
Metabolism and bioenergetics in long-lived mutants of 

Caenorhabditis elegans 
 
 
 
 
 

Kristel Brys 

 
 
 
 
Promotor: 
Prof. Dr. Bart Braeckman (Universiteit Gent) 
Co-promotor: 
Prof. Dr. Jacques Vanfleteren (Universiteit Gent) 
 
 
 
 
 
 
 
 
 
 
Members of the reading committee: 
Dr. Satomi Miwa (CISBAN, Newcastle University, UK) 
Prof. Dr. Rudy Van Coster (Vakgroep Pediatrie en Genetica, Universiteit Gent) 
Dr. Vera Goossens (Vakgroep Biomedische Moleculaire Biologie, Universiteit Gent) 
 
Members of the examination committee: 
Prof. Dr. Dominique Adriaens (voorzitter, Universiteit Gent) 
Prof. Dr. Bart Braeckman (secretaris / promotor, Universiteit Gent) 
Prof. Dr. Jacques Vanfleteren (co-promotor, Universiteit Gent) 
Dr. Filip Matthijssens (Universiteit Gent) 
 
 
 
 
 
 
 
 
Academic year 2010-2011 
Thesis submitted in fulfillment of the requirements for 
the degree of Doctor (PhD) in Sciences: Biology 

Friday June 10th 2011 
Ghent University  
K.L. Ledeganckstraat 35 
9000 Ghent 
 

 



 



Dankwoord 
Eindelijk kan ik aan dat laatste stukje tekst beginnen ... 
Ik zou een heleboel mensen willen bedanken zonder wiens hulp en steun dit werk nooit tot een goed 
einde zou gekomen zijn. 
 
Vooreerst zou ik mijn promotor en huidig co-promotor, Prof. Dr. Jacques Vanfleteren, willen 
bedanken voor de unieke kans de hij mij gegeven heeft om dit doctoraatsonderzoek te starten, en 
voor alle hulp, vertrouwen en vrijheid die hij mij gegeven heeft om dit werk tot een goed einde te 
brengen. Tien jaar doctoreren is lang, en ik prijs me gelukkig dat ik me al die tijd door u gesteund heb 
gevoeld. 
 
Prof. Dr. Bart Braeckman, mijn huidig promotor, wil ik bedanken om me te introduceren in het 
wetenschappelijk onderzoek: één jaar muggencellen en tien jaar wormen, allemaal door jouw 
enthousiasme. Op de momenten dat ik door de bomen het bos niet meer zag, krikte je mijn 
vertrouwen op.  Beste Bart, we kennen elkaar al bijna 20 jaar, laat er ons nog een paar decennia 
bijdoen.  Bottelare is niet ver van Oosterzele; ik zal mijn fietsbanden eens oppompen. 
 
I want to thank the Dencher lab, the people at ProteoSys and other members of the MiMage 
Consortium for their contributions and fruitful discussions. 
 
The members of the reading committee, Prof. Dr. Rudy Van Coster, Dr. Vera Goossens and Dr. Satomi 
Miwa,  I wish to thank for their critical evaluation of this thesis. 
 
Mijn dank gaat ook uit naar Frederik Hendrickx en Carl Vangestel voor de nodige hulp bij statistieke 
analyses. 
 
Aan mijn labogenoten, Filip, Patricia, Natascha (& Pieter), Geert, Sasha, Nilesh, Ineke, Renata en 
Caroline: hartelijk dank voor de vele goede raad en de goede sfeer op het labo! Als het 2e verdiep van 
de hoogbouw de beste werkplek in Gent en omstreken is, is dat aan jullie te danken!  Aan Renata en 
Caroline, de goedgeoliede machine: dank u voor al de praktische hulp in het labo!  Dank ook aan mijn 
thesisstudente en bachelorstudenten, in het bijzonder aan Kathleen en Arne; jullie maakten de 
opdracht aangenaam. 
 
Andy! Mijne maat! Dank u voor al uw hulp binnen (ge moet nog maar naar mijn computer wijzen en 
hij werkt weer) en buiten (memorabel moment: Andy zit met een grote smile in onze *beerput*) het 
labo.  Zelfs zonder barbecue, zwemvijver, kippenkwekerij en chocomousse zou je nog niet van ons 
vanaf geraken: we kunnen u niet missen! En dat weekendje Ardennen komt in orde! 
 
Ook de mensen die ooit op ons labo hebben gewerkt, Isabelle, Annemie en Sylvie, Koen en David wil 
ik bedanken voor hun hulp en steun.  Isabelle, je had altijd een opbeurend woord klaar wanneer het 
tegen zat.  Annemie en Sylvie,  bij jullie kon ik steeds terecht met mijn vragen en labo-problemen; 
jullie inzet en daadkracht wordt niet vergeten!  Ook Marjolein en Myriam, dankjewel voor jullie 
bijdrage! 
 
Vroeger en nu, op de Ledeganck loopt altijd wel goed gezelschap rond; dank aan iedereen die mijn 10 
jaar als doctoraatsstudent heeft opgevrolijkt!  
 
Ann, Lexy, Nathalie, wederhelften en kroost: bedankt om al zo lang ‘compagnons de route’ te zijn, en 
om af en toe eens te vragen ‘wanneer het nu eindelijk af is’… Meiden, ik heb binnenkort een beetje 
meer vrije tijd; heeft er iemand zin om wafels te bakken?  Ik kom af!  
 



Aan de ‘5 of 6’ crew, Tom & Anouk, Jeroen & Katrien, Jan & Katrien, alle kleine Couckjes, en Aline: 
deze zomer, barbecue in de Voordries? 
 
 
Lieve mama en papa, Dirk, Nadia en liefste Elena: bedankt voor jullie steun gedurende al die jaren 
wormenwerk!  Ook veel dank aan de familie Remerie, Paul & Cathy, Anne, Tokke en kleine Pauline, 
voor al hun aanmoedigingen en interesse. 
 
Lieve Thomas, dank je wel om al meer dan 10 jaar mijn steun en toeverlaat te zijn.  Je bent mijn 
liefste, mijn Thomas-de-bouwer, mijn gitaristje, mijn alles.  Als het aan mij ligt, moet je voor de rest 
van je leven nooit meer een patat schillen… 
 
Kristel,  
10 juni 2011 
 
 
 
This research was supported financially by MiMage, an Integrated Project within the 6th Framework 
Programme of the European Commission. 
 
 
 
 



Metabolism and bioenergetics in long-lived mutants of 

Caenorhabditis elegans 

Table of contents 
Summary 

Samenvatting 

PART I INTRODUCTION 

Chapter 1 General introduction and outline of the thesis            11 

1.1 Definition and theories of aging              12 

1.1.1 Evolutionary theories of aging             12 

1.1.2 Mechanistic theories of aging             14 

 

1.2 Oxidative metabolism, mitochondria and aging            32 

1.2.1 Energy metabolism: overview             32 

1.2.2 Origin and ultrastructure of mitochondria           34 

1.2.3 Mitochondrial turnover              38 

1.2.4 Mitochondrial functions             40 

1.2.5 ROS production by mitochondria            50 

1.2.6 Oxidative metabolism, mitochondria and aging in selected model organisms 

and humans               54 

1.3 Aging in the model organism C. elegans             60 

1.3.1. Introduction: C. elegans as a model organism           60 

1.3.2. Lifespan regulation and mechanisms of lifespan extension in C. elegans         66 

1.4 Aims and outline of the thesis               81 

 

PART II RESULTS 

Chapter 2 Longevity, metabolism and stress defense in C. elegans: dauer diapause, Clk mutants and 

dietary restriction                  85 

 2.1 Introduction                 87 

 2.2. Metabolic rate and antioxidant defense during the extreme lifespan of dauer         88 

  2.2.1. Materials and methods               88 

  2.2.2. Results and discussion               91 

2.3. Clk mutations extend lifespan without major changes in metabolic rate and antioxidant 

defense                  96 

  2.3.1. Materials and methods               96 

  2.3.2. Results and discussion               97 

2.4. Dietary restriction does not decrease metabolic rate but enhances antioxidant defense   

  2.4.1. Materials and methods             100 

  2.4.2. Results and discussion             101 

 2.5. General discussion and conclusions             106 

 

Chapter 3 Longevity, metabolism and stress defense in C. elegans: effects of Ins/IGF-1 signalling109 

 3.1. Introduction               111 

 3.2. Whole-worm oxidative metabolism of daf-2            111 

  3.2.1. Materials and methods             111 



3.2.2. Results                113 

3.2.3. Discussion              117 

3.2.4. Conclusion              123 

 3.3. Addendum to chapter 3: normalization of data            124 

 

Chapter 4 Ins/IGF-1 and mitochondrial function: gene expression, proteomics and structural 

organization                 131 

 4.1. General introduction              133 

 4.2. Isolation of mitochondrial suspensions           133 

  4.2.1. Introduction              133 

4.2.2. Materials and methods             134 

  4.2.3. Results and discussion             135 

4.3. Cytochrome c abundance, citrate synthase activity and mitochondrial genome copy 

number                 136 

  4.3.1. Introduction              136 

  4.3.2. Materials and methods             136 

  4.3.3. Results and discussion             138 

4.4. Changes in gene expression and protein abundance due to mutation in daf-2: mRNA 

transcript abundance, proteomics analysis and Western Blotting         140 

4.4.1. Introduction              140 

4.4.2. Materials and methods             141 

  4.4.3. Results and discussion             142 

 4.5. Oxphos supercomplexes              146 

4.5.1. Introduction              146 

4.5.2. Materials and methods             146 

  4.5.3. Results and discussion             147 

 4.6. General discussion and conclusions            148 

 4.7. Addendum to chapter 4: justification for final protocol for isolation of mitochondria    150 

 

Chapter 5 Ins/IGF-1 and mitochondrial function: oxidative phosphorylation and bioenergetic 

competence                  153 

 5.1. Introduction               155 

 5.2. Materials and methods              155 

5.2.1. Strains and culture conditions, isolation of mitochondria         155 

5.2.2. Assays               155 

 5.3. Results and discussion              158 

 5.4. Conclusions               164 

 

Chapter 6 Ins/IGF-1 and mitochondrial function: production of and damage by ROS        167 

 6.1. Introduction               169 

 6.2. Materials and methods              169 

6.2.1. Strains and culture conditions, isolation of mitochondria         169 

6.2.2. Assays                169 

 6.3. Results and discussion              171 

 6.4. Conclusions               174 



 

PART III DISCUSSION 

Chapter 7 General discussion and conclusions             179 

 7.1. Role of metabolism and reactive oxygen species in aging           180 

  7.1.1. Slow rate of aging             180 

  7.1.2. Energy metabolism             181 

  7.1.3. Role of ROS              182 

 7.2. Are alterations in metabolism causal to longevity?           184 

7.3. A candidate mechanism for maintaining mitochondrial function in daf-2                    186 

7.4. Technical advancement may aid progression in mitochondrial knowledge        187

 7.5. General conclusion and perspectives for future research          187 

 

List of strains                189 

Lifespan overview               191 

LIST OF PUBLICATIONS               193 

REFERENCES                 195 

 

CD-ROM:                 

Appendix 1 

Brys, K., Vanfleteren, J.R., and Braeckman, B.P. (2007). Testing the rate-of-living/oxidative damage theory of 

aging in the nematode model Caenorhabditis elegans. Exp. Gerontol 42, 845-851. 

Appendix 2 

Houthoofd, K., Fidalgo, M.A., Hoogewijs, D., Braeckman, B.P., Lenaerts, I., Brys, K., Matthijssens, F., De Vreese, 

A., Van Eygen, S., Munoz, M.J., and Vanfleteren, J.R. (2005b). Metabolism, physiology and stress defense in 

three aging Ins/IGF-1 mutants of the nematode Caenorhabditis elegans. Aging Cell 4, 87-95. 

Appendix 3 

Houthoofd, K., Braeckman, B.P., Lenaerts, I., Brys, K., Matthijssens, F., De Vreese, A., Van Eygen, S., and 

Vanfleteren, J.R. (2005a). DAF-2 pathway mutations and food restriction in aging Caenorhabditis elegans 

differentially affect metabolism. Neurobiol. Aging 26, 689-696. 



 



Summary 

Samenvatting 
 



Summary 

 

2 
 

Summary 

With advancing age, detrimental changes accumulate in cells and tissues; these changes 

enhance the risk of disease and death.  A widely accepted theory explaining the cause of aging is 

Harman’s  Free Radical/Oxidative Damage theory of aging (1956; 1972).  This theory postulates that 

the major determinants of lifespan are intracellular reactive oxygen species (ROS).  These ROS are 

assumed to cause damage to cell components and consequently, to advance the aging process.  

 

Most aspects of the aging process are expected to be conserved throughout evolution.  

Interference with mitochondrial function, alterations in the insulin/IGF-1 pathway, and treatments 

such as dietary restriction positively influence lifespan in many model organisms. These 

manipulations have often been associated with reductions in metabolic rate and in oxidative stress. 

Low metabolic rates and reduced oxidative stress are seen as candidate mechanisms linking the Free 

Radical/Oxidative Damage theory with prolonged lifespan. 

 

The free-living nematode Caenorhabditis elegans is an excellent tool to study aging.  Among 

the advantages of working with C. elegans, its short lifespan and generation time, and the availability 

of genetic and molecular techniques to modulate its lifespan are particularly important for aging 

research.  Remarkably, many of the mutations and manipulations known to extend its lifespan are 

associated with enhanced stress resistance and/or reduced rates of metabolism.  This association 

seems to support the Free Radical/Oxidative Damage theory of aging.  To test this theory, we 

assessed metabolic rates and antioxidant defenses in the dauer diapause stage, Clock mutants, 

dietary restricted worms and nematodes carrying the daf-2(e1370) mutation, which are all long-lived 

nematode strains.   

The dauer is an alternative, non-feeding stage in the development of C. elegans which occurs 

in conditions of overcrowding or nutrient shortage and which shows a remarkable longevity.  Clock 

mutations cause a slowing-down of physiological rates; some of these mutations are linked to 

mitochondrial functioning.  Lifespan can also be extended by dietary restriction, the reduction of 

food intake without malnutrition.  Mutation in daf-2(e1370) disrupts Insulin/IGF signaling, a pathway 

that affects dauer diapause, stress resistance and longevity through regulation of the forkhead 

transcription factor DAF-16.  These longevity strains did not consistently show reductions in 

metabolic rate or enhanced antioxidant defenses, and therefore do not support the Free 

Radical/Oxidative Damage theory of aging. 

To assess the role of energy metabolism in aging, we chose to study the reduction-of-

function mutation daf-2(e1370). Though daf-2(e1370) nematodes were not hypometabolic, we 

confirmed that they do exhibit a distinct energy metabolism: while their respiration decreased with 

age at a similar rate to the reference strain, their heat dissipation was considerably lower than in 

wild-type.  This observed shift in metabolism may indicate a higher metabolic efficiency, as standing 

ATP levels were significantly elevated in this strain. 

Expression or proteomic studies failed so far to provide an explanation for this alteration in 

aerobic energy production.  To explore this further,  we used different approaches to investigate the 

effect of aging and Ins/IGF-1 pathway disruption on mitochondrial function.  Firstly, we developed a 

suitable protocol to isolate functional mitochondria from aging C. elegans cohorts; we were able to 
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show that damage to the mitochondria inflicted by the isolation process was limited and 

proportionate at all ages.  We used this protocol to study mitochondrial characteristics at the 

proteome level.  In wild-type worms, the abundance of key mitochondrial proteins decreased with 

age while the mitochondrial mass, inferred from the mitochondrial DNA copy number, remained 

unaltered.  In contrast, the age-dependent decline of key mitochondrial proteins and electron 

transport chain complexes was considerably attenuated in daf-2(e1370) adult animals. 

Next we showed that the daf-2(e1370) mutation alters mitochondrial aerobic energy 

production.  Whereas in mitochondria isolated from the wild-type, a dramatic decrease in energy 

production occurred with age, in daf-2 mutants  the decrease in mitochondrial bioenergetic 

competence was considerably attenuated, suggesting a higher energetic efficiency.  Concomitantly, 

mitochondria isolated from daf-2(e1370) animals had higher membrane potentials.   

Though several aspects of daf-2(e1370) mitochondrial function were higher or better 

preserved with age, some of our findings pointed out that maintained bioenergetic efficiency is not 

sufficient to explain daf-2’s distinct energy metabolism.  In contrast to whole-worm respiration rates, 

oxygen consumption in activated mitochondria showed no age-specific fall, and heat dissipation from 

isolated mitochondria did not reflect the low heat production of daf-2 nematodes.  Instead, these 

findings suggested that extra-mitochondrial regulatory mechanisms are important in control of 

whole-worm metabolism, and that mitochondrial malfunction is unlikely a primary cause of ageing.  

As high mitochondrial membrane potentials have been linked to elevated ROS levels, we 

measured ROS production capacity by isolated mitochondria and determined concurrent in vivo 

damage to mitochondrial protein and DNA.  We were able to show that, in line with their higher 

membrane potentials, mitochondria isolated from the daf-2(e1370) mutant produce more ROS than 

those of wild-type.   In contrast, little damage to mitochondrial protein or DNA was observed in these 

mutants.  Damage to mitochondrial proteins was elevated in wild-type worms only in the oldest age 

classes.  Combined with the knowledge that reducing levels of antioxidant defenses does not 

negatively influence lifespan, a logical conclusion drawn from these findings is that in standard 

circumstances, ROS levels do not limit lifespan. 

Some important conclusions can be drawn from our studies.  Data on metabolic rate and 

antioxidant defense from a variety of long-lived C. elegans strains, together with assessments of ROS 

production and oxidative damage in the daf-2(e1370) mutant strain, contribute to disproving the 

validity of the Free Radical/Oxidative damage theory of aging, at least in this species.  We studied the 

Ins/IGF-1 pathway mutation daf-2(e1370) in order to assess the putative role of energy metabolism 

in longevity.   Though we confirmed that disruption of the Ins/IGF-1 pathway alters aerobic energy 

production, and we were able to show that the daf-2(e1370) allele results in high bioenergetic 

competence throughout the adult life of the animals, we could not assert that these characteristics 

are essential to the longevity of the mutant.  The main argument against this assertion is the fact that 

certain aspects of daf-2’s energy metabolism were also observed in the daf-16(mgDf50) mutant.  It is 

the forkhead transcription factor DAF-16 that transduces longevity signals when the Ins/IGF-1 

pathway is disrupted;  similarities in metabolic phenotype between the two mutants imply that the 

metabolic changes imparted by daf-2(e1370) are auxiliary, rather than essential, mechanisms of 

lifespan extension.  Moreover, whole-worm metabolism  is most likely influenced considerably by 

extra-mitochondrial regulatory mechanisms.  Therefore we propose that the daf-2(e1370) 
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mitochondrial phenotypes are not likely primary mechanisms of daf-2(e1370) longevity, and that low 

daf-2 function alters the overall rate of aging by a yet unidentified mechanism, with an indirect 

protective effect on mitochondrial function.  A candidate mechanism for maintained bioenergetic 

competence is enhanced autophagy of mitochondria and subsequent mitogenesis, which together 

could ensure sustained presence of competent mitochondria.  
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Samenvatting 

 

Met het toenemen van de leeftijd accumuleren schadelijke veranderingen in cellen en weefsels.  

Deze veranderingen verhogen het risico op ziekte en dood.  Een algemeen aanvaarde 

verouderingstheorie is de Vrije Radikaal/Oxidatieve Schade Theorie van Harman (1956; 1972).  Deze 

theorie stelt dat intracellulaire reactieve zuurstof species (‘Reactive Oxygen Species’ of ROS) een 

belangrijk aandeel hebben in levensduurbepaling.  Van deze ROS wordt aangenomen dat ze schade aan 

celcomponenten veroorzaken en bijgevolg het verouderingsproces sturen. 

 Van de meeste aspecten van het verouderingsproces wordt verwacht dat ze evolutionair 

geconserveerd zijn.  Wijzigingen in mitochondriale functie en in de Insuline/IGF-1 signaaltransductie, en 

ingrepen zoals diëtaire restrictie hebben een positieve invloed op de levensduur in vele 

modelorganismen.  Deze manipulaties worden vaak geassocieerd met  een afname in metabole snelheid  

en in oxidatieve stress.  Lage metabole snelheden en verminderde oxidatieve stress worden aanzien als 

kandidaat-mechanismen voor de link tussen de Vrije Radikaal/Oxidatieve Schade Theorie en verlenging 

van de levensduur. 

De vrijlevende nematode Caenorhabditis elegans is een bijzonder geschikt model voor 

verouderingsstudies.  Vooral zijn korte levensduur en generatietijd, en de beschikbaarheid van 

genetische en moleculaire technieken die zijn levensduur kunnen wijzigen, zijn belangrijk voor 

verouderingsonderzoek.  Opvallend is dat vele van de levensduurverlengende mutaties en manipulaties 

geassocieerd zijn met verhoogde stressresistentie en/of verlaagde metabole snelheid.  Deze associatie 

lijkt de Vrije Radikaal/Oxidatieve Schade verouderingstheorie te bevestigen.  Om deze theorie te testen, 

heben we de metabole snelheid en antioxidant-verdedigingsmechanismen onderzocht in het dauer 

diapause stadium, Clock-mutanten, diëtair gerestricteerde wormen en daf-2(e1370) mutanten.  Al deze 

nematodestammen zijn langlevend. 

 Het dauerstadium is een alternatief stadium in de ontwikkeling van C. elegans, dat zich niet 

voedt en dat voorkomt bij ‘overcrowding’ (het aanwezig zijn van grote aantallen wormen in een 

beperkte ruimte) of bij tekorten aan nutriënten.  De dauer heeft een opvallend lange levensduur.  Clock-

mutaties vertonen trage fysiologische ritmes; sommige van deze mutaties zijn geassocieerd met het 

functioneren van de mitochondriën.  Levensduur kan ook verlengd worden door diëtaire restrictie, met 

andere woorden een reductie van de voedselopname zonder tekorten aan essentiële voedingsstoffen.  

Mutatie in daf-2(e1370) verstoort de Ins/IGF- signaaltransductie.   Dit signaaltransductiepad beïnvloedt 

dauer diapause, stressresistentie en levensduur door het reguleren van de forkhead transcriptiefactor 

DAF-16.  Deze langlevende wormen vertoonden geen algemene reducties in metabole snelheid, noch 

een algemene verhoging van antioxidant-defensiemechanismen.  Bijgevolg kunnen zij de Vrije 

Radikaal/Oxidatieve Schade verouderingstheorie niet bevestigen. 

 Om de rol van het energiemetabolisme in veroudering te bepalen, bestudeerden we de 

reductie-in-functie mutatie daf-2(e1370).  Hoewel nematoden met deze mutatie niet hypometabool zijn, 
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konden we bevestigen dat zij een bijzonder energiemetabolisme vertonen: de leeftijdsgerelateerde 

afname van de respiratie was gelijkaardig aan die van de referentiestam, maar  de warmteproductie was 

aanzienlijk lager dan in het wild-type.  Deze verschuiving in hun metabolisme kan wijzen op een hogere 

metabole efficiëntie, daar de ATP-inhoud van deze stam significant hoger was dan in het wild-type. 

 Genexpressiestudies of studies van het proteoom hebben totnogtoe geen verklaring geboden 

voor deze wijziging in aerobe energieproductie.  We gebruikten verschillende invalshoeken  om het 

effect van veroudering en verstoring van het Ins/IGF-1- signaaltransductiepad op mitochondriale functie 

verder te onderzoeken.  Ten eerste ontwikkelden we een geschikt protocol om functionerende 

mitochondriën te isoleren uit leeftijdssynchrone C. elegans-populaties.  We konden aantonen dat 

schade aan mitochondriën ten gevolge van het isolatieproces beperkt bleef, en niet proportioneel  

verergerde met het toenemen van de leeftijd. We gebruikten dit protocol om mitochondriale 

karakteristieken op het proteoom-niveau te bestuderen. In wild-type wormen daalde de abundantie van 

belangrijke mitochondriale proteïnen met toenemende leeftijd, terwijl de mitochondriale massa, 

afgeleid van het aantal mitochondriaal-DNA-kopijen, onveranderd bleef.  Daarentegen bleef de 

leeftijdsgerelateerde afname in mitochondriale proteïnen en complexen van de 

elektronentransportketen beperkt in daf-2(e1370) adulten. 

 Vervolgens toonden we aan dat de daf-2(e1370) mutatie de aerobe energieproductie door de 

mitochondriën wijzigt.  Terwijl mitochondriën geïsoleerd uit het wild-type een sterke daling in 

energieproductie vertoonden met toenemende leeftijd, bleef deze daling in mitochondriale 

bioenergetische competentie beperkt in daf-2 mutanten.  Dit suggereert een hogere energetische 

efficiëntie.  Hiermee gepaard vonden we een hogere membraanpotentiaal in mitochondriën geïsoleerd 

uit daf-2(e1370) nematoden. 

 Hoewel bleek dat, met toenemende leeftijd, verscheidene aspecten van mitochondriale functie 

in daf-2(e1370) hoger waren of beter behouden bleven dan in het wild-type, wezen sommige van onze 

bevindingen erop dat behoud van bioenergetische efficiëntie niet volstaat om het bijzondere 

energiemetabolisme van daf-2 te verklaren.  In tegenstelling tot de respiratie  van wormen vertoonde 

het zuurstofverbruik door mitochondriën geen leeftijdsgerelateerde daling.  Ook werd de lage 

warmteproductie van daf-2 wormen niet weerspiegeld in de warmteproductie door geïsoleerde 

mitochondriën.  Wat deze bevindingen wel suggereren is dat extramitochondriale regulerende 

mechanismen belangrijk zijn voor het sturen van het metabolisme in de worm, en dat mitochondriale 

malfunctie waarschijnlijk geen primaire oorzaak van veroudering is. 

 Daar aangetoond is dat een hoge mitochondriale membraanpotentiaal  verhoogde ROS-niveaus 

kan veroorzaken, bepaalden we de ROS-productiecapaciteit van geïsoleerde mitochondriën en de 

schade aan mitochondriale proteïnen en DNA tengevolge ervan.  We konden aantonen dat 

mitochondriën geïsoleerd uit de daf-2(e1370) mutant, gelijklopend met hun hogere 

membraanpotentiaal, meer ROS produceren dan die van het wild-type.  Daarentegen vonden we slechts 

een beperkte schade aan mitochondriale proteïnen en DNA in deze mutanten.  In het wild-type was 

schade aan mitochondriale proteïnen enkel verhoogd in de oudste leeftijdsstadia.  Sinds geweten is dat 
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het verlagen van antioxidant-defensiemechanismen geen negatieve invloed heeft op de levensduur, 

kunnen we stellen dat ROS niet beperkend zijn voor de levensduur in normale omstandigheden. 

 Enkele belangrijke conclusies volgen uit onze studies.   Gegevens over metabole snelheid en 

antioxidant-defensiemechanismen van verscheidene langlevende C. elegans stammen en bepalingen 

van ROS-productie en oxidatieve schade in de daf-2(e1370) mutant dragen bij tot het ontkrachten van 

de Vrije Radikaal/Oxidatieve Schade Theorie, tenminste in deze soort.  We bestudeerden de Ins/IGF-1 

signaaltransductie mutatie daf-2(e1370) om  de mogelijke rol van het energiemetabolisme in verlenging 

van de levensduur te bepalen.  Hoewel we bevestigden dat verstoring van het Ins/IGF-1 

signaaltransductiepad de aerobe energieproductie wijzigt, en hoewel we konden aantonen dat het 

daf-2(e1370)-allel resulteert in hoge bioenergetische competentie gedurende de hele adulte levensduur, 

konden we uit de resultaten niet afleiden dat deze karakteristieken essentieel zijn voor de lange 

levensduur van de mutant.  Het belangrijkste argument hiertegen is dat bepaalde aspecten van het 

energiemetabolisme van daf-2 ook teruggevonden werden in de daf-16(mgDf50) mutant.  Het is deze 

forkhead transcriptiefactor DAF-16 die levensduurverlengende signalen doorgeeft wanneer het 

Ins/IGF-1 signaaltransductiepad verstoord is.  Gelijkenissen in het metabole fenotype tussen deze twee 

mutanten impliceren dat de metabole veranderingen veroorzaakt door daf-2(e1370) eerder bijkomstige 

dan essentiële levensduurverlengende mechanismen zijn. Daarenboven wordt het metabolisme in de 

worm hoogstwaarschijnlijk aanzienlijk beïnvloed door extramitochondriale regulerende mechanismen.  

Bijgevolg stellen we dat de mitochondriale fenotypes van daf-2(e1370) hoogstwaarschijnlijk geen 

primaire levensduurverlengende mechanismen zijn, en dat verlaagde daf-2 functie de snelheid van 

veroudering wijzigt door een nog ongekend mechanisme dat een indirect beschermend effect heeft op 

de mitochondriale functie. Een kandidaat-mechanisme  voor het behoud van bioenergetische 

competentie is verhoogde autofagie van mitochondriën, gepaard gaande met mitogenese; deze twee 

factoren zouden samen kunnen zorgen voor het behoud van competente mitochondriën. 
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1.1. Definition and theories of aging 

Understanding the processes that determine aging and lifespan is one of the most 

difficult issues in biology.  It is also a highly fascinating topic, of interest not only to the 

scientists who dedicate their life trying to unravel its mysteries, but to everyone, as we all 

will eventually experience its effects.  In order to understand aging, it must first be defined.  

Numerous definitions have been formulated; Arking (1998) has summarized them in his 

comprehensive book ‘Biology of Aging’ and has distilled from them the following definition: 

‘Aging is the time-dependent series of cumulative, progressive, intrinsic, and deleterious 

functional and structural changes that usually begin to manifest themselves at reproductive 

maturity and eventually culminate in death.’ 

Scientists have attempted to formulate their views on aging from the end of the 19th 

century onwards, first in a purely theoretical, non-experimental way, while at the present 

time, they rely on the most advanced molecular tools to add to their understanding of aging.  

During the past century, two major approaches to studying aging emerged: both proximate 

(mechanistic) and ultimate (evolutionary) causes of aging have been debated.  Mechanistic 

theories of aging will be discussed later; first we summarize the most important evolutionary 

theories of aging. 

1.1.1. Evolutionary theories of aging 

 

In 1859, Charles Darwin published his theory of biological evolution (Darwin, 1859), 

based on the idea that biological evolution acts to increase the fitness and performance of 

species evolving in successive generations.  Initially, this idea of increased fitness seemed to 

complicate the understanding of aging in view of evolution, as aging entails late-life 

degeneration, not immortality.  Also, many manifestations of aging happen at ages beyond 

the reach of natural selection, after reproduction is halted.  However, it was this problem 

with timing that ultimately shaped evolutionary theories of aging as they are known at 

present.  One of the first to formulate his views was August Weismann who, at the end of 

the 19th century, spoke of a specific programmed-death-mechanism designed by natural 

selection to eliminate the old members of a population, thereby freeing up resources for 

younger generations (reviewed in Ljubuncic and Reznick, 2009).  Later, Weismann 

renounced the idea of old organisms being detrimental to the population; instead, he 

considered them as neutral for the biological species. Nevertheless, with his Theory of 

Programmed Death, Weismann was the first to use evolutionary arguments to explain aging.  

His theory, while controversial, was revived a few years ago in the form of the Programmed 

and Altruistic Aging Theory (Longo et al., 2005) to explain a phenomenon seen in S. 

cerevisiae where populations seem to die to the benefit of a few mutants. 

 

In 1941, Haldane (Haldane, 1941) observed that in Huntington patients, the effects 

of this dominant lethal mutation, inducing a deadly genetic disease, only became apparent 

after reproduction had ended.  This led to the suggestion that aging is due to mutations that 

affect the organism at later ages, thereby escaping natural selection. The idea that, as a 



Chapter 1 

 

13 

 

result of extrinsic mortality, there is a progressive weakening in the force of selection with 

increasing age is generally accepted (Charlesworth, 2000).  The following theories are based 

on this idea. 

 

1.1.1.1. Mutation Accumulation Theory 

 

In his Mutation Accumulation Theory, Medawar (1952) considered aging as a 

byproduct of natural selection, or an inevitable result of the declining force of natural 

selection with age.  Deleterious mutations expressed at a young age are severely selected 

against due to their negative impact on fitness, while those expressed only later in life are 

relatively neutral to selection as their bearers have already transmitted their genes to the 

next generation.  This theory predicts that the latter mutations can passively accumulate in 

successive generations, and that the frequency of genetic diseases should increase at older 

ages. 

 

1.1.1.2. Antagonistic Pleiotropy Theory 

 

Williams’ Antagonistic Pleiotropy Theory of Aging (Williams, 1957) assumes not only 

that genes may affect several traits of an organism (pleiotropy) but also that these 

pleiotropic effects may influence individual fitness in antagonistic ways.  In this way, harmful 

late-acting genes can remain in a population, or be actively accumulated, if they have a 

beneficial effect early in life, such as increasing fitness at early ages or increasing 

reproductive success, and are favored by selection.  It is the active accumulation of 

pleiotropic genes that sets the Antagonistic Pleitropy Theory apart from the Mutation 

Accumulation Theory (Le Bourg, 2001). 

 

1.1.1.3. Disposable Soma Theory 

 

Weismann, the author of the first evolutionary theory of aging, is also credited with 

formulating the Germ Plasm Theory, stating that the body is strictly divided into two types of 

cells: germ cells and somatic cells.  This is reiterated in the Disposable Soma Theory by 

Kirkwood (Kirkwood, 1977).  In essence, this theory is not new when compared to the 

Antagonistic Pleiotropy Theory; they both focus on the idea of a life-history trade-off 

(Promislow et al., 2006).  However, it attempts to specify in more detail how one and the 

same gene could have both deleterious and beneficial effects.  Essential to this theory is the 

emphasis on the optimal balance between somatic maintenance and repair versus 

reproduction.  Investment in the germ line is vital for viability across the generations, 

whereas the soma needs only to support the survival of a single generation.  Mutations that 

fit in both the Antagonistic Pleiotropy Theory and the Disposable Soma Theory have effects 

that save energy for reproduction by partially disabling molecular proofreading and other 

accuracy promoting devices in somatic cells. 
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1.1.2. Mechanistic theories of aging 

 

While evolutionary theories have tried to clarify why aging has evolved, mechanistic 

theories explore how genetic and physiological processes affect lifespan. By predicting that 

aging is caused by a progressive accumulation of molecular and cellular damage (Kirkwood 

and Austad, 2000), the Disposable Soma Theory blurs the distinction between evolutionary 

and mechanistic theories.  Like Kirkwood, the majority of mechanistic theories of aging focus 

on the accumulation of various forms of damage as causal to aging; among these, the Free 

Radical Theory of Aging has received the most attention. 

 

1.1.2.1 Free Radical/Oxidative damage theory of aging 

1.1.2.1.1 History 

 

It has long been known that small mammals generally have higher specific metabolic 

rates and shorter lifespans than large mammals.  At the beginning of the 20th century, 

Rubner concretized this observation, calculating the life-time energy potential (the energy 

intake per gram per life span) of several homeotherms (Rubner, 1908).  According to Rubner, 

the animals tested expended similar amounts of metabolic energy per gram body weight per 

lifetime, despite a large variation in body mass.  This led to the conclusion that among 

homeothermic animals, there is an inverse correlation between lifespan and specific 

metabolic rate.  A decade later, Loeb and Northrop (1917) found that in Drosophila, a 

poikilotherm, an inverse correlation was seen between adult lifespan and ambient 

temperature; from this temperature-dependence in lifespan they deduced that ‘the duration 

of life is determined by the production of a substance leading to old age and natural death 

or by the destruction of a substance or substances which normally prevent old age and 

natural death’.  These studies in homeo- and poikilotherms were incorporated into the Rate-

of-Living Theory by Pearl (1928), assuming that there is an inverse relationship between life 

span and metabolic rate.  This theory predicts that a fixed amount of energy is available to 

organisms.  The organism perishes when this ‘metabolic potential’ is consumed; therefore, 

lifespan is determined by the rate at which available energy is expended. Though the Rate-

of-Living Theory has since been discredited (Arking, 1998; Austad and Fischer, 1991; Finch, 

1990; Speakman et al., 2004), some investigators struggle to abandon this appealing idea 

(Lapointe et al., 2009). 

Based on the work of Gerschman and co-workers (1954), who discovered that 

oxygen free radicals are formed in situ in response to radiation and oxygen poisoning, 

Denham Harman published his Free Radical Theory of Aging in 1956 (Harman, 1956).  In his 

publication ‘Aging: a theory based on free radical and radiation chemistry’, he drew on 

previous observations to state that aging is potentially linked to metabolic rate, and 

suggested the existence of a universal phenomenon causing aging.  As free radicals are 

present in living cells, and as their concentration is seemingly increased with increasing 

metabolic activity, he pointed to free radicals as potential candidates causing aging in all 

living things, and designated respiratory enzymes as likely sources of these free radicals.  

Produced as a side-effect of cellular metabolism, free radicals may cause aging by attacking 

cell constituents, eventually impairing the functional efficiency and reproductive ability of 

the cell.  Moreover, he suggested that extension of lifespan is possible by chemical 
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intervention.  The Free Radical Theory of Aging was strengthened further by the discovery of 

superoxide dismutase (SOD) (McCord and Fridovich, 1969), which provided evidence of in 

vivo generation of superoxide, and the existence of defense mechanisms against free 

radicals.  In 1972, Harman proposed an important modification of the Free Radical Theory, 

pointing out mitochondria as the main source of free radicals (Harman, 1972).  Stating that 

over 90% of the oxygen taken up is reduced in the process of mitochondrial electron 

transport, he concluded that the rate of oxygen utilization would determine the rate of 

accumulation of damage by free radicals; this damage would be located mainly in the 

mitochondria, potentially increasing their fragility.  A relatively recent adaptation of 

Harman’s theory incorporates other forms of activated oxygen besides free radicals as causal 

agents of oxidative damage; the theory is now often referred to as the Oxidative Stress (or 

Oxidative Damage) Theory of Aging (Sohal and Allen, 1990; Sohal and Weindruch, 1996).  

Most importantly, the inclusion of mitochondria and metabolic rate linked the Free 

Radical/Oxidative Damage Theory to the aforementioned Rate-of-Living Theory, which found 

a molecular basis for its ‘live fast, die young’ principle in the accumulation of damage caused 

as a side-effect of mitochondrial metabolic rate (Beckman and Ames, 1998; Sohal and Allen, 

1990).  It is no surprise then that the ‘live fast, die young’ concept, directly linking free 

radical production to metabolic rate, still is adhered to by gerontologists (Branicky et al., 

2000; Feng et al., 2001; Finkel and Holbrook, 2000; Foksinski et al., 2004; Giorgio et al., 2007; 

Philipp et al., 2005; Sohal et al., 2002), despite numerous studies opposing it (see 1.1.2.1.5.).   

 

1.1.2.1.2 Free radicals and reactive oxygen species 

 

Free radicals are defined as any species capable of independent existence that 

contains one or more unpaired electrons (Halliwell and Gutteridge, 2007).  Due to the 

presence of unpaired electrons, free radicals can be highly reactive, resulting in potentially 

harmful modifications.  The collective term reactive oxygen species includes oxygen radicals 

and non-radical derivatives of oxygen which can also take part in radical-type reactions 

(Table 1).  Likewise, the term reactive nitrogen species unites radical and non-radical N2 

derivatives. 

 

Table 1. Oxygen radicals and non-radical derivatives of oxygen 

Radicals Non-radicals 

Superoxide O2
.- Hydrogen peroxide H2O2 

Hydroxyl OH. Hypochlorite HOCl 

Peroxyl RO2
. Ozone O3 

Alkoxyl RO. Singlet oxygen 

Hydroperoxyl HO2
. Peroxynitrite ONOO- 

 

Oxygen is a relatively weak univalent electron acceptor and most organic molecules 

are poor univalent electron donors, ensuring that O2 cannot efficiently oxidize amino acids 

and nucleic acids.  Yet it interacts with the unpaired electrons of transition metals and 

organic radicals.  Most transition metals contain unpaired electrons and can accept or 

donate single electrons.  They can function as catalysts for oxidation/reduction reactions.  
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However, if their availability is uncontrolled, they can catalyze unwanted free radical 

reactions. 

The reduction of O2 to water requires four single electron transfers; O2 can become partially 

reduced, with one-electron reduction leading to the superoxide radical, two-electron 

transfer to hydrogen peroxide and three-electron reduction yielding the hydroxyl radical. 

 

1.1.2.1.2.1 Biologically important ROS 

 

-hydroxyl radical 

 

The most potent oxygen species in biological systems is probably the hydroxyl 

radical.  Instantly after it is formed, it reacts with surrounding molecules (Czapski, 1984; Sies, 

1993), damaging sugars, amino acids, phospholipids, DNA bases and organic acids (Halliwell 

and Gutteridge, 1984).  Its mechanism of action can be hydrogen atom abstraction, addition 

and electron transfer, leading to formation of other, less reactive, radicals (Halliwell and 

Gutteridge, 1984; 2007) which contribute to the cytotoxicity of the hydroxyl radical.  The 

hydroxyl radical can be generated from hydrogen peroxide through Fenton chemistry 

(Fenton, 1894), as such: 

 

Fe2+ + H2O2 ->intermediate oxidizing species -> Fe3+ + OH. + OH- 

 

This reaction of transition metal ions with hydrogen peroxide is probably the most 

biologically relevant mechanism of hydroxyl radical generation; other sources of hydroxyl 

radical production have also been described (Halliwell and Gutteridge, 2007). 

 

-superoxide radical 

 

The superoxide radical contains one unpaired electron and is moderately reactive 

(Halliwell and Gutteridge, 2007).  It can be submitted to three types of reactions: 

dismutation, oxidation and reduction.  In aqueous solutions, it does not react at all with 

most biological molecules, though it can be protonated, forming the more reactive 

hydroperoxyl radical which is uncharged, allowing it to cross membranes.  Superoxide, which 

does not readily cross membranes, can react with other radicals like NO. (nitric oxide, see 

later in this section) or iron ions in iron-sulphur proteins, resulting in selective biological 

damage.  Also, it contributes to the formation of the hydroxyl radical via the Fenton reaction 

(Gutteridge, 1990).  Its involvement in the mechanism of this reaction is uncertain; possibly, 

O2
.- facilitates release of iron needed for Fenton chemistry (Halliwell and Gutteridge, 2007; 

Imlay, 2003). 

Superoxide is generated through one-electron reduction of O2.  Several enzymes 

contribute to O2
.- production.  One of them is xanthine oxidase, which normally acts as a 

dehydrogenase, transferring electrons to NAD+ rather than O2, but in certain pathological 

conditions, the active site of the enzyme is oxidized and the enzyme acts as an oxidase, 

producing O2
.- (Magder, 2006).  Phagocytic cells contain NAD(P)H oxidase, which can 

produce a burst of O2
.- as a defense against invading microorganisms (Babior, 1999).  

Cytochrome P450 enzymes are also capable of producing O2
.- as a side reaction of the 
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breakdown of target molecules (Halliwell and Gutteridge, 2007).  Non-enzymatic production 

of O2
.- can occur through single electron transfer to oxygen by reduced coenzymes or 

prosthetic groups like flavins or Fe-S clusters.  The most important source of O2
.- is believed 

to be the mitochondrial electron transport chain; the mechanisms responsible for 

generation of O2
.- will be discussed in section 1.2.5.. 

 

-hydrogen peroxide 

 

Hydrogen peroxide contains no unpaired electrons and is not a radical.  It is 

constitutively produced in many, if not all, tissues in vivo (Halliwell and Gutteridge, 2007).  

On itself, it is a moderately reactive ROS.  However, it is more stable than O2
.- and it readily 

crosses membranes through diffusion and via aquaporins (Halliwell and Gutteridge, 2007); 

as a consequence, its impact reaches further than its immediate surroundings.  Only a 

limited number of enzymes can be inactivated directly by H2O2.  Nevertheless, it can –

indirectly- cause considerable oxidative damage: in the presence of iron, it can be reduced to 

the highly reactive hydroxyl radical.  Contributors to cellular H2O2 generation include 

dismutation of O2
.- and peroxisomal ß-oxidation of fatty acids; due to the presence of the 

enzyme catalase (which dismutates H2O2 to water and oxygen; see section 1.1.2.1.3.) in 

peroxisomes, the net contribution of peroxisomes to H2O2 production is uncertain (Halliwell 

and Gutteridge, 2007). 

 

-other reactive species 

 

Besides oxygen-based radicals, other derivatives are known such as reactive 

nitrogen species, sulphur-based molecules and carbon-centered molecules.  Nitric oxide 

(NO.) is a relatively stable free radical that can diffuse to targets distant from its production 

site.  It is synthesized by nitric oxide synthase enzymes; as NO. plays important neurological 

and vascular roles, the activity of these enzymes is carefully regulated.  NO. can function as a 

free radical scavenger; when it reacts with O2
.- it can outcompete SOD (Beckman and 

Koppenol, 1996).  The product of this essentially irreversible reaction however is the highly 

reactive nitrogen species peroxynitrite (ONOO-).  Peroxynitrite, when protonated, can cause 

cytotoxic processes like lipid peroxidation, inactivation of enzymes by the formation of 

nitrotyrosine residues, depletion of glutathione and DNA damage (Magder, 2006). 

 

1.1.2.1.2.2 Sources of ROS in vivo  

 

Several systems produce reactive oxygen species.  Some systems are beneficial and 

use ROS as a defense mechanism, such as in macrophages and neutrophils (Halliwell and 

Gutteridge, 2007), as well as the ROS produced by xanthine oxidase (Kayyali et al., 2001), or 

as signaling molecules (e.g. blood pressure regulation by nitric oxide synthases in endothelial 

cells of the vascular system (Remacle et al., 1995)).  Sometimes ROS are generated under 

pathological conditions or as side-effects of other reactions (e.g. by the enzymes involved in 

detoxification of xenobiotics through the Cytochrome P450 system (Caro and Cederbaum, 

2004), and by peroxisomal oxidases needed for ß-oxidation of fatty acids (Jezek and Hlavata, 

2005)).  Some biologically important molecules that are prone to auto-oxidization, are 



General introduction 

18 

 

known to release ROS in this process (such as glyceraldehyde, FMNH2, FADH2, adrenalin and 

thiol compounds such as cysteine; Halliwell and Gutteridge, 2007).  Finally, the major source 

of ROS production in the cell is the mitochondrial electron transport chain; it is believed to 

generate ROS continuously. 

   

As the main ROS generator, the mitochondrial ETC has been studied extensively.  

Reportedly, it is not the only mitochondrial source of ROS; the Krebs cycle enzyme alpha-

ketoglutarate dehydrogenase is said to be able to generate O2
.- from its flavoprotein 

constituents under certain conditions (Starkov et al., 2004).  In contrast, ROS production by 

the ETC is said to be a constant process.  Energy carriers originating from the TCA cycle are 

oxidized by enzyme complexes of the ETC; abstracted electrons are passed on through a 

series of redox centers in the ETC, ultimately reducing O2.  Electron transfer through the ETC 

is accompanied by translocation of protons out of the mitochondrial matrix and into the 

intermembrane space.  The electrochemical gradient formed is used to drive ATP synthesis. 

While the cytochrome c oxidase complex (complex IV) uses the majority of the electrons 

delivered at the ETC to reduce O2 to water, electrons may escape from the ETC at earlier 

stages, generating O2
.-.  Mitochondria convert approximately 0.1%-0.3% of the consumed 

oxygen to superoxide which can further react to generate other ROS (Fridovich, 2004; St-

Pierre et al., 2002).  Estimated amounts of mitochondrial ROS production vary widely, 

depending on the species or tissues examined (Halliwell and Gutteridge, 2007). ROS 

generated by the ETC are mainly released towards the mitochondrial matrix, though the 

intermembrane space may also contain ROS originating from the ETC. The mechanisms 

involved in ROS generation by the ETC will be discussed in section 1.2.5..   

 

1.1.2.1.3 Antioxidant defenses  

 

Organisms have adapted to life in the current level of O2 in the atmosphere by 

developing antioxidant defense mechanisms.  Halliwell and Gutteridge (2007) define 

antioxidants as any substance that delays, prevents or removes oxidative damage to a target 

molecule.  This definition includes, in broad terms, actions that inhibit the production of 

ROS, prevent generated ROS from damaging macromolecules, adapt to generated levels of 

ROS by upregulating defense mechanisms, and repair damage inflicted by ROS.  The main 

focus of this section is on antioxidant systems that counteract or neutralize generated ROS, 

preventing them from exerting pro-oxidant effects on proteins, lipids and DNA. 

 

Among the antioxidant defense mechanisms developed by organisms, four 

important enzymes were found that are present in all eukaryotic cells.  One of them is 

superoxide dismutase (SOD), which is capable of catalytically removing O2
.-.  In fact, multiple 

structurally different metallo-enzymes constitute the SODs, each class containing (a) 

different metal ion(s) in their active center.  Here we discuss SODs containing copper and 

zinc, or manganese.   
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Figure 1a: Sources of ROS and antioxidant defenses (adapted from Kamata and Hirata, 1999); figure 
1b:  schematic model of the electron transport system including sites of ROS production (Balaban et 
al., 2005) 

 

SODs containing iron can be found in some bacteria, algae, trypanosomes, yeasts and higher 

plants.  The first SOD of which the function was discovered (McCord and Fridovich, 1969), is 

CuZnSOD.  CuZnSOD, present in almost all eukaryotic cells, is found predominantly in the 

cytosol, but also in lysosomes, the nucleus, the mitochondrial intermembrane space and in 

peroxisomes.  A variant of CuZnSOD is also found extracellularly.  The zinc contained in the 

active center stabilizes the enzyme but takes no part in its antioxidant capacity; the Cu ions 

catalyze dismutation of O2
.- by undergoing alternate oxidation & reduction: 

Enzyme-Cu2+ + O2
.- -> Enzyme-Cu+ + O2 

Enzyme-Cu+ + O2
.- + 2H+ -> Enzyme-Cu2+ + H2O2 

Net: O2
.- + O2

.- + 2H+ -> H2O2 + O2 

 



General introduction 

20 

 

Manganese SOD (MnSOD), first isolated from E. coli , contains Mn(III) at its active site.  While 

MnSOD is structurally different from CuZnSOD, it catalyzes essentially the same reaction.  It 

is found in bacteria, plants and animals; in animal tissues it is located in mitochondria.  

Though there are structural dissimilarities between MnSODs originating from bacteria and 

higher organisms, the amino acid sequences in animals, plants and bacteria are similar and 

unrelated to CuZnSOD (see also section 1.2.2.1.).    

 

Another major antioxidant enzyme is catalase.  This haem-containing enzyme 

catalyzes direct decomposition of H2O2 to O2 by dismutation, where one H2O2 molecule is 

reduced to H2O, while the other H2O2 is oxidized to O2 : 

2H2O2 -> 2H2O + O2 

The peroxisomes (Baudhuin et al., 1965; De Duve and Baudhuin, 1966) are the main (often 

the only) site where catalases are found.  Together with the mitochondria, these organelles 

host the process of ß-oxidation of fatty acids.  Both organelles contain flavoprotein 

dehydrogenases; in mitochondria, these enzymes donate electrons to the electron transport 

chain while in peroxisomes, electrons react with O2 and ultimately yield H2O2.  In this way, 

peroxisomes include both H2O2-generating and H2O2-consuming enzymes.  The yeast S. 

cerevisiae (Seah and Kaplan, 1973) and the nematode C. elegans (Togo et al., 2000) contain 

both peroxisomal & cytosolic catalase; in S. cerevisiae, the peroxisomal form is also found in 

mitochondria under conditions of respiratory growth (Petrova et al., 2004).  So far, catalase 

has been detected in mitochondria of rat heart (Radi et al., 1991) and liver (Salvi et al., 2007) 

as well but this could not be confirmed in mice (Zhou and Kang, 2000).  

 

A group of enzymes, known as peroxidases, are capable of removing H2O2 by using 

peroxide to oxidize another substrate (written as SH2 in following reaction): 

SH2 + H2O2 -> S + 2H2O 

Many peroxidases have a broad specificity in the substrates they can oxidize, while others 

are specific for a single substrate.  The glutathione peroxidases (GPx) all contain selenium at 

their active site; they remove H2O2 by coupling its reduction to H2O with oxidation of 

reduced glutathione (GSH) (Cohen and Hochstein, 1963), a thiol-containing tripeptide. 

H2O2 + 2GSH -> GSSG + 2H2O 

While less common in plants and bacteria, these enzymes are widely distributed in animal 

tissues.  Most GPxs are specific for GSH as the reductant; some can reduce peroxides other 

than H2O2 like fatty acid hydroperoxides and various synthetic hydroperoxides (Thomas et 

al., 1990). 

 

GSH, the most abundant low-molecular-weight thiol compound synthesized in cells, 

is not only a cofactor for GPx but also a redox agent in itself, capable of reducing various RS 

(Halliwell and Gutteridge, 2007).  In doing so, it becomes oxidized to form GSSG, which can 

be re-reduced by glutathione reductase.  GSH also chelates copper ions, diminishing their 

ability to generate ROS (Hanna and Mason, 1992); conjugation of xenobiotics with GSH, 

catalyzed by glutathione S-transferase enzymes is a crucial step in the metabolism of 

xenobiotics (Booth et al., 1961).  Synthesized by the cytoplasm, GSH reaches mitochondria 

via transporters in the inner mitochondrial membrane (Fernandez-Checa and Kaplowitz, 

2005). 
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A fourth, widely distributed, enzymatic system with antioxidant capacities is 

composed of peroxiredoxin enzymes and thioredoxins.  Peroxiredoxins are a family of 

peroxidases that are capable of reducing H2O2 and organic peroxides; their active sites 

contain thiols in the form of cysteine (Wood et al., 2003).  In mammalian cells, they 

constitute 0.1 to 0.8% of the total soluble protein.  Different types of peroxiredoxins are 

found in different cellular locations: in mitochondria, the cytosol, the ER, in peroxisomes and 

extracellularly.  Some peroxiredoxins rely on thioredoxin to return to the reduced state 

(Miranda-Vizuete et al., 2000).  These small ubiquitous proteins can also undergo redox 

reactions with other proteins: they possess oxidoreductase activity through their cysteine-

rich active site, which enables them to reduce protein disulphide bridges (Holmgren, 1989).  

They reduce methionine sulphoxide reductase, a key enzyme in removal of oxidative 

damage to proteins (Lowther et al., 2000).  Re-reduction of oxidized thioredoxins is 

performed by thioredoxin reductases. 

 

Some endogenously produced molecules with (non-enzymatic) antioxidant potential 

are known, including coenzyme Q. In vitro, coenzyme Q, an essential part of the electron 

transport chain (see section 1.2.4.1.1.), can act as an antioxidant in its reduced form 

(ubiquinol) (Ernster and Dallner, 1995).  In contrast, coenzyme Q is often described as a 

source of O2
.-, therefore its role as an in vivo antioxidant remains uncertain (Halliwell and 

Gutteridge, 2007). 

 

Antioxidant capacities have been ascribed to several low-molecular-mass agents 

taken up from the diet.  This applies to ascorbic acid (vitamin C), tocopherols and 

tocotrienols (combined under the nutritional term vitamin E), carotenoids and certain plant 

phenols.  Though there is little doubt about their reactive species (RS) scavenging capacity, 

the benefits of administration of these compounds are not always clear as there are few 

studies supporting their role as antioxidants in vivo (Halliwell and Gutteridge, 2007).  An 

antioxidant role has been proposed for resveratrol, a polyphenol found in a variety of plant 

species (Belguendouz et al., 1997). However, it has many other physiological effects (Pirola 

and Frojdo, 2008); as a consequence, any beneficial effect by dietary uptake could not be 

ascribed to its antioxidant capacity alone. 

 

1.1.2.1.4 Forms of oxidative damage 

 

Even with this extensive array of defense mechanisms against attack by RS, oxidative 

damage still occurs in vivo and affects DNA, lipids and proteins (Sies, 1993).  It is possible 

that the capacity of antioxidants to scavenge RS is not absolute or demands excessive 

energy; alternatively, removal of all RS could be detrimental to the organism in view of the 

role of RS in redox regulation and signaling.  When antioxidant defense functions 

inadequately, damage to macromolecules can occur. 

 

DNA damage 

 

While physiologically relevant levels of O2
.-, H2O2, NO. and organic peroxides are not 

reactive enough to cause oxidative damage to DNA, the highly reactive OH. radical can affect 
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nuclear bases and sugars.  OH.-dependent damage to DNA bases results in formation of 8-

hydroxyguanine and thymine and cytosine glycols (Bergamini et al., 2004).  Deoxyribose is 

susceptible to fragmentation after hydrogen abstraction by OH.; this process leads to 

formation of sugar peroxyl radicals.  DNA-base-derived radicals can crosslink with protein 

radicals or with amino acid residues (Evans et al., 2004).  Oxidative damage to bases and 

sugars can be aggravated by the presence of transition metals; through Fenton chemistry, 

H2O2 can increase DNA strand breakage and base modification products (Imlay and Linn, 

1988; Mello-Filho and Meneghini, 1991).  Ultimately, damaged DNA results in mutation and 

changes in gene expression (Halliwell and Gutteridge, 2007). 

Due to its proximity to the ETC, the lack of histones and introns, and lower rates of 

DNA repair (Croteau et al., 1999; Lim et al., 2005; Richter et al., 1988; Yakes and Van Houten, 

1997), mtDNA is expected to suffer greater oxidation than nuclear DNA, yet so far, results 

are contradictory (Anson and Bohr, 2000; Anson et al., 2000; Beckman and Ames, 1999; Lim 

et al., 2005; Mandavilli et al., 2002; Richter et al., 1988). 

Errors in DNA can be repaired before and after replication.  Recognition, removal 

and replacement can correct oxidative damage to DNA nucleosides in two ways.  Nucleotide 

excision repair (NER) acts by excision of oligonucleotides containing bulky oxidative lesions, 

typically caused by UV light, after which the resulting gap is filled in by a polymerase and 

closed by ligase (de Laat et al., 1999).  In base excision repair (BER), a glycosylase removes an 

altered DNA base by hydrolyzing the bond between base and sugar-phosphate backbone; 

the DNA is resealed after insertion of the correct base (Lindahl et al., 1997).  Wrongly-paired 

bases or DNA base modifications that escaped proofreading of DNA polymerases can be 

corrected after replication by mismatch repair; after recognition of mismatches, the DNA 

strand containing incorrect information is selectively removed and re-synthesized (Harfe and 

Jinks-Robertson, 2000).  When double-strand breaks occur, they can be repaired by 

homologous recombination (West, 2003) or non-homologous DNA end-joining (Lieber et al., 

2003).  In mammals, it was found that mitochondria are capable of repairing oxidative 

damage to mtDNA, mostly by BER but potentially also by mismatch repair (Hashiguchi et al., 

2004; Larsen et al., 2005). 

 

Lipid damage   

 

Double bonds in polyunsaturated fatty acids (PUFAs) are prone to be attacked by RS.  

Again, OH. is presumably the main source of oxidative damage to lipids, as NO. and O2
.- are 

not sufficiently reactive; moreover, the charge carried by O2
.- prevents it from crossing 

membranes (Halliwell and Gutteridge, 2007).  Initiation of lipid peroxidation is the formation 

of carbon radicals, most often by hydrogen atom abstraction from the methylene moiety 

close to a double bond.  In the presence of O2, carbon radicals can lead to peroxyl radicals 

which, by abstraction of H. from an adjacent fatty acid side chain, result in a new carbon 

radical together with a lipid hydroperoxide.  Through this chain reaction (fig 2), multiple 

peroxide molecules originate from a single initiation event (Halliwell and Gutteridge, 2007).  

 

In addition, lipid hydroperoxides can break down to reactive aldehyde products, 

including 4-hydroxy-2-nonenal (HNE) (Uchida, 2003).  As lipid molecules (in the form of 

phospholipids) make up between 30 and 80% of biological membranes by mass, lipid 
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peroxidation influences membrane fluidity and integrity; consequently, membrane proteins 

like enzymes and ion channels can also be affected (Catala, 2009).  The phospholipid 

cardiolipin, an essential component of the inner mitochondrial membrane and rich in 

unsaturated fatty acids, is a possible target for lipid peroxidation (Chicco and Sparagna, 

2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A form of repair for oxidative damage to lipids is the reduction of peroxides within 

membranes to alcohols by phospholipid hydroperoxide glutathione peroxidases; 

alternatively, glutathione peroxidases remove fatty acid peroxides released when peroxides 

are cleaved from membranes by phospholipases (Halliwell and Gutteridge, 2007). 

 

Protein damage  

 

Proteins can not only be directly attacked by RS, they are also prone to secondary 

damage by end-products of lipid peroxidation (Catala, 2009) and by glycation (Wautier and 

Schmidt, 2004).  At physiological levels, NO. or O2
.- cannot directly damage proteins; H2O2 

selectively damages accessible –SH groups.  Amino acid side-chain oxidation leads to 

production of carbonyl moieties by introduction of aldehyde or ketone functions into these 

side-chains (fig 3); particularly proline, arginine and lysine side chains are susceptible 

(Bergamini et al., 2004).  Amino acid peroxides can decompose to RO. and RO2
. radicals in the 

presence of transition metals.  Transition metals are also capable of directly binding thiol 

groups in cysteine and methionine (Brot and Weissbach, 1983); oxidation of methionine –S 

causes formation of methionine sulphoxide (Schoneich et al., 1993).  While oxidative 

damage to proteins is generally irreversible, methionine sulphoxide can be re-reduced; 

likewise, peroxiredoxin inactivation and glutathionylation can be reversed (Halliwell and 

Gutteridge, 2007).  Consequences of oxidative protein damage are not limited to proteins 

like receptors, antibodies, signaling and transport proteins; interference with enzyme 

activity may also affect DNA polymerases and repair enzymes (Halliwell and Gutteridge, 

2007). 

 

Figure 2: Representation of the initiation and propagation 
reactions of lipid peroxidation (Wikimedia commons). 
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Figure 3: carbonylation of an amino acid side chain by metal catalyzed oxidative (MCO) attack. 

 

As mentioned, oxidation of methionine can be reversed; methionine sulphoxide is 

reduced by methionine sulphoxide reductases who gain their reducing power from 

thioredoxin (Stadtman, 2004).  Because this formation of methionine sulphoxide is 

reversible, it is seen as a means to protect proteins from oxidative damage (Levine et al., 

1996).  Removal of irreversible protein damage is regulated at different cellular locations.  

Lysosomes hydrolyze cytoplasmic proteins and organelles; this process is called autophagy 

(Kiffin et al., 2006).  They can also degrade proteins taken into the cells by endocytosis.  Lon 

protease, an ATP-dependent proteinase, is located in peroxisomes and mitochondria (Lee 

and Suzuki, 2008); it recognizes and degrades oxidized mitochondrial proteins.  Aconitase, an 

enzyme particularly sensitive to inactivation by superoxide (Gardner and Fridovich, 1991), is 

a candidate for degradation by Lon protease (Bota and Davies, 2002).  Eukaryotic cells 

contain the proteasome, a cytoplasmic and nuclear system capable of removing unwanted 

proteins, including oxidatively damaged proteins (Poppek and Grune, 2006).  Targets for 

removal can be recognized by the presence of hydrophobic patches (Grune et al., 2003) or 

tagged by attachment of ubiquitin (Hershko and Ciechanover, 1998). 

 

1.1.2.1.5. Evaluation of the Free Radical/Oxidative Damage Theory of Aging 

 

First formulated in the 1950’s, the Free Radical/ Oxidative Damage Theory of Aging is 

seen by many as the most plausible aging theory proposed to date.  However, in past 

decades, a myriad of studies have tried to verify it while even now, over 50 years after it was 

first conceived, scientists have not succeeded in obtaining a consensus about the accuracy of 

this theory.  What’s more, they disagree on the strictness with which the theory should be 

interpreted.  Some investigators claim that, for the Free Radical/ Oxidative Damage Theory 

to be of value, it must imply that oxidative stress is the cause of aging and consequently, the 

determinant of lifespan; if this criterion is not fulfilled, then oxidative stress may be merely a 

consequence of aging.  Others view the theory as valuable if oxidative damage is proven to 

be a major contributor to aging (Beckman and Ames, 1998; Gems and Doonan, 2009; Muller 

et al., 2007).  Though very few studies unambiguously support the more stringent view of 

the theory, there are plenty of indications that oxidative damage is associated with aging.  

Support for the Free Radical/ Oxidative Damage Theory of Aging was readily found in 

correlations between lifespan, levels of ROS, oxidative damage and/or antioxidant defense. 

Enhanced ROS production with increasing age was observed in mitochondria or 

submitochondrial particles of the housefly (Farmer and Sohal, 1989), mice (Sohal et al., 

1994) and rats (Muscari et al., 1990), and in intact cells from rat liver (Hagen et al., 1997; 

Sastre et al., 1996).  Two long-lived mouse species belonging to the genus Peromyscus 

produce less ROS and have higher stress resistance than the house mouse Mus musculus 

(Ungvari et al., 2008). Also, mitochondria from birds seemingly produce lower levels of ROS 
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than those of rodents, consistent with their difference in life expectancy (Barja and Herrero, 

1998; Herrero and Barja, 1998). Sohal and co-workers (1990b) and Ku and co-workers (1993) 

found an inverse relationship between rates of mitochondrial ROS generation and maximum 

lifespan potential in a range of mammals.  Age-related increases in oxidative damage were 

observed for proteins (Sohal et al., 1993; Stadtman, 1992; Toroser et al., 2007), and 

mitochondrial DNA (Ames et al., 1993; Barja and Herrero, 2000) of various animal model 

systems.  Likewise, oxidative damage to lipids was observed to increase with age (Barata et 

al., 2005; Sawada and Carlson, 1987); gradual accumulation of lipofuscins, consisting of 

cross-links of lipid and protein residues, was reported in a range of species (Beckman and 

Ames, 1998) and is seen by some as a useful biomarker for aging (Yin, 1996).  Often, a 

positive relationship between antioxidant levels and lifespan is regarded as supportive of the 

Free Radical/oxidative damage Theory of Aging (Arking, 1998).  However, these observations 

fail to show the causal role of oxidative stress in aging.  A more convincing link between 

aging and oxidative stress is supplied by intervention studies.  These studies aim to 

manipulate ROS levels in order to observe their effect on lifespan.  This can be approached 

by increasing or decreasing ROS levels, expecting lifespan shortening or extension, 

respectively.  Both approaches often entail manipulation of antioxidant defenses.  Lifespan 

was shortened by loss of CuZnSOD and MnSOD in Drosophila (Duttaroy et al., 2003; Kirby et 

al., 2002; Paul et al., 2007; Reveillaud et al., 1994).  Mice lacking cytoplasmic CuZnSOD had a 

30% reduced lifespan accompanied by high levels of oxidative damage (Elchuri et al., 2005); 

absence of MnSOD in mice led to severe oxidative damage to mitochondria and early 

postnatal death (Lebovitz et al., 1996; Li et al., 1995).  Apparently, a different way of 

manipulating ROS levels is by changing partial oxygen pressure; rat liver subcellular fractions 

produced more ROS under hyperoxia than under normoxia (Chance et al., 1979).  Deleting 

CuZnSOD and/or MnSOD accelerated chronological aging in yeast, an effect that could be 

partially reversed by decreasing oxygen tension (Longo et al., 1996; Longo et al., 1999).    

Efforts to decrease ROS production by manipulating antioxidant levels have led to lifespan 

increase in several model organisms.  Overexpression of MnSOD extended yeast 

chronological lifespan (Harris et al., 2003).  Drosophila lifespan was extended by 

overexpression of peroxiredoxin 5, methionine sulfoxide reductase, SOD1 or glutamate-

cysteine ligase (Martin et al., 2009; Orr et al., 2005; Radyuk et al., 2009; Ruan et al., 2002) 

and by overexpression of glucose-6-phosphate dehydrogenase which enhances reductive 

capacity (Legan et al., 2008).  According to Schriner and co-workers (2005), overexpression 

of catalase in mitochondria extended lifespan in mice, accompanied by reduced oxidative 

damage; likewise, human cytosolic thioredoxin overexpression in transgenic mice had a 

beneficial effect on lifespan (Mitsui et al., 2002).  In some studies, administering antioxidant 

mimetics was sufficient to prolong lifespan: according to Anisimov and co-workers (2008), 

the mitochondria-targeted antioxidant mimetic skQ1 can prolong lifespan in the fungus 

Podospora anserina, in Drosophila, in mice and in the crustacean Ceriodaphnia affinis; Ali 

and co-workers (2004) and Quick and colleagues (2008) described a synthetic SOD mimetic 

that could extend lifespan in mice, not only in SOD2 knockouts but also in mice wild-type for 

SOD (strain C57BL6, ‘normal’ mice).   

 

As discussed, arguments in favor of the Free Radical/ Oxidative Damage Theory of 

Aging are abundant; however, the number of studies opposing this theory is increasing.  The 
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link between lifespan, ROS production, oxidative damage and/or antioxidant defense is far 

from straightforward in and between certain species.  In the fruitfly, extension of lifespan by 

caloric restriction was not associated with lower ROS production, and lowering ROS 

production by overexpressing adenine nucleotide translocase could not prolong life (Miwa et 

al., 2004). In a wild population of sheep, it was shown that oxidative damage did not 

increase with age (Nussey et al., 2009).  The naked mole rat has higher levels of lipid 

peroxidation, protein carbonylation and DNA oxidative damage than laboratory mice, even 

at a young age, yet lives 8 times longer (Andziak et al., 2006); on the other hand, age-related 

oxidative damage to thiol groups is attenuated in this rodent, together with levels of 

ubiquitinated proteins (Perez et al., 2009).  In mice, a mutation in mtDNA polymerase γ led 

to accumulation of mtDNA mutations and faster aging, without affecting ROS production or 

oxidative damage (Kujoth et al., 2005).  Ant queens, who are considerably long-lived, 

expressed cytosolic SOD (SOD1) at lower levels and contained lower SOD1 activity than the 

short-lived worker ants (Parker et al., 2004).  (Sohal et al., 1990a) looked for correlations 

between levels of different antioxidants and maximum lifespan potential in various organs of 

six mammalian species; some positive and negative correlations were found, but no clear 

relationship was detected between overall antioxidant defense and lifespan.  Increase or 

decrease of antioxidant levels does not necessarily lead to a positive or negative effect on 

lifespan, respectively.  According to Mockett and co-workers (1999, 2003), Orr and 

colleagues (2003), and Shchedrina and co-workers (2009), overexpression of MnSOD, 

CuZnSOD, catalase, methionine-R-sulfoxide reductase B1 or thioredoxin reductase could not 

increase lifespan in Drosophila.  Others claim that overexpression of MnSOD can extend 

Drosophila lifespan (Sun et al., 2002), however, this seems to occur without affecting 

oxidative stress resistance or oxidative damage (Curtis et al., 2007).  According to Orr and 

Sohal (2003), lifespan extension by overexpression of CuZnSOD in the fruitfly is only effective 

in compromised genetic backgrounds.  Overexpression of several genes coding for 

antioxidant enzymes, specifically CuZnSOD, MnSOD, and/or catalase, were found to have no 

lifespan-prolonging effect in mice (Huang et al., 2000; Jang et al., 2009; Perez et al., 2008b), 

even when, in the case of MnSOD (SOD2) overexpression, less oxidative damage was 

produced (Jang et al., 2009).  Very high overexpression of glutathione peroxidase, CuZnSOD 

or MnSOD can be deleterious (Jaarsma et al., 2000; McClung et al., 2004; Raineri et al., 2001; 

Rando et al., 1998).  Treatment with antioxidant mimetics failed to extend lifespan in 

Drosophila and the housefly (Bayne and Sohal, 2002; Magwere et al., 2006).  Clinical trials 

testing antioxidants on humans have not been able to consistently show their benefits for 

decreasing mortality; some trials were stopped early due to increased incidence of disease 

and mortality (Howes, 2006).   Attempts to increase ROS production by knocking out genes 

coding for antioxidant enzymes did not always result in the expected shortening of lifespan.  

In mice, the heterozygous knockout of Sod2 (Sod+/-) had approximately 50% reduction in 

MnSOD activity, some elevated oxidative stress markers  and increased cancer incidence, yet 

lifespan was unaltered (Mansouri et al., 2006; Van Remmen et al., 2003; Van Remmen et al., 

1999).  Heterozygous knockouts of mitochondrial thioredoxin (Trx2+/-) showed higher 

oxidative damage (Perez et al., 2008a) but no significant decrease in lifespan (Pérez et al., 

2009).  Likewise, lifespan was not different from wild-type in glutathione peroxidase  

                                                 
1
 catalyzes the reduction of the R epimer of methionine sulfoxide (Moskovitz et al., 2002).  
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knockouts Gpx1-/- and Gpx4+/-, and, contrary to previous reports (Moskovitz et al., 2001), in 

methionine sulfoxide reductase A (MsrA-/-) knockouts (Pérez et al., 2009). 

 

The majority of the studies claiming to support the Free Radical/oxidative damage 

Theory of Aging delivered only correlative evidence; they demonstrated the toxicity of 

superoxide but did not provide a direct link to aging.  Through progress in genetic technology 

came the possibility to alter expression of antioxidant enzymes, thereby manipulating levels 

of ROS and oxidative damage.  However, alteration of antioxidant enzymes is not always a 

straightforward intervention.  First of all, the consequences of knockout or overexpression of 

genes coding for antioxidant enzymes on ROS production or oxidative damage aren’t always 

assessed.  Also, antioxidant enzyme knockdown – due to the inherent toxicity of ROS - can 

result in early death instead of shortening of lifespan through faster aging.  If lowering 

antioxidant levels does not shorten lifespan, this may be through compensation for the lack 

of one antioxidant by enhancement of another.  Also, lowering antioxidant levels most likely 

has an impact on signaling via ROS (see section 1.2.4.2.3.), the consequences of which are 

hard to predict.  The same is true for overexpression of antioxidant genes leading to lifespan 

extension, where other effects of the genetic intervention besides increasing antioxidant 

levels may be beneficial for lifespan.  Failure to extend lifespan through increase of a specific 

antioxidant may illustrate the importance of balancing the total range of antioxidant 

defenses.  In all, we can state that many studies that comply with or refute the Free 

Radical/oxidative damage Theory of Aging could be interpreted wrongly.  Even now, more 

than fifty years after it was first formulated, Harman’s theory cannot be proven or 

disproven.  However, as the counter-evidence – derived from many model organisms, 

including C. elegans (which will be discussed at length in section 7.1.) - keeps growing, it may 

be appropriate for future research to ‘seek alternatives to the oxidative damage theory’ as 

proposed by Gems and Doonan (2009). 

 

1.1.2.2 Other mechanistic theories of aging 

 

Many other mechanistic theories of aging have been proposed in the past; some 

even date back to the end of the 19th century.  At present, a lot of these theories have been 

countered but some may still have their value for future research directions.  Five of them 

will be presented here; in the first four, the emphasis is on damage as a cause of aging but 

they differ in the type of damage that is put at the center of the theory.  As most of them 

propose no alternative mechanism capable of inflicting molecular damage, the Free 

Radical/oxidative damage Theory of Aging is still implicated in the design of these theories.  

The fourth theory has a different view on aging: here, damage is not seen as a cause of 

aging; instead, according to the author, aging is a cause of damage. 

 

1.1.2.2.1. Telomere shortening 

 

In eukaryotes, the ends of linear chromosomes, the telomeres, consist of a repeated 

sequence of bases whose length decreases with each cell division.  Primary cells isolated 

from mammals arrest cell division in culture after 50-90 divisions, when the chromosome 

reaches a critical length; this process is called in vitro replicative senescence and the limited 
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cellular capacity for replication was named the Hayflick limit (Hayflick, 1965).  In immortal 

cell lines, the enzyme telomerase adds new sequences onto the ends of chromosomes at 

each DNA replication, maintaining the chromosome length and allowing cell division to 

continue.  These observations led to the idea that organismal lifespan may be restricted by 

an in vivo limited capacity for cell division caused by telomere shortening (Campisi, 1997).  In 

connection to the Free Radical/oxidative damage Theory of Aging, it was found that besides 

cell division, oxidative stress also has an impact on telomere length (von Zglinicki, 2002).  

However, the role of telomere shortening in aging can be refuted by a number of 

observations.  There is no correlation between telomere length and potential lifespan.  

Telomeres in mice are considerably longer than in humans (de Lange et al., 1990; Kipling and 

Cooke, 1990); also, telomere length varies significantly in different species of mice with 

similar maximum lifespans (Greider, 1996).  Most adult somatic cells are post-mitotic; no 

further telomere shortening occurs in these cells yet this does not prevent aging.  In C. 

elegans, adult somatic cells are post-mitotic; Raices and co-workers (2005) found no 

correlation between telomere length and C. elegans lifespan.  Knocking down telomerase 

activity in mice shortens telomeres but has no immediate impact on their lifespan; it does 

make them more cancer-prone (Goyns and Lavery, 2000).  Crossing telomerase-

overexpressor mice with transgenic mice that carry extra copies of tumor suppressor genes 

extended mean but not maximum lifespan, in other words: it improved health span (Tomas-

Loba et al., 2008).  Telomeres and their protection by telomerase definitely play a role in 

cancer development, but their role as a conserved mechanism of aging is doubtful, and it is 

far from certain that lifespan-extending effects similar to those of telomerase-

overexpressor/tumor-suppressor mice will be observed in humans. 

 

1.1.2.2.2. The mitochondrial theory of aging 

 

Based on the Free Radical/Oxidative Damage Theory of Aging, (Miquel et al., 1980) 

proposed the mitochondrial theory of aging, suggesting that senescence is the result of 

damage caused by ROS to the mitochondrial genome in post-mitotic cells.  This theory, while 

still regarding mitochondrial ROS as the primary cause of aging, narrows the focus of 

Harman’s theory by stating that accumulation of somatic mutations in the mtDNA is the 

major contributor to aging.  As discussed previously, proximity to the ETC, the lack of 

histones and introns, and lower rates of DNA repair would make mtDNA especially 

vulnerable to oxidant attack.  Damage to mtDNA results in mutations, which lead to 

defective mitochondrial respiration, further increasing ROS generation, accumulation of new 

mutations and oxidative damage; this vicious cycle ultimately leads to cell death.  

Alternatively, existing mtDNA mutations caused by oxidative damage or errors of the mtDNA 

polymerase clonally expand to cause cellular dysfunction (Elson et al., 2001): because the 

mitochondrial genome has multiple copies in a single cell, the mutant molecule must be 

multiplied above a certain threshold level to result in biochemical deficiency.  Suggested 

mechanisms for clonal expansion are replication advantage of mutated over wild-type 

molecules (Yoneda et al., 1992) or random genetic drift (Elson et al., 2001).  Research in 

support of the theory reported age-related accumulation of mtDNA mutations (Wallace, 

1999) and cytochrome c oxidase deficient cells (Krishnan et al., 2007).  Arguments against 

this theory are in essence the same as those against the Free Radical/oxidative damage 
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Theory of Aging; particularly, it is put in perspective by two experimental approaches.  

Firstly, the phenotype of knock-in mice with elevated rates of mtDNA mutagenesis consisted 

of faster aging without enhanced ROS production (Kujoth et al., 2005; Trifunovic et al., 

2004).  Secondly, Vermulst and colleagues (2007) showed that heterozygous mutator mice 

were able to sustain a 500-fold increase in the frequency of point mutations compared to 

wild-type mice without showing an accelerated aging phenotype or a decreased lifespan.    

 

1.1.2.2.3. The membrane pacemaker theory of aging 

 

The membrane pacemaker theory of aging is an extension of the Free 

Radical/oxidative damage Theory of Aging.  Three observations led to its conception.  In the 

1970’s, it was discovered that membrane fatty acid composition in hearts of different 

mammal species was correlated with heart rate (Gudbjarnason et al., 1978).  This systematic 

variation in membrane fatty acid composition was later found in other tissues of mammals 

as well (Couture and Hulbert, 1995).  Shortly after, it was reported that in mammals, 

membrane composition was correlated with maximum lifespan (Pamplona et al., 1998).  

Hulbert united these findings in the membrane pacemaker theory of aging (Hulbert, 2005; 

Hulbert et al., 2007).  This theory proposes that the acyl composition of membrane bilayers 

determines the rate of aging, based on the following findings.  Firstly, fatty acids differ 

greatly in their susceptibility to oxidative damage.  Saturated and mono-unsaturated fatty 

acids are resistant to peroxidation while polyunsaturated fatty acids are prone to oxidative 

attack (Halliwell and Gutteridge, 2007).  Secondly, lipid peroxidation is a self-propagating 

process and many lipid peroxidation products are very reactive molecules themselves.  

Lastly, it was shown that membrane fatty acid composition differs in various situations (such 

as between species or diet-dependent).  According to Hulbert (2005), this theory can explain 

the different lifespans of species (e.g. between birds and mammals), lifespan extension by 

caloric restriction and even differences in lifespan within species, for instance between 

honeybee workers and queens (Hulbert, 2008).  Fatty acid susceptibility to peroxidation may 

even have predictive capacities when it comes to human lifespan expectancy (Puca et al., 

2008).   

 

1.1.2.2.4. Protein turnover hypothesis 

 

The protein turnover hypothesis is based on the finding that aging is associated with 

the accumulation of post-translationally altered proteins (Stadtman, 1988).  Proteins are 

constantly at risk of damage or alteration, either by genomic instability, by post-synthetic 

changes like oxidation and glycation, by denaturation or by conformational changes (Gafni, 

1997; Hipkiss, 2006; Rothstein, 1979) .  In order to maintain cellular homeostasis, proteins 

undergo repeated synthesis and degradation, or protein turnover.  For this purpose, cells are 

equipped with proteolytic systems capable of protein degradation; the mechanisms of 

protein degradation, i.e. the lysosomal/autophagic system and the ubiquitin proteasome 

system are reviewed in (Martinez-Vicente et al., 2005).  Age-related accumulation of 

aberrant proteins has been linked, in part, to a decrease in rates of protein degradation with 

increasing age (Carrard et al., 2002; Chondrogianni and Gonos, 2005; Cuervo and Dice, 2000; 
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Terman and Brunk, 2004); in this way, slowed protein turnover may contribute significantly 

to aging and age-related pathologies (Martinez-Vicente et al., 2005).   

 

1.1.2.2.5. The TOR pathway as the lifespan determinant 

 

Recently, a theory explaining aging was formulated centered around the Target-Of-

Rapamycin (TOR) pathway by Blagosklonny (2006).  The TOR pathway is a growth-promoting 

signaling pathway, activated by nutrients and growth factors, which drives synthesis of 

intracellular components. This pathway stimulates cell (mass) growth; in proliferating cells, 

this process is balanced by cell divisions, but when the cell cycle is blocked and TOR is still 

active, cells become hyperactive.  In this theory, aging is seen as a consequence of TOR-

driven cellular hyperfunction, which leads to cell and organ failure.  

An important notion in this theory is the following: ‘The aging process is not driven 

by damage.  Aging causes damage, not damage causes aging’.  Blagosklonny (2008) states 

that lifespan is not limited by accumulation of molecular damage.  According to the author, 

oxidative damage does occur, but lifespan is restricted by TOR-driven aging before oxidative 

damage can cause the death of an organism.  In addition, ROS-related findings can be fitted 

into the theory: though they are not required to explain the workings of the model, ROS may 

play signaling roles upstream and downstream of TOR. 

Importantly, this theory fits into the evolutionary antagonistic pleiotropy theory of 

aging. The antagonistic pleiotropy theory postulates that there are genes which are 

beneficial early in life at the cost of aging.  According to Blagosklonny (2008), genes 

implicated in the TOR pathway fit this description.  As the TOR pathway constitutes a growth 

program in response to growth factors and nutrients, TOR is essential for development. 

However, the force of natural selection declines with age and TOR is not sufficiently 

switched off later in life; it is involved in aging and age-related diseases such as 

neurodegeneration and cancer. In other words, the developmental program driven by TOR 

becomes a quasi-program for aging.  According to the author, a quasi-program is a 

purposeless continuation of a developmental program that was not switched off after 

completion (Blagosklonny, 2008).  This ‘quasi-program’ has no purpose, but could be 

switched off genetically or pharmacologically, after completion of the developmental 

program.   

Evidence supporting this theory is summed up in (Blagosklonny, 2006) and refers to 

lifespan extension by TOR pathway inhibition, either through mutations in the pathway, 

treatment with rapamycin (which is an inhibitor of the pathway), or reduction of calorie 

intake.  Examples can be found in yeast, Caenorhabditis elegans, Drosophila and mammals.  

Also, age-related diseases in humans point to the ‘quasi-program’ of TOR as a cause of aging.  

As an example of an age-related disease, the author proposes osteoporosis and consequent 

bone fracture.  At first sight, the cause of this disease could be classified as ‘wear-and-tear’.  

However, osteoporosis results from hyper-function of cells that resorb bone (osteoclasts). 

Other diseases resulting from hyper-function are atherosclerosis, hypertension and cancer.   

Since TOR is associated with many age-related diseases in humans, this underlines 

its potential importance for future research. According to Blagosklonny’s theory (2006), it is 

a candidate target for pharmacological intervention against aging, for the following reasons: 

it is crucial for development but not essential after completion of development, and over-
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activation accelerates aging while inhibition increases longevity.  Blagosklonny suggests the 

TOR pathway inhibitor rapamycin, which has been used as an immunosuppressant in 

transplant patients and as an anti-cancer agent, as a potential anti-aging drug.   
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1.2. Oxidative metabolism, mitochondria and aging 
 

Though the Free Radical Theory of Aging is as yet far from proven, the 

mitochondrion is seen by many as a major factor in the aging process.  In this chapter, we 

will look into the potential link between aging and mitochondria.  First, an overview is given 

of energy metabolism.  The ultrastructure, organization and functions of mitochondria are 

discussed, together with the modes of mitochondrial ROS production. Finally, age-related 

changes in mitochondria and their importance for the aging process are reviewed. 

 

1.2.1. Energy metabolism: overview (Voet et al., 2006) 

 

Intermediary metabolism comprises all reactions concerned with storing and 

generating metabolic energy and with using that energy in biosynthesis of low-molecular-

weight compounds and energy storage compounds.  The part of intermediary metabolism 

consisting of pathways that store or generate metabolic energy is known as energy 

metabolism (Mathews and Van Holde, 1996).  An important central pathway involved in 

energy metabolism is glycolysis; this catabolic pathway is situated in the cytosol and 

converts sugars, glucose in particular, to pyruvate through a series of enzymatic reactions.  

Free energy generated by the degradation of glucose to pyruvate is used for synthesis of ATP 

and reduction of nicotinamide adenine dinucleotide (NAD+).  In anaerobic organisms, 

pyruvate is subjected to fermentation; end products of fermentation include lactate (by 

homolactic fermentation) or ethanol and CO2 (by alcohol fermentation).  In oxidative 

metabolism, pyruvate is shuttled to the mitochondria and is decarboxylated and converted 

into acetyl–coenzyme A (acetyl-CoA), which in turn is oxidized in the tricarboxylic acid cycle 

(TCA cycle or Krebs cycle).  Input of simple carbon compounds into the TCA cycle can also be 

derived from fatty acid or amino acid degradation; the TCA cycle is the point of convergence 

for all catabolic pathways of oxidative metabolism.  Oxidation of these carbon compounds 

by the 8 enzymatically catalyzed reactions of the TCA cycle results in reduction of the 

nucleotide coenzymes NAD+ to NADH and FAD (flavin adenine dinucleotide) to FADH2, 

formation of (G/A)TP (guanosine/adenosine triphosphate) and release of CO2.  The reduced 

electron carriers NADH and FADH2 donate their electrons to the mitochondrial electron 

transport system (ETS).  Here, electrons are transferred through a series of redox proteins to 

O2, the final electron acceptor.  Electron transport along the ETS allows some of the redox 

proteins to shuttle protons out of the mitochondrial matrix, creating a transmembrane 

proton concentration gradient which is the driving force behind mitochondrial ATP synthesis 

through oxidative phosphorylation.    
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Figure 4: Schematic overview of some of the major pathways in energy metabolism.  Shown are 
glycolysis, gluconeogenesis, the pentose phosphate pathway, the glyoxylate cycle and the TCA cycle.  
Adapted from (Castelein et al., 2008). 

 

Control over glycolysis is exerted by regulation of the activity of key enzymes in the 

pathway.  For instance, phosphofructokinase (PFK), which catalyzes the phosphorylation of 

fructose-6-phosphate (F6P) to fructose-1,6-bisphosphate (FBP), is the most important point 

of control for glycolysis in muscle.  ATP is both substrate and allosteric inhibitor of PFK.  

Other compounds like ADP, AMP and fructose-2,6-bisphosphate (F2,6P) can counter the 

inhibitory effect of ATP and are activators of PFK. 

Another control mechanism for flux through the glycolysis pathway is substrate 

cycling.  Control by substrate cycling is possible when two opposing reactions catalyzed by 

separate enzymes occur simultaneously; for instance, F6P is phosphorylated to FBP by PFK; 

the opposed reaction fructose-1,6-bisphosphatase (FBPase) catalyzes the hydrolysis of FBP 

to F6P.  The combined reactions result in net ATP hydrolysis.  Any intervention that lowers 

the activity of one enzyme and increases the activity of the other enzyme, influences flux 

through glycolysis.  The rate of substrate cycling may be under neuronal or hormonal 

control; for example, levels of thyroid hormone can modify activities of PFK and FBPase 

(Shulman et al., 1985).   

Regulation of the TCA cycle is exerted by supply of acetyl-CoA and demand for ATP.  

The decarboxylation of pyruvate to acetyl-CoA is strictly regulated as it is an irreversible 

reaction; this process can be inhibited by pyruvate dehydrogenase kinase.  The activation 

state of the rate-determining enzymes of the TCA cycle (citrate synthase, isocitrate 

dehydrogenase and α-ketoglutarate dehydrogenase) sets the pace of this pathway.  Also, 

intermediates of the TCA cycle are needed as biosynthetic precursors; for instance, 
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biosynthesis of certain amino acids requires α-ketoglutarate and oxaloacetate.  Availability 

of certain intermediates exerts control over key enzymes of the TCA cycle, such as citrate, 

which competes with oxaloacetate and inhibits citrate synthase.  Additional regulatory 

mechanisms include activation or inhibition of isocitrate dehydrogenase by ADP and ATP, 

respectively, and stimulation of the TCA cycle by Ca2+. 

 

An alternative to glycolysis is the pentose phosphate pathway; this pathway breaks 

down glucose derivatives for anabolic purposes.  Generated products include NADPH, CO2 

and pentoses; pentoses are used in biosynthesis of nucleotides and nucleic acids, while 

NADPH is needed for maintenance of cellular redox balance (e.g. by re-reducing oxidized 

glutathione) and as reducing equivalents for biosynthetic reactions. 

 

The glyoxylate pathway provides an alternative way to process acetyl-CoA, not 

oxidizing it completely to CO2 but converting it to succinate and malate.  This pathway is 

found in plants, bacteria, fungi and nematodes; it could also be operational in other animal 

species (like insects and mammals) under certain circumstances (Popov et al., 2005).  

Normally, its key reactions are performed by two separate enzymes but C. elegans has a 

single enzyme with a fused isocitrate lyase and malate synthase domain.  In plants, and 

presumably also in some nematodes (Aueron and Rothstein, 1974; Patel and McFadden, 

1977), key reactions of this pathway take place in glyoxysomes.  Resulting succinate can be 

converted to malate in the mitochondria, thereby fueling the TCA cycle; malate can also be 

transported to the cytosol where it is oxidized to oxaloacetate for entry into 

gluconeogenesis, enabling conversion of fats to carbohydrates. 

 

1.2.2. Origin and ultrastructure of mitochondria 

 

1.2.2.1. Origin 

 

As originally formulated in the generally accepted  endosymbiotic theory, the 

presence of mitochondria in eukaryotic cells originates from when a primitive eukaryotic cell 

entered into a stable endosymbiotic relationship with a bacterium (Alberts et al., 2002).   

Certain features of mitochondria are regarded as evidence for this theory; for instance, 

mitochondria have their own DNA and protein synthetic machinery, and mitochondrial 

proteins and rRNA sequences show similarities with those of bacteria.  Extensive sequence 

homology was found between mitochondrial and bacterial MnSODs (Fridovich and Poole, 

2008).  In recent years, this theory has met with opposition.  According to Martin and Muller 

(1998), the mitochondrion arose by interaction between two prokaryotic cells.  This view of 

evolution, tracing the origin of mitochondria to the same time frame as the origin of the 

nucleus, fits with recent findings that the oxygenation of oceans took place long after 

eukaryotes originated and diversified, and explains why many anaerobic eukaryotes contain 

mitochondrial proteins which are used for ATP generation in the absence of oxygen (Martin 

and Muller, 1998; Mentel and Martin, 2008).  
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1.2.2.2. Ultrastructure 

 

High-resolution images of mitochondria date back to the 1950’s (Palade, 1964); 

mitochondria were seen as vesicle-like structures consisting of an outer membrane, an inner 

membrane with invaginations, termed cristae, an intermembrane space and the internal 

matrix.  With the technical advancement of microscopy, the discovery of fluorescent 

mitochondrial probes and the development of live cell imaging (Jakobs, 2006) the knowledge 

of mitochondrial anatomy has progressed considerably.  Crista junctions, small junctions 

separating cristae from the inner boundary membrane, were discovered (fig 5a) (Frey and 

Mannella, 2000).  Importantly, these new developments have led to a three-dimensional 

view, where mitochondria are visualized as networks of long tubular structures.  They vary in 

length but have relatively constant diameters of 0.5-1.0 µm  (fig 5b) (Griparic and van der 

Bliek, 2001).  Also, mitochondria can move along microtubules between different regions of 

the cell (Benard and Rossignol, 2008).  Depending on the tissue studied, the morphology of 

the mitochondrial networks differs, together with variations in number of cristae and matrix 

density (Benard et al., 2006).  Cristae shape can vary from simple tubular entities to 

complicated lamellar assemblies, with the potential to form microcompartments that limit 

diffusion of substrates and ions and permit internal differences in pH between 

microcompartments (Voet et al., 2006). 

 

 
Figure 5a: 3D image of an isolated rat-liver mitochondrion, showing cristae (C), inner boundary 
membrane (IM) and outer membrane (OM) (Frey and Mannella, 2000). Figure 5b: 3D reconstruction 
of confocal laser scanning microscopic images of a HeLa cell transiently expressing a mitochondria-
targeted red-fluorescent protein (Graier et al., 2007). 

 

1.2.2.3. mtDNA, proteins and supercomplexes 

 

As mentioned, mitochondria contain a genome separate from the nuclear DNA, 

termed mitochondrial DNA or mtDNA. The mitochondrial genome is circular and double-

stranded; its length varies depending on the species (about 16 600bp in humans, 16 300 bp 

in mice and 13 800 bp in C. elegans).  It encodes genes for 22 transfer RNAs, 2 ribosomal 

RNAs and 13 respiratory system subunits (12 subunits in C. elegans, fig 6) (Okimoto et al., 

1992; Falkenberg et al., 2007).  Genes for other respiratory system components and proteins 

needed for mtDNA replication, transcription and translation are encoded in the nucleus.  

mtDNA contains no introns and few or no non-coding nucleotides.  In somatic mammalian 
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cells, up to 10 000 copies of mtDNA are present, organized in nucleoid structures 

(Falkenberg et al., 2007). 

 

 
Figure 6: Gene map of the C. elegans mtDNA (Lemire, 2005) 

 

Mitochondria contain 1000 to 1500 proteins, functioning in energy metabolism, lipid 

and amino acid metabolism, transport, signaling, membrane remodeling, protein 

degradation and programmed cell death (Chacinska et al., 2009).  Key proteins for energy 

metabolism make up the electron transport system and the ATP synthesis machinery (fig 7).  

These proteins represent 80% of the total protein mass of the inner mitochondrial 

membranes and cover up to 50% of the total membrane area; ETS proteins preferentially 

locate at the cristae membranes (Benard and Rossignol, 2008). The electron transport 

system consists of four enzyme complexes (Complex I-IV) and two intermediary substrates 

(coenzyme Q and cytochrome c).  In mammals, Complex I contains 46 subunits with a total 

mass of about 1 MDa.  This L-shaped protein complex has one arm embedded in the inner 

mitochondrial membrane while the rest of the complex extends into the matrix.  Of the 46 

subunits, 7 hydrophobic proteins are coded for by the mtDNA (Carroll et al., 2005).  Complex 

II, which is part of the TCA cycle, consists of 4 subunits, all encoded by the nuclear genome.  

It is the smallest and most hydrophilic of the ETS complexes.   Purified as a dimer, the 

mammalian monomer of complex III contains 11 subunits, 1 of which is mtDNA-encoded, 

and has a total mass of about 240 kDa (Iwata et al., 1998).  Mammalian Complex IV also 

crystallizes as a dimer and has 13 subunits per monomer; 3 of these are the largest 

mitochondrial encoded subunits (Hüttemann et al., 2007).  Of the two mobile redox 

components, the lipophilic isoprenoid ubiquinone is found in the inner mitochondrial 

membrane; depending on the source organism, the number of isoprenoid units connected 

to the quinone group varies.  It is this hydrophobic tail that makes ubiquinone soluble in the 

inner mitochondrial membrane (Voet et al., 2006).  The peripheral membrane protein 

cytochrome c is a heme protein; it was shown to contain 104 amino acids in several 

mammals (Hüttemann et al., 2007). ATP synthesis takes place at complex V or F1F0-ATP 

synthase.  This protein complex has a molecular mass of about 550 kDa.  It can be subdivided 
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in a hydrophobic (F0) and a hydrophilic (F1) domain. The F0 domain is situated in the inner 

mitochondrial membrane while the F1 domain, connected to F0 by a central and a peripheral 

stalk, is directed towards the matrix.  F0 contains 8 different subunits while F1 consists of 5 

types of subunits.  Two subunits of Complex V are encoded by mtDNA (Voet et al., 2006).   

 

 

Figure 7: the mammalian respiratory chain (Rigoulet et al., 2011); complexes are not scaled to relative 
size. 

 

Mitochondrial F1F0-ATPsynthase is often isolated in dimeric or oligomeric forms 

(Wittig and Schagger, 2008).  In fact, in recent years, it has become apparent that not only 

Complex V, but also Complex I, III and IV can be organized in higher order structures.  In 

contrast to the ‘random collision model’ where ETS complexes were regarded as 

independent entities (Hackenbrock et al., 1986), sufficient evidence has arisen that 

respiratory complexes I, III and IV are mutually associated.  What’s more, derived from their 

relative abundances it was postulated that they are organized in supercomplexes.  These 

supercomplexes were originally termed respirasomes (Schägger and Pfeiffer, 2000) but may 

even be connected, forming ‘respiratory strings’ (fig 8) (Wittig et al., 2006).  Proposed 

functions for respiratory supercomplexes include enhancement of substrate channeling 

(direct transfer of electrons between two consecutive enzymes by successive reduction and 

reoxidation of the intermediate without its diffusion in the bulk medium (Lenaz and Genova, 

2009)  and the assembly and stabilization of Complex I (Krause, 2007).  ATP synthase 

dimerisation/oligomerisation studies have shown a tight relationship with the morphology 

of the cristae.  The angle between the two ATP synthases in a dimer is most likely 

responsible for membrane bending and curvature of the cristae (Dudkina et al., 2005); in 

mutant yeast, defects in ATP synthase dimerization/oligomerization were linked to structural 

anomalies in mitochondria (Velours et al., 2009).  Correct ATP synthase assembly is also 

necessary for stable complex III-IV supercomplex formation and association with the 

transport machinery of the inner mitochondrial membrane (Saddar et al., 2008).  

Associations have been found between ATP synthase and other membrane protein 

structures like the ADP/ATP translocator and the phosphate carrier protein (see section 

1.2.4.1.2.); these associations were termed ATP synthasomes (Ko et al., 2003). 
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Figure 8: Respiratory string model for mammalian mitochondria, showing assemblies of respiratory 
chain complexes into supercomplexes.  These supercomplexes interact to form larger supramolecular 
structures. IMon: complex I monomer (Wittig et al., 2006). 

 

The complexes of the ETS, located in the inner mitochondrial membrane, are set in a 

phospholipid bilayer; a major component of this bilayer is cardiolipin (fig 9).  In eukaryotes, 

cardiolipin is the only phospholipid that is not synthesized by the endoplasmatic reticulum 

but in the mitochondrion (Schlame and Haldar, 1993).  ETS complexes depend on cardiolipin 

for their structure and activity, as do many mitochondrial carrier proteins (Haines, 2009).  

The formation and stabilization of supercomplexes are also reliant on the presence of 

cardiolipin (Zhang et al., 2005; McKenzie et al., 2006).  Cardiolipin is believed to be necessary 

for coordination of programmed cell death (Schug and Gottlieb, 2009).  The structure of 

cardiolipin is quite different from other phospholipids.  It has a double glycerophosphate 

backbone and four fatty acyl side chains.  Its conformation maximizes the pool of protons for 

proton pumping in oxidative phosphorylation (Haines, 2009).   

 

 
Figure 9: Molecular structure of cardiolipin (Kiebish et al., 2008) 

 

1.2.3. Mitochondrial turnover  

 

For cellular homeostasis, a balance between protein synthesis and degradation, or 

protein turnover, is needed.  Several mechanisms contribute to mitochondrial protein 

turnover, or the ‘quality control’ of mitochondria, in order to avoid accumulation of 

damaged or misfolded mitochondrial proteins.  At the molecular level, two types of AAA 

proteases (ATPases associated with a number of cellular activities) are embedded in the 

inner mitochondrial membrane.  AAA proteases are ATP-dependent proteolytic complexes; 

m-AAA proteases expose their catalytic site towards the matrix, while i-AAA proteases are 

directed towards the intermembrane space (Arnold and Langer, 2002).  AAA proteases form 

complexes composed of closely related or identical subunits.  At the center of the AAA 

proteases is a cavity where proteolysis occurs, separated from the rest of the cell; ATP is 

needed to unfold and to transport proteins to this proteolytic cavity (Koppen and Langer, 



Chapter 1 

39 

 

2007).  These proteolytic systems are highly conserved among eubacteria and eukaryotes.  

They contribute to cellular homeostasis by removal of misfolded or damaged proteins, and 

by regulation of expression of some mtDNA-encoded genes via protein processing (Arnold 

and Langer, 2002).  For degradation of proteins from the outer mitochondrial membrane, 

the cell seems to rely on the cytosolic ubiquitin-proteasome system (Yonashiro et al., 2006).   

 

Mitochondrial quality control at the organellar level is coordinated by a combination 

of mitochondrial dynamics and autophagy of mitochondria, termed mitophagy.   As 

discussed, mitochondria are present in networks of tubular structures with varying lengths.  

This structural organization is a dynamic process. Fusion and fission, two opposing processes 

causing the merging and division of mitochondria, occur continuously and are essential for 

optimal physiological functioning of these organelles.  While the regulatory mechanisms 

responsible for fusion and fission are largely known (Benard and Karbowski, 2009), their 

significance in maintenance of cell function is the subject of speculation.  Mitochondrial 

function could benefit from mixing of mtDNA and matrix and membrane proteins (Karbowski 

and Youle, 2003) or from dilution of defective proteins (Benard and Karbowski, 2009).  An 

attractive model for the role of fusion and fission in cellular homeostasis is proposed by 

(Twig et al., 2008).  In their hypothesis, they incorporate autophagy as a key mechanism 

which, combined with fusion and fission, can selectively remove damaged mitochondrial 

components.  The autophagic process is responsible for digestion of organelles and 

cytoplasmic components.  To remove mitochondria, the organelles are enclosed by a double 

membrane vesicle (the autophagosome) which fuses with lysosomes in order to be degraded 

and recycled (mitophagy) (Kiffin et al., 2006).  As it is a way of reusing cellular contents, 

autophagy is indispensable during nutrient deprivation and fasting (Komatsu et al., 2005).  

However, it is also capable of removing damaged and unneeded organelles (Lemasters, 

2005).  Once thought to be an unselective process, recent findings show that autophagy can 

be selective (Kim et al., 2007).  It was suggested that depolarization marks mitochondria for 

degradation by autophagy (Elmore et al., 2001; Priault et al., 2005).  Moreover, fusion is less 

likely to occur with depolarized mitochondria as it seems to depend on mitochondrial 

membrane potential (Legros et al., 2002).  The proposed model assumes that through fusion 

and fission, damaged mitochondrial components are sequestered into daughter 

mitochondria that are selectively degraded by autophagy. 

 

At the cellular level, mitochondria are key regulators of apoptosis. This process of 

programmed cell death is controlled by a complex signaling machinery.  It is essential in 

development, organ homeostasis and removal of damaged or infected cells (Gulbins et al., 

2003).  How mitochondria exert their role in apoptosis will be discussed in section 1.2.4.2.3. 
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1.2.4. Mitochondrial functions 

 

1.2.4.1. Energy supply 

 

A major function of mitochondria is to supply the cell of adenosine triphosphate 

(ATP), the universal energy carrier.  In the mitochondrion, electrons derived from oxidation 

of intermediates by catabolic processes (glycolysis and the breakdown of lipids and proteins) 

and carried by reducing equivalents (e.g. NADH and FADH2) are transferred via the 

components of the electron transport system to oxygen.  Coinciding with the transfer of 

electrons between the redox centers of the ETS, protons are expelled from the 

mitochondrial matrix towards the intermembrane space.  It is the free energy decrease that 

accompanies electron transfer which is exploited to drive proton translocation and to build 

up an electrochemical gradient across the mitochondrial membrane.  F1F0-ATPsynthase can 

use this proton gradient as an energy source to drive phosphorylation of ADP to ATP.  This 

process is termed oxidative phosphorylation (Voet et al., 2006).  The chemiosmotic theory by 

Mitchell dates back to 1961 (Mitchell, 1961), but many details of the mechanisms involved 

remain to be elucidated. 

 

1.2.4.1.1. Enzymatic functions of the respiratory complexes 

 

Complex I  

 

The transport of electrons, the pumping of protons, the build-up of the membrane 

potential and the reduction of oxygen are situated at complex I, II, III and IV and the two 

mobile redox components Coenzyme Q (or ubiquinone) and cytochrome c.  The most 

complicated enzyme of the ETS, Complex I (NADH:Coenzyme Q oxidoreductase), passes 

electrons from NADH to Coenzyme Q.  As redox-active groups, it contains a molecule of 

flavin mononucleotide (FMN) and 8-9 iron-sulfur clusters ([2Fe-2S] or [4Fe-4S]), which all 

reside in the peripheral arm of the L-shaped complex (Zickermann et al., 2008).   Binding of 

NADH and FMN, oxidation of NADH and Coenzyme Q reduction take place in the peripheral 

arm.  The site of NADH oxidation is connected to the ubiquinone binding site by a ‘wire’ of 7 

Fe-S clusters, transferring electrons from NADH to ubiquinone (fig 10) (Brandt, 2006).     

 

 

 

 

 

 

Figure 10: Schematic representation of Complex I.  Shown are the 
sites of NADH oxidation, Coenzyme Q reduction and proton 
pumping. Adapted from (Zickermann et al., 2008). 

 

The proton translocation site is situated in the membrane arm of the enzyme.  

Conformational changes are invoked to explain how Complex I overcomes the distance 

between the regions where redox chemistry takes place and the region containing the 
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proton translocation machinery in order to transduce energy derived from electron transfer 

to drive proton pumping (Belogrudov and Hatefi, 1994).   Mutations in numerous subunits of 

the proton translocation site lead to lowered ubiquinone reduction capacity, suggesting tight 

coupling between redox chemistry and proton pumping (Zickermann et al., 2008). 

 

Complex II  

 

Another place for electrons to enter the ETS is succinate:ubiquinone oxidoreductase 

or Complex II.  This four subunit enzyme catalyzes oxidation of succinate to fumarate, 

thereby reducing ubiquinone to ubiquinol and connecting the TCA cycle to the ETS.  Insight 

in the structure of Complex II was gained from the X-ray crystal structure of E. coli 

succinate:ubiquinone oxidoreductase.  In this trimer, the monomers consist of two 

cytoplasmic hydrophilic subunits and two hydrophobic integral membrane anchor subunits.  

In the cytoplasmic domain, succinate oxidation occurs at the flavin adenine dinucleotide 

(FAD) covalently linked to the SdhA subunit, and electrons are transferred via three Fe-S 

clusters ([2Fe-2S], [4Fe-4S] and [3Fe-4S]) located at the SdhB subunit to the membrane 

anchor domain, which binds one heme b and one ubiquinone (fig 11).  Heme b does not take 

part in electron transfer.  Ubiquinone passes electrons on to Complex III.  Complex II does 

not translocate protons from the matrix to the intermembrane space, and consequently, 

does not contribute to the build-up of the membrane potential (Horsefield et al., 2004; Voet 

et al., 2006).  Complex II can also function in the opposite direction, as a fumarate reductase; 

this issue will be discussed in section 1.2.4.2.1. 

 

 

 

 
 
 
 
 
 
 
 
Figure 11: schematic representation of Complex II.  Shown 
are the four subunits of the complex and sites of electron 
translocation. Adapted from (Horsefield et al., 2004) 

 

Complex III  

 

Electrons originating from Complex I or II are passed on by Coenzyme Q to 

Coenzyme Q:cytochrome c oxidoreductase, also known as the cytochrome bc1 complex or 

Complex III.  This complex contains up to 11 subunits, 3 of which are known to contribute to 

the redox chemistry of the enzyme.  The cyt b subunit contains two b hemes, a lower-

potential bL heme and a higher-potential bH heme.  Another heme, heme c1 is situated in the 

cyt c1 subunit; the third subunit contains a [2Fe-2S] center known as the Rieske center.  

These 3 subunits are anchored in the inner mitochondrial membrane and extend in the 

matrix and the intermembrane space (Voet et al., 2006).   
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A model for electron transfer at the Complex III location, the modified Q cycle, is 

based on a concept by Mitchell (Mitchell, 1975).  At the Qo-site (located near the 

intermembrane space), QH2 is oxidized, and the two electrons derived from this process are 

each diverted down to a different acceptor.  The high-potential chain formed by the Rieske 

center and heme c1 of cyt c1 accepts and transfers one electron to cyt c; this electron will 

consequently be delivered to cytochrome c oxidase (Complex IV).  The other electron is 

donated to the low-potential chain of hemes consisting of bL and bH, thereby contributing to 

an electron flux traversing the inner mitochondrial membrane.  At the Qi-site (close to the 

matrix side of the inner mitochondrial membrane), this electron reduces Q to a semiquinone 

(Q.-) or Q.- to QH2 (fig 12).  Q and QH2 are expected to be capable of diffusing through the 

hydrophobic membrane.  Reactions occurring at the Qo-site need to take place twice to fully 

reduce ubiquinone at the Qi-site, in such a manner that for oxidation of two molecules of 

QH2, one molecule of Q is reduced (Crofts, 2004; Crofts et al., 2008; Rich, 2008). 

 

 
 
Figure 12: Schematic representation of the protonmotive Q cycle. Adapted from (Brandt and 
Trumpower, 1994). 

 

The mechanism of proton translocation from the matrix to the intermembrane space by 

Complex III is remarkable in that it is a redox center, Coenzyme Q, which transports the 

protons across the inner mitochondrial membrane by diffusion.  The two Coenzyme Q 

processing sites are situated on opposite sides at the border of Complex III’s hydrophobic 

core; protons are taken up from the matrix at the Qi-site and are carried across the 

membrane by ubiquinol, to be released to the intermembrane space at the Qo-site.  The net 

reaction illustrates the proton transport stoichiometry of the Q cycle:  

QH2 + 2 cyt c1 (Fe3+) + 2H+
matrix -> Q + 2 cyt c1 (Fe2+) + 4H+

intermembrane space 

 

Cytochrome c  

 

Electron transfer between Complex III and Complex IV is performed by the water-

soluble peripheral membrane protein cytochrome c.  The conformation of the binding site 

between cytochrome c and Complex III  is such that it provides optimal circumstances for 

transient interaction and efficient electron transfer (Solmaz and Hunte, 2008).  Cytochrome c 

docks at the Fe-S protein subunit of Complex III to take up an electron; x-ray structures show 

that only one cytochrome c molecule is bound to a Complex III dimer at a time (Lange and 

Hunte, 2002).  Furthermore, it was established that the dimer structure is slightly 
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asymmetric, with binding of cytochrome c coinciding with conformational changes in 

Complex III, for instance in the ISP-ED domain (Solmaz and Hunte, 2008).   

 

Complex IV  

 

Electrons donated by Complex III to cytochrome c are passed on to Complex IV, also 

termed cytochrome c oxidase.  The monomers in this homodimer exist of up to 13 subunits, 

predominantly held in the inner mitochondrial membrane.  Mammalian Complex IV 

monomers, while containing 13 subunits and having a molecular mass of ~200kDa, rely on 

just 3 mtDNA-encoded subunits for their catalytic activity.  Complex IV has 4 redox centers 

(fig 13), one of which, the redox active copper center CuA, is situated in subunit II.  It is 

formed by 2 copper atoms and located just above the inner membrane surface.  Subunit I 

contains the three remaining redox centers: heme a and the binuclear redox center 

composed of heme a3 and CuB.  Electrons are rapidly passed on from cytochrome c to the 

CuA center, which donates them to the heme a.  The location of heme a is very close to 

heme a3, ensuring fast electron transfer to the binuclear center (Belevich and Verkhovsky, 

2008).  Subunit III contains no redox factors; its function has not yet been established 

(Brzezinski and Gennis, 2008; Saraste, 1999). 

 

 

 

 

 

 

 

Figure 13: Structure of Complex IV 

subunits I and II, showing the location of 

the four redox centers (Wikimedia 

commons). 

 

 

At Complex IV, the last enzyme in the electron transport system, the one-electron 

oxidation of 4 reduced cytochrome c molecules is catalyzed, coinciding with the 4-electron 

reduction of an O2 molecule.  The cytochrome c oxidation site is at the intermembrane-space 

side of Complex IV and protons are taken up from the matrix, while the oxygen redox site is 

located in the middle of the membrane.  This implies that the electrons and protons 

required to reduce O2 to H2O stem from opposite sides of the inner mitochondrial 

membrane.  Importantly, Complex IV qualifies as a proton pump (Wikstrom, 1977): free 

energy derived from reduction of oxygen is used to drive the pumping of 4 protons from the 

matrix to the intermembrane space.  Thus, Complex IV has two mechanisms of charge 

separation.  This results in the following net reaction: 

4 cyt c (Fe2+) + 8H+
in + O2 -> 2H2O + 4 cyt c (Fe3+) + 4H+

out 

 

Evidently, the proton pump mechanism contributes considerably to the membrane 

potential of the inner mitochondrial membrane: per oxygen molecule to be reduced, 8 
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charges cross the membrane, and for each electron used in the chemistry, one proton is 

pumped (Voet et al., 2006).  We have to note that the oxygen chemistry is not dependent on 

the proton pumping: certain Complex IV mutations prevent proton pumping but not the 

enzymatic activity of the complex (Brzezinski and Gennis, 2008). 

 

Alternative enzymes 

 

Delivery of electrons to the ETS can occur via other pathways besides Complex I and 

II; for instance, in yeast, electrons stemming from cytosolic NADH reach the ETS through 

alternative NADH dehydrogenases and glycerol-3-phosphate dehydrogenases (Rigoulet et 

al., 2004).  Similarly, a highly branched ETS has been described for plant mitochondria 

(Rasmusson et al., 2008); also, in mammals, the glycerol-3-phosphate dehydrogenase shuttle 

allows delivery of reducing equivalents from cytosolic NADH to the ETS in certain tissues like 

brown adipose tissue (Houstek et al., 1975).  In the systems mentioned, electrons are 

transferred to Coenzyme Q.  In several species of plants, fungi and some protists, and even 

in some prokaryotes and animal species, a non-proton-pumping alternative oxidase exists 

that oxidizes ubiquinol and reduces oxygen.  McDonald (2008) describes its potential 

functions; among them are control of ROS generation and balance of carbon metabolism 

and electron transport. 

 

Complex V 

 

Driven by electron transport, protons are transported across the inner mitochondrial 

membrane by complexes I, III and IV.  The inner mitochondrial membrane separates the low 

H+ concentration of the matrix from the high H+ concentration of the intermembrane space.  

The electrochemical gradient that is formed (or protonmotive force) can deliver the energy 

needed to drive ATP synthesis by Complex V, also called F1F0-ATPsynthase.  The 

protonmotive force has an electric component, ΔΨ, and a chemical component, ΔpH. The 

use of energy supplied by transmembrane proton concentration gradients to synthesize ATP 

in mitochondria is called oxidative phosphorylation.   

Synthesis of ATP from ADP and inorganic phosphate is an intricate process, of which 

many but not all molecular mechanisms have been uncovered.  The roles played by many of 

the Complex V subunits in this process have been determined; studying the structure of the 

enzyme in bacteria has contributed a great deal to this knowledge.  In bacteria, the enzyme 

can be found in its simplest form, consisting of 8 different subunits composed as 

α3β3γ1δ1ε1a1b2c10-15.  α3β3 represents the F1 sphere composed of alternating α and β subunits.  

The central stalk contains subunits γ and ε while δ and b2 form the peripheral stalk.  Situated 

in the inner mitochondrial membrane is a ring of 10-15 c subunits in association with the a 

subunit (fig 14) (Weber and Senior, 1997).  To some extent, mitochondrial F1F0-ATPsynthase 

differs from the bacterial enzyme.  It contains additional subunits, some of which are needed 

for the enzyme’s supercomplex organization (Wittig and Schagger, 2008).  Also, for some 

subunits, nomenclatures in human and yeast mitochondria and in Escherichia coli differ. 
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Figure 14: Essential structural features of Complex 

V (Saraste, 1999). 

 

For Complex V to synthesize and release ATP, it must utilize the protonmotive force 

to power its rotary motor F0 which will in turn drive the chemical motor F1.  The system, as it 

is known at present, consists of proton translocation from the intermembrane space to the 

matrix through F0, coupled to the rotation of a subcomplex of the enzyme (the rotor) which 

induces conformational changes in the F1 domain that allow ATP synthesis and its release 

from the enzyme (Saraste, 1999).  ATP synthesis and release at the F1 domain can be 

explained by the binding change mechanism by Boyer (Boyer, 1993; Menz et al., 2001).  The 

sphere of the F1 domain is assembled as a hexamer with alternating α and β subunits, 

around the γ subunit of the center stalk.  The β subunits, with some residues contributed by 

α, are the catalytic sites of the enzyme; they can adopt 3 kinds of conformations, which 

influence binding of and interaction between the substrates of these subunits.  It is most 

likely the position and rotation of subunit γ which determines the alternating conformation 

of the β subunits.  As there are no hydrogen bonds or ionic interactions at the contact site 

between γ and α3β3, the γ subunit is allowed to rotate freely.  For the mechanism of rotation 

generated by proton translocation we refer to (Fillingame et al., 2003; Junge et al., 1997; 

Nakamoto et al., 2008).  Rotation of γ is associated with conversion, in one β subunit, of the 

‘open’ to the ‘binding’ conformation, which binds ADP and inorganic phosphate.  The other β 

subunits synchronously undergo conformation changes: a ‘binding’ conformation is 

converted to a ‘tight’ one, where ATP is synthesized, while an ATP-binding ‘tight’ 

conformation is switched to an ‘open’ conformation, which allows ATP to dissociate.  ATP 

synthesis by the β subunit of F1 in its ‘tight’ conformation is an exergonic process; the energy 

released is used for disrupting the enzyme-ATP interaction (in other words, the shift to the 

‘open’ state) (Voet et al., 2006). 

 

1.2.4.1.2. Proteins associated with energy supply by mitochondria 

 

Though separated from the cytosol by two membranes, the mitochondrion is not an 

independent entity; import and export between the mitochondrion and the rest of the cell 

are required for proper mitochondrial functioning.  Most metabolites cross the outer 

mitochondrial membrane via mitochondrial porins, also termed voltage-dependent anion-

selective channels (VDAC).  In this way, the outer mitochondrial membrane is a semi-
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permeable barrier, allowing transport of water soluble metabolites between the cytosol and 

the intermembrane space; ΔΨ determines the conductance and selectivity of the channels 

(Colombini, 2004).   

 The impermeability of the inner mitochondrial membrane is essential in energy 

supply; only through regulated, selective transport in and out of the mitochondrion can it 

perform its functions.  Processes taking place in mitochondria rely on import and export of 

amino acids, proteins and metabolites.  The nuclear-encoded proteins in enzymes of the TCA 

cycle, the ETS, oxidative phosphorylation and fatty acid oxidation need to be imported from 

outside the organelle.  Likewise, transporters are required for substrates that fuel these 

metabolic processes and for the export of their end products.  We will describe transport 

mechanisms needed for oxidative phosphorylation.  Other transport mechanisms, e.g.  for 

the TCA cycle, β-oxidation of fatty acids, amino acid transport, cation transport and import 

of mitochondrial proteins coded for by the nuclear genome, will not be discussed here. 

Some transporters are directly involved in ATP production.  Import of phosphate (Pi) 

is performed by the phosphate carrier, either by proton co-transport or in exchange for 

hydroxyl ions (Laloi, 1999).  This electroneutral transport is driven by the ΔpH across the 

membrane.  It is essential for phosphorylation of ADP, for enzyme reactions (succinyl CoA 

synthetase) in the TCA cycle and for uptake of other metabolites, by acting as the exchange 

substrate (Palmieri, 2004).  Cytosolic ADP is exchanged for mitochondrial ATP by adenine 

nucleotide translocase (ANT) under conditions of oxidative phosphorylation.  In this way, 

cytosolic use of ATP is linked to mitochondrial ATP synthesis.  The driving force is the ΔΨ 

across the inner membrane (Traba et al., 2009).  Next to this electrogenic exchange (ADP3- 

for ATP4-) there is also an electroneutral way to exchange ATP via the ATP-Mg/Pi carrier 

which is important for maintenance of the net content of adenine nucleotides (Aprille, 

1988).  The membrane potential can be dissipated by uncoupling proteins (UCPs).  These 

mitochondrial carriers allow protons to return from the intermembrane space to the matrix 

without passing through Complex V; the net result of this process is an increase in oxygen 

consumption by mitochondria and conversion of electrochemical energy in heat (Mozo et 

al., 2005).  UCPs play a role in thermogenesis.  As they have also been identified in 

poikilotherms like Drosophila and C. elegans, they most likely have additional roles (Fridell et 

al., 2004; Iser et al., 2005; Krauss et al., 2005). 

 

1.2.4.1.3. Regulation of oxidative phosphorylation 

 

Since bioenergetics concerns the flow and transformation of energy in and between 

living organisms and between living organisms and their environment, mitochondrial 

bioenergetics cannot be described based on mitochondrial processes alone.  The rate of 

oxidative phosphorylation is determined by numerous factors at various levels of 

organization.  At the organellar level, oxidative phosphorylation is set by the type and 

availability of substrates, the presence of ADP and Pi, the activity of the respiratory 

complexes and the ability of the mitochondrion to maintain ΔΨ.  All of these factors can be 

influenced by crosstalk with other cellular components, by the energetic state of the cell, by 

signals from surrounding and distant cells, by the type of tissue that the cell is part of, by the 

health state and energetic needs of the organism and by the environment that the organism 
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is in; moreover, these variables are interdependent, therefore it is difficult to dissect their 

effects.     

Examples of environmental circumstances that influence the metabolic rate of an 

organism –and consequently its oxidative phosphorylation- are temperature (Frappell and 

Butler, 2004), the type and amount of nutrients that are available (Houthoofd et al., 2005), 

and oxygen availability (Van Ginneken and van den Thillart, 2009).  At the organismal level, 

rates of metabolism are influenced by developmental state and energetic needs; for 

instance, mitochondria in embryos increase in amount at the time of shift from glycolytic to 

oxidative metabolism (Alcolea et al., 2007).  Likewise, exercise in skeletal muscle elicits 

mitochondrial biogenesis (Hood, 2001).  Within the organism, mitochondrial differences 

emerge when different tissues are compared (Benard et al., 2006).  While tissues may differ 

in metabolic state, they are also able to influence the metabolism of other tissues in the 

organism; for instance, a rise in blood glucose levels causes pancreatic β cells to release 

insulin, which shifts metabolism toward glycolysis and fat storage in other tissues (Moyes 

and Schulte, 2008).  In order to fine-tune metabolism, communication at the cellular level is 

indispensable.  This is illustrated by the abovementioned mitochondrial biogenesis, requiring 

coordination of expression of the nuclear and mitochondrial genome through crosstalk 

between the nucleus and the mitochondria (Ryan and Hoogenraad, 2007).   

The majority of the parameters that influence oxidative phosphorylation do so by 

affecting signaling pathways.  In this way, even stimuli received from the organism’s 

environment eventually initiate a change in the mitochondrion.  The most important kinase 

signaling pathways can all target the mitochondrion; several protein kinases and 

phosphatases can localize at the cytoplasmic surface of or inside mitochondria, and all 

respiratory complexes together with some anion and cation channels and metabolic 

enzymes can be phosphorylated (Horbinski and Chu, 2005; Hüttemann et al., 2007; Salvi et 

al., 2005).  One of the kinases known to target mitochondria is the serine/threonine kinase 

Akt.  In different types of cell cultures, Akt was found inside mitochondria after exposure to 

insulin-like growth factor-1 (IGF-1), insulin or heat stress, resulting in phosphorylation of 

both the β subunit of complex V and glycogen synthase kinase-3β (GSK3β), which, when 

active, inhibits pyruvate dehydrogenase.  Other targets of Akt in mitochondria remain 

unidentified (Bijur and Jope, 2003).   

In addition to phosphorylation/dephosphorylation, there are other mechanisms that 

affect the activity of respiratory complexes; one of them is allosteric regulation.  ATP is 

capable of binding to both cytochrome c and Complex IV, inhibiting the reaction between 

them and the enzyme activity of Complex IV as a way to adjust energy production to 

physiological demand.  Allosteric inhibition by ATP can be prevented by thyroid hormone T2, 

which allows a high Complex IV activity even when ATP levels are high (Hüttemann et al., 

2007).  Competitive inhibition via nitric oxide (NO) is also a way of reversibly inhibiting 

cytochrome c oxidation, when NO competes with oxygen at the binuclear center 

(Huttemann et al., 2008).  Finally, the activity of the ETS is potentially affected by the 

organization of respiratory complexes in supercomplexes through enhancement of substrate 

channeling or stabilization of respiratory enzymes (see section 1.2.2.3.). 

Oxidative phosphorylation is also influenced by the metabolites entering and exiting 

the organelle.  The type and amount of substrates fueling the ETS are determined by 

regulation of the processes that supply them, for instance by the enzymes that control 
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glycolysis and the TCA cycle (see section 1.2.1.), and by the transport proteins that import 

them.  As an example, increased mitochondrial Ca2+ uptake stimulates the activity of certain 

TCA enzymes, leading to increased NADH/NAD+ ratios and an increase in mitochondrial ATP 

synthesis (Goldenthal and Marin-Garcia, 2004).  In contrast, a lowered demand for ATP can 

slow down the TCA cycle.  Consequently, less reducing equivalents are delivered to the ETS.  

Moreover, the accumulated citrate exits the mitochondria and inhibits PFK, decreasing the 

rate of glycolysis (Pogson and Randle, 1966).  Likewise, levels of ATP, ADP and Pi are 

regulated by the demand for ATP combined with the proper functioning of the ANT, ATP-

Mg/Pi and Pi-transporter (Aprille, 1988).  ATP usage provides the substrates for oxidative 

phosphorylation (ADP and Pi).  Increased cytosolic ADP stimulates ADP uptake in exchange 

for ATP export, which augments the matrix ADP-to-ATP ratio (Brown, 1992).  

Since many transporters depend on ΔΨ to exert their function, it is evident that the 

ability to maintain ΔΨ is also a determinant of oxidative phosphorylation.  Importantly, it is 

the driving force for ATP synthesis.  Consequently, any intervention that impinges on ΔΨ, 

changes oxidative phosphorylation.  Loss of integrity of the mitochondrial membranes 

prevents the organelle from maintaining ΔΨ.  When transport of protons back to the matrix 

is not coupled to ATP synthesis, ΔΨ is dissipated and mitochondrial respiration increases 

(Voet et al., 2006).  Uncoupling occurs not only through the presence of UCPs or addition of 

chemical uncouplers, but also by an inherent basal proton leak caused by a partial 

permeability of the inner mitochondrial membrane to protons; this process is of some 

importance under nonphosphorylating conditions, but less so when ADP and Pi are present 

and ATP synthesis is active (Brookes, 2005).  Mitochondria can to some extent resist the 

dissipation of ΔΨ: F1F0-ATPsynthase is a reversible enzyme that can consume ATP to pump 

protons to the intermembrane space in order to counteract the loss of ΔΨ.  To prevent 

necrotic cell death following ATP depletion, the endogenous inhibitor protein IF1 prevents 

ATPase activity of Complex V.  IF1 has also been implicated in the formation of F1F0 protein 

complex dimers and the quantity of cristae formed in mitochondria (Campanella et al., 

2009); future research will no doubt reveal more about the functions and regulation of IF1 

and its influence on oxidative phosphorylation.   

 

1.2.4.2. Other functions of mitochondria 

1.2.4.2.1. Energy supply in the absence of oxygen 

 

As described, mitochondria produce ATP coupled to reduction of oxygen.  However, 

mitochondria from some organisms can function anaerobically, synthesizing ATP through 

electron transport but using terminal electron acceptors other than O2.  Various electron 

acceptors exist; here we focus on fumarate and the process of malate dismutation.  

Phosphoenolpyruvate from glycolysis is converted to oxaloacetate, further reduced to 

malate and imported into the mitochondria.  There, malate is degraded by dismutation: part 

of it is oxidized, the rest is reduced.  Among the products formed by reactions following 

malate oxidation is succinyl Coenzyme A which contains sufficient energy in its thioester 

bond for substrate-level phosphorylation of ADP.  Fumarate, formed by reduction of malate, 

is further reduced to succinate by the enzyme fumarate reductase.  The electrons needed 

for this reduction are derived from NADH oxidation by Complex I (which contributes to ΔΨ) 

and delivered to fumarate reductase by a rhodoquinone.  Succinate is further metabolized to 
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propionate, which is excreted.  This form of energy conversion is common in parasitic 

helminths (Tielens et al., 2002). 

 

1.2.4.2.2. Other aspects of metabolism 

 

Apart from oxidative phosphorylation and the TCA cycle, other enzymatic processes 

also take place in mitochondria.  Amino acid metabolism and β-oxidation of fatty acids 

(associated with the synthesis of ketone bodies), as well as the urea cycle and the biogenesis 

of Fe-S clusters (Palmieri, 2008) are all –at least partially- located in the mitochondrial 

matrix. 

 

1.2.4.2.3. Signaling 

 

In recent years, it has become apparent that the role that mitochondria play in 

receiving, integrating and transmitting signals related to a myriad of cellular processes is vital 

for the functioning of the organism.  Based on the integration of signals stemming from 

cellular demand for energy, nutrient sensing, cell growth, cell death and stimuli and stresses 

exerted by the environment of the organism, mitochondria mediate the release of signaling 

molecules directed to the appropriate target process; retrograde signaling is essential for 

relaying information from the mitochondria to the nucleus.  It was established that the 

signaling molecules targeted to and transmitted from mitochondria include ions, gases, 

metabolites, phospholipids, protein kinases, hormones and transcription factors, as well as 

mitochondrial-generated oxidative stress signals and energy-related signaling (Goldenthal 

and Marin-Garcia, 2004; Pagliarini and Dixon, 2006).  However, the characterization of all 

signaling pathways revolving around mitochondria is still incomplete.  It is beyond the scope 

of this thesis to give a complete picture of retrograde signaling.  As an example, we refer to 

studies concerning expression of genes for mitochondrial biogenesis, centered around the 

transcriptional coactivator PGC 1α (peroxisome-proliferator-activated receptor γ 

coactivator-1 α), a coactivator of nuclear receptors.  NAD:NADH, AMP:ATP, Ca2+and ROS all 

have the capacity to influence regulation of transcription of genes required for 

mitochondrial biogenesis via their indirect action on PGC-1α.  One of the possible 

consequences of modulation of PGC-1α is an increase in transcription of genes implicated in 

oxidative phosphorylation, impacting on oxidation of substrates and energy production 

(Ljubicic et al., 2010).   

ROS are no longer seen only as causal agents of molecular damage; recently, they 

have emerged as signaling molecules essential in cellular communication (Droge, 2002).  The 

mechanisms of ROS production are described in section 1.1.2.1.2.2 and 1.2.5; as for their 

role in signaling, the majority of studies focus on extramitochondrial ROS.  There is some 

discussion about whether ROS derived from the ETS contribute to signaling (Groeger et al., 

2009).  However, some studies suggest a role for mitochondrial ROS in signaling.  Nemoto 

and co-workers (2000) report that generation of H2O2 by mitochondria stimulates the c-Jun 

N-terminal kinase (JNK), a stress-responsive kinase.  This results indirectly in reduced input 

of glucose into oxidative metabolism.  Hurd and co-workers ( 2007) describe how the activity 

of a small subset of mitochondrial thiol proteins, mostly belonging to β-oxidation and the 

regulation of pyruvate dehydrogenase, is modulated by mitochondrial ROS production.  In 
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vascular endothelial cells, mitochondrial ROS may be employed as signaling molecules 

together with nitric oxide to activate AMP-activated protein kinase (AMPK), a kinase 

important for cellular energy homeostasis which is normally dependent on AMP:ATP ratios 

(Quintero et al., 2006).  In mammals, it has been shown that the increase in ROS levels 

associated with hypoxia is essential in stabilizing the transcription factor hypoxia inducible 

factor-1α (HIF-1α), which is needed for adaptation to hypoxic conditions (Poyton et al., 

2009).  Mitochondrial ROS can activate mild mitochondrial uncoupling pathways that are 

themselves key regulators of mitochondrial ROS generation (Brand et al., 2004). 

A crucial component of signaling by mitochondria is the regulation of calcium uptake 

and release.  When Ca2+ crosses the plasma membrane or is released by the endoplasmic 

reticulum, it is taken up by mitochondria through the Ca2+ uniport, depending on ΔΨ.  

Mitochondria act as calcium sinks and have a buffering role for the cell.  They control the 

release of Ca2+ to the cytosol (Szabadkai and Duchen, 2008).  As mentioned in section 

1.2.4.1.3, Ca2+ also regulates the activity of certain TCA cycle enzymes (McCormack et al., 

1990). 

Ca2+ plays an important part role in apoptosis or programmed cell death.  This 

process of cellular self-destruction is essential for development and for the removal of 

unwanted cells.  Multiple cellular events trigger apoptosis; one of them is massive and/or 

prolonged accumulation of Ca2+ in the mitochondria.  When Ca2+ is accumulated at high 

concentrations in the mitochondrial matrix, a chain of events causes the mitochondrial 

permeability transition pore (PTP) to open, leading to matrix swelling.  The molecular 

components of the PTP are not characterized completely, but most likely, ANT, VDAC and 

cyclophilin D, a molecular chaperone, take part in its formation.  Rupture of the outer 

mitochondrial membrane causes release of cytochrome c, which is a signal for the apoptotic 

machinery of the cell to exert cell elimination (Jeong and Seol, 2008). 

 

1.2.5. ROS production by mitochondria  

 

In this section, we will look into the principal ways of ROS production by 

mitochondria.  Andreyev and colleagues (2005) describe various suspected sites of ROS 

production in mitochondria.  Cytochrome b5 reductase, monoamine oxidases, 

dihydroorotate dehydrogenase, α-glycerophosphate dehydrogenase, aconitase and the α-

ketoglutarate dehydrogenase complex will not be discussed here; these sites did prove to 

produce ROS under experimental conditions but their contribution to ROS production under 

physiological conditions is uncertain.  We will focus on ROS produced as a side-effect of 

oxygen reduction in the ETS (fig 15).  A portion of the electrons aimed for transfer to oxygen 

via a sequential four-electron reduction, reduce oxygen only partly; one-electron reduction 

results in superoxide generation.  The actual site of full reduction of oxygen to water, 

Complex IV, has not been established as a site of ROS production.  Leak of electrons to 

oxygen occurs at preceding sites in the ETS.  Andreyev and co-workers (2005) mention 

Complex II as a potential but unconfirmed site of ROS production.  Much more is known 

about Complex I and Complex III as the probable origin of mitochondrial ROS (Turrens, 

2003).   
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Figure 15: Schematic representation of the mitochondrial electron transport chain.  Shown are sites of 
mitochondrial ROS production, as well as mechanisms of ROS degradation and release, and some of 
the factors influencing the fate of ROS. Adapted from Echtay (2007). 

 

1.2.5.1. Complex I and Complex III as sources of ROS  

 

Highest levels of O2
.- production are recorded in situations where reverse electron 

transfer (RET) from Complex II to Complex I is induced (Adam-Vizi and Chinopoulos, 2006).   

Addition of rotenone, a Complex I inhibitor, suffices to largely abolish RET-dependent O2
.- 

production (Murphy, 2009).  Of note, addition of succinate at levels needed to cause RET is 

much higher than its physiological concentration (Adam-Vizi and Chinopoulos, 2006).  In 

different experimental conditions, rotenone can increase O2
.- production.  High NADH:NAD+ 

ratios elicit considerable amounts of O2
.- by keeping the FMN centre in a highly reduced 

form; addition of rotenone in the presence of a NADH-producing substrate like pyruvate, 

malate or glutamate leads to backup of electrons onto FMN.  Conditions of low ATP demand 

(and low respiration) are also suspected of increasing the NADH:NAD+ ratio.  Murphy (2009) 
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describes a number of in vivo situations where this form of O2
.- production may be of 

significance.     

In contrast, in a normally functioning ETS, it was ascertained that ROS production 

levels are low (Adam-Vizi and Chinopoulos, 2006; Murphy, 2009).  They are stimulated by a 

high membrane potential (Andreyev et al., 2005; Korshunov et al., 1997), but when ATP is 

synthesized, or when the proton motive force is consumed for other functions, efflux of ROS 

from mitochondria is considered negligible under physiological conditions. 

ROS production by Complex III originates from the reaction of O2 with an 

ubisemiquinone bound to the Qo site (Turrens, 2003).  It is important to state that this form 

of O2
.- production was registered in the presence of the Complex III inhibitor antimycin, 

which blocks the Qi site.  In the absence of antimycin, O2
.- release from Complex III is low.  

Also, formation of this semiquinone has never been detected under physiological conditions 

(Andreyev et al., 2005).  Adam-Vizi and Chinopoulos conclude that Complex III ROS 

generation is of limited physiological importance (2006). However, Murphy remarks that in 

physiological conditions, when O2
.- production by RET is low, the contribution of Complex III 

may become relatively significant (2009).  In vivo, large stretches of time are spent by 

mitochondria on ATP synthesis and the O2
.- released in this process may turn out to be of 

greater biological importance. 

 

1.2.5.2. Factors that influence mitochondrial ROS production  

 

A number of factors have been established that influence ROS production by the 

ETS.  From what is known about the modes of O2
.- production by the ETS, it is evident that 

interference with its workings will affect the process.  Damage, mutation, post-translational 

modifications and inhibition of the ETS complexes all impinge on ROS production (Murphy, 

2009).  We have already mentioned the inhibitors rotenone and antimycin.  Other inhibitors 

increase or decrease ROS production as well, depending on experimental circumstances 

(Andreyev et al., 2005; Murphy, 2009; Turrens, 2003). Addition of certain xenobiotics is also 

capable of increasing ROS production (Turrens, 2003).  Fatty acids can cause mild uncoupling 

of mitochondria, lowering ROS production.  This can be countered by adding a protein like 

bovine serum albumin (Adam-Vizi and Chinopoulos, 2006).  Another way of eliciting mild 

uncoupling is through the activity of UCP’s.  This activity is augmented by O2
.-, constituting a 

negative feedback system and attenuating O2
.- production at the cost of a slightly lowered 

oxidative phosphorylation efficiency (Brand et al., 2004).  Alternative oxidases have also 

been suggested to reduce ROS production by using up excess electrons in the ETS and 

altering the reduction state of respiratory complexes (McDonald, 2008). 

Naturally, the presence of antioxidants influences the net amounts of ROS produced. 

However, the way in which they do so, is a subject of discussion.  The beneficial effects of 

antioxidant defenses have been described in section 1.1.2.1.3; Turrens (2003) stresses that 

these antioxidant defenses need to be considered when assessing deleterious effects caused 

by ROS production.  However, MnSOD, the superoxide dismutase present in the 

mitochondrial matrix, has been shown to increase the flux of electrons from electron donors 

to H2O2  (Murphy, 2009). 

According to Turrens (2003), O2
.- production should increase when oxygen 

concentration available to the ETS increases, yet he also reports studies that suggest that O2
.- 
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release is higher in both hyperoxic and moderately hypoxic conditions.  Some putative 

explanations for this phenomenon are given by Murphy (2009).  However, high O2
.- 

production at low oxygen concentrations was not reported by Hoffman and co-workers 

(2007); instead they showed that ROS emission is almost unaffected by changes in oxygen 

tension ranging from ambient oxygen levels to as low as the intracellular range.  At the 

present time, it is unclear what the exact influence of oxygen concentration on O2
.- release is 

(Kowaltowski et al., 2009).  In contrast, differences in ROS release dependent on the 

organism or tissue under study, its physiological state, its age and its hormonal status are 

widely reported (Kowaltowski et al., 2009; Murphy, 2009; Tahara et al., 2009). 

 

1.2.5.3. Topology of mitochondrial ROS production 

 

It has been established that ROS produced by mitochondria can be released to 

various locations in and around the mitochondria, particularly in the matrix, on both sides of 

the inner mitochondrial membrane and on the outer mitochondrial membrane (Turrens, 

2003).   The topology of O2
.- production by different sources in the ETS was studied in 

isolated mitochondria, in the presence of combinations of substrates, ETS inhibitors and/or 

exogenous SOD (Miwa and Brand, 2005; Miwa et al., 2003; Muller et al., 2004; St-Pierre et 

al., 2002).  It can be concluded that while Complex I releases O2
.- to the matrix, Complex III 

releases O2
.- to both the intermembrane space and the matrix of the mitochondria.  These 

and other (Nohl et al., 2003) experiments showed that under physiological conditions, very 

low or even no detectable levels of ROS escape from intact mitochondria.     

 

1.2.5.4. Measuring mitochondrial ROS 

 

Since O2
.- is the primary form of ROS released from the ETS, measuring O2

.- is an 

evident choice when assaying ROS levels.  However, direct O2
.-  measurement within 

mitochondria is challenging because it is not released from the mitochondria but dismutates 

rapidly in the presence of SOD.  As will be discussed later, choosing H2O2 as a proxy only 

partly solves this problem, since intramitochondrial H2O2 can be consumed by peroxidases 

(Murphy, 2009).  According to Andreyev and colleagues (2005), ROS removal in intact 

mitochondria may be sufficient to cope with even the highest intramitochondrial rate of ROS 

production. 

The main issue in assessing ROS levels is the difficulty to emulate the in vivo 

situation in experimental conditions.  Most often, reports of ROS levels concern isolated 

mitochondria, where levels of substrates, oxygen concentration and the surroundings of the 

mitochondrion are all severely different from the intracellular environment.  Likewise, the 

state of activity of isolated mitochondria and the membrane potential are dependent on 

exogenously added ADP, while in vivo, little is known about the physiological state of 

mitochondria (Murphy, 2009) which very likely varies spatiotemporally within the 

mitochondrial network due to uneven distribution of antioxidants and variation in metabolic 

load (Andreyev et al., 2005).  Also, other parameters known to change with the physiological 

condition of the organism influenced by age, health or hormonal status cannot be mimicked 

in vitro (Murphy, 2009).  
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It has to be noted that, as several methods used for assessment of ROS levels rely on 

redox properties of ROS, they are prone to artifacts occurring due to similarities of reactivity 

or the production of intermediates by the probe (Turrens, 2003).  It is no surprise then that 

the percentages of total oxygen consumption originally proposed to be reduced to O2
.- (~3%) 

can be viewed as a considerable overestimation.  Recent studies suggest that mitochondria 

convert approximately 0.1%-0.3% of the consumed oxygen to superoxide (Fridovich, 2004; 

St-Pierre et al., 2002).   

Measurement of ROS levels produced by isolated mitochondria is based on 

spectrophotometric or fluorometric methods, chemiluminescence and electron 

paramagnetic resonance (EPR), also known as ‘spin trapping’.  Examples of 

spectrophotometric assays are the reduction of epinephrine or acetylated cytochrome c 

(Brand et al., 2004).  Some commonly used chemiluminescent ROS-detectors are luminol 

and lucigenin (Turrens, 2003).  Dyes sensitive specifically to O2
.- are hydroethidine (HE) and 

an analog of HE, mitoSOX (Zielonka et al., 2008).  Also, the inactivation rate of the ETS 

enzyme aconitase is said to reflect rates of O2
.- production (Murphy, 2009).   

A number of dyes are frequently used for H2O2 detection in combination with 

horseradish peroxidase (HRP) and/or exogenously added SOD.  For instance, scopoletin loses 

fluorescence when it reacts with HRP and H2O2.  Amplex Red forms the fluorochrome 

resorufin. Peroxyfluor-1 forms fluorescein as an end product without the use of HRP (Adam-

Vizi and Chinopoulos, 2006).  Assessing H2O2 with Amplex Red on isolated mitochondria in 

the presence of HRP and exogenously added CuZnSOD reflects most of the O2
.- produced by 

the ETS as follows.  O2
.- produced towards the intermembrane space and the cytosol is 

converted by the added SOD.  O2
.- released in the matrix can be converted by the MnSOD 

contained in the matrix, after which H2O2 can exit the mitochondria and react with the 

detection agent.  However, part of the O2
.- may not be converted to H2O2 but instead may 

react with other electron acceptors or NO..  Moreover, not all H2O2 formed in the matrix exits 

the mitochondria; it can be scavenged by intramitochondrial peroxidases (Murphy, 2009).  In 

this way, H2O2 measurement is at best a fair estimation of O2
.- production.  Detection of ROS 

in intact cells is hampered even more by cytosolic catalase and peroxidases.  In this case, 

more direct detection assays are used like  2’,7’-dichlorodihydrofluorescein diacetate 

(H2DCFDA) which can enter the mitochondria and fluoresce upon reaction with ROS (Adam-

Vizi and Chinopoulos, 2006). 

Attempts have been made to assess release of ROS to the environment by relatively 

uncomplicated live model organisms like the fungus Podospora (Sellem et al., 2005) and the 

nematode C. elegans (Chavez et al., 2007).  However, in the case of C. elegans, it has to be 

noted that ROS release in undisturbed circumstances is hardly measurable.  Only in the 

presence of pathogenic bacteria can a clear ROS signal be registered, elicited by 

immunological defense mechanisms. 

 

1.2.6. Oxidative metabolism, mitochondria and aging in selected model organisms and 

humans 

 

According to the Free Radical Theory of Aging, mitochondria are at the heart of aging 

(see section 1.1.2.1), and in most model organisms, changes in mitochondrial composition 

and function with increasing age have been registered, such as decreased activities of the 
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ETS complexes, increases in ROS release from mitochondria and increased oxidative damage 

to mitochondrial proteins, lipids and DNA.  These changes inevitably affect the organismal 

oxidative metabolism to a certain degree.  However, in aging organisms, mitochondria may 

not only be affected by the damaging effects of ROS release.   Moreover, mitochondrial loss 

of function may also be consequence rather than cause of the aging process (Figueiredo et 

al., 2008), though this distinction is difficult to make.  Here we describe how aging affects 

biochemical, bioenergetic and molecular parameters related to oxidative metabolism in a 

range of model organisms. 

 

1.2.6.1. Gene expression and proteomics   

  

Decreases in expression of genes related to energy metabolism have been reported 

for C. elegans, Drosophila, rodents, non-human primates and humans. Components of the  

mitochondrial respiratory chain, the ATP synthase complex and/or the TCA cycle are affected 

(Duce et al., 2008; Girardot et al., 2006; Kayo et al., 2001; Kim et al., 2005; Lee et al., 1999a; 

Lombardi et al., 2009; McCarroll et al., 2004; Pletcher et al., 2002; Preston et al., 2008; 

Tollet-Egnell et al., 2001; Welle et al., 2003);  it can be predicted that these alterations in 

gene expression will impinge on energy producing reactions of carbohydrate metabolism 

and  mitochondrial bioenergetics.  However, for Drosophila and rodents, a high degree of 

tissue-specific regulation was found (Chakravarti et al., 2008; Chakravarti et al., 2009; 

Preisser et al., 2004; Zhan et al., 2007).  Specifically, for Drosophila, very limited overlaps of 

age-related genes and only small overlaps of age-related pathways were established among 

tissues1. Age-related alteration in gene expression in humans depended on the tissue 

investigated, as direct comparison in human muscle, kidney and brain did not reveal any 

significant overlap among these tissues.  Only when gene sets were compared, some 

common signature of aging was found, notably a decreased expression of genes encoding 

subunits of the mitochondrial electron transport chain (Zahn et al., 2006).   

Decreases in mitochondrial protein levels that are potentially relevant to aging have 

also been found in most model organisms mentioned above (Li et al., 2007; Lombardi et al., 

2009; Piec et al., 2005; Short et al., 2005; Sohal et al., 2008; Yan et al., 2004; Yang et al., 

2008).  In rat, tissue-specificity of these proteomic changes has been reported (Chang et al., 

2007), as well as age-dependent increases in certain proteins related to the ETS (O'Connell 

and Ohlendieck, 2009).  In primates, gender differences were apparent (Yan et al., 2004).  

Importantly, from proteomics studies, it has become evident that  mRNA levels are not 

always reliable indicators of protein expression (Willis, 2007): according to Dubessay and co-

workers (2007), the content of certain key ETS subunits in Drosophila did not decrease, even 

though transcription of the corresponding genes did decrease.   

The causality of changes in gene expression and the proteome for aging can be 

questioned; the fact that both assays sometimes fail to match, illustrates this issue.  The 

search for similarities in gene expression profiles of different model organisms is probably 

                                                 
1 In different Drosophila tissues, Zhan and co-workers (2007) identified a large amount of age-related 

genes exhibiting clear transcript level changes with age, but of these changes, less than 10% were in 

common with any other tissue.  Moreover, of the biological processes enriched with age-related 

genes, less than 20% were in common between any two tissues. 
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the most relevant approach. de Magalhaes and colleagues (2009) have compared 

microarrays from aging humans and rodents.  Common signatures of aging were 

upregulation of inflammation genes and immune response genes and of genes associated 

with lysosome function, and underexpression of collagen genes and of genes associated with 

energy metabolism, particularly mitochondrial genes, as well as alterations in the expression 

of genes related to apoptosis, cell cycle and cellular senescence biomarkers.  Zahn and co-

workers (2006) identified common aging signatures in different human tissues and 

compared these to microarrays performed on aging mice, Drosophila and C. elegans.  One of 

the human aging signatures identified, a downregulation of genes related to the electron 

transport chain, was seen in mice and Drosophila, but not in C. elegans. 

 

1.2.6.2. Metabolic parameters in live organisms and in isolated mitochondria 

 

A substantial decline in metabolic capacity is often seen as a hallmark of aging.  

Metabolic parameters related to mitochondrial processes that can be assessed in aging 

organisms include heat dissipation, oxygen consumption, release of carbon dioxide and 

determination of ATP content.  These parameters have been investigated in model 

organisms such as C. elegans and the fruit fly.  In C. elegans, all metabolic parameters 

mentioned above decrease with increasing age from early adulthood onwards, though there 

is variation in their rates of decline (Braeckman et al., 2002; Van Voorhies and Ward, 1999). 

In other model organisms, changes with age occur, but these are never as severe as in C. 

elegans.  For the largest part of Drosophila’s lifespan, age-related trends are negligible when 

compared to those in C. elegans (Hulbert et al., 2004; Promislow and Haselkorn, 2002; Ross, 

2000; Vernace et al., 2007).  In humans, resting metabolic rate decreases at a rate of only 1-

2% per decade after 20 years of age (Elia et al., 2000; Manini, 2010). 

With regard to TCA cycle enzyme activities, aconitase stands out as an enzyme 

affected by age in Drosophila, housefly and mice (Das et al., 2001; Figueiredo et al., 2009; 

Yarian et al., 2005; Yarian and Sohal, 2005; Yarian et al., 2006).  Its activity also decreases in 

aging C. elegans (unpublished results, Matthijssens F.). In humans, it is uncertain whether 

age has an influence on enzyme activities of the TCA cycle.  Conflicting results were reported 

for age-related trends in citrate synthase activity, and in skeletal muscle, various TCA cycle 

enzymes had invariant activities with increasing age (Lanza et al., 2008; Rasmussen et al., 

2003a; Short et al., 2005). 

Due to conflicting results and tissue-specificities, it is a difficult task to generalize 

age-associated trends in activities of ETS complexes.  Nonetheless, data suggest that the 

activities of Complex I, IV and V decrease with age in most model organisms.  In contrast, 

Complex II and III generally show limited changes with aging (Barrientos et al., 1996; Choksi 

and Papaconstantinou, 2008; Cooper et al., 1992; Dubessay et al., 2007; Ferguson et al., 

2005; Kwong and Sohal, 2000; Lombardi et al., 2009; Mansouri et al., 2006; Miro et al., 2000; 

Miyazawa et al., 2009; Muller-Hocker, 1989; Navarro and Boveris, 2007; Ojaimi et al., 1999; 

Preston et al., 2008; Rasmussen et al., 2003a; Rooyackers et al., 1996; Schwarze et al., 

1998b; Tonkonogi et al., 2003; Yarian et al., 2005; Yasuda et al., 2006).  Still, it is highly 

possible that, when more studies on ETS enzyme activities become available, no common 

pattern among tissues or model organisms will be found.  
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Through polarographic studies of oxidative phosphorylation by isolated 

mitochondria, several parameters related to mitochondrial function can be assessed, such as 

the respiratory control ratio (RCR) and the ADP:O ratio (fig 16).  The RCR  reflects the control 

of oxygen consumption by phosphorylation (Lesnefsky and Hoppel, 2006) and illustrates the 

coupling between respiration and ATP synthesis.  It is seen as a measure of the functional 

integrity of mitochondria (Magalhaes et al., 2005).  The ADP:O ratio assesses the amount of 

molecular oxygen consumed to phosphorylate a known quantity of exogenously added ADP.  

It is an index of the efficiency of oxidative phosphorylation (Magalhaes et al., 2005).  Other 

parameters that can be assessed alongside the polarographic measurements are the rate of 

ATP synthesis and the membrane potential.  

 

 
 

Ignoring some conflicting results and tissue specificities, age-associated decreases in these 

parameters have been observed for Drosophila and (certain tissues of) rodents (Drew et al., 

2003; Dubessay et al., 2007; Fannin et al., 1999; Ferguson et al., 2005; Figueiredo et al., 

2009; Gouspillou et al., 2010; LaFrance et al., 2005; Mansouri et al., 2006; Meng et al., 2007; 

Preston et al., 2008; Puche et al., 2008; Tummino and Gafni, 1991; Ventura et al., 2002).  

The majority of aging studies on human mitochondria have focused on muscle 

degeneration.  Though some studies reported a decline in mitochondrial function with age in 

human muscle (Petersen et al., 2003; Short et al., 2005), it has been debated whether this 

really is the case (Barrientos et al., 1996; Lanza and Nair, 2010; Maklashina and Ackrell, 

2004; Tonkonogi et al., 2003).  According to Lanza and co-workers (2008), age-related 

declines in ATP production rates occurred in sedentary but not in trained subjects.  Brierley 

and colleagues (1997a, b) and Rasmussen and colleagues (2003a, b) have shown that 

mitochondrial function in skeletal muscle of aging individuals was not decreased.  What’s 

more, mitochondrial capacities are considered as far in excess of whole-body performance 

and are related to levels of physical activity, not to age.  

 

Figure 16: polarographic assessment of 
oxidative phosphorylation in isolated 
mitochondria.  Mitochondria are supplied 
with sufficient amounts of substrate (e.g. 
pyruvate and malate).  A known amount 
of ADP is added, increasing the rate of 
mitochondrial oxygen consumption (state 
3).  When the added ADP is used up, the 
oxygen consumption rate decreases 
(state 4).  The respiratory control ratio 
(RCR) is calculated by dividing state 3 by 
state 4.  After the amount of oxygen used 
up during state 3 is calculated, the ADP/O 
ratio can be determined by dividing the 
amount of ADP added by the amount of 
molecular oxygen consumed. 
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1.2.6.3. ROS production, antioxidant defense and oxidative damage 

 

Though increases in ROS production with age, measured as O2
.-, H2O2 or general ROS,  

are frequently reported in various model organisms and tissue types (Ali et al., 2006; 

Cavazzoni et al., 1999; Chabi et al., 2008; Lopez-Torres et al., 2002; Mansouri et al., 2006; 

Melvin and Ballard, 2006; Miyazawa et al., 2009; Moghaddas et al., 2003; Nabben et al., 

2008; Nohl and Hegner, 1978; Ross, 2000; Sastre et al., 1996; Sohal et al., 1994; Sohal and 

Sohal, 1991), some of these studies contain contradictory findings.  We cannot generalize 

that increase in age is accompanied by increases in ROS production.  For example, Yasuda 

and co-workers (2006) reported no significant age-related change in superoxide anion levels 

produced by isolated mitochondria of wild-type C. elegans, and studies on ROS production in 

human skeletal muscle reported invariant levels or decreases with age (Hutter et al., 2007; 

Tonkonogi et al., 2003). 

The Vanfleteren & Braeckman group assayed the activity of the antioxidant enzymes 

catalase and superoxide dismutase rather extensively in the wild type strain (N2) of C. 

elegans grown in various experimental setups (Houthoofd, 2003).  Often, no age-related 

effect on enzyme activity was observed.  In some instances, a slight decrease in activity of 

one or both enzymes was noted, but this decrease was minor compared to the major 

metabolic changes that are known to occur in aging C. elegans.   As for other model 

organisms, no clear increase or decrease of total antioxidant defense with increasing age 

was apparent.  No similarities in age-related trends were obvious when antioxidant enzyme 

activities were compared among different model organisms; discrepancies were found even 

among studies on the same tissue of a model organism (Aydin et al., 2010; Bejma and Ji, 

1999; Durusoy et al., 1995; Gianni et al., 2004; Hazelton and Lang, 1980; Massie et al., 1980; 

Meng et al., 2007; Miyazawa et al., 2009; Navarro et al., 2005; Niedzwiecki et al., 1992; 

Novoselov et al., 2010; Pansarasa et al., 1999; Rao et al., 1990; Sestini et al., 1991; Sohal et 

al., 1990; Tian et al., 1998; Tonkonogi et al., 2003; Vaanholt et al., 2008).   

For all model organisms, reports on increases in oxidative damage, in the form of 

levels of carbonyls, lipofuscin, 8-OHdG DNA damage and/or mtDNA deletions and point 

mutations, can be found (Adachi et al., 1998; Nakamura et al., 1999; Yasuda et al., 2006).  

However, these increases are not always corroborated by analogous studies (Bejma and Ji, 

1999; Cocco et al., 2005; Davies et al., 2001; Drew et al., 2003; Figueiredo et al., 2009; Goto 

et al., 1999; Lopez-Torres et al., 2002; Mansouri et al., 2006; Miyazawa et al., 2009; Navarro 

and Boveris, 2004; Puche et al., 2008; Schwarze et al., 1998a; Takasawa et al., 1993; Tian et 

al., 1998; Valls et al., 2005; Yui et al., 2003).  Importantly, oxidative modifications do not 

necessarily lead to changes in the function of the affected proteins or DNA (Choksi and 

Papaconstantinou, 2008; Musicco et al., 2009; Yarian et al., 2005). 

Progressive oxidative damage has been reported in various human tissues (Gianni et 

al., 2004; Lee et al., 1999b; Michikawa et al., 1999; Miro et al., 2000; Oliver et al., 1987; 

Pesce et al., 2001; Short et al., 2005).  However, for skeletal tissue, ample conflicting results 

can be found.  Hutter and colleagues (2007) found no increase in oxidative modification of 

proteins in muscle from elderly donors.  Likewise, according to Drew and co-workers  (2003), 

8-OHdG levels were unaffected.  As for point mutations in mtDNA, Pallotti and colleagues 

(1996) found no correlation with age, at least up to 70 years of age.  Also, a common 
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deletion of mtDNA increased with age but its low absolute levels were unlikely to contribute 

significantly to mitochondrial dysfunction (Cooper et al., 1992).   

 

1.2.6.4. Conclusion 

 

It is evident that for all parameters discussed here, generalization of age-related 

changes is a difficult task.  Very often, different studies assessing the same parameter in a 

similar model organism lead to conflicting results.  Within studies, differences between 

tissues are repeatedly reported and even when one type of tissue is analyzed, results vary 

depending on the section or cell type studied.  Undoubtedly, these factors are also 

influenced by different methodological approaches as well as the choice of the biological 

material used and the extensiveness of the age ranges studied.  Naturally, this impedes a 

comprehensive view of aging trends in energy metabolism, antioxidants and ROS.  

Moreover, drawing parallels between parameters that are expected to be interrelated and 

to influence one another is seemingly not feasible.  Decreases in gene transcription are not 

always translated at the level of the proteome, and oxidative changes in protein do not 

necessarily influence mitochondrial function.  Moreover, as will be discussed in section 7.1, 

interference with mitochondrial function is not always unfavorable for lifespan.  Ample 

evidence of age-related decreases can be found for all parameters related to oxidative 

metabolism.  For instance, expression of genes related to oxidative metabolism is partly 

downregulated in nearly all model organisms discussed.  Similarly, several parameters of 

mitochondrial function are affected by age and increases in molecular damage are seemingly 

common phenomena.  However, counter-evidence can also be found.  In addition, the 

physiological importance of these phenomena is unclear and conclusions cannot be made 

without assessing their contribution to the aging process.    Our aim is to expand the 

knowledge of changes in oxidative metabolism in aging C. elegans and to evaluate their 

potential link to the aging process by comparing wild-type profiles with those of a long-lived 

mutant strain. 
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1.3. Aging in the model organism C. elegans 
 

1.3.1. Introduction: C. elegans as a model organism 

 

Model organisms are indispensable scientific tools for understanding complex 

biological pathways; one of them is Caenorhabditis elegans.  This free-living roundworm, a 

member of the Rhabditidae, was chosen as a model organism for genetic studies by Sydney 

Brenner (Brenner, 2003) based on its short life cycle and generation time, high fecundity, 

transparency and simple cellular assembly; moreover, genetic alterations are readily 

introduced using various techniques.  It has a fully sequenced genome and is easily 

maintainable at a reasonable cost.  A large number of researchers base their studies on this 

model organism and their findings on the genetics, genomics and biology of the worm are 

compiled in an online community database (www.wormbase.org).  Moreover, thousands of 

mutant strains including targeted knockout strains are publicly available to researchers.  

Large advantages in using C. elegans as a model organism are its rapid generation time, its 

limited number of cells and its hermaphroditism.  On the other hand, it has limitations as 

well: it possesses a subset of genes that have no mammalian orthologs, or that are divergent 

from mammalian homologs at the sequence level; also, it has a low number of specialized 

tissues.  Importantly, its ease of use as a genetically amenable model isn’t always paired with 

suitability for other experimental studies, such as biochemistry. The reasons for this are the 

difficulty to obtain large quantities of synchronized individuals, the presence of eggshells and 

cuticles forming tough barriers and the impossibility of isolating pure tissue in biochemically 

relevant quantities (Mains and McGhee, 1999). 

 

1.3.1.1. Life cycle and development 

 

A population of this widespread free-living soil nematode consists predominantly of 

hermaphrodites.  Oocytes are produced by the hermaphrodite after the development of 

sperm has taken place.  Self-fertilization leads to a progeny of approximately 300 

nematodes.  The development from eggs to adult worms occurs through 4 larval stages (L1 

to L4) separated by molts (fig 17).  The rate of this process is dependent on the temperature 

of the environment.  At 25°C, the life cycle from egg over larval stages and adulthood to egg-

laying takes about 2 days. The reproductive phase lasts about 4 days and is followed by a 

post-reproductive phase of about 2 to 3 weeks.   

Higher temperatures, food limitation or overcrowding can lead to the development 

of an alternative to the L3 stage: the anatomically and behaviorally different, non-feeding 

dauer stage is capable of enduring adverse environmental conditions for an extended period 

of time, relying on its fat stores for energy; metabolism and stress resistance are significantly 

altered in the dauer.  Part of the genes controlling the switch to dauer are homologs of the 

vertebrate insulin-signaling pathway; many play a role in C. elegans longevity (see section 

1.3.2.1).  When conditions improve it molts to the L4 stage and continues its normal 

development and life cycle.   

A rare event in the development of gametes is meiotic non-disjunction.  From this, 

males can originate.  Next to 5 sets of autosomes, they contain only one X chromosome and 

http://www.wormbase.org/
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are recognizable through morphological differences in the tail region.  Mating between a 

male and a hermaphrodite increases progeny size to about a thousand. 

 

 
 

Figure 17: C. elegans life cycle. (WormAtlas) 

 

1.3.1.2. Morphology and culturing 

 

C. elegans adults are simple multi-cellular organisms composed of a limited number 

of somatic, post-mitotic cells; next to germ cells, the adult hermaphrodite contains 959 

somatic nuclei; the male has 1031 somatic nuclei.  The worm consists of 2 concentric 

cylinders divided by the pseudocoelomic space.  The outer cylinder comprises the cuticle, 

hypodermis, excretory system, neurons and muscles; the pharynx and intestine are part of 

the inner cylinder (fig 18).  Hydrostatic pressure in the pseudocoelomic cavity, which 

contains the gonad, maintains the body shape of the nematode.  

 

 
 
Figure 18: Anatomy of an adult hermaphrodite. Schematic drawing of anatomical structures 
(WormAtlas).  
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The body wall consists of a collagenous cuticle secreted by the hypodermis, under 

which part of the nervous system is situated.  A thin basal lamina separates neurons and 

hypodermis from the muscle system.  Body wall muscles, arranged into 4 quadrants, stretch 

along the length of the nematode and cause its sinusoidal movement.  The excretory system, 

composed of 4 cells at the ventral side of the head and an excretory pore, functions in 

osmoregulation and waste disposal.   

The alimentary system consists of the pharynx, the intestine, rectum and anus.  The 

pharynx, equipped with its own nervous system, muscles and epithelium, passes food from 

its lumen to the intestinal lumen via the intestinal pharyngeal valve.  The gut is connected to 

the rectum by a rectal valve.   

The reproductive system, located in the pseudocoelomic space, comprises the 

somatic gonad, the germ line and the egg-laying apparatus.  The spermathecae connect the 

uterus to the two U-shaped gonad arms, one orientated anteriorly, the other posteriorly but 

both consisting of an ovary and oviduct.  Oocytes mature while passing through the oviduct; 

fertilization takes place in the spermatheca, zygotes are stored in the uterus and pass 

through the vulva located at the center of the animal, at the ventral midline.  Gonads in the 

male consist of only one arm, connected to the cloaca via the vas deferens.  The copulatory 

apparatus at its tail is a fan-shaped structure morphologically shaped for mating. 

C. elegans hermaphrodites contain 302 neurons and have two distinct nervous 

systems: the somatic nervous system, found throughout the body of the nematode, and the 

pharyngeal nervous system, contained within the pharynx.  Sensory organs in the head and 

tail receive signals from the environment; amphids are the principal sensory organs located 

on the head, while phasmids are situated in the tail region.  

Though C. elegans is mostly found as dauers in the soil, it is known that non-dauers 

feed on bacteria growing on decaying vegetable matter.  C.elegans is a colonizer of nutrient- 

and microorganism-rich organic material, though the full range of microorganisms it can 

feed on in nature is not known (Kiontke and Sudhaus, 2006).  E. coli, either grown on an agar 

surface or added to liquid medium is a surrogate food source in laboratory conditions.  

These bacteria can sustain growth and reproduction of C. elegans for an indefinite number 

of generations.  Also, a chemically defined medium can be prepared that sustains the 

nematodes in the absence of bacteria.  This medium needs to contain minerals, glucose, 

amino acids, vitamins, growth factors and precursors for nucleic acid synthesis (Buecher et 

al., 1966; Lu and Goetsch, 1993; Sayre et al., 1963; Szewczyk et al., 2003).  It can be 

substituted by a mixture of soy peptone and yeast extract, but for both media, further 

nutritional requirements include sterols and a source of heme (Hieb and Rothstein, 1968; 

Hieb et al., 1970; Szewczyk et al., 2003; Vanfleteren, 1974).  Moreover, C. elegans, 

preferably juvenile stages, can be frozen, placed in liquid nitrogen for long-term storage and 

recovered at a later date.  In this way, the Caenorhabditis Genetics Center or CGC 

(www.cbs.umn.edu/CGC/) keeps a large stock of strains and mutant alleles available to all, 

which allows researchers to build their own collection of appropriate strains that can be 

thawed and cultured when needed.  Wormbook offers a review of available protocols for 

maintenance of C. elegans cultures (Stiernagle, 2006). 

 

 

 

http://www.cbs.umn.edu/CGC/


Chapter 1 

 

63 

 

1.3.1.3. Intermediary metabolism 

 

Most probably, the major metabolic pathways of eukaryotic intermediary 

metabolism are represented in C. elegans.  The nematode has orthologs for the majority of 

key enzymes involved in these pathways (Vastrik et al., 2007), suggesting that the 

intermediary metabolic network is well conserved among eukaryotes. Despite the fact that 

C. elegans as a model organism is not very suitable for classical biochemical study, several 

investigators have attempted and succeeded in unveiling the biochemical events that occur 

in C. elegans’ life cycle (Bolla, 1980).  This has been achieved not only by studying C. elegans 

but also C. briggsae, a sibling species with only a few subtle morphological differences and 

with approximately 62% of the predicted C. briggsae genes being one-to-one orthologs of C. 

elegans (a further 33% has one or more clearly detectable C. elegans homologs) (Stein et al., 

2003). 

Under aerobic conditions, Caenorhabditis metabolizes energy via the standard 

metabolic pathways.  The energy sources it can employ in laboratory conditions are long-

chain fatty acids, ethanol, n-propanol, acetate (Lu et al., 1978) and also glucose, glycogen, 

trehalose, fructose and sucrose (Lu and Goetsch, 1993); di- and tricarboxylic acids can 

probably also be transported into gut cells and used as fuel for the TCA cycle (Fei et al., 

2004).  Storage of energy in free-living nematodes is generally under the form of lipids.  One 

third of dry body mass in C. elegans is lipid, half of which is formed by triacyl glyceride as a 

form of fat storage (Cooper and Van Gundy, 1971; Lee and Atkinson, 1976).  Another, less 

extensive store of energy is carbohydrate, primarily glycogen but also trehalose and glucose 

(Cooper and Van Gundy, 1970; Foll et al., 1999; Hanover et al., 2005).  An enzyme regulating 

the relative use of these storage macromolecules is O-GlcNac transferase (OGT); knocking 

out the gene for this enzyme increases trehalose and glycogen levels and decreases 

triglyceride levels (Hanover et al., 2005).  Starvation leads to rapid metabolization of 

glycogen; in dauers, lipid reserves are the major source of energy for long-term survival 

(Cooper and Van Gundy, 1970; O'Riordan and Burnell, 1990). 

According to (Murfitt et al., 1976), C. elegans possesses a system for oxidative 

metabolism which is quite similar to that of mammalian species. Depending on conditions 

and nutrient availability, flow of intermediates from glycolysis to the TCA cycle may be 

altered; a candidate modulator is the enzyme pyruvate dehydrogenase kinase, a negative 

regulator of pyruvate dehydrogenase.  As seen in section 1.2.1, an alternative to glycolysis is 

the pentose phosphate pathway, breaking down glucose derivatives for anabolic purposes.  

Evidence for the occurrence of this pathway was shown in Turbatrix aceti, another small 

free-living roundworm member (Panagides and Rothstein, 1973).  A partial alternative to the 

TCA cycle is the glyoxylate pathway, where acetyl-CoA is converted to succinate and malate 

instead of being oxidized completely to CO2.  This pathway is represented in C. elegans but it 

consists of only one bifunctional glyoxylate cycle protein containing separate domains for 

both isocitrate lyase (cleaving isocitrate to succinate and glyoxylate) and malate synthase 

(condenses glyoxylate with acetyl-CoA to form malate) activities on a single polypeptide (Liu 

et al., 1995). 
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1.3.1.4. Antioxidant defenses 

 

In C. elegans, antioxidant defense mechanisms similar to those of higher organisms 

are present. In contrast, these nematodes often contain more isoforms than antioxidant 

enzymes of other eukaryotes.  Many of these still lack functional characterization. 

Unlike higher animals, which mostly contain only one cytosolic, one mitochondrial 

and one extracellular SOD, C. elegans contains 6 SODs.  Both SOD-1 and SOD-5 are cytosolic 

SODs; the gene sod-1 is an isoform expressed during normal development and sod-5 is 

upregulated in dauers.  Two mitochondrial MnSODs are known: SOD-2 and SOD-3.  Again, 

the gene encoding one of these SODs is specifically expressed in reproductive development 

(sod-2), the other during the dauer stage (sod-3) (Giglio et al., 1994a; Giglio et al., 1994b; 

Honda and Honda, 1999; Hunter et al., 1997; Jensen and Culotta, 2005; Suzuki et al., 1996; 

Wang and Kim, 2003).  A fifth gene encoding SOD is sod-4.  Alternative splicing results in two 

isoforms of the SOD-4 protein (Fujii et al., 1998).  SOD4-1 is homologous to extracellular, 

secreted mammalian Cu/ZnSOD; SOD4-2 probably remains attached to the cell surface after 

secretion. 

The C. elegans genome contains a tandem array of three catalase genes (Petriv and 

Rachubinski, 2004).  ctl-1 is predicted to encode a cytosolic catalase (Taub et al., 2003; Togo 

et al., 2000). The protein encoded by ctl-2 is peroxisomal ; it contributes up to 80% of total 

catalase activity. ctl-3 is expressed in muscle and neurons of the pharynx. 

At least seven putative glutathione peroxidase (GPX) genes are present in the C. 

elegans genome.  However, Vanfleteren (1993) could detect no GPX activity with tert-butyl-

hydroperoxide or H2O2 as substrates; perhaps these GPX reduce other lipid hydroperoxides. 

Likewise, the C. elegans genome contains several putative thioredoxin orthologs.  

For one of them, trx-1, it has been established that it is expressed in ASI and ASJ neurons 

(Jee et al., 2005; Miranda-Vizuete et al., 2006).  Thioredoxin reductase has been found in the 

cytosol and in mitochondria (Gladyshev et al., 1999; Lacey and Hondal, 2006).  Three genes 

are predicted to encode peroxiredoxins: CePrx-1, CePrx-2 and CePrx-3.  CePrx-1 codes for a 

mitochondrial peroxiredoxin, and CePrx-2 is expressed in distinct pharyngeal neurons 

(Isermann et al., 2004). 

51 putative glutathione-S-transferases (GST) are encoded in the C. elegans genome.  

GST-4 protects against paraquat, and GST-5, GST-6, GST-8, GST-10 and GST-24 increase 

resistance to  HNE (Ayyadevara et al., 2007; Leiers et al., 2003; Tawe et al., 1998). 

Other forms of antioxidant defense present in C. elegans include metal trafficking 

proteins, encoded by mtl-1 and mtl-2 (metallothionein) and ftn-1 and ftn-2 (ferritin heavy 

chain), the methionine sulfoxide reducing enzyme MsrA (methionine sulfoxide-S- reductase) 

and the enzyme NNT or mitochondrial nicotinamide nucleotide transhydrogenase.  This 

enzyme reduces NADP+, thus providing NADPH necessary for reduction of glutathione 

(Arkblad et al., 2005; Freedman et al., 1993; Kim et al., 2004; Lee et al., 2005). 

 

1.3.1.5. Genetics 

 

C. elegans has 5 pairs of autosomes and 1 (males) or 2 (hermaphrodites) X 

chromosomes.  The genome has been fully sequenced (C. elegans Sequencing Consortium, 

1998).  It consists of about 100 000 000 base pairs and this DNA sequence is publicly 
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accessible (http://www.wormbase.org). The C. elegans genome contains approximately 

20,000 protein-coding genes.  Knowledge of the C. elegans genome has allowed establishing 

the extent of similarity of its genes to those of humans; for instance, approximately 40% of 

genes that are associated with human disease have homologs in the C. elegans genome 

(Culetto and Sattelle, 2000). 

 

The sexual dimorphism of C. elegans advances this species’ use for genetics. 

Homozygous mutations can be maintained by self-fertilization; males can be used for genetic 

crosses.  In order to obtain a larger amount of males than that which is observed in a normal 

culture (0.1-0.2%), L4s can be heat-shocked; an alternative is the use of mutations or RNA 

interference (RNAi) that increase the frequency of males in a population (High Incidence of 

Males or Him).  The process of crossing, which is used not only for obtaining double mutants 

but also for genetic mapping of mutations, is discussed at length in a WormBook chapter 

(Fay, 2006). 

 

  Much knowledge about the genetics of an organism and the function of genes is 

derived from studying organisms where gene function is altered. Two complementary 

approaches are used: forward and reverse genetics.  In forward genetic screening, treatment 

with mutagens induces DNA lesions; mutants with an interesting phenotype are then 

isolated (Brenner, 1974; Duhon et al., 1996).  Reverse genetics studies gene function starting 

from its sequence. Through RNAi, the function of the chosen gene is altered and the effect of 

this manipulation on the development or behaviour of the organism is studied (Fire et al., 

1998).  Gene expression is reduced through RNA silencing elicited by introduction of double-

stranded RNA molecules; this RNA is administered by soaking, injection or feeding (Grishok, 

2005). Homologous and heterologous expression of genes can also be achieved by injecting 

DNA into the gonad of a hermaphrodite (Mello et al., 1991) or by microparticle 

bombardment or biolistic transformation (Berezikov et al., 2004); the presence of multiple 

copies of the introduced DNA in extrachromosomal arrays or integrated in the offspring’s 

genome can result in overexpression.   

Next to gene function, the location, timing and extent of expression of a gene is 

crucial in understanding the genetics of an organism.  Owing to the transparency of C. 

elegans, gfp (green fluorescent protein) reporters can be used to examine the expression 

pattern of a gene (Chalfie et al., 1994).  Global gene expression patterns can be studied via 

microarrays (Hill et al., 2000) or serial analysis of gene expression (SAGE) (Jones et al., 2001).  

We refer to a comprehensive review on genomics in C. elegans by (Hillier et al., 2005). 
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1.3.2. Lifespan regulation and mechanisms of lifespan extension in C. elegans 

 

There are three major ways by which investigators can significantly influence the 

lifespan of C. elegans: via intervention in the Insulin/IGF pathway, via dietary restriction and 

through disruption of mitochondrial function.  These three approaches have also been 

shown to affect lifespan in one or more other model organisms. 

 

1.3.2.1. Ins/IGF-1 and DAF-16 as regulators of lifespan 

 

In the last 20 years, significant progress has been made in uncovering the genetics of 

aging in C. elegans, triggered by the finding that a single mutation can extend the lifespan of 

this nematode (Friedman and Johnson, 1988; Kenyon et al., 1993).  A mutation in C. elegans’ 

sole Ins/IGF-1-like receptor daf-2 doubles lifespan.  The transcription factor DAF-16, a FOXO 

(Forkhead Box1 O) family transcription factor, is the main downstream effector of DAF-2 and 

is required for this lifespan extension (Kenyon et al., 1993; Lin et al., 1997; Ogg et al., 1997).  

Next to lifespan, this forkhead transcription factor also influences other processes including 

development and dauer formation (Baugh and Sternberg, 2006; Vowels and Thomas, 1992), 

thermotolerance (Walker and Lithgow, 2003), resistance to pathogens (Garsin et al., 2003; 

Jia et al., 2009), metabolism (Kimura et al., 1997; Ogg et al., 1997), autophagy (Hansen et al., 

2008; Jia et al., 2009) and stress resistance (Henderson and Johnson, 2001; Murakami and 

Johnson, 1996).  The signaling pathway from DAF-2 to DAF-16 has been unraveled; a large 

number of studies have attempted to uncover the transcriptional targets of DAF-16, as well 

as its many co-regulators and co-factors.  

 

 1.3.2.1.1. The Ins/IGF-1 pathway 

 

When conditions are beneficial for growth and reproduction, an insulin-like ligand 

binds to and activates DAF-2, initiating a phosphorylation cascade which inhibits DAF-16.  

The C. elegans genome encodes 40 putative insulin-like ligands (some are agonists of DAF-2, 

some may inhibit the receptor) (www.wormbase.org) (Duret et al., 1998; Kawano et al., 

2000; Li et al., 2003; Murphy et al., 2007; Pierce et al., 2001).  A phosphatidylinositol- 3-

kinase (PI3K), consisting of a regulatory (AAP-1) and a catalytic (AGE-1) subunit (Morris et al., 

1996; Wolkow et al., 2002), is phosphorylated by activated DAF-2.  In turn it phosphorylates 

phosphatidylinositol-(4,5)-bisphosphate (PIP2) forming phosphatidylinositol-(3,4,5)-

trisphosphate (PIP3).  PIP3 recruits the kinases AKT-1, AKT-2, SGK-1 and the Akt/PKB kinase 

homolog PDK-1 to the plasma membrane.  Activated PDK-1 phosphorylates AKT and SGK-1 

(Hertweck et al., 2004; Paradis et al., 1999).  DAF-16 is then phosphorylated and inactivated 

by the AKT-1/AKT-2/SGK-1 complex. While AKT-1 and AKT-2 play a role in the regulation of 

dauer formation, SGK-1 is crucial for regulation of lifespan and stress resistance (Hertweck et 

al., 2004; Paradis and Ruvkun, 1998). DAF-16 is sequestered in the cytoplasm (Lin et al., 

1997; Ogg et al., 1997), preventing transcriptional activation of its target genes.  As a 

                                                 
1
 This transcription factor is termed FOX as it is characterized by a type of DNA-binding domain; this 

motif is known as the forkhead box. These FOX proteins are classified into subgroups on the basis of 
sequence similarity. DAF-16 belongs to the O subclass; human FOXO’s include FOXO1, FOXO3, FOXO4 
and FOXO6. 

http://www.wormbase.org/
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consequence, reduced Ins/IGF-1 signaling, either through environmental conditions or by a 

mutation in the Ins/IGF-1 pathway, allows DAF-16 to enter the nucleus and activate 

expression of these target genes (fig 19). 

 

 
 
Figure 19: the daf-2/daf-16 signaling pathway in C. elegans.  Adapted from Back et al., 2010.  

 

 

Some inhibitors of this signaling cascade are known: the PIP3 lipid phosphatase DAF-

18 antagonizes the phosphorylation of PIP2  (Ogg and Ruvkun, 1998), and PPTR-1, a 

regulatory subunit of protein phosphatase 2A, regulates insulin signaling through AKT-1 

dephosphorylation (Padmanabhan et al., 2009).  ARR-1, the sole ortholog of the adaptor 

protein arrestin in C. elegans, is a positive regulator of DAF-2 signaling, most likely by 

negative regulation of DAF-18 (Palmitessa and Benovic, 2010). 
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1.3.2.1.2. Ins/IGF signaling, dauer formation and lifespan extension 

 

Lifespan extension by reduction of Ins/IGF signaling can be regarded as a secondary 

consequence of a genetic program designed to adapt to environmental conditions.  This 

pathway allows the nematode to enter the dauer stage when food is scarce.  It is most likely 

not evolutionarily selected to influence lifespan of adults (Antebi, 2007b).  A multitude of 

genes involved in regulation of dauer development have been identified; they belong to 3 

major pathways which converge on the nuclear hormone receptor DAF-12: the cGMP 

signaling pathway, the TGF-β (Transforming Growth Factor- β) signaling pathway and the 

Ins/IGF pathway (Inoue and Thomas, 2000; Thomas et al., 1993).  Mutations in any of the 

genes partaking in these 3 pathways can elicit inappropriate dauer formation; mutations in 

the Ins/IGF and TGF-β pathway can cause lifespan extension2 . 

Three important phenotypes caused by mutation in daf-2 are constitutive dauer 

formation (Daf-c), increased thermotolerance and increased adult longevity; additional 

allele-dependent phenotypes were studied in-depth by Gems et al. (Gems et al., 1998).  In 

worms carrying mutations, it is difficult to evaluate the timing with which the mutation 

exerts its effects on the phenotype.  In contrast, RNAi can be initiated and stopped at any 

stage in the life of the nematode.  Logically, Ins/IGF signaling regulates dauer formation 

during the first 2 larval stadia (Golden and Riddle, 1984).  With RNAi it was discovered that 

daf-2 RNAi caused lifespan extention regardless of whether it was initiated in the first 

juvenile stage or in young adults; lifespan regulation apparently requires daf-2 in the adult 

stages only while control of stress resistance occurs at both juvenile and adult stages.  

Moreover, daf-2 controls reproduction and lifespan independently (Dillin et al., 2002a). 

Next to timing of gene expression, location of gene expression plays a role in 

determining the nematode’s phenotype.  By creating genetic mosaic worms, it was 

established that daf-2 can act cell-nonautonomously to control lifespan, reproduction and 

dauer formation (Apfeld and Kenyon, 1998).  Tissue-specific promotors allow investigators to 

restore daf-2 pathway function in desired cell types such as neurons, intestine or muscle.  

Originally, it was found that restoring DAF-2 and AGE-1 activity in neurons could shorten 

lifespan in daf-2 and age-1 mutants; restoration in the intestine could not (Wolkow et al., 

2000).  However, more recently, the same group found that the lifespan of an age-1 mutant 

could be shortened by restoring AGE-1 in the intestine (Iser et al., 2007). 

DAF-16 activity promotes dauer formation in daf-16;daf-2 mutants when restored in the 

neurons, and it partially restores lifespan extension when restored in the intestine (Libina et 

al., 2003).  age-1; daf-16 mutants with DAF-16 activity restored in either neurons or intestine 

alone had little effect on lifespan; combined expression in both tissues could considerably 

lengthen lifespan of the double mutants, suggesting that DAF-16 acts incrementally and in 

multiple tissues to control lifespan. 

 

                                                 
2
 Longevity through mutation in the TGF-β pathway is masked by an egg-laying defect, preventing 

extended lifespan; it is only after chemical prevention of this effect that the lifespan-extending 
phenotype in TGF-β pathway mutants becomes visible (Larsen et al., 1995; Shaw et al., 2007). 
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1.3.2.1.3. DAF-16 is central to lifespan regulation 

 

Other pathways besides the Ins/IGF-1 signaling pathway regulate DAF-16.  In wild 

type, amphid and phasmid neurons on the nematode’s exterior pass on environmental 

signals that determine the state of the whole organism.  Several mutants with defects in cilia 

structure of these sensory organs were reported to be long-lived; this lifespan extension was 

partially dependent on DAF-16 (Apfeld and Kenyon, 1999).  A number of sensory neurons 

express insulin-like peptides, potentially linking these neurons to the Ins/IGF pathway (Pierce 

et al., 2001), and supporting the role of sensory perception in lifespan. 

C. elegans lifespan is also under the control of the reproductive system.  Removal of 

the germline extends lifespan in a DAF-16-dependent way; therefore in wild type, the 

germline acts to shorten lifespan.  No such lifespan extension is noted when both the 

somatic gonad and the germline are ablated, implying that a signal from the somatic gonad 

counterbalances the germline signal (Hsin and Kenyon, 1999).  Ablation of germ cells causes 

nuclear localization of DAF-16 in intestinal cells (Lin et al., 2001) through endocrine signaling 

from the reproductive system to the intestine; for DAF-16 to accumulate in the intestinal 

nuclei, the activity of KRI-1, an intestinal ankyrin repeat protein, is required together with 

expression of daf-9 (cytochrome P450) and daf-12 (a nuclear hormone receptor) (Berman 

and Kenyon, 2006).  In germline-defective worms, DAF-18 (see section 1.3.2.1.1) and SMK-1 

(see below) are also required for longevity and nuclear localization of DAF-16 (Berman and 

Kenyon, 2006; Wolff et al., 2006).  In contrast, the lipophilic signaling pathway and kri-1 are 

not required for nuclear localization of DAF-16 in daf-2 mutants; inhibiting the development 

of the germline in a daf-2 mutant extends its lifespan further regardless of the presence of 

the somatic gonad, suggesting the possibility that the somatic gonad signals through DAF-2 

to counteract the germline (Berman and Kenyon, 2006; Lin et al., 2001; Mukhopadhyay et 

al., 2006).  Interestingly, Ins/IGF-1 signaling is required for robust larval germline 

proliferation via the putative insulin-like ligands INS-3 and INS-33, the Ins/IGF-1 pathway 

kinases and inhibition of DAF-16. However, this inhibition of DAF-16 is germline-specific: it 

does not occur in neurons nor in the intestine; distinct insulin-like ligands contribute to 

different phenotypes by acting on Ins/IGF signaling in different tissues (Michaelson et al., 

2010). 

 DAF-16 activity is regulated by various stress-dependent pathways that act in 

parallel to the Ins/IGF-1 pathway.  In response to environmental cues, cytoplasmic DAF-16 is 

phosphorylated by a molecular sensor for various stresses: JNK-1 (c-Jun NH2-terminal 

kinase), a member of the MAPK (mitogen-activated protein kinases) superfamily.  This 

phosphorylation enhances nuclear translocation of DAF-16.  JNK physically interacts with 

DAF-16 at sites different from those of AKT phosphorylation; it is a positive regulator of 

lifespan as its overexpression leads to increased stress resistance and an extended lifespan.  

For this effect, DAF-16 is required but not DAF-2 or AKT, implying that the JNK signaling 

pathway controls lifespan in parallel to Ins/IGF but converging on DAF-16 (Oh et al., 2005).  

Another positive regulator of lifespan is SIR-2.1, a member of the sirtuins or NAD+-

dependent deacetylases; overexpression of sir-2.1 extends lifespan and increases thermal 

and oxidative stress resistance in a DAF-16-dependent way (Tissenbaum and Guarente, 

2001). Besides DAF-16, the scaffolding/adaptor proteins 14-3-3 are also needed for the 

positive effect of sir-2.1 expression on lifespan.  Reduced expression of ftt-2 (one of two 14-
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3-3 genes encoded in the C. elegans genome) promotes dauer formation and nuclear 

localization of DAF-16 (Li et al., 2007).  Berdichevsky and co-workers (2006) propose the 

following model: under normal conditions, DAF-16 is inactive and retained in the cytoplasm 

by binding of 14-3-3 proteins at the Akt phosphorylation sites.  Following heat stress, DAF-

16, still bound to the 14-3-3 proteins, becomes phosphorylated (potentially by JNK-1) at a 

site different from the Akt phosphorylation sites and enters the nucleus.  There, the 14-3-3 

proteins bridge the interaction between DAF-16 and SIR-2.1  (Berdichevsky et al., 2006).  This 

pathway thus acts in parallel to the insulin-like pathway to activate DAF-16 and extend life 

span under conditions of stress.  Lifespan prolongation by SIR-2.1 is under debate as 

recently, conflicting results have been reported by Valentini and co-workers (2010).  

CST-1 is yet another DAF-16-dependent positive regulator of lifespan which activates 

DAF-16 in response to oxidative stress.  Its mammalian ortholog, MST1, can induce 

phosphorylation of DAF-16 in C. elegans.  This phosphorylation disrupts the interaction of 

DAF-16 with 14-3-3 proteins, promoting translocation of DAF-16 to the nucleus and 

longevity (Lehtinen et al., 2006), in a pathway parallel to Ins/IGF-1.  In the nucleus, 

phosphorylated DAF-16 can be bound and activated by the C. elegans Β-catenin homolog 

BAR-1.  bar-1 is needed for expression of sod-3 under conditions of oxidative stress (Essers et 

al., 2005). 

DAF-16 activity can be influenced in other ways as well.  The transcription factor 

HSF-1 (Heat Shock Factor-1) functions together with DAF-16 to activate expression of a 

specific subset of stress defense genes, including the small heat shock proteins (shsp, e.g. 

hsp-16.1 and hsp-16.2); inactivation of HSF-1 does not affect nuclear localization of DAF-16 

in daf-2 mutants, and loss of DAF-16 does not diminish the induction of several HSF-1 targets 

under conditions of heat stress (Hsu et al., 2003).   

The nuclear co-regulator SMK-1 (originally identified as suppressor of MEK in the 

fungus Dictyostelium discoideum) co-localizes with DAF-16 to modulate part of DAF-16’s 

activities.  It is needed for longevity of daf-2 and germ-line ablation, and for immune, UV and 

oxidative stress response (Wolff et al., 2006); it affects expression of certain oxidative stress 

(sod-3 & ctl-1) and pathogen (lys-8) response genes. 

HCF-1 (host cell factor 1) is a negative regulator of DAF-16 (Li et al., 2008).  It 

physically associates with DAF-16 and co-regulates the transcription of a subset of DAF-16 

target genes; loss of HCF-1 extends lifespan and increases resistance to oxidative and heavy 

metal stress.    
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Figure 20: Schematic overview of stress-related pathways associated with DAF-16. Adapted from Back 

et al., 2010. 
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Besides DAF-16, Ins/IGF signaling targets another transcription factor related to both 

stress resistance and lifespan. The transcription factor SKN-1 is expressed in the intestine 

and activates the phase II detoxification system3 in response to oxidative stress and is 

controlled by the p38 mitogen-activated protein kinase (MAPK) cascade (An and Blackwell, 

2003; Inoue et al., 2005). In addition, it upregulates expression of genes for detoxification 

and cellular repair, and downregulates genes for reduction of stress resistance and lifespan, 

in non-stressed conditions (Oliveira et al., 2009).  In the absence of stress, it is located in the 

cytoplasm and is phosphorylated by  glycogen synthase kinase-3 (GSK-3) (An et al., 2005).  

Moreover, like DAF-16, it is phosphorylated and inhibited by the Ins/IGF-1 pathway kinases.  

Under conditions of reduced insulin signaling, it accumulates in the nuclei of the intestine 

and is needed for longevity and stress resistance (Tullet et al., 2008).  According to Tullet et 

al., SKN-1 increases life span independently of DAF-16 when located constitutively in the 

intestinal nuclei.  There are indications that SKN-1 and DAF-16 act together for induction of a 

subset of target genes (Tullet et al., 2008).  The workings of this potential interaction are as 

yet unknown. 

Recently, a novel signaling arm in Ins/IGF signaling has been described that diverges 

from PDK-1, functions in parallel to DAF-16 and acts on the protein WWP-1 (WW domain 

Protein-1) to regulate innate immunity.  It is also assumed to positively influence lifespan as 

wwp-1 mutants are short-lived; this short lifespan is not due to hypersensitivity of the 

mutant (Chen et al., 2010).  

 

1.3.2.1.4. Downstream transcriptional targets of DAF-16 

 

Because of the role of Ins/IGF-1 signaling in lifespan extension, investigators have 

attempted to uncover its downstream targets. In initial studies, particular genes were 

investigated, often involved in stress response; sod-3 (MnSOD) (Honda and Honda, 1999), 

mtl-1 (metallothionein) (Barsyte et al., 2001), small heat-shock proteins (Walker et al., 2001) 

and the transmembrane tyrosine kinase old-1 (Murakami and Johnson, 2001) were found to 

act downstream of DAF-16.   

The discovery of specific DNA sequences able to bind DAF-16 or DBE’s (Daf-16 family 

protein Binding Elements) (Furuyama et al., 2000) allowed researchers to find potential DAF-

16 targets based on gene sequence. scl-1, a gene encoding a cystein-rich secretory protein 

was identified in this way (Ookuma et al., 2003).   

Other methods that aim to reveal targets of DAF-16 are based on transcriptional 

profiling: large amounts of putative DAF-16 targets were revealed by comparing the 

expression profiles of strains containing a mutation in daf-2 with WT or with strains 

containing mutations in both daf-2 and daf-16 4, via SAGE (Serial Analysis of Gene 

Expression) and microarraying.  These genes were categorized according to their 

involvement in stress resistance, resistance against pathogens, and metabolism; a large 

number of genes with unknown function was also reported (Golden and Melov, 2004; 

                                                 
3
 The phase II detoxification system is part of a mechanism to dispose of toxic endobiotic or 

xenobiotic compounds; it consists of a set of reactions which increase solubility to toxins, aiding 
excretion. 
4
 Often a glp-4 or fer-15 mutation is also included in these strains to avoid development of eggs; 

treatments with DAF-2 versus DAF-2 and DAF-16 RNAi were also compared. 
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Halaschek-Wiener et al., 2005; McElwee et al., 2003; McElwee et al., 2004; Murphy et al., 

2003).  Next to sod-3, other stress resistance genes found to be targeted are sod-5, ctl-1 and 

ctl-2 (catalase genes) and gst-4 (glutathione S-transferase).  Also inducible by DAF-16 are 

heat shock proteins hsp-70, hsp-90, hsp-12 and hsp-16, and mtl-1 (Halaschek-Wiener et al., 

2005; McElwee et al., 2003; Murphy et al., 2003), and genes encoding antimicrobial agents 

like lysosymes lys-7 and lys-8 (Murphy et al., 2003).  Metabolic genes identified through 

microarrays are involved in amino acid metabolism, the glyoxylate pathway and ubiquitin-

mediated protein degradation, but no indication was found that genes involved in protein 

turnover and mitochondrial function are DAF-16 targets (Halaschek-Wiener et al., 2005; 

McElwee et al., 2003; Murphy et al., 2003).  Some genes identified also play a role in dauer 

formation, including small hsps, cytochrome P450, short-chain dehydrogenase/reductase, 

UDP-glucuronosyltransferase and gst’s.  Other overlapping gene classes between dauers and 

Ins/IGF mutants are implicated in gluconeogenesis, the glyoxylate pathway and biosynthesis 

of trehalose (McElwee et al., 2006). 

Lastly, in another method to find DAF-16 targets, ChIP or chromatin 

immunoprecipitation, antibodies pull down a transcription factor along with crosslinked 

DNA; it has the advantage that the target genes recognized are direct targets of DAF-16 (Oh 

et al., 2006). In a recent study, DBE analysis showed that MsrA (Methionine sulfoxide 

reductase A) is a putative DAF-16 target; this was confirmed by ChIP analysis (Minniti et al., 

2009). 

A search for common motifs in upstream sequences of genes controlled by DAF-16 

resulted in identification of the GATA motif; a transcription factor potentially responsible for 

regulation of these genes is elt-3 (Budovskaya et al., 2008).  RNAi of the GATA transcription 

factor elt-3 suppresses daf-2 mutant longevity, showing that elt-3 promotes lifespan.  This 

gene shows a tissue-specific decrease in expression late in life, which affects expression of its 

target genes (e.g. sod-3). Budovskaya et al. found that the insulin-like signaling pathway 

exerts a constant level of regulation on elt-3 expression throughout life; however this 

regulation is not connected to the decreased expression of elt-3 late in life. Regulation of elt-

3 by Ins/IGF is either independent of DAF-16 or indirectly regulated via DAF-16. 

 

1.3.2.1.5. Ins/IGF-1 pathway mediated lifespan regulation is evolutionarily conserved   

 

From reviews by Kenyon (2005) and Tatar and colleagues (2003) it is evident that 

insulin-like signaling is an evolutionarily conserved mechanism for regulation of aging rate; 

Insulin and IGF have been implicated in lifespan of worms, flies and mice.  

In Drosophila, lifespan is increased by reduction-of-function mutations in the 

Ins/IGF-1 receptor or mutation in the receptor substrate CHICO (Clancy et al., 2001; Tatar et 

al., 2001; Tu et al., 2002).  There are indications that the Drosophila FOXO transcription 

factor (a transcription factor homologous to DAF-16) also regulates lifespan:  lifespan is 

increased following overexpression of dFOXO (Giannakou et al., 2004; Hwangbo et al., 2004). 

In vertebrates, there are separate receptors for insulin and IGF-1.  For both 

receptors, reduced activity leads to lifespan extension in the mouse (Bluher et al., 2003; 

Holzenberger et al., 2003).  Lifespan is also extended by reduction in growth hormone most 

likely by reducing levels of circulating IGF-1 and Ins (Brown-Borg et al., 1996; Coschigano et 

al., 2003; Flurkey et al., 2002). 
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Until recently, the involvement of FOXO transcription factors in human lifespan was 

uncertain, but some studies on human centenarians identify both FOXO and Ins/IGF-1 

receptors as genes related to extreme longevity (Flachsbart et al., 2009; Suh et al., 2008; 

Willcox et al., 2008). 

    

1.3.2.2. Dietary restriction (DR) 

 

First described in the 1930’s (McCay et al., 1935), dietary restriction or the reduction 

of food intake without malnutrition is a lifespan-extending intervention applicable to a wide 

range of model organisms (McDonald and Ramsey, 2010).  Several protocols were developed 

to subject C. elegans to DR, including reduction of bacterial densities (Hosono et al., 1989; 

Houthoofd et al., 2002b; Kaeberlein et al., 2006; Klass, 1977; Lee et al., 2006), use of 

mutants defective in pharyngeal pumping (Houthoofd et al., 2002b; Lakowski and Hekimi, 

1998; Wang and Tissenbaum, 2006), and growth in a defined medium without bacteria 

(Houthoofd et al., 2002a; Houthoofd et al., 2005; Vanfleteren, 1978). Importantly, Greer and 

Brunet (2009) have established that different DR regimens do not induce the same 

molecular processes to extend lifespan. 

Various mechanisms have been suggested as mediators of DR-related lifespan 

extension in C. elegans.  The concept of decreased ROS production through slowed 

metabolism, the role of reduced Ins/IGF-1 signaling as well as the role of sir-2.1 in DR have 

been challenged (Hansen et al., 2007; Houthoofd et al., 2002a, b; Houthoofd et al., 2005; 

Kaeberlein et al., 2006; Lakowski and Hekimi, 1998; Wang and Tissenbaum, 2006).  In 

contrast, the TOR (Target Of Rapamycin) pathway (Wullschleger et al., 2006), a signaling 

pathway with a crucial role in nutrient sensing, appears to be implicated in lifespan 

extension by DR (Walker et al., 2005) (see also section 1.3.2.4.1). 

Two transcription factors with a verified role in lifespan specific for certain DR 

regimens are PHA-4 and SKN-1 (fig 21).  PHA-4, which plays a role in pharynx development of 

the embryo, regulates the response of adult C. elegans to DR (Panowski et al., 2007).  pha-4 

RNAi suppresses the long lifespan of eat-2 mutants and inhibits the effect of bacterial 

dilution on wild-type lifespan.  Under DR circumstances, levels of expression of sod-1, sod-2, 

sod-4 and sod-5 are dependent on PHA-4.  In contrast, PHA-4 has a negligible effect on daf-2 

mutants, confirming earlier findings that IIS and DR act through independent pathways to 

extend lifespan in C. elegans.   

The second transcription factor found to specifically regulate response to DR is SKN-

1 (Bishop and Guarente, 2007).  As mentioned in section 1.3.2.1.3, an isoform of SKN-1 

expressed in the intestine activates the phase II detoxification system in response to 

oxidative stress; it is another isoform, expressed in the ASI neurons, which is needed for 

lifespan extension by DR.  Bishop and Guarente (2007) found that skn-1 is activated in these 

neurons as a consequence of DR, which causes increases in metabolic activity in peripheral 

tissues, illustrating the importance of cell non-autonomous signaling in lifespan 

determination. 
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Figure 21: putative mechanism of DR-induced longevity (Antebi, 2007a). 

 

Other genes that have recently been shown to partake in lifespan extension through 

DR are nlp-7, cup-4 and wwp-1.  nlp-7 encodes a neuropeptide-like protein expressed in 

neurons, and cup-4 encodes  an ion channel functioning in endocytosis by coelomocytes.  

Both are downstream targets of SKN-1 (Park et al., 2010).  wwp-1 encodes a ligase with a 

role in protein ubiquitination (Carrano et al., 2009).  

 

 

1.3.2.3. Mutations or RNAi of mitochondrial components – the Mit phenotype 

 

The first mitochondrial mutation identified in C. elegans, mev-1(Ishii et al., 1990), is a 

missense mutation in the cytochrome b subunit of Complex II (Ishii et al., 1998).  This 

mutation causes an 80% reduction in Complex II activity along with a high sensitivity to 

increased oxygen levels and a shortened lifespan (Honda et al., 1993; Ishii et al., 1998; Ishii 

et al., 1990; Kayser et al., 2004a).  Likewise, a point mutation in the gene gas-1 coding for 

the 49kDa subunit of Complex I (Kayser et al., 1999) shortens lifespan, slows development, 

renders nematodes sensitive to elevated oxygen concentrations and oxidative stress and 

decreases Complex I activity while doubling Complex II activity (Hartman et al., 2001; Kayser 

et al., 2001).    For both mev-1 and gas-1, an increase in ROS production is reported (Kondo 

et al., 2005; Senoo-Matsuda et al., 2001).  Like daf-2, mev-1 mutants show translocation of 

DAF-16 to the nucleus.  According to (Kondo et al., 2005), normal stress response activated 

by translocation of DAF-16 can be overwhelmed; high levels of ROS production are assumed 

to be causal to these mutants’ short lifespan. 

Remarkably, interference with the ETS can also have beneficial effects on lifespan.  A 

mutation in the gene clk-1, which codes for an enzyme required for the biosynthesis of the 

C. elegans ubiquinone CoQ9, extends lifespan and slows several temporal processes in the 

nematode (Felkai et al., 1999; Hekimi et al., 1995; Jonassen et al., 2001; Lakowski and 

Hekimi, 1996; Miyadera et al., 2001; Stepanyan et al., 2006).  The mutation causes 

accumulation of the CoQ9 precursor DMQ9 (demethoxyubiquinone 9)(Jonassen et al., 2001); 

the mutant requires bacterial CoQ8 for development (which, remarkably, has been proven 

to shorten lifespan in adult clk-1 and WT (Larsen and Clarke, 2002)). Lifespan extension in 

clk-1 was originally attributed to slowed metabolic rate (Ewbank et al., 1997; Lakowski and 

Hekimi, 1996).  CoQ shuttles electrons from Complex I or II to Complex III.  Complex I activity 

is considerably decreased in clk-1, comparable to gas-1; however, Complex II activity is 

normal (Kayser et al., 2004b).  Moreover, clk-1 whole-worm respiration rates are similar to 

those of WT (Braeckman et al., 1999). Consequently, use of alternative metabolic pathways, 

possibly entailing less damage (Rea and Johnson, 2003) is precluded as a cause for lifespan 
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extension.  According to Yang and co-workers (2009), ROS production of clk-1 is not reduced 

but DMQ9 helps the mutant to scavenge ROS more effectively.  CLK-1 also has mtDNA-

binding properties; potentially, CLK-1 plays a role in regulation of mtDNA replication 

(Gorbunova and Seluanov, 2002). 

 Another mutant affecting mitochondrial function is lrs-2, which carries a mutation in 

a gene coding for a leucyl-tRNA synthetase, affecting translation of genes encoded by the 

mitochondrial genome, and consequently, ETS activity (Lee et al., 2003b). 

 (Feng et al., 2001) describe a mutation in the Fe-S protein of Complex III, isp-1.  This 

mutant exhibits a longer lifespan, slow physiological rates, reduced oxygen consumption, 

increased resistance to exogenously produced ROS (following addition of paraquat) and high 

levels of sod-3 expression.  The authors interpreted these data as follows: low rates of 

respiration imply low ROS production, which is underpinned by the mutant’s resistance to 

paraquat.  Low endogenously produced ROS levels should allow the organism to use its 

defense mechanisms to eliminate exogenously produced ROS.  Increased sod-3 expression 

may reduce ROS even further.  Low rates of molecular damage accumulation would then 

explain lifespan extension in isp-1.  However, no effort was made to actually measure ROS 

production in this mutant.   

 

 RNAi against certain genes acting in the ETS or involved in its assembly is also 

capable of extending lifespan.  Inactivation of nuo-2 (a component of Complex I), cyc-1 (a 

Complex III subunit), cco-1 (a Complex IV component) and atp-3 (a F0F1 ATP synthase 

subunit) all resulted in lifespan extension, slowed development and low ATP production.  In 

a systematic RNAi screen for lifespan-extension, Lee and co-workers (2003b) found a clear 

over-representation of mitochondrial function genes affecting lifespan, including genes for 

mitochondrial carriers, electron-transport chain components and a mitochondrial ribosomal 

subunit.  RNAi causing mitochondrial defects often resulted in lower oxygen consumption, 

lower ATP levels and altered mitochondrial morphology.  A higher sensitivity to paraquat 

occurred in some RNAi-treatments, while resistance to H2O2 was normal or enhanced.  This 

was also seen in worms treated with RNAi against frh-1, a gene coding for the mitochondrial 

protein frataxin which is required for assembly of Fe-S clusters.  These nematodes were 

resistant to H2O2 but sensitive to juglone, a superoxide-generating compound (Ventura et al., 

2005). 

 In initial experiments, lifespan extension through RNAi of mitochondrial genes was 

only observed when applied during development: RNAi administered only during adulthood 

did not increase lifespan, and restoring mRNA levels to normal during adulthood did not 

rescue lifespan back to WT.  As a possible explanation, it was suggested that a regulatory 

mechanism determines the aging rate according to mitochondrial function during 

development (Dillin et al., 2002b).  However, recent research shows that this doesn’t always 

need to be the case: lifespan can also be increased through late inactivation (L4 stage) of 

mitochondrial genes in a strain that is more susceptible to RNAi (Curran and Ruvkun, 2007).  

Also, effects of RNAi on lifespan can be altered through RNAi dilution: depending on the 

level of RNAi dilution and RNAi-mediated disruption, lifespan is increased up to a point 

where mitochondrial function becomes a limiting factor and lifespan decreases (Rea et al., 

2007).  Lifespan extension is only observed under conditions of partial ETS disruption; the 

authors term this the threshold effect.  Increase in lifespan correlates with reduction in rates 
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of postembryonic development, fecundity, fertility and adult size.  Thus, the authors state 

that initiation of RNAi must occur in the late L3/ early L4 stage at the latest, when mtDNA 

increases extensively (Tsang and Lemire, 2002).  Under conditions of mitochondrial 

disruption, oxidative stress and damage are often regarded as key factors in lifespan; 

however, in this study the authors found little correlation between oxidative stress and 

lifespan.   

 The overall conclusion to be drawn from these experiments is that the cause of 

lifespan extension through mitochondrial disruption is elusive.  It is not dependent on DAF-

16 and acts independently from IIS signaling (Dillin et al., 2002b; Feng et al., 2001; Lee et al., 

2003a; Lee et al., 2003b; Wong et al., 1995).  Suggested causes of lifespan extension such as 

low metabolic rates, low levels of ROS production and alternative metabolic pathways 

cannot be generalized for all Mit mutants and RNAi treatments; moreover, there are some 

caveats to consider when comparing worm models with mitochondrial disruptions.  Added 

interventions to different mutants can have divergent effects on lifespan, as is illustrated by 

Van Raamsdonk and Hekimi (2009): sod-2 deletion extends the lifespan of clk-1 and shortens 

the isp-1 lifespan. Not only can RNAi results be influenced by RNAi dilution and timing of 

administration; also, RNAi of a single subunit in the ETS may affect multiple enzymatic steps 

of electron transfer; e.g. the activity of Complex I is reduced by RNAi of a Complex IV 

subunit, most likely because the normal supercomplex I:III:IV configuration is precluded 

(Suthammarak et al., 2009).  Importantly, Yang and Hekimi (2010b) have shown that Mit 

RNAi and Mit mutant worms have considerable differences in their phenotypes, represent 

two different types of mitochondrial dysfunction and prolong lifespan by distinct 

mechanisms. 

In spite of the issues mentioned, some advances in understanding lifespan extension 

in the Mit phenotype have recently been made.  Lee and co-workers (2010) reported that 

the hypoxia-inducible factor HIF-1 is needed for lifespan extension of isp-1 and clk-1 

mutants.  They noted an increase in ROS levels for isp-1 and clk-1 and proposed a 

mechanism for lifespan extension in these mutants: possibly, longevity is promoted by 

activation of  HIF-1  through mild increases in ROS.  Durieux and co-workers (2011) have 

established that the mitochondrial unfolded protein response (UPRmt) is needed for 

longevity in Mit mutants. When mitochondrial defects occur, this stress response 

mechanism induces expression of mitochondrial associated protein chaperones by the 

nucleus (Zhao et al., 2002). 

 

1.3.2.4. Other ways of affecting lifespan 

1.3.2.4.1. The TOR pathway 

 

Cell growth and metabolism in response to cellular amino acid availability is under 

the regulation of the conserved TOR (Target Of Rapamycin) signaling pathway.  Under 

conditions beneficial for growth, TOR is active, leading to activation of one of its targets, S6 

kinase (S6K), and inhibition of another, the translation initiation factor 4E-BP (not present in 

the C. elegans genome), with increased protein synthesis as a result.  When the pathway is 

inhibited, proteins are degraded, and recycling of cellular components through autophagy 

increases (Hay and Sonenberg, 2004; Wullschleger et al., 2006).   
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In C. elegans, TOR deficiency 

affects lifespan significantly.  While 

absence of TOR/LET-363 activity causes 

larval arrest at L3 through inhibition of 

global mRNA translation (Long et al., 

2002), RNAi of let-363 more than 

doubles lifespan (Vellai et al., 2003).  In 

C. elegans also, TOR inhibition reduces 

mRNA translation and increases 

autophagy (fig 22).  In addition, 

knockdown of genes responsible for 

mRNA translation, encoding ribosomal 

proteins and translation initiation factors 

such as the S6K homolog RSKS-1 or the 

eIF4E homolog IFE-2, lowers protein 

synthesis and extends lifespan (Curran 

and Ruvkun, 2007; Hansen et al., 2007; 

Pan et al., 2007; Syntichaki et al., 2007).  This extension of lifespan through inhibition of 

mRNA translation is independent of Ins/IGF-1 signaling, DR, the Mit phenotype and the 

sir-2.1 pathway.  For instance, mutation in daf-16 does not suppress longevity of let-363 

RNAi nematodes (Vellai et al., 2003). 

Administering dsRNA for let-363 or daf-15 (which encodes the regulatory associated 

protein of TOR, RAPTOR) in early adulthood also has a lifespan-increasing effect (Jia et al., 

2004; Vellai et al., 2003).  Importantly, this type of lifespan extension is not additive to the 

effect of DR on lifespan (Hansen et al., 2007), suggesting interaction of both pathways.  

mRNA translation is not the only cellular process influenced by the TOR pathway; autophagy 

is markedly increased in TOR-deficient worms.  In a study by Sheaffer and colleagues (2008), 

it was shown that the forkhead transcription factor PHA4 is needed for extension of adult 

lifespan in response to reduced TOR signaling. Moreover, autophagy is required for DR-

induced lifespan extension, and the autophagic response to DR requires both TOR and PHA-4 

(Hansen et al., 2008).  Thus, the induction of autophagy upon nutrient starvation is involved 

in the regulation of C. elegans longevity (Hansen et al., 2008; Jia and Levine, 2007; Toth et 

al., 2008).  

An interaction between TOR and the Ins/IGF-1 pathway has also been revealed.  

Vellai and colleagues (2003) noticed similarities between worms treated with let-363 dsRNA 

and daf-2 mutants: both affect lifespan during adulthood, and both show lipid accumulation 

in intestinal cells and reduced fertility, as well as increased embryonic or larval arrest.  

Moreover, though daf-16 is not capable of rescuing the lifespan of let-363 RNAi worms, 

treatment with let-363 RNAi cannot prolong the lifespan of daf-2(e1370).  From this it was 

concluded that the TOR and Ins/IGF-1 pathway act in parallel or converge downstream of 

DAF-16 to extend lifespan.   

Mutation of daf-15 (RAPTOR) results in increased C. elegans life span, but this 

lifespan extension is dependent on functional DAF-16; in other words, DAF-16 negatively 

regulates daf-15 transcription (Jia et al., 2004).  The following model is proposed: reduction 

of Ins/IGF-1 signaling activates DAF-16 which represses daf-15; as a consequence, TOR 

Figure 22: Schematic overview of the TOR 
pathway. 
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activity is decreased and longevity is enhanced.  The authors of this study underpin the 

importance of autophagy in both TOR- and Ins/IGF-1-related lifespan extension.  Autophagy 

is increased in daf-2 mutants and required for their longevity phenotype; whether it is 

sufficient for lifespan extension, has not been verified so far (Hansen et al., 2008; Melendez 

et al., 2003). 

Discerning the effects of let-363 RNAi on lifespan is complicated by confounding 

factors. The operon that let-363 is part of, also contains a mitochondrial ribosomal subunit 

downstream of let-363 (Mair and Dilin, 2008).  This gene sequence could also become 

inhibited by let-363 RNAi.  Suppression of the mitochondrial ribosomal subunit extends 

lifespan independently of DAF-16 (Lee et al., 2003a; Mair and Dillin, 2008). Unraveling the 

genetic pathway(s) downstream of let-363/TOR may be impeded by these confounding 

factors. 

 

1.3.2.4.2. aak-2 

 

The conserved AMP-activated protein kinase (AMPK) is a sensor of low energy levels 

(Hardie and Hawley, 2001); under conditions of high AMP to ATP ratios, AMPK is activated.  

In C. elegans, the α subunit AAK-2 of AMPK is a determinant of lifespan: mutation in aak-2 

leads to lifespan shortening, and aak-2 overexpression increases lifespan (Apfeld et al., 

2004).   

AAK-2 is needed for lifespan extension and dauer formation in Ins/IGF-1 mutants: 

mutation in aak-2 (at least partially) reduces lifespan and inhibits dauer formation of daf-2 

mutants (Apfeld et al., 2004).  Since mutation in aak-2 further reduces the lifespan of a daf-

16 null mutant, it was concluded that aak-2 is able to influence lifespan in a daf-16-

independent manner, and that daf-16 and aak-2 act in parallel to influence lifespan. Lifespan 

extension related to hormesis (see section 1.3.2.4.3), sir-2.1 overexpression, and isp-1 and 

clk-1 mutation is fully or partially dependent on active AAK-2 (Apfeld et al., 2004; Curtis et 

al., 2006; Schulz et al., 2007).  Though germline- and DR-related longevity were reported to 

be independent of AAK-2, certain DR regimens supposedly need AAK-2 for lifespan extension 

(Greer and Brunet, 2009; Greer et al., 2007). 

From this, it can be assumed that AAK-2 represents a node in a network of pathways 

influencing C. elegans lifespan (Curtis et al., 2006).  

 

1.3.2.4.3. Hormesis  

  

In various model organisms, lifespan can be extended through exposure to a variety 

of mild stresses; this process is termed hormesis (reviewed by Minois, 2000).  Exposure of C. 

elegans early in life with high temperature, high oxygen pressure or a sublethal dose of 

juglone not only allows nematodes to cope better with subsequent treatments, but also 

extends lifespan (Cypser and Johnson, 2002).   

Being a poikilotherm, C. elegans’ lifespan is inversely related to temperature 

(Hosono et al., 1982; Klass, 1977).  Recently it was shown that ‘thermocycling’ WT, and daf-

2, eat-2 and clk- 1 mutant animals between 12°C and 25°C resulted in lifespans similar to 

those at a constant temperature of 12°C; however, the same treatment on daf-16 mutant 

worms could not prolong lifespan. It was shown that incubation at higher temperatures for 
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short time intervals caused DAF-16-dependent induction of expression of stress-response 

genes, particularly HSPs, that lead to a significant extension of life span (Galbadage and 

Hartman, 2008). 

 Treatment with juglone can also cause hormesis and lifespan extension.  This effect 

is associated with increased expression of HSP-16.2 and enhanced glutathione levels; it was 

shown to be dependent on both DAF-16 and SIR-2.1 (Heidler et al., 2010). 

 Another form of stress that can elicit longevity is reduced glucose availability (Schulz 

et al., 2007).  According to the authors, this treatment increased oxidative stress resistance 

by promoting formation of ROS; in evidence, administering antioxidants prevented this 

‘mitohormesis’.  From this, Ristow and Zarse (2010) deduce that ROS are essential signaling 

molecules required to promote health and longevity. 

 

1.3.2.4.4. A common metabolic signature for longevity?  

 

As just described, several interventions can indeed successfully extend life span of C. 

elegans, but the mechanisms underpinning this effect are not understood.  Moreover, DR 

and mitochondrial disruption can lead to widely divergent (or even opposite) effects on life 

span depending on the experimental conditions.  Evidently, it is difficult to find a unifying 

mechanism of lifespan extension from these studies. 

Very recently, Fuchs and co-workers (2010) have studied metabolomic profiles of 

aging Ins/IGF-1 signaling mutants, translation-defective animals, and WT dauer larvae.  The 

authors reported a common metabolic signature, characterized by upregulation of 

gluconeogenesis and the glyoxylate shunt, and changes in amino acid catabolism.  Similar 

results were obtained with mitochondrial mutants and mitochondrial RNAi-treated 

nematodes (Falk et al., 2008). Based on these studies, Gallo and Riddle (2010) proposed a 

prominent role for protein metabolism in determining life span.  An upregulation of certain 

branched-chain amino acids observed in both studies suggests a link to the TOR pathway: for 

instance, in daf-2 mutations, DAF-16 would inhibit RAPTOR, decreasing the function of TOR 

which would result in decreased translation and consequent accumulation of amino acid 

pools. 
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1.4. Aims and outline of the thesis 
 

 The use of simple model organisms may contribute to our knowledge of a complex 

process such as human aging.  Several mechanisms influencing aging have been identified in 

a variety of model organisms, indicating that these mechanisms are conserved in evolution.  

In Caenorhabditis elegans, it has been shown that mechanisms modulating the energy 

metabolism of the nematode can alter lifespan.  Dietary restriction, the Clock phenotype, 

the Ins/IGF-1 pathway and dauer diapause all affect the worm’s metabolism.  Questions that 

arise are: are the metabolic changes comparable among these longevity mechanisms?  Are 

these metabolic changes causal to longevity? And if so, through which molecular mechanism 

do they act to prolong lifespan? 

 A generally accepted theory of aging is the Free Radical Theory of Aging by Harman 

(1956).  It postulates that reactive oxygen species (ROS) are causal to aging.  How could this 

theory be fitted in to the mechanisms that prolong life in C. elegans?  The metabolic 

alterations found in C. elegans would have to be linked to either a decrease in the 

production of ROS, or better defense mechanisms against ROS, or both.  Pearl’s Rate-of-

Living theory (1928) is a potential explanation for decreased ROS production in organisms 

with decreased metabolic rates: if it is assumed that lower metabolism implies lower ROS 

production, this low metabolism could be causal to lifespan extension.  Studying antioxidant 

defense mechanisms could also contribute to our knowledge of aging: if increased 

antioxidant defenses can be unambiguously linked to longevity, this could also strengthen 

the value of the Free Radical Theory of Aging. 

In this study, we aimed to (1) evaluate the validity of the Rate-of-Living and Free 

Radical theories of aging, and (2) to examine the putative role of energy metabolism in C. 

elegans lifespan.   

Through assessment of energy metabolism and antioxidant defense in several long-

lived C. elegans models, we investigated whether a slower rate of metabolism or an 

increased antioxidant defense are likely factors in C. elegans longevity (chapter 2).  The 

models examined were dauer diapause, Clock mutations and dietary restriction. 

These studies were extended to the long-lived Ins/IGF-1 mutant daf-2(e1370) in 

chapter 3.  In this chapter we confirmed that daf-2(e1370) has a distinct whole-worm energy 

metabolism, pointing to a higher metabolic efficiency in this mutant.  

These studies did not unambiguously support the Rate-of-Living and Free Radical 

theories of aging.  They also showed that energy metabolism was not similar among the 

mutants and treatments tested, at least not on all levels.  However, they did not exclude the 

possibility that alterations in energy metabolism could affect aging.  Especially for the 

Ins/IGF-1 mutant daf-2(e1370), a study of its mitochondrial characteristics was called for in 

order to assess the effect of its putative elevated metabolic efficiency on aging.  Available 

studies on mitochondrial gene expression, and an assessment of mitochondrial protein 

abundances could hint at mitochondrial adaptations in the  long-lived mutant.  As for energy 

metabolism, our aim was to evaluate whether the increase in metabolic efficiency in vivo 

could be confirmed in isolated mitochondria.  Also, an assessment of mitochondrial ROS 

production capacity would be a necessary addition to the evaluation of the role of ROS in 

aging. 
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To explore this further, we developed a suitable protocol to isolate functional 

mitochondria from C. elegans, and studied mitochondrial characteristics at the protein level 

(chapter 4).  Particularly, we assessed the age-dependent profiles of key mitochondrial 

proteins and electron transport chain complexes in wild-type and daf-2(e1370) adult 

animals. 

Next we examined whether daf-2(e1370) mutation alters mitochondrial aerobic 

energy production (chapter 5).  This was done by evaluating bioenergetic competence and 

membrane potential of mitochondria isolated from wild-type and daf-2(e1370) animals. 

In order to assess whether ROS levels are determinants of lifespan, we measured 

ROS production by isolated mitochondria and determined concurrent in vivo damage to 

mitochondrial protein and DNA (chapter 6).   

A general discussion of the results is provided in chapter 7, with the emphasis on the 

potential role of metabolism and ROS in aging and longevity, along with some perspectives 

for future research. 
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Longevity, metabolism and stress defense in C. elegans: dauer 
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ABSTRACT 

 

A decrease in metabolic rate and limited ROS damage through antioxidant defense are 

generally viewed as causal to extended longevity.  Three processes known to extend lifespan 

in C. elegans affect metabolism: Clock (Clk) mutations, dietary restriction and the dauer 

diapause stage.  In the following chapter we examine whether metabolic alterations and 

high antioxidant activity are causal to extended lifespan.  Our results show that slow 

metabolic rate is most likely not the cause of longevity, and that antioxidant defense is not 

uniformly upregulated in all three cases, questioning its role in lifespan extension.  
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2.1 Introduction 
 

Based on studies in a wide range of model organisms, several mechanisms of 

lifespan extension have been described; some of these are believed to be conserved 

throughout evolution.  Dietary restriction (DR) has been shown to extend lifespan in yeast, 

Podospora, Caenorhabditis elegans, Drosophila and rodents; studies on Rhesus monkeys are 

ongoing (Anderson et al., 2009; Chippindale et al., 1993; Jiang et al., 2000; Kemnitz et al., 

1993; Klass, 1977; Maas et al., 2004; McCay et al., 1935).  Lifespans of these model 

organisms can also be influenced by alterations in mitochondrial functioning, such as 

induction of the retrograde response (S. cerevisiae, (Kirchman et al., 1999)), use of an 

alternative oxidase (Podospora, (Borghouts et al., 2001; Schulte et al., 1988)) and 

mutations/RNAi causing mitochondrial dysfunction (C. elegans, (Feng et al., 2001; Lakowski 

and Hekimi, 1996; Lee et al., 2003); Drosophila, (Copeland et al., 2009); mice, (Dell'agnello et 

al., 2007; Liu et al., 2005)).   The molecular mechanisms underlying longevity through dietary 

restriction and mitochondrial dysfunction are as yet unknown.  However, both interventions 

affect metabolism, and in both cases, a slowing-down of metabolic processes, reductions in 

ROS levels and/or increased antioxidant defense have been suggested as possible 

explanations for lifespan extension (Beckman and Ames, 1998; Feng et al., 2001; Lakowski 

and Hekimi, 1996; Youngman et al., 1992).   

The following section addresses DR and defective mitochondrial functioning in C. 

elegans.  In the nematode, DR can be imposed in several ways, either through dilution of the 

bacterial food source, use of food-uptake-deficient mutants or growth in a semi-defined 

medium in the absence of E. coli.  Mitochondrial dysfunction can be caused by mutations in 

a range of genes related to the ETS; here we focus on the Clk phenotype.  Mutations in any 

of four Clk genes inflict a slow phenotype, slowing down development and behavioral 

activity, and extending adult lifespan.   

Interestingly, C. elegans can alter its metabolism and extend lifespan in unfavourable 

environmental conditions: the nematode is capable of arresting development and entering a 

diapause state, the dauer larva.  Dauers can survive several times the normal lifespan, 

apparently unaffected by the aging process. 

In this chapter, we examine physiological changes associated with these 3 

mechanisms of lifespan extension.  To evaluate the Rate-of-Living (Pearl, 1928) and Free 

Radical (Harman, 1956) theories of aging in elucidating causes of lifespan extension, we 

focus on metabolic parameters and stress resistance.   

Our results show that metabolic activities are downregulated in dauers relative to 

young adults, and are relatively stable.  An observed decline in ATP levels can be seen as an 

indication of an aging process in dauers; however, it is reversible at dauer exit. In dauers, 

antioxidant capacities are increased, possibly facilitating the survival of the dauer, but it is 

most likely not the only factor in dauer longevity. 

Not one of the four Clk mutants described shows reduced metabolic rates when 

compared to wild-type.  Moreover, Clk mutants show no consistent upregulation of 

antioxidant activities. Antioxidant capacities are increased by DR, albeit to different degrees 

depending on the treatment.  Metabolic activities vary with the method of DR applied, but 

there is no indication for lower metabolic rates in DR nematodes.   
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2.2 Metabolic rate and antioxidant defense during the extreme 

lifespan of dauer  
 

The most striking physiological characteristic of the dauer to post-dauer transition is 

that the duration of the dauer state has no effect on post-dauer lifespan.  Klass and Hirsh 

(1976) interpreted dauers to be non-aging, and depletion of stored nutrients to be the cause 

of their eventual death.  To test this hypothesis, we examined several parameters of 

metabolic activity, including respiration, heat production and ATP content in juveniles, 

adults, dauers and post-dauer nematodes.  Also, levels of SOD and catalase activity were 

determined to assess antioxidant capacity during the dauer and post-dauer stages. 

 

2.2.1. Materials and methods 

 

2.2.1.1. Strains and culture conditions  

 

The wild type strain N2 was used and maintained at 24°C throughout this study.  

Synchronous populations were initiated from eggs prepared as follows: gravid worms were 

dissolved in a mixture of sodium hydroxide and bleach (Sulston and Hodgkin, 1988; 

Vanfleteren and De Vreese, 1996).  The eggs were allowed to hatch overnight in S buffer (0.1 

M NaCl, 0.05 M potassium phosphate buffer, pH 6.0).  The first stage larvae (L1) were grown 

on nutrient agar plates containing a lawn of freshly grown E. coli 9001 cells.  Samples were 

taken for the various biochemical assays after 0 (unfed L1), 6 (L1), 12 (L1), 18 (L2), 24 (L2), 30 

(L3), 36 (L4), 42 (L4) and 48 (young adult) hours.  At age 38 h, the worms were rinsed off 

from a portion of the plates and suspended in S buffer (pH 6.0) containing 10µg/ml 

cholesterol, at densities not exceeding 2000/ml.  Worm suspension cultures were grown in 

250 ml portions in Fernbach flasks, shaken at 120 rpm. The worms were fed frozen E. coli 

cells; bacterial density was checked daily by measuring turbidity (550 nm) and kept at a 

relatively constant concentration of 3 x 109 cells/ml.  The cells were added from a 1:1 v/v 

suspension in S buffer, pH 6.0 that was dripped in liquid nitrogen and stored at -75°C.  When 

the worms reached the fourth juvenile stage, FUdR was added at 50 (suspension cultures) or 

400 µM (plate cultures) final concentration to prevent progeny production.   

Dauers were grown by spreading 150,000 eggs, 1010 heat-killed E. coli cells and 1 mg 

haemoglobin (from a 5% stock solution in 0.1N KOH, autoclaved for 10 min) on 10 cm agar 

(made up with 25 mM potassium phosphate buffer, pH 7.0 and 12.9 µM cholesterol) plates.  

These conditions induce almost 100% dauer formation.  Immediately after dauers had 

formed, a portion of the plates was harvested and these dauers were transferred into 

fernbach flasks containing 200 ml S buffer (pH 7.0), and shaken at 120 cycles per minute at 

24°C. 

Dauers occasionally recovered on the plates with time.  Plates containing less than 

99% dauers were discarded.  Forced recovery after diapause periods lasting for 6 and 27 

days was achieved by transferring washed dauers onto nutrient agar plates with freshly 

grown E. coli cells.  Dauer survival was near 100% up to 28 days.  Metabolism during 

recovery was monitored by sampling every 3h, for a total of 12h.  For investigating post-

dauer metabolism, post-dauer L4 juveniles were further grown in liquid culture as described. 
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Samples were taken at regular time intervals for the various assays.  Dead worms, 

owing to their slightly lower gravity, were removed by centrifugation through 36% (v/v) 

Percoll in S buffer at 180 g for 2 min (Fabian and Johnson, 1994).  Live worms were 

recovered from the sediment and debris and remaining bacteria were removed by floatation 

on 40% sucrose (Braeckman et al., 1999; Sulston and Hodgkin, 1988), followed by three 

washes with S buffer to remove the sucrose.  Harvesting was discontinued when the 

percentage of dead worms in the cleaned sample began to exceed 5%.   

For respiration and heat production assays, cleaned, live worms were used 

immediately after harvesting; the rest of the sampled worm suspension was aliquoted and 

stored at -75°C for assays that can be performed using frozen worms. 

 

2.2.1.2. Assays 

 

Oxygen consumption 

 

Oxygen consumption was monitored as described in (Braeckman et al., 2002b) with 

a six-channel Strathkelvin (Glasgow, Scotland) thermostatted respirometer equipped with 

Clark-type electrodes.  Briefly, 1 ml aliquots of nematodes suspended in basal axenic 

medium (for composition, see 2.4.1) were delivered in the cells of the respirometer; oxygen 

concentration was registered for 10-30 min and straight sections of the plots of oxygen 

concentration against time were used to derive the oxygen consumption rate. 

 

Heat production 

 

Heat production was measured with a thermal activity monitor (TA Instruments, 

New Castle, DE, USA), which accommodates four measuring units.  Each unit received a 

control ampoule (containing assay medium, but no worms) and a test ampoule (medium and 

worms).  The measuring units were sunk into a very precisely regulated water bath and heat 

flows were monitored.  Adults grown on plates were also assayed on an agar surface 

containing a lawn of autoclaved E. coli cells; those grown in liquid culture were suspended in 

axenic medium, which supports sustained energy expenditure.  Antibiotics (250 U/ml 

penicillin and 0.25 mg/ml streptomycin) were added to prevent interference by bacterial 

growth for many hours.  Dauers were assayed in S buffer or on agar made up in S buffer, 

because the axenic medium strongly promotes dauer exit. 

 

ATP content 

 

ATP content can be measured by monitoring the amount of light emitted when 

luciferin reacts with oxygen in the presence of luciferase.  This reaction is driven by ATP 

present in the sample.  A frozen aliquot containing a nematode sample (100µl) was taken 

from the freezer (-75°C) and immediately submersed in a boiling water bath for 15 min to 

destroy ATPase activity and to release ATP into the medium.  All subsequent manipulations 

were done in a flow bench and sterile solutions were used.  After adding 1 ml twice distilled 

water, the worm corpses were sedimented by centrifugation at 20,800 g for 5 min, and 

200µl supernatant was transferred into a microcentrifuge tube and used for preparing four 
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1/100 dilutions.  Portions containing 50µl of an ATP dilution series (within a range of 10 pM 

to 1 µM) or diluted sample were pipetted into the wells of a white 96 well microtiter plate.  

Equal volumes of luciferin/luciferase reagent (Roche Diagnostics, Mannheim, Germany) 

previously reconstituted according to the manufacturer’s instructions were added and light 

emission was monitored by the WallacVictor2 Multilabel Counter (Perkin-Elmer, Waltham, 

MA, USA).  The average light intensity measured over 30 min, after an initial 10 min period 

was used to calculate the ATP content. 

 

Worm homogenates 

 

Worm homogenates were prepared to assess SOD and catalase enzyme activities.  

100 µl nematode samples were removed from the freezer and homogenized in a Mini-

beadbeater (Biospec Products, Bartlesville, OK, USA), in the presence of 100 µl 50 mM Na/K 

phosphate buffer, pH 7.8 and 100 mg glass beads (0.249-0.318 µm), for 1 min at 5000 rpm.  

1% chaps (final concentration) was added and samples were incubated on ice for 15 min.  

The samples were centrifuged for 8 min at 20,800 g and 4°C; the supernatants were used for 

enzyme activity assessment. 

 

Superoxide dismutase activity 

 

Superoxide dismutase (SOD) was assayed essentially according to an existing 

protocol (Corbisier et al., 1987), adapted for high-throughput analysis (Lenaerts et al., 2002).    

Aliquots of 6.7 µl were taken from a sample dilution series, made from worm homogenate, 

and added in duplicate to the wells of a white microtiter plate.  Next, 20 µl aliquots of 

xanthine oxidase reagent (xanthine oxidase diluted in double distilled water such that the 

blank reaction containing 6.7 µl water, 20 µl XO dilution and 174 µl reaction mixture yielded 

approx. 1.2 x 105 counts/s) and 174 µl of reaction mixture (5.2 ml 0.1 M glycine, 1 mM EDTA, 

adjusted to pH 9.0 with NaOH; 10 ml 0.108 mM xanthine; 2.1ml 1mM lucigenin; 1.2 ml water 

for a total of 18.5 ml) were added quickly by using a multichannel pipette.  Luminescence 

was measured for 0.1 s during the time span required for 25 consecutive plate 

measurements at 25°C using the Victor2 Multilabel Counter.  One unit of SOD activity is 

defined as the amount of SOD able to reduce the luminescence intensity by 50%.  The 

homogenate fraction (dilution) reducing luminescence by 50% was derived mathematically 

from plots of the luminescence intensities measured as a function of the homogenate 

fraction.   

 

Catalase activity 

 

Catalase activity was assayed at 25°C according to the method of Aebi (1984), 

adapted for use in microtiter plate format.  Worm homogenates were prepared as described 

previously and diluted as needed to obtain absorption levels at 240nm between 0.6 and 0.55 

at the start of the reaction.  6.9 µl sample volumes were added to the wells of a 96 well flat 

bottom UV transparent microtiter plate.  The reaction was started by adding 200µl substrate 

(11.4 mM hydrogen peroxide in 50 mM Na2HPO4 : KH2PO4 (Sørensen) buffer, pH 7.0) using a 

multichannel micropipette.  The decrease in absorbance was monitored at 240 nm 
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(Spectramax 190, Molecular Devices, Sunnyvale, CA, USA) for 25 reads (12 s interval, total 

measuring time: 4 min, 17 s).  The amount of peroxide decomposed was calculated using a 

molar coefficient of ε240nm, 1cm = 39.4.  The enzyme activity decomposing 1 µmole of hydrogen 

peroxide per min equals 1 unit of catalase activity. 

 

Protein content 

 

In this experiment, the bicinchoninic acid (BCA; Thermo Scientific, Rockford, IL, USA) 

method was used to assay protein content as follows: 100µl nematode aliquots were dried 

overnight in a Savant Speed Vac Concentrator, and 180 µl 1 N NaOH was added to the dry 

pellets.  Fat was degraded by heating at 70°C for 25 min.  The concentration of the base was 

lowered to 0.1 N by adding 1,620 µl distilled water.  After vortexing, the tubes were 

centrifuged at 20,800 g for 5 min and 10 µl portions of the supernatant were pipetted into 

the wells of a 96 well microtiter plate.  A dilution series of bovine serum albumin was 

included as a standard.  Next, 200µl BCA reagent prepared according to the manufacturer’s 

instructions was added.  The microtiter plate was covered with sealing tape and incubated at 

37°C for 1 h.  Absorbance was measured in the Victor2 Multilabel Counter at 560 nm. 

 

Scaling to biomass 

 

The experimental data were scaled to total protein amount to account for 

differences in biomass1.  The metabolic measurements were mostly repeated at least three 

times to reduce assay variation.  The source populations consisting of age-synchronized 

worms were grown 3-6 times at varying time intervals to reduce inadvertent environmental 

fluctuation. 

 

2.2.1.3. Statistics 

 

Statistical analyses were performed using algorithms implied in Excel and SPSS.   

For further details, we refer to (Houthoofd et al., 2002a). 

 

2.2.2. Results and discussion 

 

Figure 1a represents age-dependent oxygen consumption profiles for juvenile 

stages, adults, post-dauer adults after 6 or 27 days of diapause, and dauers; cultures on solid 

and in liquid medium are shown.  Oxygen consumption was relatively high in juveniles and 

was followed by an exponential decline (lack-of-fit test for linearity after log transformation, 

solid culture, P = 0.544; liquid culture, P = 0.502) during adulthood.  Dauer larvae consumed 

substantially less oxygen and maintained constant respiration rates over time.  Remarkably, 

respiratory activity rose steeply as the dauers exited their diapause stage; levels of post-

dauer oxygen consumption were hardly affected by the duration of the dauer stage (two-

                                                 
1
 Parameters were also scaled to body volume; normalizing to volume instead of protein content 

would increase all dauer activities by some 50% →20%, relative to young adult → senescent worms 
(results not shown).  We have to note that allometric scaling as described by Braeckman et al (2002c) 
has not been performed on this data set. 
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way ANOVA, P = 0.921).  Differences in age-specific declines in respiration rate could even be 

ignored between post-dauers and adults that bypassed the dauer stage (F-test for equality 

of slopes of several regression lines, P = 0.448). 

Release of energy as heat can be recorded with a calorimeter.  Though both 

catabolic and anabolic pathways dissipate heat, contribution by anabolism is negligible 

(Kemp and Guan, 1997).  As glycolysis is low at normoxia (Foll et al., 1999), heat dissipation 

profiles were similar to respiration profiles; for instance: as in respiration, a steep rise was 

noted when dauers exited diapause.  There is one exception: dauers raised on plates, and 

assayed on an agar surface, dissipated more heat than those in suspension culture (fig 1b).  

A possible explanation is a higher oxygen supply associated with exposure to a gaseous 

environment.  Respiration did not reveal this effect, likely because it can only be measured 

in liquid medium.  Even so, we have to remark that, while in dauers solid-surface and liquid-

state heat dissipation differed greatly, this difference was negligible in adults. 

For adult stages, ATP profiles were similar to those of oxygen consumption and heat 

dissipation2, yet in dauers, ATP content did not follow respiration and heat production 

trends.  Dauer ATP concentrations decreased gradually with age (fig 1c).  This decrease could 

be interpreted as a result of progressive exhaustion of fat and carbohydrate stores.  

However, there are indications that this is not the case.  If depletion of energy-rich stores 

were a cause of ATP content decrease, we would expect an initial phase where these stores 

are not limiting and ATP levels are unchanged, followed by a decrease in ATP when these 

stores become depleted.  Here we show that ATP levels decrease exponentially with time 

(lack-of-fit test for linearity after log transformation, solid culture,P = 0.787; liquid culture, P 

= 0.447) from the first measurement onwards.  Moreover, respiration and heat dissipation 

remain unchanged over the entire time span, confirming that exhaustion of combustible 

stores seems unlikely.  An alternative explanation for decreasing ATP content is the 

occurrence of declines in mitochondrial function.  Importantly, it is not known whether or 

not this is a regulated process.  However, ATP content increased sharply at dauer exit, 

suggesting that if mitochondrial function decreases over time in dauers, this decrease is 

readily reversible. 

Catalase (fig 1d) and SOD (fig 1e)3 activities were substantially upregulated in 

dauers; they declined sharply after exposure to food to stabilize at adult levels.  Solid-

surface-grown adults had generally higher enzyme activities relative to those in liquid 

culture.  Again, this could be due to a higher oxygen supply, yet this trend cannot be 

generalized to dauers. 

The long life of dauers is often seen in light of the Rate-of-Living theory (Pearl, 1928), 

where it is assumed that organisms can only spend a predetermined amount of energy 

during their lifetime, and as a consequence, lifespan is believed to be inversely proportional 

to metabolic rate.  By assuming that molecular damage, caused by free radicals, is lower in 

organisms with a slow metabolism, the link to the Oxidative Damage theory of Aging 

                                                 
2
 Potential ATP, respiration and heat dissipation profile differences between transitions from juvenile 

to adult stages can be explained by the fact that metabolic parameters of juveniles and adults were 
assessed in separate experiments (see legend of fig. 1). 
3
 At the time the dauer experiments were done, catalase and SOD activity protocols were the sole 

antioxidant activity protocols available to the lab.  This was also the case for experiments on Clk 
mutants (section 2.3) and dietary restricted worms (section 2.4). 



Chapter 2 

93 

 

(Harman, 1956) is easily made.  However, based on our findings we can exclude ‘rate of 

living’ as the cause of lifespan extension in dauers: oxygen consumption profiles observed 

for adult worms that bypassed, and those that entered and exited the dauer stage were 

similar.  Therefore potential lifespan is not determined by metabolic rate, and other 

mechanisms of lifespan extension must be involved.  Long lifespan in dauers is associated 

with enhanced resistance to oxidative stress.  Elevated SOD and catalase activities could be 

essential for dauer survival; however, our findings do not provide strict proof.  It must be 

noted that juvenile stages exhibited high metabolic rates (fig 1 a&b) and low antioxidant 

activity (fig 1 d&e); this suggests that oxidative stress is most likely not the only cause of 

aging, and/or that high metabolic rates do not necessarily implicate high ROS production. 

Stable oxygen consumption and heat output rates suggest that dauers are non-

aging.  However, gradual declines of ATP content imply that dauers cannot completely defy 

aging.  Possibly, diminished mitochondrial function is the cause of decreasing ATP stores. 

Perhaps signs of decreases in mitochondrial efficiency can manifest themselves in decreasing 

ATP while oxygen consumption and heat production remain unaltered. An indication 

supporting the fact that not every age-related change is immediately reflected in parameters 

related to this change, can be found in measured activities of aconitase.  The enzyme 

aconitase is part of the TCA cycle responsible for supplying reducing equivalents to the 

electron transport system.  Though this enzyme’s activity decreases in dauers (results not 

shown), this decrease has no apparent effect on oxygen consumption. However, decreasing 

ATP concentration is not readily reconciled with stable respiration and heat dissipation.  

Another potential explanation is a general decrease in nucleotide content with increasing 

duration of dauer diapause.  This decrease could affect standing ATP levels while the 

available nucleotide pool could still be sufficient to saturate the oxidative phosphorylation of 

the dauer mitochondrion. An assessment of the nucleotide pool at different time points in 

dauer diapause would evaluate this possibility.   To conclude, mitochondrial aging might 

occur at the dauer stage, but at dauer exit, aging-related changes disappear promptly and 

with no apparent consequences on post-dauer life.  Therefore we suggest that in recovering 

dauer larvae, aging is reversed and the ‘aging clock’ is reset. 
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Figure 1: for legend: see next page. 
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Figure 1 continued: Metabolic and antioxidant enzyme activity profiles as a function of development 
and ageing in wild-type.  a, respiration rate; b, heat production; c, ATP content; d, catalase activity; e, 
SOD activity.  Full lines indicate consecutive sampling of source populations; dotted lines connecting 
symbols indicate that the data correspond to separate experimental populations.  Real time heat 
increase during dauer recovery is shown as an insert to (b). The relatively long time for stabilisation 
(30–60 min) and the fast rise of heat production during recovery precludes monitoring of heat 
production by means of consecutive sampling. L1, L2, L3, L4: first, second, third and fourth larval 
stage. Data represent the mean ± S.E.M. of three to six independent experiments. 
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2.3 Clk mutations extend lifespan without major changes in metabolic 

rate and antioxidant defense 
  

The Clk genes clk-1, clk-2, clk-3 and gro-1 control the timing of a variety of 

physiological processes.  The proteins encoded by these genes seem unrelated; yet for all 

four genes, mutation causes similar phenotypes: an increase in adult lifespan and a slowing 

down of development, pharyngeal pumping, defecating, egg laying and moving. 

Some of the Clk genes have been molecularly characterized, others await further 

elucidation.  The molecular identity of clk-3 is unknown.  The mitochondrial protein CLK-1 is 

a putative hydroxylase in the biosynthesis of nonaprenylated ubiquinone (UQ9) (Branicky et 

al., 2001; Hekimi et al., 2001; Jonassen et al., 2001; Miyadera et al., 2001); however, 

respiration in clk-1 mutants is influenced only slightly (Braeckman et al., 1999; Felkai et al., 

1999) as DMQ9, a biosynthetic intermediate, accumulates in the mitochondria and can 

function as an electron carrier.  Another putative function of CLK-1 is its involvement in ADP-

dependent regulation of mtDNA replication (Gorbunova and Seluanov, 2002).  The essential 

functions of CLK-2 remain ill-defined.  At one point thought to be implicated in telomere 

length regulation (Benard et al., 2001), Ahmed and co-workers (2001) have uncovered a 

function in DNA damage response signaling for CLK-2.  gro-1 encodes a tRNA-modifying 

enzyme (isopentenylpyrophosphate:tRNA transferase), required for efficient translation 

(Lemieux et al., 2001).  It can be translated into two different proteins by alternative 

translation initiation, one of which contains a mitochondrial targeting signal; failure of this 

particular mitochondrial protein results in the gro-1 mutant phenotype. 

If the assumption is made that slowing of the rate of living is linked to reduction in 

energy consumption and metabolic rate, and that reduction of metabolic rate would lower 

ROS production, then the Clk mutants would support rate-of-living and oxidative damage as 

causes of aging.  However, as reported in previous studies, respiration rates and ATP levels 

were influenced only slightly by mutation in clk-1 or gro-1 (Braeckman et al., 1999; Felkai et 

al., 1999).   

Here we assessed changes in energy metabolism (respiration, heat production and 

ATP content) by mutation in any of the four Clk genes.  As in dauers, oxidative stress 

resistance was evaluated by determining levels of SOD and catalase activity. 

 

2.3.1. Materials and methods 

 

2.3.1.1. Strains and culture conditions  

 

The wild type strain N2 was used as well as Clk mutants clk-1(e2519), clk-2(qm37), 

clk-3(qm38) and gro-1(e2400).  The worms were grown at 17-18°C on nutrient agar plates 

seeded with E. coli and synchronous cultures were established as in (2.2.1.1.).  Fourth stage 

larvae were rinsed off the plates, transferred to Fernbach flasks and maintained at 24°C as 

described in (2.2.1.1.).  Sampling was performed as in (2.2.1.1.). 
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2.3.1.2. Assays 

 

The assays for this experiment (oxygen consumption, heat production, ATP content, 

SOD and catalase activity and protein content) were executed as described in (2.2.1.2.).  

All data were normalized to protein content to correct for size differences4.  For Clk 

mutants, source populations were grown in triplicate; wild-type series were collected six 

times. 

 

2.3.1.3. Statistics 

 

Statistical analyses were performed on log transformed data using SPSS.  Strains 

were compared by using two-way analysis of variance (ANOVA), and pairwise comparisons 

were made with Scheffé post-hoc tests.   

For further details, we refer to (Braeckman et al., 2002a). 

 

2.3.2. Results and discussion  

 

Metabolic rate, as assessed by oxygen consumption (fig 2a) and heat production (fig 

2b) rates, was not lower in any of the Clk mutants relative to wild-type: clk-1(e2519) and 

gro-1(e2400) mutants had higher respiration and heat dissipation rates (P < 0.001) while 

clk-2(qm37) and clk-3(qm38) generally matched wild-type.  ATP content (Fig 2c) was higher 

in clk-1(e2519), clk-3(qm38) and gro-1(e2400) (P < 0.001) but similar to wild-type in clk-

2(qm37) over almost the entire adult lifespan.  For the clk-1 mutant, we have to note that 

our measurements may even slightly underestimate its true metabolic rate as this mutant is 

unable to adapt to temperature shifts (Branicky et al., 2001; Wong et al., 1995); after the 

temperature shift from 17 to 24°C at the L4 stage, clk-1 metabolic rates may persist at lower 

levels than those normally expected after a temperature raise. 

Antioxidant enzyme activities in Clk mutants were generally different from those of 

wild-type, but a consistent pattern was lacking.  Catalase activity (Fig 2d) was generally 

elevated (clk-1, clk-3, gro-1 P < 0.01) but SOD activity (fig 2e) was lower (clk-1, clk-2, clk-3 P < 

0.001) than or similar (gro-1) to wild-type. 

These results are in conflict with the aforementioned Rate-of-Living and Free Radical 

theories of aging.  First of all, as suggested by respiration, heat dissipation and ATP content, 

not one of the four Clk mutants showed reduced metabolic rates when compared to wild-

type.  Secondly, we saw no consistent upregulation of antioxidant activities in these 

mutants: while catalase levels were generally higher in mutant than in wild-type, SOD 

activity was lower in all but one Clk mutant.  These results suggest that extended longevity in 

Clk mutants is not attributable to decreased metabolic rate nor to a catalase- or SOD-related 

increased resistance to oxidative stress. 

                                                 
4 Data were also normalized to worm volume; these results can be found in Braeckman et al. (2002a).  

We have to note that allometric scaling as described by Braeckman and colleagues (2002c) has not 
been performed on this data set.  Data on worm volume in the different Clk mutants can be found in 
the addendum to chapter 3 (section 3.3). 
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Figure 2: 
Longitudinal study of energy metabolism 
and antioxidant defense in Clk mutants: a, 
oxygen consumption ; b, heat production;  c, 
ATP levels; d, catalase activity; e, SOD 
activity. Data were scaled to protein. Data 
represent the mean ± S.E.M. of three (Clk’s) 
or six (wild type) independent experiments. 
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Even though according to our data metabolic rate is not downregulated in Clk 

mutants, mitochondrial function, and electron transport in particular, may be indirectly 

involved in the slow phenotype.  clk-1 mutants have to rely on DMQ9, the precursor of UQ9, 

or dietary UQ8 to supply Complex III with electrons (Larsen and Clarke, 2002; Miyadera et al., 

2001).  gro-1 mutation compromises translational fidelity and efficiency (Lemieux et al., 

2001) of the 12 mitochondrially encoded proteins, all involved in electron transport.  At least 

for these two Clk mutants, there is a strong indication that a slight alteration of the 

mitochondrial electron transport suffices to result in the Clk phenotype through an unknown 

mechanism that is not directly associated with metabolic rate. 
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2.4 Dietary restriction does not decrease metabolic rate but enhances 

antioxidant defense 
  

The mechanism of lifespan extension by dietary restriction (DR), though effective in 

invertebrates and vertebrates, has not been elucidated entirely.   One leading hypothesis 

assumes that DR acts by decreasing oxidative stress (Sohal and Weindruch, 1996), supposing 

that the beneficial effect of DR is associated with a hypometabolic state (Lakowski and 

Hekimi, 1998; Lee et al., 1999a). 

Dietary restriction can be imposed on C. elegans in different ways, including 

bacterial dilution, mutation affecting pharyngeal pumping and growth in synthetic media in 

the absence of bacteria.  For each of these culture conditions, the effect of age on metabolic 

rate (respiration, heat production and ATP content) was determined, together with 

antioxidant activity levels (SOD and catalase).   

 

2.4.1. Materials and methods 

 

2.4.1.1. Strains and culture conditions 

 

The wild type strain N2 was used as well as two Eat mutants, eat-2(ad465) and eat-

2(ad1113).  The latter has a more severe eating defect, and has a longer lifespan than the 

former (Lakowski and Hekimi, 1998).  glp-4(bn2ts) mutants essentially lack a germline when 

raised at the restrictive temperature; in this way, potentially confounding effects resulting 

from differences in the number of eggs carried by gravid worms could be ruled out.  

Monoxenic age-synchronous cultures were established as described in (2.2.1.1.).  For axenic 

dietary restriction (ADR), axenic cultures were obtained by two consecutive cycles of 

hypochlorite treatment to achieve sterility.  L1s were inoculated into axenic culture medium.  

Axenic culture medium contained 3% (w/v) soy peptone and 3% (w/v) dry yeast extract and 

was sterilized under standard conditions.  After cooling, haemoglobin stock solution 

(prepared by dissolving 5 g haemoglobin in 100 ml 0.1N KOH and autoclaving for 10 min) 

was diluted 100-fold into the basal medium.  To improve synchronous development, heat-

killed E. coli cells were added at 3 x 109 cells/ml.  When the worms reached the fourth larval 

stage, they were washed with sterile S buffer and suspended into Fernbach flasks containing 

250 ml axenic medium (without heat-killed bacteria) and FUdR was added at 50µM final 

concentration.  Culture conditions were the same as for monoxenic cultures; all aging 

cohorts were maintained at 24°C.  Sampling was performed as in (2.2.1.1.). 
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2.4.1.2. Assays 

 

The assays for this experiment (oxygen consumption, heat production, ATP content, 

SOD and catalase activity and protein content) were executed as described in (2.2.1.2.).  

Data were normalized to protein content.  Oxygen consumption and heat 

production data were also corrected for differences in volume: the rate of energy 

expenditure per unit mass varies with body size and results in the negative allometric 

relationship between mass and metabolic rate.  Allometric scaling of data was performed as 

in (Braeckman et al., 2002c)(see section 3.2.2.2.).  Section 3.3. (addendum to chapter 3) 

elaborates on the effect of feeding conditions on worm size and its consequences for 

normalization.  

 

2.4.1.3. Statistics 

 

Statistical analyses were performed using SPSS.  Strains were compared by using 

two-way analysis of variance (ANOVA), and pairwise comparisons were made with LSD post-

hoc tests.  Additionally, F-tests for linear regression were performed in excel. 

For further details, we refer to (Houthoofd et al., 2002a) and (Houthoofd et al., 2002b).   

 

2.4.2. Results and discussion 

 

In this experiment, a number of approaches to assess food restriction were 

investigated.  Firstly, the eat-2 mutation brings about defects in pharyngeal pumping, 

causing a reduced rate of feeding (Raizen et al., 1995).  Metabolic and antioxidant 

parameters of two alleles of this mutant were assayed after incubation in monoxenic feeding 

conditions: eat-2(ad465) and eat-2(ad1113) adult worms were kept in liquid bacterial 

suspension, containing non-restrictive amounts of E. coli.  Secondly, wild-type adult worms 

were subjected to incubation in liquid medium supplemented with reduced concentrations 

of bacteria.  Klass (1977) showed that reduction of E. coli as food supply in liquid suspension 

from 109 to 108 cells/ml resulted in 60% lifespan extension.  As standard conditions, ad-

libitum E. coli concentrations are kept at 3 x 109 cells/ml.  By reducing this concentration, DR 

can be imposed on C. elegans.  A range from 0.2 x 109 to 6 x 109 cells/ml was chosen to 

investigate the effect of bacterial dilution on metabolic rate and antioxidant capacity in the 

wild-type; 2-day-old adults were tested.  Also, bacterial dilution was implemented on the 

glp-4 (bn2ts) mutant, which was used to control for potentially confounding effects resulting 

from differences in the number of eggs carried by gravid worms. Thirdly, wild-type worms 

were subjected to incubation in axenic medium (ADR or axenic dietary restriction), which is a 

synthetic medium containing soy peptone as a source of amino acids, yeast extract for 

vitamins and growth factors, hemoglobin as a heme source and sufficient amounts of sterols 

as contaminating compounds of the former constituents (Vanfleteren, 1980).  It causes slow 

growth and reduced fecundity but also extends adult lifespan (Braeckman et al., 2000; 

Vanfleteren and Braeckman, 1999).  Lastly, eat-2 mutants were incubated in axenic medium 

to assess the combined effect of these DR conditions. 

Metabolic rate, as measured by respiration (fig 3a) and heat production (fig 4a) 

rates, was elevated in eat-2 mutants when kept in standard E. coli-supplemented liquid  
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Figure 3: Effects of food restriction on respiration rate. a, WT and eat-2(ad1113) in monoxenic liquid 
culture with a bacterial density of 3 x 10

9
 cells/ml; b, WT and glp-4(bn2) 2-day-old adults, raised in 

liquid culture containing increasing E. coli densities (log scale) ; c, WT and eat-2 mutants, monoxenic  
(bacterial density 3 x 10

9
 cells/ml) or axenic liquid culture, average measures for the first 13 days of 

adult life; d, WT and eat-2 mutants, axenic liquid culture, shown during the adult life trajectory, and 
with WT monoxenic shown as a reference. Data are corrected for size-dependent changes; data 
represent the mean ± S.E.M. of three to five independent experiments. 

 

 

medium (only the ad1113 allele is shown).  Dietary restriction through bacterial dilution had 

no effect on wild-type oxygen consumption rates (fig 3b) (F-test for regression: P = NS), while 

it did affect heat dissipation (fig 4b): heat production rates decreased with increasing 

bacterial concentrations (F-test for regression: P < 0.001).  Trends were similar for glp-4(bn2) 

(F-test for regression: oxygen consumption, P = NS; heat dissipation, P < 0.001), indicating 

that the observed effects were not caused by varying egg production.  Wild-type worms had 

higher oxygen consumption (fig 3c & d) and heat production (fig 4c & d) rates in axenic 

medium than in monoxenic liquid culture (oxygen consumption: P < 0.01; heat dissipation: P 

< 0.05); stimulation of metabolic rate by axenic medium was far less outspoken in eat-2 than 

in wild-type (fig 3c & 4c).  

While the eat-2 mutation had little effect on ATP concentration in monoxenic liquid 

culture, at least during the first week of adult life (fig 5a), differences in ATP content 

associated with bacterial dilution were remarkable (fig 5b).  Here, ATP concentrations 

increased with increasing amounts of food, even more so for glp-4 than for the WT (F-test 

for linear regression, N2: P = 0.009; glp-4: P < 0.001).  Young adults in axenic culture had 

lower ATP concentrations relative to worms raised in bacterial culture (fig 5c & d) (two-way 

ANOVA on data from day 0, P = 0.001).  All three strains showed reduced rates of age- 
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Figure 4: Effects of food restriction on heat dissipation; legend as in fig. 3.  

 

 

 

 
 
Figure 5: Effects of food restriction on ATP content; legend as in fig. 3 without correction for size-
dependent changes.  
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Figure 6: Effects of food restriction on SOD activity, legend as in fig. 5. 
 

 

 

 
 
Figure 7: Effects of food restriction on catalase activity, legend as in fig. 5. 
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specific ATP content decline in axenic versus bacterial medium (fig 5d) (F-test for equality of 

slopes of several regression lines, P < 0.01). 

eat-2 mutants reached over 40% higher SOD activity levels relative to wild-type in 

monoxenic liquid culture; this difference persisted over the entire adult life trajectory (fig 6a) 

(two-way ANOVA and post-hoc LSD test, P < 0.001 for both eat-2 alleles).  In wild-type and 

glp-4 subjected to bacterial dilution, SOD activity tended to decrease weakly with increasing 

bacterial concentration (fig 6b) (F-test for linear regression, N2: P = 0.007; glp-4: P < 0.001).  

In axenic medium, SOD activities doubled in the wild-type and increased to those wild-type 

levels for both Eat mutants (fig 6c & d).  In monoxenic suspension culture, catalase activity 

was higher in eat-2 than in wild-type (fig 7a) (two-way ANOVA and post-hoc LSD test, eat-2 

(ad465): P = 0.013; eat-2(ad1113): P = 0.047).  In wild-type, catalase activity decreased with 

increasing availability of bacteria (F-test for linear regression, P = 0.001), but no DR-related 

catalase trends were seen in glp-4 (P = NS) (fig 7b).  Axenic culture increased catalase activity 

of the wild-type when compared to monoxenic conditions (P = 0.014) (fig 7c & d), but the 

effect of axenic culture on Eat mutants had no statistical significance (P = NS for both eat-2 

alleles). 

From SOD and catalase activity decreases through bacterial dilution, it could be 

suggested that antioxidant activity levels negatively correlate with food intake.  This could 

also be construed from experiments related to dauer antioxidant activity: the non-feeding 

dauer has elevated antioxidant defenses.  However, some findings obscure this possibility.  

First of all, catalase activity is invariant with decreasing bacterial dilution in glp-4, showing 

that at least in this mutant, a negative correlation between food intake and antioxidant  

activities is not a general trend.  Secondly, antioxidant activities are higher for N2 maintained 

on plates than for N2 kept in liquid monoxenic medium (Houthoofd et al., 2002b).  It is 

known that for C. elegans, feeding is facilitated when the worms are kept on a lawn of 

bacteria, so we can assume that the worm’s feeding rate will be higher on plates than in 

liquid culture.  In these conditions, increased antioxidant activities could also be caused by 

higher oxygen availability.  This experiment shows that other factors besides nutrient levels 

can influence antioxidant enzyme activities, making it difficult to discern the effect of 

feeding on antioxidant defense.  Moreover, since E. coli is mildly pathogenic (Darby, 2005) 

and is an unnatural food source for C. elegans (Kiontke and Sudhaus, 2006), we would 

expect that antioxidant defenses would be beneficial especially in fully-fed conditions. 

These experiments suggest that DR is not associated with a hypometabolic state.  

Bacterial dilution did not cause a decrease in metabolic rate; food restriction through 

pharyngeal defects and axenic medium seemed to upregulate metabolic rate. While DR by 

eat-2 mutation did not show lower ATP content than the wild-type, bacterial dilution 

lowered ATP content substantially.  Perhaps ATP consumption was enhanced in these worms 

to support de novo synthesis of biomolecules otherwise supplied with food, resulting in low 

ATP content in conditions of low bacterial supply.  ATP content was also lower in young 

adults when subjected to axenic medium, but decreased at a slower rate with increasing 

age.   

In eat-2 and in axenic medium, lifespan extension seemed to be correlated with 

elevated antioxidant capacity.  However, for bacterial dilution, results were more 

ambiguous: while SOD activity increased with decreasing bacterial supply, the increases 

were small.  The same could be said for catalase in the wild-type, and in glp-4, DR effects on 
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catalase were absent.  Moreover, worms restricted by bacterial dilution acquired no 

elevated protection against paraquat and hydrogen peroxide (results not shown).  The role 

of antioxidant defense in DR-mediated lifespan extension has yet to be clarified.  Most 

importantly, we have shown that, though physiological effects imparted by DR through 

bacterial dilution, axenic medium and eat-2 mutation are not identical, they all oppose the 

notion that DR-induced lifespan extension might be caused by lower metabolic rate. 

 

2.5 General discussion and conclusions 

 
The link between low metabolism and the three lifespan-extending manipulations 

described in this chapter is easily made.  Dauers are non-feeding, Clk mutants have a slow 

life rythm and dietary restriction entails uptake of less nutrients.  As less ‘fuel’ is available to 

drive the ETS, a lower rate of metabolism could be expected.  If the assumption is made that 

low metabolic rate leads to low ROS production, a plausible explanation for postponed aging 

at the molecular level is found.  Hence the importance of assessment of metabolic 

parameters and antioxidant levels: they can contribute to the evaluation of the most 

important and generally accepted theory of aging.   

In the mid 90s, Lakowski and Hekimi (1998) constructed the eat-2;clk-1 double 

mutant in order to study the interaction between DR and metabolic rate.  The lifespans of 

the single mutants were not additive, from which the authors concluded that eat-2 and clk-1 

influence aging through a common process; they suggested reduced metabolic rate and 

lower ROS production.   

As proven by previous (Braeckman et al., 1999) and these studies, there is  little 

difference in oxygen consumption between clk-1 and WT, undermining the hypothesis of 

slow metabolism as a way to extend lifespan. However, other researchers come to quite 

different conclusions; according to Van Raamsdonk and colleagues (2010), oxygen 

consumption is lower in clk mutants relative to WT.  In agreement with the Braeckman 

study, higher levels of ATP were recorded in clk mutants, but these were attributed to 

decreased energy expenditure.  The Hekimi group concluded that clk mutants illustrate the 

value of some aspects of the Rate-of-Living theory.  Though the divergence in oxygen 

consumption results could be explained by differences in experimental setups, the fact that 

in our hands, clk mutants are capable of maintaining higher metabolic rates and longer 

lifespans (personal communication, B.P. Braeckman) cannot be ignored and is a strong 

indication against the Rate-of-Living theory.  Moreover, in all but one of the lifespan-

extending situations described here, metabolic rate is not lowered, and often it is enhanced: 

in DR-treated C. elegans, oxygen consumption and heat production rates are generally 

higher than in fully fed conditions.  In the dauer, metabolism is low but stable; the rise of 

metabolic rates after subjection to food is instant.  Likewise, in other model organisms, long 

lifespans are not necessarily associated with slow metabolism.  Within-species comparisons 

in Drosophila, mice and dogs show that metabolic rate and longevity are not inversely 

related (Speakman et al., 2004; Speakman et al., 2003; Van Voorhies et al., 2003).  DR results 

in other model organisms underpin the increased rates of metabolism found in C. elegans:  

in rats submitted to long-term DR, no decrease of metabolic rate is recorded (Lambert et al., 

2004; McCarter et al., 1985; McCarter and Palmer, 1992).  The same is true for DR 
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Drosophila (Hulbert et al., 2004).  Lin and co-workers (2002) showed that DR in S. cerevisiae 

results in increased respiration. Together, these data reject the notion that lifespan 

extension can be attributed to low metabolic rate. 

Though antioxidant activities are not convincingly upregulated in the case of DR 

through bacterial dilution, they are increased, in one form or another, in other cases 

described here.  This could suggest that antioxidants play a role in lifespan extension.  Since 

metabolic rates are seemingly not decreased in mutations or conditions that lead to lifespan 

extension, high antioxidant activity could reduce levels of ROS and ROS damage and 

consequently, result in a long lifespan.  However, several findings refute this notion.  Firstly, 

supplying wild-type C. elegans with mimetics for the antioxidant enzyme SOD does not 

prolong their lifespan (Keaney et al., 2004).  According to Van Raamsdonk and co-workers 

(2010), most clk mutants show increased sensitivity to juglone and paraquat; however, 

expression of sod-1 and sod-2 is generally similar or higher relative to WT.  It is suggested by 

these authors that increased sensitivity to oxidative stress is caused by increased ROS 

production, not by decreased antioxidant defense. In contrast, clk-2 was found to be more 

resistant to juglone (Johnson et al., 2001) though it has lower SOD activity than WT. In clk 

mutants, increased oxidative damage is also recorded despite their longer life span (Van 

Raamsdonk et al., 2010); these findings demonstrate that ROS do not negatively regulate 

lifespan.  The Hekimi group agrees that this contests the Free Radical theory of aging; long 

life is neither the result of increased resistance to oxidative stress, nor of lowered oxidative 

damage.  Others have confirmed this by knocking down sod genes, and potentially increasing 

oxidative damage; these treatments do not necessarily shorten lifespan, regardless of 

whether they are applied to wild-type, DR-treated worms, clk-1 or the Ins/IGF-1 mutant daf-

2 (Doonan et al., 2008; Honda et al., 2008; Van Raamsdonk and Hekimi, 2009; Yang et al., 

2007; Yen et al., 2009). Though the data presented here are insufficient to verify the 

importance of high antioxidant levels in lifespan extension for dauers, Clk mutants and DR, 

other studies suggest that for several long-lived C. elegans, longevity is not dependent on 

antioxidant defense.  In conclusion, the three cases of C. elegans longevity described in this 

chapter not only cast doubt on the putative causal relationship between antioxidant defense 

and lifespan extension, they also refute the Rate-of-Living theory as an explanation for 

longevity. 
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ABSTRACT 

 

Lifespan extension by disruption of the Insulin/IGF-1 pathway has been studied extensively 

in C. elegans.  A prominent characteristic of Ins/IGF-1 mutants is their elevated antioxidant 

defense.  Also, their metabolism is altered; it has been reported that their metabolic rate is 

reduced when compared to the wild-type (Van Voorhies and Ward, 1999).  Reduced 

metabolism and high antioxidant defense have been interpreted as support for the Rate-of-

Living and Free Radical theories of aging.  We have assessed metabolic rates and antioxidant 

activity in the daf-2(e1370) mutant. Our results confirm the elevated antioxidant defense of 

this mutant, but we show that this Ins/IGF-1 mutant is not hypometabolic.  It exhibits a shift 

in metabolism, possibly indicating a higher metabolic efficiency.  The potential link between 

daf-2(e1370)’s metabolism and lifespan extension is discussed in this chapter. 
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3.1 Introduction 
 

The life span of C. elegans is regulated by multiple signaling pathways that converge on a 

battery of downstream target genes. Among these, insulin/IGF-1 like signaling (IIS) is 

currently best understood. Activated Insulin/IGF-1-like receptor encoded by the gene daf-2 

triggers downstream kinases to phosphorylate a FOXO transcription factor encoded by daf-

16. Phosphorylated DAF-16 protein is sequestered in the cytoplasm and inactive. Reduction 

of IIS signaling in the absence of ligand or via reduction- or loss-of-function mutation in the 

daf-2 gene relocates DAF-16 to the nucleus and triggers a genetic program for lifespan 

extension (Gems et al., 1998; Henderson and Johnson, 2001; Kenyon et al., 1993; Kimura et 

al., 1997; Lee et al., 2001; Lin et al., 2001; Ogg et al., 1997). 

Mutation in daf-2 also enhances resistance to oxidative stress (Honda and Honda, 

1999). The concurrent features of longevity and resistance to oxidative stress have been 

interpreted as supporting the Free Radical Theory of Aging which proposes a central role for 

oxygen free radicals and derived reactive oxygen species (ROS) in causing the aging process 

(Balaban et al., 2005; Beckman and Ames, 1998; Finkel and Holbrook, 2000; Harman, 1956, 

1972; Viña et al., 2007).  We studied oxidative metabolism and antioxidant capacity in both 

the long-lived daf-2(e1370) mutant and the null mutant daf-16(mgDf50) in order to validate 

the Free Radical Theory of Aging as well as the Rate-of-Living Theory by Pearl (1928).  Results 

show that the long-lived daf-2 mutant is not hypometabolic.  Remarkably, it displays a low 

calorimetric-to-respirometric ratio, high ATP levels and an upregulated antioxidant defense.  

Possible explanations for these phenomena and their potential role in lifespan extension are 

discussed.  

 

3.2 Whole worm oxidative metabolism of daf-2  

 

3.2.1. Materials and methods 

 

3.2.1.1. Strains and culture conditions 

 

The wild type strain was the Bristol N2 male stock; the Ins/IGF-1 mutants used were 

daf-2(e1370) and daf-16(mgDf50).  The worms were grown at 17°C on nutrient agar plates 

seeded with E. coli and synchronous cultures were established as in (2.2.1.1.).  Fourth stage 

larvae were rinsed off the plates, transferred to Fernbach flasks and maintained at 24°C as 

described in (2.2.1.1.).  Sampling was performed as in (2.2.1.1.). 

 

3.2.1.2. Assays 

Oxygen consumption and heat production were executed as described in (2.2.1.2.), 

as were  SOD and catalase activity and protein content.   The calorimetric-to-respirometric 

ratio (C/R) was calculated by dividing heat dissipation by oxygen consumption.   
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ATP and ADP 

 

ATP and ADP were extracted from frozen worm tissue with perchloric acid as 

follows: to 100 µl of nematode suspension in S-buffer, 400 µl of HClO4 8% (v/v) and 200 mg 

of glass beads were added.  The samples were homogenized using a Mini-Beadbeater 

(Biospec Products, Bartlesville, OK, USA), operated at 5000 strokes/min for 1 min.  Next, 450 

µl (3 consecutive portions of 150 µl to avoid excessive formation of bubbles) of 1.33 M 

KHCO3 and 150 µl H2O were added. After leaving for 15 min at room temperature the sample 

was degassed in a Savant Speed Vac Concentrator for 10 min and cleared by centrifugation 

at 20,800 g for 8 min. Aliquots of the supernatant were used for ATP determination using 

the ATP Bioluminescence Assay Kit CLS II (Roche Diagnostics, Mannheim, Germany) and a 

Wallac Victor² Multilabel Counter (Perkin-Elmer, Waltham, MA, USA) as previously described 

(Braeckman et al., 2002b).  ADP was measured as excess ATP detected after conversion of all 

ADP to ATP. This was achieved in a coupled reaction in which 64 µM phosphoenolpyruvate 

was converted to pyruvate in 40 mM potassium phosphate, pH 7.6 in the presence of 4 mM 

MgSO4 and 1 U/ml pyruvate kinase.  After leaving for 10 min at room temperature, the 

reaction was stopped by heating the samples for 8 min at 99°C, and the supernatant was 

cleared by centrifugation at 20,800 g for 8 min.  Total ATP determination was performed as 

described in (2.2.1.2.), and ADP content was calculated as the difference between total ATP 

and ATP content before conversion of ADP.   

 

Reduced glutathione (GSH) levels 

 

Levels of reduced glutathione were measured as follows: in the presence of the 

catalyst glutathione-S-transferase (GST), GSH binds rapidly and specifically to the 

fluorochrome monochlorobimane (MCB) (Ublacker et al., 1991).  In a black microtiterplate, 

10µl of worm homogenate (prepared as described in (2.2.1.2.)) was added to 90µl of reagent 

solution containing 41.7 mM glycylglycine buffer pH 8.0, 0.133U/ml GST and 55,6 µM MCB.  

For conversion of fluorescence units to nmoles of GSH, a GSH standard curve was included in 

each assay.  After a 50 minute incubation period at 25°C, fluorescence was measured in the 

Victor² Multilabel counter at excitation and emission wavelengths of 360 and 460nm, 

respectively.   

 

Body volume & allometry   

 

Body volume was determined by measuring the length and thickness of a subsample 

of nematodes, fixed in 4% formaldehyde, using the RapidVue particle analyzer (Beckman 

Coulter, Fullerton, CA, USA) and using a cylindrical model for volume calculation.  All 

metabolic parameters were correlated to protein content to account for differences in body 

mass.  Respiration rate and heat production were also corrected for size-specific differences 

according to the Brody-Kleiber equation (Braeckman et al., 2002c) (see results and 

discussion section). 
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Quantitative PCR 

 

Quantitative PCR was performed as described in (Hoogewijs et al., 2008) on 2- and 8-

day-old adults of WT and daf-2(e1370) mutants; primersets used were: sod-3: (forward 

primer: AGAACCTTCAAAGGAGCTGATG; reverse: CCGCAATAGTGATGTCAGAAAG); mai-1: 

(forward primer: ATATGACGCAAAGCCAACAG; reverse: GTTCCGTGTCCTTTCTCGAT); mai-2: 

(forward primer: CGCGAGGACGAGTACTTCTA; reverse: GTTCGAGCACCTTCTTGTGA). 

 

3.2.1.3. Statistics 

 

Regression analysis of age-related changes was performed using the mixed linear 

regression model PROC MIXED in SAS statistical software; data were log-transformed when 

needed to allow the best possible fit and tests of fixed effects provided P values for strain, 

age and age*strain.  When Page*strain was <0.05, age-related changes (slopes) differed 

significantly between the strains compared.  When Page*strain was not significant, further 

conclusions were drawn based on Page, Pstrain or both.  As an auxiliary analysis, a  Student’s t-

test was used to compare differences between strains or ages at specific time points. Error 

bars depict standard error of the mean.  

 

3.2.2. Results  

 

3.2.2.1.  Replication of previous experiments  

 

In C. elegans, metabolic rate can be determined by several complementary assays.  

Two of them, respirometry and microcalorimetry, can be combined to assess metabolic 

efficiency.  By dividing heat output by oxygen consumption, the calorimetric-to-

respirometric (C/R) ratio is obtained; it represents the amount of heat produced per mole of 

oxygen used. 

Metabolic rate of live daf-2(e1370) has been studied at length previously in our lab.  

However, there were some convincing grounds to repeat these studies.  In Braeckman et al., 

2002c, reviewed in Brys et al., 2007, daf-2(e1370) oxygen consumption was very similar to 

the wild-type (Appendix 1, fig 1a), but heat dissipation was lower than in wild-type for most 

of the daf-2 lifespan (App. 1, fig 1b).  Consequently, the calorimetric-to-respirometric ratio 

was generally lower in the long-lived mutant (App. 1, fig 1c), indicative of a higher catabolic 

efficiency (Kemp and Guan, 1997), as less heat is lost for the same amount of oxygen 

consumed.  In Houthoofd et al., 2005b the same conclusions were drawn regarding the C/R 

ratio (App. 2, fig 2c), but respiration and heat dissipation showed quite different profiles: in 

this study, oxygen consumption declined steadily with age in N2 but much less so in daf-

2(e1370) (App. 2, fig 2a).  daf-2(e1370) released less heat early on in adulthood but the 

difference disappeared as the worms aged (App. 2, fig 2b).  For these discrepancies, no 

logical explanation was found; replication of these measurements was essential for a full 

understanding of metabolic rate in the long-lived Ins/IGF-1 mutant daf-2(e1370), central to 

this study.  Also, a different method was used to extract the energy carrier ATP from frozen 

nematodes, along with a technique to assay ADP content in samples.  This allowed for more 

accurate measurement of nucleotide content than reported in earlier studies.  The third 
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reason to re-assess metabolic rate of Ins/IGF-1 mutants is based on results obtained 

previously from the daf-16(m26) mutant (Houthoofd et al., 2005a).  The daf-16 gene 

encodes a forkhead transcription factor and is negatively regulated by DAF-2 signaling.  

Down-regulation of DAF-2 causes nuclear localization of DAF-16 and transcriptional 

regulation of genes whose activities shape the phenotype of the daf-2 mutant.  A 

considerable number of daf-2’s phenotypic characteristics are suppressed by mutation in 

daf-16, indicating that mutations in daf-2 require intact activity of daf-16 for their 

expression.  Consequently, phenotypes exhibited by daf-2 and daf-16 mutant animals are 

expected to be opposite, and those of the double mutant daf-2;daf-16 to be similar to daf-

16.  In the mentioned study, the daf-16 allele m26 was chosen; it is believed to cause loss of 

function with respect to the age phenotype (Lee et al., 2001; Lin et al., 2001).  Oxygen 

consumption in this mutant was similar to the wild-type (App. 3, fig 1b).  Unexpectedly, daf-

16 mutants displayed reduced heat dissipation when compared to wild-type, reminiscent of 

daf-2 heat production profiles (App. 3, fig 2b).  This led to reduced C/R ratios for a short-

lived C. elegans mutant (App. 3, fig 3b), a phenotype difficult to reconcile with that of daf-2.  

In contrast, ATP content was lowest in daf-16 and intermediate in daf-2;daf-16 (App. 3, fig 

4c); these unexpected results led us to include a daf-16 mutant in our setup.  This time, the 

mgDf50 allele was chosen, a molecular null allele denoting a large deficiency that deletes 

nearly the entire daf-16 coding region (Ogg et al., 1997).  This mutation is expected to 

suppress all Daf-2 phenotypes that rely on intact DAF-16. 

 

3.2.2.2.  Allometry 

 

Figure 1 represents the volumes of the strains used in this experiment.  Wild-type C. 

elegans volumes increased in young adult stages but stabilized at later ages.  In contrast, 

daf-2(e1370) volumes decreased with increasing age (fig 1a), while daf-16(mgDf50) reached 

volumes considerably higher than the wild-type (fig 1b).  An age-dependent shortening of 

the daf-2 mutant worms was the main cause of their decreasing volume, most likely through 

shrinkage of the cells.  daf-16 worms had an increased thickness when compared to the 

wild-type.  As before, all data were normalized to protein content.  Additionally, because 

strain and age effects on worm volume are not negligible, we also corrected respiration and 

heat production data for differences in body size.  Metabolic rate per unit mass varies with 

body size; small organisms have higher mass-specific metabolic rates than larger organisms.  

This even holds true for subcellular organelles (West et al., 2002).   

Figure 1: Worm volumes 
as a function of age; a, 
WT and daf-2(e1370), b, 
WT & daf-16(mgDf50).  
Data represent the mean 
of a minimum of three 
replicate cultures. 
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We chose to correct for this allometric effect by using the Brody-Kleiber equation, originally 

designed for interspecies comparisons (Brody, 1945; Kleiber, 1947), but compatible with 

within-species comparisons: P = aMb, where P equals metabolic rate, M stands for body 

mass, a is the scalar mass constant and b is the mass exponential constant.  The equation as 

it is used to adjust the metabolic rate of a strain to a reference strain is the following: Pcorr = 

P(Mref/M)b-1, where Pcorr is the corrected metabolic rate and Mref  is the mass of the reference 

strain.  The experimental value for b ranges from 0.67 to 0.80 for multicellular organisms 

and was determined to be 0.72 ±0.09 for nematodes (Finch, 1990; Klekowski et al., 1972; 

Peters, 1983). 

 

3.2.2.3. Oxidative metabolism 

 

We obtained respiration and heat production rates from wild-type (N2) worms, daf-

2(e1370) and daf-16(mgDf50) animals.  Respiration declined with age in all three strains. The 

rate of decrease was smaller in daf-2(e1370) animals [Page*strain (d0-d7) = 0.0002], but overall, 

respiration rates were grossly similar in all three strains (fig. 2 a&b), confirming results in 

(Appendix 1, fig 1a). Heat dissipation also decreased with age in N2 and daf-16(mgDf50) but 

was markedly lower in daf-2(e1370) animals (fig 2 c&d), much like in (Appendix 1, fig 1b). 

These findings seem to comply more with the study by Braeckman and co-workers (2002c) 

than with the (Houthoofd et al., 2005b) study.  Calorimetric-to-respirometric (C/R) ratios 

were considerably lower in daf-2 (e1370) than in wild-type, for most of its lifespan (fig 2e).  

Since the C/R ratio provides an indication of catabolic efficiency (Kemp and Guan, 1997) 

these results indicate that the efficiency of aerobic energy production is upregulated in daf-

2(e1370) animals during the first 7-9 days of their adult life span. Interestingly, loss of daf-16 

function also caused lower C/R ratios than wild-type after the third day of adult life (fig 2f).  

As mentioned, a similar observation was previously reported for the reduction-of-function 

allele daf-16(m26) (Houthoofd et al., 2005a) (Appendix 3, fig 3b).   

Next we asked if this putative upregulation of catabolic efficiency  in daf-2(e1370) 

would be observed  in the standing levels of adenosine triphosphate (ATP) and adenosine 

diphosphate (ADP) and we found that this was indeed the case (fig 2g&i) [daf-2 versus N2, 

both ATP and ADP: Page*strain <0.0001]. Thus, unlike wild-type and daf-16(0) worms, daf-

2(e1370) animals are able to attenuate the age-specific depletion of the instantly utilizable 

energy source ATP. 
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Figure 2: Ins/IGF-1 signaling controls age-related changes in aerobic energy production. Left panels: 
WT versus daf-2(e1370), right panels: WT versus daf-16(mgDf50). (A-B) Respiration rate. (C-D) 
Metabolic heat production. (E-F) Calorimetric to respirometric ratio. (G-H) Adenosine triphosphate 
content. (I-J) Adenosine diphosphate content. Displayed values are means ± standard error of mean 
for three replicate cultures; *, P < 0.05, **, P < 0.01 and ***, P < 0.001 (student’s t-test). 
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3.2.2.4. Antioxidant capacity 

 

Previously, estimations of antioxidant defense in daf-2(e1370) were performed by 

assaying superoxide dismutase (SOD) and catalase activity.  Both Braeckman and colleagues 

(2003) (reviewed in Brys et al. (2007)) (fig 3 a&b) and Houthoofd and co-workers (2005b) 

(results not shown) found increased SOD and catalase  activity in the long-lived mutant.  

Additionally, we measured its levels of reduced glutathione (fig 3c) which decreased 

exponentially with age, but at a slower rate in daf-2 than in the wild-type, leading to 

relatively high GSH levels at advanced age and confirming the elevated antioxidant defense 

phenotype of daf-2(e1370) (Page*strain = 0.0186). 

 

 
Figure 3: Antioxidants in wild type and daf-2(e1370) adults. (a) SOD activity, (b) catalase activity, (c) 
GSH content. Data represent means and standard errors for a minimum of three replicate cultures. 

 

3.2.3. Discussion  

 

3.2.3.1. Low daf-2(e1370) C/R ratios 

 

We have confirmed that daf-2(e1370) animals consume similar amounts of O2 but 

dissipate substantially less heat than wild type animals; this discrepancy is best illustrated by 

lower C/R ratios for most of the daf-2 lifespan.  Several physiological phenomena could be 

responsible for differences in C/R ratios. 

Firstly, one of the phenotypical characteristics of daf-2(e1370) is its low fertility: 

brood size of daf-2(e1370) is about 70% lower than in the wild-type (Houthoofd et al., 

2005b).  The lower C/R ratio in daf-2 could be ascribed to the reduced number of eggs in the 

gravid hermaphrodites.  However, this suggestion is not tenable: Houthoofd and co-workers 

(2005b) determined C/R ratios in the sterile glp-4(bn2) mutant and found no decrease in this 

parameter relative to wild-type. 

Secondly, differences in reactions to experimental conditions may be causal.  C/R is 

calculated by dividing heat measurements by oxygen consumption measurements.  

Polarographic measurement of oxygen consumption can only be done in liquid media and 

requires constant stirring of the suspended worms to avoid settling and formation of an 

oxygen concentration gradient.  The respiration assay is generally completed within 30 

minutes.  In contrast, the microcalorimetric approach to measuring heat production entails 

suspension of nematodes in undisturbed assay medium.  Stable heat signals are acquired 1 

or 2 hours after the start of the experiment.  Conceivably, the animals could be excited in 

one experimental environment and at rest in another.  In the latter condition, an oxygen 

concentration gradient can form.  daf-2(e1370) is known to be resistant to hypoxia (Scott et 
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al., 2002).  It cannot be ruled out that its low heat dissipation is a metabolic adaptation to 

conditions of low oxygen, not observed in the wild-type.  To test this possibility, we 

measured heat production of wild-type and daf-2(e1370) exposed to normoxic oxygen 

concentrations.  For this, we let the nematodes crawl on Whatman filter paper saturated 

with axenic medium; we calculated C/R ratios in normoxia and compared them to the C/Rs 

of nematodes immersed in axenic medium.  We found that initially, heat dissipation is higher 

in normoxia for both strains, leading to elevated C/R ratios and suggesting that these higher 

oxygen concentrations have an effect on 

metabolism in both strains.  This difference 

diminished with increasing age; eventually at 

day 4 of adulthood, C/R from normoxic 

conditions was equal to C/R of worms 

immersed in axenic medium in both wild-

type and daf-2 (fig 4).  We cannot readily 

explain why the daf-2(e1370) mutant had a 

higher C/Rnormoxia-to-C/Rimmersed ratio than the 

wild-type at day 0 of adulthood. This 

difference may be linked to the slower 

transition of L4-to-adult metabolism.  From 

this experiment, we feel that the comparison 

of C/R ratios obtained via the standard 

method is appropriate and that low C/R in 

daf-2 is most likely not caused by a 

metabolic adaptation to low oxygen.   

 

A different explanation for low C/R in daf-2 can be found in the alternative way of 

ATP-synthesis in nematodes. ATP synthesis is usually driven by aerobic pathways, but it can 

be supported by anaerobic metabolism as well.  When anaerobic support increases, the C/R 

ratio will also increase since anaerobic metabolism produces heat without consuming 

oxygen. This would suggest that the proportion of anaerobic metabolism in wild-type worms 

is higher compared to the daf-2 strain.  This seems unlikely, firstly because daf-2(e1370) 

mutants are more resistant to hypoxia (Scott et al., 2002), suggesting that wild-type worms 

rely more on oxygen.  Secondly, it has been speculated that a shift to glycolysis and 

fermentation along with aerobic respiration would be more likely associated with daf-

2(e1370) adult animals, as this mutant has similarities with the dauer stage (Rea and 

Johnson, 2003). If so, this would increase the daf-2(e1370) C/R ratio, a prediction refuted by 

our results. We reasoned that a shift towards anaerobic metabolism cannot be responsible 

for differences in C/R ratios of the two strains. 

Potentially, the use of different fuel types can partly be accountable for low C/R 

ratios in daf-2.  Depending on whether an animal burns carbohydrates, proteins or fat, its 

heat production per consumed unit of oxygen will vary.  It has been noticed that the daf-

2(e1370) strain stores large amounts of fat in its gut (Kimura et al., 1997; McElwee et al., 

2006) and tends to stop eating after a few days of adulthood (unpublished observation).  

This may lead to a predominant burning of fat in adult daf-2(e1370)  mutants.  Burning fat 

releases less heat per consumed unit of oxygen than burning carbohydrate or protein.  This 

Figure 4: Relative calorimetric to 
respirometric  (C/R) ratio in normoxia 
expressed as percentage of C/R measured in 
standard conditions; WT versus daf-2(e1370), 
measured from day 0 to day 4 of adulthood. 
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should lead to a lower C/R ratio.  However, a switch from carbohydrate to fat breakdown 

can only be responsible for a C/R decrease of 6-7% (carbohydrate: 21.1 J/ml O2, fats: 19.8 

J/ml O2).  Thus, the difference in C/R ratio between wild-type and daf-2 is too large to be 

explained exclusively by use of different fuel types.   

One other possible explanation is that C/R ratios in daf-2(e1370), having a reduced 

food uptake,  are low because this mutant is forced to use its available energy efficiently.  

Low C/R might then reflect a dietary restriction effect only. Further studies, including the 

non-Eat daf-2(m41) allele, could verify this possibility.  However, low C/R in daf-2(e1370) is 

apparent from day 1 of adulthood, before the mutant stops eating, weakening this 

argumentation. Moreover, WT worms 

submitted to DR do not have C/R ratios 

reduced to levels of fully fed daf-2(e1370) 

(see (Houthoofd et al., 2005a)). 

We considered the possibility that 

the daf-2(e1370) mitochondria might contain 

more ATP synthase inhibitor protein, IF1. This 

protein has the capacity to inhibit the 

intrinsic F1-ATPase activity (Lebowitz and 

Pedersen, 1996).  Since futile ATP hydrolysis 

is expected to generate heat we reasoned 

that more IF1 might contribute to the 

reduced heat production in daf-2(e1370) 

animals.  McElwee and colleagues (2006) 

reported that one of both C. elegans IF1 

encoding genes, mai-1 is expressed at a 

higher level in daf-2. However, mai-1 lacks a mitochondrial import signal 

(www.wormbase.org) casting doubt as to its mitochondrial action. We compared the 

expression of mai-1 and mai-2 (which has a mitochondrial import signal) in 2- and 8-day-old 

adults using qPCR and found no difference between the wild-type and daf-2 mutant strains 

nor between the age classes (fig 5).  We reasoned that IF1 is most likely not causal to low C/R 

ratios in daf-2. However, a recent proteomics study, performed in collaboration with our lab, 

does point to higher concentrations of MAI-2 in a daf-2 mutant background (personal 

communication, G. Depuydt).  Higher levels of IF1 in daf-2(e1370) remain a possible 

explanation for lower C/R ratios. 

Another possible but far from verified explanation could be either a difference in 

levels of uncoupling protein (UCP-4) or a difference in ‘futile cycling’ of fructose-6-

phosphate.  Mutant animals lacking UCP-4 reportedly contain elevated ATP levels and are 

sensitive to cold stress (Iser et al., 2005).  The ucp-4 gene is expressed at equal levels in wild-

type and daf-2(e1370) (McElwee et al., 2006), yet the activity of the protein may be 

regulated differently in the mutant.  Futile cycling of fructose-6-phosphate by 

phosphofructokinase  and fructose bisphosphatase results in the net hydrolysis of ATP and 

thermogenesis (Voet et al., 2006).  This pathway is active in vertebrate species and has not 

yet been extensively studied in C. elegans.  Phosphofructokinase is upregulated in daf-

2(e1370) adult animals and both phosphofructokinase and fructose-1,6-bisphosphatase are 

upregulated in wild-type dauers (McElwee et al., 2006; Wang and Kim, 2003).  Since dauers 

Figure 5: Normalized mRNA expression levels 
for mai-1 and mai-2; WT versus daf-2(e1370), 
harvested at day 2 and day 8 of adulthood.  The 
relative expression ratios are the average 
values from 3 replicate cultures; expression of 
sod-3 is added as a positive control. 
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and daf-2 adults predominantly use fat stores for energy production, these changes most 

likely indicate that cells expressing glycolytic activity are different from those that are active 

in gluconeogenesis (Wang and Kim, 2003).  Thermogenesis by cycling of fructose-6-

phosphate (i) would involve opposing reactions of phosphofructokinase and fructose-1,6-

bisphosphatase in the same tissue (Voet et al., 2006), (ii) is more likely under allosteric 

control and (iii) may be reduced in daf-2 adults relative to the WT animals. 

Finally, the decrease in daf-2 C/R ratio can also be explained by mitochondrial 

coupling efficiency.  When mitochondria of daf-2(e1370) are coupled more tightly compared 

to wild-type, it is expected that they will be able to produce more ATP and less heat per 

oxygen molecule that is consumed.  While standing ATP levels decline exponentially over the 

course of adulthood in wild-type, these levels tend to decline more slowly in daf-2 mutants.  

We view this explanation as the most likely cause of low C/R in daf-2: reduction in C/R ratio 

reflects more efficient energy production since less energy is lost as heat (Kemp and Guan, 

1997).  However, the relationship between mitochondrial efficiency and standing ATP levels 

may be more complex, as we will discuss next. 

 

3.2.3.2. ATP and ADP 

 

We (Braeckman et al., 1999; Braeckman et al., 2002c; Houthoofd et al., 2005b) and 

others (Dillin et al., 2002) found repeatedly that impairment of Ins/IGF-1 signaling resulted in 

much higher standing levels of ATP than normal.  ATP levels result from a dynamic 

equilibrium between the rates of production and consumption.  Changes of ATP content 

caused by mutation indicate that the balance between ATP production and consumption is 

altered.  Does this change result from altered production, or consumption, or both?  Higher 

ATP levels might derive from reduced ATP consumption rates for anabolic reactions: these 

mutants retain higher fat stores and produce fewer offspring, suggesting that they have a 

reduced energetic demand for anabolic reactions, including the production of yolk protein 

(Gems et al., 1998; Murphy et al., 2003).  Then again, there are arguments against this idea: 

Houthoofd and co-workers (2005b) found similar levels of ATP in three Ins/IGF-1 mutants, 

which have variably reduced levels of fertility: the reduction in fecundity ranged from 71% to 

3% relative to the WT’s brood size, while their standing ATP levels were similar.   Also, the 

suggestion that the consumption of synthesized ATP happens at slower rates and thereby 

releases heat more slowly, is in disagreement with Kemp and Guan (1997), who state that 

produced heat is almost completely due to catabolic reactions, and cannot be used to 

explain low C/R ratios in daf-2(e1370).  Lower ATP consumption in daf-2 cannot be 

confirmed nor disproven by our data.   

From standing ATP levels, it could be assumed that ATP production is higher in daf-2 

mutants.  In contrast, it is possible that the WT produces more ATP, and uses more of it, 

resulting in lower ATP concentrations.  Since oxygen consumption is relatively similar in the 

two strains, we would have to assume that this higher ATP production in the WT would in 

part stem from anaerobic metabolism. In agreement with anaerobic energy metabolism in 

many cells with high proliferative activity, this extra ATP production could be related to the 

higher fecundity of the WT.  If this is the case, then the assumption that daf-2 mutants are 

energetically more efficient would not stand.  However, some of the arguments cited in 

support of daf-2’s energetic efficiency also contest a role for anaerobic metabolism in 
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fecundity.  First of all, as mentioned, reduced fecundity had no effect on ATP concentrations 

in three Ins/IGF-1 mutants (Houthoofd et al., 2005b). This would imply that for each of these 

mutants taking part in the same signaling pathway, their anaerobic metabolism would only 

be as high as their respective energetic input in their progeny, which seems unlikely.  

Secondly, WT worms are less resistant to hypoxia than daf-2 mutants (Scott et al., 2002), 

pointing instead to daf-2 as a candidate for higher anaerobic metabolism (but see section 

3.2.3.1). 24 hours of hypoxia has a negligible effect on mortality, but it reduces total progeny 

numbers considerably in the WT, regardless of whether the hypoxia treatment is started 

before or after the nematode has reached reproductive maturity (Mehta et al., 2009). This is 

not surprising, as the process of oocyte maturation is energetically very costly (Mendenhall 

et al., 2009). Since the egg-laying period is limited (at 20°C, egg-laying is concentrated in 

about 3 days of the adult’s life trajectory), we would expect to see some change in the ATP 

profiles of the WT after its reproductive period if its energy provision is derived from both 

aerobic and anaerobic processes.  This is not the case, leading us to believe that ATP 

production from anaerobic metabolism is negligible.  This was confirmed by Föll and co-

workers (1999), who found only very limited amounts of end-products of anaerobic 

processes in the worm. 

Enhanced ATP production is consistent with the lower C/R ratios in daf-2 mutant 

animals relative to wild-type, despite their similar rates of oxygen consumption, but it seems 

to violate common biochemical wisdom that “The activities of the pathways that produce 

ATP are under strict coordinated control so that ATP is never produced more rapidly than 

necessary” (quoted from Voet et al. (2006)). It is not clear which alterations cause this 

apparent uncoupling of ATP production and consumption in daf-2 mutants. The activity of 

complex V is controlled by the flux of protons and the concentration of ADP in the matrix. 

Normally, the concentrations of ATP and ADP are in equilibrium: synthesis of ATP is expected 

to lower the concentration of ADP, in turn lowering the rate of ATP synthesis by Complex V. 

Also, any decrease of the ADP/ATP ratio in the cytosol is expected to result in reduced 

import of ADP into the matrix tending to maintain the ratio constant. In daf-2 mutants both 

ATP and ADP concentrations are elevated, complicating interpretation of their possible role 

in controlling energy production.  It should be noted that metabolic control systems 

normally allow for very little variation in the cellular ATP/ADP/AMP ratios. Thus, it is possible 

that variations in ADP and ATP inversely correlate with the variations in AMP content 

between strains or age.  AMP content was not assessed in this study.  However, because of 

the large ATP and ADP difference between the strains at old age, this seems unlikely.  We 

suspect that aging is associated with a significant loss of total nucleotide content in the wild-

type. 

Another potential site of control is the cytochrome c oxidase (Complex IV) reaction 

which is irreversible. In mammals, ATP is known to bind and inhibit Complex IV (Arnold and 

Kadenbach, 1999) allosterically, thereby adjusting ATP production to energetic demand.  3,5-

diiodothyronine can release the allosteric inhibition of complex IV by ATP, allowing high ATP 

production in the presence of high concentrations of ATP (Arnold et al., 1998). Possibly 

altered IIS signaling in daf-2 animals affects an analogous worm control mechanism.   

If low heat production in daf-2(e1370) is indicative of a higher mitochondrial 

coupling efficiency, then possibly, DAF-2 signaling controls mitochondrial bioenergetics by 

regulating the heat-producing proton leak pathway.  If and how this is done, remains to be 
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elucidated.  Studies using isolated mitochondria are required to further unravel the role of 

Ins/IGF like signaling in the control of mitochondrial bioenergetics.  Based on data presented 

here, it is unclear whether or not this effect on mitochondrial bioenergetics is directly 

involved in the lifespan extension of daf-2(e1370).  Some aspects of whole worm oxidative 

metabolism require our attention when we attempt to link mitochondrial data to the in vivo 

results described in this chapter.  For instance, the largest difference in C/R ratio between 

the two strains can be found around middle age, while ATP content discrepancies are largest 

at old age.  The question to be answered is whether mitochondrial data will allow us to 

resolve these discrepancies. If not, then other factors must play a role in regulating oxidative 

metabolism as well.   

We cannot state with certainty that the oxidative metabolism profiles measured in 

vivo are indicative of essential, lifespan-determining differences between WT and the long-

lived mutant.  Although the ATP phenotype of daf-2(e1370) is very pronounced, it is not 

necessarily correlated to its longevity phenotype.  RNAi against several mitochondrial genes 

reportedly lowered ATP substantially but extended life span (Dillin et al., 2002); also, isp-1 

mutants (defect in an iron sulfur protein of mitochondrial complex III) that are 

hypometabolic and are therefore expected to have low ATP, show a dramatic 60% life span 

extension (Feng et al., 2001). On the other hand, the ucp-4(0) mutant (UCP-4 is the only 

uncoupling-protein-like protein encoded in the C. elegans genome) contains elevated ATP 

levels yet is not long-lived (Iser et al., 2005).  Also, a causal connection between the low C/R 

ratio and high ATP levels has not been established; we have to note that the daf-16 mutants 

have rather low C/R ratios (at least for part of their lifespan) but normal ATP levels 

((Houthoofd et al., 2005a) and results in this section).   

 

3.2.3.3. Antioxidant capacity 

 

The elevated antioxidant capacity of daf-2(e1370) in the form of higher SOD and 

catalase activity confirms an earlier study (Vanfleteren and De Vreese, 1995), and in this 

section, it is also illustrated by assessment of levels of reduced glutathione.  Moreover, high 

daf-2(e1370) activity of SOD and catalase can be suppressed by mutation in daf-16(m26) 

(Houthoofd, 2003; Houthoofd et al., 2004), indicating that antioxidant levels are regulated 

by the Ins/IGF-1 pathway.  The daf-2(e1370) mutant is extremely resistant to oxidative stress 

(Honda and Honda, 1999).  Its increased stress resistance can most likely be attributed to 

elevated antioxidant activity, caused by downregulation of in the Ins/IGF-1 pathway, but this 

does not provide a causal connection between increased stress resistance and lifespan 

extension.  Moreover, a number of recent studies in C. elegans provide evidence that 

oxidative stress is not causal to aging (by knocking-down genes with antioxidant effects and 

recording lifespan (Doonan et al., 2008; Van Raamsdonk and Hekimi, 2009; Yang et al., 

2007)).  Also, in evaluating the role of antioxidant capacity in lifespan, we need to take into 

account the amount of ROS produced and the damage afflicted by these ROS.  We will 

elaborate on these aspects in chapter 6. 

In analogy to the potential food intake related justification for higher antioxidant 

defenses in dauers and DR-treated worms (see section 2.4.2), discrepancies in antioxidant 

enzyme activities between the WT and daf-2 could be explained by differences in food 

uptake.  The time point when antioxidant defenses start to differ between the two strains 
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seemingly matches the time point when the daf-2 mutant starts eating less (in other words, 

after day 2 of adulthood; unpublished observation).  This is especially apparent in catalase 

activity profiles, which show a sharp increase from day 3 onwards.  However, this does not 

explain the decrease seen in catalase activity after day 5 of adulthood.  Moreover, when 

these experiments were repeated, antioxidant defense activities in the two strains were 

dissimilar from day 0 of adulthood onwards, showing no such obvious peak in daf-2 catalase 

activity at day 3.  Increases in SOD activity did occur in daf-2, but only from day 5 of 

adulthood onwards (Houthoofd et al., 2005b).  To confirm the potential inverse relationship 

between antioxidant defenses and food intake, additional testing is required; for instance, 

antioxidant defenses could be assessed in WT that are shifted from fully-fed to restricted 

feeding conditions or vice versa in order to observe potential changes in catalase or SOD 

enzyme activities. 

 

3.2.4. Conclusion 

 

Oxidative damage is commonly held responsible for cellular aging, as postulated by 

the Free Radical Theory of Aging (Harman, 1956, 1972).  By assuming that the generation of 

reactive oxygen species is proportional to metabolic rate, the Free Radical Theory seems to 

be compatible with the Rate-of-Living Theory (Pearl, 1928).  We used the long-lived Ins/IGF-1 

mutant daf-2(e1370) to test the validity of these theories in explaining the aging process.  It 

is clear that Ins/IGF-1 signaling influences aerobic energy production.  However, metabolic 

rates in daf-2(e1370) refute the Rate-of-Living theory.  In daf-2(e1370), oxygen consumption 

is similar to respiration in the WT, while heat production is reduced in the mutant.  Since 

direct calorimetry is a measure of total metabolic activity, it could be stated that oxygen 

dependent metabolism is not reduced but total metabolism is lower in daf-2.  However,  as it 

has been shown that the contribution by anabolism to heat dissipation is negligible (Kemp 

and Guan, 1997) and that anaerobic processes are negligible in C. elegans, we conclude that 

metabolism is not reduced in daf-2(e1370).  Rather, in this mutant, metabolism seems to be 

shifted towards a higher efficiency, generating less heat and more ATP for the same amount 

of oxygen consumed.  A study on mitochondrial bioenergetics may verify if this is the case, 

as well as elucidate the balance between metabolic rate, antioxidant capacity and the 

production of and damage by ROS.  Lastly, we remark that Ins/IGF-1 affects both oxidative 

metabolism and antioxidant capacity, but whether these aspects of daf-2(e1370) play a 

causal role in its extended lifespan, remains unclear. 
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3.3. Addendum to chapter 3: Normalization of data 
 

3.3.1. Introduction 

 

A major methodological question that can be raised is how to normalize 

experimental data on metabolic rates in aging studies.  Ideally, a factor independent of age 

would be used for scaling. The most appropriate basis for normalizing metabolic data is unit 

metabolically active mass.  However, this parameter is usually not known.  Volume, wet 

weight, dry weight and protein content are commonly used proxies.  In this section, we will 

clarify which normalization method has been performed for which dataset of chapters 2 and 

3, and we will elaborate on why these choices were made. 

 

3.3.2. Normalization to worm number 

 

It has been argued that metabolic data of aging studies need to be normalized to 

worm number, in other words: metabolic parameters should be expressed per individual 

(Van Voorhies and Ward, 1999).  If the size of the organism tested is invariant to strain, age 

and culture conditions, changes could be normalized to worm number.  For some of the 

nematode strains used in this thesis, age-related volumes have been recorded (fig 6-9). Eat 

mutants are smaller in size than WT for the largest part of their lifespan. Generally, Clk 

mutants are slightly smaller relative to WT over the entire age trajectory; in contrast, clk-3 is 

considerably larger than WT. daf-2(e1370) worms appear to shrink as they age. For WT and 

glp-4, volume was very dependent on bacterial concentration. 

 

 
Figure 6: Body volume of N2, eat-2(ad1113) and eat-2(ad465) in monoxenic liquid culture. Source: 
Houthoofd et al. ( 2002b).  
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Figure 7: Body volume of N2 and 4 Clk mutants in monoxenic liquid culture. Source: Braeckman et al. 
(2002a). 
 
 
 

 
Figure 8: Body volume of N2, clk-1 & daf-2 in monoxenic liquid culture. Source: Braeckman et al. 
(2002c).  
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Figure 9: Body volume of N2 and glp-4 in a gradient of bacterial dilutions (monoxenic liquid culture). 
Source: Braeckman et al. (2002c). 

 

As is clear from these measurements, worm volume is not an invariant parameter: 

worm size depends on age, strain and/or feeding conditions. Scaling to worm number 

ignores the size differences between ages and strains. In our case, it would be a suboptimal 

choice to scale to worm number, as we cannot limit our comparisons to worms of equivalent 

size and development stage: equivalence for size and development cannot be obtained at 

the same time when one strain develops slower and is smaller than the other at all ages. If 

everything except size is kept constant, the largest individuals will always yield the largest 

scores in metabolic parameters. Moreover, data obtained through scaling per worm number 

are not comparable with measurements of enzymatic activity.  As a consequence, worm 

volume was generally not used as a normalization method.  This issue has been discussed at 

length previously (in: Braeckman et al. (2002c,d), Van Voorhies (2002a,b)). 

The reasoning behind the use of worm number as a normalization factor is that 

aging is viewed as a single organismal trait. We do not adhere to this theorem.  Rather, it is 

at the (sub)cellular level that age-dependent changes of metabolic rate occur: aging is a 

cellular trait. This is illustrated by the fact that not all cells of C. elegans age at the same rate; 

neurons are still in good condition in very old worms while their muscle cells suffer from 

sarcopenia (Herndon et al., 2002). 

 

3.3.3. Age- and strain-related differences in protein density 

 

If scaling to worm number is not an option due to differences between ages, strains 

and culture conditions, then we have to choose an acceptable proxy of biomass.  A practical 

approach to this is to use either volume or protein content of worms.  If protein density 

(protein content/volume of worm) shows little strain- and age-dependent variation, both 

scaling to either protein or volume is a good choice.  Protein density has been assessed in 

several strains (fig 10-12). This parameter changes during the adult life trajectory of most 

strains: for instance, in the WT, age-specific rises are followed by a tendency to reach a 

plateau at very old age. Protein density is similar to WT and increases with age in the eat-2 

mutant. All four Clk mutants have similar protein densities at comparable ages, but contain 
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less protein at mid-age than the WT. In daf-2 also, protein density is lower than in WT, 

especially at mid-age.  

 

 
Figure 10: Protein density of N2 and eat-2 (ad1113).  Source: Houthoofd et al. (2002b). 
 

 

 
Figure 11: Protein density of N2 and 4 Clk mutants in monoxenic liquid culture. Source: Braeckman et 
al. (2002a). 
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Figure 12: Protein density of N2, clk-1 and daf-2(e1370) in monoxenic liquid culture. Source: 
Braeckman et al. (2002c). 

 

Normalizing to protein is based on the implicit assumption that all protein is 

metabolically active.  Protein can be used as a proxy for metabolically active biomass, 

though their correlation is not perfect: for example, in aging C. elegans, the contribution of 

cuticular to total mass increases. In other words: the increase in protein may be partially due 

to metabolically inactive protein. 

The alternative, scaling to volume, is also compromised due to age- and strain-

related differences. Here also, changes in volume will not likely be perfectly matched to 

changes in metabolically active biomass. As moderate to substantial differences occur in size 

and protein density among WT and mutant worms of comparable age, scaling to protein and 

volume will produce slightly different outcomes.  

 

3.3.4. Normalization to protein versus volume 

 

It is not always clear which scaling factor best approximates the metabolically active 

mass. 

For the dauer (section 2.2) and Clk (section 2.3) datasets, both normalizations have 

been performed, but only results for normalization to protein have been reported in this 

thesis.  For dauers, normalization according to volume instead of protein increases 

metabolic values with 50% -> 20% relative to young -> old adults due to age-related changes 

in protein density.  For Clks, results expressed per volume can be found in Braeckman et al. 

(2002a).  The reason for using both scaling factors in this study is to avoid over-

interpretation of small differences between mutants and WT. Scaling to volume reduces 

differences between Clk mutants and the WT but does not alter the final conclusion of the 

article.  When the most conservative interpretation of data was made, it was concluded that 

Clk mutants generally do not have a lower metabolic rate than WT, and that antioxidant 

defenses were generally not upregulated in these mutants. 
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3.3.5. Normalization to protein and allometric scaling 

 

The use of mass-specific units for scaling assumes that metabolic rate varies 

isometrically with body mass.  As this is not always the case, and as protein content or worm 

volume are used as proxies for metabolically active biomass, expressing the data in an 

appropriate allometric relationship is required. When the body sizes compared differ 

substantially among individuals from different strains, age groups and treatment conditions, 

the rate of energy expenditure shows a negative allometric relationship with body mass.  

Correction for size differences has been applied to some of the data in this thesis, using the 

Brody-Kleiber equation (see section 3.2.2.2).   

Metabolic parameters for dietary restriction (section 2.4) and Ins/IGF pathway 

mutants (Chapter 3) were scaled to protein to correct for differences in biomass.  

Additionally, respiration and heat dissipation were allometrically scaled, taking into account 

the fact that the rate of energy expenditure per unit mass varies with body size.  Allometric 

scaling ensures that the size-specific component is subtracted to obtain physiological 

changes that result from the treatment (in this case, food restriction) or the mutation (e.g. 

daf-2). 

 

3.3.6. Conclusion  

 

Metabolic activities generally change with age, among strains and among 

treatments.  In addition, protein density generally increases with age in reproductive adults, 

and adult worms may show large differences in size between strains.  Consequently, for 

quantitative comparisons between age groups, all experimental data should be normalized 

appropriately. 

The question arises which factor for normalization is most appropriate.  Due to 

considerable differences in size among strains, ages and treatments, scaling to worm 

number would lead to inexact conclusions. The standard scaling factor in biochemistry is 

protein content, as it can be readily and accurately determined. Normalization to volume is 

less common and more labour-intensive. For dauer and Clk datasets, we have normalized 

the data to both volume and protein content.  Consequences for dauer profiles were 

summarized, and for Clk data, a conservative interpretation of the results did not alter the 

key conclusions of the study. 

For dietary restriction and Ins/IGF pathway mutants, data were scaled to protein.  

Additionally, metabolic rates (respiration rate and heat production)  were allometrically 

scaled to correct for differences in body volume caused by different culture conditions, age 

and mutation, according to the Brody–Kleiber equation.  In our view, this correction for size 

differences using the Brody–Kleiber allometric equation is the most appropriate approach to 

scaling metabolic rates to biomass.  
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ABSTRACT 

 

Though metabolic rates decrease with age in both wild-type C. elegans and the daf-2(e1370) 

mutant, the e1370 mutation alters in vivo oxidative metabolism substantially.  So far, the 

causes of these metabolic differences have not been fully elucidated by gene expression or 

proteomic studies.  In this chapter we report effects of the e1370 mutation on mitochondrial 

characteristics at the proteome level.  In wild-type worms, the abundance of key 

mitochondrial proteins declines with age, although the mitochondrial mass, inferred from 

the mitochondrial DNA copy number, remains unaltered.  In contrast, the age-dependent 

decrease of key mitochondrial proteins and electron transport chain complexes is 

considerably attenuated in daf-2(e1370) adult animals.  
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4.1 General introduction 

 
In the previous chapter, we have ascertained that both age and Ins/IGF-1 mutation 

affect C. elegans oxidative metabolism.  Metabolic rates decrease with increasing age in 

both wild-type and daf-2(e1370).  In daf-2(e1370), metabolism is seemingly shifted towards 

a higher efficiency, producing less heat and more ATP for the same amount of oxygen 

consumed.  In this chapter, the influence of age and Ins/IGF-1 pathway disruption on 

oxidative metabolism are assessed at the level of mitochondrial gene expression and  

proteome.   

For an in-depth study of oxidative metabolism, a suitable protocol for isolation of 

mitochondria followed by assessment of potential damage to the outer and inner 

mitochondrial membranes is required.  Next, determining mitochondrial DNA copy number 

will tell us if age-related decreases in metabolic rate are linked to decreases in mitochondrial 

mass. To define effects of genetic interventions on the aging process, genome-wide scans for 

transcript abundance are often the chosen tool.  Several research groups have performed 

these arrays to characterize the C. elegans transcriptome; their data sets allow us to assess 

changes in gene expression of ETC complex subunits under the influence of defective 

Ins/IGF-1 signaling.  The effect of age and mutation on the abundance of proteins related to 

oxidative metabolism can be assessed through proteomics analysis of mitochondrial 

samples, and Western blotting on both mitochondrial material and whole worm lysates.  

Finally, we study the mitochondrial proteome of wild-type and daf-2 mutant worms through 

assessment of the mitochondrial structural organization in supercomplexes. 

A useful protocol for isolation of mitochondria from C. elegans has been created, 

resulting in largely intact isolated mitochondria.  Assessment of mitochondrial DNA copy 

number shows that mitochondrial mass remains unaltered with increasing age.  Though 

there are no manifest differences in the expression of genes related to the electron 

transport chain between wild-type and the daf-2 mutant, at the proteome level, we 

demonstrate that the age-dependent decrease of key mitochondrial proteins and electron 

transport chain complexes is attenuated in the long-lived mutant. 

 

4.2 Isolation of mitochondrial suspensions 

 
4.2.1. Introduction 

 

In the late 1940’s, the group of Pallade and co-workers (Hogeboom et al., 1948) 

pioneered in the use of differential centrifugation, or the separation of the constituents of 

the cell based on their different sedimentation properties following mechanical 

homogenization of the tissue, to isolate mitochondria from rat liver.  Differential 

centrifugation utilizes the difference in weight between the organelle of interest, in this case 

the mitochondrion, and the biological material that needs to be removed from the 

preparation (nuclei, intact liver cells, red blood cells…).  By centrifugation at low speed 

(where the pellet is considered as waste and needs to be removed) followed by 

centrifugation of the supernatant at high speed, (Hogeboom et al., 1948) obtained 

mitochondrial suspensions with hardly any contamination. 
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Isolation of functional, purified and intact mitochondria is relatively easy when it is 

performed on homogenous tissues like mouse liver, or on a cell culture like fibroblasts; brain 

and heart mitochondrial isolation require extended protocols (Frezza et al., 2007).  

The C. elegans body consists of two concentric tubes separated by the 

pseudocoelome which contains the gonad.  The inner tube is the intestine; the outer tube 

consists of muscles, neurons, hypodermis and a tough cuticle, composed of collagens, 

cuticulins, lipids and glycoproteins (www.wormatlas.org).  To isolate mitochondria from C. 

elegans, the cuticle needs to be broken, taking care to limit damage to the underlying 

tissues; consequently, the method of homogenization will be crucial.  Also, we need to carry 

out repeated mitochondrial preparation from an aging cohort of a very small organism; 

relatively large daily sample sizes of approximately 300,000 worms amount to just 1 ml of 

dense worm suspension, yielding only about 1 mg of mitochondrial protein.  Since these 

mitochondria will ultimately be needed to evaluate oxidative phosphorylation, they have to 

be functionally intact; hence the procedure for isolation is kept as short as possible. 

 

4.2.2. Materials and methods 

 

4.2.2.1. Growth and harvest 

 

Wild-type animals were cultured as in (2.2.1.1.), yet at a much larger scale.  When 

the total population size needed for all successive harvests was reached (approximately 5 

million worms), the nematodes were rinsed off the plates shortly after the molt to the fourth 

larval stage, transferred to Fernbach flasks in S buffer and supplemented with E. coli and 

FUdR as described in (2.2.1.1.).  For such large-scale culturing, substantial numbers of 

Fernbach flasks were needed, taking into account that the number of live worms dropped 

considerably with increasing age.  Feeding and maintenance of the cultures was done as in 

(2.2.1.1.).  Harvesting started approximately 24 hours after the worms were shifted from 17 

to 24°C.  We defined this time point as day 0 of adulthood. Samples containing 

approximately 300,000 live worms were harvested at regular intervals and freed from dead 

worms, bacteria and debris as described in (2.2.1.1.).  The cleaned worms were suspended in 

15 ml S-buffer and aliquots of 0.1 ml were pipetted into microcentrifuge tubes and stored at 

– 75 °C for assays that can be performed using frozen worms (citrate synthase activity, 

cytochrome c Western Blot, protein determination).  The bulk of live animals were used for 

the isolation of mitochondria. 

 

4.2.2.2. Isolation of mitochondria 

 

Mitochondria were isolated essentially following the method described by (Kayser et 

al., 2001), with alterations to reduce the amount of nematodes needed per mitochondrial 

isolation.  Briefly, approximately 300,000 age-synchronized animals were harvested from the 

monoxenic cultures at regular time intervals, cleaned and washed with distilled water to 

remove the S buffer, and finally suspended in mitochondrial isolation buffer  consisting of 

220 mM mannitol, 70 mM sucrose, 5 mM MOPS and 2 mM EDTA, pH 7.4 (MSME). All 

subsequent treatments were performed at 4 °C. One ml of concentrated worm suspension 

was transferred to a microcentrifuge tube and chopped for 40 s using an IKA Ultraturrax 

http://www.wormatlas.org/
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rotor-stator mixer (IKA Werke, Staufen, Germany) operated at the maximum speed of 

25,000 rpm. Next, 1 ml of MSME containing 0.4 % BSA was added and the suspension was 

thoroughly mixed by inversion, and centrifuged for 5 min at 380 g to remove large debris 

and nuclei. The supernatant was transferred to a fresh centrifuge tube and centrifugation 

was repeated. The resulting supernatant containing crude mitochondria was centrifuged for 

5 min at 4,500 g and the resulting mitochondrial pellet was resuspended in MSME. Aliquots 

were used for instant measurement of mitochondrial respiration, ATP synthesis, membrane 

potential and production of H2O2.  Results of these assays will be described in the next 

chapters. The remainder was frozen at -75 °C in 10 µl aliquots for quantification of citrate 

synthase activity, cytochrome c and protein content, as well as carbonylation levels (see 

chapter 6).  On average, 300,000 nematodes yielded ~1mg of mitochondrial protein.  For 

proteomic analysis and OXPHOS supercomplexes studies, BSA was left out of the isolation 

buffer and the entire yield was flash-frozen in liquid nitrogen.  Before freezing, samples for 

proteomics were spun down at 20,800 g for 5 min and the supernatant was removed.  

 

4.2.3. Results and discussion 

 

To obtain a protocol for isolation of functional mitochondria with an acceptable 

degree of purity, several ways of nematode disruption and mitochondrial purification were 

attempted.  Among the former attempts, we mention the use of a discontinuous sucrose 

gradient and ultracentrifugation.  However, the centrifugation steps in this protocol not only 

took too much time, but also delivered no clear and replicable banding of fractions. 

Homogenization of nematode suspensions with a Teflon or glass pestle in a Potter/Elvehjem 

tissue grinder resulted in insufficient disruption of the cuticle and consequently, low yield.   

Conversely, manual homogenization applying a douncer with a rough glass surface did 

disrupt the cuticle sufficiently, but the duration of the process was difficult to standardize.  

Finally, we assembled a protocol derived from Kayser and co-workers (2001), where a 

mechanically driven rotor-stator mixer1 for small volumes was used on a highly concentrated 

worm suspension.  We chose to decrease the duration and speed of the centrifugation step 

that pellets the mitochondria, because we found that after higher speed centrifugation, the 

mitochondria were not easily resuspended.  The omission of certain steps in the Kayser 

assay (a proteinase treatment, extra disruption of tissue with a Teflon pestle in a 

Potter/Elvehjem tissue grinder and filtration through a gauze before final centrifugation) and 

the use of centrifugation speeds as set out by Murfitt and co-workers (1976) provided us 

with a fast and easily repeatable protocol that delivers active mitochondria isolated from 

only 1 ml of dense worm suspension.  More details on the justification of the protocol steps 

used can be found in section 4.7, table 2 (addendum to chapter 4).  We could not rule out 

the presence of minor contaminants; e.g. mitochondrial isolates tested positive for the 

presence of Histone H4, even after treatment with proteinase K, indicating that some 

nuclear material is still present in the suspension.  The performance of mitochondrial 

suspensions prepared in this way will be discussed in chapter 5. 

                                                 
1
 A rotor-stator mixer consists of a slotted rotor operating inside a slotted stator.  The rotor turning at 

high speeds functions as a centrifugal pump, drawing materials in from above and below.  As the rotor 
blades pass the stator, they mechanically shear the contents. 
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4.3. Cytochrome c abundance, citrate synthase activity and 

mitochondrial genome copy number 

 
4.3.1. Introduction 

 

Whatever age- or mutation-related mitochondrial differences we may find, it is 

essential that we interpret them correctly, taking into consideration potential artifacts 

generated by the isolation procedure and the assay conditions.  Also, we need to ascertain 

whether or not these differences, as well as the whole-worm metabolic rates determined in 

chapter 3 are linked to age-related changes in mitochondrial mass. 

 

4.3.2. Materials and methods 

 

4.3.2.1. strains & culture conditions 

 

Strains used were the wild-type N2 (male stock provided by the CGC), and Ins/IGF-1 

mutants daf-2(e1370) and daf-16(mgDf50).  For culture conditions and isolation of 

mitochondria, we refer to (4.2.2.). 

 

4.3.2.2. assays  

 

Protein determination and cytochrome c quantification 

 

Protein was generally determined using the BCA (bicinchoninic acid) method as 

described in (2.2.1.2.), but prior degradation with alkali was only applied for estimating 

whole worm protein content.  For quantification of cytochrome c in whole worm extract and 

in mitochondrial preparations, frozen samples with known protein concentration were 

mixed with Laemmli buffer, heated at 99°C for 5 min and equal amounts of protein were 

loaded on gels.  Western blotting was performed as described by (Matthijssens et al., 2008).  

Primary antibodies against cytochrome c were purchased from Mitosciences (OR, USA).  

Secondary antibody was horseradish peroxidase (HRP)-conjugated anti-mouse antibody 

from Sigma. 

 

Citrate synthase activity 

 

Citrate synthase activity in crude extract and mitochondria was determined as 

follows: mitochondrial preparations were made 1% in CHAPS and the resulting solution was 

clarified by centrifugation at 20,800 g for 10 min. Whole-worm extract was prepared as 

described in (2.2.1.2.). Citrate synthase was assayed by monitoring the reduction of 5,5’-

dithiobis(2-nitrobenzoic acid) (DTNB) at 412nm (ε412 = 13.6 mM-1 cm-1) coupled to the 

reduction of Coenzyme A by the citrate synthase reaction in the presence of oxaloacetate. 

The protocol described by (Trounce et al., 1996) was adapted for use with microtitre plates. 

Briefly, 0.1 M Tris-HCl (pH 8.0), 0.3mM acetyl-CoA, 0.1mM DTNB, and samples of the 
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mitochondrial preparation containing approximately 5 µg protein or whole-worm extract 

containing approximately 40 µg protein were incubated for 10 minutes at 24°C.  The reaction 

was initiated by the addition of 0.75 mM oxaloacetate (final concentration), and the rise in 

absorbance at 412 nm was monitored for 3 minutes in a Spectramax 190 (Molecular Devices, 

CA, USA) plate reader.  

 

Determination of mtDNA copy number 

 

For mtDNA copy number assessment, age-synchronized N2 and daf-2(e1370) L1 

larvae  were grown at 17 °C until they reached the third juvenile stage to avoid induction of 

dauer formation at higher temperature by the mutation in daf-2. Next they were shifted to 

24 °C. For nucleic acid extraction, 1-, 3-, 6-, 9- and 12-day-old adult worms were transferred 

to individual microcentrifuge tubes containing 25 µl of worm lysis buffer (50 mM KCl, 2.5 

mM MgCl2, 0.15% Nonidet P40 (octylphenoxypolyethoxyethanol), 0.15% Tween 20, 10 mM 

Tris.HCl pH 8.3) and frozen at -75 °C for 10 min. Next, the samples were thawed, 1 µl of 

proteinase K was added at a final concentration of 100 µg/µl and protein was digested for 1 

h at 65 °C, followed by 10 min at 95 °C to inactivate the enzyme. 

mtDNA copy number was assayed according to (Koekemoer et al., 1998).  A standard 

curve for determining the mitochondrial genome content was obtained as follows. Staged 

worms were lysed as described and PCR was performed to amplify 3 mitochondrial genes: 

ND5 (forward primer: CCACACCGGTGAGGTCTTTGGTTCATAGTAG; reverse: 

GTGAAAGTGTCCTCAAGGCTACCACCTTC), COII (forward: TCGTTGTGTTATTCCTTGTGATACT, 

reverse: ACAAATCTCTGAACATTGACCATAA) and COIII (forward: 

TACAGTAACTTGAGCACATCACAGA, reverse: ATACTCCGTCTGCAATAGAAAATCT)  

The PCR product was purified with the QIAquick PCR purification kit (Qiagen, Venlo, the 

Netherlands) and the concentration of the resulting templates was determined using the 

NanoDrop ND-1000 diode array spectrophotometer (NanoDrop Technologies, DE, USA). The 

copy number was then calculated from the weight in Daltons and Avogadro’s number and a 

serial dilution was used to generate a standard curve for quantitative PCR. 

Increasing amounts of template (10-108 copies per reaction) were amplified and the 

standard curve was constructed by plotting the cycle threshold (Ct) values versus the 

logarithm of the initial template copy number. For assessing the average mitochondrial 

genome content per worm we grew parallel cultures of N2 and daf-2(e1370) and harvested 

staged worms of increasing age as described above. This scheme was repeated 3 times to 

account for environmental variation. DNA samples were prepared from 48 single worms per 

time point, and pooled to dampen variation in individual mitochondrial genome content. 

QPCR amplification was carried out using the Qiagen Rotor-Gene real-time cycler with 

Invitrogen Platinum SYBR Green qPCR SuperMix-UDG. The cycling conditions were as 

follows: 50°C for 2 min, initial denaturation at 95°C for 2 min followed by 45 cycles of 15 s at 

95 °C, 30 s at 60 °C and 30 s at 72 °C. Following the final cycle, melting curve analysis was 

performed to examine the specificity in each reaction tube (absence of primer dimers and 

other non-specific products). We first determined the mtDNA content as a function of age 

and strain differences and found that all three amplicons yielded moderately diverging 

estimates of the mitochondrial copy number but with equal age- and strain-related trends.  

Absolute copy numbers were therefore normalized as follows: for each primer pair, wild-
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type values from all ages were averaged and this value was set to 100.  All original values 

were then rescaled relative to this reference value and pooled to obtain an estimate of 

mtDNA content per animal relative to the reference value.   

 

Statistics 

 

For statistics, we refer to (3.2.1.3.). 

 

4.3.3. Results and discussion 

 

The isolation of mitochondria from nematode tissue requires harsh treatments to 

break the tough cuticle. If old worms contain more fragile mitochondria, the isolation 

process might, by itself, yield a larger portion of damaged mitochondria. In order to 

ascertain that mitochondrial isolation does not lead to disproportionate amounts of 

damaged organelles with progressing age and strain differences, we compared the activity 

level of citrate synthase, a key citric acid cycle enzyme of the matrix and the abundance of 

cytochrome c, an essential component of the electron transport chain which is present in 

the intermembrane space. We reasoned that, if the relative abundance of these proteins in 

isolated mitochondria and in whole worm extracts is identical, this would indicate that the 

preparation procedure caused no harm to the mitochondria or, at least, that possible 

damage to the mitochondrial inner or outer membrane inflicted by the isolation process was 

proportionate at all ages. 

Western blots showed that cytochrome c protein levels declined with age in all three 

strains and at similar rates in both mitochondrial preparations and whole worm extracts (fig. 

1 B). Remarkably, this decline was much slower in the long-lived daf-2(e1370) indicating that 

these mutant animals can attenuate age-dependent reduction in cytochrome c content. As 

this effect was also seen in whole worm extracts, it is not due to higher resilience of the daf-

2 mitochondrial outer membrane to disruption during isolation. Cytochrome c is also known 

as an important factor in apoptosis.  We considered the possibility that loss of cytochrome c 

could be related to apoptotic processes.  However, in C. elegans, apoptosis chiefly plays a 

role in development and in the gonad. No apoptotic cells could be observed in somatic cells, 

and apoptosis had no effect on lifespan (Garigan et al., 2002). From this we conclude that 

apoptosis is most likely not causal to differences in cytochrome c content among strains. 

Similarly, mitochondrial preparations and whole worm extract yielded identical age-

specific activity profiles of citrate synthase (fig. 1 C&D). Much like cytochrome c content, 

citrate synthase activity declined more gradually with age in daf-2(e1370) than in wild-type 

and daf-16(0) animals [daf-2 versus N2: Page*strain in worms = 0.0074; in mitochondria = 

0.0485; daf-16 versus N2, for both worm and mitochondria: Pstrain = NS, Page  <0.0001].  These 

results dispel the notion that mitochondrial preparations from wild-type worms might 

contain a higher proportion of disrupted organelles and concomitant loss of mitochondrial 

proteins. 

Having established that whole-worm energy production declines dramatically with 

age, we asked whether this could be caused by age-related loss of mitochondria. We used 

quantitative real-time polymerase chain reaction (qPCR) to assay the copies of mtDNA in 

daf-2(e1370) and WT animals. We quantitated three mitochondrial genes in staged worms 
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from three independent replicate cultures to enforce the robustness of the observations. 

Counter to our expectation, we did not detect any age-related changes in mitochondrial DNA 

(mtDNA) content (Page NS) (fig. 1 A).  Hence the age-specific decrease in energy production is 

not caused by systematic loss of mitochondrial genome copy number.  Interestingly, wild-

type animals had about double the number of mtDNA copies compared to daf-2(e1370) 

worms, with P values bordering on significance (Pstrain = 0.0585).  This difference is likely 

caused by differences in germline proliferation.   

 

Figure 1: Effect of age on mitochondrial genome and cytochrome c content and citrate synthase 
activity. (A) Age-specific mitochondrial genome content of wild-type and daf-2(e1370) animals. Three 
mitochondrial genes were quantified; the results were normalized to obtain the relative 
mitochondrial genome content per strain and age cohort. The error bars indicate ± standard error of 
mean for three mitochondrial genes and three replicate ageing cohorts. (B) Western blots showing 
age-related changes of cytochrome c abundance in crude worm extract and isolated mitochondria. 
Results from one representative experiment are shown. The numeric values below each spot denote 
the abundance of cytochrome c in that spot normalized to the corresponding spot from 1-day-old 
wild-type (WT) adults. (C-D) Activity levels of citrate synthase in crude worm extract (indicated as 'W') 
and in isolated mitochondria (indicated as 'M'). Left panel: WT versus daf-2(e1370), right panel: WT 
versus daf-16(mgDf50). Data represent means ± standard error of mean (bars) for at least three 
replicate cultures; *, P < 0.05, **, P < 0.01, ***, P < 0.001 (Student’s t-test). 
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4.4. Changes in gene expression and protein abundance due to 

mutation in daf-2: mRNA transcript abundance, proteomics analysis 

and Western blotting   
 

4.4.1. Introduction 

 

To gain insight into mechanisms regulated by Ins/IGF-1 signaling which control 

oxidative metabolism, a starting point is to study differential expression of genes coding for 

proteins involved in the electron transport chain (ETC), the TCA cycle and other biochemical 

processes related to metabolism.  In this section, we compiled results from whole-worm 

genome-wide scans for mRNA transcript abundance performed by other research groups to 

assess changes in expression of genes that are of interest to our research.  Next, proteomics 

analysis and Western blotting were performed to establish whether the daf-2 mutation 

influences the abundance of mitochondrial proteins. 

Gene expression & age 

We would like to point out that even the impact of age alone on ETC transcript levels 

seems to generate ambiguous results.  Hill and colleagues (2000) found a significant 

decrease in gene expression of over a hundred genes, among which the ATPase-encoding 

genes and genes related to carbohydrate metabolism and energy generation were highly 

represented, from 60h adults to 2-week-old worms.  According to McCarroll and colleagues 

(2004), aging represses genes encoding many components of the mitochondrial respiratory 

chain, the ATP synthase complex and the TCA cycle.  Yet the majority of this repression 

seemingly occurs between 0h and 16h of adulthood and little change is recorded between 

16h- and 6 day-old adults.  Despite assaying an extensive age range, (Lund et al., 2002) 

observed no consistent alteration in expression of genes that encode mitochondrial proteins 

and genes involved in resistance to oxidative stress.  (Zahn et al., 2006) compared the Lund 

dataset to data from humans, mice and flies, and found age regulation in the ETC pathway 

for these 3 organisms, but not for C. elegans. 

Gene expression & daf-2 

From a literature search into the effect of daf-2 mutation on gene transcript levels, 

we could not deduce a unanimous view on differential expression of genes coding for ETC 

complex subunits.  Some researchers found no major differences in expression of genes 

related to oxidative metabolism between a reference strain and a strain with a daf-2 

mutation (McElwee et al., 2003; Murphy et al., 2003; McElwee et al., 2004; McElwee et al., 

2006) while others did find some ETC complex subunit genes to be differentially expressed in 

daf-2, but never a systematic up- or downregulation of various ETC genes (Ruzanov et al., 

2007), even when the effect of age was also taken into account (Golden & Melov, 2004; 

Halaschek-Wiener et al., 2005).  These inconclusive results do not seem to point to a 

significant effect of daf-2 on ETC gene expression.  However, regulation of cellular processes 

consists not only of expression of genes measured as mRNA levels, but also of post-

transcriptional variation such as synthesis, processing and modification of proteins (Nie et 

al., 2007).  While expression of mitochondrial genes in daf-2 may not be markedly different 

to wild-type, translation of transcripts into proteins may differ.   
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Proteomics analysis and Western blotting 

Proteome analysis in whole worm young adult wild-type and daf-2 has first been 

published by (Dong et al., 2007).  They reported higher amounts of aconitase, malate 

dehydrogenase and enzymes of the glyoxylate cycle in daf-2 compared to wild-type.  

However, they made no mention of differences in ETC protein content between young adult 

wild-type and daf-2.  Seemingly, transcriptomics and proteomics do not allow us to discern if 

aging and/or Ins/IGF-1 signaling affect oxidative metabolism. 

 In the study by (Dong et al., 2007), only nematodes in their first day of adulthood were used 

for proteome analysis; the assay was executed on whole worm lysates.  We set out to assess 

the effect of age and Ins/IGF-1 signaling on protein abundances in isolated mitochondria, 

isolated from wild-type and daf-2(e1370) at day 2 and 8 of adulthood.  Isolated mitochondria 

were supplied by us.  They were subjected to proteomics analysis by Mimage partner 

Proteosys.   

 

4.4.2. Materials and methods 

 

4.4.2.1. Strains & culture conditions 

 

The strains used were wild-type N2 (CGC male stock) and daf-2(e1370).  Nematode 

culture and mitochondrial isolation were performed as in (4.2.2.).  

 

4.4.2.2. Assays 

 

Differential proteomic profiling was performed as described in Groebe et al. (2007).  

Proteosys were provided with aliquots of mitochondrial samples isolated from wild-type and 

daf-2(e1370) at two time points: at day 2 and 8 of adulthood.  This setup was performed 

three times separately, so for every strain/age combination, three aliquots were prepared, 

which amounted to twelve in total.  Briefly, each sample containing mitochondrial proteins 

was iodinated with either 125I or 131I, with identical chemical iodine concentrations.  Aliquots 

of day-2-adult2 wild-type and daf-2 radiolabelled samples were mixed in equal amounts and 

separated by 2D-PAGE covering a pH range of 4-9.  Through high sensitivity radio imaging, 

discrimination between 125I and 131I in one 2D-PAGE gel was possible and a quantitative 

multicolour differential display of proteins from separate samples labeled with different 

iodine isotopes was generated.  For each pair of samples, reverse replicate gels were 

prepared where the labels (125I and 131I) were inverted.  Gel image analysis, spot 

quantification and statistical identification were performed as in Groebe et al. (2007) and 

                                                 
2
 As the pooling scheme described in (4.4.2.2.) can only be applied to two samples, young and old 

wild-type, as well as young and old daf-2 were pooled and each pool regarded as one sample by 
Proteosys; from this they attempted to make a comparison between the two strains.  Next, young 
wild-type and daf-2, as well as old wild-type and daf-2 were pooled to assess the effect of age on 
protein abundance.  Because chronological age differs from physiological age when comparing strains 
with different average lifespans, such pooling is meaningless and we could not use the resulting data 
set. Thanks to high-throughput technological advances, future proteomics analyses will no longer be 
limited to one-to-one comparisons.  
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spots meeting significance criteria were subjected to MALDI-TOF peptide mass fingerprinting 

as in Vogt et al. (2005). 

For Western blotting, live wild-type and daf-2(e1370) worms were lysed directly 

with Laemmli buffer and stored at -80°C.  Prior to Western blotting, samples were thawed, 

protein concentration was determined using the Pierce 660 nm protein assay (Thermo 

Scientific, IL, USA) and equal amounts of protein were loaded and run. Western blotting was 

performed as described by (Matthijssens et al., 2008).  Primary antibodies against Complex I 

NDUFS3 subunit, pyruvate dehydrogenase subunit E1alpha, Complex IV subunit I, Complex V 

subunits alpha and beta and adenine nucleotide transferase were purchased from 

Mitosciences (OR, USA).  Secondary antibody was HRP-conjugated anti-mouse antibody from 

Sigma. 

 

4.4.3. Results and discussion 

 

Previously, we have ascertained that whole worm oxidative metabolism is altered 

when insulin signaling is disrupted.  To assess the influence of the daf-2 mutation on 

mitochondrial age-related alterations at the proteome level, we aimed to perform 

proteomics analysis on isolated mitochondria from young (day 2 of adulthood) and old (day 

8 of adulthood) wild-type and daf-2(e1370).  Unfortunately, comparisons of aged samples 

were not performed as originally planned and could not be included in this section.  We will 

focus on differential proteomic profiling of wild-type and daf-2(e1370) at 2 days of adult age.   

First, we would like to put into perspective the differences we can expect between 

young wild-type and daf-2.  (Dillin et al., 2002) have established that Ins/IGF-1 signaling 

controls diapause and lifespan at different stages in the life of C. elegans: the insulin 

pathway regulates diapause during development, while lifespan is regulated during 

adulthood.  Moreover, in the case of daf-2 RNAi, RNAi implemented during adulthood alone 

suffices to extend the lifespan of wild-type C. elegans.  Therefore young adult nematodes 

with the same initial mitochondrial characteristics as those treated with RNAi vector bacteria 

can be induced to live longer lifespans.  As daf-2 mutation exerts its lifespan-extending 

influence from adulthood onwards, initial similarities in mitochondrial proteome 

composition between the 2 strains would not be unexpected. Alternatively, since we chose 

to sample 2-day-old adults, the effect of the daf-2 mutation may already be apparent, even 

before differences in metabolic parameters become significant. Taking these findings into 

consideration, we evaluate proteomics results from our mitochondrial isolates.  We have to 

note that the interpretation of these results is complicated by the presence of the yolk 

protein vitellogenin in our mitochondrial preparations and by partial proteolysis of certain 

proteins.   

A number of TCA cycle enzyme components were found to be significantly more 

abundant in mitochondria isolated from 2-day-old daf-2 than from the wild-type (table 1), 

for instance, the α subunit of isocitrate dehydrogenase and the β subunit of succinyl-CoA 

synthase. Dihydrolipoamide dehydrogenase, a component of pyruvate dehydrogenase, has 

comparable mutation-related patterns, in two isoforms.  One isoform has an experimental 

mass close to the expected molecular mass; another isoform is heavier than the theoretical 

mass but both are significantly more abundant in daf-2 than in the wild-type. We cannot 
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state for certain what kind of translational modification may be responsible for the 

difference in isoforms. 

Likewise, the ETC protein cytochrome c oxidase subunit Va/COX6, part of complex 

IV, was not only more abundant in daf-2, but also present in three isoforms with equal (yet 

lower than theoretical) experimental mass; the only difference responsible for this result 

was the isoelectric point of the  isoforms, pointing to secondary modifications of this 

protein.   

Accession Exp. Daf-2 N2 Spot-ID

Number mass % %

ETC components

cco-2 

Y37D8A.14

Cytochrome c oxidase subunit Va/COX6 gi|17555666 20212 6,1 16000 5,3 60 40 <0.0001 N2_daf2_d2_5-6_1267 bzw. 

N2_daf2_5-6_1267_1

cco-2 

Y37D8A.14

Cytochrome c oxidase subunit Va/COX6 gi|17555666 20212 6,1 16000 5,35 63,2 36,8 <0.0001 N2_daf2_d2_5-6_1268 bzw. 

N2_daf2_5-6_1268_1

cco-2 

Y37D8A.14

Cytochrome c oxidase subunit Va/COX6 gi|17555666 20212 6,1 16000 5,1 59,8 40,2 <0.0001 N2_daf2_d2_5-6_1257 bzw. 

N2_daf2_5-6_1257_1

Krebs cycle enzymes

F23B12.5 Dihydrolipoamide dehydrogenase (component of  

pyruvate dehydrogenase)

gi|17560088 53719 8,4 57000 5,9 67 33 <0.001 N2_daf2_d2_5-6_547 bzw. 

N2_daf2_5-6_547_1

F23B12.5 Dihydrolipoamide dehydrogenase (component of  

pyruvate dehydrogenase)

gi|17560088 53719 8,4 53500 6 73,9 26,1 <0.0001 N2_daf2_d2_5-6_566 bzw. 

N2_daf2_5-6_566_1

 

F43G9.1 Isocitrate dehydrogenase, Alpha subunit gi|71986051 38898 7,4 40500 6 68 32 <0.0001 N2_daf2_d2_5-6_741 bzw. 

N2_daf2_5-6_741_1

ZK669.4 Dihydrolipoamide branched chain transacylase (E2 

component of pyruvate dehydrogenase

gi|17537937 49945 8,8 58000 7 56,5 43,5 <0.0001 N2_daf2_d2_6-9_787 bzw. 

N2_daf2_6-9_787_1

F47B10.1 Succinyl-CoA synthase, beta subunit gi|17567829 47845 6,3 50000 5,45 61,5 38,5 <0.0001 N2_daf2_d2_5-6_585 bzw. 

N2_daf2_5-6_585_1

mdh-1 

F20H11.3

NAD dependent malate dehydrogenase gi|17554310 35155 10 34000 8,2 65,9 34,1  0,0001 N2_daf2_d2_6-9_991 bzw. 

N2_daf2_6-9_991_1

Other mitochondrial functions

ucr-1  F56D2.1 Ubiquinol-cytochrome c oxidoreductase complex / 

mitochondrial processing peptidase

gi|17553678 51704 6,5 54000 5,9 68,4 31,6 0,0003 N2_daf2_d2_5-6_626 bzw. 

N2_daf2_5-6_626_1

ucr-1 F56D2.1 Ubiquinol-cytochrome c oxidoreductase complex / 

mitochondrial processing peptidase

gi|17553678 51704 6,5 56000 5,7 62,4 37,6 <0.0001 N2_daf2_d2_5-6_604 bzw. 

N2_daf2_5-6_604_1

ucr-1 F56D2.1 Ubiquinol-cytochrome c oxidoreductase complex / 

mitochondrial processing peptidase

gi|17570205 42799 8,4 44000 6,4 66,5 33,5 <0.0001 N2_daf2_d2_6-9_895 bzw. 

N2_daf2_6-9_895_1

ucr-1 F56D2.1 Ubiquinol-cytochrome c oxidoreductase complex / 

mitochondrial processing peptidase

gi|32566323 44465 9,2 44000 6,4 66,4 33,6 <0.0001 N2_daf2_d2_6-9_895 bzw. 

N2_daf2_6-9_895_2

Y25C1A.13 Enoyl-CoA isomerase gi|17536985 33297 7,4 30000 5,65 59,6 40,4 <0.0001 N2_daf2_d2_5-6_930 bzw. 

N2_daf2_5-6_930_1

B0272.3 3-hydroxyacyl-CoA dehydrogenase gi|17549919 33530 8,1 34000 6,9 60,3 39,7 <0.0001 N2_daf2_d2_6-9_1002 bzw. 

N2_daf2_6-9_1002_1

F59A2.3 Acidic protein of the mitochondrial matrix gi|17553758 26508 4,7 27000 4,4 64,2 35,8 <0.0001 N2_daf2_d2_4-5_1125 bzw. 

d2_d8_4-5_1125_1

Exp. PI p-value

daf-2  (2d,Test) versus N2 (2d,Ref)

Gene Protein Mass PI

 
Table 1: Mitochondrial proteins showing divergent relative abundances between 2-day-old WT and 
daf-2(e1370), identified by differential proteomic profiling, and their patterns of isoforms.  Equal 
amounts of mitochondrial protein were loaded on the gels. Protein spots were detected and 
identified via MALDI-TOF Peptide Mass Fingerprinting after differential iodine radiolabeling and 
separation through 2D-PAGE as described in (Groebe et al., 2007). Only selected mitochondrial 
proteins with clearly elevated abundances in daf-2 mutants are shown. Due to the experimental 
difficulties encountered (see sections 4.4.2.2 and 4.4.3), info on the total number of proteins 
identified and quantified is not given.  

 

Generally, proteomics analysis is an excellent source of information, not only on 

differential protein abundance, but also on the presence of secondary modifications, which 

could contribute considerably to our understanding of aging (Groebe et al., 2007).  

Unfortunately, here it has contributed only a very limited dataset to elucidate the 
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modification of oxidative metabolism by Ins/IGF-1 pathway disruption.  In addition, we are 

well aware that partial proteolysis and strain-specific differences in contaminating yolk 

protein complicate correct interpretation of the results.   

 

However, we may be able to make the following prediction.  As mentioned before, daf-2 

mutation exerts its influence on lifespan from adulthood onwards. It is remarkable that 

some of the effects of the daf-2 mutation at the proteome level were apparent even in 

2-day-old adults; this may implicate that the impact of Ins/IGF-1 signaling on oxidative 

phosphorylation of isolated mitochondria will also be measurable before morphological 

aging becomes apparent.  Data from a recent proteomics study, performed in collaboration 

with our lab, support this prediction: the study, performed on whole worm homogenates, 

suggests that for a considerable amount of proteins related to the TCA cycle and the 

electron transport chain, protein abundances are significantly higher in 2-day-adult daf-2 

mutants than in same-age controls (personal communication G. Depuydt). 

 

Figure 2: The daf-2(e1370) allele attenuates the age-specific decline in abundance of key 
mitochondrial proteins. (A-F) Western blots showing age-related changes in the abundance of 
important mitochondrial proteins in crude worm extract. The numeric values for each protein denote 
its abundance in 1-,3-,6-,9- and 12-day-old adults normalized to the abundance in 1-day-old wild-type 
adults and are plotted in the corresponding graphs. (A) Complex I NDUFS3 subunit. (B) Pyruvate 
dehydrogenase subunit E1 alpha. (C) Complex IV subunit I. (D) Complex V subunit alpha. (E) Complex 
V subunit beta. (F) Adenine nucleotide transferase. 
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In the previous experiment, results were potentially obscured by proteolysis of 

certain proteins.  By immediate lysis of live nematodes (through heating of samples in the 

presence of Laemmli buffer) and subsequent Western blotting of whole worm lysates, we 

were able to overcome this problem.  We quantified the abundance of the Complex I 

NDUFS3 subunit, the pyruvate dehydrogenase subunit E1α, Complex IV subunit I, Complex V 

subunits α and ß and adenine nucleotide transferase on Western blots of whole worm 

extracts (fig. 2). For the Complex I NDUFS3 subunit, pyruvate dehydrogenase subunit E1α, 

adenine nucleotide transferase and Complex V subunit α, a clear decrease in protein content 

with age was observed in WT worms, whereas only minor decreases were detected in long-

lived daf-2(e1370) animals (fig. 2 A, B, F & D).  For Complex V subunit ß, we observed a slight 

decrease with age in both strains, but the daf-2 signal was generally higher than that of WT 

(fig. 2 E).  Only Complex IV subunit I content did not decrease with increasing age (fig. 2 C).  

Taken together with data from cytochrome c abundance and citrate synthase activity (see 

4.3.3.), these results suggest that the daf-2(e1370) allele attenuates the age-specific decline 

in abundance of key mitochondrial proteins.  

Validation of our limited proteomics dataset has not yet been performed.  This could 

be done by Western blotting.  Since the availability of antibodies specific for C. elegans is 

low, custom antibodies will have to be designed.  Quantitative PCR could be used in order to 

assess whether differences in protein abundances are transcriptionally regulated.  Additional 

RNAi and overexpression experiments could reveal the importance of mitochondrial protein 

abundances for lifespan.  

 



Gene expression, proteomics and structural organization 

146 

 

4.5. OXPHOS supercomplexes 
 

4.5.1. Introduction 

 

The electron transport chain consists of 5 ETC complexes, each made up of multiple 

subunits arranged in a complex 3D structure.  Originally it was thought that the ETC 

complexes floated freely in the inner mitochondrial membrane.  A more recent view, 

underpinned by sufficient experimental evidence, is that individual respiratory chain 

complexes assemble into supercomplexes.  This supercomplex architecture suggests a 

kinetic advantage that increases the efficiency of the ETC and stabilizes the complexes 

(reviewed in Vonck & Schafer, 2009).  Mitochondria from wild-type worms and daf-2(e1370) 

animals were subjected to Blue Native (BN)-PAGE and 2D SDS-PAGE to assess the effect of 

age and Ins/IGF-1 signaling on supercomplex formation in C. elegans.  

Isolated mitochondria were supplied by us.  They were subjected to analysis by the 

Dencher lab, under the supervision of F. Krause and N.A.D. Dencher.   

 

4.5.2. Materials and methods 

 

4.5.2.1. Strains & culture conditions 

 

Strains used were the wild-type N2 (male stock provided by the CGC) and the 

Ins/IGF-1 mutant daf-2(e1370). For culture conditions and isolation of mitochondria, we 

refer to (4.2.2.).  Mitochondria were prepared on day 2 and day 8 of adulthood. 

 

4.5.2.2. Assays 

 

Native electrophoresis of isolated mitochondria was carried out as follows: 

solubilization and blue-native electrophoresis were performed as described in (Krause and 

Seelert, 2008; Maas et al., 2009; Marques et al., 2007). In detail, mitochondria were thawed 

on ice and centrifuged at 20,800g for 8 min. The pellet was suspended in the solubilization 

buffer containing 50 mM NaCl, 50 mM imidazole/HCl (pH 7.0), 10% glycerol and 5 mM 6-

aminocaproic acid (final concentration). Mitochondria containing 150 µg protein were 

solubilized with digitonin (AppliChem, A1905) using a detergent/protein ratio of 4 g/g at a 

final detergent concentration of 1% by adding a freshly prepared 10% detergent solution. 

The samples were incubated for 30 min at 4 °C with slight agitation followed by 

centrifugation at 20,800g for 10 min. The extracts were directly loaded onto native gels. For 

BN-PAGE (Blue Native polyacrylamide gel electrophoresis), linear 3–13% gradient gels 

overlaid with a 3% stacking gel were used in a Hoefer SE 600 system (18 × 16 × 0.15 cm3) 

with electrophoresis conditions as described in (Krause and Seelert, 2008; Marques et al., 

2007). The apparent molecular masses of the OXPHOS complexes and their supercomplexes 

were calibrated by digitonin-solubilized bovine heart mitochondria applied to the same first-

dimension BN gel as described by (Maas et al, 2009; Marques et al., 2007). Lanes from the 

first-dimension BN-PAGE were then excised and used for a second-dimension 13% SDS-PAGE 

(Maas et al., 2009; Marques et al., 2007) with subsequent silver staining. The 

supercomplexes were assigned according to their characteristic subunit compositions 
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revealed in 2D SDS-PAGE and apparent molecular masses. Additionally, some of the subunits 

of the C. elegans OXPHOS complexes were identified using matrix-assisted laser 

desorption/ionization time-of-flight mass spectrometry as described (Marques et al., 2007). 

 

4.5.3. Results and discussion 

 

 Compelling evidence indicates the existence of specific respiratory supercomplexes 

(respirasomes) of the proton-pumping complexes I, III and IV as well as of ATP synthase 

dimers/oligomers in mitochondria of most eukaryotes (reviewed in (Schägger, 2002), 

(Krause, 2007)) including C. elegans (Suthammarak et al., 2009). We found an exceptionally 

high proportion of preserved OXPHOS supercomplexes in C. elegans mitochondria indicating 

a particularly high detergent-stability of the supercomplexes (fig. 3), even better than in 

mitochondria isolated from fresh bovine heart (Krause et al., 2005; Krause, 2006; Krause, 

2007).  Complex I was completely recovered as part of I-III-IV supercomplexes and ATP 

synthase is mainly present as dimers in young adults from N2 and daf-2 (fig. 3 a & c). 

Strikingly, in aged wild type the total amount of OXPHOS complexes decreased significantly, 

in line with the immunoblot results of representative OXPHOS subunits (fig. 3 b), but with a 

similar proportion of preserved supercomplexes as in young worms.  In contrast, no decline 

of OXPHOS supercomplexes was observed in 8d daf-2 mitochondria displaying very similar 

2D BN/SDS gels (fig. 3 d).   

 

 
Figure 3: OXPHOS supercomplexes are better preserved during aging in mitochondria from 
daf-2(e1370) animals.  2D BN/SDS-PAGE of digitonin-solubilized mitochondria from young (2d) (fig 3 a 
& c) and aged (8d) (fig 3 b & d) wild-type N2 and mutant daf-2(e1370) worms. OXPHOS complexes and 
supercomplexes were assigned according to their characteristic subunit compositions and apparent 
molecular masses. Additionally, some subunits were identified by mass spectrometry. ATP synthase 
monomers (V1), dimers (V2) and tetramers (V4), the individual respiratory complexes III (III2) and IV 
(IV1) as well as the respiratory supercomplexes IxIIIyIVz are indicated. Complex I is completely 
preserved as part of supercomplexes IxIIIyIVz.   

 

However, as in proteomics analysis, differing amounts of vitellogenin, particularly in 8-day-

old wild-type, complicate this picture.  At first sight, this may suggest that the decrease in 

the amount of supercomplexes in aging WT is an artefact: it could be put forward that the 8-

day-old WT sample contains a disproportionately high amount of vitellogenin and 

consequently, lower amounts of supercomplexes.  However, the degree of citrate synthase 

(CS) activity of the worm as a percentage of the CS activity in mitochondria (fig.4, see also 

fig. 1c) seems to suggest that the isolation procedure does not enrich vitellogenin in 

mitochondria prepared from aged worms.  Therefore we can state that the vitellogenin 

showing up on the WT day-8 sample does not affect our conclusions.  
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4.6. General discussion and conclusions 
 

A standardized method for isolation of mitochondria from C. elegans was developed 

to assess mitochondrial characteristics that could play a role in the effect of Ins/IGF-1 

signaling on whole worm metabolism.  Mitochondrial genome content was assayed using a 

quantitative real time PCR approach.  It was found to be unaltered by age in both strains 

tested.  Hence reduction of energy production with age could not be caused by systematic 

loss of mitochondria.  As gene expression and proteomics studies on whole nematodes gave 

few clues as to how the daf-2 mutation could affect oxidative metabolism, we performed 

proteomics analyses on isolated mitochondria from 2-day-old adult wild-type and daf-

2(e1370) and found that the abundance of certain ETC, TCA and other mitochondrial 

proteins differed between the two strains.  Similar to the gene expression studies, the 

results of the proteomics analysis made only a limited contribution to our knowledge about 

the influence of Ins/IGF-1 signaling on oxidative metabolism, due to the presence of 

vitellogenin in the samples, along with partial proteolysis, and because errors in the 

experimental setup prevented a more comprehensive comparison between mitochondria 

from young and old nematodes.  However, through Western blotting we did find an age-

related change in the abundance of proteins involved in mitochondrial function. We found 

that the abundance of several ETC components decreased with age in both wild-type and 

daf-2, but the decreases were faster in wild-type. Also, age-dependent reduction in citrate 

synthase activity, a key enzyme of the citric acid cycle, was substantially slower in these 

mutants.  

From data on mitochondrial genome copy number, enzyme activity, Western 

blotting and proteomics, it could be suggested that differences in mitochondrial 

compositions between WT and daf-2 must occur.  On a per worm basis, the long-lived 

mutant contains less mtDNA.  On the other hand, cytochrome c content and citrate synthase 

activity expressed per mg worm protein are higher for most of the mutant’s life trajectory.  

The same conclusion can be drawn for the abundance of most of the other mitochondrial 

proteins for which antibodies were available.  Potential compositional differences between 

the two strains also appear from the proteomics data.  Perhaps mitochondrial density is 

higher in the WT than in daf-2, while in contrast, certain mitochondrial proteins could be 

present in higher abundances in the long-lived mutant.  This tentative conclusion requires 

Figure 4: Relative citrate synthase 
(CS) activity in crude worm extract, 
expressed as percentage of CS 
activity in mitochondria,  is close to 
invariable with increasing age in both 
WT and daf-2(e1370). Data derived 
from fig 1(c). 
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additional experimental testing.  Further proteomic experiments comparing protein 

abundances between controls and daf-2 are underway; these experiments may confirm or 

refute mitochondrial compositional differences between the two strains. 

Finally, the abundance of OXPHOS complexes which were mainly found as 

supercomplexes declined with age in wild-type and this decline was again attenuated in the 

mutant worms.  There is mounting evidence that the organization of the ETC in these higher 

order structures, supercomplexes or respirasomes, controls the bioenergetic competence of 

mitochondria (Bornhövd et al., 2006; Rosca et al., 2008; Suthammarak et al., 2009).  In 

particular, Bornhövd et al. (2006) proposed a model of microdomain organization of 

OXPHOS (super)complexes in the mitochondrial inner membrane. Disruption of these 

microdomains would affect metabolite/substrate channeling and/or efficient cooperation of 

these complexes, ultimately leading to a reduced flux through the respiratory chain and a 

lower membrane potential.   
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4.7 Addendum to chapter 4: justification for final protocol for isolation 
of mitochondria. 
 
Table 2 
Isolation steps Issues Conclusion 

 
Murfitt et al. (1976) 

Amount of worms used:  35 g wet weight  

fractionate worms with sea sand in 
mortar 6-7 min, dissolve in buffer 
 

Not possible to recuperate enough 
worm tissue from 1 ml of worm 

Substitute with rough surface 
douncer/ 
alternative 

380g 10’ & resuspend pellet 
 

Not using supernatant is too large a 
loss of tissue 

Use supernatant 

Nagarse treatment 5’ 
 

Replaced by digitonin* treatment 
(0.05% and 0.01%) but suboptimal 
reaction to ADP 

No chemical purification step 

dounce 7x & resuspend Smooth surface douncer had little 
effect on tissue fractionation 

Omit step 

380g 10’, keep 380g pellet 
supernatant 4500g 5’ & resuspend = 
first mitochondrial pellet 

Centrifugation speeds give good 
yield, remove larger fractions and 
pellet is easily resuspendable 

Centrifugation speeds ok 

resuspend 380 g pellet 
repeat previous steps on this pellet 
and pool 

Extra yield of second series of 
centrifugation steps is negligible  

Omit steps 

 
Kayser et al. (2001) 

Amount of worms used:  Not specified Kayser et al. (2004a):  
“2 to 3 grams” 

suspend worms in isolation buffer 
fractionate with Polytron 20 s 14000 
rpm 

Replace by rough surface douncer Fragmentation ok but timing 
hard to reproduce and loss of 
tissue during transfer to 
centrifuge tube 

Replace by IKA rotor/stator mixer 
40 sec max speed 25000 rpm 
Visual evaluation of fractionation 

Fragmentation ok 
Negligible loss of tissue 

add proteinase type XXVII, stir 10’ See remarks digitonin* Omit step 

homogenize in Potter/Elvehjem 
tissue grinder with Teflon pestle 

Considerable loss of tissue Omit step 

add 1 volume of isolation buffer 
made 0.4% in BSA 

 copied 

centrifuge300g 10’ See below**  

filter supernatant through gauze Cannot be performed on small 
amount of tissue 

Omit step 

centrifuge 7000g 10’ 
resuspend in isolation buffer 
repeat twice 
 

**combinations tested in order of 
resulting RCR and ADP/O: 
380/380/4500g 
 ≈ 800/800/10000g >380/800/4500g     

800/800/10000g 
combination: issue with 
removal of larger worm 
fractions and resuspension of 
mitochondrial pellet 
Selected combination: 
380/380/4500g 
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Protocol used 

Amount of worms used: Harvest and clean approx. 300000 
worms 
Suspend in 1ml of isolation buffer 
 

 

Fractionation Chop 40 sec at 25000 rpm with 
rotor-stator mixer 
Add 1 ml of isolation buffer made 
0.4% in BSA 

 

Removal of debris Centrifuge 380g 5’ 
Transfer supernatant 
Centrifuge 380g 5’ 

 

Collection of mitochondrial 
suspension 

Centrifuge 4500g 5’ 
Discard supernatant 
Resuspend mitochondrial pellet 
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Chapter 5 

Ins/IGF-1 and mitochondrial function: oxidative 

phosphorylation and bioenergetic competence  
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ABSTRACT 

 

The Ins/IGF-1 reduction-of-function mutation daf-2(e1370) induces several whole-worm 

metabolic alterations.  In this chapter we show that it also alters mitochondrial aerobic 

energy production.  In the wild-type, age-related proteomic changes are accompanied by a 

dramatic decrease in energy production.  In contrast, in daf-2 animals, not only the decrease 

in abundance of key mitochondrial proteins but also in their bioenergetic competence is 

considerably attenuated, and is associated with a higher membrane potential.  Our findings 

suggest a higher energetic efficiency of daf-2(e1370) animals. 

 



Chapter 5 

 

155 

 

5.1 Introduction 
 

In Chapter 3, we demonstrated that daf-2(e1370) worms dissipate less heat than 

wild-type animals per mole of oxygen utilized. This difference is manifested by a 

considerable reduction of the calorimetric-to-respirometric ratio, possibly pointing to a 

higher efficiency of mitochondrial metabolism (also referred to as bioenergetic efficiency) of 

daf-2(e1370) animals.  To address the cause of altered energy metabolism in whole worm 

daf-2, we set out to examine energy production by mitochondria.  In this chapter, we study 

the effect of age and of mutation in the Ins/IGF-1 pathway on the bioenergetic competence 

of isolated mitochondria.  Mitochondrial bioenergetic competence is assessed through 

measurement of mitochondrial oxygen consumption at different states of activity and the 

capacity of isolated mitochondria to synthesize ATP.  Mitochondrial efficiency is also 

estimated by measuring the mitochondrial calorimetric-to-respirometric ratio and the 

mitochondrial membrane potential.  

Results show that the age-dependent decrease of bioenergetic competence is 

considerably attenuated in daf-2(e1370) adult animals.  daf-2(e1370) mitochondria are able 

to better maintain their capacity for oxidative phosphorylation and have a higher membrane 

potential.  However, the lower calorimetric-to-respirometric ratio observed in live daf-

2(e1370) worms is not recapitulated in isolated mitochondria, suggesting that other targets 

of Ins/insulin growth factor-1-like signaling act in concert with the mitochondria to control 

organismal metabolic rate. 

 

 

5.2. Materials and methods  
 

5.2.1. Strains & culture conditions, isolation of mitochondria 

 

Strains used were N2 wild-type (CGC male stock) and daf-2(e1370), as well as daf-

16(mgDf50) in some experiments.  Culturing of nematode cohorts and isolation of 

mitochondria were performed as in (4.2.2.).  For all experiments except Complex II + III 

enzyme activity, freshly isolated mitochondria were used. 

 

5.2.2. Assays  

 

Oxygen consumption by isolated mitochondria 

 

Oxygen consumption by isolated mitochondria was monitored polarographically 

using a Clark type electrode mounted in a respirometer cell and connected to an oxygen 

meter (Strathkelvin Mitocell MT200A and 782 Single/dual channel oxygen meter, 

Strathkelvin Instruments, Glasgow, Scotland).  An aliquot of isolated mitochondria 

containing approximately 300 µg of protein was added to 500 µl of air saturated incubation 

medium (Kayser et al., 2001) at 24°C.  Respiration was activated by adding 5 mM pyruvate 

and 5 mM malate (final concentrations) for assaying Complex-I-dependent respiration or 10 

mM succinate and 4 µg/ml rotenone (Complex-II-dependent respiration), followed by 
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sequential additions of 50 nmol ADP1.  State 3 and state 4 oxygen consumption, respiratory 

control ratio (RCR) and ADP/O were calculated according to (Estabrook, 1967) (see also 

section 1.2.6.2).   

 

Activity of Complex II + III 

 

The Complex II + III activity assay was adapted from a protocol by (Trounce et al., 

1996).  Frozen mitochondria were freeze-thawed 3 times in liquid nitrogen after a 7-fold 

dilution in hypotonic medium (Birch-Machin and Turnbull, 2001) consisting of 25mM 

potassium phosphate, pH 7.2 and 5 mM MgCl2 to fragment mitochondrial membranes.  In 

the wells of a translucent microtiterplate, a reaction mixture consisting of 40mM potassium 

phosphate buffer, pH 7.4, 5 mM succinate, pH 7.4, 500µM EDTA, pH 8, 2mM KCN and finally 

10µl of diluted mitochondrial suspension equaling approximately 3 µg of mitochondrial 

protein was incubated at 24°C for 10 min.  The reaction was initiated by adding 120 µM of 

cytochrome c; the change in absorbance, or the reduction of cytochrome c by complex III 

coupled to succinate oxidation through complex II, at 550 minus 540 nm was monitored for 

6 min in a Spectramax 190 (Molecular Devices, CA, USA).  Absolute concentrations were 

calculated using the extinction coefficient 19.0 mM-1cm-1.  

 

Quantification of ATP synthesis 

 

ATP synthesis was determined using the Roche ATP Bioluminescence Assay Kit CLS II.  

Approximately 5 ng of freshly isolated mitochondria were added to the wells of a white 

microtiter plate containing 96 µl of incubation medium (Kayser et al., 2001), 50µl of 

luciferase reagent (1 bottle was dissolved in 5 ml of sterile high-performance liquid 

chromatography (HPLC) water), and 50 µl of substrate/ADP mix (final concentrations in the 

well: pyruvate 1 mM and malate 1 mM or succinate 5mM with rotenone 2 µg/ml, ADP 

100µM). The emitted light was measured for 45 minutes in a Wallac Victor² Multilabel 

Counter.  For determination of background light emission, 2 µg/ml oligomycin, an inhibitor 

of complex V, was added.  

 

Mitochondrial heat dissipation and calorimetric-to-respirometric (C/R) ratio 

 

For this assay, mitochondria were isolated in the presence of a protease inhibitor 

cocktail (Roche Diagnostics, Mannheim, Germany) at the concentration recommended by 

the manufacturer.  Heat dissipation was registered by the Thermal Activity Monitor (TAM, 

TA Instruments, DE, USA) as follows: 560µl of phosphate-enriched incubation medium (100 

mM KCl, 50 mM MOPS, 1 mM EGTA, 100 mM potassium phosphate, 1 mg/ml defatted BSA, 

pH7.4) was transferred to a glass ampoule and made 27,4 mM each in pyruvate and malate 

from pH 7 stock solutions.  Next, ADP and penicillin/streptomycin mixture were added at 

16.4 mM and 200 U/200 µg, respectively.   Protease inhibitor cocktail was added as needed 

to meet the recommended concentration.  Finally, 250-500 µg of mitochondria were added 

                                                 
1
 Addition of 50 nmol ADP does not lead to the maximum attainable state 3 oxygen consumption rate; 

this small, non-saturating amount was added to derive multiple readings from one experiment. 
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and the ampoule was sealed and inserted into the TAM.  An identical sample was taken 

concurrently for registration of a state 3 oxygen consumption rate.  Heat dissipation was 

recorded for 10 min after approx. 40 min of equilibration.  Immediately following 

termination of the recording, the contents of the ampoule were transferred to the cell of the 

respirometer and a state 3 oxygen consumption rate was determined. This second reading 

was used for obtaining the mitochondrial C/R ratio. 

 

Determination of the membrane potential 

 

For this assay, mitochondria were isolated in the presence of a protease inhibitor 

cocktail (Roche Diagnostics, Mannheim, Germany) at the concentration recommended by 

the manufacturer.  The fluorescent probe DASPMI (dimethylaminostyrylmethylpyridinium-

iodine) was kindly provided by Prof. Jürgen Bereiter-Hahn and used as an indicator of 

mitochondrial membrane potential, essentially following the protocol by (Bereiter-Hahn, 

1976), with minor changes.  Protein concentration in the mitochondrial preparations was 

determined according to (Bradford, 1976), using a Sigma kit following the manufacturer’s 

instructions,  and adjusted as needed to obtain a ratio of approx. 2.9 nmol DASPMI/mg 

mitochondrial protein in the sample wells. Briefly, to a well of a black microtiter plate, 234µl 

of incubation medium was added, followed by 3µl of a 1M succinate stock2, 3µl of a 

400µg/ml rotenone solution in DMSO and 15µl of a 96µM DASPMI solution in HPLC-grade 

water.  Next, 30 µl of mitochondrial suspension was added and fluorescence was recorded 

(Wallac Victor² Multilabel Counter (Perkin-Elmer, MA, USA), excitation at 450 nm, emission 

at 590 nm) for 4 min to obtain a stable mitochondrial membrane potential signal. Next, 4µl 

of a 200mM ADP stock solution was added and DASPMI fluorescence in energized 

mitochondria was recorded for 2 min.   Finally, the membrane potential of uncoupled 

mitochondria was registered for 2 min after addition of 10µl of a 1 mM FCCP solution.  Final 

concentrations of reagents in the well for this last measurement are: succinate, 10 mM, 

rotenone, 4 µg/ml, DASPMI, 4,8 µM, ADP, 2,7 mM, and FCCP, 33 µM.  Fluorescence signals 

were corrected for small differences in protein content using the BCA (bicinchoninic acid) 

method (see (4.3.2.2.)) which is more sensitive than the Bradford assay. 

 

Uncoupled respiration 

 

Mitochondrial oxygen consumption was also assessed when respiratory control by 

the membrane potential was absent.  First, state 3 and state 4 oxygen consumption via 

Complex I were monitored, adding ADP to the mitochondria only once.  Next, 5 µM FCCP3 

was added to register oxygen consumption when the ETC was uncoupled. 

 

                                                 
2
 Membrane potential of mitochondria in the active state was not determined in the presence of 

substrates fueling Complex I; (Bereiter-Hahn, 1976) found that DASPMI exerts an inhibitory effect at 

the site of NADH oxidation. 
3
 FCCP was titrated to assess the concentration needed for optimal uncoupling; this titration was 

performed on mitochondria isolated from the WT. Titration on daf-2 mitochondria may have resulted 
in a different optimal FCCP concentration. 
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Protein determination 

 

Oxygen consumption in state 3 and 4, ATP synthesis, Complex II + III activity, 

membrane potential and uncoupled respiration were all corrected for protein content by the 

BCA method (see 2.2.1.2. and 4.3.2.2.) without prior degradation of the samples with alkali.  

 

Statistics 

 

For statistics, we refer to (3.2.1.3.). 

 

5.3. Results and discussion 
 

Mitochondria can shift between several energetic states depending on the presence 

of combustible substrate and ADP. Freshly purified mitochondria lack sufficient amounts of 

both and consume very little amounts of oxygen, called state I respiration. The addition of 

metabolizable substrate (state 2 respiration) is not helpful as long as there is no ADP to 

unlock complex V and permit protons to flow into the mitochondrial matrix. The addition of 

sufficient amounts of substrate and ADP maximizes proton flow through Complex V and, 

consequently, electron transport and the reduction of oxygen to water at Complex IV (state 

3 respiration), coupled to the conversion of ADP to ATP (oxidative phosphorylation). When 

ADP is depleted, the mitochondria return to the resting state 4 respiration.   

First, we discuss oxidative phosphorylation by mitochondria fueled via Complex I 

(with pyruvate and malate as substrates).  We found that increasing age had little, if any, 

effect on state 3 respiration. ADP-stimulated oxygen consumption was higher (Pstrain = 

0.0002) in daf-2(e1370) mitochondria (fig 1a).  In all strains, state 3 respiration remained 

stable (Page = NS) over the entire life time studied (fig 1a & b). State 4 respiration increased 

with age very gradually in N2 and daf-2(e1370) animals [Page = 0.0002 and Pstrain = 0.0039] (fig 

1c) and faster in daf-16(mgDf50) worms [Page*strain = 0.027] (fig. 1d). The limitation placed on 

electron transport by the chemiosmotic gradient, or respiratory control, can be derived from 

these data. The ratio of substrate driven oxygen consumption in the presence of ADP (state 

3) to that in its absence (state 4), or respiratory control ratio (RCR) decreased with age in all 

three strains. The rate of this decrease was lowest in daf-2(e1370) (fig. 1e) and highest in 

daf-16(mgDf50) (fig. 1f) [N2 vs daf-2, Page*strain  <0.0001 and N2 vs daf-16, Page*strain = 0.0157]. 

The passage of electrons through the proton translocating complexes I, III and IV is 

associated with the release of free energy that is recovered when protons flow back inside at 

complex V, and ADP is converted to ATP. Based on the change in free energy under standard 

conditions, the theoretical ratio of ADP molecules that can be phosphorylated per atom 

oxygen that is reduced to water, or ADP/O ratio, is more than 7 (Voet et al., 2006), but 

maximum attainable ratios are less because of various losses in this process and are ~3 for 

oxidation of NADH by complex I.  We observed an age-related decline of ADP/O in all three 

strains, more gradual in daf-2(e1370) (fig. 1g) and steepest in daf-16(mgDf50) (fig. 1h) [N2 vs 

daf-2, Page*strain = 0.0001 and N2 vs daf-16, Page*strain = 0.0067].  We have to note that the 

absolute figures for wild-type mitochondrial oxygen consumption differ between 

experiments, and that seemingly, state 3 oxygen consumption levels are similar between 
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daf-2(e1370) and daf-16(mgDf50).  However, this is most likely due to variation in replicate 

cultures; this is corroborated by the fact that RCR and ADP/O ratios are identical for wild-

types of both data sets. 

 

Figure 1: The daf-2(e1370) allele preserves mitochondrial bioenergetic competence throughout 
the adult life trajectory. The mitochondria are fueled with pyruvate and malate to activate 
Complex-I-dependent respiration.  Left panels: WT versus daf-2(e1370), right panels: WT versus 
daf-16(mgDf50). (A-B) State 3 oxygen consumption. (C-D) State 4 oxygen consumption. (E-F) 
Respiratory control ratio. (G-H) Adenosine diphosphate (ADP)/O ratio. Data represent means ± 
SEM (bars) for mitochondria isolated from 6 (daf-2(e1370)) or 3 (daf-16(mgDf50)) replicate 
cultures; *, p < 0.05, **, p < 0.01, ***, p < 0.001 (Student’s t-test). 
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Differences between wild-type and daf-2(e1370) were less obvious when 

mitochondria were fueled via Complex II (with succinate as a substrate and rotenone to 

inhibit activity of Complex I; no daf-16 dataset is available for this setup): for state 3 oxygen 

consumption, rates seemed to decrease during the first few days of adulthood, only to 

increase at later stages in the wild-type [Page*strain for complete dataset = 0.0320] (fig 2a).  

From day 3 to day 9 of adulthood, statistics did comply with trends observed in 

mitochondria fueled via Complex I [Page NS, Pstrain = 0.0017].  Contrary to mitochondria fueled 

via Complex I, state 4 oxygen consumption fueled with succinate showed no clear increase 

with age [Page = NS], while between-strain differences were statistically significant [Pstrain = 

0.0235] (fig 2b).  A statistically significant age-related decrease in RCR and ADP/O was found; 

this decrease was slightly less steep in the long-lived mutant daf-2(e1370) [Page*strain <0.0001 

and = 0.0006, respectively] (fig 2 c&d).  Expected ADP/O of mitochondria fueled via Complex 

II is ~2; mitochondria from both strains did not reach this ADP/O rate, not even at young 

adult stages.  That is why, though these data indicated a functional difference between aging 

WT and daf-2(e1370) mitochondria, we sought confirmation in an alternative experiment. 

An alternative way to illustrate the effect of the daf-2 mutation on the activity of 

mitochondria fueled via Complex II is by assaying the enzyme activity of complex II and III 

combined.  Sufficient amounts of succinate and oxidized cytochrome c were supplied to 

fragmented mitochondria and complex IV activity was blocked by addition of KCN.  In this 

way, electrons flowed from complex II via Ubiquinone over Complex III, finally reducing 

cytochrome c.  Complex II+III activity showed a slight decrease with age in wild-type 

mitochondria, particularly at older ages, while in the daf-2, no age-related decrease was 

evident; rather, Complex II+III activity seemed to increase with age (fig 3) [Page*strain = 0.0007].  

This assay estimates maximal activity of part of the ETC and proves that at least this part of 

the ETC can perform at higher rates in the long-lived mutant than in the wild-type; it cannot 

replace oxidative phosphorylation measurements of intact, active mitochondria, but we 

argue that in the case of succinate-driven oxidative phosphorylation, it is a valuable assay 

underpinning the difference between wild-type and daf-2 mitochondria.  
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Next we measured the rate of ATP synthesis by isolated mitochondria of all three 

strains in the presence of non-limiting supply of substrate and ADP. The results reflected the 

ADP/O profiles.  Complex-I-dependent ATP synthesis capacity of daf-2(e1370) mitochondria 

was hardly affected by the aging process, whereas a gradual and a steeper decline was 

observed for mitochondria prepared from wild type and daf-16(mgDf50) animals, 

respectively (fig.4 a&b) [N2 vs daf-2, Page*strain = 0.0222 and N2 vs daf-16, Page*strain = 0.0054]. 

Similar ATP synthesis results were obtained when the mitochondria were fueled with 

Complex II substrate [N2 vs daf-2, Page*strain = 0.0146 and N2 vs daf-16, Page*strain  = 0.0025] (fig 

4 c&d).   

 

Figure 3: Complex II+III activity in fragmented 
mitochondria; WT versus daf-2(e1370).  
Mitochondria are fragmented and supplemented 
with succinate, KCN and cytochrome c; the 
change in absorbance caused by reduction of cyt 
c is recorded at 550 minus 540 nm.  Data 
represent means ± SEM (bars) for mitochondria 
isolated from 3 replicate cultures; *, p < 0.05, **, 
p < 0.01 (Student’s t-test). 

 

Figure 2: Oxidative phosphorylation in 
mitochondria fueled via Complex II (with succinate 
and rotenone);  WT versus daf-2(e1370). (A) State 
3 oxygen consumption. (B) State 4 oxygen 
consumption. (C) Respiratory control ratio. (D) 
Adenosine diphosphate (ADP)/O ratio.  Data 
represent means ± SEM (bars) for mitochondria 
isolated from 3 replicate cultures; *, p < 0.05, **, p 
< 0.01 (Student’s t-test). 
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Figure 4: The daf-2(e1370) allele preserves mitochondrial ATP synthesis capacity throughout the adult 
life trajectory. The mitochondria are fueled with pyruvate and malate (A-B) or with succinate and 
rotenone (C-D).  Left panels: WT versus daf-2(e1370), right panels: WT versus daf-16(mgDf50). Data 
represent means ± SEM (bars) for mitochondria isolated from 3 replicate cultures; *, p < 0.05 
(Student’s t-test).   

 

A portion of the protons pumped 

into the intermembrane space by ETC 

complexes I, III and IV is not used to drive 

ADP phosphorylation by complex V, but 

leaks back to the matrix and represents a 

loss of energy as heat. Since heat released 

by live daf-2(e1370) animals was 

abnormally low relative to wild-type worms, 

we asked whether isolated mitochondria 

would yield similar results. A disadvantage 

of our thermal activity monitoring method 

is that it requires prolonged (~40 min) 

temperature equilibration of the samples in 

the instrument prior to effective data 

collection (~10 min). We observed that the 

oxygen consumption by daf-2(e1370) 

mitochondria was reduced by 15% at the 

end of the experiment compared to the 

initial respiration rate (results not shown). 

Remarkably, wild-type mitochondria lost 

very little activity under these conditions. 

To minimize experimental bias, we only used the respiration rates measured after 

completion of heat measurement to obtain the C/R ratio. Mitochondria respiring in state 3 

Figure 5: C/R ratios of mitochondria isolated 
from wild-type and daf-2(e1370) mutant 
worms. Mitochondria are isolated from 2-day-
old adults and fuelled with Complex I 
substrates and adenosine diphosphate to 
activate complex-I-dependent respiration for at 
least 1 h. The oxygen consumption rates 
measured after completion of calorimetry are 
used for calculating the mitochondrial 
calorimetric to respirometric ratio. Data 
represent means ± standard error of mean for 
mitochondria isolated from eight replicate 
cultures. 
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fueled by non-limiting amounts of ADP and Complex I substrate were used and this 

experiment was repeated eight times. Overall, we found no significant difference in C/R 

between the mutant and wild-type mitochondria. (fig. 5).   

We considered the possibility that microcalorimetry of isolated mitochondria lacked 

the necessary resolving power to detect small differences in mitochondrial heat dissipation. 

Since heat production is inversely proportional with electron transport chain efficiency, we 

asked if daf-2(e1370) mitochondria operate at a higher membrane potential. We used the 

cationic fluorescent dye DASPMI to probe ΔΨmit of mitochondria prepared from wild-type 

and daf-2 animals. The positively charged DASPMI ion readily penetrates the mitochondria 

and is distributed between the external space and the matrix compartment in accordance to 

the Nernst equation. The increase of emission of mitochondrial fluorescence is due to 

enhancement in quantum yield in the more proteinaceous and apolar microenvironment 

inside the mitochondria and is strictly linear up to ~3 nmol dye/mg mitochondrial protein 

(Bereiter-Hahn, 1976; Mewes and Rafael, 1981). We compared the fluorescence intensities 

of DASPMI in the activated OXPHOS state (state 3) and after addition of uncoupler (FCCP) 

which results in collapse of the membrane potential and equal distribution of the probe 

inside and outside the mitochondria (fig.6a). The fluorescence intensities of uncoupled wild-

type and daf-2 mitochondria were essentially identical (Pstrain NS) and invariant with age (Page 

NS). However, activated daf-2 mitochondria emitted more fluorescence than wild-type 

mitochondria (Pstrain 0.0343) and the fluorescence intensities decreased with age in both 

strains (Page 0.0157). An age-related decrease (Page 0.0035) was also seen when membrane 

potential was assessed on state 2 mitochondria.  State 2 is similar but not identical to state 

4; state 2 does give an indication of near maximal membrane potential.  Strain differences 

for state 2 were not significant; daf-2 mitochondria in state 3 operated at membrane 

potentials closer to their maximum than WT mitochondria. The transition of state 2 to state 

3 caused an average drop of 5% of the DASPMI signal in daf-2.  In the WT, an average drop of 

14% was observed, with larger differences between mitochondria from young and old 

nematodes.  Adding ADP to daf-2 mitochondria shows that the mutant can better maintain 

its membrane potential under conditions of oxidative phosphorylation.     

We conclude that the membrane potential in fast-respiring mitochondria decreases 

with age and that daf-2 mitochondria most likely operate at higher ΔΨmit values. Very 

recently, another study reported, using in vivo monitoring of the carbocyanine dye ‘DiS-

C3(3)’ that knock-down of lifespan-limiting genes by mutation or RNAi results in a lower 

ΔΨmit  and a drop in the λmax of the emitted fluorescence (Lemire et al., 2009). These 

observations are difficult to interpret because they are heavily biased by strain-specific 

differences in feeding rate, and, of consequence, dye accumulation (Gaskova et al., 2007). 

Estimates of mitochondrial membrane potentials can be important for 

interpretation of mitochondrial respiration data.  Fueled with either succinate or pyruvate 

and malate, mitochondria isolated from daf-2 have higher state 4 respiration rates than WT 

mitochondria.  Since state 4 is controlled mainly by proton leak (the current of protons that 

leaks back from the intermembrane space to the matrix without driving complex V), it would 

seem that daf-2 mitochondria have a higher proton leak than WT mitochondria, refuting our 

interpretation that daf-2 is better coupled than WT.  However, proton leak rate is voltage-

dependent (Nicholls, 1977, Brand and Nicholls, 2011), with increasing state 4 respiration but 

no change in proton leak when mitochondrial membrane potentials are elevated.  A 
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tentative interpretation would be that since membrane potential is higher in daf-2 

mitochondria, higher state 4 respiration rates are not necessarily indicative of higher proton 

leak in this strain.  An increase with age of state 4 in both strains was observed when 

mitochondria were fueled by pyruvate and malate, not by succinate.  Higher state 4 

respiration at old age may indicate that proton leak increases with age.   

Since addition of uncoupler resulted in equal ΔΨmit in both strains, we asked what 

the consequences of uncoupling would be on mitochondrial oxygen consumption.  Addition 

of the uncoupler FCCP increased respiration to the level of maximum electron transport 

system capacity.  The uncoupled rates were slightly higher than the respective state 3 rates, 

indicating that the mitochondria from both strains respired close to their maximum capacity.  

However, both uncoupled and state 3 rates were substantially higher for daf-2(e1370) 

relative to N2 indicating that this capacity is enhanced in daf-2(e1370) animals (fig. 6b).  

 

 
 
Figure 6: The daf-2(e1370) allele causes a higher mitochondrial membrane potential and enhanced 
respiratory capacity. (A) Increased accumulation of the fluorescent probe DASPMI inside energized 
daf-2(e1370) mitochondria. Fluorescence intensity of DASPMI in energized and uncoupled isolated 
mitochondria of wild-type (WT) and daf-2(e1370). Fluorescence emission over the 2 min interval was 
averaged for each energetic state. Displayed values are means ± standard error of mean for three 
replicate cultures. The increase of DASPMI fluorescence is proportional to the amount of dye taken up 
by the mitochondria which itself is proportional to the membrane potential (Mewes and Rafael, 
1981). (B) Higher oxygen consumption in the presence of adenosine diphosphate or uncoupler by daf-
2(e1370) mitochondria. The assay was performed on two replicate cultures; since no age-dependent 
differences were noticed, mitochondrial respiration rates were averaged per strain over a 9-day time 
span. Paired t-tests were performed in within-strain comparisons, unpaired t-tests were performed in 
between-strain comparisons; * P < 0.05, ** P < 0.01 and *** P < 0.001. 

 

5.4 Conclusions 
 

In live nematodes, oxygen consumption decreases with increasing age in both wild-

type and daf-2(e1370) (see chapter 3).  As we found no evidence for a systematic age-

related loss of mitochondria (chapter 4), we investigated whether isolated mitochondria 

show a comparable age-dependent reduction in respiration rate. This was clearly not the 

case. State 3 respiration was essentially unaffected by age in all three strains tested. State 3 
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respiration represents maximum performance under conditions of unlimited fuel supply, 

non-physiologically high oxygen concentration and absence of any cellular control. These 

results indicate that the ability of the mitochondria to reduce oxygen is not affected by the 

aging process and that the decline of oxygen consumption and heat output by intact animals 

during the first week of adulthood is regulated by aspects of mitochondrial function not 

studied here or by extra-mitochondrial control.  In contrast, the mitochondrial coupling 

efficiency, illustrated by the ADP/O ratio and ATP synthesis under state 3 conditions, and the 

dependence of respiration on the available ADP, illustrated by the RCR, declined with age in 

all three strains though more weakly in daf-2(e1370) mitochondria. These results suggest 

that the mitochondrial bioenergetic competence is bound to decline with age but that this 

decline is attenuated by mutation in daf-2, suggesting modulation by Ins/insulin-like growth 

factor (IGF-1) signaling. 

How could the bioenergetic competence of the mitochondria be altered? We found 

that several components involved in mitochondrial function decreased with age both in N2 

and daf-2 animals though faster in N2 (see chapter 4).  However, this observation cannot 

explain the fairly constant state 3 rates measured over the life trajectories.  One possible 

explanation is that the bioenergetic competence is largely dictated by a higher order 

structure of the ETC complexes.  Bornhövd et al (2006) proposed a model of microdomain 

organization of OXPHOS (super)complexes in the mitochondrial inner membrane and they 

argued that disruption of these microdomains would affect metabolite/substrate channeling 

and/or efficient cooperation of these complexes, ultimately leading to a reduced flux 

through the respiratory chain and a lower membrane potential.  Our measurements of 

ADP/O, RCR, ATP synthesis and mitochondrial membrane potential in daf-2 worms versus 

wild type mitochondria are consistent with such a model.  

It is not yet clear how and to what degree this control over bioenergetic competence 

is exerted in vivo.  An explanation for decreasing oxygen consumption in aging nematodes is 

still lacking.  In live worms, we found lower C/R ratios in the long-lived mutant than in the 

wild-type.  We assumed that reduction in C/R ratio reflects more efficient energy production 

since less energy is lost as heat (Kemp and Guan, 1997) and expected to find enhanced 

coupling of ATP synthesis to the oxidation of NADH and FADH2. However, we could not 

reproduce the large difference in C/R ratios of live young adult daf-2(e1370) and wild-type 

animals by assaying their isolated mitochondria. Also, the largest difference in worm C/R 

ratio was observed for a cohort of animals up to 7-9 days of adulthood, but this pattern was 

not reproduced by their mitochondrial ADP/O ratios. Conversely, we found that the ADP/O 

ratios for daf-2(e1370) mitochondria were generally higher than those obtained for wild-

type worms when older animals were assayed, whereas the difference in worm C/R ratios 

between both strains faded away at advancing age.  Thus it appears that the aberrant C/R 

ratio of daf-2(e1370) animals cannot be merely ascribed to an intrinsic property of their 

mitochondria and other mechanisms must be considered. 
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ABSTRACT 

 

In the Ins/IGF-1 mutant daf-2(e1370), the increase in mitochondrial competence is associated 

with a higher membrane potential.  In line with this finding, we show that reactive oxygen (ROS) 

production is increased in daf-2; in contrast, little damage to mitochondrial protein or DNA 

occurs.  We discuss the role of ROS production and oxidative damage in lifespan determination 

and conclude that mitochondrial ROS production does not limit the lifespan of daf-2(e1370).   
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6.1 Introduction 
 

Mitochondria convert approximately 0.1%-0.3% of the consumed oxygen to superoxide 

which can further react to generate other ROS (St-Pierre et al., 2002; Fridovich, 2004).  Hence, a 

widely held view is that aging initiates in, and spreads from, the mitochondrial compartment 

(Sastre et al., 2003; Fridovich, 2004; Lenaz et al., 2006; Lesnefsky & Hoppel, 2006).  Since ROS 

production is expected to be related to the mitochondrial membrane potential (Korshunov et 

al., 1997), we ask whether the higher membrane potential in daf-2 mitochondria will be 

mirrored in the production of mitochondrial ROS and in the damage inflicted by these ROS on 

protein and DNA.  We assess the effect of age and disruption of insulin signaling on 

mitochondrial ROS production in the form of H2O2 levels, measured in the presence of 

exogenous SOD.  Next, we estimate the damage inflicted to mitochondrial proteins by ROS 

produced in vivo, and the occurrence of mtDNA deletions in aging controls and daf-2(e1370) 

mutants.  We evaluate the role of ROS levels and damage by ROS in daf-2 longevity, taking into 

account what is known about the mutant’s antioxidant defense. 

Results show that higher mitochondrial bioenergetic competence and membrane 

potential are associated with increased ROS production, but with little, if any, damage to 

mitochondrial protein or DNA, suggesting that oxidative damage is not a key determinant of 

aging under normal environmental conditions. 

 

6.2 Materials and methods 
 

6.2.1. Strains & culture conditions, isolation of mitochondria 

 

Strains used were the wild-type N2 (Bristol male stock provided by the CGC) and Ins/IGF-

1 mutants daf-2(e1370) and daf-16(mgDf50).  The double mutants glp-4(bn2);daf-2(e1370) and 

glp-4(bn2) daf-16(mgDf50) were used in assessment of mtDNA deletions.  For culture conditions 

and isolation of mitochondria, we refer to (4.2.2.). 

 

6.2.2. Assays  

 

Quantification of mitochondrial H2O2 formation 

 

Mitochondrial H2O2 production was measured according to standard procedures by the 

horseradish-peroxidase-mediated oxidation of Amplex Red (Invitrogen, CA, USA) to the 

fluorescent compound resorufin.  First, the specificity of the assay for H2O2 was determined by 

recording the effect of inhibitors and/or uncouplers of the ETC on H2O2 production by 

mitochondria from day-0-adult wild-type.  Next, the effect of age and Ins/IGF-1 pathway 

disruption was assessed in energized mitochondria.  The protocol used on aging cohorts was 

performed in the following manner.  Freshly isolated mitochondria were incubated with the 

appropriate substrates and ADP and the rate of H2O2 production was measured with Amplex red 
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as follows: aliquots of 96 µl incubation medium containing 4 mM ADP, 10 mM of pyruvate, 10 

mM of malate (for Complex-I-dependent respiration) or 20 mM of succinate and 0.8 µg of 

rotenone (Complex-II-dependent respiration) and 10 U of Cu/ZnSOD (from bovine erythrocytes) 

were added to the wells of a black microtitre plate. The final assay medium was obtained by 

adding 100 µl of a mixture containing 100 µM Amplex Red and 4 U/ml horseradish peroxidase. 

Next, approximately 20 µg of freshly isolated mitochondria were added and the emitted 

fluorescence was measured for 35 min in the Wallac Victor² Multilabel Counter, at excitation 

and emission wavelengths of 550 and 590 nm, respectively. Final concentrations of reagents in 

the well were: ADP, 1.9 mM, pyruvate and malate, 4.8 mM each, or succinate, 9.6 mM, 

rotenone, 4 µg/ml, Cu/ZnSOD, 24 U/ml, Amplex Red, 50 µM, and HRP, 2 U/ml.  The intensity of 

fluorescence was converted to picomoles of H2O2 by running an internal H2O2 standard curve to 

account for quenching caused by mitochondrial constituents.  Assessment of specificity of the 

protocol was performed as follows: mitochondria were incubated with the appropriate 

combination of succinate and rotenone or pyruvate and malate, together with Cu/ZnSOD, in 

concentrations reported above.  Antimycin A or CCCP were added in final concentrations of 3 

and 10µM, respectively.  H2O2 formation was recorded as described but without an internal H2O2 

standard curve; rates of H2O2 production were expressed as percentages of signals without 

inhibitors. 

 

Carbonylation assay  

 

The carbonyl load of mitochondrial protein was measured using a Western immunoblot 

assay after protein derivatization with DNPH, as previously described (Matthijssens et al., 2007).  

Sample containing 4mg/ml protein was mixed with an equal volume of 12 % SDS.  Next, 2 

volumes of 20mM DNPH in 10 % TFA were added and the mixture was left for 15 minutes at 

room temperature.  Derivatization was stopped by adding 1.5 volumes of neutralization solution 

(2 M Tris, 30 % glycerol) and the resulting mixture was loaded into the slots of an SDS-PAGE gel 

(18% acrylamide).  Shortly after the proteins entered the separation gel, electrophoresis was 

discontinued and the proteins were transferred onto a nitrocellulose membrane by semi-dry 

blotting.  To ascertain loading of equal protein amounts, the protein content in each slot-dot 

was stained with the reversible dye Memcode (Pierce, Thermo Scientific, IL, USA) and quantified 

using Image J software.  Next, the membrane was destained and blocked with milk-PBS-Tween, 

incubated with rabbit anti-DNP primary antibody from Sigma followed by anti-rabbit antibody 

conjugated with HRP (Chemicon, Millipore, MA, USA) and finally with Supersignal 

chemiluminescent substrate from Pierce.  This treatment produced a chemiluminescent signal 

that was detected on autoradiography film.  This signal was quantified using Image J software.   

 

DNA isolation and amplification  

 

Mutation in glp-4 causes a germline defective phenotype at the restrictive temperature 

of 24°C; we scanned the long-lived strain daf-2(e1370); glp-4(bn2) and the control strain daf-

16(mgDf50) glp-4(bn2) for possible deletions in mtDNA, thereby avoiding differences in 
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germline development. Growth conditions were the same as in (4.3.1.2.), as well as the 

experimental setup for nucleic acid extraction of 3-, 7-, and 10-day-old adult daf-16(mgDf50) 

glp-4(bn2) worms and 3-, 7-, 10-, 14- and 26-day-old  daf-2(e1370); glp-4(bn2) worms. Samples 

were used for nested PCR without any further purification. One µl sample and 0.25 µl TaKaRa LA 

Taq (TaKaRa Bio Inc, Shiga, Japan) were added to PCR tubes containing 24 µl of PCR components 

and the outer pair of primers (Forward: CTTGTTCCAGAATAATCGGCTAGACTTGTTAAAGCTTGTAC, 

reverse: CCTAAGCCCTAGGCCCAAAGTAACTATTGAAAAACC), and subjected to 25 cycles (30 s at 

94 °C, 30 s at 60 °C and 12 min at 68 °C) of PCR to generate a fragment of 11,492 bp. Next 1 µl of 

this mixture was transferred to a tube containing 24 µl fresh reaction components and the inner 

pair of nested primers (forward: GGAGGCTGAGTAGTAACTGAGAACCCTC, reverse: 

GTGAAAGTGTCCTCAAGGCTACCACCTTC) to generate a final PCR fragment 11,211 bp long. As a 

control experiment, we also used the Melov primers for the second PCR reaction, generating a 

6294 bp long fragment (Melov et al., 1995). The amplified DNA fragments were analyzed on 

0.7% agarose gel. We found that fragments larger than ~7 kb would not be resolved from the 

full-length (~11 kb) amplicons.  As a positive control, him-8(e1489);uaDf5/+, a strain 

heteroplasmic for a 3.1-kb deletion in mtDNA (Tsang & Lemire, 2002) did result in both 6kb 

amplicons and shorter amplicons of ~3kb when the second set of primers were used. 

 

Protein 

 

Mitochondrial protein content was measured with the BCA method (see 2.2.1.2.) 

without prior degradation of the samples with alkali.  

 

6.3. Results and discussion 

 

The Amplex Red method is a suitable method for measuring H2O2 production in isolated 

mitochondria 

 

The Amplex Red protocol is based on horseradish peroxidase-catalyzed oxidation of the 

reductant substrate Amplex Red by hydrogen peroxide. The resulting resorufin is highly 

fluorescent.  It has been used for studying the topology of ROS production (Chen et al., 2003; 

Muller et al., 2004; Tahara et al., 2009) employing inhibitors and uncouplers to alter ROS levels 

produced by specific complexes of the ETC.  We have recorded resorufin fluorescence in the 

presence of antimycin A (an inhibitor of Complex III) or CCCP (an uncoupler) and calculated the 

change in H2O2 production caused by these manipulations (fig. 1).  H2O2 signals measured in 

mitochondria from young-adult wild-type, supplied with exogenous SOD and substrates to fuel 

the ETC, were used as a reference.  As substrates, either a mix of pyruvate and malate or 

succinate together with rotenone was chosen.  Rotenone prevents reverse electron transfer via 

Complex I.  First, addition of uncoupler decreased resorufin fluorescence with a minimum of 16 

%, in agreement with its capacity to lower the proton gradient, causing the ETC to become less 

reduced.  This decrease was moderate; we assume that the ‘native’ ROS production of the ETC 

(ROS production in the absence of inhibitors) is quite low.  Complex III is often seen as an 
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important site of ROS production by the ETC (reviewed by (Turrens, 2003)); adding antimycin A 

to mitochondria increases H2O2 production rates considerably as it blocks the electron flow 

through Complex III, inducing the opposite effect of an uncoupler.  The relative increase of H2O2 

production caused by antimycin was highest in the presence of succinate and rotenone.  This is 

not surprising since the activity of Complex II is driven directly by the added substrate and not 

dependent on other intermediates of the Krebs cycle.  

The ability to record increased ROS production in the presence of antimycin and the observation 

of the opposite effect in the presence of uncoupler indicate that the Amplex protocol is specific 

for mitochondrially produced H2O2.  (Tahara et al., 2009) found that the formation of resorufin 

can largely be prevented by the addition of catalase, strengthening the validity of this protocol 

for measuring ROS production. 

 

 
 

daf-2(e1370) mitochondria generate more H2O2 in vitro, but do not reveal higher oxidative 

damage accumulation in live worms 

 

In isolated mitochondria, the rate of ROS production is dependent on the mitochondrial 

membrane potential (Korshunov et al., 1997).  As reported, ΔΨmit of energized mitochondria is 

higher in daf-2(e1370) than in the wild-type. This raises questions about levels of ROS 

production by these mitochondria.  We measured the H2O2 production capacity of 

phosphorylating mitochondria, in the presence of exogenous SOD to guarantee that all 

superoxide would be converted to H2O2. We found that H2O2 formation declined with age in all 

three strains, and that daf-2(e1370) mitochondria produced higher amounts at all ages tested 

(fig.2a) [Pstrain = 0.0045; Page < 0.0001], in line with their higher membrane potential. In contrast, 

wild-type animals and daf-16(mgDf50) mutants produced essentially identical amounts of H2O2 

during their adult life trajectories (fig. 2b).  We have to note that ROS production capacity was 

not measured in the absence of ADP; from mitochondrial membrane potential assessment it can 

be concluded that this would result in even higher H2O2 production rates.  In vivo, mitochondria 

are expected to function in a respiratory state between state 3 and state 4.  Likely, H2O2 

production rates intermediate between state 3 and state 4 would better represent in vivo H2O2 

production.  Moreover, this intermediate state could differ between the WT and the long-lived 

mutant, potentially influencing ROS production differently in the two strains. 

Figure 1: Amplex Red is suitable as an indicator of 
mitochondrial H2O2 production in the presence of 
exogenous SOD. WT mitochondria fueled via 
Complex I or Complex II show a decrease or 
increase in H2O2 production after addition of the 
uncoupler CCCP or the Complex III inhibitor 
Antimycin A, respectively.  Data are expressed as 
% of reference measurements without addition of 
uncoupler or inhibitor. 
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We asked if this elevated production of ROS in vitro would be reflected in enhanced 

damage to mitochondrial macromolecules in vivo. Firstly, we assayed carbonyl groups on 

Western blots of mitochondrial samples. The extent of carbonylation was fairly identical in wild-

type worms and daf-2(e1370) animals during the first week of their adult lives, but 

mitochondrial protein from old daf-2(e1370) animals carried substantially less carbonyl load 

relative to wild type worms (fig. 3a). No differences were observed in the carbonyl load of 

mitochondrial protein prepared from wild-type and daf-16(mgDf50) animals (fig. 3b).  

 

 
Figure 2: daf-2(e1370) mitochondria generate more H2O2 while loss of DAF-16 activity does not affect 
H2O2 production.  H2O2 generation by isolated mitochondria from (A) wild-type and daf-2(e1370), (B) wild-
type and daf-16(mgDf50). Mitochondria were fuelled with pyruvate, malate and adenosine diphosphate. 
Cu/Zn SOD from erythrocytes was added to achieve maximal conversion of O2

.-
 to H2O2. Data represent 

means ± standard error of mean (SEM; bars) for mitochondria isolated from four (daf-2(e1370)) or three 
(daf-16(mgDf50)) replicate cultures; * P < 0.05 and ** P < 0.01 (Student’s t-test).  

 

 
Figure 3: daf-2(e1370) mitochondria do not reveal increased carbonyl load and loss of DAF-16 activity 
does not affect the carbonyl content of mitochondrial protein.  Carbonyl content of (A) wild-type and daf-
2(e1370), (B) wild-type and daf-16(mgDf50) mitochondrial protein derivatized with diphenylhydrazine and 
detected by Western blotting and a diphenylhydrazone specific antibody. Data represent means ± SEM.  
For panel (A), six replicate cultures of each strain were grown but these were sampled at different time 
intervals, occasionally reducing the number of replicate samples for each time interval to 3; in panel (B), 
data represent means ± standard error of mean for mitochondria isolated from three replicate cultures;* 
P < 0.05 (Student’s t-test). 
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ROS can also inflict damage to DNA. We monitored the occurrence of mitochondrial 

deletions with progressing age using long range nested PCR. For this experiment we used the 

long-lived double mutant strain daf-2(e1370); glp-4(bn2) and daf-16(mgDf50) glp-4(bn2) as a 

control.  The glp-4 genetic background was chosen because it is defective in germline 

development at the restrictive temperature.  In total we examined 624 daf-2(e1370); glp-4(bn-2) 

worms picked from 3-, 7-, 10-, 14-, and 26-day-old adult cohorts, and 432 daf-16(mgDf50) glp-

4(bn2) worms picked from 3-, 7- and 10-day-old adult cohorts. Faint bands representing 

curtailed fragments were observed incidentally, irrespective of strain or age. However, when the 

original DNA was assayed again these bands disappeared and novel bands incidentally arose, 

suggesting that these shortened fragments were generated artefactually during PCR 

amplification (fig 4; gels from 2 separate PCR experiments on daf-16(mgDf50) glp-4(bn2) DNA 

are shown, as well as 2 him-8;uaDf5/+ reference samples). Thus we found no evidence for the 

occurrence of deletions in mtDNA linked to strain differences or progressing age.  

 

 
 
Figure 4: No evidence for occurrence of age- or strain-related deletions in mtDNA.  Nested PCR was 
performed twice, starting from the same DNA extracted from individual worms of daf-2(e1370);glp-4(bn2) 
and daf-16(mgDf50) glp-4(bn2). These worms were sampled at various ages and him-8(e1489);uaDf5/+ 
was tested as a reference.  Agarose gels from 2 separate PCR experiments (b & c) on 5 age-matched DNA 
samples (day 7 of adulthood) of daf-16(mgDf50) glp-4(bn2) are shown, as well as 2 him-8;uaDf5/+ 
reference samples (a).  While curtailed fragments smaller than 6kb are present in the reference samples, 
short fragments occurring in the daf-16 glp-4 samples are considered artifacts as they are not observed in 
both PCR experiments. 

 

6.4. Conclusions  
 

The observed increase in daf-2(e1370) mitochondrial competence is associated with a 

higher membrane potential (Chapter 5).  In line with these observations, we detected higher 

mitochondrial ROS production capacity in this long-lived mutant. Corresponding results were 

reported by Yang & Hekimi (2010a) who found higher levels of mitochondrial superoxide in daf-

2(e1370) compared to wild-type.  Although we cannot prove that daf-2(e1370) mitochondria 
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also generate more ROS in vivo, the expectation is that they do so.  At first glance, this appears 

to be at odds with the common belief that a reduction of ROS underlies lifespan extension 

because it is predicted to slow down oxidative damage accrual (Reviewed by (Muller et al., 

2007)). However, this mutant does show increased SOD and catalase activities and levels of 

reduced glutathione, and resistance to oxidative stress (see chapter 3) (Larsen, 1993; 

Vanfleteren, 1993; Honda & Honda, 1999; Brys et al., 2007). Microarray analysis revealed that 

impairment of DAF-2 signaling enhanced DAF-16-dependent expression of sod-3, hsp-16, gst-1, 

gst-4, mtl-1, ctl-1 and ctl-2 (Murphy et al., 2003; Halaschek-Wiener et al., 2005). Conceivably, 

the activation of such a generalized defense could be mediated by a process called 

mitohormesis, where increases in mitochondrial ROS production cause an overcompensating 

induction of the antioxidant machinery resulting in extension of lifespan, as illustrated by (Schulz 

et al., 2007). However, for antioxidant defense to double life span of daf-2(e1370) relative to 

wild-type animals we would expect to detect substantial decreases of oxidative damage relative 

to wild-type worms. We did observe lower levels of carbonylated mitochondrial protein, but 

only in very old animals. Also, we could not confirm the expected decrease of mtDNA deletion 

events in the long-lived mutants (Melov et al., 1995). In fact we found no evidence of any such 

deletions in 624 long-lived and 432 control animals. Moreover, adding the antioxidant N-acetyl-

cysteine did not extend but slightly shortened the lifespan of daf-2(e1370) (Yang & Hekimi, 

2010), and deletion of all mitochondrial SOD activity by null alleles of both MnSOD encoding 

genes (sod-2 and sod-3) failed to shorten (Doonan et al., 2008; Honda et al., 2008) or even 

extended (Van Raamsdonk & Hekimi, 2009) life span in an otherwise wild-type background and 

failed to abolish longevity of daf-2(m577) animals (Doonan et al., 2008). In all, these and our 

findings suggest that oxidative damage is not likely a major determinant of the lifespan of C. 

elegans under normal environmental conditions. 
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7.1  Role of metabolism and reactive oxygen species in aging 

 
In 1956, Denham Harman proposed that free radicals, inevitable byproducts of aerobic energy 

metabolism, cause molecular damage. Accumulation of damaged molecules would lead to a 

decrease in cellular activity, a hallmark of aging, and ultimately to the death of the organism 

(Harman, 1956). This theory predicts that species that produce plenty of free radicals should suffer 

more molecular damage which in turn should lead to a short life span. Because some reactive oxygen 

species that do not belong to the class of free radicals can also cause molecular damage, the Free 

Radical theory has been expanded to the modern Oxidative Damage theory. The Oxidative Damage 

theory provides a molecular basis for the aging process. 

Three decades before Harman’s theory was published, Pearl launched the Rate-of-Living theory, 

stating that lifespan and metabolic rate are inversely correlated (Pearl, 1928) and thereby predicting 

that long-lived species or individuals should have a lower basal metabolic rate compared to their 

shorter-lived counterparts.  By assuming that the generation of reactive oxygen species is 

proportional to metabolic rate, the Oxidative Damage theory seemed to be compatible with the 

appealing Rate-of-Living theory. In this way, long lifespan could be attributable to a reduced 

metabolic rate that would lead to lower production rates of reactive oxygen species (ROS). These 

lower ROS levels would in turn cause less molecular damage, and a concurrent retardation of the 

aging process. Finally, the decreased aging rate would result in an increased lifespan. 

 

In view of the many exceptions to its rule (the extreme longevity of bats and some eusocial 

animals such as naked mole rats and ant queens), the Rate-of Living theory has rightfully been 

questioned.   Arguments for and against the Free Radical/Oxidative Damage theory of aging in model 

organisms other than C. elegans are described in chapter 1 (section 1.1.2.1.5) but are insufficient to 

confirm or refute the theory. 

Longevity mutants of the invertebrate model system Caenorhabditis elegans provide an 

excellent tool for testing the predictions mentioned above.  In this thesis, we have assessed energy 

metabolism and antioxidant defense of dauers, Clock mutants, DR-treated worms and the Ins/IGF-1 

mutant daf-2(e1370). For the latter, the study was broadened to incorporate measurements of 

mitochondrial ROS production and molecular damage.  We have also incorporated existing evidence 

from the literature: data on metabolism, ROS production, ROS defense and/or damage by ROS that 

are available for many mitochondrial mutants and worms treated with RNAi to disrupt mitochondrial 

function, generally referred to as the Mit phenotype.  Together, these findings allow experimental 

verification of the predictions of the Rate-of Living and Free Radical/Oxidative Damage theories of 

aging. 

 

7.1.1 Slow rate of aging 

 

First evidence that C. elegans Ins/IGF mutants age slowly came from demographical studies 

(Johnson, 1990; Johnson et al., 2001) where it was shown that age-1 mutants displayed a decreased 

acceleration of mortality with chronological age. 

Movement has been used as a physiological biomarker of senescence and it was found that 

age-1 mutants (belonging to the class of Ins/IGF longevity mutants like daf-2) showed enhanced 
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mobility later in life suggesting increased health compared to wild type (Duhon & Johnson, 1995). 

Later on, it was found that these mutants also showed decreased sarcopenia at advanced age, 

probably explaining their vitality. However, yolk accumulation in the body cavity, another marker of 

cellular aging, was not delayed in age-1 mutants (Herndon et al., 2002). In another study, two aging 

markers, tissue decline (observed with Nomarski microscopy) and lipofuscin accumulation, were 

found to be slowed down in daf-2(e1370) mutants (Garigan et al., 2002). 

Clk mutants have a longer mobility span or voluntary directional movement than WT (Van 

Raamsdonk et al., 2010).  Mit mutants exhibit slower rates of multiple physiological parameters, 

making it more difficult to evaluate the significance of differences between strains for aging.   

 

7.1.2 Energy metabolism 

 

The conflation of the Rate-of-Living theory with the Oxidative Damage theory of aging 

predicts that long-lived worms should show a low metabolic rate. We have quantified several 

parameters of energy metabolism including oxygen consumption, heat production and ATP 

concentration. Contrary to the prediction, mutants and treatments studied in this thesis did not 

show a generally decreased energy metabolism: no hypometabolism was recorded for the Clk 

mutants, daf-2(e1370) or DR-treated worms.  Dauers did have low energy metabolism but were 

capable of reaching normal energy levels at dauer exit and post-dauer lifespan, regardless of how 

long they were kept in the diapause stage. 

Several studies have shown that mitochondrial defects, whether they are caused by 

mutations or imposed by RNAi-treatment, can lead to lifespan extension (Lakowski & Hekimi, 1996; 

Feng et al., 2001; Dillin et al., 2002; Lee et al., 2003; Hamilton et al., 2005; Hansen et al., 2005).  

Though the association between long lifespan and disruption of mitochondrial functioning can be 

perceived as counter-intuitive, it would fit into the Rate-of-Living theory if these mutants have lower 

metabolic rates. The majority of the long-lived strains tested in this way confirm anticipated low 

metabolic rates associated with these mutations or RNAi treatments.  (Feng et al., 2001) measured 

oxygen consumption in L1 juveniles of the isp-1(qm150) mutant, a mutant with a defect in the Iron-

Sulphur Protein of complex III.  isp-1 oxygen consumption is reduced approximately 2-fold when 

compared to the wild-type.  isp-1’s low oxygen consumption rate was confirmed in 1st-day-adults, 

and was accompanied by lower ATP levels (Yang & Hekimi, 2010a).  These authors also measured low 

O2 consumption in nuo-6(qm200), a strain that carries a mutation in a conserved subunit of complex I 

(NUDFB4).  (Lee et al., 2003) reported a reduction in oxygen consumption rates in strains fed Mit 

RNAi bacteria –among others, affecting subunits of Complex, I, III or IV-  accompanied by decreases in 

ATP content.  A reduction in ATP levels was also observed in worms subjected to RNAi for cyc-1 

(complex III), atp-3 (ATP synthase) nuo-2 (complex I) or cco-1 (complex IV) (Dillin et al., 2002).  Low 

pumping rates were observed in 12 mitochondrial-RNAi-treated strains (Hansen et al., 2005).  All 

these findings seem to confirm the Rate-of-Living theory.   

Though oxygen consumption and other activities related to metabolic rate may be low in 

these Mit phenotypes, there are some observations that put these findings into perspective with 

respect to the causality of low metabolism in longevity: for instance, the short-lived mev-1 mutant 

has a defect in a subunit of Complex II (Ishii et al., 1998), also leading to lower oxygen consumption 

(Braeckman et al., 2003).  The double mutant isp-1(qm150); ctb-1(qm189), which partly suppresses 

the slow metabolism of the isp-1 single mutant, has higher oxygen consumption rates but its lifespan 

is hardly shorter than that of the single mutant (Feng et al., 2001).  While ATP levels in the isp-1 
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mutant are lower than in controls, the mutation in nuo-6 results in ATP levels that are considerably 

higher (Yang & Hekimi, 2010a). Remarkably, disruption by RNAi results in reduced ATP levels for both 

genes.  In contrast to the nuo-6 mutant, nuo-6 RNAi-treated worms do not have lower oxygen 

consumption rates when compared to WT (Yang & Hekimi, 2010b). 

A direct molecular link can be drawn between Mit mutants/RNAi and alterations in 

mitochondrial metabolism.  This link is not evidenced in daf-2 mutants.  Even so, the metabolic 

profiles of Mit phenotype worms are too divergent to confirm the correlation of longevity with low 

metabolic rate. Based on our C. elegans data and on various studies concerning Mit phenotype 

worms, we cannot support the prediction that life expectancy is determined by the rate of living. 

 

7.1.3 Role of ROS 

 

According to the Oxidative Damage theory of aging, extended lifespan should be 

accompanied by low levels of ROS. A technically feasible procedure to accurately measure in vivo 

ROS production rates in C. elegans has not yet been published1. For dauers, Clk mutants, DR-treated 

worms and initially for daf-2(e1370) as well, we have resorted to the measurement of antioxidant 

capacity as a proxy for the rate of ROS degradation.  We found that in each of these strains, some 

aspect of antioxidant defense was altered when compared to the WT, but a general increase of 

antioxidant enzyme activities in all tested longevity strains was not observed.   

Next, we developed a protocol for measurement of mitochondrial H2O2 production; we have 

isolated mitochondrial fractions and measured H2O2 formation in the presence of exogenous 

Cu/ZnSOD (converting all superoxide to H2O2) and adequate amounts of mitochondrial substrate. 

Counter to the prediction, we found ROS production to be significantly increased in the long-lived 

daf-2(e1370) strain in this in vitro assay. Although these results must be interpreted with care since 

they may not reflect ROS production levels in vivo, the difference found between daf-2 and wild type 

ROS production was consistent for the largest part of the age range tested. This finding is compatible 

with better coupling of daf-2(e1370) mitochondria isolated from age-matched nematodes as 

assessed in chapter 5. In both wild type and daf-2(e1370) mitochondria, ROS production rate, like 

metabolic rate, was found to decrease over age.  Data collected by Yasuda and colleagues (2006) on 

superoxide production in isolated wild type mitochondria showed a 15% decrease over age, but this 

minor effect was not found to be significant due to large experimental variation. It must be noted 

that this group measured superoxide production specifically while our data reflect the sum of 

superoxide and hydrogen peroxide production.  ROS production capacity by isolated mitochondria 

was recently also assessed by the Hekimi group (Yang & Hekimi, 2010a).  daf-2 mutants were found 

to have elevated superoxide production but no significant increase in overall ROS.  Mitochondria 

from long-lived Mit mutants showed either increases in overall ROS (clk-1), increases in superoxide 

(isp-1 and nuo-6), or no significant differences in overall ROS or superoxide (sod-2 mutant) when 

compared to the WT.  Increased ROS production in clk-1 and isp-1 was also observed by (Lee et al., 

2010). For these mutants also, there seems to be no clear-cut inverse relation between ROS 

production and lifespan.  

                                                 
1
 The fluorescent probe MitoSOX Red, a lipophilic derivative of hydroethidine, can be administered to live 

worms where it accumulates in mitochondria; however, a number of disadvantages are connected to the use of 
MitoSOX as a fluorescent probe for in vivo measurement of ROS production.  For instance, its uptake in the 
worm is influenced by feeding rate, it accumulates preferentially in C. elegans’ pharyngeal bulb and its signal 
can be influenced by non-specific binding (Dingley et al., 2010).   
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Another approach to investigate whether low ROS production is crucial for longevity is 

through interference with antioxidant levels.  Ubiquitous overexpression of the Cu/Zn sod gene sod-1 

only modestly increased lifespan (Doonan et al., 2008). Moreover, supplying worms with the SOD 

mimetics EUK-8 and EUK-134 elevated SOD activity but did not result in lifespan extension (Keaney & 

Gems, 2003; Keaney et al., 2004). Knocking out genes encoding antioxidants did not or only weakly 

shorten life span when implemented on WT, clk-1, nuo-6, mev-1 or daf-2  (Leiers et al., 2003; Yang et 

al., 2007; Doonan et al., 2008; Honda et al., 2008; Van Raamsdonk & Hekimi, 2009; Yen et al., 2009; 

Yang & Hekimi, 2010a; Yang & Hekimi, 2010b). isp-1 lifespan was either shortened or unaltered by 

knocking down sod-2 through mutation or RNAi, respectively (Yang et al., 2007; Van Raamsdonk & 

Hekimi, 2009).  The antioxidant N-acetyl-cysteine had no effect on WT and clk-1 but decreased 

lifespan in isp-1, nuo-6, sod-2 and daf-2 (Yang & Hekimi, 2010a). These interferences with antioxidant 

levels also contest the importance of ROS in aging. 

 

It is widely assumed that damage accumulation is a key factor in the molecular aging process 

and that this type of damage is mainly caused by ROS, inflicting a diversity of modifications to DNA, 

lipids and proteins. Mitochondria are a major source of intracellular ROS generation and they are 

therefore considered to be prone to oxidative damage.  According to the predictions of the Oxidative 

Damage theory of aging, long-lived strains should be less affected by ROS and, consequently, show 

less molecular damage.  We have monitored the age-related accumulation of carbonylated proteins 

in wild type and daf-2(e1370) mitochondria and we found increased carbonyl levels but only in 

mitochondria of very old worms. This is in contrast to the findings of Adachi et al. (1998), Yasuda et 

al. (1999), and Ishii et al. (2002), who assayed whole C. elegans homogenates and found that long-

lived mutants such as daf-2(e1370) and age-1 accumulated less protein carbonyls over time 

compared to the control strain.  Melov and colleagues (1995) claimed that age-related increases in 

damage to mtDNA are attenuated in the Ins/IGF-1 pathway mutant age-1; we have not been able to 

confirm this finding in daf-2.   

For the short-lived Mit mutants mev-1 and gas-1, it is plausible that the defect in the ETC 

function caused by the mutation leads to increases in oxidative damage (Adachi et al., 1998; Kayser 

et al., 2004; Dingley et al., 2010). Possibly their antioxidant defense cannot cope with the increased 

amounts of ROS (Sedensky & Morgan, 2006).  The long-lived Mit mutants, which show no overall 

signs of decreased ROS production, could be capable of neutralizing ROS and could consequently 

show lower levels of oxidative damage.  However, in many cases, the prediction that longevity is 

correlated to low oxidative damage cannot be confirmed.  No evidence could be found of significant 

decreases in oxidative damage in Clk mutants or isp-1 measured as levels of carbonylated proteins 

(Yang et al., 2007; Van Raamsdonk et al., 2010), though clk-1 mutant worms did seem to have lower 

levels of proteins modified by 4-hydroxy-2-nonenal (Kayser et al., 2004; Yang et al., 2009). The sod-2 

mutation confers an extended lifespan and increased carbonyl levels (Van Raamsdonk & Hekimi, 

2009).  (Dingley et al., 2010) assessed lipid peroxidation in isolated mitochondria from several 

respiratory chain mutants and daf-2, but could not link this parameter to longevity.  In a range of 

RNAi dilutions against the gene atp-3, no correlation was found between the degree of lifespan 

extension and the level of protein oxidative damage (Rea et al., 2007). (Yang et al., 2007) studied the 

effects of sod-1 and sod-2 RNAi on oxidative damage and lifespan in WT, isp-1, clk-1 and mev-1.  

Though decreased expression of sod-1 or sod-2 did not always result in significantly increased 

damage in these strains, lifespan was mostly unaffected, or even increased, in the instances where 

oxidative damage was clearly elevated.    
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Although the evidence presented above does not support the Oxidative Damage theory of 

aging, the possibility remains that forms of damage important for aging are being overlooked.  In a 

recent study, (Morcos et al., 2008) described a novel mechanism impacting on C. elegans lifespan 

which does seem to fit into the Oxidative Damage theory of aging. With increasing age, the 

modification of mitochondrial proteins by methylglyoxal, a highly reactive dicarbonyl, increases while 

the activity of its detoxifying enzyme  glyoxalase-1 decreases.   Overexpression of the gene coding for 

glyoxalase-1 reduces both mitochondrial ROS production and methylglyoxal-related protein 

modifications and, importantly, it increases lifespan. Knockdown of this gene exhibits reverse effects.  

Possibly, this and other types of oxidative damage that have not been studied extensively are 

decisive for aging.  Study of this process in the longevity mutants discussed here may clarify this 

issue. 

Other than by causing molecular damage, ROS could also play a role as intracellular 

messengers in aging and longevity, e.g. in a protective signaling cascade that is beneficial to 

longevity.  Though the molecular details of a mitochondrial-ROS-related protective mechanism have 

not been fully elucidated, there are indications that such mechanisms exist (Boneh, 2006; Storz, 

2007).  In line with this, Yang and Hekimi (2010a) suggest that lifespan extension of the isp-1 and 

nuo-6 mutants could be mediated by superoxide signaling. As lifespan extension in these mutants is 

not dependent on higher expression of superoxide dismutase genes, these authors argue that 

protective signaling by superoxide is distinct from a hormesis effect. 

 

In all, from this short review and from studies on other model organisms it is apparent that 

no conclusive evidence has so far been presented that irrevocably provides proof for the Rate-of-

Living and Oxidative Damage theories of aging.  Pinpointing ROS as the sole cause of aging would 

imply ignoring the possibility that aging is, like so many other physiological processes, influenced by 

multiple molecular mechanisms, many of which remain to be elucidated.  

 

7.2  Are alterations in metabolism causal to longevity? 

 
It is clear that the longevity of Clk, Mit and Ins/IGF-1 mutant animals and DR-treated worms 

cannot be ascribed to lowered oxidative stress resulting from a slowing of metabolic rate.  However, 

each of these manipulations leads to an alteration in energy metabolism.  Could this altered 

metabolism define lifespan by a mechanism that does not implicate oxidative stress?  If this is the 

case, we can expect that the mechanism involved will differ between the various manipulations as 

assessing their combined effects on lifespan shows additivity in some cases and non-additivity in 

others.  For instance, when compared to the single mutants, the daf-2; isp-1 or daf-2; sod-2 double 

mutants show no further lifespan extension. In contrast, treatment of daf-2 worms with Mit RNAi  

prolongs the daf-2 lifespan up to 93% (Feng et al., 2001; Hansen et al., 2005; Van Raamsdonk & 

Hekimi, 2009).   Synergistic effects on life span are also observed in daf-2; clk-1 and daf-2; clk-2 

double mutants (Lakowski & Hekimi, 1996; Van Raamsdonk et al., 2010).  Importantly, it was recently 

reported that the metabolic effects of ETC disruption are not causal to lifespan extension (Yang & 

Hekimi, 2010a; Zuryn et al., 2010). 
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The mechanism by which the daf-2(e1370) mutation extends lifespan is unknown.  Potentially, 

daf-2 longevity relies on the expression of dauer-like metabolic characteristics during the adult 

lifespan. daf-2(e1370) mutant animals inappropriately activate parts of the dauer programme at 

temperatures (20°-25°C) that allow uninterrupted development of WT worms. Since dauers can 

survive several times the normal lifespan and daf-2(e1370) adults live about twice as long as the WT 

it is reasonable to expect that they share some common mechanisms for extended lifespan. Whole 

genome transcription profiling identified a cohort of genes that are upregulated in both dauer larvae 

and daf-2(e1370) adult animals, including genes involved in certain aspects of metabolism, 

oxidoreductase activity, small heat shock proteins, anti-ROS defense and detoxification systems 

(Murphy et al., 2003; McElwee et al., 2004; McElwee et al., 2006). Many of these changes may foster 

prolonged survival. However, energy metabolism is quite different in dauers and daf-2(e1370) adult 

worms as it is downregulated in dauers and normal in daf-2(e1370) adults. Anaerobic metabolism is 

upregulated and mitochondrial energy production may be partially shifted to anaerobic functioning 

during dauer diapause, as typically occurs in many parasitic species (Burnell et al., 2005). However, 

oxygen consumption is not suppressed in daf-2(e1370) adult animals, making it unlikely that a dauer-

like energy metabolism is causal to daf-2 longevity. 

 

Ins/IGF-1 pathway disruption has a distinct effect on metabolism.  Oxygen consumption of wild 

type and daf-2(e1370) follows a strikingly similar pattern over the entire adult lifespan.  Heat 

production, however, is lowered in daf-2(e1370), especially during mid-life. These results indicate 

that, during a large proportion of their adult life, the long-lived daf-2 mutants produce less heat per 

oxygen molecule that is consumed.  A plausible explanation for this is that the efficiency of aerobic 

energy production is upregulated in daf-2(e1370) animals, evidenced by elevated ATP levels.  

Possibly, the reason for daf-2’s longevity lies in this shift in oxidative metabolism.  This would imply a 

higher mitochondrial coupling efficiency.  

Some of our findings confirm that the long-lived daf-2(e1370) is able to better preserve its 

mitochondrial function than the wild-type.  In the wild-type, the abundance of key mitochondrial 

proteins declines with age, although the mitochondrial mass, inferred from the mitochondrial DNA 

copy number, remains unaltered.  These age-related proteomic changes are accompanied by a 

dramatic decrease in energy production.  In daf-2(e1370) adult animals, the age-dependent decrease 

of key mitochondrial proteins and electron transport chain complexes is considerably attenuated, as 

is the decrease in their bioenergetic competence.   This ability to maintain mitochondrial function is 

associated with a higher membrane potential and increased ROS production; in contrast, little 

damage to mitochondrial protein or DNA occurs. 

The question remains whether this shift in metabolism, which is associated with an attenuation 

in the decrease of mitochondrial function, is causal to the lifespan extension of the daf-2 mutant.  

The metabolic profiles of ageing cohorts of N2, daf-2(e1370) and daf-16(mgDf50) animals described 

in chapter 3 point to a complex regulation of energy metabolism, where two pathways emanate from 

DAF-2, a predominant one that is DAF-16 independent whereas the other requires DAF-16. Given the 

common view that DAF-16 is a master regulator of longevity, this would implicate that the metabolic 

changes imparted by daf-2(e1370) are auxiliary, rather than essential, mechanisms of lifespan 

extension. This view is strengthened by several observations. We have demonstrated that the fall of 

metabolic rate with age is attenuated in daf-2(e1370) animals. Yet, while several aspects of daf-

2(e1370) mitochondrial function are higher or better preserved with age, state 3 respiration of both 

WT and daf-2(e1370) mitochondria shows no such age-specific fall, suggesting that mitochondrial 
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malfunction is unlikely a primary cause of ageing. Also, the increased energetic efficiency of daf-2 

animals inferred from the C/R ratio is not recapitulated in isolated mitochondria suggesting that in 

control of whole-worm metabolism, extra-mitochondrial regulatory mechanisms are important. The 

higher standing levels of ATP cannot be essential either, because RNAi against several mitochondrial 

genes reportedly lowered ATP substantially but extended lifespan (Dillin et al., 2002). Also, the ucp-

4(0) mutant (UCP-4 is the only UCP-like protein encoded in the C. elegans genome) contains elevated 

ATP levels yet is not long-lived (Iser et al., 2005). The overproduction of antioxidant enzymes by the 

daf-2 mutant will certainly enhance survival under unfavorable conditions that are associated with 

oxidative stress, but they appear to be hardly effective in extending lifespan under normal 

conditions, as discussed previously. Combined, these observations suggest that the daf-2(e1370) 

mitochondrial phenotypes are not likely primary mechanisms of daf-2(e1370) longevity, and that low 

daf-2 function alters the overall rate of aging by a yet unidentified mechanism, with an indirect 

protective effect on mitochondrial function. 

 

7.3  A candidate mechanism for maintaining mitochondrial function in daf-2 
 

To date, no direct molecular link has been established between the daf-2 mutation and 

mitochondrial function.  Oxidative phosphorylation is regulated in part by cell signaling.  Though 

recent research has shown that all components of the electron transport chain can be 

phosphorylated (as reviewed in (Hüttemann et al., 2007), it is not yet known whether mutation in 

daf-2 influences mitochondrial function directly by altering the phosphorylation of ETC components. 

Even if Ins/IGF-1 pathway disruption affects mitochondria only indirectly, it is still possible that 

the altered function of daf-2(e1370) mitochondria contributes to shifts in the metabolic network, not 

detected by the present approach and impinging on longevity assurance mechanisms. It was recently 

shown that WT dauer larvae and the long-lived insulin-like signaling (daf-2) and translation (ife-2) 

mutants display a common metabolic signature dominated by shifts in carbohydrate and amino acid 

signature (Fuchs et al., 2010). Many of these metabolites are related to the citric acid cycle, 

glycolysis, gluconeogenesis and the glyoxylate shunt, metabolic activities that are differently 

regulated in dauers and adult daf-2 mutant worms. Fuchs et al. (2010) found a general elevation of 

amino acid pool sizes in both mutant classes, and a striking upregulation of the branched amino acids 

isoleucine, leucine and valine, possibly resulting from downregulation of breakdown by 

mitochondrial BCKD2 enzyme complex. The upregulation of gluconeogenesis and the glyoxylate shunt 

and downregulation of amino acids catabolism may serve a longevity assurance mechanism that is 

based on recycling of cellular components.  

Multiple pathways and signals control life span of C. elegans and evidence is mounting that they 

converge on autophagy genes (Toth et al., 2008).  Autophagic events are approximately 8 times more 

frequent in daf-2(e1370) than in wild-type animals (Hansen et al., 2008) and (Melendez et al., 2003) 

demonstrated that bec-1, the worm ortholog of yeast and mammalian autophagy genes 

VPS/beclin 1, was essential for life span extension in daf-2(e1370). However, autophagy alone is not 

sufficient for lifespan extension as it also occurs in double daf-2;daf-16 mutants that are not long-

lived (Hansen et al., 2008). A likely explanation is that both reduction in Ins/IGF-1 signaling and active 

                                                 
2
 branched-chain α-keto acid dehydrogenase 
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autophagy are required for daf-2 longevity. Clearly, mitophagy is a candidate mechanism for 

preserving general mitochondrial competence. We assume that dysfunctional mitochondria are more 

rapidly degraded by autophagic processes in daf-2(e1370) mutant animals. The higher standing levels 

of ATP and the superior bioenergetic competence of their mitochondria would provide the necessary 

energy for subsequent mitogenesis ensuring sustained presence of competent mitochondria.   

 

7.4  Technical advancement may aid progression in mitochondrial knowledge 
 

Many of the questions on aging that we attempted to answer in this thesis will benefit from 

technical progress made in recent years.  For instance, attempts are being made to further purify C. 

elegans mitochondria without compromising their functioning.  Analyses of mitochondrial respiration 

will most certainly be more accurate in the future, thanks to the acquisition of an Oroboros Oxygraph 

for high-resolution respirometry.  Moreover, mitochondrial respiration and membrane potentials will 

be measurable simultaneously.  The field of study will be broadened to include other longevity 

mutants and treatments. 

Proteome analyses are being performed on longevity-related mutants and conditions.  They are 

performed on whole worm homogenates instead of on mitochondrial suspensions.  Not only mutants 

but also RNAi-treated worms can be subjected to these analyses.  Another advantage is that a high-

throughput procedure is being used, which is not limited to one-on-one comparisons.  Future 

proteomics datasets can be validated by Western blotting.  Gene expression studies will assess 

whether observed age- or strain-related differences in protein abundance are transcriptionally 

regulated.  RNAi and overexpression studies may reveal the importance of mitochondrial protein 

abundances for longevity.  There are also indications that extensive proteome comparisons will 

reveal differences in mitochondrial composition between the strains discussed in chapter 4. 

Finally, studies on OXPHOS supercomplexes are ongoing.  The cooperation between the Dencher 

lab, executing the supercomplex analysis, and our lab, providing the mitochondrial samples, will 

continue as C. elegans mitochondria have proven to contain protein complexes with high stability.   

 

7.5 General conclusion and perspectives for future research 
 

In summary, none of the longevity strains and treatments presented in this study support the 

Rate-of-Living or Oxidative damage theories of aging. ROS are most likely not causal to aging under 

normal conditions.  We have presented evidence that the age-dependent decrease in abundance of 

key proteins and in bioenergetic competence is considerably attenuated in mitochondria of the long-

lived daf-2(e1370) mutant animals, and that these changes are associated with a higher membrane 

potential and increased ROS production. We also showed that the ultimate mechanism by which the 

daf-2(e1370) mutation extends life span cannot be ascribed to the higher standing levels of ATP or 

reduced oxidative damage. Though the mechanism by which the e(1370) mutation extends life span 

remains largely enigmatic, there are indications that mitophagy represents the indirect molecular link 

between Ins/IGF-1 disruption and maintained bioenergetic efficiency.  This aspect of mitochondrial 

function requires further investigation; related fields of research that may elucidate the potential 

importance of this factor in daf-2 longevity are protein metabolism studies, particularly 

mitochondrial protein turnover. 
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LIST OF STRAINS - Short description of the genes/mutants mentioned or used;  for mutants used, 

alleles have been added.  

gene allele protein Phenotype 

N2   Wild-type 
CGC Bristol male stock 

age-1 
 

 P110 subunit of PIP3 kinase 
 

Dauer formation constitutive 
Aging abnormal; prolonged lifespan First known 
long-lived mutant 

atp-3  mitochondrial ATP synthase 
subunit 
 

ETS dysfunction 
Aging abnormal  
RNAi: Long-lived 

ctl-1  Cytosolic catalase  

daf-2 
 

e1370 predicted receptor tyrosine 
kinase, insulin/IGF receptor 
ortholog 

abnormal DAuer Formation,  
Aging abnormal; prolonged lifespan 
2 known classes: class I and class II 

daf-16 
 

m26 
mgDf50 

Forkhead transcription factor the sole C. elegans forkhead box O (FOXO) homolog 
Dauer formation defective Suppression of daf-2, 
age-1, aap-1 phenotypes  

cco-1  Cytochrome c oxidase, 
subunit Vb/COX4 
 

ETS dysfunction 
Aging abnormal 
Growth rate abnormal  
RNAi: Long-lived 

clk-1 
 

e2519 Hydroxylase (DMQ -> 5-OH-
ubiquinone) 
 

Clock; slow-down of temporal processes 
Aging abnormal; prolonged lifespan 
Growth rate abnormal 
Maternal effect 

clk-2 
 

qm37 Homologous to Tel2p Regulates telomere length 
DNA damage response 
Clock; slow-down of temporal processes 
Aging abnormal; prolonged lifespan 
Growth rate abnormal 
Maternal effect 

clk-3 
 

qm38 Unknown 
 

Clock; slow-down of temporal processes 
Aging abnormal; prolonged lifespan 
Growth rate abnormal 
Maternal effect 

ctb-1  Cytochrome b of 
mitochondrial complex III 

mutation of ctb-1 suppresses the slow embryonic 
development of isp-1 mutants 

cyc-1  Cytochrome c of 
mitochondrial complex III 
 

ETS dysfunction 
Aging abnormal 
Growth rate abnormal 
RNAi: Long-lived 

eat-2 
 

ad465 
ad1113 

ligand-gated ion channel 
subunit 

Eating abnormal 
Abnormal, slower pharyngeal pumping 
Aging abnormal; prolonged lifespan 

fer-15 
 

  Fertilization defective  
sterile 

gas-1 
 

 49 kDa subunit of 
mitochondrial complex I  
 

ETS dysfunction 
General Anaesthetic Sensitivity abnormal 
Short-lived 

glp-4 
 

bn2  Germ line proliferation defective 
sterile 

gro-1 
 

e2400 Isopentenylpyrophosphate:tR
NA-transferase 
 

Clock; slow-down of temporal processes 
Aging abnormal; prolonged lifespan 
Growth rate abnormal 
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ife-2  translation initiation factor 4F, 
cap-binding subunit (eIF-4E) 

Aging abnormal 
Translation abnormal  
Long-lived 

isp-1  Rieske iron sulphur protein 
(ISP) subunit of the 
mitochondrial complex III 
 

ETS dysfunction 
Aging abnormal 
Growth rate abnormal 
Long-lived 

mev-1 
 

 Cytochrome b560 

 
ETS dysfunction 
Methyl viologen resistance abnormal: abnormal 
resistance against paraquat (sensitivity) 
Growth rate abnormal 
Short-lived 

nuo-2  C. elegans ortholog of 
NDUFS3/30 kDa subunit of 
complex I 
 

ETS dysfunction 
Aging abnormal 
Growth rate abnormal 
RNAi: Long-lived 

nuo-6  C. elegans ortholog of 
NDUFB4/B15 subunit of 
complex I 

ETS dysfunction 
Aging abnormal 
Long-lived 

sod-1  Copper/zinc superoxide 
dismutase 

Slightly short lifespan or no significant effects on 
aging 

sod-2  Mitochondrial 
iron/manganese superoxide 
dismutase 

 

ucp-4  Uncoupling protein  
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LIFESPAN OVERVIEW - Overview of lifespans for mutants used. 

gene allele culture Lifespan (days) Source 

  medium Temp 
°C 

mean % N2 
control 

 

N2  Monox sol  24 14.4  Houthoofd et al. (2002a)  

  Monox liq  24 8.6  Braeckman, unpublished data 

  Ax liquid  24 30.9  Braeckman et al. (2000)  

  Monox bact dil  
1x10

6
 bact/ml 

1X10
8
 bact/ml 

1x10
10

 bact/ml 

20  
5 
25.9 
15.0 

 Klass (1977) 
Caveat: age = juvenile + adult! 

  Dauer    >4-8x 
normal 
lifespan 

Klass and Hirsh (1976) 

daf-2 e1370 Monox liq  24 16.1 187% Braeckman, unpublished data 

  Monox sol  24 24.3 169% Houthoofd et al. (2003a)  

daf-16 m26 Monox liq  24 7.9 92% Braeckman, unpublished data 

  Monox sol  24 12.9 90% Houthoofd et al. (2003a)  

daf-16 mg 
Df50 

Monox liq  24    

  Monox sol  20  Slightly 
short-lived 

Saul  et al. (2008)  

clk-1 e2519 Monox liq  24 12.8 149% Braeckman, unpublished data 

  Monox sol  20 26.0 140% Wong et al. (1995)  

clk-2 qm37 Monox liq  24 10.9 127% Braeckman, unpublished data 

  Monox sol  20 30.4 147% Harris et al. (2006) Genetics 

clk-3 qm38 Monox liq  24 12.6 147% Braeckman, unpublished data 

  Monox sol 20  Moderate 
increase 

Van Raamsdonk et al. (2010)  

eat-2 ad465 Monox liq  24    

  Monox sol  20 25.1 129% Lakowski and Hekimi (1998)  

  Ax liq  24 35.7 138% Braeckman et al. (2000)  

eat-2 ad 
1113 

Monox liq  24    

  Monox sol  20 28.4 146% Lakowski and Hekimi (1998) 

  Ax liq  24    

glp-4 bn2 Monox bact dil  24    

  Monox sol  24  Moderate 
increase 

Houthoofd (2003)  

  Monox sol 
vector L4440 

25 11.6 - Tohyama et al. (2008) 

gro-1 e2400 Monox liq  24    

  Monox sol  25 15.6 170% Kirkwood (1987) 

  Monox sol  20  Moderate 
increase 

Van Raamsdonk et al. (2010) s 

 

Abbreviations: 

Monox: monoxenic; Ax.: axenic; Liq.: liquid; Sol.: solid; Bact. dil.: bacterial dilution 
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