara, for which denoising results
are similar.

In Fig. and we visually compare some cut-outs of the denoising results.
This visual comparison reveals that the denoising results of ProbShrinkCurv
generally give a much sharper impression than the results obtained through all
other methods (ProbShrink, curvelet hard thresholding, BiShrink, BLS-GSM
and BM3D). The good edge preserving qualities of ProbShrinkCurv are illus-
trated on the feathers in Lena’s hat, which are sharply preserved in the denois-
ing results of ProbShrinkCurv shown in Fig and which are over-smoothed
in the denoising results of BLS-GSM (Fig[3.9f) and BM3D (Fig[3.9k).
Compared to ProbShrink for wavelets and BiShrink, we see that the Prob-
ShrinkCurv method is less plagued by impulse-like artifacts and artificial pat-
terns (visible, e.g., in Barbara’s face, cfr. Figs. , e and h). Some minor
stripe-like artifacts are visible, but a lot less than in the curvelet hard thresh-
olding case (compare Barbara’s mouth in Figs. and h).

A further meaningful evaluation of the quality of the denoised images depends
on the purpose of the denoising. If the denoising is performed for aesthetic
purposes, extensive psycho-visual experiments would be required. If the de-
noising is the first step prior to other image processing steps (such as image
segmentation or compression), the used quality metric should be chosen as a
function of these subsequent processing steps.

3.7.3 Denoising With Unknown Noise Variance

If the standard deviation of the noise is not known to the denoising technique, as
is often the case in practical situations, one has to estimate it from the corrupted
data, e.g., using the MAD estimator of Donoho et al. [Donoho and Johnstone
1994]. The inaccuracy of this estimate affects the denoising performance of the
methods. In Table we show the difference in PSNR performance between
denoising with known and estimated noise variance, for several methods and
noise levels, averaged over each time 10 noise realizations of the images Lena,
Barbara, Peppers and Baboon. In the curvelet-based methods the noise variance
is estimated from the last orientation sub-band at the finest scale and in the
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Figure 3.8: Detail of the denoising results of Lena. (a) the original image, (b)
the noisy image (noise standard deviation 20), denoising result of (c) ProbShrink,
(d) curvelet hard thresholding, (e) BiShrink, (f) BLS-GSM, (g) BM3D and (h) Prob-
ShrinkCurv.
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Figure 3.9: Detail of the denoising results of Barbara. (a) the original image, (b)
the noisy image (noise standard deviation 20), denoising result of (c) ProbShrink,
(d) curvelet hard thresholding, (e) BiShrink, (f) BLS-GSM, (g) BM3D and (h) Prob-
ShrinkCurv.
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Denoiser [0=2]0=10[0=20]0=30]0=50
ProbShrink 428 [ 057 [ 012 [ 0.05 [ -0.25
CurvHT 436 | 0.38 | 0.08 | -0.01 | -0.08
BiShrink 414 | 025 | 0.09 | 0.08 | 0.04
BLSGSM 499 | 075 | 020 | 0.13 | -0.39
BM3D 443 | 037 | 011 | 0.06 | -0.01
ProbShrinkCurv || 4.41 0.24 0.06 0.04 0.11

Table 3.11: PSNR difference (in dB) between denoising with known and with esti-
mated noise standard deviation o, averaged over the images Lena, Barbara, Peppers
and Baboon.

BiShrink method from the first finest scale sub-band in the dual tree complex
wavelet decomposition (as it is implemented in the BiShrink code available
online). In the other denoisers, no noise estimation is implemented and we
therefore estimate the noise variance from the diagonal detail coefficients at the
finest scale of an undecimated wavelet decomposition using the Haar wavelet.
From this table it is obvious that the denoising performance of the compared
methods drops very dramatically for low noise levels but becomes more robust
to inaccuracies in noise variance estimation at higher noise levels. We conclude
that the performance differences are of the same order of magnitude for all
methods compared here.

3.7.4 Execution Times

In Table we compare the mean execution times of BiShrink, BLS-GSM,
BM3D, ProbShrink, curvelet hard thresholding and ProbShrinkCurv when de-
noising a 512 x 512 gray-scale image. Results have been averaged over 10
experiments on a AMD Athlon 64 3400+ 2.40 GHz processor using the SSE
(Streaming SIMD extensions) instruction set. The performed computations
were floating-point computations. All algorithms run in Matlab with the com-
putation intensive parts implemented in C. We can see that the mean execution
time of ProbShrinkCurv is lower than the mean execution time of the methods
with the best denoising performance (BLS-GSM and BM3D), and that it is
also lower than that of its wavelet-based counterpart. The method is about
half as fast as curvelet hard thresholding.

3.8 Fusing Denoised Images

We now use the curvelet-based ProbShrinkCurv denoiser developed in the pre-
vious sections to improve the fusion result of stacks which are contaminated
with noise.

To this end, we denoise the noisy slices with the ProbShrinkCurv method be-
fore deciding for each curvelet coefficient from which slice it should be selected
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Denoising method ‘ Mean execution time
BiShrink [Sendur and Selesnick, [2002] 2.14 s
BLS-GSM |[Portilla et al., 2003] 75.19 s
BM3D [Dabov et al., [2007] 11.98 s
ProbShrink [Pizurica and Philips| [2006] 10.52 s
Curvelet hard thresholding 4.93 s
ProbShrinkCurv 8.87 s

Table 3.12: Mean execution times when denoising a 512 x 512 gray-scale image.
Results are averaged over 10 experiments on a AMD Athlon(TM) 64 3400+ 2.40 GHz
processor.

using the method described in Chapter To separate the effect of the de-
noising on the fusion process from its effect on the PSNR of the input slices,
we use this ‘selection map’ to fuse the noise-free slices, not the denoised ones.
Mathematically, this can be formulated as follows. Let C; ; .(z,y) denote the
noise-free curvelet coefficient at scale i, orientation j and spatial coordinates x
and y, of the slice with index z. Let Cffj’z(a:, y) be the corresponding denoised
curvelet coefficient, obtained by denoising the noisy coefficient C7; _(x,y) with
the ProbShrinkCurv denoiser. Coefficients of the fused image are then selected
as:

Fiaj (1’7 y) = Ci,j,argmaxz(\Cﬁj’z(z,y)\) (ZL’, y) (314)

In a real application these are of course not available, and this method is used
here only for evaluation purposes.

Because denoising and fusion take place in the same transform domain, both
operations can be easily combined and only one forward and one inverse curvelet
transformation are necessary. This is advantageous from a computational point
of view. Of course the denoising can also be performed with any other of the
many denoisers described in literature.

In subsequent experiments, we start from the noisy input stacks that were used
in the experiments of Section [3.1] The slices in these stacks are contaminated
with AWG noise with ¢ = 10. Different values of ¢ would lead us to similar
conclusions. In Table the average PSNR of the noise-contaminated slices
in each stack are listed, as well as the average PSNR of the denoised slices.
The same settings for the denoising algorithm as in Section [3.7] were used to
obtain these denoising results. As the fusion algorithm operates on gray-scale
images (see Section , color images were converted to gray scale prior
to denoising using the technique described in Section [2.4.6f The standard
deviation of the noise was assumed unknown and was estimated from the data
using the MAD estimator of Donoho et al. [Donoho and Johnstone| [1994]. As
expected, the denoising method works particularly well for the images Fggs and
Algae, which are piece-wise smooth and therefore have a sparse representation
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Average over Slices Denoised Input Stack

Noisy | Denoised No checks | All checks
D18 28.13 30.55 26.80 34.26
D22 28.13 29.11 28.63 29.52
D23 28.14 31.03 28.10 34.69
D112 28.12 29.57 28.33 33.26
Eggs || 28.12 37.82 41.97 41.33
Algae 28.12 38.37 38.54 38.74
Clouds || 28.12 38.74 39.22 39.00
Leaves || 28.31 28.83 38.48 37.93
Average Gain over Noisy Input Stack: 3.59 2.20

Table 3.13: Average PSNR (dB) of the slices in the stack contaminated with
additive white Gaussian noise of o = 10 and of the denoising result of these noisy
slices. Also the result in terms of PSNR of fusing the noise-free slices based on a
selection map obtained from these denoised slices. On the bottom line the average

gain in PSNR of fusion based on denoised slices over fusion based on noisy slices
(results of Table is indicated.

in the curvelet-domain. For the other images, which are all heavily textured,
the PSNR increase is smaller but still important.

Fig. B-I0h shows for the D22 Brodatz texture the visual fusion result using the
selection rule of Eq. No spatial smoothness or sub-band consistency checks
were performed. To facilitate comparison with the fusion result of noise-free
slices based on noise-degraded slices, Fig. is repeated in Fig. |3.10b and
the absolute difference image between Fig. and Fig. is shown in
Fig.[3:10k. A comparison between Fig.[3.10h and Fig. reveals that thanks
to the denoising the prevalent artificial structures caused by disturbances in the
fusion process due to noise do not appear in the result image. Fig. shows
the fusion result of noise-free slices based on denoised input slices but now with
smoothness and consistency constraints imposed. It is hard to visually notice
a difference between Figs. [3.10h and d.

The numerical results of this fusion process for the stacks in our test set are
listed in the last two columns of Table for fusion without checks and with
smoothness and spatial checks. Comparing the fusion results without and with
checks in the Tables and we observe an increase in PSNR for nearly all
stacks when denoising prior to fusion. This increase amounts to up to 8.99dB
for D22 for fusion without checks. For Clouds a small deterioration can be
observed, which can be explained by the abruptness of the transitions between
blurred and in-focus image regions in the last four stacks of our test set (see
Section . The average gain in PSNR of fusion based on denoised slices
over fusion based on noisy slices is listed on the bottom line of Table[3.13] The
gain amounts to several dB and is largest when no checks are performed.

The best fusion results are obtained by combining denoising prior to fusion
with fusion with all checks.
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(a) Fusion result of noise-free slices based (b) Fusion result of noise-free slices based
on denoised slices, without checks

on noise-degraded slices, without checks

(c¢) Absolute difference between fusion re- (d) Fusion result of noise-free slices based
sult based on denoised and noise-degraded on denoised slices, with checks

slices

Figure 3.10: For the D22 texture, the fused image obtained by fusing noise-free
images without checks, (a) based on denoised and (b) based on slices contaminated
with additive white Gaussian noise with a standard deviation of o = 10. (c) The

absolute difference image between (a) and (b).

fusing noise-free slices with checks based on denoised slices.

(d) The fused image obtained by
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3.9 Conclusion

In this chapter we have ascertained that noise has a disturbing influence on
image fusion for depth of field extension. We have shown that imposing spatial
smoothness and sub-band consistency constraints has a regularizing effect and
improves the fusion quality. We have presented denoising of the slices in the
curvelet domain prior to fusion as an alternative solution.

In order to develop a curvelet-based denoiser, we have investigated the differ-
ences in statistical behavior between curvelet coeflicients containing a signifi-
cant noise-free component and those in which no signal of interest is present.
We have then discussed the adaptation of the ProbShrink denoising method
for wavelets [Pizurica and Philips, [2006] to curvelets, resulting in a method
which we have called ProbShrinkCurv. In particular, we have put the knowl-
edge gained from our statistical study to use in the design of an appropriate
local spatial activity indicator (LSAI) for this new method.

When considering intra-band coefficients for the LSAI, we have found that,
although curvelet coefficients are more correlated along the principal direction
of their generating basis function, neighboring coefficients in the perpendicular
direction are a better indicator of the significance of the reference coefficient in
terms of denoising results. We have further ascertained that it is beneficial to
also incorporate coefficients from adjacent, opposing and parent sub-bands in
the LSAIL

The resulting denoising method, ProbShrinkCurv, outperforms its wavelet-
based counterpart and produces results that are both visually competitive with
and numerically close to those of state-of-the-art denoisers.

Using ProbShrinkCurv to denoise the curvelet coefficients of the mnoise-
contaminated slices prior to fusion improves the fusion result considerably.
The average gain over our test set amounts to 3.59 dB when no checks are
performed and 2.20 dB when smoothness and consistency are imposed. The
best fusion results are obtained when denoising prior to fusion is combined with
fusion with all checks.



Data Fusion for Occupancy
Reasoning

In many applications, the deployment of a network of cameras with overlap-
ping fields of view provides substantial advantages over a single fixed viewpoint
camera. Images from the same event or subject can be gathered from different
perspectives. When processed collaboratively, this extra data can provide inter-
esting additional information. E.g., in scene monitoring, camera networks can
alleviate occlusion problems; in gesture recognition, cues coming from different
viewpoints can lead to a more robust decision; in free viewpoint television, the
quality of the rendered intermediate views benefits from a larger number of
cameras.

A crucial issue to fully exploit these extra possibilities is how to fuse the in-
formation of different cameras opportunistically. Due to unsuited viewpoints
and/or the information loss inherent to the projection of a 3D scene on a 2D
camera image, the observations of each camera alone can be inconclusive. A
useful data fusion scheme for vision networks should be able to exploit agree-
ment among cameras: the uncertainty about an observation should drop as
more cameras corroborate each other’s output.

In this chapter we present a novel method for calculating occupancy maps with
a network of calibrated and synchronized cameras. In particular, we propose
Dempster-Shafer based fusion of the ground occupancies computed from each
view. The method yields very accurate occupancy detection results and in
terms of concentration of the occupancy evidence around ground truth per-
son positions it outperforms the state-of-the-art probabilistic occupancy map
method and fusion by summing.

The recent introduction of ‘smart cameras’ with on-board image processing
and communication hardware offers interesting possibilities for a distributed
implementation of the proposed method. However, to be applicable in practi-
cal smart camera networks, a method has to deal with computational, latency
and bandwidth constraints. Therefore we adapt the proposed occupancy calcu-
lation method in several ways. We modify it into a low data rate version such
that wireless communication with the cameras becomes possible. Moreover we



66 CHAPTER 4

drastically simplify the processing such that an implementation in hardware
becomes more straightforward.

The work presented in this chapter has been performed in collaboration with
my colleague Marleen Morbee and therefore some of the concepts presented
here also appear in her PhD thesis. However, in Marleen’s thesis the emphasis
lies on an efficient calculation and usage of scan-lines. This possibility is only
briefly introduced in this dissertation (in Section . In this thesis the
aspect of data fusion is treated more elaborately. I.e., different alternatives for
fusing the ground occupancy data are proposed and studied (cfr. Section
Section and Section 4.6]).

The remainder of this chapter is organized as follows. We start with a general
introduction on occupancy maps and we elaborate on the data fusion aspect in
Section[£.1] An introduction to the used Dempster-Shafer theory of evidence is
presented in Section The problem of occupancy map calculation is defined
more precisely in Section [£.3] after which the proposed method is explained in
Section In Section we study adaptations of this method. Results are
discussed in Section 6] and we end with a conclusion in Section L7l

4.1 Occupancy Maps and Data Fusion

An occupancy map provides a top view of a scene and indicates which parts
are occupied by people or objects. Such maps are important in many appli-
cations such as surveillance, smart rooms, video conferencing and sport game
analysis. Camera networks offer an attractive non-intrusive and flexible tool
for this purpose. They do not require people to wear dedicated gear, nor the
environment to be equipped with special sensors other than cameras, which are
often part of the existing infrastructure, especially in security applications.

In recent years, foreground silhouettes in multiple camera views have been in-
creasingly used to estimate the probability of ground occupancy. Two basic
approaches exist. Bottom-up methods transfer the information in the different
camera images to a common reference plane using camera image-floor homogra-
phies [Delannay et all 2009]. Top-down approaches extract occupied ground
positions by comparing a generative model of the objects in the scene with the
actual foreground silhouettes observed in the camera views [Alahi et al., |2009;
Fleuret et al.| [2008].

For both approaches the mathematical laws for the fusion of data from differ-
ent cameras had not been considered explicitly before the work presented in
this chapter was published [Morbee et al., |2010a]. In the following we focus on
this data fusion aspect within a bottom-up method and show that Dempster-
Shafer based fusion of camera information leads to significantly more accurate
occupancy maps. For the basket ball dataset of [De Vleeschouwer and Delan-
nay| [2009], the total mass of occupancy evidence is 1.12 to 10.34 times more
concentrated around the ground truth player positions than for the methods
of |Delannay et al.| [2009] and [Fleuret et al.| [2008], as will be discussed in Sec-
tion
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In the probabilistic occupancy map (POM) method of Fleuret et al| [2008],
for each view the conditional distribution of the observed background subtrac-
tion image given the true object positions is a function of a distance measure
between the background subtraction image and the image obtained from a gen-
erative model. Information from different views is fused by multiplying these
conditional distributions. This strategy is problematic in the typical case of
imperfect foreground detection: a badly detected foreground region in even a
single view can easily result in a missed occupancy detection.

In [Delannay et al. [2009], each camera produces a confidence value for the
occupancy of each ground position x by back-projecting the foreground sil-
houettes to a common reference plane using camera image-floor homographies.
The aggregated ground occupancy map is obtained by summing the camera
confidences and by normalizing by the number of cameras that actually view
X.

In this work, unlike the summing [Delannay et al., 2009] and POM [Fleuret
et all [2008] fusion strategy, we use Dempster-Shafer (DS) based fusion to
exploit the fact that if a hypothesis of (non-)occupancy is corroborated by
different cameras, a higher belief should be assigned to it. Moreover, the DS
theory of evidence allows to distinguish between equal probability of occupancy
and non-occupancy, and lack of knowledge, e.g., when an object is (partially)
outside a camera viewing frustum.

In the next section we introduce the main concepts of DS theory. Afterwards
we describe the proposed occupancy calculation method in detail.

4.2 Dempster-Shafer Theory of Evidence

The DS theory of evidence provides a theoretical basis to combine evidence from
different sources to arrive at a degree of belief in a number of propositions. For-
mally, an exhaustive set of mutually exclusive propositions constitutes a frame
of discernment 2. The subsets A of € are called propositions, the singleton
subsets w of ) are elementary propositions and the power set, denoted as 2,
is the set of all possible subsets A of Q. A basic belief assignment (BBA) is a
mapping m from 2 to [0,1] C R such that > ;oo m(A4) = 1 and m(0) = 0.
m(A) expresses how much an agent believes in proposition A alone, with no
further assumption about any proper subset of A. A particular instance of
a BBA is called a body of evidence. The basic probability allotted to 2 is a
measure of the belief that has not been assigned to any of the proper subsets of
Q. It can be interpreted as the remaining uncertainty about the propositions.
Complete ignorance is represented by m(Q) = 1.

Consider as an example a camera network observing a car. The car can be
either an orange Toyota, a red Honda or a blue Honda. The frame of discern-
ment €2 in this case contains the mutually exclusive and exhaustive hypotheses
{orange Toyota}, {red Honda} and {blue Honda}. There is also an aggregated
hypothesis {Honda}. A first camera analyzes the color histograms of the cars
as they appear in the image. Because the lighting conditions are unknown,
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Table 4.1: Example bodies of evidence in a network of two cameras observing a car.

m H Q \ {orange Toyota} \ {Honda} \ {red Honda} \ {blue Honda}
mq 0.2 0.3 0.0 0.5 0.0
mo 0.5 0.2 0.3 0.0 0.0
mi o 0.12 0.31 0.07 0.49 0.0
miae || 0.14 0.21 0.08 0.56 0.0

these observations do not suffice to conclude with certainty which is the color
of the car, but there are strong indications that it is red. The resulting body of
evidence my could therefore be the one indicated on the first line of Table 1]
Note that some basic belief (i.e., 0.2) is not assigned to any of the hypotheses
to account for uncertainty in the measurements. This can arise for example
when the color information of the car is degraded by specular reflections.
Suppose a second camera is not a color camera. In the captured gray-scale im-
age, the evidence for the brand of the car is gathered by comparing the observed
shape of the car with shapes in a database. Clearly, with this evidence gath-
ering mechanism no direct evidence can be obtained for the hypotheses {red
Honda} and {blue Honda}. We can however obtain evidence for the aggregated
hypothesis {Honda}, and for the hypothesis {orange Toyota}. Assume the car
is half occluded. The remaining shape is compared with the shapes stored in
the database, and the resulting matching scores could for example give rise to
the body of evidence ms, listed on the second line of Table

Assume two pieces of evidence give rise to two bodies of evidence m, and ms.
These provide different assessments for the propositions in the same frame of
discernment. To aggregate the information from these two sources, we need a
rule of combination.

The best known and most common combination rule is Dempster’s rule of
combination:

ma(A)ma(B) if C #0
my ©my(C) = A7B|;B—C 1-K 7 (4.1)

0 iftC=0.

where C C Q and K is the amount of conflict between the two bodies of
evidence, measured by

K= Y mi(A)ma(B). (4.2)
A,B|ANB=0

The denominator in Eq.[4:1]is a normalizing factor. It has the effect that conflict
is completely ignored. This rule considers that the different evidence sources
are reliable, i.e., that their output is correct. It leads to a specialization of the
basic belief: each time a new piece of information is accepted, the basic belief

assigned to a proposition A is redistributed over the subsets of A |Denoeux,
2008].
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In our car example, the fusion of the two bodies of evidence using Eq. [£.1]leads
to the fused body of evidence m; », listed in Table

When comparing m; to mq 2, we note that the basic belief assigned to 2 has
been redistributed over its subsets. The same holds for mso, where additionally
a large part of the basic belief assigned to the aggregated hypothesis {Honda}
has been shifted towards the more specific hypothesis {red Honda}.
Dempster’s rule assumes that m; and ms are distinct, i.e., that the sources
that produced the evidence are independent. In [Denoeuxl [2008] a cautious
conjunctive rule is proposed to combine bodies of evidence that are not distinct.
To present it here, we must introduce two more definitions. The commonality
function and the conjunctive weight function associated with a BBA m are
defined as, respectively

VACQ:q(A) = Y m(B); (4.3)
B|BDA
vACQ:wA) = [ eV (4.4)
B|BDA

Now let m; and mg be two non-dogmatic bodies of evidence (which means
m1(€2) # 0 and mo(2) # 0). Their combination with the cautious conjunctive
fusion rule is denoted as m; ® msy and is defined as the body of evidence
with weight function wq(A) A wa(A4),VA C 2, where A denotes the minimum
operator. The resulting body of evidence mao for our car example is listed on
the last line of Table .11

This rule is derived from the principle of least commitment: of all bodies of
evidence that could result from the combination of the inputs m; and ms, the
least informative one is chosen (see [Denoeux) 2008] for a discussion on how to
compare the information content of two bodies of evidence). Note that as a
consequence, if the bodies of evidence are distinct and they are combined using
the cautious rule, the result will be less informative than if Dempster’s rule is
used.

4.3 Problem Formulation

Consider a network of N cameras and let the ground plane of the observed
scene be discretized in resolution cells x. We wish to assign a real value to
each cell that expresses our confidence that the cell is occupied by a foreground
object. Foreground objects are objects of interest, i.e., objects that are not
part of the background of the scene. In typical applications such objects are
persons, cars, luggage, etc.

The choice of the discretization resolution should depend on the resolution of
the cameras. Because cameras have a limited resolution, different points on
the ground plane can be projected on the same image pixel. Suppose we group
all ground plane points that get projected on the same pixel in one resolution
cell. The size of these cells varies with the distance between the cell and the
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camera. Indeed, a translation of one pixel in the image corresponds to a certain
translation on the ground plane. The size of the translation on the ground plane
is large for ground plane regions far away from the camera and small for close-
by regions. Thus, the resolution cells close to the camera will be small, and
those far away will be large.

Ground plane regions close to one camera can be far away from another camera.
For combining occupancy information from several cameras, a discretization in
camera-dependent resolution cells is not very practical because information
from cells with different sizes would have to be combined. In this work we
therefore opt for a regular grid of fixed-size resolution cells in the ground plane.
Alternatively, polygonal resolution cells adapted to the geometry of the cameras
could be used.

The highest resolution occupancy information is obtained when the size of the
cells is chosen as the minimal cell size of all camera-dependent resolution cells,
i.e., as the size of the cell closest to its corresponding camera. In many practical
cases this leads to an occupancy map that is unworkably large. In this work the
discretization resolution is therefore chosen as a compromise between resolution
and size of the occupancy map.

4.4 Dempster-Shafer based Occupancy Calcu-
lation

In our method, for each ground position x the mutually exclusive and exhaus-
tive hypotheses that x is either occupied ({ocex}) or not ({nocex}) constitute
the frame of discernment 6y = {occx, nocey}. The information from each view
i, 1 <i < N, is considered a distinct piece of evidence and we denote the BBA
representing this evidence by m;. We now explain how we define the BBA in
our method.

Let H be the typical height of a person and consider a rectangular cuboid Cy
with height H and cell x as base. We assume that both the internal and external
calibration parameters of the cameras are known, which includes knowledge
about the position of the ground plane. If the cuboid Cy lies completely outside
the viewing frustum of camera ¢, this camera cannot provide any information
about the occupancy of x. The BBA is then m;({ocex}) = 0, m;({nocex}) =0
and m;(0x) = 1. Otherwise, the projection of this cuboid into camera view
i defines an image region R%. An example of such a region is marked by the
white line in Fig. [f.1] Fig. [f.2]illustrates the introduced notations.

We gather evidence about the (non-)occupancy of the cells by independently
segmenting each view into background and foreground using any state-of-the-
art foreground detection algorithm, and by determining in each region R’ the
fraction of background pixels b and of foreground pixels fi. Of course b’ +fi =
1. The evidence m;({noccy}) of camera i for the hypothesis {nocey} is bl.
For m;({ocex }) the situation is more complicated: because of the limited reso-
lution of the cameras, cuboids Cyx and Cy centered in different cells x and x’
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Figure 4.1: An example of a region R% with H = 2 m is marked with a white line
on the player of the dark team at the front right in the image.

Q- ¥e

R1L Camera 1 Camera 2

Cx

Image of Camera 1

Ground Plane

Figure 4.2: The projection of a rectangular cuboid Cx with height H and cell x as
base into camera view 1 defines an image region Ry.
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(a) Camera image. (b) Occupancy map.

Figure 4.3: (a) A camera image with two regions RY, one marked in black and one
in gray. (b) Occupancy map with the G% cells x for which the cuboid Cx is projected
onto the black region R% marked in black, and the G% cells x for which the cuboid
C, is projected onto the gray region R% marked in gray.

may be projected onto completely coinciding image regions R% and Rf,. This
is illustrated in Fig. Let us first consider the gray (upper) region in the
camera image in Fig.|4.3p. Consider two cells x and x’ lying in the gray ground
occupancy map region shown in Fig. [£:3p. The projections of the cuboids Cx
and Cy in the camera image define the image regions R% and R, respectively
(see Fig. [4.2). For any two cells x and x’ lying in the gray ground occupancy
map region, the regions R and RY, completely coincide with each other and
form the gray image region shown in Fig. [£.3h. In other words, all the cells x
for which the cuboid Cy is projected onto the gray image region are marked in
gray in Fig.[4.3b. This is also illustrated for a second image region, marked in
black in Fig. [£:3h. All the cells x for which the cuboid Cx is projected onto the
black image region are marked in black in the ground occupancy map shown in
Fig. [£3p. Note that in the occupancy map shown in Fig. the number of
gray cells is a lot higher than the number of black cells. This is because the gray
cells are far away from the camera, whereas the black cells are situated close
to the camera. This is also the reason why in the image (Fig. ) the black
region R is a lot larger than the gray region RY, even though both regions
correspond to the projection of equally-sized cuboids Cy.

Let G be the number of cells x for which the cuboids Cy are projected onto
coinciding regions Ri. If G% > 1, the evidence of occupancy collected in R
may be attributable to a person occupying only part of the cells with coinciding
R . Because of the reprojection geometry, these G% cells will be approximately
laid out in a trapezoid on the ground plane, which we approximate by a square
S with side length \/(T; The black and the gray regions in the occupancy map
shown in Fig. are two such trapezoids.

Assuming a person occupies a square of W? cells on the ground plane, this
person can be in (1/G% +W —1)? different positions with respect to the square
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Figure 4.4: Example of a square approximation S of G& = 25 resolution cells x for
which the cuboid C is projected onto the same region R%. A person, represented
here by the gray square with W?2 = 9 resolution cells, can assume (\/CT; + W — 1)2
different positions such that it overlaps with S. Hence, if R% is completely part of
the foreground, there is a probability of W?2/(1/Gi + W — 1)? that a particular cell
is actually occupied by a foreground object.

S (see Fig. . A particular cell x in the square S is only occupied in W?2
of all these positions. When observing a fraction fi of foreground pixels, the
evidence of individual cells being occupied is smaller than fi. If for example
JL =1, we are sure that at least one of the G% cells x for which the cuboids
C, are projected onto coinciding regions R is occupied. In this case, the
probability that it is occupied is W?2/(y/G% + W — 1)2. Hence we scale the
fraction fi of foreground pixels with the factor g& = W?2/(1/G% + W — 1) to
obtain the evidence of occupancy of the G% cells x for which the cuboids Cy
are projected onto coinciding regions R as m;({occx}) = gL fi.

With m;({ocex}) and m;({nocex}) defined, m;(6x) = 1 — m;({ocex}) —
m;({nocex }).

The distinct pieces of evidence collected by the N views about each cell x are
fused by iteratively applying Dempster’s rule of combination (Eq. . More
precisely, let us denote the body of evidence obtained after fusing the occupancy
evidence from n cameras as m{ ., and let us initialize m? _ , as m@ .4 (0x) = 1,
me q({ocex}) = 0 and mf, . ({nocex}) = 0. If the information of the cameras
i is fused in the numerical order of their index ¢, then we can express this
iterative fusion process as

m%used(c) = mzlrsled 2] mz(c) (45)

for C C Qand i =1...N. As for Dempster’s rule of combination the order
in which the evidence is fused does not matter, the camera indexing can be
chosen freely in Eq.

This fusion process must be performed for each resolution cell in the occupancy
map. We denote the fused evidence of occupancy for all occupancy map cells
as m({occ}).
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Note that the presented algorithm assumes that the people in the scene are not
occluded by any objects such as furniture in the scene or objects blocking part
of the view of cameras (e.g., cables). If such occluders are present and they can
be detected by a scene modeling algorithm, their presence can be easily taken
into account by setting m;(0x) = 1 for all occluded cells.

4.5 Adaptations

In a smart camera network the nodes use their on-board image processing
hardware to extract from the captured images the necessary observations for
occupancy calculation and then transmit this data to fuse it with the data of
other cameras. In the method described in Section[4.4] the data transmitted by
each camera i will be either the foreground silhouette image or the occupancy
evidence m;({ocex }) and m;({nocex}). If the cameras communicate wirelessly,
it is very important that the amount of data to be transmitted is kept low.
E.g., in the ZigBee specification, the data rate is limited to 20 to 250 kbit/s.
However, these are gross rates. Due to overhead, the net maximal data rate is
even lower, i.e., about 100 kbit/s. Wireless communication also requires a lot
of power, so less communication prolongs battery life.

In Section [4.5.1] we discuss how to adapt the method described in Section 4.4
such that the amount of transmitted data is reduced. This low data rate version
of the method is more suited for application in wireless smart camera networks.
To further facilitate the use of the proposed occupancy calculation method in
such networks, we also explain in this section how we can adapt the method to
lower the computational and memory load of the fusion process. In Section|4.5.2
we hint at the possibility of reducing the computational and memory burden
of the algorithm even more by reversing the order of the operations executed
on the cameras.

4.5.1 Low Data Rate and Low Load Version

We wish to avoid transmitting either the foreground silhouette image or the
occupancy evidence m;({ocex }) and m;({nocex }) of each camera, as it is needed
in the method described in Section [£:4] To this end, we propose the following
data reduction strategy.

Consider the typical silhouette image in Figure [f.5h. Note that the vertical
direction in 3D (i.e., the direction perpendicular to the ground plane) nearly
coincides with the vertical direction in the image. We say that verticality is
nearly preserved. This is because this camera, as it is the case for many cam-
eras, is mounted such that the horizontal image axis is nearly parallel to the
ground plane. If the computational power at the camera side allows this, the
image can be transformed such that verticality is exactly preserved. This ho-
mography transformation can be derived directly from the camera calibration
data. In the following, we assume that this image transformation has been
performed. If the computational power is not sufficient to perform this trans-
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Figure 4.5: Example of (a) a background/foreground segmentation F, (b) a scan-
line H, and (c) a column-wise extended scan-line F.

formation, the application of the subsequent method on an image will lead to
similar results as long as verticality is reasonably well preserved.

We exploit this preservation of verticality to make a crude foreground approx-
imation. Let the pixel value of the foreground image F'(x,y) be 1 when the
corresponding image pixel has been detected as foreground and 0 otherwise.
At each camera we add F(x,y) (transformed such that verticality is preserved)
along its columns to a 1D horizontal line and threshold it to obtain the scan-line
H:

h
1 T <> F(z,y)
H(zx) = vt (4.6)
0 ifT> ZF(x,y)

y=1

with h the image height. The threshold 7" should be chosen in accordance with
the size at which a person in the scene appears in the image. An example of a
scan-line is shown in Figure [4.5p. Cameras transmit their (run-length coded)
scan-lines instead of the full background/foreground segmented image. If we
assume there are at most B distinguishable objects in an image and the number
of bits needed to encode start and end point of each object on the scan-line
is at most 2 [log, w] bits, where w is the image width, then the payload of
this transmission can be approximated by 2 [log, w] B bit. For example, for
an image with width=352 and for 5 detected objects, this number amounts to
90 bit.

In essence this approach amounts to approximating the foreground mask F' of
the original image with F', the column-wise extension of a scan-line to a 2D
image. An example of F is shown in Figure . In the subsequent text this
image is only used to facilitate the explanation of the proposed algorithms. In
a real implementation the algorithms should operate directly on the scan-lines.
The accuracy of the approximate foreground mask F can be improved by di-
viding the image in tiles and by computing a scan-line for each tile. Combining
the introduced horizontal scan-line with a vertical scan-line can further im-
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prove the accuracy of the foreground approximation. Note that the calculation
of vertical scan-lines comes at an extra computational cost because of the sum-
mation of the foreground pixels along a different direction. In this thesis we
wish to provide a proof of concept of the scan-line approach by studying the
case of one horizontal scan-line per image. The suggested extensions of this
main approach are expected to improve the performance of the method, but
bring about a higher communication and computational cost. The balance
between these aspects must be fine-tuned for particular camera set-ups.

With the goal of further increasing the suitability of the low data rate occu-
pancy calculation method for usage in smart camera networks, we propose an
occupancy calculation technique that has a very low computational and mem-
ory load. This method consists of back-projecting for each camera the fore-
ground approximation F to a common reference plane parallel to the ground
plane and fusing these camera occupancy maps with a logical AND operation.
The height of the common reference plane H4xp should be chosen between 0
and the typical height of a person.

Conceptually, this technique is related to the shape-from-silhouette technique
of [Laurentini, [1994] to construct visual hulls. With this technique, within a
cuboid-shaped volume V2 in the 3D space of the observed scene

V3 =[X1,Xs) x [V1,Y3) x [Z1,Z5) C N3, (4.7)

a voxel j € V2 assumes the value 0 when it is observed as empty in at least one
of the views. In our case this happens when the voxel is part of the reprojected
background region in the scan-line based foreground approximation F from at
least one of the cameras. All other voxels have value 1. Intersecting this visual
hull with the plane at height H 4 p parallel to the ground plane yields us the
desired occupancy map.

The quality of the thus obtained occupancy map depends on the quality of the
foreground approximation F. This quality is influenced by the camera set-up
and it is better when the objects appear large in the camera image.

4.5.2 Foreground Detection on Scan-Lines Version

In Section the foreground detected in a camera image is reduced to a
scan-line. One can reverse the order of these two operations and first reduce
the image to a line by column-wise summing and detect foreground on this line.
The feasibility of this has been demonstrated in [Tessens et al., 2009].

On the output of the foreground detection on the scan-line, the method of
Section [I.5.1] can be applied to calculate ground occupancy. This system is
discussed extensively in the PhD thesis of my colleague Marleen Morbee and
is therefore not elaborated on in this work.
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Figure 4.6: Undistorted camera views of the APIDIS data set.

4.6 Results

4.6.1 Test Data

To evaluate the proposed method and its adaptations, we use two data sets.
The first one is the publicly available basketball data set from the European
project APIDIS [De Vleeschouwer and Delannay], 2009]. It consists of seven
synchronized and calibrated video streams from five cameras with partially
overlapping views distributed around the court, and two top-mounted cameras
with fish eye lenses. The views are shown in Fig. The videos are processed
at a resolution of 800x600 and at 25 fps. The size of the field is 15m x 28m.
There are on average 12 persons on the field. Ground truth target positions
have been made available for 60 frames recorded at 1 s intervals within the
time interval 18:47 until 18:48. As most cameras point to the left half of the
court, only positions in that half are considered for the evaluation.

The second data set is from an indoor scene of 5mx4m observed by N = 10 web
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Figure 4.7: Camera views of the WSNL data set.

cameras. The camera views are shown in Fig. [1.7] Approximately 8 minutes of
footage (2400 frames) in which two, three and four persons appear, have been
recorded at 5 frames per second and at CIF resolution (352x288). Ground
truth ground plane positions of the tracked persons have been generated for
every fifth frame (1 s intervals). This has been done by manually checking

the output of the multi-camera person detection algorithm of [Delannay et al.
2009| and correcting it where necessary.

The average height of a person is set to 2m, as in [Delannay et al. 2009]. In
the rare case of conflicts in the fusion process, all evidence is transferred to
m(0x). In the first data set we consider square resolution cells with an area
of (0.02m)? and we detect the foreground with an algorithm based on mixture
of Gaussians modeling [Stauffer and Grimson| 2000] with elementary shadow
removal [Kaewtrakulpong and Bowden, |2001].

The choice of the foreground detection algorithm is important because it is
a fundamental building block in the proposed system. Thanks to the differ-
ent viewpoints of the cameras in a network, gross foreground detection errors,
such as the ones introduced by the foreground approximation proposed in Sec-
tion[£.5.1] can be filtered out to some extent. However, the danger lies in errors
that simultaneously occur in all cameras, such as the appearance of shadows
or local or global lighting changes. For this reason it is important to use an
effective and accurate foreground detector.

In the second data set we take resolution cells of (0.04m)2. The cameras in this
set-up have quite an unstable automatic gain control, which is a typical prop-
erty of very cheap cameras. In a network made up of many cameras, the price
of the cameras is indeed an issue and is best kept low. This data set is therefore
an interesting test case to assure that our algorithms are not only suited for
usage with high-end industrial cameras. Because of the unstable gain control,
extreme lighting changes of the observed scene are frequent. For this reason
we use a background foreground segmentation algorithm for these sequences
that can quickly adapt to such changes [Li et al.,[2003] with elementary shadow
removal [Kaewtrakulpong and Bowden, |2001].
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(a) Sum Method (b) POM Method (c¢) Proposed Method

Figure 4.8: (a) The aggregated [Delannay et al.|2009], (b) the probabilistic 1
and (c) the proposed evidential occupancy map for the frames of Fig.
White corresponds to low confidence/probability/evidence of occupancy, black to
high. The crosses indicate the ground truth player positions.

4.6.2 Occupancy from Full Foreground Images

In this section we evaluate the method described in Section 4] on the first
data set.

The right panel of Fig. [£.§]shows m({occ}) in part of the left half of the court for
the frames shown in Fig. [£.6] The left panel in Fig. [I.§ shows the aggregated
occupancy map obtained as in [Delannay et all @, the middle one the
probabilistic occupancy map of [Fleuret et al., [2008] with cell width set to
0.4m (other widths yield less accurate results). The map obtained by DS
fusion is more representative of the actual occupancy of the field because it
shows very clearly defined peaks at the target positions, and very few ghost
objects or interference strokes between objects. This is less the case for the
methods of Delannay et al|[2009] and Fleuret et al.| [2008].

Let the total mass (TM) be the sum over all cells of the occupancy evidence for
the proposed method (TM = ), m({occy})), of the aggregated occupancy
confidence for the method of |Delannay et al.| [2009], and of the occupancy
probability for the method of [Fleuret et al. [2008]. In Fig. we plot for our
method and the method of [Delannay et al.| [2009] the percentage of TM that
lies within a disc with diameter d around a ground truth target position as
a function of d for all the frames in which ground truth target positions are
available. For the method of [Fleuret et al|[2008] this evaluation method yields
poor results because it uses a generative person model that is designed such
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Figure 4.9: For the first environment, the percentage of the total mass within a disc
with diameter d around a ground truth target position (for the proposed method and
the method of [Delannay et al.,[2009]), or within cells with width d actually occupied
by a target (for method [Fleuret et al., [2008]).

that the size of the resolution cells should approximate the expected size of the
objects to detect. This cell size is significantly larger than in our method and
the method of Delannay et al.| [2009]. Therefore, for fair comparison we plot
for the method of |[Fleuret et al.| [2008] for different cell widths d the percentage
of TM that is generated in cells that are actually occupied by a target.

From this graph we conclude that in the proposed method the mass of occu-
pancy evidence is more concentrated around the ground truth positions than
the mass of occupancy confidence of method |[Delannay et al., 2009] and the
mass of occupancy probability of method [Fleuret et al.l |2008]. This is obvi-
ous from the ratio between the percentage of total mass of our method and
the method of [Delannay et al.| [2009] and |Fleuret et al.| [2008]. For
2009], this ratio ranges from 24.64%/2.38% = 10.34 for d = 40cm
to 97.61%/43.96% = 2.22 for d = 340cm, and reaches 7.67 for a typical di-
ameter of 1m for sports players. For [Fleuret et all 2008], it ranges from
6.02%/0.65% = 9.22 for d = 20cm to 97.61%/87.15% = 1.12 for d = 340cm,
and reaches 1.43 for d = 1m. In other words, the ground occupancy map ob-
tained using the proposed method is more accurate than using the methods
of [Delannay et al.|[2009] and [Fleuret et al. [2008]. This is beneficial for direct
use or for further analysis of the map.

The proposed method is about a factor of six more complex than the method
of [Delannay et al.| [2009]. Indeed, fusing the bodies of evidence of two cameras
requires 17 operations per cell. For N cameras this boils down to 17(N —
1) operations, compared to 3N + 1 operations required for [Delannay et all
2009|. Due to the iterative nature of the algorithm of [Fleuret et al.| [2008], its
complexity is a factor in the order of hundreds higher than that of the proposed
method.
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Experiments for computation time measurement were performed on an AMD
Athlon 64 3400+ 2.40 GHz processor using the SSE (Streaming SIMD exten-
sions) instruction set. The performed computations were floating-point com-
putations. The method of Delannay et al. [2009] and the proposed method
are implemented in Matlab code, and all mentioned execution times are av-
erages over calculations performed on 10 frames of the test data. Fusing the
ground occupancy maps of the cameras with the proposed method took 0.93 s
on average, compared to 0.11 s for the method of |[Delannay et al.| [2009]. The
ratio between these two times is higher than the theoretically expected factor
of six. Obtaining the ground occupancy map per camera for side view cam-
eras took 4.86 s for the method of [Delannay et al.| [2009]. For the proposed
method, an additional 1.48 s are needed because evidence of occupancy and
of non-occupancy needs to be calculated for each resolution cell. So in to-
tal this amounts to 6.34 s. Due to the higher computational requirements to
process the top view images captured with fish-eye lenses, obtaining a ground
occupancy map from such a camera took 35.54 s on average.

For the method of [Fleuret et all 2008], the freely available c++ implementa-
tion of the authors was used. As this method is based on an algorithm that
needs to converge, the computation time is image dependent. On the same
processor as described above, averaged over 60 frames, with cell width set to
0.4m, the method took 17.59 s per frame to execute.

4.6.3 Comparison of Data Rates

In this section we investigate how many bits are required for communication
when scan-lines are transmitted, as in the method discussed in Section [4.5.1
as opposed to full foreground images, which is needed in the method described
in Section (L4l

First we discuss the data rate in the method described in Section £4l The
number of bits required to represent a foreground image depends on the image
size, which is [ by w. Therefore the number of required bits is lw. This number
can be minimized by compression. We assume that PNG compression is used,
which is especially suited for the sharp transitions in silhouette images, and
that the average compression rate is p = 0.02. So, the required number of bits
after compression can be approximated by lwp.

In the method discussed in Section[4.5.1] only scan-lines and not full foreground
images are transmitted. As mentioned in Section [£.5.1} the amount of bits
needed to encode a start or end point of an object in such a scan-line is at
most M = [log, w] bit. If we assume there are at most B distinguishable
objects in an image frame, the payload of the transmission of a scan-line can
be approximated by 2M B bit. Alternatively, the scan-line can be run-length
coded, which leads to an even smaller payload.

In Table [4:2) we give some numerical examples to compare the required bits.
For the image size, we assume that [ = 352 by w = 288. So, we have M = 9.
For full foreground images, the number of bits is fixed and does not depend
on the number of objects. In the table we indicate the average number of bits
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Table 4.2: Number of bits required to represent a full foreground image and a
scan-line.

Full foreground Full foreground .
. . Scan-line
image image (compressed)
Required bits lw +lwp 2M B
5 objects 101376 2151 90
10 objects 101376 2151 180

needed to represent the foreground images in the second data set after PNG
compression. For the scan-lines, we need the number of objects in the room.
We assume that there are at most 10 objects, and give the maximum number
of required bits. However, in a realistic situation objects may occlude each
other, so the number of objects visible in each image frame is usually smaller
than the number of objects in the room. The cases when B = 5 and B = 10
are listed in Table It can be observed that transmitting scan-lines instead
of full foreground images significantly decreases the communication overhead.

4.6.4 Occupancy from Scan-line Approximations

In this section we compare the performance of the low data rate and low load
version of the proposed method as it is discussed in Section with the
Dempster-Shafer based method on full foreground images of Section [£.4 The
threshold T to obtain the scan-lines is set to one tenth of the image height:
T =h/10 and Hanp is chosen Hanp = 1.29.

We first apply the methods of Sections [:4] and [£.5.1] to the first data set. To
obtain a scan-line based foreground approximation from the top view images
(Figs. and e), we transform the detected foreground image F'(z,y) to polar
coordinates F’(r,6) with the optical center of the image as origin and compute
the scan-line as

1T < > F(r,6)
H'(0) = Fra (4.8)

0 ifT>Y F(r0)

r=1

The extension of the scan-line H'(f) transformed back to the Euclidean image
coordinate system yields the desired scan-line based foreground approximation.
In Fig. we plot for the investigated methods the percentage of TM that
lies within a disc with diameter d around a ground truth target position as a
function of d for all frames for which ground truth is available. We observe that
the occupancy evidence calculated from scan-line based foreground approxima-
tions is a lot less concentrated around the ground truth player positions than
when the full foreground images are used.

This is also apparent in Fig. m Fig. shows m({occ}) in part of the
left half of the court for the frames shown in Fig. calculated from scan-
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Figure 4.10: For the first environment, the percentage of the total mass within
a disc with diameter d around a ground truth target position for the methods of

Sections (.4 and [£.5.11

line based foreground approximations using AND-fusion. There is quite some
clutter in the left part of the figure, and a completely missed occupancy region
in the right part.

To facilitate comparison with the proposed method on full foreground images,
Fig. has been included in Fig. |4.11p. The reason for the disappointing
performance of the method operating on scan-lines is the poor approximation
quality of F. Indeed, as is apparent from Fig. the persons in the scene
appear small in the images in this data set.

We expect F to be a better approximation of F' in the second data set be-
cause persons appear bigger in the camera images (see Fig. [4.7)). Fig. [4.12p
shows m({occ}) for the frames shown in Fig. calculated from full fore-
ground images. Fig. [4.12b shows the occupancy map obtained from scan-line
based foreground approximations using the low data rate and low load method.
Both methods lead to satisfactory results and comparable amounts of clutter.
It appears that in this set-up the low data rate occupancy calculation method
is competitive with its full data rate counterpart.

This is confirmed by the numerical results of Fig. In this graph we plot
for all frames in this set-up for which ground truth is available the percentage
of TM that lies within a disc with diameter d around a ground truth target po-
sition as a function of d. We observe that the occupancy evidence produced by
the low data rate and low load version of the method is less concentrated around
the ground truth target positions than the occupancy evidence obtained with
the method operating on full foreground images. However, the performance
drop is less pronounced than in the first data set.

The calculation of the maps m;({ocex }) and m;({noccx }) for each camera is ex-
pected to be quicker than when these maps are computed from full foreground
images because the calculation of b% and f: becomes trivial and because of bet-
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(a) DS on Full Image (b) AND on Scan-line

Figure 4.11: The occupancy map obtained using the methods of (a) Section [4.4]
(b) Section for the frames of Fig. White corresponds to low evidence of
occupancy, black to high. The crosses indicate the ground truth player positions.

¥ 2
4
(a) DS on Full Image (b) AND on Scan-line

Figure 4.12: The occupancy map obtained using the methods of (a) Section
and (b) Section for the frames of Fig. White corresponds to low evidence
of occupancy, black to high. The crosses indicate the ground truth player positions.
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Figure 4.13: For the second environment, the percentage of the total mass within
a disc with diameter d around a ground truth target position for the methods of

Sections 4] and [£.5.1]

ter data locality in the scan-line than in the full image. Experiments to measure
this were performed on the same AMD Athlon 64 3400+ 2.40 GHz processor.
The mentioned execution times are averages over calculations performed on 10
frames of the test data. In this case computation of the ground occupancy
maps per camera took 3.68 s on average. This is indeed less than the 6.34 s
needed for full images. The fusion process of the ground occupancy maps of
the different cameras is independent of how the individual ground occupancy
maps are calculated. Hence, no computation time differences are measured for
the fusion process.

4.6.5 Real-time Demonstrator

We have implemented the method of Section [£.4]in a camera network installed
at Hogeschool Gent to calculate ground occupancy in real time. The network
consists of four progressive CCD color cameras with a resolution of 1024 x 768,
each connected to an Intel Core 2 Duo/1.86GHz processor. Each camera plus
computer simulates a smart camera. A base station with the same processor
completes the network. The cameras observe a scene of 6mx4m. The resolution
cells x have a size of 0.5cmx0.5cm.

Each camera ¢ = 1...4 performs foreground detection based on mixture of
Gaussians modeling [Stauffer and Grimson, 2000] with elementary shadow re-
moval [Kaewtrakulpong and Bowden| 2001] and calculates for all x m;({occx}),
where g' is always set to one. m;({occ}) is transmitted over an Ethernet cable
to the base station.

As gi is always one, m;(fx) depends only on the calibration parameters of the
camera (i.e., the viewing range) and is stored at the base station. The base
station calculates m;({nocex }) as m;({nocex}) = 1—m;({ocex }) —m;i(6x). The
occupancy maps of the single cameras m;({occ}) are fused using Dempster’s
rule of combination to obtain the final occupancy map m({occ}).
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The base station starts calculating the occupancy map m({occ}) as soon as it
has received a new m;({occ}) from all four cameras since the last time m({occ})
was calculated. However, to make the system resilient against transmissions
getting lost or the occupancy calculation of single cameras being delayed, the
base station is also programmed to operate at a minimal frame rate fpspyi,. If
after a time 1/fpsmin it has not received data from all cameras yet, the last
received m;({occ}) is used as the current one for all cameras ¢ from which no
data was received. In our system, fpspyin=2fps.

In this demonstrator additionally some area of the ground plane is marked as
a forbidden zone. People walking in the forbidden zone trigger an alert. The
alert is triggered as soon as one third of the total mass TM is in the forbidden
zone.

The system currently operates at 2 to 3 fps. The bottleneck is the calculation
of m;({occ}) at the camera side. A more efficient implementation with integral
images to calculate b% and f, and larger resolution cells x, would be straight-
forward ways to speed up calculations. This would also help reduce the latency
of the system, which currently amounts to about 1 s.

Fig. [£14] shows a picture of the demonstrator in use. A video explaining its
operation is also available [Tessens and Morbee, [2010]. The carpet marks the
observed scene. People are allowed to walk on the light gray track and the
dark gray carpet is the forbidden zone. The projector screen on the right
shows the alert level on the left - green means no alert at this moment - and
the occupancy map on the right. Yellow indicates high evidence of occupancy.
The black track represents the allowed zone and the blue regions the forbidden
area. The system latency clearly shows up in Fig. Indeed, the region
of high occupancy evidence corresponding to the left person on the projector
screen matches the location where the person was standing about 1 s prior to
the current scene. The right person has been stationary for the past second
and is therefore shown at the correct location.

4.7 Conclusion

We have described a new method to calculate occupancy maps using multiple
cameras. In particular, we have shown how the performance of a method
requiring only forward projections from the image to the ground plane can
be significantly improved by Dempster-Shafer based fusion of the single view
ground occupancy maps. Experiments and a comparison with the state-of-the-
art show clear improvements in the fused ground occupancy maps in terms of
concentration of the occupancy evidence around ground truth person positions.
We have also demonstrated the effectiveness of the proposed method in a four
camera network operating in real time.

We have modified this method into a low data and low load version for use in
a smart camera network. This version requires that the persons in the scene
appear sufficiently large in the camera views. If this is the case, cameras can
send only scan-lines of the detected foreground, not the full foreground image.
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Figure 4.14: Real-time demonstrator in use. The carpet marks the observed scene.
People are allowed to walk on the light gray track and the dark gray carpet is the
forbidden zone. The projector screen on the right shows the alert level on the left -
green means no alert at this moment - and the occupancy map on the right. Yellow
indicates high evidence of occupancy. The black track represents the allowed zone
and the blue regions the forbidden area.

At the receiver side a scan-line based foreground approximation serves as a
good basis to calculated ground occupancy.






View Selection for
Observability and 3D Shape
Reconstruction

In a camera network with overlapping viewing frustums, observations from dif-
ferent nodes are usually highly correlated, resulting in redundant data to be
processed. A sensor management system that can fully exploit all available
information in the network while keeping the redundancy under control is ben-
eficial, and from a practical point of view often necessary. A possible way to
avoid redundant processing is to select a limited number of cameras for each
network task. Only these cameras do processing and data is transmitted only
between the relevant cameras. With smart cameras such a distributed imple-
mentation is feasible. In some cases a central sensor may also be involved, but
this is not always necessary. Putting only some cameras to work saves camera
and network resources and facilitates multi-tasking where different optimally
chosen subsets execute different tasks, e.g., observe specific persons.

In this chapter we study view selection for observing people in a scene and
for reconstructing their 3D shape. In applications such as human behavior
observation, pose extraction and person identification, the main information
content of the joint network observation can be summarized into a limited
number of views at each time instant. Depending on the acceptable information
loss associated with this data reduction, the selection can be narrowed down
to one principal view.

In the next chapter, we will take a more general approach to sensor selection
in camera networks.

5.1 Introduction

In this chapter, our interest lies in selecting a limited number of cameras from
a network such that this subset constitutes a complete view of the persons in
the scene, i.e., that we have a frontal view of one or more persons and that
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we can reconstruct their 3D shape. We propose a low data rate method that
is designed to be implemented in a distributed way on smart cameras. These
allow to extract from the captured images the necessary observations for view
selection using distributed computing, thus eliminating the need to collect the
image data at a central point. This diminishes the required communication
bandwidth within the network, which allows the cameras to work wirelessly,
and spreads the computational burden over the camera nodes, resulting in a
scalable system. We further design an algorithm to reduce the computational
burden of the selection decision and to make the method applicable at high
frame rates. We also discuss the practical issues to operate such a network
including the network communication protocol.

The remainder of this chapter is organized as follows. Section [5.2] discusses
literature related to this work. In Section [5.3] we elaborate on the setup of
the system for which we devise our methods and on the assumptions we make.
Section sketches the layout of the algorithm. Methods for principal view
and helper camera selection are explained in Sections and respectively.
The operation time frame is treated in Section [5.7] The performance of the
method is discussed in Section [5.8] and conclusions are presented in the last
section.

5.2 Related Work

Viewpoint selection has been studied in the fields of computer graphics and

robot navigation (see for example [Vazquez et all 2003] and |[Roberts and,

Marshall, [1998]). The methods developed in these fields require an accurate
model of the observed shape(s) and have difficulties coping with the background

present in natural scenes, as they were all designed for artificial circumstances.
More directly related to this work is [Feris et al., 2007], where a single camera
collects key frames of people in surveillance video based on face detections.
View selection for observability is treated in [Daniyal et al., 2010; Jiang et al.l
[2008; [Kelly et al., 2009; Li and Bhanu, 2009; Morbee et al.,[2008]. The authors
in [Daniyal et al.,[2010] assign a score to the content of each view by measuring
the activity level, the number of objects, events, etc. The size of the bounding
box of an object is used as a quality of view measure in [Jiang et al., 2008, where
dynamic programming is used to optimize the selection over time. The object
size and centrality in the camera image are considered in [Kelly et al.l 2009],
complemented by a face detection measure in [Li and Bhanul [2009; Morbee|
00,

In this work, besides relying on face detection, we extract features such as object
size and visibility from a 3D analysis of the scene, reducing the sensitivity of
the algorithm to spurious detections in single cameras.

Algorithms for automatically selecting a subset of cameras within practical
camera networks have been designed for several other purposes than view se-
lection for observing people and 3D shape reconstruction. In [Soro and Heinzel-|
man, [2007] and [Yu et al.,|2007], the authors investigate camera selection within
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Figure 5.1: Scheme of the system setup.

wireless vision networks of battery-powered nodes under lifetime constraints for
user-specified viewpoint synthesis. In [Matsui et al., [2001} [Yang et al., [2004],
bandwidth and computational issues are considered when cameras within a
network are tasked in order to minimize the number of active cameras [Matsui
et al., |2001] while determining the occupied space in the scene [Yang et al.l
2004]. Also, a related topic is treated in [Bramberger et al.l |2005], where real-
time allocation of tasks in networks of smart cameras is studied.

We propose a low data rate method with greedy optimization to select a subset
of cameras that constitute a complete view on the people in a scene.

5.3 System Setup and Notations

The system we consider consists of multiple smart camera sensors that observe a
room with persons inside. A scheme of the system setup is depicted in Fig.
The smart camera sensors are battery powered and communicate with each
other through wireless channels. Their positions and orientations are fixed and
calibrated. If the internal and external calibration parameters are available
at each time instant, the proposed algorithm can also be applied in a mobile
camera network. A base station is deployed to receive the observations from the
camera sensors and is responsible for coordinating all sensors in the network.
The cameras are denoted by C; for ¢ = 1,..., N, with N the total number of
sensors. The complete collection of cameras is the set C = {C4,...,Cn} where
|C| = N. The image captured by the i-th camera at a certain time instant ¢
is denoted by X;(t). The different persons or objects are denoted by O; for
j=1,..., L, with L the total number of objects in the scene.

The goal of the proposed algorithm is to select a set of cameras S C C, where
S| = n < N, that provides a frontal view of as many persons in the scene
as possible, and that allows to reconstruct the volume in 3D space occupied
by the people in the scene as accurately as possible for the given number of
selected cameras. In the remainder of this chapter, we will refer to determining
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the volume in 3D space occupied by a person as 3D shape reconstruction.
The reconstructed 3D shapes of people are useful as input for higher level
algorithms such as pose or gesture recognition or 3D rendering and the frontal
view provides an overview for observing the scene. This frontal view is expected
to be the view preferred by a human observer among all available views because
people usually like to see the front side of a person.

Ideally, the number of selected views n should be updated dynamically as a
function of a task related quality measure and a communication and/or com-
putational cost criterion. However, in this work, the focus lies on the criteria
for camera selection and the selection process itself, and the number of selected
views n is kept fixed. The formulation of a task related quality measure is
the subject of Chapter [6] of this thesis. The definition of a computational cost
criterion is treated in the PhD thesis of my colleague Marleen Morbee, who
has also studied the dynamic updating of the number of cameras selected for
a task.

The camera selection decision is based on a limited amount of information that
the cameras locally extract from the observed images and transmit to the base
station. The base station runs the camera selection algorithm based on the
received data and broadcasts the selection result to all the camera sensors.
Only the selected cameras send their complete image to the base station. The
remaining N — n cameras do not send any image data. At the base station,
the images can be watched, stored or processed further.

The selected set of cameras contains two types of cameras:

e The key or principal camera: the camera with the view that contributes
most to the desired observation of the scene at a certain time instant,
i.e., that captures a frontal view of one or more people in the scene. The
key camera is indicated by K.

e One or more helper cameras: cameras with views that complement the
selected key view and that together with the key view allow to reconstruct
the 3D shape of the persons in the scene as accurately as possible.

The n — 1 helper cameras are indicated by Wy where k =1,...,n — 1.

Note that S = {K} U {W1,...,W,_1}. The total selected view subset consti-
tutes a significantly more efficient scene representation than the totality of the
available views.

Although the transmission of an image is now delayed by the time it takes
the base station to make and communicate its selection decision, the time gain
resulting from not having to transmit complete images from all nodes ensures
that the observation frequency of this system can be considerably higher than
that of one without view selection. For example transmitting a 352x288 JPEG-
compressed color image of 50kB (corresponding to a compression rate of 0.17)
using 100kbit/s (about the maximal net data rate achievable under the ZigBee
specification) takes 4.0 s.

To reduce the time of the camera selection, it is important to lower the time
needed for the base station to collect the input data from the nodes. This is
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Figure 5.2: Block diagram for camera selection.

why it is of paramount importance that the nodes send only small amounts of
processed information as input for the camera selection algorithm.

It is possible to augment the observation frequency by not running the view
selection algorithm for every frame but applying a selection decision to several
frames. Also, one can determine the selection at a certain time instant based
on the observation data of a previous time instant. These frame rate increasing
strategies have an impact on the accuracy of the camera selection as necessary
switches of the selection will be delayed. These issues will be discussed in

Section [B.71

5.4 Algorithm Architecture

The algorithm block diagram is depicted in Fig. We now explain the main
building blocks.

5.4.1 Distributed Processes

In the first phase of the algorithm, the nodes process the observed images
to yield only the information necessary for the base station to determine the
camera selection. The lower the amount of data that needs to be transmitted,
the quicker this decision can be made and the higher the achievable observation
frequency.

Each smart camera C; independently runs the following algorithms on its image
X,;(t) captured at a certain time instant ¢. In a first step, we segment the
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foreground (FG) F;(t) and the background (BG) B;(t) of the frames X;(t).
Foreground objects are objects of interest, i.e., objects that are not part of the
background of the scene. In our application these are the persons moving in
the scene. This implies that people or objects that come to a standstill and
do not move during a predetermined time (the length of which depends on
the parameters of the foreground detection algorithm) will inevitably become
background objects. In another application the foreground may for example
be people behaving abnormally in a crowd. We use the method of [Li et al.l
2003] to detect foreground objects. This method uses a Bayesian decision rule
to classify pixels as background or foreground based on features extracted from
long-term image statistics as well as the temporal difference between the current
and the previous frame.
Then, we detect the frontal faces with the object detector that was initially
proposed in [Viola and Jones| 2001] and then improved in [Lienhart and Maydt}
2002]. At the core of this method is a cascade of complex classifiers. Each
complex classifier consists of several simple classifiers that detect specific Haar-
like features. An image region is classified as being a face if the region has
passed all classification stages of the cascade. To speed up processing and
to lower the number of false detections, we restrict the face detection to the
foreground regions of the frame. If even more efficient processing is needed,
the face detection processing could take into account the face detections of the
previous time instance.
At each time instant ¢, the face detector returns the following values: f;(¢)
and QL(t), I = 1,..., f;(t). fi(t) is the number of faces detected in the frame
X;(t). QL(t) is a measure of the quality of the I'' detected face. The lower
this measure, the less certain the detection. In our implementation, we assume
that the number of simple classifiers in the face detector that have detected the
feature which they were trained to detect is such a measure.
The face detection measures Q.(t) of all detected faces are added into one
general score

fi(¢)

Qi(t) =Y QL) (5.1)
=1

which is sent to the base station. With proper quantization if needed, this
score can be represented by at most one byte.

Additionally, as in Section we project in each camera C; the segmented
foreground F;(t) onto a horizontal line. This line is called scan-line and an
example is shown in Figure [5.3p. All cameras send their (run-length coded)
scan-lines to the base station.

Assuming at most B distinguishable objects in an image frame, the payload
of this transmission can be approximated by 2 [log, w] B bit, where w is the
image width (see Section . For example, for an image with width=352
and for 5 detected objects, this number amounts to 90 bit. Together with the
output of the face detector, only 98 bits are transmitted per frame.

In the remainder of this chapter, we will leave out the time variable ¢ when
talking about the observations and processing of the current time instant, in
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Figure 5.3: Example of (a) a background/foreground segmentation (B; and F;),
(b) a scan-line, and (c) a column-wise extended scan-line (B;sc and F;sc).

order not to overload the notations. We will again use the time variable when
previous observations are taken into account.

5.4.2 Central Processes

At the base station, we extend the received scan-lines to very rough approxima-
tions of the background and foreground regions B; . and F; 4. (see Fig. .
Using the foreground approximations from all cameras we calculate an occu-
pancy map O¢ with the method of Section

From this occupancy map, we extract a number of cues on which we base our
camera selection.

The selection of a subset of cameras to observe the scene efficiently starts with
the determination of the key or principal view. In Section we present two
methods to determine this view. To complement the key view and to allow
3D shape reconstruction, one can decide to select additional helper views that
complement the view of the key camera. This is discussed in Section [5.6

5.5 Principal View Determination

5.5.1 Face Detection Only

In a first method for principal view determination the face detection score of
Eq. is used to select the principal view [Morbee et all) 2008]. To deal
with spurious face detections and to obtain smoothness over time, the decision
on the key camera for time instant ¢ not only depends on the current face
detection output, but also on the previous observations. For each camera Cj,
the temporally filtered face detection score S;(t) is an exponentially weighted
moving average of the current observation and the previous temporally filtered
face detection score S;(t — 1), with S;(0) = 0:

fi(t)
Si(t) =a Y Qit)+ (1 —a)Si(t—1),Vt > 1 (5.2)
=1
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where « is a constant between 0 and 1 that determines the importance of
previous observations. Then, the key camera at time instants ¢t > 1 is

K(t)= argcmax Si(t) (5.3)

5.5.2 Face Detection and Occupancy Map Cues

In a second key camera selection method we combine the face detection scores
of all views with knowledge about the scene layout that we extract from the
occupancy map. More precisely we determine the position and velocity of each
detected object O, with j = 1... L. Velocities are determined by calculating
the distance covered by each object from the previous to the current frame.
Armed with this information and with the output Q;(t) of the face detector on
each camera, we assess the suitability of each camera to be assigned the role of
key camera.

We propose different factors to determine this suitability.

o The wisibility v;; of each object O; in the view of camera C;: This measure
takes on value 1 if the center of mass of the object lies within the viewing
range of the camera and 0 otherwise. The viewing range of each camera
is determined from the calibration data.

e The moving direction of each object O; relative to the viewing direction
W; of camera C;: With V; the velocity of object O;, negative values of
Gij = V; - ¥, (with - denoting the scalar product between two vectors)
indicate that the object is moving towards the camera. In this work, we
assume that an observed person’s body is oriented in the direction of his
or her movement. As we wish to obtain frontal views of the observed
persons, we introduce a binary value «y;; which is 1 when Gj; is negative
and 0 otherwise.

e The distance D;; between the center of mass of object O; and the camera
center of C;: This distance is normalized by dividing it by the maximal
possible distance Dy,.x between an object in the observed space and a
camera center. To avoid evaluating square roots, we always work with
the square of distances. If an observed person’s body is oriented towards
a camera - which can be ascertained when the velocity vector points
towards the camera or if the person’s face is detected - a small distance
between camera and object is desirable.

e The speed ||V,|| at which each object O; is moving: If this speed is
very small, we assume that we cannot conclude anything about the body
orientation of the observed person as (s)he might be standing still or
rotating around his or her axis. The binary value p; indicates if the
speed exceeds a certain threshold Kg, in which case p; = 1. Otherwise
p; = 0. This measure is camera independent.
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e The output Q; of the face detector on each camera C;: As the face detec-
tion score of each camera is the sum of the scores of all faces detected in
its view, it is not linked to a particular object. In this method, we do not
temporally filter the output of the face detector (as in Section , be-
cause the occupancy map related factors also used to assess the suitability
of a camera to be the key camera already have a temporally smoothing
effect on the key selection.

We summarize these factors into a score for each camera Cj;:

L D2
S; = KgQ; + E VijVijlhj (—KgGij + Kp(l-— DQ” )>, (5.4)
=1 maz

where Kq, K¢ and Kp are positive tuning parameters that weight the con-
tribution of each factor. In the current system, these parameters have been
optimized experimentally and then fixed. This tuning was done manually on a
very limited number of frames. K¢ is chosen such that if a face is detected, the
term Kq@); is much larger than the other terms in Eq. This ensures that
if a face is detected in only one view, this view will be selected as the principal
view. The parameters Ko and Kp have been chosen such that Ko > Kp.
The reason is that unlike D;;, G;; is indicative of the frontal view of a person
because the assumption that a person’s body is oriented in the direction of his
or her movement is more likely to be valid if G;; is large. In this way, if no
faces have been detected in any of the views, the view which is most likely to
provide a frontal view of one or more persons in the scene will be selected as
the principal view, even if other cameras observe the persons from closer. If
more than one view is equally likely to provide a frontal view of one or more
persons in the scene, the camera which observes the persons from the closest
distance is chosen.

The dynamic adaptation of the value of the tuning parameters (e.g., based
on a probabilistic modeling of the scene dynamics) would make the algorithm
more universally applicable and flexible. In Chapter [6] we introduce a more
general and theoretically founded way of evaluating quality-of-view measures
for camera selection.

Note that the score S; can never assume negative values, but it can be zero if
no faces are detected in the camera 7 and if the observations extracted from
the occupancy map are inconclusive. The latter case occurs

e if no objects are visible in any of the cameras,
e if all objects move away from the cameras in which they are visible, or
e if all objects move at speeds below the threshold Kg.

To obtain smoothness over time, the decision on the key camera for time instant
t not only depends on the current observations, but also on those obtained at
previous time instants. The default choice for the key camera K(t) at time
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Input: S;,i=1...N (the scores from the different cameras)
Output: K(t) (the key camera for this time instant)

1: K(t) <« K(t—1)

2: Spmaz «— 0 and Riey(t) = NRQ

3: for: =1to N do

4: if S; > S,,0. then

5: Sma:r — Si

6: Riey (t) « C;

7: end if

8: end for

9: if Rpey(t) # NRQ then

10: if Rkey(t) = Rkey (t — 1) then
11: K(t) < R;(t)

12: end if

13: if K(t) ¢ {Rkey(t),..., Rrey(t —T)} then
14: K(t) «— R;(t)

15: end if

16: end if

algorithm 1: Principal View Determination

instant ¢ is the previous key camera K (t—1). It is then possible for all cameras
to place a request to take over the role of key camera. Let the acronym NRQ
denote 'No ReQuest’. The camera placing the request (the requester) is denoted
by Riey(t), with Riey (t) € CU{NRQ}. If all scores are zero, no request is placed
and Ryey (t) = NRQ. Otherwise, the camera with the highest score .S;(¢) at time
instant ¢ places the request :

NRQ it VCy, Si(t) = 0
Riey(t) = argmax S;(t) otherwise ' (5.5)
C;

This request is granted if the same camera also placed a request at time instant
t — 1 or if the current key camera has not placed a request during the past T
frames. The parameter 1" should be chosen as a function of the frame rate and
of the maximal time delay which the user would allow for switching away from a
principal view that is not suited anymore, when there is no other view that has
placed two subsequent requests to take over the role of principal view. In this
way, excessive switching between cameras that are equally suitable to provide
the principle view is averted, while simultaneously avoiding that alternating
requests from such cameras prevents the role from being passed on to a more
suitable camera than the current key camera. Also, the delay for a necessary
switch of principal view is limited to one frame at most.

This algorithm is summarized in Algorithm
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5.6 Helper Camera Selection

Among the remaining N — 1 cameras we choose helper cameras, W}, where
k =1,...,n — 1, with n the total number of selected views. These helper
cameras also transmit their image to the base station. They complement the
image data from the already selected key camera K and allow to reconstruct
the 3D shape of the people in the scene. The 3D shapes of people, i.e., the
volume they occupy in 3D space, can for example be recovered using the shape-
from-silhouette technique |Laurentini, [1994]. With this technique, within a
cuboid-shaped volume V? in the 3D space of the observed room

V3 =[X1,Xs) x [V1,Y2) x [Z1,Z5) C N2, (5.6)

the visual hull H(j), j € V3, assumes value 0 when the voxel j is observed as
empty by at least one of the selected cameras. This is the case when it is part of
the reprojected BG region from at least one of the selected cameras. All other
voxels have value 1. The 3D shape reconstruction can be further refined, e.g.,
by identifying skin color in the selected views to locate hands and faces, or by
fitting appearance models. The reconstructed shapes, together with the image
data available at the base station, can serve as input for, e.g., pose recognition
or 3D rendering algorithms.

To determine which helper cameras to select, we assume that the occupancy
maps are (very crude) 2D ground plane shape approximations of the objects in
the scene and that the subset that yields the minimal occupied area provides the
best 3D shape reconstruction (see Figure. Indeed, the more resolution cells
are observed as empty around the objects in the scene, the better the 2D shape
reconstruction and the more the selected subset observes them from different
viewing directions. Note that the shape of people that can be reconstructed
based on the selected cameras is a 3D volume and not just a 2D approximation,
which is what the occupancy map provides us with.

Our approach consists of the following steps. First, the base station determines
all the valid candidate subsets S C C, for which [S| = n and K € S, with K
determined as in Section At this time, all the cameras have already sent
their scan-lines to the base station, which has used them for principal view
selection. For each candidate subset S, we now use only the scan-lines from
cameras in the subset: C; € S to reconstruct the occupancy map Og for that
candidate subset with the method of Section 5.1l

Subsequently, this occupancy map is filtered to remove ghost areas. These are
parts of the occupancy map that do not represent real objects but result from
an insufficient number of used cameras n (see figure . The map that is
used as a filtering mask is a dilated version OE® of the ideal occupancy map
Oc, reconstructed from the scan-lines of the complete set of cameras C (as
calculated in Section . In this way, we ensure that we base our camera
selection only on the shape approximation of objects that are also detected
when all N cameras are selected and the influence of ghost areas is minimized.
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C1

C3

.,

(a) Occupancy map
when Cp; and C3 are
selected.

C1

Cao

(b) Occupancy  map
when C; and C2 are
selected.

Figure 5.4: Occupancy maps when specific cameras are selected. Detected objects
are marked in gray. The ghost regions in (b), marked with a pattern, are filtered out
with the knowledge of the occupancy map calculated from all three cameras. As the
dark gray area around the circular objects is smaller in (b) than in (a), C2 adds more

shape information than C3 and is assumed to provide a better complementary view
to Cy than Cs.

The size of the filtered occupied area A(S), with

A(S)= Y 0s(j)Og'(), (5.7)

vjeP?

is considered the camera selection criterion in our algorithm. Thus we select
from all candidate subsets the final subset S,, that yields the minimal occupied
area A(S):

S, = argmin A(S). (5.8)

Vs

This subset constitutes a significantly more efficient scene representation than
the totality of the available views. Only the selected n cameras transmit their
full image to the base station.
The number of candidate subsets is (J:L[__ll)

N = 10 cameras we wish to select n = 3 cameras, (g) = 36 candidate subsets
need to be checked. If in a network twice this size, i.e., N = 20, we wish to select
twice as many cameras, i.e., n = 6, we need to check (159) = 11628 candidate
subsets. Clearly the number of candidate subsets quickly grows with increasing
camera network size. This means that performing an exhaustive search over
all candidate subsets to identify the optimal one which minimizes the occupied
area becomes computationally very demanding for larger networks.

We therefore propose a greedy algorithm that starts from the set selected at the
previous time instant to select those w = n—1 helper cameras {W1q,..., W, _1}
that add most shape information to the image data from the key camera se-
lected at the current time instant. The algorithm consists of two steps:

If for example in a network of

e removing from the set of the previous time instant those cameras that add
least shape information to the image data from the key camera selected
at the current time instant;
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e adding to this reduced set those cameras that add most shape informa-
tion to the image data from the key camera selected at the current time
instant.

This approach allows to keep the selected camera set updated as the scene
changes over time, while exploiting the temporal smoothness of these scene
changes to avoid an exhaustive search over all possible camera sets.

Assume that the algorithm reevaluates the selection status of at least u cameras
to obtain the camera set for the current time instant. The more cameras have
their selection status reevaluated, i.e., the higher u, the more the selection can
be adapted to possible scene changes, but also the higher the computational
burden of the selection.

Let us assume that the cameras selected at time instant ¢ — 1 form the set S.
The algorithm first combines the key camera K selected at time instant ¢ with
the selected camera set of the previous time instant ¢t — 1 to form a new set
S’ = SUK. Initially, at time instant ¢ = 0, we start the algorithm with all
cameras selected, which means that S is equal to C.

The first part of the algorithm greedily removes r cameras one at a time from
the set S’ such that the remaining selected cameras yield the minimal occupied
area. The resulting camera set S” includes the remaining selected cameras.
Given the number u, the number of cameras that will be first removed from
the set S’ is

o, if |S'| = n,
T{ S| —n+u, if|S]>n. (5.9)
In other words, the number of removed cameras r equals N — n + u after
initialization (because then S’ = C), r equals u + 1 if the key camera selected
for the current time instant was not part of the selected set of the previous
time instant (then |S’| > n), and r equals u otherwise.

The second part of the algorithm greedily adds u = n — |S”| cameras one at a
time to S” such that the set of selected cameras yields the minimal occupied

area. We denote the final selection solution as S,,. The pseudo-code of the
algorithms are summarized in Algorithm [2] and

In case of the greedy algorithm, the number of subsets that needs to be checked
is r(N — 1). If for example in a network of N = 10 cameras we wish to select
n = 3 cameras starting from a set of this size, and we reevaluate the status of
u = 2 cameras, 18 subsets need to be checked. This is half the 36 candidate
subsets that need to be checked when using the optimal algorithm. If in a
network twice this size, i.e., N = 20, we wish to select twice as many cameras,
i.e., n = 6, starting from a set of this size, and we reevaluate the status of
u = b cameras, we need to check 95 subsets. This is roughly 1/122 of the 11628
candidate subsets that need to be checked when using the optimal algorithm
Clearly the advantage of using the greedy instead of the optimal algorithm is
larger in larger camera networks.
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Input: S’ (a set of currently selected cameras)
Output: S” (a set of cameras after removing)

A denotes the size of the occupancy area

A,in denotes the minimal size over all sets tested so far

1: for m = 1 to r do (remove r cameras)

2 Amzn «— 400

3 for each camera C; in S’ do

4: if C; # K then

5: S’ — S"\{C;}

6 A — A(S’), the size of occupancy area given cameras S’
7 if A< A,,;, then

8
9

S// — Sl
10: end if
11: S+~ S'u {Cl}
12: end if
13: end for
14: S’ — S”
15: end for

algorithm 2: Greedy Selection Algorithm - Removing

Observation Sending Receiving [ Sending bsi ding
Nodes | Local processing | Scanline Idle Command| Images ing | Scanling

(Frame 1) (Frame 1) (Frame 1) | (Frame 1) (Frame 2) me 2)
Base Receiving N Broad Receivi
Station Idle Scanline Cammand| Images
Gemen)| TEED |G 9| @ 6

Figure 5.5: The time frame of the basic operation scheme.

5.7 Operation Time Frame

The basic operation time frame is shown in Fig. [5.5] where different colors in-
dicate operations on different image frames (i.e., captured at different time
instances). The sensor nodes first make observations and process the images
locally. The main operations this processing encompasses are background sub-
traction and face detection. Then, each node sends its scan-line to the base
station. After receiving the scan-line from all nodes, the base station runs
the greedy selection algorithm and broadcasts the result. Finally, the selected
nodes transmit their images to the base station, after which the nodes start
making new observations for the next frame and a new cycle starts.

From Fig. [5.5] it can be observed that both the base station and camera nodes
have idle time slots, which increases the interval between observations. In order
to increase the observation frequency, we propose an interleaving scheme as
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Input: S” (a set of cameras after removing)

Output: S (a set of new selected cameras)

A denotes the size of the occupancy area

A,in denotes the minimal size over all sets tested so far

:SHS”

1

2: for m = 1 to n — |S”| do (add n — |S”| cameras)
3: Apin — 00

4: for each camera C; in C do

5: if C; ¢ S” then

6: S” — S"U{C;}

7: A «— A(S"), the size of occupancy area given cameras S”
8: if A< A,,;, then

9: S — S”

10: Apin — A

11: end if

12: S” — S"\{C;}

13: end if

14: end for

15: S"—8§

16: end for

algorithm 3: Greedy Selection Algorithm - Adding

Observation Receivi di
Nodes | Local p ing | C 1| Images
(Frame 1) (Frame 0) | (Frame 0)

-

Sending
Images
(Frame 1)

l

Stati Z Sca
aton 9 (Frame 0) | (Frame 0) | (Frame 1) () (Frame 1) | (Frame 1) | (Fi

Figure 5.6: The time frame of the interleaving operation scheme.

shown in Fig. In this scheme, the operations on different image frames are
interleaved to minimize the idle time. While the nodes are making observations
for Frame 1 (marked by light gray in Fig. , the base station decides on
the camera selection based on the observations of a previous frame (Frame
0, marked by light gray stripe pattern). After the selection is completed, each
node receives the broadcast from the base station and the selected ones transmit
their image frames (Frame 0), and once the image frames (Frame 0) are sent,
each node starts sending the scan-line of frame (Frame 1).

Although the interleaving operation scheme increases the observation fre-
quency, it increases the delay between the observation of a frame and the
same frame received at the base station. To decrease this delay, we propose
the advanced operation scheme shown in Fig. In this scheme, the cam-
era nodes receive selection results from Frame 0 (marked by light gray stripe
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Observation

Receiving ing i bservation Receiving nding ending
Nodes | Local p C d| Images li ocal prc ing [Command| Imag nline
(Frame 1) (Frame 0) | (Frame 1) | (Frame 1) (Frame 2) (Frame 1) | (Frame 2) | (Frame 2)

1 1 1 11 |

2 Broad Receivil ivil a
Base Selecti g
: Cc Images i Command
Station
To0el)  rane o) |(Frame )| Erame il RS NS Frame 1)|m

Figure 5.7: The time frame of the advanced operation scheme.

pattern in Fig. right after making the observations for Frame 1 (marked
by light gray). Instead of sending the image frames (Frame 0) as in the inter-
leaving scheme, the selected nodes now transmit image frames (Frame 1). In
other words, we assume that the difference between successive observations is
small. Under this assumption, the base station can select the current camera
set based on a previous observation. This scheme is useful when the frame rate
of the system is sufficiently high with respect to the scene changes in the room,
such that successive observations result in similar selection results.

5.8 Results

In this section, we assess the performance of the proposed camera selection
methods for observability and 3D shape reconstruction.

Experimental data for testing the method on, was recorded with a camera
network set up as described in Section One to four persons were present
in the scene.

In this work, we use sequences captured in the second multi-camera set-up
described in Section To briefly recapitulate: this is an indoor scene
observed by N = 10 web cameras. The camera views can be seen in Fig. [5.11]
Sequences have been recorded at 5 frames per second and at a CIF resolution
(352x288).

The resolution cells of the occupancy map have a side length of 0.04m. The
structuring element for the dilation to obtain the filters Ot (see Section
and Ht (see later, in Section is a square of 11x11 with the origin at its
center.

The tuning parameters in Eq. @ are set to Kg =1, Kg =2 and Kp = 1.
The threshold for the speed is Kg = 0.08 m/frame = 0.4 m/s. The temporal
filtering parameters of the key selection are set to & = 0.05 and T' = 4. These
parameters have been manually tuned on a very limited number of frames.
Kg has been chosen as a very small speed. « has been set to a small value,
such that previous observations are weighted heavily. When the value of « is
increased, the principal view will be switched more frequently. This will also
happen if T is set to a smaller value than the current T' = 4.

To evaluate the quality of the principal view selected by the methods of Section
5.5] we use sequences labeled by human observers as a benchmark. To evaluate
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Figure 5.8: Example of ambiguity when choosing the best observation of the person.
Both images display a nearly frontal view of the person. In the left one, the face is
tilted somewhat more towards the camera, while in the right view the person appears
slightly bigger. Both views can therefore be considered equivalent.

the accuracy of the helper camera selection, we compute the visual hulls H
of the people in the scene based on the selected cameras using the shape-
from-silhouette technique [Laurentini, [1994]. The voxel volume V3 is set to
[0,200) x [0,100) x [0,50) C N3, where each voxel is a cube with edges of
0.04m.

5.8.1 Principal View Quality

Which view provides the best observation of a person is in many cases not
clearly defined, even for a human observer (see for example Fig. [5.8). For this
reason, at each time instant up to three views can have the label of being a
view that provides a good observation of the persons in a scene. If the scene is
empty, none of the views is labeled as principal view.

In our experiments we distinguish between four scenarios, depending on the
number of people in the scene.

Table [5.1] indicates the percentage of frames in which the view selected as key
view by the methods based on face detection cues only (Section and
based on face detection and occupancy map cues (Section were labeled
as a principal one by a human observer. The total number of labeled frames
is indicated in the second column. Comparing the results from the method
based on face detection cues only and the method based on face detection and
occupancy map cues, we conclude that including knowledge about position and
velocity of the observed objects in the principle view determination provides a
powerful means to boost the hit rate.

We can also observe in Table [5.1] that the principal view selection based on face
detection and occupancy map cues achieves a good hit rate for small numbers of
people in the scene, or in other words, that it very often selects the view which
also a human observer judges as providing a good observation of the persons
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Table 5.1: Percentage of frames in which the view selected by the method based
on face detection cues only (Section [5.5.1)) and the method based on face detection

and occupancy map cues (Section .2| were labeled as a principal one by a human
observer.

Scenario H # frames H Key as in Section |5.5.1| \ Key as in Section |5.5.2|

1 persons 316 46 70

2 persons 297 51 71

3 persons 376 50 95

4 persons 262 51 53

in a scene. Correct and incorrect selections of the principal view mainly occur
in bursts. Most correct selections are made when there is a view that clearly
stands out as being the one providing the best view on the scene, also to a
human observer. FErrors arise during the transitions between such clear-cut
cases.

For more persons, the hit rate drops. In these cases, determining the principal
view becomes more ambiguous, as more than one camera might have a good
frontal view of different persons. Adding information about the occupancy of
the scene does not resolve this inherent ambiguity. The performance difference
between principal view selection based on face detection only and based on face
detection and occupancy map cues is therefore minimal. Selecting more than
one key view would be a possible solution in this case.

A demo video illustrating principal view selection in a network of 10 cameras
can be found online at [Tessens et al., |2008a].

5.8.2 Optimal Helper Camera Selection

In this section we assess the helper camera selection algorithm in its optimal
(exhaustive search) implementation.

To evaluate how well the optimal helper camera selection observes the people in
the scene from different viewing directions and consequently provides a good
3D shape reconstruction, we reconstruct the visual hull for each frame from
the foreground silhouettes F; of the selected camera subset S,,, with S,, as in
Eq.[5-8 We will denote this hull by Hg, . The reconstruction of a person at a
particular time instant can be seen in Fig. for a selection of n=3 cameras.
In Fig. 5.9, the reconstruction of the person at the same time instant for a
different selection of n=3 cameras is shown. Note that these FG silhouettes
F; are not available at the base station when the selection decision has to be
made nor used in the actual method, only their approximate versions F; .
We determine at each time instant the number of voxels d,, that are different
between the hull reconstructed from the selected subset and a benchmark hull.
If the detected foreground silhouettes in the views are correct, the visual hull
reconstructed from the whole set C of ten available cameras is the best possible
hull we can reconstruct because it includes information from the highest num-
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ber of different viewing angles. A missed foreground detection in one of the
views has as an effect that some voxels are mistakenly considered unoccupied.
Leaving out the faulty view avoids this, but also has as an effect that a lot
of voxels are mistakenly considered occupied because the information of this
viewing angle is lost. In this work we take the visual hull reconstructed from
the whole set C of ten available cameras, denoted by H¢, as the benchmark
visual hull.

Fig. shows an example of a visual hull H¢ reconstructed from all cameras.
We can clearly recognize the shape of a person in this visual hull. We can still
discern the person in the visual hull reconstructed from three selected views
in Fig. [5.9p and ¢, but we also observe ghost volumes. These are parts of the
visual hull that do not represent real objects but result from an insufficient
number n of used cameras. Ghost volumes can be seen as the 3D version of
the ghost areas described in Section [5.6} The total ghost volume is smaller for
the camera selection of Fig. 5.9, but the quality of the reconstructed person
is better for the camera selection of Fig. [5.9b, where you can, e.g., discern the
legs of the person.

We wish to evaluate how well a subset of cameras performs in accurately re-
constructing the shape of the person from the images transmitted to the base
station, and not the ghost volumes. We assume that ghost volumes can be fil-
tered out, e.g., based on temporal information or based on the occupancy map
calculated from all scan-lines. To exclude the disturbing influence of ghost vol-
umes on the evaluation of a camera subset, we only take differences between
the visual hull reconstructed from the selected subset and the benchmark hull

into account within H*, which is the dilated version of Hc:

dn= 3 [(Hgt(j)Hsn(jO—Hc(j)]- (5.10)

vjevs

The dilation of Heg is performed by an image dilation in each plane parallel to
the ground plane. The dilation is performed by iteratively dilating the image
five times with a structuring element that is a square of 3x3 with the origin
at its center. The visual hull H¢ reconstructed from all cameras is plagued by
ghost volumes as little as is achievable with the available cameras (compare for
example the number of ghost volumes in Fig. and Figs. or ¢). Thus
filtering with Hfélt helps us to focus on the interesting objects in the scene.
At the same time, due to the dilation operation, we still consider the whole
object as reconstructed by the subset. The amount of extra volume within the
filtered hull (in other words d,,) gives us an insight in how well the selected
subset observes the persons in the scene from different directions and allows to
accurately reconstruct their 3D shape. In the case of Fig. [5.9] d,, will thus be
smaller for Fig. than for Fig. [5.9k, because in Fig. the quality of the
reconstructed person is better.

To select helper cameras, we start from a key camera and select additional
views such that the 3D shape of the people in the scene can be reconstructed
as accurately as possible. As the full 3D shapes are not available during the



108 CHAPTER 5

50

o5 e
150

100

75

50 75 25

(a) Visual hull reconstructed from all views.
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(b) Visual hull reconstructed from three views, selected
such that the quality of the reconstructed person is high.
Observe the large ghost volumes to the left and behind
the person.
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(c¢) Visual hull reconstructed from three views, selected
such that the total volume of the visual hull is low.
Observe the poor quality of the reconstructed person
despite the relatively small ghost volumes around the
person.

Figure 5.9: Visual hull at a particular instant in time, reconstructed from (a) all
views, (b) three views, selected such that the quality of the reconstructed person is
high, and (c) three views, selected such that the total volume of the visual hull is low.
We observe that minimizing the total amount of ghost volume does not necessarily
lead to a better quality of the reconstructed person.
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Table 5.2: Mean voxel difference d, (Eq. when helper cameras are selected
starting from three key camera assignment methods (no key camera assigned, key
camera assigned using only face detection cues, see Section [5.5.1) and using face
detection and occupancy map cues, see Section for four different scenarios. In
the second row we indicate the total number of frames over which the average is
calculated. The average voxel volume of Hc¢ is shown in the third row. Rows 3-5 are
the results for n = 3 and rows 6-8 for n = 6.

Scenario \ 1 person \ 2 persons \ 3 persons \ 4 persons
# frames 1629 2213 826 290
Zvjevg Hc(j)/# frames 615.61 2450.99 4584.35 8079.53
No key 842.70 2945.63 5364.68 7630.01

ds | Key as in Sect.[5.5.1] | 1204.29 | 3365.90 | 7349.20 | 10036.74
Key as in Sect.[5.5.2 | 894.42 | 2755.85 | 5816.58 | 8917.38

No key 298.60 | 1095.09 | 1476.38 | 1361.51
ds | Key asin Sect. [5.5.1] | 348.29 | 755.97 | 1326.16 | 1356.97
Key as in Sect.[5.5.2] | 310.36 | 750.32 | 1306.34 | 1415.02

selection process, the occupancy map area as in Eq.[5.7]is our selection criterion.
If cameras are selected with no prior assignment of a key camera, all possible
combinations of n out of NV cameras are valid and the camera subset that leads
to the occupancy map with the smallest area is guaranteed to be found. This
is not the case when we start our selection from a key camera, as the camera
subset that leads to the occupancy map with the smallest area might not include
the selected key camera and thus the ‘optimal’ subset might be excluded from
the valid combinations (i.e., the combinations that contain the key camera).
Note that the lack of prior key camera assignment drastically increases the
computational burden of the algorithm and eliminates the guarantee that the
view is selected that contributes most to the desired observation of the scene,
i.e., that captures a frontal view of one or more people in the scene.

We compare the accuracy of the reconstructed visual hull when n cameras are
selected without prior key camera assignment with n cameras selected using
the proposed method of helper camera selection starting from a key camera.
In Table we list for three methods (helper cameras selected starting from
no key camera assigned, key camera assigned using only face detection cues,
see Section [5.5.1] and using face detection and occupancy map cues, see Sec-
tion the mean value of the number of different voxels d,,, denoted czn
over all frames of the sequences with a certain scenario, both for n = 3 and
n = 6. The lower this number, the higher the quality of the observation with
the selected camera subset. The number of frames available per scenario is
indicated in the second row, and the average voxel volume of the benchmark
hull Hc in the third row as a reference.

First of all, we observe that the number of voxels in the benchmark hull is of
the same order as the mean voxel difference between this hull and the hulls
reconstructed from a subset of cameras when n = 3. For n = 6 it is a fraction
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of this number. We conclude that for accurate 3D shape reconstruction, a suffi-
cient number of cameras, e.g., six, needs to be selected. Mean voxel differences
are smaller for helper camera selection with the principal view determined us-
ing face detection and occupancy map cues (Section than for selection
where the choice of the key camera is only based on the face detection scores
(Section . Helper camera selection with a key camera determined using
face detection and occupancy map cues (Section yields similar results as
helper camera selection without prior key camera assignment. Occasionally, it
even outperforms that method. This is possible because the occupancy map
area is only an approximation of the 3D shape of the people present in the
scene. The subset of cameras that minimizes the occupancy area does not
necessarily lead to the solution that gives the best visual hull.

To illustrate the necessity of view selection, we show in Figure[5.10|the selection
performance when selecting n = 3 cameras from 10. For a representative
sequence of the scenarios with one and four persons, we plot per frame the
volume (in number of voxels) of the visual hull from all possible subsets Scc,
with |S| = n = 3, contained within HE* (green dotted lines). Note that there
are more possible subsets S than there are candidate subsets for which K € S.
As a reference, for each frame the number of voxels of the benchmark visual
hull Hc is also indicated (solid magenta line).

The number of voxels per frame of the visual hull reconstructed from a selected
set of cameras S35 (obtained as in Eq. within Hf(ijlt, are drawn as the thicker
lines. The solid blue line indicates the camera selection when no key camera is
assigned. The dash-dotted black line with round markers is the subset selection
with the key camera selection based on face detection only (as in Section.
The dotted red line with triangular markers is the camera subset selection with
the principal camera selection based on face detection and occupancy map cues

(Section [5.5.2)).

This graph indicates that, regardless of how the principle view is determined,
the optimal helper camera selection method of Section [5.6] selects from all
possible subsets one that is always close to the best possible subset. Indeed,
the curves of all methods are close to the lower envelope of the curves of all
possible subsets. A second observation is that the curves corresponding to
camera selection without prior key camera assignment and with principal view
determination using face detection and occupancy map cues (Section
mostly coincide and that both methods lead to lower visual hull volumes than
the same selection method but with the principal view determined using face
detection cues only (Section [5.5.1)).

Figure shows a visual example of the selection of n = 3 cameras from 10
using optimal helper camera selection with the principal view determined using
face detection and occupancy map cues (Section . We display the views
of all the cameras C1,...,Cg. To give an insight into the system setup, we
depicted in the bottom-right corner a top view of the scene, which indicates the
relative positions of the ten cameras and the person in the scene. The selected
key camera C5 is marked by a magenta bounding box. This camera was chosen
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Figure 5.10: Selection performance for 100 frames of a representative sequence of
the scenarios with (a) one and (b) four persons. The number of cameras in the subset
is n = 3. For each frame, we plotted the volume (in number of voxels) of the visual
hulls reconstructed from all possible subsets S within HY, (green dotted lines), of the
benchmark hull He (solid magenta line) and of the hull Hg, within HE'. The camera
set Sg has been selected using different principal view selection strategies: no key
camera assigned (solid blue line), key camera assigned using only face detection cues
(dash-dotted black line with round markers), and using face detection and occupancy
map cues (dotted red line with triangular markers). The lower this volume, the less
redundant the selected views.
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Figure 5.11: Example of the selection of 3 out of 10 cameras. The views of the 10
cameras (C1,...,Cho) are shown. In the bottom-right corner, we depicted a top view
of the scene which shows its geometry and the positions of the cameras and person.
The selected key camera C3 is marked by a magenta bounding box and the helper
cameras Cs and Chp by a cyan bounding box.

to be the key camera by the principal view determination method of Section
5.5.2l The helper cameras Cs and Cjg are marked by a cyan bounding box
and are selected using the optimal method of Section [5.6] We can observe from
the displayed views that the selected principle view contributes most to the
observation of the person, while the helper cameras complete the observation.
Note that the person sitting at the desk in camera view Cjg is operating the
start and the end of the capturing of the sequence. This person is immobile
during the whole sequence and is assumed to be part of the background.

A demo video illustrating the application of principal view selection in camera
selection can be found online at [Tessens et al., 2008a].

5.8.3 Greedy vs. Optimal Helper Camera Selection

In this section we compare the accuracy of the greedy helper camera selection
with its optimal counterpart. The helper camera selection starts from a key
view selected using face detection and occupancy map cues (Section [5.5.2)).

We first reconstruct the 3D visual hull Hg based on the foregrounds F; from
the cameras in the greedy solution set S,,. We also reconstruct the 3D visual

hull He based on the foreground F; from all cameras C; € C. The visual
hull H¢ is considered the correct 3D shape of the objects and serves as the
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Table 5.3: Mean voxel difference for the optimal and greedy selection methods
for four different scenarios and for n=6 selected cameras. In the second column we
indicate the total number of frames over which the average is calculated. The average
voxel volume of H¢ is shown in the third column.
Scenario ‘ # frames ‘ average voxel volume H

Cigptimad d%reedy

1 person 1629 615.61 310.36 342.15
2 persons 2213 2450.99 750.32 790.72
3 persons 826 4584.35 1306.34 | 1369.96
4 persons 290 8079.53 1415.02 | 1508.18

performance baseline. Finally, we reconstruct the 3D visual hull Hg, based on
the foreground F; from the cameras in the optimal solution set S,,.

Given the reconstructed visual hulls at each time instance, we calculate the
number d&'°d of voxels that are different between the greedy solution visual
hull HSn and the benchmark visual hull He within Hfélt. For the optimal
solution, we also calculate the number of different voxels and denote it by
d%ptimal.

In Table[5.3] we compare for the greedy and optimal methods the mean value of
the number of different voxels, denoted by dﬁreedy and (f%p“mal, over all frames
of the sequences with a certain scenario. The lower this number, the higher
the quality of the observation with the selected camera subset. The number of
frames available per scenario is indicated in the second column, and the average
voxel volume of He in the third column. In these experiments, n = 6 cameras
were selected among 10 cameras, and in each time frame the selection status
of at least u = 2 cameras was reevaluated. We observe that the optimal and
greedy methods yield similar results.

To measure the computation time gained by using the greedy method instead
of the optimal one, we performed experiments on an AMD Athlon 64 3400+
2.40 GHz processor using the SSE (Streaming SIMD extensions) instruction
set. The performed computations were floating-point computations, and both
methods are implemented in Matlab code. Averaged over 30 frames of the test
set, the optimal method took 2.26 s to execute, whereas the greedy method
required 0.39 s. In the optimal method, for each frame (}) = 126 candidate
camera subsets need to be checked to determine the optimal set. The greedy
method checks 18 camera subsets per frame. The ratio 126/18 = 7 is of the
same order of magnitude as the experimentally measured time ratio between
the two methods (2.26/0.39 = 5.8).

5.8.4 Reduction of Delay

When the advanced operation scheme (Fig. |5.7)) is applied, the selection de-
cision at time instant ¢ is based on observations of the previous time instant
t — 1. In order to evaluate the impact of this shift on the accuracy, we pro-
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Table 5.4: Mean voxel difference for the optimal and greedy selection methods with
one frame delay. In the second column we indicate the total number of frames over
which the average is calculated. The average voxel volume of H¢ in shown in the
third_column.

Scenario ‘ # frames ‘ average voxel volume H

Joptimal greedy
dG dG

1 persons 1619 619.41 316.28 | 368.23
2 persons 2203 2459.22 780.91 | 826.29
3 persons 822 4606.66 1344.37 | 1410.31
4 persons 289 8107.48 1422.11 | 1522.69

—>— 1 person
2200 | —&— 2 persons i
—+—— 3 persons
200011 %4 persons

Figure 5.12: Mean voxel difference for the optimal selection method for four different
scenarios as a function of the delay k& between observation and selection decision.
n = 6 cameras were selected.

cess the observations in a similar way as in the previous section. Only now,
at time instant ¢ the foreground silhouettes F; from which the visual hull was
reconstructed for accuracy evaluation were selected based on the selection of
the previous time instant ¢ — 1.

The experimental results are shown in Table [5.4] where n = 6 cameras were
selected among 10 cameras, and in each time frame the selection status of
at least u = 2 cameras was reevaluated. Comparing Tables and the
accuracy is comparable in both cases. We conclude that the introduced delay
has almost no impact on the performance.

We also investigated the delay impact on the performance when the delay
k between observation and selection decision is more than one frame. The
performance over different delays k is plotted in Fig. It can be observed
that delays of up to 5 frames result in only a minor drop in quality. Therefore,
we can further reduce the data transmission by transmitting the scan-lines
every k frames instead of all frames. In other words, we use the same selection
results for every k frames for small k.
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5.9 Conclusion

In this chapter, we have presented a method to determine which sensor subset
in a smart camera network has the best view on the persons in a scene and
allows to reconstruct their 3D shape as accurately as possible. The algorithm
consists of two types of processes. The distributed processes run on the smart
cameras themselves and strongly reduce the amount of data that needs to be
sent over the network to the base station to a couple of tens of bits per node.
At the base station the central camera selection takes place. In order to choose
an appropriate key camera, this algorithm takes into account the number of
faces detected by each of the cameras, and the velocity and positions of the
objects relative to the viewing direction and viewing angle of the cameras. This
principal view can be complemented with additional views that complete the
observation and that allow to reconstruct the 3D shape of the people in the
scene. To select these additional views we use the occupancy map as a crude
2D shape approximation of the people in the scene.

Experimental results on human-labeled sequences show that the selected prin-
cipal view is equal to the view selected by a human observer in a high number
of cases for a limited number of people in the scene. Also, we showed that
this view together with the additional views gives a good approximation of the
3D shape compared to the best achievable 3D shape with the selected amount
of cameras. Additionally, it is shown that the principal camera selection is a
good starting point for the selection of additional views, since it greatly reduces
the computational complexity, while still allowing the reconstruction of the 3D
shape of the objects to be almost as accurate as in the optimal subset selection
case (without principal view determination).

Moreover, a greedy camera selection algorithm was proposed for real time net-
work operation. We used 3D shape reconstruction to compare the proposed
greedy algorithm and optimal selection algorithm. Experimental results showed
that the proposed algorithm provides a performance very close to the optimal
results. Also, two different network operation protocols were proposed. The
first scheme aims to improve the sensor observation frequency and the second
scheme decreases the delay between view observation and image transmission.
Experimental results verified that the proposed protocols improve observation
frequency and latency without degrading much the performance of the 3D
shape reconstruction.

A possible improvement of the proposed principal view selection method is to
take dynamic occlusions into account. These occur when several persons are
present in the scene, and one person blocks the view of a camera on another
person. Such an improvement can be achieved by basing the assessment of the
visibility of an object in a camera view (see Section not only on the static
viewing range of the camera, but also on the dynamic scene configuration. A
drawback of this procedure is that the calculation of the visibility becomes com-
putationally much more demanding. The method for helper camera selection
naturally takes into account occlusions.






Camera Contribution
Quantification for Sensor
Selection

As discussed in the previous chapter, an important challenge in smart camera
networks with correlated views is keeping data redundancy under control with-
out discarding useful information. We propose to do this by selecting a limited
number of cameras for each network task and to process information only on
these cameras and transmit data only between these.

A crucial component in an effective camera selection system is quantifying the
contribution of one or more cameras to the accomplishment of a task. This
allows to appropriately allocate available network resources such that the best
possible task performance is achieved. The contribution of a camera set de-
pends on the observation perspective of the camera(s) and on the scene con-
figuration, which is subject to change over time. In the case of view-correlated
nodes, the event of interest may be simultaneously observed by several sensors,
but not all cameras are equally suited to perform the task at hand.

In this chapter we introduce a unifying approach to integrate quality of view
measures, such as, e.g., the ones for observability discussed in the previous
chapter, in a criterion founded on generalized information theory. The proposed
criterion is not limited to a specific type of task and can be applied to a wide
range of vision problems. As a proof of concept, we use it for camera selection
in a network in which multiple targets are tracked.

The work presented in this chapter has been performed in collaboration with
my colleague Marleen Morbee and therefore some of the concepts presented
here also appear in her PhD thesis. However, the two theses elaborate on
different aspects and applications of the proposed technique. In this work, we
propose and thoroughly study a method of quantifying the quality of one or
more cameras to the accomplishment of a task and its effect on the final quality
of the accomplished task. This method is used as a tool to select cameras
for a single task at a time. In my colleague’s dissertation, the potential of
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this framework for task assignment is explored. More precisely, a technique
to distribute several tasks over the network cameras in an optimal way with
respect to the achievable frame rate are proposed in her thesis. Solutions to
the related optimization problem are also investigated.

The rest of this chapter is organized as follows. In Section[6.1] we discuss related
work. A formal problem formulation is provided in Section[6.2] Section [6.3]in-
troduces the proposed camera set suitability value to quantify the contribution
of one or more cameras to the accomplishment of a task, which is applied to
tracking in Section Results and conclusions are presented in Sections

and [6.7] respectively.

6.1 Related Work

Sensor selection in networks of range restricted sensors is a well studied prob-
lem. An overview can be found in [Rowaihy et all 2007]. Many methods
focus on localization and tracking applications. |[Chu et al., 2002; Zhao et all
2002] introduced information-driven sensor querying. In [Ertin et al.,[2003| and
2003], the maximum mutual information principle is proposed as a
criterion for sensor selection. This principle has been reworked into an entropy-
based heuristic in [Wang et al., 2005]. [McIntyre and Hintz, 1996; Schmaedeke|
land Kastella, 1998] also use entropy to value sensors.

Cameras have received special attention in literature because they are not range
restricted in the classical sense that their sensing range limit only depends on
the distance to the sensor. Camera selection for tracking and localization has
been studied in [Denzler et al. 2003; Ercan et al. 2006; Gupta et al., 2007
Isler and Bajcsy},[2005; [Pahalawatta and Katsaggelos|, 2004 [Snidaro et al.l[2003
Sommerlade and Reid, |2008|]. These methods will be discussed in more detail
in Section [6.5] An overview of camera sensor planning for robustly detecting
object features can be found in |[Tarabanis et al) [1995]. View selection for
object recognition using an information-theoretic criterion was proposed in
[Denzler and Brown, [2002]. View selection for optimal observability is treated
in [Daniyal et al., 2010; Jiang et al., 2008; Kelly et al., |2009; |Li and Bhanu,
[2009; Park et al. 2006; Tessens et al., 2008b]. These methods assign view
quality measures based on activity level, size and centrality of the object in
the view, etc. |Vdzquez et all [2003] uses viewpoint entropy calculated from
a polyhedral scene model to select a minimal set of views for image-based
rendering. In [Yang et al.| 2004 cameras are tasked to determine the occupied
space in the scene while minimizing the number of active cameras.

In this work we present a novel, more general framework for camera selection.
We introduce a unifying approach to integrate quality of view measures in a
criterion founded on generalized information theory. Because this criterion is
derived from the Dempster-Shafer theory of evidence [Dempster} [1968} [Shafer]
, it naturally handles common problems in camera networks such as partial
or incomplete visibility of objects or events due to limited fields of view or
occlusion.




CAMERA CONTRIBUTION (QQUANTIFICATION FOR SENSOR SELECTION 119

6.2 Problem Formulation

Consider a network of N cameras i, 1 < ¢ < N, potentially involved in the
execution of a task. Let S denote the set of cameras actually selected to perform
this task. Some camera sets are more suited for the task than others. For
example, if a person is mostly occluded in one camera view, that camera may
be less useful in determining the person’s position. To express this property,
we associate a suitability value v(S) with each set.

Let T' denote the set of all possible selections S. It is often useful to impose
restrictions on the camera sets we consider, such as limiting the number of
cameras in the set. Let IV be the restricted set of admissible selections. The
optimal selection S* is the set S € I” that maximizes the suitability value v(.S):

S* = argmaxv(9). (6.1)
Ser

The main goal of this work is to define and study an effective camera set
suitability value v(S). This is the topic of the next section. The algorithm for
finding the optimal set based on this criterion will be discussed in Section

6.3 A Generalized Information-Theoretic Suit-
ability Value

6.3.1 Quantification of Task-Related Information

In a camera sensor network all tasks basically involve information gathering.
The more information relevant to a task a camera set can acquire, the more
suited it is to perform this task. The set containing all cameras can always
gather the maximal amount of task relevant information available in the net-
work. However, out of computational and communication efficiency reasons, it
is useful to select a smaller camera set for a task. In this work, the camera set
size is limited by manually fixing an upper limit for each experiment. Ideally,
the set size would be dynamically adapted according to a computational and/or
communication cost criterion. This dynamic adaptation of the camera set size
is studied in the PhD thesis of my colleague Marleen Morbee.

In this thesis we focus on quantifying the task-related information contained
in the observations of a camera set, which is a key issue in designing a value
v(S) which reflects the suitability of the set S for the task at hand.

In information theory, information is specified in terms of the entropy associ-
ated with a random variable. In this work we therefore define a camera network
task more precisely as discovering the value of a realization of a random vari-
able X using a subset of cameras. E.g., in the tracking example treated in
Section [6.5] X designates within which range of ground positions the target is
located.
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6.3.2 Classical Information-Theoretic Approach

Suppose X can assume any of the Nx values in the finite set {1, x2,..., 2N, }.
Without any observations only prior knowledge about the probability distri-
bution of X is available. Let p(X) denote the prior distribution of X. Let us
now denote the observations of a camera set S as Og. Given the observations
from all cameras in the set, the probability distribution of X can be updated
to p(X[Os).

The uncertainty associated with the value of X, and hence the information
content of the observations Og, is expressed by the entropy H(X|Og). In
[Denzler et all [2003; McIntyre and Hintz, (1996} |Schmaedeke and Kastellal
1998} [Sommerlade and Reid, 2008; Wang et al., 2005} Zhao et al., [2002] this is
the criterion used for sensor selection. To assess how suited a camera set S is
for the task, we must evaluate H(X|Og) and consequently p(X|Og).

To determine p(X|Og) we apply Bayes’ rule:

p(Os][X)p(X)
p(Os)

We assume the observations of the different cameras in the set S are condition-
ally independent from each other, meaning that for a given state of the variable
X the observation process of each camera is an independent process. When the
influences of general conditions on all camera observations simultaneously (e.g.,
scene lighting changes) are ignored, this is a reasonable assumption. p(Og|X)
can then be obtained as

p(X|0s) = (6.2)

p(0s|X) = [[ p(0:|X). (6.3)
=
Combining Egs. [6.2] and [6.3] we obtain
~ p(X) ,
P(X|0s) = 155 iEHSp(OAX» (6.4)

The probabilities p(O;|X) relating the camera observations to the state of X
can be modeled based on the physical properties of the cameras. As mentioned
previously, p(X) must be specified based on prior information. This must be
either modeled, estimated from training data or be determined empirically.

It is interesting to note at this point that in a camera network it frequently
occurs that a sensor can only yield partial information or even no information
at all about a task (represented by X). This happens when all or part of the
events relevant to the task are occluded or occur outside of the camera viewing
frustum. Consider for example that the task X is to determine the color of a
person’s shirt and trousers. If only the person’s shirt is visible to the camera,
it can yield only partial information about the task X. If the person is not
visible at all, this camera produces no information about the task. In these
cases classical probability theory has to resort to priors which can be difficult to
obtain, and if badly modeled, introduce misleading information in the system.
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Imprecise probability theory provides an extension to its classical counterpart
and is able to explicitly represent the absence or incompleteness of information
using lower and upper probabilities. A well known mathematical theory that
implements the concept of imprecise probabilities through belief functions is
the Dempster-Shafer (DS) theory of evidence |[Dempster, |1968; |Shafer] [1976].
A brief overview of this theory has been presented in Section In what
follows, we use this theory to obtain the desired suitability value v(S), after
which we make a comparison with the classical information-theoretic approach.

6.3.3 Generalized Information-Theoretic Approach

The concepts from information theory as they were introduced for classical
probability theory cannot be straightforwardly transferred to imprecise proba-
bility theory. To this end, generalized information theory was developed [Klir}
1991]. In generalized information theory, information is defined in terms of
uncertainty reduction.

Uncertainty comprises several aspects: probabilistic uncertainty is generated by
the randomness of a system, whereas unspecificity arises when there is evidence
for a proposition that aggregates several elementary propositions but not for
the elementary propositions themselves. Unspecificity can be mathematically
expressed by the generalized Hartley (GH) measure [Abellan and Moral, 2000]:

GH(m) = Y m(A)log, A, (6.5)

ACQ

where | A| denotes the cardinality (number of elements) of the set A and m(A)
is the basic belief assigned to the hypothesis A (see Section [4.2). If [A] = 1,
i.e., if A is an elementary subset, there is no unspecificity and m(A)log, |A| =
0. As the hypothesis A aggregates more and more elementary propositions,
log, |A| gets bigger. A body of evidence with only basic belief assigned to
the elementary propositions does not contain any unspecificity uncertainty and
GH(m) = 0. For a body of evidence in which m(Q) = 1, their is no specific
evidence at all and GH(m) = log, |€?|, which is the maximal uncertainty that
can be present in a body of evidence.

The generalization of Shannon (GS) entropy to characterize probabilistic un-
certainty is defined through an aggregated uncertainty, AU, which unites both
unspecificity and probabilistic uncertainty: GS(m) = AU(m) — GH(m). To de-
fine the AU present in a BBA m, we first define D, a set of probability mass
functions p(w) on the finite set Q that are consistent with m, as follows [Klir
and Wierman), [1999):

D = {pw)lw € Q,p(w) € [0,1], > p(w) =1,
weN
Z m(B) < Z p(w) for all AC Q and B C A}. (6.6)
BCA weA
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The AU is defined as [Klir and Wierman, 1999

AU(m) = max [— Z p(w) log, p(w)] . (6.7)

€D
P weN

It is the maximal Shannon entropy of any probability mass function p(w) within
D. An efficient algorithm for computing Eq. is available in [Klir and Wier-
manl, [1999].

In what follows we will use the aggregated uncertainty, which joins probabilistic
uncertainty and unspecificity, to characterize the uncertainty in a BBA m.
Applying our definition of a network task of Section [6.3.1] to the DS theory, we
formulate each task as assessing the validity of a set of elementary propositions
that form a frame of discernment 2. Each camera set S gathers evidence about
the propositions within the power set 2, leading to a BBA mg. The smaller
the aggregated uncertainty in mg, the more informative the observations of the
set and the better suited this set is for the task. Let |Q2| denote the number of
elementary propositions in the frame of discernment 2. The maximal AU in a
BBA mg equals log, |2]. It is for example obtained when mg(w) = 1/|Q|,Vw €
Q. We define our camera set suitability value for a task as

. AU(ms)

v(S)=1— —=2,
) =1= 15,1

(6.8)

A camera set that is very suitable for a task will thus have a suitability value
close to one, whereas unsuitable sets will have a value of zero.

In the next section we apply the proposed camera set suitability value to camera
selection in a network in which multiple persons are tracked. First we discuss
the relationship of this value with measures from classical information theory.

6.3.4 Comparison with Classical Information-Theoretic
Approach

Let us call a BBA in which )  .,m(w) = 1 a Bayesian BBA. In this case
the proposed suitability value reduces to a well known information-theoretic
measure. Indeed, the generalized Hartley uncertainty is zero in this case:

AU(mg) = GS(mg) = — Y ms(w) log, mg(w). (6.9)
weN

In other words, the aggregated uncertainty in the BBA mg in this case coincides
with the Shannon entropy of the random variable X representing the task.
Recall that H(X|Og) is the Shannon entropy of X after using the observations
of all cameras in the set S. Substituting Egs. and [6.9]in Eq. we have

H(X|Og) .
S* = argmax(l — ———2) = argmin H(X|Og). 6.10
gel" ( log, |Q‘ ) SgeF/ (X10s) ( )
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This is the minimal entropy criterion used for sensor selection for tracking in
[Denzler et al. 2003} McIntyre and Hintz, 1996; Schmaedeke and Kastellal |1998}
Sommerlade and Reid}, 2008; Wang et al., [2005; [Zhao et al., |2002].

Now suppose we want to enlarge the camera set S by one camera and we look
for the most informative one. Eq. then simplifies to

S*= argmax v(SU{i}). (6.11)
i€[1,N]|Su{i}el”

As H(X|Og) is independent of the added camera 4

S* = argmax (H(X|OS) — H(X|OSU{Z-})). (6.12)
i€[1,N]|Su{i}er”

In information theory, H(X|Os) — H(X|Ogyg;y) is the mutual information
I1(0;; X|Og) measuring the reduction in uncertainty about X when the ob-
serving camera set is enlarged from S to S U {i}. This criterion has been used
to select sensors in a tracking context [Ertin et al., [2003; [Liu et al. 2003], but
also to select views for object recognition [Denzler and Brown, 2002].

The camera set suitability value proposed in this work is more general than
the classical information-theoretic entropy or mutual information criteria as
it can also handle non-Bayesian belief structures. The absence of (complete)
information, which frequently occurs in a camera network, can be easily in-
corporated in the DS evidence structure, but is more difficult to handle in a
Bayesian context without prior knowledge. For instance, if only a person’s arm
is visible in a camera, some information about the person’s position can be
deduced from this, but a lot of localization uncertainty will remain. This is not
easily modeled using Bayesian reasoning, whereas the DS based formulation
of such partial knowledge is quite natural. We will illustrate this strength in
Section First we will discuss the solution of the optimization problem of

Eq.

6.4 Greedy Optimization

As the set S can only assume a discrete number of values, Eq. is a discrete
constrained optimization problem. An exhaustive search over all possible values
of S guarantees that the optimal solution of Eq.[6.1]is found. In a network of N
cameras, I' contains 2"V possible camera subsets. Only sets in IV C I" need to be
evaluated. The nature of the imposed constraints will dictate the exact number
of elements in I, but for large networks with many cameras, an exhaustive
search quickly becomes unacceptably slow. Assume for example that a set of
5 cameras needs to be selected out of 10 cameras. In this case, (150) = 252
camera sets need to be evaluated. Better solution methods are proposed in the
domains of integer programming and combinatorial optimization [Tsang and
Voudouris, [1998].

In this work, we adopt a greedy optimization heuristic to solve the optimization
problem of Eq. We start from an empty camera set. In each iteration, we
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Input: Observations about X of all cameras
Output: S* (the optimal set to perform a task)
1: S« 0,8 0, Vipar — 0, a +— true
2: while a do
3: a «+ false (continue loop only if allowed sets
4: that increase the suitability value can be formed)

5: for i =1to N do

6: S«—SuU {Z}

7 if S €I then

8: Construct mg based on observations about X of cameras in S
9: Vel-— ‘?OZETS‘) , the suitability value
10: if V> V54, then

11: a <+ true

12: S*— S

13: Vinaz <V

14: end if

15: end if

16: S — S\{i}

17: end for

18: S — 5%

19: end while

algorithm 4: Greedy Optimization.

identify the sensors which lead to an admissible camera set S € IV when added
to the current set. Among these, we select the one which increases the set
suitability value most. This process is iterated until none of the remaining
sensors that lead to an admissible camera set S € T increase the set suitability
value. Algorithm [4] shows the pseudo-code of this optimization.

If there is more than one network task, we search for an optimal set of cameras
for each task independently of the other task(s). Performing this optimization
jointly offers interesting possibilities to distribute the tasks among the cameras
according to some practical criteria (such as equal spread of load, or minimiza-
tion of the required communication) while controlling the associated changes
in the quality with which the tasks are performed. This matter is not treated
in this work.

6.5 Application to Camera Selection for Track-
ing

In this application example we consider a multi-camera system that observes
a scene containing multiple persons. The goal of the system is to track the
persons, i.e., to determine their position on the ground plane at each time
instant.
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6.5.1 Related Work

As already mentioned in Section [6.1] camera selection for tracking and local-
ization has been studied before. [Isler and Bajcsyl [2005] approaches camera
selection for localization as a geometric problem and minimizes the uncertainty
area obtained by intersecting the reprojection cones of cameras. In [Paha-
lawatta and Katsaggelos| 2004] the information utility of a camera is char-
acterized by the trace of the covariance matrix of the posterior distribution
of the object state in an Kalman filtering framework. Also in the context of
tracking using a Kalman filter, the authors of [Denzler et al.| 2003] adopt an
information-theoretic approach to control the focal length of a camera based
on the uncertainty associated with the target position. This is done by min-
imizing the expected entropy of the state conditioned on the observation. In
[Sommerlade and Reid}, 2008] this approach is extended to account for the ap-
pearance of new targets, leading to an active scene exploration system. The
authors in [Snidaro et all |2003| base their view selection on a quality measure
for the appearance of a tracking target in an image. The previous methods
cannot effectively take occlusion into account - a frequent problem in tracking
- without significant reformulation of the algorithms.

In |[Gupta et al., [2007] cameras are selected especially to avoid occlusion (and
confusion - people being visible behind the target) in a localization task. This
is achieved by determining the probability of visibility of each part of a person
model in each camera based on probabilistic estimates of the poses of other
people in the scene. This determines the order in which the object positions
and poses should be inferred. |[Ercan et al 2006 handles occlusion in a similar
way, albeit in 2D, by weighting error contributions with the probability of
occlusion, calculated from the prior of the occluding object. Furthermore an
essentially geometric approach is followed to minimize the localization error of
an object given its prior position distribution and the camera noise parameters.
The limited fields of view of cameras are usually dealt with by ignoring the
contributions of cameras in which the target is not completely visible [Denzler
et al.| 2003} [Isler and Bajcsyl [2005; [Snidaro et al., 2003} Sommerlade and Reid,
2008]. This method discards valuable information, as a large part of the target
may still lie inside the camera viewing frustum. In the methods of [Ercan et al.
2006; (Gupta et al., 2007] the limited fields of view of cameras are naturally
dealt with by determining the visibility of objects in the cameras. However,
in [Ercan et al) [2006] the camera foreground images are vertically summed
and thresholded prior to determining the visibility of objects, which makes it
impossible to differentiate between full and partial visibility at the horizontal
image boundaries because an object will be classified as visible even if a large
part of it is projected below or above the image. This method can therefore
only handle partial visibility at the vertical boundaries of the camera images.
E.g., the information of a camera in which only a person’s head is visible is
not valued less than a camera in which the whole person is visible. This is
especially a problem in set-ups where the cameras are close to the observed
objects.
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Our approach differs from the existing literature in several ways. The camera
selection method is suited to be used in combination with a tracker based on
particle filtering. Particle filters are powerful tools that can model multiple
hypotheses, making them robust, and that can handle non-linear motion and
noise models. Moreover, the proposed method selects cameras by measuring
the impact of the quality of the appearance of objects in the camera image
on the localization uncertainty. This approach links a generalized information-
theoretic criterion for camera selection (similar to [Denzler et al.l 2003} [Som-
merlade and Reid} [2008]) with taking the impact of occlusion and confusion
of multiple targets on the localization into account (similar to [Gupta et al.l
2007]). As our selection criterion is founded on the Dempster-Shafer theory
of evidence, problems of absent or incomplete information (partial or complete
invisibility due to limited fields of view, occlusions) are naturally handled.

6.5.2 Camera Set Suitability Value for Tracking

We consider tracking each person as a separate network task. For each person
we determine at each time instant which camera set is most suited to track it.
We do this by solving Eq. [6.1] using the camera set suitability value of Eq. [6.8
Because for each person the optimization is performed independently of the
other tracking tasks, the camera sets selected for the different persons may or
may not overlap.

To be able to use the camera set suitability value of Eq. we reformulate
the tracking task as determining the validity of an exhaustive and mutually
exclusive set of hypotheses. We do this by dividing the ground plane in the
vicinity of the tracked person in G — 1 discretization cells (we will explain how
in Section . There is also a part of the ground plane area in which we
cannot gather observations (the area outside the viewing range of all cameras in
the network), or in which we do not expect the tracked person to be. This part
of the ground plane area makes up another cell Xg. The frame of discernment €2
is made up of the elementary propositions w, = {z € X;} € Q,g=1...G. In
other words, the elementary proposition wy is the hypothesis that the position
x of the tracked person lies in the cell X,. The inclusion of the cell X¢ in
Q0 makes the set of hypotheses exhaustive. A camera set that can with low
uncertainty locate the person in one of these cells, without being hampered by
limited fields of view, occlusions, heavily cluttered foreground segmentations
or other error sources, will be assigned a high suitability value. A set that is
not certain in which cell the person is, gets a low suitability value.

Note that the discretization of the ground positions is only necessary to deter-
mine a suitable camera set to perform the tracking task. The tracking as such
can be performed with one of the many existing multi-camera multi-people
tracking algorithms. This tracking does not need to operate on discretized
ground positions. In this work we opt for the tracker in [Munoz-Salinas et al.,
2009], which is an extension of the Bayesian particle filter to the DS theory
of evidence. It combines the strength of a classical particle filter to handle
non-linear and non-Gaussian motion and error models with the power of the
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DS theory to elegantly model uncertainty and absence of knowledge without
having to specify any priors or conditionals. This latter property is particularly
advantageous in camera networks, where limited fields of views and occlusions
frequently pose problems.

Instead of dividing the ground plane in discretization cells, it is also possible
to divide the 3D volume in the vicinity of the tracked person into a number of
discretization cells. This would allow to also localize the person vertically. This
would be useful in a scenario where people are likely to move in this direction,
e.g., because the terrain is not flat or because they jump or climb on objects.
In this work however, we assume that people move mainly on a flat ground
plane.

In the next subsection we briefly present the main aspects of the algorithm of
[Munoz-Salinas et al., [2009]. Only the elements used in our camera selection
method for tracking are highlighted. For a comprehensive description of its
operation, we refer the reader to [Munoz-Salinas et al.||2009]. The remainder of
the section will discuss the details of our camera selection method for tracking.

6.5.3 Tracking Using Evidential Filters

Consider for each tracking target at time t a set of positions x;, 1 <[ < L,
on the ground plane of a 3D scene. Compliant with the established termi-
nology used in tracking literature, we will call these positions particles. For
each particle the hypotheses that the tracked person is present at this posi-
tion ({present}) or not ({—present}) are investigated. These two hypotheses
constitute the frame of discernment © associated with this particle. To gather
evidence, each camera i makes an observation and translates it for each particle
into a body of evidence m! through the BBA defined as follows.

A 3D model of a person is assumed to be standing at position z;. The 3D
model is a cuboid with ground plane centered at z; and with the dimensions of
an average adult (see Fig. for two examples). Observations for a particle
are gathered over this 3D model. One of the advantages of this procedure is
that it offers some robustness against occlusions that vary with height.

Let Vis(z;) be the percentage of the 3D model inside the viewing frustum of a
camera. If Vis(z;) = 0, nothing is known about the hypotheses and m!(0) = 1.
Otherwise the 3D model is projected onto the camera view, defining a region
pm of pixels. In Fig. this region is shown for the model furthest from the
camera. Any foreground detection algorithm from literature can be used to
segment the image in foreground regions, that contain the objects of interest
in the scene, and background regions. The foreground pixels lying within pm
form a region fpm (Fig.[6.1d).

If the scene contains multiple people, other persons may block the view on the
person at position z;. By placing 3D models at the estimated positions of all
other persons in the scene, the region vpm, being the part of fpm not occluded
by other people, is estimated (Fig. [6.1g). The measure Nocclu(z;) is propor-
tional to the number of pixels in vpm relative to the number of pixels in fpm.
How much evidence can be gathered about the hypotheses depends on both
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(c) (d)

(e)

Figure 6.1: (a) Projection of the wire frame of two 3D models into a camera image.
(b) Detected foreground and projection of the wire frame of the 3D models. (c) Image
region within 3D model projection of furthest person (pm). (d) Foreground within
3D model projection of furthest person (fpm). (e) Unoccluded foreground within 3D
model projection of furthest person (vpm).

the visibility of the tracking target and on its level of occlusion. The authors
in [Munoz-Salinas et al., [2009] therefore define ml(0) = 1—Vis(x;)Nocclu(z;).
Observations that are considered evidence for the hypothesis that the tracked
person is present at position z; are

e the presence of pixels that are part of the foreground within the pro-
jected 3D model region pm. This observation is captured by the measure
Occu(xy);

e a small distance between the center of mass of the detected foreground
region fpm and the projected model pm in the image of a camera. The
degree to which this is the case is represented by Cent(x;);

e a small difference in color within the region vpm to the color histogram
model of the tracked person kept by the camera. This similarity is rep-
resented by Cd(z;). Complete similarity is represented by Cd(z;)=1.

The basic belief assigned to the {present} hypothesis is defined as
mi({present}) = (1 — m'(0))Occu(z;)Cent(x;)Cd(x;).

Then, by the definition of a basic probability assignment, m!({-present}) =
1 — ml({present}) — mk(©).

7
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The bodies of evidence m! from different cameras are fused using the fusion
rule of Eq. (or using the cautious conjunctive rule if the observations are
not independent), resulting in a BBA m! for each particle ;. Each particle x;
gets assigned a relevance that is proportional to m!({present}) and the target is
estimated to be at the position with maximal relevance. Once the new position
estimate is known, all cameras in which the target is visible update their color
model of the target (used in the calculation of Cd). Then a new set of particles
for time instant ¢t + 1 is generated using the classical condensation algorithm
[Isard and Blake, [1998| in which the resampling probability of the particles
is equal to their relevance and the propagation step assumes a random walk
movement of the particles following a Gaussian distribution N (0, oprop)-

For more details on the tracking algorithm, the reader is referred to [Munoz-
Salinas et al.| 2009).

6.5.4 Camera Selection for Tracking

We now propose a method to assess the suitability of a camera set for tracking
a particular person. As discussed previously, we consider the frame of discern-
ment Q = {wy,ws,...,wy,...,we}, where wy = {z € X} and X, g € [1,G],
are discretization cells on the ground plane. We derive the suitability of a set
S for tracking a target from the certainty with which it can locate the target
in one of the cells. The set suitability value v(S) is calculated from the body
of evidence mg that contains the evidence for each of the 2¢ propositions in €.
In the following we explain how we define the BBA mg that translates camera
observations into evidence supporting the propositions in (2.

The observations about a single cell X, can provide direct evidence for only
two hypotheses: the target is in this cell (w,) or it is not (2\wy). Combining
evidence from different cells using one of the combination rules of Section |4.2
allows us to draw indirect conclusions about some hypotheses for which no
direct evidence can be gathered because, as explained in Section applying
these rules leads to a specialization of the basic belief (i.e., basic belief is re-
distributed over the subsets of each proposition). Indeed, if there is evidence
supporting the hypothesis that the target is not in cell X, and other evidence
that it is not in X,/ , then the hypothesis that it is in any of the other cells
becomes more likely. To model this intuitively plausible evidence gathering
process, we consider the assessment of the hypotheses in €2 based on the ob-
servations about a single cell X, as a separate body of evidence, denoted as
m.

To gather evidence for the propositions in €2, we could perform observations and
extract evidence from them. However, for the tracking algorithm we already
need to perform some observations. For reasons of efficiency, we make use of
these observations performed for the tracking algorithm to extract evidence for
the propositions in our frame of discernment 2. We take

m(wg) = Vle{f{gﬁflexg mls({present}), (6.13)
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where mlS is obtained by fusing the bodies of evidence m! for all cameras in the
considered set: ¢ € S. Eq. expresses that the basic belief that the tracked
person is in cell X, equals the highest evidence of presence measured in the
particles that lie in this cell. The quality of this approximation depends on the
sampling density in the cell. The basic belief for the hypothesis that the target
being tracked is not in cell X is defined as the minimal evidence of absence
measured in any of the particles that lie in this cell:

mé(QN\wy) = We[l,r?]i&lexg my({—present}). (6.14)

Note that this is equivalent with

9(0) =1— L t ! .
mg(N\wg) Weu{gﬁie}%[ms({pmsen } +mg(0)]

This implies that when we have full information about all particles in the cell
(ie., mk(®) = 0 for all I € [1,L] for which 2; € Xg), m%(Qw,) = 1 —
m%(wg). For example if there is no evidence that the target is in this cell
because ml({present} = 0 for all particles in the cell, i.e., m%(w,) = 0, then
we are sure that the target is not in this cell: m%(Q\wy) = 1. If nothing is
known about the presence or absence of the target at all particles in the cell
(ie., m4(©) =1 for all | € [1, L] for which z; € X,), m%&(Q\w,) = 0.
Observations about X, can only provide direct evidence for the hypotheses w,
and Q\wy. Therefore m%(A) = 0 for all proper subsets of Q except for w,
and Q\wy. By the definition of a basic probability assignment then m%(Q) =
1 —mé(wg) — mE(Q\wy).

The cell X never contains any particles because it is in the part of the ground
plane area in which we do not gather observations, either because we cannot
or because we do not expect the tracking target to be there. Because no direct
evidence about the presence or absence of the target in X can be gathered
m§(Q) = 1 and m§(A4) = 0,VA C Q. If there are no particles in another
cell Xy, ¢’ € [1,G — 1], this cell de facto assumes the same role as Xg. We
therefore merge such a cell with X and remove the hypothesis wy from the
frame of discernment.

The body of evidence mg is obtained by fusing the bodies of evidence m% from
all cells. Distinct pieces of evidence can be combined using Dempster’s rule of
combination (Eq. . This is not possible if the evidence is not independent.
Dependencies between the evidence of different cells can arise from two sources:

e for some particles the 3D model used in the evidence gathering process
of [Munoz-Salinas et al., [2009] extends into adjacent cells. If the inter-
section between the models from which evidence is gathered in either
Eq.[6-13]or for different cells is not empty, the evidence of these cells
is not distinct. The probability with which this occurs can be minimized
by choosing an appropriate discretization scheme. This will be further
discussed in Section
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e the projections into the camera views of the 3D model associated with
particles in different cells can overlap. However, as soon as evidence is
gathered from at least two cameras with sufficiently different viewing
angles, the projections cannot overlap in all views and the dependence of
the evidence sources will be small.

Non-distinct pieces of evidence should be combined using the cautious con-
junctive rule of [Denoeux] 2008|. Unfortunately, as mentioned in Section
the result of fusing distinct bodies of evidence with this rule is less informative
than if Dempster’s rule (Eq. is used. It is therefore important to establish
to what extent the possible dependence between the evidence sources of differ-
ent cells actually manifests itself in a practical scenario. In Section [6.6.3] we
will ascertain that Dempster’s rule can be safely used to combine the bodies of
evidence m% from all cells if S contains at least two cameras.

When we have obtained mg, we can use Eq. to calculate the suitability
v(S) of a camera set S for tracking a specific target.

6.5.5 Practical Scheme for Tracking with Selected Cam-
eras

In the following, we discuss the practical issues that need to be considered
when implementing our algorithm in a practical smart camera network tracking
scenario.

6.5.5.1 Discretization Scheme

A design choice which influences the suitability value of a camera set is the
discretization scheme of the ground positions. This discretization is only used
to assess if a set of cameras can make a sound estimate of the position of the
tracking target and not for the tracking as such.

We assume the target is at its estimated position (or a prediction thereof, as will
be explained in Section. Around this position we center a discretization
cell which we call the center cell. Its center is the estimated target position. It is
shaped and sized such that the 3D model placed at the estimated target position
is completely disjunct with a 3D model placed in any particle in another cell.
Hence, the minimal allowed side length of the center cell is twice the 3D model
side length. The rationale is that camera sets that localize the target in the
center cell and also clearly observe that the target is not present in the other
cells are very suitable to perform the tracking. In the schemes Fig. [6.2h, b
and c, the side length of the center cell is the minimal allowed side length. In
Fig. the center cell is larger than this minimal allowed size and in Fig.[6.2¢
it is smaller. Various possible divisions of the space around the center cell into
other discretization cells are proposed in Figure [6.2p-c.

The influence of the scheme choice on the camera selection algorithm will be
discussed in Section [6.6.4]
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(a) (b) (c)

Figure 6.2: Discretization schemes of the ground positions. The dots are the particle
positions, the cross indicates the estimated target position, the dashed line delineates
the contour of the person 3D model centered at the estimated target position and
the full lines indicate the discretization cell borders. (a), (b) and (c¢) show various
possible divisions of the space around the center cell, which has the minimal allowed
side length of twice the 3D model side length. In (d) the center cell is larger than
this minimal allowed size and in (e) it is smaller.

6.5.5.2 Avoiding Costly Data Transmissions

To calculate the suitability of a camera set, Eqs. [6.13] and [6.14] need to be
evaluated, which requires observations about all particles to be made by all
cameras and to be transmitted to some point of central processing. However,
as will be explained more thoroughly in Section[6.5.5.3] we wish to save camera
and network resources by making and transmitting fewer observations.

To this end, we determine for each tracking target at a base station (which can
coincide with one of the cameras) which set of cameras is most suited to make
and transmit observations about this target. This selection is not based on
observations of the current time instant. Instead, as will be explained below, it
is made by assuming temporal smoothness between subsequent frames of the
positions of the tracking targets. This is a valid assumption if the moving speed
of the targets is not too high compared to the frame rate of the system. The
base station broadcasts the camera selection decision to all cameras. Only the
selected sensors actually make and transmit real observations of the scene.

To make the camera selection decision at the base station, the camera images
are not available, nor any of the observations of the current frame (in fact, no
observations have been made yet, also not on the cameras). Of course, these
images or observations could be transmitted by the cameras, but it is exactly
these costly observations and transmissions that we wish to avoid.

Therefore, the selection decision is based on simulated observations of 3D mod-
els placed at the predicted target positions. Alternatively, the observations of
the previous time frame could be used to base the selection on. However, these
are only available for the cameras that were selected at the previous time in-
stant, since only the selected cameras have transmitted their observations to the
base station. To keep the input data of the selection algorithm homogeneous
for all cameras, we prefer to use simulated observations.
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To predict a tracking target position we assume that the target does not move
appreciably between subsequent frames. The higher the frame rate and the
lower the target’s speed, the more reasonable this assumption is. As will be
apparent from the results section, Section [6.6] this assumption of temporal
smoothness leads to satisfying camera selection results, even when people make
many sudden and fast movements, such as in a sequence of a basketball game.
Since for the simulated observations no background/foreground silhouettes of
the cameras are available, fpm is set equal to pm for all particles. The simulated
regions vpm for a particular target are obtained by placing 3D models at the
estimated positions of all other persons in the scene. From these input regions,
Vis, Nocclu, Occu and Cent are derived for all particles. For the simulated
observations no color information is available, so for all particles the simulated
observation of Cd is simply set to 1.

The discretization of the ground positions according to one of the schemes
described in Section [6.5.5.1]is also based on a prediction of the target position.
The camera selection decision is broadcast to all cameras and only the selected
sensors actually make and transmit real observations of the scene. Based on
these observations, the tracking algorithm estimates the target’s current posi-
tion. Based on this position, the selection decision for the following frame is
calculated, and so on.

6.5.5.3 Computation and communication

The proposed method of identifying the most suitable camera set for a tracking
task can be very useful in a practical smart camera network to save compu-
tational and communication resources. In the tracking algorithm of [Munoz-
Salinas et al., 2009], as in most tracking methods described in literature, most
resources are used for observation gathering rather than for other parts of the
methods. The cost of estimating the target state is negligible in comparison.
When the tracking decision can be based on the observations of only a selected
set of sensors, a substantial saving of resources is achieved. This is especially
the case in wireless camera networks, where saving communication and pro-
cessing power is essential in enabling battery operation or prolonging battery
life. In such systems lowering communication bandwidth is also a very im-
portant factor in reducing system latency because transmissions usually occur
sequentially (cfr. the carrier sense, multiple access/collision avoidance channel
access mode used in the ZigBee specification). The non-selected cameras can be
used for other network tasks or can be left idle. Depending on the foreground
segmentation method, it may be necessary that they keep capturing images to
update their background model.

In this section we analyze which operations are saved by tracking with a selec-
tion of only N’ cameras instead of with all N cameras. We also discuss which
extra operations are necessary for the sensor selection itself as compared to
tracking with all cameras, where no such selections need to be computed. The
numbers are listed in Table To provide a rough estimate of the relative
computation time of the different operations, their computation time on an In-



134 CAMERA CONTRIBUTION (QUANTIFICATION FOR SENSOR SELECTION

Table 6.1: Analysis of extra and saved operations when tracking with a selection of
N’ out of N cameras instead of with all N cameras. L is the number of particles.
The average computation time of each operation on an Intel Core i7 920/2.67GHz
processor is also listed.

Operations Baseline: # Extra # Saved Computation
All N Cams | Operations | Operations | Time (ms)
pm NL 0 0 0.04
fom NL 0 (N — N")L 0.12
vpm NL NL (N—-NL 0.13
Vis NL 0 0 0.13
Nocclu NL NL (N-N')L 0.18
Occu NL NL (N—-N"L 0.19
Cent NL NL (N — N')L 0.42
cd NL 0 (N — N')L 1.86
Selection 0 1 0 f(G,LN.N')
(see text)

tel Core i7 920/2.67GHz processor is listed (averaged over 200000 instances).

Additional savings are possible by not running the camera selection algorithm
for every frame but applying a selection decision to several frames. This will
have an impact on the tracking accuracy as necessary changes of the selected
camera sets will be delayed. If the frame rate of the system is sufficiently high
with respect to the scene changes in the room, such that successive observations
result in similar selection results, the performance drop will be minimal (cfr.
also Section [5.8.4)).

Let us now analyze the operations necessary to obtain the simulated obser-
vations. The predicted target position is the estimated target position in the
previous frame (see Section . It does not require extra operations to
obtain. The same holds for the regions pm and their derived measures Vis
because they are the same for simulated and real observations. The regions
fpm for the simulated observations are taken equal to the regions pm, so also
for those no extra computations are needed. Extra operations are needed to
calculate the simulated observations Nocclu, Occu and Cent in N cameras and
for L particles, and the regions vpm as part of their input. As for the simu-
lated observations no color information is available, C'd does not need to be
computed.

When tracking with only the selected cameras, only N'L actual observations
(instead of N L when tracking with all cameras) of Nocclu, Occu, Cent and Cd,
and their necessary input, the regions fpm and vpm, need to be calculated so
their computation is saved (N — N')L times.

For the selection algorithm we need to determine for L particles in which of the
G discretization cells they lie. Then, each iteration of the greedy optimization
of Algorithm [4] to solve Eq. involves these major steps on lines [§ and [9] of
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the algorithm:
1. fusing evidence of selected cameras;

2. for G cells: obtaining the maximal evidence of presence and the minimal
evidence of absence to construct m¥;

3. fusing the mY from all G cells to obtain mg;

4. determining the aggregated uncertainty in the obtained body of evidence
ms;

5. calculating the value as in Eq.

In a non-optimized implementation, the number of operations exponentially
rises in steps 3 and 4 with the number of cells G’ because there are 2¢ hypothe-
ses in the power set of Q. It is therefore important to keep G low (we advise
that G is smaller than 10). The number of loops that has to be executed in
Algorithm [f]depends on the constraints imposed on the desired camera set. As-
sume for example that the finally selected set contains N’ cameras. In this case
ZZVZ/O_ 1(N — 1) loops need to be run through. For typical parameters G = 6,
L =50, N =8 and N’ = 3, the selection algorithm took on average 3.86 ms
during 10000 executions in a non-optimized c++ implementation on the men-
tioned Intel Core i7 920/2.67GHz processor. To approximate the computation
time of the selection algorithm for other parameters N and N’, we neglect the
time needed to determine for L particles in which of the discretization cells
they lie and we assume that each loop in this algorithm takes a fixed time t;4p.
The total time for selection was 3.86 ms for N = 8 and N’ = 3, from which we
estimate ¢j,0p = 0.18 ms.

To assess if from a purely operational point of view it is favorable to perform
tracking with a selection of cameras instead of with all of them, one has to draw
the balance between the computations saved over the entire network and the
extra computations spent compared to the baseline scenario where all cameras
are used. In the baseline scenario, pm, fpm, vpm, Nocclu, Occu, Cent and Cd
have to be computed NL times, i.e., for all particles on every camera. Note
that the calculation time of Cd is higher than for Nocclu, Occu and Cent.
These latter basically involve pixel counting operations, whereas Cd requires
the creation and comparison of a color histogram. The color histogram is
created in the Yuv color space, so a conversion between the RGB and the Yuv
color spaces is necessary. For this reason the number of operations per pixel is
higher for the calculation of Cd than for Nocclu, Occu and Cent. The fraction
of saved computations is

2.90(N — N')L — 0.92NL — 0.18 "N -1 (N — i)
(0.04+0.12+0.13+0.13+ 0.18 + 0.19 + 0.42 + 1.86)NL

which we approximate by 0.95(N —N')/N —0.30 because ZZN:I(;l(N—i) < NL.
Thus as long as N’ < 0.68N the total number of computations in the entire
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Table 6.2: Example of extra and saved computation time as a percentage of the
total baseline time for typical parameters G = 6, L = 50, N = 8 and N’ = 3. The
total baseline time is the computation time when tracking with all cameras.

Operations Saved Comp. for G=6, L=>50,
N=8, N'=3 (% of Total Baseline Time)
pm 0.00%
fom 2.55%
vpm -1.54%
Vis 0.00%
Nocclu -2.24%
Occu -2.28%
Cent -5.13%
Ccd 37.89%
Selection -0.31%
Total perce.ntag(-e of 98.93%
saved computation time

network is smaller when tracking with a selection of cameras instead of with all
of them, also taking the overhead calculations to determine the selection into
account. In Table [6.2] we indicate the savings for typical parameters G = 6,
L =50, N =8 and N’ = 3. Note how the computation savings are mainly
concentrated in the calculation of Cd.

Independently of whether the savings balance is positive or negative, an ad-
vantage of tracking with a selection of cameras instead of with all of them is
that it is possible to design the network such that the overhead computations
of the selection are performed on a base station, which can be made to have a
higher performance or to have access to more power than the smart cameras.
In such a design there is always a saving in computations at the side of the
smart cameras.

Particularly important for wireless camera networks is that communication
with N — N’ cameras is saved. In such networks, this is a very important fac-
tor in reducing the latency of the system and in saving communication power
and bandwidth. Assume for example that in a network of 10 cameras 3 cameras
are selected for tracking a target. Let us further assume we can neglect the
small amount of resources needed to broadcast the selection decision. This is a
reasonable assumption, as the number of bits needed to represent the selection
decision is a lot smaller than the number of bits required to represent the cam-
era observations. In this example, the communication power and bandwidth
savings amount to 70% per target.
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6.6 Results

In this section we discuss the performance of the camera selection method for
tracking as proposed in Section [6.5

6.6.1 Test Data

We use natural video sequences recorded in three different environments for
our evaluation.

The first environment is an indoor scene of 7m by 9m observed by N = 8
IP cameras. Approximately 3 minutes of footage (900 frames) in which two
persons appear have been recorded at 5 fps and at QVGA resolution (320x240).
Only the starting points of these recordings have been synchronized.

The second environment is the one from the publicly available basketball
dataset from the European project APIDIS [De Vleeschouwer and Delannayl
2009], already used in Section To recapitulate: in these sequences a bas-
ketball court is observed by seven synchronized and calibrated cameras (see
Fig. |6.7). The videos are processed at 25 fps and at a resolution of 800x600.
The size of the field is 15m x 28m. There are on average 12 targets on the field.
We have used the images recorded in the time interval 18:47 until 18:50 (4500
frames). As most cameras point to the left half of the court, only positions in
that half are considered for the evaluation.

The third environment is the indoor scene of 5m by 4m observed by N = 10
web cameras already used in Sections[.6|and [5.8 The camera views are shown
in Fig. Approximately 8 minutes of footage (2400 frames) in which two,
three and four persons appear have been recorded at 5 frames per second and
at CIF resolution (352x288). Ounly the starting points of these recordings have
been synchronized.

Foreground detection in the first and second environment is done using an al-
gorithm based on mixture of Gaussians modeling [Stauffer and Grimson, 2000]
with elementary shadow removal [Kaewtrakulpong and Bowden, [2001]. Be-
cause the cameras of the third environment have quite an unstable automatic
gain control, extreme apparent lighting changes of the observed scene are fre-
quent and we use a background foreground segmentation algorithm that can
adapt especially quickly to such changes [Li et al. [2003], combined with the
same shadow removal as for the other environments. The size of the 3D model
box is set to 0.5m x 0.5m x 1.7m.

For the sequences of the first and the third environment ground truth ground
plane positions of the tracked persons have been generated for every fifth frame
(1 s intervals). This has been done by manually checking the output of the
multi-camera person detection algorithm of [Delannay et al., 2009] and cor-
recting it where necessary. For the APIDIS sequence, ground truth target
positions have been made available at 1 s intervals.
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6.6.2 Evaluation Metrics

For each frame for which ground truth target positions are available, we deter-
mine the root mean squared error (RMSE) of the estimated target positions
with respect to the ground truth positions and average them over all tracked
targets and all frames. We also count the number of times a tracker loses
its target. In the average RMSE computation we exclude the large error due
to losing a target. After each loss the tracking is reinitialized at the correct
position and tracking resumes.

A person is considered lost if none of the particles of its tracker is closer to
the ground truth position than twice the maximal standard deviation oprop
of the propagation of the particles, plus half the side length of the 3D person
model box. The idea is that in this case the target is not likely to be recovered
anymore by a propagation of the particles. In [Munoz-Salinas et al., [2009]
the maximal opy0p, = 2s/fps, where s is the speed with which the targets
are assumed to move and fps is the frame rate at which the system operates.
In our first and third environment the frame rate is 5 fps and the speed is
assumed 1m/s. In the APIDIS environment the frame rate is 25 fps and the
moving speed of the basket ball players is assumed 5m/s. Both scenarios lead
t0 20prop + sidelength_3Dbox/2 = 1.05m.

To assess the computational load at the camera side of the network in the
following experiments, we determine at each time instant the number of times
a camera has to collect observations for tracking one of the targets. We compare
this number with the number of times a camera has to collect observations for
tracking one of the targets when all targets are tracked with all cameras (i.e.,
the number of targets multiplied by the number of cameras).

In the following experiments a set of cameras is selected for each person inde-
pendently of the sets selected for other persons. As a consequence, these sets
may or may not overlap. We call a camera that is selected to track at least one
target an active camera. Communication is saved with all non-active cameras.
A lot of overlap between sets selected for different tracking targets is beneficial
from a communication point of view, but it also increases the instantaneous
computational burden for some cameras because they have to calculate pm,
fom, vpm, Nocclu, Occu, Cent and Cd for several targets. To monitor these
two aspects, we determine at each time instant the number of active cameras
as a fraction of all cameras and the maximum number of targets assigned to
one camera as a fraction of all targets. These measurements will be conducted
in Section [6.6.6] on the experiments of Section A more in-depth study of
the consequences for the frame rate and the battery life time of the system is
beyond the scope of this work.

6.6.3 Distinctness of Cell Evidence

In a first experiment we analyze the distinctness of the evidence of the cells for
the various discretization schemes of Fig. We focus on the distinctness of
the evidence of the center cell from the evidence of the other cells. A similar
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analysis can be performed for each cell, but for conciseness it is not included
here as it leads to similar conclusions.

If the evidence of the different cells is distinct, we can use Dempster’s rule
(Eq. |4.1) for combining the bodies of evidences m¥, of the different cells X,
g € [1,G] to obtain mg. Otherwise we must use the cautious conjunctive rule
of [Denoeux] 2008§].

Evidence is distinct if it is produced by independent sources. A formal defini-
tion of the concept of distinct evidence was provided in [Smets| 1992]. In this
work, we use the practical method that has been proposed in [Quost et al.l
2008] to assess the dependence between sources. Quost et al. measure the
distance between the bodies of evidence m; and ms produced by two sources.
The smaller this distance, the greater the dependence. The distance metric
introduced in |Jousselme et al.| [2001] is adopted, which is defined as:

m1 — ma)D(my — ma)T
oy ma) = o (=)Dl —ma)T (6.15)
with an element D4 p of matrix D defined as
|AN B
D =— —_VACQ BCQA B . 1
A,B |AUB|7 =44, =35 #07 7&(2) (6 6)

This distance is normalized, which means that 0 < d(mq,ms) < 1.
The viewing angles of the cameras in the set S determine to what extent the
projections into the camera views of the 3D model associated with particles
in different cells can overlap. If these projections overlap, the evidence is not
produced by independent sources and we expect the evidence not to be distinct.
We want to focus on the evidence which we expect not to be distinct from the
evidence of the center cell. To this end, in each frame, we determine which
other cell g = ¢* has the evidence that is least distinct from that of the center
cell (g =1):

g* = argmind(mg, m%). (6.17)

9€(2,G]

In Fig.[6.3] we plot for the various discretization schemes of Fig. [6.2] the distance
d(mk, m‘gf) averaged over all frames as a function of the number of cameras in
the set S. The number of particles is set to L = 50. Clearly for all discretization
schemes the average distance d(mls, m%*) is smallest when S’ contains only one
camera and it almost reaches its maximal value, namely 1, as soon as S contains
at least two cameras. This indicates that the bodies of evidence of the different
cells are approximately distinct as soon as S contains at least two cameras.
This matches our expectations of Section with regard to the overlap of
the projections of the 3D model in the views of the cameras in S. It also
justifies using Dempster’s rule (Eq. for combining the bodies of evidences
m$, of all cells to obtain mg if the evidence stems from at least two cameras. If
S contains only one camera, it is more prudent to use the cautious conjunctive
rule of [Denoeux, [2008] to fuse the bodies of evidence m of the different cells
Xy, g € [1,G] as the bodies of evidences m% of the different cells may not be
totally distinct.
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Figure 6.3: For various discretization schemes, the distance d(mls,m%*) averaged
over all frames as a function of the number of cameras in the set S used to gather
the evidence.

6.6.4 Influence of Parameters

In a second experiment we assess the influence of the number of particles L and
the discretization scheme of the ground plane on the tracking performance. We
use the sequences from the first environment for this. For each person a set
of maximally three cameras is selected independently of the set selected for
the other person. We test the discretization schemes of Fig. [6.2] with the side
length of the center cell twice the width of the 3D model box, i.e., 1m, for the
schemes of Fig. [6.2h-c, 3 times this width, i.e., 1.5m for the scheme of Fig.
and exactly this width, i.e., 0.5m for the scheme of Fig. [6.2.

In Table [6.3| and Fig. we show how the tracking performance changes with
varying numbers of particles and for different discretization schemes. As a
reference, we also include results for tracking with all eight cameras.

As a general trend, we observe that the tracking performance improves with
rising numbers L of particles. This improvement is largest in the range [10, 30].
For tracking with all cameras the average RMSE remains constant at approx-
imately 0.15m for L > 30. For all discretization schemes the average RMSE
and the number of target losses also level out for L > 30. This leads us to the
important observation that for these schemes it is not necessary to use more
particles than in the case where all cameras are used.

From Fig. [6.4] we further observe that in spite of the large reduction of active
cameras from eight to three, the rise in average RMSE is limited, varying from
less than a centimeter (for L = 100 and discretization scheme of Fig. [6.2d) to
a maximum of less than ten centimeters (for L = 10 and discretization scheme
of Fig. ) The differences between the proposed discretization schemes
are small. The schemes of Fig. [6.2h and of Fig. [6.2c perform worst in terms
of average RMSE for L > 10 and number of target losses. The scheme of
Fig. has many cells, requiring observations from many different viewing
angles to correctly discern between the presence or absence of the target in
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Figure 6.4: Average RMSE as a function of the number of particles L when tracking
with all or with a selection of cameras obtained using different discretization schemes.

each of them. If such observations are not available, uncertainty is introduced
into the body of evidence mg, and the camera selection algorithm is unable
to make a sound choice. The scheme of Fig. has only one outer cell. We
solve Eq.[6.1] with a greedy optimization algorithm, adding cameras one by one.
With this discretization scheme, it is impossible to identify which is a suitable
camera to first add to the selection set. Indeed, because of camera projection
geometry, it is impossible for one camera to observe that the target is absent
in this entire cell (except for a top view camera positioned directly above the
tracking target). For this reason, this discretization scheme hampers the search
for a suitable camera set.

Reducing the size of the center cell of the discretization scheme decreases track-
ing performance, as is shown in Fig. by the curve of the discretization
scheme of Fig. [6.2p. In this scheme the 3D model placed in some particles in
the non-center cells picks up evidence of the presence of the tracked person
at the estimated target position, causing uncertainty in the body of evidence
mg. Increasing the size of the center cell (see Fig. curve of Fig. [6.2d) does
not have a major influence on the tracking performance. Indeed, this does not
violate the rationale that a suitable camera set for tracking should observe that
the center cell contains the tracking target and the target is not present in the
other cells. On the contrary, the increased center cell size allows for some error
in the prediction of the target position as there is some buffer for the 3D model
of the particles in the other cells not to intersect with the tracked target. The
size should however not be chosen too large with respect to the spread of the
particles, otherwise the non-center cells will be insufficiently sampled.

We conclude that a number of particles of at least thirty and a discretization
scheme with a center cell with side length at least twice the 3D model side length
and four other cells (i.e., Fig. or d) are good parameters for our selection
algorithm. We will use the discretization scheme of Fig. in subsequent
experiments, and choose the number of particles L = 50.
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Table 6.3: Number of target losses as a function of the number of particles L when
tracking with all or with a selection of cameras obtained using different discretization
schemes.

All Scheme of

cams Fig.l@la \ Fig.@b \ Fig.l@k \ Fig.@ld \ Fig.l@le
L=10 0 2 0 5 2 3
L=30 0 2 0 3 0 0
L=50 0 2 0 2 0 0
L=100 0 1 0 1 0 0

6.6.5 Tracking Performance

Using the camera selection scheme described in Section we now track
persons using camera sets with varying size limits. For each person a set of
cameras is selected independently of the sets selected for other persons. We
use the discretization scheme of Fig. [6.2b and choose the number of particles
L =50.

We compare the tracking performance of this method with tracking using a
subset of cameras that remains fixed throughout the sequence. This fixed set is
the same for all targets and has been chosen as the best performing one among
all possible fixed sets. We also compare with tracking using a set of cameras
that is randomly chosen in each frame for each person.

Although the main strength of the use of generalized instead of classical in-
formation theory in this work is to provide a tool for easily modeling the im-
pact of observation quality on the localization certainty of multiple tracking
targets, it would be very interesting to assess if the generalized information-
theoretic approach provides specific advantages over a method using classical
information-theory. Unfortunately, we are not aware of any camera selection
systems from literature with which we could compare the proposed method. In-
deed, the methods for tracking based on classical information theory presented
in Section are not able to handle the complex scenarios in our test data.
Most of them are not suited for camera sensors but instead are designed for
sensors that produce simpler output (for example, direction-of-arrival sensors).
The ones designed for camera tracking ([Denzler et al., [2003; |Sommerlade and
Reid}, |2008]) have only been demonstrated on video sequences with one person
in the scene, and it is unclear how they can handle occlusions in the case of mul-
tiple persons. A comparison of generalized and classical information-theoretic
approaches is therefore not provided in this work.

Fig. shows the results for our first environment. One can clearly see that
with the proposed camera selection method the tracking can be performed with
as few as three cameras per person without substantial tracking quality loss.
For a set of two cameras, the number of target losses and the average RMSE
are larger than in the all camera case. The proposed camera selection method
outperforms the fixed and random camera selection schemes. The performance
gain is larger for smaller sets. For larger sets all methods perform equally well.
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Figure 6.5: (a) Number of target losses and (b) average RMSE for different selec-
tion schemes as a function of the size limit of the selected camera sets for the first
environment.

Note that the proposed method occasionally selects sets that are smaller than
the set size limit.

A tracking result in this environment with a set of three cameras, selected
using the proposed method, is shown in Fig.[6.6] For both persons the camera
views shown in Fig. [6.6f-h were selected. These are the only views in which
the persons are completely visible. Note how each camera has only a partial
view of the room. A random selection of cameras may therefore very well have
a bad view of the tracking targets. This also makes it impossible to find a
fixed camera set that tracks people well at all times. In this case the best
performing fixed set was Fig. [6.6h, ¢ and g. Especially the view of Fig. [6.6h
is an unfortunate source of information for this configuration of the tracking
targets.

A tracking result in our second environment for the proposed camera selection
method with a set size limit of three cameras is shown in Fig. [6.7] For this
environment, a well performing fixed camera set exists because many cameras
have a nearly complete view of the left half of the court. In particular, for
three cameras, the views of Fig. [6.7h, ¢ and e performed best. While this set
guarantees a good overall view of the tracking targets at all times, at specific
time instances such as this one more close-up views can be useful for some tar-
gets. Notice for example the two players indicated in green and cyan standing
very close to each other under the basketball ring. The one with the cyan wire
frame is occluded completely in Fig. [6.7¢. The proposed method selects the
views of Fig. [6.7h, b and e to track this player, thus replacing the bad view of
Fig. with the much better view of Fig.[6.7b. For the player with the green
wire frame it selects the views of Fig. [6.7b, d and g, three close-up views.
Numerical results for this environment are shown in Fig. [6.8] Overall the
proposed method outperforms the fixed and random camera selection schemes.
Again the performance gain is larger for smaller sets, especially compared to
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(e) (f) Red, green. (g) Fixed, red, green. (h) Fixed, red, green.

Figure 6.6: Camera views in the first environment. The views which are part of the
fixed selection of three cameras, or of the selection of three cameras determined using
the proposed method for the person with the red or green wire frame are marked by
fixed, red and green respectively.

the random selection scheme. When only two cameras are selected, a random
choice of cameras often turns out to be an unfortunate choice. The fixed
selection of two cameras performs quite well because the two top views in this
case cover the entire field and offer a good overall view of all tracking targets
at all times. However, the proposed method outperforms the fixed selection
method in terms of number of target losses because it can also select more
close-up views of the targets than the top views. When the set size limit equals
the total number of cameras, namely seven, the proposed method outperforms
the other selection schemes in terms of number of target losses. The fixed and
random selection schemes in this case always boil down to tracking all targets
with all cameras. The proposed method is able to selectively choose only the
views that are suitable for tracking a target. Indeed, in some cases it is better
not to use the information of a view because it is misleading. This happens for
example when the target is mostly occluded, or when a lot of players appear
close together. These cases are identified by the proposed method and the
corresponding view is then not selected.

Results for the third environment are shown in Fig.[6.9] For the average RMSE
the same conclusion as for the previous environments can be drawn, namely
that the proposed method outperforms the others in terms of average RMSE for
small cameras sets and display equal performance for larger sets. The number
of target losses is in this environment clearly a lot lower than for the random
and fixed selection methods. This is because the cameras in this setup have
narrow viewing frustums. This increases the importance of dynamic camera
selection, as it is not possible to select a fixed or random set with an overview
of the scene.
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(g) Green.

Figure 6.7: Undistorted camera views in the second environment. The views that
form the fixed selection of three cameras, or the selection of three cameras determined
using the proposed method for the person with the green or cyan wire frame are
marked by fixed, green and cyan respectively.
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Figure 6.8: (a) Number of target losses and (b) average RMSE for different selection
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Figure 6.9: (a) Number of target losses and (b) average RMSE for different selec-
tion schemes as a function of the size limit of the selected camera sets for the third

environment.
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Figure 6.10: Camera views in the third environment. The views which are part of
the fixed three camera selection, or of the selection of three cameras determined using
the proposed method for the person with the blue or red wire frame are marked by
fixed, blue and red respectively.

Fig. [6.10] shows a tracking result in this environment using a set of three cam-
eras, selected using the proposed method. The camera views in this environ-
ment are very diverse. Some cameras provide an overview of the scene, e.g.,
Fig. [6.10d and i, whereas some focus on a small part of it, e.g., Fig. [6.10h,
b and f. A random selection of cameras in such a setup often leads to poor
tracking results. The best performing fixed camera set includes the overview
views of Fig.|6.10(d, i and j. The proposed method has more flexibility and can
also take advantage of the close-up views. E.g., for the person with the blue
wire frame the algorithm selected the views of Fig. [6.10p, ¢ and j, and for the
one with the red wire frame the views of Fig.[0.10k, e and i. Note that, in order
to yield accurate localization, the selected cameras have very different viewing
angles. Views with the same viewing direction but that look from different
sides (such as Fig. and Fig. [6.10k) are not selected simultaneously. E.g.,
for the red wire frame, in combination with the view of Fig. the view of
Fig. [6.10k and not of Fig. [6.10 is selected, even if in Fig. the person is
only partially visible.

6.6.6 Impact on Computation and Communication

We now assess the computational load at the camera side of the network in
the experiments of the previous Section [6.6.5] Let A denote the computational
load of one camera collecting observations for tracking one target, i.e., for
calculating pm, fpm, vpm, Nocclu, Occu, Cent and Cd for this target. For ease
of comparison, in this section we disregard the dependence of A on the image
content and we assume that A is a fixed number. Let there be T targets t and
let the camera set selected for tracking ¢ be denoted as S;. The computational
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load A; of a camera 7 is then:

A= > A (6.18)

t]i€S:

The average computational load of the cameras is Zfil A;/N.

When all targets are tracked with all cameras, A; = T\ for all cameras i €
[1, N]. We express the average computational load of the cameras as a fraction
of the computational load of a camera when all targets are tracked with all
cameras: Zf\il A;/(NT)). In Fig. We evaluate how this expression evolves
as a function of the size limit imposed on the selected camera sets for the
different environments for the proposed camera selection method. When a
fixed set of cameras is chosen, this expression is simply the ratio of the size of
the selected set and the number N of cameras. This curve is also plotted in
Fig.

As can be expected, we observe that for small sets the average computational
load on the cameras is almost the same when the set is selected using the
proposed algorithm as when it is fixed. For larger sets, it often happens that
the proposed method selects fewer cameras than the imposed set size limit
because none of the non-selected cameras increase the set suitability value. We
therefore observe a relative drop in computational load as compared to the
fixed set scenario for larger sets.

In Fig. [6.11] we have also plotted for the proposed camera selection algorithm
the average fraction of active cameras in each environment as a function of the
size limit of the selected sets. Recall that we call a camera active as soon as
it is selected to track at least one target, i.e., as soon as A; > 0. For the first
and third environment which contain fewer targets than cameras this fraction
depends heavily on the number of selected cameras per target. Especially for
small sets the fraction of active cameras is a lot smaller than 1 and hence a lot of
communication with cameras can be saved. For large set sizes, approximately
80 to 90% of all cameras are active. In the second environment, where twelve
people are tracked, even for small selected sets all but one camera are active.
This one camera is pointing at the right half of the court and is therefore
mostly inactive. Note that the computational load of each active camera A;
is on average always only a fraction of what it would be when all targets are
tracked by all cameras. For the fixed set scenario the number of active cameras
always equals the set size.

Also plotted for the proposed camera selection method as a function of the
size limit of the selected sets is the average maximal instantaneous computa-
tional load of the cameras as a fraction of the maximum possible load, i.e.,
max;e(i,n] Ai /T. In the fixed set scenario the chosen cameras always track all
targets and this fraction is always one. It is also always one when all cameras
track all targets. For the second environment we note that the large number of
active cameras at each time instant entails a spread of the computational load
over the cameras. Indeed, the maximal computational load measured on the
cameras in the network is substantially lower than when tracking all targets
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Figure 6.11: Average computational load of the cameras, average number of active
cameras and average maximal instantaneous computational load for the proposed
method and for fixed sets measured in the experiments of Section [6.6.5]
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with all cameras or with a fixed set of cameras. For the other environments a
similar drop in average maximal load can be observed, especially for small sets.

6.7 Conclusion

A crucial component in an effective camera selection system is quantifying the
contribution of one or more cameras to the accomplishment of a task. In this
chapter we have presented a novel, general framework to evaluate the quality
with which a subset of cameras accomplishes a network task. The proposed set
suitability value is derived from the Dempster-Shafer theory of evidence and
can be applied to a wide range of vision problems.

As a proof of concept, we have used it for sensor selection in a camera network in
which multiple targets are tracked. This method has been tested on thousands
of frames in different environments and allows to track persons using as little
as three cameras with the same accuracy as when using all available seven,
eight or ten cameras. When tracking with two cameras, there is only a minor
performance drop. The proposed method clearly outperforms other camera
selection schemes for tracking.

The quantification of the contribution of a camera set to a task offers an instru-
ment to distribute multiple tasks among cameras according to some practical
criteria, while controlling the associated changes in the quality with which the
tasks are performed. Interesting constraints for practical camera networks in-
volved in the execution of multiple tasks include limiting the instantaneous
load of a camera, and limiting per frame the number of cameras that need to
communicate observation data, such that a frame rate goal can be achieved. To
increase the battery life time of the entire camera network, it would be useful
to spread the computational and communication load equally over all cameras
across time. This could for example be achieved by associating the selection of
a camera for a task with a cost that varies with the remaining battery life of
the camera.

The impact of limiting the instantaneous load of a camera on the quality of
the performed network tasks has been assessed in the thesis of my colleague
Marleen Morbee. Studying the other practical constraints would be useful
future research to expand the work presented in this chapter.



Conclusions

This thesis has dealt with fusion and selection of information in visual systems.
The developed algorithms evolved from techniques for visual data selection
and fusion at the pixel level to methods for reasoning about the importance
of observations and ways of combining them into a useful output product at a
higher level of abstraction.

7.1 Overview of Contributions

We have considered two types of visual systems: conventional light microscopes
and camera networks.

7.1.1 Depth of Field Extension in Microscopy

A conventional light microscope has a limited depth of field. For this reason,
it is often not possible to acquire an image of a 3D object in which all parts
of the object appear in focus. A standard technique to virtually extend the
depth of field of a microscope is to record an image ‘stack’ of a 3D object.
The distance between the image sensor and the object varies in each image,
such that a set of images called slices is obtained in which each time a different
part of the object is in focus. Clearly this technique results in an image stack
that contains very useful information (sharp images of all object parts), but
unfortunately also a lot of information that is irrelevant, namely blurred image
regions, or redundant, i.e., sharp image regions that appear in several slices of
the stack.

The storage, processing and transmission of this irrelevant and/or redundant
data leads to a waste of resources such as storage capacity, processing power
and transmission bandwidth. Reducing irrelevance and redundancy in the data
is therefore of paramount importance.

In Chapter [2] we have proposed a technique for selecting and fusing all infor-
mation of interest in an image stack for depth of field extension into a single
output image that contains all in-focus parts of the object. More precisely we
have exploited the directional sensitivity of the curvelet transform to produce
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high quality fusion results, both on real microscopy data and on artificially
generated image stacks. The average performance gain over our test set is
3.23 dB over the state-of-the-art complex wavelet-based technique of [Forster
et al.,|2004] and 7.88 dB over the common pixel domain variance-based method.
Moreover, we have shown that adding consistency and spatial smoothness
checks to this curvelet-based image fusion method generally leads to better
fusion results. For real test data, imposing these constraints leads to a reduced
number of artifacts in the fused image.

Additionally, we have hinted at the potential this method holds as a depth
from defocus technique by identifying which slice contains a sharp image of
each object part.

Noise, present in all image capturing systems, has a disturbing effect on the pro-
posed image fusion technique. In Chapter [3| we have proposed several solutions
to temper its influence on the fusion process. We have shown that imposing the
assumptions of spatial smoothness within and consistency between the curvelet
decomposition sub-bands has a regularizing effect and improves the fusion qual-
ity. We have also pointed out that denoising the slices in the curvelet domain
prior to fusion is an alternative solution.

In order to develop a curvelet-based denoiser, we have investigated the differ-
ences in statistical behavior between curvelet coeflicients containing a signifi-
cant noise-free component and those in which no signal of interest is present.
We have developed the ProbShrinkCurv denoising method for curvelets, which
is an adaptation of the wavelet-based ProbShrink denoising method [Pizurica
and Philips, [2006]. To this end, we have put the knowledge gained from our
statistical study to use in the design of an appropriate local spatial activity
indicator (LSAT) for this new method.

ProbShrinkCurv outperforms its wavelet-based counterpart and produces re-
sults that are both visually competitive with and numerically close to those of
state-of-the-art denoisers.

Using ProbShrinkCurv to denoise the curvelet coefficients of the mnoise-
contaminated slices prior to fusion improves the fusion result considerably.
The average gain over our test set amounts to 3.59 dB when no checks are per-
formed and 2.20 dB when smoothness and sub-band consistency are imposed.
The best fusion results are obtained when denoising prior to fusion is combined
with a fusion process in which spatial smoothness and sub-band consistency
constraints are imposed.

7.1.2 Data Fusion and Selection in Camera Networks

Camera networks with overlapping fields of view are the second type of visual
systems that we have treated in this PhD work. Because such networks present
different views on the same scene, they have substantial advantages over a
single fixed viewpoint camera. E.g., in scene monitoring, camera networks can
alleviate occlusion problems; in gesture recognition, cues coming from different
viewpoints can lead to a more robust decision; in free viewpoint television, the
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quality of the rendered intermediate views benefits from a larger number of
cameras.

Recent hardware developments have made ‘smart cameras’ possible. These are
cameras with on-board processing and communication hardware. They allow
for the construction of more flexible and scalable camera networks because the
required image processing can be distributed over the cameras. The collabora-
tive processing of the output data of the smart cameras can take place either
in a base station or on one of the cameras.

Data processing in a smart camera network entails some specific challenges.
The hardware embedded with the image sensor is usually especially designed
for image processing (high degree of parallelization), which is an advantage,
but it also has some limitations in terms of memory and processing power. If
the amount of output data of the smart cameras is kept low, wireless operation
becomes possible. This is an advantage for the flexibility of the system. Battery
operation is in this case also desirable, which again restricts the number of
computations and data transmissions.

The algorithms for camera networks developed in this thesis have all been de-
signed with a view to their possible implementation in smart camera networks,
either as they are or in a modified, more light-weight form. To this end, atten-
tion has been paid to issues such as data rates and computational load.
When the cameras in a network observe the same event or subject from different
viewing perspectives, this not only increases the amount of useful information.
A large part of the data produced by the network is redundant or even irrel-
evant. To reduce the huge amount of data produced by camera networks to
workable proportions, techniques that reduce irrelevance and redundancy in
the data are of paramount importance. We have followed two main approaches
to tackle this challenge: information fusion, which combines relevant data from
different sources into a single output product, and information selection, which
identifies which data is most valuable for a specific task.

In Chapter [4] we have focused on the fusion of occupancy data from different
cameras to obtain a 2D overview of the occupancy of a scene, called an occu-
pancy map. We have proposed a new method based on Dempster-Shafer based
fusion of single view ground occupancy maps to combine this information. Ex-
periments and a comparison with the state-of-the-art show clear improvements
in the fused ground occupancy maps in terms of concentration of the occupancy
evidence around ground truth person positions. We have also demonstrated the
effectiveness of the proposed method in a four camera network operating in real
time.

To facilitate the implementation of this method in smart camera networks,
we have modified it into a low data rate and low load version. This version
requires that the persons in the scene appear sufficiently large in the camera
views. If this is the case, cameras can send compact scan-lines of the detected
foreground, instead of the full foreground image.

Chapters [5 and [6] consider the problem of selecting data of interest in a camera
network. Chapter [5| introduces a practical method to select the best views
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for observing people in a scene and their shapes. In Chapter [6] we approach
camera selection in a more theoretical way and then apply it to multicamera
multiperson tracking.

Chapter [f] presented a method to determine which sensor subset in a smart
camera network has the best view on the persons in a scene. It consists of
distributed and central processes. To choose an appropriate key camera the al-
gorithm takes into account the number of faces detected by each of the cameras,
and the velocity and positions of the objects relative to the viewing direction
and viewing angle of the cameras. This principal view can be complemented
with additional views that complete the observation and that allow to recon-
struct the shape of the people in the scene. To select these additional views
we use the occupancy map as a crude 2D shape approximation of the people
in the scene.

Moreover, a greedy camera selection algorithm was proposed for real time
network operation. Experimental results show that the proposed algorithm
provides a performance very close to the optimal results. Also, two different
network operation protocols were proposed. The first scheme aims to improve
the sensor observation frequency and the second scheme decreases the delay
between view observation and image transmission. Experimental results show
that the proposed protocols improve observation frequency and latency without
degrading much the performance of the 3D shape reconstruction.

A crucial component in an effective camera selection system is quantifying the
contribution of one or more cameras to the accomplishment of a task. We
have presented a novel, general framework to evaluate the quality with which a
subset of cameras accomplishes a network task in Chapter [6] The proposed set
suitability value is derived from the Dempster-Shafer theory of evidence and
can be applied to a wide range of vision problems.

As a proof of concept, we have used it for sensor selection in a camera network in
which multiple targets are tracked. This method has been tested on thousands
of frames in different environments and allows to track persons using as little
as three cameras with the same accuracy as when using all available seven,
eight or ten cameras. When tracking with two cameras, there is only a minor
performance drop. The proposed method clearly outperforms other camera
selection schemes for tracking.

7.2 Directions for Future Research

The main limitation of the algorithms proposed in this thesis is that they
all require controlled circumstances to function properly. This is not a major
drawback in microscopy, as there it is relatively easy to control the environment.
The algorithms for camera networks, however, would greatly benefit from being
versatile and robust against disturbing influences. In their current form, all
methods of information selection and fusion in camera networks presented in
this thesis
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e require the network to be fully calibrated. This means that the internal
calibration parameters of the cameras must be known (i.e., the focal
distance, pixel density of the image sensor and the pixel coordinates of
the optical center), as well as the position of the optical center in the 3D
world and the viewing direction. This puts important constraints on the
application possibilities of these networks. Calibrating a camera network
is time-consuming and requires some skill. Keeping a network calibrated
means that the cameras must be mounted very solidly and occasional
calibration updates must be performed. Some methods of camera self-
calibration exist in literature, but they are only suited for cameras with
a large overlap of their viewing ranges. Furthermore they rely on the
detection of features in the camera views. Detecting features is not easy
if the scene contains large homogeneous regions (such as empty floors and
walls);

e assume the frames of the different cameras are synchronized, i.e., captured
at the same time instant. In practice, without hardware synchronization,
frames are never captured at the exact same time instant. Ideally the
capturing time difference must be limited to a fraction of a second. In
the absence of major network congestion this is automatically the case in
real-time systems with a sufficiently high frame rate. In off-line systems
synchronized video streams are more difficult to obtain and require soft-
or hardware time synchronization between the cameras during capture;

e rely on the output of a foreground detector. Foreground detection is
very sensitive to scene lighting and changes in the scene background.
Both must remain more or less constant for the foreground detector to
work properly. Some falsely detected foreground patches are naturally
filtered out by combining information from different cameras. However,
important scene lighting changes or changes in the background disturb
all cameras simultaneously and cause the methods to fail.

An important research goal for the future is to develop methods that are more
robust in the sense that they also function in less controlled circumstances, such
as under varying lighting conditions or slowly changing calibration parameters.
A possible way of achieving this is by feeding some system level information
back to the basic image processing algorithms. E.g., slow deterioration of the
calibration parameters should be detectable at the system level. Based on
the observations by a camera network of a single person, the network should
deduce one location of the person. If this is not the case, the calibration
of the cameras needs updating. If this can be detected, small changes can be
accounted for. Another example is that if an entire scene is suddenly detected as
being occupied, this hints at problems during the foreground detection process
and the parameters of this algorithm should be adjusted accordingly.

For all proposed methods there is room for improvement in the way evidence
is gathered. In image fusion for depth of field extension the activity level
measurement that indicates if an object part is in or out of focus has been
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the subject of ample research. Region-based approaches offer most unexplored
possibilities. For occupancy calculation the method proposed in this thesis
considers local evidence of the presence of foreground objects. A path to explore
is the use of a generative person model in the evidence gathering process. Such a
generative model exploits prior knowledge of how a person appears in a camera
view. It not only allows to assess if foreground objects are observed where their
presence is expected, but also to verify that background is observed everywhere
else. This can provide the algorithm with important additional information to
improve its performance.

Another important direction for future research is the incorporation of temporal
information in the algorithms. Currently all methods operate on a frame by
frame basis, processing information from each single frame separately. Filtering
approaches surely hold the potential to improve the proposed algorithms by
incorporating assumptions about temporal smoothness.

One of the main contributions of this thesis is the development of algorithms
that deal with information at the network level. Very little research has been
done in this field by the image processing and computer vision research commu-
nity and a lot of directions for future research are still wide open. An aspect
that definitely requires extensive further investigation is the communication
schemes to be used in practical camera networks. If wireless communication
is considered, this would best be developed within the framework of the Zig-
Bee standard. We have only slightly touched this theme in this dissertation.
The development of more autonomous algorithms at the camera level would
greatly benefit the flexibility and scalability of camera networks but this also
presents some important challenges to the design of the algorithms because not
all information is available to all agents at all times.

7.3 Summary of Contributions

To summarize, the main contributions of this thesis are:

e anovel image fusion method to extend the depth of field of optical systems
such as conventional light microscopes. This method uses the curvelet
transform to distinguish between in-focus and blurred image regions. Us-
ing this method we have improved image fusion results for depth of field
extension in terms of PSNR by several dBs |Tessens et al.l [2007alb];

e a statistical study of curvelet coefficients, based on which we have pre-
sented a novel denoising method, inspired by a recent wavelet domain
method ProbShrink. The new method outperforms its wavelet-based
counterpart and produces results that are close to those of state-of-the-
art denoisers [Tessens et al., [2006blc, [2008c]). This denoising method has
been shown to improve fusion results on image stacks that are contami-
nated with noise;

e a novel method to calculate ground occupancy maps by fusing ground
occupancies from each view separately according to the Dempster-Shafer
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theory of evidence. The method yields very accurate occupancy detection
results and in terms of concentration of the occupancy evidence around
ground truth person positions it outperforms the state-of-the-art proba-

bilistic occupancy map method and fusion by summing [Morbee et al.
[2008}, 20104} [Tessens et al., [2008b];

e a novel method to effectively select camera views for observing people in
a scene and reconstructing their 3D shape in a network of smart cam-
eras. Only low data rate information is required to be sent over wireless
channels since the image frames are locally processed by each sensor node
before transmission [Lee et all [2008} [Tessens et al., [2008b];

e a novel, general framework to quantify the quality with which a subset
of cameras accomplishes a network task. This is a crucial component in
effective sensor selection schemes. The proposed set suitability value is
derived from the Dempster-Shafer theory of evidence and can be applied
to a wide range of vision problems. We have used this method for sensor
selection in camera networks in which multiple people are tracked. The
proposed method clearly outperforms other camera selection schemes for
tracking in terms of average position error and number of target losses
[Tessens et al., |2010].

In total, the research during this PhD resulted in two publication in interna-
tional peer-reviewed journals [Morbee et al.,|2010a} [Tessens et al.,[2008c]. One
article is under review |[Tessens et al. 2010] and one in preparation [Morbee|
et all 2010b]. A patent application has been submitted [Morbee and Tessens,
@ﬂ. Furthermore thirteen conference papers have been published at in-

ternational conferences [Lee et al., [2008; Morbee et al.l 2007a,b, 2008, 2009;
[Soleimani et all 2010} Tessens et al., [2006alb]cl 2007albl 2008} 2009)].
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