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ABSTRACT

The use of Kriging surrogate models has become popular in approximating computation-intensive deter-
ministic computer models. In this work, the effect of enhancing Kriging surrogate models with a (partial)
set of gradients is investigated. While, intuitively, gradient information is useful to enhance prediction
accuracy, another motivation behind this work is to see whether it is worth including the gradients versus
their computation time. Test results of two analytical functions and a fluid-structure interaction (FSI)
problem from bio-mechanics show that this approach, known as Gradient Enhanced Kriging (GEK), can
significantly enhance the accuracy of Kriging models even when the gradient data is only partially available.

1 INTRODUCTION

Despite a substantial advancement in computing power, the analysis and optimization of simulation codes
for many problems in science and engineering require a significant investment of computational time and
resources. This turned many researchers towards the alternative of using cheap approximations or surrogate
models instead. In this respect, various attempts to enhance the accuracy of surrogate models with secondary
information such as gradients, Hessian data etc. have been carried out in the recent years. For example,
finite difference approximations of the gradients are used to improve the theoretical error estimates of
the surrogate model in (Hinze and Volkwein 2005). (Ito and Ravindran 1998) incorporated the gradients
directly in a finite-element-like framework, referred to as Hermite approach. These approaches share the
idea of exploiting gradient data within the context of projection schemes and are statistically biased at the
sample points. This problem is alleviated in (Zimmermann 2013) by directly introducing the gradients to
enhance the proper orthogonal decomposition (POD) based interpolation, referred to as gradient-enhanced
POD (GEPOD) approach.

Kriging surrogate models offer an efficient way to approximate deterministic and computation-intensive
simulation codes (Sacks et al. 1989). Kriging surrogate models can take advantage of additional information,
such as gradient data, Hessian data, multi-fidelity function data, etc. in order to enhance their accuracy. For
example, (Yamazaki, Rumpfkeil, and Mavriplis 2010) incorporated first-order and second-order derivative
data in Kriging surrogate models which resulted in models with improved accuracy over models based on
function data only. The context of this work is providing a guideline to designers and engineers whether it
is worthwhile to include gradient information based on several factors. While gradient data often improves
the accuracy, this improvement may not be worth the additional computation or fitting cost.

Gradient enhancement in Kriging surrogate models is first introduced by (Morris, Mitchell, and Ylvisaker
1993). This approach is denoted as direct Gradient Enhanced Kriging (GEK) throughout this work. An
alternative formulation of GEK, called indirect GEK, is further introduced by (Chung and Alonso 2002).
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Indirect GEK is built from the same mathematical formulation of Kriging, but augments the training data
with additional function data estimated from the gradient data. The authors argued that both direct GEK
and indirect GEK are almost identical in performance. An integrated mean squared error-based GEK
(IMSE-GEK) is proposed by (Liu 2003), but its performance is lower than indirect GEK.

The modeling efficiency of Kriging is largely determined by the ability of its correlation function to
capture the actual local behavior of the function to be modeled. Moreover, GEK has an extra requirement
that the correlation function must be twice differentiable in order to estimate the correlation between gradient
data. An elaborate discussion on various differentiable correlation functions is given by (Rasmussen and
Williams 2006).

In this paper, we are primarily interested in investigating the potential of including a (partial) set of
gradients in Kriging for providing more accurate surrogate models with as few runs of the expensive
simulation code as possible. To that end, analytical expressions for the derivatives of the Matérn 5

2
correlation function with respect to design variables are derived. The GEK methodology is applied to two
analytical benchmark functions and to one real-life problem from bio-mechanics. Based on the results
of this investigation, an insight on choosing GEK over Ordinary Kriging (OK) with respect to surrogate
model accuracy, surrogate model fitting cost and computational cost of estimating derivatives is given. In
addition, a guideline is suggested to achieve a reasonably good trade-off between surrogate model fitting
cost and surrogate model accuracy of GEK models.

The reminder of the paper is organized as follows: GEK is discussed in Section 2 after a brief overview
of Kriging. The correlation function being essential to obtain accurate surrogate models, is also discussed in
Section 2. The benchmark and the simulation-based examples are given in Section 3. Section 4 discusses the
results of the benchmark and the simulation-based examples. Finally, Section 5 summarizes our conclusions.

2 GRADIENT ENHANCED KRIGING

The Kriging estimate ŷ(xxx⇤) at a prediction point xxx⇤ is expressed as a summation of a constant trend function
µ̂ and a realization of a stationary Gaussian random process:

ŷ(xxx⇤) = µ̂ +yyyT YYY�1(yyy�1µ̂), (1)

where yyy contains the correlation between the sample data and the prediction point xxx⇤, yyy contains the
function values of the sample data and YYY is the correlation matrix which contains the correlation between
the sample data points. In the case of GEK, Equation (1) becomes,

ŷ(xxx⇤) = ˆ̇µ + ẏyyT ẎYY�1
(ẏyy� fff ˆ̇µ), (2)

where
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ẏyy =
✓

yyy,
∂yyy
∂x1

, ...,
∂yyy
∂xk

◆T

, (5)
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�
11, ...1ns ,0ns+1, ...,0(k+1)ns

�T
, (6)

where k is the dimensionality, ns is the number of training samples, ẎYY is a (k+1)n⇥ (k+1)n symmetric
block matrix and contains the correlations of function and gradient data between the sample data points
and the correlation vector ẏyy contains the correlation of both function values and gradients between the
sample data and xxx⇤. The vector ẏyy contains both the function values and gradients of the sample data. The
notations ∂YYY/∂x( j)

u and ∂ 2YYY/∂x(i)u ∂x( j)
v denote the correlation between function data and uth dimension

gradients and correlation between uth dimension gradients and vth dimension gradients, respectively. The
direction of differentiation is denoted by i and j with x(i) and x( j) denoting two different samples.

The Matérn 5
2 correlation function, which is widely used in the machine learning context, is used in this

work. The mathematical expressions for the correlation, gradient of the correlation and the Hessian of the
correlation with respect to xxx for the Matérn 5

2 correlation function are given in Appendix A. The constant
trend function for GEK, ˆ̇µ , is calculated via the general least squares method as ˆ̇µ = ( fff T ẎYY�1

fff )�1 fff T ẎYY�1
ẏyy.

The hyperparameters (qm,m = 1, ...,k) of the GEK model are determined by maximizing the concentrated
likelihood function.

3 TEST PROBLEMS

Two analytical examples and one simulation example are used as test problems. The surrogate model
accuracy is estimated with two different error measures: A validation data set of np = 500 uniformly
distributed pseudorandom points and k-fold Cross-Validation (CV) (Meckesheimer et al. 2002), both using
the Normalized Root Mean Square Error (NRMSE) which can be expressed as,

NRMSE =

r
Â

np
i=1(yi

t�ŷi)
2

np

max(yyyt)�min(yyyt)
, (7)

where yyyt is the vector of true function values and ŷyy is the vector of predicted function values.

3.1 Analytical Examples

Two widely used benchmark functions, summarized in Table 1, are employed as test functions.

Table 1: Analytical examples

Benchmark Number of Properties
Functions design variables (k)
Peaks 2 Multi modal
Sphere 5 Unimodal and convex

3.2 Simulation Example

A numerical simulator (Degroote et al. 2013) that determines the difference between a given wall displacement
and a calculated wall displacement for a given stiffness distribution along the length of an artery is used
as the simulation example. The numerical simulator uses a simplified fluid-structure interaction model
to identify the stiffness distribution along the length of an artery. The fluid-structure interaction model
is one-dimensional in an axisymmetric (r,f ,z) coordinate system, as depicted in Figure 1. It consists of
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k� 1 elastic segments (k represents the number of design variables), each with its own stiffness. Inside
the artery, there is an incompressible blood flow. Furthermore, the interaction between this blood flow and
the elastic wall is taken into account. For more details the reader is referred to (Degroote et al. 2013).

Figure 1: The one-dimensional and axisymmetric model for blood flow in an artery with the prescribed
velocity at the inlet (left) and the Windkessel model at the outlet (right). The segments, radius r, wall
thickness h and length ` are indicated

4 RESULTS AND DISCUSSION

4.1 Analytical Examples

Figure 2 shows the evolution of NRMSE as a function of ns for the benchmark test functions utilizing
the complete gradient data. As expected, the gradient enhancement significantly reduces the number of
training samples required for GEK models to achieve the similar accuracy level of OK models. GEK
models achieve a tentative 40% and 80% reduction in the number of training samples (ns) to reach the
equivalent accuracy level of OK models for the Peaks and Sphere functions, respectively. The performance
of GEK models over OK models is more pronounced as the number of training sample points and the
dimensionality (k) of the problem increases. The cross-validation error measure also compares in favor of
GEK models, see Table 2.

 0.0001

 0.001

 0.01

 0.1

 1

 10  20  30  40  50  60  70  80  90  100

N
R

M
S

E
  

 (
n

p
 =

 5
0

0
)

Number of Training Sample Points (ns)

OK

GEK

(a) Peaks-2D

 0.0001

 0.001

 0.01

 0.1

 1

 10  20  30  40  50  60  70  80  90  100

N
R

M
S

E
  

 (
n

p
 =

 5
0

0
)

Number of Training Sample Points (ns)

OK

GEK

(b) Sphere-5D

Figure 2: Evolution of NRMSE as a function of the number of training samples. GEK incorporates ns

gradients in all the dimensions

The accuracy of GEK models is also assessed by using only a partial set of gradients in the construction
of the GEK models. GEK results in more accurate surrogate models than OK even when the gradient data
in some of the dimensions is completely left out, see Figure 3. Moreover, incorporating only a partial set
of gradients while constructing the GEK models reduces the size of ẎYY to (ns +(ns ⇥k0))⇥ (ns +(ns ⇥k0))
with k0 being the number of dimensions in which the partial set of gradients is incorporated. Although the
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Table 2: Efficiency of the GEK models based on the cross-validation error (CVE) measure. The cross-
validation is carried out with 10 data folds. Each data fold contains 11 samples

Benchmark OK GEK
Functions CVE CVE % of Improvement
Peaks-2D 0.0166 0.0036 78%
Sphere-5D 0.0111 0.0020 82%

dynamics of the left out gradients influence the surrogate model accuracy, this feature offers the possibility
of reducing the computational cost associated with the inversion of ẎYY by leaving out the least influencing
gradients. This, in turn, can significantly reduce the surrogate model fitting cost. The least influencing
gradients, although, in general, subject to the problem at hand, are usually the gradients which correspond
to the lower hyperparameter (q ) valued dimensions, see Table 3. If the value of a hyperparameter is low
as compared to the values of all the other hyperparameters, then the function will be smoother in the
associated dimension as compared to all the other dimensions (i.e., higher correlation among the sample
points). Tables 3 and 4 give the individual and the cumulative accuracy improvement achieved by the GEK
models when gradients in more than one direction are successively incorporated during surrogate model
construction. From the benchmark results, only incorporating a partial set of gradients in k/2 dimensions
is observed to be a good trade-off between the GEK model fitting cost and model accuracy as the accuracy
of GEK models with k/2 partial set of gradients is relatively close to that of GEK models with a complete
k set of gradients, see Figures 2 and 3 and Tables 3 and 4.
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Figure 3: Effect of a partial set of gradients. Evolution of NRMSE as a function of the number of training
samples

4.2 Simulation Examples

Similar to the analytical benchmark examples, using GEK leads to a significant 60% to 70% reduction
in number of training sample points to reach the equivalent accuracy level of OK models, see Figure 4.
Moreover, for the same number of training samples, adding gradient information leads to a more than
50% accuracy improvement in GEK models over OK models, see Table 5. However, the surrogate model
fitting cost grows significantly in GEK as the incorporation of additional gradient information leads to a
substantial growth in the size of ẎYY, see Figure 5. The size of ẎYY is directly related to the cost of Cholesky
decomposition of ẎYY which is carried out multiple times during the hyperparameters estimation. Hence for
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Table 3: Individual and cumulative accuracy improvement of the GEK models over the OK models when
gradients in more than one direction are successively incorporated. The cross-validation is carried out with
10 data folds. Each data fold contains 11 samples. The hyperparameter values are obtained from an OK
model with ns = 100 (Peaks-2D)

Dimension value of q % of individual % of cumulative
Improvement Improvement
(over OK) (over OK)

2 0.56 58% 58%
1 0.50 45% 78%

Table 4: Individual and cumulative accuracy improvement of the GEK models over the OK models when
gradients in more than one direction are successively incorporated. The cross-validation is carried out with
10 data folds. Each data fold contains 11 samples. The hyperparameter values are obtained from an OK
model with ns = 100 (Sphere-5D)

Dimension value of q % of individual % of cumulative
Improvement Improvement
(over OK) (over OK)

1 0.01 42% 42%
2 0.01 34% 55%
3 0.01 41% 67%
4 0.01 38% 75%
5 0.01 38% 82%

a fair comparison regarding the fitting cost, the correlation matrix of OK models is augmented with more
function values so that its size becomes equal to that of GEK models. This way, OK and GEK models can
be compared subject to equal surrogate model fitting cost. Results from the simulation examples show that
the OK models with augmented correlation matrix outperforms GEK models, see Figure 6. Unsurprisingly,
this confirms the intuitive fact that a function value is more informative than a gradient value. However, the
computational cost spent on acquiring the additional function values required to augment the correlation
matrix of OK models is significantly higher than that of estimating function and gradient values for GEK
models of equivalent correlation matrix size, see Figure 7.

Table 5: Efficiency of the GEK models based on the cross-validation error (CVE) measure. The cross-
validation is carried out with 10 data folds. Each data fold contains 11 samples

FSI OK GEK
Functions CVE CVE % of Improvement
7D 0.1849 0.0684 63%
8D 0.1591 0.0775 51%
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Figure 4: Evolution of NRMSE as a function of number of samples
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Figure 5: Surrogate model fitting cost of OK and GEK models
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Figure 6: Efficiency of OK models with YYY being equal in size with ẎYY of GEK models (i.e., equal surrogate
modeling cost). OK models with ns + k⇥ ns function values. GEK model with ns function values and
k⇥ns gradient values
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5 CONCLUSIONS

We have validated that gradient enhancement in Kriging can significantly reduce the computational cost of
acquiring training data with substantially improved surrogate model accuracy over the Ordinary Kriging
(OK) models. We demonstrate that using only a partial set of gradients already results in more efficient
surrogate models in terms of prediction capability than the OK models, while potentially reducing the
computational complexity of constructing the GEK models significantly. As a result, a guideline is proposed
to achieve a reasonably good trade-off between surrogate model fitting cost and surrogate model accuracy
when the surrogate model fitting cost is comparable to the computational cost of acquiring training data.
Interestingly, OK outperforms GEK when the training data of OK models are augmented with additional
function data in order to equal the surrogate model fitting cost of GEK models; but, at the computational
cost of acquiring additional function data which is significantly higher than that of acquiring gradient data
for GEK. Moreover, the gradient enhancement can also be successfully carried out during the modeling of
time-varying data if the gradient data is available at various time steps (e.g., dynamic Kriging).
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A CORRELATION FUNCTION DERIVATIONS
The Matérn 5

2 correlation function is expressed as,

yn= 5
2
(d) = (1+

p
5a+

5a2

3
)exp

⇣
�
p

5a
⌘
, (8)

where a =
q

Âk
m=1 qmd2

m and d = |xi
m � x j

m|.
The gradient of the Matérn 5

2 correlation function with respect to xxx (i.e., cross-correlation) is derived as,

∂YYY(i, j)
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3
. (9)

Finally, the Hessian of the Matérn 5
2 correlation function with respect to xxx (i.e., cross-correlation) is derived as,

∂ 2YYY(i, j)

∂x(i)u ∂x( j)
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